LINEAR
DATABOOK

NATIONAL
SEMICONDUCTOR CORPORATION

LINEAR DATABOOK

Voltage Regulators
Voltage References
Operational Amplifiers/Buffers
Instrumentation Amplifiers
Voltage Comparators
Analog Switches
Sample and Hold
A to D, D to AIndustrial Blocks: Functional/Automotive/Telecommunications/Monolithic FiltersAudio/Radio Circuits
TV Circuits
Transistor/Diode Arrays
DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis
Appendices/Physical Dimensions

This new 1982 edition of the National Semiconductor - Linear Databook is the most comprehensive available. It presents approximately 2000 pages of specifications for our high technology linear products. Applications, descriptions, features and diagrams in this databook include detailed sections for Voltage Regulators, Op Amps, Voltage Comparators, A to D, D to A Converters, Industrial Blocks and Audio, Radio and TV Circuits.

The databook also features advanced telecommunication devices and speech synthesis (DIGITALKER ${ }^{\text {TM }}$), plus other non-state-of-the-art linear products offering performance, economy, quality and reliability.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

The National Anthem ${ }^{\circledR}$, Datachecker ${ }^{\oplus}$, Maxi-ROM ${ }^{\circledR}$ and TRI-STATE ${ }^{\circledR}$ are registered trademarks of National Semiconductor Corp.

Abuséable ${ }^{T M}$, $\mathrm{BI}^{\mathrm{F}} \mathrm{FET}^{T M}$, BI-FET $I^{T M}$, COPS ${ }^{T M}$, DIGITALKER ${ }^{\text {TM }}$, DNR $^{\text {TM }}$, E-Z-LINK ${ }^{\text {TM }}$, HEX $3000^{\text {TM }}$, ISE $^{\text {TM, }}$,

MICROBUS ${ }^{\text {TM }}$, MICROWIRE ${ }^{\top M}$, MICRO-DAC ${ }^{\top}$, MST $^{\text {TM }}$, NURAM ${ }^{\text {TM }}$, ${ }^{2}{ }^{2}$ CMOS $^{\text {TM }}$, Positalker ${ }^{\text {TM }}$, QUIKLOOK ${ }^{\text {TM }}$, Rat $^{\top M}$, Starlink ${ }^{\top M}$, Starplex ${ }^{\top M}$, Starplex $I^{\top M}$, TRI-CODE ${ }^{\top M}$, TRI-POLY ${ }^{\top M}$, XMOS ${ }^{\top M}$, ZSTAR ${ }^{\top M}$, 883B/RETS ${ }^{\top M}$, 883S/RETS ${ }^{\top M}$, and XPU ${ }^{\top M}$ are trademarks of National Semiconductor Corp.

Ordering Information

PACKAGE

D - Glass/Metal Dual-In-Line Package
F - Glass/Metal Flat Pack
H - TO-5 (TO-99, TO-100, TO-46)
J - Low Temperature Glass Dual-In-Line Package
K - TO. 3 (Steel)
KC - TO-3 (Aluminum)
N - Plastic Dual-In-Line Package
P - TO-202 (D-40, Durawatt); also Single-In Line Package
S - "SGS" Type Power Dual-In-Line Package
T - TO-220
W - Low Temperature Glass Flat-Pack
Z - TO-92

DEVICE NUMBER

3, 4, or 5 Digit Number Suffix Indicators:
A - Improved Electrical Specification
C - Commercial Temperature Range
DEVICE FAMILY
AD - Analog to Digital
ADB - Analog to Digital Building Block
AH - Analog Hybrid
AM - Analog Monolithic
BLX - Board Level System
DAC - Digital to Analog Converter
DM - Digital Monolithic
DT - DIGITALKER ${ }^{\text {TM }}$.
HY - Hybrids
LF - Linear FET
LH - Linear Hybrid
LM - Linear Monolithic
MF - Monolithic Filter
MM - MOS Monolithic
TP - Telecommunications Product

Devices are listed in the table of contents alpha-numerically by device family (LH, LM, LX, etc.) and then by device number. With most of National's proprietary linear circuits, a 1-2-3 numbering system is employed. The 1 denotes a Military temperature range device $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$, the 2 denotes an Industrial temperature range device $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and the 3 denotes a Commercial temperature range device $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$), i.e. LM101/LM201/LM301.

Exceptions to this are the LM1800 series of consumer circuits which are specified for the commercial temperature range; some hybrid circuits which employ a " C " suffix to denote the commercial temperature range; and second-source products which follow the original manufacturers numbering system, i.e. LM741/LM741C or LM1414/LM1514.

Parts are generally listed in the table of contents by military part number first, i.e. LM139/LM239/LM339. Where a separate data sheet exists for a different temperature range, the device will be listed separately, i.e. LM119/LM219 and listed separately LM319. Where only one temperature range exists, the part will be listed in its proper order, i.e. LM340.

Table of Contents

Edge Index by Product Family 1
Introduction 2
Ordering Information 3
Alpha-Numerical Index 11
Section 1-Voltage Regulators ${ }^{\dagger}$
Voltage Regulator Guide 1-3
Precision Regulator Guide $1-7$
Definition of Terms $1-8$
Fixed or Adjustable Voltage Regulators 1.9
LM104/LM204/LM304 Negative Regulator 1-10
LM105/LM205/LM305/LM305A, LM376 Voltage Regulators $1-13$
LM109/LM209/LM309 5-Volt Regulator 1-18
LM117/LM217/LM317 3-Terminal Adjustable Regulator 1-23
LM117HVILM217HV/LM317HV 3-Terminal Adjustable Regulator $1-31$
LM120 Series 3-Terminal Negative Regulators $1-39$
LM123/LM223/LM323 3 Amp, 5 Volt Positive Regulator 1-47
LM125/LM325/LM325A, LM126/LM326 Voltage Regulators 1.51
LM137/LM237/LM337 3-Terminal Adjustable Negative Regulators $1-58$
LM137HVILM237HVILM337HV 3-Terminal Adjustable Negative Regulators (High Voltage) 1-63
LM138/LM238/LM338 5 Amp Adjustable Power Regulators $1-68$
LM140A/LM140/LM340A/LM340 Series 3-Terminal Positive Regulators $1-76$
LM140L/LM340L Series 3-Terminal Positive Regulators $1-84$
LM145/LM345 Negative Three Amp Regulator 1.87
LM150/LM250/LM350 3 Amp Ádjustable Power Regulators 1.91
LM196/LM396 10 Amp Adjustable Voltage Regulators $1-99$
LM317L 3-Terminal Adjustable Regulator 1-111
LM320L/LM320ML Series 3-Terminal Negative Regulators 1-122
LM330 3-Terminal Positive Regulator 1-128
LM337L 3-Terminal Adjustable Regulator $1-134$
LM341 Series 3-Terminal Positive Regulators $1-136$
LM342 Series 3-Terminal Positive Regulators 1-139
LM723/LM723C Voltage Regulator 1-143
LM1524/LM2524/LM3524 Regulating Pulse Width Modulator 1-148
LH1605/LH1605C 5 Amp, High Efficiency Switching Regulator 1-163
LM2930 3-Terminal Positive Regulator 1-170
LM2931 Series Low Dropout Regulators 1-176
LM78XX Series Voltage Regulators 1-181
LM78LXX Series 3-Terminal Positive Regulators 1-184
LM78MXX Series 3 -Terminal Positive Regulators 1-190
LM79XX Series 3-Terminal Negative Regulators 1-193
LM79LXXAC Series 3-Terminal Negative Regulators 1-198
LM79MXX Series 3-Terminal Negative Regulators 1-202
${ }^{\dagger}$ For additional information, see National Semiconductor's Voltage Regulator Handbook.
Section 2-Voltage References
Voltage Reference Selection Guide 2-3
LH0070 Series Precision BCD Buffered Reference 2-5
LH0071 Series Precision Binary Buffered Reference 2-5
LH0075 Positive Precision Programmable Regulator 2-9
LH0076 Negative Precision Programmable Regulator 2-14
LM103 Reference Diode 2-19
LM113/LM313 Reference Diode 2-22
LM129/LM329 Precision Reference 2-25
LM136/LM236/LM336 2.5V Reference Diode 2-30
Table of Contents (continues)
LM136-5.0/LM236-5.0/LM336-5.0 5.0V Reference Diode 2-36
LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode 2-42
LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diode $2-48$
LM199/LM299/LM399 Precision Reference 2.54
LM199A/LM299A/LM399A Precision Reference 2.60
LM3999 Precision Reference 2-63
Section 3-Operational Amplifiers/Buffers ${ }^{\dagger}$
BI-FET ${ }^{\text {TM } / B I-F E T ~ I I T M ~}{ }^{\text {TM }}$ Op Amp Selection Guide 3-5
Military Op Amp Selection Guide 3-7
Industrial Op Amp Selection Guide 3-9
Commercial Op Amp Selection Guide 3-10
Hybrid Operational Amplifier and Hybrid Buffer Amplifier Guides 3-12
Definition of Terms 3-13
LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifier 3-14
LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers 3-22
LF351 Wide Bandwidth JFET Input Operational Amplifiers 3-35
LF353 Wide Bandwidth Dual JFET Input Operational Amplifiers 3-42
LF400C Fast Settling JFET Input Operational Amplifier 3-51
LF411A/LF411 Low Offset, Low Drift JFET Input Operational Amplifier 3-53
LF412A/LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier 3-60
LF441A/LF441 Low Power JFET Input Operational Amplifier 3-66
LF442A/LF442 Dual Low Power JFET Input Operational Amplifier 3-73
LF444A/LF444 Quad Low Power JFET Input Operational Amplifier 3-81
LF13741 Monolithic JFET Input Operational Amplifier 3-88
LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference 3-99
LM11/LM11C/LM11CL Operational Amplifiers 3-115
LM101A/LM201A/LM301A Operational Amplifiers 3-128
LM102/LM202/LM302 Voltage Followers 3-135
LM107/LM207/LM307 Operational Amplifiers 3-140
LM108/LM208/LM308 Operational Amplifiers 3-144
LM108A/LM208A/LM308A, LM308A-1, LM308A-2 Operational Amplifiers 3-149
LM110/LM210/LM310 Voltage Follower 3-154
LM112/LM212/LM312 Operational Amplifiers 3-161
LM118/LM218/LM318 Operational Amplifiers 3-165
LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers 3-172
LM143/LM343 High Voltage Operational Amplifier 3-181
LM144/LM344 High Voltage, High Slew Rate Operational Amplifier 3-188
LM146/LM246/LM346 Programmable Quad Operational Amplifiers 3-194
LM148, LM149 Series Quad 741 Op Amps 3-206
LM158/LM258/LM358, LM158A/LM258A/LM358A, LM2904 Low Power Dual Operational Amplifiers 3-216
LM159/LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers 3-226
LM192/LM292/LM392, LM2924 Low Power Operational Amplifier/Voltage Comparator 3-242
LM216/LM316, LM216A/LM316A Operational Amplifiers 3-246
LM709/LM709A/LM709C Operational Amplifier 3-249
LM725/LM725A/LM725C (Instrumentation) Operational Amplifier 3-253
LM741/LM741A/LM741C/LM741E Operational Amplifier 3-257
LM747/LM747A/LM747C/LM747E Dual Operational Amplifiers 3-260
LM748/LM748C Operational Amplifier 3-265
LM1558/LM1458 Dual Operational Amplifier 3-268
LM2900/LM3900, LM3301, LM3401 Quad Amplifiers 3-270
LM4250/LM4250C Programmable Operational Amplifier 3-279
LM13080 Programmable Power Op Amp 3-284

Table of Contents (continued)

LH0002/LH0002C Current Amplifier 3-291
LH0003/LH0003C Wide Bandwidth Operational Amplifier 3-294
LH0004/LH0004C High Voltage Operational Amplifier 3-296
LH0005/LH0005A Operational Amplifier 3-299
LH0005C Operational Amplifier 3-302
LH0021/LH0021C 1.0 Amp Power Operational Amplifier 3-304
LH0041/LH0041C 0.2 Amp Power Operational Amplifier 3-304
LH0022/LH0022C High Performance FET Op Amp 3-311
LH0042/LH0042C Low Cost FET Op Amp 3-311
LH0052/LH0052C Precision FET Op Amp 3-311
LH0024/LH0024C High Slew Rate Operational Amplifier 3-318
LH0032/LH0032C Ultra Fast FET Operational Amplifier 3-321
LH0033/LH0033C, LH0063/LH0063C Fast and Damn Fast Buffer Amplifiers 3-327
LH0044 Series Precision Low Noise Operational Amplifiers 3-338
LH0045/LH0045C Two Wire Transmitter 3-344
LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier 3-355
LH0062/LH0062C High Speed FET Operational Amplifier 3-358
LH0086/LH0086C Digitally-Programmable-Gain Amplifier 3-364
LH0101/LH0101C, LH0101A/LH0101AC Power Operational Amplifier 3-371
LH740A/LH740AC FET Input Operational Amplifier 3-382
LH2011/LH2011B/LH2011C Dual Operational Amplifiers 3-384
LH2101A/LH2201A/LH2301A Dual High Performance Op Amp 3-397
LH2108/LH2208/LH2308, LH2108A/LH2208A/LH2308A Dual Super Beta Op Amp 3-399
LH2110/LH2210/LH2310 Dual Voltage Follower 3-401
LH24250/LH24250C Dual Programmable Micropower Op Amp 3-403
\dagger For additional information, see National Semiconductor's Hybrid Products Databook.
Section 4-Instrumentation Amplifiers ${ }^{\dagger}$
Hybrid Products Instrumentation Amplifier Guide 4-3
Definition of Terms 4-4
LM121/LM221/LM321, LM121A/LM221A/LM321A Precision Preamplifiers 4.5
LM163/LM363 Precision Instrumentation Amplifier $4-13$
LH0036/LH0036C Instrumentation Amplifier 4-18
LH0038/LH0038C True Instrumentation Amplifier 4-26
LH0084/LH0084C Digitally-Programmable-Gain Instrumentation Amplifier 4-37
\dagger For additional information, see National Semiconductor's Hybrid Products Databook.
Section 5-Voltage Comparators
Voltage Comparator Guide 5-3
Definition of Terms 5-4
LF111/LF211/LF311 Voltage Comparators 5-5
LH2111/LH2211/LH2311 Dual Voltage Comparator 5-11
LM106/LM206/LM306 Voltage Comparator 5-13
LM111/LM211 Voltage Comparator 5-16
LM119/LM219/LM319 High Speed Dual Comparator 5-22
LM139/LM239/LM339, LM139A/LM239A/LM339A, LM2901, LM3302 Low Power Low Offset Voltage Quad Comparators 5-27
LM160/LM260/LM360 High Speed Differential Comparator 5-35
LM161/LM261/LM361 High Speed Differential Comparators 5-38
LM193/LM293/LM393, LM193A/LM293A/LM393A, LM2903 Low Power Low Offset Voltage Dual Comparators 5-41
LM311 Voltage Comparator 5-48
LM710/LM710C Voltage Comparator 5-56
LM711/LM711C Dual Comparator 5-59
LM1514/LM1414 Dual Differential Voltage Comparator 5-62
Table of Contents (Continueg)
Section 6—Analog Switches ${ }^{\dagger}$
Analog Switches/Multiplexers Selection Guide 6-3
Definition of Terms 6-4
AH5009, AH5010, AH5011, AH5012 Monolithic Analog Current Switches 6-5
LF11331/LF13331 4 Normally Open Switches With Disable 6-17
LF11332/LF13332 4 Normally Closed Switches With Disable 6-17
LF11333/LF13333 2 Normally Closed Switches and 2 Normally Open Switches With Disable 6-17
LF11201/LF132014 Normally Closed Switches 6-17
LF11202/LF13202 4 Normally Open Switches 6-17
LF11508/LF13508 8-Channel Analog Multiplexer 6-27
LF11509/LF13509 4-Channel Differential Analog Multiplexer 6-27
\dagger For additional information, see National Semiconductor's Hybrid Products Databook and FET Databook.
Section 7-Sample and Hold ${ }^{\dagger}$
Sample and Hold Selection Guide 7-3
Definition of Terms 7-4
LF198/LF298/LF398, LF198A/LF398A Monolithic Sample and Hold Circuits 7-5
LH0023/LH0023C, LH0043/LH0043C Sample and Hold Circuits 7-14
LH0053/LH0053C High Speed Sample and Hold Amplifier 7-22
\dagger For additional information, see National Semiconductor's Hybrid Products Databook.
Section 8-A to D, D to A †
AID Converter/DVM Selection Guide 8-3
D/A Converter Selection Guide 8-5
Definition of Terms 8-7
AD7520/AD7530 10-Bit Binary Multiplying D/A Converters 8-8
AD7521/AD7531 12-Bit Binary Multiplying D/A Converters 8-8
ADB1200 12-Bit Binary A/D Building Block 8-10
ADC0800 8-Bit A/D Converter 8-17
ADC0801, ADC0802, ADC0803, ADC0804, ADC0805 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters 8-28
ADC0808, ADC0809 8-Bit μ P Compatible A/D Converters with 8-Channel Multiplexer 8-60
ADC0816, ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer 8-71
ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer 8.82
ADC1001, ADC1021 10-Bit μ P Compatible A/D Converters 8-89
ADC1080, ADC1280 12-Bit Successive Approximation A/D Converters 8-97
ADC1210, ADC1211 12-Bit CMOS A/D Converters 8-107
DAC0800, DAC0801, DAC0802 8-Bit Digital-to-Analog Converters 8-118
DAC0808, DAC0807, DAC0806 8-Bit D/A Converters 8-126
DAC0830/DAC0831/DAC0832 MICRO-DAC ${ }^{\text {TM }} 8$-Bit μ P Compatible, Double-Buffered D to A Converters 8-133
DAC1000/1/2 and DAC1006/7/8 MICRO-DAC ${ }^{\text {TM }}{ }_{\mu} \mathrm{P}$ Compatible, Double-Buffered D to A Converters 8-151
DAC1020, DAC1021, DAC1022 10-Bit Binary Multiplying D/A Converter 8-173
DAC1220, DAC1221, DAC1222 12-Bit Binary Multiplying D/A Converter 8-173
DAC1200, DAC1201 12-Bit Digital-to-Analog Converters 8-183
DAC1208, DAC1209, DAC1210, DAC1230, DAC1231, DAC1232 MICRO-DAC ${ }^{\text {TM }}$ 12-Bit, $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converters 8-189
DAC1218, DAC1219 12-Bit Binary Multiplying D/A Converter 8-204
DAC1280A, DAC1280 12-Bit Digital-to-Analog Converters 8-208
DAC1280A-I, DAC1280-I 12-Bit Digital-to-Analog Converters 8-216
DAC1285A, DAC1285 (DAC85, DAC87) 12-Bit Digital-to-Analog Converters 8-220
DM2502, DM2503, DM2504 Successive Approximation Registers 8-228
LF13300 Integrating A/D Analog Building Block 8-233
Table of Contents (continues)
LM131A/LM131, LM231A/LM231, LM331A/LM331 Precision Voltage-to-Frequency Converters 8-251
MM54C905/MM74C905 12-Bit Successive Approximation Register 8-262
${ }^{\dagger}$ For additional information, see National Semiconductor's Data Conversion/Acquisition Databook
Section 9—Industrial Blocks: Functional/Automotivel Telecommunications/Monolithic Filters
Definition of Terms 9-4
LM122/LM222/LM322, LM2905/LM3905 Precision Timers 9-5
LM134/LM234/LM334 3-Terminal Adjustable Current Sources 9-17
LM135/LM235/LM335, LM135A/LM235A/LM335APrecision Temperature Sensors9-25
LM555/LM555C Timer 9-33
LM556/LM556C Dual Timer 9-39
LM565/LM565C Phase Locked Loop 9-42
LM566/LM566C Voltage Controlled Oscillator 9-47
LM567/LM567C Tone Decoder 9-50
LM733/LM733C Differential Video Amp 9-54
LM903 Fluid Level Detector 9-58
LM909 Remote Control Receiver 9-64
LM1014/LM1014A Motor Speed Regulator 9-69
LM1801 Smoke Detector 9-73
LM1812 Ultrasonic Transceiver 9-77
LM1815 Adaptive Sense Amplifier 9-85
LM1830 Fluid Detector 9-88
LM1851 Ground Fault Interrupter 9-94
LM1871 RC Encoder/Transmitter 9-101
LM1872 Radio Control Receiver/Decoder 9-116
LM2907, LM2917 Frequency to Voltage Converter. 9-135
LM3080/LM3080A Operational Transconductance Amplifier 9-148
LM3909 LED Flasher/Oscillator 9-152
LM3911 Temperature Controller 9-156
LM3914 Dot/Bar Display Driver 9-163
LM3915 Dot/Bar Display Driver. 9-177
LM3916 Dot/Bar Display Driver 9-193
MF10 Universal Monolithic Dual Switched Capacitor Filter 9-212
TP5116A, TP5117A, TP5156A Monolithic CODECs 9-223
TP3020/TP3021 Monolithic CODECs 9-229
TP3040/TP3040A PCM Monolithic Filter 9-238
TP3051, TP3056 Monolithic Parallel Interface CODEC/Filter Family $9-245$
TP3052, TP3053, TP3054, TP3057 Monolithic Serial Interface CODEC/Filter Family 9-247
TP3110, TP3120 Digital Line Interface Controllers (DLIC) 9-249
TP5087/TP5087A, TP5092/TP5092A, TP5094/TP5094A DTMF (TOUCH-TONE ${ }^{\circledR}$) Generators 9-250
TP5088 DTMF Generator for Binary Input Data 9-254
TP9151, TP9152, TP9156, TP9158 Push Button Pulse Dialer Circuits with Redial 9-255
TP50981/TP50981A, TP50982/TP50982A, TP50985/TP50985A Push Button Pulse Dialer Circuits 9-260
TP5395, TP53125 DTMF (TOUCH-TONE ${ }^{\circledR}$) Generators 9-266
TP5393, TP5394, TP53143, TP53144 Pushbutton Pulse Dialer Circuits 9-271
TP53130 DTMF (TOUCH-TONE ${ }^{\circledR}$) Generator 9-276
TP5600, TP5605, TP5610, TP5615 Ten-Number Repertory Pulse Dialers 9-281
TP5650, TP5660 Ten-Number Repertory DTMF Generators 9-287
LH0091 True RMS to DC Converter 9-291
LH0094 Multifunction Converter 9-296

Table of Contents (continued)

Section 10—Audio/Radio Circuits

Audio/Radio Selection Guide . 10-4

Definition of Terms . 10-8
LM377 Dual 2 Watt Audio Amplifier .
LM378 Dual 4 Watt Audio Amplifier .
LM379 Dual 6 Watt Audio Amplifier . 10-18
LM380 Audio Power Amplifier .
LM381/LM381A Low Noise Dual Preamplifier . 10-26
LM382 Low Noise Dual Preamplifier . 10-29
LM383/LM383A 7 Watt Audio Power Amplifier .
LM3845 Watt Audio Power Amplifier . $10-36$
LM386 Low Voltage Audio Power Amplifier . 10-40
LM387/LM387A Low Noise Dual Preamplifier .
LM388 1.5 Watt Audio Power Amplifier . 10-47
LM389 Low Voltage Audio Power Amplifier With NPN Transistor Array 10-52
LM390 1 Watt Battery Operated Audio Power Amplifier . 10-59
LM391 Audio Power Driver . 10-64
LM1035 Dual DC Operated Tone/Volume/Balance Circuit . 10-75
LM1037 Dual Four-Channel Analog Switch .
LM1038 Dual Four-Channel Analog Switch . 10-85
LM1112A/LM1112B/LM1112C Dolby B-Type Noise Reduction Processor 10-88

LM1131A/LM1131B/LM1131C Dual Dolby B-Type Noise Reduction
Processor .
LM1310 Phase-Locked Loop FM Stereo Demodulator .
LM1391 Phase-Locked Loop Block .
LM1596/LM1496 Balanced Modulator-Demodulator . 10-107
LM1800 Phase-Locked Loop FM Stereo Demodulator . 10-111
LM1818 Electronically Switched Audio Tape System . 10-113
LM1837 Low Noise Preamplifier for Autoreversing Tape Playback Systems 10-122
LM1865/LM1965 Advanced FM IF System . 10-132
LM1866 Low Voltage AM/FM Receiver . 10-146
LM1868 AM/FM Radio System .
LM1870 Stereo Demodulator with Blend .
LM1877 Dual Power Audio Amplifier . 10-167
LM1894 Dynamic Noise Reduction System DNR ${ }^{\text {TM }}$. 10-172
LM1895/LM2895 Audio Power Amplifier . 10-179
LM1896/LM2896 Dual Power Audio Amplifier . 10-184
LM1897 Low Noise Preamplifier for Tape Playback Systems . 10-191
LM2002/LM2002A 8 Watt Audio Power Amplifier . 10-200
LM2877 Dual 4-Watt Power Audio Amplifier . 0 .204
LM2878 Dual 5 Watt Power Audio Amplifier .
LM3011 Wide Band Amplifier . 10-216
LM3075 FM Detector/Limiter and Audio Preamplifier. 10-218
LM3089 FM Receiver IF System . $10-220$
LM3189 FM IF System .
LM3820 AM Radio System . 10-231
LM4500A High Fidelity FM Stereo Demodulator with Blend . 10-235
LM13600/LM13600A/LM11600A Dual Operational Transconductance
Amplifiers With Linearizing Diodes and Buffers
10-242
LM13700/LM13700A/LM11700A Dual Operational Transconductance Amplifiers
with Linearizing Diodes and Buffers . 10 258
TBA120S IF Amplifier and Detector . 10-274
TBA120U, TBA120T IF Amplifier and Detector. 10 -277
TDA2003 Audio Power Amplifier . 10-281
Table of Contents (continued)
Section 11-TV Circuits
LM1017 4-Bit Binary 7-Segment Decoder/Driver 11-3
LM1019N Digital Tuning Station Detector 11-7
LM1821S Video IF PLL Synchronous Detector 11-10
LM1828, LM1848 Color Television Chroma Demodulator 11-13
LM1880 No-Holds Vertical/Horizontal 11-16
LM1886 TV Video Matrix D to A 11-23
LM1889 TV Video Modulator 11-28
LM2808 Monolithic TV Sound System 11-37
LM3064 Television Automatic Fine Tuning 11-41
TBA440C Monolithic Video IF Amplifier 11-43
TBA510 Chrominance Combination 11-45
TBA530 RGB Matrix Preamplifier. 11-49
TBA540 Reference Combination 11-52
TBA560C Luminance and Chrominance Control Combination 11-56
TBA920/TBA920S Line Oscillator Combination $11-60$
TBA950-2 Television Signal Processing Circuit 11-63
TBA970 Television Video Amplifier 11-67
TBA990 Color Demodulator $11-70$
TDA440 Video IF Amplifier $11-72$
TDA2522/TDA2523 Color Demodulation Combinations $11-76$
TDA2530 R-G-B Matrix Preamplifier with Clamps $11-78$
TDA2540 Video IF Amplifier and Demodulator 11.81
TDA2541 Video IF Amplifier and Demodulator 11-84
TDA2560 Luminance and Chrominance Control Combination 11-87
TDA2591/TDA2593 Line Oscillator Combination 11-90
TDA3500 Chroma Processor + RGB Drive Combination 11-96
TDA3501 Chroma Processor + RGB Drive Combination 11-102
Section 12-Transistor/Diode Arrays
Transistor/Diode Arrays Selection Guide 12-3
LM194/LM394 Supermatch Pair 12-4
LM195/LM295/LM395 Ultra Reliable Power Transistors 12-10
LM3045, LM3046, LM3086 Transistor Arrays 12-18
LM3146 High Voltage Transistor Array 12-23
Section 13—DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis
BLX-281 Speech Synthesis Expansion Módule 13-3
DT1000 DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis Evaluation Board 13-7
DT1050/DT1053 DIGITALKER ${ }^{\text {TM }}$ Standard Vocabulary Kit 13-14
DT1051/DT1054 DIGITALKER ${ }^{\text {TM }}$ Speech Evaluation Kit 13-22
DT1052/DT1055 DIGITALKER ${ }^{\text {TM }}$ Basic Numbers Kit 13-24
DT1056/DT1057 DIGITALKER ${ }^{\text {TM }}$ Standard Vocabulary Kit 13-26
MM54104 DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis System 13-34
LB-54 Circuit for Evaluation of Custom Vocabulary EPROM Prototype Set 13-41
AN-252 Speech Synthesis 13-43
Section 14-Appendices/Physical Dimensions
National A + and B + Extended Quality and Reliability
Programs for Linear Circuits 14-3
MIL-STD-883/MIL-M-38510 14-8
Linear Cross Reference Guide 14-9
Industry Package Cross Reference Guide 14-13
Physical Dimensions 14-15
For additional information on Linear Products, see National Semiconductor's Linear ApplicationsHandbook.

Alphanumerical Index

AD7520 10-Bit Binary Multiplying D/A Converter 8-8
AD7521 12-Bit Binary Multiplying D/A Converter 8-8
AD7530 10-Bit Binary Multiplying D/A Converter 8-8
AD7531 12-Bit Binary Multiplying D/A Converter 8-8
ADB1200 12-Bit Binary A/D Building Block 8-10
ADC0800 8-Bit A/D Converter 8-17
ADC0801 8-Bit μ P Compatible A/D Converter 8-28
ADC0802 8-Bit μ P Compatible AID Converter 8-28
ADC0803 8-Bit μ P Compatible A/D Converter 8-28
ADC0804 8-Bit μ P Compatible AID Converter 8-28
ADC0805 8-Bit μ P Compatible A/D Converter 8-28
ADC0808 8-Bit $\mu \mathrm{P}$ Compatible A/D Converter with 8-Channel Multiplexer 8-60
ADC0809 8-Bit μ P Compatible A/D Converter with 8-Channel Multiplexer 8-60
ADC0816 8-Bit μ P Compatible AID Converter with 16-Channel Multiplexer 8-71
ADC0817 8-Bit μ P Compatible AID Converter with 16-Channel Multiplexer $8-71$
ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer 8-82
ADC1001 10-Bit μ P Compatible A/D Converters 8-89
ADC1021 10 Bit μ P Compatible A/D Converters 8-89
ADC1080 12-Bit Successive Approximation A/D Converter 8-97
ADC1210 12-Bit CMOS A/D Converter 8-107
ADC1211 12-Bit CMOS A/D Converter 8-107
ADC1280 12-Bit Successive Approximation A/D Converter 8-97
AH5009 Monolithic Analog Current Switch 6-5
AH5010 Monolithic Analog Current Switch 6-5
AH5011 Monolithic Analog Current Switch $6 \cdot 5$
AH5012 Monolithic Analog Current Switch 6-5
AN-252 Speech Synthesis 13-43
BLX-281 Speech Synthesis Expansion Module 13-3
DAC0800 8-Bit Digital-to-Analog Converter 8-118
DAC0801 8-Bit Digital-to-Analog Converter 8-118
DAC0802 8-Bit Digital-to-Analog Converter 8-118
DAC0806 8-Bit D/A Converter 8-126
DAC0807 8-Bit D/A Converter 8-126
DAC0808 8-Bit D/A Converter 8-126
DAC0830 MICRO-DAC ${ }^{\text {TM }} 8$-Bit μ P Compatible Double-Buffered D to A Converter 8-133
DAC0831 MICRO-DAC ${ }^{\top M} 8$-Bit μ P Compatible Double-Buffered D to A Converter 8-133
DAC0832 MICRO-DAC ${ }^{\text {TM }} 8$-Bit μ P Compatible Double-Buffered D to A Converter 8-133
DAC1000 10-Bit, μ P Compatible, Double-Buffered D to A Converters 8-151
DAC1001 10-Bit, μ P Compatible, Double-Buffered D to A Converters 8-151
DAC1002 10-Bit, μ P Compatible, Double-Buffered D to A Converters 8-151
DAC1006 10-Bit, $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converters 8-151
DAC1007 10-Bit, μ P Compatible, Double-Buffered D to A Converters 8-151
DAC1008 10-Bit, μ P Compatible, Double-Buffered D to A Converters 8-151
DAC1020 10-Bit Binary Multiplying D/A Converter 8-173
DAC1021 10-Bit Binary Multiplying D/A Converter 8-173
DAC1022 10-Bit Binary Multiplying D/A Converter 8-173
DAC1200 12-Bit (Binary) Digital-to-Analog Converter 8-183
DAC1201 12-Bit (Binary) Digital-to-Analog Converter 8-183
DAC1208 MICRO-DAC ${ }^{\text {TM }}$ 12-Bit, μ P Compatible, Double-Buffered D to A Converter 8-189
DAC1209 MICRO-DAC ${ }^{\text {TM }} 12$-Bit, μ P Compatible, Double-Buffered D to A Converter 8-189
DAC1210 MICRO-DAC ${ }^{\text {TM }} 12$-Bit, $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converter 8-189
DAC1218 12-Bit Binary Multiplying D/A Converter 8-204
DAC1219 12-Bit Binary Multiplying D/A Converter 8-204
DAC1220 12-Bit Binary Multiplying D/A Converter. 8-173

Alphanumerical Index (Contimued)

DAC1221 12 Bit Binary Multiplying D/A Converter 8-173
DAC1222 12-Bit Binary Multiplying D/A Converter 8-173
DAC1230 MICRO-DAC ${ }^{\text {TM }} 12$-Bit, $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converter 8-189
DAC1231 MICRO-DAC ${ }^{\text {TM }} 12$-Bit, $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converter 8-189
DAC1232 MICRO-DAC ${ }^{\text {TM }} 12$-Bit, $\mu \mathrm{P}$ Compatible, Double-Buffered D to A'Converter 8-189
DAC1280 12-Bit Digital-to-Analog Converter 8-208
DAC1280A 12-Bit Digital-to-Analog Converter 8-208
DAC1280A-I 12-Bit Digital-to-Analog Converter 8-216
DAC1280-1 12-Bit Digital-to-Analog Converter 8-216
DAC1285 (DAC87) 12-Bit Digital-to-Analog Converter 8-220
DAC1285A (DAC85) 12-Bit Digital-to-Analog Converter 8-220
DM2502 Successive Approximation Register 8-228
DM2503 Successive Approximation Register 8-228
DM2504 Successive Approximation Register 8-228
DT1000 DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis Evaluation Board 13-7
DT1050 DIGITALKER ${ }^{\text {TM }}$ Standard Vocabulary Kit 13-14
DT1051 DIGITALKER ${ }^{\text {TM }}$ Speech Evaluation Kit 13-22
DT1052 DIGITALKER ${ }^{\text {TM }}$ Basic Numbers Kit 13-24
DT1053 DIGITALKER ${ }^{\text {TM }}$ Standard Vocabulary Kit 13-14
DT1054 DIGITALKER ${ }^{\text {TM }}$ Speech Evaluation Kit 13-22
DT1055 DIGITALKER ${ }^{\text {TM }}$ Basic Numbers Kit 13-24
DT1056 DIGITALKER ${ }^{\text {TM }}$ Standard Vocabulary Kit 13-26
DT1057 DIGITALKER ${ }^{\text {TM }}$ Standard Vocabulary Kit 13-26
LB-54 Circuit for Evaluation of Custom Vocabulary EPROM Prototype Set 13-41
LF111 Voltage Comparators 5-5
LF147 Wide Bandwidth Quad JFET Input Operational Amplifier 3-14
LF155 Series Monolithic JFET Input Operational Amplifiers 3-22
LF156 Series Monolithic JFET Input Operational Amplifiers 3-22
LF157 Series Monolithic JFET Input Operational Amplifiers 3-22
LF198 Monolithic Sample and Hold Circuit $7-5$
LF198A Monolithic Sample and Hold Circuit 7-5
LF211 Voltage Comparator 5-5
LF298 Monolithic Sample and Hold Circuit 7-5
LF311 Voltage Comparator 5-5
LF347 Wide Bandwidth Quad JFET Input Operational Amplifier 3-14
LF351 Wide Bandwidth JFET Input Operational Amplifier 3.35
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier 3-42
LF398 Monolithic Sample and Hold Circuit 7.5
LF398A Monolithic Sample and Hold Circuit 7.5
LF400C Fast Settling JFET Input Operational Amplifier 3.51
LF411 Low Offset, Low Drift JFET Input Operational Amplifier 3.53
LF411A Low Offset, Low Drift JFET Input Operational Amplifier 3-53
LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier 3-60
LF412A Low Offset, Low Drift Dual JFET Input Operational Amplifier 3-60
LF441 Low Power JFET Input Operational Amplifier $3-66$
LF441A Low Power JFET Input Operational Amplifier 3-66
LF442 Dual Low Power JFET Input Operational Amplifier 3.73
LF442A Dual Low Power JFET Input Operational Amplifier 3.73
LF444 Quad Low Power JFET Input Operational Amplifier 3.81
LF444A Quad Low Power JFET Input Operational Amplifier 3-81
LF11201 4 Normally Closed Switches 6-17
LF11202 4 Normally Open Switches 6-17
LF11331 4 Normally Open Switches With Disable 6-17
LF11332 4 Normally Closed Switches With Disable 6-17
LF11333 2 Normally Closed Switches and 2 Normally Open Switches With Disable 6-17

Alphanumerical Index (Continued)

LF11508 8-Channel Analog Multiplexer 6-27
LF11509 4-Channel Differential Analog Multiplexer 6-27
LF13201 4 Normally Closed Switches 6-17
LF13202 4 Normally Open Switches 6-17
LF13300 Integrating A/D Analog Building Block 8-233
LF13331 4 Normally Open Switches With Disable 6-17
LF13332 4 Normally Closed Switches With Disable 6-17
LF13333 2 Normally Closed Switches and 2 Normally Open Switches With Disable 6-17
LF13508 8-Channel Analog Multiplexer 6-27
LF13509 4-Channel Differential Analog Multiplexer 6-27
LF13741 Monolithic JFET Input Operational Amplifier 3-88
LH0002 Current Amplifier 3-291
LH0002C Current Amplifier 3-291
LH0003 Wide Bandwidth Operational Amplifier 3-294
LH0003C Wide Bandwidth Operational Amplifier 3-294
LH0004 High Voltage Operational Amplifier 3.296
LH0004C High Voltage Operational Amplifier 3-296
LH0005 Operational Amplifier 3-299
LH0005A Operational Amplifier 3-299
LH0005C Operational Amplifier 3-302
LH0021 1.0 Amp Power Operational Amplifier 3-304
LH0021C 1.0 Amp Power Operational Amplifier 3-304
LH0022 High Performance FET Op Amp 3-311
LH0022C High Performance FET Op Amp 3-311
LH0023 Sample and Hold Circuit 7-14
LH0023C Sample and Hold Circuit 7-14
LH0024 High Slew Rate Operational Amplifier 3-318
LH0024C High Slew Rate Operational Amplifier 3-318
LH0032 Ultra Fast FET Operational Amplifier 3-321
LH0032C Ultra Fast FET Operational Amplifier 3-321
LH0033 Fast and Damn Fast Buffer Amplifier 3-327
LH0033C Fast and Damn Fast Buffer Amplifier 3-327
LH0036 Instrumentation Amplifier 4-18
LH0036C Instrumentation Amplifier 4-18
LH0038 True Instrumentation Amplifier 4-26
LH0038C True Instrumentation Amplifier 4-26
LH0041 0.2 Amp Power Operational Amplifier 3-304
LH0041C 0.2 Amp Power Operational Amplifier 3-304
LH0042 Low Cost FET Op Amp 3-311
LH0042C Low Cost FET Op Amp 3-311
LH0043 Sample and Hold Circuit 7-14
LH0043C Sample and Hold Circuit 7-14
LH0044 Series Precision Low Noise Operational Amplifiers 3-338
LH0045 Two Wire Transmitter 3-344
LH0045C Two Wire Transmitter 3-344
LH0052 Precision FET Op Amp 3-311
LH0052C Precision FET Op Amp 3.311
LH0053 High Speed Sample and Hold Amplifier 7-22
LH0053C High Speed Sample and Hold Amplifier 7-22
LH0061 0.5 Amp Wide Band Operational Amplifier 3-355
LH0061C 0.5 Amp Wide Band Operational Amplifier 3-355
LH0062 High Speed FET Operational Amplifier 3-358
LH0062C High Speed FET Operational Amplifier $3-358$
LH0063 Fast and Damn Fast Buffer Amplifier 3-327
LH0063C Fast and Damn Fast Buffer Amplifier 3-327

Alphanumerical Index (Continued)

LH0070 Series Precision BCD Buffered Reference 2-5
LH0071 Series Precision Binarý Buffered Reference $2 \cdot 5$
LH0075 Positive Precision Programmable Regulator $2-9$
LH0076 Negative Precision Programmable Regulator 2-14
LH0084 Digitally Programmable Gain Instrumentation Amplifier 4-37
LH0084C Digitally Programmable Gain Instrumentation Amplifier 4-37
LH0086 Digitally-Programmable-Gain Amplifier 3-364
LH0086C Digitally-Programmable-Gain Amplifier 3-364
LH0091 True RMS to DC Converter 9-291
LH0094 Multifunction Converter 9-296
LH0101 Power Operational Amplifier 3-371
LH0101A Power Operational Amplifier 3-371
LH0101AC Power Operational Amplifier 3-371
LH0101C Power Operational Amplifier 3-371
LH1605 5 Amp, High Efficiency Switching Regulator 1-163
LH1605C 5 Amp, High Efficiency Switching Regulator 1-163
LH740A FET Input Operational Amplifier 3-382
LH740AC FET Input Operational Amplifier 3-382
LH2011 Dual Operational Amplifiers 3-384
LH2011B Dual Operational Amplifiers 3-384
LH2011C Dual Operational Amplifiers 3-384
LH2101A Dual High Performance Op Amp 3-397
LH2108 Dual Super Beta Op Amp 3-399
LH2108A Dual Super Beta Op Amp 3-399
LH2110 Dual Voltage Follower 3-401
LH2111 Dual Voltage Comparator 5-11
LH2201A Dual High Performance Op Amp 3-397
LH2208 Dual Super Beta Op Amp 3-399
LH2208A Dual Super Beta Op Amp 3-399
LH2210 Dual Voltage Follower 3-401
LH2211 Dual Voltage Comparator 5-11
LH2301A Dual High Performance Op Amp 3-397
LH2308 Dual Super Beta Op Amp 3-399
LH2308A Dual Super Beta Op Amp 3-399
LH2310 Dual Voltage Follower 3-401
LH2311 Dual Voltage Comparator 5-11
LH24250 Dual Programmable Micropower Op Amp 3-403
LH24250C Dual Programmable Micropower Op Amp 3-403
LM10 Op Amp and Voltage Reference 3-99
LM10B(L) Op Amp and Voltage Reference 3-99
LM10C(L) Op Amp and Voltage Reference 3-99
LM11 Operational Amplifer 3-115
LM11C Operational Amplifier 3-115
LM11CL Operational Amplifier 3-115
LM101A Operational Amplifier 3-128
LM102 Voltage Follower 3-135
LM103 Reference Diode 2-19
LM104 Negative Regulator. 1-10
LM105 Voltage Regulator 1-13
LM106 Voltage Comparator 5-13
LM107 Operational Amplifier 3-140
LM108 Operational Amplifier 3-144
LM108A Operational Amplifier 3-149
LM109 5-Volt Regulator 1-18
LM110 Voltage Follower 3-154

Alphanumerical Index (Continued)

LM111 Voltage Comparator 5-16
LM112 Operational Amplifier 3-161
LM113 Reference Diode $2-22$
LM117 3-Terminal Adjustable Regulator 1-23
LM117HV High Voltage 3-Terminal Adjustable Regulator. $1-31$
LM118 Operational Amplifier 3-165
LM119 High Speed Dual Comparator 5-22
LM120 Series 3-Terminal Negative Regulators $1-39$
LM121 Precision Preamplifier 4-5
LM121A Precision Preamplifier 4-5
LM122 Precision Timer 9-5
LM123 3 Amp, 5 Volt Positive Regulator $1-47$
LM124 Low Power Quad Operational Amplifier 3-172
LM124A Low Power Quad Operational Amplifier 3-172
LM125 Voltage Regulator $1-51$
LM126 Voltage Regulator $1-51$
LM129 Precision Reference 2-25
LM131 Precision Voltage-to-Frequency Converter 8-251
LM131A Precision Voltage-to-Frequency Converter 8-251
LM134 3-Terminal Adjustable Current Source 9-17
LM135 Precision Temperature Sensor 9-25
LM135A Precision Temperature Sensor 9-25
LM136 2.5V Reference Diode 2-30
LM136-5.0 5.0V Reference Diode 2.36
LM137 3-Terminal Adjustable Negative Regulators $1-58$
LM137HV 3-Terminal Adjustable Negative Regulator (High Voltage) $1-63$
LM138 5 Amp Adjustable Power Regulators $1-68$
LM139 Low Power Low Offset Voltage Quad Comparator 5-27
LM139A Low Power Low Offset Voltage Quad Comparator 5-27
LM140 Series 3-Terminal Positive Regulators $1-76$
LM140A Series 3-Terminal Positive Regulators 1.76
LM140L Series 3-Terminal Positive Regulators $1-84$
LM143 High Voltage Operational Amplifier 3-181
LM144 High Voltage, High Slew Rate Operational Amplifier 3-188
LM145 Negative Three Amp Regulator 1-87
LM146 Programmable Quad Operational Amplifier 3-194
LM148 Series Quad 741 Op Amps 3-206
LM149 Series Quad 741 Op Amps 3-206
LM150 3 Amp Adjustable Power Regulator $1-91$
LM158 Low Power Dual Operational Amplifier 3-216
LM158A Low Power Dual Operational Amplifier 3-216
LM159 Dual, High Speed, Programmable Current Mode (Norton) Amplifier 3-226
LM160 High Speed Differential Comparator 5-35
LM161 High Speed Differential Comparator 5-38
LM163 Precision Instrumentation Amplifier 4-13
LM185-1.2 Micropower Voltage Reference Diode 2.42
LM185-2.5 Micropower Voltage Reference Diode 2.48
LM192 Low Power Operational Amplifier/Voltage Comparator 3-242
LM193 Low Power Low Offset Voltage Dual Comparator 5-41
LM193A Low Power Low Offset Voltage Dual Comparator 5-41
LM194 Supermatch Pair 12-4
LM195 UItra Reliable Power Transistor 12-10
LM196 10 Amp Adjustable Voltage Regulator $1-99$
LM199 Precision Reference 2-54
LM199A Precision Reference 2-60

Alphanumerical Index (continued)

LM201A Operational Amplifier 3-128
LM202 Voltage Follower 3-135
LM204 Negative Regulator 1-10
LM205 Voltage Regulator 1-13
LM206 Voltage Comparator 5-13
LM207 Operational Amplifier 3-140
LM208 Operational Amplifier 3-144
LM208A Operational Amplifier 3-149
LM209 5-Volt Regulator 1-18
LM210 Voltage Follower 3-154
LM211 Voltage Comparator 5-16
LM212 Operational Amplifier 3-161
LM216 Operational Amplifier 3-246
LM216A Operational Amplifier 3-246
LM217 3-Terminal Adjustable Regulator $1-23$
LM217HV High Voltage 3-Terminal Adjustable Regulator 1-31
LM218 Operational Amplifier 3-165
LM219 High Speed Dual Comparator 5-22
LM221 Precision Preamplifier 4.5
LM221A Precision Preamplifier 4-5
LM222 Precision Timer 9-5
LM223 3 Amp, 5 Volt Positive Regulator $1-47$
LM224 Low Power Quad Operational Amplifier 3-172
LM224A Low Power Quad Operational Amplifier 3-172
LM231 Precision Voltage-to-Frequency Converter 8-251
LM231A Precision Voltage-to-Frequency Converter 8-251
LM234 3-Terminal Adjustable Current Source 9-17
LM235 Precision Temperature Sensor 9-25
LM235A Precision Temperature Sensor 9-25
LM236 2.5V Reference Diode 2-30
LM236-5.0 5.0V Reference Diode 2-36
LM237 3-Terminal Adjustable Negative Regulator 1-58
LM237HV 3-Terminal Adjustable Negative Regulator (High Voltage) $1-63$
LM238 5 Amp Adjustable Power Regulator 1-68
LM239 Low Power Low Offset Voltage Quad Comparator 5-27
LM239A Low Power Low Offset Voltage Quad Comparator 5-27
LM246 Programmable Quad Operational Amplifier 3-194
LM250 3 Amp Adjustable Power Regulator $1-91$
LM258 Low Power Dual Operational Amplifier 3-216
LM258A Low Power Dual Operational Amplifier 3-216
LM260 High Speed Differential Comparator 5-35
LM261 High Speed Differential Comparator 5-38
LM285-1.2 Micropower Voltage Reference Diode 2-42
LM285-2.5 Micropower Voltage Reference Diode 2-48
LM292 Low Power Operational Amplifier/Voltage Comparator 3-242
LM293 Low Power Low Offset Voltage Dual Comparator 5-41
LM293A Low Power Low Offset Voltage Dual Comparator 5-41
LM295 Ultra Reliable Power Transistor 12-10
LM299 Precision Reference 2-54
LM299A Precision Reference 2-60
LM301A Operational Amplifier 3-128
LM302 Voltage Follower 3-135
LM304 Negative Regulator 1-10
LM305 Voltage Regulator 1-13
LM305A Voltage Regulator 1-13

Alphanumerical Index (continued)

LM306 Voltage Comparator 5-13
LM307 Operational Amplifier 3-140
LM308 Operational Amplifier 3-144
LM308A Operational Amplifier 3-149
LM308A-1 Operational Amplifier 3-149
LM308A-2 Operational Amplifier 3-149
LM309 5-Volt Regulator 1-18
LM310 Voltage Follower 3-154
LM311 Voltage Comparator 5-48
LM312 Operational Amplifier 3-161
LM313 Reference Diode 2-22
LM316 Operational Amplifier 3-246
LM316A Operational Amplifier 3-246
LM317 3-Terminal Adjustable Regulator 1-23
LM317HV High Voltage 3-Terminal Adjustable Regulator $1-31$
LM317L 3-Terminal Adjustable Regulator 1-111
LM318 Operational Amplifier 3-165
LM319 High Speed Dual Comparator 5-22
LM320L Series 3-Terminal Negative Regulators 1-122
LM320ML Series 3-Terminal Negative Regulators 1-122
LM321 Precision Preamplifier 4-5
LM321A Precision Preamplifier 4-5
LM322 Precision Timer 9-5
LM323 3 Amp, 5 Volt Positive Regulator 1-47
LM324 Low Power Quad Operational Amplifier 3-172
LM324A Low Power Quad Operational Amplifier 3-172
LM325 Voltage Regulator. $1-51$
LM325A Voltage Regulator $1-51$
LM326 Voltage Regulator 1.51
LM329 Precision Reference 2-25
LM330 3-Terminal Positive Regulator 1-128
LM331 Precision Voltage-to-Frequency Converter 8-251
LM331A Precision Voltage-to-Frequency Converter 8-251
LM334 3-Terminal Adjustable Current Source 9-17
LM335 Precision Temperature Sensor 9-25
LM335A Precision Temperature Sensor 9-25
LM336 2.5V Reference Diode 2-30
LM336-5.0 5.0V Reference Diode 2-36
LM337 3-Terminal Adjustable Negative Regulator 1.58
LM337HV 3-Terminal Adjustable Negative Regulator (High Voltage) 1-63
LM337L 3-Terminal Adjustable Regulator 1-134
LM3385 Amp Adjustable Power Regulator 1.68
LM339 Low Power Low Offset Voltage Quad Comparator 5-27
LM339A Low Power Low Offset Voltage Quad Comparator 5-27
LM340 Series 3-Terminal Positive Regulators 1-76
LM340A Series 3-Terminal Positive Regulators $1-76$
LM340L Series 3-Terminal Positive Regulators $1-84$
LM341 Series 3-Terminal Positive Regulators 1-136
LM342 Series 3-Terminal Positive Regulators 1-139
LM343 High Voltage Operational Amplifier 3-181
LM344 High Voltage, High Slew Rate Operational Amplifier 3-188
LM345 Negative Three Amp Regulator $1-87$
LM346 Programmable Quad Operational Amplifier 1-194
LM350 3 Amp Adjustable Power Regulator 1-91
LM358 Low Power Dual Operational Amplifier 3-216

Alphanumerical Index (Continued)

LM358A Low Power Dual Operational Amplifier3-216LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifiers 3-226
LM360 High Speed Differential Comparator 5-35
LM361 High Speed Differential Comparator 5-38
LM363 Precision Instrumentation Amplifier 4-13
LM376 Voltage Regulator. 1-13
LM377 Dual 2 Watt Audio Amplifier. 10-9
LM378 Dual 4 Watt Audio Amplifier 10-14
LM379 Dual 6 Watt Audio Amplifier. 10-18
LM380 Audio Power Amplifier 10-22
LM381 Low Noise Dual Preamplifier 10-26
LM381A Low Noise Dual Preamplifier 10-26
LM382 Low Noise Dual Preamplifier 10-29
LM383 8 Watt Audio Power Amplifier 10-32
LM383A 8 Watt Audio Power Amplifier 10-32
LM3845 Watt Audio Power Amplifier 10-36
LM385-1.2 Micropower Voltage Reference Diode 2-42
LM385-2.5 Micropower Voltage Reference Diode 2-48
LM386 Low Voltage Audio Power Amplifier $10-40$
LM387 Low Noise Dual Preamplifier 10-44
LM387A Low Noise Dual Preamplifier. $10-44$
LM388 1.5 Watt Audio Power Amplifier 10-47
LM389 Low Voltage Audio Power Amplifier With NPN Transistor Array 10-52
LM390 1 Watt Battery Operated Audio Power Amplifier 10-59
LM391 Audio Power Driver 10-64
LM392 Low Power Operational Amplifier/Voltage Comparator 3-242
LM393 Low Power Low Offset Voltage Dual Comparator 5-41
LM393A Low Power Low Offset Voltage Dual Comparator 5-41
LM394 Supermatch Pair. 12-4
LM395 Ultra Reliable Power Transistor 12-10
LM396 10 Amp Adjustable Voltage Regulator $1-99$
LM399 Precision Reference 2-54
LM399A Precision Reference 2-60
LM555 Timer. 9-33
LM555C Timer 9-33
LM556 Dual Timer 9-39
LM556C Dual Timer 9-39
LM565 Phase Locked Loop 9-42
LM565C Phase Locked Loop 9-42
LM566 Voltage Controlled Oscillator 9-47
LM566C Voltage Controlled Oscillator 9-47
LM567 Tone Decoder 9-50
LM567C Tone Decoder 9-50
LM709 Operational Amplifier 3-249
LM709A Operational Amplifier 3-249
LM709C Operational Amplifier 3-249
LM710 Voltage Comparator 5-56
LM710C Voltage Comparator 5-56
LM711 Dual Comparator 5-59
LM711C Dual Comparator 5-59
LM723 Voltage Regulator 1-143
LM723C Voltage Regulator 1-143
LM725 (Instrumentation) Operational Amplifier 3-253
LM725A (Instrumentation) Operational Amplifier 3-253

Alphanumerical Index (Continued)

LM725C (Instrumentation) Operational Amplifier 3-253
LM733 Differential Video Amp 9-54
LM733C Differential Video Amp 9-54
LM741 Operational Amplifier. 3-257
LM741A Operational Amplifier 3-257
LM741C Operational Amplifier 3-257
LM741E Operational Amplifier 3-257
LM747 Dual Operational Amplifier 3-260
LM747A Dual Operational Amplifier 3-260
LM747C Dual Operational Amplifier 3-260
LM747E Dual Operational Amplifier 3-260
LM748 Operational Amplifier 3-265
LM748C Operational Amplifier 3-265
LM78XX Series Voltage Regulators 1-181
LM78LXX Series 3-Terminal Positive Regulators 1-184
LM78MXX Series 3-Terminal Positive Regulators 1-190
LM79XX Series 3-Terminal Negative Regulators 1-193
LM79LXXAC Series 3-Terminal Negative Regulators 1-198
LM79MXX Series 3-Terminal Negative Regulators 1-202
LM903 Fluid Level Detector 9-58
LM909 Remote Control Receiver 9-64
LM1014 Motor Speed Regulator 9-69
LM1014A Motor Speed Regulator 9-69
LM1017 4-Bit Binary 7-Segment Decoder/Driver. $11-3$
LM1019N Digital Tuning Station Detector 11-7
LM1035 Dual DC Operated Tone/Volume/Balance Circuit 10-75
LM1037 Dual Four-Channel Analog Switch $10-80$
LM1038 Dual Four-Channel Analog Switch 10-85
LM1112A Dolby B-Type Noise Reduction Processor 10-88
LM1112B Dolby B-Type Noise Reduction Processor $10-88$
LM1112C Dolby B-Type Noise Reduction Processor 10-88
LM1121A Dolby B-Type Noise Reduction Processor with DC Switching 10-94
LM1121B Dolby B-Type Noise Reduction Processor with DC Switching 10-94
LM1121C Dolby B-Type Noise Reduction Processor with DC Switching 10-94
LM1131A Dual Dolby B-Type Noise Reduction Processor 10-97
LM1131B Dual Dolby B-Type Noise Reduction Processor 10-97
LM1131C Dual Dolby B-Type Noise Reduction Processor 10-97
LM1310 Phase Locked Loop FM Stereo Demodulator 10-102
LM1391 Phase Locked Loop Block 10-104
LM1414 Dual Differential Voltage Comparator 5-62
LM1458 Dual Operational Amplifier 3-268
LM1496 Balanced Modulator-Demodulator 10-107
LM1514 Dual Differential Voltage Comparator 5-62
LM1524 Regulating Pulse Width Modulator 1-148
LM1558 Dual Operational Amplifier 3-268
LM1596 Balanced Modulator-Demodulator 10-107
LM1800 Phase Locked Loop FM Stereo Demodulator 10-111
LM1801 Smoke Detector 9-73
LM1812 Ultrasonic Transceiver 9-77
LM1815 Adaptive Sense Amplifier 9-85
LM1818 Electronically Switched Audio Tape System 10-113
LM1821S Video IF PLL Synchronous Detector 11-10
LM1828 Color Television Chroma Demodulator. 11-13
LM1830 Fluid Detector 9-88
LM1837 Low Noise Preamplifier for Autoreversing Tape Playback Systems 10-122

Alphanumerical Index (Continued)

LM1848 Color Television Chroma Demodulator 11-13
LM1851 Ground Fault Interrupter 9-94
LM1865 Advanced FM IF System 10-132
LM1866 Low Voltage AM/FM Receiver 10-146
LM1868 AM/FM Radio System 10-153
LM1870 Stereo Demodulator with Blend 10-161
LM1871 RC Encoder/Transmitter 9-101
LM1872 Radio Control Receiver/Decoder 9-116
LM1877 Dual Power Audio Amplifier 10-167
LM1880 No-Holds Vertical/Horizontal 11-16
LM1886 TV Video Matrix D to A 11-23
LM1889 TV Video Modulator 11-28
LM1894 Dynamic Noise Reduction System DNR ${ }^{\text {TM }}$ 10-172
LM1895 Audio Power Amplifier 10-179
LM1896 Dual Power Audio Amplifier 10-184
LM1897. Low Noise Preamplifier for Tape Playback Systems 10-191
LM1965 Advanced FM IF System 10-132
LM2002 8-Watt Audio Power Amplifier 10-200
LM2002A 8-Watt Audio Power Amplifier 10-200
LM2524 Regulating Pulse Width Modulator 1-148
LM2808 Monolithic TV Sound System 11-37
LM2877 Dual 4-Watt Power Audio Amplifier 10-204
LM2878 Dual 5 Watt Power Audio Amplifier 10-210
LM2895 Audio Power Amplifier 10-179
LM2896 Dual Power Audio Amplifier 10-184
LM2900 Quad Amplifier 3-270
LM2901 Low Power Low Offset Voltage Quad Comparator 5-27
LM2902 Low Power Quad Operational Amplifier 3-172
LM2903 Low Power Low Offset Voltage Dual Comparator. 5-41
LM2904 Low Power Dual Operational Amplifier 3-216
LM2905 Precision Timer 9-5
LM2907 Frequency to Voltage Converter 9-135
LM2917 Frequency to Voltage Converter 3-135
LM2924 Low Power Operational Amplifier/Voltage Comparator 3-242
LM2930 3-Terminal Positive Regulator 1-170
LM2931 Series Low Dropout Regulators $1-176$
LM3011 Wide Band Amplifier 10-216
LM3045 Transistor Array 12-18
LM3046 Transistor Array 12-18
LM3064 Television Automatic Fine Tuning 11-41
LM3075 FM Detector/Limiter and Audio Preamplifier 10-218
LM3080 Operational Transconductance Amplifier 9-148
LM3080A Operational Transconductance Amplifier 9-148
LM3086 Transistor Array 12-18
LM3089 FM Receiver IF System 10-220
LM3146 High Voltage Transistor Array 12-23
LM3189 FM Receiver IF System 10-224
LM3301 Quad Amplifier 3-270
LM3302 Low Power Low Offset Voltage Quad Comparator 5-27
LM3401 Quad Amplifier 3-270
LM3524 Regulating Pulse Width Modulator 1-148
LM3820 AM Radio System 10-231
LM3900 Quad Amplifier 3-270
LM3905 Precision Timer 9-5
LM3909 LED Flasher/Oscillator 9-152

Alphanumerical Index (Continued)

LM3911 Temperature Controller 9-156
LM3914 Dot/Bar Display Driver 9-163
LM3915 Dot/Bar Display Driver 9-177
LM3916 Dot/Bar Display Driver 9-193
LM3999 Precision Reference 2-63
LM4250 Programmable Operational Amplifier 3-279
LM4250C Programmable Operational Amplifier 3-279
LM4500A High Fidelity FM Stereo Blend Demodulator 10-235
LM11600A Dual Operational Transconductance Amplifier With Linearizing Diodes and Buffers 10-242
LM11700A Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 10-258
LM13080 Programmable Power Op Amp 3-284
LM13600 Dual Operational Transconductance Amplifier With Linearizing Diodes and Buffers 10-242
LM13600A Dual Operational Transconductance Amplifier With Linearizing Diodes and Buffers 10-242
LM13700 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 10-258
LM13700A Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 10-258
MF10 Universal Monolithic Dual Switched Capacitor Filter 9-212
MM54104 DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis System 13-34
MM54C905 12-Bit Successive Approximation Register 8-262
MM74C905 12-Bit Successive Approximation Register 8-262
TBA120S IF Amplifier and Detector 10-274
TBA120T IF Amplifier and Detector. 10-277
TBA120U IF Amplifier and Detector 10-277
TBA440C Monolithic Video IF Amplifier 11-43
TBA510 Chrominance Combination 11-45
TBA530 RGB Matrix Preamplifier 11-49
TBA540 Reference Combination 11-52
TBA560C Luminance and Chrominance Control Combination $11-56$
TBA920 Line Oscillator Combination 11-60
TBA920S Line Oscillator Combination 11-60
TBA950-2 Television Signal Processing Circuit 11.63
TBA970 Television Video Amplifier 11.67
TBA990 Color Demodulator $11-70$
TDA440 Video IF Amplifier 11-72
TDA2003 Audio Power Amplifier 10-281
TDA2522 Color Demodulation Combination $11-76$
TDA2523 Color Demodulation Combination $11-76$
TDA2530 R-G-B Matrix Preamplifier With Clamps $11-78$
TDA2540 Video IF Amplifier and Demodulator $11-81$
TDA2541 Video IF Amplifier and Demodulator 11-84
TDA2560 Luminance and Chrominance Control Combination 11-87
TDA2591 Line Oscillator Combination $11-90$
TDA2593 Line Oscillator Combination 11-90
TDA3500 Chroma Processor + RGB Drive Combination 11-96
TD3501 Chroma Processor + RGB Drive Combination 11-102
TP3020 Monolithic CODEC 9-229
TP3021 Monolithic CODEC 9-229
TP3040 PCM Monolithic Filter 9-238
TP3040A PCM Monolithic Filter 9-238
TP3040A PCM Monolithic Filter 9-238

Alphanumerical Index (Continued)

TP3051 Monolithic Parallel Interface CODEC/Filter Family 9-245
TP3052 Monolithic Serial Interface CODEC/Filter Family 9-247
TP3053 Monolithic Serial Interface CODEC/Filter Family 9-247
TP3054 Monolithic Serial Interface CODEC/Filter Family 9-247
TP3056 Monolithic Parallel Interface CODEC/Filter Family 9-245
TP3057 Monolithic Serial Interface CODEC/Filter Family 9-247
TP3110 Digital Line Interface Controllers (DLIC) 9-249
TP3120 Digital Line Interface Controllers (DLIC) 9-249
TP5087 DTMF (TOUCH-TONE ${ }^{\circledR}$) Generator 9-250
TP5087A DTMF (TOUCH-TONE ${ }^{\text {}}$) Generator 9-250
TP5088 DTMF Generator for Binary Input Data 9-254
TP5092 DTMF (TOUCH-TONE ${ }^{\text {® }}$) Generator 9-250
TP5092A DTMF (TOUCH-TONE ${ }^{\text {® }}$) Generator 9-250
TP5094 DTMF (TOUCH-TONE ${ }^{\text {® }}$) Generator 9-250
TP5094A DTMF (TOUCH-TONE ${ }^{\circledR}$) Generator 9-250
TP5116A Monolithic CODEC 9-223
TP5117A Monolithic CODEC 9-223
TP5156A Monolithic CODEC 9-223
TP5393 Pushbutton Pulse Dialer Circuit 9-271
TP5394 Pushbutton Pulse Dialer Circuit 9-271
TP5395 DTMF (TOUCH-TONE ${ }^{\circledR}$) Generator 9-266
TP5600 Ten-Number Repertory Pulse Dialer 9-281
TP5605 Ten-Number Repertory Pulse Dialer 9-281
TP5610 Ten-Number Repertory Pulse Dialer 9-281
TP5615 Ten-Number Repertory Pulse Dialer 9-281
TP5650 Ten-Number Repertory DTMF Generator 9-287
TP5660 Ten-Number Repertory DTMF Generator 9-287
TP9151 Push Button Pulse Dialer Circuit with Redial 9-255
TP9152 Push Button Pulse Dialer Circuit with Redial 9-255
TP9156 Push Button Pulse Dialer Circuit with Redial 9-255
TP9158 Push Button Pulse Dialer Circuit with Redial 9-255
TP50981 Push Button Pulse Dialer Circuit 9-260
TP50981A Push Button Pulse Dialer Circuit 9-260
TP50982 Push Button Pulse Dialer Circuit 9-260
TP50982A Push Button Pulse Dialer Circuit 9-260
TP50985 Push Button Pulse Dialer Circuit 9-260
TP50985A Push Button Pulse Dialer Circuit 9-260
TP53125 DTMF (TOUCH-TONE ${ }^{\oplus}$) Generator 9-266
TP53130 DTMF (TOUCH TONE ${ }^{\oplus}$) Generator 9-276
TP53143 Pushbutton Pulse Dialer Circuit 9-271
TP53144 Pushbutton Pulse Dialer Circuit 9-271

Section 1
Voltage Regulators

Voltage Regulators ${ }^{\dagger}$

Section Contents

Voltage Regulator Guide 1-3
Precision Regulator Guide 1.7
Definition of Terms 1-8
Fixed or Adjustable Voltage Regulators $1-9$
Positive 3 -Terminal Fixed
LM109/LM209/LM309 5-Volt Regulator $1-18$
LM123/LM223/LM323 3 Amp, 5 Volt Positive Regulator 1-47
LM140A/LM140/LM340A/LM340 Series 3-Terminal Positive Regulators 1.76
LM140L/LM340L Series 3-Terminal Positive Regulators 1.84
LM330 3-Terminal Positive Regulator 1-128
LM341 Series 3-Terminal Positive Regulators 1-136
LM342 Series 3-Terminal Positive Regulators 1-139
LM2930 3-Terminal Positive Regulator 1-170
LM2931 Series Low Dropout Regulators 1-176
LM78XX Series Voltage Regulators 1-181
LM78LXX Series 3-Terminal Positive Regulators 1-184
LM78MXX Series 3 -Terminal Positive Regulators 1-190
Positive 3-Terminal Adjustable
LM117/LM217/LM317 3-Terminal Adjustable Regulator $1-23$
LM117HV/LM217HV/LM317HV High Voltage 3-Terminal Adjustable Regulator 1-31
LM138/LM238/LM338 5 Amp Adjustable Power Regulators 1-68
LM150/LM250/LM350 3 Amp Adjustable Power Regulators $1-91$
LM196/LM396 10 Amp Adjustable Voltage Regulators 1-99
LM317L 3-Terminal Adjustable Regulator 1-111
Positive Multi-Terminal Adjustable
LM105/LM205/LM305/LM305A, LM376 Voltage Regulators 1-13
LM723/LM723C Voltage Regulator 1-143
Negative 3-Terminal Fixed
LM120 Series 3-Terminal Negative Regulators 1-39
LM145/LM245/LM345 Negative Three Amp Regulator $1-87$
LM320L/LM320ML Series 3-Terminal Negative Regulators 1-122
LM79XX Series 3 -Terminal Negative Regulators 1-193
LM79LXXAC Series 3-Terminal Negative Regulators 1-198
LM79MXX Series 3-Terminal Negative Regulators 1-202
Negative 3 -Terminal Adjustable
LM137/LM237/LM337 3-Terminal Adjustable Negative Regulators $1-58$
LM137HV/LM237HV/LM337HV 3-Terminal Adjustable Negative Regulators (High Voltage) $1-63$
LM337L 3 -Terminal Adjustable Regulator 1-134
Negative Multi-Terminal Adjustable
LM104/LM204/LM304 Negative Regulator $1-10$
LM723/LM723C Voltage Regulator 1-143
Dual Tracking
LM125/LM325/LM325A, LM126/LM326 Voltage Regulators $1-51$
Switching
LH1605/LH1605C 5 Amp, High Efficiency Switching Regulator. 1-163
LM104/LM204/LM304 Negative Regulator 1-10
LM723/LM723C Voltage Regulator 1-143
LM1524/LM2524/LM3524 Regulating Pulse Width Modulator 1-148

[^0]3-TERMINAL POSITIVE VOLTAGE REGULATORS

Output		Available	$\begin{aligned} & \text { VOUT } \\ & \text { Tol. } \\ & (\pm \%) \\ & \hline \end{aligned}$	Regulation		$\begin{aligned} & \text { VIN } \\ & \text { (V) } \\ & \text { Max } \\ & \hline \end{aligned}$	RippleRejection(dB)
Current (A)	Device			Line (Note 1) \% Vout/VIN	Load (Note 2) \% VOUT/VIN		
10	LM196, LM396	1.25 to 15 (Adjustable)	N/A	0.005	0.1	20	74
5	LM138, LM238 LM338	1.2 to 32 (Adjustable) 1.2 to 32 (Adjustable)	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 86 \\ & 86 \end{aligned}$
3	LM150, LM250 LM350 LM123K, LM223K LM323K	1.2 to 32 (Adjustable) 1.2 to 32 (Adjustable) 5 5	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \\ & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.005 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 86 \\ & 86 \\ & 75 \\ & 75 \end{aligned}$
1.5	LM117, LM217 LM317 LM117HV, LM217HV LM317HV LM109K, LM209K LM309K LM140K LM140AK LM340 LM340A LM78XXC	1.2 to 37 (Adjustable) 1.2 to 37 (Adjustable) 1.2 to 57 (Adjustable) 1.2 to 57 (Adjustable) 5 5 5,12,15 5,12,15 5,12,15 5,12, 15 5,12,15	N/A N/A N/A N/A 6 4 4 2 4 2 4	0.01 0.01 0.01 0.01 0.004 0.004 0.02 0.002 0.02 0.002 0.03	0.1 0.1 0.1 0.1 1.0 1.0 0.5 0.1 0.5 0.1 0.5	$\begin{aligned} & 40 \\ & 40 \\ & 60 \\ & 60 \\ & 35 \\ & 35 \\ & 35 \\ & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 66-80 \\ & 66-80 \\ & 66-80 \\ & 66-80 \\ & 66-80 \end{aligned}$
0.5	LM117H, LM217H LM317H LM117HVH, LM217HVH LM317HVH LM317M LM341 LM78MXX	1.2 to 37 (Adjustable) 5,12, 15 5,12, 15	N/A N/A N/A N/A N/A 4 4	$\begin{aligned} & \hline 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.01 \\ & 0.02 \\ & 0.03 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$
0.25	LM342	5,12, 15	4	0.03	0.5	35	53-64
0.20	$\begin{aligned} & \text { LM109H, LM209H } \\ & \text { LM309H } \\ & \text { LM2930T } \\ & \text { LM330T } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5,8 \\ & 5 \\ & \hline \end{aligned}$	$\begin{gathered} 6 \\ 4 \\ \pm 10 \\ \pm 6 \\ \hline \end{gathered}$	$\begin{aligned} & 0.004 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 26 \mathrm{~V} \\ & 26 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 56 \\ & 56 \\ & \hline \end{aligned}$
0.15	LM2931	5 and Adjustable	± 5	0.008	0.02	26	80
0.10	$\begin{aligned} & \text { LM140L, LM240L } \\ & \text { LM317L } \\ & \text { LM340L } \\ & \text { LM78LXXA } \end{aligned}$	$\begin{aligned} & 5,12,15 \\ & 1.2 \text { to } 37 \text { (Adjustable) } \\ & 5,12,15 \\ & 5,12,15 \end{aligned}$	$\begin{gathered} 2 \\ N / A \\ 2 \\ 4 \end{gathered}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.02 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.1 \\ & 0.25 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \mathrm{~V} \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 48-62 \\ & 65 \\ & 48-62 \\ & 45-60 \end{aligned}$

Note 1: Line regulation is the change in output voltage for a change in input voltage.
Note 2: Load regulation is the change in output voltage due to a change in load current from no load to full load.

V_{O} - Nominal regulated output voltage (V)

	PACKAGE DESIGNATOR	PACKAGE TYPE
-	K KC K STEEL	TO-3* HERMETIC
T	T	TO-220 PLASTIC
R	P	TO-202 PLASTIC
H	Z	TO-5, TO-39 HERMETIC
TO-92		
PLASTIC		

*All devices with TO-3 package designators (K or K STEEL) are supplied in steel TO-3 packages unless otherwise designated as (AL) aluminum TO-3 package. All KC designated devices are supplied in aluminum TO-3.

3-TERMINAL NEGATIVE VOLTAGE REGULATORS

	PACKAGE DESIGNATOR	PACKAGE TYPE
\square	K KC K STEEL	T0.3* HERMETIC
S	T	T0-220 PLASTIC
8	P	T0.202 PLASTIC
8	H	T0-5, T0-39 HERMETIC
B	Z	$\begin{gathered} \text { TO-92 } \\ \text { PLASTIC } \end{gathered}$

*All devices with TO-3 package designators (K or K STEEL) are supplied nators in or Kteel TO-3 packages unless otherwise designated as (AL) aluminum TO-3 package. All KC designated devices are supplied in aluminum TO-3.

Function	Features	Line Reg	Load Reg	$\begin{aligned} & \text { IOUT } \\ & \text { (mA) } \end{aligned}$	Vout Toler. (1125 ${ }^{\circ} \mathrm{C}$ (Max)	Drift (Max)	Part Number		
							$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$	$\begin{array}{\|c\|} \hline-25^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{array}$	
Positive Programmable Voltage Regulator	Internal programming resistors, adjustable current limit, $V_{\text {OUT }}=5,6,8,10,12,15,18 \mathrm{~V}$	0.008\%	0.055\%	0.1-200	$\begin{gathered} 0.5 \% \\ 1 \% \\ 0.5 \% \\ 1 \% \end{gathered}$		LH0075	LH0075C	$7-8$
Negative Programmable Voltage Regulator							LH0076	LH0076C	$7 \cdot 13$

[^1]
Voltage Regulators

Definition of Terms

Current-Limit Sense Voltage: The voltage across the current limit terminals required to cause the regulator to current-limit with a short circuited output. This voltage is used to determine the value of the external current-limit resistor when external booster transistors are used.

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reductions in input voltage.

Feedback Sense Voltage: The voltage, referred to ground, on the feedback terminal of the regulator while it is operating in regulation.

Input Voltage Range: The range of dc input voltages over which the regulator will operate within specifications.

Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions at $125^{\circ} \mathrm{C}$ with maximum rated voltages and power dissipation for 1000 hours.

Maximum Power Dissipation: The maximum total device dissipation for which the regulator will operate within specifications.

Output-Input Voltage Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate within specifications.

Output Noise Voltage: The RMS ac voltage at the output with constant load and no input ripple, measured over a specified frequency range.

Output Voltage Range: The range of regulated output voltages over which the specifications apply.

Output Voltage Scale Factor: The output voltage obtained for a unit value of resistance between the adjustment terminal and ground.

Quiescent Current: That part of input current to the regulator that is not delivered to the load.

Ripple Rejection: The line regulation for ac input signals at or above a given frequency with a specified value of bypass capacitor on the reference bypass terminal.

Standby Current Drain: That part of the operating current of the regulator which does not contribute to the load current.

Temperature Stability: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

Thermal Regulation: Percentage change in output voltage for a given change in power dissipation over a specified time period.

Fixed or Adjustable Voltage Regulators

At National we see the trend moving toward the use of more adjustable regulators and we are broadening the adjustable line to satisfy this demand.

As you browse through this Voltage Regulator section you will notice many changes. We've expanded the adjustable regulator line and many voltage options on fixed regulators have been deleted.
The fixed voltage regulators, like the 7800 and 7900 series, resulted in customers having to stock and hold in inventory quantities of each voltage in order to always have on hand a specific device for a particular system. This proved to be very costly especially when production was stopped due to shortage of a particular voltage.
Adjustables combine versatility, performance and reliability, leading to increased popularity.

Versatility

Satisfy output voltage requirements from 1.2 V up to 47V

- Simplify inventory and purchasing since a single device satisfies many voltage requirements
- Allows precision application

Performance

- Improves system performance by having line and load regulation a factor of 10 better
■ Has improved overload protection thus allowing greater output current over operating temperature range

Reliability

- Improves system reliability with each device being subjected to 100% thermal limit burn-in

As more and more applications use adjustable regulators, we believe that they will become the most popular regulators in the industry.

分National

General Description

The LM104 series are precision voltage regulators which can be programmed by a single external resistor to supply any voltage from 40 V down to zero while operating from a single unregulated supply. They can also provide 0.01 -percent regulation in circuits using a separate, floating bias supply, where the output voltage is limited only by the breakdown of external pass transistors. Although designed primarily as linear, series regulators, the circuits can be used as switching regulators, current regulators or in a number of other control applications. Typical performance characteristics are:

- Subsurface zener reference
- 1 mV regulation no load to full load
a $0.01 \% / \mathrm{V}$ line regulation
- $0.2 \mathrm{mV} / \mathrm{V}$ ripple rejection
- 0.3\% temperature stability over military temperature range
The LM104 series are complements of the LM100 and LM105 positive regulators, intended for systems requiring regulated negative voltages which have a common ground with the unregulated supply. By themselves, they can deliver output currents to 25 mA , but external transistors can be added to get any desired current. The output voltage is set by external resistors, and either constant or foldback current limiting is made available.
The LM104 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM204 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM304 is specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

Metal Can Package

Order Number LM104H, LM204H or LM304H
See NS Package H10C

Typical Applications

Operating with Separate Bias Supply

High Current Regulator

Basic Regulator Circuit

Switching Regulator

Absolute Maximum Ratings

	LM104/LM204	LM304
Input Voltage	50 V	40 V
Input-Output Voltage Differential	50 V	40 V
Power Dissipation (Note 1)	500 mW	500 mW
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
\quad LM104	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	
LM204		
LM304	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 Sec)		$300^{\circ} \mathrm{C}$

Electrical Characteristics

PARAMETER	CONDITIONS	LM104/LM204			LM304			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Voltage Range		-50		-8	-40		-8	v
Output Voltage Range		-40		-0.015	-30		-0.035	\checkmark
Output-Input Voltage	$\mathrm{I}_{0}=20 \mathrm{~mA}$	2.0		50	2.0		40	v
Differential (Note 3)	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$	0.5		50	0.5		40	v
Load Regulation (Note 4)	$\begin{aligned} & 0 \leq \mathrm{I}_{\mathrm{O}} \leq 20 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{SC}}=15 \Omega \end{aligned}$		1	5		1	5	mV
Line Regulation (Note 5)	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \leq-5 \mathrm{~V} \\ & \Delta \mathrm{~V}_{\text {IN }}=0.1 \mathrm{~V}_{\text {IN }} \end{aligned}$		0.056	0.1		0.056	0.1	\%
Ripple Rejection	$\begin{aligned} & \mathrm{C}_{19}=10 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{~V}_{\text {IN }}<-15 \mathrm{~V} \\ & -7 \mathrm{~V} \geq \mathrm{V}_{\text {IN }} \geq-15 \mathrm{~V} \end{aligned}$			0.5 1.0		0.2 0.5	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Output Voltage Scale Factor	$\mathrm{R}_{23}=2.4 \mathrm{k}$	1.8	2.0	2.2	1.8	2.0	2.2	$\mathrm{V} / \mathrm{k} \Omega$
Temperature Stability	$\mathrm{V}_{0} \leq-1 \mathrm{~V}$		0.3	1.0		0.3	1.0	\%
Output Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{O}} \leq-5 \mathrm{~V}, \mathrm{C}_{19}=0 \\ & \mathrm{C}_{19}=10 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 0.007 \\ & 15 \end{aligned}$			$\begin{aligned} & 0.007 \\ & 15 \end{aligned}$		$\begin{array}{r} \% \\ \mu \mathrm{~V} \end{array}$
Standby Current Drain	$\begin{aligned} \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA}, V_{O} & =0 \\ V_{O} & =-30 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}} & =-40 \mathrm{~V} \end{aligned}$		1.7 3.6	2.5 5.0		1.7 3.6	2.5 5.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Long Term Stability	$\mathrm{V}_{\mathrm{o}} \leq-1 \mathrm{~V}$		0.01	1.0		0.01	1.0	\%

Note 1: The maximum junction temperature of the LM104 is $150^{\circ} \mathrm{C}$, while that of the LM204 is $125^{\circ} \mathrm{C}$ and LM304 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: These specifications apply for junction temperatures between $-55^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ (between $-25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ for the LM2O4 and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LM304) and for input and output voltages within the ranges given, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.
Note 3: When external booster transistors are used, the minimum output-input voltage differential is increased, in the worst case, by approximately 1 V .
Note 4: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.
Note 5: With zero output, the dc line regulation is determined from the ripple rejection. Hence, with output voltages between OV and -5 V , a dc output variation, determined from the ripple rejection, must be added to find the worst-case line regulation.

Typical Performance Characteristics

LM105/LM205/LM305/LM305A, LM376 Voltage Regulators

General Description

The LM105 series are positive voltage regulators similar to the LM100, except that an extra gain stage has been added for improved regulation. A redesign of the biasing circuitry removes any minimum load current requirement and at the same time reduces standby current drain, permitting higher voltage operation. They are direct, plug-in replacements for the LM100 in both linear and switching regulator circuits with output voltages greater than 4.5 V . Important characteristics of the circuits are:

- Output voltage adjustable from 4.5 V to 40 V
- Output currents in excess of 10A possible by adding external transistors
- Load regulation better than 0.1%, full load with current limiting
- DC line regulation guaranteed at $0.03 \% / \mathrm{V}$
- Ripple rejection of $0.01 \% / \mathrm{V}$
- 45 mA output current without external pass transistor (LM305A)

Like the LM100, they also feature fast response to both load and line transients, freedom from oscillations with varying resistive and reactive loads and the ability to start reliably on any load within rating. The circuits are built on a single silicon chip and are supplied in either an 8 -lead, TO-5 header or a $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ metal flat package.

The LM105 is specified for operation for $-55^{\circ} \mathrm{C} \leq$ $\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, the LM205 is specified for $-25^{\circ} \mathrm{C} \leq$ $T_{A} \leq+85^{\circ} \mathrm{C}$, and the LM305/LM305A, LM376 is specified for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

Pin connections shown are for metal can.

Typical Applications

10A Regulator with Foldback Current Limiting

Dual-In-Line Package

Order Number LM376N See NS Package N08B

Metal Can Package

Order Number LM105H, LM205H, LM305H or LM305AH See NS Package H08C
1.0A Requlator with Protective Diodes

Current Limit Sense Voltage

Minimum Output Voltage

Load Regulation

Short Circuit Current

Standby Current Drain

Current Limiting Characteristics

Optimum Divider Resistance Values

Transient Response

Typical Performance Characteristics Lм376

Minimum Input Voltage

Standby Current Drain
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Current Limiting Characteristics

Regulator Dropout Voltage

Supply Voltage Rejection

Current Limit Sense Voltage

Optimum Divider Resistance

Typical Applications (Continued)

Linear Regulator with Foldback Current Limiting

LM109/LM209/LM309 5-Volt Regulator

General Description

The LM109 series are complete 5 V regulators fabricated on a single silicon chip. They are designed for local regulation on digital logic cards, eliminating the distribution problems associated with single-point regulation. The devices are available in two standard transistor packages. In the solid-kovar TO-5 header, it can deliver output currents in excess of 200 mA , if adequate heat sinking is provided. With the TO-3 power package, the available output current is greater than 1 A .

The regulators are essentially blowout proof. Current limiting is included to limit the peak output current to a safe value. In addition, thermal shutdown is provided to keep the IC from overheating. If internal dissipation becomes too great, the regulator will shut down to prevent excessive heating.

Considerable effort was expended to make these devices easy to use and to minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response somewhat. Input bypassing is needed, however, if the regulator is
located very far from the filter capacitor of the power supply. Stability is also achieved by methods that provide very good rejection of load or line transients as are usually seen with TTL logic.

Although designed primarily as a fixed-voltage regulator, the output of the LM109 series can be set to voltages above 5 V , as shown below. It is also possible to use the circuits as the control element in precision regulators, taking advantage of the good current-handling capability and the thermal overload protection.

Features

- Specified to be compatible, worst case, with TTL and DTL
- Output current in excess of 1 A
- Internal thermal overload protection
- No external components required

Schematic Diagram

Connection Diagrams

Metal Can Packages

sotrom view
Crder Number LM109H, LH209H or LM309H
See Package H03A

Typical Application

Fixed 5V Regulator

*Required if regulator is located more than 4"
from power supply filter capacitor.
tAlthough no output capacitor is needed for stability, it does improve transient response.
C2 should be used whenever long wires are used to connect to the load, or when transient response is critical.
NOTE: Pin 3 electrically connected to case.

Adjustable Output Regulator

Order Number LM109K STEEL, LM209K STEEL, LM309K STEEL See Package K02A
Order Number LM309K (ALUMINUM) See Package KC02A

Absolute Maximum Ratings

Input Voltage
Power Dissipation
Operating Junction Temperature Range
LM109
LM209
LM309
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

35 V
Internally Limited

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics

PARAMETER	CONDITIONS	LM109/LM209			LM309			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	4.7	5.05	5.3	4.8	5.05	5.2	V
Line Regulation	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C}, \\ & 7 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 25 \mathrm{~V} \end{aligned}$		4.0	50		4.0	50	mV
Load Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$							
TO-5 Package	$5 \mathrm{~mA} \leqslant \mathrm{I}_{\text {OUT }} \leqslant 0.5 \mathrm{~A}$		15	50		15	50	mV
TO-3 Package	$5 \mathrm{~mA} \leqslant \mathrm{I}_{\text {OUT }} \leqslant 1.5 \mathrm{~A}$		15	100		15	100	mV
Output Voltage	$\begin{aligned} & 7 V \leqslant V_{\text {IN }} \leqslant 25 V \\ & 5 \mathrm{~mA} \leqslant \mathrm{I}_{\text {OUT }} \leqslant \mathrm{I}_{\text {MAX }} \\ & \mathrm{P}<\mathrm{P}_{\text {MAX }} \end{aligned}$	4.6		5.4	4.75		5.25	V
Quiescent Current	$7 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant 25 \mathrm{~V}$		5.2	10		5.2	10	mA
Quiescent Current Change	$\begin{aligned} & 7 V \leqslant V_{\text {IN }} \leqslant 25 V \\ & 5 \mathrm{~mA} \leqslant \mathrm{I}_{\text {OUT }} \leqslant I_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$			0.5 0.8	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Noise Voltage	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz} \end{aligned}$		40			40		$\mu \mathrm{V}$
Long Term Stability				10			20	mV
Ripple Rejection	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	50			50			dB
Thermal Resistance,	(Note 2)						.	
TO-5 Package			15			15		${ }^{\circ} \mathrm{C} / \mathrm{W}$
TO-3 Package			2.5			2.5		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{j} \leqslant+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 109,-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{j} \leqslant+150^{\circ} \mathrm{C}$ for the LM 209 , and $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C}$ for the LM309; $\mathrm{V}_{I N}=10 \mathrm{~V}$; and IOUT $=0.1 \mathrm{~A}$ for the $\mathrm{TO}-39$ package or IOUT $=0.5 \mathrm{~A}$ for the TO- 3 package. For the TO-39 package, $I_{\text {MAX }}=0.2 \mathrm{~A}$ and $\mathrm{P}_{\text {MAX }}=2.0 \mathrm{~W}$. For the $T O-3$ package, $I_{M A X}=1.0 \mathrm{~A}$ and $\mathrm{P}_{\text {MAX }}=20 \mathrm{~W}$.
Note 2: Without a heat sink, the thermal resistnace of the TO-39 package is about $150^{\circ} \mathrm{C} / \mathrm{W}$, while that of the TO-3 package is approximately $35^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the sink.

Typical Applications (cont'd.)

Current Regulator

[^2]
Application Hints

a. Bypass the input of the LM109 to ground with $\geqslant 0.2 \mu \mathrm{~F}$ ceramic or solid tantalum capacitor if main filter capacitor is more than 4 inches away.
b. Use steel package instead of aluminum if more than 5,000 thermal cycles are expected. ($\Delta \mathrm{T} \geqslant 50^{\circ} \mathrm{C}$)
c. Avoid insertion of regulator into "live" socket if input voltage is greater than 10 V . The output will rise to within 2 V of the unregulated input if the ground pin does not make contact, possibly damaging the load. The LM109 may also be damaged if a large output capacitor is charged up, then discharged through the internal clamp zener when the ground pin makes contact.
d. The output clamp zener is designed to absorb transients only. It will not clamp the output effectively if a failure occurs in the internal power transistor structure. Zener dynamic impedance is $\approx 4 \Omega$. Continuous RMS current into the zener should not exceed 0.5 A .
e. Paralleling of LM109s for higher output current is not recommended. Current sharing will be almost nonexistent, leading to a current limit mode operation for devices with the highest initial output voltage. The current limit devices may also heat up to the
thermal shutdown point ($\approx 175^{\circ} \mathrm{C}$). Long term reliability cannot be guaranteed under these conditions.
f. Preventing latchoff for loads connected to negative voltage:

If the output of the LM109 is pulled negative by a high current supply so that the output pin is more than 0.5 V negative with respect to the ground pin, the LM109 can latch off. This can be prevented by clamping the ground pin to the output pin with a germanium or Schottky diode as shown. A silicon diode (1N4001) at the output is also needed to keep the positive output from being pulled too far negative. The 10Ω resistor will raise $+V_{\text {OUT }}$ by $\approx 0.05 \mathrm{~V}$.

Crowbar Overvoltage Protection

INPUT CROWBAR

OUTPUT CROWBAR

*Zener is internal to LM109.

**01 must be able to withstand 7A continuous current if fusing is not used at regulator input. LM109 bond wires will fuse at currents above 7 A .
$\boldsymbol{t} \mathbf{2}$ is selected for surge capability. Consideration must be given to filter capacitor size, transformer impedance, and fuse blowing time.
ttTrip point is $\approx \mathbf{7 . 5} \mathrm{V}$.

Typical Performance Characteristics

Note 1: Current limiting foldback characteristics are determined by input-output differential, not by output voltage.

Typical Performance Characteristics (cont'd)

7 National Semiconductor LM117/LM217/LM317 3-Terminal Adjustable Regulator General Description

The LM117/LM217/LM317 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 1.5 A over a 1.2 V to 37 V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM117 is packaged in standard transistor packages which are easily mounted and handled.

In addition to higher performance than fixed regulators, the LM117 series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.

Features

- Adjustable output down to 1.2 V
- Guaranteed 1.5A output current
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- .100\% electrical burn-in
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection

Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejections ratios which are difficult to achieve with-standard 3 -terminal regulators.

Besides replacing fixed regulators, the LM117 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117 can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.

The LM117K, LM217K and LM317K are packaged in standard TO-3 transistor packages while the LM117H, LM217H and LM317H are packaged in a solid Kovar base TO-39 transistor package. The LM117 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the LM217 from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM 317 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The LM317T and LM317MP, rated for operation over a $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range, are available in a TO-220 plastic package and a TO-202 package, respectively.

For applications requiring greater output current in excess of 3A and 5A, see LM150 series and LM138 series data sheets, respectively. For the negative complement, see LM137 series data sheet.

LM117 Series Packages and Power Capability

DEVICE	PACKAGE	RATED POWER DISSIPATION	DESIGN LOAD CURRENT
LM117 LM217 LM317	TO-3	20 W	1.5 A
LM317T	TO-220	2 W	0.5 A
LM317M	TO-202	15 W	1.5 A
LM317LZ	TO-92	0.6 W	0.5 A

Typical Applications

1.2V-25V Adjustable Regulator

${ }^{\dagger}$ Optional-improves transient response. Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.
*Needed if device is far from filter

$$
\begin{aligned}
& \text { capacitors. } \\
& +\dagger V_{\text {OUT }}=1.25 V\left(1+\frac{R 2}{R 1}\right) \quad{ }^{*} \text { Sets maximum } V_{O U T}
\end{aligned}
$$

Digitally Selected Outputs

* Min output $\approx 1.2 \mathrm{~V}$

Absolute Maximum Ratings

Power Dissipation
Input-Output Voltage Differential
Operating Junction Temperature Range
LM117
LM217
LM317
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Internally limited 40V
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Preconditioning

Burn-In in Thermal Limit
100\% All Devices
Electrical Characteristics (Note 1)

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 117,-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+150^{\circ} \mathrm{C}$ for the LM 217 , and $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C}$ for the LM317; $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$; and $\mathrm{I}_{\mathrm{OUT}}=0.1 \mathrm{~A}$ for the TO-39 and TO-202 packages and IOUT $=0.5 \mathrm{~A}$ for the TO-3 and TO-220 packages. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO-39 and TO-202, and 20W for the TO-3 and TO-220. IMAX is 1.5A for the TO-3 and TO-220 packages and 0.5A for the TO-39 and TO-202 packages.
Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.
Note 3: Selected devices with tightened tolerance reference voltage available.

Typical Performance Characteristics (K and T Packages)

Output Capacitor $=0$ unless otherwise noted

Dropout Voltage

Output Impedance

Temperature Stability

Ripple Rejection

Line Transient Response

Adjustment Current

Minimum Operating Current

Ripple Rejection

Load Transient Response

Application Hints

In operation, the LM117 develops a nominal 1.25 V reference voltage, VREF, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_{1} then flows through the output set resistor R2, giving an output voltage of $V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R 2$

FIGURE 1.

Since the $100 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM117 was designed to minimize IADJ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.

The adjustment terminal can be bypassed to ground on the LM117 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 80 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.

Although the LM117 is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

Load Regulation

The LM117 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectvely in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times \mathrm{IL}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+\mathrm{R} 2 / \mathrm{R} 1)$ or in this case, 11.5 times worse.

Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. However, with the TO-5 package, care should be taken to minimize the wire length of the output lead. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge

Application Hints (cont‘d.)

current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of $V_{\text {IN }}$. In the LM117, this discharge path is through a large junction that is able to sustain 15A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge
occurs when either the input or output is shorted. Internal to the LM117 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM117 with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

FIGURE 3. Regulator with Protection Diodes

Schematic Diagram

Typical Applications (cont‘d.)

Slow Turn-On 15V Regulator

tSolid tantalum

* Discharges C1 if output is shorted to ground

High Current Adjustable Regulator

0 to 30 V Regulator

High Stability 10V Regulator

Power Follower

1A Current Regulator

1.2V-20V Regulator with Minimum Program Current

*Minimum load current $\approx 4 \mathrm{~mA}$
.
${ }^{\dagger}$ Solid tantalum

* Lights in constant current mode

Typical Applications (cont‘d.)

Low Cost 3A Switching Regulator

4A Switching Regulator with Overload Protection

- Short circuit current is approximately $\frac{600 \mathrm{mV}}{R_{3}}$, or 120 mA
(compared to LM117H's 1 ampere current limit)
- (At 50 mA output only $\mathbf{3} / 4$ volt of drop occurs in R_{3} and R_{4}).

Typical Applications (cont‘d.)

${ }^{*} R_{S}-$ sets output impedance of charger $Z_{O U T}=R_{S}\left(1+\frac{R 2}{\text { Use of }_{S}}\right)$ charged battery.

50 mA Constant Current Battery Charger

Connection Diagrams

Adjustable 4A Regulator

Current Limited 6V Charger

*Sets peak current (0.6A for 1Ω)
**The $1000 \mu \mathrm{~F}$ is recommended to filter out input transients

LM117HV/LM217HV/LM317HV 3-Terminal
 Adjustable Regulator

General Description

The LM117HV/LM217HV/LM317HV are adjustable 3 -terminal positive voltage regulators capable of supplying in excess of 1.5 A over a 1.2 V to 57 V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM117HV is packaged in standard transistor packages which are easily mounted and handled.

In addition to higher performance than fixed regulators, the LM117HV series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.

Features

- Adjustable output down to 1.2 V
- Guaranteed 1.5 A output current
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- 100% electrical burn-in
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection

Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejections ratios which are difficult to achieve with standard 3 -terminal regulators.

Besides replacing fixed regulators, the LM117HV is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117HV can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.

The LM117HVK STEEL, LM217HVK STEEL, and LM317HVK STEEL are packaged in standard TO-3 transistor packages while the LM117HVH, LM217HVH and LM317HVH are packaged in a solid Kovar base TO-39 transistor package. The LM117HV is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the LM217HV from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM317HV from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Typical Applications

1.2V-45V Adjustable Regulator

Digitally Selected Outputs
 im provide improved output impedance and rejection of transients.
*Needed if device is far from filter capacitors.

$$
\dagger^{V_{\mathrm{OUT}}}=1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right) \quad{ }^{*} \text { Sets maximum } V_{\mathrm{OUT}}
$$

${ }^{*}$ Min output $\approx 1.2 \mathrm{~V}$

Absolute Maximum Ratings

Power Dissipation
Input-Output Voltage Differential
Operating Junction Temperature Range
LM117HV
LM217HV
LM317HV
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Internally limited
60 V
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leqslant T_{j} \leqslant+150^{\circ} \mathrm{C}$ for the LM117HV, $-25^{\circ} \mathrm{C} \leqslant T_{j} \leqslant+150^{\circ} \mathrm{C}$ for the LM217HV and $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C}$ for the LM317HV; $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ and louT $=0.1 \mathrm{~A}$ for the TO-39 package and IOUT $=0.5 \mathrm{~A}$ for the TO-3 package. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO-39 and 20 W for the TO-3. $\mathrm{I}_{\mathrm{MAX}}$ is 1.5 A for the TO-3 and 0.5 A for the TO-39 package.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
Note 3: Selected devices with tightened tolerance reference voltage available.

Typical Performance Characteristics (K and T Packages)

Application Hints

In operation, the LM117HV develops a nominal 1.25 V reference voltage, $\mathrm{V}_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current l_{1} then flows through the output set resistor R2, giving an output voltage of $V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R 2$

FIGURE 1.

Since the $100 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM117HV was designed to minimize IADJ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.

The adjustment terminal can be bypassed to ground on the LM117HV to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 80 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.

Although the LM117HV is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

Load Regulation

The LM117HV is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectvely in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times \mathrm{I}_{\mathrm{L}}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+\mathrm{R} 2 / \mathrm{R} 1)$ or in this case, 11.5 times worse.

Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. However, with the TO-5 package, care should be taken to minimize the wire length of the output lead. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge

Application Hints (cont‘d.)

current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of VIN. In the LM117HV, this discharge path is through a large junction that is able to sustain 15 A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge
occurs when either the input or output is shorted. Internal to the LM117HV is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM117HV with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

FIGURE 3. Regulator with Protection Diodes

Schematic Diagram

Typical Applications (cont‘d.)

5A Constant Voltage/Constant Current Regulator

${ }^{\dagger}$ Solid tantalum

* Lights in constant current mode

1A Current Regulator

1.2V-20V Regulator with Minimum Program Current

*Minimum load current $\approx 4 \mathrm{~mA}$

Typical Applications (cont‘d.)

High Gain Amplifier

Low Cost 3A Switching Regulator

4A Switching Regulator with Overload Protection

High Voltage Regulator

Adjusting Multiple On-Card Regulators with Single Control*

${ }^{\dagger}$ Minimum load-10 mA

Typical Applications (cont‘d.)

AC Voltage Regulator

* $R_{S}-$ sets output impedance of charger $Z_{O U T}=R_{S}\left(1+\frac{R 2}{\mathrm{R}_{\mathrm{O}}}\right)$
Use of \dot{R}_{S} allows low charging rates with fully charged battery.
** The $1000 \mu \mathrm{~F}$ is recommended to filter out input transients

50 mA Constant Current Battery Charger

Connection Diagrams

(TO. 3 Steel)
Metal Can Package

BOTTOM VIEW

Order Number LM117HVK STEEL,
LM217HVK STEEL, or LM317HVK STEEL See Package K02A

Adjustable 4A Regulator

Current Limited 6V Charger

*Sets peak current (0.6A for 1Ω)
**The $1000 \mu \mathrm{~F}$ is recommended to filter out input transients
(TO-39)
Nietal Can Package

Order Number LM117HVH, LM217HVH, or LM317HVH See Package H03A

National Semiconductor

LM120 Series 3 -Terminal Negative Regulators

General Description

The LM120 series are three-terminal negative regulators with a fixed output voltage of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V , and up to 1.5 A load current capability. Where other voltages are required, the LM137 series provides an output voltage range of -1.2 V to -47 V .

The LM120 need only one external component-a compensation capacitor at the output, making them easy to apply. Worst case guarantees on output voltage deviation due to any combination of line, load or temperature variation assure satisfactory system operation.

Exceptional effort has been made to make the LM120 Series immune to overload conditions. The regulators have current limiting which is independent of temperature, combined with thermal overload protection. Internal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.

Although primarily intended for fixed output voltage applications, the LM120 Series may be programmed for higher output voltages with a simple resistive divider. The low quiescent drain current of the devices allows this technique to be used with good regulation.

Features

- Preset output voltage error less than $\pm 3 \%$
- Preset current limit
- Internal thermal shutdown
- Operates with input-output voltage differential down to 1 V
- Excellent ripple rejection
- Low temperature drift
- Easily adjustable to higher output voltage

LM120 Series Packages and Power Capability

DEVICE	PACKAGE	RATED POWER DISSIPATION	DESIGN LOAD CURRENT
LM120 LM320	TO-3	20 W	1.5 A
TO-39	2 W	0.5 A	
LM320T	TO-220	15 W	1.5 A
LM320M	TO-202	7.5 W	0.5 A
LM320ML*	TO-202	7.5 W	0.25 A
LM320L*	TO-92+	1.2 W	0.1 A

*Electrical specifications shown on separate data sheet

Typical Applications

-5 VOLT REGULATORS (Note 3)

Electrical Characteristics

ORDER NUMBERS		METAL CAN PACKAGE												POWER PLASTIC PACKAGE						UNITS
		LM120K-5.0(TO-3)			LM320K-5.0(TO-3)			$\begin{aligned} & \text { LM120H.5.0 } \\ & \text { (TO-39) } \\ & \hline \end{aligned}$			$\begin{gathered} \text { LM32OH-5.0 } \\ \text { (TO-39) } \\ \hline \end{gathered}$			LM320T-5.0 (TO-220)			$\begin{gathered} \text { LM320MP-5.0 } \\ \text { (TO-202) } \end{gathered}$			
DESIGN OUTPUT CURRENT (ID) DEVICE DISSIPATION (PD)		$\begin{aligned} & 1.5 \mathrm{~A} \\ & 20 \mathrm{~W} \\ & \hline \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~A} \\ & 20 \mathrm{~W} \\ & \hline \end{aligned}$			$\begin{gathered} 0.5 \mathrm{~A} \\ 2 \mathrm{~W} \\ \hline \end{gathered}$			0.5A 2W			$\begin{aligned} & 1.5 \mathrm{~A} \\ & 15 \mathrm{~W} \end{aligned}$			$\begin{aligned} & \hline 0.5 \mathrm{~A} \\ & 7.5 \mathrm{~W} \end{aligned}$			
PARAMETER	CONDITIONS (NOTE 1)	MIN	TYP	MAX	MIN	TYP.	MAX	MIN	TYP	MAX										
Output Voltage	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, V_{i N}=10 \mathrm{~V}, \\ & I_{\text {LOAD }}=5 \mathrm{~mA} \end{aligned}$	-5.1	-5	-4.9	-5.2	-5	-4.8	-5.1	-5.0	-4.9	-5.2	-5.0	-4.8	-5.2	-5.0	-4.8	-5.2	-5.0.	-4.8	V
Line Regulation	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \end{aligned}$		10	25		10	40		10			10	40		10	40		10	40	mV
Input Voltage		-25		-7	-25	\therefore	-7	-25	-	-7	-25	\because	-7	-25		-7.5	-25		-7.5	V
Ripple Rejection	$f=120 \mathrm{~Hz}$	54	64.		54	64		54	64		54	64		54	64		54	64		dB
Load Regulation, (Note 2)	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, V_{I N}=10 \mathrm{~V}, \\ & 5 \mathrm{~mA} \leq \mathrm{L}_{\text {LOAD }} \leq \mathrm{I}_{\mathrm{D}} \end{aligned}$		50	75		50	100		30	50		30	50		50	100		40	100	mV
Output Voltage, (Note 1)	$\begin{aligned} & -7.5 \mathrm{~V} \leq \mathrm{V}_{I N} \leq \mathrm{V}_{\mathrm{MAX}} . \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{LOAD}} \leq \mathrm{I}_{\mathrm{D}}, \mathrm{P} \leq \mathrm{PDD}^{2} \end{aligned}$	-5.20	.	-4.80	-5.25	\because	-4.75	-5.20		-4.80	-5.25	\cdots	-4.75	-5.25	-	-4.75	-5.25	-5.0	-4.75	V
Quiescent Current	$\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$		1	2		1	2		1			1	2		1	2		1	2	mA
Quiescent Current Change	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$																			
	$\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$		0.1			0.1			0.05			0.05	0.4		0.1	0.4		0.05	0.3	mA
	$5 \mathrm{~mA} \leq 1 / O A D \leq 1 \mathrm{D}$		0.1			0.1	0.4.		0.04			0.04	0.4		0.1	0.4		0.04	0.25	mA
Output Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, C_{L}=1 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA}, \\ & V_{I N}=10 \mathrm{~V}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		150			150			150			150			150			150		$\mu \mathrm{V}$
Long Term Stability			5	50		5	50		5	50		5	50		10			10		mV
Thermal Resistance																				
Junction to Case							3			15			15		4			12		${ }^{\circ} \mathrm{C} / \mathrm{w}$
Junction to Ambient			-	35			35			150					50			70		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: This specification applies over $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ for the LM 120 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$ for the LM320

 tions apply only up to P_{D}.
Note 3: For -5 V 3 amp regulators, see LM145 data sheet.

Absolute Maximum Ratings

Power Dissipation
Internally Limited
Input Voltage
25 V
Input-Output Voltage Differential
Junction Temperatures
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

-12 VOLT REGULATORS

Absolute Maximum Ratings

Power Dissipation	Internally Limited
Input Voltage	-35 V
Input-Output Voltage Differential	30 V
Junction Temperatures	See Note 1
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

Note 1: This specification applies over $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ for the LM 120 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$ for the LM 320 .

 tions apply only up to P_{D}

-15 VOLT REGULATORS

Absolute Maximum Ratings

Power Dissipation
Internally Limited

Input Voltage

LM120/LM320
LM320T/LM320MP
$-40 \mathrm{~V}$
Input-Output Voltage Differential
Junction Temperatures
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics

ORDER NUMBERS		METAL CAN PACKAGE												POWER PLASTIC PACKAGE						UNITS
		LM120K-15(TO-3)			LM320K-15(TO-3)			LM120H-15(TO-39)			LM320H-15 (TO-39)			LM320T-15 (TO-220)			LM320MP-15 (TO.202)			
DESIGN OUTPUT CURRENT (ID) DEVICE DISSIPATION (PD)		$\begin{aligned} & \hline 1 \mathrm{~A} \\ & 20 \mathrm{w} \\ & \hline \end{aligned}$			$\begin{gathered} \text { 1A } \\ 20 \mathrm{~W} \end{gathered}$			$\begin{gathered} 0.2 \mathrm{~A} \\ 2 \mathrm{~W} \end{gathered}$			$\begin{aligned} & 0.2 \mathrm{~A} \\ & 2 \mathrm{~W} \end{aligned}$			$\begin{gathered} \text { 1A } \\ \text { 15W } \end{gathered}$			$\begin{aligned} & 0.5 \mathrm{~A} \\ & 7.5 \mathrm{~W} \end{aligned}$			
PARAMETER	CONDITIONS (NOTE 1)	MIN	TYP	MAX																
Output Voltage	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{~V}_{1 N}=20 \mathrm{~V} . \\ & \text { LLOAD }=5 \mathrm{~mA} \end{aligned}$	-15.3	-15	-14.7	-15.4	-15	-14.6	-15.3	-15	-14.7	-15.4	-15	-14.6	-15.5	-15	-14.5	-15.6	-15	-14.4	V
Line Regulation	$\begin{aligned} & \mathrm{TJ}_{\mathrm{J}}=25^{\prime \prime} \mathrm{C}, \mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{MAX}} \end{aligned}$		5 .	10		5	20		5	10		5	20		5	20		5	30	mV
Input Voltage		-35		-17	-35		-17	-35		-17	-35		-17	-35		-17.5	-35	\because	-17.5	v
Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	56	80 :		56	80		56	80		56	80		56	80		56	80		dB
Load Regulation, (Note 2)	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, V_{I N}=20 \mathrm{~V}, \\ & 5 \mathrm{~mA} \leq I_{\text {LOAD }} \leq I_{D} \end{aligned}$		30 :	80		30	80		10.	25		10	40		30	80		40	100	mV
Output Voltage, (Note 1)	$\begin{aligned} & 17.5 \mathrm{~V} \leq \mathrm{V}_{I N} \leq \mathrm{V}_{\text {MAX }} . \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{L O A D} \leq I_{\mathrm{D}} . \mathrm{P}<\mathrm{P}_{\mathrm{D}} \end{aligned}$	-15.5	\%	-14.5	-15.6	,	-14.4	-15.5	\therefore	-14.5	-15.6		-14.4	-15.7	\cdots	-14.3	-15.7	-	-14.3	v
Quiescent Current	$\mathrm{V}_{\text {MIN }}<\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$		2	4		2	4		2	4		2	4		2	4		2	4	mA
Quiescent Current Change	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.					
	$\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$		0.1	0.4		0.1			0.05	0.4		0.05	0.4		0.1	0.4		0.05	0.3	mA
	$5 \mathrm{~mA} \leq 1 / \mathrm{LOAD} \leq 1 \mathrm{D}$		0.1			0.1			0.03	0.4		0.03	0.4			0.4		0.04	0.25	mA
Output Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, C_{L}=1 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA}, \\ & V_{I N}=20 \mathrm{~V}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		400			400			400			400			400			400		$\mu \mathrm{V}$
Long Term Stability			15	150		15	150		15	150		15	150		30			30		$m \mathrm{~V}$
Thermal Resistance																				
Junction to Case			\cdots	3			3			15		,	15		4			12		${ }^{\circ} \mathrm{C} / \mathrm{N}$
Junction to Ambient																				

Note 1: This specification applies over $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ for the LM 120 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$ for the LM320.

 tions apply only up to P_{D}.

Note: Shaded portion refers to LM320 series regulators.

Quiescent Current vs Input Voltage

Ripple Rejection
(All Types)

frequency (H_{2})

Output Impedance TO-3 and TO-220 Packages

Minimum Input-Output Differential TO-5 and TO-202 Packages

*These curves for LM120 and LM220. Derate $25^{\circ} \mathrm{C}$ further for LM320.

High Stability 1 Amp Regulator

Load and ine regulation 0.01% temperature stability $\quad 0.2 \%$
\dagger Determines Zener current
TTSolid tantalum.
An LM120 12 or LM120-15 may be used to permit higher input voitages, but the
regulated output voltage must be at least -15 V when using the LM120.12 and -18 V
for the LM120.15
**Select resistors to set output voltage. 2 ppm/ C tracking suggested.

Wide Range Tracking Regulator

-Resistor tolerance of R1 and R2 determine matchuni of (+) and (-) upputs
*Necessary only if raw supply capacitors are more than
3" from regulators
An LM3086N array may substitute for $\mathbf{0 1}, \mathrm{D1}$ and D 2 for
eiter stablity and tracking in the array diode, transistors
and 04 (in parallel) make up D2, sumilarty, Q1 and 02 become $\mathbf{0 1}$ and $\mathbf{0 3}$ replaces the 2 N 2222

Current Source

Light Controllers Using Silicon Photo Cells

Typical Applications (cont‘d.)

Performance (Typical)		
Load Regulation at $2 L_{L}=1 \mathrm{~A}$	10 mV	1 mV
Output Ripple, $\mathrm{C}_{\text {IN }}=3000 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$	$100 \mu \mathrm{Vrms}$	$100 \mu \mathrm{Vrms}$
Temperature Stability	+50 mV	+50 mV
Output Noise $10 \mathrm{~Hz} \leq f \leq 10 \mathrm{kHz}$	$150 \mu \mathrm{Vrms}$	$150 \mu \mathrm{Vrms}$
*Resistor tolerance of R4 and R5 det **Necessary only if raw supply filter ca	ne matching tors are mor	$f(+)$ and than $2^{\prime \prime}$ f

Connection Diagrams

bottom VIew
Metal Can Package (TO-39) (H) Order Numbers:

LM120H-5.0	LM120H-12	LM120H-15
LM32OH-5.0	LM320H-12	LM32OH-15
See Package H03A		

See Package H03A

gottom view
Steel Metal Can Package TO-3 (K) Order Numbers:
LM120K-5.0 LM120K-12 LM120K-15 LM320K-5.0 LM320K-12 LM320K-15

bottom view
Aluminum Metal Can Package TO-3 (KC) Order Numbers:
LM320KC-5.0 LM320KC-12 LM320KC-15

See Package KC02A

fhont view

Power Package TO-202 (P)
Order Numbers:

LM320MP-5.0 LM320MP-12 LM320MP-15
See Package P03A

For Tab Formed TO-202 Order Numbers: LM320MP-5.0TB LM320MP-12TB LM320MP-15TB See Package P03E

front view

Power Package TO-220 (T)
Order Numbers:
LM320T-5.0
LM320T-12
LM320T-15
See Package T03B

-12 V and -15 V

The LM123 is a three－terminal positive regulator with a preset 5 V output and a load driving capa－ bility of 3 amps．New circuit design and processing techniques are used to provide the high output current without sacrificing the regulation charac－ teristics of lower current devices．

The 3 amp regulator is virtually blowout proof． Current limiting，power limiting，and thermal shutdown provide the same high level of reliability obtained with these techniques in the LM109 1 amp regulator．
No external components are required for operation of the LM123．If the device is more than 4 inches from the filter capacitor，however，a $1 \mu \mathrm{~F}$ solid tantalum capacitor should be used on the input． A $0.1 \mu \mathrm{~F}$ or larger capacitor may be used on the output to reduce load transient spikes created by fast switching digital logic，or to swamp out stray load capacitance．

An overall worst case specification for the combined effects of input voltage，load currents，ambient
temperature，and power dissipation ensure that the LM123 will perform satisfactorily as a system element．

For applications requiring other voltages，see LM150 series data sheet．

Operation is guaranteed over the junction tempera－ ture range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ．An electrically identical LM223 operates from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM323 is specified from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature．A hermetic TO－3 package is used for high reliability and low thermal resistance．

Features

－ 3 amp output current
－Internal current and thermal limiting
－ 0.01Ω typical output impedance
－ 7.5 minimum input voltage
－ 30 W power dissipation
－ 100% electrical burn－in

Schematic Diagram

Connection Diagram

Order Number LM123K STEEL， LM223K STEEL or LM323K STEEL See Package K02A

Typical Applications
Basic 3 Amp Regulator

＊Required if LM123 is more than 4＂from fitter capacitor
${ }^{\dagger}$ Regulator is stable with no load capacitor into resistive loads

Absolute Maximum Ratings

Input Voltage
Power Dissipation
Operating Junction Temperature Range
LM123
LM223
LM323
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

20 V
Internally Limited

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Preconditioning

Burn-In in Thermal Limit
100\% All Devices
Electrical Characteristics (Note 1)

- PARAMETER	CONDITIONS	LM123/LM223			LM323			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Voltage	$\begin{aligned} & T_{i}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {IN }}=7.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \end{aligned}$	4.7	5	5.3	4.8	5	5.2	V
Output Voltage	$\begin{aligned} & 7.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V} \\ & 0 \leq \mathrm{I}_{\text {OUT }} \leq 3 \mathrm{~A}, \mathrm{P} \leq 30 \mathrm{~W} \end{aligned}$	4.6		5.4	4.75		5.25	V
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 15 \mathrm{~V} \end{aligned}$		5	25		5	25	mV
Load Regulation (Note 3)	$\begin{aligned} & T_{1}=25^{\circ} \mathrm{C}, V_{1 N}=75 \mathrm{~V} \\ & 0 \leq I_{\text {OUT }} \leq 3 \mathrm{~A} \end{aligned}$		25	100		25	100	mV
Quiescent Current	$\begin{aligned} & 7.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V}, \\ & 0 \leq \mathrm{I}_{\mathrm{OUT}} \leq 3 \mathrm{~A} \end{aligned}$		12	20		12	20	mA
Output Noise Voltage	$\begin{aligned} & T_{1}=25^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$.	40			40		$\mu \mathrm{Vrms}$
Short Circuit Current Limit	$\begin{aligned} & T_{i}=25^{\circ} \mathrm{C} \\ & V_{I N}=15 \mathrm{~V} \\ & V_{I N}=7.5 \mathrm{~V} \end{aligned}$		3 4	4.5 5		3 4	4.5 5	$\begin{aligned} & A \\ & A \end{aligned}$
Long Term Stability	a			35			35	mV
Thermal Resistance Junction to Case (Note 2)			2			2		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise noted, specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 123,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq+150^{\circ} \mathrm{C}$ for the LM223, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ for the LM323. Although power dissipation is internally limited, specifications apply only for $P \leq 30 W$.
Note 2: Without a heat sink, the thermal resistance of the TO-3 package is about $35^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the specified values of $2^{\circ} \mathrm{C} / \mathrm{W}$, depending on the efficiency of the heat sink.
Note 3: Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and a duty cycle $\leq 5 \%$.

Typical Applications (cont‘d.)

Adjustable Output 5V-10V 0.1\% Regulation

Typical Performance Characteristics

Maximum Average Power
Dissipation For LM323

Short Circuit Current

Output Impedance

Ripple Rejection

Output Voltage

Typical Applications (cont‘d.)

10 Amp Regulator With Complete Overload Protection

Adjustable Regulator 0-10V @ 3A

$C_{1}-2 \mu \mathrm{~F}$ OPTIONAL - IMPROVES RIPPLE REJECTION, NOISE, AND TRANSIENT RESPONSE

Trimming Output to 5 V

General Description

These are dual polarity tracking regulators designed to provide balanced positive and negative output voltages at current up to 100 mA , the devices are set for $\pm 15 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$ outputs respectively. Input voltages up to $\pm 30 \mathrm{~V}$ can be used and there is provision for adjustable current limiting. These devices are available in three package types to accomodate various power requirements and temperature ranges.

Features

- $\pm 15 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$ tracking outputs
- Output current to 100 mA
- Output voltages balanced to within 1\% (L.M125, LM126, LM325A)
- Line and load regulation of 0.06\%
- Internal thermal overload protection
- Standby current drain of 3 mA
- Externally adjustable current limit
- Internal current limit

Schematic and Connection Diagrams

Dual-In-Line Package

Order Number LM325AN, LM325N, or LM326N See Package N14A

Case connected to $-V_{\text {IN }}$ Order Number
LM125H, LM325H, LM126H, or LM326H See Package H10C

Absolute Maximum Ratings

Input Voltage	$\pm 30 \mathrm{~V}$
Forced $\mathrm{V}_{\mathrm{O}^{+}}(\min)$ (Note 1)	-0.5 V
Forced $\mathrm{V}_{\mathrm{O}^{-}}(\max)$ (Note 1)	+0.5 V
Power Dissipation (Note 2)	$\mathrm{P}_{\mathrm{MAX}}$
Output Short-Circuit Duration (Note 3)	Indefinite

Operating Conditions

Operating Temperature Range	
LM125	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM325, LM325A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$	

Electrical Characteristics LM125/LM325/LM325A (Note 2)

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Output Voltage	$\mathrm{T}_{1}=25^{\circ} \mathrm{C}$				
LM125/LM325A		14.8	15	15.2	V
LM325		14.5	15	15.5	V
Input-Output Differential		2.0			V
Line Regulation	$\begin{aligned} & V_{I N}=18 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \\ & T_{1}=25^{\circ} \mathrm{C} \end{aligned}$		2.0	10	mV
Line Regulation Over Temperature Range'	$V_{\text {IN }}=18 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$		2.0	20	$m V$
Load Regulation	$\mathrm{I}_{L}=0$ to $50 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}= \pm 30 \mathrm{~V}$,				
$v_{0}+$	$T_{1}=25^{\circ} \mathrm{C}$		3.0	10	mV
$v_{0}{ }^{-}$			5.0	10	mV
Load Regulation Over Temperature Range	$\mathrm{I}_{\mathrm{L}}=0$ to $50 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}= \pm 30 \mathrm{~V}$				
$\mathrm{V}_{0}{ }^{+}$			4.0	20	mV
$\mathrm{V}_{0}{ }^{-}$			7.0	20	mV
Output Voltage Balance LM125, LM325A LM325	$\mathrm{T}_{1}=25^{\prime \prime} \mathrm{C}$			$\begin{aligned} & \pm 150 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Output Voltage Over Temperature Range	$\begin{aligned} & P \leq P_{\text {MAX }}, 0 \leq I_{0} \leq 50 \mathrm{~mA}, \\ & 18 \mathrm{~V} \leq\left\|V_{I N}\right\| \leq 30 . \end{aligned}$				
LM125/LM325A LM325		14.65		15.35	V
		14.27		15.73	V
Temperature Stability of V_{O}			± 0.3	.	$\%$
Short Circuit Current Limit	$\mathrm{T}_{1}=25^{\circ} \mathrm{C}$		260		mA
Output Noise Voltage	$\mathrm{T}_{1}=25^{\circ} \mathrm{C}, \mathrm{BW}=100-10 \mathrm{kHz}$		150		$\mu \mathrm{Vrms}$
Positive Standby Current	$\mathrm{T}_{1}=25^{\circ} \mathrm{C}$		1.75	3.0	mA
Negative Standby Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$,	3.1	5.0	mA
Long Term Stability			0.2		$\% / \mathrm{kHr}$
Thermal Resistance Junction to Case (Note 4) LM125H, LM325H			45		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient LM325AN, LM325N	'		150		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: That voltage to which the output may be forced without damage to the device
Note 2: Unless otherwise specified these specifications apply for $\mathrm{T}_{\mathrm{j}}=55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ on $\mathrm{LM} 125, \mathrm{~T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ on LM325A, $\mathrm{T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ on $\mathrm{LM} 325, \mathrm{~V}_{I N}= \pm 20 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=2.0 \mathrm{~W}$ for the TO-5 H Package. $I_{M A X}=100 \mathrm{~mA}$. $\mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=1.0 \mathrm{~W}$ for the DIP N.Package.
Note 3: If the junction temperature exceeds $150^{\circ} \mathrm{C}$, the output short circuit duration is 60 seconds.
Note 4: Without a héat sink, the thermal resistance junction to ambient of the TO-5 Package is about $150^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending of the efficiency of the sink.

Absolute Maximum Ratings

Input Voltage	$\pm 30 \mathrm{~V}$
Forced $\mathrm{V}_{\mathrm{O}}{ }^{+}(\mathrm{Min})$ (Note 1)	-0.5 V
Forced $\mathrm{V}_{\mathrm{O}}-(\mathrm{Max})$ (Note 1)	+0.5 V
Power Dissipation (Note 2)	Tnternally Limited
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	
\quad LM126	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\quad LM326	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics LM126/LM326 (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage LM126, LM326	$\mathrm{T}_{1}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 11.8 \\ & 11.5 \end{aligned}$	12	$\begin{aligned} & 12.2 \\ & 12.5 \end{aligned}$	V
Input-Output Differential		2.0			\checkmark
Line Regulation	$\begin{aligned} & V_{I N}=15 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & I_{L}=20 \mathrm{~mA}, T_{1}=25^{\circ} \mathrm{C} \end{aligned}$		2.0	10	$m V$
Line Regulation Over Temperature Range	$V_{\text {IN }}=15 \mathrm{~V}$ to $30 \mathrm{~V}, I_{\mathrm{L}}=20 \mathrm{~mA}$		2.0	20	mV
Load Regulation $v_{0}{ }^{+}$ $\mathrm{V}_{\mathrm{o}}{ }^{-}$	$\begin{aligned} & I_{L}=0 \text { to } 50 \mathrm{~mA}, V_{I N}= \pm 30 \mathrm{~V}, \\ & T_{1}=25^{\circ} \mathrm{C} \end{aligned}$		3.0 5.0	10 10	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Load Regulation Over Temperature Range $\begin{aligned} & \mathrm{V}_{0}{ }^{+} \\ & \mathrm{V}_{0}{ }^{-} \end{aligned}$	$\mathrm{I}_{\mathrm{L}}=0$ to $50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}= \pm 30 \mathrm{~V}$		4.0 7.0	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Output Voltage Balance LM126, LM326	$\mathrm{T}_{1}=25^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 125 \\ & \pm 250 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Output Voltage Over Temperature Range LM126	$\begin{aligned} & P \leq P_{\text {MAX }}, 0 \leq I_{O} \leq 50 \mathrm{~mA} \\ & 15 \mathrm{~V} \leq\left\|V_{I N}\right\| \leq 30 \mathrm{~V} \end{aligned}$	11.68		12.32	V
LM326		11.32		12.68	V
Temperature Stability of V_{O}			± 0.3		\because
Short Circuit Current Limit	$\mathrm{T}_{1}=25^{\circ} \mathrm{C}$		260		mA
Output Noise Voltage	$\mathrm{T}_{1}=25^{\circ} \mathrm{C}, \mathrm{BW}=100-10 \mathrm{kHz}$		100		μ Vrins
Positive Standby Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=0$		1.75	3.0	mA
Negative Standby Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=0$		3.1	5.0	mA
Long Term Stability			0.2		$\% / \mathrm{kHr}$
Thermal Resistance Junction to Case (Note 4) LM126/LM326H			45		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient LM326N			150		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: That voltage to which the output may be forced without damage to the device.
Note 2: Unless otherwise specified, these specifications apply for $\mathrm{T}_{\mathrm{i}}=55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ on $\mathrm{LM} 126, \mathrm{~T}_{\mathrm{i}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ on LM326, $V_{I N}= \pm 20 \mathrm{~V}, I_{L}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=2.0 \mathrm{~W}$ for the $T 0-5 \mathrm{H}$ Package $I_{M A X}=100 \mathrm{~mA}$. $I_{M A X}=100 \mathrm{~mA}$, $P_{\text {MAX }}=1.0 W$ for the DIP N Package.
Note 3: If the junction temperature exceeds $150^{\circ} \mathrm{C}$ the output short circuit duration is 60 seconds.
Note 4: Without a heat sink, the thermal resistance junction to ambient of the TO-5 Package is about $150^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.

Typical Performance Characteristics $\mathrm{V}_{\mathrm{IN}}= \pm 20 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{l}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Performance Characteristics (cont‘d.)

TIME (1 $\mu \mathrm{S} / \mathrm{DIV}$)

LM 125
Load Transient Response for Positive Regulator

TIME (1 $\mu \mathrm{s} / \mathrm{DIV}$)

LM125
Line Transient Response
for Positive Regulator

TIME ($2 \mu \mathrm{~S} / \mathrm{DIV}$)

LM126
Load Transient Response

LM126
Load Transient Response

TIME (2 $2 \mathrm{~S} / \mathrm{DIV}$)

Typical Performance Characteristics (cont'd.)

LM126

Ripple Rejection

LM126
Output Impedance vs Frequency

Typical Applications

Note. Metal can (H) packages shown.
2.0 Amp Boosted Regulator With Current Limit

$$
I_{\mathrm{CL}}=\frac{\text { CURRENT LIMIT SENSE VOLTAGE (SEE CURVE) }}{R_{\mathrm{CL}}}
$$

${ }^{\dagger}$ solio tantalum
${ }^{\text {tt }}$ SHORT PINS 6 AND 7 ON DIP
${ }^{+1} \mathrm{R}_{\mathrm{CL}}$ CAN BE ADDED TO THE BASIC REGULATOR BETWEEN PINS 6 AND 5, 1 AND 2 TO REDUCE CURRENT LIMIT.
*REQuIRED if regulator is located an appreciable distance from power SUPPLY FILTER.
**ALTHOUGH NO CAPACItor is needed for stability, it does help transient RESPONSE. (IF NEEDED USE I F ELECTROLYTIC)
***ALTHOUGH NO CAPACITOR IS NEEDED fOR STABILITY, it does help transient ALTHOUGH NO CAPACITOR IS NEEDED FOR STABILIT
RESPONSE. (IF NEEDED USE 10μ F ELECTROLYTIC).

Typical Applications (cont‘d.)

Boosted Regulator With Foldback Current Limit

Electric Shutdown

${ }^{\dagger}$ solio tantalum
${ }^{\text {Tt SHORT PINSG AND }} 7$ ON DIP

- Requireo if regulator is located an appreciable distance from powen

SUPPLY FILTE
Responge no capacitor is needed for stability, it does help transient

Voltage Regulators

LM137/LM237/LM337 3-Terminal Adjustable Negative Regulators

General Description

The LM137/LM237/LM337 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -37 V . These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM137 series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads.

The LM137/LM237/LM337 serve a wide variety of applications including local on-card regulation, program-mable-output voltage regulation or precision current regulation. The LM137/LM237/LM337 are ideal complements to the LM117/LM217/LM317 adjustable positive regulators.

Features

- Output voltage adjustable from -1.2 V to -37 V
- 1.5 A output current guaranteed, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.3%
- Excellent thermal regulation, $0.002 \% / \mathrm{W}$
- 77 dB ripple rejection
- Excellent rejection of thermal transients
- $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- 100% electrical burn-in
- Standard 3-lead transistor package

LM137 Series Packages and Power Capability

DEVICE	PACKAGE	RATED POWER DISSIPATION	DESIGN LOAD CURRENT
LM137	TO-3	20W	1.5 A
LM237 LM337	TO-39	2 W	0.5 A
LM337T	TO-220	15 W	1.5 A
LM337M	TO-202	7.5 W	0.5 A
LM337LZ	TO-92	0.62 W	0.1 A

Typical Applications

$$
-v_{\mathrm{OUT}}=-1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{120 \Omega}\right)+\left(-I_{\mathrm{ADJ}} \times R 2\right)
$$

${ }^{\dagger} \mathrm{C} 1=1 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic required for stability. Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.

* $\mathrm{C} 2=1 \mu \mathrm{~F}$ solid tantalum is required only if regulator is more than 4" from power-supply filter capacitor

Absolute Maximum Ratings

Power Dissipation
Input-Output Voltage Differential
Operating Junction Temperature Range
LM137
LM237
LM337
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Preconditioning

Burn-In in Thermal Limit
Electrical Characteristics
(Note 1)

PARAMETER	CONDITIONS	LM137/LM237			LM337			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Line Regulation	$T_{A}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq\left\|V_{I N}-V_{O U T}\right\| \leq 40 \mathrm{~V}$ (Note 2)		0.01	0.02		0.01	0.04	\%/V
Load Regulation	$T_{\text {A }}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq I_{\text {OUT }} \leq I_{\text {MAX }}$							
	$\mid \mathrm{VOUT}^{\prime} \leq 5 \mathrm{~V}$, (Note 2)		15	25		15	50	mV
	$\mid V_{\text {OUT }} \mathrm{l} \geq 5 \mathrm{~V}$, (Note 2)		0.3	0.5		0.3	1.0	\%
Thermal Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms}$ Pulse		0.002	0.02		0.003	0.04	\%/W
Adjustment Pin Current			65	100		65	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq I L \leq I_{\text {MAX }} \\ & 3.0 \mathrm{~V} \leq \mathrm{V}_{I N}-V_{O U T} \leq 40 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		2	5		2	5	$\mu \mathrm{A}$
Reference Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)	-1.225	-1.250	-1.275	-1.213	-1.250	. -1.287	V
	$\begin{aligned} & 3 \leq\left\|V_{I N}-V_{O U T}\right\| \leq 40 V,(\text { Note } 3) \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq \mathrm{I}_{\text {MAX }}, \mathrm{P} \leq \mathrm{P}_{\text {MAX }} \end{aligned}$	-1.200	-1.250	-1.300	-1.200	-1.250	-1.300	V
Line Regulation	$3 \mathrm{~V} \leq\left\|\mathrm{V}^{\prime} \mathrm{N}^{-} \mathrm{V}_{\text {OUT }}\right\| \leq 40 \mathrm{~V}$, (Note 2)		0.02	0.05		0.02	0.07	\%/V
Load Regulation	$10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 1_{\text {MAX }}$, (Note 2)							
	$\left\|V_{\text {OUT }}\right\| \leq 5 V$		20	50		20	70	$m V$
	${ }^{\text {i }} \mathrm{V}_{\text {OUT }} \mid \geq 5 \mathrm{~V}$.	0.3	1		0.3	1.5	\%
Temperature Stability	$T_{\text {MIN }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {MAX }}$		0.6			0.6		\%
Minimum Load Current	$\mid V_{I N}-V_{O U T I} \leq 40 V$		2.5	5		2.5	10	mA
	$\left\|V_{1 N}-V_{\text {OUT }}\right\| \leq 10 \mathrm{~V}$		1.2	3		1.5	6	mA
Current Limit	$\left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 15 V$							
	K and T Package	1.5	2.2		1.5	2.2		A
	H and P Package	0.5	0.8		0.5	0.8		A
	$\left\|V_{1 N}-V_{\text {OUT }}\right\|=40 \mathrm{~V}, T_{j}=25^{\circ} \mathrm{C}$							
	K and T Package	0.24	0.4		0.15	0.4		A
	H and P Package	0.15	0.17		0.10	0.17		A
RMS Output Noise, \% of V ${ }_{\text {OUT }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.003			0.003		\%
Ripple Rejection Ratio	$V_{\text {OUT }}=-10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}$		60			60		dB
	$\mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F}$	66	77		66	77		dB
Long-Term Stability	$T_{A}=125^{\circ} \mathrm{C}, 1000$ Hours		0.3	1		0.3	1	\%
Thermal Resistance, Junction to Case	H Package		12	15		12	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	K Package		2.3	3		2.3	3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	T Package					4		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	P Package					12		${ }^{\circ} \mathrm{C} / \mathrm{N}$

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leqslant T_{j} \leqslant+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 137,-25^{\circ} \mathrm{C} \leqslant T_{j} \leqslant+150^{\circ} \mathrm{C}$ for the LM237, $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C}$ for the LM337; $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$; and $\mathrm{IOUT}^{2}=0.1 \mathrm{~A}$ for the TO-39 and TO-202 packages and IOUT $=0.5 \mathrm{~A}$ for the TO-3 and TO-220 packages. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO-39 and TO-202 and 20W for the TO-3 and TO-220. IMAX is 1.5A for the TO-3 and TO-220 packages, and 0.5 A for the TO-202 package and 0.2A for the TO-39 package.

Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Load regulation is measured on the output pin at a point $1 / 8^{\prime \prime}$ below the base of the TO-3 and TO-39 packages.
Note 3: Selected devices with tightened tolerance reference voltage available.

Thermal Regulation

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per Watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of VOUT, per Watt, within the first 10 ms after a step of power is applied. The LM137's specification is $0.02 \% / W$, max.

In Figure 1, a typical LM137's output drifts only 3 mV (or 0.03% of VOUT $=-10 \mathrm{~V}$) when a 10 W pulse is applied for 10 ms . This performance is thus well inside the specification limit of $0.02 \% / \mathrm{W} \times 10 \mathrm{~W}=0.2 \%$ max. When the 10 W pulse is ended, the thermal regulation again shows a 3 mV step as the LM137 chip cools off. Note that the load regulation error of about 8 mV (0.08%) is additional to the thermal regulation error. In Figure 2, when the 10W pulse is applied for 100 ms , the output drifts only slightly beyond the drift in the first 10 ms , and the thermal error stays well within 0.1% (10 mV).

Horizontal sensitivity, $20 \mathrm{~ms} / \mathrm{div}$ FIGURE 2
Connection Diagrams

Typical Applications (Continued)

*The $10 \mu \mathrm{~F}$ capacitors are optional to improve ripple rejection

Negative Regulator with Protection Diodes

*When C_{L} is larger than $20 \mu \mathrm{~F}$, D1 protects the LM137 in case the input supply is shorted
${ }^{* *}$ When C2 is larger than $10 \mu \mathrm{~F}$ and $-\mathrm{V}_{\mathrm{OUT}}$ is larger than -25V, D2 protects the LM137 in case the output is shorted

Adjustable Current Regulator

Typical Performance Characteristics (K Steel and T Packages)

National

LM137HV/LM237HV/LM337HV 3-Terminal Adjustable Negative Regulators (High Voltage)

General Description

The LM137HV/LM237HV/LM337HV are adjustable 3 -terminal negative voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -47 V . These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM137HV series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads.

The LM137HV/LM237HV/LM337HV serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM137HV/LM237HV/ LM337HV are ideal complements to the LM117HV/ LM217HV/LM317HV adjustable positive regulators.

Features

- Output voltage adjustable from -1.2 V to -47 V
- 1.5 A output current guaranteed, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.3%
- Excellent thermal regulation, 0.002\%/W
- 77 dB ripple rejection
- Excellent rejection of thermal transients
- $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- 100% electrical burn-in
- Standard 3-lead transistor package

Typical Applications

Adjustable Negative Voltage Regulator

$-\mathrm{V}_{\text {OUT }}=-1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{120 \Omega}\right)$
${ }^{\dagger} \mathrm{C} 1=1 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic required for stability. Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.

* $\mathrm{C} 2=1 \mu \mathrm{~F}$ solid tantalum is required only if regulator is more than 4 " from power-supply filter capacitor

Absolute Maximum Ratings

Power Dissipation
Input-Output Voltage Differential
Operating Junction Temperature Range

```
LM137HV
LM237HV
LM337HV
```

Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Internally limited
50 V
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Preconditioning

Burn-In in Thermal Limit
100\% All Devices
Electrical Characteristics
(Note 1)

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+150^{\circ} \mathrm{C}$ for the LM137HV, $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{j} \leqslant+150^{\circ} \mathrm{C}$ for the LM 237 HV , $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C}$ for the LM337HV; $\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$; and $\mathrm{I}_{\mathrm{OUT}}=0.1 \mathrm{~A}$ for the $\mathrm{TO}-39$ package and $\mathrm{I}_{\mathrm{OUT}}=0.5 \mathrm{~A}$ for the TO-3 package. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO-39 and 20W for the TO-3. IMAX is 1.5A for the TO-3 package and 0.2A for the TO-39 package.

Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Load regulation is measured on the output pin at a point $1 / 8^{\prime \prime}$ below the base of the TO-3 and TO-39 packages.
Note 3: Selected devices with tightened tolerance reference voltage available.

Schematic Diagram

Thermal Regulation

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per Watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within' 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of $V_{O U T}$, per Watt, within the first 10 ms after a step of power is applied. The LM137HV's specification is $0: 02 \% / W$, max.

$\longrightarrow 10 \mathrm{~ms}$
LM137HV, $\mathrm{V}_{\text {OUT }}=-10 \mathrm{~V}$
$V_{\text {IN }}-V_{\text {OUT }}=-40 \mathrm{~V}$
$I_{L}=0 A \rightarrow 0.25 A \rightarrow 0 A$
Vertical sensitivity, $5 \mathrm{mV} / \mathrm{div}$
FIGURE 1

In Figure 1, a typical LM137HV's output drifts only 3 mV (or 0.03% of VOUT $=-10 \mathrm{~V}$) when a 10 W pulse is applied for 10 ms . This performance is thus well inside the specification limit of $0.02 \% / \mathrm{W} \times 10 \mathrm{~W}=0.2 \%$ max. When the 10 W pulse is ended, the thermal regulation again shows a 3 mV step as the LM137HV chip cools off. Note that the load regulation error of about 8 mV (0.08%) is additional to the thermal regulation error. In Figure 2, when the 10W pulse is applied for 100 ms , the output drifts only slightly beyond the drift in the first 10 ms , and the thermal error stays well within $0.1 \%(10 \mathrm{mV})$.

FIGURE 2

Connection Diagrams

TO-3 Matal Can Package

Ordering Information LM137HVK STEEL LM237HVK STEEL LM337HVK STEEL See Package K02A

TO-39
Metal Can Package

Typical Applications (Continued)

Adjustable High Voltâge Regulator

*The $10 \mu \mathrm{~F}$ capacitors are optional to improve ripple rejection

Current Regulator

Negative Regulator with Protection Diodes

*When C_{L} is larger than $20 \mu \mathrm{~F}$, D1 protects the LM137HV is case the input supply is shorted
**When C2 is larger than $10 \mu \mathrm{~F}$ and-VOUT is larger than $\mathbf{- 2 5 V}, \mathrm{D} 2$ protects the LM137HV in case the output is shorted

Adjustable Current Regulator

*Use resistors with good tracking TC $<25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Typical Performance Characteristics (H and K.STEEL Package)

National Semiconductor
 LM138/LM238/LM338 5 Amp Adjustable Power Regulators

Voltage Regulators

General Description

The LM138/LM238/LM338: are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 5 A over a 1.2 V to 32 V output range. They are exceptionally easy to use and require only 2 resistors to set the output voltage. Careful circuit design has resulted in outstanding load and line regulation comparable to many commercial power supplies. The LM138 family is supplied in a standard 3-lead transistor package.

A unique feature of the LM138 family is time-dependent current limiting. The current limit circuitry allows peak currents of up to 12 A to be drawn from the regulator for short periods of time. This allows the LM138 to be used with heavy transient loads and speeds start-up under full-load conditions. Under sustained loading conditions, the current limit decreases to a safe value protecting the regulator. Also included on the chip are thermal overload protection and safe area protection for the power transistor. Overload protection remains functional even if the adjustment pin is accidentally disconnected.

Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve
very high ripple rejections ratios which are difficult to achieve with standard 3 -terminal regulators.

Besides replacing fixed regulators or discrete designs, the LM138 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded.

The LM138/LM238/LM338 are packaged in standard steel TO-3 transistor packages. The LM138 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the LM238 from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM338 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- Guaranteed 7A peak output current
- Guaranteed 5A output current
- Adjustable output down to 1.2 V
- Line regulation typically $0.005 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Guaranteed thermal regulation
- Current limit constant with temperature
- 100% electrical burn-in in thermal limit
- Standard 3-lead transistor package

Typical Applications

1.2V-25V Adjustable Regulator

10A Regulator
 capacitors.
${ }^{\dagger \dagger} \mathrm{V}_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$
**R1 $=240 \Omega$ for LM138 and LM238
R1, R2 as an assembly
can be ordered from
Bourns:
MIL part no. 7105A-AT2-502
COMM part no. 7105A-AT7-502

Absolute Maximum Ratings

Power Dissipation
Input-Output Voltage Differential
Operating Junction Temperature Range LM138
LM238
LM338
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Preconditioning
Burn-In in Thermal Limit
All Devices 100\%

Electrical Characteristics
(Note 1)

PARAMETER	CONDITIONS	LM138/LM238			LM338			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Line Regulation	$T_{A}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }}-V_{O U T} \leq 35 \mathrm{~V}$ (Note 2)	1.19	0.605	0.01	1.19	0.005	0.03	\%/V
Load Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq 1$ OUT $\leq 5 \mathrm{~A}$							
	$V_{\text {OUT }} \leq 5 \mathrm{~V}$, (Note 2)		5	15		5	25	mV
	$\mathrm{V}_{\text {OUT }} \geq 5 \mathrm{~V}$, (Note 2)		0.1	0.3		0.1	0.5	\%
Thermal Regulation	Pulse $=20 \mathrm{~ms}$		0.002	0.01		0.002	0.02	\%/W
Adjustment Pin Current			45	100		45	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq 1 \mathrm{~L} \leq 5 A \\ & 3 \mathrm{~V} \leq\left(V_{I N}-V_{O U T}\right) \leq 35 \mathrm{~V} \\ & \left.3 \leq\left(V_{I N}-V_{O U T}\right) \leq 35 \mathrm{~V}, \text { (Note } 3\right) \\ & 10 \mathrm{~mA} \leq 1 O U T \leq 5 A, P \leq 50 \mathrm{~W} \end{aligned}$		0.2	5		0.2	5	$\mu \mathrm{A}$
Reference Voltage			1.24	1.29		1.24	1.29	v
Line Regulation	$\left.3 V \leq V_{I N}-V \text { OUT } \leq 35 V \text {. (Note } 2\right)$		0.02	0.04		0.02	0.06	\%/V
Load Regulation								
	$\begin{aligned} & 10 \mathrm{~mA} \leq 1 \text { OUT } \leq 5 \mathrm{~A}, \text { (Note } 2 \text {) } \\ & \mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }} \geq 5 \mathrm{~V} . \end{aligned}$		20	30		20	50	mV
			0.3	0.6		0.3	1.0	\%
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {MAX }}$		1			1		\%
Minimum Load Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		3.5	5		3.5	10	mA
Current Limit	$\begin{aligned} & V_{I N}-V_{O U T} \leq 10 V \\ & D C \end{aligned}$							
		5.0	8		5.0	8		A
	0.5 ms Peak$V_{I N}-V_{\text {OUT }}=30 V$	7	12		7	12		A
			1			1		A
RMS Output Noise, \% of VOUT Ripple Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	60	0.003			0.003		\%
	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}$		60			60		dB
Ripple Rejection Ratio			75		60	75		dB
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		0.3	1		0.3	1	\%
Thermal Resistance, Junction to Case	K Package			1.0			1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 138,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM 238 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ for the LM338, $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{OUT}}=2.5 \mathrm{~A}$. Although power dissipation is internally limited, these specifications are applicable for power dissipations up to 50W.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects are taken into account separately by thermal regulation.
Note 3: Selected devices with tightened tolerance reference voltage available.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Temperature Stability

Ripple Rejection

Dropout Voltage

Output Impedance

Ripple Rejection

Adjustment Current

Minimum Operating Current

Application Hints

In operation, the LM138 develops a nominal 1.25 V reference voltage, $V_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_{1} then flows through the output set resistor R2, giving an output voltage of

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{A D J} R 2 .
$$

FIGURE 1

Since the $50 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM138 was designed to minimize IADJ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. $\mathrm{A} 0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.

The adjustment terminal can be bypassed to ground on the LM138 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 75 dB ripple rejection is obtainable at any output level. Increases over $20 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies, but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.

Although the LM138 is stable with no outout capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

Load Regulation

The LM138 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times \mathrm{I}_{\mathrm{L}}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+\mathrm{R} 2 / \mathrm{R} 1)$ or in this case, 11.5 times worse.

Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using 2 separate leads to the case. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $20 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of VIN. In the LM138 this discharge path is through a large junction that is able to sustain 25 A surge with no problem. This is not true of other types of positive

Application Hints (Continued)

regulators. For output capacitors of $100 \mu \mathrm{~F}$ or less at output of 15 V or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM138 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM138 with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

FIGURE 3. Regulator with Protection Diodes

Schematic Diagram

Typical Applications (Continued)

Precision Power Regulator with Low Temperature Coefficient

Typical Applications (Continued)

Adjustable Regulator with Improved Ripple Rejection

${ }^{\dagger}$ Solid tantalum
${ }^{*}$ Discharges C 1 if output is shorted to ground
**R1 $=240 \Omega$ for LM138 and LM238

High Stability 10V Regulator

*R1 $=\mathbf{2 4 0 \Omega}$ for LM138 and LM238

15A Regulator

5V Logic Regulator with

Electronic Shutdown**

R1 $=240 \Omega$ for LM138 or LM238 ${ }^{ *}$ Minimum output $\approx 1.2 \mathrm{~V}$

0 to 22 V Regulator

*R1 $=240 \Omega, R 2=5 k$ for LM138 and LM238

Typical Applications (Continued)

Adjustable Current Regulator

5A Current Regulator

Adjusting Multiple On-Card Regulators with Single Control*

Simple 12V Battery Charger

* R_{S}-sets output impedance of charger $Z_{\text {OUT }}=R_{S}\left(1+\frac{R 2}{R 1}\right) ~$
Use of R_{S} allows low charging rates with fully charged battery.
**The $1000 \mu \mathrm{~F}$ is recommended to filter out input transients

Current Limited 6V Charger

*Sets max charge current to 3 A
**The $1000 \mu \mathrm{~F}$ is recommended to filter out input transients

Connection Diagram

Metal Can Package

BOTTOM VIEW
Order Number LM138K STEEL LM238K STEEL LM338K STEEL See NS Package K02A

Voltage Regulators

LM140A/LM140/LM340A/LM340 Series 3-Terminal Positive Regulators

General Description

The LM140A/LM140/LM340A/LM340 series of positive 3 -terminal voltage regulators are designed to provide superior performance as compared to the previously available 78XX series regulator. Computer programs were used to optimize the electrical and thermal performance of the packaged IC which results in outstanding ripple rejection, superior line and load regulation in high power applications (over 15W).

With these advances in design, the LM340 is now guaranteed to have line and load regulation that is a factor of 2 better than previously available devices. Also, all parameters are guaranteed at 1 A vs 0.5 A output current. The LM140A/LM340A provide tighter output voltage tolerance, $\pm 2 \%$ along with $0.01 \% / \mathrm{V}$ line regulation and $0.3 \% / \mathrm{A}$ load regulation.

Current limiting is included to limit peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over limiting die temperature.

Considerable effort was expended to make the LM 140-XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

The entire LM140A/LM140/LM340A/LM340 series of regulators is available in the metal TO-3 power package and the LM340A/LM340 series is also available in the TO-220 plastic power package.

For output voltages other than $5 \mathrm{~V}, 12 \mathrm{~V}$, and 15 V , the LM117 series provides an output voltage range from +1.2 V to +57 V .

Features

- Complete specifications at 1 A load
- Output voltage tolerances of $\pm 2 \%$ at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ and $\pm 4 \%$ over the temperature range (LM140A/LM340A)
- Fixed output voltages available 5, 12, and 15 V
- Line regulation of 0.01% of $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V} \Delta \mathrm{V}_{\text {IN }}$ at 1 A load (LM140A/LM340A)
- Load regulation of 0.3% of $V_{O U T} / A \quad \Delta I$ LOAD (LM140A/LM340A)
- Internal thermal overload protection
- Internal short-circuit current limit
- Output transistor safe area protection
- 100% thermal limit burn-in
- Special circuitry allows start-up even if output is pulled to negative voltage (\pm supplies)

LM140 Series Package and Power Capability

DEVICE	PACKAGE	RATED POWER DISSIPATION	DESIGN LOAD CURRENT
LM140 LM340	TO-3	20 W	1.5 A
LM340T	TO-220	15 W	1.5 A
LM341	TO-202	7.5 W	0.5 A
LM342	TO-202	7.5 W	0.25 A
LM140L LM340L	TO-39	2 W	0.1 A
LM340L	TO-92	1.2 W	0.1 A

Typical Applications

Fixed Output Regulator

${ }^{\text {* Required }}$ if the regulator is located far from the power supply filter
** Although no output capacitor is needed for stability, it does help transient response. (If needed, use $0.1 \mu \mathrm{~F}$, ceramic disc)

Adjustable Output Regulator

$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}+\left(5 \mathrm{~V} / \mathrm{R} 1+\mathrm{I}_{\mathrm{Q}}\right) \mathrm{R} 2$
$5 \mathrm{~V} / \mathrm{R} 1>3 \mathrm{I}_{\mathrm{Q}}$, load regulation $\left(\mathrm{L}_{\mathrm{r}}\right) \approx$ [(R1 + R2)/R1] (L_{r} of LM340-5)

Current Regulator

$I_{\text {OUT }}=\frac{V_{2-3}}{R 1}+I_{Q}$
$\Delta I_{Q}=1.3 \mathrm{~mA}$ over line and load changes

Absolute Maximum Ratings

Input Voltage (VO $=5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$)

Internal Power Dissipation (Note 1)
Operating Temperature Range (T_{A})
LM140A/LM140
LM340A/LM340
Maximum Junction Temperature
(TO-3 Package K, KC)
(TO-220 Package T)
Storage Temperature Range
Lead Temperature (Soldering, 10 Seconds)
TO-3 Package K, KC
$300^{\circ} \mathrm{C}$
TO-220 Package T $230^{\circ} \mathrm{C}$

Electrical Characteristics LM140A/LM340A
IOUT $=1 \mathrm{~A},-55^{\circ} \mathrm{C} \leqslant \mathrm{T} \leqslant \leqslant+150^{\circ} \mathrm{C}$ (LM140A), or $\left.0^{\circ} \mathrm{C} \leqslant \mathrm{T}\right] \leqslant+125^{\circ} \mathrm{C}$ (LM340A) unless otherwise specified.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{OUTPUT VOLTAGE} \& \multicolumn{2}{|r|}{5 V} \& \multicolumn{2}{|r|}{12 V} \& \multicolumn{2}{|r|}{15 V} \& \multirow{3}{*}{UNITS} \\
\hline \multicolumn{4}{|l|}{INPUT VOLTAGE (unless otherwise noted)} \& \multicolumn{2}{|r|}{10 V} \& \multicolumn{2}{|r|}{19V} \& \multicolumn{2}{|r|}{23 V} \& \\
\hline \multicolumn{2}{|r|}{PARAMETER} \& \& CONDITIONS \& MIN \& TYP MAX \& MIN \& TYP MAX \& MIN \& TYP MAX \& \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{0}\)} \& \multirow[b]{2}{*}{Output Voltage} \& \multicolumn{2}{|l|}{\(\mathrm{T}=25^{\circ} \mathrm{C}\)} \& 4.9 \& \(5 \quad 5.1\) \& 11.75 \& \(12 \quad 12.25\) \& 14.7 \& \(\begin{array}{lll}15 \& 15.3\end{array}\) \& V \\
\hline \& \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& P_{D} \leqslant 15 W, 5 \mathrm{~mA} \leqslant 10 \leqslant 1 A \\
\& V_{\text {MIN }} \leqslant V_{\text {IN }} \leqslant V_{\text {MAX }} \\
\& \hline
\end{aligned}
\]} \& \[
\begin{array}{|l|}
\hline 4.8 \\
\hline 7.5 \leqslant
\end{array}
\] \& \[
\begin{array}{r}
5.2 \\
\left.v_{I N} \leqslant 20\right) \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 11.5 \\
\& (14.8 \text { < }
\end{aligned}
\] \& \[
\begin{array}{r}
12.5 \\
\left.\leqslant V_{I N} \leqslant 27\right) \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 14.4 \\
\& (17.9 \leqslant
\end{aligned}
\] \& \[
\begin{array}{r}
15.6 \\
\left.\leqslant V_{I N} \leqslant 30\right) \\
\hline
\end{array}
\] \& V \\
\hline \multirow{3}{*}{\(\Delta V_{0}\)} \& \multirow{3}{*}{Line Regulation} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& 10=500 \mathrm{~mA} \\
\& \Delta V_{I N}
\end{aligned}
\]} \& \multicolumn{2}{|l|}{\[
\begin{array}{r}
10 \\
\\
\left(7.5 \leqslant V_{\text {IN }} \leqslant 20\right) \\
\hline
\end{array}
\]} \& (14.8 \& \[
\begin{gathered}
18 \\
\left.V_{\text {IN }} \leqslant 27\right) \\
\hline
\end{gathered}
\] \& \[
\text { (17.9 } \leqslant
\] \& \[
\begin{gathered}
22 \\
\left.V_{\text {IN }} \leqslant 30\right) \\
\hline
\end{gathered}
\] \& mV \\
\hline \& \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \hline \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\
\& \Delta \mathrm{~V}_{\mathrm{IN}} \\
\& \hline
\end{aligned}
\]} \& \[
(7.3 \leqslant
\] \& \[
\begin{array}{cc}
3 \& 10 \\
\left.V_{\text {IN }} \leqslant 20\right) \\
\hline
\end{array}
\] \& \& \[
\begin{array}{rr}
4 \& 18 \\
\leqslant \& \left.V_{I N} \leqslant 27\right) \\
\hline
\end{array}
\] \& \[
(17.5 \leqslant
\] \& \[
\begin{array}{cc}
4 \& 22 \\
\leqslant \& \left.V_{I N} \leqslant 30\right) \\
\hline
\end{array}
\] \& \(m V\)
\(V\) \\
\hline \& \& \multicolumn{2}{|l|}{\begin{tabular}{l}
\[
\mathrm{Tj}=25^{\circ} \mathrm{C}
\] \\
Over Temperature \\
\(\triangle V_{I N}\)
\end{tabular}} \& \& \[
\begin{array}{r}
4 \\
12 \\
\left.\mathrm{~V}_{\mathrm{I}} \leqslant 12\right) \\
\hline
\end{array}
\] \& \& \[
\begin{array}{r}
9 \\
30 \\
\left.\mathrm{~V}_{\text {IN }} \leqslant 22\right) \\
\hline
\end{array}
\] \& \& \[
\begin{array}{r}
10 \\
30 \\
\left.V_{\text {IN }} \leqslant 26\right) \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\mathrm{mv} \\
\mathrm{mv} \\
\mathrm{~V}
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\Delta V_{0}\)} \& \multirow[t]{2}{*}{Load Regulation} \& \(\mathrm{Tj}=25^{\circ} \mathrm{C}\) \& \[
\begin{aligned}
\& 5 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A} \\
\& 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA} \\
\& \hline
\end{aligned}
\] \& \& \[
\begin{array}{ll}
\hline 10 \& 25 \\
\& 15 \\
\hline
\end{array}
\] \& \& \[
\begin{array}{rr}
12 \& 32 \\
\& 19 \\
\hline
\end{array}
\] \& \& \[
\begin{array}{ll}
\hline 12 \& 35 \\
\& 21 \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\mathrm{mV} \\
\mathrm{mV}
\end{gathered}
\] \\
\hline \& \& \multicolumn{2}{|l|}{Over Temperature, \(5 \mathrm{~mA} \leqslant 10 \leqslant 1 \mathrm{~A}\)} \& \& 25 \& \& 60 \& \& 75 \& mV \\
\hline 10 \& Quiescent Current \& \multicolumn{2}{|l|}{\begin{tabular}{l}
\[
\mathrm{Tj}=25^{\circ} \mathrm{C}
\] \\
Over Temperature
\end{tabular}} \& \& \[
\begin{gathered}
6 \\
6.5
\end{gathered}
\] \& \& \[
\begin{gathered}
6 \\
6.5
\end{gathered}
\] \& \& \[
\begin{gathered}
6 \\
6.5
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{mA} \\
\& \mathrm{~mA}
\end{aligned}
\] \\
\hline \multirow{3}{*}{\(\triangle l_{Q}\)} \& \multirow{3}{*}{Quiescent Current Change} \& \multicolumn{2}{|l|}{\(5 \mathrm{~mA} \leqslant 10 \leqslant 1 \mathrm{~A}\)} \& \& 0.5 \& \& 0.5 \& \& 0.5 \& mA \\
\hline \& \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=1 \mathrm{~A} \\
\& \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{I N} \leqslant \mathrm{~V}_{\text {MAX }}
\end{aligned}
\]} \& \& \[
\begin{array}{r}
0.8 \\
\left.\leqslant V_{I N} \leqslant 20\right) \\
\hline
\end{array}
\] \& \& \[
\begin{array}{r}
0.8 \\
\left.\leqslant V_{\text {IN }} \leqslant 27\right) \\
\hline
\end{array}
\] \& \& \[
\begin{array}{r}
0.8 \\
\left.\mathrm{~V}_{\text {IN }} \leqslant 30\right) \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\mathrm{mA} \\
\mathrm{~V}
\end{gathered}
\] \\
\hline \& \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& I_{0}=500 \mathrm{~mA} \\
\& V_{\text {MIN }} \leqslant V_{I N} \leqslant V_{\text {MAX }}
\end{aligned}
\]} \& \& \[
\begin{array}{r}
0.8 \\
\left.v_{I N} \leqslant 25\right)
\end{array}
\] \& \& \[
\begin{array}{r}
0.8 \\
\left.V_{I N} \leqslant 30\right)
\end{array}
\] \& \[
17.9<
\] \& \[
\leqslant \begin{gathered}
0.8 \\
\left.\leqslant V_{I N} \leqslant 30\right)
\end{gathered}
\] \& mA
\(V\) \\
\hline \(\mathrm{V}_{\mathrm{N}}\) \& Output Noise Voltage \& \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)} \& \& 40 \& \& 75 \& \& 90 \& \(\mu \mathrm{V}\) \\
\hline \multicolumn{2}{|l|}{\(\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}}\) Ripple Rejection} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{IO}=1 \mathrm{~A} \text { or } \\
\& \mathrm{f}=120 \mathrm{~Hz}, \mathrm{IO}=500 \mathrm{~mA},
\end{aligned}
\] \\
Over Temperature,
\[
V_{M I N} \leqslant V_{I N} \leqslant V_{M A X}
\]
\end{tabular}} \& \[
\begin{aligned}
\& 68 \\
\& 68 \\
\& \\
\& \hline 8 \leqslant
\end{aligned}
\] \& \[
\begin{gathered}
80 \\
\left.V_{I N} \leqslant 18\right)
\end{gathered}
\] \& \begin{tabular}{l}
61 \\
61
\[
\text { (15 } \leqslant
\]
\end{tabular} \& \[
72
\]
\[
\left.V_{I N} \leqslant 25\right)
\] \& 60
60
\(18.5 \leqslant\) \& \[
70
\]
\[
\left.V_{I N} \leqslant 28.5\right)
\] \& dB
\(d B\)

V

\hline R_{0} \& Dropout Voltage Output Resistance Short-Circuit Current Peak Output Current Average TC of V_{O} \& \multicolumn{2}{|l|}{\[
$$
\begin{aligned}
& \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{IO}=1 \mathrm{~A} \\
& \mathrm{f}=1 \mathrm{kHz} \\
& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
& \mathrm{Min}, \mathrm{Tj}=0^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \\
& \hline
\end{aligned}
$$

\]} \& \& \[

$$
\begin{gathered}
\hline 2.0 \\
8 \\
2.1 \\
2.4 \\
-0.6
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
\hline 2.0 \\
18 \\
1.5 \\
2.4 \\
-1.5
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
\hline 2.0 \\
19 \\
1.2 \\
2.4 \\
-1.8
\end{gathered}
$$
\] \& $\begin{array}{r}V \\ \mathrm{~ms} \\ \mathrm{~A} \\ \mathrm{~A} \\ \mathrm{mV} \mathrm{I}^{\circ} \mathrm{C} \\ \hline\end{array}$

\hline $V_{\text {IN }}$ \& Input Voltage Required to Maintain Line Regulation \& $\mathrm{T}=25^{\circ} \mathrm{C}$ \& \& 7.3 \& , \& 14.5 \& \& 17.5 \& \& v

\hline
\end{tabular}

Note 1: Thermal resistance of the TO-3 package (K, KC) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $35^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient. Thermal resistance of the TO-220 package (T) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $50^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient.

Note 2: All characteristics are measured with a capacitor across the input of $0.22 \mu \mathrm{~F}$ and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_{w} \leqslant 10 \mathrm{~ms}$, duty cycle $\leqslant 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Electrical Characteristics LM140
(Note 2) $-55^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+150^{\circ} \mathrm{C}$ unless otherwise noted.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{OUTPUT VOLTAGE} \& \& 5 V \& \& 12V \& 15V \& \multirow{3}{*}{UNITS} \\
\hline \multicolumn{4}{|l|}{INPUT VOLTAGE (unless otherwise noted)} \& \& 10V \& \& 19V \& 23V \& \\
\hline \multicolumn{2}{|r|}{PARAMETER} \& \multicolumn{2}{|r|}{CONDITIONS} \& MIN \& TYP MAX \& MIN \& TYP MAX \& MIN TYP MAX \& \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{0}\)} \& \multirow[b]{2}{*}{Output Voltage} \& \multicolumn{2}{|l|}{\(\mathrm{Tj}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1 \mathrm{~A}\)} \& 4.8 \& \(5 \quad 5.2\) \& 11.5 \& \(12 \quad 12.5\) \& \(\begin{array}{lll}14.4 \& 15 \& 15.6\end{array}\) \& V \\
\hline \& \& \multicolumn{2}{|l|}{\(P_{D} \leqslant 15 \mathrm{~W}, 5 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1 \mathrm{~A}\) \(\mathrm{V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant V_{\text {MAX }}\)} \& 4.75
\(18 \leqslant\) \& \[
\mathrm{Vin}_{\mathrm{in}} \leqslant 20 \text {) }
\] \& \multicolumn{2}{|l|}{\(\left(15.5 \leqslant \mathrm{~V}_{1 \mathrm{~N}} \leqslant 27\right)\)} \& \[
\begin{array}{lr}
14.25 \& 15.75 \\
\left(18.5 \leqslant V_{I N} \leqslant 30\right)
\end{array}
\] \& V \\
\hline \multirow{4}{*}{\(\Delta \mathrm{V}_{\mathrm{O}}\)} \& \multirow{4}{*}{Line Regulation} \& \multirow[b]{2}{*}{\(1 \mathrm{O}=500 \mathrm{~mA}\)} \& \[
\begin{aligned}
\& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
\& \Delta V_{I N}
\end{aligned}
\] \& \& \[
\begin{gathered}
3 \\
\left.V_{I N} \leqslant 25\right)
\end{gathered}
\] \& (14.5 \& \[
\begin{aligned}
\& 4 \\
\& \left.V_{I N} \leq 30\right)
\end{aligned}
\] \& \(4 \quad 150\)
\(\left(17.5 \leqslant V_{I N} \leqslant 30\right)\) \& \[
\begin{gathered}
\mathrm{mV} \\
\mathrm{~V}
\end{gathered}
\] \\
\hline \& \& \& \[
\begin{aligned}
\& -55^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{\mathrm{j}} \leqslant+150^{\circ} \mathrm{C} \\
\& \Delta \mathrm{~V}_{\mathrm{IN}}
\end{aligned}
\] \& \& \[
\begin{array}{r}
50 \\
\left.V_{I N} \leqslant 20\right)
\end{array}
\] \& \& \[
\left.\mathrm{V}_{\mathrm{IN}} \leqslant 27\right)
\] \& \[
\left(18.5 \leqslant V_{\mathrm{IN}} \leqslant 30\right)
\] \& \[
\begin{gathered}
\mathrm{mV} \\
\mathrm{~V}
\end{gathered}
\] \\
\hline \& \& \multirow[b]{2}{*}{\(10 \leqslant 1 A\)} \& \[
\begin{aligned}
\& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
\& \triangle \mathrm{~V}_{\mathrm{IN}}
\end{aligned}
\] \& \[
(7.3 \leqslant
\] \& \[
\leqslant V_{I N} \leqslant 20
\] \& \& \[
\begin{array}{r}
120 \\
\left.v_{\text {IN }} \leqslant 27\right)
\end{array}
\] \& \[
\begin{array}{r}
150 \\
\left(17.7 \leqslant V_{\mathrm{IN}} \leqslant 30\right) \\
\hline
\end{array}
\] \& mV
V \\
\hline \& \& \& \[
\begin{aligned}
\& -55^{\circ} \mathrm{C} \leqslant \mathrm{TJ} \leqslant+150^{\circ} \mathrm{C} \\
\& \Delta \mathrm{~V}_{\text {IN }}
\end{aligned}
\] \& \& \[
\left.v_{I N} \leqslant 12\right)
\] \& \& \[
\begin{array}{r}
60 \\
\left.\mathrm{~V}_{\text {IN }} \leqslant 22\right)
\end{array}
\] \& \[
\begin{array}{r}
75 \\
\left(20 \leqslant V_{I N} \leqslant 26\right) \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\mathrm{mV} \\
\mathrm{~V} \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\Delta V_{0}\) Load Regulation}} \& \(\mathrm{Tj}=25^{\circ} \mathrm{C}\) \& \[
\begin{aligned}
\& 5 \mathrm{~mA} \leqslant I \leqslant 1.5 A \\
\& 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{P}} \leqslant 750 \mathrm{~mA}
\end{aligned}
\] \& \& \[
\begin{array}{ll}
\hline 10 \& 50 \\
\& 25 \\
\hline
\end{array}
\] \& \& \[
\begin{array}{cc}
\hline 12 \& 120 \\
\& 60 \\
\hline
\end{array}
\] \& \begin{tabular}{cc}
12 \\
\\
\\
\& 75
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{mV} \\
\& \mathrm{mV}
\end{aligned}
\] \\
\hline \& \& \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C} \leqslant \mathrm{Tj}^{\prime} \leqslant i+150^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1 \mathrm{~A}\)} \& \& 50 \& \& 120 \& 150 \& mV \\
\hline \({ }^{1} \mathbf{Q}\) \& Quiescent Current \& \(10 \leqslant 1 A\) \& \[
\begin{aligned}
\& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
\& -55^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+150^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \(\begin{array}{r}6 \\ \hline \\ \hline\end{array}\) \& \& 6
7 \& \[
\begin{aligned}
\& 6 \\
\& 7
\end{aligned}
\] \& \[
\begin{aligned}
\& m A \\
\& m A
\end{aligned}
\] \\
\hline \multirow{3}{*}{\(\Delta l^{\prime}\)} \& \multirow{3}{*}{Quiescent Current Change} \& \multicolumn{2}{|l|}{\(5 \mathrm{~mA} \leqslant 1_{0} \leqslant 1 \mathrm{~A}\)} \& \& 0.5 \& \& 0.5 \& 0.5 \& mA \\
\hline \& \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}} \leqslant 1 \mathrm{~A} \\
\& \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\text {MAX }}
\end{aligned}
\]} \& \& \[
\begin{gathered}
0.8 \\
\left.\mathrm{~V}_{\mathrm{IN}} \leqslant 20\right)
\end{gathered}
\] \& \& \[
\begin{array}{r}
0.8 \\
\left.V_{I N} \leqslant 27\right)
\end{array}
\] \& \[
\begin{array}{r}
0.8 \\
\left(18.5 \leqslant V_{I N} \leqslant 30\right.
\end{array}
\] \& \(m A\)
\(V\) \\
\hline \& \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \mathrm{I}_{0} \leqslant 500 \mathrm{~mA},-55^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+150^{\circ} \mathrm{C} \\
\& V_{\text {MIN }} \leqslant V_{\text {IN }} \leqslant V_{\text {MAX }}
\end{aligned}
\]} \& \& \[
\begin{gathered}
0.8 \\
\left.V_{\mathrm{IN}} \leqslant 25\right)
\end{gathered}
\] \& \& \[
\begin{array}{r}
0.8 \\
\left.v_{\text {IN }} \leqslant 30\right)
\end{array}
\] \& \[
\begin{array}{r}
0.8 \\
\left(18.5 \leqslant V_{I N} \leqslant 30\right)
\end{array}
\] \& mA
\(V\) \\
\hline \(\mathrm{V}_{\mathrm{N}}\) \& Output Noise Voltage \& \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\)} \& \& 40 \& \& 75 \& 90 \& \(\mu \mathrm{V}\) \\
\hline \multicolumn{2}{|l|}{\(\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}}\) Ripple Rejection} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& f=120 \mathrm{~Hz} \quad\left\{\begin{array}{l}
\mathrm{O} \leqslant 1 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C} \text { or } \\
\mathrm{O} \leqslant 500 \mathrm{~mA}, \\
-55^{\circ} \leqslant T j \leqslant+150^{\circ} \mathrm{C}
\end{array}\right. \\
\& V_{M I N} \leqslant V_{\mathrm{IN}} \leqslant V_{M A X}
\end{aligned}
\]} \& \begin{tabular}{l}
68 \\
68
\[
(8 \leqslant
\]
\end{tabular} \& \[
80
\]
\[
\left.V_{I N} \leqslant 18\right)
\] \& \[
\begin{aligned}
\& 61 \\
\& 61 \\
\& (15
\end{aligned}
\] \& \[
72
\]
\[
\left.V_{I N} \leqslant 25\right)
\] \& \(60 \quad 70\)
60
\((18.5 \leqslant\)
\(\left.V_{I N} \leqslant 28.5\right)\) \& dB
\(d B\)

V

\hline Ro_{0} \& Dropout Voltage Output Resistance Short-Circuit Current Peak Output Current Average TC of VOUT \& \multicolumn{2}{|l|}{\[
$$
\begin{aligned}
& \mathrm{Tj}=25^{\circ} \mathrm{C}, \operatorname{IOUT}=1 \mathrm{~A} \\
& \mathrm{f}=1 \mathrm{kHz} \\
& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj}^{\circ} \leqslant+150^{\circ} \mathrm{C}, \mathrm{IO}=5 \mathrm{~mA}
\end{aligned}
$$

\]} \& \& \[

$$
\begin{gathered}
2.0 \\
8 \\
2.1 \\
2.4 \\
-0.6
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
\hline 2.0 \\
18 \\
1.5 \\
2.4 \\
-1.5 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\hline 2.0 \\
19 \\
1.2 \\
2.4 \\
-1.8
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
\mathrm{V} \\
\mathrm{~m} \Omega \\
\mathrm{~A} \\
\mathrm{~A} \\
\mathrm{mV} /{ }^{\circ} \mathrm{C}
\end{array}
$$
\]

\hline VIN \& Input Voltage Required to Maintain Line Regulation \& $\mathrm{Tj}=25^{\circ} \mathrm{C}, 1 \mathrm{O}$ \& $\leqslant 1 \mathrm{~A}$ \& 7.3 \& , \& 14.6 \& . \& 17.7 \& V

\hline
\end{tabular}

Note 2: All characteristics are measured with a capacitor across the input of $0.22 \mu \mathrm{~F}$ and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_{W} \leqslant 10 \mathrm{~ms}$, duty cycle $\leqslant 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{OUTPUT VOLTAGE} \& 5 V \& 12V \& 15V \& \multirow{3}{*}{UNITS} \\
\hline \multicolumn{4}{|l|}{INPUT VOLTAGE (unless otherwise noted)} \& 10 V \& 19V \& 23 V \& \\
\hline \multicolumn{2}{|l|}{PARAMETER} \& \multicolumn{2}{|r|}{CONDITIONS} \& MIN TYP MAX \& MIN TYP MAX \& MIN TYP MAX \& \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{0}\)} \& \multirow[b]{2}{*}{Output Voltage} \& \multicolumn{2}{|l|}{\(\mathrm{Tj}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 1 \mathrm{~A}\)} \& \(\begin{array}{lll}4.8 \& 5 \& 5.2\end{array}\) \& \(\begin{array}{llll}11.5 \& 12 \& 12.5\end{array}\) \& \(\begin{array}{lll}14.4 \& 15 \& 15.6\end{array}\) \& V \\
\hline \& \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& P_{D} \leqslant 15 \mathrm{~W}, 5 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1 \mathrm{~A} \\
\& \mathrm{~V}_{\mathrm{MIN}} \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {MAX }}
\end{aligned}
\]} \& \[
\begin{aligned}
\& 4.75 \\
\& \left(7 \leqslant V_{\mathrm{IN}} \leqslant 20\right) \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{|lr}
11.4 \& 12.6 \\
\left(14.5 \leqslant V_{\mathrm{IN}} \leqslant 27\right) \\
\hline
\end{array}
\] \& \(14.25 \quad 15.75\)
\(\left(17.5 \leqslant V_{\text {IN }} \leqslant 30\right)\) \& V \\
\hline \multirow{4}{*}{\(\Delta V_{O}\)} \& \multirow{4}{*}{Line Regulation} \& \multirow[b]{2}{*}{\(1 \mathrm{O}=500 \mathrm{~mA}\)} \& \[
\begin{aligned}
\& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
\& \Delta \mathrm{~V}_{\mathrm{IN}}
\end{aligned}
\] \& \[
\begin{gathered}
3 \\
\left(7 \leqslant V_{\mathrm{IN}} \leqslant 25\right)
\end{gathered}
\] \& \[
\] \& \[
\begin{gathered}
4 \\
\left(17.5 \leqslant V_{I N} \leqslant 30\right) \\
\hline
\end{gathered}
\] \& mV
V \\
\hline \& \& \& \[
\begin{aligned}
\& 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C} \\
\& \Delta V_{\mathrm{IN}}
\end{aligned}
\] \& \[
\begin{array}{r}
50 \\
\left(8 \leqslant V_{I N} \leqslant 20\right) \\
\hline
\end{array}
\] \& \[
\left(15 \leqslant v_{1 N} \leqslant 27\right)
\] \& \[
\begin{array}{r}
150 \\
\left(18.5 \leqslant V_{I N} \leqslant 30\right)
\end{array}
\] \& mV
V \\
\hline \& \& \multirow[b]{2}{*}{\(\mathrm{I}_{0} \leqslant 1 \mathrm{~A}\)} \& \[
\begin{aligned}
\& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
\& \Delta \mathrm{~V}_{\mathrm{IN}}
\end{aligned}
\] \& \[
\left(7.3 \leqslant V_{I N} \leqslant 20\right)
\] \& \[
\left(14.6 \leqslant V_{I N} \leqslant 27\right)
\] \& \[
\begin{array}{r}
150 \\
\left(17.7 \leqslant V_{I N} \leqslant 30\right)
\end{array}
\] \& \(m V\)
\(V\) \\
\hline \& \& \& \[
\begin{aligned}
\& 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C} \\
\& \Delta \mathrm{~V}_{\mathrm{IN}}
\end{aligned}
\] \& \[
\left(8 \leqslant V_{I N} \leqslant 12\right)
\] \& \[
\left(16 \leqslant V_{\mathrm{IN}} \leqslant 22\right)
\] \& \[
\begin{array}{r}
75 \\
\left(20 \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 26\right)
\end{array}
\] \& \(m V\)
\(V\) \\
\hline \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{O}}\)} \& \multirow[t]{2}{*}{Load Regulation} \& \(\mathrm{Tj}=25^{\circ} \mathrm{C}\) \& \[
\begin{aligned}
\& 5 \mathrm{~mA} \leqslant 10 \leqslant 1.5 \mathrm{~A} \\
\& 250 \mathrm{~mA} \leqslant 10 \leqslant 750 \mathrm{~mA}
\end{aligned}
\] \& \[
\begin{array}{ll}
\hline 10 \& 50 \\
\& 25 \\
\hline
\end{array}
\] \& \[
\begin{array}{cc}
12 \& 120 \\
\& 60 \\
\hline
\end{array}
\] \& \[
\begin{array}{ll}
\hline 12 \& 150 \\
\& 75 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \mathrm{mV} \\
\& \mathrm{mV}
\end{aligned}
\] \\
\hline \& \& \multicolumn{2}{|l|}{\(5 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1 \mathrm{~A}, 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C}\)} \& 50 \& 120 \& 150 \& mV \\
\hline 1 Q \& Quiescent Current \& \(10 \leqslant 1 A\) \& \[
\begin{aligned}
\& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
\& 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C}
\end{aligned}
\] \& \[
\begin{gathered}
8 \\
8.5
\end{gathered}
\] \& \[
\begin{gathered}
8 \\
8.5
\end{gathered}
\] \& \[
\begin{gathered}
8 \\
8.5
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{mA} \\
\& \mathrm{~mA}
\end{aligned}
\] \\
\hline \multirow{3}{*}{\(\Delta l_{Q}\)} \& \multirow{3}{*}{Quiescent Current Change} \& \multicolumn{2}{|l|}{\(5 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1 \mathrm{~A}\)} \& 0.5 \& 0.5 \& 0.5 \& mA \\
\hline \& \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \mathrm{Tj}_{\mathrm{F}}=25^{\circ} \mathrm{C}, \mathrm{I}_{O} \leqslant 1 A \\
\& \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant V_{\text {MAX }}
\end{aligned}
\]} \& \[
\left(7.5 \leqslant V_{I N} \leqslant 20\right)
\] \& \[
\left(14.8 \leqslant V_{I N} \leqslant 27\right)
\] \& \[
\left(17.9 \leqslant V_{I N} \leqslant 30\right)
\] \& \(m A\)
\(V\) \\
\hline \& \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \mathrm{I}_{0} \leqslant 500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C} \\
\& \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant V_{\text {MAX }}
\end{aligned}
\]} \& \[
\left(7 \leqslant v_{I N} \leqslant 25\right)
\] \& \[
\left(14.5 \leqslant V_{\mathrm{IN}} \leqslant 30\right)
\] \& \[
\left(17.5 \leqslant V_{I N} \leqslant 30\right)
\] \& mA
\(V\) \\
\hline \(V_{N}\) \& Output Noise Voltage \& \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10\) \& \(\mathrm{Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}\) \& 40 \& 75 \& 90 \& \(\mu \mathrm{V}\) \\
\hline \multicolumn{2}{|l|}{\[
\frac{\Delta V_{\text {IN }}}{\Delta V_{O U T}} \text { Ripple Rejection }
\]} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& f=120 \mathrm{~Hz} \quad\left\{\begin{array}{l}
\mathrm{I}_{\mathrm{O}} \leqslant 1 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C} \text { or } \\
\mathrm{I}_{\mathrm{O}} \leqslant 500 \mathrm{~mA}, \\
0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C}
\end{array}\right. \\
\& V_{\text {MIN }} \leqslant V_{\text {IN }} \leqslant V_{\text {MAX }}
\end{aligned}
\]} \& \[
\begin{aligned}
\& 62 \quad 80 \\
\& 62 \\
\& \left(8 \leqslant V_{I N} \leqslant 18\right)
\end{aligned}
\] \& \(55 \quad 72\)
55
\(\left(15 \leqslant V_{I N} \leqslant 25\right)\) \& \begin{tabular}{cc}
54 \& 70 \\
54 \\
\& \\
\((18.5 \leqslant\) \& \(\left.V_{I N} \leqslant 28.5\right)\)
\end{tabular} \& dB
\(d B\)

V

\hline Ro \& Dropout Voltage Output Resistance Short-Circuit Current Peak Output Current Average TC of VOUT \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I} \text { OUT }=1 \mathrm{~A} \\
& \mathrm{f}=1 \mathrm{kHz} \\
& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
& \mathrm{Tj}=25^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}
\end{aligned}
$$} \& \[

$$
\begin{gathered}
\hline 2.0 \\
8 \\
2.1 \\
2.4 \\
-0.6 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
2.0 \\
18 \\
1.5 \\
2.4 \\
-1.5 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
2.0 \\
19 \\
1.2 \\
2.4 \\
-1.8 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
\mathrm{V} \\
\mathrm{~m} \Omega \\
\mathrm{~A} \\
\mathrm{~A} \\
\mathrm{mV} /{ }^{\circ} \mathrm{C}
\end{array}
$$
\]

\hline VIN \& Input Voltage Required to Maintain Line Regulation \& \multicolumn{2}{|l|}{$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}} \leqslant 1 \mathrm{~A}$} \& 7.3 \& 14.6 \& 17.7 \& V

\hline
\end{tabular}

Note 2: All characteristics are measured with a capacitor across the input of $0.22 \mu \mathrm{~F}$ and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_{w} \leqslant 10 \mathrm{~ms}$, duty cycle $\leqslant 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Typical Performance Characteristics

Note. Shaded area refers to LM340A/LM340

Note. Shaded area refers to LM340A/LM340

Note. Shaded area refers to LM340A/LM340

Typical Performance Characteristics (Continued)

140AK-5.0, $V_{i N}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Equivalent Schematic

Application Hints

The LM340 is designed with thermal protection, output short-circuit protection and output transistor safe area protection. However, as with any IC regulator, it becomes necessary to take precautions to assure that the regulator is not inadvertently damaged. The following describes possible misapplications and methods to prevent damage to the regulator.

Shorting the Regulator Input: When using large capacitors at the output of these regulators, a protection diode connected input to output (Figure 1) may be required if the input is shorted to ground. Without the protection diode, an input short will cause the input to rapidly approach ground potential, while the output remains near the initial VOUT because of the stored charge in the large output capacitor. The capacitor will then discharge through a large internal input to output diode and parasitic transistors. If the energy released by the capacitor is large enough, this diode, low current metal and the regulator will be destroyed. The fast diode in Figure 1 will shunt most of the capacitor's discharge current around the regulator. Generally no protection diode is required for values of output capacitance $\leqslant 10 \mu \mathrm{~F}$.

FIGURE 1. Input Short

Raising the Output Voltage above the Input Voltage: Since the output of the LM340 does not sink current, forcing the output high can cause damage to internal low current paths in a manner similar to that just described in the "Shorting the Regulator Input" section.

Regulator Floating Ground (Figure 2): When the ground pin alone becomes disconnected, the output approaches the unregulated input, causing possible damage to other circuits connected to VOUT. If ground is reconnected with power "ON", damage may also occur to the regulator. This fault is most likely to occur when plugging in regulators or modules with on card regulators into powered up sockets. Power should be turned off first, thermal limit ceases operating, or ground should be connected first if power must be left on.

Transient Voltages: If transients exceed the maximum rated input voltage of the 340 , or reach more than 0.8 V below ground and have sufficient energy, they will damage the regulator. The solution is to use a large input capacitor, a series input breakdown diode, a choke, a transient suppressor or a combination of these.

FIGURE 2. Regulator Floating Ground

${ }_{r}$

FIGURE 3. Transients

Connection Diagrams

TO-3 Metal Can Package (K and KC)

Bottom view
Steel Package Order Numbers:
$\begin{array}{llll}\text { LM140AK-5.0 } & \text { LM140K-5.0 } & \text { LM340AK-5.0 } & \text { LM340K-5.0 } \\ \text { LM140AK-12 } & \text { LM140K-12 } & \text { LM340AK-12 } & \text { LM340K-12 } \\ \text { LM140AK-15 } & \text { LM140K-15 } & \text { LM340AK-15 } & \text { LM340K-15 }\end{array}$ See Package K02A

Aluminum Package Order Numbers:
LM340KC-5.0
LM340KC-12
LM340KC-15
See Package KC02A

TO-220 Power Package (T)

Plastic Package Order Numbers:
LM340AT-5.0 LM340T-5.0 LM340AT-12 LM340T-12 LM340AT-15 LM340T-15

See Package T03B

7 National Semiconductor

LM140LLM340L Series 3 -Terminal Positive Regulators

General Description

The LM140L series of three terminal positive regulators is available with several fixed output voltages making them useful in a wide range of applications. The LM140LA is an improved version of the LM78LXX series with a tighter output voltage tolerance (specified over the full military temperature range), higher ripple rejection, better regulation and lower quiescent current. The LM140LA regulators have $\pm 2 \% \mathrm{~V}_{\text {OUT }}$ specification, $0.04 \% / \mathrm{V}$ line regulation, and $0.01 \% / \mathrm{mA}$ load regulation. When used as a zener diode/resistor combination replacement, the LM140LA usually results in an effective output impedance improvement of two orders of magnitude, and lower quiescent current. These regulators can provide local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow the LM140LA to be used in logic systems, instrumentation, $\mathrm{Hi}-\mathrm{Fi}$, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

The LM140LA/LM340LA are available in the low profile metal three lead TO-39 (H) and the LM340LA are also available in the plastic TO-92 (Z). With adequate heat sinking the regulator can deliver 100 mA output current. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too
high for the heat sinking provided, the thermal shutdown circuit takes over, preventing the IC from overheating.
For applications requiring other voltages, see LM117 Data Sheet.

Features

- Line regulation of $0.04 \% / \mathrm{V}$
- Load regulation of $0.01 \% / \mathrm{mA}$
- Output voltage tolerances of $\pm 2 \%$ at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ and $\pm 4 \%$ over the temperature range (LM140LA)
$\pm 3 \%$ over the temperature range (LM340LA)
- Output current of 100 mA
- Internal thermal overload protection
- Output transistor safe area protection
- Internal short circuit current limit
- Available in metal TO-39 low profile package (LM140LA/LM340LA) and plastic TO-92 (LM340LA)

Output Voltage Options

LM140LA-5.0	5V	LM340LA-5.0	5V
LM140LA-12	12V	LM340LA-12	12 V
LM140LA-15	15V	LM340LA-15	15 V

Equivalent Circuit

Connection Diagrams

TO-39 Metal Can Package (H)

sotrom view
Order Number:

LM140LAH-5.0	LM340LAH-5.0
LM140LAH-12	LM340LAH-12
LM140LAH-15	LM340LAH-15

See Package H03A

TO-92 Plastic Package (Z)

Order Number:
LM340LAZ-5.0 LM340LAZ-12 LM340LAZ-15
See Package Z03A

Absolute Maximum Ratings

Input Voltage
$5.0 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ Output Voltage Options 35 V
Internal Power Dissipation (Note 1) Internally Limited
Operating Temperature Range

LM140LA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM340LA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
imum Junction Temperature	$+150^{\circ} \mathrm{C}$
age Temperature Range	
Metal Can (H package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Molded TO-92	-55° to $+150^{\circ} \mathrm{C}$
Temperature (Soldering, 10 seconds) $+300^{\circ} \mathrm{C}$	

Electrical Characteristics (Note 2)

Test conditions unless otherwise specified
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (LM140LA)
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (LM340LA)
$10=40 \mathrm{~mA}$
$\mathrm{C}_{\text {IN }}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.01 \mu \mathrm{~F}$

OUTPU	T VOLTAGE OPTIO				5.0 V			12 V			15V		UNITS
INPUT VOLTAGE (unless otherwise noted)				10 V			19V			23 V			
PARAMETER		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
v_{0}	Output Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		4.9	5	5.1	11.75	12	12.25	14.7	15	15.3	V
	Output Voltage Over Temp. (Note 4)	LM140LA $\mathrm{IO}=1-100 \mathrm{~mA}$ LM240LA $10=1-40 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{IN}}=() \mathrm{V}$		4.8		5.2	11.5		12.5	14.4		15.6	
				(7.2-20)			(14.5-27)			(17.6-30)			
		LM340LA	$\begin{aligned} & 10=1-100 \mathrm{~mA} \text { or } \\ & 10=1-40 \mathrm{~mA} \text { and } \\ & \mathrm{V}_{\mathrm{IN}}=(\mathrm{V} \mathrm{~V} \end{aligned}$	4.85		5.15	11.65		12.35	14.55		15.45	
				(7-20)			(14.3-27)			(17.5-30)			
ΔV_{0}	Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=(1) \mathrm{V} \end{aligned}$		18	30	$30 \quad 65$			$37 \quad 70$			mV
				(7-25)			(14.2-30)			(17.3-30)			
			$\begin{aligned} & 10=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}=(\mathrm{IV} \end{aligned}$		18	30	3065			$37 \quad 70$			
				(7.5-25)			(14.5-30)			(17.5-30)			
	Load Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{0}=1-40 \mathrm{~mA} \\ & \mathrm{IO}=1-100 \mathrm{~mA} \end{aligned}$	$5 \quad 20$			1040			1250			
					20	40	$30 \quad 80$			35100		100	
	Long Term Stability			12			24			30			$\begin{array}{r} \mathrm{mV} \\ 1000 \mathrm{hrs} \end{array}$
10	Quiescent Current	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=125^{\circ} \mathrm{C} \end{aligned}$			3	4.5		3	4.5	3.14 .5			mA
				4.2			4.2			4.2			
Δl_{Q}	Quiescent Current Change	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	Δ Load $\mathrm{IO}_{\mathrm{O}}=1-40 \mathrm{~mA}$			0.1	0.1			0.1			mA
			Δ Line$V_{I N}=(1) V$			0.5				0.5			
				(7.5-25)			(14.3-30)			(17.5-30)			
v_{N}	Output Noise Voltage	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \text { (Note } 3 \text {) } \\ & \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz} \end{aligned}$		40			80			90			$\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta V_{O U T}}$	Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{IN}}=() \mathrm{V}$		$55 \quad 62$			$47 \quad 54$			$45 \quad 52$			dB
				(7.5-18)			(14.5-25)			(17.5-28.5)			
Input Voltage Required to Maintain Line Regulation		$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{lo}=40 \mathrm{~mA}$		7			14.2			17.3			v

Note 1: Thermal resistance of the Metal Can Package (H) without a heat sink is $40^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $140^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with 0.4 inch leads from PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with 0.125 inch lead length to a PC board.

Note 2: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperatures as indicated at the initiation of tests.

Note 3: It is recommended that a minimum load capacitor of $0.01 \mu \mathrm{~F}$ be used to limit the high frequency noise bandwidth.
Note 4: The temperature coefficient of VOUT is typically within $0.01 \% \mathrm{~V}_{\mathrm{O}} /{ }^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Typical Applications

-Required if the regulator is locited far from the power supply filter.

- "Ser note 3 in the electrical characteristics table.

$V_{\text {Out }}=5 \mathrm{~V}+\left(5 \mathrm{~V} / \mathrm{R1}+\mathrm{I}_{0}\right)$ R2
$5 V / R 1 \cdot 3 I_{0}$ load regulation $(L,) \cdot|(R 1+R 2) / R 1|(L$, of LM140LA 50)

Fixed Output Regulator

Adjustable Output Regulator

National

Voltage Regulators

Semiconductor
LM145/LM345 Negative Three Amp Regulator

General Description

The LM145 is a three-terminal negative regulator with a fixed output voltage of -5 V or -5.2 V , and up to 3 A load current capability. This device needs only one external component-a compensation capacitor at the output, making it easy to apply. Worst case guarantees on output voltage deviation due to any combination of line, load or temperature variation assure satisfactory system operation.

Exceptional effort has been made to make the LM145 immune to overload conditions. The regulator has current limiting which is independent of temperature, combined with thermal overload protection. Internal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.
Although primarily intended for fixed output voltage applications, the LM145 may be programmed for higher
output voltages with a simple resistive divider. The low quiescent drain current of the device allows this technique to be used with good regulation.

The LM145 comes in a hermetic TO-3 package rated at 25 W . A reduced temperature range part LM345 is also available.

Features

- Output voltage accurate to better than $\pm 2 \%$
- Current limit constant with temperature
- Internal thermal shutdown protection
- Operates with input-output voltage differential of 2.8 V at full rated load over full temperature range
- Regulation guaranteed with 25 W power dissipation
- 3A output current guaranteed
- Only one external component needed
- 100% electrical burn-in

Schematic Diagram

Connection Diagram

Metal Can Package

Order Number LM145K-5.0,
LM345K-5.0, LM145K-5.2,
or LM345K-5.2
See NS Package K02A

Typical Applications

${ }^{\dagger}$ Requrred for stability. For value given, capacitor must be solid tantalum. $50 \mu \mathrm{~F}$ aluminum electiolytic may be substituted. Values given may be increased with out himit.
-Required if regulator is separated from filter capacitor. For value given. capacitor must be solid tantalum. $50 \mu \mathrm{~F}$ aluminum electrolytuc may be substituted

Fixed Regulator

Absolute Maximum Ratings

Input Voltage 20 V
Input-Output Differential 20 V
Power Dissipation
Operating Junction Temperature Range LM145 LM345
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
Internally Limited

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics $(-5 \mathrm{~V} \&-5.2 \mathrm{~V})$ (Note 1)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LM145			LM345			
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Voltage	$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}, \mathrm{l}_{\text {OUT }}=5 \mathrm{~mA}$,							
5.0 V	$\mathrm{V}_{\text {IN }}=-7.5$	-5.1	-5.0	-4.9	-5.2	-5.0	-4.8	v
5.2 V		-5.3	-5.2	-5.1	-5.4	-5.2	-5.0	v
Line Regulation (Note 2)	$\begin{aligned} & \mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C} \\ & -20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq-7.5 \mathrm{~V} \end{aligned}$		5	15		5	25	mV
Load Regulation (Note 2)	$\begin{aligned} & T_{1}=25^{\circ} \mathrm{C}, V_{1 N}=-7.5 \mathrm{~V} \\ & 5 \mathrm{~mA} \leq 1_{\mathrm{OUT}} \leq 3 \mathrm{~A} \end{aligned}$		30	75		30	100	$m \mathrm{~V}$
Output Voltage	$-20 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq-7.8 \mathrm{~V}$							
5.0 V	$5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 3 \mathrm{~A}$	-5.20		-4.80	-5.25		-4.75	v
5.2 V	$\begin{aligned} & \mathrm{P} \leq 25 \mathrm{~W} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{j} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$	-5.40		-5.00	-5.45		-4.95	v
Quiescent Current	$\begin{aligned} & -20 \mathrm{~V} \leq V_{\text {IN }} \leq-7.5 \mathrm{~V} \\ & 5 \mathrm{~mA} \leq \text { lout } \leq 3 \mathrm{~A} \end{aligned}$		1.0	3.0		1.0	3.0	mA
Short Circuit Current	$\mathrm{V}_{\text {IN }}=-7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=+25^{\circ} \mathrm{C}$		4	5.5		4	5.5	A
	$V_{\text {IN }}=-20 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=+25^{\circ} \mathrm{C}$		2	3.5		2	3.5	A
Output Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=4.7 \mu \mathrm{~F} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		150	50		150		$\mu \mathrm{V}$
Long Term Stability			5			5	50	mV
Thermal Resistance Junction to Case			2			2		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply: $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{j} \leqslant+150^{\circ} \mathrm{C}$ for the LM 145 and $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{j} \leqslant+125^{\circ} \mathrm{C}$ for the LM 345 . $\mathrm{V}_{\mathrm{IN}}=7.5 \mathrm{~V}$ and IOUT $=5 \mathrm{~mA}$. Although power dissipation is internally limited, electrical specifications apply only for power levels up to 25 W . For calculations of junction temperature rise due to power dissipation, use a thermal resistance of $35^{\circ} \mathrm{C} W$ for the $\mathrm{TO}-3$ with no heat sink. With a heat sink, use $2^{\circ} \mathrm{C} / \mathrm{W}$ for junction to case thermal resistance.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, pulse testing with a low duty cycle is used.

Typical Performance Characteristics

Typical Applications (Continued)

Typical Applications (Continued)

Dual 3 Amp Trimmed Supply

Variable Output (-5.0 V to -15 V)

National Semiconductor

LM150/LM250/LM350

3 Amp Adjustable. Power Regulators

Voltage Regulators

General Description

The LM150/LM250/LM350 are adjustable 3-terminal positive voltage régulators capable of supplying in excess of 3 A over a 1.2 V to 33 V output range. They are exceptionally easy to use and require only 2 external resistors to set the output voltage. Further, both line and load regulation are comparable to discrete designs. Also, the LM150 is packaged in standard transistor packages which are easily mounted and handied.

In addition to higher performance than fixed regulators, the LM150 series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is accidentally disconnected.

Features

- Adjustable output down to 1.2 V
- Guaranteed 3A output current
- Line regulation typically $0.005 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Guaranteed thermal regulation
- Current limit constant with temperature
- 100% electrical burn-in in thermal limit
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 86 dB ripple rejection

Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejections ratios which are difficult to achieve with standard 3 -terminal regulators.

Besides replacing fixed regulators or discrete designs, the LM150 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM150 can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.

The LM150K/LM250K/LM350K are packaged in standard steel TO-3 transistor packages. The LM350T is packaged in a TO-220 plastic package. The LM150 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the LM250 from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM350 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Typical Applications

Absolute Maximum Ratings

Power Dissipation
Internally limited
Input-Output Voltage Differential
35 V
Operating Junction Temperature Range

LM150
LM250
LM350
Storage Temperature
torage Temperature

Preconditioning
Burn-In in Thermal Limit
All Devices 100\%

Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LM150/LM250			LM350			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Line Regulation	$T_{A}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{OUT}} \leq 35 \mathrm{~V},$ (Note 2)		0.005	0.01		0.005	0.03	\%/V
Load Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq 1 \mathrm{OUT} \leq 3 \mathrm{~A}$.			
	$\mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}$, (Note 2)		5	15		5	25	mV
	$\mathrm{V}_{\text {OUT }} \geq 5 \mathrm{~V}$, (Note 2)		0.1	0.3		0.1	0.5	\%
Thermal Regulation Adjustment Pin Current	Pulse $=20 \mathrm{~ms}$		0.002	0.01		0.002	0.03	\%/W
			50	100		50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq I_{L} \leq 3 A \\ & 3 V \leq\left(V_{I N}-V_{O U T}\right) \leq 35 V \end{aligned}$		0.2	5		0.2	5	$\mu \mathrm{A}$
Reference, Voltage	$\begin{aligned} & 3 \leq\left(V_{I N}-V_{O U T}\right) \leq 35 V,(\text { Note } 3) \\ & 10 \mathrm{~mA} \leq \mathrm{IOUT} \leq 3 \mathrm{~A}, \mathrm{P} \leq 30 \mathrm{~W} \end{aligned}$	1.20	1.25	1.30	1.20	1.25	1.30	V
Line Regulation	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 35 \mathrm{~V}$, (Note 2)		0.02	0.05		0.02	0.07	\%/V
Load Regulation	$10 \mathrm{~mA} \leq 1 \mathrm{OUT} \leq 3 \mathrm{~A}$, (Note 2)							
	$\mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}$		20	50		20	70	mV
	$V_{\text {OUT }} \geq 5 \mathrm{~V}$		0.3	1		0.3	1.5	\%
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {MAX }}$		1			1		\%
Minimum Load Current	$V_{\text {IN }}-V_{\text {OUT }}=35 \mathrm{~V}$		3.5	5		3.5	10	mA .
Current Limit	$V_{\text {IN }}-V_{\text {OUT }} \leq 10 \mathrm{~V}$	3.0	4.5		3.0	4.5		A
	$V_{\text {IN }}-V_{\text {OUT }}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=+25^{\circ} \mathrm{C}$	0.3	1		0.25	1		A
RMS Output Noise, \% of VOUT	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.001			0.001		\%
Ripple Rejection Ratio	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}$		65			65	-	dB
	$\mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F}$	66	86		66	86		dB
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		0.3	1		0.3	1	- \%
Thermal Resistance, Junction	K Package			1.5			1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
to Case	T Package		3	4		3	4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leq T_{j} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 150,-25^{\circ} \mathrm{C} \leq T_{j} \leq+150^{\circ} \mathrm{C}$ for the LM 250 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ for the LM350. $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{OUT}}=1.5 \mathrm{~A}$. These specifications are applicable for power dissipations up to 30 W for the K package and 25 W for the T package. Power dissipation is guaranteed at these values up to 15 volts input-output differential. Above 15 volts differential, power dissipation will be limited by internal protection circuitry.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
Note 3: Selected devices with tightened tolerance reference voltage available.

Connection Diagrams

Order Number LM150K Steel,
 LM250K Steel or LM350K Steel See NS Package K02A

(TO-3 STEEL)
Metal Can Package

BOTTOM VIEW
(TO-220)
Plastic Package

Order Number LM350T See NS Package T03B

Typical Performance Characteristics

Output Impedance

Temperature Stability

Ripple Rejection

Line Transient Response

Application Hints

In operation, the LM150 develops a nominal 1.25 V reference voltage, $V_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_{1} then flows through the output set resistor R2, giving an output voltage of

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{A D J} R 2 .
$$

FIGURE 1

Since the $50 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM150 was designed to minimize IADJ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.

The adjustment terminal can be bypassed to ground on the LM150 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 86 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies, but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.

Although the LM150 is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

Load Regulation

The LM150 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times \mathrm{I}_{\mathrm{L}}$. If the set resistor is connected near the load the effective line resistance will be 0.05Ω ($1+\mathrm{R} 2 / \mathrm{R} 1$) or in this case, 11.5 times worse.

Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using 2 separate leads to the case. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends'on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of VIN. In the LM150, this discharge path is through a large junction that is able to sustain 25A surge with no problem. This is not true of other types of positive

Application Hints (Continued)

regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM150 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM150 with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

FIGURE 3. Regulator with Protection Diodes

Schematic Diagram

Typical Applications (Continued)

Precision Power Regulator with

Low Temperature Coefficient

Typical Applications (Continued)

Adjustable Regulator with Improved Ripple Rejection

High Stability 10V Regulator

Digitally Selected Outputs

5V Logic Regulator with Electronic Shutdown*

0 to 30V Regulator

10A Regulator

5A Constant Voltage/Constant Current Regulator

Typical Applications (Continued)

1.2V-20V Regulator with Minimum Program Current
${ }^{*}$ Minimum load current $\approx 4 \mathrm{~mA}$

Adjustable Current Regulator

Precision Current Limiter

* $0.4 \leq R 1 \leq 120 \Omega$

Tracking Preregulator

Adjusting Multiple On-Card Regulators with Single Control*

Simple 12V Battery Charger

 charged battery.
${ }^{*} 1000 \mu \mathrm{~F}$ is recommended to filter out any input transients.

Typical Applications (Continued)

Adjustable 10A Regulator

Current Limited 6V Charger

${ }^{*}$ Sets peak current (2A for 0.3Ω)
** $1000 \mu \mathrm{~F}$ is recommended to filter out any input transients.

LM196/LM396 10 Amp Adjustable Voltage Regulator

General Description

The LM196 is a 10 amp regulator, adjustable from 1.25 V to 15 V , which uses a revolutionary new IC fabrication structure to combine high power discrete transistor technology with modern monolithic linear IC processing. This combination yields a high-performance single-chip regulator capable of supplying in excess of 10 amps and operating at power levels up to 70 watts. The LM196 features on-chip trimming of reference voltage to $\pm 0.8 \%$ and simultaneous trimming of reference temperature drift to $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical. Thermal interaction between control circuitry and the pass transistor which affects the output voltage has been reduced to extremely low levels by strict attention to isothermal layout. This interaction, called thermal regulation, is 100% tested.

This new regulator has all the protection features of popular lower power adjustable regulators such as LM117 and LM138, including current limiting and thermal limiting. The combination of these features makes the LM196 immune to blowout from output overloads or shorts, even if the adjustment pin is accidentally disconnected. All devices are "burned-in" in thermal shutdown to guarantee proper operation of these protective features under actual overload conditions.

Output voltage is continuously adjustable from 1.25 V to 15 V . Higher output voltages are possible if the maximum input/output voltage differential specification is not exceeded. Full load current of 10A is available at all output voltages, subject only to the maximum power limit of 70 W and of course, maximum junction temperature.

The LM196 is exceptionally easy to use. Only two external resistors are used to set output voltage. On-chip adjustment of the reference voltage allows a much tighter
specification of output voltage, eliminating any need for trimming in most cases. The regulator will tolerate an extremely wide range of reactive loads, and does not depend on external capacitors for frequency stabilization. Heat sink requirements are much less stringent, because overload situations do not have to be accounted for-only worst-case full load conditions.
The LM196 is in a TO-3 package with oversized ($0.060^{\prime \prime}$) leads to provide best possible load regulation. Operating junction temperature range is $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. The LM396 is specified for a $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range.
Available in 1982-a 5 -terminal version of the LM196. The LM196-5 will be able to operate at input-output voltage differentials as low as 1 V at full load current in addition to having output sense capability. This device will also be in a TO-3 package.

Features

- Output pre-trimmed to $\pm 0.8 \%$
- 10A guaranteed output current
- 100\% burn-in in thermal limit
- 70W maximum power dissipation
- Adjustable output-1.25V to 15 V
- Internal current and power limiting
- Guaranteed thermal resistance
- Output voltage guaranteed under worst-case conditions

Typical Applications

* For best TC of VOUT, R1 should be wirewound or metal film, 1% or better.
** R2 should be same type as R1, with TC tracking of $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better.
\dagger C1 is necessary only if main filter capacitor is more than 6" away, assuming \#18 or larger leads.
$\dagger \dagger \mathrm{C} 2$ is not absolutely necessary, but is suggested to lower high frequency output impedance.
' C3 improves ripple rejection, output impedance, and noise. C2 should be $1 \mu \mathrm{~F}$ or larger close to the regulator if C 3 is used.

Power NPNs have low collector resistance, and do not require collector bond wires. Collectors are all common to substrate. Standard NPNs are still isolated.

FIGURE 2. 10 Amp Process

Absolute Maximum Ratings

Power Dissipation	Internally Limited
Input-Output Voltage Differential	
Operating Junction Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM196 Control Section	$-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Power Transistor	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM396 Control Section	$0^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Power Transistor	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	$300^{\circ} \mathrm{C}$

Pre-Conditioning

100\% Burn-In in Thermal Limit

Electrical Characteristics (Note 1)

Parameter	Conditions	LM196			LM396			Units
		Min	Typ	Max	Min	Typ	Max	
Reference Voltage	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$	1.24	1.25	1.26	1.23	1.25	1.27	V
Reference Voltage (Note 2)	$\begin{aligned} & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 20 \mathrm{~V} \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} 10 \mathrm{~A}, \mathrm{P} \leq \mathrm{P}_{\mathrm{MAX}} \\ & \text { Full Temperature Range } \end{aligned}$	1.22	1.25	1.28	1.21	1.25	1.29	V
Line Regulation (Note 3)	$2.5 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 20 \mathrm{~V}$ Full Temperature Range		0.005	$\begin{aligned} & 0.01 \\ & 0.05 \end{aligned}$		0.005	$\begin{aligned} & 0.02 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \% / \mathrm{V} \\ & \% / \mathrm{V} \end{aligned}$
Load Regulation (Note 4)	$\begin{aligned} & \hline 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~A} \\ & 3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 10 \mathrm{~V}, \mathrm{P} \leq \mathrm{P}_{\mathrm{MAX}} \\ & \text { Full Temperature Range } \\ & \hline \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.15 \\ & \hline \end{aligned}$			$\begin{array}{r} \hline 0.1 \\ 0.15 \\ \hline \end{array}$	$\begin{aligned} & \% / \mathrm{A} \\ & \% / \mathrm{A} \\ & \hline \end{aligned}$
Ripple Rejection (Note 5)	$\mathrm{C}_{\mathrm{ADJ}}=25 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz}$ Full Temperature Range	$\begin{aligned} & 60 \\ & 54 \end{aligned}$	74		$\begin{aligned} & 66 \\ & 54 \end{aligned}$	74		dB dB
Thermal Regulation (Note 6)	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~A}$		0.003	0.005		0.003	0.015	\%/W
Average Output Voltage Temperature Coefficient	$\begin{aligned} & \mathrm{T}_{\mathrm{jMIN}} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\mathrm{jMAX}} \\ & \text { (See Curves for Limits) } \end{aligned}$		0.003 .			0.003		\%/ ${ }^{\circ} \mathrm{C}$
Adjustment Pin Current			50	100		50	100	${ }^{\prime} \mathrm{A}$
Adjustment Pin Current Change (Note 7)	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~A} \\ & 3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 20 \mathrm{~V} \\ & P \leq P_{\text {MAX }}, \text { Full Temperature Range } \end{aligned}$			3			3	$\mu \mathrm{A}$
Minimum Load Current (Note 9)	$2.5 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 20 \mathrm{~V}$ Full Temperature Range			10			10	mA
Current Limit	$\begin{gathered} 3 V \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 7 V \\ V_{\text {IN }}-V_{\text {OUT }}=20 V \end{gathered}$	$\begin{aligned} & 10 \\ & 1.5 \end{aligned}$	$\begin{gathered} 14 \\ 3 \end{gathered}$	$\begin{gathered} 20 \\ 8 \end{gathered}$	$\begin{aligned} & 10 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 14 \\ 3 \end{gathered}$	$\begin{gathered} 20 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
Rms Output Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.001			0.001		\% $\mathrm{V}_{\text {OUT }}$
Long Term Stability	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, \mathrm{t}=1000$ Hours		0.3	1.0		0.3	1.0	\%
Thermal Resistance Junction to Case (Note 10)	Control Circuitry Power Transistor		$\begin{aligned} & 0.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.2 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Power Dissipation ($\mathrm{P}_{\mathrm{MA}} \dot{\text { }}$) (Note 11)	$\begin{aligned} & \hline 7.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }}-V_{\text {OUT }} \leq 12 \mathrm{~V} \\ & V_{\text {IN }}-V_{\text {OUT }}=15 \mathrm{~V} \\ & V_{\text {IN }}-V_{\text {OUT }}=18 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \\ & 36 \end{aligned}$	100		70 50 36	100		$\begin{aligned} & \hline W \\ & w \\ & w \end{aligned}$
Drop-Out Voltage (Note 12)	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~A}$		2.1	2.5		2.1	2.75	V

Note 1: Unless otherwise stated, these speciflcatlons apply for $T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}-V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$ to 10 A .
Note 2: This is a worst-case specification which includes all effects due to input voltage, output current, temperature, and power dissipation. Maximum power ($\mathrm{P}_{\mathrm{MAX}}$) is specified under Electrical Characteristics.
Note 3: Line regulation is measured on a short-pulse, low-duty-cycle basis to maintain constant junction temperature. Changes in output voltage due to thermal gradients or temperature changes must be taken into account separately. See discussion of line regulation under Applicatlon Hints.
Note 4: Ldad regulation on the 2-pin package is determined primarily by the voltage drop along the output pin. Specificatlons apply for an external Kelvin sense connection at a point on the output pin $1 / 4^{\prime \prime}$ from the bottom of the package. Testing is done on a short-pulse-width, low-duty-cycie basis to maintain constant junction temperature. Changes in output voltage due to thermal gradients or temperature changes must be taken into account separately. See discussion of load regulation under Application Hints.
Note 5: Ripple rejection is measured with the adjustment pin bypassed with a $25 \mu \mathrm{~F}$ capacitor, and is therefore independent of output voltage. With no load or bypass capacitor, ripple rejection is determined by line regulation and may be calculated from; RR $=20 \log _{10}\left[100 /\left(\mathrm{K} \times \mathrm{V}_{\mathrm{OUT}}\right)\right.$] where K is line regulation expressed in $\% N$. At frequencies below 100 Hz , ripple rejection may be limited by thermal effects, if load current is above 1A.
Note 6: Thermal regulation is defined as the change in output voltage during the time period of 0.2 ms to 20 ms after a change in power dissipation in the regulator, due to either a change in input voltage or output current. See graphs and discussion of thermal effects under Application Hints.
Note 7: Adjustment pin current change is specified for the worst-case combination of input voltage, output current, and power dissipation. Changes due to temperature must be taken into account separately. See graph of adjustment pin current vs temperature.
Note 8: Current limit is measured 10 ms after a short is applied to the output. DC measurements may differ slightly due to the rapidly changing junction temperature, tending to drop slightly as temperature increases. A minimum available load current of 10A is guaranteed over the full temperature range as long as power dissipation does not exceed 70 W , and $V_{I N}-V_{O U T}$ is less than 7.0 V .
Note 9: Minimum load current of 10 mA is normally satisfied by the resistor divider which sets up output voltage.
Note 10: Total thermal resistance, junction to amblent, will Include junction to case thermal resistance plus interface resistance and heat sink resistance. See discussion of heat sinking under Application Hints.
Note 11: Although power dissipation is internally limited, electrical specifications apply only for power dissipation up to the limits shown. Derating with temperature is a function of both power transistor temperature and control area temperature, which are specified differently. See discussion of heat sinking under Application Hints. For $V_{I N}-V_{O U T}$ less than 7 V , power dissipation is Ilmited by current limit of 10A.
Note 12: Dropout voltage is input-output voltage differential measured at a forced reference voltage of 1.15 V , with a 10A load, and is a measurement of the minimum input/output differential at full load.

Application Hints

Heat SInking

Because of its extremely high power dissipation capability, the major limitation in the load driving capability of the LM196 is heat sinking. Previous regulators such as LM109, LM340, LM117, etc., had internal power limiting circuitry which limited power dissipation to about 30W. The LM196 is guaranteed to dissipate up to 70W continuously, as long as the maximum junction temperature limit is not exceeded. This requires careful attention to all sources of thermal resistance from junction-to-ambient, including junction-to-case resistance, case-to-heat-sink interface resistance $\left(0.1-1.0^{\circ} \mathrm{C} / \mathrm{W}\right)$, and heat sink resistance itself. A good thermal joint compound such as Wakefield type 120 or Thermalloy Thermacote must be used when mounting the LM196, especially if an electrical insulator is used to isolate the regulator from the heat sink. Interface resistance without this compound will be no better than $0.5^{\circ} \mathrm{C} W$, and probably much worse. With the compound, and no insulator, interface resistance will be $0.2^{\circ} \mathrm{C} / \mathrm{W}$ or less, assuming $0.005^{\prime \prime}$ or less combined flatness run-out of TO-3 and heat sink. Proper torquing of the mounting bolts is important to achieve minimum thermal resistance. Four to six inch pounds is recommended. Keep in mind that good electrical, as well as thermal, contact must be made to the case.
The actual heat sink chosen for the LM196 will be determined by the worst-case continuous full load current, input voltage and maximum amblent temperature. Overload or short circuit output conditions do not normally have to be considered when selecting a heat sink because the thermal shutdown built into the LM196 will protect it under these conditions. An exception to this is in situations where the regulator must recover very quickly from overioad. The LM196 may take some time to recover to within specified output tolerance following an extended
overload, if the regulator is cooling from thermal shutdown temperature (approximately 175°) to specified operating temperature ($125^{\circ} \mathrm{C}$ or $150^{\circ} \mathrm{C}$). The procedure for heat sink selection is as follows:

Calculate worst-case continuous average power dissipation in the regulator from $P=\left(V_{I N}-V_{\text {OUT }}\right) \times$ (lout). To do this, you must know the raw power supply voltage/current characteristics fairly accurately. For example, consider a 10 V output with 15 V nominal input voltage. At full load of 10A, the regulator will dissipate $P=(15-10) \times(10)=50 \mathrm{~W}$. If input voltage rises by 10%, power dissipation will increase to (16.5-10) \times $(10)=65 \mathrm{~W}$, a 30% increase. It is strongly suggested that a raw supply be assembled and tested to determine its average DC output voltage under full load with maximum line voltage. Do not over-design by using unloaded voltage as a worst-case, since the regulator will not be dissipating any power under no load conditions. Worst-case regulator dissipation normally occurs under full load conditions except when the effective $D C$ resistance of the raw supply $(\Delta \mathrm{V} / \Delta I)$ is larger than $\left(\mathrm{V}_{\mathrm{IN}^{*}}-\mathrm{V}_{\text {OUT }}\right) / 21_{\mathrm{fL}}$, where $\mathrm{V}_{\mathrm{IN}^{*}}$ is the lightly-loaded raw supply voltage and I_{fL} is full load current. For $\left(V_{I N}{ }^{*}-V_{O U T}\right)=5 V-8 V$, and $I_{f L}=5 A-10 A$, this gives a resistance of 0.25Ω to 0.8Ω. If raw supply resistance is higher than this, the regulator power dissipation may be less at full load current, than at some intermediate current, due to the large drop in input voltage. Fortunately, most well designed raw supplies have low enough output resistance that regulator dissipation does maximize at full load current, or very close to it, so tedious testing is not usually required to find worstcase power dissipation.

Application Hints (Continued)

A very important consideration is the size of the filter capacitor in the raw supply. At these high current levels, capacitor size is usually dictated by ripple current ratings rather than just obtaining a certain ripple voltage. Capacitor ripple current (rms) is 2-3 times the DC output current of the filter. If the capacitor has just $0.05 \Omega \mathrm{DC}$ resistance, this can cause 30W internal power dissipation at 10A output current. Capacitor life is very sensitive to operating temperature, decreasing by a factor of two for each $15^{\circ} \mathrm{C}$ rise in internal temperature. Since capacitor life is not all that great to start with, it is obvious that a small capacitor with a large internal temperature rise is inviting very short mean-time-to-failure. A second consideration is the loss of usable input voltage to the regulator. The LM196 requires $2 \mathrm{~V}-2.5 \mathrm{~V}$ minimum input/output voltage differential to maintain regulation. If the capacitor is small, the large dips in the input voltage may cause the LM196 to drop out of regulation. $2000 \mu \mathrm{~F}$ per ampere of load current is the minimum recommended value, yielding about 2 Vp -p ripple of 120 Hz . Larger values will have longer life and the reduced ripple will allow lower DC input voltage to the regulator, with subsequent cost savings in the transformer and heat sink. Sometimes several capacitors in parallel are better to decrease series resistance and increase heat dissipating area.

After the raw supply characteristics have been determined, and worst-case power dissipation in the LM196 is known, the heat sink thermal resistance can be found from the graphs titled Maximum Heat Sink Thermal Resistance (page 7). These curves indicate the minimum size heat sink required as a function of ambient temperature. They are derived from a case-to-control-area thermal resistance of $0.5^{\circ} \mathrm{C} / \mathrm{W}$ and a case-to-power transistor thermal resistance of $1.2^{\circ} \mathrm{C} / \mathrm{W} .0 .2^{\circ} \mathrm{CW}$ is assumed for interface resistance. A maximum control area temperature of $150^{\circ} \mathrm{C}$ is used for the LM196 and $125^{\circ} \mathrm{C}$ for the LM396. Maximum power transistor temperature is $200^{\circ} \mathrm{C}$ for the LM196 and $175^{\circ} \mathrm{C}$ for the LM396. For conservative designs, it is suggested that when using these curves, you assume an ambient temperature $25^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ higher than is actually anticipated, to avoid running the regulator right at its design limits of operating temperature.

A quick look at the curves shows that heat sink resistance (θ_{SA}) will normally fall into the range of $0.2^{\circ} \mathrm{C} / \mathrm{W}-1.5^{\circ} \mathrm{C} / \mathrm{W}$. These are not small heat sinks. A model 441, for instance, which is sold by several manufacturers, has a $\theta_{S A}$ of $0.6^{\circ} \mathrm{C} / \mathrm{W}$ with natural convection and is about five inches on a side. Smaller sinks are more volumetrically efficient, and larger sinks, less so. A rough formula for estimating the volume of heat sink required is: $V=50 / \theta_{S A}{ }^{1.5} \mathrm{CU}$ IN. This holds for natural convection only. If the heat sink is inside a small sealed enclosure, $\theta_{\text {SA }}$ will increase substantially because the air is not free to form natural convection currents. Fan-forced convection can reduce $\theta_{\text {SA }}$ by a factor of two at 200 FPM air velocity, and by four at 1000 FPM.

Ripple Rejection

Ripple rejection at the normal ripple frequency of 120 Hz is a function of both electrical and thermal effects in the LM196. If the adjustment pin is not bypassed with a capacitor, it is also dependent on output voltage. A $25 \mu \mathrm{~F}$ capacitor from the adjustment pin to ground will make ripple rejection independent of output voltage for frequencies above 100 Hz . If lower ripple frequencies are encountered, the capacitor should be increased proportionally.
Keep in mind that the bypass capacitor on the adjustment pin will limit the turn-on time of the regulator. A $25 \mu \mathrm{~F}$ capacitor, combined with the output divider resistance, will give an extended output voltage settling time following the application of input power.

Load Regulation

Because the LM196 is a three-terminal device, it is not possible to provide true remote load sensing. Load regulation will be limited by the resistance of the output pin and the wire connecting the regulator to the load. For the data sheet specification, regulation is measured 1/4" from the bottom of the package on the output pin. Negative side sensing is a true Kelvin connection, with the bottom of the output divider returned to the negative side of the load. Although it may not be immediately obvious, best load regulation is obtained when the top of the divider is connected directly to the output pin, not to the load. This is illustrated in Figure 3. If R1 were connected to the load, the effective resistance between the regulator and the load would be

$$
(R w) \times\left(\frac{R 2+R 1}{R 1}\right)
$$

Rw = Line Resistance
Connected as shown, Rw is not multiplied by the divider ratio. Rw is about 0.004Ω per foot using 16 gauge wire. This translates to $40 \mathrm{mV} / \mathrm{ft}$ at 10 A load current, so it is important to keep the positive lead between regulator and load as short as possible.

FIGURE 3. Proper Divider Connection

Thermal, as well as electrical, load regulation must be considered with IC regulators. Electrical load regulation occurs in microseconds, thermal regulation due to die thermal gradients occurs in the $0.2 \mathrm{~ms}-20 \mathrm{~ms}$ time frame, and regulation due to overall temperature changes in the die occurs over a 20 ms to 20 minute period, depending on the time constant of the heat sink used. Gradient induced load regulation is calculated from

$$
\Delta \mathrm{V}_{\text {OUT }}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times\left(\Delta \mathrm{I}_{\text {OUT }}\right) \times(\beta)
$$

$\beta=$ Thermal regulation specified on data sheet.
For $V_{\text {IN }}=9 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \Delta \mathrm{l}_{\text {OUT }}=10 \mathrm{~A}$, and $\beta=0.005 \% / \mathrm{W}$, this yields a 0.2% change in output voltage. Changes in output voltage due to overall temperature rise are calculated from

$$
V_{\text {OUT }}=\left(V_{\text {IN }}-V_{\text {OUT }}\right) \times\left(\Delta I_{\text {OUT }}\right) \times(T C) \times\left(\theta_{j \mathrm{~A}}\right)
$$

TC = Temperature coefficient of output voltage.
$\theta_{\mathrm{jA}}=$ Thermal resistance from junction to ambient. $\theta_{\mathrm{j} A}$ is approximately $0.5^{\circ} \mathrm{C} / \mathrm{W}+\theta$ of heat sink.

For the same conditions as before, with $\mathrm{TC}=0.003 \% /{ }^{\circ} \mathrm{C}$, and $\theta_{\mathrm{jA}}=1.5^{\circ} \mathrm{C} / \mathrm{W}$, the change in output voltage will be 0.18%. Because these two thermal terms can have either polarity, they may subtract from, or add to, electrical load regulation. For worst-case analysis, they must be assumed to add. If the output of the regulator is trimmed under load, only that portion of the load that changes need be used in the previous calculations, significantly improving output accuracy.

Line Regulation

Electrical line regulation is very good on the LM196typically less than 0.005% change in output voltage for a 1 V change in input. This level of regulation is achieved only for very low load currents; however, because of thermal effects. Even with a thermal regulation of $0.002 \% / \mathrm{W}$, and a temperature coefficient of $0.003 \% /{ }^{\circ} \mathrm{C}, \mathrm{DC}$ line regulation will be dominated by thermal effects as shown by the following example:

$$
\text { Assume } V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{I N}=9 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=8 \mathrm{~A}
$$

Following a 10% change in input voltage $(0.9 \mathrm{~V})$, the output will change quickly ($\leq 100 \mu \mathrm{~s}$), due to electrical effects, by $(0.005 \% \mathrm{~V}) \times(0.9 \mathrm{~V})=0.0045 \%$. In the next 20 ms , the output will change an additional $(0.002 \% / W) \times(8 A) \times$ $(0.9 \mathrm{~V})=0.0144 \%$ due to thermal gradients across the die. After a much longer time, determined by the time constant of the heat sink, the output will change an additional $\left(0.003 \% /^{\circ} \mathrm{C}\right) \times(8 \mathrm{~A}) \times(0.9 \mathrm{~V}) \times\left(2^{\circ} \mathrm{C} / \mathrm{W}\right)=0.043 \%$ due to the temperature coefficient of output voltage and the thermal resistance from die to ambient. $\left(2^{\circ} \mathrm{C} / \mathrm{W}\right.$ was chosen for this calculation). The sign of these last two terms varies from part to part, so no assumptions can be made about any cancelling effects. All three terms must be added for a proper analysis. This yields $0.0045+0.0144+0.043=$ 0.062% using typical values for thermal regulation and temperature coefficient. For worst-case analysis, the
maximum data sheet specifications for thermal regulation and temperature coefficient should be used, along with the actual thermal resistance of the heat sink being used.

Paralleling Regulators

Paralleling regulators is not normally recommended because they do not share currents equally. The regulator with the highest reference voltage will supply all the current to the load until it current limits. With an 18A load, for instance, one regulator might be operating in current limit at 16A while the second device is only carrying 2A. Power dissipation in the high current regulator is extremely high with attendant high junction temperatures. Long term reliability cannot be guaranteed under these conditions.

Quasi-paralleling may be accomplished if load regulation is not critical. The connection shown in Figure 6 will typically share to within 1 A , with a worst-case of about 3A. Load regulation is degraded by 150 mV at 20A loads. An external op amp may be used as in Figure 8 to improve load regulation.

Input and Output Capacitors

The LM196 will tolerate a wide range of input and output capacitance, but long wire runs or small values of output capacitance can sometimes cause problems. If an output capacitor is used, it should be $1 \mu \mathrm{~F}$ or larger. We suggest $10 \mu \mathrm{~F}$ solid tantalum if significant improvements in high frequency output impedance are needed (see output impedance graph). This capacitor should be as close to the regulator as possible, with short leads, to reduce the effects of lead inductance. No input capacitor is needed if the regulator is within 6 inches of the power supply filter capacitor, using 18 gauge stranded wire. For longer wire runs, the LM196 input should be bypassed locally with a $4.7 \mu \mathrm{~F}$ (or larger) solid tantalum capacitor, or a $100 \mu \mathrm{~F}$ (or larger) aluminum electrolytic capacitor.

Correcting for Line Losses

Three-terminal regulators can only provide partial Kelvin load sensing (see Load Regulation). Full remote sensing can be added by using an external op amp to cancel the effect of voltage drops in the unsensed positive output lead. In Figure 8, the LM301A op amp forces the voltage loss across the unsensed output lead to appear across R3. The current through R3 then flows out the V^{-}pin of the op amp through R4. The voltage drop across R4 will raise the output voltage by an amount equal to the line loss, just cancelling the line loss itself. A small ($\simeq 40 \mathrm{mV}$) initial output voltage error is created by the quiescent current of the op amp. Cancellation range is limited by the maximum output current of the op amp, about 300 mV as shown. This can be raised by increasing R3 or R4 at the expense of more initial output error.

Transformers and Diodes

Proper transformer ratings are very important in a high current supply because of the conflicting requirements of efficiency and tolerance to low-line conditions. A transformer with a high secondary voltage will waste power and cause unnecessary heating in the regulator.

Application Hints (Continued)

Too low a secondary voltage will cause loss of regulation under low-line conditions. The following formulas may be used to calculate the required secondary voltage and current ratings using a full-wave center tap:
$V_{\text {rms }}=\left(\frac{V_{\text {OUT }}+V_{\text {REG }}+V_{\text {RECT }}+V_{\text {RIPPLE }}}{\sqrt{2}}\right)\left(\frac{V_{\text {NOM }}}{V_{\text {LOW }}}\right)\left(1.1^{*}\right)$
$I_{\text {rms }}=\left(I_{\text {OUT }}\right.$ (1.2)
(Full-wave center tap)
where:
$V_{\text {OUT }}=D C$ regulated output voltage
$\mathrm{V}_{\text {REG }}=$ Minimum input-output voltage of regulator
$\mathrm{V}_{\text {RECT }}=$ Rectifier forward voltage drop at three times DC output current
$V_{\text {RIPPLE }}=1 / 2$ peak-to-peak capacitor ripple voltage

$$
=\frac{\left(5.3 \times 10^{-3}\right)\left(I_{\text {OUT }}\right)}{2 \mathrm{C}}
$$

$V_{\text {NOM }}=$ Nominal line voltage $A C$ rms
$V_{\text {LOW }}=$ Low line voltage $A C$ rms
$I_{\text {OUT }}=$ DC output current
Example: $\quad I_{\text {OUT }}=10 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$
Assume: $\quad V_{\text {REG }}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RECT}}=1.2 \mathrm{~V}$
$V_{\text {RIPPLE }}=2 \mathrm{Vp}-p, \mathrm{~V}_{\text {NOM }}=115 \mathrm{~V}$,
$V_{\text {Low }}=105 \mathrm{~V}$
$V_{\text {rms }}=\left(\frac{5+2.2+1.2+1}{\sqrt{2}}\right)\left(\frac{115}{105}\right) 1.1$

$$
=8.01 \mathrm{~V}_{\mathrm{rms}}
$$

Capacitor $\mathrm{C}=\frac{\left(5.3 \times 10^{-3}\right)\left(\mathrm{I}_{\text {OUT }}\right)}{2 \cdot \mathrm{~V}_{\text {RIPPLE }}}$

$$
=\frac{\left(5.3 \times 10^{-3}\right)(10)}{2}=26,500 \mu \mathrm{~F}
$$

*The factor of 1.1 is only an approximate factor accounting for load regulation of the transformer.

The diodes used in a full-wave rectified capacitor input supply must have a DC current rating considerably higher than the average current flowing through them. In a 10A supply, for instance, the average current through each diode is only 5 A , but the diodes should have a rating of 10A-15A. There are many reasons for this, both thermal and electrical. The diodes conduct current in pulses about 3.5 ms wide with a peak value of 5-8 times the average value, and an rms value 1.5-2.0 times the average value. This results in long term diode heating roughly equivalent to 10A DC current. The most demanding condition however, may be the one cycle surge through the diode during power turn on. The peak value of the surge is about 10-20 times the DC output current of the supply, or 100A-200A for a 10A supply. The diodes must have a one cycle nonrepetitive surge rating of 200A or more, and this is usually not found in a diode with less than 10A average current rating. Keep in mind that even though the LM196 may be used at current levels below 10A, the diodes may still have to survive shorted output conditions where average current could rise to 12A-15A. Smaller transformers and filter capacitors used in lower current supplies will reduce surge currents, but unless specific information is available on worst-case surges, it is best not to economize on diodes. Stud-mounted devices in a DO-4 package are recommended. Cathode-to-case types may be bolted directly to the same heat sink as the LM196 because the case of the regulator is its power input. Part numbers to consider are the 1 N1200 series rated at 12A average current in a DO-4 stud package. Additional types include common cathode duals in a TO-3 package, both standard and Schottky, and various duals in plastic filled assemblies. Schottky diodes will improve efficiency, especially in low voltage applications. In a 5 V supply for instance, Schottky diodes will decrease wasted power by up to 6W, or alternatively provide an additional 5\% "drop out" margin for low-line conditions. Several manufacturers are producing "high efficiency" diodes with a forward voltage drop nearly as good as Schottkys at high current levels. These devices do not have the low breakdown voltages of Schottkys, so are much less prone to reverse breakdown induced failures.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Maximum Heat Sink Thermal Resistance

*See "Heat Sinking" under Application Hints.
TO. 3 Interface Thermal Resistance using Thermal Joint Compound

[^3]
*As limited by maximum junction temperature

Maximum Heat Sink
 Thermal Resistance*

*See "Heat Sinking" under Application Hints.

Thermal Regulation

Typical Performance Characteristics '(Continued)

Ripple Rejection

Output Impedance Adjustment Pin Bypassed ($\mathrm{C}=25 \mu \mathrm{~F}$)

Line Transient Response Adjustment Pin Bypassed

Line Transient Response*

*With no adjustment pin bypass. For output voltages other than 5 V , multiply vertical scale by $\mathrm{V}_{\text {OUT }} / 5$.

Adjustment Current

Output Impedance*

*For output voltages other than 5 V , multiply vertical scale readings by $\mathrm{V}_{\text {OUT }} / 5$.

Load Transient Response Adjustment Pin Bypassed

Load Transient Response*

*With no adjustment pin bypass. For output voltages other than 5 V , multiply vertical scale by $\mathrm{V}_{\text {Out }} / 5$.

Typical Applications (Continued)

*Regulation can be improved by adding an LM336 reference diode to increase the effective reference voltage to 3.75 V . Load and line regulation are improved by $3: 1$, including thermal effects.

FIGURE 4. Improving Regulation*

*R3 is selected to supply partial load current. Therefore, a minimum load must always be maintained to prevent the regulated output from rising uncontrolled. R3 must be greater than $\left(\mathrm{V}_{\text {MAX }}-\mathrm{V}_{\text {OUT }}\right) / I_{\text {MIN }}$, where $\mathrm{V}_{\text {MAX }}$ is worst-case high input voltage, and $I_{\text {MIN }}$ is the minimum load current. R3 must be rated for at least $\left(V_{I N}-V_{O U T}\right)^{2 / R 3}$ watts. Regulator power dissipation will be reduced by a factor of 2-3 in a typical situation where minimum load current is $1 / 2$ full load current. Regulator dissipation will peak at:

$$
\mathrm{V}_{I N}=\frac{(\mathrm{R} 3)\left(\mathrm{I}_{\mathrm{OUT}}\right)}{2}+\mathrm{V}_{\mathrm{OUT}}
$$

and will be equal to:

$$
\mathrm{P}_{\text {MAX }}=\frac{(\mathrm{R} 3)\left(\mathrm{I}_{\mathrm{OUT}}\right)^{2}}{4} \text { Assuming: }(\mathrm{R} 3)(\text { IOUT }) \leq \mathrm{V}_{\text {MAX }}-\mathrm{V}_{\text {OUT }}
$$

A few words of caution; (1) R3 power rating must be increased to $\left(V_{\text {MAX }}\right)^{2 / R} 3$ if continuous output shorts are possible. (2) Under normal load conditions, system power dissipation is not changed, but under short circuit conditions system power dissipation increases by $\left(\mathrm{V}_{\mathrm{IN}}\right)^{2} / \mathrm{R} 3$ watts over the already high power of a shorted regulator. The LM196 will not be harmed and neither will R3 if it is rated properly, but the raw supply components must be able to withstand the overtoad also. Thermal shutdown of the LM196 will probably occur for sustained shorts, somewhat alleviating the problem.

FIGURE 5. Reducing Regulator Power Dissipation

Typical Applications (Continued)

FIGURE 6. Paralleling Regulators

Output will be within $\pm 20 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$, no load. Regulation of tracking units is improved by $\mathrm{V}_{\text {OUT }} / 1.25$ compared to a normal connection. Regulation of master unit is unchanged. Load or input voltage changes on slave units do not affect other units, but all units will be affected by changes on master. A short on any output will cause all other outputs to drop to approximately 2 V .

FIGURE 7. Tracking Regulators

Typical Applications (Continued)

- Parasitic line resistance created by wiring, connectors, or parallel ballasting.

FIGURE 8. Correcting for Line Losses

LM196 Schematic Diagram

General Description

The LM317L is an adjustable 3-terminal positive voltage regulator capable of supplying 100 mA over a 1.2 V to 37 V output range. It is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM317L is packaged in a standard TO-92 transistor package which is easy to use.
In addition to higher performance than fixed regulators, the LM317L offers full overload protection. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.

Features

Adjustable output down to 1.2 V

- Guaranteed 100 mA output current
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection

Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3-terminal regulators.

Besides replacing fixed regulators, the LM317L is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317L can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.

The LM317L is packaged in a standard TO-92 transistor package. The LM317L is rated for operation over a $-25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ range.

Connection Diagram

Order Number LM317LZ
See NS Package Z03A

Typical Applications

1.2V-25V Adjustable Regulator

\dagger Optional-improves transient response

* Needed if device is far from filter capacitors
$\dagger t \mathrm{~V}_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$

Fully Protected (Bulletproof) Lamp Driver

Output rate -4 flashes per second at 10% duty cycle

Absolute Maximum Ratings

Power Dissipation	Internally Limited
Input-Output Voltage Differential	40 V
Operating Junction Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, $\mathbf{1 0}$ seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	Min	Typ	Max	Units
Line Regulation	$T_{A}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq\left(\mathrm{V}_{I N}-V_{O U T}\right) \leq 40 \mathrm{~V},$ (Note 2)	1.20	0.01	0.04	\%/V
Load Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 1_{\text {MAX }}$, (Note 2)		0.1	0.5	\%
Thermal Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms}$ Puise		0.04	0.2	\%/W
Adjustment Pin Current			50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 100 \mathrm{~mA} \\ & 3 \mathrm{~V} \leq\left(\mathrm{V}_{I N}-V_{\text {OUT }}\right) \leq 40 \mathrm{~V}, \mathrm{P} \leq 625 \mathrm{~mW} \end{aligned}$		0.2	5	$\mu \mathrm{A}$
Reference Voltage	$\begin{aligned} & 3 V \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 40 \mathrm{~V},(\text { Note } 3) \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 100 \mathrm{~mA}, \mathrm{P} \leq 625 \mathrm{~mW} \end{aligned}$		1.25	1.30	V
Line Regulation	$3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V}$, (Note 2)		0.02	0.07	\% 1
Load Regulation	$5 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 100 \mathrm{~mA}$, (Note 2)		0.3	1.5	\%
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq T_{j} \leq \mathrm{T}_{\text {MAX }}$		0.65		\%
Minimum Load Current	$\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V}$		3.5	5	mA
	$3 \mathrm{~V} \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 15 \mathrm{~V}$		1.5	2.5	mA
Current Limit	$\begin{aligned} & 3 V \leq\left(V_{I N}-V_{\text {OUT }}\right) \leq 13 V \\ & \left(V_{I N}-V_{\text {OUT }}\right)=40 V \end{aligned}$	100	200	300	mA mA
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.003		\%
Ripple Rejection Ratio	$V_{O U T}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{A D J}=0$		65		dB
Ripple Rejecton Ratı	$\mathrm{C}_{\mathrm{ADJ}}=10 \mu \mathrm{~F}$	66	80		dB
Long-Term Stability	$\mathrm{T}_{j}=125^{\circ} \mathrm{C}, 1000$ Hours		0.3	1	\%

Note 1: Unless otherwise specifled, these specifications apply $-25^{\circ} \mathrm{C} \leq T_{j} \leq 125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 317 \mathrm{~L} ; \mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$ and I OUT $=40 \mathrm{~mA}$. Although power dissipation is internally limited, these specifications are applicable for power dissipations up to 625 mW . 1_{MAX} is 100 mA .
Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.
Note 3: Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to amblent with $0.125^{\prime \prime}$ lead length to PC board.

Typical Performance Characteristics (Output capacitor $=0 \mu \mathrm{~F}$ unless otherwise noted.)

Dropout Voltage

Ripple Rejection

Current Limit

Reference Voltage Temperature Stability

Ripple Rejection

Load Transient Response

Adjustment Current

Minimum Operating Current

Output Impedance

Thermal Regulation

Application Hints

In operation, the LM317L develops a nominal 1.25 V reference voltage, $\mathrm{V}_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_{1} then flows through the output set resistor R2, giving an output voltage of

$$
V_{\text {OUT }}=V_{\text {REF }} \quad 1+\frac{R 2}{R 1} \quad \neq I_{A D J} R 2
$$

Since the $100 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM317L was designed to minimize $I_{\text {ADJ }}$ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

FIGURE 1

External Capacitors

An input bypass capacitor is recommended in case the regulator is more than 6 inches away from the usual large filter capacitor. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used, but the above values will eliminate the possibility of problems.
The adjustment terminal can be bypassed to ground on the LM317L to improve ripple rejection and noise. This bypass capacitor prevents ripple and noise from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 80 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use is solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, a $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.
Although the LM317L is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

Load Regulation

The LM317L is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240ß) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times I_{L}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+R 2 / R 1)$ or in this case, 11.5 times worse.
Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.
With the TO-92 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the output pin. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

FIGURE 2. Regulator with Line Resistance in Output Lead

Application Hints (Continued)

Thermal Regulation

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of $\mathrm{V}_{\mathrm{OUT}}$, per watt, within the first 10 ms after a step of power is applied. The LM317L specification is $0.2 \% / \mathrm{W}$, maximum.

In the Thermal Regulation curve at the bottom of page 3, a typical LM317L's output changes only 7 mV (or 0.07% of $V_{\text {OUT }}=-10 \mathrm{~V}$) when a 1 W pulse is applied for 10 ms . This performance is thus well inside the specification limit of $0.2 \% / \mathrm{W} \times 1 \mathrm{~W}=0.2 \%$ maximum. When the 1 W pulse is ended, the thermal regulation again shows a 7 mV change as the gradients across the LM317L chip die out. Note that the load regulation error of about $14 \mathrm{mV}(0.14 \%)$ is additional to the thermal regulation error.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to pre-
vent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of V_{IN}. In the LM317L, this discharge path is through a large junction that is able to sustain a 2A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, the LM317L's ballast resistors and output structure limit the peak current to a low enough level so that there is no need to use a protection diode.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM317L is a 50』 resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM317L with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

FIGURE 3. Regulator with Protection Diodes

Typical Applications (Continued)

Digitally Selected Outputs

Adjustable Current Limiter

$12 \leq R 1 \leq 240$

Slow Turn-On 15V Regulator

High Stability 10V Regulator

High Gain Amplifier

Precision Current Limiter

Adjustable Regulator with Improved Ripple Rejection

tsolid tantalum
*Discharges C1 if output is shorted to ground

Adjustable Regulator with Current Limiter

Short circuit current is approximately $600 \mathrm{mV} / \mathrm{R} 3$, or $\mathbf{6 0} \mathrm{mA}$ (compared to LM317LZ's 200 mA current limit). At $\mathbf{2 5} \mathbf{~ m A}$ output only $3 / 4 \mathrm{~V}$ of drop occurs in R3 and R4.

Typical Applications (Continued)

Typical Applications (Continued)

* Minimum output $=1.2 \mathrm{~V}$

Current Limited 6V Charger

* Sets peak current, IPEAK $=0.6 \mathrm{~V} / \mathrm{R} 1$
* * $1000 \mu \mathrm{~F}$ is recommended to filter out any input transients.

Short Circuit Protected 80V Supply

Typical Applications (Continued)

Basic High Voltage Regulator

Precision High Voltage Regulator

Typical Applications (Continued)

A1 = LM301A, LM307, or LF13741 only
R1, R2-matched resistors with good TC tracking

Regulator with Trimmable Output Voltage

Trim Procedure:
-If $\mathrm{V}_{\text {OUT }}$ is 23.08 V or higher, cut out R3 (if lower, don't cut it out).
一Then if $\mathrm{V}_{\text {OUT }}$ is 22.47 V or higher, cut out $\mathrm{R4}$ (if lower, don't).
 don't).

This will trim the output to well within $\pm 1 \%$ of $22.00 \mathrm{~V}_{\mathrm{DC}}$, without any of the expense or uncertainty of a trim pot (see LB-46). Of course, this technique can be used at any output voltage level.

Precision Reference with Short-CircuitProof Output

[^4]
General Description

The LM320L/LM320ML series of 3-terminal negative voltage regulators features fixed output voltages of -5 V , -12 V , and -15 V , with output current capabilities in excess of 100 mA , for the LM320L series, and 250 mA for the LM320ML series. These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM320L/LM320ML series, even when combined with a minimum output compensation capacitor of $0.1 \mu \mathrm{~F}$, exhibits an excellent transient response, a maximum line regulation of $0.07 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{V}$, and a maximum load regulation of $0.01 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{mA}$.

The LM320L/LM320ML series also includes, as selfprotection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/or adjustable voltages and currents. The LM320L series is available in the 3 -lead TO- 92 package, and the LM320ML series is available in the 3 -lead TO-202 package.

For output voltages other than $-5 \mathrm{~V},-12 \mathrm{~V}$ and -15 V , the LM137 series provides an output voltage range from -1.2 V to -47 V .

Features

- Preset output voltage error is less than $\pm 5 \%$ over load, line and temperature
- LM320L is specified at an output current of 100 mA
- LM320ML is specified at an output current of 250 mA
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than $0.07 \% V_{O U T} / \mathrm{V}$
- Maximum load regulation less than $0.01 \% \mathrm{~V}_{\mathrm{OUT}} / \mathrm{mA}$
- Easily compensated with a small $0.1 \mu \mathrm{~F}$ output capacitor

DEVICE	PACKAGE	RATED POWER DISSIPATION	DESIGN OUTPUT CURRENT
LM320ML	TO-202	7.5 W	0.25 A
LM320L	TO.92	0.6 W	0.1 A

Connection Diagrams

TO-202 Power Package (P)

fRONT VIEW

Order Numbers:

LM320MLP-5.0
LM320MLP-12
LM320MLP-15
See Package P03A

For Tab Bend TO-202
Order Numbers: LM320MLP-5.0 TB LM320MLP-12 TB LM320MLP-15 TB See Package P03E

TO-92 Plastic Package (Z)

Order Numbers:
LM320LZ-5.0
LM320LZ-12
LM320LZ-15
See Package Z03A

Absolute Maximum Ratings

Input Voltage
$\mathrm{V}_{\text {OUT }}=-5 \mathrm{~V} 12 \mathrm{~V}$ and 15 V
$-35 \mathrm{~V}$
Internal Power Dissipation
(Notes 1 and 3)
Operating Temperature Range
Maximum Junction Temperature
Internally Limited
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
Molded TO-92
Molded TO-202
Lead
(Soldering, 10 seconds)

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
\text { Temperature } \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics LM320ML (Note 2) $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.

OUTPUT VOLTAGE			-5V		-12V		-15V		UNITS
INPUT VOLTAGE (unless otherwise noted)			-10V		-17V		-20V		
	PARAMETER	CONDITIONS	MIN	TYP MAX	MIN	TYP MAX	MIN	TYP MAX	
v_{0}	Output Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$	-5.2	-5 -4.8	- 12.5	$\begin{array}{ll}-12 & -11.5\end{array}$	-15.6	$\begin{array}{ll}-15 & -14.4\end{array}$	v
		$\begin{aligned} & 1 \mathrm{~mA} \leqslant 10 \leqslant 250 \mathrm{~mA} \\ & \left(V_{\text {MIN }} \leqslant V_{I N} \leqslant V_{\text {MAX }}\right) \end{aligned}$	$\begin{array}{\|lc} \hline-5.25 & -4.75 \\ \left(-20 \leqslant v_{I N} \leqslant-7.5\right) \\ \hline \end{array}$		$\begin{array}{lc} \hline-12.6 & -11.4 \\ \left(-27 \leqslant V_{\mathbb{N}} \leqslant\right. & -14.8) \\ \hline \end{array}$		$\begin{gathered} -15.75 \\ \left(-30 \leqslant \mathrm{~V}_{\mathbb{N}} \leqslant-18\right) \end{gathered}$		
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{IO}=250 \mathrm{~mA} \\ & \left(\mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant V_{\text {MAX }}\right) \end{aligned}$	$\left(-25 \leqslant V_{\text {IN }} \leqslant-7.3\right)$		$\begin{gathered} 40 \\ \left(-30 \leqslant V_{\mathrm{IN}} \leqslant-14.6\right) \end{gathered}$		$\left(-30 \leqslant v_{I N} \leqslant 17.7\right)$		$m V$ V
$\Delta \mathrm{V}_{0}$	Load Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & 1 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 250 \mathrm{~mA} \end{aligned}$	50		120		150		mV
$\Delta \mathrm{V}_{0}$	Long Term Stability	$1 \mathrm{O}=250 \mathrm{~mA}$	20		48		60		$\mathrm{mV} / \mathrm{khr}$
${ }_{1}$	Quiescent Current	$1 \mathrm{O}=250 \mathrm{~mA}$		26		26		26	mA
Δl_{Q}	Quiescent Current Change	$1 \mathrm{~mA} \leqslant 10 \leqslant 250 \mathrm{~mA}$		0.3	0.3		0.3		mAV
		$\begin{aligned} & 10=250 \mathrm{~mA} \\ & \left(\mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {MAX }}\right) \end{aligned}$	$\begin{array}{r} 0.25 \\ (-20 \leqslant \mathrm{VIN} \leqslant-7.5) \end{array}$		$\begin{array}{r} 0.25 \\ \left(-27 \leqslant V_{I N} \leqslant-14.8\right) \end{array}$		$\left(-30 \leqslant V_{1 N} \leqslant \begin{array}{c}0.25 \\ -18)\end{array}\right)$		
v_{n}	Output Noise Voltage	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{IO}=250 \mathrm{~mA} \\ & \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz} \end{aligned}$	40		100		120		$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{~V}_{\mathrm{O}}}$	Ripple Rejection	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{IO}=250 \mathrm{~mA} \\ & \mathrm{f}=120 \mathrm{~Hz} \end{aligned}$	54		56		54		dB
	Input Voltage Required to Maintain Line Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{I}=250 \mathrm{~mA} \end{aligned}$		-7.3		-14.6		-17.7	v

Note 1: Thermal resistance of the TO-202 Package (P) without a heat sink is $12^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $70^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient.
Note 2: To ensure constant junction temperature, low duty cycle pulse testing is used.
Note 3: Thermal resistance, junction to ambient, of the TO-92 (Z) Package is $180^{\circ} \mathrm{C} / \mathrm{W}$ when mounted with 0.40 inch leads on a PC board, and $160^{\circ} \mathrm{C} / \mathrm{W}$ when mounted with 0.25 inch leads on a PC board.

Electrical Characteristics LM320L (Note 4) $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.

OUTPUT VOLTAGE			-5V	-12V	-15V	UNITS
INPUT VOLTAGE (unless otherwise noted)			-10V	-17V	-20V	
PARAMETER		CONDITIONS	MIN TYP MAX	MIN TYP MAX	MIN TYP MAX	
V_{0}	Output Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{l} \mathrm{O}=100 \mathrm{~mA}$	$\begin{array}{lll}-5.2 & -5 & -4.8\end{array}$	-12.5 $-120-11.5$	-15.6 $-150-14.4$	v
		$\begin{aligned} & 1 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {MIN }} \leqslant V_{I N} \leqslant V_{\text {MAX }} \end{aligned}$	$\begin{aligned} & -5.25 \\ & \left(-20 \leqslant v_{I N} \leqslant-7.75\right) \end{aligned}$	$\begin{aligned} & \hline-12.6 \quad-11.4 \\ & \left(-27 \leqslant V_{I N} \leqslant-14.8\right) \\ & \hline \end{aligned}$	$\begin{aligned} & -15.75 \quad-14.25 \\ & \left(-30 \leqslant V_{I N} \leqslant-18\right) \end{aligned}$	
		$\begin{aligned} & 1 \mathrm{~mA} \leqslant 10 \leqslant 40 \mathrm{~mA} \\ & V_{\text {MIN }} \leqslant V_{I N} \leqslant V_{M A X} \end{aligned}$	$\begin{aligned} & -5.25 \\ & \left(-20 \leqslant V_{I N} \leqslant-7\right) \end{aligned}$	$\begin{gathered} -12.6 \\ (-27 \leqslant-14.5) \end{gathered}$	$\begin{gathered} -15.75 \\ \left(-30 \leqslant V_{I N} \leqslant-17.5\right) \end{gathered}$	
$\Delta \mathrm{V}_{0}$	Line Regulation	$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{IO}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {MAX }} \end{aligned}$	$\begin{array}{r} 60 \\ \left(-20 \leqslant V_{I N} \leqslant-7.3\right) \end{array}$	$\begin{array}{r} 45 \\ \left(-27 \leqslant V_{I N} \leqslant-14.6\right) \\ \hline \end{array}$	$\begin{array}{r} 45 \\ \left(-30 \leqslant V_{I N} \leqslant-17.7\right) \\ \hline \end{array}$	mV V
		$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{I N} \leqslant V_{\text {MAX }} \\ & \hline \end{aligned}$	$\left(-20 \leqslant v_{\text {IN }} \leqslant-7\right)$	$\left(-27 \leq V_{I N} \leqslant-14.5\right)$	$\left(-30 \leqslant V_{\text {IN }} \leqslant-17.5\right)$	mV
ΔV_{0}	Load Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & 1 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 100 \mathrm{~mA} \end{aligned}$	50	100	125	mV
$\Delta \mathrm{V}_{\mathrm{O}}$	Long Term Stability	$\mathrm{I} \mathrm{O}=100 \mathrm{~mA}$	20	48	60	$\mathrm{mV} / \mathrm{khr}$
${ }^{1} \mathrm{Q}$	Quiescent Current	$\mathrm{I}^{1}=100 \mathrm{~mA}$	26	$2 \quad 6$	26	mA
Δ_{Q}	Quiescent Current	$1 \mathrm{~mA} \leqslant 10 \leqslant 100 \mathrm{~mA}$	0.3	0.3	0.3	mA
		$1 \mathrm{~mA} \leqslant 10 \leqslant 40 \mathrm{~mA}$	0.1	0.1	0.1	
		$\begin{aligned} & \mathrm{IO}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{\mathbb{I N}} \leqslant \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	$\begin{array}{r} 0.25 \\ \left(-20 \leqslant V_{I N} \leqslant-7.5\right) \end{array}$	$\begin{array}{r} 0.25 \\ \left(-27 \leqslant V_{I N} \leqslant-14.8\right) \end{array}$	$\begin{array}{r} 0.25 \\ \left(-30 \leqslant v_{I N} \leqslant-18\right) \end{array}$	mA V
V_{n}	Output Noise Voltage	$\begin{aligned} & T=25^{\circ}, 10=100 \mathrm{~mA} \\ & \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz} \end{aligned}$	40	96	120	$\mu \mathrm{V}$
$\frac{\Delta V_{1 N}}{\Delta V_{O}}$	Ripple Rejection	$\begin{aligned} & \begin{array}{l} \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{IO}=100 \mathrm{~mA} \\ \mathrm{f}=120 \mathrm{~Hz} \end{array} \end{aligned}$	50	52	50	dB
	Input Voltage Required to Maintain Line Regulation	$\begin{aligned} & \mathrm{T} \mathrm{j}=25^{\circ} \\ & \mathrm{I}=100 \mathrm{~mA} \\ & \mathrm{IO}=40 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & -7.3 \\ & -7.0 \end{aligned}$	$\begin{aligned} & -14.6 \\ & -14.5 \end{aligned}$	$\begin{aligned} & -17.7 \\ & -17.5 \end{aligned}$	V

Note 4: To ensure constant junction temperature, low duty cycle pulse testing is used.

Typical Performance Characteristics

Maximum Average Power
Dissipation (TO-202)

Short-Circuit Output Current

Dropout Voltage, LM320L
-5V

Output Voltage vs.
Temperature (Normalized to $\mathbf{1 V}$ at $\mathbf{T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Maximum Average Power Dissipation (TO-92)

Dropout Voltage, LM320ML, -5V

Dropout Voltage, LM320L

Quiescent Current

Dropout Voltage, LM320ML, -12 V and -15 V

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)

FREQUENCY (Hz)

Schematic Diagrams

$-5 \mathrm{~V}$

-12 V and -15 V
LM320ML (LM320L)

Typical Applications

Fixed Output Regulator

*Required if the regulator is located far from the power supply filter. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
** Required for stability. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.

Adjustable Output Regulator

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{O}}=-5 \mathrm{~V}-\left(5 \mathrm{~V} / \mathrm{R} 1+\mathrm{I}_{\mathrm{Q}}\right) \cdot \mathrm{R} 2, \\
& 5 \mathrm{~V} / \mathrm{R} 1>3 \mathrm{I}_{\mathrm{Q}}
\end{aligned}
$$

$\pm 15 \mathrm{~V}, 250 \mathrm{~mA}$ Dual Power Supply

General Description

The LM330 5V 3-terminal positive voltage regulator features an ability to source 150 mA of output current with an input-output differential of 0.6 V or less. Familiar regulator features such as current limit and thermal overload protection are also provided.
The low dropout voltage makes the LM330 useful for certain battery applications since this feature allows a longer battery discharge before the output falls out of regulation. For example, a battery supplying the regulator input voltage may discharge to 5.6 V and still properly regulate the system and load voltage. Supporting this feature, the LM330 protects both itself and regulated systems from negative voltage inputs resulting from reverse installations of batteries.

Other protection features include line transient protection up to 26 V , when the output actually shuts down to avoid damaging internal and external circuits. Also, the LM330 regulator cannot be harmed by a temporary mirror-image insertion.

Voltage Regulators

Features

- Input-output differential less than 0.6 V
- Output current of 150 mA
- Reverse battery protection
- Line transient protection
- Internal short circuit current limit
- Internal thermal overload protection
- Mirror-image insertion protection
- 100% electrical burn-in in the thermal limit

Voltage Range

LM330T-5.0 5V

Schematic and Connection Diagrams

(TO-220)
Plastic Package

Absolute Maximum Ratings

Input Voltage	
Operating Range	26 V
\quad Line Transient Protection $(1000 \mathrm{~ms})$	40 V
Internal Power Dissipation	Internally Limited
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 seconds)	$+300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter		Conditions	Min	Typ	Max	Units
V_{0}	Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	4.8	5	5.2	V
	Output Voltage Over Temp	$\begin{aligned} & 5<\mathrm{I}_{\mathrm{O}}<150 \mathrm{~mA} \\ & 6<\mathrm{V}_{\text {IN }}<26 \mathrm{~V} ; 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq 100^{\circ} \mathrm{C} \end{aligned}$	4.75		5.25	
ΔV_{0}	Line Regulation	$\begin{aligned} & 9<V_{I N}<16 V, I_{0}=5 \mathrm{~mA} \\ & 6<V_{I N}<26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 7 \\ 30 \end{gathered}$	$\begin{aligned} & 25 \\ & 60 \end{aligned}$	mV
	Load Regulation	$5<\mathrm{I}_{0}<150 \mathrm{~mA}$		14	50	
	Long Term Stability			20		$\mathrm{mV} / 1000 \mathrm{hrs}$
I_{0}	Quiescent Current	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{o}}=50 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{o}}=150 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 3.5 \\ 5 \\ 18 \end{gathered}$	$\begin{gathered} \hline 7 \\ 11 \\ 40 \\ \hline \end{gathered}$	mA
	Line Transient Reverse Polarity	$\begin{aligned} & V_{I N}=40 \mathrm{~V}, R_{L}=100 \Omega, 1 \mathrm{sec} \\ & V_{I N}=-6 V, R_{L}=100 \Omega \end{aligned}$		$\begin{array}{r} 14 \\ -80 \end{array}$		
$\Delta l_{\text {Q }}$	Quiescent Current Change	$6<\mathrm{V}_{\text {IN }}<26 \mathrm{~V}$		10		\%
$V_{\text {IN }}$	Overvoltage Shutdown Voltage		26	30		V
	Max Line Transient	$\begin{array}{ll} 100 \mathrm{~ms} & V_{0} \leq 5.5 \mathrm{~V} \\ 1 \mathrm{sec} & V_{0} \leq 5.5 \mathrm{~V} \\ \hline \end{array}$		$\begin{aligned} & 60 \\ & 50 \\ & \hline \end{aligned}$		
	Reverse Polarity Input Voltage	$\begin{array}{ll} 100 \mathrm{~ms} & V_{0}>-0.3 V R_{L}=100 \Omega \\ D C & V_{0}>-0.3 V R_{L}=100 \Omega \end{array}$		$\begin{aligned} & -30 \\ & -12 \end{aligned}$		
	Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$		50		$\mu \mathrm{V}$
	Output Impedance	$\mathrm{I}_{0}=100 \mathrm{mADC}+10 \mathrm{mArms}$		200	-	$\mathrm{m} \Omega$
	Ripple Rejection			56		dB
	Current Limit		150	400	700	mA
	Dropout Voltage	$\mathrm{I}_{0}=150 \mathrm{~mA}$		0.32	0.6	V
	Thermal Resistance	Junction to Case Junction to Ambient		$\begin{gathered} 4 \\ 50 \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^5]Typical Performance Characteristics

Low Voltage Behavior

Line Transient Response

Dropout Voltage

High Voltage Behavior

Load Transient Response

Peak Output Current

Quiescent Current

Ripple Rejection

Quiescent Current

Quiescent Current

Ripple Rejection

Typical Performance Characteristics (Continued)

Typical Applications

The LM330 is designed specifically to operate at lower input to output voltages. The device is designed utilizing a power lateral PNP transistor which reduces dropout voltage from 2.0 V to 0.3 V when compared to IC regulators using NPN pass transistors. Since the LM330 can operate at a much lower input voltage, the device power dissipation is reduced, heat sinking can be simpler and device
reliability improved through lower chip operating temperature. Also, a cost savings can be utilized through use of lower power/voltage components. In applications utilizing battery power, the LM330 allows the battery voltage to drop to within 0.3 V of output voltage prior to the voltage regulator dropping out of regulation.

*Required if regulator is located far from power supply filter.
**C2 may be either an Aluminum or Tantalum type capacitor but must be rated to operate at $-40^{\circ} \mathrm{C}$ to guarantee regulator stability to that temperature extreme. $10 \mu \mathrm{~F}$ is the minimum value required for stability and may be increased without bound. Locate as close as possible to the regulation.

Note: Compared to IC regulator with 2.0 V dropout voltage and $I_{Q m a x}=6.0 \mathrm{~mA}$.

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.

Input Voltage: The DC voltage applied to the input terminals with respect to ground.

Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.

Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.

Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.

Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.

Temperature Stability of $\mathbf{V}_{\mathbf{0}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

Voltage Regulators
PRELIMINARY

LM337L 3-Terminal Adjustable Regulator
 General Description

The LM337L is an adjustable 3-terminal negative voltage regulator capable of supplying 100 mA over a 1.2 V to 37 V output range. It is exceptionally easy to use and requires only two external resistors to set the output voltage. Furthermore, both line and load regulation are better than standard fixed regulators. Also, the LM337L is packaged in a standard TO-92 transistor package which is easy to use.
In addition to higher performance than fixed regulators, the LM337L offers full overload protection. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.

Features

- Adjustable output down to 1.2 V
- Guaranteed 100 mA output current
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection

Normally, only a single $1 \mu \mathrm{~F}$ solid tantalum output capacitor is needed unless the device is situated far from the input filter capacitors, in which case an input bypass is needed. A larger output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3 -terminal regulators.

Besides replacing fixed regulators, the LM337L is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded.
Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM337L can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.
The LM337L is packaged in a standard TO-92 transistor package. The LM337L is rated for operation over a $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range.
For applications requiring greater output current in excess of 0.5 A and 1.5A, see LM137 series data sheets. For the positive complement, see series LM117 and LM317L data sheets.

Connection Diagram

Order Number LM337LZ
See NS Package Z03A

Typical Applications

1.2V-25V Adjustable Regulator

$-\mathrm{V}_{\text {OUT }}=-1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{240 \Omega}\right)$
${ }^{\dagger} \mathrm{C} 1=1 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic required for stability
*C2 $=1 \mu \mathrm{~F}$ solid tantalum is required only if regulator is more than $4^{\prime \prime}$ from power supply filter capacitor

Regulator with Trimmable Output Voltage

Trim Procedure:

-If $\mathrm{V}_{\text {OUT }}$ is -23.08 V or bigger, cut out R3 (if smaller, don't cut it out).
-Then if $\mathrm{V}_{\text {OUT }}$ is -22.47 V or bigger, cut out R 4 (if smaller, don't).
 don't).
This will trim the output to well within 1% of $-22.00 \mathrm{~V}_{\mathrm{DC}}$, without any of the expense or trouble of a trim pot (see LB-46). Of course, this technique can be used at any output voltage level.

Absolute Maximum Ratings

Power Dissipation	Internally Limited	Operating Junction Temperature Range	$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input-Output Voltage Differential	40 V	Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
		Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	Min	Typ	Max	Units
Line Regulation	$T_{A}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq\left\|\mathrm{V}_{\text {IN }}-V_{\text {OUT }}\right\| \leq 40 \mathrm{~V},$ (Note 2)		0.01	0.04	\%/V
Load Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 1_{\text {MAX }}$, (Note 2)		0.1	0.5	\%
Thermal Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms}$ Pulse		0.04	0.2	\%/W
Adjustment Pin Current			50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 100 \mathrm{~mA} \\ & 3 \mathrm{~V} \leq\left\|\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}\right\| \leq 40 \mathrm{~V} \end{aligned}$		0.2	5	$\mu \mathrm{A}$
Reference Voltage	$\begin{aligned} & 3 V \leq\left\|V_{I N}-V_{\text {OUT }}\right\| \leq 40 \mathrm{~V},(\text { Note } 3) \\ & 10 \mathrm{~mA} \leq I_{\text {OUT }} \leq 100 \mathrm{~mA}, P \leq 625 \mathrm{~mW} \end{aligned}$	1.20	1.25	1.30	V
Line Regulation	$3 \mathrm{~V} \leq\left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\| \leq 40 \mathrm{~V}$, (Note 2) -		0.02	0.07	\%/V
Load Regulation	$5 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 100 \mathrm{~mA}$, (Note 2)		0.3	1.5	\%
Temperature Stability	$T_{\text {MIN }} \leq T_{j} \leq T_{\text {MAX }}$		0.65		\%
Minimum Load Current	$\begin{aligned} & \left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 40 \mathrm{~V} \\ & 3 \mathrm{~V} \leq\left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 15 \mathrm{~V} \end{aligned}$		3.5 2.2	5 3.5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Current Limit	$\begin{aligned} & 3 V \leq\left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 13 V \\ & \left\|V_{I N}-V_{\text {OUT }}\right\|=40 V \end{aligned}$	$\begin{aligned} & 100 \\ & 25 \end{aligned}$	200 50	$\begin{aligned} & 320 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Rms Output Naise, \% of V $\mathrm{V}_{\text {Out }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & V_{O U T}=-10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ADJ}}=0 \\ & \mathrm{C}_{A D J}=10 \mu \mathrm{~F} \end{aligned}$	66	65 80		dB dB
Long-Term Stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		0.3	1	\%

Note 1: Unless otherwise specified, these specifications apply $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq+125^{\circ} \mathrm{C}$ for the LM337L; $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ and IOUT $=40 \mathrm{~mA}$. Although power dissipation is internally limited, these specifications are applicable for power dissipations up to 625 mW . I MAX is 100 mA .
Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.
Note 3: Thermal resistance of the TO. 92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to PC board.

National Semiconductor

Voltage Regulators

LM341 Series 3-Terminal Positive Regulators

General Description

The LM341-XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi , and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM341-XX series is available in the plastic TO-202 package. This package allows these regulators to deliver over 0.5A if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expended to make the LM341-XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

- Output current in excess of 0.5A
- Internal thermal overload protection-
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-202 package
- Special circuitry allows start-up even if output is pulled to negative voltage (\pm supplies)

Schematic and Connection Diagrams

Plastic Package

front view
Order Numbers LM341P-5.0 LM341P. 12
LM341P-15
See Package P03A
For Tab Bend TO-202
Order Numbers
LM341P-5.0 TB
LM341P-12 TB
LM341P-15 TB
See Package P03E

Absolute Maximum Ratings

Input Voltage
($\mathrm{VO}=5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$)
Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)

35 V
Internally Limited
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$+125^{\circ} \mathrm{C}$
$\begin{aligned}-65^{\circ} \mathrm{C} \text { to } & +150^{\circ} \mathrm{C} \\ & +230^{\circ} \mathrm{C}\end{aligned}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{IO}=500 \mathrm{~mA}$, unless otherwise noted.

OUTPUT VOLTAGE				5 V		12V		15V	UNITS
INPUT VOLTAGE (unless otherwise noted)				10 V		19V		23V	
PARAMETER		CONDITIONS	MIN	TYP MAX	MIN	TYP MAX	MIN	TYP MAX	
v_{O}	Output Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	4.8	$5 \quad 5.2$	11.5	$12 \quad 12.5$	14.4	$15 \quad 15.6$	v
		$\mathrm{P}_{\mathrm{D}} \leqslant 7.5 \mathrm{~W}, 5 \mathrm{~mA} \leqslant 10 \leqslant 500 \mathrm{~mA}$ and $\mathrm{V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {MAX }}$	$\left(7.5 \leqslant v_{1 N} \leqslant 20\right)$		11.4 $(14.8$	$\left.\leqslant \mathrm{V}_{\mathrm{IN}} \leqslant 27\right)^{12.6}$	$\left(18 \leqslant V_{\mathbb{N}} \leqslant 30\right)$		v
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{IO}=100 \mathrm{~mA} \\ & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{IO}=500 \mathrm{~mA} \end{aligned}$	$\left(7.2 \leqslant v_{\text {IN }} \leqslant 25\right)^{100}$		(14.5	$\begin{array}{r} 120 \\ 240 \\ \left.\leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 30\right) \end{array}$	(17.	$\begin{array}{r} 150 \\ 300 \\ \left.\leqslant v_{I N} \leqslant 30\right) \end{array}$	$m V$ $m V$ V
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 500 \mathrm{~mA}$		100		240		300	mV
ΔV_{0}	Long Term Stability			20		48		60	mV/khrs
10	Quiescent Current	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		$4 \quad 10$		$4 \quad 10$		$4 \quad 10$	mA
$\triangle l_{Q}$	Quiescent Current Change	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & 5 \mathrm{~mA} \leqslant 1_{\mathrm{O}} \leqslant 500 \mathrm{~mA} \end{aligned}$		0.5		0.5		0.5	mA
		$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {MAX }} \end{aligned}$	$\left(7.5 \leqslant V_{I N} \leqslant 25\right)^{1}$		$\left(14.8 \leqslant \mathrm{~V}_{\text {IN }} \leqslant 30\right)$		$\left(18 \leqslant V_{I N} \leqslant 30\right)$		mA v
V_{n}	Output Noise Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{~Hz}-100 \mathrm{kHz}$	40		75		90		$\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}} \text { Ripple Rejection }$		$\mathrm{f}=120 \mathrm{~Hz}$	78		71		69		dB
	Input Voltage Required to Maintain Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{IO}=500 \mathrm{~mA}$	7.2		14.5		17.6		v

Note 1: Thermal resistance without a heat sink for junction to case temperature is $12^{\circ} \mathrm{C} / \mathrm{W}$ for the TO-202 package. Thermal resistance for case to ambient temperature is $70^{\circ} \mathrm{C} / \mathrm{W}$ for the TO-202 package.

Typical Performance Characteristics

Quiescent Current

Output Voltage (Normalized to $\mathbf{1 V}$ at $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$)

Output Impedance

National

Voltage Regulators

General Description

The LM342-XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi , and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.
The LM342-XX series is available in the plastic TO-202 package. This package allows these regulators to deliver over 0.25A if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.
Considerable effort was expended to make the LM342-XX series of regulators easy to use and minimize the number
of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

- Output current in excess of 0.25A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-202 package
- Special circuitry allows start-up even if output is pulled to negative voltage (\pm supplies)

Voltage Range	
LM342-5.0	5 V
LM 342.12	12 V
LM $342-15$	15 V

Schematic and Connection Diagrams

Plastic Package

front view
Order Numbers:
LM342P-5.0 LM342P-12 LM342P-15
See Package P03A
For Tab Bend TO-202
Order Numbers:
LM342P-5.0 TB
LM342P-12 TB
LM342P-15 TB
See Package P03E

Absolute Maximum Ratings

Input Voltage
$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$
30V
$V_{O}=12 \mathrm{~V}$ and 15 V
Internal Power Dissipation (Note 1)
Operating Temperature Range
Internally Limited
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature
Storage Temperature Range $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 Seconds) ${ }^{-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}} 30{ }^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, $1 \mathrm{O}=250 \mathrm{~mA}$ (Note 2) unless noted.

OUTPUT VOLTAGE			5 V		12V		15V	UNITS
INPUT VOLTAGE (unless otherwise noted)		10 V		19 V		23 V		
PARAMETER	CONDITIONS	MIN	TYP MAX	MIN	TYP MAX	MIN	TYP MAX	
Output Voltage (Note 3)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	4.8	5.5 .2	11.5	$12 \quad 12.5$	14.4	$15 \quad 15.6$	v
	$\begin{aligned} & 1 \mathrm{~mA} \leqslant 10 \leqslant 250 \mathrm{~mA} \text { and } \\ & \mathrm{V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {MAX }} \\ & \hline \end{aligned}$	$\left(7.5 \leqslant V_{\text {IN }} \leqslant 20\right)$		$\left(14.8 \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 27\right)$		$\left(18 \leqslant V_{I N} \leqslant 30\right)$		v
ΔV_{O} Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{IO}=250 \mathrm{~mA}$	$\left(7.3 \leqslant v_{I N} \leqslant 25\right)$		$\left(14.6 \leqslant V_{\text {IN }} \leqslant 30\right)$		$\left(17.7 \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 30\right)$		$\overline{m v}$
ΔV_{O} Load Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 250 \mathrm{~mA}$		50		120		150	mV
$\Delta \mathrm{V}_{\mathrm{O}}$ Long Term Stability		20		48		60		$\mathrm{mV} / \mathrm{khrs}$
1 Q Quiescent Current	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		6		6		6	mA
Quiescent Current Change	$\mathrm{Tj}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leqslant 10 \leqslant 250 \mathrm{~mA}$		0.5		0.5		0.5	mA
	$\mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {MAX }}$	$\left(7.3 \leqslant V_{I N} \leqslant 25\right)^{1.5}$		$\left(14.6 \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 30\right)$		$\left(17.7 \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 30\right)$		mA
$\mathrm{V}_{\mathrm{n}} \quad$ Output Noise Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz}$	40		. 96		120		$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\text {IN }}}{\Delta \mathrm{V}_{\text {OUT }}} \text { Ripple Rejection }$	$\mathrm{f}=120 \mathrm{~Hz}$	50	64	44	58	42	56	dB
Input Voltage Required to Maintain Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{IO}=250 \mathrm{~mA}$	7.3		14.6		17.7		V

Note 1: Thermal resistance of the TO-202 package (P) without a heat sink is $12^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $80^{\circ} \mathrm{C} / \mathrm{W}$ juntion to ambient.
Note 2: The electrical characteristics data represent pulse test conditions with junction temperatures as shown at the initiation of tests.
Note 3: The temperature coefficient of $\mathrm{V}_{\mathrm{OUT}}$ is typically within $0.01 \% \mathrm{~V}_{\mathrm{O}} /{ }^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Typical Applications

Fixed Output Regulator

*Required if the regulator is located far from power supply filter
** Although not required, C2 does improve transient response. (If needed, use $0.1 \mu \mathrm{~F}$ ceramic disc.)

Adjustable Output Regulator

$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}+\left(5 \mathrm{~V} / \mathrm{R} 1+\mathrm{I}_{\mathrm{Q}}\right) \mathrm{R} 2$
$5 \mathrm{~V} / \mathrm{R} 1>31_{\mathrm{Q}}$, Load Regulation $\left(\mathrm{L}_{\mathrm{R}}\right)=$ [(R1 + R2)/R1] • (L_{r} of LM342-05)

Current Regulator

$I_{\text {OUT }}=V^{2-3} / R 1+I_{Q}$
$\Delta \mathrm{I}_{\mathrm{Q}} \leq 1.5 \mathrm{~mA}$ over line and load changes

High Output Voltage Regulator

*Necessary if regulator is located far from the power supply filter
**D3 aids in full load start-up and protects the regulator during short circuits from high input to output voltage differentials
\pm 15V, 250 mA Dual Power Supply

Variable Output Regulator 0.5V - 18V

$V_{\text {OUT }}=V_{G}+5 V, R 1=\left(-V_{I N} / I_{Q} L M 342\right)$
$V_{\text {OUT }}=5 V(R 2 / R 4)$ for $(R 2+R 3)=(R 4+R 5)$
A 0.5 V output will correspond to $(\mathrm{R} 2 / \mathrm{R} 4)=0.1,(\mathrm{R} 3 / \mathrm{R} 4)=0.9$ *Solid tantalum

Voltage Regulators

LM723/LM723C Voltage Regulator

General Description

The LM723/LM723C is a voltage regulator designed primarily for series regulator applications. By itself, it will supply output currents up to 150 mA ; but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting. Important characteristics are:

- 150 mA output current without external pass transistor
- Output currents in excess of 10A possible by adding external transistors
- Input voltage 40 V max
- Output voltage adjustable from 2 V to 37 V
- Can be used as either a linear or a switching regulator.

The LM723/LM723C is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller.

The LM723C is identical to the LM723 except that the LM723C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams*

Equivalent Circuit*

Order Number LM723CN See NS Package N14A Order Number LiM723J or LM723CJ See NS Package J14A

Note: Pin 5 connected to case.
top view
Order Number LM723H or LM723CH See NS Package H10C

*Pin numbers refer to metal can package.

Absolute Maximum Ratings

Pulse Voltage from V^{+}to $\mathrm{V}^{-}(50 \mathrm{~ms})$	50 V
Continuous Voltage from V^{+}to V^{-}	40 V
Input-Output Voltage Differential	40 V
Maximum Amplifier Input Voltage (Either Input)	7.5 V
Maximum Amplifier Input Voltage (Differential)	5 V
Current from V_{z}	25 mA
Current from $\mathrm{V}_{\text {REF }}$	15 mA
Internal Power Dissipation Metal Can (Note 1)	800 mW
Cavity DIP (Note 1)	900 mW
Molded DIP (Note 1)	660 mW
Operating Temperature Range LM723	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM723C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range Metal Can	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics(Note 2)

Note 1: See derating curves for maximum power rating above $25^{\circ} \mathrm{C}$.
Note 2: Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, V_{I N}=V^{+}=V_{C}=12 \mathrm{~V}, \mathrm{~V}^{-}=0, V_{\text {OUT }}=5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{SC}}=0, \mathrm{C}_{1}=100 \mathrm{pF}, \mathrm{C}_{\text {REF }}=0$ and divider impedance as seen by error amplifier $\leq 10 \mathrm{k} \Omega$ connected as shown in Figure 1. Line and load regulation specifications are given for the condition of constant chip temperature. Temperature drifts must be taken into account separately for high dissipation conditions.
Note 3: L_{1} is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009 in . air gap.
Note 4: Figures in parentheses may be used if R1/R2 divider is placed on opposite input of error amp.
Note 5: Replace R1/R2 in figures with divider shown in Figure 13.
Note 6: V^{+}must be connected to a +3 V or greater supply.
Note 7: For metal can applications where V_{Z} is required, an external 6.2 volt zener diode should be connected in series with VOUT.

Maximum Power Ratings

LM723C
Power Dissipation vs
Ambient Temperature

Typical Performance Characteristics

Current Limiting
Characteristics

Line Transient Response

Load Regulation Characteristics with Current Limiting

Current Limiting
Characteristics vs
Junction Temperature

Load \& Line Regulation vs Input-Output Voltage Differential

Standby Current Drain vs Input Voltage

Output Impedance vs
-Frequency

TABLE 1 RÉSISTOR VALUES ($k \Omega$) FOR STANDARD OUTPUT VOLTAGE

POSITIVE OUTPUT VOLTAGE	APPLICABLE FIGURES	FIXED OUTPUT $\pm 5 \%$		OUTPUT ADJUSTABLE $\pm 10 \%$ (Note 5)			NEGATIVE OUTPUT VOLTAGE	APPLICABLE FIGURES	FIXED OUTPUT $\pm 5 \%$		$\begin{gathered} \text { 5\% OUTPUT } \\ \text { ADJUSTABLE } \\ \pm 10 \% \end{gathered}$		
	(Note 4)	R1	R2	R1	P1	R2			R1	R2	R1	P1	R2
+3.0	$\begin{aligned} & 1,5,6,9 \\ & 12(4) \end{aligned}$	4.12	3.01	1.8	0.5	1.2	+100	7	3.57	102	2.2	10	91
+3.6	$\begin{aligned} & 1,5,6,9 \\ & 12(4) \end{aligned}$	3.57	3.65	1.5	0.5	1.5	+250	7	3.57	255	2.2	10	240
+5.0	$\begin{aligned} & 1,5,6,9 \\ & 12(4) \end{aligned}$	2.15	4.99	. 75	0.5	2.2	-6 (Note 6)	3. (10)	3.57	2.43	1.2	0.5	. 75
+6.0	$\begin{aligned} & 1,5,6,9 \\ & 12(4) \end{aligned}$	1.15	6.04	0.5	0.5	2.7	-9	3. 10	3.48	5.36	1.2	0.5	2.0
. +9.0	$\begin{aligned} & 2,4,(5,6, \\ & 12,9) \end{aligned}$	1.87	7.15	. 75	1.0	2.7	-12	3, 10	3.57	8.45	1.2	0.5	3.3
+12	$\begin{aligned} & 2,4,(5,6, \\ & 9,12) \end{aligned}$	4.87	7.15	2.0	1.0	3.0	-15	3, 10	3.65	11.5	1.2	0.5	4.3
+15	$\begin{aligned} & 2,4,(5,6, \\ & 9,12) \end{aligned}$	7.87	7.15	3.3	1.0	3.0	-28	3, 10	3.57	24.3	1.2	0.5	10
+28	$\begin{aligned} & 2,4,(5,6, \\ & 9,12) \end{aligned}$	21.0	7.15	5.6	1.0	2.0	-45	8	3.57	41.2	2.2	10	33
+45	7	3.57	48.7	2.2	10	39	-100	8	3.57	97.6	2.2	10	91
+75	7	3.57	78.7	2.2	10	68	-250	8	3.57	249	2.2	10	240

TABLE II FORMULAE FOR INTERMEDIATE OUTPUT VOLTAGES

Outputs from +2 to +7 volts [Figures 1, 5, 6, 9, 12, (4)] $V_{\text {OUT }}=\left[V_{\text {REF }} \times \frac{R 2}{R 1+R 2}\right]$	Outputs from +4 to +250 volts [Figure 7] $V_{\text {OUT }}=\left\{\frac{V_{\text {REF }}}{2} \times \frac{R 2-R 1}{R 1}\right), R 3=R 4$	Current Limiting $I_{\text {LIMIT }}=\frac{V_{\text {SENSE }}}{R_{\text {SC }}}$
Outputs from +7 to +37 volts [Figures 2, 4, (5, 6, 9, 12)] $V_{\text {OUT }}=\left[V_{\text {REF }} \times \frac{R 1+R 2}{R 2}\right]$	$\begin{gathered} \text { Outputs from }-6 \text { to }-250 \text { volts } \\ \left\{F_{1 \text { gures }} 3,8,10\right\} \\ V_{\text {OuT }}=\left\{\frac{V_{\text {REF }}}{2} \times \frac{R 1+R 2}{R 1}\right] ; R 3=R 4 \end{gathered}$	Foldback Current Limiting $\begin{aligned} & I_{\text {KNEE }}=\left[\frac{V_{\text {OUT }} R 3}{R_{\text {SC }} R 4}+\frac{V_{\text {SENSE }}(R 3+R 4)}{R_{S C} R 4}\right] \\ & I_{\text {SHORT }}=\left[\frac{V_{\text {SENSE }}}{R_{\text {SC }}} \times \frac{R 3+R 4}{R 4}\right] \end{aligned}$

Typical Applications

Note: $\mathbf{R 3}=\frac{\mathrm{R} 1 \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}$ for minimum temperature drift.
TYPICAL PERFORMANCE
Regulated Output Voltage
Line Regulation $\left(\triangle V_{i N}=3 V\right)$ Load Regulation ($\Delta I_{\mathrm{L}}=50 \mathrm{~mA}$)
FIGURE 1. Basic Low Voltage Regulator (VOUT $=\mathbf{2}$ to $\mathbf{7}$ Volts)

TYPICAL PERFORMANCE
Regulated Output Voltage
Line Regulation ($\Delta \mathbf{V}_{15}=3 \mathrm{~V}$) Load Reguilation $\left(\Delta I_{L}=100\right.$
FIGURE 3. Negative Voltage Regulator

FIGURE 2. Basic High Voltage Regulator
($\mathrm{V}_{\text {OUT }}=7$ to $\mathbf{3 7}$ Volts)

TYPICAL PERFORMANCE

$$
\begin{array}{lr}
\text { Regulated Output Voltage } & +15 \mathrm{~V} \\
\text { Line Regulation }\left(\Delta V_{\text {IN }}=3 \mathrm{~V}\right) & 1.5 \mathrm{mV} \\
\text { Load Regulation }\left(\Delta \mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}\right) & 15 \mathrm{mV}
\end{array}
$$

FIGURE 4. Positive Voltage Regulator (External NPN Pass Transistor)

Typical Applications (Continued)

FIGURE 5. Positive Voltage Regulator (External PNP Pass Transistor),

Note: Current limit transistor may be used for shutdown if current limiting is not tequired.

Load Regulation ($\Delta I_{L}=50 \mathrm{~mA}$)
FIGURE 11. Remote Shutdown Regulator with Current Limiting

TYPICAL PERFORMANCE
Regulated Output Voltage
Line Regulation $\left(\Delta V_{\text {IN }}=3 \mathrm{~V}\right)$
Load Regulation ($\triangle I_{\mathrm{L}}=10 \mathrm{~mA}$)
Short Circuit Current
FIGURE 6. Foldback Current Limiting

FIGURE 10. Negative Switching Regulator

Voltage Regulators

LM1524/LM2524/LM3524 Regulating Pulse Width Modulator

General Description

The LM1524 series of regulating pulse width modulators contains all of the control circuitry necessary to implement switching regulators of either polarity, transformer coupled DC to DC converters, transformerless polarity converters and voltage doublers, as well as other power control applications. This device includes a 5 V voltage regulator capable of supplying up to 50 mA to external circuitry, a control amplifier, an oscillator, a pulse width modulator, a phase splitting flip-flop, dual alternating output switch transistors, and current limiting and shutdown circuitry. Both the regulator output transistor and each output switch are internally current limited and, to limit junction temperature, an internal thermal shutdown circuit is employed. The LM1524 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and is packaged in a hermetic 16 -lead DIP (J). The LM2524 and LM3524 are rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and are
packaged in either a hermetic 16-lead DIP (J) or a 16 -lead molded DIP (N).

Features

- Complete PWM power control circuitry
- Frequency adjustable to greater than 100 kHz
- 2% frequency stability with temperature
- Total quiescent current less than 10 mA
- Dual alternating output switches for both push-pull or single-ended applications
- Current limit amplifier provides external component protection
- On-chip protection against excessive junction temperature and output current
- $5 \mathrm{~V}, 50 \mathrm{~mA}$ linear regulator output available to user

Block and Connection Diagrams

Order Number LM1524J, LM2524J
or LM3524J
See NS Package J16A
Order Number LM2524N or LM3524N
See NS Package N16A

Absolute Maximum Ratings

Input Voltage	40 V
Reference Voltage, Forced	6 V
Reference Output Current	50 mA
Output Current (Each Output)	100 mA
Oscillator Charging Current (Pin 6 or 7)	5 mA
Internal Power Dissipation (Note 1)	1 W
Operating Temperature Range	
LM1524	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM2524/LM3524	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Maximum Junction Temperature	
(J Package)	
(N Package)	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics
Unless otherwise stated, these specifications apply for $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LM1524 and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the LM2524 and LM3524, VIN $=20 \mathrm{~V}$, and $f=20 \mathrm{kHz}$. Typical values other than temperature coefficients, are at $T_{A}=25^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	LM1524/ LM2524			LM3524			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Reference Section								
Output Voltage		4.8	5.0	5.2	4.6	5.0	5.4	\checkmark
Line Regulation	$V_{1 N}=8-40 \mathrm{~V}$		10	20		10	30	$m V$
Load Regulation	$\mathrm{I}_{\mathrm{L}}=0-20 \mathrm{~mA}$		20	50		20	50	mV
Ripple Rejection	$f=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		66			66		dB
Short-Circuit Output Current	$V_{\text {REF }}=0, T_{A}=25^{\circ} \mathrm{C}$		100			100		mA
Temperature Stability	Over Operating Temperature Range		0.3	1		0.3	1	\%
Long Term Stability	$T_{A}=25^{\circ} \mathrm{C}$		20			20		$\mathrm{mV} / \mathrm{khr}$
Oscillator Section								
Maximum Frequency	$\mathrm{C}_{\mathbf{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathbf{T}}=2 \mathrm{k} \Omega$		350			350		kHz
Initial Accuracy	$\cdot \mathrm{R}_{\mathrm{T}}$ and C_{T} constant		5			5		\%
Frequency Change with Voltage	$V_{\text {IN }}=8-40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1			1	\%
Frequency Change with Temperature	Over Operating Temperature Range			2			2	\%
Output Amplitude (Pin 3)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.5			3.5		V
Output Pulse Width (Pin 3)	$\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5			0.5		$\mu \mathrm{s}$
Error Amplifier Section								
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$		0.5	5		2	10	mV
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$		2	10		2	10	$\mu \mathrm{A}$
Open Loop Voltage Gain		72	80		60	80		dB
Common-Mode Input Voltage Range	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	1.8		3.4	1.8		3.4	V
Common-Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		70			70		dB
Small Signal Bandwidth	$A V=0 \mathrm{~dB}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3		MHz
Output Voltage Swing	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.5		3.8	0.5		3.8	V
Comparator Section								
Maximum Duty Cycle	\% Each Output ON	45			45			\%
Input Threshold (Pin 9)	Zero Duty Cycle		1			1		V
Input Threshold (Pin 9)	Maximum Duty Cycle		3.5			3.5		V
Input Bias Current			-1			-1		$\mu \mathrm{A}$
Current Limiting Section								
Sense Voltage	$\begin{aligned} & V_{(\text {Pin } 2)}-V_{(\text {Pin } 1)} \geq 50 \mathrm{mV}, \\ & \operatorname{Pin} 9=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	190	200	210	180	200	220	mV
Sense Voltage T.C.			0.2			0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Common-Mode Voltage		-0.7		1	-0.7		1	V
Output Section (Each Output)								
Collector-Emitter Voltage		40			40			V
Collector Leakage Current	$V_{C E}=40 \mathrm{~V}$		0.1	50		0.1	50	$\mu \mathrm{A}$
Saturation Voltage	$\mathrm{I}^{\prime} \mathrm{C}=50 \mathrm{~mA}$		1	2		1	2	V
Emitter Output Voltage	$V_{\text {IN }}=20 \mathrm{~V}, \mathrm{IE}^{\prime}=-250 \mu \mathrm{~A}$	17	18		17	18		V
Rise Time (10\% to 90\%)	$\mathrm{R}_{\mathrm{C}}=2 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2			0.2		$\mu \mathrm{s}$
Fall Time (90\% to 10\%)	$\mathrm{R}_{\mathrm{C}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1			0.1		$\mu \mathrm{s}$
Total Standby Current	$V_{I N}=40 \mathrm{~V}, \text { Pins } 1,4,7,8,11$ and 14 are grounded, $\operatorname{Pin} 2=2 \mathrm{~V}$, All Other Inputs and Outputs Open		5	10		5	10	mA

Note 1: For operation at elevated temperatures, devices in the J package must be derated based on a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, and devices in the N package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$. junction to ambient.

Typical Performance Characteristics

Maximum Average Power Dissipation (J Package)

Maximum and Minimum Duty Cycle Threshold Voltage

Reference and Switching Transistor Peak Output Current

Current Limit Sense Voltage
($V_{\text {Pin }} 4-V_{\text {Pin }}$)

Test Circuit

Functional Description

INTERNAL VOLTAGE REGULATOR

The LM3524 has on chip a $5 \mathrm{~V}, 50 \mathrm{~mA}$, short circuit protected voltage regulator. This voltage regulator provides a supply for all internal circuitry of the device and can be used as an external reference.

For input voltages of less than 8 V the 5 V output should be shorted to pin $15, V_{I N}$, which disables the 5 V regulator. With these pins shorted the input voltage must be limited to a maximum of 6 V . If input voltages of $6-8 \mathrm{~V}$ are to be used, a pre-regulator, as shown in Figure 1, must be added.

* Minimum C_{o} of $10 \mu \mathrm{~F}$ required for stability.

FIGURE 1

OSCILLATOR

The LM3524 provides a stable on-board oscillator. Its frequency is set by an external resistor, R_{T} and capacitor, C_{T}. A graph of R_{T}, C_{T} vs oscillator frequency is shown in Figure 2. The oscillator's output provides the signals for triggering an internal flip-flop, which directs the PWM information to the outputs, and a blanking pulse to turn off both outputs during transitions to ensure that cross conduction does not occur. The width of the blanking pulse, or dead time, is controlled by the value of C_{T}, as shown in Figure 3. The recommended
values of R_{T} are $1.8 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$, and for C_{T}, $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$.

FIGURE 2

FIGURE 3

Functional Description
(Continued)

ERROR AMPLIFIER

The error amplifier is a differential input, transconductance amplifier. Its gain, nominally 80 dB , is set by either feedback or output loading. This output loading can be done with either purely resistive or a combination of resistive and reactive components. A graph of the amplifier's gain vs output load resistance is shown in Figure 4.

The output of the amplifier, or input to the pulse width modulator, can be overridden easily as its output impedance is very high $\left(Z_{0} \simeq 5 \mathrm{M} \Omega\right)$. For this reason a DC voltage can be applied to pin 9 which will override the error amplifier and force a particular duty cycle to the outputs. An example of this could be a non-regulating motor speed control where a variable voltage was applied to pin 9 to control motor speed. A graph of the output duty cycle vs the voltage on pin 9 is shown in Figure 5.

The amplifier's inputs have a common-mode input range of $1.8 \mathrm{~V}-3.4 \mathrm{~V}$. The on board regulator is useful for biasing the inputs to within this range.

CURRENT LIMITING

The function of the current limit amplifier is to override the error amplifier's output and take control of the pulse width. The output duty cycle drops to about 25% when a current limit sense voltage of 200 mV is applied between the $+C_{L}$ and $-C_{L}$ terminals. Increasing the sense voltage approximately 5% results in a 0% output duty cycle. Care should be taken to ensure the -0.7 V to +1.0 V input common-mode range is not exceeded.

OUTPUT STAGES

The outputs of the LM3524 are NPN transistors, capable of a maximum current of 100 mA . These transistors are driven 180° out of phase and have noncommitted open collectors and emitters as shown in Figure 6.

FIGURE 5

FIGURE 4

FIGURE 6

Typical Applications

FIGURE 7. Positive Regulator, Step-Up Basic Configuration (IIN(MAX) $=\mathbf{8 0} \mathbf{m A})$

FIGURE 8. Positive Regulator, Step-Up Boosted Current Configuration

Typical Applications (Continued)

FIGURE 9. Positive Regulator, Step-Down Basic Configuration (IIN(MAX) $\mathbf{= 8 0} \mathbf{m A})$

FIGURE 10. Positive Regulator, Step-Down Boosted Current Configuration

Typical Applications (Continued)

FIGURE 11. Boosted Current Polarity Inverter

BASIC SWITCHING REGULATOR THEORY AND APPLICATIONS

The basic circuit of a step-down switching regulator circuit is shown in Figure 12, along with a practical circuit design using the LM3524 in Figure 15.

The circuit works as follows: Q1 is used as a switch, which has ON and OFF times controlled by the pulse width modulator. When Q1 is ON, power is drawn from $V_{\text {IN }}$ and supplied to the load through L1; VA is at approximately $\mathrm{V}_{I N}, \mathrm{D} 1$ is reverse biased, and C_{O} is
charging. When Q1 turns OFF the inductor L1 will force V_{A} negative to keep the current flowing in it, D1 will start conducting and the load current will flow through D1 and L1. The voltage at V_{A} is smoothed by the $\mathrm{L} 1, \mathrm{C}_{\mathrm{O}}$ filter giving a clean DC output. The current flowing through L1 is equal to the nominal DC load current plus some ΔI_{L} which is due to the changing voltage across it. A good rule of thumb is to set $\Delta L_{L p-p} \simeq 40 \% \cdot I_{0}$.

FIGURE 12. Basic Step-Down Switching Regulator

FIGURE 13

Typical Applications (Continued)

From the relation $\mathrm{V}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{d}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{t}}}, \Delta \mathrm{I}_{\mathrm{L}} \simeq \frac{\mathrm{V}_{\mathrm{L} T}}{\mathrm{~L} 1}$
$\Delta I_{L}^{+}=\frac{\left(V_{\text {IN }}-V_{0}\right) \text { toN }}{L 1} ; \Delta I_{L}^{-}=\frac{V_{\text {O }} \text { tOFF }}{L 1}$
Neglecting $V_{S A T}, V_{D}$, and settling $\Delta I_{L}{ }^{+}=\Delta I_{L}{ }^{-}$;

where $T=$ Total Period

The above shows the relation between $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{O}}$ and duty cycle.
$\operatorname{IIN}(D C)=\operatorname{IOUT}(D C)\left(\frac{t_{O N}}{t_{O N}+\text { tOFF }}\right)$,
as Q1 only conducts during toN.
$P_{I N}=I_{I N}(D C) V_{I N}=\left(I_{O(D C)}\right)\left(\frac{t_{O N}}{t_{O N}+t_{O F F}}\right) V_{I N}$
$P_{0}=I_{0} V_{0}$
The efficiency, η, of the circuit is:

$$
=\frac{V_{0}}{V_{0}+1} \text { for } V_{S A T}=V_{D 1}=1 \mathrm{~V} .
$$

η MAX will be further decreased due to switching losses in Q1. For this reason Q 1 should be selected to have the maximum possible $\mathrm{f} T$, which implies very fast rise and fall times.

CALCULATING INDUCTOR L1

$$
\begin{aligned}
& \operatorname{tON} \simeq \frac{\left(\Delta I_{L}^{+}\right) \cdot L 1}{\left(V_{I N}-V_{0}\right)}, \operatorname{toFF}=\frac{\left(\Delta I_{L}^{-}\right) \cdot L 1}{V_{0}} \\
& \begin{aligned}
\operatorname{toN}+\operatorname{toFF}=T & =\frac{\left(\Delta I_{L}^{+}\right) \cdot L 1}{\left(V_{I N}-V_{0}\right)}+\frac{\left(\Delta I_{L}^{-}\right) \cdot L 1}{V_{0}} \\
& =\frac{0.4 I_{0} L 1}{\left(V_{I N}-V_{0}\right)}+\frac{0.4 I_{0} L 1}{V_{0}}
\end{aligned}
\end{aligned}
$$

Since $\Delta I^{+}{ }^{+}=\Delta I^{-}=0.4 I_{0}$

Solving the above for L1
$L 1=\frac{2.5 V_{0}\left(V_{1 N}-V_{0}\right)}{\mathrm{I}_{\mathrm{o}} \mathrm{V}_{\mathrm{IN}} \mathrm{f}}$
where: L1 is in Henrys f is switching frequency in Hz

CALCULATING OUTPUT FILTER CAPACITOR C_{o} :

Figure 14 shows L1's current with respect to O1's tON and tOFF times. This current must flow to the load and C_{0}. C_{0} 's current will then be the difference between I_{L}, and I_{0}.
$I_{C O}=I_{L}-I_{O}$
From Figure 14 it can be seen that current will be flowing into C_{0} for the second half of toN through the first half of tOFF, or a time , tON $/ 2+$ toff $/ 2$. The current flowing for this time is $\Delta I_{\mathrm{L}} / 4$. The resulting $\Delta \mathrm{V}_{\mathrm{c}}$ or $\Delta \mathrm{V}_{\mathrm{o}}$ is described by:

$$
\begin{aligned}
\Delta V_{\text {op-p }} & =\frac{1}{C} \cdot \frac{\Delta I_{L}}{4} \cdot\left(\frac{t_{O N}}{2}+\frac{t_{O F F}}{2}\right) \\
& =\frac{\Delta I_{L}}{4 C}\left(\frac{t_{O N}+t_{O F F}}{2}\right)
\end{aligned}
$$

Since $\Delta I_{L}=\frac{V_{0}(T-\text { toN })}{L 1}$ and toN $=\frac{V_{0} T}{V_{I N}}$
$\Delta V_{\text {op-p }}=\frac{V_{0}\left(T-\frac{V_{0} T}{V_{I N}}\right)}{4 C L 1}\left(\frac{T}{2}\right)=\frac{\left(V_{I N}-V_{0}\right) V_{0} T^{2}}{8 V_{I N} C_{0} L 1}$ or
$C_{0}=\frac{\left(V_{I N}-V_{0}\right) V_{0} T^{2}}{8 \Delta V_{0} V_{I N} L 1}$
where: C is in farads, T is \qquad
ΔV_{o} is $\mathrm{p}-\mathrm{p}$ output ripple

The inductor's current cannot be allowed to fall to zero, as this would cause the inductor to saturate: For this reason some minimum I_{0} is required as shown below:
$I_{O}(M I N)=\frac{\left(V_{I N}-V_{0}\right) \text { toN }}{2 L 1}=\frac{\left(V_{I N}-V_{0}\right) V_{0}}{2 f V_{I N} L 1}$

Typical Applications (Continued)

A complete step-down switching regulator schematic, using the LM3524, is illustrated in Figure 15. Transistors Q 1 and Q 2 have been added to boost the output to 1 A . The 5 V regulator of the LM3524 has been divided in half to bias the error amplifier's non-inverting input to within its common-mode range. Since each output transistor is on for half the period, actually 45%, they have been paralleled to allow longer possible duty cycles, up to 90%. This makes a lower possible input voltage. The output voltage is set by:
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{NI}}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)$,
where V_{NI} is the voltage at the error amplifier's noninverting input.

Resistor R3 sets the current limit to:
$\frac{200 \mathrm{mV}}{R 3}=\frac{200 \mathrm{mV}}{0.15}=1.3 \mathrm{~A}$.

Figure 16 and 17 show a PC board layout and stuffing diagram for the $5 \mathrm{~V}, 1 \mathrm{~A}$ regulator of Figure 15. The regulator's performance is listed in Table I.

[^6]FIGURE 15.5V, 1 Amp Step-Down Switching Regulator

Typical Applications (Continued)

TABLE I

PARAMETER	CONDITIONS	TYPICAL CHARACTERISTICS
Output Voltage	$V_{I N}=10 \mathrm{~V}, \mathrm{I}_{0}=1 \mathrm{~A}$	5 V
Switching Frequency	$V I N=10 \mathrm{~V}, \mathrm{I}_{0}=1 \mathrm{~A}$	20 kHz
Short Circuit Current Limit	$V_{\text {IN }}=10 \mathrm{~V}$	1.3A
Load Regulation	$\begin{aligned} & V_{I N}=10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=0.2-1 \mathrm{~A} \end{aligned}$	3 mV
Line Regulation	$\begin{aligned} & \Delta V_{I N}=10-20 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} \end{aligned}$	6 mV
Efficiency	$V_{I N}=10 \mathrm{~V}, \mathrm{I}_{0}=1 \mathrm{~A}$	80\%
Output Ripple	$V_{I N}=10 \mathrm{~V}, \mathrm{I}_{0}=1 \mathrm{~A}$	$10 \mathrm{mVp}-\mathrm{p}$

FIGURE 16. 5V, 1 Amp Switching Regulator, Foil Side

FIGURE 17. Stuffing Diagram, Component Side.

Typical Applications (Continued)

THE STEP-UP SWITCHING REGULATOR

Figure 18 shows the basic circuit for a step-up switching regulator. In this circuit Q 1 is used as a switch to alternately apply VIN across inductor L1. During the time, tON, Q1 is ON and energy is drawn from VIN and stored in $\mathrm{L} 1 ; \mathrm{D} 1$ is reverse biased and I_{O} is supplied from the charge stored in C_{O}. When Q 1 opens, tOFF, voltage V1 will rise positively to the point where D1 turns

ON. The output current is now supplied through L1,D1 to the load and any charge lost from C_{O} during toN is replenished. Here also, as in the step-down regulator, the current through L 1 has a DC component plus some $\Delta I_{L} \cdot \Delta I_{L}$ is again selected to be approximately 40% of IL. Figure 19 shows the inductor's current in relation to Q1's ON and OFF times.

FIGURE 18. Basic Step-Up Switching Reguiator

FIGURE 19

Typical Applications (Continued)

From $\Delta I_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{L}} \mathrm{T}}{\mathrm{L}}, \Delta \mathrm{I}_{\mathrm{L}}{ }^{+} \simeq \frac{\mathrm{V}_{\mathrm{IN}^{\prime} \mathrm{ON}}}{\mathrm{L} 1}$
and $\Delta I_{L}^{-} \simeq \frac{\left(V_{0}-V_{\text {IN }}\right) \text { toFF }}{L 1}$

Since $\Delta I_{L}{ }^{+}=\Delta I_{L}{ }^{-}, ~ V I N t O N=V_{0}$ tOFF $-V_{I N T O F F}$, and neglecting $\mathrm{V}_{\text {SAT }}$ and $\mathrm{V}_{\mathrm{D} 1}$
$V_{0} \simeq V_{\text {IN }}\left(1+\frac{\text { toN }}{\text { tOFF }}\right)$

The above equation shows the relationship between $V_{I N}, V_{O}$ and duty cycle.

In calculating input current $\operatorname{IIN}(D C)$, which equals the inductor's DC current, assume first 100\% efficiency:
$P_{I N}=\operatorname{IIN}(D C) V_{I N}$

POUT $=I_{0} V_{0}=I_{0} V_{I N}\left(1+\frac{\text { toN }^{\text {ONF }}}{\text { tOFF }}\right)$
for $\eta=100 \%$, POUT $=P_{\text {IN }}$
$I_{0} V_{I N}\left(1+\frac{t_{O N}}{\text { tOFF }}\right)=I_{I N}(D C) V_{I N}$
$\operatorname{IIN}(D C)=I_{0}\left(1+\frac{\text { toN }}{\text { tOFF }}\right)$

This equation shows that the input, or inductor, current is larger than the output current by the factor $(1+$ toN $/$ tOFF). Since this factor is the same as the relation between V_{O} and $V_{I N}, I_{\text {IN }}(D C)$ can also be expressed as:
$\operatorname{IIN}(D C)=I_{0}\left(\frac{V_{0}}{V_{1 N}}\right)$

So far it is assumed $\eta=100 \%$, where the actual efficiency or η MAX will be somewhat less due to the saturation voltage of Q1 and forward on voltage of D1. The internal power loss due to these voltages is the average I_{L} current flowing, or $I_{I N}$, through either $V_{S A T}$ or $V_{D 1}$. For $V_{S A T}=V_{D 1}=1 V$ this power loss becomes IIN(DC) (1V). $\mathrm{mMAX}^{(i s}$ then:
η MAX $=\frac{P_{0}}{P_{I N}}=\frac{V_{0} I_{0}}{V_{0} I_{0}+I_{I N}(1 V)}=\frac{V_{0} I_{0}}{V_{0} I_{0}+I_{0}\left(1+\frac{\text { toN }}{\text { tOFF }}\right)}$

From $V_{0}=V_{I N}\left(1+\frac{\text { tON }}{\text { tOFF }}\right)$,
$\eta_{\max }=\frac{V_{\text {IN }}}{V_{\text {IN }}+1}$

This equation assumes only DC losses, however η MAX is further decreased because of the switching time of Q1 and D1.

In calculating the output capacitor C_{0} it can be seen that C_{o} supplies I_{o} during $\mathrm{t} O \mathrm{~N}$. The voltage change on C_{o} during this time will be some $\Delta \mathrm{V}_{\mathrm{c}}=\Delta \mathrm{V}_{\mathrm{o}}$ or the output ripple of the regulator. Calculation of C_{o} is:
$\Delta V_{0}=\frac{I_{0} t O N}{C_{0}}$ or $C_{o}=\frac{I_{0} t_{O N}}{\Delta V_{O}}$
From $V_{O}=V_{\text {IN }}\left(\frac{T}{\text { tOFF }}\right) ;$ tOFF $=\frac{V_{I N}}{V_{O}} T$
where $T=$ tON + tOFF $=\frac{1}{f}$
tON $=T-\frac{V_{I N}}{V_{0}} T=T\left(\frac{V_{0}-V_{I N}}{V_{0}}\right)$ therefore:
$C_{0}=\frac{I_{0} T\left(\frac{V_{0}-V_{I N}}{V_{0}}\right)}{\Delta V_{0}}=\frac{I_{0}\left(V_{0}-V_{I N}\right)}{f \Delta V_{0} V_{0}}$
where: C_{0} is in farads, f is the switching frequency, ΔV_{O} is the p-p output ripple

Calculation of inductor L 1 is as follows:
$L_{1}=\frac{V_{\text {INtON }}}{\Delta I^{+}}$, since during toN .

VIN is applied across L1
$\Delta_{\text {Lp.p }}=0.4 I_{\mathrm{L}}=0.41_{\mathrm{IN}}=0.41_{\mathrm{O}}\left(\frac{V_{o}}{V_{I N}}\right)$, therefore:

$$
L_{1}=\frac{V_{\text {INtON }}}{0.4 I_{0}\left(\frac{V_{0}}{V_{\text {IN }}}\right)} \text { and since tON }=\frac{T\left(V_{0}-V_{\text {IN }}\right)}{V_{0}}
$$

$$
\mathrm{LI}=\frac{2.5 \mathrm{~V}_{\mathrm{IN}}{ }^{2}\left(\mathrm{~V}_{0}-\mathrm{V}_{\mathrm{IN}}\right)}{\mathrm{fl}_{\mathrm{o}} \mathrm{~V}_{0}^{2}}
$$

where: L1 is in henrys, f is the switching frequency in Hz

Typical Applications
(Continued)

To apply the above theory, a complete step-up switching regulator is shown in Figure 20. Since VIN is 5 V , $\mathrm{V}_{\text {REF }}$ is tied to $\mathrm{VIN}_{\text {IN }}$. The input voltage is divided by 2 to bias the error amplifier's inverting input. The output voltage is:

$$
V_{\text {OUT }}=\left(1+\frac{R 2}{R 1}\right) \cdot V_{\text {INV }}=2.5 \cdot\left(1+\frac{R 2}{R 1}\right)
$$

The network D1, C1 forms a slow start circuit.
This holds the output of the error amplifier initially low thus reducing the duty-cycle to a minimum. Without the slow start circuit the inductor may saturate at turn-on because it has to supply high peak currents to charge the output capacitor from OV. It should
also be noted that this circuit has no supply rejection. By adding a reference voltage at the non-inverting input to the error amplifier, see Figure 21, the input voltage variations are rejected.

The LM3524 can also be used in inductorless switching regulators. Figure 22 shows a polarity inverter which if connected to Figure 20 provides a -15 V unregulated output.

MOTOR SPEED CONTROL

Figure 23 shows a regulating series DC motor speed control circuit using the LM3524 for the control and drive for the motor and the LM2907 as a speed sensor for the feedback network.

L1 $=>25$ turns No. 24 wire on Ferroxcube No. K300502 Torroid core.
FIGURE 20. 15V, 0.5A Step-Up Switching Regulator

FIGURE 21

FIGURE 22

FIGURE 23. Motor Speed Control

LH1605/LH1605C

5 Amp, High Efficiency Switching Regulator

General Description

The LH1605 is a hybrid switching regulator with high output current capability. It incorporates a temperaturecompensated voltage reference, a duty cycle modulator with the oscillator frequency programmable, error amplifier, high current-high voltage output switch, and a power diode. The LH1605 can supply up to 5A or output current over a wide range of regulated output voltages.

Features

- Step down switching regulator
- Output adjustable from 3.0 to 30 V
- 5A output current
- High efficiency
- Frequency adjustable to 100 kHz
- Standard 8-pin TO-3 package

Block Diagram and Connection Diagram

Order Number LH1605K or LH1605CK See NS Package K08A

TOP VIEW

Absolute Maximum Ratings

$V_{I N}$
$l_{\text {OUT }}$
T_{J}
P_{D}
T_{A}

Input Voltage
35V Max.
Output Current
6A
Operating Temperature $150^{\circ} \mathrm{C}$
Internal Power Dissipation 20W
$T_{A} \quad$ Operating Temperature Range LH1605C LH1605
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$T_{\text {STG }} \quad$ Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{R}}\left(\mathrm{V}_{8-7}\right)$ Steering Diode Reverse Voltage	60 V
A	

$I_{D}\left(1_{7-8}\right) \quad$ Steering Diode Forward Current 6A

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$ unless otherwise specified.

Symbol	Characteristics	Conditions		LH1605			LH1605C			Units
				Min.	Typ.	Max.	Min.	Typ.	Max.	
Vout	Output Voltage Range	$\begin{aligned} & V_{\text {II }} \geqslant V_{\text {OUT }}+5 \mathrm{~V} \\ & \text { IOUT }=2 A \text { (Note 2) } \end{aligned}$		3.0		30	3.0		30	V
$V_{\text {s }}$	Switch Saturation Voltage	$\begin{aligned} & I_{C}=5.0 \mathrm{~A} \\ & I_{C}=2.0 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.2 \end{aligned}$	
V_{F}	Steering Diode On Voltage	$\begin{aligned} & I_{D}=5.0 \mathrm{~A} \\ & I_{D}=2.0 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 2.0 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.0 \end{aligned}$	
$\mathrm{V}_{\text {IN }}$	Supply Voltage Range			10		35	10		35	
I_{R}	Steering Diode Reverse Current	$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$			0.1	10.0		0.1	10.0	$\mu \mathrm{A}$
10	Quiescent Current	$\begin{aligned} & \text { Iout }=0.2 \mathrm{~A}(\text { Note } 3) \\ & 50 \% \text { Duty Cycle } \end{aligned}$			30			30		
		0\% Duty Cycle ($\mathrm{V}_{3}=3.0 \mathrm{~V}$)			6			6		mA
		100\% Duty Cycle ($\mathrm{V}_{3}=0 \mathrm{~V}$)			46			46		
V_{2}	Reference Voltage on Pin 2			2.42	2.50	2.58		2.50		V
		$\mathrm{T}_{\text {MIN }} \leqslant \mathrm{T}_{\text {A }} \leqslant \mathrm{T}_{\text {MAX }}$		2.40	2.50	2.60		2.50		
$\Delta V_{2} / \Delta T$	V_{2} Temperature Coefficient				100			100		ppm/ ${ }^{\circ} \mathrm{C}$
ΔV_{2}	Line Regulation of Reference Voltage on Pin 2	$\begin{aligned} & 10 \mathrm{~V} \leqslant \mathrm{~V}_{I N} \leqslant 35 \mathrm{~V} \\ & \mathrm{~T}_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }} \end{aligned}$			20	30		20		mV
V_{3}	Voltage on Pin 3	(Note 4)		2.45	2.50	2.55		2.50		V
			$N \leqslant T_{C} \leqslant T_{\text {MAX }}$	2.42	2.50	2.58		2.50		
V_{4}	Voltage Swing - Pin 4				3.0			3.0		V
I_{4}	Charging Current - Pin 4				70	,		70		$\mu \mathrm{A}$
$\Delta \mathrm{R}_{\mathrm{A}} / \Delta \mathrm{T}$	Resistance Temp. Coeff.				75			75		ppm/ ${ }^{\circ} \mathrm{C}$
t_{r}	Voltage Rise Time	$V_{\text {OUT }}=10 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=2.0 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OUT}}=5.0 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 350 \\ & 500 \end{aligned}$			$\begin{aligned} & 350 \\ & 500 \end{aligned}$		ns
t_{f}	Voltage Fall Time	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=2.0 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OUT}}=5.0 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 300 \\ & 400 \end{aligned}$			$\begin{aligned} & 300 \\ & 400 \end{aligned}$		
$\mathrm{t}_{\text {s }}$	Storage Time	$\begin{aligned} & V_{\text {OUT }}=10 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=5.0 \mathrm{~A} \end{aligned}$			1.5			1.5		$\mu \mathrm{S}$
$t_{\text {d }}$	Delay Time				100			100		ns
$P_{\text {D }}$	Power Dissipation	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=10 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=5.0 \mathrm{~A} \end{aligned}$			16			16		W
η	Efficiency				75			75		\%
$\theta_{\text {JC }}$	Thermal Resistance				5.0			5.0		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: θ_{JA} is typically $30^{\circ} \mathrm{C} / \mathrm{W}$ for natural convection cooling.
Note 2: V Typical Application circuit.
Note 3: Quiescent current depends on the duty cycle of the switching transistor. The average quiescent current may be calculated from known operating parameters.
Note 4: Voltage on pin 3 is tested by applying a $+5.0 \mathrm{~V}_{\mathrm{DC}}$ voltage through a precision $2.0 \mathrm{k} \Omega$ resistor to pin 3 . This method combines the error due to the input bias current of the error amplifier, and the tolerance of the $2 k \Omega$ resistor from pin 3 to ground.
Note 5: The input offset voltage of the error amplifier is wafer tested to a maximum of 10 mV .

Typical Performance Characteristics

Reference Voltage
(Pin 2)vs. Temperature

TC. CASE TEMPERATURE (${ }^{\circ} \mathrm{C}$)
Line Transient Response (Test Circuit)

Switch Saturation Voltage vs. Collector Current

IC-COLLECTOR CURRENT (A)

Frequency vs. Timing Capacitance

Quiescent Current vs. Input Voltage
(0\% Duty Cycle)
 input voltage (v)

Diode Forward Voltage
vs. Forward Current

Frequency vs Temperature

Quiescent Current vs. Input Voltage
(100\% Duty Cycle)

INPUT VOLTAGE (VOLTS)
Ripple Rejection vs. Frequency

Quiescent Current vs.
Temperature
(0\% Duty Cycle)

TC, CASE TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Typical Performance Characteristics (continued)

Typical Power Supply System

Motor Speed Regulation System

Applications Information

Output Voltage Programming

A single resistor is required to set the supply output voltage. The value may be computed using the following relationship:

$$
R_{S}=2 \mathrm{k} \Omega \frac{V_{O U T}-2.5 \mathrm{~V}}{2.5 \mathrm{~V}}
$$

The internal $2 \mathrm{k} \Omega$ resistor connected between pin 3 and ground has a typical tolerance of $\pm 1 \%$ and a typical temperature coefficient of $\pm 75 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Thus the overall supply tolerance may be computed given the tolerance of the reference voltage at pin 2.

Short Circuit Protection

Permanent damage to the device will result under prolonged ($>10 \mathrm{~ms}$) short circuit condition. Current limit protection may be added using the circuit shown in the following figure:

Heat Sink Considerations

Even at moderate output power, there will be significant self-heating due to internal power dissipation. The junction temperature rise must be kept below $150^{\circ} \mathrm{C}$ under all operating conditions. A useful expression for steadystate thermal design is given below:

$$
P_{D I S S}=\frac{T_{J(M A X)}-T_{A(M A X)}}{\theta_{J C}+\theta_{C S}+\theta_{S A}}
$$

where:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{J}(\mathrm{MAX})}= \text { Maximum allowable junction temperature, } \\
&{ }^{\circ} \mathrm{C} . \\
& \mathrm{T}_{\mathrm{A}(\mathrm{MAX})}= \text { Maximum ambient operating temperature, }{ }^{\circ} \mathrm{C} . \\
& \theta_{\mathrm{JC}}= \text { Device junction-to-case thermal } \\
& \text { resistance, typically } 4.5^{\circ} \mathrm{C} / \mathrm{W} . \\
& \theta_{\mathrm{CS}}=\text { Case-to-heatsink thermal resistance in }{ }^{\circ} \mathrm{C} / \mathrm{W} . \\
& \theta_{\mathrm{SA}}=\text { Heatsink-to-ambient thermal resistance } \\
& \text { in }{ }^{\circ} \mathrm{C} / \mathrm{W} .
\end{aligned}
$$

Typically, the case-to-heatsink thermal resistance depends on the interface materials used. The following list gives the expected values for various materials:

$0.002^{\prime \prime}$ thick insulating Mica, without thermal grease with thermal grease	$\begin{aligned} & 1.20^{\circ} \mathrm{C} / \mathrm{W} \\ & 0.35^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$0.003^{\prime \prime}$ thick insulating Mica, without thermal grease with thermal grease	$\begin{aligned} & 1.30^{\circ} \mathrm{C} / \mathrm{W} \\ & 0.38^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Bare joint, without thermal grease with thermal grease	$\begin{aligned} & 0.50^{\circ} \mathrm{C} / \mathrm{W} \\ & 0.15^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

Most heatsink manufacturers do provide the heatsink-to-ambient thermal resistance, under convection as well as forced-air cooling. A partial list of the hardware is included in the back of the data sheet.

Reference Voltage Bypass

Because of the inherent high current switching nature of the device, switching spikes can find their way into the linear amplifier circuit. Output noise and ripple voltage can be improved drastically by bypassing the reference voltage pin with a $10 \mu \mathrm{~F}$ solid tantalum capacitor connected from pin 2 to ground.

Minimization of Output Voltage Spikes

The best solution to minimize switching spike noise can be found in laying out the circuit. An input single-point ground and an output single-point ground should be used. The schematic is shown in the typical application circuit. Where high current flows, conductor trace should be as wide as possible.

The ripple current frequency is usually in the order of tens of kilohertz, therefore the input and output filter capacitors should be of low ESR (Equivalent Series Resistance) type over extended frequency range in order to minimize noise generation. They should be of high quality construction with ratings sufficient to withstand current and voltage surges. Generally, selecting a capacitor with a working voltage rating that is a minimum of 10 V above the worst-case operating voltage is recommended.

The output can be filtered further by means of a very high frequency π-filter network using inexpensive ferrite beads. An example is shown in the figure below. Because the fre-

quency of the noise spike ranges typically from 50 to over 100 MHz , the ferrite bead selected should have its impedance peak in that region. One or more beads may be strung in series on the wire to increase the peak impedance as well as to increase the absorption loss to the higher frequencies. This would also minimize parasitic oscillation.

* FERRONICS TYPE J CORE MATERIAL FERROXCUBE TYPE 4AG CORE MATERIAL

RFI/EMI Suppression

High frequency radiation can be an important system consideration, particularly if the surrounding circuitry is sensitive to it. Metallic shielding around the switching circuitry is an effective means of suppression. A perforated metal cover works well both to contain radiation and to allow unrestricted convection cooling. Grounded conductor plane on the PC board also helps fully enclose the critical circuits.

Metallic shield is generally adequate in shielding the magnetic field radiated around the magnetic components. A more effective design is the use of the selfshielding property of ferrite pot core, which acts as EMI shield around the coil winding. Magnetic flux leakage of this type is minimal.

Design Guide

Efficiency Calculation

The design of a complete voltage regulator with the LH1605 is relatively straightforward. The efficiency of a regulator can be calculated with the following equations:

$$
\begin{equation*}
\text { Efficiency }(\eta)=\frac{\text { Pout } \times 100}{P_{\text {IN }}} \tag{1}
\end{equation*}
$$

Transistor DC Losses $\left(P_{T}\right)=$ IOUT $\times V_{S} \frac{t_{\text {ON }}}{t_{\text {ON }}+t_{\text {OFF }}}$
Diode DC Losses $\left(P_{D}\right)=$ IOUT $\times V_{S} \frac{t_{\text {OFF }}}{t_{\text {ON }}+t_{\text {OFF }}}$
Drive Circuit Losses $\left(D_{L}\right)=\frac{V_{I N}{ }^{2}}{300} \times \frac{t_{\text {ON }}}{t_{\text {ON }}+t_{\text {OFF }}}$
Switching Losses Transistor $\left(\mathrm{P}_{\mathbf{S}}\right)=$

$$
\begin{equation*}
V_{I N} \times l_{\text {OUT }} \frac{t_{r}+t_{f}}{2\left(t_{O N}+t_{O F F}\right)} \tag{5}
\end{equation*}
$$

Transistor Duty Cycle $=\frac{t_{O N}}{t_{O N}+t_{O F F}}=\frac{V_{O U T}}{V_{I N}}$
Diode Duty Cycle $=\frac{t_{\text {OFF }}}{t_{\text {ON }}+t_{\text {OFF }}}=1-\frac{V_{\text {OUT }}}{V_{I N}}$
Power Inductor (\mathbf{P}_{L}) $=1^{2}$ our $\times \mathrm{R}_{\mathrm{L}}$ (winding resistance) (8)
Efficiency $(\eta)=\frac{V_{\text {OUT }} \text { louT }}{V_{\text {OUT }} \text { louT }+P_{T}+P_{D}+D_{L}+P_{S}+P_{\mathrm{L}}} \times 100$ (9)

Design Procedure

Given five design requirements of the switching regulator:

1. Maximum and minimum input voltage.
2. Required output voltage.
3. Maximum and minimum load current.
4. Maximum allowable ripple voltage.
5. Desired switching frequency.

The values of the output LC filter can be computed. First, the off-time of the switching transistor is calculated.

$$
\begin{equation*}
t_{\text {OFF }}=\frac{1-\frac{V_{\text {OUT }}}{V_{\text {IN(MAX }}}}{f} \tag{10}
\end{equation*}
$$

The minimum equivalent frequency of the switching transistor at minimum input voltage is:

$$
\begin{equation*}
f_{\text {MIN }}=\frac{1-\frac{V_{\text {OUT }}}{V_{\text {IN(MIN }}}}{\mathrm{t}_{\mathrm{OFF}}} \tag{11}
\end{equation*}
$$

The allowable peak-to-peak ripple current ($\Delta \mathrm{i}$) through the inductor is:

$$
\begin{equation*}
\Delta i=2 \times l_{\text {O(MIN })} \tag{12}
\end{equation*}
$$

The inductance can now be calculated by:

$$
\begin{equation*}
L=\frac{V_{\text {OUT }} t_{\text {OFF }}}{\Delta i} \tag{13}
\end{equation*}
$$

The value calculated for Δi is somewhat arbitrary. However, equation 12 is a good rule of thumb. Thus Δi may be adjusted to obtain a practical value for the inductance.
The minimum output filter capacitance is given by:

$$
\begin{equation*}
C=\frac{\Delta l}{8 \times f_{\text {MIN }} \times \Delta e_{O}} \tag{14}
\end{equation*}
$$

where $\Delta \theta_{0}$ is the allowable ripple voltage.
Finally, the maximum ESR of the capacitor is:

$$
\begin{equation*}
\operatorname{ESR}_{\text {MAX }}=\frac{\Delta e_{\mathrm{O}}}{\Delta i} \tag{15}
\end{equation*}
$$

Inductor Design

One last bit of information, Ll^{2}, must be calculated in order to determine the minimum usable inductor core without core saturation. The L is the inductance obtained from equation 13, and I is the maximum DC output current in the inductor, which equals $\mathrm{I}_{\mathrm{O}(\mathrm{MAX})}+\Delta \mathrm{i}$. With the values of L and the product Ll^{2} known, one can select the optimum magnetic core from the core manufacturer catalogues. Several magnetic material manufacturers offer full lines of easily obtainable components. Refer to the last page of this data sheet for a partial list of manufacturers. A few vendors offer simplified design guides, such as the Magnetics Inc. Technical Bulletin Number SR-1, which makes a useful reference for any switching power system designer.

At this point, the designer must choose the core material type. There are two popular types - molypermalloy powder and ferrite cores. Both offer advantages depending on cost, space limitations, winding capabilities, and size for a given operating frequency.

Ferrite pot cores have the advantages of ease of winding and inherent magnetic self-shielding, whereas molypermalloy powder cores are made of insulated embrittled alloy powder which provides a uniformly distributed air gap. The effect is that the latter is capable of higher flux density for a given core size than ferrite core.

Once the core is selected, the number of winding turns N can be determined to obtain the required inductance:

$$
\begin{equation*}
N=1000 \sqrt{L / L_{1000}} \tag{16}
\end{equation*}
$$

where:
$N=$ number of turns needed.
$\mathrm{L}=$ inductance desired.
$L_{1000}=$ nominal inductance ($\mathrm{mH} / 1000$ turns) for a given core specifed by the manufacturers.

Design Example

Design requirements:
$\mathrm{V}_{\mathrm{IN}(\text { MAX })}=15 \mathrm{~V}$
$V_{\text {IN(MIN) }}=10 \mathrm{~V}$
$V_{\text {OUT }}=5 \mathrm{~V}$
l^{\prime} (max) $=3 A$
$l_{\text {(MIN) }}=1 \mathrm{~A}$
Output Ripple (Δe_{0}) $=20 \mathrm{mV}$
Operating Frequency (f) $=25 \mathrm{kHz}$
Using equations 10 through 15 :

$$
\begin{aligned}
& t_{\text {OFF }}=\frac{1-\frac{5 \mathrm{~V}}{15 \mathrm{~V}}}{25 \mathrm{kHz}}=26.7 \mu \mathrm{~s} \\
& \mathrm{f}_{\mathrm{MIN}}=\frac{1-\frac{5 \mathrm{~V}}{10 \mathrm{~V}}}{26.7 \mu \mathrm{~S}}=18.7 \mathrm{kHz} \\
& \Delta \mathrm{i}=2 \times 1 \mathrm{~A}=2 \mathrm{~A} \\
& \mathrm{~L}=\frac{5 \mathrm{~V} \times 26.7 \mu \mathrm{~S}}{2 \mathrm{~A}}=67 \mu \mathrm{H} \\
& \mathrm{C}=\frac{2 \mathrm{~A}}{8 \times 18.7 \mathrm{kHz} \times 20 \mathrm{mV}}=668 \mu \mathrm{~F} \text { Minimum } \\
& E S R_{\mathrm{MAX}}=\frac{20 \times 10^{-3}}{2}=10 \mathrm{~m} \Omega
\end{aligned}
$$

The power handling capability of the inductor is calculated:

$$
\mathrm{E}_{\mathrm{L}}=\mathrm{LI}{ }^{2}
$$

where:

$$
\begin{aligned}
\mathrm{L} & =\text { Inductor } \\
\mathrm{I} & =\text { Peak current in the inductor } \\
& =\mathrm{I}_{\mathrm{O}(\mathrm{MAX})}+\Delta \mathrm{i}
\end{aligned}
$$

Assuming molypermalloy powder core is chosen for the design, and using the Core Selection Table in the Magnetic, Inc. Technical Bulletin Number SR-1, the minimum core size usable with minimum winding is Part Number 55894, which is a 60 perm core. Since the 125 perm of the same core size family is very popular and consequently of lower cost, the 55930 part is selected for the design. The specified nominal inductance is 157 mH per 1000 turns. The numer of turns is calculated from equation 16:

$$
N=1000 \sqrt{\frac{67 \mu \mathrm{H}}{157 \mathrm{mH}}}=21 \text { turns }
$$

Using the Frequency vs. Timing Capacitor Plot, a $0.001 \mu \mathrm{~F}$ capacitor is used in order to obtain the 25 kHz operating frequency.

Finally, the output of 5 V is programmed by computing the output voltage-set resistor:

$$
R_{\mathrm{S}}=2 \mathrm{k} \Omega \frac{\mathrm{~V}_{\mathrm{OUT}}-2.5 \mathrm{~V}}{2.5 \mathrm{~V}}=2 \mathrm{k} \Omega
$$

The complete design is shown in the schematic below:

$$
\begin{array}{lr}
\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} & \text { Output Ripple }\left(@ \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}\right)=50 \mathrm{mV} \text { P.P } \\
\mathrm{V}_{\text {OUT }}=5 \mathrm{~V} & (@ 1 \mathrm{I}=3 \mathrm{~A})=100 \mathrm{mV} \mathrm{P} . \mathrm{P} \\
& \text { Load Regulation }(1 \mathrm{~A} \text { to } 3 \mathrm{~A})=30 \mathrm{mV} \\
& \text { Line Regulation }(10 \mathrm{~V} \text { to } 20 \mathrm{~V})=10 \mathrm{mV}
\end{array}
$$ Voltage Regulators

LM2930 3-Terminal Positive Regulator

General Description

The LM2930 3-terminal positive voltage regulator features an ability to source 150 mA of output current with an inputoutput differential of 0.6 V or less. Efficient use of low input voltages obtained, for example, from an automotive battery during cold crank conditions, allows 5 V circuitry to be properly powered with supply voltages as low as 5.6 V . Familiar regulator features such as current limit and thermal overload protection are also provided.
Designed primarily for automotive applications, the LM2930 and all regulated circuitry are protected from reverse battery installations or 2 battery jumps. During line transients, such as a load dump (40 V) when the input voltage to the regulator can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both internal circuits and the load. The LM2930 cannot be harmed by temporary mirror-image insertion.

Fixed outputs of 5 V and 8 V are available in the plastic TO-220 power package.

Features

- Input-output differential less than 0.6 V
- Output current in excess of 150 mA
- Reverse battery protection
- 40V load dump protection
- Internal short circuit current limit
- Internal thermal overload protection
- Mirror-image insertion protection
- 100% electrical burn-in in thermal limit

Voltage Range

LM2930T-5.0	5 V
LM2930T-8.0	8 V

Schematic and Connection Diagrams

(TO-220)
Plastic Package

front view
Order Number LM2930T-5.0 or LM2930T-8.0 See NS Package T03B

Absolute Maximum Ratings

Input Voltage	
Operating Range	26 V
Overvoltage Protection	40 V
Reverse Voltage (100 ms)	-12 V
Reverse Voltage (DC)	-6 V

Internal Power Dissipation (Note 1)	Internally Limited
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$230^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

LM2930T-5.0 ($\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C} 2=10 \mu \mathrm{~F}$, unless otherwise specified)

Parameter	Conditions	Min	Typ	Max	Units
Output Voltage	$\begin{aligned} & 6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}} \mathrm{~N} \leq 26 \mathrm{~V}, 5 \mathrm{~mA} \leq \mathrm{I} \mathrm{O} \leq 150 \mathrm{~mA}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	4.5	5	5.5	V
Line Regulation	$\begin{aligned} & 9 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \\ & 6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$		7 30	25 80	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Load Regulation	$5 \mathrm{~mA} \leq 1 \mathrm{O} \leq 150 \mathrm{~mA}$		14	50	mV
Output Impedance	100 mADC \& $10 \mathrm{mArms}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$		200		$\mathrm{m} \Omega$
Quiescent Current	$\begin{aligned} & I O=10 \mathrm{~mA} \\ & I O=150 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 4 \\ 18 \end{gathered}$	$\begin{gathered} 7 \\ 40 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Noise Voltage	$10 \mathrm{~Hz} \cdot 100 \mathrm{kHz}$		140		$\mu \mathrm{Vrms}$
Long Term Stability			20		$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$		56		dB
Current Limit		150	400	700	mA
Dropout Voltage	$\mathrm{I} \mathrm{O}=150 \mathrm{~mA}$		0.32	0.6	V
Output Voltage Under Transient Conditions	$-12 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	-0.3		5.5	V

Electrical Characteristics (Note 2)

LM2930T-8.0 ($\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{IO}_{\mathrm{O}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C} 2=10 \mu \mathrm{~F}$, unless otherwise specified)

Parameter	Conditions	Min	Typ	Max	Units
Output Voltage	$\begin{aligned} & 9.4 \mathrm{~V} \leq \mathrm{V}_{1} \mathrm{~N} \leq 26 \mathrm{~V}, 5 \mathrm{~mA} \leq \mathrm{I} \mathrm{O} \leq 150 \mathrm{~mA}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	7.2	8	8.8	V
Line Regulation	$9.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 16 \mathrm{~V}, \mathrm{IO}=5 \mathrm{~mA}$		12	50	mV
	$9.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V}, 1 \mathrm{O}=5 \mathrm{~mA}$		50	100	mV
Load Regulation	$5 \mathrm{~mA} \leq 1 \mathrm{O} \leq 150 \mathrm{~mA}$		25	50	mV
Output Impedance	100 mADC \& $10 \mathrm{mArms}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$		300		$\mathrm{m} \Omega$
Quiescent Current	$\mathrm{l} \mathrm{O}=10 \mathrm{~mA}$		4	7	mA
	$1 \mathrm{O}=150 \mathrm{~mA}$		18	40	mA
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$		170		$\mu \mathrm{Vrms}$
Long Term Stability			30		$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$		52		dB
Current Limit		150	400	700	mA
Dropout Voltage	$\mathrm{l} \mathrm{O}=150 \mathrm{~mA}$		0.32	0.6	V
Output Voltage Under Transient Conditions	$-12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	-0.3		8.8	V

Note 1: Thermal resistance without a heat sink for junction to case temperature is $4^{\circ} \mathrm{C} W$ and for case to ambient temperature is $50^{\circ} \mathrm{C} W$.
Note 2: All characteristics are measured with a capacitor across the input of $0.1 \mu \mathrm{~F}$ and a capacitor across the output of $10 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_{w} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Typical Performance Characteristics

Low Voltage Behavior

Dropout Voltage

High Voltage Behavior

Load Transient Response

Peak Output Current

Quiescent Current

Ripple Rejection

Quiescent Current

Quiescent Current

Ripple Rejection

Typical Performance Characteristics (Continued)

Output Impedance

Output at Reverse Supply

Overvoltage Supply Current

Output Voltage (Normalized to 1 V at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$)

Typical Application

*Required if regulator is located far from power supply filter.
**C2 may be either an Aluminum or Tantalum type capacitor but must be rated to operate at $-40^{\circ} \mathrm{C}$ to guarantee regulator stability to that temperature extreme. $10 \mu \mathrm{~F}$ is the minimum value required for stability and may be increased without bound. Locate as close as possible to the regulation.

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped ' 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.

Input Voltage: The DC voltage applied to the input terminals with respect to ground.

Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.

Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.

Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.

Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.

Temperature Stability of $\mathbf{V}_{\mathbf{0}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

Maximum Average Power

 Dissipation

LM2931 Series Low Dropout Regulators

General Description

The LM2931 positive voltage regulator features a very low quiescent current of 1 mA or less when supplying 10 mA loads. This unique characteristic and the extremely low input-output differential required for proper regulation (0.2 V for output currents of 10 mA) make the LM2931 the ideal regulator for standby power systems. Applications include memory standby circuits, CMOS and other low power processor power supplies as well as systems demanding as much as 150 mA of output current.
Designed primarily for automotive applications, the LM2931 and all regulated circuitry are protected from reverse battery installations or 2 battery jumps. During line transients, such as a load dump (60 V) when the input voltage to the regulator can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both internal circuits and the load. The LM2931 cannot be harmed by temporary mirror-image insertion. Familiar regulator features such as short circuit and thermal overload protection are also provided.
Fixed output of 5 V is available in the plastic TO-220 power package or the popular TO-92 package. An adjustable output version, with on/off switch, is available in a 5 -lead TO-220 package.

Features

- Very low quiescent current
- Output current in excess of 150 mA
- Input-output differential less than 0.6 V
- Reverse battery protection
- 60 V load dump protection
- -50 V reverse transient protection
- Short circuit protection
- Internal thermal overload protection
- Mirror-image insertion protection
- Available in plastic TO-220 or TO-92
- Available as adjustable with TTL compatible switch

Output Voltage Options

LM2931AT-5.0 5V LM2931AZ-5.0 5V

LM2931T

Adjustable
(Contact factory for other fixed output options.)

Schematic and Connection Diagrams

TO. 220 3-Lead

Order Number LM2931AT-5.0 See NS Package T03B

Order Number LM2931AZ•5.0 See NS Package Z03A

TO-220 5-Lead

FRONT VIEW
Order Number LM2931T
See NS Package T05A

Absolute Maximum Ratings

Input Voltage
Operating Range
Overvoltage Protection
LM2931A, LM2931 Adjustable
Internal Power Dissipation (Note 1)
60 V
Internally Limited

Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$230^{\circ} \mathrm{C}$

Electrical Characteristics for 5V

$\left(\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Conditions	LM2931A.5.0			Units
		Min	Typ	Max	
Output Voltage	$\begin{aligned} & 6.0 \mathrm{~V} \leq V_{\text {IN }} \leq 26 \mathrm{~V}_{,} \mathrm{IO} \leq 150 \mathrm{~mA}, \\ & -40^{\circ} \mathrm{C} \leq T_{1} \leq+125^{\circ} \mathrm{C} \end{aligned}$	4.75	5	5.25	V
Line Regulation	$9 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{I}} \leq 16 \mathrm{~V}$		2	10	mV
	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}$		4	30	mV
Load Regulation	$5 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 150 \mathrm{~mA}$		14	50	mV
Output Impedance	$100 \mathrm{~mA}_{\text {DC }}$ and $10 \mathrm{mArms}, 100 \mathrm{Hz-10} \mathrm{kHz}$		200		$\mathrm{m} \Omega$
Quiescent Current	$\begin{aligned} & \mathrm{I}_{\mathrm{O}} \leq 10 \mathrm{~mA}, 6 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq 26 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{1} \leq+125^{\circ} \mathrm{C} \end{aligned}$		0.4	1	mA
	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		15		mA
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$		500		$\mu \mathrm{Vrms}$
Long Term Stability			20		$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{o}}=120 \mathrm{~Hz}$		80		dB
Dropout Voltage	$\mathrm{I}_{0}=10 \mathrm{~mA}$		0.05	0.2	V
	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}$		0.3	0.6	V
Maximum Operational Input Voltage		26	33		V
Maximum Line Transient	$\mathrm{R}_{\mathrm{L}}=500 \mathrm{n}, \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	60	70		v
Reverse Polarity Input Voltage, DC	$\mathrm{V}_{0} \geq-0.3 \mathrm{~V}$	-15	-30		v
Reverse Polarity Input Voltage, Transient	1% Duty Cycle, $\tau \leq 100 \mathrm{~ms}$	-50	-80		v

Electrical Characteristics for Adjustable

$\left(\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\text {OUT }}+0.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Conditions	LM2931T			Units
		Min	Typ	Max	
Reference Voltage	$\mathrm{l}_{\mathrm{O}} \leq 15 \overline{0} \mathrm{~mA},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}, \mathrm{R} 1=27 \mathrm{k}$ Measured from Vour to Adjust Pin	1.12	1.20	1.28	V
Output Voltage Range	$\mathrm{R} 1=27 \mathrm{k}$	3		24	\checkmark
Line Regulation	$\mathrm{V}_{\text {OUT }}+0.6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}$		0.2	1.5	mV / V
Load Regulation	$5 \mathrm{~mA} \leq 10 \leq 150 \mathrm{~mA}$		0.3	1	\%
Output Impedance	100 mA DC and $10 \mathrm{mArms}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$		40		$m \Omega / v$
Quiescent Current	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}$		0.4 15	1	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	During Shutdown $\mathrm{R}_{\mathrm{L}}=500 \Omega$		0.8	1	mA
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$		100		${ }_{\mu \mathrm{Vrms} / \mathrm{V}}$
Long Term Stability			0.4		\%/1000 hr
Ripple Rejection	$\mathrm{f}_{0}=120 \mathrm{~Hz}$		0.002		\%N
Dropout Voltage	$10 \leq 10 \mathrm{~mA}$		0.05	0.2	V
	$\mathrm{I}_{0}=150 \mathrm{~mA}$		0.3	0.6	V
Maximum Operational Input Voltage		26	33		V
Maximum Line Transient	$\mathrm{I}_{0}=10 \mathrm{~mA}$, Reference Voltage $\leq 1.5 \mathrm{~V}$	60	70		v
Reverse Polarity Input Voltage, DC	$\mathrm{V}_{0} \geq-0.3 \mathrm{~V}$	-15	-30		v
Reverse Polarity Input Voltage, Transient	1% Duty Cycle, $\tau \leq 100 \mathrm{~ms}$	-50	-80	*	v
On/Off Threshold Voltage On Off	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$	3.0	2.0 2.2	1.2	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
On/Off Threshold Current			20	50	$\mu \mathrm{A}$

[^7] ambient temperature is $50^{\circ} \mathrm{C} / \mathrm{W}$. Thermal resistance for TO-92 case to ambient with $0.125^{\prime \prime}$ lead length to PC board is $105^{\circ} \mathrm{C} / \mathrm{W}$ and with $0.4^{\prime \prime}$ lead is $125^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics

Peak Output Current

Quiescent Current

Typical Performance Characteristics (Continued)

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Ripple Rejection

Quiescent Current

Ripple Rejection

Operation During Load Dump

Maximum Power Dissipation (TO-92)

Typical Applications

LM2931 Adjustable

* C2 may be either an Aluminum or Tantalum type capacitor but must be rated to operate at $-40^{\circ} \mathrm{C}$ to guarantee regulator stability to that temperature extreme. $100 \mu \mathrm{~F}$ is the minimum value required for stability and may be increased without bound. Locate as
Note: Using 28 k for R1 will automatically compensate for errors in VOUT due to the input bias current of the ADJ pin (approximately $1 \mu \mathrm{~A}$).

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.

Input Voltage: The DC voltage applied to the input terminals with respect to ground.

Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.

Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.

Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.

Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.

Temperature Stability of $\mathbf{V}_{\mathbf{0}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

National Semiconductor

LM78XX Series Voltage Regulators

General Description

The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi , and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM78XX series is available in an aluminum TO-3 package which will allow over 1.0A load current if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expended to make the LM78XX series of regulators easy to use and minimize the number
of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

- Output current in excess of 1 A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in the aluminum TO-3 package

Voltage Range

LM7805C	5 V
LM7812C	12 V
LM7815C	15 V

Schematic and Connection Diagrams

Metal Can Package
TO-3 (K)
Aluminum

Order Numbers LM7805CK LM7812CK LM7815CK
See Package KC02A

Order Numbers:
LM7805CT
LM7812CT
LM7815CT
See Package T03B

Absolute Maximum Ratings

Input Voltage ($\mathrm{VO}=5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V)
35 V
Internal Power Dissipation (Note 1) Internally Limited
Operating Temperature Range (T_{A})
Maximum Junction Temperature
(K Package)
(T Package)
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
TO-3 Package K
$300^{\circ} \mathrm{C}$
TO-220 Package T $230^{\circ} \mathrm{C}$

Electrical Characteristics LM78XXC (Note 2) $0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant 125^{\circ} \mathrm{C}$ unless otherwise noted.

OUTP	T VOLTAGE				5 V		12V		15V	UNITS
INPUT VOLTAGE (unless otherwise noted)				10V		19V			23V	
	PARAMETER	CONDITIONS		MIN	TYP MAX	MIN	TYP MAX	MIN	TYP MAX	
	Output Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leqslant \mathrm{I}^{\mathrm{O}} \leqslant 1 \mathrm{~A}$		4.8	$5 \quad 5.2$	11.5	$12 \quad 12.5$	14.4	. 1515.6	V
		$\begin{aligned} & P_{D} \leqslant 15 \mathrm{~W}, 5 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{MIN}} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{MAX}} \end{aligned}$		$\begin{gathered} 4.75 \\ 17 \leqslant \end{gathered}$	$\mathrm{V}_{\mathrm{IN}} \leqslant 20{ }^{5.25}$	$\begin{aligned} & 11.4 \\ & (14.5 \end{aligned}$	$\begin{array}{r} 12.6 \\ \left.V_{I N} \leqslant 27\right) \end{array}$	$\begin{aligned} & 14.25 \\ & (17.5 \leqslant \end{aligned}$	$\begin{array}{r} 15.75 \\ \left.V_{\mathrm{IN}} \leqslant 30\right) \end{array}$	V
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\mathrm{I}^{\prime} \mathrm{O}=500 \mathrm{~mA}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \end{aligned}$		$\begin{array}{cr} 3 & 50 \\ \left.V_{I N} \leqslant 25\right) \\ \hline \end{array}$	(14.5	$\begin{array}{cc} 4 & 120 \\ \left.V_{I N} \leqslant 30\right) \\ \hline \end{array}$	$(17.5=$	$\begin{gathered} 4 \\ \leqslant \end{gathered} 150$	$\begin{gathered} m V \\ \mathrm{~V} \end{gathered}$
			$\begin{aligned} & 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C} \\ & \Delta V_{\text {IN }} \end{aligned}$		$\begin{array}{r} 50 \\ \left.V_{I N} \leqslant 20\right) \end{array}$	$15 \leqslant$	$\left.\leqslant V_{I N} \leqslant 27\right)$	(18.5	$\begin{array}{r} 150 \\ \left.V_{\text {IN }} \leqslant 30\right) \end{array}$	mV V
		${ }^{\prime} \mathrm{O} \leqslant 1 \mathrm{~A}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \end{aligned}$	(7.3	$\begin{array}{r} 50 \\ \left.V_{I N} \leqslant 20\right) \end{array}$	(14.6	$\begin{array}{r} 120 \\ \left.\leqslant V_{\text {IN }} \leqslant 27\right) \end{array}$	(17.7	$\begin{array}{r} 150 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leqslant 30\right) \end{array}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
			$\begin{aligned} & 0^{\circ} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \end{aligned}$		$I N \leqslant 12)^{25}$		$\begin{array}{r} 60 \\ \left.V_{\text {IN }} \leqslant 22\right) \end{array}$		$\begin{array}{r} 75 \\ \left.V_{I N} \leqslant 26\right) \end{array}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 5 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 750 \mathrm{~mA} \end{aligned}$		$\begin{array}{ll} \hline 10 & 50 \\ & 25 \\ \hline \end{array}$		$\begin{array}{ll} \hline 12 & 120 \\ & 60 \\ \hline \end{array}$		$\begin{array}{ll} \hline 12 & 150 \\ & 75 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$5 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 1 \mathrm{~A}, 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C}$			50		120		150	mV
${ }^{1} \mathrm{Q}$	Quiescent Current	$10 \leqslant 1 A$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{~T} j \leqslant+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 8 \\ 8.5 \end{gathered}$		$\begin{gathered} 8 \\ 8.5 \end{gathered}$		$\begin{gathered} \hline 8 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Δl_{Q}	Quiescent Current Change	$5 \mathrm{~mA} \leqslant \mathrm{I}_{0} \leqslant 1 \mathrm{~A}$			0.5		0.5		0.5	mA
		$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}} \leqslant 1 \mathrm{~A} \\ & \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{I N} \leqslant \mathrm{~V}_{\text {MAX }} \end{aligned}$		(7.5 \leqslant	$\left.V_{I N} \leqslant 20\right)$	(14.8	$\left.\leqslant V_{\text {IN }} \leqslant 27\right)$	$17.9 \leqslant$	$\begin{array}{r} 1.0 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leqslant 30\right) \\ \hline \end{array}$	$m A$ V
		$\begin{aligned} & \mathrm{l}_{\mathrm{O}} \leqslant 500 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{MIN}} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{MAX}} \end{aligned}$		$17 \leqslant$	$\begin{array}{r} 1.0 \\ \left.v_{I N} \leqslant 25\right) \\ \hline \end{array}$	(14.5	$\begin{array}{r} 1.0 \\ \left.v_{I N} \leqslant 30\right) \end{array}$	17.5	$\begin{array}{r} 1.0 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leqslant 30\right) \end{array}$	mA V
V_{N}	Output Noise Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{kHz}$			40		75		90	$\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}} \text { Ripple Rejection }$		$\begin{aligned} & f=120 \mathrm{~Hz}\left\{\begin{array}{l} \mathrm{I}_{\mathrm{O}} \leqslant 1 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C} \text { or } \\ \mathrm{O}_{\mathrm{O}} \leqslant 500 \mathrm{~mA} \\ 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant+125^{\circ} \mathrm{C} \\ V_{\text {MIN }} \leqslant V_{\text {IN }} \leqslant V_{\text {MAX }} \end{array}\right. \end{aligned}$		62 62 $(8 \leqslant$	80 $\left.V_{I N} \leqslant 18\right)$	55 55 $(15 \leqslant$	72 $\left.V_{I N} \leqslant 25\right)$	54 54 $18.5 \leqslant$	70 $\left.V_{I N} \leqslant 28.5\right)$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} \\ \mathrm{~V} \end{gathered}$
R_{0}	Dropout Voltage Output Resistance Short-Circuit Current Peak Output Current Average TC of VOUT	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I} \mathrm{OUT}=1 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj}_{\mathrm{j}} \leqslant+125^{\circ} \mathrm{C}, \mathrm{I} \mathrm{O}=5 \mathrm{~mA} \\ & \hline \end{aligned}$			$\begin{gathered} \hline 2.0 \\ 8 \\ 2.1 \\ 2.4 \\ 0.6 \\ \hline \end{gathered}$		$\begin{aligned} & 2.0 \\ & 18 \\ & 1.5 \\ & 2.4 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{gathered} 2.0 \\ 19 \\ 1.2 \\ 2.4 \\ 1.8 \end{gathered}$	$\begin{array}{r} \mathrm{V} \\ \mathrm{~m} \Omega \\ \mathrm{~A} \\ \mathrm{~A} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{array}$
$V_{\text {IN }}$	Input Voltage Required to Maintain Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}, 1 \mathrm{O}$	1 A	7.3		14.6		17.7		V

NOTE 1: Thermal resistance of the TO-3 package (K, KC) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $35^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient. Thermal resistance of the TO-220 package (T) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $50^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient.
NOTE 2: All characteristics are measured with capacitor across the inut of $0.22 \mu \mathrm{~F}$, and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($\mathrm{t}_{\mathrm{w}} \leqslant 10 \mathrm{~ms}$, duty cycle $\leqslant 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Typical Performance Characteristics

Maximum Average Power

LM78LXX Series 3-Terminal Positive Regulators

General Description

The LM78LXX series of three terminal positive regulators is available with several fixed output voltages making them useful in a wide range of applications. When used as a zener diode/resistor combination replacement, the LM78LXX usually results in an effective output impedance improvement of two orders of magnitude, and lower quiescent current. These regulators can provide local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow the LM78LXX to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM78LXX is available in the metal three lead TO-39(H) and the plastic TO-92 (Z). With adequate heat sinking the regulator can deliver 100 mA output current. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes
too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

- Output voltage tolerances of $\pm 5 \%$ (LM78LXXAC) and $\pm 10 \%$ (LM78LXXC) over the temperature range
- Output current of 100 mA
- Internal thermal overload protection
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-92 and metal TO-39 low profile packages

Voltage Range

LM78L05	5 V
LM78L12	12 V
LM78L15	15 V

Connection Diagrams

Metal Can Package

BOTTOM VIEW,

Order Numbers:

LM78L05ACH	LM78L05CH
LM78L12ACH	LM78L12CH
LM78L15ACH	LM78L15CH

See Package H03A

Plastic Package

bottom view

Order Numbers:

LM78L05ACZ	LM78L05CZ
LM78L12ACZ	LM78L12CZ
LM78L15ACZ	LM78L15CZ

See Package Z03A

Absolute Maximum Ratings

Input Voltage
$V_{O}=5 \mathrm{~V}$
$V_{O}=12 \mathrm{~V}$ to 15 V
Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Metal Can (H Package)
Molded TO-92 (Z Package)
Lead Temperature (Soldering, 10 seconds)

LM78LXXAC Electrical Characteristics

(Note 2) $\mathrm{T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$ (unless noted)

LM78LXXAC OUTPUT VOLTAGE		5 V	12V	15V	UNITS
INPUT VOLTAGE (unless otherwise noted)		10 V	19V	23V	
PARAMETER	CONDITIONS	MIN TYP MAX	MIN TYP MAX	MIN TYP MAX	
Output Voltage (Note 4)	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	4.85	$\begin{array}{lll}11.5 & 12 & 12.5\end{array}$	$14.4 \quad 15 \quad 15.6$	V
	$\begin{aligned} & 1 \mathrm{~mA} \leqslant 10 \leqslant 70 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leqslant 1_{0} \leqslant 40 \mathrm{~mA} \text { and } \\ & \mathrm{V}_{\mathrm{MIN}} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{MAX}} \end{aligned}$	4.75 5.25 4.75 5.25 $\left(7 \leqslant V_{I N} \leqslant 20\right)$	11.4 12.6 11.4 12.6 $\left(14.5 \leqslant V_{I N} \leqslant\right.$ $27)$	14.25 15.75 14.25 15.75 $\left(17.5 \leqslant V_{I N} \leqslant 30\right)$	V V V
$\Delta \mathrm{V}_{\mathrm{O}}$ Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\begin{array}{rl} 10 & 54 \\ \left(8 \leqslant V_{I N}\right. & \leqslant 20) \\ 18 \\ \left(7 \leqslant V_{I N}\right. & \leqslant 20) \end{array}$	$\begin{gathered} 20 \\ \left(16 \leqslant V_{I N} \leqslant 27\right) \\ 30 \quad 180 \\ \left(14.5 \leqslant V_{I N} \leqslant 27\right) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ \left(20 \leqslant V_{I N} \leqslant 30\right) \\ 37 \quad 250 \\ \left(17.5 \leqslant V_{I N} \leqslant 30\right) \end{gathered}$	$\begin{array}{r} m V \\ \mathrm{~V} \\ \mathrm{mV} \\ \mathrm{~V} \end{array}$
ΔV_{O} Load Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 40 \mathrm{~mA} \\ & \mathrm{Tj}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 100 \mathrm{~mA} \end{aligned}$	$\begin{array}{cc} 5 & 30 \\ 20 & 60 \\ \hline \end{array}$	$\begin{array}{cc} \hline 10 & 50 \\ 30 & 100 \\ \hline \end{array}$	$\begin{array}{cc} \hline 12 & 75 \\ 35 & 150 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
ΔV_{0} Long Term Stability		12	24	30	$\mathrm{mV} / 1000 \mathrm{hrs}$
${ }^{\prime} \mathrm{Q}$ Quiescent Current	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{lc} 3 & 5 \\ & 4.7 \\ \hline \end{array}$	$\begin{array}{cc} \hline 3 & 5 \\ & 4.7 \\ \hline \end{array}$	$\begin{array}{cc} 3.1 & 5 \\ & 4.7 \\ \hline \end{array}$	mA
$\triangle l^{\text {Q }}$ (Quiescent Current	$1 \mathrm{~mA} \leqslant 1 \mathrm{O} \leqslant 40 \mathrm{~mA}$	0.1	0.1	0.1	mA
Change	$\mathrm{V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {MAX }}$	$\left(8 \leqslant V_{I N} \leqslant 20\right)$	$\left(16 \leqslant V_{I N} \leqslant 27\right)$	$\left(20 \leqslant V_{I N} \leqslant 30\right)$	mA V
$\mathrm{V}_{\mathrm{n}} \quad$ Output Noise Voltage	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C},(\text { Note } 3) \\ & \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz} \end{aligned}$	40	80	90	$\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}}$ Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	$\begin{aligned} & 47 \quad 62 \\ & \left(8 \leqslant V_{I N} \leqslant 16\right) \end{aligned}$	$\begin{aligned} & 40 \quad 54 \\ & \left(15 \leqslant V_{I N} \leqslant 25\right) \end{aligned}$	$\begin{gathered} 37 \\ \left(18.5 \leqslant V_{I N} \leqslant 28.5\right) \end{gathered}$	dB
Input Voltage Required to Maintain Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	7	14.5	17.5	V

Note 1: Thermal resistance of the Metal Can Package (H) without a heat sink is $15^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $140^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to a PC board.
Note 2: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperatures as indicated at the initiation of test.

Note 3: Recommended minimum load capacitance of $0.01 \mu \mathrm{~F}$ to limit high frequency noise bandwidth.
Note 4: The temperature coefficient of $\mathrm{V}_{\text {OUT }}$ is typically within $\pm 0.01 \% \mathrm{~V}_{\mathrm{O}}{ }^{\circ} \mathrm{C}$.

Absolute Maximum Ratings

Input Voltage	
$\mathrm{VO}_{\mathrm{O}}=5 \mathrm{~V}$	30 V
$\mathrm{VO}_{\mathrm{O}}=12 \mathrm{~V}$ to 15V	35 V
Internal Power Dissipation (Note 1)	Internally Limited
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Metal Can (H Package)	-55° to $+150^{\circ} \mathrm{C}$
Molded TO-92	$300^{\circ} \mathrm{C}$

LM78LXXC Electrical Characteristics

(Note 2) $\mathrm{T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{IO}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}} \mathrm{N}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$ (unless noted)

Note 1: Thermal resistance of the Metal Can Package (H) without a heat sink is $15^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $140^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. Thermal resistance of the TO. 92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to a PC board.
Note 2: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperatures as indicated at the initiation of test.
Note 3: Recommended minimum load capacitance of $0.01 \mu \mathrm{~F}$ to limit high frequency noise bandwidth.
Note 4: The temperature coefficient of VOUT is typically within $\pm 0.01 \% \mathrm{~V}_{\mathrm{O}} /{ }^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Equivalent Circuit

Typical Applications

*Required if the regulator is located far from the power supply fitter.
**Se Note $\mathbf{3}$ in the electrical characteristics table.

$V_{\text {OUt }}=5 \mathrm{~V}+\left(5 \mathrm{~V} / \mathrm{RI}+\mathrm{I}_{\mathrm{O}}\right) \mathrm{R2}$
$5 V / R 1 \geqslant 3 I_{0}$, load regulation (L, $)=[(R 1+R 2) / R 1](L$, of LM78L 05)

Typical Applications (Continued)

Iour $-\left(V_{23} / R 1\right)+I_{o}$
$\lambda I_{\mathrm{a}}=15 \mathrm{~mA}$ over line and load changes

Current Regulator

5V, 500 mA Regulator with Short Circuit Protection

\pm 15V, 100 mA Dual Power Supply

LM78MXX Series 3-Terminal Positive Regulators

General Description

The LM78MXX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi , and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM78MXX series is available in the plastic TO-202 package. This package allows these regulators to deliver over 0.5 A if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expended to make the LM78MXX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

- Output current in excess of 0.5A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-202 package
- Special circuitry allows start-up even if output is pulled to negative voltage (\pm supplies)

Schematic and Connection Diagrams

Plastic Package

front view
Order Numbers LM78M05CP LM78M12CP LM78M15CP See Package P03A

For Tab Bend TO-202
Order Numbers LM78M05CP TB
LM78M12CP TB
LM78M15CP TB
See Package P03E

Absolute Maximum Ratings

Input Voltage
$\left(\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}\right)$
35 V
Internal Power Dissipation (Note 1)
Operating Temperature Range
Internally Limited
Maximum Junction Temperature
Storage Temperature Range
$\begin{aligned}-65^{\circ} \mathrm{C} \text { to } & +150^{\circ} \mathrm{C} \\ & +230^{\circ} \mathrm{C}\end{aligned}$

Electrical Characteristics $T_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 1 \mathrm{O}=500 \mathrm{~mA}$, unless otherwise noted.

OUTPUT VOLTAGE				5 V		12V		15V	UNITS
INPUT VOLTAGE (unless otherwise noted)				10 V		19 V		23V	
PARAMETER		CONDITIONS	MIN	TYP MAX	MIN	TYP MAX	MIN	TYP MAX	
V_{O}	Output Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	4.8	$5 \quad 5.2$	11.5	1212.5	14.4	$15 \quad 15.6$	V
		$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \leqslant 7.5 \mathrm{~W}, 5 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 500 \mathrm{~mA} \\ & \text { and } \mathrm{V}_{\mathrm{MIN}} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{MAX}} \\ & \hline \end{aligned}$	$\begin{array}{r} 4.75 \\ 17.5 \\ \hline \end{array}$	$\left.\leqslant V_{1 N} \leqslant 20\right)$	$\begin{aligned} & \hline 11.4 \\ & (14.8 \end{aligned}$	$\left.\leqslant V_{1 N} \leqslant 27\right)$	$\begin{array}{r} 14.25 \\ 18 \end{array}$	$\left.\mathrm{V}_{\mathrm{IN}} \leqslant 30\right)$	V V
ΔV_{0}	Line Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \end{aligned}$	(7.2	$\begin{array}{r} 50 \\ 100 \\ \left.\leqslant V_{I N} \leqslant 25\right) \\ \hline \end{array}$	(14.5	$\begin{array}{r} 120 \\ 240 \\ \left.\leqslant V_{I N} \leqslant 30\right) \\ \hline \end{array}$	(17.6	$\begin{array}{r} 150 \\ 300 \\ \left.\leqslant V_{I N} \leqslant 30\right) \\ \hline \end{array}$	$\begin{aligned} & m V \\ & m V \\ & V \end{aligned}$
ΔV_{0}	Load Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leqslant \mathrm{I} \leqslant 500 \mathrm{~mA}$		100		240		300	mV
ΔV_{O}	Long Term Stability			20		48		60	$\mathrm{mV} / 1000 \mathrm{hrs}$
1 Q	Quiescent Current	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		$4 \quad 10$		410		$4 \quad 10$	mA
Δl_{Q}	Quiescent Current Change	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & 5 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{O}} \leqslant 500 \mathrm{~mA} \end{aligned}$		0.5		0.5		0.5	mA
		$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {MIN }} \leqslant \mathrm{V}_{\text {IN }} \leqslant V_{\text {MAX }} \end{aligned}$		$\left.\leqslant V_{I N} \leqslant 25\right)$	(14.8	$\left.\leqslant V_{I N} \leqslant 30\right)$		$\begin{array}{r} 1 \\ \left.V_{1 N} \leqslant 30\right) \end{array}$	mA
V_{n}	Output Noise Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{~Hz}-100 \mathrm{kHz}$		40		75		90	$\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}}$	Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$		78		71		69	V
	Input Voltage Required to Maintain Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{O}}=500 \mathrm{~mA}$	7.2		14.5		17.6		V

Note 1: Thermal resistance without a heat sink for junction to case temperature is $12^{\circ} \mathrm{C} / \mathrm{W}$ for the $\mathrm{TO}-202$ package. Thermal resistance for case to ambient temperature is $70^{\circ} \mathrm{C} / \mathrm{W}$ for the TO-202 package.

Typical Performance Characteristics

Ripple Rejection

Output Voltage (Normalized to $\mathbf{1 V}$ at $\mathrm{T}_{\mathbf{J}}=\mathbf{2 5} \mathbf{2}^{\circ} \mathrm{C}$)

Output Impedance

The LM79XX series of 3 -terminal regulators is available with fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V . These devices need only one external component-a compensation capacitor at the output. The LM79XX series is packaged in the TO-220 power package and is capable of supplying 1.5 A of output current.
These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions.
Low ground pin current of the LM79XX series allows output voltage to be easily boosted above the preset value with a resistor divider. The low quiescent current
drain of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.

For applications requiring other voltages, see LM137 data sheet.

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 1.5A output current
. 4% preset output voltage

Typical Applications

(-15)
(+15)
40 mV $100 \mu \mathrm{Vrms}$ 50 mV $150 \mu \mathrm{Vrms}$

	(-15)	$(+15)$
Load Regulation at $\Delta I_{\mathrm{L}}=1 \mathrm{~A}$	40 mV	2 mV
Output Rıpple, $\mathrm{C}_{\mathrm{IN}}=3000 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$	$100 \mu \mathrm{Vrms}$	$100 \mu \mathrm{Vrms}$
Temperature Stability	50 mV	50 mV
Output Noise $10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	$150 \mu \mathrm{Vrms}$	$150 \mu \mathrm{Vrms}$

*Improves transient response and ripple rejection. Do not increase beyond $50 \mu \mathrm{~F}$.

$$
V_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SET}}\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}\right)
$$

Select R2 as follows

LM7905CT	300Ω
LM7912CT	750Ω.
LM7915CT	1 k

*Resistor tolerance of R4 and R5 determine matching of $(+)$ and (-) outputs

* *Necessary only if raw supply filter capacitors are more than 3 " from regulators

Absolute Maximum Ratings

Input Voltage

$$
\begin{array}{ll}
\left(V_{0}=5 \mathrm{~V}\right) & -35 \mathrm{~V} \\
\left(\mathrm{~V}_{\mathrm{O}}=12 \mathrm{~V} \text { and } 15 \mathrm{~V}\right) & -40 \mathrm{~V}
\end{array}
$$

Input-Output Differential
$\left(\mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}\right)$
25 V
($\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$ and 15 V)
Power Dissipation 30 V

Operating Junction Temperature Range
Internally Limited $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)

Electrical Characteristics Conditions unless otherwise noted: $\operatorname{IOUT}=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}$, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$, Power Dissipation $\leq 15 \mathrm{~W}$.

PART N	BER		LM7905C	UNITS
OUTPUT	OLTAGE		5 V	
INPUT VOLTAGE (unless otherwise specified)			-10V	
	RAMETER	CONDITIONS	MIN TYP MAX	
V_{O}	Output Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & 5 \mathrm{~mA} \leq \mathrm{IOUT} \leq 1 \mathrm{~A}, \\ & \mathrm{P} \leq 15 \mathrm{~W} \end{aligned}$	$\begin{aligned} & -4.8 \quad-5.0 \quad-5.2 \\ & -4.75 \\ & \quad\left(-20 \leq V_{\text {IN }} \leq-7\right) \end{aligned}$	V v V
$\pm \mathrm{V}_{\mathrm{O}}$	I.Ine Regulation	$\mathrm{TJ}_{J}=25^{\prime \prime} \mathrm{C},($ Note 2)	$\begin{gathered} 8 \\ \left(-25 \leq V_{\text {IN }} \leq-7\right) \\ 2 \\ \left(-12 \leq V_{\text {IN }} \leq-8\right) \end{gathered}$	$\begin{array}{r} m \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{mV} \\ \mathrm{~V} \end{array}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C},(\text { Note } 2) \\ & 5 \mathrm{~mA} \leq \mathrm{IOUT} \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq \mathrm{IOUT} \leq 750 \mathrm{~mA} \end{aligned}$	$\begin{array}{ll} 15 & 100 \\ 5 & 50 \end{array}$	$\begin{aligned} & m V \\ & m V \\ & m V \end{aligned}$
10	Quiescent Current	$\mathrm{TJ}_{J}=25^{\prime \prime} \dot{C}$	12	mA
J_{Q}	Quiescent Current Change	With Line With Load, $5 \mathrm{~mA} \leq \mathrm{IOUT} \leq 1 \mathrm{~A}$	$\left(-25 \leq \vee_{\text {IN }} \leq-7\right)_{0.5}^{0.5}$	$\begin{array}{r} \mathrm{mA} \\ \mathrm{~V} \\ \mathrm{~mA} \end{array}$
V_{n}	Output Norse Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{~Hz}$	125	$\mu \mathrm{V}$
	Ripple Rejection	$f=120 \mathrm{~Hz}$	$\begin{aligned} & 54 \quad 66 \\ & \left(-18 \leq V_{\text {IN }} \leq-8\right) \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~V} \end{gathered}$
	Dropout Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\prime \prime} \mathrm{C}, \mathrm{IOUT}=1 \mathrm{~A}$	1.1	V
IOMAX	Peak Output Current	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	2.2	A
	Average Temperature Coefficient of Output Voltage	$\begin{aligned} & \text { IOUT }=5 \mathrm{~mA}, \\ & 0 \mathrm{C}=T \mathrm{~J} \leq 100^{\circ} \mathrm{C} \end{aligned}$	0.4	mV / C

Electrical Characteristics (Continued) Conditions unless otherwise noted: $\mathrm{IOUT}=500 \mathrm{~mA}, \mathrm{C}_{I N}=2.2 \mu \mathrm{~F}$,
COUT $=1 \mu \mathrm{~F}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$, Power Dissipation $=1.5 \mathrm{~W}$.

Note 1: For calculations of junction temperature rise due to power dissipation, thermal resistance junction to ambient $(\theta \mathrm{JA})$ is $50^{\circ} \mathrm{C} / \mathrm{W}$ (no heat sink) and $5^{\circ} \mathrm{C} / \mathrm{W}$ (infinite heat sink).
Note 2: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.
LM79XX Series

Typical Applications (Continued)

High Stability 1 Amp Regulator

Load and line regulation $<0.01 \%$ temperature stability $\leq 0.2 \%$
\dagger Determines Zener current
$\dagger \dagger$ Solid tantalum
*Select resistors to set output voltage. $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tracking suggested

R1 and D1 allow the positive regulator to "start-up" when $+V_{\text {IN }}$ is delayed relative to $-V_{I N}$ and a heavy load is drawn between the outputs. Without R1 and D1, most three-terminal regulators will not start with heavy ($0.1 \mathrm{~A}-1 \mathrm{~A}$) load current flowing to the negative regulator, even though the positive output is clamped by D2.
*R2 is optional. Ground pin current from the positive regulator flowing through $R 1$ will increase $+V_{\text {OUT }} \approx 60 \mathrm{mV}$ if $R 2$ is omitted.

*Lamp brightness increases until $i_{I}=i_{Q}(\approx 1 \mathrm{~mA})+5 \mathrm{~V} / \mathrm{R} 1$. \dagger Necessary only if raw supply filter capacitor is more than $2^{\prime \prime}$ from LM7905CT

Connection Diagrams

*Lamp brightness increases until ij $=5 \mathrm{~V} / \mathrm{R} 1$ (ij can be set as low as $1 \mu \mathrm{~A}$)
\dagger Necessary only if raw supply filter capacitor is more than $\mathbf{2}^{\prime \prime}$ from LM7905CT

Voltage Regulators

LM79LXXAC Series 3-Terminal Negative Regulators
 General Description

The LM79LXXAC series of 3-terminal negative voltage regulators features fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V with output current capabilities in excess of 100 mA . These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM79LXXAC series, even when combined with a minimum output compensation capacitor of $0.1 \mu \mathrm{~F}$, exhibits an excellent transient response, a maximum line regulation of 0.07% V_{O} / V, and a maximum load regulation of 0.01% $\mathrm{V}_{\mathrm{O}} / \mathrm{mA}$.

The LM79LXXAC series also includes, as self-protection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be

Typical Applications

*Required if the regulator is located far from the power supply filter. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
**Required for stability. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.

$$
\begin{aligned}
& -V_{O}=-5 V-\left(5 V / R 1+I_{Q}\right) \cdot R 2, \\
& 5 V / R 1>3 I_{Q}
\end{aligned}
$$

combined with simple external circuitry for boosted and/ or adjustable voltages and currents. The LM79LXXAC series is available in the 3 -lead TO-92 package.

For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

- Preset output voltage error is less than $\pm 5 \%$ overload, line and temperature
- Specified at an output current of 100 mA
- Easily compensated with a small $0.1 \mu \mathrm{~F}$ output capacitor
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than $0.07 \% \mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}$
- Maximum load regulation less than $0.01 \% \mathrm{~V}_{\text {OUTmA }}$
- TO-92 package

Connection Diagram

TO-92 Plastic Package (Z)

Order Numbers
LM79L05ACZ
LM79L12ACZ
LM79L15ACZ
See Package Z03A

Absolute Maximum Ratings

Input Voltage
$\mathrm{V}_{\mathrm{O}}=-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$ Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
-35V
Internally Limited $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $+125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 seconds) $\quad 300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2) $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ}$ unless otherwise noted.

Note 1: Thermal resistance, junction to ambient, of the TO.92 (Z) package is $180^{\circ} \mathrm{C} / \mathrm{W}$ when mounted with 0.40 inch leads on a PC board, and $160^{\circ} \mathrm{C} / \mathrm{W}$ when mounted with 0.25 inch leads on a PC board.
Note 2: To ensure constant junction temperature, low duty cycle pulse testing is used.

Typical Performance Characteristics

Typical Applications (Continued)
$\pm 15 \mathrm{~V}, 100 \mathrm{~mA}$ Dual Power Supply

Schematic Diagrams

-12 V and -15 V

Voltage Regulators

LM79MXX Series 3-Terminal Negative Regulators

General Description

The LM79MXX series of 3-terminal regulators is available with fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V . These devices need only one external component-a compensation capacitor at the output. The LM79MXX series is packaged in the TO-202 power package and TO-39 metal can and is capable of supplying 0.5 A of output current.

These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions.

Low ground pin current of the LM79MXX series allows output voltage to be easily boosted above the preset
value with a resistor divider. The low quiescent current drain of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.

For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 0.5A output current
- 4% preset output voltage

Typical Applications

*Improves transient response and ripple rejection. Do not increase beyond $50 \mu \mathrm{~F}$.

$$
v_{\text {OUT }}=v_{S E T}\left(\frac{R 1+R 2}{R 2}\right)
$$

Select R2 as follows:

LM79M05CP	300Ω
LM79M12CP	750Ω
LM79M15CP	$1 k$

LM79M12CP 750Ω
LM79M15CP
LM79M15CP 1k

*Required if regulator is separated from filter capacitor by more than 3".
For value given, capacitor must be solid tantalum. $25 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
\dagger Required for stability. For value given, capacitor must be solid tantalum. $\mathbf{2 5 \mu F}$ aluminum electrolytic may be substituted. Values given may be increased without limit.
For output capacitance in excess of $100 \mu \mathrm{~F}$, a high current diode from input to output (1 N4001, etc.) will protect the regulator from momentary input shorts.

Absolute Maximum Ratings

Input Voltage	
(VO $=5 \mathrm{~V}$)	25 V
(VO $=12 \mathrm{~V}$ and 15V)	-35 V
Input/Output Differential	
(VO $=5 \mathrm{~V})$	25 V
(VO $=12 \mathrm{~V}$ and 15 V)	30 V
Power Dissipation	Internally Limited
Operating Junction Temperature Range	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$230^{\circ} \mathrm{C}$

Electrical Characteristics Conditions unless otherwise noted: $\mathrm{IOUT}^{2}=350 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F}, \mathrm{COUT}^{2}=1 \mu \mathrm{~F}$, $0^{\circ} \mathrm{C} \leqslant \mathrm{T} \leqslant \leqslant+125^{\circ} \mathrm{C}$

PART NUMBER		LM79M05C	LM79M12C	LM79M15C	UNITS
OUTPUT VOLTAGE		-5V	-12V	-15V	
INPUT VOLTAGE (unless otherwise specified)		-10V	-19V	-23V	
PARAMETER	CONDITIONS	MIN TYP MAX	MIN TYP MAX	MIN TYP MAX	
Output Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\begin{array}{lll}-4.8 & -5.0 & -5.2\end{array}$	-11.5 $-12.0-12.5$	-14.4 $-15.0-15.6$	V
	$5 \mathrm{~mA} \leqslant 1$ OUT $\leqslant 350 \mathrm{~mA}$	$\begin{gathered} -4.75 \quad-5.25 \\ \left(-25 \leqslant V_{I N} \leqslant-7\right) \end{gathered}$	$\begin{aligned} & -11.4 \quad-12.6 \\ & \left(-27 \leqslant V_{I N} \leqslant-14.5\right) \end{aligned}$	$\begin{aligned} & -14.25 \\ & \left(-30 \leqslant v_{1 N} \leqslant-17.75\right. \\ & \hline \end{aligned}$	V
$\Delta \mathrm{V}_{\mathrm{O}}$ Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C},($ Note 2$)$	$\begin{array}{cr} 8 & 50 \\ \left(-25 \leqslant V_{I N} \leqslant-7\right) \\ 2 & 30 \\ \left(-18 \leqslant V_{I N} \leqslant-8\right) \end{array}$	$\begin{array}{rc} 5 & 80 \\ \left(-30 \leqslant V_{\text {IN }} \leqslant\right. & -14.5) \\ 3 & 30 \\ \left(-25 \leqslant V_{I N} \leqslant-15\right) \\ \hline \end{array}$	$\begin{array}{rr} 5 & 80 \\ \left(-\leqslant V_{I N} \leqslant\right. & -17.5) \\ 3 & 50 \\ \left(-28 \leqslant V_{I N} \leqslant\right. & -18) \end{array}$	$\begin{gathered} m V \\ V \\ m V \\ V \end{gathered}$
$\Delta \mathrm{V}_{\mathrm{O}}$ Load Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C},(\text { Note } 2) \\ & 5 \mathrm{~mA} \leqslant \mathrm{IOUT} \leqslant 0.5 \mathrm{~A} \end{aligned}$	$30 \quad 100$	$30 \quad 240$	$30 \quad 240$	mV
IQ Quiescent Current	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$1 \quad 2$	1.53	1.53	mA
$\Delta^{\prime} Q \quad \begin{aligned} & \text { Quiescent Current } \\ & \text { Change }\end{aligned}$	With Line With Load, $5 \mathrm{~mA} \leqslant 1 \mathrm{OUT} \leqslant 350 \mathrm{~mA}$	$\begin{array}{r} 0.4 \\ \left(-25 \leqslant V_{I N} \leqslant-8\right) \end{array}$ 0.4	$\begin{array}{r} 0.4 \\ \left(-30 \leqslant V_{I N} \leqslant-14.5\right) \\ 0.4 \end{array}$	$\begin{array}{r} 0.4 \\ \left(-30 \leqslant V_{I N} \leqslant-27\right) \\ 0.4 \end{array}$	$\begin{array}{r} \mathrm{mA} \\ \mathrm{~V} \\ \mathrm{~mA} \end{array}$
$\mathrm{V}_{\mathrm{n}} \quad$ Output Noise Voltage	$\mathrm{TA}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 100 \mathrm{~Hz}$	750	400	400	$\mu \mathrm{V}$
Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	$\begin{aligned} & 54 \quad 66 \\ & \left(-18 \leqslant V_{I N} \leqslant-8\right) \end{aligned}$	$\begin{aligned} & 54 \quad 70 \\ & \left(-25 \leqslant V_{1 N} \leqslant-15\right) \end{aligned}$	$\begin{gathered} 54 \quad 70 \\ \left(-30 \leqslant \vee_{I N} \leqslant-17.5\right) \end{gathered}$	dB V
Dropout Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{IOUT}=0.5 \mathrm{~A}$	1.1	1.1	1.1	, V
IOMAX Peak Output Current	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	800	800	800	A
Average Temperature Coefficient of Output Voltage	$\begin{aligned} & \text { IOUT }=5 \mathrm{~mA}, \\ & 0^{\circ} \mathrm{C} \leqslant \mathrm{Tj} \leqslant 100^{\circ} \mathrm{C} \end{aligned}$	0.4	-0.8	-1.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Note 1: For calculations of junction temperature rise due to power dissipation, thermal resistance junction to ambient $(\theta \mathrm{JA})$ is $70^{\circ} \mathrm{C} / \mathrm{W}$ (no heat sink) and $12^{\circ} \mathrm{C} / \mathrm{W}$ (infinite heat sink).

Note 2: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

Metal Can Package TO-39 (H)
Order Number:
LM79M05CH
LM79M12CH
LM79M15CH
See Package H03A

FRONT VIEW Order Number:
L.M79M05CP LM79M12CP LM79M15CP

See Package P03A
For Tab Bend TO-202
Order Number: LM79M05CP TB
LM79M12CP TB
LM79M15CP TB
See Package P03E

Section 2
Voltage References

Voltage References

Section Contents

Voltage Reference Selection Guide 2-3
LH0070 Series Precision BCD Buffered Reference 2-5
LH0071 Series Precision Binary Buffered Reference 2-5
LH0075 Positive Precision Programmable Regulator 2-9
LH0076 Negative Precision Programmable Regulator 2-14
LM103 Reference Diode 2-19
LM113/LM313 Reference Diode 2-22
LM129/LM329 Precision Reference 2-25
LM136/LM236/LM336 2.5V Reference Diode 2-30
LM136-5.0/LM236-5.0/LM336-5.0 5.0V Reference Diode 2-36
LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode 2-42
LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diode 2.48
LM199/LM299/LM399 Precision Reference 2-54
LM199A/LM299A/LM399A Precision Reference $2-60$
LM3999 Precision Reference 2-63

Reverse Breakdown Voltage$V_{R} \text { at } I_{R}$	Device	Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Voltage Temperature Drift-ppm $/{ }^{\circ} \mathrm{C}$ Max or mV Max Change Over Temperature Range		Current Range, I_{R}	Output Dynamic Impedance (Max)
			Drift (Max)	Temperature Range		
1.22	LM. 113	$\pm 5 \%$	100 ppm typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	0.8Ω
1.22	LM313	$\pm 5 \%$	100 ppm typ	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	0.8Ω
1.22	LM113-1	$\pm 1 \%$	50 ppm typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	0.8Ω
1.22	LM113-2	$\pm 2 \%$	50 ppm typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	0.8Ω
1.235	LM185	$\pm 1 \%$	20 ppm typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1 mA to 20 mA	0.6Ω
1.235	LM285	$\pm 1 \%$	20 ppm typ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1 mA to 20 mA	0.6Ω
1.235	LM385B	$\pm 1 \%$	20 ppm typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	1 mA to 20 mA	1Ω
1.235	LM385	$-2.5,+2$	20 ppm typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	1 mA to 20 mA	1Ω
2.49	LM136	$\pm 2 \%$	18 mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.6Ω
2.49	LM136A	$\pm 1 \%$	18 mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.6Ω
2.49	LM236	$\pm 2 \%$	9 mV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.6Ω
2.49	LM236A	$\pm 1 \%$	9 mV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.6Ω
2.49	LM336	$\pm 4 \%$	6 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1Ω
2.49	LM336B	$\pm 2 \%$	6 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1Ω
2.5	LM185-2.5	$\pm 1.5 \%$	20 ppm typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	0.6Ω
2.5	LM285-2.5	$\pm 1.5 \%$	20 ppm typ	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	0.6Ω
2.5	LM385-2.5	$\pm 3 \%$	20 ppm typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1Ω
2.5	LM385B-2.5	$\pm 1.5 \%$	20 ppm typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1Ω
5.0	LM136-5.0	$\pm 2 \%$	36 mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.6Ω
5.0	LM136A-5.0	$\pm 1 \%$	36 mV	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.6Ω
5.0	LM236-5.0	$\pm 2 \%$	18 mV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.6Ω
5.0	LM236A-5.0	$\pm 1 \%$	18 mV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.6Ω
5.0	LM336-5.0	$\pm 4 \%$	12 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1Ω
5.0	LM336B-5.0	$\pm 2 \%$	12 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	1Ω
6.90	LM129A	+3\%, - 2%	10 ppm	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.6 mA to 15 mA	1Ω
6.90	LM129B	+3\%, -2\%	20 ppm	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.6 mA to 15 mA	1Ω
6.90	LM129C	+3\%,-2\%	50 ppm	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.6 mA to 15 mA	1Ω
6.90	LM329B	$\pm 5 \%$	50 ppm	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0.6 mA to 15 mA	2Ω
6.90	LM329C	$\pm 5 \%$	20 ppm	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0.6 mA to 15 mA	2Ω
6.90	LM329D	$\pm 5 \%$	100 ppm	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0.6 mA to 15 mA	2Ω
6.95	LM199A	+ 1%, -2%	0.5 ppm	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.5 mA to 10 mA	1Ω
6.95	LM199A	+1\%, - 2%	10 ppm	$85^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.5 mA to 10 mA	1Ω
6.95	LM199	+ 1%, -2%	1 ppm	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.5 mA to 10 mA	1Ω
6.95	LM199	+1\%, - 2%	15 ppm	$85^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.5 mA to 10 mA	1Ω
6.95	LM299A	+1\%,-2\%	0.5 ppm	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.5 mA to 10 mA	1Ω
6.95	LM299	+1\%,-2\%	1 ppm	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.5 mA to 10 mA .	1Ω
6.95	LM399A	$\pm 5 \%$	1 ppm	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0.5 mA to 10 mA	1.5Ω
6.95	LM399	$\pm 5 \%$	2 ppm	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0.5 mA to 10 mA	1.5Ω
6.95	LM3999	$\pm 5 \%$	5 ppm	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0.6 mA to 10 mA	2.2Ω
10.00	LH0070-0	0.1\%	20 mV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 mA to 20 mA	1Ω
10.00	LH0070-1	0.1\%	10 mV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 mA to 20 mA	1Ω
10.00	LH0070-2	0.05\%	4 mV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 mA to 20 mA	1Ω
10.24	LH0071-0	0.1\%	20 mV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 mA to 20 mA	1Ω
10.24	LH0071-1	0.1\%	10 mV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 mA to 20 mA	1Ω.
10.24	LH0071-2	0.05\%	4 mV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 mA to 20 mA	1Ω
$\begin{aligned} & \text { Adjustable- } \\ & 5 \mathrm{~V}, 6 \mathrm{~V}, 10 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V} \end{aligned}$	LH0075	$\pm 0.5 \%$.	$0.003 \% /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1 mA to 200 mA	1Ω
$\begin{aligned} & \text { Adjustable- } \\ & 5 \mathrm{~V}, 6 \mathrm{~V}, 10 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V} \end{aligned}$	LH0075C	$\pm 1 \%$	0.003\% $/{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	1 mA to 200 mA	1Ω
Adjustable-	LH0076	$\pm 0.5 \%$	0.003\% $/{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1 mA to 200 mA	1Ω
Adjustable- $-5 \mathrm{~V},-6 \mathrm{~V},-10 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	LH0076C	$\pm 1 \%$	0.003\% $/{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	1 mA to 200 mA	1Ω

Reverse Breakdown Voltage V_{R} at I_{R}	Device	Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Voltage Temperature Drift-ppm/ ${ }^{\circ} \mathrm{C}$ Max or mV Max Change Over Temperature Range		Current Range, I_{R}	Output Dynamic Impedance (Max)
			$\begin{gathered} \text { Drift } \\ \text { (Max) } \end{gathered}$	Temperature Range		
LOW CURRENT ZENER DIODES						
1.8	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25Ω
2.0	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25,
2.2	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25,
2.4	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25Ω
2.7	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25ת
3.0	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ fo $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	258
3.3	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25Ω
3.6	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25Ω
3.9	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25Ω
4.3	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25Ω
4.7	LM103	$\pm 10 \%$	$-5 \mathrm{mV}{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25,
5.1	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25,
5.6	LM103	$\pm 10 \%$	$-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ typ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25ת

LH0070 Series Precision BCD Buffered Reference

 LH0071 Series Precision Binary Buffered Reference
General Description

The LH0070 and LH0071 are precision, three terminal, voltage references consisting of a temperature compensated zener diode driven by a current regulator and a buffer amplifier. The devices provide an accurate reference that is virtually independent of input voltage, load current, temperature and time. The LH0070 has a 10.000 V nominal output to provide equal step sizes in BCD applications. The LH0071 has a 10.240 V nominal output to provide equal step sizes in binary applications.

The output voltage is established by trimming ultrastable, low temperature drift, thin film resistors under actual operating circuit conditions. The devices are shortcircuit proof in both the current sourcing and sinking directions.

The LHOO7O and LH0O71 series combine excellent long term stability, ease of application, and low cost,
making them ideal choices as reference voltages in precision D to A and A to D systems.

Features

- Accurate output voltage

LH0070
$10 \mathrm{~V} \pm 0.02 \%$
LH0071
$10.24 \mathrm{~V} \pm 0.02 \%$

- Single supply operation
11.4 V to 40 V
- Low output impedance
0.2Ω
- Excellent line regulation
$0.1 \mathrm{mV} / \mathrm{V}$
- Low zener noise
$20 \mu \mathrm{Vp}-\mathrm{p}$
- 3-lead TO-5 (pin compatible with the LM109)
- Short circuit proof
- Low standby current

Equivalent Schematic

Typical Applications

Statistical Voltage Standard

Connection Diagram

TO-5 Metal Can Package

BOTTOM VIEW
Order Number LH0070-0H, LH0071-OH, LH0070-1H, LH0071-1H, LH0070-2H or LH0071-2H See NS Package H03B

*Note. The output of the LH0070 and LH0071 may be adjusted to a precise voltage by using the above circuit since the supply current of the devices is relatively small and constant with temperature and input voltage. For the circuit shown, supply sensitivities are degraded slightly to $0.01 \% / \mathrm{V}$ change in $\mathrm{V}_{\text {OUT }}$ for changes in VIN and $V-$.

An additional temperature drift of 0.0001% / ${ }^{\circ} \mathrm{C}$ is added due to the variation of supply current with temperature of the LH0070 and LH0071. Sensitivity to the value of R1, R2 and R3 is less than $0.001 \% / \%$.
*Output Voltage Fine Adjustment

Absolute Maximum Ratings

Supply Voltage
40V
Power Dissipation (See Curve) 600 mW
Short Circuit Duration
Continuous
Output Current
Operating Temperature Range
$\pm 20 \mathrm{~mA}$
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10 seconds)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\begin{gathered} \text { Output Voltage } \\ \text { LH0070 } \\ \text { LH0071 } \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 10.000 \\ & 10.240 \end{aligned}$		V
Output Accuracy $\begin{aligned} & -0,-1 \\ & -2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & \pm 0.03 \\ & \pm 0.02 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.05 \end{aligned}$	\% \%
$\begin{aligned} & \text { Output Accuracy } \\ & -0,-1 \\ & -2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 0.3 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { \% } \end{aligned}$
```Output Voltage Change With Temperature -0 -1 -2```	(Note 2)		$\begin{aligned} & \pm 0.02 \\ & \pm 0.01 \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.1 \\ & \pm 0.04 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \hline \end{aligned}$
Line Regulation $\begin{aligned} & -0,-1 \\ & -2 \end{aligned}$	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 33 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 0.02 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.03 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Input Voltage Range   Load Regulation   Quiescent Current   Change In Quiescent Current   Output Noise Voltage   Ripple Rejection   Output Resistance	$\begin{aligned} & 0 \mathrm{~mA} \leq \mathrm{IOUT} \leq 5 \mathrm{~mA} \\ & 13 \mathrm{~V} \leq \mathrm{V} \text { IN } \leq 33 \mathrm{~V}, \mathrm{IOUT}=0 \mathrm{~mA} \\ & \Delta \mathrm{~V} \text { IN }=20 \mathrm{~V} \text { From } 13 \mathrm{~V} \text { To } 33 \mathrm{~V} \\ & \mathrm{BW}=0.1 \mathrm{~Hz} \text { To } 10 \mathrm{~Hz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}=120 \mathrm{~Hz} \end{aligned}$	$11.4$   1	0.01 3 0.75 20 0.01 0.2	$\begin{aligned} & 40 \\ & 0.03 \\ & 5 \\ & 1.5 \\ & \\ & 6 \\ & 0.6 \\ & \hline \end{aligned}$	
Long Term Stability $\begin{aligned} & -0,-1 \\ & -2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 3 )			$\begin{aligned} & \pm 0.2 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \% / \mathrm{yr} . \\ & \% / \mathrm{yr} . \end{aligned}$

Note 1: Unless otherwise specified, these specifications apply for $V_{I N}=15.0 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$, and over the temperature range of $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+125^{\circ} \mathrm{C}$.
Note 2: This specification is the difference in output voltage measured at $T_{A}=85^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ or $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ with readings taken after test chamber and device-under-test stabilization at temperature using a suitable precision voltmeter.
Note 3: This parameter is guaranteed by design and not tested.

## Typical Performance Characteristics



Step Load Response


Normalized Output Voltage vs Temperature


$\mathrm{BW}=0.1 \mathrm{~Hz}$ TO 10 Hz
Typical Applications (Continued)


Expanded Scale AC Voltmeter

Typical Applications (Continued)


Precision Process Control Interface


Negative 10V Reference


Boosted Reference For Low Input Voltages

## LH0075 Positive Precision Programmable Regulator General Description <br> Features

The LH0075 is a precision programmable regulator for positive voltages. Regulated output voltages from 0 to 27 V may be obtained using one external resistor. Also available without any external components are several fixed regulated voltages with accuracies to $0.1 \%(5 \mathrm{~V}$, $6 \mathrm{~V}, 10 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V ). The output current limit is adjustable from 0 to 200 mA using two external resistors. These features provide an inventory of precision regulated values in one package.

- Output adjustable to 0 V
- Line regulation typically $0.008 \% / \mathrm{V}$
- Load regulation typically $0.075 \%$
- Remote voltage sensing
- Ripple rejection of 80 dB
- Adjustable precision current limit
- Output currents to 200 mA
- Popular voltages available without external resistors

Schematic Diagram


Connection Diagram


Typical Applications
Precision 15V Reference Supply without Current Limit


## Absolute Maximum Ratings

Input Voltage 32 V
Output Voltage 27 V
Output Current
Power Dissipation
Operating Temperature Range
LH0075
LH0075C
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
32 V
27 V
200 mA
See Curve
$\mathrm{T}_{\text {MAX }}$
T $_{\text {MIN }}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics Conditions for $\mathrm{T}_{\text {MIN }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{T}_{\text {MAX }}$ unless otherwise noted


Note 1: Minimum load current is established by ILIM, the current from Q4 (see schematic). ILIM goes directly to the outpuf if the current limit feature is used.
Note 2: For $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT }}$ obtained by using R5, R6, R7, and R12 individually.
Note 3: Total change over specified temperature range.

Typical Performance Characteristics



Load Transient Response (Voltage Mode)



Reference Current Change with Temperature (Normalized)








## Typical Applications (Cont'd)



Variable Voltage Reference with Current Limit


$$
\begin{aligned}
& R_{\text {PROG }}=\frac{\text { VOUT Desired }^{1 m A}}{1 \mathrm{mAUT}(\text { MAX })}=\left[\frac{\text { RLIMIT }^{R S E N S E}}{\text { RS }} 1\right] \times 100 \mu \mathrm{~A} \\
& { }^{I_{\text {OUT }}} \leqslant 200 \mathrm{~mA}
\end{aligned}
$$

## Applications Information

The LH0075 does not require capacitors for stable operation, but an input bypass is recommended if device
is far from filter capacitors. A $0.1 \mu \mathrm{~F}$ for input bypassing should be adequate for almost all applications.

## Applications Information <br> (Cont'd)

## DESCRIPTION OF OPTIONS

Ripple Rejection Compensation. (Increases Ripple Rejection Typically to $\mathbf{8 0 ~ d B}$ )

The ripple rejection may be improved by connecting an external capacitor between pin 9 and ground. (The typical performance curves show the rejection with a capacitance of $2.2 \mu \mathrm{Fd}$.)

## Internal Voltage Programming

The LH0075 provides various precision output voltages simply by using one or more of the internal resistors. A particular voltage may be obtained by external connections as shown in Table I.


R5, R6, R7 and R12 are precision-trimmed to $\mathbf{0 . 1} \%$.

FIGURE 1

## External Voltage Programming

An external resistance can be connected between pin 9 and ground to obtain any voltage from 0 to 27 V using the following equation:

REXT $=\frac{\text { V OUT Desired }}{1 \mathrm{~mA}}$

The reference current (IREF) has a typical temperature coefficient of $-65 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Choosing a resistive material with a temperature coefficient of $65 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will compensate the negative temperature coefficient, resulting in an output voltage with minimal change over the operating temperature range. Example of a good resistive material is Nichrome, which has a typical temperature coefficient of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Since a current source is used as a reference, this makes remote voltage programming possible.

## Current Limit Programming

The maximum current output of the device may be limited by adding two external resistors as shown below. The resistor values are easily calculated with the following equation:

IOUT(MAX) $=\left[\frac{\text { RLIMIT }}{\text { RSENSE }}+1\right] \times 100 \mu \mathrm{~A}$
where RSENSE $=1$ to $10 \Omega$


FIGURE 2. Current Limit Programming
This programmable current limit feature can be extended to make the LH0075 a programmable constant current source. This can be done by leaving pin 9 open and setting RLIMIT and RSENSE as desired.

For applications where the current limit is used, a minimum load current of $100 \mu \mathrm{~A}$ is established at the output. This arises from the fact that the constant current used in setting maximum output current is $100 \mu \mathrm{~A}$, and it goes directly to the output of the LH0075. If the total current drawn from the output is less than the minimum, the output will rise.

As in the remote voltage adjustment application, remote current sensing can be applied similarly. RSENSE must be placed as close to the output of the LH0075 as possible, but RLIMIT can be a fixed resistor or potentiometer located remotely from the device.

TABLE I. Connection Scheme for Internal Available Output Voltages

OUTPUT   VOLTAGE (V)	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
5			Gnd		
6				$\bullet$	
8		$\bullet$			
10		Gnd	$\bullet$		
12	Gnd		$\bullet$		
15		Gnd			
18	$\bullet$		$\bullet$		

## LH0076 Negative Precision Programmable Regulator

## General Description

The LH0076 is a precision programmable regulator for negative voltages. Regulated output voltages from 0 to -27 V may be obtained by using 1 external resistor. Also available without any external components are several fixed regulated voltages with accuracies to $0.1 \%$ $(-3 \mathrm{~V},-5 \mathrm{~V},-6 \mathrm{~V},-8 \mathrm{~V},-9 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$ and $-18 \mathrm{~V})$. The output current limit is adjustable from 0 to 200 mA using 2 external resistors. These features provide an inventory of precision regulated values in 1 package.

## Features

- Line regulation typically $0.005 \% / \mathrm{V}$
- Load regulation typically $0.02 \%$
- Remote voltage sensing
- Ripple rejection-70 dB
- Output Adjustable to 0 V
- Adjustable precision current limit
- Output current to 200 mA


## Schematic Diagram



## Connection Diagram

Metal Can Package


Typical Application
Precision - 15V Reference Supply without Current Limit

*Recommended if device is far from filter capacitors


Note 1: Minimum load current is established by ILIM, the $^{\text {, }}$ current to Q2 (see schematic). ILIM draws directly from the output if the current limit feature is used.
Note 2: For $V_{I N}=-15 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OUT}}$ obtained by using $R 4, R 5, R 6$, and $R 8$ individually.
Note 3: Total change over specified temperature range.

## Typical Performance Characteristics







Load Transient Response
(Current Mode)






## Typical Application (Continued)



*Recommended if device is far from filter capacitors

## Application Information

The LH0076 does not require external capacitors for stable operation. However, an input bypass is recommended if the device is far from filter capacitors. A $0.1 \mu \mathrm{~F}$ for input bypassing should be adequate for most applications.

## DESCRIPTION OF OPTIONS

## External Voltage Programming

An external resistance can be connected between pin 10 and ground to obtain any voltage from 0 to -27 V using the following equation:

$$
\mathrm{R}_{\mathrm{EXT}}=\frac{\mathrm{V}_{\text {OUT }} \text { desired }}{-1 \mathrm{~mA}}
$$

The reference current (IREF) has a typical temperature coefficient of $-60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Choosing a resistive material with a temperature coefficient of $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will compensate the negative tempco of the reference current, resulting in an output voltage with minimal change over the operating temperature range. Example of a good resistive material is nichrome, which has a typical tempco of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Nichrome is the resistive material used in the LHOO76, resulting in output voltage drift of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typically.

## Application Information (Continued)

Because a current source is used as a reference, remote voltage programming is possible.

## Internal Voltage Programming

The LH0076 provides various precision output voltages simply by using 1 or more of the internal programming resistors. These voltages may be obtained by using the connections as shown in Table I.

RTOTAL is the total resistance between pin 10 and ground


R4, R5, R6 and R8 are precision trimmed to 0.1\%
FIGURE 1

## Current Limit Programming

The maximum current output of the device may be limited by adding 2 external resistors as shown in Figure 2. The resistor values are calculated using the following equation:

$$
\operatorname{IOUT}(\mathrm{MAX})=\left[\frac{R_{\text {LIMIT }}}{\text { RSENSE }}+1\right] \times 100 \mu \mathrm{~A}
$$

where RSENSE $=1$ to $10 \Omega$
This programming current limit feature can be extended to make the LH0O76 a programmable current sink. This can be done by leaving pin 10 open and setting R LIMIT and RSENSE as desired. (See Figure 3).


FIGURE 2. Current Limit Programming

For applications where the current limit is used, a minimum load current of $100 \mu \mathrm{~A}$ is established at the output. This arises from the fact that the constant current used in setting maximum output current is $100 \mu \mathrm{~A}$, and it comes directly from the output of the LH0076. If the total load current is less than this minimum current, the output will drop.

As in the remote voltage adjustment application, remote current sensing can be applied similarly. RSENSE should be placed as close to the output of the LH0076 as possible, but RLIMIT can be a resistor or potentiometer located remotely from the device.


FIGURE 3. Precision Current Sink

TABLE I. Connection Scheme for Internally Available Output Voltages

OUTPUT   VOLTAGE (V)	PIN 1	PIN 2	PIN 7	PIN 10	PIN 11
-3					Gnd
-5		$\ddots$	$\bullet$		
-6		Gnd			
-8			$\bullet$		
-9	Gnd			$\bullet$	
-12	Gnd				
-15		Gnd			
-18		Gnd			

## Voltage References

## LM103 Reference Diode**

## General Description

The LM103 is a two-terminal monolithic reference diode electrically equivalent to a breakdown diode. The device makes use of the reverse punch-through of double-diffused transistors, combined with active circuitry, to produce a breakdown characteristic which is ten times sharper than single-junction zener diodes at low voltages. Breakdown voltages from 1.8 V to 5.6 V are available; and, although the design is optimized for operation between $100 \mu \mathrm{~A}$ and 1 mA , it is completely specified from $10 \mu \mathrm{~A}$ to 10 mA . Noteworthy features of the device are:

- Exceptionally sharp breakdown
- Low dynamic impedance from $10 \mu \mathrm{~A}$ to 10 mA
- Performance guaranteed over full military temperature range
- Planar, passivated junctions for stable operation
- Low capacitance.

The LM103, packaged in a hermetically sealed, modified TO-46 header is useful in a wide range of circuit applications from level shifting to simple voltage regulation. It can also be employed with operational amplifiers in producing breakpoints to generate nonlinear transfer functions. Finally, its unique characteristics recommend it as a reference element in low voltage power supplies with input voltages down to 4 V .

## Schematic and Connection Diagrams



Metal Can Package


Note: Pin 2 connected to case. TOP VIEW

Order Number LM103H See NS Package H02A

## Typical Applications

## Saturating Servo Preamplifier

with Rate Feedback



## Absolute Maximum Ratings

Power Dissipation (note 1)
Reverse Current
Forward Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 60 sec )

> 250 mW
> 20 mA
> 100 mA
> $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
> $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
> $300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Reverse Breakdown Voltage Change	$10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 100 \mu \mathrm{~A}$		60	120	mV
	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$		15	50	mV
	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		50	150	mV
Reverse Dynamic Impedance (Note 3)	$\mathrm{I}_{\mathrm{R}}=3 \mathrm{~mA}$		5	25	$\Omega$
	$\mathrm{I}_{\mathrm{R}}=0.3 \mathrm{~mA}$		15	60	$\Omega$
Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{Z}}-0.2 \mathrm{~V}$		2	5	$\mu \mathrm{A}$
Forward Voltage Drop	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	0.7	0.8	1.0	V
Peak-to-Peak Broadband Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		300		$\mu \mathrm{V}$
Reverse Breakdown Voltage Change with Current (Note 4)	$10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 100 \mu \mathrm{~A}$			200	mV
	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$			60	mV
	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$	!		200	mV
Breakdown Voltage Temperature Coefficient (Note 4)	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$		-5.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case or $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient (see curve).
Note 2: These specifications apply for $T_{A}=25^{\circ} \mathrm{C}$ and $1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{Z}}<5.6 \mathrm{~V}$ unless stated otherwise. The diode should not be operated with shunt capacitances between 100 pF and $0.01 \mu \mathrm{~F}$, unless isolated by at least a $300 \Omega$ resistor, as it may oscillate at some currents. For voltages between 4.3 V and 5.6 V , the maximum shunt capacitance is 50 pF rather than 100 pF .
Note 3: Measured with the peak-to peak change of reverse current equal to $10 \%$ of the $D C$ reverse current.
Note 4: These specifications apply for $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$.



## Typical Performance Characteristics



Reverse Dynamic Impedance


Response Time


## BREAKDOWN VOLTAGE*

1.8
2.0
2.2
2.4
2.7
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6

PART NUMBER

LM103H-1.8
LM103H-2.0 LM103H-2.2 LM 103H-2.4
LM103H-2.7
LM103H-3.0
LM 103H-3.3
LM103H-3.6
LM103H-3.9
LM 103H-4.3
LM103H-4.7
LM103H-5.1
LM103H-5.6

Temperature Drift


Maximum Power Dissipation


National
Voltage References Semiconductor

## LM113/LM313 Reference Diode

## General Description

The LM113/LM313 are temperature compensated, low voltage reference diodes. They feature ex-tremely-tight regulation over a wide range of operating currents in addition to an unusually-low breakdown voltage and good temperature stability.

The diodes are synthesized using transistors and resistors in a monolithic integrated circuit. As such, they have the same low noise and long term stability as modern IC op amps. Further, output voltage of the reference depends only on highlypredictable properties of components in the IC; so they can be manufactured and supplied to tight tolerances. Outstanding features include:

- Low breakdown voltage: 1.220 V
- Dynamic impedance of $0.3 \Omega$ from $500 \mu \mathrm{~A}$ to 20 mA
- Temperature stability typically $1 \%$ over $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ range (LM113), $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (LM313)
- Tight tolerance: $\pm 5 \%$ standard, $\pm 2 \%$ and $\pm 1 \%$ on special order.
The characteristics of this reference recommend it for use in bias-regulation circuitry, in low-voltage power supplies or in battery powered equipment. The fact that the breakdown voltage is equal to a physical property of silicon-the energy-band-gap voltage-makes it useful for many temperaturecompensation and temperature-measurement functions.


## Schematic and Connection Diagrams



Metal Can Package
 TOP VIEW

Order Number LM113H or LM313H See NS Package H02A

## Typical Applications

Level Detector for Photodiode


Low Voltage Regulator


Absolute Maximum Ratings
Power Dissipation (Note 1)

Reverse Current
Forward Current
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

Operating Conditions

		MIN	MAX	UNITS
100 mW	Temperature (TA)			
50 mA	LM113	-55	+125	${ }^{\circ} \mathrm{C}$
50 mA	LM313	0	70	${ }^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$				
$300^{\circ} \mathrm{C}$				

Electrical Characteristics

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Reverse Breakdown Voltage   LM113/LM313   LM113-1   LM113-2	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	$\begin{aligned} & 1.160 \\ & 1.210 \\ & 1.195 \end{aligned}$	1.220 1.22 1.22	$\begin{aligned} & 1.280 \\ & 1.232 \\ & 1.245 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
Reverse Breakdown Voltage Change	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$		6.0	15	mV
Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA} \\ & I_{R}=10 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Forward Voltage Drop	$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}$		0.67	1.0	V
RMS Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \end{aligned}$		5		$\mu \mathrm{V}$
Reverse Breakdown Voltage Change with Current	$\begin{aligned} & 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$			15	mV
Breakdown Voltage Temperature Coefficient	$\begin{aligned} & 1.0 \mathrm{~mA} \leq \mathrm{I}_{R} \leq 10 \mathrm{~mA} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$		0.01		\%/ ${ }^{\circ} \mathrm{C}$

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction and a thermal resistance of $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case or $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Note 2: These specifications apply for $T_{A}=25^{\circ} \mathrm{C}$, unless stated otherwise. At high currents, breakdown voltage should be measured with lead lengths less than $1 / 4$ inch. Kelvin contact sockets are also recommended. The diode should not be operated with shunt capacitances between 200 pF and $0.1 \mu \mathrm{~F}$, unless isolated by at least a $100 \Omega$ resistor, as it may oscillate at some currents

## Typical Performance Characteristics



Typical Performance Characteristics (Continued)







Typical Applications (Continued)


Amplifier Biasing for Constant Gain with Temperature


Constant Current Source


Voltage References

## LM129/LM329 Precision Reference

## General Description

The LM129 and LM329 family are precision multicurrent temperature compensated 6.9 V zener references with dynamic impedances a factor of 10 to 100 less than discrete diodes. Constructed in a single silicon chip, the LM129 uses active circuitry to buffer the internal zener allowing the device to operate over a 0.5 mA to 15 mA range with virtually no change in performance. The LM129 and LM329 are available with selected temperature coefficients of $0.001,0.002,0.005$ and $0.01 \% /{ }^{\circ} \mathrm{C}$. These new references also have excellent long term stability and low noise.

A new subsurface breakdown zener used in the LM129 gives lower noise and better long term stability than conventional IC zeners. Further the zener and temperature compensating transistor are made by a planar process so they are immune to problems that plague ordinary zeners. For example, there is virtually no voltage shifts in zener voltage due to temperature cycling and the device is insensitive to stress on the leads.

The LM129 can be used in place of conventional zeners with improved performance. The low dynamic impedance
simplifies biasing and the wide operating current allows the replacement of many zener types.

The LM129 is packaged in a 2-lead TO-46 package and is rated for operation over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM329 for operation over $0-70^{\circ} \mathrm{C}$ is available in both a hermetic TO-46 package and a TO-92 epoxy package.

## Features

- 0.6 mA to 15 mA operating current
- $0.6 \Omega$ dynamic impedance at any current
- Available with temperature coefficients of $0.001 \% /{ }^{\circ} \mathrm{C}$
- $7 \mu \mathrm{~V}$ wideband noise
- $5 \%$ initial tolerance
- 0.002\% long term stability
- Low cost
- Subsurface zener


## Typical Applications



## Absolute Maximum Ratings

## Reverse Breakdown Current

Forward Current
30 mA

Operating Temperature Range
LM129
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM329
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range $300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LM129A, B, C -			LM329B, C, D			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Reverse Breakdown Voltage	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \\ & 0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA} \end{aligned}$	6.7	6.9	7.2	6.6	6.9	7.25	V
Reverse Breakdown Change with Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0.6 \mathrm{~mA} \leq I_{R} \leq 15 \mathrm{~mA} \end{aligned}$		9	14		9	20	mV
Reverse Dynamic Impedance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.6	1		0.8	2	$\Omega$
RMS Noise	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \leq \mathrm{F} \leq 10 \mathrm{kHz} \end{aligned}$		7	20		7	100	$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & T_{A}=45^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.3 \% \end{aligned}$		20			20		ppm
Temperature Coefficient	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$							
LM129A, LM329A			6	10		6	10	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM129B, LM329B			15	20		15	20	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM129C, LM329C			30	50		30	50	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM329D						50	100	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Change In Reverse Breakdown Temperature Coefficient	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		1			1		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Reverse Breakdown Change with Current	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		12			12		mV
Reverse Dynamic Impedance	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		0.8			1		$\Omega$

Note 1:These specifications apply for $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LM 129 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM329 unless otherwise specified. The maximum junction temperature for an LM129 is $150^{\circ} \mathrm{C}$ and LM329 is $100^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in TO-46 package must be derated based on a thermal resistance of $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. For the TO- 92 package, the dereting is based on $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to a PC board.

## OV to 20V Power Reference




External Reference for Temperature Transducer


Typical Applications (Continued)


## Connection Diagrams

## Metal Can Package


bottom view
Order Number LM129AH, LM129BH LM129CH, LM329AH, LM329BH, LM329CH or LM329DH
See NS Package H02A

Plastic Package

bottom view
Order Number LM329BZ, LM329CZ or LM329DZ
See NS Package Z03A




Dynamic Impedance



National

## LM136/LM236/LM336 2.5V Reference Diode

## General Description

The LM136/LM236 and LM336 integrated circuits are precision 2.5 V shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient 2.5 V zener with $0.2 \Omega$ dynamic impedance. A third terminal on the LM136 allows the reference voltage and temperature coefficient to be trimmed easily.

The LM136 series is useful as a precision 2.5 V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 2.5 V make it convenient to obtain a stable reference from 5 V logic supplies. Further, since the LM136 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

The LM136 is rated for operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM236 is rated over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
temperature range. Both are packaged in a TO-46 package. The LM336 is rated for operation over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and is available in either a three lead TO-46 package or a TO-92 plastic package.

## Features

- Low temperature coefficient
- Wide operating current of $300 \mu \mathrm{~A}$ to 10 mA
- $0.2 \Omega$ dynamic impedance
- $\pm 1 \%$ initial tolerance available
- Guaranteed temperature stability
- Easily trimmed for minimum temperature drift
- Fast turn-on
- Three lead transistor package


## Schematic Diagram



## Typical Applications

2.5V Reference
2.5V Reference with Minimum Temperature Coefficient

Wide Input Range Reference


## Absolute Maximum Ratings

Reverse Current	15 mA
Forward Current	10 mA
Storage Temperature	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	.
LM136	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM236	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM336	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## Electrical Characteristics <br> (Note 1)



Note 1: Unless otherwise specified, the LM136 is specified from $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, the LM 236 from $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and the LM 336 from $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. The maximum junction temperature of the LM136 is $150^{\circ} \mathrm{C}, \mathrm{LM} 236$ is $125^{\circ} \mathrm{C}$ and the LM336 is $100^{\circ} \mathrm{C}$. For elevated junction temperature, devices in the TO-46 package should be derated based on a thermal resistance of $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. For the TO-92 package, the derating is based on $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to a PC board.

## Typical Performance Characteristics





## Typical Performance Characteristics (Continued)



Forward Characteristics


## Application Hints

The LM136 series voltage references are much easier to use than ordinary zener diodes. Their low impedance and wide operating current range simplify biasing in almost any circuit. Further, either the breakdown voltage or the temperature coefficient can be adjusted to optimize circuit performance.

Figure 1 shows an LM136 with a 10k potentiometer for adjusting the reverse breakdown voltage. With the addition of R1 the breakdown voltage can be adjusted without affecting the temperature coefficient of the device. The adjustment range is usually sufficient to
adjust for both the initial device tolerance and inaccuracies in buffer circuitry.

If minimum temperature coefficient is desired, two diodes can be added in series with the adjustment potentiometer as shown in Figure 2. When the device is adjusted to 2.490 V the temperature coefficient is minimized. Almost any silicon signal diode can be used for this purpose such as a 1 N914, 1N4148 or a 1N457. For proper temperature compensation the diodes should be in the same thermal environment as the LM136. It is usually sufficient to mount the diodes near the LM136 on the printed circuit board. The absolute resistance of R 1 is not critical and any value from 2 k to 20 k will work.


FIGURE 1. LM136 With Pot for Adjustment of Breakdown Voltage


FIGURE 2. Temperature Coefficient Adjustment

## Typical Applications


*L1 60 turns \#16 wire on Arnold Core A-254168-2
$\dagger_{\text {Efficiency }} \approx 80 \%$

Precision Power Regulator with Low Temperature Coefficient


Trimmed 2.5V Reference with Temperature Coefficient Independent of Breakdown Voltage


* Does not affect temperature coefficient

Typical Applications (Continued)


Op Amp with Output Clamped



Bipolar Output Reference
Linear Ohmmeter

2.5V Square Wave Calibrator


Typical Applications (Continued)

5V Buffered Reference


Connection Diagrams
TO.92
Plastic Package

bottom view

Order Number LM336Z-2.5 or LM336BZ-2.5 See Package Z03A

Low Noise Buffered Reference


9

Metal Can Package


Order Number
LM136H-2.5, LM236H-2.5, LM336H-2.5, LM136AH-2.5, LM236AH-2.5 or LM336BH-2.5 See Package H03H

Voltage References

## LM136-5.0/LM236-5.0/LM336-5.0 5.0V Reference Diode

## General Description

The LM136-5.0/LM236-5.0/LM336-5.0 integrated circuits are precision 5.0 V shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient 5.0 V zener with $0.6 \Omega$ dynamic impedance. A third terminal on the LM136-5.0 allows the reference voltage and temperature coefficient to be trimmed easily.

The LM136-5.0 series is useful as a precision 5.0 V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 5.0 V make it convenient to obtain a stable reference from low voltage supplies. Further, since the LM136-5.0 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

The LM136-5.0 is rated for operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the $\mathrm{LM} 236-5.0$ is rated over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. Both are packaged in a TO-46
package. The LM336-5.0 is rated for operation over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and is available in either a three lead TO-46 package or a TO-92 plastic package. For applications requiring 2.5 V see LM136-2.5.

## Features

- Adjustable 4 V to 6 V

Low temperature coefficient
Wide operating current of $400 \mu \mathrm{~A}$ to 10 mA
匃 $0.6 \Omega$ dynamic impedance
$\pm 1 \%$ initial tolerance available

- Guaranteed temperature stability
- Easily trimmed for minimum temperature drift
* Fast turn-on
- Three lead transistor package

Schematic Diagram


Typical Applications
5.0V Reference

5.0V Reference with Minimum

Temperature Coefficient


Trimmed 4V to 6V Reference with Temperature Coefficient Independent of Breakdown Voltage


[^8]
## Absolute Maximum Ratings

Reverse Current
Forward Current
Storage Temperature
Operating Temperature
LM136-5.0
LM236-5.0
LM336-5.0
Lead Temperature(Soldering, 10 seconds)

15 mA
10 mA
$-60^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	LM136A-5.0/LM236A-5.0LM136-5.0/LM236-5.0			$\begin{gathered} \text { LM336B-5.0 } \\ \text { LM336-5.0 } \end{gathered}$			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$   LM136-5.0/LM236-5.0/LM336-5.0   LM136A-5.0/LM236A-5.0, LM336B-5.0	$\begin{gathered} 4.9 \\ 4.95 \end{gathered}$	5.00 5.00	5.1 5.05	$\begin{gathered} 4.8 \\ 4.90 \end{gathered}$	5.00 5.00	5.2 5.1	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Reverse Breakdown Change With Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 600 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \end{aligned}$		6	12		6	20	mV
Reverse Dynamic Impedance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.6	1.2		0.6	2	$\Omega$
Temperature Stability	$\begin{aligned} & V_{R} \text { Adjusted 5.00V } \\ & \mathrm{I}_{R}=1 \mathrm{~mA}, \text { (Figure 2) } \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}(\mathrm{LM} 336-5.0) \\ & -25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}(\text { LM } 236-5.0) \\ & -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}(\mathrm{LM} 136-5.0) \end{aligned}$		7 20	18 36		4	12	mV   mV   mV
Reverse Breakdown Change With Current	$600 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		6	17		6	24	mV
Adjustment Range			$\pm 1$			$\pm 1$		V
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.8	1.6		0.8	2.5	$\Omega$
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		20			20		ppm

Note 1: Unless otherwise specified, the LM136-5.0 is specified from $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, the $\mathrm{LM} 236-5.0$ from $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ and the $\mathrm{LM} 336-5.0$ from $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$.

## Typical Performance Characteristics





Typical Performance Characteristics (Continued)


Temperature Drift



Forward Characteristics


## Application Hints

The LM136-5.0 series voltage references are much easier to use than ordinary zener diodes. Their low impedance and wide operating current range simplify biasing in almost any circuit. Further, either the breakdown voltage or the temperature coefficient can be adjusted to optimize circuit performance.
Figure 1 shows an LM136-5.0 with a 10k potentiometer for adjusting the reverse breakdown voltage. With the addition of R1 the breakdown voltage can be adjusted without affecting the temperature coefficient of the device. The adjustment range is usually sufficient to adjust for both the initial device tolerance and inaccuracies in buffer circuitry.

If minimum temperature coefficient is desired, four diodes can be added in series with the adjustment potentiometer as shown in Figure 2. When the device is adjusted to 5.00 V the temperature coefficient is minimized. Almost any silicon signal diode can be used for this purpose such as a $1 \mathrm{~N} 914,1 \mathrm{~N} 4148$ or a 1 N 457 . For proper temperature compensation the diodes should be in the same thermal environment as the LM136-5.0. It is usually sufficient to mount the diodes near the LM136-5.0 on the printed circuit board. The absolute resistance of the network is not critical and any value from 2 k to 20 k will work. Because of the wide adjustment range, fixed resistors should be connected in series with the pot to make pot setting less critical.


FIGURE 2. Temperature Coefficient Adjustment

FIGURE 1. LM136-5.0 with Pot for Adjustment of Breakdown Voltage
Braakdown Vollago


## Typical Applications (Continued)

Precision Power Regulator with Low Temperature Coefficient


5V Crowbar


Adjustable Shunt Regulator


Linear Ohmmeter


Typical Applications (Continued)

Op Amp with Output Clamped

5.0V Square Wave Calibrator


Low Noise Buffered Reference


Bipolar Output Reference


10V Buffered Reference


Wide Input Range Reference


## Connection Diagrams

Order Number LM336Z-5.0 or LM336BZ-5.0 NS Package Number Z03A

TO-46
Metal Can Package


Order Number LM136H-5.0, LM236H-5.0, LM336H-5.0, LM136AH-5.0, LM236AH-5.0 or LM336BH-5.0 NS Package Number H03H

National

## LM185-1.2/LM285-1.2/LM385-1.2

Micropower Voltage Reference Diode

## General Description

The LM185-1.2/LM285-1.2/LM385-1.2 are micropower 2-terminal band-gap voltage regulator diodes. Operating over a $10 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185-1.2 band-gap reference uses only transistors and resistors, low noise and good long term stability result.

Careful design of the LM185-1.2 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation. Some outstanding features are:

- Operating current of $10 \mu \mathrm{~A}$ to 20 mA
- $1 \%$ and $2 \%$ initial tolerance
- $1 \Omega$ dynamic impedance
- Low temperature coefficient
- Low voltage reference-1.235V
- 2.5V device also available - LM385-2.5

The extremely low power drain of the LM185-1.2 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life:Further, the wide operating current allows it to replace older references with a tighter tolerance part.

The LM185-1.2 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range while the LM285-1.2 is rated $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385-1.2 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM185-1.2/ LM285-1.2/LM385-1.2 are available in a hermetic TO-46 package and the LM385-1.2 is also available in a low-cost TO. 92 molded package.

Schematic Diagram


## Applications

Wide Input Range Reference


## Absolute Maximum Ratings

ReverseCurrent	30 mA
ForwardCurrent	10 mA
Operating Temperature Range	
LM185-1.2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM285-1.2	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM385-1.2	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
StorageTemperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LeadTemperature(Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 1)

Parameter	Conditions	LM185-1.2/LM285-1.2			LM385-1.2/LM385B-1.2			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{MIN}} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA} \\ & \text { LM185-1.2/LM285-1.2/LM385B-1.2 } \\ & \text { LM385-1.2 } \end{aligned}$	1.223	1.235	1.247	$\begin{aligned} & 1.223 \\ & 1.205 \end{aligned}$	$\begin{aligned} & 1.235 \\ & 1.235 \end{aligned}$	$\begin{aligned} & 1.247 \\ & 1.260 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Minimum Operating Current			8	10		8	15	$\mu \mathrm{A}$
Reverse Breakdown Voltage	$\mathrm{I}_{\text {MIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$			1			1	mV
Change with Current				1.5		:	1.5	mV
	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$			10			$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Reverse Dynamic Impedance	$I_{R}=100 \mu \mathrm{~A}$		0.2	$\begin{aligned} & 0.6 \\ & 1.5 \end{aligned}$		0.4	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Average Temperature Coefficient	$10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$ (Note 2)		20			20		ppm $/{ }^{\circ} \mathrm{C}$
Wide Band Noise (RMS)	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$		60			60		$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \end{aligned}$		20			20		ppm/kHR

Note 1: Boldface type applies over the operating temperature range. Thermal resistance of the TO-46 package is $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: Guaranteed maximum average temperature coefficient available as special order.

## Applications (Continued)

Micropower Reference
from 9V Battery


Reference from 1.5V Battery












Precision $1 \mu \mathrm{~A}$ to 1 mA Current Sources


$$
\text { IOUT }=\frac{1.23 \mathrm{~V}}{\mathrm{R} 2}
$$

## LM385 Applications (Continued)

## METER THERMOMETERS



Calibration

1. Short LM385-1.2, adjust R3 for ' OUT $=$ temp at $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in centigrade
${ }^{\dagger} Q$ at $1.3 \mathrm{~V} \equiv 500 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{Q}}$ at $1.6 \mathrm{~V} \equiv 2.4 \mathrm{~mA}$
$0^{\circ} \mathrm{F}-50^{\circ} \mathrm{F}$ Thermometer


Calibration

1. Short LM385-1.2, adjust R3 for IOUT $=$ temp at $1.8 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in ${ }^{\circ} \mathrm{F}$

Lower Power Thermometer


* 2N3638 or 2N2907 select for inverse $\mathrm{H}_{\mathrm{FE}} \cong 5$
$\dagger$ Select for operation at 1.3 V
$\ddagger_{\mathrm{Q}}^{\mathrm{Q}} \equiv 600 \mu \mathrm{~A}$ to $900 \mu \mathrm{~A}$

Micropower Thermocouple Cold Junction Compensator


Adjustment Procedure
*7. Adjust TC ADJ pot until voltage across R1 equals kelvin temperature multiplied by the thermocouple seebeck coefficient.
2. Adjust zero ADJ pot until voltage across R2 equals the thermocouple seedbeck coefficient multiplied by 273.2.

Thermocouple   Type	Seebeck   Coefficient   $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$	R1   $(\Omega)$	R2   $(\Omega)$	Voltage   Across R1   $@ 25^{\circ} \mathrm{C}$	Voltage   Across R2   $(\mathbf{m V})$
				$(\mathbf{m V})$	
J	52.3	523	1.24 k	15.60	14.32
T	42.8	432	1 k	12.77	11.78
K	40.8	412	$953 \Omega$	12.17	11.17
S	6.4	63.4	$150 \Omega$	1.908	1.766

[^9]
## Connection Diagrams

TO.92
Plastic Package

bOTTOM VIEW

Order Number LM385Z-1.2 or LM385BZ-1.2 NS Package Number Z03D

TO. 46
Metal Can Package

bottom view

Order Number LM185H-1.2, LM285H-1.2,
LM385H-1.2 or LM385BH-1.2
NS Package Number H03A

Voltage References

## LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diode

## General Description

The LM185-2.5/LM285-2.5/LM385-2.5 are micropower 2-terminal band-gap voltage regulator diodes. Operating over a $20 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185-2.5 band-gap reference uses only transistors and resistors, low noise and good long term stability result.
Careful design of the LM185-2.5 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation. Some outstanding features are:

- Operating current of $20 \mu \mathrm{~A}$ to 20 mA
- $1.5 \%$ and $3 \%$ initial tolerance

1 $1 \Omega$ dynamic impedance
Low temperature coefficient
Low voltage reference- 2.5 V
The extremely low power drain of the LM185-2.5 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part. For applications requiring 1.2V see LM185-1.2.
The LM185-2.5 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range while the LM285-2.5 is rated $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385-2.5 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM185-2.5/LM285-2.5/LM385-2.5 are available in a hermetic TO-46 package and the LM385-2.5 is also available in a low-cost TO-92 molded package.

Schematic Diagram


## Applications

Wide Input Range Reference


## Absolute Waximum Raxings

Reverse Current	30 mA
Forward Current	10 mA
Operating Temperature Range	
LM185-2.5	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM285-2.5	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM385-2.5	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Siorage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	LM185-2.5/LM285-2.5			LM385-2.5/LM385B-2.5			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\text {MIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA} \\ & \text { LM185-2.5/LM285-2.5/ } \\ & \text { LM385B-2.5 } \\ & \text { LM285-2.5 } \end{aligned}$	2.462	2.5	2.538	$\begin{aligned} & 2.462 \\ & 2.425 \end{aligned}$	2.5 2.5	2.538 2.575	V V
Minimum Operating Current			8	20		8	20	$\mu \mathrm{A}$
Reverse Breakdown Voltage	$20 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$			1			2	$m \mathrm{~V}$
Change with Current				1.5			2.5	mV
	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$			10			20	mV
				20			25	mV
Reverse Dynamic Impedance	$I_{R}=100 \mu \mathrm{~A}$		0.2	$\begin{aligned} & 0.6 \\ & 1.5 \end{aligned}$		0.4	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Average Temperature Coefficient (Note 2)	$20 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$		20			20		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Wide Band Noise (RMS)	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$		120			120		$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & T_{A}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \end{aligned}$		20			20		ppm/kHR

Note 1: Boldface type applies over the operating temperature range. Thermal resistance of the TO-46 package is $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $80^{\circ} \mathrm{C}$ junction to case. Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{CW}$ junction to ambient.
Note 2: Guaranteed maximum average temperature coefficient available as special order.

Applications (Continued)
Micropower Reference from 9V Battery


Typical Performance Characteristics





Reverse Characteristics


Reverse Dynamic Impedance

Filtered Output Noise


Forward Characteristics


Reverse Dynamic Impedance


Response Time


## LM385-2.5 Applications

Micropower* 5V Regulator

${ }^{*} \mathrm{Q} \cong 40 \mu \mathrm{~A}$

Micropower* 10V Reference

${ }^{*} I_{\mathrm{Q}} \cong 30 \mu \mathrm{~A}$ standby current

Precision $1 \mu \mathrm{~A}$ to 1 mA Current Sources


LM385-2.5 Applications (Continued)
METER THERMOMETERS


## Calibration

1. Short LM385-2.5, adjust R3 for IOUT $=$ temp at $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in centigrade


## Calibration

1. Short LM385-2.5, adjust R3 for IOUT $=$ temp at $1.8 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in ${ }^{\circ} \mathrm{F}$

Micropower Thermocouple Cold Junction Compensator


## Adjustment Procedure

1. Adjust TC ADJ pot until voltage across R1 equals Kelvin temperature multiplied by the thermocouple Seebeck coefficient.
2. Adjust zero ADJ pot until voltage across R2 equals the thermocouple Seebeck coefficient multiplied by 273.2.

Thermocouple Type	Seebeck Coefficient ( $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ )	R1   ( $\Omega$	R2   ( $\Omega$ )	Voltage Across R1   (a) $25^{\circ} \mathrm{C}$ (mV)	Voltage Across R2 (mV)
J	52.3	523	1.24k	15.60	14.32
T	42.8	432	1 k	12.77	11.78
K	40.8	412	$953 \Omega$	12.17	11.17
S	6.4	63.4	$150 \Omega$	1.908	1.766

Typical supply current $50 \mu \mathrm{~A}$

Improving Regulation of Adjustable Regulators

$v$

## Connection Diagrams

TO-92
Plastic Package

bottom view
Order Number LM385Z-2.5 or LM385BZ-2.5 NS Package Number Z03D .

TO-46
Metal Can Package

bottom view
Order Number LM185H-2.5, LM285H-2.5, LM385H-2.5 or LM385BH-2.5 NS Package Number H03A

## Voltage References

## LM199/LM299/LM399 Precision Reference General Description

The LM199/LM299/LM399 are precision, temperaturestabilized monolithic zeners offering temperature coefficients a factor of ten better than high quality reference zeners. Constructed on a single monolithic chip is a temperature stabilizer circuit and an active reference zener. The active circuitry reduces the dynamic impedance of the zener to about $0.5 \Omega$ and allows the zener to operate over 0.5 mA to 10 mA current range with essentially no change in voltage or temperature coefficient. Further, a new subsurface zener structure gives low noise and excellent long term stability compared to ordinary monolithic zeners. The package is supplied with a thermal shield to minimize heater power and improve temperature regulation.

The LM199 series references are exceptionally easy to use and free of the problems that are often experienced with ordinary zeners. There is virtually no hysteresis in reference voltage with temperature cycling. Also, the LM199 is free of voltage shifts due to stress on the leads. Finally, since the unit is temperature stabilized, warm up time is fast.

The LM199 can be used in almost any application in place of ordinary zeners with improved performance. Some ideal applications are analog to digital converters,
calibration standards, precision voltage or current sources or precision power supplies. Further in many cases the LM199 can replace references in existing equipment with a minimum of wiring changes.

The LM199 series devices are packaged in a standard hermetic TO-46 package inside a thermal shield. The LM199 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM299 is rated for operation from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the LM399 is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## Features

- Guaranteed $0.0001 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Low dynamic impedance $-0.5 \Omega$
- Initial tolerance on breakdown voltage - $2 \%$
- Sharp breakdown at $400 \mu \mathrm{~A}$
- Wide operating current $-500 \mu \mathrm{~A}$ to 10 mA
- Wide supply range for temperature stabilizer
- Guaranteed low noise
- Low power for stabilization - 300 mW at $25^{\circ} \mathrm{C}$
- Long term stability - 20 ppm


## Schematic Diagrams



Connection Diagram

## Metal Can Package



Order Number LM199H, LM299H or LM399H
See Package H04A


Reference
Functional Block Diagram


## Absolute Maximum Ratings

Temperature Stabilizer Voltage	40 V
Reverse Breakdown Current	20 mA
Forward Current	$1 \cdot \mathrm{~mA}$
Reference to Substrate Voltage $\mathrm{V}_{(\text {RS) }}$ (Note 1)	40 V
	-0.1 V
Operating Temperature Range	
LM199	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM299	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM399	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 2)

- PARAMETER	CONDITIONS	LM199/LM299			LM399			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Reverse Breakdown Voltage	$\begin{aligned} & 0.5 \mathrm{~mA} \leq I_{R} \leq 10 \mathrm{~mA} \\ & 0.5 \mathrm{~mA} \leq 1 \leq 10 \mathrm{~mA} \end{aligned}$	6.8	6.95	7.1	6.6	6.95	7.3	V
Reverse Breakdown Voltage			6	9		6	12	mV
Change With Current								
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1	-	0.5	1.5	$\Omega$
Reverse Breakdown	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$,		0.00003	0.0001				\%/ ${ }^{\circ} \mathrm{C}$
Temperature Coefficient	$\left.85^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\right\}$ LM 199		0.0005	0.0015				$\%{ }^{\circ} \mathrm{C}$
	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \quad$ LM299		0.00003	0.0001				$\%{ }^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A^{\prime}} \leq 70^{\circ} \mathrm{C} \quad$ LM399					0.00003	0.0002	$\% /{ }^{\circ} \mathrm{C}$
RMS Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		7	20		7	50	$\mu \mathrm{V}$
Long Term Stability	Stabilized, $22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C}$,   1000 Hours, $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \%$		20			20		ppm
Temperature Stabilizer	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Still Air, $\mathrm{V}_{S}=30 \mathrm{~V}$		8.5	14		8.5	15	
Supply Current	$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$		22	28				mA
Temperature Stabilizer Supply Voltage	(Note 3)	9		40	9		40	V
Warm-Up Time to 0.05\%	$V_{S}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3		Seconds
Initial Turn-on Current	$9 \leq \mathrm{V}_{S} \leq 40, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},($ Note 3$)$		140	200		140	200	mA

Note 1: The substrate is electrically connected to the negative terminal of the temperature stabilizer. The voltage that can be applied to either terminal of the reference is 40 V more positive or 0.1 V more negative than the substrate.
Note 2: These specifications apply for 30 V applied to the temperature stabilizer and $55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 199 ;-25^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+85^{\circ} \mathrm{C}$ for the LM299 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM399.
Note 3: This initial current can be reduced by adding an appropriate resistor and capacitor to the heater circuit. See the performance characteristic graphs to determine values.

## Typical Performance Characteristics





## Typical Applications (cont‘d.)



## Typical Applications (cont‘d.)

## OV to 20V Power Reference



Bipolar Output Reference


## National

## General Description

The LM199A/LM299A/LM399A are precision, tempera-ture-stabilized monolithic zeners offering temperature coefficients a factor of ten better than high quality reference zeners. Constructed on a single monolithic chip is a temperature stabilizer circuit and an active reference zener. The active circuitry reduces the dynamic impedance of the zener to about $0.5 \Omega$ and allows the zener to operate over 0.5 mA to 10 mA current range with essentially no change in voltage or temperature coefficient. Further, a new subsurface zener structure gives low noise and excellent long term stability compared to ordinary monolithic zeners. The package is supplied with a thermal shield to minimize heater power and improve temperature regulation.

The LM199A series references are exceptionally easy to use and free of the problems that are often experienced with ordinary zeners. There is virtually no hysteresis in reference voltage with temperature cycling. Also, the LM199A is free of voltage shifts due to stress on the leads. Finally, since the unit is temperature stabilized, warm up time is fast.

The LM199A can be used in almost any application in place of ordinary zeners with improved performance. Some ideal applications are analog to digital converters, calibration standards, precision voltage or current sources or precision power supplies. Further in many cases the LM199A can'replace references in existing equipment with a minimum of wiring changes.

The LM199A series devices are packaged in a standard hermetic TO-46 package inside a thermal shield. The LM199 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM299A is rated for operation from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the LM399A is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## Certified Long Term Stability Devices

All devices are tested for 1000 hours minimum at $25^{\circ} \mathrm{C}$ ambient temperature with temperature stabilizer operating. All devices shipped with long term data which certifies a maximum drift for the 1000 hours of 20 ppm or 50 ppm .

## Features

- Guaranteed $0.00005 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient
. Low dynamic impedance $-0.5 \Omega$
- Initial tolerance on breakdown voltage - $2 \%$
- Sharp breakdown at $400 \mu \mathrm{~A}$
- Wide operating current $-500 \mu \mathrm{~A}$ to 10 mA
- Wide supply range for temperature stabilizer
- Guaranteed low noise
- Low power for stabilization -300 mW at $25^{\circ} \mathrm{C}$
- Long term stability - 20 ppm
m Certified long term stability available


## Schematic Diagrams



Connection Diagram
Mietal Can Package


Order Number LM199AH, LM199AH-20, LM299AH, LM299AH-20, LM399AH or LM399AH-50 See NS Package H04D


Functional Block Diagram


## Absolute Maximum Ratings

Temperature Stabilizer Voltage	40 V
Reverse Breakdown Current	20 mA
Forward Current	1 mA
Reference to Substrate Voltage $\mathrm{V}_{(\text {(RS })}$ (Note 1)	+40 V
	-0.1 V
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM199A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM299A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM399A	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 2)

PARAMETER	CONDITIONS	LM199A, LM299A			LM399A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Reverse Breakdown Voltage	$\begin{aligned} & 0.5 \mathrm{~mA} \leq I_{R} \leq 10 \mathrm{~mA} \\ & 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \end{aligned}$	6.8	6.95	7.1	6.6	6.95	7.3	V
Reverse Breakdown Voltage Change With Current			6	9		6	12	mV
Reverse Dynamic Impedance	$\begin{array}{ll} \left.\begin{array}{l} \mathrm{I}_{R}=1 \mathrm{~mA} \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C} \\ 85^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C} \end{array}\right\} & \text { LM199A } \\ -25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} & \text { LM299A } \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} & \text { LM399A } \end{array}$		0.5	1		0.5	1.5	$\Omega$
Reverse Breakdown			0.00002	0.00005				\%/ ${ }^{\circ} \mathrm{C}$
Temperature Coefficient			0.0005	0.0010				$\% /^{\circ} \mathrm{C}$
			0.00002	0.00005				$\% \rho^{\circ} \mathrm{C}$
						0.00003	0.0001	$\% /{ }^{\circ} \mathrm{C}$
RMS Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		7	20		7	50	$\mu \mathrm{V}$
Long Term Stability	Stabilized, $22^{\circ} \mathrm{C} \leq T_{A} \leq 28^{\circ} \mathrm{C}$, 1000 Hours, $I_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \%$		20			20		ppm
Temperature Stabilizer	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Still Air, $\mathrm{V}_{S}=30 \mathrm{~V}$		8.5	14		8.5	15	mA
Supply Current	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		22	28				mA
Temperature Stabilizer		9		40	9		40	v
Supply Voltage (Note 3)								
Warm-Up Time to 0.05\%	$V_{S}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3		Seconds
Initial Turn-on Current	$9 \leq \mathrm{V}_{\mathrm{S}} \leq 40, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 3)		140	200		140	200	mA

Note 1: The substrate is electrically connected to the negative terminal of the temperature stabilizer. The voltage that can be applied to either terminal of the reference is 40 V more positive or 0.1 V more negative than the substrate.
Nóte 2: These specifications apply for 30 V applied to the temperature stabilizer and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 199 \mathrm{~A} ;-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+85^{\circ} \mathrm{C}$ for the LM299A and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM399A.
Note 3: This initial current can be reduced by adding an appropriate resistor and capacitor to the heater circuit. See the performance characteristic graphs to determine values.

## Typical Applications

For typical applications, see LM199 data sheet on preceding pages.

## Typical Performance Characteristics












National Semiconductor

## LM3999 Precision Reference

## General Description

The LM3999 is a precision, temperature-stabilized monolithic zener offering temperature coefficients a factor of ten better than high quality reference zeners. Constructed on a single monolithic chip is a temperature stabilizer circuit and an active reference zener. The active circuitry reduces the dynamic impedance of the zener to about $0.5 \Omega$ and allows the zener to operate over 0.5 mA to 10 mA current range with essentially no change in voltage or temperature coefficient. Further, a new subsurface zener structure gives low noise and excellent long term stability compared to ordinary monolithic zeners.

The LM3999 reference is exceptionally easy to use and free of the problems that are often experienced with ordinary zeners. There is virtually no hysteresis in reference voltage with temperature cycling. Also, the LM3999 is free of voltage shifts due to stress on the leads. Finally, since the unit is temperature stabilized, warm up time is fast.

The LM3999 can be used in almost any application in place of ordinary zeners with improved performance.

Some ideal applications are analog to digital converters, precision voltage or current sources or precision power supplies. Further, in many cases, the LM3999 can replace references in existing equipment with a minimum of wiring changes.

The LM3999 is packaged in a standard TO-92 package and is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## Features

- Guaranteed $0.0005 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Low dynamic impedance $-0.5 \Omega$
- Initial tolerance on breakdown voltage - 5\%
- Sharp breakdown at $400 \mu \mathrm{~A}$
- Wide operating current $-500 \mu \mathrm{~A}$ to 10 mA
- Wide supply range for temperature stabilizer
- Low power for stabilization - 400 mW at $25^{\circ} \mathrm{C}$
- Long term stability -20 ppm

Schematic Diagram


Functional Block Diagram


Typical Applications


## Absolute Maximum Ratings

Temperature Stabilizer Voltage
Reverse Breakdown Current 20 mA
Forward Current
Operating Temperature Range
0.1 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
36 V
20 mA
0.1 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Reverse Breakdown Voltage	$0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$	6.6	6.95	7.3	v
Reverse Breakdown Voltage Change With Current	$0.6 \mathrm{~mA} \leq 1 \leq 10 \mathrm{~mA}$		6	20	mV
Reverse Dynamic Impedance	$I_{R}=1 \mathrm{~mA}$		0.6	2.2	$\Omega$
Reverse Breakdown Temperature Coefficient	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$		0.0002	0.0005	\%/ ${ }^{\circ} \mathrm{C}$
RMS Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		7 .		$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & \text { Stabilized, } 22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C} \\ & 1000 \text { Hours, } \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \% \end{aligned}$		20		ppm
Temperature Stabilizer	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Still Air, $\mathrm{V}_{S}=30 \mathrm{~V}$		12	18	mA
Temperature Stabilizer Supply Voltage				36	V
Warm-Up Time to 0.05\%	$\mathrm{V}_{S}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5		Seconds
Initial Turn-on Current	$9 \leq \mathrm{V}_{S} \leq 40, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		140	200	mA

Note 1: These specifications apply for 30 V applied to the temperature stabilizer and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.

## Typical Performance Characteristics



Typical Performance Characteristics (Continued)




## Typical Applications (Continued)



Response Time


## Typical Applications (Continued)


*Clamp will sink 5 mA when input goes more positive than reference.


Connection Diagram

Plastic Package

bottom view
Order Number LM3999Z
See NS Package Z03A

Section 3
Operational
Amplifiers/Buffers


## Operational Amplifiers/Buffers

## Section Contents

BI-FET ${ }^{\text {TM } / B I-F E T ~ I I ~}{ }^{\text {TM }}$ Op Amp Selection Guide ..... 3-5
Military Op Amp Selection Guide ..... 3.7
Industrial Op Amp Selection Guide ..... 3-9
Commercial Op Amp Selection Guide ..... 3-10
Special Function Operational Amplifier and Special Function Buffer Amplifier Guides ..... 3-12
Definition of Terms ..... 3-13
High Input Impedance ( $\mathrm{I}_{\mathrm{B}}<\mathbf{2 5} \mathbf{n A}$ )
LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers ..... 3-14
LF155/LF255/LF355 Monolithic JFET Input Operational Amplifiers ..... 3-22
LF155A/LF355A Monolithic JFET Input Operational Amplifiers ..... 3-22
LF156/LF256/LF356 Monolithic JFET Input Operational Amplifiers ..... 3-22
LF156A/LF356A Monolithic JFET Input Operational Amplifiers ..... $3-22$
LF157/LF257/LF357 Monolithic JFET Input Operational Amplifiers ..... 3-22
LF157A/LF357A Monolithic JFET Input Operational Amplifiers ..... 3-22
LF351 Wide Bandwidth JFET Input Operational Amplifier ..... 3-35
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier ..... 3-42
LF400C Fast Settling JFET Input Operational Amplifier ..... 3-51
LF411A/LF411 Low Offset, Low Drift JFET Input Operational Amplifier ..... 3-53
LF412A/LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier ..... 3-60
LF441A/LF441 Low Power JFET Input Operational Amplifier ..... 3-66
LF442A/LF442 Dual Low Power JFET Input Operational Amplifier ..... 3-73
LF444A/LF444 Quad Low Power JFET Input Operational Amplifier ..... 3-81
LF13741 Monolithic JFET Input Operational Amplifier ..... $3-88$
LM108/LM208/LM308 Operational Amplifiers ..... 3-144
LM108A/LM208A/LM308A, LM308A-1, LM308A-2 Operational Amplifiers ..... 3-149
LM110/LM210/LM310 Voltage Follower ..... 3-154
LM112/LM212/LM312 Operational Amplifiers ..... 3-161
LM121/LM221/LM321, LM121A/LM221A/LM321A Precision Preamplifiers ..... 4-5
LM216/LM316, LM216A/LM316A Operational Amplifiers ..... 3-246
Low Drift ( $\Delta \mathrm{V}_{\text {os }} /$ Temp $<10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ )
LF155/LF255/LM355 Monolithic JFET Input Operational Amplifiers ..... 3-22
LF155A/LF355A Monolithic JFET Input Operational Amplifiers ..... 3-22
LF156/LF256/LF356 Monolithic JFET Input Operational Amplifiers ..... 3-22
LF156A/LF356A Monolithic JFET Input Operational Amplifiers ..... 3-22
LF157/LF257/LF357 Monolithic JFET Input Operational Amplifiers ..... 3-22
LF157A/LF357A Monolithic JFET Input Operational Amplifiers ..... 3-22
LF411A/LF411 Low Offset, Low Drift JFET Input Operational Amplifier ..... 3-53
LF412A/LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier ..... 3-60
LF441A/LF441 Low Power JFET Input Operational Amplifier ..... 3-66
LF442A/LF442 Duai Low Power JFET Input Operational Amplifier ..... 3-73
LF444A/LF444 Quad Low Power JFET Input Operational Amplifier ..... 3-81
LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference ..... 3-99
LM11/LM11C/LM11CL Operational Amplifiers ..... 3-115
LM108A/LM208A/LM308A, LM308A-1, LM308A-2 Operational Amplifiers ..... 3-149
LM725/LM725A/LM725C (Instrumentation) Operational Amplifier ..... 3-253
Section Contents (Continued)
High Slew Rate ( $\mathrm{S}_{\mathrm{R}}>10 \mathrm{~V} / \mu \mathrm{S}$ )
LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers ..... 3-14
LF156/LF256/LF356 Monolithic JFET Input Operational Amplifiers ..... 3-22
LF156A/LF356A Monolithic JFET Input Operational Amplifiers ..... 3-22
LF157/LF257/LF357 Monolithic JFET Input Operational Amplifiers ..... $3-22$
LF351 Wide Bandwidth JFET Input Operational Amplifier ..... 3-35
LF353 Wide Bandwidth Dual JFET Input Operational'Amplifier ..... 3-42
LF400C Fast Settling JFET Input Operational Amplifier ..... 3-51
LF411A/LF411 Low Offset, Low Drift JFET Input Operational Amplifier ..... 3-53
LF412A/LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier ..... 3-60
LM102/LM202/LM302 Voltage Followers ..... $3-135$
LM110/LM210/LM310 Voltage Follower ..... 3-154
LM118/LM218/LM318 Operational Amplifiers ..... 3-165
Low 'Power Consumption
LF441A/LF441 Low Power JFET Input Operational Amplifier ..... 3-66
LF442A/LF442 Dual Low Power JFET Input Operational Amplifier ..... 3-73
LF444A/LF444 Quad Low Power JFET Input Operational Amplifier ..... 3-81
LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference ..... 3-99
LM108A/LM208A/LM308A, LM308A-1, LM308A-2 Operational Amplifier ..... 3-149
LM112/LM212/LM312 Operational Amplifiers ..... 3-161
LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902
Low Power Quad Operational Amplifiers ..... 3-172
LM146/LM246/LM346 Programmable Quad Operational Amplifiers ..... 3-194
LM4250/LM4250C Programmable Operational Amplifier ..... 3-279
Single Supply
LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference ..... $3-99$
LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers ..... 3-172
LM158/LM258/LM358, LM158A/LM258A/LM358A, LM2904 Low Power Dual Operational Amplifiers ..... 3-216
LM2900/LM3900, LM3301, LM3401 Quad Amplifiers ..... 3-270
High Voltage ( $\mathrm{V}_{\mathrm{cc}}> \pm \mathbf{2 5 V}$ )
LM143/LM343 High Voltage Operational Amplifier ..... 3-181
LM144/LM344 High Voltage, High Slew Rate Operational Amplifier ..... 3-188
Buffer
LM102/LM202/LM302 Voltage Followers ..... 3-135
LM110/LM210/LM310 Voltage Follower ..... 3-154
LM733/LM733C Differential Video Amp ..... 9-54
Programmable
LM146/LM246/LM346 Programmable Quad Operational Amplifiers ..... 3-194
LM4250/LM4250C Programmable Operational Amplifier ..... 3-279
LM13080 Programmable Power Op Amp ..... 3-284
High Output Current ( $l_{0} \geq 200 \mathrm{~mA}$ )
LM13080 Programmable Power Op Amp ..... 3-284

## Section Contents (Continued)

General Purpose, Compensated
LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers ..... 3-14
LF155/LF255/LM355 Monolithic JFET Input Operational Amplifiers ..... 3-22
LF155A/LF355A Monolithic JFET Input Operational Amplifiers ..... 3-22
LF156/LF256/LF356 Monolithic JFET Input Operational Amplifiers ..... 3-22
LF156A/LF356A Monolithic JFET Input Operational Amplifiers ..... 3-22
LF157/LF257/LF357 Monolithic JFET Input Operational Amplifiers ..... 3-22
LF157A/LF357A Monolithic JFET Input Operational Amplifiers ..... 3-22
LF351 Wide Bandwidth JFET Input Operational Amplifier ..... 3-35
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier ..... $3-42$
LF400C Fast Settling JFET Input Operational Amplifier ..... 3-51
LF411A/LF411 Low Offset, Low Drift JFET Input Operational Amplifier ..... 3-53
LF412A/LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier ..... 3-60
LF441A/LF441 Low Power JFET Input Operational Amplifier ..... 3-66
LF442A/LF442 Dual Low Power JFET Input Operational Amplifier ..... $3-73$
LF444A/LF444 Quad Low Power JFET Input Operational Amplifier ..... 3-81
LF13741 Monolithic JFET Input Operational Amplifier ..... 3-88
LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference ..... $3-99$
LM11/LM11C/LM11CL Operational Amplifiers ..... 3-115
LM107/LM207/LM307 Operational Amplifiers ..... 3-140
LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers ..... 3-172
LM148, LM149 Series Quad 741 Op Amps ..... 3-206
LM158/LM258/LM358, LM158A/LM258A/LM358A, LM2904
Low Power Dual Operational Amplifiers ..... 3-216
LM159/LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers ..... 3-226
LM741/LM741A/LM741C/LM741E Operational Amplifier ..... 3-257
LM747/LM747A/LM747C/LM747E Dual Operational Amplifiers ..... 3-260
General Purpose, Compensated (Continued) LM1558/LM1458 Dual Operational Amplifier ..... 3-268
LM2900/LM3900, LM3301, LM3401 Quad Amplifier ..... 3-270
LM13080 Programmable Power Op Amp ..... 3-284
General Purpose, Uncompensated
LF157/LF257/LF357 Monolithic JFET Input Operational Amplifiers ..... $3-22$
LF157A/LF357A Monolithic JFET Input Operational Amplifiers ..... 3-22
LM101A/LM201A/LM301A Operational Amplifiers ..... 3-128
LM709/LM709A/LM709C Operational Amplifier ..... 3-249
LM748/LM748C Operational Amplifier ..... 3-265
Op Amp-ComparatorLM192/LM292/LM392, LM2924 Low Power Operational Amplifier/Voltage Comparator3-242

Note. For additional information on operational amplifiers, see National Semiconductor's Hybrid Products Databook.

COMPARISON OF ELECTRICAL CHARACTERISTICS						
DC Electrical Characteristics					AC Electrical Characteristics	
Part Number	$V_{\text {OS }}$-Max Offset Voltage (mV) ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )	$\Delta V_{\text {OS }} I \Delta T$-TC of $\mathrm{V}_{\mathrm{os}}\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$ Typ	$\begin{gathered} I_{\mathrm{B}}-\text { Max Bias } \\ \text { Current (pA) } \\ \left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right) \end{gathered}$	A Vol Large Signal Voltage Gain (V/mV) $\operatorname{Min}\left(T_{A}=25^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { SR-Slew } \\ & \text { Rate }(V / \mu \mathrm{S}) \end{aligned}$	. $e_{\text {n }}$-Equiv.   Input Noise Voltage ( $\mathrm{nV} / \sqrt{\mathrm{Hz} \text { ) }}$ (Note 2)
MILITARY BI-FET OP AMP (Note 1)						
LF155	5	5	100	50	5	20
LF155A	2	5 (max)	50	50	5	20
LF156	5	5	100	50	12	12
LF156A	2	5 (max)	50	50	12	12
LF157	5	5	100	50	50	12
LF157A	2	5 (max)	50	50	50	12
LF411A	0.5	10 (max)	200	50	10 (min)	25
LF411	2	10	200	50	8 (min)	25
LF441A (low power)	0.5	10 (max)	50	50.	1	40
LF412A Dual	1	10 (max)	200	50	10 (min)	25
LF412	3	10	200	50	8 (min)	25
LF442A Dual (low power)	1	10	50	50	1	40
LF444 Quad (low power)	5	10	50	50	1	40
INDUSTRIAL BI-FET OP AMP (Note 1)						
LF255	5	5	100	50	5	20
LF256	5	5	100	50	12	12
LF257	5	5	100	50	50	12
COMMERCIAL BI-FET AND BI-FET II OP AMP (Note 3)						
LF351	10	10	200	25	13	16
LF355	10	5	200	25	5	25
LF355A	2	5 (max)	50	25	5	25
LF356	10	5	200	25	12	15
LF356A	2	5 (max)	50	25	12	15
LF357	10	5	200	25	50	15
LF357A	2	5 (max)	50	25.	50	15
LF13741	15	10	200	25	0.5	37
LF411A	0.5	10 (max)	200	50	10	25
LF411	2.0	20	200	50	8	25
LF441A (low power)	0.5	10 (max)	50	50	1	40
LF441 (low power)	5	10	100	50	1	40
BI-FET II DUAL OP AMPS (CHARACTERISTICS FOR EACH AMPLIFIER) (Note 3)						
LF353	10	10	200	25	13	16
LF412A	1	10 (max)	200	50	10 (min)	25
LF412	3	20	200	50	8 (min)	25
LF442A (low power)	1	10 (max)	50	50	1	40
LF442 (low power)	3	20	100	50	1	40
BI-FET II QUAD OP AMPS (CHARACTERISTICS FOR EACH AMPLIFIER) (Note 3)						
LF347	10	10	200	25	13	16
LF347B	5	10	200	25	13	16
LF444A (low power)	5	10	50	50	1	40
LF444 (low power)	10	10	100	25	1	40
BI-FET ${ }^{\text {TM }}$ and BI FEET II ${ }^{\text {TM }}$ are trademarked terms by National Semiconductor who invented the technology in 1974.   Note 1: DC electrical characteristics are $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for Military and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for Industrial unless otherwise noted; AC electrical characteristics are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, typical specifications unless noted.						
Note 3: DC electrical characteristics are $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted; AC electrical characteristics are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, typical specifications unless noted.						

SELECTION BY DESIGN PARAMETER

Max Input Offset Voltage $\left(T_{A}=25^{\circ} \mathrm{C}\right)$	0.5 mV LF411A   LF441A	$\begin{aligned} & \hline 1 \mathrm{mV} \\ & \text { LF442A } \\ & \text { LF412A } \end{aligned}$	2 mV   LF155A/LF355A   LF156A/LF356A   LF357A	3 mV LF412 LF442	$\begin{array}{\|l\|l\|l} \hline \mathbf{5} \mathbf{~ m V} \\ \text { LF347E } \\ \text { LF155/l } \\ \text { LF255/l } \end{array}$	156/LF157   256/LF257	$\begin{aligned} & \hline 10 \mathrm{mV} \\ & \text { LF355/L } \\ & \text { LF351 } \\ & \text { LF353 } \\ & \text { LF347 } \\ & \text { LF444 } \end{aligned}$	6/LF357	$\begin{aligned} & 15 \mathrm{mV} \\ & \text { LF13741 } \end{aligned}$
Max Input Bias Current $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)$	50 pA   LF155A/LF156A/LF157A LF355A/LF356A/LF357A LF441A   LF442A   LF444A			100 pA   LF155/LF156/LF157   LF255/LF256/LF257   LF441   LF444   LF442			200 pA   LF355/LF356/LF357   LF351   LF347/LF347B   LF353   LF13741   LF411A   LF411   LF412A   LF412		
Typ Equivalent Input Noise Volta per $\sqrt{\mathrm{Hz}}, \mathrm{f}=1000$ $R_{S}=100 \Omega$	12 nV or Less LF156/LF156A LF157/LF157A LF256/LF257		LF356 LF351   LF356A LF347   LF357 LF347B   LF357A LF353		LF155 LF   LF155A LF   LF255 LF   LF355 LF   LF355A LF   L LF		LF13741   LF442A   LF442   LF444A   LF444		
Typ Slew Rate	$\begin{aligned} & \hline 0.5 \mathrm{~V} / \mu \mathrm{s} \\ & \mathrm{LF} 13741 \end{aligned}$	$1 \mathrm{~V} / \mu \mathrm{s}$   LF441A   LF441   LF442A   LF442   LF444A   LF444	$5 \mathrm{~V} / \mu \mathrm{s}$   LF155/LF15   LF255   LF355/LF35		12V/ $\mu \mathbf{s}$ LF156 LF156A LF256 LF356 LF356A	$13 \mathrm{~V} / \mu \mathrm{S}$   LF351   LF353   LF347   LF347B	$15 \mathrm{~V} / \mu \mathrm{S}$   LF411A   LF411   LF412A   LF412	$50 \mathrm{~V} / \mu \mathrm{s}$ LF157 LF157A LF357 LF357A	

ADDITIONAL NS PRODUCTS USING BI-FET TECHNOLOGY

- LF111 Comparator
- LF198 Sample and Hold
- LF11201 Series of Analog Switches
- LF11331 Series of Analog Switches
- LF11508 Series of Analog Multiplexers
- LF13300 Integrating A/D Building Block

MILITARY TEMPERATURE RANGE: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq+125^{\circ} \mathrm{C}$															
Device -	Input Offset Voltage Max (mV)	Input   Offset   Voltage Drift   Max   $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$	Input   Offset   Current   Max   (nA)	Input   Bias   Current   Max   (nA)	$\begin{aligned} & \text { Voltage } \\ & \text { Gain } \\ & \text { Min } \\ & \text { (Volts/V) } \end{aligned}$	$\begin{gathered} \text { Bandwidth } \\ A_{V}=1 \\ \text { Typ } \\ (\mathrm{MHz}) \end{gathered}$	Slew Rate $A_{V}=1$ Typ ( $\mathrm{V} / \mu \mathrm{s}$ )	Output   Current Min $\qquad$   (mA)	Supply Min (V)	Voltage Max (V)	Common Mode Range (V)	Differential Input Voltage (V)	Supply   Current   $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   Max   (mA)	Compensation Components Per Amplifier	Package Types
SINGLE OP AMPS							-								
LM101A	3	15	20	100	25k	1	0.5	5	$\pm 3$	$\pm 22$	$\pm 12$	$\pm 30$	3	1	TO-5 DIP
LM102	7.5	6 typ	*	100	0.999	10	10	$\left(R_{L}{ }^{1}=8 \mathrm{k} \Omega\right)$	$\pm 12$	$\pm 18$	$\pm 10$	*	5.5	0	TO-5
LM107	3	15	20	100	25k	1	0.5	7.5	$\pm 3$	$\pm 22$	$\pm 12$	$\pm 30$	3	0	TO-5 DIP
LM108A	1	5	0.4	3	40k	1	0.3	1	$\pm 2$	$\pm 20$	$\pm 14$	(Note 1)	0.6	1	TO. 5 DIP
LM108	3	15	0.4	3	25k	1	0.3	1	$\pm 2$	$\pm 20$	$\pm 14$	(Note 1)	0.6	1	TO-5 DIP
LM110	6	12	*	10	0.999	20	30	$\left(R_{L} \stackrel{1}{=}=8 \mathrm{k} \Omega\right)$	$\pm 5$	$\pm 18$	$\pm 10$	*	5.5	0	TO. 5 DIP
LM112	3	15	0.4	3	25k	1	0.2	$\left(R_{L}=1.3\right.$	$\pm 2$	$\pm 20$	$\pm 14$	(Note 1)	0.6	0	TO-5 DIP
LM118	4	*	50	250	20k	15	50 min	6	$\pm 5$	$\pm 18$	$\pm 11.5$	(Note 1)	8	0	TO-5 DIP
LM121A ( $\mathrm{R}_{\text {SET }}=70 \mathrm{k}$ )	0.65	0.2	1	30	16k	0.5	*	*	$\pm 5$	$\pm 20$	$\pm 15$	$\pm 15$	1.5	1	TO-5 DIP
LM121 ( $\mathrm{R}_{\text {SET }}=70 \mathrm{~K}$ )	1	1	3	30	16k	0.5	*	*	$\pm 5$	$\pm 20$	$\pm 15$	$\pm 15$	1.5	1	TO-5 DIP
LM143	6	*	7	35	50k	1	2.5	$\left(R_{\mathrm{L}} \stackrel{4.4}{\geq} 5 \mathrm{k}\right)$	$\pm 4$	$\pm 40$	$\pm 38$	$\pm 40$	4	0	TO. 5
LM144	6	*	7	35	50k	2	$\left(A_{V}{ }^{30}>10\right)$	$\left(R_{L}^{4.4} \geq 5 k\right)$	$\pm 4$	$\pm 40$	$\pm 38$	$\pm 40$	4	1	TO. 5
LF 155A	2.5	5	25	0.05	25k	2.5	5	5	$\pm 5$	$\pm 22$	$\pm 20$	$\pm 40$	4	0	TO-5
LF155	7	20	50	0.1	25k	2.5	5	5	$\pm 5$	$\pm 22$	$\pm 20$	$\pm 40$	4	0	T0. 5
LF156A	2.5	5	25	0.05	25k	5	15	5	$\pm 5$	$\pm 22$	$\pm 20$	$\pm 40$	7	0	TO. 5
LF156	7	20	50	0.1	25k	5	15	5	$\pm 5$	$\pm 22$	$\pm 20$	$\pm 40$	7	0	TO-5
LF157A ( $\left.A_{V} \geq 5\right)$	2.5	10	25	0.05	25k	25	75	5	$\pm 5$	$\pm 22$	$\pm 20$	$\pm 40$	7	0	TO-5
LF157 ( $A_{V} \geq 5$ )	7	20	50	0.1	25k	25	75	5	$\pm 5$	$\pm 22$	$\pm 20$	$\pm 40$	7	0	TO-5
LF411A	1.5	10	25		25.	4	15	5	$\pm 6$	$\pm 22$	$\pm 16$	$\pm 38$	2.8	0	TO-5
LF411	4	20	25		15	4	15	5	$\pm 6$	$\pm 18$	$\pm 11$	$\pm 30$	3.4	0	TO. 5
LF441A	1.5	10	10		25	1	1		$\pm 6$	$\pm 22$	$\pm 16$	$\pm 38$	0.200	0	TO. 5
LM709A	3	15	250	600	25k	1	0.3	5	$\pm 5$	$\pm 22$	$\pm 20$	$\pm 40$	3.6	3	TO-5
LM709	6	6 typ	500	1500	25k	1	0.3	5	$\pm 9$	$\pm 18$	$\pm 8$	$\pm 5$	5.5	3	TO-5 DIP
LM725A	0.7	2	18	180	1000	0.5	0.005	5	$\pm 3$	$\pm 22$	$\pm 13.5$	$\pm 5$	3.5	4	TO-5 DIP
LM725	1.5	5	40	200	1000	0.5	0.005	5	$\pm 3$	$\pm 22$	$\pm 13.5$	$\pm 5$	3.5	- 4	TO-5
LM741A	4	15	70	210	32k	1	0.5	7.5	$\pm 3$	$\pm 22$	$\pm 12$	$\pm 30$	4.0	. 0	TO-5 DIP
LM741	6	15 typ	500	1500	25k	1	0.5	5	$\pm 3$	$\pm 22$	$\pm 12$	$\pm 30$	2.8	0	TO-5 DIP
LM748	6	*	500	1500	25k	1	0.5	5	$\pm 3$	$\pm 22$	$\pm 12$	$\pm 30$	2.8	1	TO-5
LM4250 ( $\left.\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)$	4	*	3	7.5	50k	0.1	0.03	$\left(R_{L} \stackrel{0.12}{\geq} 100 k\right)$	$\pm 1$	$\pm 18$	$\pm 12$	$\pm 15$	0.011 set	0	TO-5 DIP

Note 1: Inputs have shunt-diode protection; current must be limited. *Not specified

Military Op Amp Selection Guide


INDUSTRIAL TEMPERATURE RANGE: $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$


Note 1: Inputs have shunt-diode protection; current must be limited.
Note 2: Supply current for all channels of amplifier in the package.
*Not specified

Commercial Op Amp Selection Guide


COMMERCIAL TEMPERATURE RANGE $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Device	Input Offset Voltage Max (mV)	Input Offset Voltage Drift Max ( $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ )	Input Offset Current Max (nA)	Input Bias Current Max (nA)	$\begin{aligned} & \text { Voltage } \\ & \text { Gain } \\ & \text { Min } \\ & \text { (Volts/V) } \end{aligned}$	Bandwidth $A V=1$   Typ   (MHz)	Slew Rate $A V=1$ Typ (V/ $/ \mathrm{s}$ )	Output   Voltage   Swing $\begin{gathered} R_{L}=10 \mathrm{k} \Omega \\ \text { (V). } \end{gathered}$	Sup Volt Min (V)	ply tage Max (V)	Common   Mode   Rejection Ratio (dB) Min	Differential Input Voltage (V)	Supply Current $T_{A}=25^{\circ} \mathrm{C}$ Max (mA) (Note 2)	Compensation Components	Package Types
SINGLE OP AMPS (Continued)															
LM709C	10	12 typ	500	1500	15k	1	0.3	5	$\pm 9$	$\pm 18$	$\pm 8$	$\pm 5$	6.6	3	TO. 5 DIP
LM725C	3.5	2 typ	50	250	125k	0.5	0.005	5	$\pm 3$	$\pm 22$	$\pm 13.5$	$\pm 5$	5	4	TO.5 DIP
LM741C	7.5	15 typ	300	800	15k	1	0.5	5	$\pm 3$,	$\pm 18$	$\pm 12$	$\pm 30$	2.8	0	TO.5 DIP
LM741E	4	15	70	210	32k	1	0.5	7.5	$\pm 3$	$\pm 18$	$\pm 12$	$\pm 30$	3.75	0	TO-5 DIP
LM748C	6	6	0.5	1.5	25k	1	0.5	5	$\pm 3$	$\pm 18$	$\pm 12$	$\pm 30$	2.8	1	TO-5 DIP
LM4250C	6	*	8	10	50k	0.1	0.03	0.12	$\pm 1$	$\pm 18$	$\pm 12$	$\pm 15$	0.011	0	TO-5 DIP
							$(A V>10)$	$\left(R_{L} \geq 100 \mathrm{k}\right)$					(Set)		
DUAL OP AMPS															
LF353	10	10 typ	0.1	0.2	25k	4	13	$\pm 12$	-18	18	70	$\pm 30$	6.5	0	TO-5, DIP
LF412	3	20	0.100		25	4	15		$\pm 6$	$\pm 18$	$\pm 11$	$\pm 30$	6.8	0	TO-5, DIP
LF412A	1	10	0.100		50	4	15		$\pm 6$	$\pm 22$	$\pm 16$	$\pm 38$	5.6	0	TO-5, DIP
LF442			0.100		25	1	1		$\pm 6$	$\pm 18$	$\pm 11$	$\pm 30$	0.500		TO-5, DIP
LF442A	1	10	0.050		50	1	1		$\pm 6$	$\pm 22$	$\pm 16$	$\pm 38$	0.400	0	TO-5, DIP
LM358	7.5	7 typ	150	500	15k	1	*	8	$\pm 1.5$	$\pm 15$	$\mathrm{v}^{+}-1.5$	$\mathrm{v}^{+}$	1.2	0	TO-5 DIP
LM1458	6	*	300	800	15k	1	0.2	5	$\pm 3$	$\pm 18$	$\pm 15$	$\pm 30$	5.6	0	TO-5 DIP
LM747C	6	*	300	800	15k	1	0.5	5	$\pm 3$	$\pm 18$	$\pm 12$	$\pm 30$	5.6	0	TO. 5 DIP
LM747E	4	15	70	210	32k	1	0.5	7.5	$\pm 3$	$\pm 18$	$\pm 12$	$\pm 30$	5.6	0	TO. 5 DIP
QUAD OP AMPS															
LF347	10	10 typ	0.01	0.2	25k	4	13	$\pm 12$	-18	18	70	$\pm 30$	11	0	N, J
LF347A	5	10 typ	0.1	0.2	50k	4	13	$\pm 12$	-18	18	80	$\pm 30$	11	0	N, J
LF444	10	10 typ	0.100		25	1	1		$\pm 6$	$\pm 18$	$\pm 11$	$\pm 30$	1	0	DIP
LF444A	5	10 typ	0.050		50	1	1		$\pm 6$	$\pm 22$	$\pm 16$	$\pm 38$	0.8	0	DIP
LM324	9	7 typ	150	500	15k	1	*	10-source	3	32	$\mathrm{v}^{+}-1.5$	32	2	0	DIP
								5-sink	$( \pm 1.5)( \pm 16)$						
LM346	5	10 typ	100	250	100k	0.8	0.4	$\pm 12$	-18	18	70	$\pm 30$	0.62	0	N, J
LM348	7.5	15 typ	100	400	15k	1	*	5	$\pm 5$	$\pm 18$	$\pm 18$	$\pm 36$.	4.5	0	DIP
LM349	7.5	15 typ	100	400	15k	4	3	5	$\pm 5$	$\pm 18$	$\pm 18$	$\pm 36$	4.5	0	DIP
$(A \vee \geq 5)$															
LM3900	*	*	*	200	2.8k	2.5	20	10	4	36	*	*	10	0	DIP.

Note 2: Supply current for all channels of amplifier in the package
hYBRID OPERATIONAL AMPLIFIERS

Features	InputOllsetVoltageMax(mV)	Input Ofisel VoltageDrifi $\left.\stackrel{{ }^{\text {Typ }}}{\left(\mu V^{1}\right.}{ }_{C}\right)$	InputOffsetCurrentMax(nA)	$\begin{gathered} \text { Input } \\ \text { Bias } \\ \text { Currant } \\ \text { Max } \\ \text { (nA) } \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Voltage } \\ \text { Gain } \\ \text { Min } \\ \text { Volts } / \mathrm{mv} \end{gathered}\right.$	Bandwidth $A_{y}=1$ (MHz) (MHz)	Stew Rate $A_{y}=$ (V/ $/ \mathrm{s}$ )	Output   Curren   (mA)	Supply Voltage		Temperature Range			
									$\begin{gathered} \text { Min } \\ (V) \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { (V) } \end{gathered}$	$\begin{gathered} -55^{\circ} \mathrm{C}+10 \\ 125^{\circ} \mathrm{C} \end{gathered}$	$-25^{\circ} \mathrm{C} \text { to }$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & 70^{\circ} \mathrm{C} \end{aligned}$	
Wideband	3	4	200	2000	15	30	30	$\pm 100$	$\pm 5$	$\pm 20$	LH0003	LH0003C		1.4
High Voltage	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 20 \\ & 45 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \\ & \hline \end{aligned}$	30	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 45 \\ & \pm 45 \\ & \hline \end{aligned}$	LH0004	LH0004C		$\begin{aligned} & 1.6 \\ & 1.6 \\ & \hline \end{aligned}$
Wideband	$\begin{gathered} \hline 3 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 10 \\ & 20 \\ & 25 \end{aligned}$	$\begin{gathered} 5 \\ 20 \\ 25 \end{gathered}$	$\begin{gathered} 25 \\ 50 \\ 100 \end{gathered}$	$\begin{array}{r} 4 \\ 2 \\ 2 \end{array}$	$\begin{aligned} & 30(1) \\ & 30(1) \\ & 30(1) \end{aligned}$	$\begin{aligned} & 20(1) \\ & 20(1) \\ & 20(1) \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 50 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 9 \\ & \pm 9 \\ & \pm 9 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	$\begin{gathered} \text { LH0005A } \\ \text { LHOOOS } \end{gathered}$	LH0005C		$\begin{aligned} & 1.9 \\ & 1.9 \\ & 1.12 \end{aligned}$
High Gain Medium Power	$\begin{gathered} \hline 2.5 \\ 6 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 200 \end{gathered}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 025 \\ 0.25 \\ \hline \end{array}$	$\begin{aligned} & \pm 40 \\ & \pm 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 22 \\ & \pm 22 \\ & \hline \end{aligned}$	LH0020	LH0020C		$\begin{aligned} & 1.14 \\ & 1.14 \end{aligned}$
High Power	$\begin{gathered} \hline 3 \\ 6 \\ 3 \\ 6 \\ 4 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 3 \\ & 5 \\ & 3 \\ & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & 100 \\ & 200 \\ & 100 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 500 \\ & 300 \\ & 500 \\ & 300 \\ & 500 \\ & \hline \end{aligned}$	100   100   100   100   50   25	$\begin{gathered} \hline 1 \\ 1 \\ 1 \\ 1 \\ 15 \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 \\ 3 \\ 3 \\ 3 \\ 70 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & \pm 1000 \\ & \pm 1000 \\ & \pm 200 \\ & \pm 200 \\ & \pm 500 \\ & \pm 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 18 \\ & \hline \end{aligned}$	LH0021   LH0041   LH0061	$\begin{aligned} & \text { LH0021C } \\ & \text { LH0041C } \\ & \text { LH0061C } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 1-16 \\ & 1-16 \\ & 1-16 \\ & 1-16 \\ & 1.56 \\ & 1.56 \\ & \hline \end{aligned}$
General Purpose FET Input	$\begin{gathered} \hline 4 \\ 6 \\ 20 \\ 20 \\ 0.5 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ 5 \\ 5 \\ 10 \\ 2 \\ 2 \\ 5 \end{gathered}$	$\begin{gathered} \hline 0.002 \\ 0.005 \\ 0.005 \\ 0.01 \\ 0.0005 \\ 0.001 \end{gathered}$	$\begin{gathered} \hline 0.01 \\ 0.025 \\ 0025 \\ 0.05 \\ 0.0025 \\ 0005 \end{gathered}$	$\begin{gathered} 100 \\ 75 \\ 50 \\ 25 \\ 100 \\ 75 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 22 \\ & \pm 22 \end{aligned}$	$\begin{aligned} & \text { LHOO22 } \\ & \text { LHOO42 } \\ & \text { LHOO52 } \end{aligned}$	LH0022C   LH0042C   LH0052C		$\begin{aligned} & \hline 1.23 \\ & 1.23 \\ & 1.23 \\ & 1.23 \\ & 1.23 \\ & 1.23 \\ & \hline \end{aligned}$
Wideband High Slew Rate	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{gathered} \hline 5.000 \\ 15.000 \\ \hline \end{gathered}$	$\begin{aligned} & 30.000 \\ & 40.000 \end{aligned}$	$\begin{array}{r} 4 \\ 3 \end{array}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 400 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 9 \\ & \pm 9 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & \pm 18 \end{aligned}$	LH0024	LH0024C		$\begin{aligned} & 1.30 \\ & 1.30 \\ & \hline \end{aligned}$
Wideband FET Input	$\begin{gathered} \hline 5 \\ 15 \end{gathered}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 0025 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & \pm 18 \end{aligned}$	LH0032	LH0032C	-	$\begin{aligned} & \hline 1.33 \\ & 1.33 \\ & \hline \end{aligned}$
Precision FET Input	$\begin{gathered} \hline 0.05 \\ 0.1 \\ 0.025 \\ 0.025 \\ 0.05 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.2 \\ & 0.2 \\ & 0.1 \\ & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5 \\ 5 \\ 2.5 \\ 2.5 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & 30 \\ & 30 \\ & 15 \\ & 15 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 500 \\ & 500 \\ & 1.000 \\ & 1,000 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & 0.4 \\ & 0.4 \\ & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.06 \\ & 0.06 \\ & 0.06 \\ & 0.06 \\ & 0.06 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1.3^{\prime} \\ & \pm 1.3 \\ & \pm 1.3 \\ & \pm 1.3 \\ & \pm 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \hline \end{aligned}$	$\begin{gathered} \text { LH0044 } \\ \text { LH0044A } \end{gathered}$	$\begin{gathered} \text { LH0044C } \\ \text { LHOO4AAC } \\ \text { LH0044B } \end{gathered}$		$\begin{aligned} & 1.39 \\ & 1.39 \\ & 1.39 \\ & 1.39 \\ & 1.39 \\ & \hline \end{aligned}$
Medium Speed. FET Input	$\begin{gathered} 5 \\ 15 \end{gathered}$	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & 0.002 \\ & 0005 \\ & \hline \end{aligned}$	$\begin{gathered} 0.01 \\ 0.065 \end{gathered}$	$\begin{aligned} & 50 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 6 \\ & \pm 6 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \hline \end{aligned}$	LH0062	LH0062C		$\begin{aligned} & 1.59 \\ & 1.59 \\ & \hline \end{aligned}$
Dual Precision	$\begin{gathered} 2 \\ 2 \\ 7.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 2 \\ 2 \\ 75 \end{gathered}$	$\begin{gathered} 15 \\ 15 \\ 30 \\ 5 \\ 5 \\ 5 \\ 15 \\ 15 \\ 30 \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & 50 \\ & 0.2 \\ & 0.2 \\ & 1.0 \\ & 0.2 \\ & 0.2 \\ & 1.0 \end{aligned}$	$\begin{gathered} 75 \\ 75 \\ 250 \\ 2 \\ 2 \\ 7 \\ 7 \\ 2 \\ 2 \\ 7 \\ \hline \end{gathered}$	$\begin{aligned} & 50 \\ & 50 \\ & 25 \\ & 80 \\ & 80 \\ & 80 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 5 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 3 \\ & \pm 3 \\ & \pm 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 22 \\ & \pm 22 \\ & \pm 22 \\ & \pm 20 \end{aligned}$	LH2101A   LH2108A   LH2108	$\begin{gathered} \text { LH2201A } \\ \text { LH2208A } \\ \text { LH2208 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LH2301A } \\ \text { LH2308A } \\ \\ \text { LH2308 } \\ \hline \end{array}$	$\begin{aligned} & 1.91 \\ & 1.91 \\ & 1.91 \\ & 1.93 \\ & 1.93 \\ & 1.93 \\ & 1.93 \\ & 1.93 \\ & 1.93 \\ & \hline \end{aligned}$
Dual Low Power	$\begin{aligned} & 3 \\ & 6 \\ & \hline \end{aligned}$	-	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 100 \\ & 75 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.16 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.75 \\ & \pm 0.75 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 18 \\ & \pm 18 \end{aligned}$	LH24250	LH24250C		$\begin{aligned} & \hline 1.95 \\ & 1.95 \\ & \hline \end{aligned}$

Note: For information on monolithic operational amplifiers, consult the Linear Databook. Note 1: Specified for $A_{\mathbf{v}}=-10$.
*Refers to Hybrid Products Databook, 1982 edition

## HYBRID BUFFER AMPLIFIERS

Features	$\begin{gathered} \text { Voltage } \\ \text { Gain } \\ (\text { min }) \\ \hline \end{gathered}$	Output Current	$\begin{aligned} & \text { Slew } \\ & \text { Rate } \end{aligned}$	$\begin{gathered} \text { Input } \\ \text { Impedance } \end{gathered}$	Part Number		
					$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to } \\ & 85^{\circ} \mathrm{C} \end{aligned}$	
Bipolar Input, medium speed	095	$\pm 100 \mathrm{~mA}$	$200 \mathrm{~V} / \mathrm{\mu s}$	$180 \mathrm{~K} \Omega$	LH0002H	LH0002CH LH0002CN	${ }_{2.4}^{2.4}$
FET Input, high speed	097	$\pm 100 \mathrm{~mA}$	$1000 \mathrm{~V} / \mathrm{\mu s}$	$10^{10} \Omega$	LНооззg	$\begin{aligned} & \text { LHOO33CG } \\ & \text { LH0033CJ } \end{aligned}$	2.7 2.7
FET Input, very high speed	095	$\pm 250 \mathrm{~mA}$	$2000 \mathrm{~V} / \mathrm{\mu}$	$10^{10} \Omega$	LH0063k	LH0063CK	2.7

*Refers to Hybrid Products Databook, 1982 edition

## Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.

Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.

Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. $\%$ harmonic distortion $=$

$$
\frac{\left(V 2^{2}+V 3^{2}+V 4^{2}+\ldots\right)^{1 / 2}(100 \%)}{V 1}
$$

where V 1 is the rms amplitude of the fundamental and V2, V3, V4, . . . are the rms amplitudes of the individual harmonics.

Input Bias Current: The average of the two input currents.

Input Common-Mode Voltage Range: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.

Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance ( $\mathrm{R}_{\mathrm{S}}$ ) and load resistance ( $\mathrm{R}_{\mathrm{L}}$ ).

Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.

Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.

Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance ( $\mathrm{R}_{\mathrm{S}}$ ) and load resistance ( $\mathrm{R}_{\mathrm{L}}$ ).

Output Resistance: The small signal resistance seen at the output with the output voltage near zero.

Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.

Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.

Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.

Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies. .

Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.

Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one.

Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance ( $\mathrm{R}_{\mathrm{S}}$ ) and load resistance ( $\mathrm{R}_{\mathrm{L}}$ ).

0
National Semiconductor LF147/LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers

## Operational Amplifiers/Buffers

## General Description

The LF147 is a low cost, high speed quad JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF147 is pin compatible with the standard LM148. This feature allows designers to immediately upgrade the overall performance of existing LF148 and LM124 designs.

The LF147 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift.

## Features

- Internally trimmed offset voltage 2 mV
- Low input bias current 50 pA
- Low input noise current $\quad 0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth 4 MHz
- High slew rate $13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current 7.2 mA
- High input impedance $\leqslant 10^{12} \Omega$
- Low total harmonic distortion $A V=10, \quad<0.02 \%$
$R_{L}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$
- Low $1 / \mathrm{f}$ noise corner

50 Hz

- Fast settling time to $0.01 \%$
$2 \mu \mathrm{~s}$


## Simplified Schematic

## 1/4 Quad



## Connection Diagram



Order Number LF147D or LF347D See NS Package D14E

Order Number LF347BN or LF347N See NS Package N14A

Absolute Maximum Ratings

	LF147	$\begin{aligned} & \text { LF347B/ } \\ & \text { LF347 } \end{aligned}$		LF147	LF347B/LF347
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	Power Dissipation (Note 3)	900 mW	500 mW
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$			
Input Voltage Range (Note 1)	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j} \text { max }}$	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
			$\theta_{\mathrm{j}} \mathrm{A}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$150^{\circ} \mathrm{C} / \mathrm{W}$
Output Short Circuit Duration (Note 2)	Continuous	Continuous	Operating Temperature Range	(Note 4)	(Note 4)
			Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$	
			Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

## DC Electrical Characteristics (Note 5)

SYMBOL	PARAMETER	CONDITIONS	LF147			LF347B			LF347			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
VOS	Input Offset Voltage	$R_{S}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$   Over Temperature		1	$\begin{aligned} & 5 \\ & 8 \end{aligned}$		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
$\Delta V_{\text {OS }} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IOS	Input Offset Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 5,6)$   Over Temperature		25	$\begin{aligned} & 100 \\ & 25 \end{aligned}$		25 .	$\begin{aligned} & 100 \\ & 4 \end{aligned}$		25	100 4	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$I_{B}$	Input Bias Current	$\mathrm{T}_{\mathbf{j}}=25^{\circ} \mathrm{C},(\text { Notes } 5,6)$   Over Temperature		50	$\begin{aligned} & 200 \\ & 50 \end{aligned}$		50	200 8		50	200 8	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		$10^{12}$			$10^{12}$			1012		$\Omega$
AVOL	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$   Over Temperature	50 25	100		50 25	100		25 15	100		$\mathrm{V} / \mathrm{mV}$ $\mathrm{V} / \mathrm{mV}$
Vo	Output Voltage Swing	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 12$	$\pm 13.5$		$\pm 12$	$\pm 13.5$		$\pm 12$	$\pm 13.5$		V
$\mathrm{V}_{\mathrm{CM}}$	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 11$	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		$\pm 11$	$\begin{array}{\|} +15 \\ -12 \end{array}$		$\pm 11$	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$	80	100		80	100		70	100		dB
PSRR	Supply Voltage Rejectıon Ratıo	(Note 7)	80	100		80	100		70	100		dB
Is	Supply Current			7.2	11		7.2	11		7.2	11	mA

## AC Electrical Characteristics (Note 5)

SYMBOL	PARAMETER	CONDITIONS	LF147			LF347B			LF347			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
	Amplifier to Amplifier Coupling	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$		-120			-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		13	'		13			13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		4			4			4		MHz
$e_{n}$	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		20			20			20		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 3: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j}} \mathrm{A}$.
Note 4: The LF147 is available in the military temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, while the LF347B and the LF347 are available in the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$.
Note 5: Unless otherwise specified the specifications apply over the full temperature range and for $\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$ for the LF 147 and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF347B/LF347. $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and $\mathrm{I}_{\mathrm{OS}}$ are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 6. The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $\mathrm{T}_{\mathrm{j}}$. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{A}+\theta_{\mathrm{jA}} \mathrm{P}_{\mathrm{D}}$ where $\theta_{\mathrm{jA}}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

## Typical Performance Characteristics




Undistorted Output Voltage Swing


Common－Mode Rejection Ratio




Open Loop Frequency Response


Output Impedance


Pulse Response $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$


## Application Hints

The LF147 is an op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET $1 I^{\top M}$ ). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be
allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a

## Application Hints (Continued)

high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.

Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 4.5 \mathrm{~V}$ power supplies. Supply voltages less than these may result in , lower gain bandwidth and slew rate.

The LF147 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed
backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capaçitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

## Detailed Schematic




Long Time Integrator with Reset，Hold and Starting Threshold Adjustment

－VOUT starts from zero and is equal to the integral of the input voltage with respect to the threshold voltage：

$$
V_{\text {OUT }}=\frac{1}{R C} \int_{0}^{t}\left(V_{I N}-V_{T H}\right) d t
$$

－Output starts when $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {TH }}$
－Switch S1 permits stopping and holding any output value
－Switch S2 resets system to zero


For circuit shown：
$\mathrm{f}_{\mathrm{o}}=3 \mathrm{kHz}, \mathrm{f}_{\mathrm{NOTCH}}=9.5 \mathrm{kHz}$
$\mathrm{Q}=3.4$
Passband gain：
Highpass－ 0.1
Bandpass－ 1
Lowpass－ 1
Notch－ 10
－$f_{0} \times Q \leq 200 \mathrm{kHz}$
－ 10 V peak sinusoidal output swing without slew limiting to 200 kHz
－See LM148 data sheet for design equations

National Semiconductor LF155/LF156/LF157 Series Monolithic
JFET Input Operational Amplifiers

LF155, LF155A, LF255, LF355, LF355A, LF355B Low Supply Current LF156, LF156A, LF256, LF356, LF356A, LF356B Wide Band<br>LF157, LF157A, LF257, LF357, LF357A, LF357B Wide Band Decompensated ( $\mathrm{V}_{\mathrm{V}_{\mathrm{MIN}}}=5$ )

## General Description

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FET Technology). These amplifiers feature low input bias and offset currents, low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low $1 / \mathrm{f}$ noise corner.

## Advantages

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance-very low $1 / \mathrm{f}$ corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads $(10,000 \mathrm{pF})$ without stability problems
- Internal compensation and large differential input voltage capability


## Applications

- Precision high speed integrators
- Fast D/A and A/D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers
- Logarithmic amplifiers
- Photocell amplifiers
- Sample and Hold circuits


## Common Features

(LF155A, LF156A, LF157A)

- Low input bias current	30 pA
- Low Input Offset Current	3 pA
- High input impedance	$10^{12} \Omega$
- Low input offset voltage	1 mV
- Low input offset voltage temperature	$3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
drift	
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High common-mode rejection ratio	100 dB
- Large dc voltage gain	106 dB

Uncommon Features

	LF155A	LF156A	LF157A   (AV = 5)	UNITS
Extremely   fast settling   time to	4	1.5	1.5	$\mu \mathrm{~s}$
0.01\%				
Fast slew				
rate				

## Simplified Schematic



Absolute Maximum Ratings		LF155A/6A/7A	LF155/6/7	$\begin{gathered} \text { LF355B/6B/7B } \\ \text { LF255/6/7 } \end{gathered}$	LF355A/6A/7A   LF355/6/7
Supply Voltage		$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation ( $\mathrm{P}_{\mathrm{d}}$ at $25^{\circ} \mathrm{C}$ ) and Thermal Resistance ( $\left.\theta_{j} \mathrm{~A}\right)$ (Note 1)					
TjMAX					
(H Package)		$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
(N Package)				$100^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
(H Package)		670 mW	670 mW	570 mW	570 mW
	$\theta_{j A}$	$150^{\circ} \mathrm{C} / \mathrm{W}$			
(N Package)				500 mW	500 mW
	$\theta_{j} \mathrm{~A}$			$155^{\circ} \mathrm{C} / \mathrm{W}$	$155^{\circ} \mathrm{C} / \mathrm{W}$
Differential Input Voltage		$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)		$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 16 \mathrm{~V}$
Output Short Circuit Duration		Continuous	Continuous	Continuous	Continuous
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Lead Temperature (Soldering, 10 seconds)		$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 3)

SYMBOL	PARAMETER	CONDITIONS	LF155A/6A/7A			LF355A/6A/7A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
VOS	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   Over Temperature	$1$		$\begin{aligned} & 2 \\ & 2.5 \end{aligned}$	-	1	$\begin{aligned} & \mathbf{2} \\ & 2.3 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{VOS}^{\prime} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		3	5		3	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta T C / \Delta V_{\text {OS }}$	Change in Average TC with $V_{\text {OS }}$ Adjust	RS $=50 \Omega$, (Note 4)		0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$   per $m V$
Ios	Input Offset Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, (Notes 3,5)		3	10		3	10	pA
		$\mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\mathrm{HIGH}}$			10			1	nA
$I_{B}$	Input Bias Current	$\mathrm{T}_{\mathrm{J}} \dot{=} \mathbf{2} 5^{\circ} \mathrm{C}$, (Notes 3,5)		30	$\begin{aligned} & 50 \\ & 25 \end{aligned}$		30	50	pA
		$\mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {HIGH }}$						5	nA
RIN	Input Resistance	$\mathrm{TJ}^{\prime}=25^{\circ} \mathrm{C}$		$10^{12}$			$10^{12}$		$\Omega$
$\mathrm{AVOL}^{\text {O }}$	Large Signal Voltage Gain	$V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$	50	200		50	200		$\mathrm{V} / \mathrm{mV}$
		$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$							
		Over Temperature	25			25			$\mathrm{V} / \mathrm{mV}$
$\mathrm{V}_{0}$	Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
		$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		V
$\mathrm{V}_{\mathrm{CM}}$	Input Common-Mode Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$		+15.1		$\pm 11$	+15.1		V
				-12			-12		V
CMRR	Common-Mode Rejection Ratio		85	100		85	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	85	100		85	100		dB

## AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS	LF155A/355A			LF156A/356A			LF157A/357A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
SR	Slew Rate	$\begin{aligned} & L F 155 A / 6 A ; A V=1, \\ & \text { LF157A; } A V=5 \end{aligned}$	3	. 5		10	12		40	50		$\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product			2.5		4	4.5		15	20		MHz
$t_{s}$	Settling Time to 0.01\%	(Note 7)		4			1.5			1.5		$\mu \mathrm{s}$
$e_{n}$	Equivalent Input Noise	$\mathrm{R}_{\mathrm{S}}=100 \Omega$										
	Voltage	$\mathrm{f}=100 \mathrm{~Hz}$		25			15			15		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1000 \mathrm{~Hz}$		25			12			12		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$i_{n}$	Equivalent Input	$\mathrm{f}=100 \mathrm{~Hz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	Noise Current	$\mathrm{f}=1000 \mathrm{~Hz}$		0.01		.	0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
CIN	Input Capacitance			3			3			3		. pF

DC Electrical Characteristics (Note 3)

SYMBOL	PARAMETER	CONDITIONS	LF155/6/7			LF255/6/7LF355B/6B/7B			LF355/6/7			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
VOS	Input Offset Voltage	$R_{S}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$   Over Temperature		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		3	$\begin{gathered} 5 \\ 6.5 \end{gathered}$		3	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
$\Delta V_{\text {OS }} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		5			5			5		$\mu \dot{\mathrm{V}} /{ }^{\circ} \mathrm{C}$
$\Delta T C / \Delta V_{\text {OS }}$	Change in Average TC with VOS Adjust	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, (Note 4)	$\therefore$	0.5			0.5			0.5		$\begin{array}{r} \mu \mathrm{V} \rho \mathrm{C} \\ \text { per } \mathrm{mV} \end{array}$
IOS	Input Offset Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & T_{j} \leq T_{\text {HIGH }} \end{aligned}$		3	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		3	$\begin{aligned} & 20 \\ & 1 \end{aligned}$		3	$\begin{aligned} & 50 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
${ }^{\prime} B$	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\mathrm{HIGH}} \end{aligned}$		30	$\begin{aligned} & 100 \\ & 50 \end{aligned}$		30	$\begin{aligned} & 100 \\ & 5 \end{aligned}$		30	$\begin{aligned} & 200 \\ & 8 \end{aligned}$	pA   nA
RIN	Input Resistance	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		$10^{12}$			$10^{12}$			$10^{12}$		$\Omega$
$\mathrm{AVOL}^{\text {O }}$	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	50	200		50	200		25	200		$\mathrm{V} / \mathrm{mV}$
		Over Temperature	25			25			15			$\mathrm{V} / \mathrm{mV}$
$\mathrm{V}_{0}$	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
.		$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		- V
$V_{\text {CM }}$				$+15.1$			$+15.1$			+15.1		V
	Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	$\pm 11$	$-12$		$\pm 11$	$-12$		$\pm 10$	-12		V
CMRR	Common-Mode Rejection Ratio		85	$100$		85	100		80	100		dB
PSRR	Supply Voltage RejecRatio	(Note 6) .	85	100		85	100		80	100		dB

## DC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

PARAMETER	LF155A/155, LF255, LF355A/355B		LF355		LF156A/156, LF256/356B		LF356A/356		$\begin{aligned} & \text { LF157A/157 } \\ & \text { LF257/357B } \end{aligned}$		LF357A/357		UNITS
	TYP	MAX											
Supply Current	2	4	2	4	5	7	5	10	5	7	5	10	mA

AC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{VS}_{\mathrm{S}}= \pm 15 \mathrm{~V}$


## Notes for Electrical Characteristics

Note 1: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{j A}$, and the ambient temperature, $\mathrm{T}_{A}$. The maximum available power dissipation at any temperature is $\mathrm{P}_{\mathrm{d}}=\left(\mathrm{T}_{\mathrm{jMA}} \mathrm{X}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{j}} \mathrm{A}$ or the $25^{\circ} \mathrm{C} \mathrm{P}_{\mathrm{dM}}$ MAX, whichever is less.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: Unless otherwise stated, these test conditions apply:

	LF155A/6A/7A   LF155/6/7	LF255/6/7	LF355A/6A/7A	LF355B/6B/7B	LF355/6/7
$\begin{aligned} & \text { Supply Voltage, } V_{S} \\ & T_{A} \\ & \text { THIGH } \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V} \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \pm 20 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & +70^{\circ} \mathrm{C} \end{aligned}$

and $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and $\mathrm{I}_{\mathrm{OS}}$ are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The Temperature Coefficient of the adjusted input offset voltage changes only a small amount ( $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $T_{J}$. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd}_{\mathrm{d}} \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\Theta_{\mathrm{j}} \mathrm{A} P \mathrm{Pd}$ where $\Theta_{\mathrm{j} A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.
Note 7: Settling time is defined here, for a unity gain inverter connection using $2 \mathrm{k} \Omega$ resistors for the LF155/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within $0.01 \%$ of its final value from the time a 10 V step input is applied to the inverter. For the LF157, $A V=-5$, the feedback resistor from output to input is $2 \mathrm{k} \Omega 2$ and the output step is 10 V (See Settling Time Test Circuit, page 3-30).

## Typical DC Performance Characteristics

Curves are for LF155, LF156 and LF157 unless otherwise specified.


Typical DC Performance Characteristics (Continued)

Negative Common-Mode Input Voltage Limit


## Typical AC Performance Characteristics



Output Voltage Swing





Inverter Settling Time



Power Supply Rejection Ratio



Open Loop Frequency Response



Power Supply Rejection Ratio


Equivalent Input Noise Voltage (Expanded Scale)


## Typical AC Performance Characteristics (Continued)



## Detailed Schematic



Connection Diagrams (Top Views)
Metal Can Package (H)

LF155AH	Order Number	LF156AH
LF157AH		
LF155H	LF156H	LF157H
LF255H	LF256H	LF257H
LF355AH	LF356AH	LF357AH
LF355H	LF356H	LF357H
See NS Package H08C		



Dual-In-Line Package (N)


Order Number LF355N, LF356N
See NS Package N08B

## Application Hints

The LF155/6/7 series are op amps with JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accomodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-mode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed
in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

## Typical Circuit Connections



- $V_{\text {OS }}$ is adjusted with a 25 k potentiometer
- The potentiometer wiper is connected to $\mathrm{V}^{+}$
- For potentiometers with temperature coefficient of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less the additional drift with adjust is $\approx 0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} / \mathrm{mV}$ of adjustment
- Typical overall drift: $5 \mu \mathrm{~V} /$ ${ }^{\circ} \mathrm{C} \pm\left(0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} / \mathrm{mV}\right.$ of adj.)

LF157. A Large Power BW Amplifier


For distortion $\leq 1 \%$ and a 20 Vp-p VOUT swing, power bandwidth is: 500 kHz .

## Typical Applications



- Settling time is tested with the LF155/6 connected as unity gain inverter and LF157 connected for $A_{V}=-5$
- FET used to isolate the probe capacitance
- Output $=10 \mathrm{~V}$ step
- $A_{V}=-5$ for LF157

Large Signal Inverter Output, $\mathrm{V}_{\text {OUT }}$ (from Settling Time Circuit)

$2 \mu \mathrm{~s} / \mathrm{DIV}$

LF356

$1 \mu \mathrm{~s} / \mathrm{DIV}$

LF357

$1 \mu \mathrm{~s} / \mathrm{DIV}$

Low Drift Adjustable Voltage Reference


- $\Delta V_{\text {OUT }} / \Delta T= \pm 0.002 \% /{ }^{\circ} \mathrm{C}$
- All resistors and potentiometers should be wire-wound
- P1: drift adjust
- P2: VOUT adjust
- Use LF155 for
- Low IB

4 Low drift
A Low supply current

## Typical Applications (Continued)

Fast Logarithmic Converter


- Dynamic range: $100 \mu \mathrm{~A} \leq \mathrm{i}_{i} \leq 1 \mathrm{~mA}$ (5 decades), $\left|\mathrm{V}_{\mathrm{O}}\right|=1 \mathrm{~V} /$ decade
- Transient response: $3 \mu \mathrm{~s}$ for $\Delta I_{i}=1$ decade
- C1, C2, R2, R3: added dynamic compensation
- $V_{\text {OS }}$ adjust the LF156 to minimize quiescent error
- $\mathrm{R}_{\mathrm{T}}$ : Tel Labs type $081+0.3 \%{ }^{\circ} \mathrm{C}$
$\left|V_{\text {OUT }}\right|=\left[1+\frac{R 2}{R_{T}}\right] \frac{k T}{q} \ln V_{i}\left[\frac{R_{r}}{V_{R E F} R_{i}}\right]=\log V_{i} \frac{1}{R_{i} I_{r}} \quad R 2=15.7 \mathrm{k}, R_{T}=1 \mathrm{k}, 0.3 \% /{ }^{\circ} \mathrm{C}$ (for temperature compensation)

Precision Current Monitor


8-Bit D/A Converter with Symmetrical Offset Binary Operation


- R1, R2 should be matched within $\pm 0.05 \%$
- Full-scale response time: $3 \mu \mathrm{~s}$

$\mathbf{E}_{\mathbf{O}}$	B1	B2	B3	B4	B5	B6	B7	B8	COMMENTS
+9.920	1	1	1	1	1	1	1	1	Positive Full-Scale
+0.040	1	0	0	0	0	0	0	0	$(+)$ Zero-Scale
-0.040	0	1	1	1	1	1	1	1	$(-)$ Zero-Scale
-9.920	0	0	0	0	0	0	0	0	Negative Full-Scale

Typical Applications (Continued)

Wide BW Low Noise, Low Drift Amplifier


- Power BW: $f_{\text {MAX }}=\frac{\mathrm{S}_{\mathbf{r}}}{2 \pi \mathrm{~V}_{\mathrm{P}}} \cong 240 \mathrm{kHz}$
- Parasitic input capacitance $\mathbf{C 1} \cong(3 \mathrm{pF}$ for LF155, LF156 and LF157 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: R2C2 $\cong$ R1C1.

Boosting the LF156 with a Current Amplifier


- IOUT(MAX) $\cong 150 \mathrm{~mA}$ (will drive $R_{L} \geq 100 \Omega$ )
- $\frac{\Delta V_{\text {OUT }}}{\Delta T}=\frac{0.15}{10^{-2}} \mathrm{~V} / \mu \mathrm{s}$ (with $\mathrm{C}_{\mathrm{L}}$ shown)
- No additional phase shift added'by the current amplifier

$f=\frac{V_{C}(R 8+R 7)}{\left[8 V_{P U} R 8 R 1\right] C}, 0 \leq V_{C} \leq 30 V, 10 \mathrm{~Hz} \leq f \leq 10 \mathrm{kHz}$
R1, R4 matched. Linearity $0.1 \%$ over 2 decades.

Isolating Large Capacitive Loads


- Overshoot 6\%
- $\mathrm{t}_{\mathrm{s}} 10 \mu \mathrm{~s}$
- When driving large $C_{L}$, the $V_{\text {OUT }}$ slew rate determined by $C_{L}$ and IOUT(MAX):
$\frac{\Delta V_{\mathrm{OUT}}}{\Delta \mathrm{T}}=\frac{\mathrm{I}_{\mathrm{OUT}}}{\mathrm{C}_{\mathrm{L}}} \cong \frac{0.02}{0.5} \mathrm{~V} / \mu \mathrm{s}=0.04 \mathrm{~V} / \mu \mathrm{s}$ (with $\mathrm{C}_{\mathrm{L}}$ shown)

Low Drift Peak Detector


- By adding $D 1$ and $R_{f}, V_{D 1}=0$ during hold mode. Leakage of D 2 provided by feedback path through $\mathrm{R}_{\mathrm{f}}$.
- Leakage of circuit is essentially $\mathrm{I}_{\mathrm{b}}$ (LF155, LF156) plus capacitor leakage of $\mathrm{C}_{\mathrm{P}}$.
- Diode D3 clamps $\mathrm{V}_{\text {OUT }}(\mathrm{A} 1)$ to $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{D} 3}$ to improve speed and to limit reverse bias of D2.
- Maximum input frequency should be $\ll 1 / 2 \pi R_{f} C_{D 2}$ where $C_{D 2}$ is the shunt capacitance of D2.

Non-Inverting Unity Gain Operation for LF157


Inverting Unity Gain for LF157


## Typical Applications <br> (Continued)

High Impedance, Low Drift Instrumentation Amplifier


- $V_{\text {OUT }}=\frac{R 3}{R}\left[\frac{2 R 2}{R 1}+1\right] \Delta V, V^{-}+2 V \leq V_{I N}$ common-mode $\leq \mathrm{V}^{+}$
- System $V_{\text {OS }}$ adjusted via $A 2 V_{O S}$ adjust
- Trim R3 to boost up CMRR to 120 dB . Instrumentation amplifier Resistor array RA201 (National Semiconductor) recommended

Fast Sample and Hold


- Both amplifiers (A1, A2) have feedback loops individually closed with stable responses (overshoot negligible)
- Acquisition time $T_{A}$, estimated by:
$T_{A} \cong\left[\frac{2 R_{O N}, V_{I N}, C_{h}}{S_{r}}\right] \quad 1 / 2{ }_{p r o v i d e d ~ t h a t: ~}^{\text {p }}$
$V_{I N}<2 \pi S_{r} R_{\text {ON }} C_{h}$ and $T_{A}>\frac{V_{I N} C_{h}}{\text { IOUT(MAX) }}$, RON is of SW1
If inequality not satisfied: $T_{A} \cong \frac{V_{I N} C_{h}}{20 m A}$
- LF156 developes full $\mathrm{S}_{\mathrm{r}}$ output capability for $\mathrm{V}_{1 N} \geq 1 \mathrm{~V}$
- Addition of SW2 improves accuracy by putting the voltage drop across SW1 inside the feedback loop
- Overall accuracy of system determined by the accuracy of both amplifiers, A1 and A2

Typical Applications (Continued)
High Accuracy Sample and Hold


- By closing the loop through A2, the V $V_{\text {OUT }}$ accuracy will be determined uniquely by $A 1$. No VOS adjust required for A2.
- $\mathrm{T}_{\mathrm{A}}$ can be estimated by same considerations as previously but, because of the added propagation delay in the feedback loop (A2) the overshoot is not negligible.
- Overall system slower than fast sample and hold
- R1, $C_{C}$ : additional compensation
- Use LF156 for
- Fast settling time
- Low VOS

High Q Band Pass Filter


- By adding positive feedback (R2) Q increases to 40
- $f_{B P}=100 \mathrm{kHz}$

$$
\frac{V_{\mathrm{OUT}}}{V_{\text {IN }}}=10 \sqrt{\bar{\alpha}}
$$

- Clean layout recommended
- Response to a $1 \mathrm{Vp-p}$ tone burst: $300 \mu \mathrm{~s}$

- $2 R 1=R=10 \mathrm{M} \Omega$
$2 \mathrm{C}=\mathrm{C} 1=300 \mathrm{pF}$
- Capacitors should be matched to obtain high Q
- $f_{\text {NOTCH }}=120 \mathrm{~Hz}$, notch $=-55 \mathrm{~dB}, \mathrm{Q}>100$
- Use LF155 for
- Low IB
- Low supply current


## LF351 Wide Bandwidth JFET Input Operational Amplifier

## Operational Amplifiers/Buffers <br> 

tions where these requirements are critical, the LF356 is recommended. If maximum supply current is important, however, the LF351 is the better choice.


## General Description

The LF351 is a low cost high speed JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF351 is pin compatible with the standard LM741 and uses the same offset voltage adjustment circuitry. This feature allows designers to immediately upgrade the overall performance of existing LM741 designs.

The LF351 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift, but for applica-

## Simplified Schematic



## Connection Diagrams (Tiop Views)

Metal Can Package


Note. Pin 4 connected to case.

Order Number LF351H See NS Package H08C


Dual-In-Line Package


TOP VIEW
Order Number LF351N
See NS Package N08A

## Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{T} j(M A X)$	$115^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Continuous
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## DC Electrical Characteristics (Note 3)

SYMBOL	PARAMETER	CONDITIONS	LF351			UNITS
			MIN	TYP	MAX	
VOS	Input Offset Voltage	$R_{S}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$   Over Temperature		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta V_{O S} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & \mathrm{T}_{\mathrm{j}} \leqslant 70^{\circ} \mathrm{C} \end{aligned}$		25	100 4	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
'B	Input Bias Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & T_{j} \leqslant 70^{\circ} \mathrm{C} \end{aligned}$		50	$\begin{gathered} 200 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		$10^{12}$		$\Omega$
AVOL	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { Over Temperature } \end{aligned}$	25 15	100		$\mathrm{V} / \mathrm{mV}$ $\mathrm{V} / \mathrm{mV}$
$\mathrm{V}_{\mathrm{O}}$	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 12$	$\pm 13.5$		V
$V_{C M}$	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 11$	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 5)	70	100		dB
Is	Supply Current			1.8	3.4	mA

## AC Electrical Characteristics (Note 3)

SYMBOL	PARAMETER	CONDITIONS	LF351			UNITS
			MIN	TYP	MAX	
SR	Slew Rate	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		4		MHz
$e_{n}$	Equivalent Input Noise Voltage ${ }^{-}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		16		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
$i_{n}$	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

[^10]Typical Performance Characteristics


Typical Performance Characteristics (Continued)


Common-Mode Rejection
Ratio



Open Loop Voltage Gain (V/V)
Output Impedance



Power Supply Rejection Ratio



Pulse Response


## Application Hints

The LF351 is an op amp with an internally trimmed input offset vol tage and JFET input devices (BI-FET $I^{T M}$ ). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be
allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a

## Application Hints (Continued)

high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.

The LF351 is biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.

The LF351 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed
backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

## Detailed Schematic



## Typical Applications

Supply Current Indicator/Limiter


- $V_{\text {OUT }}$ switches high when $R_{S}{ }^{\prime} s>V_{D}$
$\mathrm{Hi}-\mathrm{Z}_{\mathrm{IN}}$ Inverting Amplifier


Parasitic input capacitance C1 $\cong(3 \mathrm{pF}$ for LF351 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate, add C2 such that: $\mathrm{R} 2 \mathrm{C} 2 \cong \mathrm{R} 1 \mathrm{C} 1$.


- tOUTPUT HIGH $\approx$ R1C $\ln \frac{4.8-2 \mathrm{~V}_{\mathrm{S}}}{4.8-\mathrm{V}_{\mathrm{S}}}$
- tOUTPUT LOW $\approx$ R2C $\ln \frac{2 V_{S}-7.8}{V_{S}-7.8}$
where $V_{S}=V^{+}+\left|V^{-}\right|$
${ }^{*}$ low leakage capacitor

* Low leakage capacitor
- 50k pot used for less sensitive $V_{\text {OS }}$ adjust


## Operational Amplifiers/Buffers



## General Description

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET II ${ }^{\text {TM }}$ technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF353 is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and LM358 designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

## Features

- Internally trimmed offset voltage	10 mV
Low input bias current	50 pA
- Low input noise voltage	$16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth	4 MHz
- High slew rate	$13 \mathrm{~V} / \mu \mathrm{s}$
Low supply current	3.6 mA
- High input impedance	$1012 \Omega$
- Low total harmonic distortion $\mathrm{AV}=10$,	$<0.02 \%$
RL=10k, $\mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$	
Low $1 / \mathrm{f}$ noise corner	
- Fast settling time to $0.01 \%$	50 Hz
-	$2 \mu \mathrm{~s}$

## Typical Connection



## Simplified Schematic



## Connection Diagrams

LF353H Metal Can Package (Top View)


Order Number LF353H
See NS Package H08C


Order Number LF353N
See NS Package N08A

## Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Operating Temperàture Range
Tj(MAX)
Differential Input Voltage

$$
\pm 30 \mathrm{~V}
$$

Input Voltage Range (Note 2)
Output Short Circuit Duration Storage Temperature Range Lead Temperature (Soldering, 10 seconds)

DC Electrical Characteristics (Note 4)

SYMBOL	PARAMETER	CONDITIONS	LF353			UNITS
			MIN	TYP	MAX	
Vos	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   Over Temperature		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta V_{O S} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & T_{j} \leqslant 70^{\circ} \mathrm{C} \end{aligned}$		25	$\begin{gathered} 100 \\ 4 \end{gathered}$	$\mathrm{pA}$ nA
${ }^{\prime} \mathrm{B}$	Input Bias Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & T_{j} \leqslant 70^{\circ} \mathrm{C} \end{aligned}$		50	$\begin{gathered} 200 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{R}_{\mathrm{IN}}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		$10^{12}$		$\Omega$
AVOL	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { Over Temperature } \end{aligned}$	25 15	100		V/mV $\mathrm{V} / \mathrm{mV}$
$\mathrm{V}_{0}$	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 12$	$\pm 13.5$		$v$
$V_{C M}$	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 11$	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		$\begin{aligned} & V \\ & v \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	70	100		dB
Is	Supply Current			3.6	6.5	mA

AC Electrical Characteristics (Note 4)

SYMBOL	PARAMETER	CONDITIONS	LF353			UNITS
			MIN	TYP	MAX	
	Amplifier to Amplifier Coupling	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-$ 20 kHz (Input Referred)		-120		dB
SR	Slew Rate	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		4		MHz
$e_{n}$	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$		16		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
$i_{n}$	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for the N package, and $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for the H package.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: The power dissipation limit, however, cannot be exceeded.
Note 4: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}$. $V_{O S}, I_{B}$ and $I_{O S}$ are measured at $V_{C M}=0$.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $\mathrm{T}_{\mathrm{j}}$. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\Theta_{j A} P_{D}$ where $\Theta_{\mathrm{jA}}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6.: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

## Typical Performance Characteristics



Positive Common-Mode Input Voltage Limit



Gain Bandwidth


Input Bias Current


Negative Common-Mode Input Voltage Limit



Bode Plot


Supply Current


Positive Current Limit


Output Voltage Swing


Slew Rate


Typical Performance Characteristics (Continued)


Common-Mode Rejection Ratio



Undistorted Output Voltage Swing


Power Supply Rejection Ratio


Equivalent Input Noise Voltage



## Pulse Response

Small Signal Inverting


TIME (0.2 $\mu \mathrm{s} / \mathrm{DIV}$ )


TIME (2 $\dot{\mu} /$ /DIV)

Small Signal Non-Inverting


Large Signal Non-Inverting


TIME (2 $\mu \mathrm{s} / \mathrm{DIV}$ )


TIME ( $5 \mu \mathrm{~s} / \mathrm{DIV}$ )

## Application Hints

These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be
allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a

## Application Hints (Continued)

high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.

Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.

The amplifiers will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed
backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to $A C$ ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

## Detailed Schematic



## Typical Applications




Note 1: All controls flat.
Note 2: Bass and treble boost, mid flat.
Note 3: Bass and treble cut, mid flat.
Note 4: Mid boost, bass and treble flat.
Note 5: Mid cut, bass and treble flat.

- All potentiometers are linear taper
- Use the LF347 Quad for stereo applications

Typical Applications (Continued)

$A_{V}=\left(\frac{2 R 2}{R 1}+1\right) \quad \frac{R 5}{R 4}$
円 and $\perp$ are separate isolated grounds
Matching of R2's, R4's and R5's control CMRR
With $A V_{T}=1400$, resistor matching $=0.01 \%: C M R R=136 \mathrm{~dB}$

- Very high input impedance
- Super high CMRR

- Corner frequency $\left(f_{c}\right)=\sqrt{\frac{1}{R 1 R 2 C C 1}} \cdot \frac{1}{2 \pi}=\sqrt{\frac{1}{R 1^{\prime} R 2^{\prime} C C 1}} \cdot \frac{1}{2 \pi}$
- Passband gain $\left(\mathrm{H}_{\mathrm{O}}\right)=(1+\mathrm{R} 4 / \mathrm{R} 3)\left(1+\mathrm{R} 4^{\prime} / \mathrm{R} 3^{\prime}\right)$
- First stage $\mathrm{Q}=1.31$
- Second stage $\mathrm{Q}=0.541$
- Circuit shown uses nearest $5 \%$ tolerance resistor values for a filter with a corner frequency of 100 Hz and a passband gain of 100
- Offset nulling necessary for accurate DC performance

Typical Applications (Continued)
Fourth Order High Pass Butterworth Filter


- Corner frequency $\left(f_{c}\right)=\sqrt{\frac{1}{R 1 R 2 C^{2}}} \cdot \frac{1}{2 \pi}=\sqrt{\frac{1}{R_{1}^{\prime} R 2^{\prime} C^{2}}} \cdot \frac{1}{2 \pi}$
- Passband gain $\left(\mathrm{H}_{\mathrm{O}}\right)=(1+\mathrm{R} 4 / \mathrm{R} 3)\left(1+\mathrm{R} 4^{\prime} / \mathrm{R} 3^{\prime}\right)$
- First stage $\mathrm{Q}=1.31$
- Second stage $Q=0.541$
- Circuit shown uses closest $5 \%$ tolerance resistor values for a filter with a corner frequency of 1 kHz and a passband gain of 10


## Ohms to Volts Converter



$$
V_{O}=\frac{1 V}{R_{\text {LADDER }}} \times R_{X}
$$

Where R LADDER is the resistance from switch S1 pole to pin 7 of the LF353.


## LF400C Fast Settling JFET Input Operational Amplifier

## General Description

The LF400C is a fast settling ( 400 ns to $0.01 \%$ for a 10 V output step in the test circuit) BI-FET ${ }^{\text {TM }}$ operational amplifier. It also features an 18 MHz bandwidth, an inverting slew rate of $57 \mathrm{~V} / \mu \mathrm{s}$. and adjustable short circuit current limit allowing capacitive and/or 600

Simplified Settling Time Circuit


Output and Settling Signal

$100 \mathrm{~ns} /$ DIV $\longrightarrow$

## Simplified Schematic



BI-FET ${ }^{T M}$ is a trademark of National Semiconductor Corp.

## Absolute Maximum Ratings

Supply Voltage $\pm 18 \mathrm{~V}$
Power Dissipation ( $\mathrm{P}_{\mathrm{D}}$ at $25^{\circ} \mathrm{C}$ ) and Thermal Resistance $\left(\theta_{\mathrm{jA}}\right)$ (Note 1)

Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$ $\mathrm{T}_{\mathrm{jMAX}}$
(H Package)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
(N Package)
$115^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}$
(H Package) $P_{D}$ 570 mW $150^{\circ} \mathrm{C} / \mathrm{W}$
(N Package) $P_{D}$ 500 mW $155^{\circ} \mathrm{C} / \mathrm{W}$

Differential Input Voltage $\pm 40 \mathrm{~V}$
Input Voltage Range(Note2) $\pm 20 \mathrm{~V}$
Continuous
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

## DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$R_{S}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$   Over Temperature		4	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3 \text { and } 4) \\ & \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {HIGH }} \end{aligned}$		20	100 5	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{B}}$	Input Bias Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 3 \text { and } 4) \\ & T_{j} \leq T_{\text {HIGH }} \end{aligned}$		200	$\begin{aligned} & 600 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		$10^{11}$		$\Omega$
$\mathrm{A}_{\mathrm{V} \text { Oi }}$	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$   Over Temperature	$\begin{aligned} & 25 \\ & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\mathrm{V} / \mathrm{mV}$   $\mathrm{V} / \mathrm{mV}$   $\mathrm{V} / \mathrm{mV}$
$\mathrm{V}_{0}$	Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \\ & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
$\mathrm{V}_{\mathrm{CM}}$	Input Common-Mode Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	$\pm 11$	$\begin{aligned} & \pm 14 \\ & -12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{C}_{\text {MRR }}$	Common-Mode Rejection Ratio		80	100		dB
$\mathrm{P}_{\text {SRR }}$	Supply Voltage Rejection Ratio	(Note 5)	80	100		dB
Is	Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		8	12	mA

## AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{s}$	Settling Time to $0.01 \%$			400		ns
SR	Slew Rate			57		$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product			18		MHz

Note 1: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{\mathrm{j}}$, and the ambient temperature, $T_{A}$. The maximum available power dissipation at any temperature is $\mathrm{P}_{\mathrm{D}}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} \mathrm{P}_{\mathrm{DMAX}}$, whichever is less.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$. $V_{O S}$, I $\mathrm{I}_{\mathrm{B}}$ and IOS are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $\mathrm{T}_{\mathrm{j}}$. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{A}+\theta_{j A} \mathrm{P}_{\mathrm{D}}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 5: Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.

## LF411A/LF411 Low Offset, Low Drift JFET Input Operational Amplifier

## General Description

These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input offset voltage drift. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF411 is pin compatible with the standard LM741 allowing designers to immediately upgrade the overall performance of existing designs.

These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth.

## Features

- Internally trimmed offset voltage	$0.5 \mathrm{mV}(\mathrm{max})$
Input offset voltage drift	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(\mathrm{max})$
Low input bias current	50 pA
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
Wide gain bandwidth	$3 \mathrm{MHz}(\mathrm{min})$
- High slew rate	$10 \mathrm{~V} / \mu \mathrm{s}(\mathrm{min})$
Low supply current	1.8 mA
High input impedance	$10^{12} \Omega$
Low total harmonic distortion $\mathrm{A}_{\mathrm{V}}=10$,	$<0.02 \%$
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$	
Low $1 / \mathrm{f}$ noise corner	50 Hz
Fast settling time to $0.01 \%$	$2 \mu \mathrm{~s}$

Typical Connection


## Ordering Information

LF411XYZ
$X$ indicates electrical grade
$\mathbf{Y}$ indicates temperature range
" $M$ " for military,
"C" for commercial
Z indicates package type
"H" or " N "

Connection Diagrams
LF411AMH/LF411MH, LF411ACH/LF411CH Metal Can Package

top VIEW
Note. Pin 4 connected to case.
Order Number LF411AMH, LF411MH, LF411ACH or LF411CH
See NS Package H08B

LF411ACN, LF411CN Dual-In-Line Package


Order Number LF411ACN or LF411CN See NS Package N08A

[^11]
## Absolute Maximum Ratings

	LF411A	L.F411		H Package	N Package
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	Power Dissipation	670 mW	500 mW
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	(Note 2)		
Input Voltage Range	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}$ max	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
(Note 1)			$\theta_{\text {j }} \mathrm{A}$	$150^{\circ} \mathrm{C} / \mathrm{W}$	$160^{\circ} \mathrm{C} / \mathrm{W}$
Output Short Circuit Duration	Continuous	Continuous	Operating Temperature Range	(Note 3)	(Note 3)
		-	Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq T_{A} \leq 150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$
			Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions		LF411A			LF411			Units
				Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\mathrm{OS}}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=$	$25^{\circ} \mathrm{C}$		0.3	0.5		0.8	2.0	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$ (Not			7	10		7	$\begin{gathered} 20 \\ \text { (Note 5) } \end{gathered}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$V_{S}= \pm 15 \mathrm{~V}$   Notes 4 and 6	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		25	100		25	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			2			2	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			25			25	nA
$\mathrm{I}_{\mathrm{B}}$	Input Bias Current	$V_{S}= \pm 15 \mathrm{~V}$   Notes 4 and 6	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	.	50	200		50	200	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			4			4	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			50			50	nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			$10^{12}$			$10^{12}$		$\Omega$
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{O}= \pm 10 \mathrm{~V}, \\ & R_{L}=2 \mathrm{k}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		50	200		25	200		V/mV
		Over Temperature		25	200		15	200		V/mV
$\mathrm{V}_{0}$	Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		$\pm 12$	$\pm 13.5$		$\pm 12$	$\pm 13.5$		V
$\mathrm{V}_{\mathrm{CM}}$	Input Common-Mode Voltage Range	-		$\pm 16$	+19.5		$\pm 11$	+14.5		V
					-16.5			-11.5		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$		80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)		80	100		70	100		dB
$\mathrm{I}_{\mathrm{S}}$	Supply Current				1.8	2.8		1.8	3.4	mA

## AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	LF411A			LF411			Units
			Min	Typ	Max	Min	Typ	Max	
SR	Slew Rate	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	15		8	15		$\mathrm{V} / \mu \mathrm{S}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3	4	.	2.7	4		MHz
$\mathrm{e}_{\mathrm{n}}$	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega \\ & f=1 \mathrm{kHz} \end{aligned}$		25			25	.	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$i_{n}$	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\text { Hz }}$

## Notes

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j} A}$.
Note 3: These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$. The temperature range is designated by the position just before the package type in the device number. A " C " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in " H " package only.
Note 4: Unless otherwise specified, the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the LF411A and for $V_{S}= \pm 15 \mathrm{~V}$ for the LF411. $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and $\mathrm{I}_{\mathrm{OS}}$ are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 5: The LF411A is $100 \%$ tested to this specification. The L.F411 is sample tested to insure at least $90 \%$ of the units meet this specification.
Note 6: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $T_{j}$. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} \cdot T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

## Typical Performance Characteristics



Typical Performance Characteristics (Continued)


Distortion vs Frequency




Bode Plot


Undistorted Output Voltage
Swing


Power Supply Rejection Ratio


Output Impedance


Slew Rate



Equivalent Input Noise Voltage



Pulse Response $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$


## Application Hints

The LF411 series of internally trimmed JFET input op amps (BI-FET $\|^{\text {TM }}$ ) provide very low input offset voltage and guaranteed input offset voltage drift. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier may be forced to a high state.

## Application Hints (Continued)

The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.

The LF411 is biased by a zener reference which allows normal circuit operation on $\pm 4.5 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.

The LF411 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency, a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

## Typical Applications

## Ultra High Speed Current Booster



## Typical Applications (Continued)

10-Bit Linear DAC with No Vos Adjust


Single Supply Analog Switch with Buffered Output


## Detailed Schematic



## LF412A/LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier



## General Description

These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input offset voltage drift. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. LF412 dual is pin compatible with the LM1558, allowing designers to immediately upgrade the overall performance of existing designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth.

## Features

Internally trimmed off'set voltage	1 mV (max)
- Input offset voltage drift 10	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (max)
- Low input bias current	50 pA
■ Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
E Wide gain bandwidth	3 MHz (min)
- High slew rate	$10 \mathrm{~V} / \mu \mathrm{S}$ (min)
■ Low supply current 1.8	1.8 mA/Amplifier
- High input impedance	$10^{12} \Omega$
Low total harmonic distortion $A_{V}=10$, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$	$\mathrm{kHz}<0.02 \%$
- Low 1/f noise corner	50 Hz
- Fast settling time to 0.01\%	$2 \mu \mathrm{~S}$



## Simplified Schematic



## Ordering Information

## LF412XYZ

$X$ indicates electrical grade
$\mathbf{Y}$ indicates temperature range
" M " for military
"C" for commercial
Z indicates package type
"H" or "N"

Connection Diagrams
LF412AMH/LF412MH, LF412ACH/LF412CH Metal Can Package


LF412ACN, LF412CN
Dual-In-Line Package


TOP VIEW
Order Number LF412ACN or LF412CN
See NS Package N08A

[^12]
## Absolute Maximum Ratings

	LF412A	LF412	.	H Package	N Package
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	Power Dissipation	670 mW	500 mW
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	(Note 3)		
Input Voltage Range	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}$ max	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
(Note 1)			$\theta_{\text {ja }}$	$150^{\circ} \mathrm{C} / \mathrm{W}$	$160^{\circ} \mathrm{C} / \mathrm{W}$
Output Short Circuit Duration (Note 2)	Continuous	Continuous	Operating Temperature Range	(Note 4)	(Note 4)
			Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq 150^{\circ} \mathrm{C}$
			Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

## DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions		LF412A			LF412			Units
				Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.5	1.0		1.0	3.0	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$ (Note 6)			7	10		7	$\begin{gathered} 20 \\ \text { (Note 6) } \end{gathered}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 5 \text { and } 7) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		25	100		25	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			2			2	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			25			25	nA
$\mathrm{I}_{\mathrm{B}}$	Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 5 \text { and } 7) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		50	200		50	200	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			4			4	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			50			50	nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			$10^{12}$			$10^{12}$		$\Omega$
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50	200		25	200		$\mathrm{V} / \mathrm{mV}$
		Over Temperature		25	200		15	200		$\mathrm{V} / \mathrm{mV}$
$\mathrm{V}_{0}$	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		$\pm 12$	$\pm 13.5$		$\pm 12$	$\pm 13.5$		V
$V_{C M}$	Input Common-Mode Voltage Range			$\pm 16$	+19.5		$\pm 11$	+14.5		V
					-16.5			-11.5		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$		80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 8)		80	100		70	100		dB
$I_{s}$	Supply Current				3.6	5.6		3.6	6.8	mA

## AC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	LF412A			LF412			Units
			Min	Typ	Max	Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$		-120			-120		dB
SR	Slew Rate	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	15		8	15		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	3	4		2.7	4		MHz
$e_{n}$	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		25			25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$i_{n}$	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

## Notes

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 3: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j} A}$.
Note 4: These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$. The temperature range is designated by the position just before the package type in the device number. $A$ " $C$ " indicates the commercial temperature range and an " $M$ " indicates the military temperature range. The military temperature range is available in " H " package only.
Note 5: Unless otherwise specified, the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the $L F 412 \mathrm{~A}$ and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF412. $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and $\mathrm{I}_{\mathrm{OS}}$ are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 6: The LF412A is $100 \%$ tested to this specification. The LF412 is sample tested on a per amplifier basis to insure at least $90 \%$ of the amplifiers meet this specification.

Note 7: The input bias çurrents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $\mathrm{T}_{\mathrm{j}}$. Due to limited production test time, the input blas currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} \cdot T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 8: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

## Typical Performance Characteristics




Distortion vs Frequency


Common-Mode Rejection Ratio



Undistorted Output Voltage Swing


Power Supply Rejection Ratio



Slew Rate


Open Loop Frequency Response


Equivalent Input Noise Voltage


Pulse Response $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$


## Application Hints

The LF412 series of JFET input dual op amps are internally trimmed (BI-FET II ${ }^{\text {TM }}$ ) providing very low input offset voltages and guaranteed input offset voltage drift. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output, however, if both inputs exceed the limit, the output of the amplifier may be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 4.5 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.

The amplifiers will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

## Application Hints（Continued）

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit．
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling．

As with most amplifiers，care should be taken with lead dress，component placement and supply decoupling in order to ensure stability．For example，resistors from the output to an input should be placed with the body close to the input to minimize＂pick－up＂and maximize the fre－
quency of the feedback pole by minimizing the capaci－ tance from the input to ground．

A feedback pole is created when the feedback around any amplifier is resistive．The parallel resistance and capacitance from the input of the device（usually the in－ verting input）to $A C$ ground set the frequency of the pole． In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin．However，if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp．The value of the added capacitor should be such that the RC time constant of this capaci－ tor and the resistance it parallels is greater than or equal to the original feedback pole time constant．

Typical Application
Single Supply Sample and Hold


## Detailed Schematic



## LF441A/LF441 Low Power JFET

 Input Operational Amplifier
## Operational Amplifiers/Buffers

## General Description

The LF441 low power operational amplifier provides many of the same AC characteristics as the industry standard LM741 while greatly improving the DC characteristics of the LM741. The amplifier has the same bandwidth, slew rate, and gain ( $10 \mathrm{k} \Omega$ load) as the LM741 and only draws one tenth the supply current of the LM741. In addition the well matched high voltage JFET input devices of the LF441 reduce the input bias and offset currents by a factor of 10,000 over the LM741. A combination of careful layout design and internal trimming guarantees very low input offset voltage and voltage drift. The LF441 also has a very low equivalent input noise voltage for a low power amplifier.

The LF441 is pin compatible with the LM741 allowing an immediate 10 times reduction in power drain in many applications. The LF441 should be used where low power dissipation and good electrical characteristics are the major considerations.

## Typical Connection



Simplified Schematic

Ordering Information
LF441XYZ
$X$ indicates electrical grade
$\mathbf{Y}$ indicates temperature range " M " for military, "C" for commercial
$\mathbf{Z}$ indicates package type
"H" or "N"

BI-FET ${ }^{T M}$ is a trademark of National Semiconductor Corp.


## Features

- 1/10 supply current of a LM741	$200 \mu \mathrm{~A}$ (max)
- Low input bias current	50 pA (max)
- Low input offset voltage	0.5 mV (max)
- Low input offset voltage drift	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (max)
E High gain bandwidth	1 MHz
- High slew rate	$1 \mathrm{~V} / \mu \mathrm{s}$
- Low noise voltage for low power	$35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High input impedance	$10^{12} \Omega$
- High gain $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	50 k (min)

## Connection Diagrams

LF441AMH, LF441ACH/LF441CH
Metal Can Package


TOP VIEW
Note. Pin 4 connected to case.
Order Number LF441AMH, LF441ACH or LF441CH See NS Package H08B

LF441ACN/LF441CN Dual-In-Line Package


TOP VIEW
Order Number LF441ACN or LF441CN
See NS Package N08A

## Absolute Maximum Ratings

	LF441A	LF441	.	H Package	N Package
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	Power Dissipation	670 mW	500 mW
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	(Note 2)		
Input Voltage Range	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}$ max	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
(Note 1)			$\theta_{\mathrm{j}} \mathrm{A}$	$150^{\circ} \mathrm{C} / \mathrm{W}$	$160^{\circ} \mathrm{C} / \mathrm{W}$
Output Short Circuit Duration	Continuous	Continuous	Operating Temperature Range	(Note 3)	(Note 3)
			Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq 150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$
			Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

## DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions		LF441A			LF441			Units
				Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{0}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=$	$5^{\circ} \mathrm{C}$		0.3	0.5		1	5	mV
OS	Input Ofrset Voltage	Over Temperatur							7.5	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$ (Note 5 )			7	10		10	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 4 \text { and } 6) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5	25		5	50	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			1.5			1.5	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			10				nA
$I_{B}$	Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 4 \text { and } 6) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10	50		10	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			3			3	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			20				nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			$10^{12}$			$10^{12}$		$\Omega$
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{O}= \pm 10 \mathrm{~V}, \\ & R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		50	100		25	100		$\mathrm{V} / \mathrm{mV}$
		Over Temperature		25			15			V/mV
$\mathrm{V}_{0}$	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
$\mathrm{V}_{\mathrm{CM}}$	Input Common-Mode Voltage Range			$\pm 16$	$\begin{aligned} & +18 \\ & -17 \end{aligned}$		$\pm 11$	$\begin{aligned} & +14 \\ & -12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		80	100		70	95		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)		80	100		70	90		dB
$\mathrm{I}_{\mathrm{S}}$	Supply Current				150	200		150	250	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 4)

	Parameter	Conditions	LF441A			LF441			Units
			Min	Typ	Max	Min	Typ	Max	
SR	Slew Rate	$V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		$\mathrm{V} / \mu \mathrm{S}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		MHz
$e_{n}$	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1 \mathrm{kHz} \end{aligned}$		35	.		35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$i_{n}$	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j} A}$.
Note 3: The LF441A and LF441B are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C}$ $\leq T_{A} \leq 125^{\circ} \mathrm{C}$. The LF441 is available in the commercial temperature range only. The temperature range is designated by the position just before the package type in the device number. A " $C$ " indicates the commercial temperature range and an " $M$ " indicates the military temperature range. The military temperature range is available in " H " package only.
Note 4: Unless otherwise specified the specifications apply over the full temperature range and for $\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$ for the LF441A/LF441B and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF441. $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and $\mathrm{I}_{\mathrm{OS}}$ are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 5: The LF441A is $100 \%$ tested to this specification.
Note 6: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $\mathrm{T}_{\mathrm{j}}$. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

## Typical Performance Characteristics




Gain Bandwidth



Common－Mode Rejection Ratio


Output Voltage Swing


Bode Plot



Power Supply Rejection Ratio




Typical Performance Characteristics (Continued)


Pulse Response $R_{L}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$


## Application Hints

This device is a low power op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
The amplifier is biased to allow normal circuit operation with power supplies of $\pm 3 \mathrm{~V}$. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.

The amplifier will drive a $10 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because this amplifier is a JFET rather than MOSFET input op amp it does not require special handling.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input to $A C$ ground set the frequency of this pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

## Typical Application



เカカコา／シレカカコフ
Detailed Schematic


## LF442A／LF442 Dual Low Power JFET Input Operational Amplifier



## General Description

The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while greatly improving the DC charac－ teristics of the LM1458．The amplifiers have the same bandwidth，slew rate，and gain（ $10 \mathrm{k} \Omega$ load）as the LM1458 and only draw one tenth the supply current of the LM1458． In addition the well matched high voltage JFET input de－ vices of the LF442 reduce the input bias and offset cur－ rents by a factor of 10,000 over the LM1458．A combination of careful layout design and internal trimming guarantees very low input offset voltage and voltage drift．The LF442 also has a very low equivalent input noise voltage for a low power amplifier．
The LF442 is pin compatible with the LM1458 allowing an immediate 10 times reduction in power drain in many ap－ plications．The LF442 should be used where low power dissipation and good electrical characteristics are the major considerations．

Features	
－1／10 supply current of a LM1458	$400 \mu \mathrm{~A}$（max）
－Low input bias current	50 pA （max）
－Low input offset voltage	1 mV （max）
－Low input offset voltage drift	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$（max）
－High gain bandwidth	1 MHz
－High slew rate	$1 \mathrm{~V} / \mu \mathrm{s}$
－Low noise voltage for low power	$35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
－Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
－High input impedance	$10^{12} \Omega$
－High gain $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	50 k （min）



Simplified Schematic


## Connection Diagrams

LF442AMH，LF442ACH，LF442CH Metal Can Package


TOP VIEW
Note．Pin 4 connected to case．
Order Number LF442AMH， LF442ACH or LF442CH See NS Package H08B
LF442ACN，LF442CN Dual－In－Line Package


TOP VIEW
Order Number LF442ACN or LF442CN
See NS Package N08A

# Absolute Maximum Ratings 

	LF442A	LF442		H Package	N Package
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	Power Dissipation	670 mW	500 mW
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	(Note 3)		
Input Voltage Range	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}$ max	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
(Note 1)			${ }^{\text {j }}$ A	$150^{\circ} \mathrm{C} / \mathrm{W}$	$160^{\circ} \mathrm{C} / \mathrm{W}$
Output Short Circuit Duration (Note 2)	Continuous	Continuous	Operating Temperature Range	(Note 4)	(Note 4)
			Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$
-			Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C} \quad$.

## DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions		LF442A			LF442			Units
				Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{S}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.5	1.0		1.0	5.0	mV
		Over Temperature							7.5	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$R_{S}=10 \mathrm{k} \Omega$			7.	10		7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 5 \text { and } 6) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5	25		5	50	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			1.5			1.5	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			10				nA
$I_{B}$	Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 5 \text { and } 6) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10	50		10	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			3			3	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			20				nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			$10^{12}$			$10^{12}$		$\Omega$
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{O}= \pm 10 \mathrm{~V}, \\ & R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		50	200		25	200		$\mathrm{V} / \mathrm{mV}$
		Over Temperature		25	200		15	200		V/mV
$\mathrm{V}_{0}$	Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
$V_{C M}$	Input Common-Mode Voltage Range			$\pm 16$	$\begin{aligned} & +18 \\ & -17 \end{aligned}$	.	$\pm 11$	$\begin{array}{r} 14 \\ -12 \end{array}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		80	100		70	95		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)		80	100		70	90		dB
$\mathrm{I}_{5}$	Supply Current				300	400		400	500	$\mu \mathrm{A}$

## AC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	LFA42A			LF442			Units
			Min	Typ	Max	Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz}$   (Input Referred)		-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		$\mathrm{V} / \mu \mathrm{S}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		MHz
$e_{n}$	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1 \mathrm{kHz} \end{aligned}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$i_{n}$	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

## Notes

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 3: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j} A}$.
Note 4: These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$. The temperature range is designated by the position just before the package type in the device number. $A$ " $C$ " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in " H " package only.
Note 5: Unless otherwise specified, the specifications apply over the full temperature range and for $\mathrm{V}_{S}= \pm 20 \mathrm{~V}$ for the LF 442 A and for $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ for the LF442. $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and IOS are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 6: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $\mathrm{T}_{\mathrm{j}}$. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} \cdot T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

## Typical Performance Characteristics



Typical Performance Characteristics (Continued)


Distortion vs Frequency


Common-Mode Rejection Ratio


Open Loop Voltage Gain


Bode Plot


Undistorted Output Voltage
Swing


Power Supply Rejection Ratio


Output Impedance


Slew Rate


Open Loop Frequency Response


Equivalent Input Noise Voltage



Pulse Response $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ Small Signal Inverting


Large Signal Inverting


## Application Hints

This device is a dual low power op amp with internally trimmed input offset voltages and JFET input devices （BI－FET II）．These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs．Therefore，large dif－ ferential input voltages can easily be accommodated without a large increase in input current．The maximum differential input voltage is independent of the supply voltages．However，neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit．

Exceeding the negative common－mode limit on either in－ put will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state．Exceeding the negative common－mode limit on both inputs will force the amplifier output to a high state．In neither case does a latch occur since raising the input back within the common－mode range again puts the input stage and thus the amplifier in a normal oper－ ating mode．

Exceeding the positive common－mode limit on a single input will not change the phase of the output；however，if both inputs exceed the limit，the output of the amplifier will be forced to a high state．
The amplifiers will operate with a common－mode input voltage equal to the positive supply；however，the gain bandwidth and slew rate may be decreased in this condi－ tion．When the negative common－mode voltage swings to within 3 V of the negative supply，an increase in input offset voltage may occur．

Each amplifier is individually biased to allow normal cir－ cuit operation with power supplies of $\pm 3.0 \mathrm{~V}$ ．Supply voltages less than these may degrade the common－mode rejection and restrict the output voltage swing．


Large Signal Non－Inverting


The amplifiers will drive a $10 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range．

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit．

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling．

As with most amplifiers，care should be taken with lead dress，component placement and supply decoupling in order to ensure stability．For example，resistors from the output to an input should be placed with the body close to the input to minimize＂pick－up＂and maximize the fre－ quency of the feedback pole by minimizing the capaci－ tance from the input to ground．

A feedback pole is created when the feedback around any amplifier is resistive．The parallel resistance and capacitance from the input of the device（usually the in－ verting input）to AC ground set the frequency of the pole． In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin．However，if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp．The value of the added capacitor should be such that the RC time constant of this capaci－ tor and the resistance it parallels is greater than or equal to the original feedback pole time constant．

## Typical Applications

Battery Powered Strip Chart Preamplifier
time constant

"No FET" Low Power V $\rightarrow$ F Converter


High Efficiency Crystal Oven Controller


## Conventional Log Amplifier


$E_{\text {OUT }}=-\left[\log 10\left(\frac{E_{\text {IN }}}{R_{\text {IN }}}\right)+5\right]$
$\mathrm{BT}^{(1)}=$ Tel Labs type Q81
Trim 5k for $10 \mu \mathrm{~A}$ through the 5 k -120k combination
*1\% film resistor


Q1, Q2, Q3 are included on LM389 amplifier chip which is temperature-stabilized by the
LM389 and Q2-Q3, which act as a heater-sensor pair.
Q1, the logging transistor, is thus immune to ambient
temperature variation and requires no temperature compensation at all.


Operational Amplifiers/Buffers

## LF444A/LF444 Quad Low Power JFET Input Operational Amplifier



## General Description

The LF444 quad low power operational amplifier provides many of the same AC characteristics as the industry standard LM148 while greatly improving the DC characteristics of the LM148. The amplifier has the same bandwidth, slew rate, and gain ( $10 \mathrm{k} \Omega$ load) as the LM148 and only draws one fourth the supply current of the LM148. In addition the well matched high voltage JFET input devices of the LF444 reduce the input bias and offset currents by a factor of 10,000 over the LM148. The LF444 also has a yery low equivalent input noise voltage for a low power amplifier.
The LF444 is pin compatible with the LM148 allowing an immediate 4 times reduction in power drain in many applications. The LF444 should be used wherever low power dissipation and good electrical characteristics are the major considerations.

## Simplified Schematic



## Ordering Information

LF444XYZ
$X$ indicates electrical grade
$\mathbf{Y}$ indicates temperature range
" $M$ " for military, " $C$ " for commercial
Z indicates package type " $D$ " or " $N$ "

## Features

- $1 / 4$ supply current of a LM148 $\quad 200 \mu \mathrm{~A} /$ Amplifier (max)
- Low input bias current50 pA (max)
■ High gain bandwidth $\quad 1 \mathrm{MHz}$
■ High slew rate $1 \mathrm{~V} / \mu \mathrm{s}$
- Low noise voltage for low power $\quad 35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

■ Low input noise current $\quad 0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$

- High input impedance
$10^{12} \Omega$
- High gain $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \quad 50 \mathrm{k}(\mathrm{min})$


## Absolute Maximum Ratings

	LF444A	LF444
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range $\pm 19 \mathrm{~V}$		
(Note 1)    Output Short Circuit Continuous		
$\quad$ Curation (Note 2)		


	H Package	N Package
Power Dissipation (Note 3)	900 mW	500 mW
$T_{j}$ max	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
$\theta_{j} \mathrm{~A}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$150^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range	(Note 4)	(Note 4)
Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

## DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions		LF444A			LF444			Units
				Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2	5		3	10	mV
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$				6.5			12	mV
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$				8				mV
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$			10 .			10		$\mu \mathrm{V}{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\left\lvert\, \begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \text { (Notes } 5 \text { and } 6 \text { ) } \end{aligned}\right.$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5	25		5	50	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			1.5			1.5	nA
			$T_{j}=125^{\circ} \mathrm{C}$			10				nA
${ }^{\prime} \mathrm{B}$	Input Bias Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \text { (Notes } 5 \text { and } 6 \text { ) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10	50		10	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			3			3	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			20				nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			$10^{12}$			$10^{12}$		$\Omega$
$A_{\text {VOL }}$	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50	100		25	100		$\mathrm{V} / \mathrm{mV}$
		Over Temperature		25			15			V/mV
$\mathrm{V}_{0}$	Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range			$\pm 16$	+18		$\pm 11$	+14		V
					-17			-12		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		80	100		70	95		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)		80	100		70	90		dB
$\mathrm{I}_{\mathrm{S}}$	Supply Current				0.6	0.8		0.8	1.0	mA

AC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	LF444A			LF444			Units
			Min	Typ	Max	Min	Typ	Max	
	Amplifier-to-Amplifier Coupling			-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1			1		$\mathrm{V} / \mu \mathrm{S}$
GBW	Gain-Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		1			1		MHz
$e_{n}$	.Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1 \mathrm{kHz} \end{aligned}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{i}_{n}$	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperatưre will be exceeded.
Note 3: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j}} \mathrm{A}$.
Note 4: The LF444A is available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$. The LF444 is available in the commercial temperature range only. The temperature range is designated by the position just before the package type in the device number. A " $C$ " indicates the commercial temperature range and an " $M$ " indicates the military temperature range. The military temperature range is available in "D" package only.
Note 5: Unless otherwise specified the specifications apply over the full temperature range and for $\mathrm{V}_{S}= \pm 20 \mathrm{~V}$ for the $L F 444 \mathrm{~A}$ and for $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ for the LF444. $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and IOS are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 6: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $\mathrm{T}_{\mathrm{j}}$. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{A}+\theta_{j \mathrm{~A}} \mathrm{P}_{\mathrm{D}}$ where $\theta_{\mathrm{j} A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

## Typical Performance Characteristics



Typical Performance Characteristics (Continued)


Gain Bandwidth


Distortion vs Frequency


Common-Mode Rejection Ratio


Output Voltage Swing


Bode Plot


Undistorted Output Voltage
Swing


Power Supply Rejection Ratio



Slew Rate


Open Loop Frequency Response


Equivalent Input Noise Voltage


Typical Performance Characteristics (Continued)


Pulse Response $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$


Large Signal Inverting


Small Signal Non-Inverting


TIME ( $0.5 \mu \mathrm{~s} / \mathrm{DIV})$

Large Signal Non-Inverting


## Application Hints

This device is a quad low power op amp with JFET input devices (BI-FET). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.

Each amplifier is individually biased to allow normal circuit operation with power supplies of $\pm 3.0 \mathrm{~V}$. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.
The amplifiers will drive a $10 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range. If the amplifier is forced
to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to $A C$ ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitar and the resistance it parallels is greater than or equal to the original feedback pole time constant.

## Typical Application


$\mathrm{BI} \cdot \mathrm{FET}{ }^{T M}$ is a trademark of National Semiconductor Corp.



## LF13741 Monolithic JFET Input Operational Amplifier

## General Description

The LF13741 is a 741 with BI-FET input followers on the same die. Familiar operating characteristics - those of a 741 - with the added advantage of low input bias current make the LF13741 easy to use. Monolithic fabrication makes this "drop-in-replacement" operational amplifier very economical.

Applications in which the LF13741 excels are those which require low bias current, moderate speed and low cost. A few examples include high impedance transducer amplifiers, photocell amplifiers, buffers for high impedance, slow to moderate speed sources and buffers in sample-and-hold type systems where leakage from the hold capacitor node must be kept to a minimum.

Systems designers can take full advantage of their knowledge of the 741 when designing with the LF 13741 to achieve extremely rapid "design times." The LF13741 can also be used in existing sockets to make the "error budget" for input bias and/or offset currents negligible and in many cases eliminate trimming. For higher speed and lower noise use the LF155, LF156, LF157 series of BI-FET operational amplifiers.

## Feaíures

- Low input bias current

50 pA

- Input common-mode range to positive supply voltage
- Low input noise current
$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High input impedance $5 \times 10^{11} \Omega$
- Familiar operating characteristics


## Advantages

- FET inputs -- $\mathbf{7 4 1}$ operating characteristics
- Low cost
- Ease of use
- Standard supplies
- Standard pin outs .
- Non-rectifying input for RF environment
- Rapid "design time"


## Applications

- Smoke detectors
- I to V converters
- High impedance buffers
- Low drift sample and hold circuits
- High input impedance, slow comparators
- Long time timers
- Low drift peak detectors
- Supply current monitors
- Low error budget systems


## Simplified Schematic



## Typical Applications

Inexpensive Microprocessor D/A


# Absolute Maximum Ratings 

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}(\mathrm{MAX}}$ )	$100^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$

Input Voltage Range (Note 2) $\pm 16 \mathrm{~V}$ Output Short Circuit Duration Continuous Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

## DC Electrical Characteristics (Note 3)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VOS	Input Offset Voltage	$R_{S}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   Over Temperature		5	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	mV mV
	Voltage Offset Adjustment Range		10			mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IOS	Input Offset Current	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & \mathrm{T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		10	$\begin{aligned} & 50 \\ & 2 \end{aligned}$	pA
${ }^{\prime} \mathrm{B}$	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & \mathrm{T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 50 \\ & 1.6 \end{aligned}$	200 8	pA
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		$5 \times 10^{11}$		$\Omega$
AVOL	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$   Over Temperature	25 15	100		$\mathrm{V} / \mathrm{mV}$ $\mathrm{V} / \mathrm{mV}$
Vo	Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 12$	$\pm 13$		$v$
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	$\pm 11$	$\begin{aligned} & +15.1 \\ & -12 \end{aligned}$		v
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$	70	90		dB
PSRR	Supply Voltage Rejection Ratio	(Note 5)	77	96		dB
Is	Supply Current			2	4	mA

## AC Electrical Characteristics (Note 3)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$		1.0		MHz
$\mathrm{en}_{n}$	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{S}=100 \Omega \\ & \mathrm{f}=100 \mathrm{~Hz} \end{aligned}$		50		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1000 \mathrm{~Hz}$		37		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$i_{n}$	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$				
		$\mathrm{f}=100 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

[^13]
## Typical Performance Characteristics







Positive Current Limit



Gain Bandwidth


Supply Current


Positive Common-Mode




# Typical Performance Characteristics (Continued) 




Large Signal Non-Inverting Pulse Response
(AIO/ムG) פNIMS ¥9४170^ IndITio

Small Signal Inverting
Pulse Response


TIME $0.5 \mu \mathrm{~s} / \mathrm{DIV}$

Large Signal Inverting
Pulse Response


TIME $10 \mu \mathrm{~s} /$ DIV

## Application Hints

## GENERAL CHARACTERISTICS

The LF13741 makes the job of converting from a bipolar to a FET input op amp easy. As a systems .designer you are probably very familiar with the operating characteristics of a 741 op amp. In fact, many of you have used 741s with FET input followers-that's just what the LF13741 is, but it's all on a single die.

When you need a low cost, reliable, well known op amp with low input currents and moderate speed, use an LF13741.

## DIFFERENTIAL INPUTS

You don't have to use clamps across the inputs for differential input voltages of less than 40 V . The input JFET's of the LF13741, in addition to being well matched, have large reverse breakdown voltages from gate to source and drain.

## POSITIVE INPUT COMMON-MODE VOLTAGE LIMIT

With the LF13741 (unlike the normal 741) you can take both inputs above the positive supply voltage by more than 0.1 V before the amplifier ceases to function. This feature enables you to use the LF13741 to monitor and/or limit the current from the same supply used to power it (see typical applications).

If you exceed the positive common-mode voltage limit on only one input the output phase will remain correct. When you exceed the limit on both inputs, the output phase is unpredictable.

## NEGATIVE INPUT COMMON-MODE VOLTAGE LIMIT

There are two negative input voltage ranges of interest:

1. The range between the negative common-mode voltage limit and the negative supply voltage.
2. Voltages which are more negative than the negative supply voltage.

If you take only one of the inputs of the LF13741 into the first range, the output phase will remain correct. When you take both inputs into this range the output will go toward the positive supply voltage.

If you force either or both of the inputs into the second range, an internal diode will be turned "ON." Unless you externally limit the diode current to about 1 mA , the device will be destroyed. In either case, limited or unlimited input current, you cannot predict the output.

## HANDLING

You do not have to take any special precautions in handling the LF13741. It has JFET, as opposed to fragile MOSFET, inputs.

## APPLYING POWER

You should never: reverse the power supplies to the LF13741; plug a part in backwards in a powered socket
or board; make the negative supply voltage more positive than an input voltage.

Any one of these supply conditions will forward bias an internal diode. If you have not externally limited the resulting current, the device will be destroyed.

## LAYOUT

To ensure stability of response you should take care with lead dress, component placement and power supply decoupling. For example, the body of feedback resistors (from output to input pins) should be placed close to the inverting input pin. Noise "pickup" and capacitance to ground from the input pin will be minimized-effects which are usually desirable.

Because of the very low input bias currents of the LF13741, special care should be taken in printed circuit board layouts to prevent unnecessary leakage from the input nodes, (see typical applications).

## FEEDBACK POLE

You create a feedback pole when you place resistive feedback around an amplifier. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency, (a distinct possibility when using FET op amps) you should place a lead capacitor from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant (Figure 1).


Parasitic input capacitance $\mathbf{C 1} \cong(3 \mathrm{pF}$ for LF13741 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate, add C 2 such that: $\mathrm{R} 2 \mathrm{C} 2 \cong \mathrm{R} 1 \mathrm{C} 1$.

FIGURE 1



## Typical Applications (Continued)

## Bridge Amplifier



Automatic $\mathbf{V}_{\text {ios }}$ Adjust $\left(\mathbf{R}_{\mathbf{S}} / \mathbf{R}_{\mathbf{G}} \geq \mathbf{1 0 0}\right)$ For Instrumentation Amplifier


Typical Applications (Continued)


- With the output having a 10 k load resistor minimum pulse width to zero $\approx 800 \mu \mathrm{~s}$
- The capacitor on the output reduces the output switch glitch

- Reverse op amp inputs for output low on time out
- Time $=\frac{\mathrm{Cl}_{1}}{\mathrm{l}_{1}} \quad \mathrm{~V}_{\text {THRESHOLD }}$
- Output goes high on time out
- C1 low leakage capacitor

Ultra-Low (Or High) Duty Cycle Pulse Generator

- tOUTPUT HIGH $\approx$ R1C $\ln \frac{4.8-2 V_{S}}{4.8-V_{S}}$
- tOUTPUT LOW $\approx$ R2C $\ln \frac{2 V_{S}-7.8}{V_{S}-7.8}$ where $V_{S}=V^{+}+V^{-} \mid$
*low leakage capacitor



## Typical Applications (Continued)



## Typical Applications（Continued）


＊Low leakage capacitor
－By adding D 1 and $\mathrm{R}_{\mathrm{f}}, \mathrm{V}_{\mathrm{D} 1}=0$ during hold mode．Leakage of D 2 provided by feedback path through $\mathrm{R}_{\mathrm{f}}$
－Leakage of circuit is $I_{B}$ plus leakage of $C_{h}$ ．
－D3 clamps $V_{\text {OUT }} A 1$ to $V_{\text {IN }}-V_{D 3}$ to improve speed and to limit the reverse bias of D2．
－Maximum input frequency should be $\ll 1 / 2 \pi R_{f} C_{D 2}$ ，where $C_{D 2}$ is the shunt capacitance of D2
＊Low leakage capacitor
Comparator with Offset Adjust for Hi－Z Inputs

$V^{-}+3 V \leq V_{I N} \leq V^{+}+0.1 V$


IFULL SCALE	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{B}}$
100 nA	1.5 M	1.5 M
500 nA	300 k	300 k
$1 \mu \mathrm{~A}$	300 k	0
$5 \mu \mathrm{~A}$	60 k	0
$10 \mu \mathrm{~A}$	30 k	0
$50 \mu \mathrm{~A}$	6 k	0
$100 \mu \mathrm{~A}$	3 k	0

## Typical Applications (Continued)



Photo Cell Amplifier (I to V Converter)


Connection Diagrams (Top Views)


## LM10/LM10B(L)/LM10C(L) Op Amp and Voltage Reference

## General Description

The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer and an independent, high quality op amp.

The unit can operate from a total supply voltage as low as 1.1 V or as high as 40 V , drawing only $270 \mu \mathrm{~A}$. A complementary output stage swings within 15 mV of the supply terminals or will deliver $\pm 20 \mathrm{~mA}$ output current with $\pm 0.4 \mathrm{~V}$ saturation. Reference output can be as low as 200 mV . Some other characteristics of the LM10 are

- input-offset voltage
2.0 mV (max)
- input-offset current
0.7 nA (max)
- input-bias current
- reference regulation
$20 \mathrm{nA}(\max )$
- offset-voltage drift
$0.1 \%$ (max)
- reference drift $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
$0.002 \% /{ }^{\circ} \mathrm{C}$

The circuit is recommended for portable equipment and is completely specified for operation from a single power cell. In contrast, high output-drive capability, both voltage and current, along with thermal overload protection, suggest it in demanding general-purpose applications.

The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for analog signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage- and currentregulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs.

This series is available in the three standard temperature ranges, with the commercial part having relaxed limits. In addition, a low-voltage specification (suffix "L") is available in the limited temperature ranges at a cost savings.

Connection and Functional Diagrams


## Absolute Maximum Ratings

LM10/LM10B/LM10C
Total supply voltage
Differential input voltage (note 1)
Power dissipation (note 2)
Output short-circuit duration (note 3)
Storage-temperature range
Lead temperature (soldering, 10s)

LM10BL/LM10CL

Electrical Characteristics ( $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {min }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}$ note 4$)$
(Boldface type refers to limits over temperature range.)


Electrical Characteristics $\left(T_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {min }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}\right.$, note 4)
(Boldface type refers to limits over temperature range.)

PARAMETER	CONDITIONS	LM10BL			LM10CL			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input offset voltage	,		0.3	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$		0.5	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Input offset current (note 5)			0.1	0.7 1.5		0.2	2.0 3.0	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input bias current			10	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		12	30 40	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input resistance		$\begin{aligned} & 250 \\ & 150 \end{aligned}$	500		$\begin{aligned} & 150 \\ & 115 \end{aligned}$	400		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Large signal voltage gain	$\begin{aligned} & V_{S}= \pm 3.25 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \\ & V_{\text {OUT }}= \pm 3.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \end{aligned}$	300		40	300		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
	$\begin{aligned} & V_{S}= \pm 3.25 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \\ & V_{\text {OUT }}= \pm 2.75 \mathrm{~V} \end{aligned}$	10 4	25		5 3	25		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
	$\begin{aligned} & V_{\mathrm{S}}= \pm 0.6 \mathrm{~V}(0.65 \mathrm{~V}), \mathrm{I}_{\mathrm{OUT}}= \pm 2 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }}= \pm 0.4 \mathrm{~V}( \pm 0.3 \mathrm{~V}), \mathrm{V}_{\mathrm{CM}}=-0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.5 \end{aligned}$	3.0		1.0 0.75	3.0		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Shunt gain (note 6)	$\begin{aligned} & 1.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 6.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & 0.1 \mathrm{~mA} \leq \mathrm{IOUT} \leq 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	30		$\begin{aligned} & 6 \\ & 4 \end{aligned}$	30		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Common-mode rejection	$\begin{aligned} & -3.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.4 \mathrm{~V}(2.25 \mathrm{~V}) \\ & \mathrm{V}_{\mathrm{S}}= \pm 3.25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 89 \\ & 83 \end{aligned}$	102		$\begin{aligned} & 80 \\ & 74 \end{aligned}$	102		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Supply-voltage rejection	$\begin{aligned} & -0.2 \mathrm{~V} \geq \mathrm{V}^{-} \geq-5.4 \mathrm{~V} \\ & \mathrm{~V}^{+}=1.0 \mathrm{~V}(1.2 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 86 \\ & 80 \end{aligned}$	96		$\begin{aligned} & 80 \\ & 74 \end{aligned}$	96		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	$\begin{aligned} & 1.0 \mathrm{~V}(1.1 \mathrm{~V}) \leq \mathrm{V}^{+} \leq 6.3 \mathrm{~V} \\ & \mathrm{~V}^{-}=0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 94 \\ & 88 \end{aligned}$	106		$\begin{aligned} & 80 \\ & 74 \end{aligned}$	106		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Offset voltage drift			2.0			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset current drift			2.0			5.0		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Bias current drift			60			90		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Line regulation	$\begin{aligned} & 1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{S}} \leq 6.5 \mathrm{~V} \\ & 0 \leq \mathrm{I}_{\text {REF }} \leq 0.5 \mathrm{~mA}, \mathrm{~V}_{\text {REF }}=200 \mathrm{mV} \end{aligned}$		0.001	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$		0.001	$\begin{aligned} & 0.02 \\ & 0.03 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Load regulation	$\begin{aligned} & 0 \leq I_{R E F} \leq 0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}-V_{\text {REF }} \geq 1.0 \mathrm{~V}(1.1 \mathrm{~V}) \end{aligned}$		0.01	$\begin{aligned} & 0.1 \\ & 0.15 \end{aligned}$		0.01	$\begin{aligned} & 0.15 \\ & 0.2 \end{aligned}$	\% $\%$
Amplifier gain	$0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq 5.5 \mathrm{~V}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	70		$\begin{aligned} & 20 \\ & 15 \end{aligned}$	70		$\mathrm{V} / \mathrm{mV}$   $\mathrm{V} / \mathrm{mV}$
Feedback sense voltage		$\begin{aligned} & 195 \\ & 194 \end{aligned}$	200	$\begin{aligned} & 205 \\ & 206 \end{aligned}$	$\begin{aligned} & 190 \\ & 189 \end{aligned}$	200.	$\begin{aligned} & 210 \\ & 211 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Feedback current			20	$\begin{aligned} & 50 \\ & 65 \end{aligned}$		22	$\begin{aligned} & 75 \\ & 90 \end{aligned}$	$\begin{array}{r} n A \\ \cdot \quad n A \end{array}$
Reference drift			0.002			0.003	,	\%/ ${ }^{\circ} \mathrm{C}$
Supply current			260	$\begin{aligned} & 400 \\ & 500 \end{aligned}$		280	$\begin{aligned} & 500 \\ & 570 \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$

Note 1: The input voltage can exceed the supply voltages provided that the voltage from the input to any other terminal does not exceed the maximum differential input voltage and excess dissipation is accounted for when $V_{1 N}<\mathrm{V}^{-}$.
Note 2: The maximum, operating-junction temperature is $150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10,100^{\circ} \mathrm{C}$ for the $\mathrm{LM} 108(\mathrm{~L})$ and $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{C}(\mathrm{L}) . \mathrm{At}$ elevated temperatures, devices must be derated based on package thermal resistance.
Note 3: Internal thermal limiting prevents excessive heating that could result in sudden failure, but the IC can be subjected to accelerated stress with a shorted output and worst-case conditions.
Note 4: These specifications apply for $V^{-} \leq V_{C M} \leq V^{+}-0.85 \mathrm{~V}(1.0 \mathrm{~V}), 1.2 \mathrm{~V}(1.3 \mathrm{~V})<\mathrm{V}_{S} \leq V_{M A X}, V_{\text {REF }}=0.2 \mathrm{~V}$ and $0 \leq \mathrm{I}_{\text {REF }} \leq 1.0 \mathrm{~mA}$, unless otherwise specified: $\mathrm{V}_{\mathrm{MAX}}=40 \mathrm{~V}$ for the standard part and 6.5 V for the low voltage part. Normal typeface indicates $25^{\circ} \mathrm{C}$ limits. Boldface type indicates limits and altered test conditions for full-temperature-range operation; this is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10,-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{~B}(\mathrm{~L})$ and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the LM10C(L). The specifications do not include the effects of thermal gradients ( $\tau_{1} \cong 20 \mathrm{~ms}$ ), die heating ( $\tau_{2} \cong 0.2 \mathrm{~s}$ ) or package heating. Gradient effects are small and tend to offset the electrical error (see curves).
Note 5: For $T_{J}>90^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{OS}}$ may exceed 1.5 nA for $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$. With $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$ and $\mathrm{V}^{-} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{-}+0.1 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OS}} \leq 5 \mathrm{nA}$.
Note 6: This defines operation in floating applications such as the bootstrapped regulator or two-wire transmitter. Output is connected to the $\mathbf{V}^{+}$terminal of the IC and input common mode is referred to $\mathrm{V}^{-}$(see typical applications). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error.

Typical Performance Characteristics (Op Amp)







## Typical Performance Characteristics (Op Amp)



Typical Performance Characteristics (Reference)








laboratory power supply
*

${ }^{\dagger \dagger}$ Circuit descriptions available in application note AN-211.

## Typical Applications ${ }^{\dagger \dagger}$



${ }^{\dagger \dagger}$ Circuit descriptions available in application note AN-211.
Typical Applications ${ }^{\dagger \dagger}$

resistance thermometer transmitter

${ }^{\dagger}$ Circuit descriptions available in application note AN-211.

thermocouple transmitter

battery-level indicator

single-cell voltage monitor

logarithmic light sensor


Typical Applications ${ }^{\text {t }}$

${ }^{\dagger \dagger}$ Circuit descriptions available in application note AN-211.

## Typical Applications ${ }^{\dagger \dagger}$



${ }^{\dagger \dagger}$ Circuit descriptions available in application note AN-211.

## Application Hints

With heavy amplifier loading to $V^{-}$, resistance drops in the $V^{-}$lead can adversely affect reference regulation. Lead resistance can approach $1 \Omega$. Therefore, the common to the reference circuitry should be connected as close as possible to the package.
Operational Amplifier Schematic


Reference and Internal Regulator


## Definition of Terms

Input offset voltage: That voltage which must be applied between the input terminals to bias the unloaded output in the linear region.

Input offset current: The difference in the currents at the input terminals when the output is unloaded in the linear region.

Input bias current: The absolute value of the average of the two input currents.

Input resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Large signal voltage gain: The ratio of the specified dutput voltage swing to the change in differential input voltage required to produce it. .

Shunt gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it with the output tied to the $\mathrm{V}^{+}$terminal of the IC. The load and power source are connected between the $\mathrm{V}^{+}$and $\mathrm{V}^{-}$terminals, and input commonmode is referred to the $\mathrm{V}^{-}$terminal.

Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.

Supply-voltage rejection: The ratio of the specified supply-voltage change to the change in offset voltage between the extremes.

Line regulation: The average change in reference output voltage over the specified supply voltage range.

Load regulation: The change in reference output voltage from no load to that load specified.

Feedback sense voltage: The voltage, referred to $\mathrm{V}^{-}$, on the reference feedback terminal while operating in regulation.

Reference amplifier gain: The ratio of the specified reference output change to the change in feedback sense voltage required to produce it.

Feedback current: The absolute value of the current at the feedback terminal when operating in regulation.

Supply current: The current required from the power source to operate the amplifier and reference with their outputs unloaded and operating in the linear range.

## $\checkmark$ National Semiconductor

## Operational Amplifiers/Buffers

## LM11/LM11C/LM11CL Operational Amplifiers

## General Description

The LM11 is a precision dc amplifier combining the best features of existing bipolar and FET op amps. It is similar to the LM108A, except that input currents have been reduced by more than a factor of ten. Offset voltage and drift have also been improved.

Compared to FETs,' the device provides inherently lower offset voltage and offset voltage drift, along with at least an order of magnitude better long-term stability. Low frequency noise is also somewhat reduced. Bias current is significantly lower even under laboratory conditions, and its low drift makes compensation practical. Offset current is almost unmeasureable. Although not as fast as FETs, it does have a much lower power drain. This low dissipation has the added advantage of eliminating warm up time in critical applications.

Typical characteristics for $25^{\circ} \mathrm{C}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ are:

- offset voltage: $100 \mu \mathrm{~V}(\mathbf{2 0 0} \mu \mathrm{~V})$
- bias current: 25 pA ( 65 pA )
- offset current: $0.5 \mathrm{pA}(3 \mathrm{pA})$
- temperature drift: $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- long-term stability: $10 \mu \mathrm{~V} / \mathrm{year}$

The LM11 is internally compensated, but external compensation can be added for improved frequency stability, particularly with capacitive loads. Offset voltage balancing is also provided, with the balance range determined by a lowresistance potentiometer.

Otherwise, the device is the electrical equivalent of the LM108, except that the negative common-mode limit is 0.6 V less, performance is specified down to $\pm 2.5 \mathrm{~V}$ and the guaranteed output drive has been increased to $\pm 2 \mathrm{~mA}$. The input noise is somewhat higher, but amplifier noise is obscured by resistor noise with higher source resistances.
This monolithic IC has obvious applications as electrometer amplifiers, charge integrators, analog memories, low frequency active filters or for frequency shaping in slow servo loops. It can be substituted for existing circuits to provide improved performance or eliminate trimming operations. The greater precision can also be used to extend the dynamic range of logarithmic amplifiers, light meters and solid-state particle detectors.

The LM11 is manufactured with standard bipolar processing using super-gain transistors.

## Connection Diagrams



Order Number LM11H, LM11CH, or LM11CLH See NS Package H08C


Order Number LM11CN or LM11CLN See NS Package N08B
dual-in-line package


Order Number LM11D, LM11CD, or LM11CLD See NS Package D14E
Order Number LM11CN-14 or LM11CLN-14 See NS Package N14A

* case connected to $\mathrm{V}^{-}$
$\dagger$ guard pins have no internal connection pin connections shown on schematic diagram and for typical applications are for metal can or mini-DIP.


## Absolute Maximum Ratings

total supply voltage input current (note 1) power dissipation (note 2) output short-circuit duration (note 3) storage temperature range lead temperature (soldering, 10 seconds)

40 V $\pm 10 \mathrm{~mA}$ 500 mW indefinite $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics ( $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {MIN }} \leqslant \mathrm{T}_{J} \leqslant \mathrm{~T}_{\text {MAX }}$, note 4)
(Boldface type refers to limits over temperature range.)

parameter	conditions	LM11		LM11C		LM11CL		units
		typ	lim	typ	lim	typ	lim	
input offset voltage	note 4	0.1	0.3	0.2	0.6	0.5	5	mV
			0.6		0.8		6	mV
input offset current	note 4	0.5	10	1	10	4	25	pA
			30		20		50	pA
input bias current	note 4	25	50	40	100	70	200	pA
			150		150		300	pA
input resistance offset voltage drift	note 4	$10^{11}$		$10^{11}$		$10^{11}$		$\Omega$
	note 4	1	3	2	5	3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
offset current drift	$\mathrm{T}_{\text {MIN }} \leqslant \mathrm{T}_{\mathcal{J}} \leqslant \mathrm{T}_{\text {MAX }}$	20		10		50		$\dagger \mathrm{A} /{ }^{\circ} \mathrm{C}$
bias current drift	$T_{\text {MIN }} \leqslant T_{\leqslant} \leqslant T_{\text {MAX }}$	0.5	1.5	0.8	3	1.4		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
large signal voltage gain	$\mathrm{V}_{\mathrm{S}} \pm 15 \mathrm{~V}, \mathrm{I}_{\text {OUT }}= \pm 2 \mathrm{~mA}$	300	100	300	100	300	25	$\mathrm{V} / \mathrm{mV}$
	$\mathrm{V}_{\text {OUT }}= \pm 12 \mathrm{~V}( \pm \mathbf{1 1 . 5 V})$		50		50		15	$\mathrm{V} / \mathrm{mV}$
	$\mathrm{V}_{\text {S }}= \pm 15 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}= \pm 0.5 \mathrm{~mA}$	1200	250	1200	250	800	50	$\mathrm{V} / \mathrm{mV}$
	$\mathrm{V}_{\text {OUT }} \pm 12 \mathrm{~V}$		100		100		30	V/mV
common-mode rejection	$-13 \mathrm{~V}(-12.5 \mathrm{~V}) \leqslant \mathrm{V}_{\mathrm{CM}} \leqslant 14 \mathrm{~V}$	130	110	130	110	110	96	dB
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		100		100		90	dB
supply-voltage rejection	$\pm 2.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V}$	118	100	118	100	100	84	dB
			96		96		80	dB
supply current	note 4	0.3	0.6	0.3	0.8	0.3	0.8	mA
			0.8		1		1	mA
output short-circuit current	$\mathrm{T}_{J}=150^{\circ} \mathrm{C}$		$\pm 15$					mA

note 1: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used. In addition, a $2 \mathrm{k} \Omega$ minimum resistance in each input is advised to avoid possible latch up initiated by supply reversals.
note 2: The maximum operating-junction temperature is $150^{\circ} \mathrm{C}$ for the LM 11 and $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 11 \mathrm{C}(\mathrm{L})$. Devices must be derated based on package thermal resistance (see physical dimensions).
note 3: Current limiting protects the output when it is shorted to ground or any voltage less than the supplies. With continuous overloads, package dissipation must be taken into account and heat sinking provided when necessary.
note 4: These specifications apply for $\mathrm{V}^{-}+2 \mathrm{~V}(2.5 \mathrm{~V}) \leqslant \mathrm{V}_{\mathrm{CM}} \leqslant \mathrm{V}^{+}-1 \mathrm{~V}$ and $\pm 2.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V}$, unless otherwise specified. Normal typeface indicates $25^{\circ} \mathrm{C}$ limits. Boldface type indicates limits for full-temperature range operation. This is $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant 125^{\circ} \mathrm{C}$ for the LM 11 and $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{J}} \leqslant 70^{\circ} \mathrm{C}$ for the $\mathrm{LM} 11 \mathrm{C}(\mathrm{L})$.

## Typical Characteristics


input bias current

drift: single source resistor (unbalanced)

input noise



supply current


Typical Characteristics (Continued)


## Application Hints

When working with circuitry capable of resolving picoampere level signals, leakage currents in circuitry external to the op amp can significantly degrade performance. High quality insulation is a must (Kel-F and Teflon rate high). Proper cleaning of all insulating surfaces to remove fluxes and other residues is also required. This includes the IC package as well as sockets and printed circuit boards. When operating in high humidity environments or near $0^{\circ} \mathrm{C}$, some form of surface coating may be necessary to provide a moisture barrier.

The effects of board leakage can be minimized by encircling the input circuitry with a conductive guard ring operated at a potential close to that of the inputs. For critical applications, dual-in-line packages are available that include input guard pins. With the ceramic package, the floating metal lid is best connected to the guard. This might be accomplished with a dab of conductive paint.

Electrostatic shielding of high impedance circuitry is advisable.

Error voltages can also be generated in the external circuitry. Thermocouples formed between dissimilar metals can cause hundreds of microvolts of error in the presence of temperature gradients. The most troublesome thermocouples are the junction of the IC package and the printed
circuit board ( $35 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for copper-kovar) and internal resistor connections. Problems can be avoided by keeping low level circuitry away from heat generating elements. Mounting the IC directly to the PC board while keeping package leads short and the input leads close together can also help.

With the LM11 there is a temptation to remove the bias-current-compensation resistor normally used on the noninverting input of a summing amplifier. Direct connection of the inputs to ground or a low-impedance voltage source is not recommended with supply voltages greater than about 3 V . The potential problem involves reversal of one supply which can cause excessive current in the second supply. Destruction of the IC could result if the output current of the second supply is not limited to about 100 mA or if there is much more than $1 \mu \mathrm{~F}$ bypass on the supply buss.

Just disconnecting one supply will generally involve reversal because of loading to theother supply both within the IC and in external circuitry. Although difficulties can be largely avoided by installing clamp diodes across the supply lines on every PC board, a conservative design would include enough resistance in the input lead to limit current to 10 mA if the input lead is pulled to either supply by internal currents. This precaution is by no means limited to the LM11.

## input guarding

Input guarding can drastically reduce surface leakage. Layout for metal can is shown here. Guarding both sides of board is required. Bulk leakage reduction is less and depends on guard ring width.


BOTTOM VIEW

Guard ring is connected to low impedance point at same potential as sensitive input leads. Connections for various op amp configurations are shown here.


## input protection

Current is limited by R2 even when input is connected to voltage source outside common mode range. If one supply reverses, current is controlled by R1. These resistors do not affect normal operation.


Input resistor controls current when input exceeds supply voltages, when power for op amp is turned off or when output is shorted.


## balancing and over-compensation

Over-compensation will improve stability with capacitive loading (see curves). Offset voltage adjustment range is determined by balance potentiometer resistance as indicated in the table.


min. adj   range	$R$
$\pm 5 \mathrm{mV}$	$100 \mathrm{k} \Omega$
$\pm 2$	10 k
$\pm 1$	3 k
$\pm 0.8$	3 k
$\pm 0.4$	1 k

## resistance multiplication

Equivalent feedback resistance is $10 \mathrm{G} \Omega$, but only standard resistors are used. Even though the offset voltage is multiplied by 100, output offset is actually reduced because error is dependent on offset current rather than bias current. Voltage on summing junction is less than 5 mV .


Follower input resistance is $1 \mathrm{G} \Omega$. With the input open, offset voltage is multiplied by 100, but the added error is not great because the op amp offset is low.


This circuit multiplies RC time constant to 1000 seconds and provides low output impedance.


$$
\begin{aligned}
& \tau=\frac{R 1 C}{R 3}(R 2+R 3) \\
& \Delta V_{\text {OUT }}=\frac{R 1+R 3}{R 3}\left(I_{B} R 2+V_{O S}\right)
\end{aligned}
$$

A high-input-impedance ac amplifier for a piezoelectric transducer. Input resistance of $880 \mathrm{M} \Omega$ and gain of 10 is obtained.


## cable bootstrapping

Bootstrapping input shield for a follower reduces cable capacitance, leakage and spurious voltages from cable flexing. Instability can be avoided with small capacitor on input.


With summing amplifier, summing node is at virtual ground so input shield is best grounded. Small feedback capacitor insures stability.


## differential amplifiers

This differential amplifier handles high input voltages. Resistor mismatches and stray capacitors should be balanced out for best common-mode rejection.


Two op-amp instrumentation amplifier has poor ac common mode rejection. This can be improved at the expense of differential bandwidth with C2.


High gain differential instrumentation amplifier includes input guarding, cable bootstrapping and bias current compensation. Differential bandwidth is reduced by C 1 which also makes common-mode rejection less dependent on matching of input amplifiers.


For moderate-gain instrumentation amplifiers, input amplifiers can be connected as followers. This simplifies circuitry, but A3 must also have low drift.


## bias current compensation

Precise bias current compensation for use with unregulated supplies. Reference voltage is available for other circuitry.

This circuit shows how bias current compensation can be used on a voltage follower.


## voltmeter

High input impedance millivoltmeter. Input current is proportional to input voltage, about 10 pA at full scale. Reference could be used to make direct reading linear ohmmeter.


## ammeter

Current meter ranges from 100 pA to 3 mA full scale. Voltage across input is $100 \mu \mathrm{~V}$ at lower ranges rising to 3 mV at 3 mA . Buffers on op amp are to remove ambiguity with high-current overload. Output can also drive DVM or DPM.

current source
Precision current source has $10 \mu \mathrm{~A}$ to 10 mA ranges with output compliance of 30 V to -5 V . Output current is fully adjustable on each range with a calibrated, ten-turn potentiometer. Error light indicates saturation.


## fast amplifiers

These inverters have bias current and offset voltage of LM11 along with speed of the FET op amps. Open loop gain is about 140 dB and settling time to 1 mV about $8 \mu \mathrm{~s}$. Overload-recovery delay can be eliminated by direct coupling the FET amplifier to summing node.


This $100 \times$ amplifier has small and large signal bandwidth of 1 MHz . The LM11 greatly reduces offset voltage, bias current and gain error. Eliminating long recovery delay for greater than $100 \%$ overload requires direct coupling of A2 to input.


Follower has $10 \mu \mathrm{~s}$ setting to 1 mV , but signal repetition frequency should not exceed 10 kHz if the FET amplifier is ac coupled to input. The circuit does not behave well if common-mode range is exceeded.

heater control
Proportional control crystal oven heater uses lead/lag compensation for fast settling. Time constant is changed with R4 and compensating resistor R5. If Q2 is inside oven, a regulated supply is recommended for $0.1^{\circ} \mathrm{C}$ control.


[^14]
## leakage isolation

Switch leakage in this sample and hold does not reach storage capacitor.


* polystyrene or Telfon trequired if protected. gate switch is used

A peak detector designed for extended hold. Leakage currents of peak-detecting diodes and reset switch are absorbed before reaching storage capacitor.
$300 \mu \mathrm{~s}$ min single pulse
$200 \mu \mathrm{~s} \min$ repetitive pulse


Reset is provided for this integrater and switch leakage is isolated from the summing junction. Greater precision can be provided if bias-current compensation is included.


## standard-cell buffer

Battery powered buffer amplifier for standard cell has negligible loading and disconnects cell for low supply voltage or overload on output. Indicator diode extinguishes as disconnect circuitry is activated.


* cannot have gate protection diode; $\mathrm{V}_{\mathrm{TH}}>\mathrm{V}_{\mathrm{OUT}}$


## logarithmic amplifiers

Unusual frequency compensation gives this logarithmic converter a $100 \mu \mathrm{~S}$ time constant from 1 mA down to $100 \mu \mathrm{~A}$, increasing from $200 \mu \mathrm{~s}$ to 200 ms from 10 nA to 10 pA . Optional bias current compensation can give 10 pA resolution from $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Scale factor is $1 \mathrm{~V} /$ decade and temperature compensated.


Light meter has eight-decade range. Bias current compensation can give input current resolution of better than $\pm 2 \mathrm{pA}$ over $15^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.


## Schematic Diagram



## Definition of Terms

Input offset voltage: That voltage which must be applied between the input terminals to bias the unloaded output in the linear region.

Input offset current: The difference in the currents at the input terminals when the output is unloaded in the linear region.

Input bias current: The absolute value of the average of the two input currents.

Input resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Large signal voltage gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it.

Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.

Temperature drift: The change of a parameter measured at $25^{\circ} \mathrm{C}$ and either temperature extreme divided by the temperature change.

Supply-voltage rejection: The ratio of the specified supplyvoltage change (either or both supplies) to the change in offset voltage between the extremes.

Supply current: The current required from the power source to operate the amplifier with the output unloaded and operating in the linear range.

## National Semiconductor <br> .

## Operational Amplifiers/Buffers

## LM101A/L̄M201ALM301A Operational Amplifiers

## General Description

The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:

- Offset voltage 3 mV maximum over temperature (LM101A/LM201A)
- Input current 100 nA maximum over temperature (LM101A/LM201A)
- Offset current 20 nA maximum over temperature (LM101A/LM201A)
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ as a summing amplifier

This amplifier offers many features which make its application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, freedom from oscillations and compensation with a single 30 pF
capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.

In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at a lower cost.

The LM101A is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM201A from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM301A from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

## Schematic ** and Connection Diagrams (Top Views)



[^15]
## Absolute Maximum Ratings

	LM101A/LM201A	LM301A
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 3)	Indefinite	Indefinite
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (LM101A)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(\mathrm{LM} 201 \mathrm{~A})$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)


Note 1: The maximum junction temperature of the LM101A is $150^{\circ} \mathrm{C}$, and that of the LM201A/LM301A is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $187^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $75^{\circ} \mathrm{C}$ for $\mathrm{LM} 101 \mathrm{~A} / \mathrm{LM} 201 \mathrm{~A}$, and $70^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$ respectively for LM301A.
Note 4: Unless otherwise specified, these specifications apply for $\mathrm{C} 1=30 \mathrm{pF}, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (LM101A), $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (LM201A), $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (LM301A).

## Guaranteed Performance Characteristics LM101A/LM201A



## Guaranteed Performance Characteristics LM301A



SUPPLY VOLTAGE ( $\pm$ V)


SUPPLY VOLTAGE $( \pm \mathbf{V})$


SUPPLY VOLTAGE ( $\pm$ V)

Typical Performance Characteristics




## Typical Performance Characteristics (Continued)




Input Noise Current







## Typical Applications **



## Application Hints **

Protecting Against Gross Fault Conditions


Compensating For Stray Input Capacitances Or Large Feedback Resistor


Isolating Large Capacitive Loads


Although the LM101A is designed for trouble free operation, experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnormal operating conditions. It might be pointed out that the advice given here is applicable to practically any IC op amp, although the exact reason why may differ with different devices.

When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100 mA . This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources. Large capacitors on the input (greater than $0.1 \mu \mathrm{~F}$ ) should be treated as a low source impedance and isolated with a resistor. Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned off, so the isolation is usually needed.
The output circuitry!is protected against damage from shorts to ground. However, when the amplifier output is connected to a test point, it should be isolated by a limiting resistor, as test points'frequently get shorted to bad places. Further, when the amplifier drives a load external to the equipment, it is also advisable to use some sort of limiting resistance to preclude mishaps.
Precautions should be taken to insure that the power supplies for the integrated circuit never become reversed-even under transient conditions. With reverse voltages greater than 1V, the IC will conduct excessive current, fuzing internal aluminum interconnects. If there is a possibility of this happening, clamp diodes with a high peak current rating should be installed on the supply lines. Reversal of the voltage between $\mathrm{V}^{+}$and $\mathrm{V}^{-}$will always cause a problem, although reversals with respect to ground may also give difficulties in many circuits.
The minimum values given for the frequency compensation capacitor are stable only for source resistances less than $10 \mathrm{k} \Omega$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF . If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.
Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is necessary to bypass the supplies to ground at least once on every circuit card, and more bypass points may be required if more than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.

[^16]
## Typical Applications** (Continued)

Standard Compensation and Offset Balancing Circuit


Fast Voltage Follower


Fast AC/DC Converter*


Integrator with Bias Current Compensation


Low Frequency Square Wave Generator


Voltage Comparator for Driving RTL Logic or High Current Driver


Low Drift Sample and Hold


Voltage Comparator for Driving DTL or TTL Integrated Circuits

**Pin connections shown are for metal can.

National

## LM102/LM202/LM302 Voltage Followers

## General Description

The LM102 series are high-gain operational amplifiers designed specifically for unity-gain voltage follower applications. Built on a single silicon chip, the, devices incorporate advanced processing techniques to obtain very low input current and high input impedance. Further, the input transistors are operated at zero collectorbase voltage to virtually eliminate high temperature leakage currents. It can therefore be operated in a temperature stabilized component oven to get extremely low input currents and low offset voltage drift. Other outstanding characteristics of the device include:

- Fast slewing - $10 \mathrm{~V} / \mu \mathrm{s}$
- Low input current - 10 nA (max)
- High input resistance - $10,000 \mathrm{M} \Omega$
- No external frequency compensation required
- Simple offset balancing with optional 1 K potentiometer
- Plug-in replacement for both the LM101 and LM709 in voltage follower applications.

The LM102, which is designed to operate with supply voltages between $\pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$, also features low input capacitance as well as excellent small signal and large signal frequency response - all of which minimize high frequency gain error. Because of the low wiring capacitances inherent in monolithic construction, this fast operation can be realized without increasing power consumption.

## Schematic** and Connection Diagrams



Typical Applications**
Low Pass Active Filter


High Pass Active Filter

**Pin connections shown are for metal can.


Order Number LM102H, LM202H or LM302H See NS Package H08C

Sample and Hold With Offset Adjustment


High Input Impedance
AC Amplifier


## Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	LM102
	LM202
	LM302
	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Len	$300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	LM102			LM202			LM302			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	5		3	10		5	15	$m V$
Input Bias Current	$T_{A}=25^{\circ} \mathrm{C}$		3	10		7	15		10	30	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$10^{10}$	$10^{12}$		$10^{10}$	$10^{12}$		$10^{9}$	$10^{12}$		$\Omega$
Input Capacitance				3.0		3.0			3.0		pF
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V}, \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=8 \mathrm{k} \Omega \end{aligned}$	0.999	0.9996		0.999	0.9995	1.0	0.9985	0.9995	1.0	$\mathrm{V} / \mathrm{V}$
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	2.5		0.8	2.5		0.8	2.5	$\Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.5	5.5		3.5	5.5		3.5	5.5	mA
Input Offset Voltage				7.5			15			20	mV
Offset Voltage			6			15			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Temperature Drift											
Input Bias Current	$T_{A}=T_{A} M A X$		3	10		1.5	5.0		3.0	15	$n \mathrm{~A}$
	$T_{A}=T_{A} M I N$		30	100		30	50		20	50	$n A$
Large Signal Voltage	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	0.999									
Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$										
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega,$   (Note 5)	$\pm 10$			$\pm 10$			$\pm 10$			$v$
Supply Current	$\mathrm{T}_{\text {A }}=125^{\circ} \mathrm{C}$		2.6	4.0							mA
.Supply Voltage Rejection Ratio	$\pm 12 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$	60			60			60			dB

Note 1: The maximum junction temperature of the LM102 is $150^{\circ} \mathrm{C}$, while that of the LM202 is $100^{\circ} \mathrm{C}$ and that of the LM302 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit for the LM102 and LM202 is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\circ} \mathrm{C} . F \mathrm{For}$ the LM302, continuous short circuit is allowed for $70^{\circ} \mathrm{C}$ case or $55^{\circ} \mathrm{C}$ ambient temperature. It is necessary to insert a resistor greater than $2 \mathrm{k} \Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.
Note 4: These specifications apply for $\pm 12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 102,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ for the LM 202 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the LM302 unless otherwise specified.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and $\mathrm{V}^{-}$terminals. See curve.

Guaranteed Performance Characteristics LM102


## Typical Performance Characteristics LM102



Guaranteed Performance Characteristics LM202


## Typical Performance Characteristics Lм202



Guaranteed Performance Characteristics LM302


Input Current

Output Swing


Supply Current


Typical Performance Characteristics Lм302


## LM107/LM207/LM307 Operational Amplifiers

## General Description

The LM107 series are complete, general purpose operational amplifiers, with the necessary frequency compensation built into the chip. Advanced processing techniques make the input currents a factor of ten lower than industry standards like the 709. Yet, they are a direct, plug-in replacement for the 709, LM101A and 741.

- Offset voltage 3 mV maximum over temperature
- Input current 100 nA maximum over temperature
- Offset current 20 nA maximum over temperature
- Guaranteed drift characteristics

The LM107 series offers the features of the LM101A, which makes its application nearly foolproof. In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at a lower cost.

The LM107 is guaranteed over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range, the LM207 from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the LM307 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Schematic**and Connection Diagrams


Order Number LM107H, LM207H
or LM307H
See NS Package H08C


[^17]
## Absolute Maximum Ratings

		LM107/LM207	LM307			
Supply Voltage		$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$		TMIN	$\mathrm{T}_{\text {MAX }}$
Power Dissipation (Note 1)		500 mW	500 mW			
Differential Input Voltage		$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	LM107	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Input Voltage (Note 2)		$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	LM207	$-25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$
Output Short-Circuit Duration		Indefinite	Indefinite	LM207	-25 C	+85 C
Operating Temperature Range				LM307	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
	(LM107)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
	(LM207)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Lead Temperature (Soldering,	0 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$			

## Electrical Characteristics. (Note 3)

PARAMETER	CONDITIONS	LM107/LM207			LM307			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}^{\text {S }} \leq 50 \mathrm{k} \Omega$		0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	10		3.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	75		70	250	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	4.0		0.5	2.0		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		1.8	3.0				mA
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$					1.8	3.0	mA
Large Signal Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$							
Gain	$V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	50	160		25	160		$\mathrm{V} / \mathrm{mV}$
Input Offset Voltage	RS $\leq 50 \mathrm{k} \Omega$			3.0			10	mV
Average Temperature			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Coefficient of Input Offset Voltage								
Input Offset Current				20			70	nA
Average Temperature	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$		0.01	0.1		0.01	0.3	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Coefficient of Input Offset Current	- $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq 25^{\circ} \mathrm{C}$		0.02	0.2		0.02	0.6	$n A /{ }^{\circ} \mathrm{C}$
Input Bias Current				100			300	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		1.2	2.5				mA
Large Signal Voltage	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$				15			
Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	25						$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$							
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$		$\pm 12$	$\pm 14$		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$		$\pm 10$	$\pm 13$		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	$\pm 15$						V
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		+15		$\pm 12$	+15		v
			-13			-13		
Common Mode	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	80	96		70	90		dB
Rejection Ratio								
Supply Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		96			96		dB
Rejection Ratio								

Note 1: The maximum junction temperature of the LM107 is $150^{\circ} \mathrm{C}$, and the $\mathrm{LM} 207 / \mathrm{LM} 307$ is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than -15 V , the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leq V_{S} \leq+20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LM 107 or $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for the LM207, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ and $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ for the LM307 unless otherwise specified.

Guaranteed Performance Characteristics LM107/LM207


## Guaranteed Performance Characteristics Lмзо7



SUPPLY VOLTAGE ( $\pm \mathbf{V}$ )


SUPPLY VOLTAGE ( $£ \mathbf{V}$ )


## Typical Performance Characteristics


SUPPLY VOLTAGE ( $\pm \mathbf{V}$ )



OUTPUT CURRENT (ImA)




## Typical Applications**


$V_{\text {OUT }}=-\frac{R 2}{R 1} V_{\text {IN }}$
$\mathrm{f}_{\mathrm{IN}}=\mathrm{R} 1$

Non-Inverting Amplifier


Tunable Notch Filter


Differential Input Instrumentation Amplifier


# 7 National Operational Amplifiers/Buffers Semiconductor 

## LM108/LM208/LM308 Operational Amplifiers

## General Description

- The LM108 series are precision operational amplifiers having specifications a factor of ten better than FET amplifiers over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. Selected units are available with offset voltages less than 1.0 mV and drifts less than $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, again over the military temperature range. This makes it possible to eliminate offset adjustments, in most cases, and obtain performance approaching chopper stabilized amplifiers.

The devices operate with supply voltages from $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary. Outstanding characteristics include:

- Maximum input bias current of 3.0 nA over temperature
- Offset current less than 400 pA over temperature
- Supply current of only $300 \mu \mathrm{~A}$, even in saturation
- Guaranteed drift characteristics

The low current error of the LM108 series makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from $10 \mathrm{M} \Omega$ source resistances, introducing less error than devices like the 709 with 10 kS sources. Integrators with drifts less than $500 \mu \mathrm{~V} /$ sec and analog time delays in excess of one hour can be made using capacitors no larger than $1 \mu \mathrm{~F}$.
The LM108 is guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM208 from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM308 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## Compensation Circuits

Standard Compensation Circuit



Alternate* Frequency Compensation



Feedforward Compensation


Typical Applications

Sample and Hold


High Speed Amplifier with Low Drift and Low Input Current


## Absolute Maximum Ratings

	LM108/LM208	LM308
Supply Voltage	$\pm 20 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite	Indefinite
Operating Temperature Range	(LM108)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
		$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)


Note 1: The maximum junction temperature of the LM108 is $150^{\circ} \mathrm{C}$, for the $\mathrm{LM} 208,100^{\circ} \mathrm{C}$ and for the $\mathrm{LM} 308,85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM208, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \bar{T}_{A} \leq 85^{\circ} \mathrm{C}$, and for the LM 308 they are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$.

Typical Performance Characteristics LM108/LM208








Open Loop
Frequency Response


Output Swing


Large Signal
Frequency Response
16




Supply Current

Voltage Föllower Pulse Response


Typical Performance Characteristics Lm308


## Schematic Diagram and Compensation Circuits



Alternate* Frequency Compensation


Typical Applications (Continued)


## Connection Diagrams

 Order Number LM108H
LM208H or LM308H
See NS Package H08C


Note: Pin 7 connected to bottom of package.
TOP VIEW
Order Number LM108J,
LM208J or LM308J
See NS Package J14A

Dual-In-Line Package


Order Number LM108J-8, LM208J-8 or LM308J-8 See NS Package J08A Order Number LM308N See NS Package N08B

[^18]
## General Description

The LM108/LM108A series are precision operational amplifiers having specifications about a factor of ten better than FET amplifiers over their operating temperature range. In addition to low input currents, these devices have extremely low offset voltage, making it possible to eliminate offset adjustments, in most cases, and obtain performance approaching chopper stabilized amplifiers.

The devices operate with supply voltages from $\pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary. Outstanding characteristics include:

- Offset voltage guaranteed less than 0.5 mV
- Maximum input bias current of 3.0 nA over temperature
- Offset current less than 400 pA over temperature
- Supply current of only $300 \mu \mathrm{~A}$, even in saturation
- Guaranteed $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift.
- Guaranteed $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for LM308A-1

The low current error of the LM108A series makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from $10 \mathrm{M} \Omega$ source resistances, introducing less error than devices like the 709 with $10 \mathrm{k} \Omega$ sources. Integrators with drifts less than $500 \mu \mathrm{~V} / \mathrm{sec}$ and analog time delays in excess of one hour can be made using capacitors no larger than $1 \mu \mathrm{~F}$.

The LM208A is identical to the LM108A, except that the LM208A has its performance guaranteed over a $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The LM308A devices have slightly-relaxed specifications and performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

## Compensation Circuits

Standard Compensation Circuit

**Bendwidth ind New rese ue proportions ito $1 / C_{t}$ or $1 / C_{s}$

Alternate" Frequency Compensation



Feedforward Compensation


Typical Applications
High Speed Amplifier with Low Drift and Low Input Current

Sample and Hold


## LM108A/LM208A

## Absolute Maximum Ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range LM108A	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTorage Temperature Range	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Leas	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.3	0.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.05	0.2	nA
Input Bias Current	- $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	2.0	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	70		MS
Supply Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.3	0.6	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{kS} \end{aligned}$	80	300		$\mathrm{V} / \mathrm{mV}$
Input Offset Voltage				1.0	$m V$
Average Temperature Coefficient of Input Offset Voltage	. ${ }^{\text {, }}$		1.0	5.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				0.4	nA
Average Temperature Coefficient of Input Offset Current			0.5	2.5	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current		.		3.0	nA
Supply Current	$T_{A}=+125^{\circ} \mathrm{C}$		0.15	0.4	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{kS} \end{aligned}$	40			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 13$	$\pm 14$		v
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 13.5$			V
Common Mode Rejection Ratio		96	110		dB
Supply Voltage Rejection Ratio		96	110		dB

Note 1: The maximum junction temperature of the LM108A is $150^{\circ} \mathrm{C}$, while that of the LM208A is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the - supply voltage.

Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM208A, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$.

## LM308A, LM308A-1, LM308A-2

Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\dot{T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.3	0.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2	1	$n \mathrm{~A}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	7	$n \mathrm{~A}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	40		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		0.3	0.8	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	80	300		$\mathrm{V} / \mathrm{mV}$
Input Offset Voltage	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{S}=100 \Omega$				
LM308A				0.73	mV
LM308A-1				0.54	mV
LM308A-2				0.59	$m \mathrm{~V}$
Average Temperature Coefficient of Input Offset Voltage	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{S}=100 \Omega$				
LM308A			2.0	5.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
LM308A-1			0.6	1.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
LM308A-2	-		1.3	2.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				1.5	$n \mathrm{~A}$
Average Temperature Coefficient of Input Offset Current			2.0	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current				10	nA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{L} \geq 10 \mathrm{k} \Omega \end{aligned}$	60			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 13$	$\pm 14$		V
Input Voltage Range	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	$\pm 14$			V
Common-Mode Rejection Ratio	1	96	110		$d B$
Supply Voltage Rejection Ratio		96	110		dB

Note 1: The maximum junction temperature of the LM308A, LM308-1 and LM308-2 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T A \leq 70^{\circ} \mathrm{C}$, unless otherwise specified.

## Application Hints

A very low drift amplifier poses some uncommon application and testing problems. Many sources of error can cause the apparent circuit drift to be much higher than would be predicted.

Thermocouple effects caused by temperature gradient across dissimilar metals are perhaps the worst offenders. Only a few degrees gradient can cause hundreds of microvolts of error. The two places this shows up, generally, are the package-to printed circuit board interface and temperature gradients across resistors. Keeping package leads short and the two input leads close together help greatly.
Resistor choice as well as physical placement is important for minimizing thermocouple effects. Carbon, oxide film and some metal film resistors can cause large thermocouple errors. Wirewound resistors of evanohm or manganin are best since they only generate about $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referenced to copper. Of course, keeping the resistor ends at the same temperature is important. Generally, shielding a low drift stage electrically and thermally will yield good results.

Resistors can cause other errors besides gradient generated voltages. If the gain setting resistors do not track with temperature a gain error will result. For example a gain of 1000 amplifier with a con-

Offset Adjustment for Inverting Amplifiers


Offset Adjustment for Differential Amplifiers

stant 10 mV input will have a 10 V output. If the resistors mistrack by $0.5 \%$ over the operating temperature range, the error at the output is 50 mV . Referred to input, this is a $50 \mu \mathrm{~V}$ error. All of the gain fixing resistor should be the same material.
'Offset balancing the LM308A-1 can be a problem since there is no easy offset adjustment incorporated into the circuit. These devices are selected for low drift with no offset adjustment to the internal circuitry, so any change of the internal currents will change the drift - probably for the worse. Offset adjustment must be done at the input. The three most commonly needed circuits are shown here.

Testing low drift amplifiers is also difficult. Standard drift testing technique such as heating the device in an oven and having the leads available through a connector, thermoprobe, or the soldering iron method - do not work. Thermal gradients cause much greater errors than the amplifier drift. Coupling microvolt signal through connectors is especially bad since the temperature difference across the connector can be $50^{\circ} \mathrm{C}$ or more. The device under test along with the gain setting resistor should be isothermal. The following circuit will yield good results if well constructed.

Offset Adjustment for Non-Inverting Amplifiers


Drift Measurement Circuit


## Schematic Diagram*


*Pin connections shown on schematic diagram refer to TO-5 package.

## Connection Diagrams

Order Number LM108AH, LM208AH,
LM308AH, LM308AH-1 or LM308AH-2 See NS Package H08C

**Unused pin (no internal connection) to allow for input anti-leakage guard ring on printed elrcuit board layout.

Order Number LM108AJ, LM208AJ, or LM308AJ See NS Package J14A


## LM110/LM210/LM310 Voltage Follower

## General Description

The LM110 series are monolithic operational amplifiers internally connected as unity-gain non-inverting amplifiers. They use super-gain transistors in the input stage to get low bias current without sacrificing speed. Directly interchangeable with 101, 741 and 709 in voltage follower applications, these devices have internal frequency compensation and provision for offset balancing. Outstanding characteristics include:

- Input current: 10 nA max. over temperature
- Small signal bandwidth: 20 MHz
- Slew rate: $30 \mathrm{~V} / \mu \mathrm{s}$
- Supply voltage range: $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

The LM110 series are useful in fast sample and hold circuits, active filters, or as general-purpose buffers. Further, the frequency response is enough better than standard IC amplifiers that the followers can be included in the feedback loop without introducing instability. They are plug-in replacements for the LM102 series voltage followers, offering lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range.

The LM110 is specified over a temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, the LM210 from $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and the LM310 from $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.

Schematic Diagram


## Auxiliary Circuits



Typical Applications


Differential Input Instrumentation Amplifier


Fast Integrator with Low Input Current


Fast Inverting Amplifier with High Input Impedance

Absolute Maximum Ratings	
Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Input Voltage (Note 2)	$\pm \pm 5 \mathrm{~V}$
Output Short Circuit Duration (Note 3)	Indefinite
Operating Temperature Range	LM 110
	LM 210
	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature	(Soldering, 10 sec )

## Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	L.M110			LM210			LM310			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	4.0		1.5	4.0		2.5	7.5	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	3.0		1.0	3.0		2.0	7.0	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$10^{10}$	$10^{12}$		$10^{10}$	$10^{12}$		$10^{10}$	$10^{12}$		$\Omega$
Input Capacitance			1.5			1.5			1.5		pF
Large Signal Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	0.999	0.9999		0.999	0.9999		0.999	0.9999		V/V
Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \mathrm{k} \Omega$										
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	2.5		0.75	2.5		0.75	2.5	$\Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.9	5.5		3.9	5.5		3.9	5.5	mA
Input Offset Voltage	,			6.0			6.0			10	mV
Offset Voltage	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		6			6					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Temperature Drift	$T_{A}=125^{\circ} \mathrm{C}$		12			12					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$								10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current				10			10			10	nA
Large Signal Voltage Gain '	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	0.999	,		0.999			0.999			- V/V
Output Voltage Swing (Note 5)	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 10$			$\pm 10$			$\pm 10$			V
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		2.0	4.0		2.0	4.0				mA
Supply Voltage Rejection Ratio	$\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$	70	80		70	80		70	80		dB

Note 1: The maximum junction temperature of the LM110 is $150^{\circ} \mathrm{C}$, of the LM 210 is $100^{\circ} \mathrm{C}$, and of the LM 310 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit for the LM110 and LM210 is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\circ} \mathrm{C}$, and for the LM310, $70^{\circ} \mathrm{C}$ case temperature or $55^{\circ} \mathrm{C}$ ambient temperature. It is necessary to insert a resistor greater than $2 \mathrm{k} \Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq V_{S} \leq \pm 18 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 110,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ for the LM 210 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the LM310 unless otherwise specified.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and $\mathrm{V}^{-}$terminals. See curve.

Typical Applications


Comparator for Signals of Opposite Polarity


Zero Crossing Detector


Comparator for AC Coupled Signals


Comparator for A/D Converter Using a Binary-Weighted Network


Comparator for A/D Converter
Using a Ladder Network

Typical Applications (Continued)


Adjustable Q Notch Filter


## Typical Performance Characteristics (LM110/LM210)



Typical Performance Characteristics (LM310)











## Connection Diagrams



Operational Amplifiers/Buffers

## LM112/LM212/LM312 Operational Amplifiers

## General Description

The LM112 series are micropower operational amplifiers with very low offset-voltage and inputcurrent errors-at least a factor of ten better than FET amplifiers over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. Similar to the LM108 series, that also use supergain transistors, they differ in that they include internal frequency compensation and have provisions for offset adjustment with a single potentiometer.

These amplifiers will operate on supply voltages of $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$, drawing a quiescent current of only $300 \mu \mathrm{~A}$. Performance is not appreciably affected over this range of voltages, so operation from unregulated power sources is easily accomplished. They can'also be run from a single supply like the 5 V used for digital circuits. Some noteworthy features are:

- Maximum input bias current of 3 nA over temperature
- Offset current less than 400 pA over temperature
- Low noise
- Guaranteed drift specifications

The LM112 series are the first IC amplifiers to improve reliability by including overvoltage protection for the MOS compensation capacitor. Without this feature, IC's have been known to suffer catastrophic failure caused by shortduration overvoltage spikes on the supplies. Unlike other internally-compensated IC amplifiers, it is possible to overcompensate with an external capacitor to increase stability margin.
The LM212 is identical to the LM112, except that the LM212 has its performance guaranteed over a $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range instead of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The LM312 is guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

## Schematic Diagram **


**Pin connections shown are for metal can.

## Connection Diagram



Order Number LM112H, LM212H, or LM312H
See NS Package H08C

Auxiliary Circuits**
Offset Balancing


Overcompensation for Greater Stability Margin


## Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range
LM112
LM2 12
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

LM112/LM212	LM312
$\pm 20 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
500 mW	500 mW
$\pm 10 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$
$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Indefinite	Indefinite
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	LM112/LM212			LM312			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.05	0.2		0.2	1	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	2.0		1.5	7	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	70		10	40		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.3	0.6		0.3	0.8	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k}^{2} \Omega \end{aligned}$	50	300	-	25	300		$\mathrm{V} / \mathrm{mV}$
Input Offset Voltage				3.0			10	mV
Average Temperature Coefficient of Input	,							
Offset Voltage			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				0.4			1.5	nA
Average Temperature								
Coefficient of Input								
Offset Current			0.5	2.5		2.0	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current				3.0			10	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		0.15	0.4				mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	25			15			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$	$\pm 13$	$\pm 14$		$\pm 13$	$\pm 14$		V
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	$\pm 13.5$			$\pm 14$			- V
Common-Mode Rejection Ratio		85	100		80	100		dB
Supply Voltage								
Rejection Ratio		80	96		80	96		dB

Note 1: The maximum junction temperature of the LM112 is $150^{\circ} \mathrm{C}, \mathrm{LM} 212$ is $100^{\circ} \mathrm{C}$ and LM 312 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with shunt diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}(\mathrm{LM} 112),-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}(\mathrm{LM} 212), \pm 5 \mathrm{~V} \leq V_{S} \leq$ $\pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (LM312) unless otherwise noted.

## Typical Performance Characteristics





Open Loop Frequency Response





Typical Performance Characteristics Lm312.




Open Loop Frequency
Response








Large Signal Frequency
Response Response


Voltage Follower Pulse Response


## LM118/LM218/LM318 Operational Amplifiers

## General Description

The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

## Features

- 15 MHz small signal bandwidth
- Guaranteed $50 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Maximum bias current of 250 nA
- Operates from supplies of $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps

The LM118 series has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary for operation. However, unlike most internally
compensated amplifiers, external frequency com pensation may be added for optimum performance For inverting applications, feedforward compen sation will boost the slew rate to over $150 \mathrm{~V} / \mu \mathrm{s}$ and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the $0.1 \%$ settling time to under $1 \mu \mathrm{~s}$.

The high speed and fast settling time of these op amps make them useful in A/D converters, oscillators, active filters, sample and hold circuits, or general purpose amplifiers. These devices are easy to apply and offer an order of magnitude better AC performance than industry standards such as the LM709.

The LM218 is identical to the LM118 except that the LM218 has its performance specified over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM318 is specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## Schematic and Connection Diagrams



*Pin connections shown on schematic diagram and typical applications are for TO-5 package.

Order Number LM118H, LM218H
or LM318H
See NS Package H08C

Order Number LM118J, LM218J
or LM318J
See NS Package J14A


## Absolute Maximum Ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	
LM118	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM218	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM318	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	LM118/LM218			LM318			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	4		4	10	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6	50		30	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		120	250		150	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	3		0.5	3		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	8		5	10	mA
Large Signal Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$							
,	$V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	50	200		25	200		$\mathrm{V} / \mathrm{mV}$
Slew Rate	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1$	50	70		50	70		$\mathrm{V} / \mu \mathrm{s}$
Small Signal Bandwidth	$T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V}$		15			15		MHz
Input Offset Voltage				6			15	mV
Input Offset Current				100			300	nA
Input Bias Current				500			750	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		4.5	7				
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			20			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		$v$
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	$\pm 11.5$			$\pm 11.5$			$v$
Common-Mode Rejection Ratio		80	100		70	100		dB
Supply Voltage Rejection Ratio		70	80		65	80		$d B$

Note 1: The maximum junction temperature of the LM118 is $150^{\circ} \mathrm{C}$, the LM218 is $110^{\circ} \mathrm{C}$, and the LM 318 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, (LM118), $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (LM218), and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}$ $\leq+70^{\circ} \mathrm{C}$ (LM318). Also, power supplies must be bypassed with $0.1 \mu \mathrm{~F}$ disc capacitors.

## Typical Performance Characteristics LM118, LM218






 DIFFERENTIAL INPUT (V)




Typical Performance Characteristics LM118, LM218 (Continued)


Typical Performance Characteristics Lм318


Typical Performance Characteristics LM318 (Continued)



## Auxiliary Circuits



Feedforward Compensation for Greater Inverting Slew Rate ${ }^{\dagger}$


Compensation for Minimum Settling ${ }^{\dagger}$ Time


Offset Balancing


Isolating Large Capacitive Loads


Overcompensation

## Typical Applications



Fast Voltage Follower *


Fast Summing Amplifier


Differential Amplifier


Four Quadrant Multíplier

Typical Applications (Continued)


Fast Sample and Hold


D/A Converter Using Ladder Network


Fast Summing Amplifier with Low Input Current


Wein Bridge Sine Wave Oscillator


Instrumentation Amplifier

## LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers

## General Description

The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard $+5 \mathrm{~V}_{\mathrm{DC}}$ power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V}_{\mathrm{DC}}$ power supplies.

## Unique Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross frequency is temperature compensated.
- The input bias current is also temperature compensated.


## Advantages

- Eliminates need for dual supplies
- Four internally compensated op amps in a single package
- Allows directly sensing near GND and $\mathrm{V}_{\text {OUt }}$ also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation


## Features

- Internally frequency compensated for unity gain
- Large dc voltage gain 100 dB
- Wide bandwidth (unity gain) 1 MHz (temperature compensated)
- Wide power supply range:

Single supply
$3 V_{D C}$ to $30 V_{D C}$ or dual supplies $\pm 1.5 \mathrm{~V}_{\mathrm{DC}}$ to $\pm 15 \mathrm{~V}_{\mathrm{DC}}$

- Very low supply current drain $(800 \mu \mathrm{~A})$ - essentially independent of supply voltage ( $1 \mathrm{~mW} / \mathrm{op} \mathrm{amp}$ at $\left.+5 \mathrm{~V}_{\mathrm{DC}}\right)$
- Low input biasing current 45 nA DC (temperature compensated)
- Low input offset voltage

2 mV DC and offset current $5 \mathrm{nA} \mathrm{DC}^{\prime}$

- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage $\quad 0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$ swing

Schematic Diagram (Each Amplifier)


Order Number LM124J, LM124AJ, LM224J, LM224AJ, LM324J, LM324AJ or LM2902J See NS Package J14A Order Number LM324N, LM324AN or LM2902N See NS Package N14A

Absolute Maximum Ratings

LM124/LM224/LM324 LM124A/LM224A/LM324A

Supply Voltage, $\mathrm{V}^{+}$ Differential Input Voltage Input Voltage
Power Dissipation (Note 1)
Molded DIP
Cavity DIP
Flat Pack
Output Short-Circuit to GND (One Amplifier) (Note 2) $\mathrm{V}^{+} \leq 15 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$32 V_{D C}$ or $\pm 16 V_{D C}$ $32 V_{D C}$
$-0.3 V_{D C}$ to $+26 V_{D C}$
570 mW
900 mW
800 mW
Continuous

LM2902
$26 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 13 \mathrm{~V}_{\mathrm{DC}}$ $26 \mathrm{~V} D C$ $-0.3 V_{D C}$ to $+26 V_{D C}$

570 mW

Continuous

Input Current ( $\mathrm{V}_{\text {IN }}<-0.3 \mathrm{VDC}$ ) (Note 3) Operating Temperature Range

LM324/LM324A LM224/LM224A LM124/LM124A
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)

LM124/LM224/LM324 LM124A/LM224A/LM324A

LM2902

50 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

50 mA $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{v}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}\right.$, Note 4)


Electrical Characteristics (Continued)

PARAMETER	CONDITIONS	LM124A			LM224A			LM324A			LM124/LM224			LM324			LM2902			UNITS
		- MIN	TYP	MAX																
Input Offset Voltage	(Note 5)			4			4			5			$\pm 7$			$\pm 9$			$\pm 10$	$m \vee D C$
Input Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$,		7	20		7	20		7	30		7			7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\operatorname{lin}(+)-\operatorname{lin}(-)$			30			30			75	-		$\pm 100$			$\pm 150$		45	$\pm 200$	nADC
Input Offset Current Drift			10	200		10	200		10	300		10			10			10		$\mathrm{PADC} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$1 / \mathrm{N}(+)$ or $\operatorname{l\|} \mathrm{N}(-)$		40	100		40	100		40	200		40	300		40	500		40	500	nADC
Input Common-Mode Voltage Range (Note 7)	$\mathrm{V}^{+}=30 \mathrm{~V} D C$	0		$\mathrm{v}^{+}-2$	VDC															
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{v}^{+}=+15 \mathrm{~V}_{\mathrm{DC}} \text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			25			15			25			15			15			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing VOH $\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & \mathrm{V}^{+}=+30 \mathrm{~V}_{\mathrm{DC}}, R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{~V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, R_{\mathrm{L}} \leq 10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$28$ $5$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	28   5	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	28 5	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	$20$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	$20$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 24 \\ & 5 \end{aligned}$	$100$	$\begin{array}{r} V_{D C} \\ V_{D C} \\ m V_{D C} \end{array}$
Output Current Source Sink	$\begin{aligned} & V_{I N}^{+}=+1 V_{D C} . V_{I N^{-}}^{-}=0 V_{D C}, V^{+}=15 V_{D C} \\ & V_{I N}=+1 V_{D C} . V_{I N^{+}}=0 V_{D C}, V^{+}=15 V_{D C} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$	,		$\begin{aligned} & 20 \\ & 8 \end{aligned}$		$\begin{aligned} & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$		$\begin{aligned} & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$	$\cdots$		$\begin{aligned} & 20 \\ & 8 \end{aligned}$	-	mADC mADC
Differential Input Voltage	(Note 7)			32			32			32			32			32			26	$V_{D C}$


 four amplifiers-use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
 voltage in excess of $+15 V_{D C}$, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.


 again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$ ).
 LM324A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$, and the LM 2902 specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
Note 5: $V_{O} \approx 1.4 V_{D C}, R_{S}=0 \Omega$ with $V^{+}$from $5 V_{D C}$ to $30 V_{D C}$; and over the full input common-mode range ( $0 V_{D C}$ to $\left.V^{+}-1.5 V_{D C}\right)$.

 either or both inputs can go to $+32 V_{D C}$ without damage ( $+26 \mathrm{~V}_{D C}$ for LM2902).
 higher frequencies.


## Typical Performance Characteristics (LM2902 only)




## Application Hints

The LM124 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of $0 \mathrm{~V}_{\mathrm{Dc}}$. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At $25^{\circ} \mathrm{C}$ amplifier operation is possible down to a minimum supply voltage of 2.3 V DC .

The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7,8 , and 14).

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than $\mathrm{V}^{+}$without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$ ). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply current drain, the amplifiers have a class $A$ output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should
be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case noninverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The bias network of the LM124 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $3 \mathrm{~V}_{\mathrm{DC}}$ to 30 V DC.

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at $25^{\circ} \mathrm{C}$ provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of $\mathrm{V}^{+} / 2$ ) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Non-Inverting DC Gain (OV Input = OV Output)



DC Summing Amplifier $\left(V_{I N}\right.$ S $\left.\geq 0 V_{D C} A N D V_{O} \geq 0 V_{D C}\right)$


Where: $v_{0}=v_{1}+v_{2}-V_{3}-v_{4}$
$\left(V_{1}+V_{2}\right) \geq\left(V_{3}+V_{4}\right)$ to keep $V_{0}>0 V_{D C}$

Power Amplifier


LED Driver



Lamp Driver



Typical Single-Supply Applications (Continued) $\left(\mathrm{V}^{+}=5.0 \mathrm{~V} \mathrm{VC}\right)$


Squarewave Oscillator


Pulse Generator


High Compliance Current Sink


Low Drift Peak Detector


Comparator with Hysteresis


Ground Referencing A Differential Input Signal



-


DC Coupled Low-Pass RC Active Filter


High Input Z, DC Differential Amplifier


## Typical Single-Supply Applications (Continued) $\left(\mathrm{V}^{+}=5.0 \mathrm{Voc}\right)$



Bridge Current Amplifier


Bandpass Active Filter


## LM143/LM343 High Voltage Operational Amplifier

## General Description

The LM143 is a general purpose high voltage operational amplifier featuring operation to $\pm 40 \mathrm{~V}$, complete input overvoltage protection up to $\pm 40 \mathrm{~V}$ and input currents comparable to those of other super $-\beta$ op amps. Increased slew rate, together with higher common-mode and supply rejection, insure improved performance at high supply voltages. Operating characteristics, in particular supply current, slew rate and gain, are virtually independent of supply voltage and temperature. Furthermore, gain is unaffected by output loading at high supply voltages due to thermal symmetry on the die. The LM143 is pin compatible with general purpose op amps and has offset null capability.

Application areas include those of general purpose op amps, but can be extended to higher voltages and higher output power when externally boosted. For example, when used in audio power applications, the LM143 provides a power bandwidth that covers the entire audio spectrum. In addition, the LM143 can be reliably operated in environments with large overvoltage spikes on the power supplies, where other internally-compensated op amps would suffer catastrophic failure.

The LM343 is'similar to the LM143 for applications in less severe supply voltage and temperature environments.

## Features

- Wide supply voltage range $\pm 4.0 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$
- Large output voltage swing $\pm 37 \mathrm{~V}$
- Wide input common-mode range . $\pm 38 \mathrm{~V}$
- Input overvoltage protection Full $\pm 40 \mathrm{~V}$
- Supply current is virtually independent of supply voltage and temperature


## Unique Characteristics

[^19]
## Connection Diagram

Metal Can Package


TOP VIEW

> Order Number LM143H or LM343H
> See NS Package H08C

# Absolute Maximum Ratings (Note 1) 

## Supply Voltage

Power Dissipation (Note 1)
Differential Input Voltage (Note 2)
Input Voltage (Note 2)
Operating Temperature Range
Storage Temperature Range
Output Short Circuit Duration
Lead Temperature (Soldering, 10 seconds)

LM143	LM343
$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
680 mW	680 mW
80 V	68 V
$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
5 seconds	5 seconds
$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	LM143			LM343			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$T_{A}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	8.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	3.0		1.0	10	nA
Input Bias Current	$T_{A}=25^{\circ} \mathrm{C}$		8.0	20		8.0	40	nA
Supply Voltage Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	100		10	200	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{k} \Omega$	22	25		20	25		V
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & R_{L} \geq 100 \mathrm{k} \Omega \end{aligned}$	100k	180k		70k	180k		V/V
Common-Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	90		70	90		dB
Input Voltage Range	$T_{A}=25^{\circ} \mathrm{C}$	24	26		22	26		V
Supply Current (Note 4)	$T_{A}=25^{\circ} \mathrm{C}$		2.0	4.0		2.0	5.0	mA
Short Circuit Current	$T_{A}=25^{\circ} \mathrm{C}$		20			20		mA
Slew Rate	$T_{A}=25^{\circ} \mathrm{C}, A_{V}=1$		2.5			2.5		$\mathrm{V} / \mathrm{\mu s}$
Power Bandwidth	$\begin{aligned} & T_{A}=25^{\circ} C_{i} V_{\text {OUT }}=40 V_{P . P}, \\ & R_{L}=5 \dot{k} \Omega, T H D \leq 1 \% \end{aligned}$		20k			20k		Hz
Unity Gain Frequency	$T_{A}=25^{\circ} \mathrm{C}$		1.0M			1.0M		Hz
Input Offset Voltage	$\begin{aligned} & T_{A}=\operatorname{Max} \\ & T_{A}=\operatorname{Min} \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Offset Current	$\begin{aligned} & T_{A}=\operatorname{Max} \\ & T_{A}=\operatorname{Min} \end{aligned}$			$\begin{aligned} & 4.5 \\ & 7.0 \end{aligned}$		0.8 1.8	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Bias Current	$\begin{aligned} T_{A} & =\operatorname{Max} \\ T_{A} & =M i n \end{aligned}$		$5.0$	$\begin{aligned} & 35 \\ & 25 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 16 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & R_{L} \geq 100 \mathrm{k} \Omega, T_{A}=\operatorname{Max} \\ & R_{L} \geq 100 \mathrm{k} \Omega, T_{A}=\operatorname{Min} \end{aligned}$	$\begin{aligned} & 50 \mathrm{k} \\ & 50 \mathrm{k} \end{aligned}$	$\begin{aligned} & 150 \mathrm{k} \\ & 220 \mathrm{k} \end{aligned}$		50 k 50 k	150k 220k		$\mathrm{v} / \mathrm{V}$ $\mathrm{v} / \mathrm{V}$
Output Voltage Swing	$\begin{aligned} & R_{L} \geq 5.0 \mathrm{k} \Omega, T_{A}=\operatorname{Max} \\ & R_{L} \geq 5.0 \mathrm{k} \Omega, T_{A}=\operatorname{Min} \end{aligned}$	$\begin{array}{r} 22 \\ 22 \\ \hline \end{array}$	$\begin{aligned} & 26 \\ & 25 \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \\ & 25 \\ & \hline \end{aligned}$		v

Note 1: Absolute maximum ratings are not necessarily concurrent, and care must be taken not to exceed the maximum junction temperature of the LM143 $\left(150^{\circ} \mathrm{C}\right)$ or the LM343 $\left(100^{\circ} \mathrm{C}\right)$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: For supply voltage less than $\pm 40 \mathrm{~V}$ for the LM143 and less than $\pm 34 \mathrm{~V}$ for the LM343, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 28 \mathrm{~V}$. For $L M 143, T_{A}=\max =125^{\circ} \mathrm{C}$ and $\mathrm{T}_{A}=\min =-55^{\circ} \mathrm{C}$. For $\mathrm{LM} 343, T_{A}=\max =70^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=\min =0^{\circ} \mathrm{C}$.

## Schematic Diagram



Typical Performance Characteristics






Typical Performance Characteristics (Continued)









## Application Hints (See AN-127)

The LM143 is designed for trouble free operation at any supply voltage up to and including the guaranteed maximum of $\pm 40 \mathrm{~V}$. Input overvoltage protection, both common-mode and differential, is $100 \%$ tested and guaranteed at the maximum supply voltage. Furthermore, all possible high voltage destructive modes during supply voltage turn-on have been eliminated by design. As with most IC op amps, however, certain precautions should be observed to insure that the LM143 remains virtually blow-out proof.

Although output short circuits to ground or either supply can be sustained indefinitely at lower supply voltages, these short circuits should be of limited duration when operating at higher supply voltages. Units can be destroyed by any combination of high ambient temperature, high supply voltages, and high power dissipation which results in excessive die temperature. This is also true when driving low impedance or reactive loads or loads that can revert to low impedance; for example, the LM143 can drive most general purpose op amps outside of the maximum input voltage range, causing heavy current to flow and possibly destroying both devices.

Precautions should be taken to insure that the power supplies never become reversed in polarity-even under transient conditions. With reverse voltage, the IC will conduct excessive current, fusing the internal aluminum interconnects. Voltage reversal between the power supplies will almost always result in a destroyed unit.

In high voltage applications which are sensitive to very low input currents, special precautions should be exercised. For example, with high source resistances, care should be taken to prevent the magnitude of the PC board leakage currents, although quite small, from approaching those of the op amp input currents. These leakage currents become larger at $125^{\circ} \mathrm{C}$ and are made worse by high supply voltages. To prevent this, PC boards should be properly cleaned and coated to prevent contamination and to provide protection from condensed water vapor when operating below $0^{\circ} \mathrm{C}$. A guard ring is also recommended to significantly reduce leakage currents from the op amp input pins to the adjacent high voltage pins in the standard op amp pin connection as shown in Figure 1. Figures 2, 3 and 4 show how the guard ring is connected for the three most common op amp configurations.

Finally, caution should be exercised in high voltage applications as electrical shock hazards are present. Since the negative supply is connected to the case, users may inadvertantly contact voltages equal to those across the power supplies.

The LM143 can be used as a plug-in replacement in most general purpose op amp applications. The circuits presented in the following section emphasize those applications which take advantage of the unique high voltage capabilities of the LM143.


FIGURE 2. Guarded Voltage Follower

FIGURE 1. Printed Circuit Layout for Input Guarding with TO-5 Package


FIGURE 3. Guarded Non-Inverting Amplifier
FIGURE 4. Guarded Inverting Amplifier

Typical Applications $\ddagger$ (For more detail see AN-127)


130 Vp-p Drive Across a Floating Load

*R2 may be adjustable to trim the gain.
**R7 may be adjusted to compensate for the resistance tolerance of R4-R7 for best CMR.
$\pm 34$ V Common-Mode Instrumentation Amplifier


Tracking $\pm 65 \mathrm{~V}, 1$ Amp Power Supply with Short Circuit Protection

[^20]Typical Applications (Continued) (For more detail see AN-122)


90W Audio Power Amplifier with Safe Area Protection


1 Amp Power Amplifier with Short Circuit Protection
$\ddagger$ The 38 V supplies allow for a $5 \%$ voltage tolerance. All resistors are $1 / 2$ watt, except as noted.

National Semiconductor

## Operational Amplifiers/Buffers

## LM144/LM344 High Voltage, High Slew Rate Operational Amplifier

## General Description

The LM144 is a general purpose high voltage, uncompensated operational amplifier featuring operation to $\pm 36 \mathrm{~V}$, complete input overvoltage protection up to the supply voltages and input currents comparable to those of other super $\beta$ op amps. Increased slew rate, together with high common-mode and supply rejection, insure excellent performance at high supply voltages. Operating characteristics, in particular supply current, slew rate and gain, are virtually independent of supply voltage and temperature. Furthermore, due to thermal symmetry on the die, gain is unaffected by output loading at high supply voltages.

With the unique advantages of low input current, high gain, and high slew rate, the LM144 can increase accuracy and useful frequency range in many existing applications. For example, the LM144 is a plug-in replacement for the LM101A, as well as other general purpose op amps.

The LM144 can be compensated with a single capacitor, thus giving the user the ability to optimize ac parameters to suit the application. For example, in applications such as audio power amplifiers, the LM144 with a gain of 10 can provide a $\pm 30 \mathrm{~V}$ output swing, a slew rate of approximately $30 \mathrm{~V} / \mu \mathrm{s}$, and a 120 kHz full power
bandwidth. In applications where capacitive loads or cables must be driven, the LM144 can be overcompensated for increased stability.

The LM344 is similar to the LM144 for applications in less. severe supply voltage and temperature environments.

## Features

- External compensation provides large power bandwidth ( $A_{V} \geq 10$ )

120 kHz

- Wide operating voltage range $\pm 4.0 \mathrm{~V}$ to $\pm 36 \mathrm{~V}$
- Large output voltage swing $\pm 30 \mathrm{~V}$
- Wide input common-mode range
- Input overvoltage protection
- Electrical characteristics independent of supply voltage and temperature


## Unique Characteristics

- Low input bias current 8.0 nA
- Low input offset current 1.0 nA
- High slew rate $\left(\mathrm{A}_{\mathrm{V}} \geq 10\right) \quad 30 \mathrm{~V} / \mu \mathrm{s}$
- High voltage gain 100k min
- Offset voltage null capability


## Typical Application

## Large Power Bandwidth, Current Boosted Audio Line Driver



## Absolute Maximum Ratings (These ratings are not concurrent)

	LM144	LM344
Supply Voltage		
Power Dissipation (Note 1)	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Differential Input Voltage (Note 2)	680 mW	680 mW
Input Voltage (Note 2)	80 V	68 V
Operating Temperature Range	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Output Short Circuit Duration	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	5 seconds	5 seconds
	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

/ . PARAMETER	CONDITIONS	LM144			LM344			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	8.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	3.0		1.0	10	$n \mathrm{~A}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8.0	20		8.0	40	nA
Supply Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	100		10	200	$\mu \mathrm{V} / \mathrm{V}$
Rejection Ratio								
Output Voltage Swing	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{k} \Omega$	22	25		20	25		V
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{L} \geq 100 \mathrm{k} \Omega \end{aligned}$	100k	180k		70k	180k		V/V
Ratio								
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	24	26		22	26		V
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	4.0		2.0	5.0	mA
Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20			20		mA
Slew Rate	$T_{A}=25^{\circ} \mathrm{C}, A_{V}=1$		$2.5$			. 2.5		$\mathrm{V} / \mu \mathrm{s}$
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~A}_{\mathrm{V}}=10, \mathrm{C} 1=3 \mathrm{pF}$		30			30		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=40 \mathrm{~V} \cdot p, \\ & R_{L}=5 \mathrm{k} \Omega, T H D \leq 1 \%, A_{V}=1 \end{aligned}$		20k			20k		Hz
Unity Gain Frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0 M			1.0M		Hz
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=\mathrm{Max}$			6.0			10	mV
	$T_{A}=M i n$			6.0			10	mV
Input Offset Current	$T_{A}=$ Max		0.8	4.5		0.8	14	nA
	$\mathrm{T}_{\mathrm{A}}=\mathrm{Min}$		1.8	7.0		1.8	14	$n \mathrm{~A}$
Input Bias Current	$T_{A}=M a x$		$5.0$	35		5.0	55	$n \mathrm{~A}$
	$\mathrm{T}_{\mathrm{A}}=\mathrm{Min}$		16	35		16	55	$n \mathrm{~A}$
Large Signà Voltage Gain	$R_{L} \geq 100 \mathrm{k} \Omega, \mathrm{T}_{A}=\operatorname{Max}$	50k	150k		50k	150k		V/V
	$R_{L} \geq 100 \mathrm{k} \Omega, \mathrm{T}_{A}=\mathrm{Min}$	50k	220k		50k	220k		$\mathrm{V} / \mathrm{V}$
Output Voltage Swing	$R_{L} \geq 5.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\operatorname{Max}$	$22$	$26$		$20$	$26$		V
	$\mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\operatorname{Min}$	22	25		20	25		V

Note 1: The maximum junction temperature of the LM144 is $150^{\circ} \mathrm{C}$, while that of the LM344 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: For supply voltage less than $\pm 40 \mathrm{~V}$ for the LM144 and less than $\pm 34 \mathrm{~V}$ for the LM344, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 28 \mathrm{~V}$. For the $L M 144, T_{A}=\max =125^{\circ} \mathrm{C}$ and $\mathrm{T}_{A}=\min =-55^{\circ} \mathrm{C}$. For the $L M 344, T_{A}=\max =70^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=\min =0^{\circ} \mathrm{C}$.


## Typical Performance Characteristics







## Typical Performance Characteristics (Continued)



## Application Hints (See Also AN-127)

The LM144 is designed for trouble-free operation at any supply voltage up to a maximum of $\pm 40 \mathrm{~V}$. Input overvoltage protection, both common-mode and differential, is $100 \%$ tested and guaranteed at the maximum supply voltage. Furthermore, all possible high voltage destructive modes during supply voltage turn-on have been eliminated by design. As with most IC op amps, however, certain precautions should be observed to insure that the LM144 remains virtually blow-out proof.

Although output short circuits to ground or either supply can be sustained indefinitely for supply voltages, below $\pm 18 \mathrm{~V}$, these short circuits should be of limited duration when operating at higher supply voltages. Units can be destroyed by any combination of high ambient temperature, high supply voltages, and high power dissipation which results in excessive die temperature. This is also true when driving low impedance or reactive loads or loads that can revert to low impedance; for example, the LM144 can drive most general purpose op amps outside of their maximum input voltage range, causing heavy current to flow and possibly destroying both devices.

Precautions should be taken to insure that the power supplies never become reversed in polarity-even under transient conditions. With reverse voltage, the IC will conduct excessive current, fusing the internal aluminum interconnects. Voltage reversal between the power supplies will almost always result in a destroyed unit.

In high voltage applications which are sensitive to very low input currents, special precautions should be exer-
cised. For example, with high source resistances, care should be taken to prevent the magnitude of the PC board leakage currents, although quite small, from approaching those of the op amp input currents. These leakage cúrrents become larger at $125^{\circ} \mathrm{C}$ and are made worse by high supply voltages. To prevent this, PC boards should be properly cleaned and coated to prevent contamination and to provide protection from condensed water vapor when operation below $0^{\circ} \mathrm{C}$. A guard ring is also recommended to significantly reduce leakage currents from the op amp input pins to the adjacent high voltage pins in the standard op amp pin connection as shown in Figure 1. Figures 2, 3 and 4 show how the guard ring is connected for the three most common op amp configurations.

The minimum values given for the frequency compensation capacitor are stable only for source resistances less than $10 \mathrm{k} \Omega$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF . If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads. See Figures 5, 6 and 7.

Finally, caution should be exercised in high voltage applications as electrical shock hazards are present. Since the negative supply is connected to the case, users may inadvertantly contact voltages equal to those across the power supplies.


BOTTOM VIEW
FIGURE 1. Printed Circuit Layout for Input Guarding with TO-5 Package


FIGURE 3. Guarded Non-Inverting Amplifier


FIGURE 2. Guarded Voltage Follower


FIGURE 4. Guarded Inverting Amplifier

## Application Hints (Continued)



C1. $\frac{R 1 C_{C}}{R 1+R 2}$, NON INVERTING
C1- $\frac{R 1 C_{C}}{R 2}$, INVERTING
$\mathrm{C}_{\mathrm{C}}=21 \mathrm{pF}$

FIGURE 5. Single Pole Compensation


FIGURE 6. Isolating Large Capacitive Loads


FIGURE 7. Compensating For Stray Input Capacitances or Large Feedback Resistor


FIGURE 8. Protecting Against Gross Fault Conditions

## Connection Diagrams



[^21] LM146/LM246/LM346 Programmable Quad Operational Amplifiers

## General Description

The LM146 series of quad op amps consists of four independent, high gain, internally compensated, low power, programmable amplifiers. Two external resistors (RSET) allow the user to program the gain bandwidth product, slew rate, supply current, input bias current, input offset current and input noise. For example, the user can trade-off supply current for bandwidth or optimize noise figure for a given source resistance. In a similar way, other amplifier characteristics can be tailored to the application. Except for the two programming pins at the end of the package, the LM146 pin-out is the same as the LM124 and LM148.

## Operational Amplifiers/Bụffers

Features ( SETT $^{2}=10 \mu \mathrm{~A}$ )

- Programmable electrical characteristics
- Battery-powered operation
- Low supply current
$350 \mu \mathrm{~A}$ amplifier
- Guaranteed gain bandwidth product 0.8 MHz min
- Large DC voltage gain

120 dB

- Low noise voltage
$28 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Wide power supply range
$\pm 1.5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Class $A B$ output stage-no crossover distortion
- Ideal pin out for Biquad active filters
- Input bias currents are temperature compensated

Connection Diagrams (Dual-In-Line Packages, Top Views)


Order Number LM146J, LM246J or LM346J See NS Package J16A

Order Number LM246N or LM346N See NS Package N16A

## PROGRAMMING EQUATIONS

Total Supply Current $=1.4 \mathrm{~mA}\left({ }^{\text {SET }} / 10 \mu \mathrm{~A}\right)$
Gain Bandwidth Product $=1 \mathrm{MHz}\left(I_{S E T} / 10 \mu \mathrm{~A}\right)$
Slew Rate $=0.4 \mathrm{~V} / \mu \mathrm{s}$ (ISET $/ 10 \mu \mathrm{~A}$ )
Input Bias Current $=50 \mathrm{nA}\left(I_{S E T} / 10 \mu \mathrm{~A}\right)$
ISET $=$ Current into pin $8, \operatorname{pin} 9$ (see schematicdiagram)

ISET $=\frac{V^{+}-V^{-}-0.6 V}{R_{S E T}}$

Schematic Diagram


Absolute Maximum Ratings (Note 1) ::

	LM146	LM246	LM346 *
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage (Note 1)	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
CM Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	900 mW	500 mW	500 mW
Output Short-Circuit Duration (Note 3)	Indefinite	Indefinite	Indefinite
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Thermal Resistance ( $\theta_{\mathrm{j}} \mathrm{A}$ ), ( ( l (ete 2)			
Cavity DIP (D) (J) $\mathrm{P}_{\mathrm{d}}$	900 mW	900 mW	900 mW
$\theta_{j} A$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$
Molded DIP (N) , $\mathrm{P}_{\mathrm{d}}$			500 mW
$\theta_{\mathrm{j} A}$			$140^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics $\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{ISET}=10 \mu \mathrm{~A}\right.$, Note 4)

PARAMETER	CONDITIONS	LM146			LM246/LM346			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$V_{C M}=0 \mathrm{~V}, \mathrm{R}_{S} \leq 50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5	5		0.5	6	mV
Input Offset Current	$V_{C M}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	20		2	100	$n \mathrm{~A}$
Input Bias Current	$V_{C M}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$		50	100		50	250	$n \mathrm{~A}$
Supply Current (4 Op Amps)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.4	2.0		1.4	2.5	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \Delta \mathrm{~V} \text { OUT }= \pm 10 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	100	1000		50	1000		V/mV
Input CM Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\pm 13.5$	$\pm 14$		$\pm 13.5$	$\pm \pm 14$		V
CM Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		70	100		dB
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		74	100		dB
Output Voltage Swing	$R_{L} \geq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\pm 12$	$\pm 14$		$\pm 12$	$\pm 14$		V
Short-Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5	20	35	5	20	35	mA
Gain Bandwidth Product	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1.2		0.5	1.2		MHz
Phase Margin	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60			60		Deg
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.4			0.4		$\mathrm{V} / \mu \mathrm{s}$
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		28			28		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Channel Separation	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega, \Delta V_{\text {OUT }}=0 \mathrm{~V} \text { to } \\ & \pm 12 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	.	. 120			120		dB
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0			1.0		$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					2.0		pF
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega$		0.5	6		0.5	7.5	mV
Input Offset Current	$V_{C M}=0 \mathrm{~V}$		2	25	,	2	100	nA
Input Bias Current	$V_{C M}=0 \mathrm{~V}$		50	100		50	250	nA
Supply Current (4 Op Amps)			1.5	2.0		1.5	2.5	mA
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \Delta \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50	1000		25	1000		$\stackrel{\mathrm{V}}{ } / \mathrm{mV}$
Input CM Range ${ }^{\text {b }}$		$\pm 13.5$	$\pm 14$		$\pm 13.5$	$\pm 14$		V
CM Rejection Ratio	RS $\leq 50 \Omega$	70	100		70	100		dB
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \Omega$	76	100		74	100		dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$		$\pm 12$	$\pm 14$		V

DC Electrical Characteristics $\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{ISET}=1 \mu \mathrm{~A}\right)$

PARAMETER	CONDITIONS	LM146			LM246/LM346			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.5	5		0.5	7	mV
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5	20		7.5	100	nA
Supply Current (4 Op   Amps)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		140	250		140	300	$\mu \mathrm{A}$
Gain Bandwidth Product	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		50	100		kHz

## DC Electrical Characteristics ( $\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$, ISET $\left.=10 \mu \mathrm{~A}\right)$

PARAMETER	CONDITIONS	LM146			LM246/LM346			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.5	5		0.5	7	mV .
Input CM Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\pm 0.7$			$\pm 0.7$			V
CM Rejection Ratio	$\mathrm{R}_{S} \leq 50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80			80		dB
Output Voltage Swing	$R_{L} \geq 10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$	$\pm 0.6$			$\pm 0.6$			V

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}$, $\theta_{j A}$, and the ambient temperature, $T_{A}$. The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} C P_{d M A X}$ whichever is less.
Note 3: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 4: These specifications apply over the absolute maximum operating temperature range unless otherwise noted.

## Typical Performance Characteristics





Input Bias Current vs Temperature


Common－Mode Rejection
Ratio vs ISET


Input Voltage Range vs Supply Voltage


Input Offset Current vs Temperature


Power Supply Rejection ．Ratio vs ISET


Input Bias Current vs Input Common－Mode Voltage


Supply Current vs Temperature


Typical Performance Characteristics
(Continued)


Voltage Follower Transient Response


Transient Response Test Circuit


## Application Hints

Avoid reversing the power supply polarity，the device will fail．

Common－Mode Input Voltage：The negative common－ mode voltage limit is one diode drop above the negative supply voltage．Exceeding this limit on either input will result in an output phase reversal．The positive common－ mode limit is typically 1 V below the positive supply voltage．No output phase reversal will occur if this limit is exceeded by either input．

Output Voltage Swing vs ISET：For a desired output voltage swing the value of the minimum load depends on the positive and negative output curent capability of the op amp．The maximum available positive output current， （ICL＋），of the device increases with ISET whereas the negative output current（ICL－）is independent of ISET． Figure 1 illustrates the above．


FIGURE 1．Output Current Limit vs ISET

Input Capacitance：The input capacitance，CIN ，of the LM146 is approximately 2 pF ；any stray capacitance， $\mathrm{C}_{\mathrm{S}}$ ，（due to external circuit circuit layout）will add to $\mathrm{C}_{\text {IN }}$ ．When resistive or active feedback is applied，an additional pole is added to the open loop frequency response of the device．For instance with resistive feed－ back（Figure 2），this pole occurs at $1 / 2 \pi(R 1 \| R 2)$ （ $\mathrm{C}_{\text {IN }}+\mathrm{C}_{\mathrm{S}}$ ）．Make sure that this pole occurs at least 2 octaves beyond the expected -3 dB frequency corner of the closed loop gain of the amplifier；if not，place a lead capacitor in the feedback such that the time con－ stant of this capacitor and the resistance it parallels is equal to the $R_{1}\left(C_{S}+C_{I N}\right)$ ，where $R_{1}$ is the input resis－ tance of the circuit．


FIGURE 2
Temperature Effect on the GBW：The GBW（gain bandwidth product），of the LM146 is directly propor－ ．tional to ISET and inversely proportional to the ab－ solute temperature．When using resistors to set the bias current，ISET，of the device，the GBW product will decrease with increasing temperature．Compensation can be provided by creating an ISET current directly proportional to temperature（see typical applications）．

Isolation Between Amplifiers：The LM146 die is iso－ thermally layed out such that crosstalk between all 4 amplifiers is in excess of -105 dB （DC）．Optimum isolation（better than -110 dB ）occurs between ampli－ fiers $A$ and $D, B$ and $C$ ；that is，if amplifier $A$ dissipates power on its output stage，amplifier $D$ is the one which will be affected the least，and vice versa．Same argument holds for amplifiers B and C．

LM146 Typical Performance Summary：The LM146 typical behavior is shown in Figure 3．The device is fully predictable．As the set current，ISET，increases，the speed，the bias current，and the supply current increase while the noise power decreases proportionally and the $V_{\text {os }}$ remains constant．The usable GBW range of the op amp is 10 kHz to $3.5-4 \mathrm{MHz}$ ．


FIGURE 3．LM146 Typical Characteristics
Low Power Supply Operation：The quad op amp oper－ ates down to $\pm 1.3 \mathrm{~V}$ supply．Also，since the internal circuitry is biased through programmable current sources， no degradation of the device speed will occur．

Speed vs Power Consumption：LM146 vs LM4250 （single programmable）．Through Figure 4，we observe that the LM146＇s power consumption has been opti－ mized for GBW products above 200 kHz ，whereas the LM4250 will reach a GBW of no more than 300 kHz ，for GBW products below 200 kHz ，the LM4250 will con－ sume less．


FIGURE 4．LM146 vs LM4250

Dual Supply or Negative Supply Biasing


$$
I_{S E T} \simeq \frac{\mid V-1-0.6 V}{R_{S E T}}
$$

Current Source Biasing with Temperature Compensation


$$
I_{S E T}=\frac{67.7 \mathrm{mV}}{R_{\mathrm{SET}}}
$$

- The LM334 provides an ISET directly proportional to absolute temperature. This cancels the slight GBW product temperature coefficient of the LM346.

Single (Positive) Supply Biasing


$$
I_{S E T} \simeq \frac{\mathrm{~V}^{+}-0.6 \mathrm{~V}}{\mathrm{R}_{\mathrm{SET}}}
$$

Biasing all 4 Amplifiers with Single Current Source


$$
\frac{I_{S E T 1}}{I_{S E T 2}}=\frac{R 2}{R 1}, I_{S E T} 1+I_{S E T 2}=\frac{67.7 \mathrm{mV}}{R_{S E T}}
$$

- For ISET1 $\simeq$ ISET2 resistors R1 and R2 are not required if a slight error between the 2 set currents can be tolerated If not, then use R1 = R2 to create a 100 mV drop across these resistors.


## Active Filters Applications

Basic (Non-Inverting "State Variable") Active Filter Building Block


- The LM146 quad programmable op amp is especially suited for active filters because of their adequate GBW product and low power consumption.

Circuit synthesis equations (for circuit analysis equations, consult with the AF100 and LM148 data sheet).
Need to know desired: $\quad f_{0}=$ center frequency measured at the BP output
$Q_{0}=$ quality factor measured at the $B P$ output
$H_{0}=$ gain at the output of interest (BP or HP or LP or all of them)
4 Relation between different gains: $H_{o}(B P)=0.316 \times Q_{0} \times H_{0}(L P) ; H_{o}(L P)=10 \times H_{0}(H P)$
$\Delta \mathrm{R} \times \mathrm{C}=\frac{5.033 \times 10^{-2}}{\mathrm{f}_{\mathrm{O}}}(\mathrm{sec})$
$\Delta$ For $B P$ output: $R_{Q}=\left(\frac{3.478 Q_{0}-H_{o(B P)}}{10^{5}}-\frac{H_{o(B P)}}{10^{5} \times 3.478 \times Q_{0}}\right)^{-1} ; R_{1 N}=\frac{\left(\frac{3.478 Q_{0}}{H_{o}(B P)}-1\right)}{\frac{1}{R Q}+10-5}$
4 For $H P$ output: $R_{Q}=\frac{1.1 \times 10^{5}}{3.478 \mathrm{Q}_{\mathrm{O}}\left(1.1-H_{0}(H P)\right)-H_{0}(H P)} ; R_{I N}=\frac{\frac{1.1}{H_{0}(H P)}-1}{\frac{1}{R Q}+10^{-5}}$

- For LP output: $R_{Q}=\frac{11 \times 10^{5}}{3.478 \mathrm{Q}_{\mathrm{O}}\left(11-H_{O}(L P)\right)-H_{O}(L P)} ; R_{I N}=\frac{\frac{11}{H_{O}(L P)}-1}{\frac{1}{R Q}+10^{-5}}$

4 For BR (notch) output: Use the 4th amplifier of the LM146 to sum the LP and HP outputs of the basic filter.


Note. All resistor values are given in ohms.

$$
+2
$$

$$
\sqrt{\frac{R_{H}}{R_{L}}}=0.316 \frac{f_{\text {notch }}}{f_{o}}
$$

Determine $R_{F}$ according to the desired gains: $\left.H_{o}(B R)\right|_{f \ll f_{\text {notch }}}=\frac{R_{F}}{R_{L}} H_{o}(L P),\left.H_{o}(B R)\right|_{f \gg f_{\text {notch }}}=\frac{R_{F}}{R_{H}} H_{o}(H P)$

- Where to use amplifier C: Examine the above gain relations and determine the dynamics of the filter. Do not allow slew rate limiting in any output ( $V_{H P}, V_{B P}, V_{L P}$ ), that is:

$$
V_{\text {IN }(\text { peak })}<63.66 \times 10^{3} \times \frac{I_{\text {SET }}}{10 \mu \mathrm{~A}} \times \frac{1}{f_{0} \times H_{0}} \text { (Volts) }
$$

If necessary, use amplifier C, biased at higher ISET, where you get the largest output swing.
Deviation from Theoretical Predictions: Due to the finite GBW products of the op amps the $f_{0}, Q_{0}$ will be slightly different from the theoretical predictions.
$f_{\text {real }} \simeq \frac{f_{0}}{1+\frac{2 f_{0}}{G B W}}, Q_{\text {real }} \simeq \frac{Q_{0}}{1-\frac{3.2 f_{0} \times Q_{0}}{G B W}}$

## Active Filters Applications (Continued)

A Simple-to-Design BP, LP Filter Building Block


- If resistive biasing is used to set the LM346 performance, the $Q_{0}$ of this filter building block is nearly insensitive to the op amp's GBW product temperature drift; it has also better noise performance than the state variable filter.

Circuit Synthesis Equations
$H_{O(B P)}=Q_{O} H_{O(L P)} ; R \times C=\frac{0.159}{f_{O}} ; R_{Q}=Q_{O} \times R ; R_{1 N}=\frac{R_{Q}}{H_{O}(B P)}=\frac{R}{H_{O}(L P)}$

- For the eventual use of amplifier C , see comments on the previous page.

A 3-Amplifier Notch Filter (or Elliptic Filter Building Block)


## Circuit Synthesis Equations

$R \times C=\frac{0.159}{f_{0}} ; R_{Q}=Q_{0} \times R ; R_{I N}=\frac{0.159 \times f_{0}}{C^{\prime} \times f^{2} \text { notch }}$
$\left.H_{o(B R)}\right|_{f \ll f_{\text {notch }}}=\left.\frac{R}{R_{I N}} H_{o(B R)}\right|_{f \gg f_{\text {notch }}}=\frac{C^{\prime}}{C}$

- For nothing but a notch output: $\mathrm{R}_{\mathrm{IN}}=\mathrm{R}, \mathrm{C}^{\prime}=\mathrm{C}$.


## Active Filters Applications（Continued）


－This is a BP，LP，BR filter．The filter characteristics are created by using the tunable frequency response of the LM346．

－Design equations：$a=\frac{R 6+R 5}{R 6}, b=\frac{R 2}{R 1+R 2}, c=\frac{R 3}{R 3+R 4}, d=\frac{R 7}{R 8+R 7}, e=\frac{R 10}{R 9+R 10}, f_{0}(B P)=f_{u} \sqrt{\frac{b}{a}}, H_{0}(B P)=a \times c$,
$H_{O}(L P)=\frac{c}{b}, Q_{0}=\sqrt{a \times b}$
$f_{o}(B R)=f_{o}(B P)\left(1-\frac{c}{b}\right) \simeq f_{o(B P)}(C \ll 1)$ provided that $d=H_{o}(B P) \times e, H_{o}(B R)=\frac{R 10}{R 9}$.
－Advantage：$f_{0}, Q_{0}, H_{o}$ can be independently adjusted；that is，the filter is extremely easy to tune．
－Tuning procedure（ex．BP tuning）
1．Pick up a convenient value for b ；$(\mathrm{b}<1)$
2．Adjust $\mathrm{O}_{\mathrm{O}}$ through R5
3．Adjust $H_{0}(B P)$ through R4
4．Adjust $f_{o}$ through $R_{S E T}$

$E x: f_{c}=20 \mathrm{kHz}, H_{0}$（gain of the filter）$=1, \mathrm{Q}_{\mathrm{o} 1}=0.541, \mathrm{Q}_{\mathrm{o} 2}=1.306$.
－Since for this filter the GBW product of all 4 amplifiers has been designed to be the same（ $\sim 1 \mathrm{MHz}$ ）only one current source can be used to bias the circuit．Fine tuning can be further accomplished through $R_{b}$ ．

## Miscellaneous Applications

A Unity Gain Follower with Bias Current Reduction


- For better performance, use a matched NPN pair.


## Circuit Shutdown



5 V DN
${ }^{\text {OFF }} \mathrm{OV}$

Voice Activated Switch and Amplifier


## Miscellaneous Applications（Continued）

X10 Micropower Instrumentation Amplifier with Buffered Input Guarding


National Semiconductor

# LM148, LM149 Series Quad 741 Op Amps 

LM148/LM248/LM348 quad 741 op amps
LM149/LM249/LM349 wide band decompensated ( $\mathrm{A}_{\mathrm{V}(\mathrm{MIN})}=5$ )

## General Description

The LM148 series is a true quad 741 . It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar 741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single 741 type op amp. Other features include input offset currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling. The LM149 series has the same features as the LM148 plus a gain bandwidth product of 4 MHz at a gain of 5 or greater.

The LM148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications where amplifier matching or high packing density is required.

## Features

- 741 op amp operating characteristics
- Low supply current drain $0.6 \mathrm{~mA} /$ Amplifier
- Class $A B$ output stage-no crossover distortion
- Pin compatible with the LM124
- Low input offset voltage 1 mV
- Low input offset current . $4 n A$
- Low input bias current 30 nA
- Gain bandwidth product

LM148 (unity gain)	1.0 MHz
LM149 ( $\left.A_{V}>5\right)$	4 MHz

- High degree of isolation between . 120 dB amplifiers
- Overload protection for inputs and outputs


## Schematic and Connection Diagrams



Dual-In-Line Package


Order Number LM148J, LM248J, LM348J, LM149J, LM249J or LM349J See NS Package J14A
Order Number LM348N or LM349N
See NS Package N14A

## Absolute Maximum Ratings

	LM148/LM149	LM248/LM249	LM348/LM349
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 44 \mathrm{~V}$	$\pm 36 \mathrm{~V}$	$\pm 36 \mathrm{~V}$
Input Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Output Short Circuit Duration (Note 1)	Continuous	Continuous	Continuous
Power Dissipation $\left(\mathrm{P}_{\mathrm{d}}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ and Thermal Resistance ( $\theta_{\text {jA }}$ ), (Note 2)			
Molded DIP (N) $\begin{aligned} & P_{d} \\ & \\ & \theta_{\mathrm{jA}}\end{aligned}$	-	-	$\begin{aligned} & 500 \mathrm{~mW} \\ & 150^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\begin{array}{ll}\text { Cavity DIP (J) } & \mathrm{P}_{\mathrm{d}} \\ & 0_{\mathrm{jA}}\end{array}$	$\begin{aligned} & 900 \mathrm{~mW} \\ & 100^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 900 \mathrm{~mW} \\ & 100^{\circ} \mathrm{C} / \mathrm{w} \end{aligned}$	$\begin{aligned} & 900 \mathrm{~mW} \\ & 100^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{MAX}}$ )	$150^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note3)

PARAMETER	CONDITIONS	LM148/LM149			LM248/LM249			LM348/LM349			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	5.0		1.0	6.0		1.0	6.0	mV
Input Offset Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		4	25		4	50		4	50	$n A$
Input Bias Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		30	100		30	200		30	200	$n \mathrm{~A}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	2.5		0.8	2.5		0.8	2.5		$M \Omega$
Supply Current All Amplifiers	$T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V}$			3.6		2.4	4.5		2.4	4.5	
Large Signal Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	50	160		25	160		25	160		$\mathrm{V} / \mathrm{mV}$
	$V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$										
Amplifier to Amplifier Coupling	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}$   (Input Referred) See Crosstalk Test		-120			-120			-120		dB
Coupling	(Input Referred) See Crosstalk Test Circuit										
Small Signal Bandwidth	$T_{A}=25^{\circ} \mathrm{C}$ LM148 series		1.0			1.0			1.0		MHz
	$T_{A}=25^{\circ} \mathrm{C}$ LM149 series		4.0			4.0			4.0		MHz
Phase Margin	$T_{A}=25^{\circ} \mathrm{C}$ LM148 series ( $A_{V}=1$ )		60			60			60		degrees
	$\mathrm{T}_{A}=25{ }^{\circ} \mathrm{CM149}$ series ( $A_{V}=5$ )		60			60			60		degrees
Slew Rate	$T_{A}=25^{\circ} \mathrm{C}$ LM148 series ( $A_{V}=1$ )		0.5			0.5			0.5		$V / \mu \mathrm{s}$
,	$T_{A}=25 \mathrm{C}$ LM149 series ( $A_{V}=5$ )		2.0			2.0			2.0		$\mathrm{V} / \mathrm{\mu s}$
Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		25			25			25		mA
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			6.0			7.5			7.5.	$m V$
Input Offset Current				75			125			100	$n \mathrm{~A}$
Input Bias Current				325			500			400	nA
Large Signal Voltage Gain	$V_{\text {S }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$,	25			15			15			$\mathrm{V} / \mathrm{mV}$
	$R_{L}>2 \mathrm{k} \Omega$										
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$,	$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		$v$
	$R_{L}=2 \mathrm{k} \Omega$	$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$			$\pm 12$		$v$
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	$\pm 12$			$\pm 12$			$\pm 12$			$v$
Common-Mode Rejection	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		70	90		dB
Ratio											
Supply Voltage Rejection	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	77	96		77	96		77	96		dB

Note 1. Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{j A}$;and the ambient temperature, $T_{A}$. The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{d M A X}$, whichever is less.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range ( $T_{L} \leq T_{A} \leq T_{H}$ ) unless otherwise noted.

Typical Performance Characteristics





Input Bias Current



Open Loop Frequency Response


Large Signal Pulse
Response (LM148)


Voltage Swing


Output Impedance



Typical Performance Characteristics (Continued)


## Application Hints

The LM148 series are quad low power 741 op amps. In the proliferation of quad op amps, these are the first to offer the convenience of familiar, easy to use operating characteristics of the 741 op amp . In those applications where 741 op amps have been employed, the LM148 series op amps can be employed directly with no change in circuit performance.

The LM149 series has the same characteristics as the LM148 except it has been decompensated to provide a wider bandwidth. As a result the part requires a minimum gain of 5 .

The package pin-outs are such that the inverting input of each amplifier is adjacent to its output. In addition, the amplifier outputs are located in the corners of the package which simplifies PC board layout and minimizes package related capacitive coupling between amplifiers.

The input characteristics of these amplifiers allow differential input voltages which can exceed the supply voltages. In addition, if either of the input voltages is within the operating common-mode range, the phase of the output remains correct. If the negative limit of the operating common-mode range is exceeded at both inputs, the output voltage will be positive. For input voltages which greatly exceed the maximum supply voltages, either differentially or common-mode, resistors should be placed in series with the inputs to limit the current.

Like the LM741, these amplifiers can easily drive a 100 pF capacitive load throughout the entire dynamic output voltage and current range. However, if very large capacitive loads must be driven by a non-inverting unity gain amplifier, a resistor should be placed between
the output (and feedback connection) and the capacitance to reduce the phase shift resulting from the capacitive loading.

The output current of each amplifier in the package is limited. Short circuits from an output to either ground or the power supplies will not destroy the unit. However, if multiple output shorts occur simultaneously, the time duration should be short to prevent the unit from being destroyed as a result of excessive power dissipation in the IC chip.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole which capacitance from the input to ground creates.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

## Typical Applications - LM148


. Low Cost Instrumentation Amplifier

$V_{\text {OUT }}=2\left(\frac{2 R}{R 1}+1\right), V_{S}-3 V \leq V_{\text {IN CM }} \leq V_{S}^{+}-3 V$,
$V_{S}= \pm 15 \mathrm{~V}$
$R=R 2$, trim R2 to boost CMRR
$f_{M A X}=5 \mathrm{kHz}, \mathrm{THD} \leq 0.03 \%$
$\mathrm{R} 1=100 \mathrm{k}$ pot. C C1 $=0.0047 \mu \mathrm{~F}, \mathrm{C} 2=0.01 \mu \mathrm{~F}, \mathrm{C} 3=0.1 \mu \mathrm{~F}, \mathrm{R} 2=\mathrm{R} 6=\mathrm{R} 7=1 \mathrm{M}$,
$\mathrm{R} 3=5.1 \mathrm{k}, \mathrm{R} 4=12 \Omega, \mathrm{R} 5=240 \Omega, \mathrm{Q}=\mathrm{NS} 5102, \mathrm{D} 1=1 \mathrm{~N} 914, \mathrm{D} 2=3.6 \mathrm{~V}$ avalanche
diode (ex. LM103), $V_{S}= \pm 15 \mathrm{~V}$
A simpler version with some distortion degradation at high frequencies can be made by using A1 as a simple inverting amplifier, and by putting back to back zeners in the feedback loop of A3.

Typical Applications - LM148 (Continued)

Low Drift Peak Detector with Bias Current Compensation



Tune Q through R0,
For predictable results: ${ }^{f} \mathrm{O} \mathrm{Q} \leq 4 \times 10^{4}$
Use Band Pass output to tune for Q
$\frac{V(s)}{V_{(N(s)}}=\frac{N(s)}{D(s)}, D(s)=s^{2}+\frac{S \omega_{0}}{Q}+\omega_{0}^{2}$
$N_{\mathrm{HP}(\mathrm{s})}=\mathrm{s}^{2} \mathrm{H}_{\mathrm{OHP}}, N_{\mathrm{BP}(\mathrm{s})}=\frac{-\mathrm{S} \omega_{\mathrm{O}} \mathrm{H}_{\mathrm{OBP}}}{\mathrm{Q}} \quad N_{\mathrm{LP}}=\omega_{0}^{2} \mathrm{H}_{\mathrm{OLP}}$
$f_{0}=\frac{1}{2 \pi} \sqrt{\frac{R 6}{R 5}} \sqrt{\frac{1}{t 1 t 2}}, t_{i}=R_{i} C_{i}, Q=\left(\frac{1+R 4|R 3+R 4| R 0}{1+R 6 \mid R 5}\right)\left(\frac{R 6}{R 5} \frac{t_{1}}{t_{2}}\right)^{1 / 2}$
$f_{\mathrm{NOTCH}}=\frac{1}{2 \pi}\left(\frac{R_{H}}{R_{L} t_{1} t_{2}}\right)^{1 / 2}, H_{O H P}=\frac{1+R 6 \mid R 5}{1+R 3 I R 0+R 3 \mid R 4}, H_{O B P}=\frac{1+R 4|R 3+R 4| R 0}{1+R 3|R 0+R 3| R 4}$
$H_{\text {OLP }}=\frac{1+R 5 I R 6}{1+R 3 I R 0+R 3 I R 4}$

Typical Applications - LM148 (Continued)

A 1 kHz 4 Pole Butterworth


Use general equations, and tune each section separately
$\mathrm{Q}_{1 \text { st }}{ }^{2}=0.541, \mathrm{Q}_{2 \text { ndSECTION }}=1.306$
The response should have 0 dB peaking

A 3 Amplifier Bi-Quad Notch Filter

$Q=\sqrt{\frac{R 8}{R 7}} \times \frac{R 1 C 1}{\sqrt{R 3 C 2 R 2 C 1}}, f_{0}=\frac{1}{2 \pi} \sqrt{\frac{R 8}{R 7}} \times \frac{1}{\sqrt{R 2 R 3 C 1 C 2}}, f_{N O T C H}=\frac{1}{2 \pi} \sqrt{\frac{R 6}{R 3 R 5 R 7 C 1 C 2}}$
Necessary condition for notch: $\frac{1,}{R 6}=\frac{R 1}{R 4 R 7}$
$E x: f_{N O T C H}=3 \mathrm{kHz}, Q=5, R 1=270 k, R 2=R 3=20 k, R 4=27 k, R 5=20 k, R 6=R 8=10 k, R 7=100 k, C 1=C 2=0.001 \mu F$ Better noise performance than the state-space approach

## Typical Applications - LM148 (Continued)

A 4th Order 1 kHz Elliptic Filter (4 Poles, 4 Zeros)

${ }^{f} C=1 \mathrm{kHz}, \mathrm{f}_{\mathrm{S}}=2 \mathrm{kHz}, \mathrm{f}_{\mathrm{P}}=0.543, \mathrm{f}_{\mathrm{Z}}=2.14, \mathrm{Q}=0.841, \mathrm{f}^{\prime} \mathrm{P}=0.987, \mathrm{f}^{\prime} \mathrm{Z}=4.92, \mathrm{Q}^{\prime}=4.403$, normalized to ripple BW
$f P=\frac{1}{2 \pi} \sqrt{\frac{R 6}{R 5}} \times \frac{1}{t}, f_{Z}=\frac{1}{2 \pi} \sqrt{\frac{R_{H}}{R_{L}}} \times \frac{1}{t}, Q=\left(\frac{1+R 4|R 3+R 4| R 0}{1+R 6 \mid R 5}\right) \times \sqrt{\frac{R 6}{R 5}}, Q^{\prime}=\sqrt{\frac{R^{\prime} 6}{R^{\prime} 5}} \frac{1+R^{\prime} 4 \mid R^{\prime} 0}{1+R^{\prime} 6\left|R^{\prime} 5+R^{\prime} 6\right| R_{P}}$ $R_{P}=\frac{R_{H} R_{L}}{R_{H}+R_{L}}$

Use the BP outputs to tune $\mathrm{Q}, \mathrm{Q}^{\prime}$, tune the 2 sections separately
$R 1=R 2=92.6 k, R 3=R 4=R 5=100 k, R 6=10 k, R 0=107.8 k, R_{L}=100 k, R_{H}=155.1 k$,
$R^{\prime} 1=R^{\prime} 2=50.9 k, R^{\prime} 4=R^{\prime} 5=100 k, R^{\prime} 6=10 k, R^{\prime} 0=5.78 k, R_{L}^{\prime}=100 k, R^{\prime} H=248.12 k, R^{\prime} f=100 \mathrm{k}$. All capacitors are $0.001 \mu F$.

## Typical Applications - LM149



Power BW $=40 \mathrm{kHz}$
Small Signal BW $=$ G BW/5

The LM149 as a Unity Gain Inverter

$A_{C L}(s)=\frac{V_{O U T}}{V_{I N}}=\left(\frac{-1}{1+\frac{6}{A_{O L}(s)}}\right) \cong-1$
$\left.v_{O}\right|_{V_{I N}=0} \cong \pm 5 V_{O S}$
Small signal BW $=G B W / 5$

Typical Applications - LM149 (Continued)


For stability purposes: $R 7=R 6 / 4,10 R 6=R 5, C_{C}=10 C$
$f_{O}=\frac{1}{2 \pi} \sqrt{\frac{R 5}{R 6}} \times \frac{1}{R C}, \mathrm{Q}=\frac{R_{Q}}{R} \sqrt{\frac{R 5}{R 6}}, H_{B P}=\frac{R_{Q}}{R_{I N}}$
( $\mathrm{O}_{\mathrm{O}}$ (MAX), $\mathrm{Q}_{\text {MAX }}$ ) $=20 \mathrm{kHz}, 10$
Better $Q$ sensitivity with respect to open loop gain variations than the state variable filter. R7, $\mathrm{C}_{\mathrm{C}}$ added for compensation


Max Bass Gain $\cong(R 1+R 2) / R 1$
Max Treble Gain $\cong(R 1+2 R 7) / R 5$
as shown: $f_{L} \cong 32 \mathrm{~Hz}, f_{L B} \cong 320 \mathrm{~Hz}$

$$
\mathrm{f}_{\mathrm{H}} \cong 11 \mathrm{kHz}, \mathrm{f}_{\mathrm{HB}} \cong 1.1 \mathrm{~Hz}
$$



## Typical Simulation

LM148, LM149, LM741 Macromodel for Computer Simulation


$$
\begin{array}{ll}
\beta_{\mathrm{O} 1}=112 & \mathrm{IS}=8 \cdot 10^{-16} \\
\beta_{\mathrm{O} 2}=144 & { }^{-1} \mathrm{C} 2=6 \mathrm{pF} \text { for LM149 }
\end{array}
$$

-For more details, see IEEE Journal of Solid-State
Circuits, Vol. SC-9, No. 6, December 1974

## 2 National Semiconductor

## LM158/LM258/LM358, LM158A/LM258A/LM358A, LM2904 Low Power Dual Operational Amplifiers

## General Description

The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard $+5 \mathrm{~V}_{\mathrm{DC}}$ power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V}_{\mathrm{DC}}$ power supplies.

## Unique Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross. frequency is temperature compensated.
- The input bias current is also temperature compensated.


## Advantages

- Eliminates need for dual supplies
- Two internally compensated op amps in a single package
- Allows directly sensing near GND and Vout also goes to.GND
- Compatible with all forms of logic
- Power drain suitable for battery operation
- Pin-out same as LM1558/LM1458 dual operational amplifier


## Features

- Internally frequency compensated for unity gain
- Large dc voltage gain

100 dB

- Wide bandwidth (unity gain)

1 MHz (temperature compensated)

- Wide power supply range: $\begin{array}{lr}\text { Single supply } & 3 \mathrm{~V}_{D C} \text { to } 30 \mathrm{~V}_{\mathrm{DC}} \\ \text { or dual supplies } & \pm 1.5 \mathrm{~V}_{D C} \text { to } \pm 15 \mathrm{~V}_{\mathrm{DC}}\end{array}$
- Very low supply current drain ( $500 \mu \mathrm{~A}$ ) - essentially independent of supply voltage ( $1 \mathrm{~mW} / \mathrm{op}$ amp at $+5 \mathrm{~V}_{\mathrm{DC}}$ )
- Low input biasing current 45 nA DC (temperature compensated)
- Low input offset voltage $2 m V_{D C}$ and offset current $5 \mathrm{nA}_{\text {DC }}$
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage $\quad 0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$ swing


## Connection Diagrams (Top Views) Schematic Diagram (Each Amplifier)



Order Number LM158AH, LM158H, LM258AH, LM258H, LM358AH or LM358H

See NS Package H08C


Order Number LM358AN, LM358N or LM2904N
See NS Package N08B
Order Number LM358A, LM


## Absolute Maximum Ratings

Power Dissipation (Note 1)

$$
-0.3 V_{D C} \text { to }+32 V_{D C}
$$

## 570 mW <br> 830 mW

Continuous Continuous
50 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

## LM2904

$26 V_{D C}$ or $\pm 13 V_{D C}$
$26 V_{D C}$
$-0.3 V_{D C}$ to $+26 V_{D C}$
570 mW

50 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(v^{+}=+5.0 \mathrm{VDC}\right.$, Note 4)

PARAMETER	CONDITIONS	LM158A			LM258A			LM358A			LM158/LM258			LM358			LM2904			UNITS
		MIN	TYP	MAX																
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		1	2		1	3		2	3		$\pm 2$	$\pm 5$		$\pm 2$	$\pm 7$		$\pm 2$	$\pm 7$	$m V_{\text {DC }}$
Input Bias Current	$\mathrm{I}_{1}\left(\mathrm{~N}(+)\right.$ or $\mathrm{I}^{\prime}\left(\mathrm{N}(-), T_{A}=25^{\circ} \mathrm{C}\right.$, (Note 6)		20	50		40	80		45	100		45	150		45	250		45	250	$n A D C$
Input Offset Current	$\operatorname{IIN(+)}$ - IIN(-) , $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		2	10		2	15		5	30		$\pm 3$	$\pm 30$		$\pm 5$	$\pm 50$		$\pm 5$	$\pm 50$	$n A D C$
Input Common-Mode Voltage Range	, $\mathrm{V}^{+}=30 \mathrm{~V}_{\text {DC, }} \mathrm{T}_{A}=25^{\circ} \mathrm{C}$ (Note 7)	0		$\mathrm{v}^{+}-1.5$			$\mathrm{v}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	$V_{\text {DC }}$									
Supply Current	$\begin{aligned} & R_{\mathrm{L}}=\infty, V_{C C}=30 \mathrm{~V}\left(\mathrm{LM} 2904 \mathrm{~V}_{\mathrm{CC}}=26 \mathrm{~V}\right) \\ & R_{\mathrm{L}}=\infty \text { On All Op Amps } \end{aligned}$   Over Full Temperature Range		$\begin{aligned} & 1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2= \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.2 \end{aligned}$	$m_{A D C}$   $m A D C$
Large Signal Voltage   Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	100		50	100		25	100		50	100		25.	100			100		$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$ (LM2904 $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ )	0		$\mathrm{V}^{+}-1.5$	$V_{D C}$															
Common-Mode   Rejection Ratio	$D C, T_{A}=25^{\circ} \mathrm{C}$	70	85		70	85		65	85		70	85		65	70		50	70		dB
Power Supply   Rejection Ratio	DC, $\mathrm{TA}=25^{\circ} \mathrm{C}$	65	100			100		65	100		65	100		65	100		50	100		dB
Amplifier-to-Amplifier Coupling	$f=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   (Input Referred), (Note 8)		-120			-120			-120			-120	-		-120			-120		dB
Output Current Source	$\begin{aligned} & V_{I N}^{+}=1 V_{D C}, V_{I N}^{-}=0 . V_{D C} \\ & V^{+}=15 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		40			40			40		20	40		20	40		20	40		mADC

Electrical Characteristics (Continued) $\mathrm{V}^{+}=+5.0 \mathrm{~V}$ DC , Note 4)

PARAMETER	CONDITIONS	LM158A			LM258A			LM358A			LM158/LM258			LM358			LM2904			UNITS
		MIN	TYP	MAX																
Sink	$\begin{aligned} & \mathrm{V}_{I N^{-}}=1 \mathrm{~V}_{D C}, \mathrm{~V}_{I N^{+}}=0 \mathrm{~V} \mathrm{VC} . \\ & \mathrm{V}^{+}=15 \mathrm{~V} D ., T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$10$	20						20			20			20		10	20		
.	$\begin{aligned} & V_{I N^{-}}=1 V_{D C}, V_{I N}{ }^{+}=0 V_{D C} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O}=200 \mathrm{mV} V_{D C} \end{aligned}$	12	50			50		12	50	.	12	50		12	50					$\mu \mathrm{ADC}$
Short Circuit to Ground	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 2)		40	60		40	60		40	60		40	60		40	60	-	40	60	-mADC
Input Offiset Voltage	(Note 5)			4	-		4			5			$\pm 7$			$\pm 9$			$\pm 10$	$m V_{D C}$
Input Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=0.2$		7	15		7	15		7	20		7			7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\operatorname{lin}(+1)-\operatorname{lin}(-)$			30			30			75			$\pm 100$			$\pm 150$		45	$\pm 200$	nADC
Input Offset Current Drift	$\cdots$ -		10	200		10	200		10	300		10			10			10		$\mathrm{PADCl}^{\circ} \mathrm{C}$
Input Bias Current	$\operatorname{IIN(+)}$ or IIN(-)		40	100		40	100		40	200		40	300		40	500		40	500	nADC
Input Common-Mode Voltage Range	$\mathrm{v}^{+}=30 \mathrm{~V}_{\text {DC }}$. (Note 7 )	0		$\mathrm{v}^{+}-2$	0	.	$\mathrm{v}^{+}-2$	0	.	$\mathrm{v}^{+}-2$	0		$\mathrm{v}^{+}-2$	0		$\mathrm{v}^{+}-2$	0		$\mathrm{v}^{+}-2$	VDC
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}} \text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25	$\cdot$		25			15			25			15			15			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing $\mathrm{v}_{\mathrm{OH}}$ $v_{\mathrm{OL}}$	$\begin{aligned} & V^{+}=730 V_{D C}, R_{L}=2 \mathrm{k} \Omega \\ & R_{L} \geq 10 \mathrm{k} \Omega \\ & V^{+}=5 V_{D C}, R_{L} \leq 10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	28 5	20		28   5	20	$\begin{aligned} & 26 \\ & 27 \\ & 2 \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	$20$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	28   5	$20$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 24 \\ & 5 \end{aligned}$	100	$\begin{array}{r} v_{D C} \\ v_{D C} \\ m v_{D C} \\ \hline \end{array}$
Output Current Source Sink	$\begin{aligned} & V_{I N^{+}}=+1 V_{D C} . V_{I N^{-}}^{-}=0 V_{D C}, V^{+}=15 V_{D C} \\ & V_{I N^{-}}=+1 V_{D C}, V_{I N^{+}}=0 V_{D C}, V^{+}=15 V_{D C} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$			$\begin{aligned} & 20 \\ & 8 \end{aligned}$			$\begin{aligned} & 20 \\ & 8 \end{aligned}$		$\begin{aligned} & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$		$\begin{aligned} & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$		$\begin{aligned} & m A D C \\ & m A_{D C} \\ & \hline \end{aligned}$
Differential Input Voltage	(Note 7)			32			32			32			32			32			26	$V_{D C}$


 four amplifiers-use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.




 again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$ ).
 LM358A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq \mp 70^{\circ} \mathrm{C}$, and the LM 2904 specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
Note 5: $V_{O} \cong 1.4 V_{D C}, R_{S}=0 \Omega$ with $V^{+}$from $5 V_{D C}$ to $30 V_{D C}$; and over the full input common-mode range ( $0 V_{D C}$ to $V^{+}-1.5 V_{D C}$ ).

 either or both inputs can go to $+32 \mathrm{~V}_{\mathrm{DC}}$ without damage ( $+26 \mathrm{~V}_{\mathrm{DC}}$ for LM2904).
 higher frequencies.

## Typical Performance Characteristics




Voltage Follower Pulse Response



Input Current


Open Loop Frequency
Response


Voltage Follower Pulse
Response (Small Signal)



Supply Current


Common Mode Rejection Ratio



## Application Hints

The LM158 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of $0 \mathrm{~V}_{\mathrm{DC}}$. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At $25^{\circ} \mathrm{C}$ amplifier operation is possible down to a minimum supply voltage of 2.3 V .

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than $\mathrm{V}^{+}$without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$ ). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply' current drain, the amplifiers have a class $A$ output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class $A$ bias current and prevent crossover
distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case noninverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The bias network of the LM158 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $3 \mathrm{~V}_{\mathrm{DC}}$ to 30 VDC.

Output short circuits either to ground or to the positive power supply should be of short time düration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at $25^{\circ} \mathrm{C}$ provides a larger 'output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of $\mathrm{V}^{+} / 2$ ) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Non-Inverting DC Gain (OV Input = OV Output)


DC Summing Amplifier
$\left(V_{I N}{ }^{\prime} \geq 0 V_{D C} A N D V_{O} \geq 0 V_{D C}\right)$


Where: $V_{0}=V_{1}+V_{2} \quad V_{3} \quad V_{4}$
$\left(V_{1}+V_{2}\right) \geq\left(V_{3}+V_{4}\right)$ to keep $V_{0}>0 V_{D C}$
"BI-QUAD" RC Active Bandpass Filter


Fixed Current Sources


Typical Single-Supply Applications (Continued) $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$


Driving TTL


Voltage Follower


Pulse Generator


Typical Single-Supply Applications (Continued) ( $\mathrm{V}^{+}=5.0 \mathrm{~V}$ DC)


High Compliance Current Sink


Voltage Controlled Oscillator (VCO)

-WIDE CONTROL VOLtAGE RANGE: $0 \mathrm{~V}_{D C} \leq \mathrm{V}_{C} \leq 2\left(\mathrm{~V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}\right)$

AC Coupled Inverting Amplifier


Ground Referencing A Differential Input Signal


Typical Single-Supply Applications (Continued) $\mathrm{v}^{+}=5.0 \mathrm{v}_{\mathrm{Dc}}$ )

AC Coupled Non-Inverting Amplifier


DC Coupled Low-Pass RC Active Filter


Bandpass Active Filter


High Input Z, DC Differential Amplifier


Photo Voltaic-Cell Amplifier


Typical Single-Supply Applications (Continued) $\left(v^{+}=5.0 \mathrm{~V}_{D C}\right)$

duce Input Current (General Concept)


## LM159/LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers

## General Description

The LM159/LM359 consists of two current differencing (Norton) input amplifiers. Design emphasis has been placed on obtaining high frequency performance and providing user programmable amplifier operating characteristics. Each amplifier is broadbanded to provide a high gain bandwidth product, fast slew rate and stable operation for an inverting closed loop gain of 10 or greater. Pins for additional external frequency compensation are provided. The amplifiers are designed to operate from a single supply and can accommodate input common-mode voltages greater than the supply.

## Applications

- General purpose video amplifiers
- High frequency, high $Q$ active filters
- Photo-diode amplifiers
- Wide frequency range waveform generation circuits
- All LM3900 AC applications work to much higher frequencies


## Features

- User programmable gain bandwidth product, slew rate, input bias current, output stage biasing current and total device power dissipation
- High gain bandwidth product ( $\left(l_{\text {SET }}=0.5 \mathrm{~mA}\right)$

400 MHz for $A_{V}=10$ to 100
30 MHz for $A_{V}=1$

- High slew rate ( $\mathrm{l}_{\mathrm{SET}}=0.5 \mathrm{~mA}$ )
$60 \mathrm{~V} / \mu \mathrm{s}$ for $\mathrm{A}_{\mathrm{V}}=10$ to 100
$30 \mathrm{~V} / \mu \mathrm{S}$ for $\mathrm{A}_{V}=1$
- Current differencing inputs allow high common-mode input voltages
- Operates from a single 5 V to 22 V supply
- Large inverting amplifier output swing, 2 mV to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$

Low spot noise, $6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, for $\mathrm{f}>1 \mathrm{kHz}$

## Typical Application



- $A_{V}=20 \mathrm{~dB}$
- -3 dB bandwidth $=2.5 \mathrm{~Hz}$ to 25 MHz
- Differential phase error $<1^{\circ}$ at 3.58 MHz
- Differential gain error $<0.5 \%$ at 3.58 MHz


## Connection Diagram



Order Number LM159J or LM359J
See NS Package J14A
Order Number LM359N
See NS Package N14A

## Absolute Maximum Ratings

Supply Voltage		$\begin{array}{r} 22 V_{D C} \\ \pm 11 V_{D C} \end{array}$	Input Currents, IIN(+) or IIN(-)   Set Currents, ISET(IN) or ISET(OUT)	$\begin{array}{r} 10 \mathrm{mADC} \\ 2 \mathrm{mADC} \end{array}$
Power Dissipation (Note 1) $J$ Package		1W	Operating Temperature Range	
N Package		750 mW	LM159	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum $\mathrm{T}_{\mathrm{j}}$	,		LM359	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
J Package	,	$150^{\circ} \mathrm{C}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
N Package		$125^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
$\theta_{\mathrm{j}} \mathrm{A}$	'			
$J$ Package		$100^{\circ} \mathrm{C} / \mathrm{W}$		
N Package		$160^{\circ} \mathrm{C} / \mathrm{W}$		

Electrical Characteristics $I_{\text {SETI(N) }}=I_{\text {SET(OUT }}=0.5 \mathrm{~mA}, \mathrm{~V}_{\text {supply }}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter	Conditions	LM159			LM359			Units
		Min	Typ	Max	Min	Typ	Max	
Open Loop Voltage Gain	$\begin{aligned} & V_{\text {supply }}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{f}=100 \mathrm{~Hz} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 66 \\ & 62 \end{aligned}$	$\begin{aligned} & 72 \\ & 68 \end{aligned}$		62	$\begin{aligned} & 72 \\ & 68 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Bandwidth Unity Gain	$\mathrm{R}_{\mathrm{IN}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{comp}}=10 \mathrm{pF}$	20	30		15	30		MHz
Gain Bandwidth Product Gain of 10 to 100	$\mathrm{R}_{\text {IN }}=50 \Omega$ to $200 \Omega$	300	400		200	400		MHz
Slew Rate Unity Gain Gain of 10 to 100	$\begin{aligned} & R_{I N}=1 \mathrm{k} \Omega, C_{\text {comp }}=10 \mathrm{pF} \\ & R_{I N}<200 \Omega \end{aligned}$		$\begin{aligned} & 30 \\ & 60 \end{aligned}$			30 60		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
Amplifier to Amplifier Coupling	$f=100 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		$-80$			-80		dB
Mirror Gain (Note 2)	@ $2 \mathrm{~mA} \mathrm{I}_{\mathrm{IN}}(+), \mathrm{I}_{\text {SET }}=5 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.95	1.0	1.05	0.9	1.0	1.1	$\mu \mathrm{A} / \mu \mathrm{A}$
	$@ 0.2 \mathrm{~mA} \mathrm{I}_{\mathrm{IN}}(+), \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A}$   Over Temp	0.95	1.0	1.05	0.9	1.0	1.1	$\mu \mathrm{A} / \mu \mathrm{A}$
	$@ 20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{IN}}(+), \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A}$   Over Temp	0.95	1.0	1.05	0.9	1.0	1.1	$\mu \mathrm{A} / \mu \mathrm{A}$
$\Delta$ Mirror Gain (Note 2)	$\begin{aligned} & @ 20 \mu \mathrm{~A} \text { to } 0.2 \mathrm{~mA} \mathrm{I}_{\mathrm{NN}}(+) \\ & \text { Over Temp, } \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A} \end{aligned}$		1	5		3	5	\%
Input Bias Current	Inverting Input, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temp		8	$\begin{aligned} & 15 \\ & 30 \end{aligned}$		8	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Resistance ( $\beta \mathrm{re}$ )	Inverting Input		2.5			2.5		k $\Omega$
Output Resistance	$\mathrm{I}_{\text {OUT }}=15 \mathrm{~mA} \mathrm{rms}, \mathrm{f}=1 \mathrm{MHz}$		3.5			3.5		$\Omega$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$							
$\mathrm{V}_{\text {Out }} \mathrm{High}$	$\mathrm{I}_{\mathrm{IN}^{\prime}(-) \& I_{\mathbb{N}}(+) \text { Grounded }}$	9.5	10.3		9.5	10.3		V
$\mathrm{V}_{\text {Out }}$ Low	$\mathrm{I}_{\mathrm{IN}}(-)=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{IN}}(+)=0$		2	50		2	50	mV
Output Currents								
Source	$\mathrm{I}_{\mathbb{N}}(-) \& \mathrm{I}_{\mathrm{IN}}(+)$ Grounded, $\mathrm{R}_{\mathrm{L}}=100 \Omega$	20	40		16	40		mA
Sink (Linear Region)	$V_{\text {comp }}-0.5 \mathrm{~V}=\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}(+)=0$		4.7			4.7		mA
Sink (Overdriven)	$\begin{aligned} & \mathrm{I}_{\text {IN }}(-)=100 \mu \mathrm{~A}, \mathrm{I}_{\text {IN }}(+)=0, \\ & \mathrm{~V}_{\text {OUT }} \text { Force }=1 \mathrm{~V} \end{aligned}$	2	3		1.5	3		mA
Supply Current	Non-Inverting Input Grounded, $\mathrm{R}_{\mathrm{L}}=\infty$		18.5	20		18.5	22	mA
Power Supply Rejection (Note 3)	$f=120 \mathrm{~Hz}, \mathrm{I}_{\mathbb{N}}(+)$ Grounded	40	50		40	50		dB

[^22]

## Typical Performance Characteristics



Typical Performance Characteristics (Continued)


## Application Hints

The LM159/LM359 consists of two wide bandwidth, decompensated current differencing (Norton) amplifiers. Although similar in operation to the original LM3900, design emphasis for these amplifiers has been placed on obtaining much higher frequency performance as illustrated in Figure 1.


This significant improvement in frequency response is the result of using a common-emitter/common-base (cascode) gain stage which is typical in many discrete and integrated video and RF circuit designs. Another versatile aspect of these amplifiers is the ability to externally program many internal amplifier parameters to suit the requirements of a wide variety of applications in which this type of amplifier can be used.

## DC BIASING

The LM359 is intended for single supply voltage operation which requires DC biasing of the output. The current mirror circuitry which provides the non-inverting input for the amplifier also facilitates DC biasing the output. The basic operation of this current mirror is that the current (both $A C$ and $D C$ ) flowing into the non-inverting input will force an equal amount of current to flow into the inverting input. The mirror gain ( $A_{1}$ ) specification is the measure of how closely these two currents match. For more details see National Application Note AN-72.

## Application Hints (Continued)

$D C$ biasing of the output is accomplished by establishing a reference DC current into the $(+)$ input, $\mathrm{I}_{\mathrm{IN}}(+)$, and requiring the output to provide the $(-)$ input current. This forces the output $D C$ level to be whatever value necessary (within the output voltage swing of the amplifier) to provide this DC reference current, Figure 2.

$I_{b}(-)$ is the inverting input bias current
FIGURE 2

The DC input voltage at each input is a transistor $V_{B E}$ ( $\cong 0.6 \mathrm{~V}_{\mathrm{DC}}$ ) and must be considered for DC biasing. For most applications, the supply voltage, $\mathrm{V}^{+}$, is suitable and convenient for establishing $\mathrm{I}_{\mathrm{IN}}(+)$. The inverting input bias current, $I_{b}(-)$, is a direct function of the programmable input stage current (see current programmability section) and to obtain predictable output DC biasing set $\mathrm{I}_{\mathrm{I}}(+) \geq 10 \mathrm{I}_{\mathrm{b}}(-)$.
The following figures illustrate typical biasing schemes for AC amplifiers using the LM359:


$$
\begin{aligned}
& A_{V(A C)}=-\frac{R_{f}}{R_{S}} \\
& V_{O(D C)}=V_{B E}(-)+R_{f}\left[\frac{V^{+}-V_{B E}(+)}{R_{b}}+I_{b}(-)\right]
\end{aligned}
$$

FIGURE 3. Biasing an Inverting AC Amplifier


FIGURE 4. Biasing a Non-Inverting AC Amplifier


FIGURE 5. nV ${ }_{\text {BE }}$ Biasing
The $n V_{B E}$ biasing configuration is most useful for low noise applications where a reduced input impedance can be accommodated (see typical applications section).

## OPERATING CURRENT PROGRAMMABILITY (ISET)

The input bias current, slew rate, gain bandwidth product, output drive capability and total device power consumption of both amplifiers can be simultaneously controlled and optimized via the two programming pins $I_{\text {SETIOUT }}$ and $I_{\text {SET(IN). }}$

## $I_{\text {SET(OUT) }}$

The output set current (ISET/OUT) is equal to the amount of current sourced from pin 1 and establishes the class A biasing current for the Darlington emitter follower output stage. Using a single resistor from pin 1 to ground, as shown in Figure 6, this current is equal to:



FIGURE 6. Establishing the Output Set Current

The output set current can be adjusted to optimize the amount of current the output of the amplifier can sink to drive load capacitance and for loads connected to $\mathrm{V}^{+}$. The maximum output sinking current is approximately 10 times I SETIOUT). This set current is best used to reduce the $^{\text {Th }}$ total device supply current if the amplifiers are not required to drive small load impedances.

## $I_{\text {SETIIN }}$

The input set current $I_{\text {SET(IN) }}$ is equal to the current flowing into pin 8 . A resistor from pin 8 to $\mathrm{V}^{+}$sets this current to be:


$$
\operatorname{ISET}(I N)=\frac{v^{+}-v_{B E}}{R_{S E T}(I N)+500 \Omega}
$$

FIGURE 7. Establishing the Input Set Current

## Application Hints (Continued)

$I_{\text {SETIN })}$ is most significant in controlling the AC characteristics of the LM359 as it directly sets the total input stage current of the amplifiers which determines the maximum slew rate, the frequency of the open loop dominant pole, the input resistance of the ( - ) input and the biasing current $I_{b}(-)$. All of these parameters are significant in wide band amplifier design. The input stage current is approximately 3 times $I_{\text {SET (IN) }}$ and by using this relationship the following first order approximations for these AC parameters are:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{r}(\mathrm{MAX})=\text { max slew rate } \cong}^{3 I_{\mathrm{SET}(I N)}\left(10^{-6}\right)} \\
& \mathrm{C}_{\mathrm{comp}} \\
& \text { frequency of } \\
& \text { dominant pole } \cong \frac{3 \mathrm{~s})}{2 \pi \mathrm{C}_{\mathrm{comp}} \mathrm{~A}_{\mathrm{VOL}(I \mathrm{~N})}(0.026 \mathrm{~V})}(\mathrm{Hz}) \\
& \text { input resistance }=\beta \mathrm{re} \cong \frac{150(0.026 \mathrm{~V})}{3 I_{\mathrm{SET}(\mathrm{~N})}}(\Omega)
\end{aligned}
$$

where $\mathrm{C}_{\text {comp }}$ is the total capacitance from the compensation pin (pin 3 or pin 13) to ground, $A_{\text {VOL }}$ is the low frequency open loop voltage gain in V/V and an ambient temperature of $25^{\circ} \mathrm{C}$ is assumed ( $\mathrm{KT} / \mathrm{q}=26 \mathrm{mV}$ and $\beta_{\text {typ }}=150$ ). $\mathrm{I}_{\mathrm{SET}(\mathrm{IN})}$ also controls the DC input bias current by the expression:

$$
I_{b}(-)=\frac{3 I_{\text {SET }}}{\beta} \cong \frac{I_{\text {SET }}}{50} \text { for } N P N ~ \beta=150
$$

which is important for DC biasing considerations.
The total device supply current (for both amplifiers) is also a direct function of the set currents and can be approximated by:

$$
I_{\text {supply }} \cong 27 \times I_{\text {SETOUT }}+11 \times I_{\text {SET(IN })}
$$

with each set current programmed by individual resistors.

## PROGRAMMING WITH A SINGLE RESISTOR

Operating current programming may also be accomplished using only one resistor by letting $I_{S E T(I N)}$ equal $I_{\text {SETOUT }}$. The programming current is now referred to as $I_{S E T}$ and it is created by connecting a resistor from pin 1 to pin 8 (Figure 8).

$$
I_{S E T}=\frac{V^{+}-2 V_{B E}}{R_{S E T}+1 \mathrm{k} \Omega} \text { where } V_{B E} \cong 0.6 \mathrm{~V}
$$


$I_{S E T}(I N)=I_{S E T}$ (OUT) $=I_{\text {SET }}$
FIGURE 8. Single Resistor Programming of I

This configuration does not affect any of the internal set current dependent parameters differently than previously discussed except the total supply current which is now equal to:

$$
I_{\text {supply }} \cong 37 \times I_{\text {SET }}
$$

Care must be taken when using resistors to program the set current to prevent significantly increasing the supply voltage above the value used to determine the set current. This would cause an increase in total supply current due to the resulting increase in set current and the maximum device power dissipation could be exceeded. The set resistor value(s) should be adjusted for the new supply voltage.
One method to avoid this is to use an adjustable current source which has voltage compliance to generate the set current as shown in Figure 9.


FIGURE 9. Current Source Programming of $\mathrm{I}_{\text {SET }}$
This circuit allows $I_{\text {SET }}$ to remain constant over the entire supply voltage range of the LM359 which also improves power supply ripple rejection as illustrated in the Typical Performance Characteristics. It should be noted, however, that the current through the LM334 as shown will change linearly with temperature but this can be compensated for (see LM334 data sheet).

Pin 1 must never be shorted to ground or pin 8 never shorted to $\mathrm{V}^{+}$without limiting the current to 2 mA or less to prevent catastrophic device failure.

## CONSIDERATIONS FOR HIGH FREQUENCY OPERATION

The LM359 is intended for use in relatively high frequency applications and many factors external to the amplifier itself must be considered. Minimization of stray capacitances and their effect on circuit operation are the primary requirements. The following list contains some general guidelines to help accomplish this end:

1. Keep the leads of all external components as short as possible.
2. Place components conducting signal current from the output of an amplifier away from that amplifier's non-inverting input.
3. Use reasonably low value resistances for gain setting and biasing.
4. Use of a ground plane is helpful in providing a shielding effect between the inputs and from input to output. Avoid using vector boards.
5. Use a single-point ground and single-point supply distribution to minimize crosstalk. Always connect the two grounds (one from each amplifier) together.

## Application Hints (Continued)

6. Avoid use of long wires (> 2') but if necessary, use shielded wire.
7. Bypass the supply close to the device with a low inductance, low value capacitor (typically a . $01 . \mu \mathrm{F}$ ceramic) to create a good high frequency ground. If long supply' leads are unavoidable, a small resistor ( $\sim 10 \Omega$ ) in series with the bypass capacitor may be needed and using shielded wire for the supply leads is also recommended.

## COMPENSATION

The LM359 is internally compensated for stability with closed loop inverting gains of 10 or more. For an inverting gain of less than 10 and all non-inverting amplifiers (the amplifier always has $100 \%$ negative current feedback regardless of the gain in the non-inverting configuration) some external frequency compensation is required because the stray capacitance to ground from the ( - ) input and the feedback resistor add additional lagging phase within the feedback loop. The value of the input capacitance will typically be in the range of 6 pF to 10 pF for a reasonably constructed circuit board. When using a feedback resistance of $30 \mathrm{k} \Omega$ or less, the best method of compensation, without sacrificing slew rate, is to add a lead capacitor in parallel with the feedback resistor with a value on the order of 1 pF to 5 pF as shown in Figure 10.


FIGURE 10. Best Method of Compensation
Another method of compensation is to increase the effective value of the internal compensation capacitor by adding capacitance from the COMP pin of an amplifier to ground. An external 20 pF capacitor will generally compensate for all gain settings but will also reduce the gain bandwidth product and the slew rate. These same results can also be obtained by reducing $I_{\text {SET(IN) }}$ if the full capabilities of the amplifier are not required. This method is termed over-compensation.
Another area of concern from a stability standpoint is that of capacitive loading. The amplifier will generally drive capacitive loads up to 100 pF without oscillation problems. Any larger $C$ loads can be isolated from the output as shown in Figure 11. Over-compensation of the amplifier can also be used if the corresponding reduction of the GBW product can be afforded.


FIGURE 11. Isolating Large Capacitive Loads
In most applications using the LM359, the input signal will be AC coupled so as not to affect the DC biasing of the amplifier. This gives rise to another subtlety of high frequency circuits which is the effective series inductance (ESL) of the coupling capacitor which creates an increase in the impedance of the capacitor at high frequencies and can cause an unexpected gain reduction. Low ESL capacitors like solid tantalum for large values of $C$ and ceramic for smaller values are recommended. A parallel combination of the two types is even better for gain accuracy over a wide frequency range.

## AMPLIFIER DESIGN EXAMPLES

The ability of the LM359 to provide gain at frequencies higher than most monolithic amplifiers can provide makes it most useful as a basic broadband amplification stage. The design of standard inverting and noninverting amplifiers, though different than standard op amp design due to the current differencing inputs, also entail subtle design differences between the two types of amplifiers. These differences will be best illustrated by design examples. For these examples a practical video amplifier with a passband of 8 Hz to 10 MHz and a gain of 20 dB will be used. It will be assumed that the input will come from a $75 \Omega$ source and proper signal termination will be considered. The supply voltage is 12 $V_{D C}$ and single resistor programming of the operating current, I ${ }_{\text {SET }}$, will be used for simplicity.

## AN INVERTING VIDEO AMPLIFIER

1. Basic circuit configuration:

2. Determine the required $I_{\text {SET }}$ from the characteristic curves for gain bandwidth product.

$$
\mathrm{GBW}_{\mathrm{MiN}}=10 \times 10 \mathrm{MHz}=100 \mathrm{MHz}
$$

For a flat response to 10 MHz a closed loop response to two octaves above $10 \mathrm{MHz}(40 \mathrm{MHz})$ will be sufficlent.

## Application Hints (Continued)

Actual GBW $=10 \times 40 \mathrm{MHz}=400 \mathrm{MHz}$
$I_{S E T}$ required $=0.5 \mathrm{~mA}$

$$
R_{S E T}=\frac{V^{+}-2 V_{B E}}{I_{S E T}}-1 \mathrm{k} \Omega=\frac{10.8 \mathrm{~V}}{0.5 \mathrm{~mA}}-1 \mathrm{k} \Omega=20.6 \mathrm{k} \Omega
$$

3. Determine maximum value for $R_{f}$ to provide stable DC biasing

$$
\mathrm{I}_{\mathrm{f}(\mathrm{M}(\mathrm{~N})} \geqslant 10 \times \frac{3 \mathrm{I}_{\mathrm{SET}}}{\beta}=100 \mu \mathrm{~A} \text { minimum } \mathrm{DC}
$$

Optimum output DC level for maximum symmetrical swing without clipping is:

$$
\begin{aligned}
& V_{\mathrm{ODC}(\mathrm{OPt})}=\frac{V_{\mathrm{O}(\mathrm{MAX})}-V_{\mathrm{O}(\mathrm{MIN})}}{2}+V_{\mathrm{O}(\mathrm{MIN})} \\
& \approx \frac{\left(\mathrm{V}+-3 \mathrm{~V}_{\mathrm{BE}}\right)-2 \mathrm{mV}}{2} \\
& V_{\mathrm{ODC}(\mathrm{OPt})} \cong \frac{12-1.8 \mathrm{~V}}{2}=\frac{10.2 \mathrm{~V}}{2}=5.1 \mathrm{~V}_{\mathrm{DC}}
\end{aligned}
$$

$R_{f(M A X)}$ can now be found:

$$
R_{f(M A X)}=\frac{V_{o D C(O p t)}-V_{B E}(-)}{I_{f(M I N)}}=\frac{5.1 \mathrm{~V}-0.6}{100 \mu \mathrm{~A}}=45 \mathrm{k} \Omega
$$

This value should not be exceeded for predictable DC biasing.
4. Select $R_{s}$ to be large enough so as not to appreciably load the input termination resistance:

$$
R_{s} \geqslant 750 \Omega \text { Let } R_{s}=750 \Omega
$$

5. Select $R_{f}$ for appropriate gain:

$$
A_{V}=-\frac{R_{f}}{R_{s}} \mathrm{so} ; \mathrm{R}_{\mathrm{f}}=10 \mathrm{R}_{\mathrm{s}}=7.5 \mathrm{k} \Omega
$$

$7.5 \mathrm{k} \Omega$ is less than the calculated $\mathrm{R}_{\mathrm{f}(\mathrm{MAX})}$ so DC predictability is insured.
6. Since $R_{f}=7.5 \mathrm{k}$, for the output to be biased to $5.1 \mathrm{~V}_{\mathrm{DC}}$, the reference current $\mathrm{I}_{\mathrm{N}}(+)$ must be:

$$
\mathrm{I}_{\mathrm{IN}}(+)=\frac{5.1 \mathrm{~V}-\mathrm{V}_{\mathrm{BE}}(-)}{\mathrm{R}_{\mathrm{f}}}=\frac{5.1 \mathrm{~V}-.6 \mathrm{~V}}{7.5 \mathrm{k} \Omega}=600 \mu \mathrm{~A}
$$

Now $R_{b}$ can be found by:

$$
R_{b}=\frac{V^{+}-V_{B E}(+)}{I_{I N}(+)}=\frac{12-0.6}{600 \mu \mathrm{~A}}=19 \mathrm{k} \Omega
$$

7. Select $C_{i}$ to provide the proper gain for the 8 Hz minimum input frequency:


A larger value of $C_{l}$ will allow a flat frequency response down to 8 Hz and a $0.01 \mu \mathrm{~F}$ ceramic capacitor in parallel with $C_{i}$ will maintain high frequency gain accuracy.
8. Test for peaking of the frequency response and add a feedback "lead" capacitor to compensate if necessary.

Final Circuit Using Standard 5\% Tolerance Resistor Values:


Circuit Performance:

$V_{o(D C)}=5.1 \mathrm{~V}$
Differential phase error $<1^{\circ}$ for $3.58 \mathrm{MHz} \mathrm{f}_{\mathrm{IN}}$ Differential gain error $<0.5 \%$ for $3.58 \mathrm{MHz} \mathrm{f}_{\mathrm{IN}}$ f -3 dB low $=2.5 \mathrm{~Hz}$

## A NON-INVERTING VIDEO AMPLIFIER

For this case several design considerations must be dealt with.

- The output voltage ( $A C$ and $D C$ ) is strictly a function of the size of the feedback resistor and the sum of AC and DC "mirror current" flowing into the (+) input.
- The amplifier always has $100 \%$ current feedback so external compensation is required. Add a small ( $1 \mathrm{pF}-5 \mathrm{pF}$ ) feedback capacitance to leave the amplifier's open loop response and slew rate unaffected.
- To prevent saturating the mirror stage the total AC and DC current. flowing into the amplifier's ( + ) input should be less than 2 mA .
- The output's maximum negative swing is one diode above ground due to the $\mathrm{V}_{\mathrm{BE}}$ diode clamp at the ( - ) input.


## Application Hints (Continued)

## DESIGN EXAMPLE:

$\Theta_{I N}=50 \mathrm{mV}(\mathrm{MAX}), \mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$ (MAX), desired circuit $B W=20 \mathrm{MHz}, A_{V}=20 \mathrm{~dB}$, driving source impedance $=75 \Omega, V^{+}=12 \mathrm{~V}$.

1. Basic circuit configuration:

2. Select ISET to provide adequate amplifier bandwidth so that the closed loop bandwidth will be determined by $R_{f}$ and $C_{f}$. To do this, the set current should program an amplifier open loop gain of at least 20 dB at the desired closed loop bandwidth of the circuit. For this example, an $I_{\text {SET }}$ of 0.5 mA will provide 26 dB of open loop gain at 20 MHz which will be sufficient. Using single resistor programming for ISET:

$$
R_{S E T}=\frac{\mathrm{V}^{+}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{SET}}}-1 \mathrm{k} \Omega=20.6 \mathrm{k} \Omega
$$

3. Since the closed loop bandwidth will be determined by $R_{f}$ and $C_{f}\left(f_{-3 d B}=\frac{1}{2 \pi R_{f} C_{f}}\right)$ to obtain a 20 MHz bandwidth, both $R_{f}$ and $C_{f}$ should be kept small. It can be assumed that $\mathrm{C}_{\mathrm{f}}$ can be in the range of 1 pF to 5 pF for carefully constructed circuit boards to insure stability and allow a flat frequency response. This will limit the value of $R_{f}$ to be within the range of:
$\frac{1}{2 \pi 5 \mathrm{pF} 20 \mathrm{MHz}} \leqslant \mathrm{R}_{\mathrm{f}} \leqslant \frac{1}{2 \pi 1 \mathrm{pF} 20 \mathrm{MHz}}$
or $1.6 \mathrm{k} \Omega \leqslant R_{\mathrm{f}} \leqslant 7.96 \mathrm{k} \Omega$
Also, for a closed loop gain of $+10, R_{f}$ must be 10 times $R_{s}+r_{e}$ where $r_{e}$ is the mirror diode resistance.
4. So as not to appreciably load the $75 \Omega$ input termination resistance the value of $\left(R_{s}+r_{e}\right)$ is set to 750 .
5. For $A_{v}=10 ; R_{f}$ is set to $7.5 \mathrm{k} \Omega$.
6. The optimum output DC level for symmetrical AC swing is:

$$
V_{o D C(o p t)}=\frac{V_{O(M A X)}-V_{o(M I N)}}{2}+V_{\alpha M I N)}
$$

$$
=\frac{(12-1.8) \mathrm{V}-0.6 \mathrm{~V}}{2}+0.6 \mathrm{~V}=5.4 \mathrm{~V} \mathrm{DC}
$$

7. The DC feedback current must be:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{FB}}=\frac{\mathrm{V}_{\mathrm{ODC}(\mathrm{opt})}-\mathrm{V}_{\mathrm{BE}}(-)}{R_{f}}=\frac{5.4 \mathrm{~V}-0.6 \mathrm{~V}}{7.5 \mathrm{k}} \\
& =640 \mu \mathrm{~A}=\mathrm{I}_{\mathrm{IN}}(+)
\end{aligned}
$$

DC biasing predictability will be insured because $640 \mu \mathrm{~A}$ is greater than the minimum of $\mathrm{I}_{\mathrm{SET}} / 5$ or $100 \mu \mathrm{~A}$.

For gain accuracy the total AC and DC mirror current should be less than 2 mA . For this example the maximum $A C$ mirror current will be;

$$
\frac{ \pm e_{\text {in peak }}}{R_{s}+r_{e}}=\frac{ \pm 50 \mathrm{mV}}{750 \Omega}= \pm 66 \mu \mathrm{~A}
$$

therefore the total mirror current range will be 574 $\mu \mathrm{A}$ to $706 \mu \mathrm{~A}$ which will insure gain accuracy.
8. $R_{b}$ can now be found:

$$
R_{b}=\frac{V^{+}-V_{B E}(+)}{I_{I N}(+)}=\frac{12-0.6}{640 \mu \mathrm{~A}}=17.8 \mathrm{k} \Omega
$$

9. Since $R_{s}+r_{e}$ will be $750 \Omega$ and $r_{e}$ is fixed by the DC mirror current to be:

$$
r_{e}=\frac{K T}{q I_{I N(+)}}=\frac{26 \mathrm{mV}}{640 \mu \mathrm{~A}} \cong 40 \Omega \text { at } 25^{\circ} \mathrm{C}
$$

$\mathrm{R}_{\mathrm{s}}$ must be $750 \Omega-40 \Omega$ or $710 \Omega$ which can be a $680 \Omega$ resistor in series with a $30 \Omega$ resistor which are standard 5\% tolerance resistor values.
10. As a final design step, $\mathrm{C}_{\mathrm{i}}$ must be selected to pass the lower passband frequency corner of 8 Hz for this example.

$$
C_{i}=\frac{1}{2 \pi\left(R_{s}+r_{e}\right) f_{\text {low }}}=\frac{1}{2 \pi(750 \Omega)(8 \mathrm{~Hz})}=26.5 \mu \mathrm{~F}
$$

[^23]
## Application Hints (Continued)

Final Circuit Using Standard 5\% Tolerance Resistor Values:
Circult Performance:


$V_{O(D C)}=5.4 \mathrm{~V}$
Differential phase error $<0.5^{\circ}$ Differential gain error <2\%
$\mathrm{f}-3 \mathrm{~dB}$ low $=2.5 \mathrm{~Hz}$

## GENERAL PRECAUTIONS

The LM359 is designed primarily for single supply operation but split supplies may be used if the negative supply voltage is well regulated as the amplifiers have no negative supply rejection.

The total device power dissipation must always be kept in mind when selecting an operating supply voltage, the programming current, $I_{\text {SET }}$, and the load resistance, particularly when DC coupling the output to a succeeding stage. To prevent damaging the current mirror input diode, the mirror current should always be limited to 10
mA , or less, which is important if the input is susceptible to high voltage transients. The voltage at any of the inputs must not be forced more negative than -0.7 V without limiting the current to 10 mA .

The supply voltage must never be reversed to the device; however, plugging the device into a socket backwards would then connect the positive supply voltage to the pin that has no internal connection (pin 5) which may prevent inadvertent device failure!

## Typical Applications

## DC Coupled Inputs

Inverting

$V_{O(D C)}=\left[\frac{v_{+}-V_{B E(+)}}{R_{R_{f}}}-\frac{v_{I N(D C)}-V_{B E}(-)}{R_{S}}\right] R_{f}+V_{B E(-)}$
$A_{V(A C)}=-\frac{R_{f}}{R_{s}}$

## Non-Inverting



$$
\begin{aligned}
& V_{O(D C)}=V_{B E(-)+} \frac{\left(V_{i N(D C)}-V_{B E}(+)\right) R_{f}}{R_{S}} \\
& A_{V(A C)}=+\frac{R_{f}}{R_{S}+r_{e}(+)}
\end{aligned}
$$

- Eliminates the need for an input coupling capacitor
- input DC level must be stable and can exceed the supply voltage of the LM359 provided that maximum input currents are not exceeded.


## Application Hints (Continued)

## Noise Reduction using nV $\mathbf{B E}^{\text {Biasing }}$



Typical Input Referred Noise Performance


Adding a JFET Input Stage


- FET input voltage mode op amp
- For $\mathrm{A}_{\mathrm{V}}=+1 ; \mathrm{BW}=40 \mathrm{MHz}, \mathrm{S}_{\mathrm{r}}=60 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{C}_{\mathrm{C}}=51 \mathrm{pF}$
- For $A_{V}=+11 ; B W=24 \mathrm{MHz}, \mathrm{S}_{\mathrm{r}}=130 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}$
- For $A_{V}=+100 ; B W=4.5 \mathrm{MHz}, \mathrm{S}_{\mathrm{r}}=150 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}$
- $\mathrm{V}_{\text {OS }}$ is typically<25 mV; $100 \Omega$ potentiometer allows a $\mathrm{V}_{\text {Os }}$ adjust range of $\approx \pm 200 \mathrm{mV}$
- Inputs must be DC biased for single supply operation

Photo Diode Amplifier


D1~RCA N-Type Silicon P-I-N Photodiode

- Frequency response of greater than 10 MHz
- If slow rise and fall times can be tolerated the gate in the output can be removed. In this case the rise and the fall time of the LM359 is 40 ns .
- $T_{P D L}=45 \mathrm{~ns}, T_{P D H}=50 \mathrm{~ns}-\mathrm{T}^{2} \mathrm{~L}$ output


For $V_{0} 1=V_{0^{2}}=\frac{v^{+}}{2}, \frac{R 3}{R 2}=\frac{v^{+}-2 \phi}{2\left(V^{+}-\phi\right)}, \frac{R 6}{R 5}=\frac{v^{+}-2 \phi}{\phi}$ where $\phi \approx 0.6 V$
$A_{V}=\frac{R 3}{R 1}\left(\frac{R 6}{R 4}+1\right)$

- $1 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth with gain of 10 and 0 dbm into 600 n
- $0.3 \%$ distortion at full bandwidth; reduced to $0: 05 \%$ with bandwidth of 10 kHz
- Will drive $C_{L}=1500 \mathrm{pF}$ with no additional compensation, $\pm 0.01 \mu \mathrm{~F}$ with $\mathrm{C}_{\text {comp }}=180 \mathrm{pF}$
- 70 dB signal to noise ratio at 0 dbm into $600 \mathrm{n}, 10 \mathrm{kHz}$ bandwidth

$V_{O(D C)}=\frac{R 4}{R 3}\left(V^{+}-\phi\right)$ where $\phi=0.6 \mathrm{~V}$
$A V=\frac{R 4}{R 1} \quad$ for $R 1=R 2$
* CMRR is adjusted for max at expected CM input signal

R6 $\approx \frac{\mathrm{R} 5}{5}$, for $\mathrm{R} 5=100 \mathrm{kR}$

- Wide bandwidth
- 70 dB CMRR typ
- Wide CM input voltage range

Voltage Controlled Oscillator

$f_{0}=\frac{V_{I N}-\phi}{4 C A V R_{1}}$
where: $\mathbf{R 2}=\mathbf{2 R 1}$
$\phi=$ amplifier input voltage $=0.6 \mathrm{~V}$
$\Delta V=$ DM7414 hysteresis, typ IV

- 5 MHz operation
- $T^{2}$ L ouput


## Typical Applications (Continued)



## Squarewave Generator


$\mathrm{f}=1 \mathrm{MHz}$
Output is TTL compatible
Frequency is adjusted by R1\& C (R1<<R2)

## Typical Applications

High Performance 2 Amplifier Biquad Filter(s)


- The high speed of the LM359 allows the center frequency $Q_{O}$ product of the filter to be : $f_{0} \times Q_{0}<5 \mathrm{MHz}$
- The above filter(s) maintains performance over wide temperature range
- One half of LM359 acts as a true non-inverting integrator so only 2 amplifiers (instead of 3 or 4) are needed for the biquad filter structure

DC BIASING EQUATIONS FOR $V_{O 1(D C)}{ }^{\cong} V_{O 2(D C)} \cong V^{+12}$


ANALYSIS AND DESIGN EQUATIONS

Type	$\mathrm{V}_{01}$	$V_{02}$	$C_{i}$	$\mathrm{R}_{12}$	$\mathrm{R}_{11}$	$f$ 。	$Q_{0}$	$f_{Z}$ (notch)	$\mathrm{H}_{\text {O(LP) }}$	$\mathrm{H}_{0 \text { (BP) }}$	$H_{0(H P)}$	$\mathrm{H}_{0 \text { (BR) }}$
1	BP.	LP	0	$\mathrm{R}_{\mathrm{i} 2}$	$\infty$	$1 / 2 \pi R C$	$\mathrm{R}_{Q} / \mathrm{R}$	-	R/R $\mathrm{R}_{\mathrm{i} 2}$	$\mathrm{R}_{\mathbf{Q}} / \mathrm{R}_{\mathrm{i} 2}$	-	-
11	HP	BP	$\mathrm{C}_{i}$	$\infty$	$\infty$	$1 / 2 \pi R C$	$R_{Q} / R$	-	-	$\mathrm{R}_{\mathrm{Q}} \mathrm{Ci} / \mathrm{RC}$	$C_{i} / \mathrm{C}$	-
III	Notch/ BR	-	$\mathrm{C}_{i}$	$\infty$	$\mathrm{R}_{\mathrm{i1}}$	$1 / 2 \pi R C$.	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}$	$1 / 2 \pi \sqrt{R R_{i} C_{i}}$	-	-	-	$\left.H_{0}\right\|_{f \rightarrow \infty}=C_{i} / C$
												$\left.H_{0}\right\|_{f \rightarrow 0}=R / R_{i}$

Typical Applications (Continued)


Crystal Controlled Sinewave Oscillator



National Semiconductor

## LM192/LM292/LM392, LM2924 Low Power Operational Amplifier/Voltage Comparator

## General Description

The LM192 series consists of 2 independent building block circuits. One is a high gain, internally frequency compensated operational amplifier, and the other is a precision voltage comparator. Both the operational amplifier and the voltage comparator have been specifically designed to operate from a single power supply over a wide range of voltages. Both circuits have input stages which will common-mode input down to ground when operating from a single power supply. Operation from split power supplies is also possible and the low power supply current is independent of the magnitude of the supply voltage.

Application areas include transducer amplifier with pulse shaper, DC gain block with level detector, VCO, as well as all conventional operational amplifier or voltage comparator circuits. Both circuits can be operated directly from the standard 5 VDC power supply voltage used in digital systems, and the output of the comparator will interface directly with either TTL or CMOS logic. In addition, the low power drain makes the LM192 extremely useful in the design of portable equipment.

## Advantages

- Eliminates need for dual power supplies
- An internally compensated op amp and a precision comparator in the same package
- Allows sensing at or near ground
- Power drain suitable for battery operation
- Pin-out is the same as both the LM158 dual op amp and the LM193 dual comparator


## Features

- Wide power supply voltage range Single supply 3 V to 32 V
Dual supply , $\pm 1.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$
- Low supply current drain-essentially independent of supply voltage $600 \mu \mathrm{~A}$
- Low input biasing current . 50 nA
- Low input offset voltage 2 mV
- Low input offset current 5 nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage


## ADDITIONAL OP AMP FEATURES

- Internally frequency compensated for unity gain
- Large DC voltage gain 100 dB
- Wide bandwidth (unity gain) . 1 MHz
- Large output voltage swing $\quad 0 \mathrm{~V}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}$


## ADDITIONAL COMPARATOR FEATURES

- Low output saturation voltage 250 mV at 4 mA
m Output voltage compatible with all types of logic systems


## Connection Diagrams (Top Views)

(Amplifier $A=$ Comparator)

- (Amplifier B = Operational Amplifier)

Metal Can Package


Order Number LM192H, LM292H or LM392H See NS Package H08C

Dual-In-Line Package


Order Number LM192J, LM292J, LM392J or LM2924J See NS Package J08A
Order Number LM392N or LM2924N See NS Package N08B

## Absolute Maximum Ratings

LM192/LM292/LM392
Supply Voltage, $\mathrm{V}^{+}$
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Molded DIP (LM392N, LM2924N)
Metal Can (LM192H/LM292H/LM392H)
Output Short-Circuit to Ground (Note 2)
Input Current (VIN <-0.3 VDC) (Note 3)
Operating Temperature Range
LM392
LM292
LM192
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

32 V or $\pm 16 \mathrm{~V}$	26 V or $\pm 13 \mathrm{~V}$
32 V	.26 V
-0.3 V to +32 V	-0.3 V to +26 V
570 mW	570 mW
830 mW	Continuous
Continuous	50 mA
50 mA	
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

Electrical Characteristics ( $\mathrm{V}^{+}=5 \mathrm{VDC}$; specifications apply to both amplifiers unless otherwise stated) (Note 4)

PARAMETER	CONDITIONS	LM192			LM292/LM392			LM2924			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		$\pm 2$	$\pm 5$		$\pm 2$	$\pm 5$		$\pm 2$	$\pm 7$	mV
Input Bias Current	$I N(+)$ or $I N(-), T_{A}=25^{\circ} \mathrm{C}$, (Note 6)		50	150.		50	250		50	250	nA
Input Offset Current	$I N(+)-I N(-), T_{A}=25^{\circ} \mathrm{C}$		$\pm 3$	$\pm 25$		$\pm 5$	$\pm 50$		$\pm 5$	$\pm 50$	nA
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { (Note 7) } \end{aligned}$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	v
Supply Current	$\begin{aligned} & R_{L}=\infty, V_{C C}=30 \mathrm{~V}, \\ & \left(L M 2924, V_{C C}=26 \mathrm{~V}\right) \end{aligned}$		1	2		1	2		1	2	mA
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		0.5	1		0.5	1		05	1	mA
Amplifier-to-Amplifier Coupling	$f=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz} \text {. }$   $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Input Referred, (Note 8)		-100	.		-100			-100		dB
Input Offset Voltage	(Note 5)			$\pm 7$			$\pm 7$			$\pm 10$	mV
Input Bias Current	IN(+) or IN(-)			300			400			500	nA
Input Offset Current	$1 N(+)-\operatorname{IN}(-)$			100			150			200	nA
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}_{\text {DC, }}$ ( ( l (e 7)	0		$\mathrm{v}^{+}-2$	0		$\mathrm{v}^{+}-2$	0		$\mathrm{v}^{+}-2$	V
Differential Input Voltage	Keep All $V_{I N}{ }^{\prime} \leq \geq 0 V_{D C}$ (or $\mathrm{V}^{-}$, if Used), (Note 9)			32			32			26	v
OP AMP ONLY											
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \text { (For Large } \\ & \mathrm{V}_{\mathrm{O}} \text { Swing), } \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	100		25	100			100		$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \left(\mathrm{LM} 2924, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\right) \end{aligned}$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	V
Common-Mode Rejection Ratio	DC, $T_{A}=25^{\circ} \mathrm{C}$	70	85		65	70	-	50	70		dB
Power Supply Rejection Ratio	$D C, T_{A}=25^{\circ} \mathrm{C}$	65	100		65	100		50	100		dB
Output Current Source	$\begin{aligned} & V_{I N(+)}=1 V_{D C}, \\ & V_{I N(-)}=0 V_{D C}, \\ & V^{+}=15 V_{D C}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	20	40		20	40		20	40		mA
Output Current Sink	$\begin{aligned} & V_{I N(-)}=1 . V_{D C} . \\ & V_{I N(+1}=0 V_{D C}, \\ & V^{+}=15 V_{D C}, \\ & V_{O} \geq 1 V_{D C} . \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	20		10	20		10	20		$m A$
	$\begin{aligned} & V_{I N(-)}=1 V_{D C}, \\ & V_{I N(+)}=0 V_{D C} . \\ & V^{+}=15 V_{D C}, V_{O}=200 \mathrm{mV}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	12	50		12	50		12	50		$\mu \mathrm{A}$

## Electrical Characteristics (Continued)



Note 1: For operating at temperatures above $25^{\circ} \mathrm{C}$, the LM 392 N and the LM 2924 N must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in still air ambient. The LM192H/LM292H/LM392H must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$. The dissipation is the total of both amplifiers-use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
Note 2: Short circuits from the output to $\mathrm{V}^{+}$can cause excessive heating and eventual destruction. The maximum output current is approximately 40 mA for the op amp and 30 mA for the comparator independent of the magnitude of $\mathrm{V}^{+}$. At values of supply voltage in excess of 15 V , continuous short circuits can exceed the power dissipation ratings and cause eventual destruction.
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the $\mathrm{V}^{+}$voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V (at $25^{\circ} \mathrm{C}$ ).
Note 4: These specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated. For the LM292, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$, the LM392 temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$ and the LM2924 temperature specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
Note 5: At output switch point, $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}^{+}$from 5 V to 30 V ; and over the full input common-mode range ( 0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$ ).
Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
Note 7: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to 32 V without damage ( 26 V for LM2924).
Note 8: Due to proximity of external components, insure that coupling is not originating via the stray capacitance between these external parts. This typically can be detected as this type of capacitive increases at higher frequencies.
Note 9: Positive excursions of input voltage may exceed the power supply level. As long as the other input voltage remains within the commonmode range, the comparator will provide a proper output state. The input voltage to the op amp should not exceed the power supply level. The input voltage state must not be less than -0.3 V (or 0.3 V below the magnitude of the negative power supply, if used) on either amplifier.
Note 10: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained.

## Schematic Diagram



## Application Hints

Please refer to the application hints section of the LM193 and the LM158 data sheets.

## National Operational Amplifiers/Buffers Semiconductor

## LM216/LM316, LM216A/LM316A Operational Amplifiers General Description

These devices are precision, high input impedance operational amplifiers designed for applications requiring extremely low input-current errors. They use supergain transistors in a Darlington input stage to get input bias currents that are equal to high-quality FET amplifiers-even in limited temperature range operation. The low input current is, however, obtained with some sacrifice to offset voltage, offset voltage drift and noise when compared to the non-Darlington LM112 series. Noteworthy specifications include:

- Guaranteed bias currents as low as 50 pA
- Maximum offset currents down to 15 pA
- Operates from supplies of $\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Supply current only $300 \mu \mathrm{~A}$ at $\pm 20 \mathrm{~V}$

These operational amplifiers are internally frequency compensated and have provisions for offset balancing with a single external potentiometer.

Further, unlike most other internally compensated amplifiers, the MOS compensation capacitor is protected to prevent catastrophic failure from overvoltage spikes on the supplies.

The low current error of these amplifiers make possible many designs that were previously impractical with monolithic amplifiers. They will operate from $100 \mathrm{M} \Omega$ source resistances, introducing less error than general purpose amplifiers with $10 \mathrm{k} \Omega$ sources. Integrators with worst case drifts less than $10 \mu \mathrm{~V} /$ sec and analog time delays in excess of one day can also be made using capacitors no larger than $1 \mu \mathrm{~F}$.

The LM216A and LM316A are high performance versions of the LM216 and LM316. The LM216 and LM216A are specified for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, while the LM316 and LM316A are specified from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

## Schematic Diagram**



## Auxiliary Circuits *

Overcompensation for Greater Stability Margin


Offset Balancing


## Connection Diagrams



Order Number LM216H or LM216AH or LM316H or LM316AH

## Absolute Maximum Ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range LM216/LM216A	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LM316/LM316A	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	LM216A	LM216	LM316A	LM316	UNITS
Input Offset Voltage	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}, \mathrm{Max}$	3	10	3	10	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Max}$	15	50	15	50	pA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Max}$	50	150	50	150	pA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Min}$	5	1	5	1	$\mathrm{G} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Max}$	0.6	0.8	0.6	0.8	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & V_{\text {OuT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \text { Min }^{2} \end{aligned}$	40	20	40	20	$\mathrm{V} / \mathrm{mV}$
Input Offset Voltage	Max	6	15	6	15	mV
Input Offset Current	Max	30	100	30	100	pA
Input Bias Current	Max	100	250	100	250	pA
Supply Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$, Max	0.5		0.5		mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & R_{\mathrm{L}}>10 \mathrm{k} \Omega, \mathrm{Min}^{2} \end{aligned}$	20	10	30	15	$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega \\ & \mathrm{Min} \end{aligned}$	$\pm 13$	$\pm 13$	$\pm 13$	$\pm 13$	V
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{Min}$	$\pm 13$	$\pm 13$	$\pm 13$	$\pm 13$	v
Common-Mode Rejection Ratio	Min	80	80	80	80	dB
Supply Voltage Rejection Ratio	Min	80	80	80	80	dB

Note 1: The maximum junction temperature of the LM216 and LM216A is $100^{\circ} \mathrm{C}$, while that of the LM316 and LM316A is $70^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting'resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V}<\mathrm{V}_{S}< \pm 20 \mathrm{~V}$ and $-25^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C}$, unless otherwise specified. With the LM316 and LM316A however, all temperature specifications are limited to $0^{\circ} \mathrm{C} \leq$ $\mathrm{T}_{\mathrm{A}} \leq 55^{\circ} \mathrm{C}$.

Typical Performance Characteristics










Large Signal
Frequency Response



## LM709/LM709A/LM709C Operational Amplifier

## General Description

The LM709 series are a monolithic operational amplifier intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design, in addition to providing high gain, minimizes both offset voltage and bias currents. Further, the class-B output stage gives a large output capability with minimum power drain.

External components are used to frequency compensate the amplifier. Although the unity-gain compensation network specified will make the amplifier unconditionally stable in all feedback
configurations, compensation can be tailored to optimize high-frequency performance for any gain setting.
The fact that the amplifier is built on a single silicon chip provides low offset and temperature drift at minimum cost. It also ensures negligible drift due to temperature gradients in the vicinity of the amplifier.

The LM709C is commercial-industrial version of the LM709. It is identical to the LM709/LM709A except that it is specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Schematic Diagram**

**Pin connections shown are for metal can package.

Typical Applications**
Unity Gain Inverting Amplifier


FET Operational Amplifier


Connection Diagrams


Order Number LM709H or LM709CH See NS Package H08C

Dual-In-Line Package


Order Number LM709CN See NS Package N14A

Dual-In-Line Package


Order Number LM709CN-8 See NS Package N08A

Absolute Maximum Ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage
Output Short-Circuit Duration ( $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 seconds)

LM709/LM709A	LM709C
$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
300 mW	250 mW
$\pm 5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$
$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$
5 seconds	5 seconds
TMIN TMAX	$\mathrm{T}_{\text {MIN }} \quad \mathrm{T}_{\text {MAX }}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics
(Note 2)

PARAMETER	CONDITIONS	LM709A			LM709			LM709C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$		0.6	2.0		1.0	5.0		2.0	7.5	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	200		200	500		300	1500	nA
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	50		50	200		100	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	350	700		150	400		50	250		$k \Omega$
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		150			150			150		$\Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		2.5	3.6		2.6	5.5	.	2.6	6.6	mA
Transient Response   Risetime   Overshoot	$\begin{aligned} & V_{I N}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 30 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 30 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 30 \end{aligned}$	$\begin{gathered} \mu \mathrm{s} \\ \% \end{gathered}$
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.25			0.25			0.25		$\mathrm{V} / \mu \mathrm{s}$
Input Offset Voltage	RS $\leq 10 \mathrm{k} \Omega$			3.0			6.0			10	mV
Average Temperature Coefficient of Input Offset Voltage	$R_{S}=50 \Omega$ $T_{A}=25^{\circ} \mathrm{C}$ to $T_{\text {MAX }}$   $T_{A}=25^{\circ} \mathrm{C}$ to $T_{\text {MIN }}$    $R_{S}=10 \mathrm{k} \Omega$ $T_{A}=25^{\circ} \mathrm{C}$ to $T_{\text {MAX }}$   $T_{A}=25^{\circ} \mathrm{C}$ to $T_{\text {MIN }}$		$\begin{aligned} & 1.8 \\ & 1.8 \\ & 2.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 15 \\ & 25 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$		.	$\begin{aligned} & 6.0 \\ & 12 \end{aligned}$		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$   $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & V_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \end{aligned}$	25		70	25	45	70	15	45		$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		V V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 8.0$			$\pm 8.0$	$\pm 10.0$		$\pm 8.0$	$\pm 10$		V
Common-Mode Rejection Ratio	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$	80	110		70	90		65	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		40	100		25	150		25	200	$\mu \mathrm{V} / \mathrm{V}$
Input Offset Current	$\begin{aligned} & T_{A}=T_{\text {MAX }} \\ & T_{A}=T_{\text {MIN }} \end{aligned}$		$\begin{aligned} & 3.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 250 \end{aligned}$		$\begin{aligned} & 20 \\ & 100 \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$		$\begin{aligned} & 75 \\ & 125 \end{aligned}$	$\begin{aligned} & 400 \\ & 750 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$T_{A}=T_{M I N}$		0.3	0.6		0.5	1.5		0.36	2.0	$\mu \mathrm{A}$
Input Resistance	$T_{A}=T_{M I N}$	85	170		40	100		50	250		k $\Omega$

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature for LM709/LM709A and $100^{\circ} \mathrm{C}$ maximum for LM709C and a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case for the metal can package.
Note 2: These specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for LM709/LM709A and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for LM709C with the following conditions: $\pm 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}, \mathrm{C} 1=5000 \mathrm{pF}, \mathrm{R} 1=1.5 \mathrm{k}, \mathrm{C} 2=200 \mathrm{pF}$ and $\mathrm{R} 2=51 \Omega$.

Typical Applications (Continued)


## Guaranteed Performance Characteristics



Input Common-Mode Voltage Range


Maximum Power Dissipation


Typical Performance Characteristics




Tnput Blas Current as Function of Supply Voltage

## LM725/LM725A/LM725C (Instrumentation) Operational Amplifier

## General Description

The LM725/LM725A/LM725C are operational amplifiers featuring superior performance in applications where low noise, low drift, and accurate closed-loop gain are required. With high common mode rejection and offset null capability, it is especially suited for low level instrumentation applications over a wide supply voltage range.
The LM725A has tightened electrical performance with higher input accuracy and like the LM725, is guaranteed over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM725C has slightly relaxed specifications and has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

Features

- High open loop gain

3,000,000

- Low input voltage drift $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- High common mode rejection

120 dB

- Low input noise current
$0.15 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Low input offset current

2 nA

- High input voltage range
$\pm 14 \mathrm{~V}$
- Wide power supply range
$\pm 3 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Offset null capability
a Output short circuit protection


## Schematic and Connection Diagrams



## Auxiliary Circuits

Voltage Offset Null Circuit


Compensation Component Values

$A_{\text {vCL }}$	R1   $(S 2)$	$\mathbf{C 1}$   $(\mu \mathrm{F})$	R2   $(S 2)$	$\mathbf{C 2}$   $(\mu \mathrm{F})$
10,000	10 K	50 pF	-	-
1,000	470	001	-	-
100	47	01	-	-
10	27	05	270	0015
1	10	05	39	02

Frequency Compensation Circuit



Order Number LM725H or LM725AH or LM725CH See NS Package H08C

Dual-In-Line Package

rop view
Order Number LM725CN See NS Package N08B

## Absolute Maximum Ratings

Supply Voltage	$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mV
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 22 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )	$300^{\circ} \mathrm{C}$


Operating Temperature Rang	TA(MIN)	TA(MAX)
LM725	$-55^{\circ} \mathrm{C}$ to	$+125^{\circ} \mathrm{C}$
LM725A	$-55^{\circ} \mathrm{C}$ to	$+125^{\circ} \mathrm{C}$
LM725C	$0^{\circ} \mathrm{C}$ to	$+70^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	LM725A			LM725			LM725C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage (Without External Trim)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} S \leq 10 \mathrm{k} \Omega$			0.5		0.5	1.0		0.5	2.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	20		2.0	35	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		42	80		42	100		42	125	nA
Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \end{aligned}$		$\begin{array}{r} 15 \\ 9.0 \\ 8.0 \end{array}$			$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \end{aligned}$		.	$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \end{aligned}$		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$   $n V / \sqrt{\mathrm{Hz}}$   $n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.3 \\ & 0.15 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 0.3 \\ & 0.15 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 0.3 \\ & 0.15 \end{aligned}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5			1.5			1.5		$\mathrm{M} \Omega$
Input Voltage Range ${ }^{\text {P }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\pm 13.5$	$\pm 14$		$\pm 13.5$	$\pm 14$		$\pm 13.5$	$\pm 14$		V
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \text { VOUT }= \pm 10 \mathrm{~V} \end{aligned}$	1000	3000		1000	3000		250	3000		$\mathrm{V} / \mathrm{mV}$
Common-Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {S }} \leq 10 \mathrm{k} \Omega$	120			110	120		94	120		dB
Power Supply Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}^{\prime} \leq 10 \mathrm{k} \Omega$		2.0	5.0		2.0	10		2.0	35	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \\ & R_{L} \geq 10 \mathrm{k} \Omega \\ & R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 12.0 \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \end{aligned}$		$\left\lvert\, \begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}\right.$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	105		80	105		80	150	mW
Input Offset Voltage (Without External Trim)	RS $\leq 10 \mathrm{k} \Omega$			0.7			1.5			3.5	mV
Average Input Offset Voltage Drift (Without External Trim)	RS $=50 \Omega$	'		2.0		2.0	5.0		2.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Input Offset Voltage Drift (With External Trim)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		0.6	1.0		0.6			0.6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & T_{A}=T_{\text {MAX }} \\ & T_{A}=T_{\text {MIN }} \end{aligned}$		$\begin{aligned} & 1.2 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 18.0 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	$\begin{aligned} & n A \\ & n A \end{aligned}$
Average Input Offset Current Drift			35	90		35	150		10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & T_{A}=T_{M A X} \\ & T_{A}=T_{M I N} \end{aligned}$		$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{aligned} & 70 \\ & 180 \end{aligned}$		$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$			$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & n A \\ & n A \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & R_{L} \geq 2 \mathrm{k} \Omega \\ & T_{A}=T_{M A X} \\ & R_{L} \geq 2 \mathrm{k} \Omega \\ & T_{A}=T_{M I N} \end{aligned}$	$\begin{aligned} & 1,000,000 \\ & 500,000 \\ & \hline \end{aligned}$			$1,000,000$			$125,000$			$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	110			100			115			dB
Power Supply Rejection Ratio	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$	8.0					20		20		$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	$\pm 12$			$\pm 10$			$\pm 10$			V

Note 1: Derate at $150^{\circ} \mathrm{C} / \mathrm{W}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$.
Note 2: For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ unless otherwise specified.

Typical Performance Characteristics


Typical Performance Characteristics (Continued)


The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload pro-
tection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/ LM741E have their performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams (Top Views)


Order Number LM741H, LM741AH,
LM741CH or LM741EH
See NS Package H08C


Order Number LM741CN or LM741EN See NS Package N08B Order Number LM741C See NS Package J08A


Order Number LM741CN-14 See NS Package N14A Order Number LM741J-14, LM741AJ-14 or LM741CJ-14 See NS Package J14A

Absolute Maximum Ratings

	LM741A
Supply Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Indefinite
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	$300^{\circ} \mathrm{C}$

LM741E
$\pm 22 \mathrm{~V}$
500 mW
$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
Indefinite
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

LM741	LM741C
$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
500 mW	500 mW
$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Indefinite	Indefinite
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

(Soldering, 10 seconds)

## Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	LM741A/LM741E			LM741			LM741C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$										
	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$					1.0	5.0		2.0	6.0	$m V$
	$\mathrm{R}_{S} \leq 50 \Omega$		0.8	3.0							$m V$
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {AMAX }}$										
	$R_{S} \leq 50 \Omega 2$			4.0							mV
	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$						6.0			7.5	mV
Average Input Offset Voltage Drift				15							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$	$\pm 10$				$\pm 15$			$\pm 15$		$m V$
Adjustment Range		.									
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	30		20	200		20	200	$n \mathrm{~A}$
	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$			70		85	500			300	$n \mathrm{~A}$
Average Input Offset Current Drift				0.5							$n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	80		80	500		80	500	$n A$
	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$			0.210			1.5			0.8	$\mu \mathrm{A}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$	1.0	6.0		0.3	2.0		0.3	2.0		$M \Omega$
	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$.	0.5									$M \Omega$
	$V_{S}= \pm 20 \mathrm{~V}$										
nput Voitage Range	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$							$\pm 12$	$\pm 13$		$v$
	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$				$\pm 12$	$\pm 13$					V
Large Signal Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$										
	$V_{S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}$	50	-								$\mathrm{V} / \mathrm{mV}$
	$V_{S}= \pm 15 \mathrm{~V}, V_{O}= \pm 10 \mathrm{~V}$				50	200		20	200		$\mathrm{V} / \mathrm{mV}$
	$T_{A M I N} \leq T_{A} \leq T_{A M A X} .$ $R_{L} \geq 2 \mathrm{k} \Omega,$										
	$V_{S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V}$.	32									$\mathrm{V} / \mathrm{mV}$
	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	-			25			15			$\mathrm{V} / \mathrm{mV}$
	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 2 \mathrm{~V}$	10									$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$										
	$R_{L} \geq 10 \mathrm{k} \Omega$	$\pm 16$									V
	$R_{L} \geq 2 \mathrm{k} \Omega$	$\pm 15$					.				$v$
	$V_{S}= \pm 15 \mathrm{~V}$										
	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$								$\pm 14$		V
	$R_{L} \geq 2 \mathrm{k} \Omega$				$\pm 10$	$\pm 13$		$\pm 10$	$\pm 13$		$v$
Output Short Circuit Current	$T_{A}=25^{\circ} \mathrm{C}$					25			25		mA
	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$	10		40							$\dot{m A}$
Common-Mode Rejection Ratio	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$										
	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$				70	90		70	90		dB
	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$	80	95								dB

## Electrical Characteristics (Continued)

PARAMETER	CONDITIONS	LM741A/LM741E			LM741			LM741C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage Rejection Ratio	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$,										
	$V_{S}= \pm 20 \mathrm{~V}$ to $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$					.					
	$R_{S} \leq 50 \Omega$	86	96								dB
	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$				77	96		77	96		dB
Transient Response Rise Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unity Gain										
			0.25	0.8		0.3			0.3		$\mu \mathrm{s}$
Overshoot			6.0	20		5			5		\%
Bandwidth (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.437	1.5								MHz
Slew Rate	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, Unity Gain	0.3	0.7			0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					1.7	2.8		1.7	2.8	mA
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$										
	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		80	150							mW
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$					50	85		50	85	mW
LM741A	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$										
	$T_{A}=T_{A M I N}$			165							mW
	$T_{A}=T_{A M A X}$			135							mW
LM741E	$V_{S}= \pm 20 \mathrm{~V}$			150							mW
	$T_{A}=T_{A M I N}$			150							mW
	$T_{A}=T_{A M A X}$			150							mW
LM741	$V_{S}= \pm 15 \mathrm{~V}$										
	$T_{A}=T_{A M I N}$						100				mW
	$T_{A}=T_{A M A X}$					45	75		-		mW

Note 1: The maximum junction temperature of the LM741/LM741A is $150^{\circ} \mathrm{C}$, while that of the LM741C/LM741E is $100^{\circ} \mathrm{C}$. For operation at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Unless otherwise specified, these specifications apply for $V_{S}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (LM741/LM741A). For the LM741C/ LM741E, these specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$.
Note 4: Calculated value from: BW (MHz) $=0.35 /$ Rise $\operatorname{Time}(\mu \mathrm{S})$.

## LM747/LM747A/LM747C/LM747E Dual Operational Amplifiers

## General Description

The LM747 series are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.

## Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low-power consumption
- No latch-up
- Balanced offset null

Additional features of the LM747 and LM747C are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package flexibility.

The LM747C/LM747E is identical to the LM747/ LM747A except that the LM747C/LM747E has its specifications guaranteed over the temperature range from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Schematic Diagram (each amplifier)


Note: Numbers in parentheses are pin numbers for amplifier B. DIP only.

## Absolute Maximum Ratings

Supply Voltage $\quad$ LM747/LM747A	$\pm 22 \mathrm{~V}$
	LM747C/LM747E
Power Dissipation (Note 1)	$\pm 18 \mathrm{~V}$
Differential Input Voltage	800 mW
Input Voltage (Note 2)	$\pm 30 \mathrm{~V}$
Output Short-Circuit Duration	$\pm 15 \mathrm{~V}$
Operating Temperature Range	Indefinite
LM747/LM747A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM747C/LM747E	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)


Electrical Characteristics (Continued)

PARAMETER	CONDITIONS	LM747A/LM747E			LM747			LM747C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage Rejection Ratio	$T_{A M I N} \leq T_{A} \leq T_{A M A X}$.										
	$\mathrm{V}_{S}= \pm 20 \mathrm{~V}$ to $\mathrm{V}_{S}= \pm 5 \mathrm{~V}$										
	$\mathrm{R}_{\mathrm{S}} \leq 50 \Omega$	86	96								dB
	RS $\leq 10 \mathrm{k} \Omega$				77	96		77	96		dB
Transient Response Rise Time Overshoot	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unity Gain										
			0.25	0.8		0.3			0.3		$\mu \mathrm{s}$
			6.0	20		5			5		\%
Bandwidth (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.437	1.5								MHz
Slew Rate	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, Unity Gain	0.3	0.7			0.5			0.5		$\mathrm{V} / \mathrm{\mu}$
Supply Current/Amp .	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.5		1.7	2.8		$1.7{ }^{\circ}$	2.8	mA
Power Consumption/Amp	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$										
	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		80	150							mW
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$					50	85		50	85	mW
LM747A	$\mathrm{V}_{S}= \pm 20 \mathrm{~V}$			.							
	$T_{A}=T_{A M I N}$			165							mW
	$T_{A}=T_{A M A X}$			135.							mW
LM747E	$V_{S}= \pm 20 \mathrm{~V}$			150							mW
	$T_{A}=T_{A M I N}$			150							mW
	$T_{A}=T_{A M A X}$			150							mW
LM747	$V_{S}= \pm 15 \mathrm{~V}$								.		
	$T_{A}=T_{A M I N}$						100				mW
	$T_{A}=T_{A M A X}$						75				mW

Note 1: The maximum junction temperature of the LM747/LM747A is $150^{\circ} \mathrm{C}$, while that of the LM747C/LM747E is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the LM747A and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the LM747E unless otherwise specified. The LM747 and LM747C are specified for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, respectively, unless otherwise specified.
Note 4: Calculated value from: $0.35 /$ Rise Time ( $\mu \mathrm{s}$ ).
Typical Performance Characteristics









3
ヨLヤLWา／OLヤLW7／VLヤLW7／LヤLW7

Typical Performance Characteristics（Continued）：


## Connection Diagrams



Order Number LM747AH，LM747H，
LM747EH or LM747CH
See NS Package H10C


Order Number LM747AJ，LM747J， LM747EJ or LM747CJ See NS Package J14A
Order Number LM747EN or LM747CN See NS Package N14A
${ }^{* *} \mathrm{~V}^{+} \mathrm{A}$ and $\mathrm{V}^{+} \mathrm{B}$ are internally connected for LM747AJ，LM747CJ etc．

## LM748/LM748C Operational Amplifier <br> General Description

The LM748/LM748C is a general purpose operational amplifier built on a single silicon chip. The resulting close match and tight thermal coupling gives low offsets and temperature drift as well as fast recovery from thermal transients. In addition, the device features:

- Frequency compensation with a single 30 pF capacitor
- Operation from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Low current drain: 1.8 mA at $\pm 20 \mathrm{~V}$
- Continuous short-circuit protection
- Operation as a comparator with differential inputs as high as $\pm 30 \mathrm{~V}$
- No latch-up when common mode range is exceeded.
- Same pin configuration as the LM101.

The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. However, it is possible to optimize compensation for best high frequency performance at any gain. As a comparator, the output can be clamped at any desired level to make it compatible with logic circuits.
The LM748 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM748C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

## Connection Diagrams



Order Number LM748H or LM748CH See NS Package H08C

## Typical Applications

Inverting Amplifier with Balancing Circuit


Low Drift Sample and Hold



Order Number LM748CN See NS Package N08B
Order Number LM748J or LM748CJ See NS Package J08A

Voltage Comparator for Driving DTL or TTL Integrated Circuits


Voltage Comparator for Driving
RTL Logic or High Current Driver


Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range: LM748
LM748C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec )
$\pm 22 \mathrm{~V}$
500 mW .$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
Indefinite
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voitage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	5.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		40	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		120	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	300	. 800		$k \Omega$
Supply Current	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		1.8	2.8	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & V_{O U T}= \pm 10 \mathrm{~V}, R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	160		$\mathrm{V} / \mathrm{mV}$
Input Offset Voltage	$R_{S} \leq 10 \mathrm{k} \Omega$			6.0	mV
Average Temperature	$\mathrm{R}_{\mathbf{S}} \leq 50 \Omega$		3.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		6.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 300 \\ & 500 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Bias Current	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$
Supply Current	$\begin{aligned} & T_{A}=+125^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 2.25 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{~K} \Omega \end{aligned}$	25			$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\begin{aligned} V_{S}= \pm 15 \mathrm{~V}, R_{L} & =10 \Omega \\ R_{L} & =2 \mathrm{k} \Omega \end{aligned}$	$\pm 12$ $\pm 10$	$\pm 14$ $\pm 13$		v
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 12$			V
Common Mode Rejection Ratio	$R_{S} \leq 10 \mathrm{k} \Omega$	70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	77	90		dB

Note 1: For operating at elevated temperatures the devices must be derated based on a maximum junction to case thermal resistance of $45^{\circ} \mathrm{C}$ per watt, or $150^{\circ} \mathrm{C}$ per watt junction to ambient. (See Curves).
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $+125^{\circ} \mathrm{C}$ and ambient temperatures to $+70^{\circ} \mathrm{C}$.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq V_{S} \leq+15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM748C, however, all temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$.

## Guaranteed Performance Characteristics (Note 4)



## Typical Performance Characteristics



National

## LM1558/LM1458 Dual Operational Amplifier

## General Description

The LM1558 and the LM1458 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent. Features include:

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low-power consumption
- 8-lead TO-5 and 8-lead mini DIP
- No latch up when input common mode range is exceeded

The LM1458 is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the temperature range from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

## Schematic and Connection Diagrams



Note: Numbers in parentheses are pin numbers for amplifier B.


## Absolute Maximum Ratings

Supply Voltage LM1558	$\pm 22 \mathrm{~V}$
LM1458	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	LM1558H/LM1458H
	LM1458N
	500 mW
Differential Input Voltage	400 mW
Input Voltage (Note 2)	$\pm 30 \mathrm{~V}$

Output Short-Circuit Duration
Operating Temperature Range LM1558
LM1458
Storage Temperature Range
Lead Temperature (Soldering, 10 sec )

Indefinite
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec ) . $300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)


Note 1: The maximum junction temperature of the LM1558 is $150^{\circ} \mathrm{C}$, while that of the LM1458 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the DIP the device must be derated based on a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM1458
however, all specifications are limited to $0 \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$.

## Operational Amplifiers/Buffers

## LM2900/LM3900, LM3301, LM3401 Quad Amplifiers

## General Description

The LM2900 series consists of four independent, dual input, internally compensated amplifiers which were designed specifically to operate off of a single power supply voltage and to provide a large output voltage swing. These amplifiers make use of a current mirror to achieve the non-inverting input function. Application areas include: ac amplifiers, RC active filters, low frequency triangle, squarewave and pulse waveform generation circuits, tachometers and low speed, high voltage digital logic gates.

## Features

- Wide single supply voltage $4 V_{D C}$ to $36 V_{D C}$ range or dual supplies $\pm 2 V_{\text {DC }}$ to $\pm 18 V_{\text {Jc }}$
- Supply current drain independent of supply volt ige
- Low input biasing current

30 nA

- High open-loop gain

70 dB

- Wide bandwidth
2.5 MHz (Unity Gain)
- Large output voltage swing
$\left(V^{+}-1\right) \vee p-p$
- Internally frequency compensated for unity gain
- Output short-circuit protection


## Schematic and Connection Diagrams



Order Number LM2900J See NS Package J14A Order Number LM2900N, LM3900N, LM3301N or LM3401N See NS Package N14A


Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V} \mathrm{DC}\right)$


Inverting Amplifier


Triangle/Square Generator


Frequency-Doubling Tachometer


Low VIN - VOUT Voltage Regulator


Non-Inverting Amplifier


## Absolute Maximum Ratings

	LM2900/LM3900	LM3301	LM3401
Supply Voltage	$\begin{array}{r} 32 V_{D C} \\ \pm 16 V_{D C} \end{array}$	$\begin{array}{r} 28 \vee_{\mathrm{DC}} \\ \pm 14 \mathrm{~V}_{\mathrm{DC}} \end{array}$	$\begin{gathered} 18 \mathrm{~V}_{\mathrm{DC}} \\ \pm 9 \mathrm{~V}_{\mathrm{DC}} \end{gathered}$
Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) (Note 1)			
Cavity DIP	900 mW		
Flat Pack	800 mW		
Moided DIP	570 mW	570 mW	570 mW
Input Currents, $\mathrm{INN}^{+}$or $1 \mathbb{N}^{-}$	20 mADC	20 mADC	20 mADC
Output Short-Circuit Duration - One Amplifier $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Application Hints)	Continuous	Continuous	Continuous
Operating Temperature Range		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
LM2900	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
- LM3900	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 6)

PARAMETER	CONDITIONS	LM2900			LM3900			LM3301			LM3401			UNITS
		MIN	TYP	MAX										
Open Loop   Voltage Gain Voltage Gain Input Resistance Output Resistance	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=100 \mathrm{~Hz} \\ & T_{A}=25^{\circ} \mathrm{C} \text {, Inverting Input } \end{aligned}$	1.2	$\begin{aligned} & 2.8 \\ & 1 \\ & 8 \end{aligned}$		1.2	$\begin{aligned} & 2.8 \\ & 1 \\ & 8 \end{aligned}$		1.2	$\begin{aligned} & 2.8 \\ & 1 \\ & 8 \end{aligned}$		$\begin{aligned} & 800 \\ & 1.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 1 \\ & 8 \end{aligned}$		$\mathrm{V} / \mathrm{mV}$   $\mathrm{V} / \mathrm{mV}$   M $\Omega$   $\mathrm{k} \Omega$
Unity Gain Bandwidth	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$, Inverting Input		2.5			2.5			2.5			2.5		MHz
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Inverting Input Inverting Input		30	200		30	200		30	300		30	$\begin{aligned} & 300 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Slew Rate	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, Positive Output Swing $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, Negative Output Swing		$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty$ On All Amplifiers		6.2	10		6.2	10		6.2	10		6.2	10	mADC
Output Voltage Swing   VOUT High   VOUT Low   Vout High	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~V}_{C C}=15.0 \mathrm{~V} \mathrm{VC} \\ & I_{N^{-}}=0, I_{N^{+}}=0 \\ & I_{N^{-}}=10 \mu \mathrm{~A}, I_{N^{+}}=0 \\ & I_{N^{-}}=0, I_{N^{+}}=0 \mathrm{R}_{\mathrm{L}}=\infty, \\ & V_{C C}=\text { Absolute Maximum Ratings } \end{aligned}$	13.5	$\begin{aligned} & 0.09 \\ & 29.5 \end{aligned}$	0.2	13.5	$\begin{aligned} & 0.09 \\ & 29.5 \end{aligned}$	0.2	13.5	$\begin{aligned} & 0.09 \\ & 25.5 \end{aligned}$	0.2	13.5	$\begin{aligned} & 0.09 \\ & 15.5 \end{aligned}$	0.2	$V_{D C}$   $V_{D C}$   $V_{D C}$
Output Current Capability   Source   Sink   ISINK	$T_{A}=25^{\circ} \mathrm{C}$   (Note 2) $V_{O L}=1 \mathrm{~V}, I_{I N}=5 \mu \mathrm{~A}$	6 0.5	$\begin{aligned} & 18 \\ & 1.3 \\ & 5 \end{aligned}$		6 0.5	$\begin{aligned} & 10 \\ & 1.3 \\ & 5 \end{aligned}$		5 0.5	$\begin{aligned} & 18 \\ & 1.3 \\ & 5 \end{aligned}$		5 0.5	$\begin{aligned} & 10 \\ & 1.3 \\ & 5 \end{aligned}$		mADC $m A D C$ $m A D C$

Electrical Characteristics (Continued) (Note 6)

PARAMETER	CONDITIONS	LM2900			LM3900			LM3301			LM3401			UNITS
		MIN	TYP	MAX										
Power Supply Rejection	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=100 \mathrm{~Hz}$	70			70			70			70			dB
Mirror Gain	@ 20 $\mu \mathrm{A}$ (Note 3)   @ $200 \mu \mathrm{~A}$ (Note 3)	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.10 \end{aligned}$	$\mu \mathrm{A} / \mu \mathrm{A}$ $\mu \mathrm{A} / \mu \mathrm{A}$
$\Delta$ Mirror Gain	@ 20 ${ }^{\text {A To }} \mathbf{2 0 0 \mu} \mathrm{A}$ ( Note 3)		2	5		2	5		2	5		2	5	\%
Mirror Current	(Note 4)		10	500		10	500		10	500		10	500	$\mu A D C$
Negative Input Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)		1.0			1.0			1.0			1.0		mADC
Input Bias Current	Inverting Input		300			300		.	.	.				nA

 circuit board, operating in a still air ambient.
Note 2: The output current sink capability can be increased for large signal conditions by overdriving the inverting input. This is shown in the section on Typical Characteristics.
Note 3: This spec indicates the current gain of the current mirror which is used as the non-inverting input.
 the application circuits.


 be used to prevent negative input voltages; see for example, the "Differentiator Circuit" in the applications section.
Note 6: These specs apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated.

## Typical Performance Characteristics



Supply Current


Output Sink Current




Voltage Gain


Large Signal Frequency Response


Output Source Current


Maximum Mirror Current


## Application Hints

When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak input current. Currents as large as 20 mA will not damage the device, but the current mirror on the non-inverting input will saturate and cause a loss of mirror gain at mA current levelsespecially at high operating temperatures.

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fuzing of the internal conductors and result in a destroyed unit.

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fuzing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. For example, when operating from a well-regulated $+5 \mathrm{~V}_{\mathrm{DC}}$ power supply at $T_{A}=25^{\circ} \mathrm{C}$ with a $100 \mathrm{k} \Omega$ shuntfeedback resistor (from the output to the inverting input) a short directly to the power supply will not cause catastrophic failure but the current magnitude will be approximately 50 mA and the junction temperature will be above $T_{J}$ max. Larger feedback resistors will reduce the current, $11 \mathrm{M} \Omega$ provides approximately 30 mA , an open circuit provides 1.3 mA , and a direct connection from the output to the non-inverting input will result in catastrophic failure when the output is shorted to $\mathrm{V}^{+}$ as this then places the base-emitter junction of the input transistor directly across the power supply. Short-circuits to ground will have magnitudes of approximately 30 mA and will not cause catastrophic failure at $T_{A}=25^{\circ} \mathrm{C}$.

Unintentional signal coupling from the output to the non-inverting input can cause oscillations. This is likely only in breadboard hook-ups with long component leads and can be prevented by a more careful lead dress or by locating the non-inverting input biasing resistor close to the IC. A quick check of this condition is to bypass the non-inverting input to ground with a capacitor. High impedance biasing resistors used in the non-inverting input circuit make this input lead highly susceptible to unintentional ac signal pickup.

Operation of this amplifier can be best understood by noticing that input currents are differenced at the inverting-input terminal and this difference current then flows through the external feedback resistor to produce the output voltage. Common-mode current biasing is generally useful to allow operating with signal levels near ground or even negative as this maintains the inputs biased at $+\mathrm{V}_{\mathrm{BE}}$. Internal clamp transistors (see note 5) catch negative input voltages at approximately $-0.3 \mathrm{~V}_{\mathrm{DC}}$ but the magnitude of current flow has to be limited by the external input network. For operation at high temperature, this limit should be approximately $100 \mu \mathrm{~A}$.

This new "Norton" current-differencing amplifier can be used in most of the applications of a standard iC op amp. Performance as a dc amplifier using only a single supply is not as precise as a standard IC op amp operating with split supplies but is adequate in many less critical applications. New functions are made possible with this amplifier which are useful in single power supply systems. For example, biasing can be designed separately from the ac gain as was shown in the "inverting amplifier," the "difference integrator" allows controlling the charging and the discharging of the integrating capacitor both with positive voltages, and the "frequency doubling tachometer" provides a simple circuit which reduces the ripple voltage on a tachometer output dc voltage.

## Typical Applications (Continued)



Low-Drift Ramp and Hold Circuit


Bi-Quad Active Filter (2nd Degree State-Variable Network)

Typical Applications (Continued)


Typical Applications (Continued)


Frequency Differencing Tachometer


Frequency Averaging Tachometer


Squaring Amplifier (W/Hysteresis)


Low Pass Active Filter


Bi-Stable Multivibrator

$V_{B E}$ Biasing


Bandpass Active Filter


Low-Frequency Mixer


Typical Applications (Continued)


High Pass Active Filter


Sawtooth Generator



Boosting to $\mathbf{3 0 0} \mathbf{m A}$ Loads

Phase-locked Loop

Split-Supply Applications $\quad\left(\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}} \& \mathrm{~V}^{-}=-15 \mathrm{~V}_{\mathrm{DC}}\right)$


Non-Inverting DC Gain


AC Amplifier

## LM4250/LM4250C Programmable Operational Amplifier General Description

The LM4250 and LM4250C are extremely versatile programmable monolithic operational amplifiers. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product. The device is a truly general purpose operational amplifier.

Features

- $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply operation
- 3 nA input offset current
- Standby power consumption as low as 500 nW
- No frequency compensation required
- Programmable electrical characteristics
- Offset Voltage nulling capability
- Can be powered by two flashlight batteries
- Short circuit protection

The LM4250C is identical to the LM4250 except that the LM4250C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range instead of the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range of the LM4250.

## Schematic Diagrams



Connection Diagrams


Order Number LM4250H or LM4250CH
See NS Package H08C

Typical Applications


X5 Difference Amplifier


500 Nano-Watt X10 Amplifier


Order Number LM4250CN See NS Package N08B Order Number LM4250J or LM4250CJ See NS Package J08A

## Absolute Maximum Ratings



Electrical Characteristics $\mathrm{LM} 4250\left(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\right.$ unless otherwise specified)


Note 1: The maximum junction temperature of the LM4250 is $150^{\circ} \mathrm{C}$, while that of the LM4250C is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. The thermal resistance of the dual-in-line package is $125^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.


## Resistor Biasing

Set Current Setting Resistor to $\mathbf{V}^{-}$

$\mathrm{I}_{\mathrm{SET}}$					
$\mathrm{V}_{\mathrm{S}}$	$0.1 \mu \mathrm{~A}$	$0.5 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
$\pm 1.5 \mathrm{~V}$	$25.6 \mathrm{M} \Omega$	$5.04 \mathrm{M} \Omega$	$2.5 \mathrm{M} \Omega$	$492 \mathrm{k} \Omega$	$244 \mathrm{k} \Omega$
$\pm 3.0 \mathrm{~V}$	$55.6 \mathrm{M} \Omega$	$11.0 \mathrm{M} \Omega$	$5.5 \mathrm{M} \Omega$	$1.09 \mathrm{M} \Omega$	$544 \mathrm{k} \Omega$
$\pm 6.0 \mathrm{~V}$	$116 \mathrm{M} \Omega$	$23.0 \mathrm{M} \Omega$	$11.5 \mathrm{M} \Omega$	$2.29 \mathrm{M} \Omega$	$1.14 \mathrm{M} \Omega$
$\pm 9.0 \mathrm{~V}$	$176 \mathrm{M} \Omega$	$35.0 \mathrm{M} \Omega$	$17.5 \mathrm{M} \Omega$	$3.49 \mathrm{M} \Omega$	$1.74 \mathrm{M} \Omega$
$\pm 12.0 \mathrm{~V}$	$236 \mathrm{M} \Omega$	$47.0 \mathrm{M} \Omega$	$23.5 \mathrm{M} \Omega$	$4.69 \mathrm{M} \Omega$	$2.34 \mathrm{M} \Omega$
$\pm 15.0 \mathrm{~V}$	$296 \mathrm{M} \Omega$	$59.0 \mathrm{M} \Omega$	$29.5 \mathrm{M} \Omega$	$5.89 \mathrm{M} \Omega$	$2.94 \mathrm{M} \Omega$



## Typical Applications (Continued)



R $_{\text {SET }}$ Connected to $\mathbf{V}^{-}$


Transistor Current Source Biasing


RSET Connected to Ground

FET Current Source Biasing

$I_{\text {set }}$ equations:
$I_{S E T}=\frac{V^{*}+i V^{-} 1-0.5}{R_{\text {SET }}} \quad$ where $R_{\text {SET }}$ is connected to $V$.
$\boldsymbol{I}_{\mathrm{SET}}=\frac{\mathbf{V}^{*}-0.5}{\boldsymbol{R}_{\text {SET }}} \quad$ where $\mathrm{R}_{\text {SET }}$ is connected to ground.


Offset Null Circuit

National Semiconductor
LM13080 Programmable Power Op Amp

## General Description

The LM13080 is an internally compensated medium power operational amplifier designed for use in those applications requiring load currents of several hundred milliamperes. This amplifier has the added advantage of having an input stage programmed with an external resistor. The user is able to optimize the amplifier performance for each individual application with this feature. Applications include servo amplifiers and drivers, high input impedance audio amplifiers, DC-to-DC converters, precision power comparators which can either sink or sourcè current and motor speed controls.

The LM13080 may be powered from either single or dual power supplies, and will operate from as little as 3 V .

As a power operational amplifier, the LM13080 is capable of delivering $0.25 A$ to a load. This feature allows the system designer to fulfill his medium power circuit requirements without having to add external
current boost transistors to the output of a standard operational amplifier.

By selecting the proper input stage bias resistor it is possible to tailor the performance of the input stage to meet the needs of any particular system. Trade-offs between input offset voltage, input bias current and gain bandwidth are easily made.

An unusual feature of the LM13080 is an electronic shut-down capability.

## Features

- High output current-250 mA
- Externally programmable input stage
- Low power supply operation-3V
- Electronic shut-down capability
- Internally compensated for unity gain
- Low input bias current

Schematic and Connection Diagrams

## Dual-In-Line Package (LM13080N)



Order Number LM13080N See NS Package N08A

${ }^{*}$ Pin 6 can be connected to pin 10, if not, pin 6 must be left with no connection.

## Order Number LM13080P <br> See NS Package P11A



Numbers in parentheses show LM13080P connections

## Absolute Maximum Ratings

Supply Voltage Operation Range	3 V to 15 V or
	$\pm 1.5 \mathrm{~V}$ to $\pm 7.5 \mathrm{~V}$
Power Dissipation, (Note 1)	
Molded Dual-In-Line Package(LM13080N)	1000 mW
Molded Single-In-Line Package (LM13080P)	1900 mW
Differential Input Voltage, (Note 2)	15 V


Input Voltage Range, (Note 3)	-0.3 V to +15 V
Input Current (VIN $\leq-0.3 \mathrm{~V}$ ), (Note 4)	20 mA
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(V_{S}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=680 \mathrm{k}\right.$, unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5 )		$\pm 3$	$\pm 7$	mV
Input Bias Current	$\operatorname{IIN}(+)$ or $\operatorname{IIN}(-), T_{A}=25^{\circ} \mathrm{C}$		100	400	nA
Input Offset Current	$I_{1 N(+)}-1 / N(-), T_{A}=25^{\circ} \mathrm{C}$		$\pm 30$	$\pm 75$	nA
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 6)		3	6	mA
Output Voltage Swing	$V_{S}= \pm 6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 1)				
V OH	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	4.5	5		V
	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	2			V
$\mathrm{V}_{\mathrm{OL}}$	$R_{L}=50 \Omega$		-5	-4.5	V
	$\mathrm{R}_{\mathrm{L}}=8 \Omega$			-2	V
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{~Hz}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	3	10		$\mathrm{V} / \mathrm{mV}$
Input Common-Mode Voltage	$\mathrm{V}_{S} \leq 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 3)	1		$\mathrm{V}_{S^{-1.5}}$	V
Range .					
Input Offset Voltage	(Note 5)			$\pm 10$	mV
Input Offset Voltage Drift			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\operatorname{IIN}(+)$ or IIN(-)			600	nA
Input Offset Current	$\operatorname{IIN}(+)-\operatorname{IN}(-)$			$\pm 150$	nA
Input Offset Current Drift			50		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$, (Note 6)			8	mA
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}$, (Note 1)				
- VOH	$\mathrm{R}_{\mathrm{L}}=50 \Omega$			4	V
	$R_{L}=8 \Omega$			1.6	V
VOL	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	-4			V
	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	-1.6			V
Large Signal Voltage Gain	$V_{S}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, f=100 \mathrm{~Hz}$	1			$\mathrm{V} / \mathrm{mV}$
Input Common-Mode Voltage	$\mathrm{V}_{S} \leq 15 \mathrm{~V}$, (Note 3)	1.25		$\mathrm{V}^{-1.75}$	V
Common-Mode Rejection Ratio		63	85		dB
Total Harmonic Distortion	$\begin{aligned} & R_{\mathrm{L}}=8 \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vrms}, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.5	5	\%

Note 1: For operation at high temperatures, the LM13080 must be derated based upon a maximum junction temperature of $150^{\circ} \mathrm{C}$ and a thermal resistance of $120^{\circ} \mathrm{C} / \mathrm{W}$ for the miniDIP package (LM13080N) or a thermal resistance as given by the curves for the single-in-line power package (LM13080P). The thermal resistance values given are for a still air ambient with the package soldered into a printed circuit board.
Note 2: Differential input voltages up to the magnitude of the power supply voltage will not damage the input circuitry. However, input voltages outside the input common-mode voltage range will not be able to properly control the output of the amplifier.
Note 3: The input voltage applied to either input should not be allowed to go more than 0.3 V below the potential applied to pin 4 ; however, either input can be taken as high as 15 V without causing damage to the circuit. Input voltages below the minimum common-mode voltage range may cause a phase reversal in the output.
Note 4: This input current will exist only when the voltage at either input lead is driven negative. It is due to the base-isolation junction of the PNP transistor tub becoming forward biased and thereby acting as an input diode clamp. In addition to this diode action, there is also lateral NPN parasitic action on the IC chip. This transistor action can cause the output to take an undefined state for the time duration that an input is driven negative.
Note 5: $\mathrm{V}_{\mathrm{O}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$, and over the full input common-mode voltage range.
Note 6: Supply current is measured with the amplifier connected in a unity gain follower configuration and the positive input set to one-half of the supply voltage.

Typical Performance Characteristics


## Typical Performance Characteristics (Continued)



## Application Hints

The LM 13080 is a power op amp capable of sourcing or sinking more than 250 mA and does not include internal current limit or thermal shut-down. Therefore, the user must make sure that his application will not cause the power dissipation rating of the package to be exceeded. In the plastic miniDIP package the LM13080N is rated at a maximum dissipation of 1000 mW at $25^{\circ} \mathrm{C}$; whereas the metal tab single-in-line (SIP) package (LM13080P) will handle 1900 mW in free air, also at $25^{\circ} \mathrm{C}$. For operation at temperatures above $25^{\circ} \mathrm{C}$, the maximum dissipation must be derated using the equation:

$$
P_{D}=\frac{T_{J}-T_{A}}{\Theta_{J A}}
$$

where $P_{D}$ is the maximum allowable power dissipation, $T_{J}$ is the maximum junction temperature $\left(150^{\circ} \mathrm{C}\right), T_{A}$ is the ambient temperature and $\Theta_{\mathrm{JA}}$ is the thermal resistance of the package operated in a still air environment. $\Theta_{J A}$ for the LM13080N is $120^{\circ} \mathrm{C} / \mathrm{W}$, whereas the $\Theta_{J A}$ of the LM13080P depends upon the heat sink used (see curve). For example, if the LM13080P is used in free air in a $70^{\circ} \mathrm{C}$ ambient, the maximum power that can be dissipated is:

$$
\mathrm{P}_{\mathrm{D}}=\frac{150^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{65^{\circ} \mathrm{C} / \mathrm{W}}=1230 \mathrm{~mW}
$$

The LM13080 derives its ability to sink current through the use of a composite NPN/PNP output configuration. This local loop must be compensated by the series connection of a $0.05 \mu \mathrm{~F}$ capacitor and a $10 \Omega$ resistor between the output of the op amp (pin 5) and the negative powèr supply (pin 4). The RC does not just filter out the oscillation from the output waveform but actually stabilizes the loop.

If the inputs of the LM13080 are driven below the input common-mode voltage range, it is possible that the output will experience a phase reversal. This is particularly true for the non-inverting input $\left(V_{1 N}(+)\right)$. If either input is driven to a voltage level 0.3 V below the substrate (pin 4) a parasitic NPN transistor will be turned ON. The emitter of this parasitic transistor is the normal input transistor epi ( $N$-type, base) region, the base is the substrate (P-type) and the collector is every other epi region on the die. Circuit operation in this mode is unpredictable. If an input is forced below the substrate, the current flowing out of that input should be limited to 20 mA to insure that the amplifier will not be destroyed.

Programming the LM13080 is accomplished by selecting the value of RSET, the input stage bias resistor, to optimize the amplifier for each particular application. An example would be an application with low source resistance which requires a low offset voltage to make a precise DC measurement. By selecting an RSET of $100 \mathrm{k} \Omega$, the normal offset voltage would be reduced to approximately one-fourth the value it would be if a 680 k resistor was used. By studying the curves, it can be seen that the bias current will increase but an increase here has very little effect due to the small source impedance. It should also be noted that with a 100k input set resistor the gain bandwidth product will also increase, and in fact, the amplifier must be operated with a closed loop voltage gain of 6 to assure stability.

The effect of RSET on the total quiescent supply current will be very small ( $\Delta I_{\mathrm{S}}<5 \%$ IS) as long as RSET is 100 k or greater.

## Application Hints (Continued)

To employ electronic shut-down the , output bias pin, pin 2, and the negative end of the input bias resistor, RSET, are connected to the negative power supply (or ground in a single power system) through a saturated NPN transistor (or other electronic switch). When the transistor is turned OFF, all of the bias currents inside the op amp are turned OFF and all input and output terminals will float. When first turned ON, the output will take about $5 \mu \mathrm{~s}$ to reach the correct level. To insure that the LM13080 is OFF, leakage in the control device must be below the level that will allow pins 2 and 7 to fall to 0.4 V below $\mathrm{V}^{+}$.

Power supply rejection is a function of the change in voltage across the input bias resistor, RSET. To improve the PSRR of the LM13080, the user must be careful to bypass pin 7 to pin 6 or to establish a floating voltage referenced to the positive power supply to. serve as a connection point for RSET. In applications where PSRR is important, it is imperative that a supply bypass capacitor(s) be used.

## Typical Applications

## line driver

The line driver circuit in Figure 1 is able to accept an unbalanced, high impedance input and convert it to a balanced output suitable for driving a low impedance line. This is particularly useful in an environment where magnetically induced hum or noise pickup is a problem.

The outputs of the 2 LM13080's are of opposite polarity; therefore, terminating the line with a balanced load
(i.e., a differential amplifier or a transformer) will cause common-mode interference pickup to be cancelled.

This circuit will drive a 20 Vp -p signal into a $50 \Omega$ load for frequencies up to 10 kHz . Above 10 kHz the output signal is slew rate limited, but the line driver will still supply a $13 \mathrm{Vp}-\mathrm{p}$ signal at 20 kHz . The voltage gain of the network is 2 , and the low frequency roll-off is determined by:

$$
\mathrm{f}_{\mathrm{L}}=\frac{1}{2 \pi \mathrm{RC}}
$$

It can be seen that if the load is connected directly between the outputs of the amplifiers, the line driver becomes a simple bridge amplifier capable of delivering $2 W$ into a $16 \Omega$ load.

## PIEZOELECTRIC ALARM

The piezoelectric alarm shown in Figure 2 uses a 3 terminal transducer (Gulton 101FB or equivalent) to produce an 80 dB SPL alarm.

The transducer has a feedback terminal which is connected to the non-inverting input of the LM13080, causing oscillation at the resonant frequency of the piezoelectric crystal. The alarm can be controlled through the use of the electronic shut-down feature of the amplifier. The 100 k resistor and $0.1 \mu \mathrm{~F}$ capacitor are used to provide a reference voltage at the inverting input and to keep the duty cycle of the crystal oscillation close to $50 \%$. The RC time constant of this feedback network should be much greater than the time constant of the transducer.



FIGURE 2. Piezoelectric Alarm

FIGURE 1. Line Driver - Unbalanced Input to Balanced Output Note: Pin numbers apply to miniDIP.

## Typical Applications (Continued)

SIRENS
Two separate circuits for sirens are shown. The first, Figure 3, is a 2 -state or ON-OFF type siren where the LM13080 oscillates at an audio frequency and drives an $8 \Omega$ speaker and the LM339 acts as a switch which controls the audio burst rate. The second siren, Figure 4, provides a constant audio output but alternates between 2 separate tones. The LM13080 is set to oscillate at one basic frequency and this frequency is changed by adding a $200 \mathrm{k} \Omega$ charging resistor in parallel with the feedback resistor, R2.


FIGURE 3. 2-State Siren


FIGURE 4. 2-Tone Siren


## LAMP FLASHER - RELAY DRIVER

The LM13080 is easily adaptable to such applications as low frequency warning devices. The output of the oscillator is a squarewave that is used to drive lamps or small relays. As shown in Figure 5, the circuit alternately flashes 2 incandescent lamps.

FIGURE 5. Low Frequency Lamp Flasher/Relay Driver

## Typical Applications (Continued)

## MOTOR SPEED CONTROL

The LM13080 can be used to construct a very simple speed control for small motors requiring less than 0.5 A start current. This circuit operates by impressing the multiple of a reference voltage across the motor, and then varying the reference by means of quasi-positive feedback to change the voltage across the motor any time the load on the motor changes.

To understand the circuit operation, it is easiest to let the voltage at the cathode of diode D1, Figure 6, be the input voltage, $\mathrm{V}_{\mathrm{IN}}$, to the system. Diode D1 is actually a level shift diode to bring $\mathrm{V}_{\text {IN }}$ into the common-mode range of the amplifier. A reference voltage is established by the combined voltage drop through the $10 \Omega$ potentiometer, R3 and the reference diode, D2 and is applied to the non-inverting input of the LM13080. Resistor R4 is a bias resistor used to keep D2 active. The 10k speed adjust potentiometer is 2 resistors in 1 , where section R1 is the input resistance and section R2 is the negative feedback resistance. It can be seen that the voltage impressed across the motor is equal to:
$V_{\text {MOTOR }}=\frac{\left(V_{B E 2}+I_{3} R 3\right) R 2}{R 1}+V_{B E}$

The positive feedback is developed as a change in the voltage across R3 due to the change in the motor current caused by a variation in the motor's load. Resistor R3 is shown as a potentiometer so that the amount of positive feedback can be adjusted for smooth operation of the motor. Capacitor C1 and resistor R5 serve as a filter for the reference voltage at the non-inverting input of the amplifier.

## VOLTAGE REGULATORS

In normal, positive or negative regulator application such as those shown in Figure 7 and Figure 8, the LM13080 has 2 major advantages over standard operational amplifiers. The LM13080 has its own on-chip pass device and in addition can either sink or source 250 mA of load current.


FIGURE 6. Motor Speed Control


$$
2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq\left(\mathrm{V}_{\text {IN }}-2 \mathrm{~V}\right)
$$

FIGURE 7. Positive Variable Voltage Regulator


FIGURE 8. Negative Variable Voltage Regulator

Note: Pin numbers apply to miniDIP.

## National Semiconductor

## General Description

The LH0002/LH0002C is a general purpose thick film hybrid current amplifier that is built on a single substrate. The circuit features:

- High Input Impedance $400 \mathrm{k} \Omega$
- Low Output Impedance
- High Power Efficiency
- Low Harmonic Distortion
- DC to 30 MHz Bandwidth
- Output Voltage Swing that Approaches Supply Voltage
- 400 mA Pulsed Output Current
- Slew rate is typically $200 \mathrm{~V} / \mu \mathrm{s}$
- Operation from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

These features make it ideal to integrate with an operational amplifier inside a closed loop configuration to increase current output. The symmetrical
output portion of the circuit also provides a low output impedance for both the positive and negative slopes of output pulses.

The LH0002 is available in an 8-lead low-profile TO-5 header; the LH0002C is also available in an 8 -lead TO-5, and a 10 -pin molded dual-in-line package.

The LH0002 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0002C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

## Applications

- Line driver
- 30 MHz buffer
- High speed D/A conversion
- Instrumentation buffer
- Precision current source

Schematic and Connection Diagrams


Pin numbers in parentheses denote pin Pin numbers in parentheses denote pin
connections for dual-in-line package.

Dual-In-Line Package


Order Number LH0002CN See Package N10B

Metal Can Package


## Typical Applications

High Current Operational Amplifier


## Line Driver



# Absolute Maximum Ratings 

Supply Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation Ambient	600 mW
Input Voltage (Equal to Power Supply Voltage)	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
LH0002	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0002C	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Steady State Output Current	$\pm 100 \mathrm{~mA}$
Pulsed Output Current ( $50 \mathrm{~ms} \mathrm{On/1} \mathrm{sec}. \mathrm{Off)}$	$\pm 400 \mathrm{~mA}$

## Electrical Characteristics (Note 1)

Parameter	Conditions	Min.	Typ.	Max.	Units
Voltage Gain	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.95	0.97		
AC Current Gain	$\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}_{\mathrm{rms}}, \mathrm{f}=1.0 \mathrm{kHz}$		40		$\mathrm{~A} / \mathrm{ma}$
Input Impedance	$\mathrm{R}_{\mathrm{S}}=200 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	180	400	-	$\mathrm{k} \Omega$
Output Impedance	$\mathrm{V}_{\mathrm{IN}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$	-	6.0	10	$\Omega$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}$	$\pm 10$	$\pm 11$	-	V
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\pm 10$			V
DC Output Offset Voltage	$\mathrm{R}_{\mathrm{S}}=300 \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	-	$\pm 10$	$\pm 30$	mV
DC Input Offset Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	-	$\pm 6.0$	$\pm 10$	$\mu \mathrm{~A}$
Harmonic Distortion	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}_{\mathrm{rms}}, \mathrm{f}=1.0 \mathrm{kHz}$	-	0.1	-	$\%$
Rise Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \Delta \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}$		7.0	12	ns
Positive Supply Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	-	+6.0	+10	mA
Negative Supply Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	-	-6.0	-10	mA

Note 1: Specification applies for $T_{A}=25^{\circ} \mathrm{C}$ with +12 V on Pins 1 and $2 ;-12 \mathrm{~V}$ on Pins 6 and 7 for the metal can package and +12 V on Pins 1 and 2; -12 V on Pins 4 and 5 for the dual-in-line package unless otherwise specified. The parameter guarantees for LHOOO2C apply over the temperature range of $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, while parameters for the LH 0002 are guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ unless otherwise specified.

## Typical Performance





Positive Pulse



## Operational Amplifiers/Buffers

## LH0003/LH0003C Wide Bandwidth Operational Amplifier

## General Description

The LH0003/LH0003C is a general purpose operational amplifier which features: slewing rate up to 70 volts $/ \mu \mathrm{sec}$, a gain bandwidth of up to 30 MHz , and high output currents. Other features are:

- Very low offset voltage

Typically 0.4 mV

- Large output swing
$> \pm 10 \mathrm{~V}$ into $100 \Omega$ load
- High CMRR
- Good large signal frequency response t tion
The LH0003 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0003C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.


## Schematic and Connection Diagrams



## Typical Applications

> High Slew Rate Unity Gain Inverting Amplifier


[^24]

TOP VIEW
Order Number LH0003H or LH0003CH See Package H10B

Circuit Gain	CpF	C2	$\begin{gathered} \text { Slew Rate } \\ R_{L}>200 \Omega 2 . V \text { / } \mathrm{sec} \end{gathered}$	Full Output Frequency	
				$\mathrm{R}_{\mathrm{L}}$ 200!? V $\mathrm{V}_{\text {Out }}$	. 10 V
$\therefore 40$	0	0	70	400	
$\geq 10$	5	30	30	350	
$\because 5$	15	30	15	250	
$\geq 2$	50	50	5	100	
	90	90	2	50	

Typical Compensation

Unity Gain Follower


## Absolute Maximum Ratings

Supply Voltage
Power Dissipation
Differential Input Voltage
Input Voltage
Load Current
Operating Temperature Range LH0003
LH0003C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec )
$\pm 20 \mathrm{~V}$
See curve
$\pm 7 \mathrm{~V}$
Equal to supply
120 mA
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 1\&2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}<100 \Omega$		04	30	mV
Input Offset Current			002	02	$\mu \mathrm{A}$
Input Bas Current			04	20	$\mu \mathrm{A}$
Supply Current	$\mathrm{V}_{\mathrm{S}}{ }^{\text {² }} \pm 20 \mathrm{~V}$		12	3	mA
Voltage Gain	$R_{L}=100 \mathrm{k}, \mathrm{V}_{\text {S }} \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	20	70		$\mathrm{V} / \mathrm{mV}$
Voltage Gain	$R_{L}=2 \mathrm{k}, \mathrm{V}_{\text {S }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	15	40		$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$V_{S}= \pm 15, R_{L}=100 \leq 2$	$\pm 10$	$\pm 12$		$v$
Input Resistance			100		k!
Average Temperature Coefficient of Offset Voltage	$R_{S}<100 \Omega$		4		$\mu \mathrm{V} /{ }^{\prime \prime} \mathrm{C}$
Average Temperature Coefficient of Bias Current			8		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
CMRR	$\mathrm{R}_{\mathrm{S}}<100 \Omega 2, \mathrm{~V}_{\mathrm{S}}= \pm \mathrm{V}, \mathrm{V}_{\text {IN }} \pm 10 \mathrm{~V}$	70	90		dB
PSRR	$R_{\text {S }}<100 \Omega, V_{S}= \pm 15 \mathrm{~V}, \Delta \mathrm{~V}=5 \mathrm{~V}$ to 20 V	70	90		dB
Equivalent Input Norse Voltage	$\begin{aligned} & R_{\mathrm{S}}=100 \Omega, \ddagger-10 \mathrm{kHz} \text { to } 100 \mathrm{kHz} \\ & V_{\mathrm{S}}= \pm 15 \mathrm{~V} \mathrm{dc} \end{aligned}$		1.8		$\mu \mathrm{Vrms}$

Note 1. These specifications apply for $\operatorname{Pin} 7$ grounded, for $\pm 5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}< \pm 20 \mathrm{~V}$, with capacitor $\mathrm{C}_{1}=90 \mathrm{pF}$ from Pin 1 to $\mathrm{Pin}_{10}$ and $\mathrm{C}_{2}=90 \mathrm{pF}$ from $\mathrm{Pin}^{2}$ to ground, over the specified operating temperature range, unless otherwise specified
Note 2. TypIcal values are for ${ }^{\text {t }}$ AMBIENT $=25^{\circ} \mathrm{C}$ unless otherwise specified.

## Typical Performance




## 7 National Semiconductor

LH0004/LH0004C High Voltage Operational Amplifier

## General Description

The LH0004/LH0004C is a general purpose operatonal amplifier designed to operate from supply voltages up to $\pm 40 \mathrm{~V}$. The device dissipates extremely low quiescent power, typically 8 mW at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 40 \mathrm{~V}$. Additional features include:

- Capable of operation over the range of $\pm 5 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$
- Large output voltage typically $\pm 35 \mathrm{~V}$ for the LH0004 and $\pm 33 \mathrm{~V}$ for the LHOOO4C into a $2 \mathrm{~K} \Omega$ load with $\pm 40 \mathrm{~V}$ supplies
- Low input offset current typically 20 nA for the LH0004 and 45 nA for the LHOOO4C
- Low input offset voltage typically 0.3 mV
- Frequency compensation with 2 small capacitors
- Low power consumption 8 mW at $\pm 40 \mathrm{~V}$


## Operational Amplifiers/Buffers

The LH0004's high gain and wide range of overting voltages make it ideal for applications requiring large output swing and low power dissipation.

The LH0004 is. specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LHOOO4C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

## Applications

- Precision high voltage power supply
- Resolver excitation
- Wideband high voltage amplifier
- Transducer power supply


## Schematic and Connection Diagrams




Note: Pin 7 must be grounded or connected to a voltage at least 5V more negative than the positive supply (Pin 9). Pin 7 may be connected to the negative supply; however, the standby current will be increased. A resistor may be inserted in series with Pin 7 to Pin 9. The value of the resistor should be a maximum of $100 \mathrm{~K} \Omega$ per volt of potential between Pin 3 and Pin 9.

Order Number LH0004H or LH0004CH See Package H10B

## Typical Applications

Voltage Follower


Input Offset Voltage Adjust


External Current Limiting Method


High Compliance Current Source


[^25]
## Absolute Maximum Ratings

Supply Voltage, Continuous
$\pm 45 \mathrm{~V}$

Power Dissipation (See curve)
Differential Input Voltage
Input Voltage
Short Circuit Duration
Operating Temperature Range LH0004
LH0004C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec )
$\pm 45 \mathrm{~V}$
400 mW
$\pm 7 \mathrm{~V}$
Equal to supply
3 sec
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LH0004			LH0004C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S} \leq 100 \Omega \end{aligned}$		0.3	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		0.3	1.5 3.0	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	100		30	$\begin{aligned} & 120 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	$\begin{array}{r} 20 \\ 100 \end{array}$		10	$\begin{array}{r} 45 \\ 150 \end{array}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Positive Supply Current	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 40 \mathrm{~V} \end{aligned}$		110	$\begin{aligned} & 150 \\ & 175 \end{aligned}$		110	$\begin{aligned} & 150 \\ & 175 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Negative Supply Current	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 40 \mathrm{~V} \end{aligned}$		80	$\begin{aligned} & 100 \\ & 135 \end{aligned}$		80	$\begin{aligned} & 100 \\ & 135 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Voltage Gain	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, R_{L}=100 \mathrm{k}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{\text {OUT }}= \pm 30 \mathrm{~V} \\ & V_{S}= \pm 40 \mathrm{~V}, R_{\mathrm{L}}=100 \mathrm{k} \\ & V_{\text {OUT }}= \pm 30 \mathrm{~V} \end{aligned}$	30 10	60		30 10	60		$\mathrm{V} / \mathrm{mV}$ $\mathrm{V} / \mathrm{mV}$
Output Voltage	$V_{S}= \pm 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\pm 30$	$\pm 35$		$\pm 30$	$\pm 33$		V
CMRR	$\begin{aligned} & V_{\mathrm{S}}= \pm 40 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k} \\ & \mathrm{~V}_{\text {IN }}= \pm 33 \mathrm{~V} \end{aligned}$	70	90		70	90		dB
PSRR	$\begin{aligned} & V_{\mathrm{S}}= \pm 40 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k} \\ & \Delta \mathrm{~V}=20 \mathrm{~V} \text { to } 40 \mathrm{~V} \end{aligned}$	70	90		70	90		dB
Average Temperature Coefficient Offset Voltage	$R_{S} \leq 100 \Omega$		4.0			4.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Offset Current			0.4			0.4		$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Equivalent Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega, V_{S}= \pm 40 \mathrm{~V} \\ & \mathrm{f}=500 \mathrm{~Hz} \text { to } 5 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		3.0			3.0		$\mu \mathrm{Vrms}$

Note 1: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 40 \mathrm{~V}$, Pin 7 grounded, with capacitors $\mathrm{C} 1=39$ pF between Pin 1 and Pin $10, \mathrm{C} 2=22 \mathrm{pF}$ between Pin 5 and ground, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0004, and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LH0004C unless otherwise specified.

## Typical Performance








Open Lioop Frequency Response


Large Signal
Frequency Response



## National Semiconductor

Operational Amplifiers/Buffers

## LH0005/LH0005A Operational Amplifier

## General Description

The LH0005/LH0005A is a hybrid integrated circuit operational amplifier employing thick film resistors and discrete silicon semiconductors in its design. The select matching of the input pairs of transistors results in low input bias currents and a very low input offset current, both of which exhibit excellent temperature tracking. In addition, the device features:

- Very high output current capability: $\pm 50 \mathrm{~mA}$ into a 100 ohm load
- Low standby power dissipation: typically 60 mW at $\pm 12 \mathrm{~V}$
- High input resistance: typically 2 M at $25^{\circ} \mathrm{C}$
- Full operating range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Good high frequency response: unity gain at 30 MHz

With no external roll-off network, the amplifier is stable with a feedback ratio of 10 or greater. By adding a 200 pF capacitor between pins 9 and 10, and a 200 ohm resistor in series with a 75 pF capacitor from pin 4 to ground, the amplifier is stable to unity gain. The unity gain loop phase margin with the above compensation is typically 70 degrees. With a gain of 10 and no compensation the loop phase margin is typically 50 degrees.

## Schematic and Connection Diagrams




TOP VIEW
Order Number LH0005H or LH0005AH See Package H10D

## Typical Applications



## Absolute Maximum Ratings

Supply Voltage
Power Dissipation (see Curve)
Differential Input Voltage Input Voltage
Peak Load Current
Storage Temperature Range
Operating Temperature Range Lead Temperature (Soldering, 10 sec )
$\pm 20 \mathrm{~V}$
400 mW
$\pm 15 \mathrm{~V}$
Equal to supply voltages

$$
\begin{array}{r} 
\pm 100 \mathrm{~mA} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LH0005			LH0005A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage $\begin{aligned} & 25^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & R_{S} \leq 100 \Omega \\ & R_{S} \leq 100 \Omega \end{aligned}$		5	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		1	3 4	$m V$ $m V$
$\begin{aligned} & \text { Input Offset Current } \\ & 25^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \end{aligned}$			10 25	20 75		10	5 25	$\begin{aligned} & n A \\ & n A \end{aligned}$
$\begin{aligned} & \text { Input Bias Current } \\ & 25^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \end{aligned}$			15 100	50 250		8 60	25 125	$\begin{aligned} & n A \\ & n A \end{aligned}$
```Large Signal Voltage Gain -55 ' C to 25 ' C 125}\mp@subsup{}{}{\circ}\textrm{C```	$R_{L}=10 \mathrm{~K}, \mathrm{R} 2=3 \mathrm{~K}, \mathrm{~V}_{\text {OUT }}= \pm 5 \mathrm{~V}$	2 1.5	4 3		4 3	5.5 5		$\mathrm{V} / \mathrm{mV}$   $\mathrm{V} / \mathrm{mV}$
$\begin{aligned} & \text { Output Voltage Swing } \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=100 \Omega \\ & R_{L}=100 \Omega \end{aligned}$	$\begin{array}{r} -10 \\ -5 \\ -4 \end{array}$		+6 +5 +4	-10 -5 -4		+6 +5 +4	$\begin{aligned} & V \\ & v \\ & v \end{aligned}$
$\begin{aligned} & \text { Input Resistance } \\ & 25^{\circ} \mathrm{C} \end{aligned}$		1	2		1	2		$M \Omega$
Common Mode Rejection Ratio $25^{\circ} \mathrm{C}$	$V_{1 N}= \pm 4 \mathrm{~V}, \mathrm{RS} \leq 100 \Omega$	55	60		60	66		dB
Power Supply Rejection Ratio $25^{\circ} \mathrm{C}$		55	60		60	66		dB
$\begin{aligned} & \text { Supply Current (}+ \text {) } \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$			3	5		3	5	mA
Supply Current (-) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			2	4		2	4	mA
Average Temperature Coefficient of Input Offset Voltage $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\dot{R}_{S} \leq 100 \Omega$		20			10		$u \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Output Resistance $25^{\circ} \mathrm{C}$			70			\|70		Ω

Note 1: These specifications apply for pin 6 grounded, $V_{S}= \pm 12 \mathrm{~V}$, with Resistor $R_{1}=200 \Omega$ in series with Capacitor $C_{1}=75 \mathrm{pF}$ from pin 4 to ground, and $C_{2}=200 \mathrm{pF}$ between pins 9 and 10 unless otherwise specified.

Guaranteed Performance Characteristics

Typical Performance Characteristics

Maximum Power Dissipation

Operational Amplifiers/Buffers

LH0005C Operational Amplifier

General Description

The LH0005C is -a hybrid integrated circuit operational amplifier employing thick film resistors and discrete silicon semiconductors in its design. The select matching of the input pairs of transistors results in low inpuit bias currents and a very low input offset current both of which exhibit excellent temperature tracking. In addition, the device features:

- Very high output current capability: $\pm \mathbf{4 0} \mathrm{mA}$ into a 100 ohm load
- Low standby power dissipation: typically 60 mW at $\pm 12 \mathrm{~V}$
- High input resistance: typically 2 M at $25^{\circ} \mathrm{C}$
- Operating range: 0° to $85^{\circ} \mathrm{C}$
- Good high frequency response: unity gain at 30 MHz

With no external roll-off network, the amplifier is stable with a feedback ratio of 10 or greater. By adding a 200 pF capacitor between pins 9 and 10 , and a 200 ohm resistor in series with a 75 pF capacitor from pin 4 to ground, the amplifier is stable to unity gain. The unity gain loop phase margin with the above compensation is typically 70 degrees. With a gain of 10 and no compensation the loop phase margin is typically 50 degrees.

Schematic and Connection Diagrams

Typical Applications
Voltage Follower

Offset Balancing Circuit

top view
Order Number LH0005CH See Package H10D

External Current Limiting

Integrator With Bias Current Compensation

Absolute Maximum Ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (see Curve)	400 mW
Differential Input Voltage	$\pm 15 \mathrm{~V}$
Input Voltage	Equal to supply voltages
Peak Load Current	$\pm 100 \mathrm{~mA}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

PARAMETER	CONDITIONS	LH0005C			UNITS
		MIN	TYP	MAX	
			(Note 2)		
Input Offset VoltageInput Offset Current	$R_{S} \leq 100 \Omega$		3 5	10	mV
				25	nA
Input Bias Current			20	100	$n \mathrm{~A}$
Large Signal Voltage Gain	$R_{L}=10 \mathrm{~K}, \mathrm{R} 2=3 \mathrm{~K}, \mathrm{~V}_{\text {OUT }}= \pm 5 \mathrm{~V}$	2	5		V / mV
Output Voltage Swing	$R_{L}=10 \mathrm{k} \Omega$	-10		+6	V
	$R_{L}=100 \Omega$	-4	± 6	+4	V
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.5	2		MS
Common Mode Rejection Ratio	$V_{I N}= \pm 4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50	60		dB
Power Supply Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50	60		dB
Supply Current (+)			3	5	mA
Supply Current (-)			2	4	mA

Note 1: These specifications apply for pin 6 grounded, $V_{S}= \pm 12 \mathrm{~V}$, with Resistor $\mathrm{R} 1=200 \Omega$ in serıes with Capacitor $\mathrm{C} 1=75 \mathrm{pF}$ from pin 4 to ground, and $\mathrm{C} 2=200 \mathrm{pF}$ between pins 9 and 10 , over the temperature range of $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.
Note 2: Typical values are for $25^{\circ} \mathrm{C}$ only.

Maximum Power Dissipation

LH0021/LH0021C 1:0 Amp Power Operational Amplifier LH0041/LH0041C 0.2 Amp Power Operational Amplifier

General Description

The LH0021/LH0021C and LH0041/LH0041C are general purpose operational amplifiers capable of delivering large output currents not usually associated with conventional IC Op Amps. The LH0021 will provide output currents in excess of one ampere at voltage levels of $\pm 12 \mathrm{~V}$; the LH0041 delivers currents of 200 mA at voltage levels closely approaching the available power supplies. In addition, both the inputs and outputs are protected against overload. The devices are compensated with a single external capacitor and are free of any unusual ascillation or latch-up problems.

Features

- Output current
1.0 Amp (LH0021)
0.2 Amp (LH0041)
- Output voltage swing $\pm 12 \mathrm{~V}$ into 10Ω (LH0021) $\pm 14 \mathrm{~V}$ into 100Ω (LH0041)
- Wide full power bandwidth 15 kHz
- Low standby power 100 mW at $\pm 15 \mathrm{~V}$
- Low input offset voltage and current
$\begin{array}{lr}\text { - High slew rate } & 3.0 \mathrm{~V} / \mu \mathrm{s} \\ \text { - High open loop gain } & 100 \mathrm{~dB}\end{array}$

The excellent input characteristics and high output capability of the LH0021 make it an ideal choice for power applications such as DC servos, capstan drivers, deflection yoke drivers, and programmable power supplies.
The LH0041 is particularly suited for applications such as torque driver for inertial guidance systems, diddle yoke driver for alpha-numeric CRT displays, cable drivers, and programmable power supplies for automatic test equipment.
The LH0021 is supplied in a 8 pin TO- 3 package rated at 20 watts with suitable heatsink. The LH0041 is supplied in both 12 pin TO. 8 (2.5 watts with clip on heatsink) and a power 8 pin ceramic DIP (2 watts with suitable heatsink). The LH0021 and LH0041 are guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LH0021C and LH0041C are guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Schematic and Connection Diagrams

*RSC external on " G " and "K" packages. RSC internal
on "J" package. Offset Null connections available on "J" package. Offset Null connections available
only on " G " package.

Absolute Maximum Ratings

Supply Voltage
Power Dissipation Differential Input Voltage
Input Voltage (Note 1)
Peak Output Current (Note 2) LH0021/LH0021C
LH0041/LH0041C
Output Short Circuit Duration (Note 3)
Operating Temperature Range LH0021/LH0041
LH0021C/LH0041C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

DC Electrical Characteristics for LH0021/LH0021C (Note 4)

AC Electrical Characteristics for LH0021/LH0021C $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{PF}\right)$

Slew Rate	$A_{V}=+1, R_{L}=100 \Omega$	0.8	30		10	30		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~S} 2$		20			20		kHz
Small Signal Transient Response			0.3	10		03	15	$\mu \mathrm{s}$
Small Signal Overshoot			5	20		10	30	\%
Setting Time (0.1\%)	$\Delta V_{1 N}=10 \mathrm{~V}, A_{V}=+1$		4			4		$\mu \mathrm{s}$
Overload Recovery Time			3.			3		$\mu \mathrm{s}$
Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		02			0.2		\%
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, B. W. $=10 \mathrm{~Hz}$ to 10 kHz		5			5		$\mu \mathrm{V}$ rms
Input Noise Current	B. W . $=10 \mathrm{~Hz}$ to 10 kHz		0.05			0.05		$n A$ rms

DC Electrical Characteristics for LH0041/LH0041C (Note 4)

AC Electrical Characteristics for LH0041/LH0041C ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}\right)$

Slew Rate	$A_{V}-+1, R_{L}=100 \Omega$	1.5	30		10	30		$\mathrm{V} / \mu_{\mathrm{s}}$
- Power Bandwidth	$R_{L}=100 \Omega 2$		20			20		kHz
Small Signal Transient Response			0.3	10		0.3	1.5	$\mu \mathrm{s}$
Small Signal Overshoot			5	20		10	30	\%
Settling Time (0 1\%)	$\Delta V_{\text {IN }}=10 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1$,	4			4		$\mu \mathrm{s}$
Overload Recovery Time			3			3		μs
Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		02		.	02	-	\%
Input Norse Voltage	$\mathrm{R}_{\mathrm{S}}=50 \mathrm{~S} 2, \mathrm{BW}=10 \mathrm{~Hz}$ to 10 kHz		5			5		$\mu \mathrm{V} / \mathrm{rms}$
Input Norse Current	$B . W=10 \mathrm{~Hz}$ to 10 kHz		005			0.05		$n \mathrm{~A} / \mathrm{rms}$

Note 1: Rating applies for supply voltages above $\pm 15 \mathrm{~V}$. For supplies less than $\pm 15 \mathrm{~V}$, rating is equal to supply voltage.
Note 2: Rating applies for LH0041G and LH0021K with R $\mathrm{SC}=0 \Omega$.
Note 3: Rating applies as long as package power rating is not exceeded.
Note 4: Specifications apply for $\pm 5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}} \pm 18 \mathrm{~V}$, and $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{C}}=<125^{\circ} \mathrm{C}$ for LH0021K and LH0041G, and $-25^{\circ} \mathrm{C}<$
${ }^{\top} \mathrm{C} \leq+85^{\circ} \mathrm{C}$ for LH0021CK, LH0041CG and LH0041CJ unless otherwise specified. Typical values are for $25^{\circ} \mathrm{C}$ only.
Note 5: TO-8 "G" packages only.
Note 6: Rating applies for " J " DIP package and for TO-8 " G " package with R $\mathrm{R}_{\mathrm{SC}}=3.3$ ohms.

Typical Performance Characteristics

Package Power Dissipation LH0041/LH0041C

Short Circuit Current vs
Temperature LH0021/LH0021C

Voltage Follower Pulse Response

Typical Performance Characteristics (Cont'd)

Typical Applications

10 WATT (rms) Audio Amplifier

Two Way Intercom

Power Comparator

CRT Deflection Yoke Driver

Programmable High Current Source/Sink

DC Servo Amplifier

Auxiliary Circuits

LH0021 Unity Gain Circuit with Short Circuit Limiting

LH0041/LH0021 Offset Voltage Null Circuit (LH0041CJ Pin Connections Shown)*

LH0041G Unity Gain with Short Circuit Limiting

LH0041G Offset Voltage Null Circuit *

Operation from Single Supplies

Operation from Non-Symmetrical Supplies

[^26]National Semiconductor LH0022/LH0022C High Performance FET Op Amp LH0042/LH0042C Low Cost FET Op Amp LH0052LLH0052C Precision FET Op Amp

General Description

The LH0022/LH0042/LH0052 are a family of FET input operational amplifiers with very closely matched input characteristics, very high input impedance, and ultra-low input currents with no compromise in noise, common mode rejection ratio, open loop gain, or slew rate. The internally laser nulled LH0052 offers 500 microvolts maximum offset and $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset drift. Input offset current is less than 500 femtoamps at room temperature and 500 pA maximum at $125^{\circ} \mathrm{C}$. The LH0022 and LH0042 are not internally nulled but offer comparable matching characteristics. All devices in the family are internally compensated and are free of latch-up and unusual oscillation problems. The devices may be offset nulled with a single 10k trimpot with neglible effect in CMRR.

The LH0022, LH0042 and LH0052 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LHOO22C, LH0042C and LH0052C are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- Low input offset current-500 femtoamps max. (LH0052)

Schematic and Connection Diagrams

- Low input offset drift $-5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max$ (LH0052)
- Low input offset voltage - 100 microvolts-typ.
- High open loop gain - 100 dB typ.
- Excellent slew rate $-3.0 \mathrm{~V} / \mu \mathrm{s}$ typ.
- Internal $6 \mathrm{~dB} /$ octave frequency compensation
- Pin compatible with standard IC op amps (TO-5 package)

The LH0022/LH0042/LH0052 family of IC op amps are intended to fulfill a wide variety of applications for process control, medical instrumentation, and other systems requiring very low input currents and tightly matched input offsets. The LHOO52 is particularly suited for long term high accuracy integrators and high accuracy sample and hold buffer amplifiers. The LH0022 and LH0042 provide low cost high performance for such applications as electrometer and photocell amplification, pico-ammeters, and high input impedance buffers.

Special electrical parameter selection and custom built circuits are available on special request.

For additional application information and information on other National operational amplifiers, see Available Liriear Applications Literature.

tep view
Order Number LH0022D, LH0022CD, LH0042D, LH0042CD. LH0052D or LH0052CD See Package D14E

Order Number LH0022H, LH0022CH, LH0042H, LH0042CH, LH0052H or LH0052CH See Package H08A

Absolute Maximum Ratings

Supply Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation (see graph)	500 mW
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Differential Input Voltage (Note 2)	$\pm 30 \mathrm{~V}$
Voltage Between Offset Null and V^{-}	$\pm 0.5 \mathrm{~V}$
Short Circuit Duration	Continuous
Operating Temperature Range	
LH0022, LH0042, LH0052	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LHOO22C, LH0042C, LH0052C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics for LH0022LH0022C (Note 3)

AC Electrical Characteristics For all amplifiers ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0022/42/52			L.H0022C/42C/52C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Slew Rate	Voltage Follower	1.5	3.0		1.0	3.0		$\mathrm{V} / \mu \mathrm{s}$
Large Signal Bandwidth	Voltage Follower		40			40		kHz
Small Signal Bandwidth			1.0			1.0		MHz
Rise Time			0.3	1.5		0.3	1.5	$\mu \mathrm{s}$
Overshoot			10	30		15	40	\%
Settling Tirne (0.1 \%)	$\Delta V_{\text {IN }}=10 \mathrm{~V}$		4.5			4.5		$\mu \mathrm{s}$
Overload Recovery			4.0	1		4.0		$\mu \mathrm{s}$
Input Noise Voltage	$R_{S}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{~Hz}$		150			150		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$R_{S}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=100 \mathrm{~Hz}$		55			55		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$\mathbf{R}_{\text {S }}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=1 \mathrm{kHz}$		35			35	.	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{o}}=10 \mathrm{kHz}$		30			30		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$B W=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, R_{\mathrm{S}}=10 \mathrm{k} \Omega$		12			12		$\mu \mathrm{V}$ rms
${ }^{\prime}$ Input Noise Current	$B W=10 \mathrm{~Hz}$ to 10 kHz		$<.1$			$<.1$		pArms

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: Rating applies for minimum source resistance of $10 \mathrm{k} \Omega$, for source resistances less than $10 \mathrm{k} \Omega$, maximum differential
input voltage is $\pm 5 \mathrm{~V}$.
Note 3: Unless otherwise specified, these specifications apply for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant \pm 125^{\circ} \mathrm{C}$ for the
LH0022 and LH0052 and $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$ for the LH0022C and LH0052C Typical values are given for $T_{A}=25^{\circ} \mathrm{C}$.
Note 4: Input currents are a strong function of temperature. Due to high speed testing they are specified a junction temperature
T ; $=25^{\circ} \mathrm{C}$, self heating will cause an increase in current in manual tests.

Auxiliary Circuits (Shown for TO-5 pin out)

Offset Null
Protecting Inputs From $\pm 150 \mathrm{~V}$ Transients

Boosting Output Drive to $\pm \mathbf{1 0 0} \mathrm{mA}$

Typical Applications

Low Drift Sample and Hold

Precision Voltage Comparator

Typical Applications (Cont'd)

Picoamp Amplifier for pH Meters and Radiation Detectors

Sensitive Low Cost "VTVM"

True Instrumentation Amplifier

Precision Sample and Hold

Precision Subtractor for Automatic Test Gear

Ultra Low Level Current Source

Precision Integrator

Re-Zeroing Amplifier

Typical Performance Characteristics

[^27]Typical Performance Characteristics (Cont'd)

National Semiconductor
 LH0024/LH0024C High Slew Rate Operational Amplifier

General Description

The LH0024/LH0024C is a very wide bandwidth, high slew rate operational amplifier intended to fulfill a wide variety of high speed applications such as buffers to A to D and D to A converters and high speed comparators. The device exhibits useful gain in excess of 50 MHz making it possible to use in video applications requiring higher gain accuracy than is usually associated with such amplifiers.

Features

- Very high slew rate $-500 \mathrm{~V} / \mu \mathrm{s}$ at $\mathrm{Av}=+1$
- Wide small signal bandwidth -70 MHz
- Wide large signal bandwidth -15 MHz
- High output swing $- \pm 12 \mathrm{~V}$ into 1 K

\author{

- Offset null with single pot
 - Low input offset -2 mV
 - Pin compatible with standard IC op amps
}

The LH0024/LH0024C's combination of wide bandwidth and high slew rate make it an ideal choice for a variety of high speed applications including active filters, oscillators, and comparators as well as many high speed general purpose applications.
The LH0024 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, whereas the LH0024C is guaranteed $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

Typical Applications

TTL Compatible Comparator

Offset Null

Video Amplifier

Absolute Maximum Ratings

Supply Voltage
Input Voltage
Differential Input Voltage
Power Dissipation
Operating Temperature Range LH0024
LH0024C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

DC Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LH0024			LH0024C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\begin{aligned} & R_{S}=50 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S}=50 \Omega \end{aligned}$		2.0	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		5.0	$\begin{array}{r} 8.0 \\ 10.0 \end{array}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{S}=50 \Omega \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$		-20			-25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	$\begin{array}{r} 5.0 \\ 10.0 \end{array}$		4.0	$\begin{aligned} & 15.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	$\begin{aligned} & 30 \\ & 40 \end{aligned}$		18	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Supply Current			12.5	15		12.5	15	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	4 3	5		3 2.5	4		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12	± 13		± 12	± 13		V
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}^{\prime}, R_{L}=1 \mathrm{k}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \end{aligned}$	± 12 ± 10	± 13			± 13		$\begin{aligned} & v \\ & v \end{aligned}$
Slew Rate	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k}, \\ & C_{1}=C_{2}=30 \rho F \\ & A_{V}=+1, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	400	500		250	400		$\mathrm{V} / \mu_{\mathrm{s}}$
Common Mode Rejection Ratio	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \Delta V_{I N}= \pm 10 \mathrm{~V} \\ & R_{S}=50 \Omega \end{aligned}$		60			60		dB
Power Supply Rejection Ratio	$\begin{aligned} & \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$		60			60		dB

Equal to Supply
$\pm 5 \mathrm{~V}$
600 mW
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Typical Performance Characteristics

Applications Information

1. Layout Considerations

The LH0024/LH0024C, like most high speed circuitry, is sensitive to layout and stray capacitance. Power supplies should be by-passed as near the device as is practicable with at least $.01 \mu \mathrm{~F}$ disc type capacitors. Compensating capacitors should also be placed as close to device as possible.

2. Compensation Recommendations

Compensation schemes recommended in Table 1 work well under typical conditions. However; poor layout and long lead lengths can degrade the performance of the LHOO24 or cause the device to oscillate. Slight adjustments in the values for C1, C2, and C3 may be necessary for a given layout. In particular, when operating at a gain of

-1, C3 may require adjustment in order to perfectly cancel the input capacitance of the device.
When operating the LH0024/LH0024C at a gain of +1 ; the value of $\mathbf{R 1}$ should be at least 1 K ohm.
The case of the LH0O24 is electrically isolated from the circuit; hence, it may be advantageous to drive the case in order to minimize stray capacitances.

3. Heat Sinking

The LH0024/LH0024C is specified for operation without the use of an explicit heat sink. However, internal power dissipation does cause a significant temperature rise. Improved offset voltage drift can be obtained by limiting the temperature rise with a clip-on heat'sink such as the Thermalloy 2228B or equivalent.

General Description

The LH0032/LH0032C is a high slew rate, high input impedance differential operational amplifier suitable for diverse application in fast signal handling. The high allowable differential input voltage, ease of output clamping, and high output drive capability particularly suit it for comparator applications. It may be used in applications normally reserved for video amplifiers allowing the use of operational gain setting and frequency response shaping into the megahertz region.

Features

- $500 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- 70 MHz bandwidth
- $10^{12} \Omega$ input impedance
- 5 mV max. input offset voltage
- FET input
- Offset null with single pot
- No compensation for gains above 50
- Peak output current to 100 mA

The LH0032's wide bandwidth, high input impedance and high output capacity make it an ideal choice for applications such as summing amplifiers in high speed D to A's, buffers in data acquisition systems, and sample and hold circuits. Additional applications include high speed integrators and video amplifiers. The LH0032 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the LH0032C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

top view

Absolute Maximum Ratings

Supply Voltage, V_{S}	$\pm 18 \mathrm{~V}$
Input Voltage, V_{IN}	$\pm \mathrm{V}_{\mathrm{S}}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$ or $\pm 2 \mathrm{~V}_{\mathrm{S}}$ ।
Power Dissipation, P_{D}	1.5 W, derate $100^{\circ} \mathrm{C} / \mathrm{W}$ to $125^{\circ} \mathrm{C}$ (Note 1)
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2 W , derate $70^{\circ} \mathrm{C} / \mathrm{W}$ to $125^{\circ} \mathrm{C}$ (Note 1)

Operating Temperature Range, T_{A}

LH0032G	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0032CG	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Junction Temperature, T J	$175^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {max }}$ unless otherwise noted

Parameter		Test Conditions			LH0032G			LH0032CG			Units			
		Min.	Typ.	Max.	Min.	Typ.	Max.							
V_{OS}	Input Offset Voltage				$V_{\text {IN }}=0$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}^{\prime}$	$5^{\circ} \mathrm{C}$ (Note 2)		2	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$		2	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	mV
$\Delta \mathrm{V}_{\text {OS }} / \mathrm{LT}$	Average Offset Voltage Drift					25			25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$			
los	Input Offset Current	$\begin{aligned} & T_{J}=25 \\ & T_{A}=25 \\ & T_{J}=T_{A} \end{aligned}$	(Note 2) (Note 3) TMAX				$\begin{gathered} 25 \\ 250 \\ 25 \\ \hline \end{gathered}$			$\begin{gathered} 50 \\ 500 \\ 5 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$			
I_{B}	Input Bias Current	$\begin{aligned} & T_{J}=25 \\ & T_{A}=25 \\ & T_{J}=T_{A} \end{aligned}$	(Note 2) (Note 3) TMAX				$\begin{gathered} 100 \\ 1 \\ 50 \\ \hline \end{gathered}$			$\begin{gathered} \hline 500 \\ 5 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$			
VINCM	Input Voltage Range				± 10	± 12		± 10	± 12		V			
CMRR	Common Mode Rejection Ratio	$\Delta \mathrm{V}_{\text {IN }}=10 \mathrm{~V}$			50	60		50	60		dB			
$\mathrm{A}_{\mathrm{VOL}}$	Open-Loop Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$			$\begin{aligned} & \hline 60 \\ & 57 \\ & \hline \end{aligned}$	70		60	70		dB			
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$			± 10	± 13.5		± 10	± 13		V			
Is	Power Supply Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=0$				18	20		20	22	mA			
PSRR	Power Supply Rejection Ratio	$\Delta V_{S}=10 \mathrm{~V}$			50	60		50	60		dB			

AC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Parameier		Conditions		Min.	Typ.	Max.	Units
S_{R}	Slew Rate	$\mathrm{A}_{\mathrm{V}}=+1$	$\Delta V_{\text {IN }}=20 \mathrm{~V}$	350	500		$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{t}_{\text {s }}$	Settling Time to 1\% of Final Value	$A_{V}=-1$,			100		
t_{s}	Settling Time to 0.1\% of Final Value				300		ns
t_{R}	Small Signal Rise Time	$A_{V}=+1 ; \Delta V^{\prime}=1 \mathrm{~V}$			8	20	
t_{D}					10	25	

Note 1: In order to limit maximum junction temperature to $+175^{\circ} \mathrm{C}$, it may be necessary to operate with $\mathrm{V}_{S}< \pm 15 \mathrm{~V}$ when T_{A} or T_{C} exceeds specific values depending on the P_{D} within the device package. Total P_{D} is the sum of quiescent and load-related dissipation. See Applications Notes AN277, "Applications of Wide-Band Buffer Amplifiers" and AN253, "High-Speed Operational-Amplifier Applications" for a discussion of load-related power dissipation.
Note 2: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high-speed automatic testing. Actual values at operating temperature will exceed the value at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. When supply voltages are $\pm 15 \mathrm{~V}$, no-load operating junction temperature may rise $40-60^{\circ} \mathrm{C}$ above ambient and more under load conditions. Accordingly, V_{OS} may change one to several mV , and I_{B} and l_{OS} will change significantly during warm-up. Refer to I_{B} and I_{OS} vs. temperature graph for expected values.
Note 3: Measured in still air 7 minutes after application of power.

Typical Performance Characteristics

Bode Plot (Uncompensated)

Common Mode Rejection Ratio vs. Frequency

Normalized Input Bias and Offset Current vs. Junction Temperature

Supply Current vs. Supply Voltage

Bode Plot (Unity Gain Compensation)

Large Signal Pulse Response

Normalized Input Bias Current During Warm-Up

Input Voltage Range and Output Voltage vs. Supply Voltage

Large Signal Frequency Response

Large Signal Pulse Response

Input Bias Current vs. Input Voltage

Typical Applications

100X Buffer Amplifier

TYP. $\mathrm{BW}_{3 \mathrm{~dB}}=10 \mathrm{MHz}$

Non-Compensated Unity Gain Inverter

TYP. $\mathrm{BW} 3 \mathrm{~dB}=70 \mathrm{MHz}$

High Speed Current Mode MUX

Applications Information

Power Supply Decoupling

The LH0032/LH0032C, like most high speed circuits, is sensitive to layout and stray capacitance. Power supplies should be by-passed as near to pins 10 and 12 as practicable with low inductance capacitors such as $0.01 \mu \mathrm{~F}$ disc ceramics. Compensation components should also be located close to the appropriate pins to minimize stray reactances.

Input Current

Because the input devices are FETs, the input bias current may be expected to double for each $11^{\circ} \mathrm{C}$ junction temperature rise. This characteristic is plotted in the typical performance characteristics graphs. The device will self-heat due to internal power dissipation after application of power thus raising the FET junction temperature $40-60^{\circ} \mathrm{C}$ above free-air ambient temperature when supplies are $\pm 15 \mathrm{~V}$. The device temperature will stabilize within 5-10 minutes after application of power, and the input bias currents measured at that time will be indicative of normal operating currents. An additional rise would occur as power is delivered to a load due to additional internal power dissipation.

There is an additional effect on input bias current as the input voltage is changed. The effect, common to all FETs, is an avalanche-like increase in gate current as the FET gate-to-drain voltage is increased above a critical value depending on FET geometry and doping levels. This effect will be noted as the input voltage of the LH0032 is taken below ground potential when the supplies are $\pm 15 \mathrm{~V}$. All of the effects described here may be minimized by operating the device with $\mathrm{V}_{\mathrm{S}} \leqslant \pm 15 \mathrm{~V}$.

These effects are indicated in the typical performance curves.

Input Capacitance

The input capacitance to the LH0032/LH0032C is typically 5 pF and thus may form a significant time constant with high value resistors. For optimum performance, the input capacitance to the inverting input should be compensated by a small capacitor across the feedback resistor. The value is strongly dependent on layout and closed loop gain, but will typically be in the neighborhood of several picofarads.

In the non-inverting configuration, it may be advantageous to bootstrap the case and/or a guard conductor to the inverting input. This serves both to divert leakage currents away from the non-inverting input and to reduce the effective input capacitance. A unity gain follower so treated will have an input capacitance under a picofarad.

Heat Sinking

While the LH0032/LH0032C is specified for operation without any explicit heat sink, internal power dissipation does cause a significant temperature rise. Improved bias current performance can thus be obtained by limiting this temperature rise with a small heat sink such as the Thermalloy No. 2241 or equivalent. The case of the device has no internal connection, so it may be electrically connected to the sink if this is advantageous. Be aware, however, that this will affect the stray capacitances to all pins and may thus require adjustment of circuit compensation values.

For additional applications information see Application Note AN-253.

General Description

- Output drive adequate for most loads
- Single pre-calibrated package

Features

- Damn fast (LH0063) 6000V/ $\mu \mathrm{s}$
- Wide range single or dual supply operation
- Wide power bandwidth DC to 100 MHz
- High output drive $\quad \pm 10 \mathrm{~V}$ with 50Ω load
a Low phase non-linearity 2 degrees
- Fast rise times

2 ns
\pm High current gain 120 dB

- High input resistance $10^{10} \Omega$

These devices are constructed using specially selected junction FET's and active laser trimming to, achieve guaranteed performance specifications. The LH0033 and LH0063 are specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas, the LH0033C and LH 0063 C are specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The LH0033/LH0033C is available in a 1.5 W metal TO-8 package and a special $1 / 2 \times 1$ inch 8 pin ceramic dual-in-line package while the LH0063/ LH0063C is available in a 5 W 8 -pin TO-3 package.

Connection Diagrams

Advantages

a Only +10 V supply needed for $5 \mathrm{~V}_{\mathrm{P} . \mathrm{p}}$ video out

- Speed does not degrade system performance
- Wide data rate range for phase encoded systems

Metal Can Package

Order Number LH0033G or LH0033CG See Package H12B

Dual-In-Line Package

Order Number LH0033J or LH0033CJ See Package HY08A

Metal Can Package

CASE IS ELECTRICALLY isOLATED

Order Number LH0063K or LH0063CK See Package K08A

Absolute Maximum Ratings

Supply Voltage (V ${ }^{+}-\mathrm{V}^{-}$)	40 V
Maximum Power Dissipation (See Curves)	
LH0063/LH0063C	5 W
LH0033/LH0033C	1.5 W
Maximum Junction Temperature	$175^{\circ} \mathrm{C}$
Input Voltage	Equal to Supplies
Continuous Output Current	
LH0063/LH0063C	$\pm 250 \mathrm{~mA}$
LH0033/LH0033C	$\pm 100 \mathrm{~mA}$

DC Electrical Characteristics $V_{S}= \pm 15 \mathrm{~V}, T_{M N} \leqslant T_{A} \leqslant T_{\text {MAX }}$ unless otherwise specified

Parameter	Conditions	Limits						Units
		LH0033			LH0033C			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Output Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, \mathrm{~V}_{I N}=0 \mathrm{~V} \\ & \text { (see note } 1 \text {) } \\ & \mathrm{R}_{\mathrm{S}}=100 \Omega \end{aligned}$		5.0	10 15		12	20	mV mV
Average Temperature Coefficient of Offset Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		50			50		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias	$V_{I N}=0 \mathrm{~V} \quad \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$ (Note 1)			250			500	pA
Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Note 2) }$			2.5			5.0	nA
	$T_{J}=T_{A}=T_{\text {MAX }}$			10			20	nA
Voltage Gain	$V_{O}= \pm 10 \mathrm{~V}, R_{S}=100 \Omega, R_{L}=1.0 \mathrm{k} \Omega$	0.97	0.98	1.00	0.96	0.98	1.00	V/V
Input Impedance	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	10^{10}	1011		1010	1011		Ω
Output Impedance	$V_{I N}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}$		6.0	10		6.0	10	Ω
Output Voltage Swing	$\begin{aligned} & V_{I}= \pm 14 \mathrm{~V}, R_{L}=1.0 \mathrm{k} \\ & V_{I}= \pm 10.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 9.0 \end{aligned}$			$\begin{gathered} \pm 12 \\ \pm 9.0 \end{gathered}$			$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Supply Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		20	22		21	24	mA
Power Consumption	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		600	660		630	720	mW

Note 1 is Note 2 of LH0032
Note 2 is Note 3 of LH0032

AC Electrical Characteristics $T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$

Parameter	Conditions	Limits						Units
		LH0033			LH0033C			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Slew Rate	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	1000	1500		1000	1400		$\mathrm{V} / \mu \mathrm{s}$
Bandwidth	$\mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}_{\text {rms }}$		100			100		MHz
Phase Non-Linearity	$\mathrm{BW}=1.0$ to 20 MHz		2.0			2.0		degrees
Rise Time	$\Delta V_{I N}=0.5 \mathrm{~V}$		2.9			3.2		ns
Propagation Delay	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		1.2			1.5		ns
Harmonic Distortion	$\mathrm{f}>1 \mathrm{kHz}$		<0.1			<0.1		\%

Note 1: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high-speed automatic testing. Actual values at operating temperature will exceed the value at $\mathrm{T}_{j}=25^{\circ} \mathrm{C}$. When supply voltages are $\pm 15 \mathrm{~V}$, no-load operating junction temperature may rise $40-60^{\circ} \mathrm{C}$ above ambient and more under load conditions. Accordingly, V_{OS} may change one to several mV , and I_{B} will change significantly during warm-up. Refer to $I_{B} v s$. temperature graph for expected values.
Note 2: Measured in still air 7 minutes after application of power.

DC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {MIN }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{T}_{\text {MAX }}$ unless otherwise specified

Parameter	Conditions	Limits						Units
		LH0063			LH0063C			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Output Offset	$\begin{aligned} & R_{S} \leqslant 100 \mathrm{k} \Omega, T_{J}=25^{\circ} \mathrm{C} \\ & R_{L}=100 \Omega \end{aligned}$		10	$\begin{gathered} 25 \\ 100 \end{gathered}$		10	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Temperature Coefficient of Output Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \mathrm{k} \Omega$		300			300		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.1	10^{-5}		0.1	5-5	nA
Voltage Gain	$V_{I N}= \pm 10 \mathrm{~V}, R_{S} \leqslant 100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.94	0.96	1.0	0.94	0.96	1.0	VIV
Voltage Gain	$\begin{aligned} & V_{I N}= \pm 10 \mathrm{~V}, R_{S} \leqslant 100 \mathrm{k} \Omega, R_{L}=50 \Omega, \\ & T_{J}=25^{\circ} \mathrm{C} \end{aligned}$	0.92	0.93	0.98	0.91	0.93	0.98	V/V
Input Capacitance	Case Shorted to Output		8.0			8.0		pF
Output Impedance	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leqslant 100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$		1.0	4.0		1.0	4.0	Ω
Output Current Swing	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leqslant 100 \mathrm{k} \Omega$	0.2	0.25		0.2	0.25		Amps
Output Voltage Swing	$R_{L}=50 \Omega$	± 10	± 13		± 10	± 13		V
Output Voltage Swing	$\mathrm{V}_{S}= \pm 5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	5.0	7.0		5.09	7.0		V
Supply Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		35	65		35	65	mA
Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$		50			50		mA
Power Consumption	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		1.05	1.95		1.05	1.95	W
Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$		500			500		mW

AC Electrical Characteristics LH0063 L Lноов $3 C\left(T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega\right)$

Parameter	Conditions	Limits						Units
		LH0063			LH0063C			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Slew Rate	$\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{1 \mathrm{~N}}= \pm 10 \mathrm{~V}$		6000			6000		$\mathrm{V} / \mu \mathrm{S}$
Slew Rate	$\mathrm{R}_{L}=50 \Omega, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	2000	2400		2000	2400		$\mathrm{V} / \mu \mathrm{s}$
Bandwidth	$\mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}_{\text {rms }}$		200			200		MHz
Phase Non-Linearity	$\mathrm{BW}=1.0$ to 20 MHz		2.0			2.0		degrees
Rise Time	$\Delta V_{I N}=0.5 \mathrm{~V}$		1.6			1.9		ns
Propagation Delay	$\Delta V^{\text {IN }}=0.5 \mathrm{~V}$		1.9			2.1		ns
Harmonic Distortion			<0.1			<0.1		\%

Note 1: Unless otherwise specified, these specifications apply for +15 V applied to pins 1 and $12,-15 \mathrm{~V}$ applied to pins 9 and 10, and pin 6 shorted to pin 7 for the LH0033/LH0033C. For the LH0063/LH0063C, specifiications apply for +15 V applied to pins 1 and 2 , -15 V applied to pins 7 and 8, and pin 5 shorted to pin 6 . Unless otherwise noted, specifications apply over a temperature range of $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{j} \leqslant+125^{\circ} \mathrm{C}$ for the LH0033 and LH0063; and $-25^{\circ} \mathrm{C} \leqslant T_{J} \leqslant+85^{\circ} \mathrm{C}$ for the LH0033C and LH0063C. Typical values shown are for $T_{J}=25^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Typical Performance Characteristics (continued)

Application Hints

Recommended Layout Precautions: RF/video printed circuit board layout rules should be followed when using the LH0033 and LH0063 since they will provide power gain to frequencies over 100 MHz . Ground planes are recommended and power supplies should be decoupled at each device with low inductance capacitors. In addition, ground plane shielding may be extended to the metal case of the device since it is electrically isolated from internal circuitry. Alternatively the case should be connected to the output to minimize input capacitance.

Offset Voltage Adjustment: Both the LH0033's and LH0063's offset voltages have been actively trimmed by laser to meet guaranteed specifications when the offset preset pin is shorted to the offset adjust pin. This pre-calibration allows the devices to be used in most DC or AC applications without individually offset nulling each device. If offset null is desirable, it is simply obtained by leaving the offset preset pin open and connecting a trim pot of 100Ω for the LH0033 or $1 \mathrm{k} \Omega$ for the LH0063 between the offset adjust pin and V^{-} as illustrated in Figures 1 and 2.

FIGURE 1. Offset Zero Adjust for LH0033 (Pin nos. shown for TO-8)

FIGURE 2. Offset Zero Adjust for LH0063

Applications Hints (Cont'd)

Operation from Single or Asymmetrical Power Supplies: Both device types may be readily used in applications where symmetrical supplies are unavailable or not desirable. A typical application might be an interface to a MOS shift register where $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{-}=-12 \mathrm{~V}$. In this case, an apparent output offset occurs due to the device's voltage gain of less than unity. This additional output offset error may be predicted by:

$$
\Delta V_{0} \cong\left(1-A_{v}\right) \frac{\left(V^{+}-V^{-}\right)}{2}=.005\left(V^{+}-V^{-}\right)
$$

where:
$A_{V}=$ No load voltage gain, typically .99
$\mathrm{V}^{+}=$Positive supply voltage
$\mathrm{V}^{-}=$Negative supply voltage

For the above example, ΔV_{O} would be -35 mV . This may be adjusted to zero as described in Section 2. For AC coupled applications, no additional offset occurs if the DC input is properly biased as illustrated in the "typical applications" section.
Short Circuit Protection: In order to optimize transient response and output swing, output current limit has been omitted from the LH0033 and LH0063. Short circuit protection may be added by inserting appropriate value resistors between V^{+}and $\mathrm{V}_{\mathrm{C}}{ }^{+}$pins and V^{-}and $\mathrm{V}_{\mathrm{c}}{ }^{-}$pins

figure 3. Lh0033 Using Resistor Current Limiting
as illustrated in Figures 3 and 4. Resistor values may be predicted by:

$$
\begin{aligned}
& R_{\mathrm{LIM}} \cong \frac{\mathrm{~V}^{+}}{I_{\mathrm{SC}}}=\frac{\mathrm{V}^{-}}{\mathrm{I}_{\mathrm{SC}}} \\
& \text { where: } \quad \mathrm{I}_{\mathrm{SC}} \leq .100 \mathrm{~mA} \text { for LH0033 } \\
& \mathrm{I}_{\mathrm{SC}} \leq 250 \mathrm{~mA} \text { for LH0063 }
\end{aligned}
$$

The inclusion of limiting resistors in the collectors of the output transistors reduces output voltage swing. Decoupling $\mathrm{V}_{\mathrm{c}}{ }^{+}$and $\mathrm{V}_{\mathrm{C}}{ }^{-}$pins with capacitors to ground, will retain full output swing for transient pulses. Alternate active current limit techniques that retain full DC output swing are shown in Figures 5, 6 and 7. In Figures 5 and 6, the current sources are saturated during normal operation thus apply full supply voltage to the V_{c} pins. Under fault conditions, the voltage decreases as required by the overload. For Figure 5:

$$
R_{\mathrm{LIM}}=\frac{V_{\mathrm{BE}}}{I_{\mathrm{SC}}}=\frac{.6 \mathrm{~V}}{60 \mathrm{~mA}}=10 \Omega
$$

In Figure 6, quad transistor arrays are used to minimize can count and:

$$
R_{\text {LIM }}=\frac{V_{B E}}{1 / 3\left(I_{S C}\right)}=\frac{.6 \mathrm{~V}}{1 / 3(200 \mathrm{~mA})}=8.2 \Omega
$$

FIGURE 4. LH0063 Using Resistor Current Limiting

Applications Hints (Cont'd)

figure 5. LH0033 Current Limiting Using Current Sources

FIGURE 6. LH0063 Current Limiting Using Current
Sources

Capacitive Loading: Both the LH0033 and LH0063 are designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without susceptibility to oscillation. However, peak current resulting from ($C \times d_{V} / d_{t}$) should be limited below absolute maximum peak current ratings for the devices.

Thus for the LH0033:

$$
\left(\frac{\Delta V_{\text {IN }}}{\Delta t}\right) \times C_{L} \leq \text { lout } \leq \pm 250 \mathrm{~mA}
$$

Applications Hints (Cont'd)

In addition, power dissipation resulting from driving capacitative loads plus standby power should be kept below total package power rating:

$$
\begin{aligned}
& P_{\substack{\text { diss } \\
\text { pkg }}} \geq P_{D C}+P_{A C} \\
& P_{\text {diss }} \geq\left(V^{+}-V^{-}\right) \times I_{S}+P_{A C} \\
& \mathrm{pkg} \\
& P_{A C} \cong\left(V_{P-P}\right)^{2} \times+\times C_{L}
\end{aligned}
$$

where $\quad V_{\text {P.p }}=$ Peak-to-peak output voltage swing

$$
f=\text { frequency }
$$

$C_{L}=$ Load Capacitance

Operation Within an Op Amp Loop: Both devices may be used as a current booster or isolation buffer within a closed loop with op amps such as LH0032, LH0062, or LM118. An isolation
resistor of 47Ω should be used between the op amp output and the input of LH0033. The wide bandwidths and high slew rates of the LH0033 and LH0063 assure that the loop has the characteristics of the op amp and that additional rolloff is not required.

Hardware: In order to utilize the full drive capabilities of both devices, each should be mounted with a heat sink particularly for extended temperature operation. The cases of both are isolated from the circuit and may be connected to system chassis.

ACHTUNG!

Power supply bypassing is necessary to prevent oscillation with both the LHOO33 and LH0063 in all circuits. Low inductance ceramic disc capacitors with the shortest practical lead lengths must be connected from each supply lead (within $<1 / 4$ to $1 / 2^{\prime \prime}$ of the device package) to a ground plane. Capacitors should be one or two $0.1 \mu \mathrm{~F}$ in parallel for the LHOO33; adding a $4.7 \mu \mathrm{~F}$ solid tantalum capacitor will help in troublesome instances. For the LH0063, two $0.1 \mu \mathrm{~F}$ ceramic and one $4.7 \mu \mathrm{~F}$ solid tantalum capacitors in parallel will be necessary on each supply lead.

Schematic Diagrams

LH0033/LHOO33C

PIN Numbers shown for to-s ("G") Package.

LH0063/LH0063C

Gamma Ray Pulse Integrator

Typical Applications (Cont'd)

Nuclear Particle Detector

Isolation Buffer

High Input Impedance AC Coupled Amplifier

Coaxial Cable Driver

Coaxial Cable Driver

1W CW Final Amplifier

Typical Applications (Cont'd)

High Input Impedance Comparator With Offset Adjust

Instrumentation Shield/Line Driver

Single Supply AC Amplifier

$$
\frac{1}{\Longrightarrow} \quad \xlongequal{\frac{1}{2}}
$$

4.5 MHz Notch Filter

High Speed Sample \& Hold

Operational Amplifiers/Buffers

LH0044 Series Precision Low Noise Operational Amplifiers

General Description

The LH0044 Series is a low noise, ultra-stable, high gain, precision operational amplifier family intended to replace either chopper-stabilized monolithic or modular amplifiers. The devices are particularly suited for differential mode, inverting, and non-inverting mode.applications requiring very low initial offset, low offset drift, very high gain, high CMRR, and high PSRR. In addition, the LH0044 Series' low initial offset and offset drift eliminate costly and time consuming null adjustments at the systems level. The superior performance afforded by the LHOO44 Series is made possible by advanced processing and testing techniques, as well as active laser trim of critical metal film resistors to minimize offset voltage and drift. Unique construction eliminates thermal feedback effects.

The LH0044 Series is an excellent choice for a wide range of precision applications including strain gaugebridges, thermocouple amplifiers, and ultrastable reference amplifiers. The LH0O44 and LH0044A are
guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and the LH0044AC, LHOO44B, and LHOO44C are guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The device is available in standard TO-5 op amp pin out and is compatible with LM108A, LM725, and LM741 type amplifiers.

Features

- Low input offset voltage $\quad 25 \mu \mathrm{~V}$ max
- Excellent long-term stability $\pm 1 \mu \mathrm{~V} /$ month max
- Low offset drift $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- Very low noise $\quad 0.7 \mu \mathrm{Vp}$-p $\max 0.1 \mathrm{~Hz}$ to 10 Hz
- High CMRR and PSRR 120 dB min
- High open loop gain 120 dB min
- Wide common-mode range $\pm 13 \mathrm{~V}$ min
(. Wide supply voltage range $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

Equivalent Circuit and Connection Diagram

Absolute Maximum Ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation	600 mW
Differential Input Voltage (Note 4)	$\pm 1 \mathrm{~V}$
Input Voltage (Note 5)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Continuous

Operating Temperature Range	
LH0044, LH0044A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0044AC, LH0044B, LH0044C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0044A/LH0044AC			LH0044/LH0044B/LH0044C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{S}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ LH0044C Only		8	25		12	$\begin{aligned} & 50 \\ & 100 \end{aligned}$	$\begin{aligned} & \mu V \\ & \mu V \end{aligned}$
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ LH0044A and LH0044B Only			55 75			180 80	$\mu \mathrm{V}$ $\mu \mathrm{V}$
Average Input Offset Voltage Drift	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ LH0044B Only		0.1	0.5		0.2	$\begin{aligned} & 1.3 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Long-Term Stability	(Note 2)		0.2	1		0.3	2	$\mu \mathrm{V} /$ month
Input Noise Voltage (Note 3)	$\mathrm{BW}=0.1 \mathrm{~Hz}$ to $10 \mathrm{~Hz}, \mathrm{R}_{\mathrm{S}}=50 \Omega$		0.35	0.7		0.35	0.8	$\mu \vee p$ p
	$R_{S}=10 \mathrm{k} \Omega$ Imbalance		0.50	0.9		0.50	1.0	$\mu \vee \mathrm{p}-\mathrm{p}$
Thermal Feedback Coefficient			0.005			0.005		$\mu \mathrm{V} / \mathrm{mW}$
Open Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	120	145	,	114	140		dB
Common-Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	120	145		114	140		dB
Power Supply Rejection Ratio	$\pm 3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}$	120	145		114	140 .		dB
Input Voltage Range		± 13	± 13.8		± 12	± 13.5		v
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 13.7		± 12	± 13.5		V
Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C} \end{aligned}$		1.0	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$		1.5	$\begin{aligned} & 5.0 \\ & 10.0 \end{aligned}$	$n \mathrm{nA}$
Average Input Offset Current Drift			5	40		15	80	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\ & T_{\text {MIN }} \leq \mathrm{T}_{A}<25^{\circ} \mathrm{C} \end{aligned}$		8.5	$\begin{aligned} & 15 \\ & 50 \end{aligned}$		10	$\begin{aligned} & 30 \\ & 100 \end{aligned}$	nA
Average Inpụt Bias Current Drift			50	300		100	600	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Differential Input Impedance		5	10		2.5	8		$M \Omega$
Common-Mode Input Impedance			2×10^{11}			2×10^{11}		Ω
Supply Current	$I_{L}=0$		0.9	. 3.0		1.0	4.0	mA
Power Dissipation			27	90		30	120	mW

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

PARAMETER	CONDITIONS	TYP	UNITS
Input Noise Voltage	$\begin{aligned} & R_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & R_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 11 \\ & 9 \end{aligned}$	$\begin{aligned} & n V / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
Slew Rate	$A_{V}=+1, \quad R_{L}=10 \mathrm{k} \Omega, \quad V_{I N}= \pm 10 \mathrm{~V}$	0.06	$\mathrm{V} / \mu \mathrm{s}$
Large Signal Bandwidth	$A_{V}=+1, \quad R_{L}=10 \mathrm{k} \Omega, \quad V_{\text {IN }}= \pm 10 \mathrm{~V}$	1	kHz
Overload Recovery Time	$A_{V}=+100, V_{\text {IN }}=-100 \mathrm{mV}, \Delta V_{\text {IN }}=200 \mathrm{mV}$	5	$\mu \mathrm{s}$
Small Signal Bandwidth	$A_{V}=+1, \quad R_{L}=10 \mathrm{k} \Omega$	400	kHz
Small Signal Rise Time	$A_{V}=+1, \quad R_{L}=10 \mathrm{k} \Omega, V_{\text {IN }}=10 \mathrm{mV}$	2.5	$\mu \mathrm{s}$
Overshoot	$A_{V}=+1, \quad R_{L}=10 \mathrm{k} \Omega, V_{1 N}=10 \mathrm{mV}, C_{L}=100 \mathrm{pF}$	10	\%

Note 1: All specifications apply for all device grades, at $V_{S}= \pm 15 \mathrm{~V}$, and from $T_{\text {MIN }}$ to $T_{M A X}$ unless otherwise specified. $T_{\text {MIN }}$ is $-55^{\circ} \mathrm{C}$ and $T_{\text {MAX }}$ is $+125^{\circ} \mathrm{C}$ for the LH0044A and LH0044. TMIN is $-25^{\circ} \mathrm{C}$ and $T_{\text {MAX }}$ is $+85^{\circ} \mathrm{C}$ for the LH0044AC, LH0044B and LH0044C. Typicals are given for $T_{A}=25^{\circ} \mathrm{C}$.
Note 2: This parameter is not 100% tested; however, 90% of the devices are guaranteed to meet this specification after one month of operation and after initial turn-on stabilization.
Note 3: Noise is 100% tested on the LH0044A, LH0044AC and LH0044B only. 90% of the LH0044 and LH0044C devices are guaranteed to meet this specification.
Note 4: The inputs are shunted by back-to-back diodes for over-voltage protection. Excessive current will flow for differential input voltages in excess of 1 V . Input current should be limited to less than 1 mA .
Note 5: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

Typical Performance Characteristics

Input Bias Current vs CommonMode Input Voltage

Supply Current vs Supply Voltage

Open Loop Frequency Response

Applications Information

LOW DRIFT CONSIDERATIONS

Achieving ultra-low drift in practical applications requires strict attention to board layout, thermocouple effects, and input guarding. For specific recommendations refer to AN-63 and AN-79.

A point worth stressing with regard to low drift specifications is testing of the LHOO44. Simply stated-it is virtually impossible to test the device using a thermoprobe or other form of local heating. A one degree centigrade temperature gradient can account for tens of microvolts of virtual offset (or drift). The test circuit of Figure 1 is recommended for use in a stabilized oven or continuously stirred oil bath with the entire circuit inside the oven or bath. Isothermal layout of the resistors is advised in order to minimize thermocouple induced EMF's.

FIGURE 1. LH0044 Temperature Test Circuit

OVER COMPENSATION

The LH0044 may be overcompensated in order to minimize noise bandwidth by paralleling the internal 100 pF capacitor with an external capacitor connected between pins 1 and 6 . Unity gain frequency may be predicted by:

$$
f=\frac{4 \times 10^{-5}}{100 \mathrm{pF}+\mathrm{C}_{e \times t} \mathrm{pF}}(\mathrm{~Hz})
$$

Typical Applications

Buffered Output for Heavy Loads

COMPENSATION

For closed loop gains in excess of 10 , no external components are required for frequency stability. However, for gains of 10 or less, a $0.01 \mu \mathrm{~F}$ disc capacitor is recommended between pin $7\left(\mathrm{~V}^{+}\right)$and pin 8 (Comp). An improvement in ac PSRR will also be realized by use of the $0.01 \mu \mathrm{~F}$ capacitor.

OFFSET NULL

In general, further nulling of LH0044 is neither necessary nor recommended. For most applications the specified initial offset is sufficient.

However, for those applications requiring additional null, an obvious temptation might be to place a pot between pins 1 and 8 with the wiper returned to V^{+}. This technique will usually result in reduced gain and increased offset drift due to mismatch in the TCR of the pot and R1 and R2. The technique is, therefore, not generally recommended.

The recommended technique for offset nulling the LH0044 is shown in Figure 2. Null is accomplished in A_{2} and all errors are divided by the closed loop gain of the LH0044. Additional offset and drift incurred due to use of A_{2} is less than $1 \mu \mathrm{~V} / \mathrm{V}$ for V^{+}and V^{-}changes and $0.01 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift for the values shown in Figure 2.

FIGURE 2. LH0044 Null Technique

X1000 Instrumentation Amp

Typical Applications (Continued)

Precision Dual Tracking Regulator

overall GAIN	INPUT STAGE GAIN	OUTPUT STAGE GAIN	JUMPER PINS ON RA201
X1	X1	X1	-
X2	$\times 1$	X2	5 to 7.12 to 10
X5	X1	X5	6 to 7.11 to 10
$\times 10$	$\times 10$	X1	2 to 15
$\times 20$	$\times 10$	X2	2 to 15,5 to 7,12 to 10
$\times 50$	$\times 10$	$\times 5$	2 to 15,6 to 7,11 to 10
$\times 100$	$\times 100$	X1	1 to 16
X200	$\times 100$	X2	1 to 16,5 to 7,12 to 10
$\times 500$	$\times 100$	X5	1 to 16,6 to 7,11 to 10
X995	X199	X5	1 to 14,6 to 7,11 to 10

Noise Test Circuit

VERT: 200 nV/DIV

Operational Amplifiers/Buffers

LH0045/LH0045C Two Wire Transmitter

General Description

The LH0045/LH0045C Two Wire Transmitters are linear integrated circuits designed to convert the voltage from a sensor to a current, and send it through to a receiver, utilizing the same simple twisted pair as the supply voltage.

The LHOO45 and LHOO45C contain an internal reference designed to power the sensor bridge, a sensitive input amplifier, and an output current source. The output current scale can be adjusted to match the industry standards of 4.0 mA to 20 mA or 10 mA to 50 mA .

Designed for use with various sensors, the LH0O45/ LH0045C will interface with thermocouples, strain gauges, or thermistors. The use of the power supply leads as the signal output eliminates two or three extra wires in remote signal applications. Also, current output minimizes susceptibility to voltage noise spikes and eliminates line drop problems.

Features

- High sensitivity $\quad>10 \mu \mathrm{~A} / \mu \mathrm{V}$
- Low input offset voltage. 1.0 mV
- Low input bias current 2.0 nA
- Single supply operation 10 V to 50 V
- Programmable bridge reference 5.0 V to 30 V (LH0045G)
- Non-interactive span and null adjust
- Over compensation capability
- Supply reversal protection

The LH0045/LH0045C is intended to fulfill a wide variety of process control, instrumentation, and data acquisition applications. The LHOO45 is guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas the LH0045C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Equivalent Schematic and Connection Diagrams

TO. 3

Order Number LH0045K or LH0045CK
See Package K08A

Absolute Maximum Ratings

Supply Voltage (L1 to common)	+50 V
Input Current	$\pm 20 \mathrm{~mA}$
Input Voltage (Either Input to Common)	0 V to $\mathrm{V}_{\text {REF }}$
Differential Input Voltage	$\pm 20 \mathrm{~V}$
Output Current (Either L1 or L2)	50 mA
Reference Output Current	5.0 mA
Power Dissipation	1.5 W
LH0045G	3.0 W
LH0045K	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\quad LH0045	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LH0045C	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Typical Performance Characteristics

Change in R9 With Temperature Normalized to $\mathbf{2 5}{ }^{\circ} \mathbf{C}$

Typical Applications

Resistance Bridge Input Transmitter

Typical Applications (Cont'd)

*Pin numbers refer to ' G ' package. All voltages indicated by () are measured with respect to common, pin 3. Instrumentation Amplifier Transmitter

Applications Information

CIRCUIT DESCRIPTION AND OPERATION

A simplified schematic of the LH0045/LH0045C is shown in Figure 1. Differential amplifier, A_{2} converts very low level signals to an output current via transistor Q1. Reference voltage diode D1 is used to supply voltage for operation of A_{2} and to bias an external bridge. Current source I_{1} minimizes fluctuation in the bridge reference voltage due to changes in V_{S}.

In normal operation, the LH0045/LH0045C is used in conjunction with an external bridge comprised of $R_{B 1}$ through $R_{B 4}$. The bridge resistors in conjunction with bridge return resistor, $R 5$, bias A_{2} in its linear region and sense the input signal; e.g. R_{B4} might be a strain sensitive resistor in a strain gauge bridge. R_{T} is adjusted to purposely unbalance the bridge for 4.0 mA output (null) for zero signal input. This is accomplished by forcing $2.5 \mu \mathrm{~A}$ more through $\mathrm{R}_{\mathrm{B} 3}$ than $\mathrm{R}_{\mathrm{B} 4}$.

The $2.5 \mu \mathrm{~A}$ imbalance causes a voltage rise of $(2.5 \mu \mathrm{~A}) \times(100 \Omega)$ or $250 \mu \mathrm{~V}$ at the top of $\mathrm{R}_{\mathrm{B} 3}$. Terminal L2 may be viewed as the output of an op amp whose closed loop gain is approximately $R_{F} / R_{B 3}=1600$.

The $250 \mu \mathrm{~V}$ rise at the top of $\mathrm{R}_{\mathrm{B} 3}$ causes a voltage drop of (1600) $\times(250 \mu \mathrm{~V}$) or -0.4 V across R9. An output current, I_{s}, equal to $0.4 \mathrm{~V} / \mathrm{R} 9$ or 4.0 mA is thus established in Q1. If $\mathrm{R}_{\mathrm{B} 4}$ is now decreased by 1.0Ω (due to application of a strain force), a -1.0 mV change in input voltage will result. This causes L 2 to drop to -2.0 V . The output current would then be $2.0 \mathrm{~V} / 100 \Omega$ or 20 mA (Full Scale). If $R_{B 3}$ is a resistor of the same material as $R_{B 4}$ but not subjected to the strain, temperature drift effects will be equal in the two legs and will cancel.

In actual practice the loading effects of $\mathrm{R}_{\mathrm{B} 2}$ on the gain (span) and R_{F} on output current must be taken into account.

FIGURE 1. LH0045 Simplified Schematic

Applications Information
 (Cont'd)

THERMAL CONSIDERATIONS

The power output transistor of the LH0045 is thermally isolated from the signal amplifier, A_{2}. Nevertheless, a change in the power dissipation will cause a change in the temperature of the package and thus may cause amplifier drift. These temperature excursions may be minimized by careful heat sinking to hold the case temperature equal to the ambient. With the TO-8 (G) package this is best accomplished by a clip-on heat sink such as the Thermalloy \#2240A or the Wakefield \#215-CB. The 8 lead TO-3 is particularly convenient for heat sinking, in that it may be bolted directly to many commercial aluminum heat sink extrusions, or to the chassis. In both packages the case is electrically isolated from the circuit.

In addition, the power change can be minimized by operating the device from relatively high supply voltages in series with a relatively high load resistance. When the signal forces the supply current higher, the voltage across the device will be reduced and the internal power dissipation kept nearly equal to the low current, high voltage condition.

For example, take the case of a 4.0 mA to 20 mA transmitter with a 24 V supply and a 100Ω load resistance. The power at 4.0 mA is $(23.6 \mathrm{~V}) \times(4.0$ $\mathrm{mA})=94.4 \mathrm{~mW}$ while at full scale the power is $(22 \mathrm{~V}) \times(20 \mathrm{~mA})=440 \mathrm{~mW}$. The net change in power is 345 mW . This change in power will cause a change in temperature and thus a change in offset voltage of A_{2}.

If the optimum load resistance of 800Ω (from Figure 2) is used, the power at null is [24V $(4.0 \mathrm{~mA}) \times(800 \Omega)](4.0 \mathrm{~mA})=83 \mathrm{~mW}$. The power at full scale is $[24 \mathrm{~V}-(20 \mathrm{~mA}) \times(800 \Omega)]$ $(20 \mathrm{~mA})=160 \mathrm{~mW}$. The net change is 77 mW . This change is significantly less than without the resistor.

If the supply voltage is increased to 48 V and the load resistance chosen to be the optimum value from Figure $2(1.95 \mathrm{k})$, then the power at null is $[48 \mathrm{~V}-(4.0 \mathrm{~mA}) \times(1.95 \mathrm{k})](4.0 \mathrm{~mA})=160.8$

FIGURE 2. Optimum Load Resistance vs Supply Voltage
mW and the power at full scale is [48-(20) x $(1.95 \mathrm{k})](20 \mathrm{~mA})=180 \mathrm{~mW}$ for a net change of 19.2 mW .

Note that the optimized load resistance is actually the sum of the line resistance, receiver resistances and added external load resistance. However, in many applications the line resistance and receiver resistances are negligible compared to the added external load resistance and thus may be omitted in calculations.

AUXILIARY PINS

The LH0045 has several auxiliary pins designed to provide the user with enhanced flexibility and performance. The following is a discussion of possible uses for these pins.

Programmable $\mathrm{V}_{\text {REF }}$ - Pins 5 and 6 (LH0045G Only)

The LH0045G provides pins 5 and 6 to allow the user to program the value of the reference voltage. The factory trimmed 10 V value is obtained by leaving 5 and 6 open. A short between 5 and 6 will program the reference to a nominal 5.1 V (equivalent to the fixed value used in the LH0045K).

A resistor or pot may-be placed between pin 5 and common (pin 3) to obtain reference voltages between 10 V and 30 V or between pin 5 and pin 7 for reference voltages below 10V. Increased reference voltage might be useful to extend the positive common mode range or to accommodate transducers requiring higher supply voltage. A plot of resistance between pin 5 and pin 3 versus $V_{\text {REF }}$ is given in the typical electrical characteristics section. $\mathrm{V}_{\text {REF }}$ may be adjusted about its nominal value by arranging a pot from $\mathrm{V}_{\text {REF }}$ to common and feeding a resistor from the wiper into pin 5 so that it may either inject or extract current. Lastly, pin 5 may be used as a nominal 1.7 V reference point, if care is taken not to unduly load it with either dc current or capacitance. Obviously, higher supply voltages must be used to obtain the higher reference values. The minimum supply voltage to reference voltage differential is about 4.0V.

Bridge Return

An applications resistor is provided in the LH0045 with a nominal value of $1.0 \mathrm{k} \Omega$. The primary application for the resistor is to maintain the minimum common mode input voltage (1.0V) required by the signal amplifier, A_{2}. A typical input application might utilize a strain gauge or thermistor bridge where the resistance of the sensor is 100Ω. Since only 1.0 mA may be drawn from $V_{\text {REF }}$, the $1.0 \mathrm{k} \Omega$ bridge return resistor is used to bias A_{2} in its linear region as shown in Figure 3.

FIGURE 3. Use of Bridge Return
Over Compensation - Pin 8 (LH0045G), Pin 6 (LH0045K)

Over compensation of the signal amplifier, A_{2} may be desirable in dc applications where the noisebandwidth must be minimized. A capacitor should be placed between pin 8 (pin 6 on the LHOO45K) and pin 3, common.

Typically,

$$
f_{3 d b}=\frac{1}{2 \pi R\left(C_{1}+C_{E X T}\right)}
$$

where:

$$
\begin{aligned}
R= & 400 \mathrm{M} \Omega \\
C 1= & \text { Internal Compensation Capacitor }=100 \mathrm{pF} \\
\mathrm{C}_{\mathrm{EXT}}= & \text { External (over-compensation) } \\
& \text { Capacitor }
\end{aligned}
$$

Input Guard - Pins 9 and 12 (LH0045G)
Pins 9 and 12 have no internal connection whatever and thus need not be used. In some critical low current applications there may be an advantage to running a guard conductor between the inputs and the adjacent pins to intercept stray leakage currents. Pins 9 and 12 may be connected to this guard to simplify the PC board layout and allow the guard to continue under the device. (See AN-63 for further discussion of guarding techniques.)

NULL AND SPAN ADJUSTMENTS

Most applications of the LHOO45 will require potentiometers to trim the initial tolerances of the sensor, the external resistors and the LH0045 itself. The preferred adjustment procedure is to stimulate the sensor, alternating between two known values, such as zero and full scale. The span and null are adjusted by monitoring the output current on a chart recorder, meter, or oscilloscope. A full scale stimulus is applied to the sensor and the span potentiometer adjusted for the desired full scale. Then, to adjust the null, apply a zero percent signal to the sensor and adjust the null potentiometer for the desired zero percent current indication.

If it is impractical to cycle the sensor during the calibration procedure, the signal may be simulated electrically with two cautions: 1) the calibration
signal must be floating and 2) the càlibration thus achieved does not account for sensor inaccuracies and/or errors in the signal generator.

SENSOR SELECTION

Generally it is easiest to use an insulated sensor. If it is necessary to use a grounded sensor, the power supply must be isolated from chassis ground to avoid extraneous circulating currents.

DESIGN EXAMPLE

There are numerous circuit configurations that may be utilized with the LHOO45. The following is intended as a general design example which may be extended to specific cases.

Circuit Requirements

Output Characteristics
a. $0 \%=4.0 \mathrm{~mA}(\mathrm{NULL})$
b. $100 \%=20 \mathrm{~mA}(\mathrm{SPAN}=16 \mathrm{~mA})$
c. Supply Voltage $=24 \mathrm{~V}$

Input (Sensor) Characteristics
a. $V_{I N}=100 \mathrm{mV}$ (Full Scale)
b. $V_{I N}=0 \mathrm{mV}$ (Zero Scale)
c. Source Impedance $\leq 1: 0 \Omega$

General Characteristics
a. $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
b. Overall Accuracy $\leq 0.5 \%$

FIGURE 4. Design Example Circuit

Selection of $\mathbf{R}_{\mathbf{F}}$

Input bias current to the LH0045C is guaranteed less than 10 nA . Furthermore, the change in I_{B} over the temperature range of interest is typically under 1.0 nA . If I_{2} SPAN is selected to be $1.0 \mu \mathrm{~A}$ ($1000 \Delta I_{B}$) errors due to $\Delta I_{B} / \Delta T$ will be less than 0.1%. For SPAN $=16 \mathrm{~mA}$.

$$
V_{S P A N}=\Delta V_{1}=-(16 \mathrm{~mA})(R 9)=-1.6 \mathrm{~V}
$$

Applications Information (Cont'd)

where R9 = Internal Current Set Resistor $=100 \Omega$
For I_{2} SPAN $=1.0 \mu \mathrm{~A}$,

$$
\begin{aligned}
& R_{F}=\frac{V_{\text {SPAN }}}{I_{2 \text { SPAN }}}=\frac{-1.6 \mathrm{~V}}{1.0 \mu \mathrm{~A}}=1.6 \mathrm{M} \\
& R_{F}=1.6 \mathrm{M} \Omega
\end{aligned}
$$

NOTE: For applications with DC gain (ratio of feedback and input resistance) less than 8 , it is recommended that a Schottky barrier diode be connected between pin 11 (cathode) and pin 3 (anode). This prevents the possibility of latch up resulting from the inverting input being forced beyond the amplifier supply voltage during power up.

Selection of $\mathbf{R}_{\mathrm{B} 1}$ and $\mathbf{R}_{\mathrm{B} 2}$

The minimum input common mode voltage, $\mathrm{V}_{\text {MIN }}$ required at the pin 10 input of A_{2} is 1.0 V . Furthermore, the maximum open loop supply current ($I_{\text {SOL }}$) drawn by the LH0045 is 3.0 mA . That leaves $I_{\text {MIN }}=4.0 \mathrm{~mA}-3.0 \mathrm{~mA}=1.0 \mathrm{~mA}$ left to bias the bridge at null. Hence:

$$
R_{B 2} \geqq \frac{V_{\mathrm{M} 1 \mathrm{~N}}}{I_{\mathrm{MIN}}}=\frac{1.0 \mathrm{~V}}{1.0 \mathrm{~mA}}=1.0 \mathrm{k} \Omega
$$

And,

$$
\begin{aligned}
& \frac{V_{R E F} R_{B 2}}{R_{B 1}+R_{B 2}}=1.0 \mathrm{~V} \\
& R_{B 1}=R_{B 2} \frac{V_{R E F}-1.0 \mathrm{~V}}{1.0 \mathrm{~V}} \\
&=1.0 \mathrm{k}(5.1-1.0) \\
& R_{B 1} \cong 4.0 \mathrm{k} \Omega
\end{aligned}
$$

Alternatively, an LM $113,1.22 \mathrm{~V}$ reference diode, or an op amp such as the LM108 may be used to bias the signal amplifier, A_{2} as shown in Figure 5. These techniques have the advantage of lowering the impedance seen at pin 10 .

Selection of R_{OS}

$R_{\text {OS }}$ is selected to provide the null current of $4.0 \mathrm{~mA}, V_{1} \mathrm{NULL}=4.0 \mathrm{~mA} \times 100 \Omega=0.4 \mathrm{~V}$. From previous calculations we know that $\mathrm{V}_{\text {MIN }}=$ 1.0 V . The voltage pin $11, \mathrm{~V}_{2}$ is:

$$
V_{2}=V_{M I N}+V_{O S} \cong V_{M I N}
$$

for $V_{1 N}=O V$

Hence, the current required to generate the null voltage, $\mathrm{I}_{2 \text { NULL }}$ is:

$$
\begin{aligned}
& I_{2 \text { NULL }}=\frac{V_{\text {MIN }}-V_{1 \text { NULL }}}{R_{F}} \\
& =\frac{1.0 \mathrm{~V}-(-0.4 \mathrm{~V})}{1.6 \mathrm{M} \Omega}=0.875 \mu \mathrm{~A}
\end{aligned}
$$

This current must be provided by R_{OS} from $V_{\text {REF }}$; hence:

$$
R_{O S}=\frac{V_{\text {REF }}-V_{\text {MIN }}}{I_{2 N U L L}}
$$

The nominal value for $\mathrm{V}_{\mathrm{REF}}$ is 5.1 V , therefore the nominal value for R_{OS} is:

$$
\begin{aligned}
& \frac{5.1 \mathrm{~V}-1.0 \mathrm{~V}}{0.875 \mu \mathrm{~A}} \text { or } \\
& \mathrm{R}_{\mathrm{OS}}=4.6 \mathrm{M} \Omega
\end{aligned}
$$

It should be noted however, that the variation of $\mathrm{V}_{\text {REF }}$ may be as high as 5.9 V or as low as 4.3 V . Furthermore, the tolerances of R9 (100), $\mathrm{R}_{\mathrm{B} 1}$. $R_{B 2}$, and the input V_{OS} of A_{2} would predict values for R_{OS} as low as 3.98 M and as high as 5.43 M . The implication is that in the specific case, R_{OS} should be implemented with a pot, of appropriate value, in order to accommodate the tolerances of $V_{\text {REF }}$, $R 9, V_{o s}, R_{B 1}, R_{B 2}$, etc.

Selection of R

SPAN is required to be 16 mA . From feedback theory and the gain equation we know:

$$
I_{S P A N}=V_{I N} \frac{R_{F}}{R} \times \frac{1}{R 9}
$$

where:

$$
\left.\begin{array}{rl}
R= & \text { total impedancé in signal path between } \\
& \text { pin } 10 \text { and pin } 11
\end{array}\right)=\begin{gathered}
\text { Current setting resistor }=100 \Omega \\
V_{I N}=
\end{gathered}
$$

Applications Information (Cont'd)

$$
\begin{aligned}
\therefore R & =\frac{\left(V_{\text {IN }}\right)\left(R_{F}\right)}{\left(I_{\text {SPAN }}\right)(R 9)} \\
R & =\frac{(100 \mathrm{mV})(1.6 \mathrm{M} \Omega)}{(16 \mathrm{~mA})(100 \Omega)} \\
R & =100 \mathrm{k} \Omega
\end{aligned}
$$

As before, uncertainties in device parameters might dictate that R_{F} be made a pot of appropriate value.

Summary of the Steps to Determine

 External Resistor Values1. Select $I_{\text {fULL }}$ sCALE $=I_{\text {NULL }}+I_{\text {SPAN }}$ for the desired application. (INULL is frequently 4.0 mA and $\mathrm{I}_{\text {FULL }}$ sCALE is frequently 20 mA.$)$
2. Select I_{2} SPAN so that it is large compared to $\Delta I_{B} .1000 \Delta I_{B}$ is a good value.
3. Determine $\mathrm{V}_{\text {SPAN }}=\Delta \mathrm{V}_{2}=\left(I_{\text {SPAN }}\right)(\mathrm{R} 9)$.
4. Determine $R_{F}=\left(V_{\text {SPAN }} / I_{2 \text { SPAN }}\right)$
5. Select
$R_{B 2} \geq \frac{V_{\text {MIN }}}{I_{\text {MIN }}}$
$R_{B 2} \geq \frac{1 \text { VOLT }}{I_{\text {NULL }}-I_{\text {SOL }}}$.
Where:
$V_{\text {MIN }}=$ minimum common mode input voltage.
$I_{\text {MIN }}=$ minimum available bridge current
$I_{\text {SOL }}=$ maximum open loop supply current
6. Determine
$R_{B 1}=R_{B 2} \frac{V_{\text {REF }}-V_{\text {MIN }}}{V_{M I N}}$
7. Determine V_{2} NULL $=I_{\text {NULL }}$ R9
8. Determine
$I_{2 \text { NULL }}=\frac{V_{\text {MIN }}-V_{2 N U L L}}{R_{F}}$
9. Determine
$R_{\text {OS }}=\frac{V_{\text {REF }}-V_{\text {MIN }}}{I_{2 \text { NULL }}}$
10. Determine
$R=\frac{\left(V_{I N}\right)\left(R_{F}\right)}{\left(I_{\text {SPAN }}\right)(R 9)}$

Where:

$\mathrm{V}_{\text {IN }}=$ Sensor full scale output voltage

ERROR BUDGET ANALYSIS

Errors Due to Change in $\mathrm{V}_{\mathrm{REF}}\left(\Delta \mathbf{V}_{\mathrm{REF}}\right)$
There are several factors which could cause a change in $\mathrm{V}_{\text {REF }}$. First, as the ambient temperature changes, a $V_{\text {REF }}$ drift of $\pm 0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ might be expected. Secondly, supply voltage variations could cause a $0.5 \mathrm{mV} / \mathrm{V}$ change in $\mathrm{V}_{\text {REF }}$. Lastly, self-heating due to power dissipation variations can cause drift of the reference.

An overall expression for change in $\mathrm{V}_{\text {REF }}$ is:

$$
\begin{aligned}
\Delta V_{\text {REF }}= & \underbrace{\left[(\theta)\left(\Delta P_{\text {DISS }}\right)+\Delta T_{A}\right] \frac{\Delta V_{\text {REF }}}{\Delta T}}_{\text {Thermal Effects }} \\
& +\underbrace{}_{\text {Supply } \text { Voltage Effects }_{\frac{\Delta V_{\text {REF }}}{\Delta V_{S}}\left(\Delta V_{S}\right)}}
\end{aligned}
$$

Where:

$$
\begin{aligned}
& \theta= \begin{array}{l}
\text { Thermal resistance, either } \\
\\
\\
\\
\text { junction-to-ambient to junction }
\end{array} \\
& \Delta \mathrm{P}_{\mathrm{DISS}}= \text { Change in avg. power dissipation } \\
& \Delta \mathrm{T}_{\mathrm{A}}= \text { Change in ambient temperature } \\
& \frac{\Delta V_{\text {REF }}}{\Delta T}=\begin{array}{l}
\text { Reference voltage drift } \\
\text { (in } \mathrm{mV} /{ }^{\circ} \mathrm{C} \text {) } \\
\frac{\Delta V_{\text {REF }}}{\Delta V_{S}}=
\end{array} \\
& \text { Line regulation of } \mathrm{V}_{\text {REF }}
\end{aligned}
$$

Several steps may be taken to minimize the bracketed terms in the equation above. For example, operating the LH0045G with a heat-sink reduces the thermal resistance from $\theta_{J A}=83^{\circ} \mathrm{C} / \mathrm{W}$ to $\theta_{\mathrm{Jc}}=60^{\circ} \mathrm{C} / \mathrm{W}$. For the LHOO45K (TO-3) $\theta_{\mathrm{JA}}=40^{\circ} \mathrm{C} / \mathrm{W}$ may be reduced to $\theta_{\mathrm{JC}}=25^{\circ} \mathrm{C} / \mathrm{W}$ by using a heat sink. The $\Delta \mathrm{P}_{\text {DIss }}$ term may be significantly reduced using the power minimization technique described under "Thermal Considerations." For the design example, $\Delta \mathrm{P}_{\mathrm{DISS}}$ is reduced from 384 mW to $77 \mathrm{~mW}\left(\mathrm{R}_{\mathrm{L}}=800 \Omega\right.$.) Evaluating the LH0045G with a heat-sink and $R_{L}=800 \Omega$ yields.

$$
\begin{aligned}
\Delta V_{\text {REF }}= & \left(\frac{60^{\circ} \mathrm{C}}{\mathrm{~W}}(0.077 \mathrm{~W})+75^{\circ} \mathrm{C}\right)\left(\frac{0.2 \mathrm{mV}}{{ }^{\circ} \mathrm{C}}\right) \\
& +\frac{0.5 \mathrm{mV}}{V}(16 \mathrm{~V}) \\
\Delta V_{\text {REF }} & =24 \mathrm{mV}
\end{aligned}
$$

The LH0045K (TO-3) under the same operating conditions would exhibit a $\Delta V_{\text {REF }} \cong 23 \mathrm{mV}$.

An expression for error in the output current due to $\Delta V_{R E F}$ is:
$\frac{\Delta I_{S}}{I_{\text {SPAN }}}(\%)=100 \frac{(K)\left(R_{\text {OS }}\right)\left(\Delta V_{\text {REF }}\right)-(1-K)\left(\Delta V_{\text {REF }}\right)\left(R_{F}\right)}{(R 9)\left(R_{\text {OS }}\right)\left(I_{\text {SPAN }}\right)}$
Where:
$\Delta V_{\text {REF }}=$ Total change in $V_{\text {REF }}$
$K=\frac{R_{B 2}}{R_{B 1}+R_{B 2}}$
R9 $=$ Current set resistor
$I_{\text {SPAN }}=$ Change in output current from 0% to 100%

For example, $\Delta V_{\text {REF }}=24 \mathrm{mV}, \mathrm{K}=0.2, \mathrm{R} 9=$ $100 \Omega, I_{\text {SPAN }}=16 \mathrm{~mA}$. Hence, a 0.12% worst case error might be expected in output currents due to $\Delta V_{\text {REF }}$ effects.

Error Due to $\mathrm{V}_{\text {Os }}$ Drift

One of the primary causes of error in I_{S} is caused by V_{OS} drift. Drift may be induced either by self heating of the device or ambient temperature changes. The input offset voltage drift, $\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$, is nominally $3.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per millivolt of initial offset. An expression for the total temperature dependent drift is:

$$
\Delta V_{O S}=\left[(\theta)\left(\Delta P_{\text {DISS }}\right)+\Delta T_{A}\right] \frac{\Delta V_{O S}}{\Delta T}
$$

Where:

$$
\begin{aligned}
\theta= & \begin{array}{l}
\text { Thermal resistance either junction- } \\
\text { to-ambient or junction-to-case }
\end{array} \\
\Delta P_{\text {DISS }}= & \text { Change in average power dissipation } \\
\Delta T_{A}= & \text { Change in ambient temperature }
\end{aligned}
$$

The bracketed term may be minimized by heat sinking and using the power minimization technique described under "Thermal Considerations." For the LH0045G design example, $\Delta V_{\text {Os }}=0.352 \mathrm{mV}$ under ambient conditions and 0.263 mV using a heat-sink and $R_{L}=800 \Omega$. Comparable $V_{\text {OS }}$ for the LH0045K would be 0.254 mV .

The error in output current due to $\Delta V_{O S}$ is:

$$
\begin{gathered}
\left.\frac{\Delta I_{S}}{I_{\text {SPAN }}} \text { (in } \%\right)=100 \times \frac{\Delta V_{\text {OS }}}{V_{I N(F U L L S C A L E)}} \\
=100 \times \frac{R_{F}}{(R)(R 9)\left(I_{\text {SPAN }}\right)}
\end{gathered}
$$

For the design example, $\Delta V_{\text {OS }}=0.263 \mathrm{mV}, \mathrm{V}_{\text {IN }}$ (Full Scale) $=100 \mathrm{mV}$. Hence, $0.26 \mathrm{mV} \div 100 \mathrm{mV}$ or 0.26% worst case error could be expected in output current effects.

Errors Due to Changes in R9

The temperature coefficient of R9 (TCR) will produce errors in the output current. Changes in $R 9$ may be caused by self-heating of the device or by ambient temperature changes.

$$
\frac{\Delta \mathrm{I}_{\mathrm{S}}}{I_{\mathrm{SPAN}}}(\text { in } \%)=100 \frac{\Delta \mathrm{R} 9}{\Delta T}\left(\theta \mathrm{P}_{\text {DISS }}+\Delta T_{A}\right)
$$

Where:
$\theta=$ Thermal resistance either from junction-to-ambient or junction-tocase
$\Delta P_{\text {DISs }}=$ Change in average power dissipation
$\Delta T_{A}=$ Change in ambient temperature

$$
\frac{\Delta \mathrm{R} 9}{\Delta T}=\mathrm{TCR} \text { of } \mathrm{R} 9
$$

Using the LH0045G design example, $\Delta \mathrm{R9} / \Delta \mathrm{T}=$ $0.03 \% /{ }^{\circ} \mathrm{C}$, hence a 3.2% worst case error in output current might be expected for operation without a heat sink over the temperature range.

Heat sinking the device and using $R_{L}=800 \Omega$, reduces $\Delta I_{\text {S }} / I_{\text {SPAN }}$ to 2.3%. Comparable error for the LH0045K would also be about 2.3%.

The error analysis indicates that the internal current set resistor, R9 is inadequate to satisfy high accuracy design criterion. In these instances, an external 100Ω resistor should be substituted for R9.

Obviously, the TCR of the resistor should be low. Metal film or wire-wound resistors are the best choice offering TCR's less than $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ versus $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical drift for R9.

External Causes of Error

The components external to the LH0045 are also critical in determining errors. Specifically, the composition of resistors $R_{B 1}, R_{O S}, R_{F}, R$, etc. in the design example will influence both drift and long term stability.

In particular, resistors and potentiometers of wire wound construction are recommended. Also, metalfilm resistors with low $\operatorname{TCR}\left(\leq 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right.$) may be used for fixed resistor applications.

Error Analysis Summary

The overall errors attributable to the LH0045 may be minimized using heat sinking, and utilization of an external load resistor. Although \mathbf{R}_{L} reduces the compliance of the circuit, its use is generally advisable in precision applications. External components should be selected for low TCR and long-term stability.

The design example errors, using an external 100Ω wire wound resistor for R9 equal:

Definition of Terms

Input Offset ${ }^{\text {Voltage, }} \mathrm{V}_{\mathbf{O S}}$: The voltage which must be applied between the input terminals through equal resistances to obtain 4.0 mA of supply (output) current.

Input Bias Current, I_{B} : The average of the two input currents.

Input Offset Current, Ios: The difference in the current into the two input terminals when the supply (output) current is 4.0 mA .

Input Resistance, \mathbf{R}_{IN} : The ratio of the change in input voltage to the change in input current at either input with the other input connected to 1.0 Vdc .

Open Loop Transconductance, gmol: The ratio of the supply (output) current SPAN to the input voltage required to produce that SPAN.

Open Loop Output Resistance, ROuT: The ratio of a specified supply (output) voltage change to the resulting change in supply (output) current at the specified current level.

SOCKETS AND HEAT SINKS

Mounting sockets, test sockets, and heat sinks are available for the G package and K package.

The following or their equivalents are recommended:

Sockets:

G - 12 lead TO-8:	Barnes Corp. \#MGX-12 Textool \#212-100-323
K - 8 lead TO-3:	Robinson Nugent \#0002011 Wells \#6010-20811

Heat Sinks
G-12 lead TO-8: $\begin{aligned} & \text { Thermalloy \#2240A } \\ & \\ & \text { Wakefield \#215-CB }\end{aligned}$
K-8 lead TO-3: IERC \#LAIC 3B4V

Common Mode Rejection Ratio, CMRR: The ratio of the change in input offset voltage to the peak-to-peak input voltage range.

Power Supply Rejection Ratio, PSRR: The ratio of the change in input offset voltage to the change in supply (output) voltage producing it.

Input Voltage Range, V_{IN} : The range of voltages on the input terminals for which the device operates within specifications.

Open Loop Supply Current, I_{S} : The supply current required with the signal amplifier A_{2} biased off (inverting input positive, non-inverting input negative) and no load on the $V_{\text {REF }}$, terminal.

This represents a measure of the minimum low end signal current.

Reference Voltage Line Regulation, $\Delta \mathbf{V}_{\mathbf{R E F}} / \Delta \mathbf{V}_{\mathbf{S}}$: The ratio of the change in $V_{\text {REF }}$ to the peak-topeak change in supply (output) voltage producing it.

Reference Voltage Load Regulation, $\Delta \mathbf{V}_{\text {REF }} /$ $\Delta I_{\text {REF }}$: The change in $V_{\text {REF }}$ for a stipulated change in $\mathrm{I}_{\mathrm{REF}}$.

National Semiconductor

Operational Amplifiers/Buffers

LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier

General Description

The LH0061/LH0061C is a wide band, high speed, operational amplifier capable of supplying currents in excess of 0.5 ampere at voltage levels of $\pm 12 \mathrm{~V}$. Output short circuit protection is set by external resistors, and compensation is accomplished with a single external capacitor. With a suitable heat sink the device is rated at 20 Watts.

The wide bandwidth and high output power capabilities of the LH0061/LH0061C make it ideal for such applications as AC servos, deflection yoke drivers, capstan drivers, and audio amplifiers. The

LH0061 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas, the LH0061C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Output current	0.5 Amp
- Wide large signal bandwidth	1 MHz
- High slew rate	$70 \mathrm{~V} / \mu \mathrm{s}$
- Low standby power	240 mW
- Low input current	300 nA Max

Schematic and Connection Diagrams

TOP VIEW
Order Numbers:
LH0061K ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
LH0061CK ($-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
See Package K08A

Absolute Maximum Ratings

Supply Voltage
Power Dissipation
Differential Input Current (Note 2)
Input Voltage (Note 3)
Peak Output Current
Output Short Circuit Duration (Note 4)
Operating Temperature Range LH0061
LH0061C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
$\pm 18 \mathrm{~V}$
See Curve .
$\pm 10 \mathrm{~mA}$
$\pm 15 \mathrm{~V}$ 2A
Continuous
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 1)

AC Electrical Characteristics $\left.\pi_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}\right)$

Slew Rate	$A_{V}=+1, R_{L}=100 \Omega$	25	70		25	70		$\mathrm{V} / \mathrm{\mu} \mathrm{~s}$	
Power Bandwidth '	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		1			1		MHz	-
Small Signal Transient Response			30			30		ns	
Small Signal Overshoot			5	20		10	30	\%	
Settling Time (0.1\%)	$\Delta V_{1 N}=10 \mathrm{~V}, A_{V}=+1$		0.8			0.8		μs	
Overload Recovery Time			1	-		1		$\mu \mathrm{s}$	
Harmonic Distortion	$f=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		0.2	.		0.2		\%	

Note 1: Specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}$, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ for the LH0061K and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+85^{\circ} \mathrm{C}$ for the LH0061CK. Typical values are for $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Excessive current will flow if a differential voltage in excess of 1 V is applied between the inputs without limiting resistors.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: Rating applies as long as package power rating is not exceeded.

Typical Performance Characteristics

Power Derating

Safe Operating Area

Large Signal Frequency Response

Unity Gain Driver

AC Servo Amplifier

Operational Amplifiers/Buffers

LH0062/LH0062C High Speed FET Operational Amplifier

General Description

The LH0062/LH0062C is a precision, high speed FET input operational amplifier with more than an order of magnitude improvement in slew rate and bandwidth over conventional FET IC op amps. In addition it features very closely matched input characteristics, very high input impedance, and ultra low input currents with no compromise in noise, common mode rejection ratio or open loop gain. The device has internal unity gain frequency compensation, thus assuring stability in all normal applications. This considerably simplifies its application,. since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over $120 \mathrm{~V} / \mu \mathrm{s}$ and almost double the bandwidth. (See LB-2, LB-14, and LB-17 for discussions of the application of feed-forward techniques). Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under $1 \mu \mathrm{~s}$. In addition it is free of latch-up and may be simply offset nulled with negligible effect on offset drift or CMRR.

The LH0062 is designed for applications requiring wide bandwidth, high slew rate and fast settling time while at the same time demanding the high input impedance and low input currents characteristic of FET inputs. Thus it is particularly suited for such applications as video amplifiers, sample/ hold circuits, high speed integrators, and buffers for A/D conversion and multiplex system. The LH0062 is specified for the full military temperature range of -55° to $+125^{\circ} \mathrm{C}$ while the LH0062C is specified to operate over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

High slew rate	$70 \mathrm{~V} / \mu \mathrm{s}$
- Wide bandwidth	15 MHz
- Settling time (0.1\%)	$1 \mu \mathrm{~s}$
- Low input offset voltage	2 mV
- Low input offset current	1 pA
- Wide supply range	$\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Internal $6 \mathrm{~dB} /$ /octave frequency compensation	
Pin compatible with std	g)

Schematic and Connection Diagrams

*Pin Numbers Shown for TO-5 Package

top vitw
Order Number LH0062H or LH0062CH See Package H08A

Order Number
LH0062D or LH0062CD See Package D14E

Absolute Maximum Ratings
Supply Voltage
Power Dissipation (see graph)
Input Voltage (Note 1)
Differential Input Voltage (Note 2)
Short Circuit Duration
$\pm 20 \mathrm{~V}$
500 mW
$\pm 5 \mathrm{~V}$
$\pm 30 \mathrm{~V}$
Continuous

Operating Temperature	
LH0062,	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0062 C ,	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 1)

AC Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$)

Large Signal Frequency
Response

FREQUENCY (Hz_{2})

Input Offset
Current vs Temperature

Voltage Follower Pulse Response

Large Signal Frequency Response

Inverter Pulse Response

Input Bias
Current vs Temperature

Open Loop Frequency Response

Open Loop Frequency
Response
 frequency (Hz^{2})

Unity Gain Bandwidth

Voltage Follower Slew Rate

Typical Performance Characteristics (Cont'd)

Auxiliary Circuits

Feedforward Compensation for Greater Inverting Slew Rate ${ }^{\dagger}$

Offset Balancing

Compensation for Minimum Settling ${ }^{\dagger}$ Time

Auxiliary Circuits (Cont'd)

Isolating Large Capacitive Loads

Overcompensation

Typical Applications*

Boosting Output Drive to $\pm \mathbf{1 0 0} \mathrm{mA}$

High Speed Subtractor

Fast Precision Voltage Comparator

Video DC Restoring Amplifier

High Speed Positive Peak Detector

Typical Applications* (Cont'd)

Precision Wide Range Current to Period Converte

a
National Semiconductor

Operational Amplifiers/Buffers

LH0086/LH0086C Digitally-Programmable-Gain Amplifier

General Description

The LH0086 is a self-contained, high-accuracy, digitally-programmable-gain amplifier. It consists of a FET-input operational amplifier, a precision resistor ladder, and a digitally-programmable switch network. A three-bit TTLcompatible digital input selects accurate gain settings of $1,2,5,10,20,50,100$, or 200.
The LH0086 exhibits low offset voltage, high input impedance, fast settling, high power supply rejection ratio, and excellent gain accuracy and gain non-linearity.
The LH0086 is specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The LH0086C is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Both devices are hermetically sealed in a 14-lead dual-in-line metal package.

Features

- 0.01% gain accuracy at gain $=1$
- 0.005% gain non-linearity
- $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical gain drift
- $10^{10} \Omega$ input impedance
- 80 dB minimum PSRR.
- TTL-compatible digital inputs
- $2 \mu \mathrm{~s}$ settling to 0.01%

Applications

- Data acquisition systems
- Auto range DVMs
- Adaptive servo loops

Simplified Schematic

Connection Diagram

Dual-In-Line Package

CASE IS ELECTRICALLY ISOLATED
Top View

Order Number LH0086D or LH0086CD See NS Package D14F

V_{S}	Supply Voltage (Note 1)	$\pm 18 \mathrm{~V}$
$\mathrm{~V}_{1 \mathrm{~N}}$	Analog Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
$\mathrm{~V}_{\text {IL(H) }}$	Digital Input Voltage	$-4 \mathrm{~V},+\mathrm{V}_{\mathrm{S}}$
P_{D}	Power Dissipation	500 mW
	Output Short Circuit Duration	Continuous

DC Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$, Pin 10 connected to Pin 11, Pin 5 connected to Pin 6 (Non-inverting)

Parameter		Conditions		LH0086			LH0086C			Units		
		Min.	Typ.	Max.	Min.	Typ.	Max.					
	Input Offset Voltage				$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		0.3	5.0		0.3	10	mV
						7.0			13			
$\mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Input Offset Voltage Change with Temperature	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
I_{B}	Input Bias Current	(Notes 3, 4)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		100	500		100	500	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$		
						500			100			
$\mathrm{R}_{\text {IN }}$	Input Resistance				10			10		G Ω		
V_{IN}	Input Voltage Range			± 10	± 11.5		± 10	± 11.5		V		
A_{V}	Voltage Gain	See Table 1, p. 5, for Digital GainControl Codes	,		1.0			1.0		VIV		
					2.0			2.0				
					5.0			5.0				
					10			10				
					20			20				
					50			50				
					100			100				
					200			200.				
	Gain Error	$\begin{aligned} & A_{V}=1 \\ & A_{V}=2,5 \\ & A_{V}=10,20 \\ & A_{V}=50,100,200 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{array}{\|c\|} \hline 0.003 \\ 0.03 \\ 0.05 \\ 0.1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0.01 \\ 0.05 \\ 0.1 \\ 0.2 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 0.003 \\ 0.05 \\ 0.1 \\ 0.15 \\ \hline \end{array}$	$\begin{gathered} \hline 0.03 \\ 0.1 \\ 0.2 \\ 0.3 \\ \hline \end{gathered}$	\%		
		$\begin{aligned} & A_{V}=1 \\ & A_{V}=2,5 \\ & A_{V}=10,20 \\ & A_{V}=50,100,200 \end{aligned}$			$\begin{array}{\|c\|} \hline 0.003 \\ 0.03 \\ 0.1 \\ 0.15 \\ \hline \end{array}$	$\begin{gathered} 0.02 \\ 0.1 \\ 0.2 \\ 0.3 \end{gathered}$		$\begin{gathered} 0.003 \\ 0.05 \\ 0.1 \\ 0.15 \end{gathered}$	$\begin{gathered} 0.06 \\ 0.2 \\ 0.3 \\ 0.4 \\ \hline \end{gathered}$			
Gain Non-Linearity		$A_{V}=1$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.002			0.002		\%		
				0.005			0.005					
$\Delta A_{V} / \Delta T$	Gain Temperature Coefficient		$A_{V}=1$			1.0			1.0		ppm $/{ }^{\circ} \mathrm{C}$	
PSRR	Power Supply Rejection Ratio	$\pm 8 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 18 \mathrm{~V}$		80	90		70	90		dB		
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega$		± 10	± 12		± 10	± 12		V		

Note 1: Improper supply power-on sequence may damage the device. See Power Supply Connection Section under Applications Information.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$ the maximum input voltage is equal to the supply voltage.
Note 3: Due to short production test time, these parameters are specified at junction temperature, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. In normal operation the junction temperature rises above the ambient temperature, T_{A}, as a result of the internal power dissipation, $P D . T_{J}=T_{A}+\theta_{j A} \times P D$ where θ_{j} is the thermal resistance from junction to ambient (typically $65^{\circ} \mathrm{C} / \mathrm{W}$).
Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in junction temperature.

DC Electrical Characteristics (cont'd)
$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\text {MIN }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{T}_{\mathrm{MAX}}$, Pin 10 connected to Pin 11, Pin 5 connected to Pin 6 (Non-inverting).

Parameter		Conditions		LH0086			LH0086C			Units		
		Min.	Typ.	Max.	Min.	Typ.	Max.					
Isc	Output Short-Circuit Current				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 5	± 18	± 30	± 5	± 18	± 30	mA
				± 2		± 30	± 2		± 30			
R_{0}	Output Resistance	$A_{\text {VCL }}=1$			0.05			0.05		Ω		
$V_{\text {IL }}$	Digital " 0 " Input Voltage					0.7			0.7	V		
V_{IH}	Digital "1" Input Voltage			2.0			2.0					
ILí	Digital "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			1.5	4.0		1.5	4.0	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	Digital "1" Input Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			0.01			0.01				
V_{S}	Supply Voltage Range			± 8.0		± 18	± 8.0		± 18	V		
$\mathrm{IS}^{(+)}$	Positive Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}$			8.5	15.5		8.5	15.5	mA		
$\mathrm{I}^{(1-)}$	Negative Supply Current				-4.5	-8.5		-4.5	-8.5			

AC Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Pin 10 connected to Pin 11, Pin 5 connected to Pin 6 (Non-inverting)

Wideband Noise

$R_{S}=50 \Omega$. Bandwidth $=0.1 \mathrm{~Hz}$ to 10 Hz
$1 \mu \mathrm{~V} /$ division Vertical, 5 seconds/division Horizontal

$R_{\mathrm{S}}=50 \Omega$. Bandwidth $=10 \mathrm{~Hz}$ to 10 kHz $5 \mu \mathrm{~V} / \mathrm{division}$ Vertical, $1 \mathrm{~ms} /$ division Horizontal

Applications Information

Theory of Operation

The LH0086 is a digitally programmable gain amplifier with 3-bit digital gain control. It contains a FET-input operational amplifier, a precision resistor ladder, and a digitally programmable switch network.

The LH0086 was designed for use in a non-inverting configuration, thus the following discussion covers the LH0086 as used as a non-inverting amplifier. The gain of the LH0086 is given by the familiar gain equation of a non-inverting amplifier.

$$
A_{V}=1+\frac{R_{F}}{R_{S}}
$$

Each gain step is set by the ratio of the ladder resistors. The resistor ladder is constructed with high stability, low temperature-coefficient resistors precision lasertrimmed to the required values. FET switches are used to select the desired ratio. Since the FET switches are in series with the operational amplifier input, their "on resistance" and temperature drift do not degrade amplifier accuracy. The FET switches are selected by a 1 of 8 decoder, by applying the proper logic levels at digital inputs D0, D1, and D2. The gains are set as given in Table 1.

Table 1. Gain-Control Codes

Gain	D2	D1	D0
1	0	0	0
2	0	0	1
5	0	1	0
10	0	1	1
20	1	0	0
50	1	0	1
100	1	1	0
200	1	1	1

Power Supply Connection

Proper power supply connections are shown in Figure 1. The power supplies should be bypassed to ground as close as possible to device supply pins. For most applications, the bypass capacitor should be $0.1 \mu \mathrm{~F}$.

Figure 1. Power Supply and Ground Connections

Care must be taken in the power-on sequence. The LH0086 may suffer irreversible damage if the V^{+}supply is applied prior to the powering on of the V^{-}supply. In most applications using dual-tracking supplies and with the device supply pins adequately bypassed, this will not present a problem. If this cannot be guaranteed, a germanium or Schottky protection diode should be connected between the digital ground pin and the V^{-}pin as shown in Figure 1.

Grounding Considerations

Care should be taken in the connection of digital and analog grounds. Digital switching currents can introduce noise on the analog ground pin. If possible, both grounds should go to a ground plane beneath the device, otherwise each ground should be rùn separately to a single point ground. The idea is to keep digital current from passing through the analog ground line. If long ground leads are used, diode clamps should be placed as close to the device as possible (Figure 1).

Programmable Attenuator

The LH0086 may be used as a programmable attenuator when connected as in Figure 2. The accuracy of this attenuator will be typically 0.1%.

Note: Max. $\mathrm{V}_{\mathrm{IN}}= \pm 11$ Volts.

Figure 2. Programmable Attenuator

Table 2. Attenuator Codes

D2	D1	D0	Attenuation
0	0	0	1
0	0	1	2
0	1	0	5
0	1	1	10
1	0	0	20
1	0	1	50
1	1	0	100
1	1	1	200

Inverting Mode

The LH0086 may be used in the inverting mode, however, there are several design considerations.

1. Input resistance is low at high gains (see gain chart for input resistance at each gain).
2. Each gain step gets a one subtracted from the noninverting gain. (See inverting gain chart for available gains.)
3. The first gain step (digital code of 000) cannot be used because the output will remain at virtual ground regardless of the input.

Figure 3. LH0086 Inverting Gain Configuration

Table 3. Inverting Gain Chart

D2	D1	D0	Gain	$\mathbf{R}_{\text {IN }}(\Omega)$
0	0	0	$\mathbf{A}_{V}=0$	30 k
0	0	1	$\mathrm{~A}_{\mathrm{V}}=1$	15 k
0	1	0	$\mathrm{~A}_{\mathrm{V}}=4$	6 k
0	1	1	$\mathrm{~A}_{\mathrm{V}}=9$	3 k
1	0	0	$\mathrm{~A}_{\mathrm{V}}=19$	1.5 k
1	0	1	$\mathrm{~A}_{\mathrm{V}}=49$	600
1	1	0	$\mathrm{~A}_{\mathrm{V}}=99$	300
1	1	1	$\mathrm{~A}_{\mathrm{V}}=199$	150

Remote Output Sense

The Vout sense pin of the LH0086 should be connected at the load in order to eliminate errors due to lead resistance. In any case the output sense and output force must be tied together at some point. See Figure 4.

Figure 5. Offset Adjustment

Figure 6. Noise Measurement Circuit

Figure 7. Settling Time Test Circuit

Definition of Terms

Vos	Offset Voltage: The voltage that must be applied to force the output to 0 volts.	$P_{\text {d }}$	ower Dissipation: The power dissipated in Pe device with no load and with the analog as ell as the digital inputs at OV .
I_{B}	Input Blas Current: The current into Pin 7 with the device connected in the non-inverting configuration.	$\mathbf{V}_{\mathbf{I H}}$	Digital "1" Input Voltage: Minimum voltage required at the digital input to guarantee a high logic state.
$\mathbf{R I N}^{\text {I }}$	input voltage to the change in input current on either input with the other grounded.	VIL	Digital " 0 " Input Voltage: The current into a digital input at specified logic level.
$V_{\text {IN }}$	Input Voltage Range: The voltage range for which the device is operational.	$\Delta V_{\text {OS }} / \Delta T$	Average Input Offset Voltage Drift: The ratio of input offset voltage change from $25^{\circ} \mathrm{C}$ to either temperature extreme divided by the temperature range.
PSRR	Power Supply Rejection Ratio: The ratio of the specified change in supply voltage to the change in input offset voltage over this range.		
A_{V}	Voltage Gain: The ratio of output voltage change to the input voltage change producing it.		tio in gain from $25^{\circ} \mathrm{C}$ to either temperature xtreme divided by the temperature range.
	Gain Error: The deviation in percent between the ideal voltage gain and the value obtained when the device is configured for that gain.	BW	Bandwidth: The frequency at which the voltage gain is reduced to 3 dB below the low frequency value.
	Gain Non-Linearity: The deviation of the gain from a straight line drawn through the endpoints expressed as a percent of full scale (10V	PBW	Power Bandwidth: Maximum frequency for which the output swing is a large signal sinewave without noticeable distortion.
	for operation with $\pm 15 \mathrm{~V}$ supplies). For testing purposes it is the difference between positive swing gain (0 V to 10 V) and average gain (-10 V	SR	Slew Rate: The internally limited rate of change in output voltage with a large amplitude step function applied at the input.
	to 10 V) or between negative swing gain (0 V to -10 V) and average gain.	${ }^{\text {t }}$	Settiling Time: The time between the initiation of an input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
V_{0}	Output Voltage Swing: The peak output voltage swing referenced to ground into specified load.		
IO(ŞC)	Output Short-CIrcuit Current: The current supplied by the device with the output connected directly to ground.		Gain Switching Time: The time between the initiation of a gain logic change and the time when the final gain switches are closed. It includes overdrive recovery time, but not settling to final value.
Ro_{0}	Closed Loop Output Resistance: The ratio of change in output voltage to change to output current at a specific gain.	${ }^{\mathbf{N}} \mathbf{N}$	Equivalent Input Noise Voltage: The rms or peak noise voltage referred to the input (RTI) over a specified frequency band.
$\mathbf{V}_{\mathbf{S}}$	Supply Voltage Range: The supply voltage range for which the device is operational.	I_{N}	
I_{5}	Supply Current: The current required from the supply to operate the device with no load and		Equivalent Input Noise Current: The rms or peak noise current referred to the input (RTI) over a specified frequency band.

Operational Amplifiers/Buffers

LH0101/LH0101C, LH0101A/LH0101AC Power Operational Amplifier

General Description

The LH0101 is a wideband power operational amplifier featuring FET inputs, internal compensation, virtually no crossover distortion, and rapid settling time. These features make the LH0101 an ideal choice for DC or AC servo amplifiers, deflection yoke drives, programmable power supplies, and disk head positioner amplifiers. The LH0101 is packaged in an 8 pin TO-3 hermetic package, rated at 20 watts with a suitable heat sink.

Features

- 5 Amp peak, 2 Amp continuous output current
- 300 kHz power bandwidth
- 850 mW standby power ($\pm 15 \mathrm{~V}$ supplies)
- 300 pA input bias current
- $10 \mathrm{~V} / \mu \mathrm{S}$ slew rate
- Virtually no crossover distortion
- $2 \mu \mathrm{~S}$ settling time to 0.01%
m 5 MHz gain bandwidth

Schematic and Connection Diagrams

See Package K08A

Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}_{\text {S }}$	$\pm 22 \mathrm{~V}$
Power Dissipation at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}}$ Derate linearly at $25^{\circ} \mathrm{C} / \mathrm{W}$ to zero at $150^{\circ} \mathrm{C}$,	5W
Power Dissipation atT ${ }_{C}=25^{\circ} \mathrm{C}$ Derate linearly at $2^{\circ} \mathrm{C} / \mathrm{W}$ to zero at $150^{\circ} \mathrm{C}$	62W
Differential Input Voltage, $\mathrm{V}_{1 \mathrm{~N}}$	$\pm 40 \mathrm{~V}$ but $< \pm \mathrm{V}_{\text {S }}$
Input Voltage Range, V_{CM}	$\pm 20 \mathrm{~V}$ but $< \pm \mathrm{V}_{\text {S }}$
Peak Output Current (50 ms pulse), $\mathrm{l}_{\mathrm{O}(\mathrm{PK})}$	5A
Output Short Circuit Duration (within rated $\left.R_{S C}=0.35 \Omega, T_{A}=25^{\circ} \mathrm{C}\right)$	wer dissipation, Continuous
Operating Temperature Range, T_{A}	
LH0101, LH0101C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH0101A, LH0101AC	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {STG }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature, T_{J}	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering < 10 seconds)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (see Note 1) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

					LH0101AC LH0101A			LH0101C LH0101			
Symbol	Parameter	Conditions			Min.	Typ.	Max.	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$				1	3		5	10	mV
							7			15	
$\Delta V_{\text {OS }} / \Delta \mathrm{P}_{\mathrm{D}}$	Change in Input Offset Voltage with dissipated power	$\mathrm{V}_{\text {CM }}=0$	Note 2			150			300	:	$\mu \mathrm{V} / \mathrm{W}$
$\Delta V_{\text {OS }} / \Delta T$	Change in Input Offset Voltage with temperature					10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}							300			1000	pA
	Input Bias Current		$T_{A} \leqslant T_{\text {MAX }}$	LH0101C/AC			60			60	nA
				LH0101/A			300			1000	
Ios	Input Offset Current						75			250	pA
			$T_{A} \leqslant T_{\text {MAX }}$	LH0101C/AC			15			15	nA
				LH0101/A		'	75			250	
Avol	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=10 \Omega$			50	200		50	200		V/mV
V_{0}	Output Voltage Swing	$\begin{aligned} & R_{S C}=0 \\ & A_{V}=+1 \end{aligned}$ Note 3	$R_{L}=100 \Omega$		± 11.7	± 12.5		± 11.7	± 12.5		V
			$\mathrm{R}_{\mathrm{L}}=10 \Omega$		± 11	± 11.6		± 11	± 11.6		
			$\mathrm{R}_{\mathrm{L}}=5 \Omega$		± 10.5	± 11		± 10.5	± 11		
CMRR	Common Mode Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$			85	100		85	100		dB
PSRR	Power Supply Rejection Ratio	$\Delta V_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$			85	100		85	100		
. Is	Quiescent Supply Current					28	35		28	35	mA

AC Electrical Characteristics
See Note 1, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Note 1: Specification is at $T_{A}=25^{\circ} \mathrm{C}$. Actual values at operating temperature may differ from the $T_{A}=25^{\circ} \mathrm{C}$ value. When supply voltages are $\pm 15 \mathrm{~V}$, quiescent operating junction temperature will rise approximately $20^{\circ} \mathrm{C}$ without heat sinking. Accordingly, V_{OS} may change 0.5 mV and I_{B} and I_{OS} will change significantly during warm-ups. Refer to the $\mathrm{I}_{\mathrm{B}} \mathrm{vs}$. temperature and power dissipation graphs for expected values. Power supply voltage is $\pm 15 \mathrm{~V}$. Temperature tests are made only at extremes.

Note 2: Change in offset voltage with dissipated power is due entirely to average device temperature rise and not to differential thermal feedback effects. Test is performed without any heat sink.

Note 3: At light loads, the output swing may be limited by the second stage rather than the output stage. See the application section under "Output swing enhancement" for hints on how to obtain extended operation.

Note 4: These parameters are sample tested to 10% LTPD.

Typical Performance Characteristics

Small Signal Frequency
Response (open loop)

Power Supply Rejection Ratio vs. Frequency

Safe Operating Area

Input Bias Current after Warm-up

Output Voltage Swing
vs. Frequency

Settling Time

Quiescent Power Supply Current

Input Common-Mode Voltage Range

Common-Mode Rejection
Ratio vs. Frequency

Total Harmonic
Distortion vs. Frequency

Total Harmonic
Distortion vs. Gain

Output Voltage Swing vs. Load Resistance

Equivalent Input Noise Voltage

Open-Loop Output Resistance

Io, OUTPUT CURRENT (mA)

VS, POWER SUPPLY VOLTAGE (V)
Open-Loop Output
Resistance vs. Frequency

Small Signal Pulse Response (No Load)

Large Signal Pulse Response ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{Q}$)

Application Hints

Input Voltages

The LH0101 operational amplifier contains JFET input devices which exhibit high reverse breakdown voltages from gate to source or drain. This eliminates the need for input clamp diodes, so that high differential input voltages may be applied without a large increase in input current. However, neither input voltage should be allowed to exceed the negative supply as the resultant high current flow may destroy the unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit C_{1}, a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the common-mode voltage may exceed the positive supply by approximately 100 mV , independent of supply voltage and over the full operating temperature range. The positive supply may therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.

With the LH0101 there is a temptation to remove the bias current compensation resistor normally used on the non-inverting input of a summing amplifier. Direct connection of the inputs to ground or a low-impedance voltage source is not recommended with supply voltages greater than 3 V . The potential problem involves loss of one supply which can cause excessive current in the second supply. Destruction of the IC could result if the current to the inputs of the device is not limited to less than 100 mA or if there is much more than $1 \mu \mathrm{~F}$ bypass on the supply buss.

Although difficulties can be largely avoided by installing clamp diodes across the supply lines on every PC board, a conservative design would include enough resistance in the input lead to limit current to 10 mA if the input lead is pulled to either supply by internal currents. This precaution is by no means limited to the LH0101.

Layout Considerations

When working with circuitry capable of resolving picoampere level signals, leakage currents in circuitry external to the op amp can significantly degrade performance. High quality insulation is a must (Kel-F and Teflon rate high). Proper cleaning of all insulating surfaces to remove fluxes and other residues is also required. This includes the IC package as well as sockets and printed circuit boards. When operating in high humidity environments or near $0^{\circ} \mathrm{C}$, some form of surface coating may be necessary to provide a moisture barrier.

The effects of board leakage can be minimized by encircling the input circuitry with a conductive guard ring operated at a potential close to that of the inputs.

Electrostatic shielding of high impedance circuitry is advisable.

Error voltages can also be generated in the external circuitry. Thermocouples formed between dissimilar metals can cause hundreds of microvolts of error in the presence of temperature gradients.
Since the LH0101 can deliver large output currents, careful attention should be paid to power supply, power supply bypassing and load currents. Incorrect grounding of signal inputs and load can cause significant errors.

Every attempt should be made to achieve a single point ground system as shown in the figure below.

FIGURE 1. Single-Point Grounding
Bypass capacitor $C_{B X}$ should be used if the lead lengths of bypass capacitors C_{B} are long. If a single point ground system is not possible, keep signal, load, and power supply from intermingling as much as possible. For further information on proper grounding techniques refer to "Grounding and Shielding Techniques in Instrumentation" by Morrison, and "Noise Reduction Techniques in Electronic Systems" by Ott (both published by John Wiley and Sons).

Leads or PC board traces to the supply pins, short-circuit current limit pins, and the output pin must be substantial enough to handle the high currents that the LH0101 is capable of producing.

Short Circuit Current Limiting

Should current limiting of the output not be necessary, SC+ should be shorted to V+and SC- should be shorted to $\mathrm{V}-$. Remember that the short circuit current limit is dependent upon the total resistance seen between the supply and current limit pins. This total resistance includes the desired resistor plus leads, PC Board traces, and solder joints.* Assuming a zero TCR current limit resistor, typical temperature coefficient of the short circuit will be approximately $.3 \%$.
*Short circuit current will be limited to approximately $\frac{0.6}{\text { RSC }}$

Thermal Resisiance

The thermal resistance between two points of a conductive system is expressed as:

$$
\theta_{12}=\frac{T_{1}-T_{2}}{P_{D}}{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

where subscript order indicates the direction of heat flow. A simplified heat transfer circuit for a cased semiconductor and heat sink system is shown in the figure below.

The circuit is valid only if the system is in thermal equilibrium (constant heat flow) and there are, indeed, single specific temperatures $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{C}}$, and T_{S} (no temperature distribution in junction, case, or heat sink). Nevertheless, this is a reasonable approximation of actual performance.

FIGURE 2. Semiconductor-Heat Sink Thermal Circuit

The junction-to-case thermal resistance θ_{Jc} specified in the data sheet depends upon the material and size of the package, die size and thickness, and quality of the die bond to the case or lead frame. The case-to-heat sink thermal resistance θ_{cs} depends on the mounting of the device to the heat sink and upon the area and quality of the contact surface. Typical $\theta_{\text {cs }}$ for a TO-3 package is 0.5 to $0.7^{\circ} \mathrm{C} / \mathrm{W}$, and 0.3 to $0.5^{\circ} \mathrm{C} / \mathrm{W}$ using silicone grease.

The heat sink to ambient thermal resistance $\theta_{\text {SA }}$ depends on the quality of the heat sink and the ambient conditions
Cooling is normally required to maintain the worst case operating junction temperature T_{J} of the device below the specified maximum value $T_{(\text {Max) }}$. T_{J} can be calcu-. lated from known operating conditions. Rewriting the above equation, we find:

$$
\begin{gathered}
\theta_{J A}=\frac{T_{J}-T_{A}}{P_{D}}{ }^{\circ} \mathrm{C} / \mathrm{W} \\
T_{J}=T_{A}+P_{D} \theta_{J A}{ }^{\circ} \mathrm{C} \\
\text { Where: } P_{D}=\left(V_{S}-V_{O U T}\right) l_{O U T}+\mid V+-(V-) \|_{Q} \\
\theta_{J A}=\theta_{J C}+\theta_{C S}+\theta_{S A} \text { and } V_{S}=\text { Supply Voltage } \\
\theta_{J C} \text { for the LH0101 is about } 2^{\circ} \mathrm{C} / \mathrm{W} .
\end{gathered}
$$

Stability and Compensation

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequncy of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time consistant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Some inductive loads may cause output stage oscillation. A $.01 \mu \mathrm{~F}$ ceramic capacitor in series with a 10Ω resistor from the output to ground will usually remedy this situation.

FIGURE 3. Driving Inductive Loads
Capacitive loads may be compensated for by traditional techniques. (See "Operational Amplifiers: Theory and Practice" by Roberge, published by Wiley):

FIGURE 4. R_{C} and C_{c} Selected to Compensate for Capacitive Load

A similar but alternative technique may be used for the LH0101:

FIGURE 5. Alternate Compensation for Capacitive Load

Output Swing Enhancement

When the feedback pin is connected directly to the output, the output voltage swing is limited by the driver stage and not by output saturation. Output swing can be increased as shown by taking gain in the output stage as shown in High Power Voltage Follower with Swing Enhancement below. Whenever gain is taken in the output stage, as in swing enhancement, either the output stage, or the entire op amp must be-appropriately compensated to account for the additional loop gain.

Output Resistance

The open loop output resistance of the LH0101 is a function of the load current. No load output resistance is approximately 10Ω. This decreases to under an ohm for load currents exceeding 100 mA .

Typical Applications

See AN261 for more information

FIGURE 6. High Power Voltage Follower

FIGURE 7. High Power Voltage Follower with Swing Enhancement

FIGURE 8. Restricting Outputs to Positive Voltages only

FIGURE 9. Generating a Split Supply from a Single Voltage Supply

FIGURE 10. Power DAC

FIGURE 11. Bridge Audio Amplifier

FIGURE 12. ± 5 to ± 35 Power Source or Sink

FIGURE 13. Remote Loudspeaker via Infrared Link

FIGURE 14. CRT Deflection Yoke Driver

FIGURE 15. DC Servo Amplifier

FIGURE 16. High Current Source/Sink

FIGURE 17. "DIGISHOUTER"

Operational Amplifiers/Buffers

LH740ALLH740AC FET Input Operational Amplifier

General Description

The LH740A/LH740AC is a FET input, general purpose operational amplifier with high input impedance, closely matched input characteristics, and good slew rates. Input offset voltage is typically 10.0 mV at $25^{\circ} \mathrm{C}$, while input bias current is less than 100 pA at $25^{\circ} \mathrm{C}$. Offset current is typically less than 40 pA at $25^{\circ} \mathrm{C}$. Other important design features include:

- Internal $6 \mathrm{~dB} /$ octave frequency compensation
- Unity gain slew rate in excess of $6 \mathrm{~V} / \mu \mathrm{s}$
- Unity gain bandwidth of 1 MHz
- Input offset is adjustable with a single 10k pot
- Pin compatible with LM741, LM709, LM101A.
- Excellent offset current match over temperature, typically 100 pA
- Output is continuously short-circuit proof
- Excellent open loop gain, typically in excess of 100 dB
- Guaranteed over the full military temperature range

The LH740A/LH740AC is intended to fulfill a wide variety of applications requiring extremely low bias currents such as integrators, sample and hold amplifiers, and general purpose operational amplifier applications.

The LH740A is specified for operation over the $-55^{\prime \prime} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH740AC is specified for operation over the $0^{\circ} \mathrm{C}$ to $+85^{\prime \prime} \mathrm{C}$ temperature range.

Connection Diagram

Order Number LH740AH or LH740ACH
See Package H08A

Typical Applications

Transient Response

Offset Null

Absolute Maximum Ratings

Supply Voltage	$\pm 22 \mathrm{~V}$	
Maximurn Power Dissipation	500 mW	
Differential Input Voltage	$\pm 5 \mathrm{~V}$	
Input Voltage	$\pm 15 \mathrm{~V}$	
Short Circuit Duration		Continuous
Operating Temperature Range	LH740A	$-55^{\circ} \mathrm{C}$ tc $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
LH740AC	$-65^{\circ} \mathrm{C}: 0+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10 sec.)	$300^{\circ} \mathrm{C}$	

Electrical Characieristics (Note 1) $\left(V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Note 1: For supply voltages less than $\pm 10 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: Due to high speed automatic testing, these parameters are correlated to junction temperature.

Typical Performance Characteristics

Operational Amplifiers/Buffers

LH2011/LH2011B/LH2011C Dual Operational Amplifiers

General Description

The LH2011 series of dual operational amplifiers contain a pair of LM11 op amps in a single hermetic package, combining the best features of existing bipolar and FET op amps. The LH2011 is similar to the LH2108A, except that input currents have been reduced by more than a factor of ten. Offset voltage and drift have also been improved.

Compared to FETs, the device provides inherently lower offset voltage and offset voltage drift, along with at least an order of magnitude better long-term stability. Low frequency noise is also somewhat reduced. Bias current is significantly lower even under laboratory conditions, and the low drift makes compensation practical. Offset current is almost unmeasurable. Although not as fast as FETs, it does have a much lower power drain. This low dissipation has the added advantage of eliminating warm up time in critical applications.
Typical characteristics for $25^{\circ} \mathrm{C}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ are:

- Offset voltage: $100 \mu \mathrm{~V}(\mathbf{2 0 0} \mu \mathrm{~V})$
- Bias current: $25 \mathrm{pA}(65 \mathrm{pA})$
- Offset current: $0.5 \mathrm{pA}(3 \mathrm{pA})$
- Temperature drift: $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Long-term stability: $10 \mu \mathrm{~V} /$ year

The LH2011 is internally compensated, but external compensation may be added for improved frequency stability, particularly with capacitive loads. Offset voltage balancing is also provided, with the balance range determined by a low-resistance potentiometer.

Otherwise, the device is the electrical equivalent of the LH2108, except that the negative common-mode limit is 0.6 V less, performance is specified down to $\pm 2.5 \mathrm{~V}$ and the guaranteed output drive has been increased to $\pm 2 \mathrm{~mA}$. The input noise is somewhat higher, but amplifier noise is obscured by resistor noise with higher source resistances.
The LH2011 has applications as electrometer amplifiers, charge integrators, analog memories, low frequency active filters or for frequency shaping in slow servo loops. It can be substituted for existing circuits to provide improved performance or eliminate trimming operations. The greater precision can also be used to extend the dynamic range of logarithmic amplifiers, light meters and solid-state particle detectors.
The LH2011 is manufactured with standard bipolar processing using super-gain transistors.

Connection Diagrams

Absolute Maximum Ratings

V_{S}	Total Supply Voltage	40 V
I_{IN}	Input Current (Note 1)	$\pm 10 \mathrm{~mA}$
P_{D}	Power Dissipation at $25^{\circ} \mathrm{C}$ Derate Linearly above $100^{\circ} \mathrm{C}$ at $100^{\circ} \mathrm{C} / \mathrm{W}$	500 mW
$\mathrm{I}_{\text {Sc }}$	Output Short-Circuit Duration (Note 2)	Indefinite
T_{J}	Junction Temperature	$150^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Operating Temperature Range	
	LH2011CD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	LH2011D, LH2011F	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	LH2011BD, LH2011BF	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Lead Temperature (Soldering, 10 seconds)	300°

Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {MAX }}$ unless noted.

Parameter		Conditions		LH2011			LH2011B			LH2011C			Units		
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max					
$\mathrm{V}_{\text {os }}$	input Offset			Note 3	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.1	0.3		0.2	0.6		0.5	1	
	Voltage					0.6			1.1			1.3	mV		
l_{OS}	Input Offset Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			0.5	10		1	10		4	25			
						30			30			50	A		
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			25	50		40	100		70	180	pA		
						150			300			400			
$\mathrm{R}_{\text {IN }}$	Input Resistance				10^{11}			10^{11}			10^{11}		Ω		
$\Delta V_{\text {OS }} / \Delta T$	Offset Voltage Drift	Note 4	,		1	3		2	5		3		${ }_{\mu} \mathrm{V}{ }^{\circ} \mathrm{C}$		
$\Delta I_{B} / \Delta T$	Bias Current Drift			,	0.5	1.5		0.8	3		1.4		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$		
$\Delta \mathrm{l}_{\text {OST }} / \Delta \mathrm{T}$	Offset Current Drift				20			20			50		${ }^{\mathrm{f}} \mathrm{I}^{\circ} \mathrm{C}$		
A_{V}	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}= \pm 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{0}= \pm 12 \mathrm{~V} \end{aligned}$	100	300		100	300		50	300		V/mV		
		$\mathrm{V}_{\mathrm{O}}= \pm 11.5 \mathrm{~V}$		50			50			15					
		$\begin{aligned} & V_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}= \pm 0.5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 12 \mathrm{~V} \\ & \hline \end{aligned}$	250	1200		250	1200		90	800				
	-	$\mathrm{V}_{\mathrm{O}}= \pm \pm 11.5 \mathrm{~V}$		100			100			30					
CMRR	Common-Mode		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	110	130		110	130		96	110		dB		
	Rejection	$\mathrm{V}_{\mathrm{CM}}=-13 \mathrm{~V},+14 \mathrm{~V}$		100			100			90					
PSRR	Power Supply		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	100	118		100	118		84	100		dB		
	Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$		96			96			80					
$\mathrm{I}^{\text {s }}$	Supply Current		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		0.3	0.6		0.3	0.8		0.3	0.8	mA		
						0.8			1			1			
Isc	Output Short Circuit Current	$\mathrm{T}_{J}=\mathrm{T}_{\text {MAX }}$			± 15			± 15			± 15		mA		

Note 1: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used. In addition, a 2 ks minımum resistance in each input is advised to avoid possible latch-up initiated by supply reversals.
Note 2: Current limiting protects the output when it is shorted to ground or any voltage less than the supplies. With continuous overloads, package dissipation must be taken into account and heat sinking provided when necessary.
Note 3: These specifications apply for test at $V_{S}= \pm 15 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CM}}=-12.5 \mathrm{~V}\left(-13 \mathrm{~V}\right.$ at $\left.25^{\circ} \mathrm{C}\right), 14 \mathrm{~V}$; $\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$; in addition, V_{OS} is also tested at $V_{S}= \pm 2.5 \mathrm{~V}$ and $V_{C M}=0 \mathrm{~V}$.
Note 4: Drift parameters are sample tested to 5% LTPD at the same conditions as Note 3 . The values are average-calculated from measurements at $25^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$.

Typical Characteristics (for single device)

Drift: Single Source Resistor (Unbalanced)

Output Saturation
Threshold

Equivalent Input Noise

Supply Rejection

Offset: Single Source Resistor (Unbalanced)

Input Noise

Supply Current (Each Amplifier)

Typical Characteristics (Continued) (for single device)

Application Hints

When working with circuitry capable of resolving picoampere level signals, leakage currents in circuitry external to the op amp can significantly degrade performance. High quality insulation is a must (Kel-F and Teflon rate high). Proper cleaning of all insulating surfaces to remove fluxes and other residues is also required. This includes the IC package as well as sockets and printed circuit boards. When operating in high humidity environments or near $0^{\circ} \mathrm{C}$, some form of surface coating may be necessary to provide a moisture barrier.

The effects of board leakage can be minimized by encircling the input circuitry with a conductive guard ring operated at a potential close to that of the inputs. For critical applications, the floating metal lid is best connected to the guard. This might be accomplished with a dab of conductive paint connecting the metal lid to the "no-connection" pin 14.
Electrostatic shielding of high impedance circuitry is advisable.
Error voltages can also be generated in the external circuitry. Thermocouples formed between dissimilar metals can cause hundreds of microvolts of error in the presence of temperature gradients. The most troublesome thermo-
couples are the junction of the IC package and the printed circuit board ($35 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for copper-kovar) and internal resistor connections. Problems can be avoided by keeping low level circuitry away from heat generating elements. Mounting the IC directly to the PC board while keeping package leads short and the input leads close together can also help.

With the LH2O11 there is a temptation to remove the bias-current-compensation resistor normally used on the noninverting input of a summing amplifier. Direct connection of the inputs to ground or a low-impedance voltage source is not recommended with supply voltages greater than about 3 V . The potential problem involves the loss of one supply which can cause excessive current in the second supply. Destruction of the IC could result if the current to the input of the device is not limited to less than 100 mA or if there is much more than $1 \mu \mathrm{~F}$ bypass on the supply buss.
Although these difficulties can be largely avoided by installing clamp diodes across the supply lines on every PC board, a conservative design would include enough resistance in the input lead to limit current to 10 mA if the input lead is pulled to either supply by internal currents. This precaution is by no means limited to the LH2O11.

Input Guarding

Input guarding can drastically reduce surface leakage. Layout for the LH2011 is shown here. Guarding both sides of board is required. Bulk leakage reduction is less and depends on guard ring width.

Guard ring is connected to low impedance point at same potential as sensitive input leads. Connections for various op amp configurations are shown here.

Input Protection

Current is limited by R2 even when input is connected to voltage source outside common-mode range. If one supply reverses, current is limited by R1. These resistors do not affect normal operation.

Input resistor limits current when input exceeds supply voltages, when power for op amp is turned off or when output is shorted.

Balancing and Over-Compensation

Over-compensation will improve stability with capacitive loading (see curves). Offset voltage adjustment range is determined by balance potentiometer resistance as indicated in the table.

Resistance Multiplication

Equivalent feedback resistance is $10 \mathrm{G} \Omega$, but only standard resistors are used. Even though the offset voltage is multiplied by 100 , output offset is actually reduced because error is dependent on offset current rather than bias current. Voltage on summing junction is less than 5 mV .

Follower input resistance is $1 \mathrm{G} \Omega$. With the input open, offset voltage is multiplied by 100 , but the added error is not significant because the op amp offset is low.

This circuit multiplies RC time constant to 1000 seconds and provides low output impedance.

$\tau=\frac{\mathrm{R} 1 \mathrm{C}}{\mathrm{R} 3}(\mathrm{R} 2+\mathrm{R} 3)$
$\Delta V_{\text {OUT }}=\frac{R 1+R 3}{R 3}\left(l_{B} R 2+V_{O S}\right)$

A high-input-impedance ac amplifier for a piezoelectric transducer. Input resistance of $880 \mathrm{M} \Omega$ and gain of 10 is obtained.

Cable Bootstrapping

Bootstrapping input shield for a follower reduces cable capacitance, leakage, and spurious voltages from cable flexing. Instability can be avoided with small capacitor on input.

With summing amplifier, summing node is at virtual ground so input shield is best grounded. Small feedback capacitor insures stability.

Differential Amplifiers

This differential amplifier handles high input voltages. Resistor mismatches and stray capacitors should be balanced out for best common-mode rejection.

Two op-amp instrumentation amplifier has poor ac common-mode rejection. This can be improved at the expense of differential bandwidth with C 2 .

High gain differential instrumentation amplifier includes input guarding, cable bootstrapping and bias current compensation. Differential bandwidth is reduced by C 1 which also makes common-mode rejection less dependent on matching of input amplifiers.

For moderate-gain instrumentation amplifiers, input amplifiers can be connected as followers. This simplifies circuitry, but A2 must also have low drift.

Bias Current Compensation

Precise bias current compensation for use with unreg. ulated supplies. Reference voltage is available for other circuitry.

This circuit shows how bias current compensation can be used on a voltage follower.

Voltmeter

High-input-impedance millivoltmeter. Input current is proportional to input voltage, about 10 pA at full-scale. Reference could be used to make direct reading linear ohmmeter.

[^28]$\dagger 3 \times$ scale calıbrate

Ammeter

Current meter ranges from 100 pA to 3 mA full-scale. Voltage across input is $100 \mu \mathrm{~V}$ at lower ranges rising to 3 mV at 3 mA . Buffers on op amp are to remove ambiguity with high-current overload. Output can also drive DVM or DPM.

Current Source

Precision current source has $10 \mu \mathrm{~A}$ to 10 mA ranges with output compliance of 30 V to -5 V . Qutput current is fully adjustable on each range with a calibrated, ten-turn potentiometer. Error light indicates saturation.

Fast Amplifiers

These inverters have bias current and offset voltage of LH2011 along with speed of the FET op amps. Open loop gain is about 140 dB and settling time to 1 mV about $8 \mu \mathrm{~s}$. Overload-recovery delay can be eliminated by direct coupling the FET amplifier to summing node.

This $100 \times$ amplifier has small and large signal bandwidth of 1 MHz . The LH2011 greatly reduces offset voltage, bias current and gain error. Eliminating long recovery delay for greater than 100\% overload requires direct coupling of A2 to input.

Follower has $10 \mu \mathrm{~s}$ settling to 1 mV , but signal repetition frequency should not exceed 10 kHz if the FET amplifier is ac coupled to input. The circuit does not behave well if common-mode range is exceeded.

Heater Control

Proportional control crystal oven heater uses lead/lag compensation for fast settling. Time constant is changed with R4 and compensating resistor R5. If Q2 is inside oven, a regulated supply is recommended for $0.1^{\circ} \mathrm{C}$ control.

[^29]
Leakage Isolation

Switch leakage in this sample and hold does not reach storage capacitor.

A peak detector designed for extended hold. Leakage currents of peak-detecting diodes and reset switch are absorbed before reaching storage capacitor.

Reset is provided for this integrator and switch leakage is isolated from the summing junction. Greater precision can be provided if bias-current compensation is included.

[^30]
Standard-Cell Buffer

Battery powered buffer amplifier for standard cell has negligible loading and disconnects cell for low supply voltage or overload on output. Indicator diode extinguishes as disconnect circuitry is activated.

Logarithmic Amplifiers

Unusual frequency compensation gives this logarithmic converter a $100 \mu \mathrm{~s}$ time constant from 1 mA down to $100 \mu \mathrm{~A}$, increasing from $200 \mu \mathrm{~s}$ to 200 ms from 10 nA to 10 pA . Optional bias current compensation can give 10 pA resolution from $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Scale factor is $1 \mathrm{~V} /$ decade and temperature compensated.

Light meter has eight-decade range. Bias current compensation can give input current resolution of better than $\pm 2 \mathrm{pA}$ over $15^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

Schematic Diagram (for single device)

Definition of Terms

Input offset voltage: That voltage which must be applied between the input terminals to bias the unloaded output in the linear region.

Input offset current: The difference in the currents at the input terminals when the output is unloaded in the linear region.

Input bias current: The absolute value of the average of the two input currents.

Input resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.
Large signal voltage gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it.

Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.

Temperature drift: The change of a parameter measured at $25^{\circ} \mathrm{C}$ and either temperature extreme divided by the temperature change.

Supply-voltage rejection: The ratio of the specified supply-voltage change (either or both supplies) to the change in offset voltage between the extremes.
Supply current: The current required from the power source to operate the amplifier with the output unloaded and operating in the linear range.

Operational Amplifiers/Buffers
LH2101A/LH2201A/LH2301A Dual High Performance Op Amp

General Description

The LH2101A series of dual operational amplifiers are two LM101A type op amps in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost, and smaller size than two singles. For additional information, see the LM101A data sheet and National's Linear Application Handbook.
The LH2101A is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2201A is specified for operation over the
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LH2301A is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Low offset voltage
- Low offset current
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ as a summing amplifier

Connection Diagram

Order Number LH2101AD or LH2201AD or LH2301AD, see Package D16C LH2101AF, LH2201AF, LH2301AF, see Package F16B LH2101AJ, LH2201AJ, LH2301AJ, see Package J16A'

Auxiliary Circuits

Inverting Amplifier with Balancing Circuit

${ }^{\text {then }}$ May be zeto or equal to parallel combination
of R1 and R2 for minumum offset

Alternate Balancing Circuit

Feedforward Compensation

C2 $\frac{1}{2 \pi \pi_{0} \mathrm{~B}_{2}}$
$\mathrm{t}_{\mathrm{o}}=3 \mathrm{MHz}$

Absolute Maximum Ratings

Supply Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	

Operating Temperature RangeLH2101A LH2201A	
	LH2301A

$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics Each Side (Note 3)

Note 1: The maximum junction temperature of the LH2101A is $150^{\circ} \mathrm{C}$, while that of the LH2201A is $100^{\circ} \mathrm{C}$. For operating temperatures of devices in the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages lens than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LH2201A, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant 85^{\circ} \mathrm{C}$. For the LH2301A these specifications apply for $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant$ $70^{\circ} \mathrm{C}$, and $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 15 \mathrm{~V}$. Supply current and input voltage range are specified as $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LH2301A. $\mathrm{C}_{1}=30 \mathrm{pF}$ unless otherwise specified.

LH2108/LH2208/LH2308, LH2108A/LH2208A/LH2308A Dual Super Beta Op Amp

General Description

The LH2108A/LH2208A/LH2308A and LH2108/ LH2208/LH2308 series of dual operational amplifiers are two LM108A or LM108 type op amps in a single hermetic package. Featuring all the same performance characteristics of the single device, these duals also offer closer thermal track. ing, lower weighi, reduced insertion cost, and smaller size than two single devices. For additions: information see the LM108A or LM108 data sheet and National's Linear Application Handbook.

The LH2108A/LH2108 is specitied for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2208A/LH2208 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature
range. The LH2308A/LH2308 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

Connection Diagram

Order Number LH2108AD, LH2208AD, LH230BAD, LH2108D, LH2208D, or LH2308D See Package D16C
Order Number LH2108AF, LH2208AF, LH2308AF, LH2108F, LH2208F, or LH2308F See Package F16B
Order Number LH2108AJ, LH2208AJ, L.H2308A!, LH2108J, LH2208J, or LH2308J
See Package J16A

Auxiliary Circuits

Standard Compensation Circuit

Alternate * Frequency Compensation

Feedforward Compensation

Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short Circuit Duration
$\pm 20 \mathrm{~V}$
500 mW
$\pm 10 \mathrm{~mA}$
$\pm 15 \mathrm{~V}$
Continuous

Operatıng Temperature Range LH2108A/LH2108 LH2208A/LH2208 LH2308A/LH2308
Storage Temperature Range
Lead Temperature (Soldering. 10 sec)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics each side (Note 4)

PARAMETER	CONDITIONS	LIMITS			UNITS	
		LH2108	LH2208	LH2308		
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	2.0	7.5	$m V$ Max	
Input Offset Current ${ }^{\text { }}$	$T_{A}=25^{\prime} \mathrm{C}$	0.2	02	1.0	$n A$ Max	
Input Bias Current	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	2.0	20	7.0	$n A$ Max	
Input Resistance	$T_{A}=25^{\circ} \mathrm{C}$	30	30	10	$M \Omega M$ ın	
Supply Current.	$T_{A}=25^{\circ} \mathrm{C}$	06	0.6	08	mA Max	
Large Signal Voltage Gaın	$\begin{aligned} & T_{A}=25 \mathrm{CV} V_{S}=+15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{L}>10 \mathrm{k} \Omega \end{aligned}$	50	50	25	V / mV. Min	
Input Offset Voltage	.	30	30	10	$m \vee$ Max	
Average Temperature Coefficient of Input Offset Voltage		15	15.	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max	
Input Offset Current		04	04	1.5	$n A$ Max	
Averáge Temperature Coefficient of Input Offset Current		25	25	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ Max	
Input Bas Current		30	30	10	$n A$ Max	
Supply Current	$\mathrm{T}_{\text {A }}=+125^{\circ} \mathrm{C}$	04	04	-	mA Max	
- Large Signal Voltage Gain	$\begin{aligned} & V_{S}=+15 \mathrm{~V}, V_{\text {OUT }}=+10 \mathrm{~V} \\ & R_{L}>10 \mathrm{k} \Omega \end{aligned}$	25	25	15	$V / m \vee M_{1 n}$	
Output Voltage Swing	$V_{S}=+15 \mathrm{~V}, R_{L}=10 \mathrm{kS}$	+13	± 13	± 13	$V M_{\text {in }}$	
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	+135	± 135	± 14	\checkmark Min	
Common Mode Rejection Ratio		85	85	80	dB Min	
Supply Voltage Rejection Ratıo	,	80	80	80	dB Min	

Electrical Characteristics each side (Note 4)

PARAMETER	CONDITIONS	LIMITS			UNITS
		LH2108A	LH2208A	LH2308A	
Input Offset Voltage	$T_{A}=25 \mathrm{C}$	05	05	05	$m \vee$ Max
Input Offset Current	$T_{A}=25 \mathrm{C}$	02	02	10	nA Max
Input Bas Current	$T_{A}=25 \mathrm{C}$	20	20	70	$n A$ Max
Input Resistance	$T_{A}=25^{\circ} \mathrm{C}$	30	30	10	$M \Omega$ M in
Supply Current	$T_{A}=25 \mathrm{C}$	06	06	08	mA Max
Large Sıgnal Voltage Gaın	$\begin{aligned} & T_{A}=25 \mathrm{CV} V_{S}=+15 \mathrm{~V} \\ & V_{\text {OUT }}=+10 \mathrm{~V}, R_{L}>10 \mathrm{k} \Omega \end{aligned}$	80	80	80	$\mathrm{V} / \mathrm{mV} \mathrm{Min}^{\text {in }}$
input Offset Voltage		10	10	0.73	$m \vee$ Max
Average Temperature Coefficient of Input Offset Voltage		5	5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current	.	04	04	-1.5	nA Max
Average Temperature Coefficient of Input Offset Current	.	25	25	10	pA/ C Max
Input Bias Current		30	30	10	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}++125 \mathrm{C}$	04	04	-	ma Max
Large Signat Voltage Gain	$\begin{aligned} & V_{S}=+15 \mathrm{~V}, V_{\text {OUT }}=+10 \mathrm{~V} \\ & R_{L}>10 \mathrm{kS} \end{aligned}$	40	40	60	$V / m V M_{1 n}$
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{ks}$	+13	± 13	± 13	$V M_{\text {in }}$
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	+135	+135	± 14	$\checkmark M_{\text {in }}$
Common Mode Rejection Ratio		96	96	96	dB Mın
Supply Voltage Rejection Ratio	1 .	96	96	96	dB Min

[^31]
LH2110/LH2210/LH2310 Dual Voltage Follower

General Description

The LH2110 series of dual voltage followers are two LM110 type followers in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost and smaller size than two singles. For additional information, see the LM110 data sheet and National's Linear Application Notebook.

The LH2110 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH 2210 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LH 2310 is speci-
fied for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Low input current 1 nA
- High input resistance 10^{10} ohms
- High slew rate $30 \mathrm{~V} / \mu \mathrm{s}$
- Wide bandwidth 20 MHz
- Wide operating supply range $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Output short circuit proof

Auxiliary Circuits

Increasing Negative Swing Under Load

Offset Balancing Circuit

Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 3)	Continuous

Operating Temperature RangeLH2110 LH2210 LH2310	
Storage Temperature Range	

$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) .
$300^{\circ} \mathrm{C}$

Electrical Characteristics Each Side (Note 4)

Note 1: The maximum junction temperature of the LH2110 is $150^{\circ} \mathrm{C}$, while that of the LH 2210 is $100^{\circ} \mathrm{C}$ and that of the LH 2310 is $85^{\circ} \mathrm{C}$. For operating devices in the flat package at elevated temperatures, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\circ} \mathrm{C}$. It is necessary to insert a resistor greater than $2 \mathrm{k} \Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant \pm 18 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM210, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 85^{\circ} \mathrm{C}$, and for the $L H 2310$, all temperature specifications are limited to $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$. Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^{-}terminals.

The LH24250/LH24250C series of dual programmable micropower operational amplifiers are two LM4250 type op amps in a single hermetic package. Featuring all the same performance characteristics of the LM4250, the LH24250/LH24250C duals also offer closer thermal tracking, lower weight, reduced insertion cost and smaller size than two single devices. For additional information, see the LM4250 data sheet and National's Linear Application Handbook.

Features

- $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply operation
- Standby power consumption as low as $20 \mu \mathrm{~W}$
- Offset current programmable from less than 0.5 nA to 30 nA
- Programmable slew rate
- May be shut-down using standard open collector TTL
- Internally compensated and short circuit proof

Connection Diagram and Auxiliary Circuit

Set Current Setting Resistor to V-

$\mathrm{I}_{\text {SET }}$					
V_{S}	$0.1 \mu \mathrm{~A}$	$0.5 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
$\pm 1.5 \mathrm{~V}$	$25.6 \mathrm{M} \Omega$	$5.04 \mathrm{M} \Omega$	$2.5 \mathrm{M} \Omega$	$492 \mathrm{k} \Omega$	$244 \mathrm{k} \Omega$
$\pm 3.0 \mathrm{~V}$	$55.6 \mathrm{M} \Omega$	$11.0 \mathrm{M} \Omega$	$5.5 \mathrm{M} \Omega$	$1.09 \mathrm{M} \Omega$	$544 \mathrm{k} \Omega$
$\pm 6.0 \mathrm{~V}$	$116 \mathrm{M} \Omega$	$23.0 \mathrm{M} \Omega$	$11.5 \mathrm{M} \Omega$	$2.29 \mathrm{M} \Omega$	$1.14 \mathrm{M} \Omega$
$\pm 9.0 \mathrm{~V}$	$176 \mathrm{M} \Omega$	$35.0 \mathrm{M} \Omega$	$17.5 \mathrm{M} \Omega$	$3.49 \mathrm{M} \Omega$	$1.74 \mathrm{M} \Omega$
$\pm 12.0 \mathrm{~V}$	$236 \mathrm{M} \Omega$	$47.0 \mathrm{M} \Omega$	$23.5 \mathrm{M} \Omega$	$469 \mathrm{M} \Omega$	$2.34 \mathrm{M} \Omega$
$\pm 15.0 \mathrm{~V}$	$296 \mathrm{M} \Omega$	$59.0 \mathrm{M} \Omega$	$29.5 \mathrm{M} \Omega$	$5.89 \mathrm{M} \Omega$	$2.94 \mathrm{M} \Omega$

Ordering Information
Order Number LH24250D or LH24250CD, See Package D16C
LH24250F or LH24250CF, See Package F16B
LH24250J or LH24250CJ, See Package J16A
Typical Quiescent Current Setting Resistor

Quiescent Current ($\mathbf{I q}_{\mathbf{q}}$) vS ISET

Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$	Output Short-Circuit Duration	Continuous
Power Dissipation (Note 1)	500 mW	Operating Temperature Range LH24250	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 15 \mathrm{~V}$	LH24250C	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$I_{\text {Set }}$ Current	$150 \mu \mathrm{~A}$	Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics LH24250, each amplifier ($-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 125^{\circ} \mathrm{C}$ unless otherwise specified)

Parameters	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$				Units
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$		
		Min.	Max.	Min.	Max.	
Vos	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {S }} \leqslant 100 \mathrm{k} \Omega$	40	3	50	5	mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3		10	nA
$\mathrm{I}_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5		50	nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$					$\begin{aligned} & k \\ & k \end{aligned}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5		80	$\mu \mathrm{A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		23		240	$\mu \mathrm{W}$
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		4		6	mV
los	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		5 3		10 10	$n A$
$I_{\text {bias }}$		± 0.7	7.5	± 0.7	50	nA
Input Voltage Range						V
Large Signal Voltage Gain	$\begin{aligned} & V_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	30		30		$\begin{aligned} & k \\ & k \end{aligned}$
Output Voltage Swing	$\begin{aligned} & R_{L}=100 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	± 0.6		± 0.6	V	V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	70		70		dB
Supply Voltage Rejection Ration	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	76		76		dB
Supply Current .			8		90	$\mu \mathrm{A}$
Power Consumption			24		270	$\mu \mathrm{W}$
Parameters	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$				Units
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$		
		Min.	Max.	Min.	Max.	
$\mathrm{V}_{\text {OS }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	100	3	100	5	mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3		10	na
Iblas	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5		50	nA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{L}=100 \mathrm{k} \Omega \\ & V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$					k
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.	10		90	$\mu \mathrm{A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		300		2.7	$\mu \mathrm{W} / \mathrm{mW}$
Vos	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		4		6	mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		25		25	nA
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3		10	nA
$t_{\text {bias }}$			7.5		50	nA
Input Voltage Range		± 13.5		± 13.5		V
Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50		50		$\begin{aligned} & \mathrm{k} \\ & \mathrm{k} \end{aligned}$
Output Voltage Swing	$R_{L}=100 \mathrm{k} \Omega$	± 12		± 12		V
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$					V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	70		70		dB
Supply Voltage Rejection ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	76		76		dB
Supply Current Power Consumption		11	330	100	3	A $\mu \mathrm{W} / \mathrm{mW}$

Note 1: The maximum junction temperature of the LH 24250 is $150^{\circ} \mathrm{C}$, while that of the LH 24250 C is $100^{\circ} \mathrm{C}$. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$ inch thick epoxy glass board with ten, 0.03 inch wide, 2 ounce copper conductors.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

Electrical Characteristics LH24250C, each amplifier ($10^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$ unless otherwise specified)

Parameters	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$				Units
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$		
		Min.	Max.	Min.	Max.	
$\mathrm{V}_{\text {os }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leqslant 100 \mathrm{k} \Omega$	25	5	25	6	mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				20	nA
$\mathrm{Ib}_{\text {blas }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10		75	nA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$					k k
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8		90	$\mu \mathrm{A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		24		270	$\mu \mathrm{W}$
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		6.5		7.5	mV
los			8		25	nA
$I_{\text {bias }}$	$\begin{aligned} & V_{O}= \pm 0.6 \mathrm{~V}, R_{L}=100 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$		10	± 0.6	80	nA
Input Voltage Range		$\pm 0.6$25				v
Large Signal Voltage Gain				25	v	k
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	± 0.6		± 0.6		v
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	70		70	dB	
Supply Voltage Rejection Ratio.	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	74		74	dB	
Supply Current			8		90	$\mu \mathrm{A}$
Power Consumption			24		270	$\mu \mathrm{W}$
Parameters	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$				Units
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$		
		Min.	Max.	Min.	Max.	
$\mathrm{V}_{\text {os }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	60	5	60	6	mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6		20	na
$I_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10		75	nA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$					$\begin{aligned} & k \\ & k \end{aligned}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		11		100	$\mu \mathrm{A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		330		,	$\mu \mathrm{W} / \mathrm{mW}$
$\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		6.5		7.5	mV
los	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		8		25	nA
$I_{\text {bias }}$			10		80	nA
Input Voltage Range		± 13.5		± 13.5		v
Large Signal Voltage Gain	$\begin{aligned} & V_{\mathrm{O}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50		50		k
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	± 12		± 12		v
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	70		70		dB
Supply Voltage Rejection ratio -	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	74		74		dB
Supply Current Power Consumption		11	300	100	3	$\mu \mathrm{A}$ $\mu \mathrm{W} / \mathrm{mW}$

Typical Performance Characteristics

Input Bias Current vs
Temperature

Quiescent Current (\mathbf{l}_{q}) vs Temperature

Section 4
Instrumentation Amplifiers

Instrumentation Amplifiers

Section Contents
Hybrid Products Instrumentation Amplifier Guide 4-3
Definition of Terms 4-4
LH0036/LH0036C Instrumentation Amplifier 4-18
LH0038/LH0038C True Instrumentation Amplifier 4-26
LH0084/LH0084C Digitally-Programmable-Gain Instrumentation Amplifier 4-37
LM121/LM221/LM321, LM121A/LM221A/LM321A Precision Preamplifiers 4-5
LM163/LM363 Precision Instrumentation Amplifier 4-13

Note. For additional information on instrumentation amplifiers, see National Semiconductor's Hybrid Products Databook.

All of the amplifiers in this guide are true differential input instrumentation amplifiers with very high common mode rejection and adjustable gain.

Features	I_{B} Max	$V_{\text {OSin }}$ Max	Characteristics		Gain Tempco	Gain Error	Part Number		Page Number
			$\frac{\Delta V_{O S}}{\Delta T}$	Gain Lin.			$\begin{gathered} -25^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & 125^{\circ} \mathrm{C} \end{aligned}$	
$90 \mu \mathrm{~W}$ dissipation, wide supply range, one external gain set resistor	$\begin{aligned} & 125 \mathrm{nA} \\ & 100 \mathrm{nA} \end{aligned}$	$\begin{aligned} & 2 \mathrm{mV} \\ & 1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 10 \mu \mathrm{~V} /^{\circ} \mathrm{C} \\ & 10 \mu \mathrm{~V} 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03 \% \\ & 0.03 \% \end{aligned}$	-	$\begin{aligned} & 3 \% \max \\ & 1 \% \max \end{aligned}$	LH0036C	LH0036	3.4
Low cost, one external gain set resistor	500 nA	$\begin{aligned} & 2 \mathrm{mV} \\ & 1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 10 \mu \mathrm{~V} 1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03 \% \\ & 0.03 \% \end{aligned}$	*	$\begin{gathered} 1 \% \\ 0.3 \% \end{gathered}$	LH0037C	LH0037	$3 \cdot 12$
Ultra low drift, all gain set resistors internal, very low noise, very linear, guard drive amplifier included	100 nA	$\begin{aligned} & 150 \mu \mathrm{~V} \\ & 100 \mu \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \\ 0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \max \end{gathered}$	1 ppm 1 pom	$\begin{aligned} & 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & 0.1 \% \end{aligned}$	LH0038C	LH0038	3.15
Programmable gain fast settling	$\begin{aligned} & 500 \mathrm{pA} \\ & 500 \mathrm{pA} \end{aligned}$	$\begin{aligned} & 10 \mathrm{mV} \\ & 5 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 10 \mu /{ }^{\circ} \mathrm{C} \end{aligned}$	20 ppm 20 ppm	$\begin{aligned} & 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.3 \% \max \\ & 0.3 \% \max \end{aligned}$	LH0084C	LH0084	3.26
* Dependent upon external resistors. * * Refers to Hybrid Products Databook, 1982 edition									

Instrumentation Amplifiers

Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.

Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.

Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. \% harmonic distortion $=$

$$
\frac{\left(V 2^{2}+V 3^{2}+V 4^{2}+\ldots\right)^{1 / 2}(100 \%)}{V 1}
$$

where V 1 is the rms amplitude of the fundamontar and $\mathrm{V} 2, \mathrm{~V} 3, \mathrm{~V} 4, \ldots$ are the rms amplitudes of ine individual harmonics.

Input Bias Current: The average of the two input currents.

Input Common-Mode Voltage Range: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.

Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.

Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.

Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Input Voltage Range: The ranue of votages on the input terminals for which the anplitier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

Output Impedance: The ratio of output voltage to cutput current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

Output Resistance: The small signal resistance seen at the output with the output voltage near zero.

Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.

Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.

Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.

Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies..

Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.

Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one.

Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

LM121/LM221/LM321,

LM121A/LM221A/LM321A Precision Preamplifiers

General Description

The LM121 series are precision preamplifiers designed to operate with general purpose operational amplifiers to drastically decrease dc errors. Drift, bias current; common mode and supply rejection are more than a factor of 50 better than standard op amps alone. Further, the added dc gain of the LM121 decreases the closed loop gain error.

The LM121 series operates with supply voltages from $\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ and has sufficient supply rejection to operate from unregulated supplies. The operating current is programmable from $5 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ so bias current, offset current, gain and noise can be optimized for the particular application while still realizing very low drift. Super-gain transistors are used for the input stage so input error currents are lower than conventional amplifiers at the same operating current. Further, the initial offset voltage is easily nulled to zero.

Features

- Guaranteed drift of LM121A series - $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Guaranteed drift of LM121 series $-1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Offset voltage less than 0.4 mV
- Bias current less than 10 nA at $10 \mu \mathrm{~A}$ operating current
- CMRR 126 dB minimum
- 120 dB supply rejection
- Easily nulled offset voltage

The extremely low drift of the LM121 will improve accuracy on almost any precision dc circuit. For example, instrumentation amplifier, strain gauge amplifiers and thermocouple amplifiers now using chopper amplifiers can be made with the LM121. The full differential input and high common-mode rejection are another advantage over choppers. For applications where low bias current is more important than drift, the operating current can be reduced to low values. High operating currents can be used for low voltage noise with low source resistance. The programmable operating current of the LM121 allows tailoring the input characteristics to match those of specialized op amps.

The LM121 is specified over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range, the LM221 over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range and the LM321 over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Typical Applications

Thermocouple Amplifier with Cold Junction Compensation

Absolute Maximum Ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage (Notes 2 and 3)	$\pm 15 \mathrm{~V}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$
Operating Temperature Range	
LM121	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM221	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM321	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4) LM121, LM221, LM321

Note 1: The maximum junction temperature of the LM121 is $150^{\circ} \mathrm{C}$, while that of the LM221 is $100^{\circ} \mathrm{C}$. The maximum junction temperature of the LM321 is $85^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 6$ inch thick epoxy glass board with ten, 0.03 inch wide, 2 ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes in series with a 500Ω resistor for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \leq V_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM221, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, and for the LM 321 the specifications apply over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
Note 5: External precision resistor - 0.1% - can be placed from pins 1 and 8 to 7 to increase positive common-mode range.

Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage (Notes 2 and 3)
Input Voltage (Note 3) 00 mW

Operating Temperature Range
LM121A
LM221A
LM321A

Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
Electrical Characteristics (Note 4) LM121A, LM221A, LM321A

Note 1: The maximum junction temperature of the LM121A is $150^{\circ} \mathrm{C}$, while that of the LM221A is $100^{\circ} \mathrm{C}$. The maximum junction temperature of the LM321A is $85^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 6$ inch thick epoxy glass board with ten, 0.03 inch wide, 2 ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes in series with a $500 \Omega 2$ resistor for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs.
Note 3: For supply voltages less than 115 V , the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \leq V_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM221A, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, and for the LM321A the specifications apply over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
Note 5: External precision resistor - 0.1% - can be placed from pins 1 and 8 to 7 to increase positive common-mode range.

Frequency Compensation

UNIVERSAL COMPENSATION

The additional gain of the LM121 preamplifier when used with an operational amplifier usually necessitates additional frequency compensation. When the closed loop gain of the op amp with the LM121 is less than the gain of the LM121 alone, more compensation is needed. The worst case situation is when there is 100% feedback-such as a voltage follower or integrator-and the gain of the LM121 is high. When high closed loop gains are used-for example $A_{V}=1000$-and only an addition gain of 200 is inserted by the LM121, the frequency compensation of the op amp will usually suffice.

The frequency compensation shown here is designed to operate with any unity-gain stable op amp. Figure 1 shows the basic configuration of frequency stabilizing network. In operation the output of the LM121 is rendered single ended by a $0.01 \mu \mathrm{~F}$ bypass capacitor to ground. Overall frequency compensation then is achieved by an integrating capacitor around the op amp.

$$
\begin{aligned}
& \text { Bandwidth at unity-gain } \cong \frac{12}{2 \pi R_{\mathrm{SET}} \mathrm{C}} \\
& \text { for } 0.5 \mathrm{MHz} \text { bandwidth } \mathrm{C}=\frac{4}{10^{6} \mathrm{R}_{\mathrm{SET}}}
\end{aligned}
$$

For use with higher frequency op amps such as the LM118 the bandwidth may be increased to about 2 MHz .

If the closed loop gain is greater than unity, " C " may be decreased to:

$$
C=\frac{4}{10^{6} A_{C L} R_{S E T}}
$$

Typical Applications

FIGURE 1. Low Drift Op Amp Using the LM121A as a Preamp

ALTERNATE COMPENSATION

The two compensation capacitors can be made equal for improved power supply rejection. In this case the formula for the compensation capacitor is:

$$
C=\frac{8}{10^{6} A_{C L} R_{S E T}}
$$

Table I shows typical values for the two compensating capacitors for various gains and operating currents.

$\begin{aligned} & \text { CLOSED } \\ & \text { LOOP } \\ & \text { GAIN } \end{aligned}$	CURRENT SET RESISTOR				
	$120 \mathrm{k} \Omega$	$60 \mathrm{k} \Omega$	$30 \mathrm{k} \Omega$	$12 \mathrm{k} \Omega$	$6 \mathrm{k} \Omega$
$A_{V}=1$	68	130	270	680	1300
$A_{V}=5$	15	27	56	130	270
$A_{V}=10$	10	15	27	68	130
$A_{V}=50$	1	3	5	15	27
$A_{V}=100$	-	1	3	5	10
$A_{V}=500$	-	-	1	1	3
$A_{V}=1000$	-	-	-	-	-

This table applies for the LM108, LM101A, LM741, LM118. Capacitance is in pF .

DESIGN EQUATIONS FOR THE LM121 SERIES

$$
\text { Gain } A_{V} \approx \frac{1.2 \times 10^{6}}{R_{\mathrm{SET}}}
$$

Null Pot Value should be 10% of $\mathrm{R}_{\text {SET }}$
Operating Current $\approx \frac{2 \times 0.65 \mathrm{~V}}{\mathrm{R}_{\mathrm{SET}}}$
Positive Common- $\approx \mathrm{V}^{+}-\left[0.6-\frac{0.65 \mathrm{~V} \times 50 \mathrm{k}}{\mathrm{R}_{\mathrm{SET}}}\right]$
Mode Limit

Gain of 1000 Instrumentation Amplifier \ddagger

Typical Applications (Continued)

High Speed* Inverting Amplifier with Low Drift

Medium Speed* General Purpose Amplifier

Increased Common-Mode Range at High Operating Currents

Connection Diagrams

Metal Can Package

Note Pin 4 connected to case.
TOP VIEW
Order Number LM121H LM221H, LM321H, LM121AH, LM221 AH or LM321AH See NS Package H08C

Note: Outputs are inverting from the input of the same number.

Schematic Diagram*

Distribution of Offset Voltage Drift (Nulled)

Typical Performance Characteristics (Continued)

Supply Current

Differential Voltage Gain

Common-Mode Rejection Ratio

LM163/LM363 Precision Instrumentation Amplifier
 General Description

The LM163 is. a monolithic true instrumentation amplifier. It requires no external parts for fixed gains of 10, 100 and 1,000 . High precision is attained by on-chip trimming of offset voltage and gain. A super beta bipolar input stage gives very low input voltage noise, extremely low offset voltage drift, and high common-mode rejection ratio. A new two-stage amplifier design yields an open loop gain of $10,000,000$ and a gain bandwidth product of 30 MHz , yet remains stable for all closed loop gains, even with large capacitive loads. Supply voltage range is $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$.

The LM163 has separate force, sense, and reference pins to allow gain to be increased using external resistors. Twin differential shield drivers eliminate bandwidth loss due to shield capacitance. Compensation pins are available to allow simple low-pass filtering. The LM163 with all options is in a 16-pin dual-in-line package.

For less stringent applications requiring a single fixed gain, it is also available in an 8 -pin TO. 5 package. Shield
drivers, pin-strapped gain options, and offset adjustment pins are eliminated on the 8 -pin versions. Gain is internally set at 10,100 , or 500 , but may be increased with the addition of external resistors.

The LM163 is rated for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation. The LM363 is rated for $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operation.

Features

- Offset and gain pretrimmed

■ $7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input noise

- 130 dB CMRR typical
- 2 nA bias current typical
- No external parts required
- Differential shield drivers
- Available at $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum drift
- Can be used as a high performance op-amp

Typical Connections

Connection Diagrams

Order Number LM163AH-10, LM163H-10, LM363AH-10, LM363H-10, LM163AH-100, LM163H-100, LM363AH-100, LM363H-100, LM163AH-500, LM163H-500, LM363AH-500 or LM363H-500 See NS Package H08C

16-Pin Package

Order Number LM163AD, LM136D, LM363AD or LM363D See NS Package D16C

Absolute Maximum Ratings
Supply Voltage

$$
\pm 18 \mathrm{~V}
$$

Differential Input Voltage
Differential Input Current

$$
\pm 20 \mathrm{~mA}
$$

Common-Mode Input Voltage

$$
\pm 10 \mathrm{~V}
$$

Reference and Sense Voltage
Equal to Supply Voltage

$$
\pm 25 \mathrm{~V}
$$

Electrical Characteristics (Note 1)

Parameter	Conditions	LM163A/LM363A			LM163			LM363			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage Fixed Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=500$		10	± 30		20	± 50		30	± 100	${ }_{\mu} \mathrm{V}$
	$\mathrm{G}=100$		25	± 75		35	± 100		50	± 200	${ }_{\mu} \mathrm{V}$
	$\mathrm{G}=10$		0.2	± 0.6		0.3	± 1.0		0.5	± 2.0	mV
	Full Temperature Range $\mathrm{G}=500$			± 80			± 150				
	$G=500$ $G=100$			± 80 ± 200			± 150 ± 400			± 300 ± 500	${ }_{\mu}^{\mu} \mathrm{V}$
	$G=10$			± 2			± 4			± 5	mV
Input Offset Voltage Temperature Drift Fixed Gain	$G=500$		0.2	± 0.5			± 2			± 4	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	$G=100$			± 2.0			± 5		.	± 8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	$G=10$			± 25			± 50			± 75	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Programmable Gain	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{G}=1000$		10	± 50		25	± 100		50	± 200	${ }_{\mu} \mathrm{V}$
	$\mathrm{G}=100$		25	± 150		50	± 300		100	± 400	$\mu \mathrm{V}$
	$G=10$		0.3	± 1		0.5	± 2		1.0	± 3	mV
	Full Temperature Range										
	$G=1000$			± 100			± 200			± 400	${ }_{\mu} \mathrm{V}$
	$G=100$			± 300			± 500			± 800	$\mu \mathrm{V}$
	$G=10$			± 3			± 6			± 7	mV
Input Offset Voltage Temperature Drift Programmable Gain	$G=1000$		0.2	± 0.5		0.5	± 3		0.8	± 5	${ }_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$
	$G=100$		0.5	± 2.0		2.0	± 6		2	± 10	${ }_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$
	$G=10$		5.0	± 25		10	± 80		10	± 100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common-Mode Rejection Ratio	$\mathrm{G}=500 / 1000$	126	140		120	130		114	130		dB
	Full Temperature Range	115			106			104			dB
	$G=100$	112	130		106	125		94	120		dB
	Full Temperature Range	100			94			84			dB
	$\mathrm{G}=10$	100	115		94	110		90	105		dB
	Full Temperature Range	88			82			80			dB
Input Bias Current		-5	2	5	-5	2	5	-10	2	10	nA
	Full Temperature Range	-10	4	10	-10	4	10	-20		-20	nA
Differential Mode Input Resistance	$\mathrm{G}=10$		20			20			20		$\mathrm{G} \Omega$
	$G=100$		2			2			2		$\mathrm{G} \Omega$
	$G=500 / 1000$		0.2			0.2			0.2		$\mathrm{G} \Omega$
Common-Mode Input Resistance	All Gains		100			100			100		G Ω
Input Offset Current			0.2	1.0		0.5	1		0.5	3	nA
	Full Temperature Range			2			2			5	nA
Input Offset Current Change	$-11 \mathrm{~V} \leq \mathrm{V}_{C M} \leq 13 \mathrm{~V}$			50			100			100	pAIV
	Full Temperature Range			150			300			300	pA / V
Input Voltage Noise (RMS) $10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	$\mathrm{G}=500 / 1000$		7			7			7		$n \mathrm{~V} \sqrt{\mathrm{~Hz}}$
	$G=100$		12			12			12		$n \mathrm{~V} \sqrt{\mathrm{~Hz}}$
	$G=10$		50			50			50		$n \mathrm{~V} \sqrt{\mathrm{~Hz}}$
Input Voltage Noise Peak-to-Peak (Note 2)	$G=500 / 1000$		0.4			0.4			0.4		${ }_{\mu} \mathrm{V}$
	$\mathrm{G}=100$		1.5			1.5			1.5		$\mu \mathrm{V}$
	$\mathrm{G}=10$		10			10			10		$\mu \mathrm{V}$

Note 1: Unless otherwise noted, these conditions apply: $\mathrm{V}^{+}=\mathrm{V}^{-}=15 \mathrm{~V}$, output load $=5 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CM}}=0$, reference pin is grounded, output sense is tied to output force, and junction temperature is $25^{\circ} \mathrm{C}$.
Note 2: Measured for 100 seconds at a bandwidth of 0.01 Hz to 10 Hz .

Electrical Characteristics (Continued) (Note 1)

Parameter	Conditions	LM163A/LM363A			LM163			LM363			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Current Noise (RMS)	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.15			0.15			0.15		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Current Noise Peak-to-Peak	$0.01 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{~Hz}$		40			40			40		pA
Gain Error	Fixed G $=10,100,500$		0.05	0.2		0.05	0.3		0.1	0.5	\%
	Programmable $\mathrm{G}=100$		0.05	0.2		0.05	0.3		0.1	0.5	\%
	Programmable $\mathrm{G}=10$		0.4	1.0		0.4	1.0		0.6	1.5	\%
	Programmable $\mathrm{G}=1000$		0.4	1.0		0.4	1.0		0.4	1.5	\%
Gain Non-Linearity	$\begin{aligned} & -10 \mathrm{~V} \leq V_{\text {out }} \leq+10 \mathrm{~V}, \\ & G=10,100 \end{aligned}$		0.005	0.01		0.005	0.02		0.01	0.03	\%
	$G=500,1000$		0.007	0.02		0.007	0.03			0.05	\%
Supply Voltage	$\mathrm{G}=500,1000$	120	130		120	130		110	130		dB
Rejection Ratio -	$\mathrm{G}=100$	105	120		105	120		100	120		dB
Positive	$\mathrm{G}=10$	90	100		90	100		85	100		dB
Supply Voltage	$\mathrm{G}=500,1000$	110	120		105	120		100	120		dB
Rejection Ratio -	$G=100$	96	106		90	106		85	106		dB
Negative	$\mathrm{G}=10$	80	86		75	86		70	86		dB
Common-Mode Input Voltage Range	$\mathrm{V}^{+}=\mathrm{V}^{-}=15 \mathrm{~V}$	-11.6		+13.8	-11.6		+13.8	-11.6		+13.8	V
	$\mathrm{V}^{+}=\mathrm{V}^{-}=5 \mathrm{~V}$	-2.75		+3.8	-2.75		+3.8	-2.75		+3.8	V
Small Signal Bandwidth	$G=500,1000$		30			30			30		kHz
	$\mathrm{G}=100$		100			100			100		kHz
	$\mathrm{G}=10$		200			200			200		kHz
Settling Time to 0.1\%	$\begin{aligned} & \Delta V_{\text {OUT }}=10 \mathrm{~V}, \mathrm{G}=500,1000 \\ & \mathrm{G}=100 \\ & \mathrm{G}=10 \end{aligned}$		70 25 20			70 25 20			70 25 20		$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
Open Loop Gain	$G=500,1000$	2×10^{6}	10^{7}		2×10^{6}	10^{7}		10^{6}	10^{7}		VIV
Gain Shift with	$\mathrm{G}=500,1000$		15			15			15		ppm/ ${ }^{\circ} \mathrm{C}$
Temperature	$G=100$		5			5			5		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	$\mathrm{G}=10$		5			5			5		ppm $/{ }^{\circ} \mathrm{C}$
Supply Current	Positive		1.2	1.8		1.2	1.8		1.2	2.2	mA
Positive	Negative		1.6	2.2		1.6	2.2		1.6	2.5	mA
Reference and Feedback Resistance		35	50	70	35	50	70	30	50	80	k Ω

Typical Applications

Increasing Gain

R1 and R2 should be as low as possible to avoid errors due to $50 \mathrm{k} \Omega$ input impedance of reference and sense pins. Total resistance (R2 + 2R1) should be above $4 \mathrm{k} \Omega$, however, to prevent excessive load on the LM163 output. The exact formula for calculating gain (G) is:

$$
G=G_{0} \cdot\left(1+\frac{2 R 1}{R 2}+\frac{R 1}{50 k}\right)
$$

$$
\mathrm{G}_{\mathrm{O}}=\text { preset gain }
$$

The last term may be ignored in applications where gain accuracy is not critical. The table below gives suggested values for R1 and R2 along with the calculated error due to "closest value" standard 1\% resistors.

Gain Increase	1.5	2	2.5	3	4	5	6	7	8	9	10
R1	1.2 k	1.2 k	2 k	2 k	1.78 k	2 k	2.49 k	2.94 k	3.48 k	4.02 k	4.53 k
R2	5 k	2.5 k	2.74 k	2.05 k	1.2 k	1 k	1 k	1 k	1 k	1 k	1 k
Error	$+0.6 \%$	-0.8%	0	-0.3%	$+0.06 \%$	$+0.8 \%$	$+0.5 \%$	-0.9%	$+0.4 \%$	-0.9%	-0.7%

Typical Applications (Continued)

4 mA-20 mA Transmitter . -M163 Used as Precision Op Amp

*Select for optimum square, wave response. Omit for closed loop gains above 100.

Current regulation is near perfect because the LM163 operates off the Zener reference. Circuitry is simplified by being able to drive the reference pin outside the power supply voltage. Gain and offset adjustments are non-interactive. 2 mA is available to drive the bridge.

Curvature Corrected Platinum RTD Thermometer

Typical Applications (Continued)

Zeroing Input Bias Current*

* For gains of 10 and 100

Simplified Schematic (for 16 -pin dual-in-line package)

気National Semiconductor

LH0036/LH0036C Instrumentation Amplifier

General Description

The LH0036/LH0036C is a true micro power instrumentation amplifier designed for precision differential signal processing. Extremely high accuracy can be obtained due to the $300 \mathrm{M} \Omega$ input impedance and excellent 100 dB common mode rejection ratio. It is packaged in a hermetic TO-8 package. Gain is programmable with one external resistor from 1 to 1000 . Power supply operating range is between $\pm 1 \mathrm{~V}$ and $\pm 18 \mathrm{~V}$. Input bias current and output bandwidth are both externally adjustable or can be set by internally set values. The LH0036 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range and the

LHOO36C is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- High input impedance $\quad 300 \mathrm{M} \Omega$
- High CMRR
- Single resistor gain adjust 1 to 1000
- Low power
$90 \mu \mathrm{~W}$
- Wide supply range $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Adjustable input bias current
- Adjustable output bandwidth
- Guard drive output

Equivalent Circuit and Connection Diagrams

TOP VIEW

Typical Performance Characteristics

Output Voltage Swing vs Supply Voltage

Closed Loop Voltage Gain vs Frequency

Common Mode Voltage vs Supply Voltage

Output Voltage Swing vs Frequency

Large Signal Pulse Response

Typical Applications

Pre MUX Signal Conditioning

Isolation Amplifier for Medical Telemetry

Thermocouple Amplifier with Cold Junction Compensation

High Pass Filter

Applications Information

THEORY OF OPERATION

FIGURE 1. Simplified LH0036
The LH0036 is a 2 stage amplifier with a high input impedance gain stage comprised of A_{1} and A_{2} and a differential to single-ended unity gain stage, A_{3}. Operational amplifier, A_{1}, receives differential input signal, e_{1}, and amplifies it by a factor equal to $\left(\mathrm{R} 1+\mathrm{R}_{\mathrm{G}}\right) / \mathrm{R}_{\mathrm{G}}$.
A_{1} also receives input e_{2} via A_{2} and $R 2$. e_{2} is seen as an inverting signal with a gain of $\mathrm{R} 1 / \mathrm{R}_{\mathrm{G}} . \mathrm{A}_{1}$ also receives the common mode signal e_{CM} and processes it with a gain of +1 .
Hence:
$V_{1}=\frac{R 1+R_{G}}{R_{G}} e_{1}-\frac{R 1}{R_{G}} e_{2}+e_{C M}$
By similar analysis V_{2} is seen to be:
$V_{2}=\frac{R 2+R_{G}}{R_{G}} e_{2}-\frac{R 2}{R_{G}} e_{1}+e_{C M}$
For R1 = R2:
$V_{2}-V_{1}=\left[\left(\frac{2 R 1}{R_{G}}\right)+1\right]\left(e_{2}-e_{1}\right)$
Also, for $R 3=R 5=R 4=R 6$, the gain of $A_{3}=1$, and:
$e_{0}=(1)\left(V_{2}-V_{1}\right)=\left(e_{2}-e_{1}\right)\left[1+\left(\frac{2 R 1}{R_{G}}\right)\right]$
As can be seen for identically matched resistors, $e_{C M}$ is cancelled out, and the differential gain is dictated by equation (4).
For the LH0036, equation (4) reduces to:
$A_{V C L}=\frac{e_{0}}{e_{2}-e_{1}}=1+\frac{50 k}{R_{G}}$
The closed loop gain may be set to any value from $1\left(R_{G}=\infty\right)$ to $1000\left(R_{G} \cong 50 \Omega\right)$. Equation (5a) re-arranged in more convenient form may be used to select R_{G} for a desired gain:
$R_{G}=\frac{50 k}{A_{V C L}-1}$

USE OF BANDWIDTH CONTROL (pin 1)

In the standard configuration, pin 1 of the LH0036 is simply grounded. The amplifier's slew rate in this configuration is typically $0.3 \mathrm{~V} / \mu \mathrm{s}$ and small
signal bandwidth 350 kHz for $\mathrm{A}_{\mathrm{VCL}}=1$. In some applications, particularly at low frequency, it may be desirable to limit bandwidth in order to minimize the overall noise bandwidth of the device. A resistor R_{BW} may be placed between pin 1 and ground to accomplish this purpose. Figure 2 shows typical small signal bandwidth versus $R_{B w}$.

FIGURE 2. Bandwidth vs R BW
It also should be noted that large signal bandwidth and slew rate may be adjusted down by use of $R_{B W}$. Figure 3 is plot of slew rate versus $R_{B W}$.

FIGURE 3. Output Slew Rate vs RBW

CMRR CONSIDERATIONS

Use of Pin 9, CMRR Preset
Pin 9 should be grounded for nominal operation. An internal factory trimmed resistor, R6, will yield a CMRR in excess of 80 dB (for $A_{V C L}=100$). Should a higher CMRR be desired, pin 9 should be left open and the procedure, in this section followed.

DC Off-set Voltage and Common Mode Rejection Adjustments

Off-set may be nulled using the circuit shown in Figure 4.

FIGURE 4. Vos Adjustment Circuit
Pin 8 is also used to improve the common mode rejection ratio as shown in Figure 5. Null is

Applications Information
 (Cont'd)

achieved by alternately applying $\pm 10 \mathrm{~V}$ (for V^{+}\& $V^{-}=15 \mathrm{~V}$) to the inputs and adjusting R 1 for minimum change at the output.

FIGURE 5. CMRR Adjustment Circuit
The circuits of Figure 4 and 5 may be combined as shown in Figure 6 to accomplish both $V_{O S}$ and CMRR null. However, the $V_{O S}$ and CMRR adjustment are interactive and several iterations are required. The procedure for null should start with the inputs grounded.

FIGURE 6. Combined CMRR, VoS Adjustment Circuit
R2 is adjusted for $V_{\text {Os }}$ null. An input of +10 V is then applied and R1 is adjusted for CMRR null. The procedure is then repeated until the optimum is achieved.

A circuit which overcomes adjustment interaction is shown in Figure 7. In this case, R2 is adjusted first for output null of the LH0036. R1 is then adjusted for output null with +10 V input. It is always a good idea to check CMRR null with a -10 V input. The optimum null achievable will yield the highest CMRR over the amplifiers common mode range.

FIGURE 7. Improved VOS, CMRR Nulling Circuit

AC CMRR Considerations

The ac CMRR may be improved using the circuit of Figure 8.

FIGURE 8. Improved AC CMRR Circuit
After adjusting R1 for best dc CMRR as before, R2 should be adjusted for minimum peak-to-peak voltage at the output while applying an ac common mode signal of the maximum amplitude and frequency of interest.

INPUT BIAS CURRENT CONTROL

Under nominal operating conditions (pin 3 grounded), the LH0036 requires input currents of 40 nA . The input current may be reduced by inserting a resistor $\left(R_{B}\right)$ between 3 and ground or, alternatively, between 3 and V^{-}. For R_{B} returned to ground, the input bias current may be predicted by:
$I_{B I A S} \cong \frac{V^{+}-0.5}{4 \times 10^{8}+800 R_{B}}$
or
$R_{B}=\frac{\mathrm{V}^{+}-05-\left(4 \times 10^{8}\right)\left(I_{\mathrm{BIAS}}\right)}{800 \mathrm{I}_{\mathrm{BIAS}}}$
Where:

$$
\begin{aligned}
& I_{B I A S}=\text { Input Bias Current (nA) } \\
& R_{B}=\begin{array}{l}
\text { External Resistor connected between } \\
\\
\text { pin } 3 \text { and ground (Ohms) }
\end{array} \\
& \mathrm{V}^{+}=\text {Positive Supply Voltage (Volts) }
\end{aligned}
$$

Figure 9 is a plot of input bias current versus R_{B}.

FIGURE 9. Input Bias Current as a Function of \mathbf{R}_{B}
As indicated above, $\mathbf{R}_{\mathbf{B}}$ may be returned to the negative supply voltage. Input bias current may then be predicted by:
$I_{B I A S} \cong \frac{\left(V^{+}-V^{-}\right)-0.5}{4 \times 10^{8}+800 \cdot R_{B}}$

Applications Information (Cont'd)

or
$R_{B} \cong \frac{\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)-0.5-\left(4 \times 10^{8}\right)\left(I_{B I A S}\right)}{800 \mathrm{I}_{\mathrm{BIAS}}}$
Where:
$I_{B I A S}=$ Input Bias Current $(n A)$
$R_{B}=\begin{aligned} & \text { External resistor connected between } \\ & \text { pin } 3 \text { and } V^{-} \text {(Ohms) }\end{aligned}$.
$\mathrm{V}^{+}=$Positive Supply Voltage (Volts)
$\mathrm{V}^{-}=$Negative Supply Voltage (Volts)

FIGURE 10. Input Bias Current as a Function of R_{B}
Figure 10 is a plot of input bias current versus R_{B} returned to V^{-}it should be noted that bandwidth is affected by changes in R_{B}. Figure 11 is a plot of bandwidth versus R_{B}.

FIGURE 11. Unity Gain Bandwidth as a Function of $\mathbf{R}_{\mathbf{B}}$

BIAS CURRENT RETURN PATH CONSIDERATIONS -

The LH0036 exhibits input bias currents typically in the 40 nA region in each input. This current must flow through $\mathrm{R}_{\text {ISO }}$ as shown in Figure 12.

FIGURE 12. Bias Current Return Path

In a typical application, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{B} 1} \cong \mathrm{I}_{\mathrm{B} 2} \cong$ 40 nA , the total current, I_{T}, would flow through $R_{\text {Iso }}$ causing a voltage rise at point A. For values of $R_{\text {ISO }} \geq 150 \mathrm{M} \Omega$, the voltage at point A exceeds the +12 V common range of the device. Clearly, for $R_{\text {ISO }}=\infty$, the LH0036 would be driven to positive saturation.

The implication is that a finite impedance must be supplied between the input and power supply ground. The value of the resistor is dictated by the maximum input bias current, and the common mode voltage. Under worst case conditions:
$R_{\text {ISO }} \leq \frac{V_{C M R}-V_{C M}}{I_{T}}$
Where:

$$
\begin{aligned}
& V_{C M R}=\begin{array}{c}
\text { Common Mode Range }(10 \mathrm{~V} \text { for } \\
\text { the LH0036) }
\end{array} \\
& V_{C M}=\text { Common Mode Voltage } \\
& I_{T}=I_{B 1}+I_{B 2}
\end{aligned}
$$

In applications in which the signal source is floating, such as a thermocouple, one end of the source may be grounded directly or through a resistor.

GUARD OUTPUT

Pin 2 of the LH0036 is provided as a guard drive pin in those stringent applications which require very low leakage and minimum input capacitance. Pin 2 will always be biased at the input common mode voltage. The source impedance looking into pin 2 is approximately $15 \mathrm{k} \Omega$. Proper use of the guard/shield pin is shown in Figure 13.

FIGURE 13. Use of Guard
For applications requiring a lower source impedance than $15 \mathrm{k} \Omega$, a unity gain buffer, such as the LH0002 may be inserted between pin 2 and the input shields as shown in Figure 14.

FIGURE 14. Guard Pin With Buffer

Definition of Terms

Bandwidth: The frequency at which the voltage gain is reduced to 0.707 of the low frequency (dc) value.

Closed Loop Gain, Avcl: The ratio of the output voltage swing to the input voltage swing determined by $A_{V C L}=1+\left(50 k / R_{G}\right)$. Where: $R_{G}=$ Gain Set Resistor.

Common Mode Rejection Ratio: The ratio of input voltage range to the peak-to-peak change in offset voltage over this range.

Gain Equation Accuracy: The deviation of the actual closed loop gain from the predicted closed loop gain, $A_{V C L}=1+\left(50 \mathrm{k} / \mathrm{R}_{\mathrm{G}}\right)$ for the specified closed loop gain.

Input Bias Current: The current flowing at pin 5 and 6 under the specified operating conditions.

Input Offset Current: The difference between the input bias current at pins 5 and 6; i.e. $\mathrm{l}_{\mathrm{OS}}=$ $\left|I_{5}-I_{6}\right|$.

Input Stage Offset Voltage, $\mathrm{V}_{10 \mathrm{~S}}$: The voltage which must be applied to the input pins to force the output to zero volts for $A_{V C L}=100$.

Output Stage Offset Voltage, $\mathrm{V}_{\mathrm{Oos}}$: The voltage which must be applied to the input of the output stage to produce zero output voltage. It can be measured by measuring the overall offset at unity gain and subtracting $V_{\text {10s }}$.
$v_{\text {OOS }}=\left[\left.V_{\text {OS }}\right|_{A_{V C L}}=1\right]-\left[\left.V_{\text {OS }}\right|_{A_{V C L}}=1000\right]$

Overall Offset Voltage:
$V_{\text {OS }}=V_{\text {IOS }}+\frac{V_{\text {OOS }}}{A_{\text {VCL }}}$

Power Supply Rejection Ratio: The ratio of the change in offset voltage, V_{OS}, to the change in supply voltage producing it.

Resistor, $\mathbf{R}_{\mathbf{B}}$: An optional resistor placed between pin 3 of the LHOO36 and ground (or V^{-}) to reduce the input bias current.

Resistor, $\mathbf{R}_{\mathbf{B W}}$: An optional resistor placed between pin 1 of the LH0036 and ground (or V^{-}) to reduce the bandwidth of the output stage.

Resistor, $\mathbf{R}_{\mathbf{G}}$: A gain setting resistor connected between pins 4 and 7 of the LH0036 in order to program the gain from 1 to 1000 .

Settling Time: The time between the initiation of an input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

National

Instrumentation Amplifiers

 Semiconductor
LH0038/LH0038C True Instrumentation Amplifier

General Description

The LH0038/LH0038C is a precision true instrumentation amplifier (TIA) capable of amplifying very low level signals, such as thermocouple and low impedance strain guage outputs. Precision thin film gain setting resistors are included in the package to allow the user to set the closed-loop gain from 100 to 2000 . Since the resistors are of a homogeneous single chip construction, they track almost perfectly so that temperature variations of closed loop gain are virtually eliminated.

LH0038 exhibits excellent CMRR, PSRR, gain linearity, as well as extremely low input offset voltage, offset voltage drift and input noise voltage.

The devices are provided in a hermetically sealed 16 -lead DIP. The LH0038 is guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas the LHOO38C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- Ultra-low offset voltage $25 \mu \mathrm{~V}$ typ., $100 \mu \mathrm{~V}$ max
- Ultra-low offset drift
$0.25 \mu \mathrm{~V} / \mathrm{C}$ max
- Ultra-low input noise
$0.2 \mu \mathrm{Vp}-\mathrm{p}$
- Pin strap gain options $100,200,400,500,1 \mathrm{k}, 2 \mathrm{k}$
- Excellent PSRR and CMRR 120 dB

Simplified Schematic Diagram

Connection Diagram

Absolute Maximum Ratings

Supply Voltage
Differential Input Voltage (Note 1)
Input Voltage
Power Dissipation (See Curve)
Short Circuit Duration
Operating Temperature Range
LH0038
LH0038C
Storage Temperature
Lead Temperature (Soldering, 20 seconds)
$\pm 18 \mathrm{~V}$
$\pm 1 \mathrm{~V}$
$\pm V_{S}$
500 mW
Continuous
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics
 (Note 2)

DC Electrical Characteristics (Note 2) (Continued)

PARAMETER		CONDITIONS		LH0038			LH0038C			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX					
CMRR	Common-Mode			$V_{1 N}= \pm 10 \mathrm{~V}$	AVCL $=100$	94	110		86	110		dB
	Rejection Ratio		$A_{\text {VCL }}=1000$	114	120		106	110				
PSRR	Power Supply	$\pm 5 \mathrm{~V} \leq \Delta \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	$A_{V C L}=100$	94	110		94	110				
	Rejection Ratio		AVCL $=1000$	110	120		100	110				
IOSC	Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 2	± 5	± 10	± 2	± 5	± 10	mA		
IS	Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.6	2.0		1.6	3.0			
RIN DIFF	Input Resistance	$A V C L=1000, T_{A}=25^{\circ} \mathrm{C}$			5			5		$\mathrm{M} \Omega$		
RIN CM	Common-Mode Input Resistance				1			1		G Ω		
ROUT	Output Resistance				1			1		$\mathrm{m} \Omega$		

AC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		COMMENT	CONDITIONS		TYP	UNITS
e_{n}	Equivalent Input Noise Voltage	Figure 1	$R_{S}=0, f=0.1$ to 10 Hz		0.2	$\mu \vee \mathrm{p}$-p
$\overline{e_{n}}$	Equivalent Input Spot Noise Voltage	Figure 1	$R_{S}=100 \Omega$	$\mathrm{f}=10 \mathrm{~Hz}$	6.5	$n V / \sqrt{H z}$
				$f=100 \mathrm{~Hz}$	6.0	
				$\mathrm{f}=1 \mathrm{kHz}$	6.0	
				$\mathrm{f}=10 \mathrm{kHz}$	6.0	
BW	Large Signal Bandwidth		$V_{\text {OUT }}= \pm 10 \mathrm{~V}$		1.6	kHz
Sr_{r}	Slew Rate		$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$		0.3	$\mathrm{V} / \mathrm{\mu s}$
t_{s}	Settling Time to 0.01\%	Figure 13		20V Step	120	$\mu \mathrm{s}$
				-10V Step	80	
				+10V Step	60	
t_{r}	Rise Time		$\Delta V_{\text {OUT }}=100 \mathrm{mV}$	AVCL $=100$	6	$\mu \mathrm{s}$
				AVCL $=1000$	13	
	Equivalent Input Spot Noise Current		$R_{S}=100 \mathrm{M} \Omega$	$\mathrm{f}=10 \mathrm{~Hz}$	0.1	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: The inputs are protected by diodes for overvoltage protection. Excessive currents will flow for differential voltages in excess of $\pm 1 \mathrm{~V}$. Input current should be limited to less than 10 mA .
Note 2: Unless otherwise noted these specifications apply for $V_{S}= \pm 15.0 \mathrm{~V}$, pin 15 connected to pin 1 , pin 16 connected to ground, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0038 and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for LH0038C.

Typical Performance Characteristics

Closed Loop Frequency
Response

Input Noise Voltage
(Includes Source Impedance)

Wide Band Noise

$V_{S}= \pm 15 \mathrm{~V}, R_{S}=1 \mathrm{k} \Omega, A_{V}=10 \mathrm{k}, \mathrm{DUT}=1 \mathrm{k}$
Vertical sensitivity: $0.1 \mu \mathrm{~V} / \mathrm{CM}$
Horizontal sensitivity: $5 \mathrm{sec} / \mathrm{CM}$
Bandwidth: 0.1 Hz to 10 Hz

Input Bias Current

Common-Mode Rejection

Output Swing

$V_{S}= \pm 15 \mathrm{~V}$
$R_{L} \geq 10 \mathrm{k} \Omega$
$A_{V C L}=1 \mathrm{k}$

Input Bias Current

$V_{S}= \pm 15 \mathrm{~V}$
$R_{L} \geq 10 k \Omega$
$A_{V C L}=1 \mathrm{k}$

FIGURE 1.

Typical Application

FIGURE 2. X1000 Bridge Amplifier

Applications Information

THEORY OF OPERATION

The LH0038 is a 3 -stage, true instrumentation amplifier composed of a well matched transistor differential pair, Q1 and Q2, a common-mode loop amplifier, A2 and A3, and a differential to single ended amplifier, A4. A simplified schematic is shown in Figure 3.

Current source, IA, establishes a voltage across R14 of approximately 2 V , which results in a 2 V drop across R 8 and R12. This constant voltage forces the first stage
current to be $20 \mu \mathrm{~A}$ per side. The action of A2 and A3 is such that $20 \mu \mathrm{~A}$ is maintained constant despite the presence of common-mode signals. The differential outputs of A2 and A3 are applied to differential amplifier, A4, which converts the signal to a single-ended output and provides a gain of 5 . The total gain of the amplifier is, therefore, the fixed gain of 5 multiplied by the gain of the composite input stage.

Applications Information (Continued)

The closed loop gain of the composite amplifier may be better understood by referring to Figure 3. The Q1-A2 loop may be viewed as differential amplifier with the inverting input at the base and non-inverting input at the emitter. Combining small signal $A C$ and large signal DC analysis =

$$
\begin{align*}
v 1= & e 1\left(\frac{R 17+R_{E}}{R_{E}}\right)-e 2\left(\frac{R 17}{R_{E}}\right) \tag{1}\\
& +E_{C M}-V_{B E 1}-1_{1} R 17
\end{align*}
$$

For $\mathrm{I}_{1} \equiv \mathrm{I}_{2}, \mathrm{R} 17 \equiv \mathrm{R} 16, \mathrm{~V}_{\mathrm{BE} 1} \equiv \mathrm{~V}_{\mathrm{BE} 2}$, subtracting equation (1) from (2) results in:

$$
\begin{align*}
& v 2-v 1=(e 2-e 1)\left(\frac{R 16+R_{E}}{R_{E}}\right) \tag{3}\\
&+(e 2-e 1)\left(\frac{R 16}{R_{E}}\right) \\
& \frac{v 2-v 1}{e 2-e 1}=\frac{2 R 16}{R_{E}}+1 \tag{4}
\end{align*}
$$

By similar analysis:

$$
\begin{aligned}
v 2= & e 2\left(\frac{R 16+R_{E}}{R_{E}}\right)-e 1\left(\frac{R 16}{R_{E}}\right) \\
& +E_{C M}-V_{B E 2}-I_{2} R 16
\end{aligned}
$$

(2)

Applications Information
 (Continued)

The differential input voltage ($\mathrm{v} 2-\mathrm{v} 1$) is amplified by the closed loop gain of A4:

$$
\begin{equation*}
\text { eOUT }=(\text { AVCL4 } 4)(e 2-e 1) \tag{5}
\end{equation*}
$$

where:

$$
A V C L 4=\frac{R 20}{R 8}
$$

$$
=5.00
$$

$$
\begin{equation*}
A V C L=5\left(\frac{2 R 16}{R_{E}}+1\right) \tag{6}
\end{equation*}
$$

As an example, with all gain pins open, $\mathrm{R}_{\mathrm{E}}=10.526 \mathrm{k} \Omega$; and:

$$
\begin{aligned}
A V C L & =5\left(\frac{(2)(100 k)}{10.526 k}+1\right) \\
& =100.0
\end{aligned}
$$

All other closed loop gain configurations place a precision resistor in parallel with $\mathrm{R}_{\mathrm{E}}(\mathrm{R9} 9+\mathrm{R} 10)$, For example, for a gain of 200 , pin 6 is connected to pin 10 and the gain is predicted by:

$$
\begin{align*}
\text { AVCL } & =5.00\left[\frac{(2)(100 k)}{(10.526 k) \|(10.000 k)}+1\right] \tag{8}\\
& =(5.00)(40)=200
\end{align*}
$$

CLOSED LOOP GAIN CONSIDERATIONTS USING INTERNAL RESISTORS

Table I summarizes the primary gain configurations available with the LH0038. Obviously, other gains are possible. Using the internally supplied resistors has the advantage that R16, R17, and RE all track thermally, minimizing the device's gain error as a function of temperature.

Gain adjustment by paralleling or series padding internally supplied resistors is generally discouraged since external resistors will generally not thermally track. It is recommended that the gain adjustment be done in a subsequent stage as shown in Figure 4.

FIGURE 4. Recommended Gain Adjust Circuit

TABLE I. LH0038 INTERNAL GAIN CONFIGURATIONS

OVERALL GAIN	FIRST STAGE GAIN	PIN CONNECTIONS	EFFECTIVE RE
100	20	All Gain Pins Open	$10.5260 \mathrm{k} \Omega$
200	40	Pin 6 to Pin 10	$5.1281 \mathrm{k} \Omega$
400	80	Pin 6 to Pin $9, \operatorname{Pin} 10$ to Pin 5	$2.5316 \mathrm{k} \Omega$
500	100	Pin 6 to Pin 10, Pin 9 to Pin 5	$2.0202 \mathrm{k} \Omega$
1000	200	Pin 7 to Pin 10	$1.0050 \mathrm{k} \Omega$
2000	400	Pin 8 to Pin 10	$0.5013 \mathrm{k} \Omega$

Applications Information (Continued)

GUARD DRIVE

The LH0038 is provided with a guard drive output, which will always be at the input common-mode voltage. The guard drive amplifier is short-circuit proof and is capable of driving several thousand pF without danger of latch-up or oscillation.

The guard drive tied to a shielded input cable will greatly reduce noise pick-up, and also improve AC CMRR by maintaining the shield at the common-mode voltage. Figure 5 illustrates the proper use of the guard drive.

The guard drive output is also connected to the case to provide electrostatic shielding to the system.

REMOTE OUTPUT SENSE

The feedback network of the LH0038 may be closed directly at the load in order to eliminate errors due to lead resistance. Also, a unity gain buffer; e.g. LHOOO2, may be included within the feedback loop to increase output current capability as shown in Figure 7.

FIGURE 5. Guard Drive Application

FIGURE 6. Remote Sense Connection

FIGURE 7. Output Buffer Connection

Applications Information

(Continued)

OFFSET NULL

Offset of the LHOO38 is trimmed by the factory to a very low value. The offset may be further trimmed using a $10 \mathrm{k} \Omega, 10$ turn, $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ potentiometer as shown in Figure 8. However, a drift increase of $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ will be caused for each $100 \mu \mathrm{~V}$ of offset adjusted. The recommended offset null is shown in Figure 4 and is accomplished in the following stage.

BIAS CURRENT CONSIDERATIONS

The LH0038 exhibits bias current of approximately 50 nA per side, and requires a path to ground or supply. The practical limitation to the maximum resistance between the inputs and ground is dictated by negative common-mode range as shown in Figure 9. For example, for $V_{C M}=-10 \mathrm{~V}, R_{C M} \leq 20 \mathrm{M} \Omega$.

The LH0038 input stage bias was optimized for minimum voltage noise so the input bias currents are higher than might otherwise be expected. Note, however, that the input currents are very well matched, resulting in an offset current value much lower than one might infer from the bias current. In order to take advantage of this low offset current, the source impedances at both inputs should be matched to minimize DC drift. Further, bias current is relatively constant with temperature (as opposed to an FET stage), so one can consider bias current compensation schemes such as shown in Figure 10. The danger with such techniques is that the offset current and noise contributed by the bias current compensator will dominate the system noise.

FIGURE 8. Offset Adjust Circuit (See also Figure 4)

FIGURE 9. Bias Current Return

FIGURE 10. Bias Current Compensation

Applications Information (Continued)

SETTLING TIME

The LH0038 has been purposely over-compensated, and is therefore remarkably free from any undesirable transient response. Small signal settling time is governed by gain-bandwidth product; large signal settling time is dominated by slew rate.

Figure 11 shows an input voltage step of +10 V to -10 V applied, through a 1000 to 1 voltage divider, to the device configured for an inverting gain of 1000. The output of the device will therefore be equal to the negative of the input after the device is completely settled. By resistively subtracting the input before the divider from the device output, a pseudo summing node is generated. The voltage at this pseudo summing junction goes "off screen" on the photos, since in the first small time increment the input goes instantaneously to -10 mV and the output is still at +10 V . About $130 \mu \mathrm{~s}$ after the input has gone negative, the output slews back in range and begins an exponential approach to the final value. Figure 12 is the same set-up for a -10 V to +10 V input pulse. Note that there is no overshoot in either case. The test circuit is shown in Figure 13.

HIGH FREQUENCY CMRR

The LH0038 resistor ratios are carefully trimmed for optimum CMRR at DC through 60 Hz . Inevitably, this rejection will degrade at higher frequencies due to 2 separate effects: stray capacitance mismatch and slew rate limiting in the input stage. In most discrete instru-
mentation amplifier realizations, the stray capacitance mismatch dominates simply because the stray capacitances are relatively large (this can be trimmed out in a discrete amplifier). In a hybrid circuit such as the LH0038, stray capacitance is minimized, so the effects of mismatch are also minimized.

The response to a pulse or noise spike applied as a common-mode signal may be dominated by the slew characteristics of the input stage. Whenever the commonmode input slew rate exceeds $0.2 \mathrm{~V} / \mu \mathrm{s}$, the 2 input amplifiers will apply identical ramp signals to the final stage and cause its output to go to near OV. Note that the amplifier is not really active under these conditions as normal mode signal variations will not be coupled to the output. Some time may be required for the amplifier to settle after a transient of this kind before the output can be considered represent tive of the input. Slew rate limiting will not normally be the limiting factor for sine wave common-mode signals as $0.2 \mathrm{~V} / \mu \mathrm{s}$ corresponds to about 2 kHz ($20 \mathrm{Vp}-\mathrm{p}$).

POWER SUPPLY DECOUPLING

Although the LH0038 exhibits in excess of 120 dB PSRR at DC, the figure degrades to 100 dB at 120 Hz . It is recommended that both V^{+}and V^{-}leads be bypassed with $1 \mu \mathrm{~F}$ electrolytic in shunt with $0.01 \mu \mathrm{~F}$ ceramic disc no further than 1 inch from the device.

$t_{s}, A_{V}=100, V_{I N}=-20 \mathrm{~V}$
FIGURE 11. Settling Time

$$
t_{s}, A V=100, V_{1 N}=20 \mathrm{~V}
$$

FIGURE 12. Settling Time

FIGURE 13. Settling Time Test Circuit

FIGURE 14. Settling Time

Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to 3 dB below the low frequency value.

Common-Mode Rejection Ratio, CMRR: The ratio of the input common-mode voltage range to the peak-topeak change in input offset voltage over this range.

Input Offset Voltage, $\mathrm{V}_{\mathrm{IOS}}$: The voltage which must be applied to the inputs to force the outputs of the input stage to $0 \mathrm{~V} . \mathrm{V}_{\text {IOS }}$ can be calculated by measuring V_{OS} at closed loop gains of 100 and 2000 and using the following equation:

$$
\mathrm{V}_{\text {IOS }}=\frac{\left(\mathrm{V}_{\mathrm{OS}}\right) 2 \mathrm{k}-\left(\mathrm{V}_{\mathrm{OS}}\right) 100}{1900}
$$

Where:

$$
\begin{aligned}
& \left(V_{O S}\right) 2 k=\text { overall offset voltage for } A V C L=2 k \\
& \left(V_{O S}\right) 100=\text { overall offset voltage for } A V C L=100
\end{aligned}
$$

Gain Non-Linearity: The deviation of the gain from a straight line drawn through the end points expressed as a percent of full-scale (10 V for operations on $\pm 15 \mathrm{~V}$ supply). Note that this is a more stringent specification than deviation from the best straight line and is double the number that would be specified if the percentage were based on a $20 \mathrm{~V}(\pm 10 \mathrm{~V})$ range.

Guard Voltage Error: The voltage difference between the guard drive output and the average of the 2 input voltages.

Input Bias Current, I_{B} : The average of the 2 input currents.

Input Common-Mode Voltage Range, VINCM: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.

Input Offset Current, IOS: The difference in the currents into the 2 input terminals when the output is at zero.

Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Overall Offset Voltage, VOS: The output voltage when both inputs are connected to $0 \mathrm{~V} . \mathrm{V}_{\mathrm{OS}}$ is composed of input amplifier offset voltage effects, $\mathrm{V}_{\text {IOS }}$, and output amplifier effects, VOOS. It is given by:

$$
V_{O S}=(A V C L)\left(V_{I O S}\right)-V_{O O S}
$$

Where:
AVCL $=$ closed loop gain $=100$ to $2 k$
$V_{\text {IOS }}=$ input stage offset voltage
$\mathrm{V}_{\text {OOS }}=$ output stage offset voltage

Output Offset Voltage, VOOS: The output voltage when the outputs of the input stage are forced to 0 V . $\mathrm{V}_{\mathrm{OOS}}$ may be calculated by measuring $\mathrm{V}_{\text {OS }}$ at closed loop gains of 100 and 2000 and using the following equation:

$$
\frac{V_{\text {OOS }}=(20)\left(V_{\text {OS }}\right) 100-\left(V_{\text {OS }}\right) 2 k}{19}
$$

Where:

$$
\begin{aligned}
& \text { (VOS) } 100=\text { overall offset voltage for } A V C L=100 \\
& \text { (VOS) } 2 \mathrm{k}=\text { overall offset voltage for } \mathrm{AVCL}
\end{aligned}
$$

Output Voltage, V_{O} : The peak output voltage swing, referred to zero.

Offset Voltage Temperature Drift, $\Delta V_{\text {IOS }} / \Delta \mathrm{T}$: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.

Power Supply Rejection Ratio, PSRR: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

Settling Times, t_{s} : The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

Slew Rate, $\mathbf{S}_{\boldsymbol{r}}$: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.

Supply Current, $\pm \mathrm{I}_{\mathrm{s}}$: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.

Supply Voltage Range: The range of voltages on the supply terminals for which the device is operational. Note that the specifications are not guaranteed over the full supply voltage range unless specifically stated.

Transient Response, $\mathrm{t}_{\mathbf{r}}$: The closed-loop step-function response of the amplifier under small-signal conditions.

Unity Gain Bandwidth: The frequency range from DC to the frequency where the amplifier open loop gain rolls off to 1 .

Closed Loop Gain, AVCL: The ratio of output voltage to input voltage under the stated conditions of source resistance (R_{S}) and load resistance (R_{L}).

Voltage Gain Error: The deviation in percent between the ideal voltage gain and the value obtained when the device is configured for that gain.

General Description

The LH0084/LH0084C is a self-contained, high speed, high accuracy, digitally-programmable-gain instrumentation amplifier. It consists of paired FET-input variable-gain voltage-follower input stages followed by a differential-to-single-ended output stage. The input stage is programmable in accurate gain steps of $1,2,5$, or 10 controlled by the logic levels of a 2-bit TTL-compatible digital input word. For additional flexibility, the output stage is pin-strappable to fixed gains of 1,4 , or 10 for an overall gain range of 1 to 100 .

Applications include increased dynamic range A-to-D converters, test systems, and post multiplexer amplifier for data acquisition systems.

The device exhibits high input impedance, low offset voltage, high CMRR and PSRR, high speed, and excellent gain accuracy and gain non-linearity.

The LH0084 is guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The LH0084C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Both devices are provided in a hermetically sealed 16 -lead dual-in-line metal package.

Features

Simplified Schematic

Connection Diagram

Case is electrically isolated

Order Number LH0084D or LH0084CD See NS Package D16D

Absolute Maximum Ratings

Supply Voltage (Note 1)
Analog Input Voltage (Note 2)
Differential Input Voltage (Note 2)
Digital Input Voltage
Power Dissipation (See Curve)
$\pm 18 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
$\pm 30 \mathrm{~V}$
$-4 \mathrm{~V},+18 \mathrm{~V}$
2.5W

Output Short Circuit Duration
Operating Temperature Range
LH0084
LH0084C
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature
Lead Temperature (Soldering, 20 seconds)
$+300^{\circ} \mathrm{C}$

DC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ unless noted

DC Electrical Characteristics (Continued) $V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k}, T_{M I N} \leq T_{A} \leq T_{\text {MAX }}$ unless noted

	Parameter	Conditions	LH0084			LH0084C			Units
			Min	Typ	Max	Min	Typ	Max	
R_{0}	Output Resistance			0.05		.	0.05		Ω
V_{IL}	Digital "0" Input Voltage				0.7		.	0.7	V
$\mathrm{V}_{1 H}$	Digital " 1 " Input Voltage		2.0			2.0			
IIL	Digital "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		1.5	40		1.5	40	$\mu \mathrm{A}$
I_{H}	Digital "1" Input Current	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}$		0.01			0.01		
V_{S}	Supply Voltage Range		± 8		± 18	± 8		± 18	V
$\mathrm{I}_{\mathrm{s}}(+)$	Positive Supply Current	$V_{S} \leq \pm 18 \mathrm{~V}$		12	18		12	26	mA
IS (-1	Negative Supply Current			8	12		8	14	
$P_{\text {D }}$	Power Dissipation	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		315	450		315	600	mW

AC Electrical Characteristics $v_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$

	Parameter	Conditions		Min	Typ	Max	Units
BW	Bandwidth (Figure 1)	Small Signal, $-3 \mathrm{~dB}$	$\mathrm{A}_{\mathrm{V}}=1$		3250		kHz
			$\mathrm{A}_{\mathrm{V}}=10$		500		
			$A_{V}=100$		350		
		Small Signal,-1%	$A_{V}=1$		300		
			$A_{V}=10$		75		
			$A_{V}=100$		55		
PBW	Power Bandwidth	$\mathrm{V}_{0}= \pm 10 \mathrm{~V}$			200		
SR	Slew Rate			10	13		$\mathrm{V} / \mu \mathrm{s}$
t_{S}	Settling Time (Figure 2) $\pm 0.1 \%$	$\Delta V_{o}= \pm 20 \mathrm{~V}$	$A_{V}=1$		2.3	3.0	$\mu \mathrm{S}$
			$A_{V}=10$		2.7	3.5	
			$A_{V}=100$		3.1	4.0	
	Gain Switching Time				3.5		
E_{N}	Equivalent Input Noise Voltage (Figure 3)	$\begin{aligned} & \mathrm{BW}=0.1 \mathrm{~Hz}-10 \mathrm{~Hz} \\ & \hline \mathrm{BW}=10 \mathrm{~Hz}-10 \mathrm{kHz} \end{aligned}$	$A_{V}=100$		7		$\mu \vee p$-p
					1.4		$\mu \mathrm{Vrms}$
I_{N}	Equivalent Input Noise Current (Figure 3)	$\mathrm{BW}=10 \mathrm{~Hz}-10 \mathrm{kHz}$			30		pArms

Note 1: Improper supply power-on sequence may damage the device. See Power Supply Connection section under Applications Information.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$ the maximum input voltage is equal to the supply voltage.
Note 3: These parameters are specified at junction temperature, T_{J}. In normal operation the junction temperature rises above the ambient temperature, T_{A} as a result of internal power dissipation, $P_{D} . T_{J}=T_{A}+\theta_{J A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient.
Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature.

Typical Performance Characteristics

Small Signal
Frequency Response

Input Common-Mode
Range

Settling Time

Gain Accuracy

Common-Mode Rejection

Supply Current

Equivalent Input Noise Voltage (Includes Source-Resistance Noise)

Input Bias Current

Power Supply Rejection

Output Swing

Broadband Output Noise Voltage

AC Test Circuits

FIGURE 1. Frequency Response Measurement Circuit

FIGURE 2. Settling Time Measurement Circuit

FIGURE 3. Noise Measurement Circuit
Wideband Noise

$R_{S}=50 \Omega$ Bandwidth 0.1 Hz to 10 Hz
1μ VIDivision Vertical 5 Seconds/Division Horizontal

Applications Information

theory of operation

The LH0084 is a digitally-programmable-gain trueinstrumentation amplifier composed of a variable-gain voltage-follower input stage (A1 and A2), followed by a differential output stage (A3). The schematic is shown in Figure 4.
The input stage contains matched high-speed FET-input op amps (A1 and A2). A high-stability temperaturecompensated resistor network (R 1 through R7) controls feedback ratios at the inverting inputs of op amps A1 and A2 via FET switches S1A-S4A and S1B-S4B. Since the FET switches are in series with the op amp input impedance their resistance match and temperature drift do not degrade the gain accuracy of the instrumentation amplifier. The FET switches are controlled through a 1-of-4 decoder and switch driver, by the logic levels applied at the digltal input terminals D1 and D0 and set the gain of the input stage as shown in Table I.

If, for example, D1 is High ($\geq 2.0 \mathrm{~V}$) and DO is Low ($\leq 0.7 \mathrm{~V}$), FET switch pair S3A and S3B will be closed (and all remaining switches open). The input stage gain, $A_{v_{(1)}}$, can then be shown to be:

$$
\begin{aligned}
A_{V(1)} & =\frac{V 2-V 1}{V_{I N}(+)-V_{I N}(-)} \\
& =1+\frac{R 4+R 5+R 6+R 7}{R 1+R 2+R 3} \\
& =1+\frac{6 k+6 k+10 k+10 k}{4 k+2 k+2 k} \\
& =5
\end{aligned}
$$

Schematic Diagram

table I. GAIN TRUTH TABLE AND CONNECTION TABLE

Digital Inputs		1st Stage Gain $A_{V(1)}$	Pin Connections	2nd Stage Gain $A_{V(2)}$	Overall Gain Av
D1	D0				
0	0	1			
0	1	2	6-10, 13.GND	1	2
1	0	5	6-10, 13-GND	1	5
1	1	10			10
0	0	1			4
0	1	2			8
1	0	5	7-10, 12.GND	4	20
1	1	10			40
0	0	1			10
- 0	1	2			20
1	0	5	8-10, 11-GND	10	50
1	1	10			100

The output stage, consisting of op amp A3 and resistors R8 through R15, converts the voltage difference at the output of the input stage, V2 minus V1, to a single-ended output. For increased flexibility of the LH0084, the output stage gain is pin-strappable by selecting R10, R10 + R12, or $\mathrm{R} 10+\mathrm{R} 12+\mathrm{R} 14$ as feedback resistor for A3. The ratios of these resistors to the differential stage input resistor R3 are kept very accurate to maintain the excellent overall gain accuracy of the device. The output stage gain, $A_{V(2)}$, is equal to the feedback resistance divided by the input resistance. Thus with, for example, Pin 7 wired to Pin 10, that gain would be:

$$
\begin{align*}
A_{V(2)} & =\frac{V_{\text {OUT }}}{V_{2}-V_{1}} \\
& =\frac{R 10+R 12}{R 8} \tag{2}
\end{align*}
$$

$$
=\frac{10 k+30 k}{10 k}
$$

$$
=4
$$

To preserve the high common-mode rejection ratio of the output stage, the ground sense resistor, R11, R11 + R13 or R11 + R13 + R15, must match the feedback resistor used.

The overall gain of the LH0084 is therefore:

$$
\begin{align*}
A_{V} & =\frac{V_{\text {OUT }}}{V_{I N}(+)-V_{I N}(\dot{-})} \\
& =\frac{V 2-V_{1}}{V_{I N}(+)-V_{I N}(-)} \cdot \frac{V_{\text {OUT }}}{V 2-V_{1}} \tag{3}\\
& =A_{V(1)} \cdot A_{V(2)}
\end{align*}
$$

The different gains available are in the range of 1 through 100 and are summarized in Table I.

POWER SUPPLY CONNECTIONS

Proper power supply connections are shown in Figure 5. The power supplies should be bypassed to ground as close as possible to device supply pins. For optimum high speed performance V^{+}and V^{-}should be decoupled with a $0.01 \mu \mathrm{~F}$ ceramic disc in parallel with a $1 \mu \mathrm{~F}$ electrolytic capacitor.

The two ground pins, analog and digital grounds, should be connected together as close to the device as possible, preferably with a ground plane underneath the device. If this is not possible, the grounds should be connected together locally with back-to-back diodes and hard-wired together off-board. If a ground reference offset is used, it must be low impedance compared to the ground sense resistance to avoid CMRR degradation.
Care must be taken in the supply power-on sequence. The LH0084 may suffer irreversible damage if the V^{+} supply is applied prior to the powering on of the V^{-} supply. In most applications using dual tracking supplies and with the device supply pins adequately bypassed, this will not present a problem. If this cannot be guaranteed, a germanium or Schottky protection diode should be connected between the digital ground pin and the V^{-}pin as shown in Figure 5.

FIGURE 5. Power Supply Connections

Applications Information (Continued)

SIGNAL CONNECTIONS

The input signals should be connected as shown in Figure 6. To minimize errors, $\mathrm{R}_{\mathrm{S}}(+), \mathrm{R}_{\mathrm{S}}(-)$ and R_{CM} should be kept as small as possible.

The output connections are also shown in Figure 6. The feedback leads should be kept short as should the ground sense in order to minimize lead resistance and parasitic capacitance.

OFFSET AND GAIN ADJUSTMENTS

Special care must be taken when using external offset adjustment. Since the LH0084 is a 2-stage amplifier with each stage contributing offset errors, and the amplifier presumably is used at several different gains, it is important to realize that the offsets of both the 1st and the 2nd stages must be nulled to maintain zero offset referred to output (RTO) at all gain settings.

In general, it is recommended that the input stage offset ($\mathrm{V}_{\text {IOS }}$) be adjusted with a potentiometer as shown in Figure 7. The output stage offset ($\mathrm{V}_{\mathrm{OOS}}$) is ideally adjusted at a subsequent gain stage (i.e. sample-and-hold or A-to-D converter), but if this is impractical, it may also be done as shown in Figure 7.

Recommended offset adjust procedure is as follows: Initially set both pots to center positions and short both inputs of the LH0084 to ground.
a) Set the input stage gain to 1 (pull D1 and D0 low). Measure the output voltage, $\mathrm{V}_{\text {OUT1 }}$.
b) Set the input stage gain to 10 (pull D1 and D0 high). Measure the new output voltage, $\mathrm{V}_{\text {Out2 }}$.
c) Calculate the portion of $\mathrm{V}_{\text {OUT2 }}$ contributed by the output stage offset per the equation:

$$
\begin{equation*}
V_{\text {OOS }}=\frac{1}{9}\left(10 \cdot V_{\text {OUT1 }}-V_{\text {OUT } 2}\right) \tag{4}
\end{equation*}
$$

d) While maintaining an input stage gain of 10, adjust the input offset voltage ($V_{\text {IOS }}$) potentiometer until the output voltage is equal to the voltage calculated in Equation (4).
e) Change the input back to a gain of 1 and adjust the output offset voltage ($\mathrm{V}_{\mathrm{OOS}}$) potentiometer until the output voltage is zero.

FIGURE 6. Signal Connections

FIGURE 7. Offset Adjust Circuit

Applications Information
 (Continued)

An alternate offset adjust scheme is shown in Figure 8. The offset should be rezeroed after each time the gain is changed or when the op amp integrator drift warrants a new zero pulse. An additional advantage of this adjustment technique is that it can also be used to cancel out offset voltage drift and common-mode voltage error contributions.

External gain adjustment is generally discouraged since gain accuracy can be optimized for one gain setting only. If gain adjustment is required, however, it should be done at a subsequent gain stage.

LOGIC CONNECTIONS

The digital inputs D1 and D0 are referenced to the digital ground. The device interfaces directly to TTL and, with pull-down resistors, to CMOS.
Interfacing with microprocessors will usually require a latch. A circuit using full 6 -bit wide address decode and write strobe is shown in Figure 9.

REMOTE OUTPUT SENSE

The feedback resistors of the LH0084 can be connected directly at the load in order to eliminate errors due to lead resistance (Figure 10).

FIGURE 9. Typical Microprocessor Interface

FIGURE 10. Remote Sense Connection

Applications Information (Continued)

Also, a unity gain buffer, such as the LH0033, may be included in the feedback loop for increased current drive capability as shown in Figure 11.

FIGURE 11. Buffered Output Connection

The output sense feature can also be used in other ways such as output offset, Figure 12, or current source output, Figure 13.

FIGURE 12. Output Offset Connection

FIGURE 13. Output Current Source Connection

Applications

The LH0084 is ideal for application in increased dynamic range A-to-D converters, test systems, process control, and multi-channel data acquisition systems. Figure 14 shows the device used in a typical data acquisition system.
A software offset and gain error correction scheme is shown in Figure 15. By first selecting a multiplexer input
connected to analog ground, and then selecting a channel connected to a reference of known value, the overall system gain and offset errors can be calculated. For all subsequent readings, offset and gain corrections can be made mathematically by solving a simple firstorder equation in software.

FIGURE 14. Typical Data Acquisition System

Applications (Continued)

FIGURE 15. Software System Offset and Gain Calibration Circuit

Definition of Terms

Input Offset Voltage, V_{105} : The voltage which must be applied to the inputs to force the output of the input stage to $0 \mathrm{~V} . \mathrm{V}_{\text {IOS }}$ can be calculated by measuring $\mathrm{V}_{\text {OS }}$ (RTO) at input stage gains of 1 and 10 and using the following equation:

$$
V_{\text {OOS }}=\frac{1}{9}\left(\left.V_{O S}\right|_{A V=10}-V_{O S} \mid A_{V}=1\right)
$$

where:

$$
\begin{aligned}
& \left.V_{O S}\right|_{A_{V}=10}=\text { Overall offset }(R T O) \text { for } A_{V}=10 \\
& \left.V_{O S}\right|_{A_{V}=1}=\text { Overall offset (RTO) for } A_{V}=1
\end{aligned}
$$

Input Offset Current, Ios: The difference in the currents into the 2 analog input terminals at 0 V .

Input Bias Current, I_{B} : The average of the currents into the 2 analog input terminals at OV .
Input Resistance, $\mathbf{R}_{\text {IN }}$: Common-mode input resistance is the change in input voltage range divided by the change in input bias current with both analog inputs at the same. voltage. Differential input resistance is the change in input voltage at one input terminal divided by the change in input current at the other input terminal which is kept still at 0 V .

Input Voltage Range, V_{IN} : The voltage range for which the device is operational.
Common-Mode Rejection Ratio, CMRR: The ratio of the input common-mode voltage range to the change in input offset voltage over this range.

Power Supply Rejection Ratio, PSRR: The ratio of the specified change in supply voltage to the change in input offset voltage over this range.

Voltage Gain, A_{ψ} : The ratio of output voltage change to the input voltage change producing it.
Gain Error: The deviation in percent between the ideal voltage gain and the value obtained when the device is configured for that gain.

Gain Non-Linearity: The deviation of the gain from a straight line drawn through the end-points expressed as a percent of full-scale (10 V for operation with $\pm 15 \mathrm{~V}$ supply). For testing purposes it is the difference between positive swing gain (0 V to 10 V) and average gain (-10 V to 10 V) or between negative swing gain (0 V to -10 V) and average gain.

Output Stage Offset Voltage, $\mathbf{V}_{\text {oos: }}$ The voltage which must be applied to the input of the output stage for the output to be forced to $0 \mathrm{~V} . \mathrm{V}_{\mathrm{OOS}}$ can be calculated by measuring $\mathrm{V}_{\mathrm{OS}}(\mathrm{RTO})$ at input stage gains of 1 and 10 and applying the following equation:

$$
V_{O O S}=\frac{1}{9}\left(\left.10 \cdot V_{O S}\right|_{A_{V}=1}-\left.V_{O S}\right|_{A_{V}=10}\right)
$$

where:

$$
\begin{aligned}
& \left.V_{O S}\right|_{A_{V}=1}=\text { Overall offset }(R T O) \text { for } A_{V}=1 \\
& \left.V_{O S}\right|_{A_{V}=10}=\text { Overall offset (RTO) for } A_{V}=10
\end{aligned}
$$

Offset Voltage (Referred to Output), $\mathrm{V}_{\mathrm{OS}(\mathrm{RTO}):}$: The output voltage when both inputs are connected to 0 V . V_{OS} is composed of input offset voltage, $\mathrm{V}_{\mathrm{iOs}}$, and output offset voltage, $\mathrm{V}_{\mathrm{OOS}}$, and is a function of amplifier gain. The overall offset voltage is given by:

$$
V_{O S(R T O)}=A_{V(2)}\left(A_{V(1)} V_{(O S}+V_{O O S}\right)
$$

where:
$\mathrm{V}_{10 \mathrm{~S}}=$ Input offset voltage
$\mathrm{V}_{\mathrm{OOS}}=$ Output stage offset voltage
$\mathrm{A}_{\mathrm{V}(1)}=$ Input stage gain
$\mathrm{A}_{\mathrm{V}(2)}=$ Output stage gain

Output Voltage Swing, $\mathbf{V}_{\mathbf{0}}$: The peak output voltage swing referenced to ground into specified load.

Output Short-Circuit Current, I_{O} : The current supplied by the device with the output connected directly to ground.

Output Resistance, r_{0} : The ratio of change in output voltage to change in output current around zero output.

Supply Voltage Range, $\mathbf{V}_{\mathbf{S}}$: The supply voltage range for which the device is operational.
Supply Current, I_{S} : The current required from the supply to operate the device with zero load and with the analog as well as the digital inputs at OV .
Power Dissipation, P_{D} : The power dissipated in the device with zero load and with the analog as well as the digital inputs at 0 V .
Digital "1" Input Voltage, $\mathbf{V}_{\mathbf{I H}}$: Minimum voltage required at the digital input to guarantee a high logic state.
Digital " 0 " Input Voltage, V_{IL} : Maximum voltage required at the digital input to guarantee a low logic state.

Digital "1" Input Current, $I_{I H}$: The current into a digital input at specified logic level.
Digital " 0 " Input Current,' $I_{1 L}$: The current into a digital input at specified logic level.

Average Input Offset Voltage Drift, $\Delta \mathbf{V}_{\text {IOs }} / \Delta \mathrm{T}$: The ratio of input offset voltage change from $25^{\circ} \mathrm{C}$ to either temperature extreme divided by the temperature range.
Average Output Offset Voltage Drift, $\Delta V_{\text {oos }} I \Delta T$: The ratio of output offset voltage change from $25^{\circ} \mathrm{C}$ to either temperature extreme divided by the temperature range.

Average Gain Temperature Coefficient, $\Delta A_{V} I \Delta T$: The ratio of change in gain from $25^{\circ} \mathrm{C}$ to either temperature extreme divided by the temperature range.
Small Signal Bandwidth, BW: The frequency at which the device gain changes from the low frequency gain by a specified amount.
Power Bandwidth, PBW: Maximum frequency for which the output swing is a large signal sinewave without noticeable distortion.

Slew Rate, SR: The internally limited rate of change in output voltage with a large amplitude step function applied at the input.

Settling Time, t_{s} : The time between the initiation of an input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Gain Switching Time: The time between the initiation of a gain logic change and the time when the final gain switches are closed. It includes overdrive recovery time, but not settling to final value.

Equivalent Input Noise Voltage, E_{N} : The rms or peak noise voltage referred to the input (RTI) over a specified frequency band.

Equivalent input Noise Current, 1_{N} : The rms or peak noise current referred to the input (RTI) over a specified frequency band.

Section 5
Voltage Comparators

Voltage Comparators

Section Contents

Voltage Comparator Guide 5-3
Definition of Terms 5-4
LF111/LF211/LF311 Voltage Comparators 5-5
LH2111/LH2211/LH2311 Dual Voltage Comparator 5-11
LM106/LM206/LM306 Voltage Comparators 5-13
LM111/LM211 Voltage Comparator 5-16
LM119/LM219/LM319 High Speed Dual Comparator 5-22
LM139/LM239/LM339, LM139A/LM239A/LM339A, LM2901, LM3302Low Power Low Offset Voltage Quad Comparators5-27
LM160/LM260/LM360 High Speed Differential Comparator 5-35
LM161/LM261/LM361 High Speed Differential Comparators 5-38
LM193/LM293/LM393, LM193A/LM293A/LM393A, LM2903Low Power Low Offset Voltage Dual Comparators5-41
LM311 Voltage Comparator 5-48
LM710/LM710C Voltage Comparator 5-56
LM711/LM711C Dual Comparator 5-59
LM1514/LM1414 Dual Differential Voltage Comparator 5-62

	Device	Temperature Range*	DTL/TTL Fanout	$\begin{aligned} & \text { Supply } \\ & \text { Voltage } \\ & \text { Typ } \\ & \text { (V) } \end{aligned}$	Input Bias Current $\left(25^{\circ} \mathrm{C}\right)$ Max (μA)	Input Offset Current $\left(25^{\circ} \mathrm{C}\right)$ Max $(\mu \mathrm{A})$		$\begin{aligned} & \text { Response } \\ & \text { Time } \\ & \text { Typ } \\ & (\mathrm{ns}) \end{aligned}$	$\begin{aligned} & \text { Voltage } \\ & \text { Gaun } \\ & \text { Typ } \end{aligned}$	Package Type	Comments
	LM106	Military	10	$\mathrm{v}^{+}=12$	20	3	2	40 max	40 k	T0.5	Sungle comparator with strobe, high speed and sensitivity, large fanout
	LM206	Industrial	10	$\mathrm{v}^{-}=-3$	20	3	2	40 max	40k	T0. 5	
	LM306	Commercial	10	To-12	25	5	5	40 max	40k	то. 5	
	LF111	Military	2	36	0.05	0.000025	4	200	200 k	T0.5	FET front-end inpus
	LF211	Industrial	2	36	005	0000025	4	200	200k	T0.5	
	LF311	Commercial	2	36	0.15	0.000075	10	200	200k	то. 5	
	LM111	Military	5	± 15	0.1	0.04	0.7	200	200 k	TO.5 Dip	Surgle, with strobe, will work from single supply, low bras current
	LH2111 Dual (Note 1)	Military	5	± 15	0.1	0.04	0.7	200	200k	TO-5 DIPFP.	
	LM211	Industrial	5	To 5	0.1	0.04	0.7	200	200k	To. 5 DIP	
	LH2211 Dual (Note 1)	Industrial	5	To 5	01	0.04	0.7	200	200k	TO. 5 DIP F.P.	
	LM311	Commercial	5	And GND	0.25	006	2	200	200 k	TO. 5 DIP	
	LH2311 Dual (Note 1)	Commercial	5	And GND	0.25	006	2	200	200k	TO 5 DIP F.P.	
	LM119	Military	2 (Each Side)	± 15	0.5	0.075	4	80	40k	TO. 5 DIP	High speed dual comparator
	LM219	Industrial	2 (Each Side)	To 5	0.5	0.075	4	80	40k	TO. 5 DIP	
	LM319	Commercal	2 (Each Side)	And GND	1	0.2	8	80	40k	TO. 5 DIP	
	LM139 Quad	Military	1	± 1	01	0.025	5	1.3 13 s	200k	DIP	O.sad comparator designed for single supply operation, mput common mode range includes ground
	LM239 Quad	Industrral	1	To 118	0.25	0.050	5	${ }^{1.3 \mu \mathrm{~s}}$	200 k	DIP	
	LM339 Ouad	Commercial	1	Or From	025	0050	5	$1.3 \mu \mathrm{~s}$	200 k	DIP	
	LM139A Quad	Military	1	2	0.1	0.025	2	${ }^{1.3 \mu \mathrm{~s}}$	200k	DIP	Low offset voltage Quad comparator with DTL/TTL logic levels
	LM239A Quad	Industrial	1	To 36	0.25	0.050	2	1.3/5	200k	DIP	
	LM339A Quad	Commercral	1	And GND	0.25	0.050	2	1.3us	200 k	DIP	
	LM 160	Miltary	2	± 4.5	10	2	2	16	${ }^{3 k}$	TO 5 DIP	Very high speed, outputs compatible with DTL/TTL logic levels
	LM260	Industrial	2	To	10	2	2	16	3k	T0.5 Dip	
	LM360	Commercial	2	± 6.5	15	4	4	16	3 k	T0.5 DIP	
	LM161 (LM529)	Military	2	± 5	10	2	2	12	3k	T0.5 DIP	Very high speed, with individual strobes, DTL/TTL. compatible
	LM261	Industrral	2	To ± 15	10	2	2	12	3k	TO. 5 dip.	
	LM361 (LM529C)	Commerctal	2	And 5	15	4	4	12	3k	TO. 5 DIP	
	LM193	Military	1	± 1	0.1	0025	5	${ }^{1.3 \mu \mathrm{~s}}$	200k	T0.5	Dual comparator designed for single supply operation: input common mode range includes ground
	LM293	Industrral	1	To ± 18	0.25	0.050	5	$13 \mu \mathrm{~s}$	200k	T0.5	
	LM393	Commercial		Or from	0.25	0050	5	$13 \mu \mathrm{~s}$	200 k	TO 5. DIP	
	LM193A	Military	1	2	0.1	0.025	2	$13 \mu \mathrm{~s}$	200 k	т0.5	Low offset voltage dual comparator with DTL/TTL logic levels
	LM293A	Industrial	1	то 36	0.25	0.050	2	${ }^{1.3} / 3 \mathrm{~s}$	200 k	то. 5	
	Lм393A	Commercial	1	And Gnd	0.25	0.050	2	$1.3 \mu \mathrm{~s}$	200k	To.5. DIP	
	LM710	Military	1	$\mathrm{v}^{+}=12$	20	3	2	40	1750	T0.5	Single, differentral in, single output
	LM710C	Commerctal	1	$v=-6$	25	5	5	40	1500	TO. 5 DIP	
	LM711 Dual	Mulitary	1	$\mathrm{v}^{+}=12$	75	10	3.5	. ${ }^{40}$	1500	TO. 5	Dual differentual, common output. individual strobes
	LM711C Dual	Commercial	1	$v^{-}=-6$	100	15	5	40	1500	T0.5 DIP	
	LM1514 Dual	Military	1	$\mathrm{v}^{+}=14$	20	3	3	30	1250	${ }^{\text {DIP }}$	Dual LM710 with separate strobes. individual outputs
	LM1414 Dual	Commercial	1	$V=-7$	25	5	4	30	1000	DIP	
	LM2901 Ouad	Industrial	1	$\begin{gathered} \pm 1(2 V) 10 \\ \pm 18(36) \end{gathered}$	0.25	0.05	7	1.3	200 K	DiP	Quad comparator designed for single supply operation; input common-mode range includes ground
	LM2903	Automotive	1	$\begin{aligned} & \pm 1(2 \mathrm{~V}) \text { to } \\ & \pm 18(36) \end{aligned}$	0.25	0.050	7	. 1.3 / s	200k	DIP	Dual comparator designed for single supply operation: input common-mode range ircludes ground

Note 1: Dual version of device. t Response time is specified for 100 mV step input with 5 mV overdrive.
*Military: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; Industrial: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Commercial: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Automotive: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

National Semiconductor

Voltage Comparators

Definition of Terms

Input Bias Current: The average of the two input currents.

Input Offset Current: The absolute value of the difference between the two input currents for which the output will be driven higher than or lower than specified voltages.

Input Offset Voltage: The absolute value of the voltage between the input terminals required to make the output voltage greater than or less than specified voltages.

Input Voltage Range: The range of voltage on the input terminals (common-mode) over which the offset specifications apply.

Logic Threshold Voltage: The voltage at the output of the comparator at which the loading logic circuitry changes its digital state.

Negative Output Level: The negative dc output voltage with the comparator saturated by a differential input equal to or greater than a specified voltage.

Output Leakage Current: The current into the output terminal with the output voltage within a given range and the input drive equal to or greater than a given value.

Output Resistance: The resistance seen looking into the output terminal with the dc output level at the logic threshold voltage.

Output Sink Current:- The maximum negative current that can be delivered by the comparator.

Positive Output Level: The high output voltage level with a given load and the input drive equal to or greater than a specified value.

Power Consumption: The power required to operate the comparator with no output load. The power will vary with signal level, but is specified as a maximum for the entire range of input signal conditions.

Response Time: The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive.

Saturation Voltage: The low-output voltage level with the input drive equal to or greater than a specified value.

Strobe Current: The current out of the strobe terminal when it is at the zero logic level.

Strobed Output Level: The dc output voltage, independent of input conditions, with the voltage on the strobe terminal equal to or less than the specified low state.

Strobe "ON" Voltage: The maximum voltage on either strobe terminal required to force the output to the specified high state independent of the input voltage.

Strobe "OFF" Voltage: The minimum voltage on the strobe terminal that will guarantee that it does not interfere with the operation of the comparator.

Strobe Release Time: The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from zero to the one logic level.

Supply Current: The current required from the positive or negative supply to operate the comparator with no output load. The power will vary with input voltage, but is specified as a maximum for the entire range of input voltage conditions.

Voltage Gain: The ratio of the change in output voltage to the change in voltage between the input terminals producing it.

The extremely low input currents of the LF111 allows the use of a simple comparator in applications usually requiring input current buffering．Leakage testing，long time dèlay circuits，charge measurements，and high saurce impedance voltage comparisons are easily done．

Further，the LF111 can be used in place of the LM111 eliminating errors due to input currents．See the＂appli－ cation hints＂of the LM311 for application help．

Advantages

－Eliminates input current errors
－Interchangeable with LM111
－No need for input current buffering

Connection Diagram

TOP VIEW
Order Number LF111H，LF211H
or LF311H
See NS Package H08C

Schematic Diagram and Auxiliary Circuits

Offset Balancing

Strobing

Increasing Input
Stage Current＊

Absolute Maximum Ratings

Total Supply Voltage ($\mathrm{V}_{\mathbf{8 4}}$)
Output to Negative Supply Voltage (V_{74})
Ground to Negative Supply Voltage (V_{14})
Differential Input Voltage
Input Voltage (Note 1)
Power Dissipation (Note 2)
Output Short Circuit Duration
Operating Temperature Range
LF111
LF211
LF311
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

LF111/LF211

36 V	36 V
50 V	40 V
30 V	30 V
$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
500 mW	500 mW
10 seconds	10 seconds
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

$$
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
LF311

Electrical Characteristics (LF111/LF211) (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}$		0.7	4.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C M}=0$ (Note 6)		5.0	25	pA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C M}=0$ (Note 6)		20	50	pA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$V_{\text {IN }} \leq-5.0 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.75	1.5	V
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$V_{\text {IN }} \geq 5.0 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2	10	nA
Input Offset Voltage (Note 4)				6.0	mV
Input Offset Current (Note 4)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		2.0	3.0	nA
Input Bias Current	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		5.0	7.0	nA
Input Voltage Range		-13.5	± 14	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-6.0 \mathrm{mV}, \mathrm{I}_{\text {SINK }} \leq 8.0 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
, Output Leakage Current	$V_{\text {IN }} \geq 5.0 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	6.0	mA
Negative Supply Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LF111 is $+150^{\circ} \mathrm{C}$, the LF211 is $+110^{\circ} \mathrm{C}$ and the LF311 is $+85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $+45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$, and the Ground pin at ground, and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LF111, unless otherwise stated. With the LF211, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and for the $\mathrm{LF} 3110^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}!\mathrm{The}^{\prime}$ offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5.0 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.
Note 6: For input voltages greater than 15 V above the negative supply the bias and offset currents will increase-see typical performance curves. Note 7: Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .

Electrical Characteristics (LF311) (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		2.0	10	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$ (Note 6)		5.0	75	pA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {CM }}=0$ (Note 6)		25	150	pA
Voltage Gain	$T_{A}=25^{\circ} \mathrm{C}$		200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$V_{I N} \leq-10 \mathrm{mV}, \mathrm{l}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	1.5	\checkmark
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$V_{\text {IN }} \geq 10 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.2	10	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			15	mV
Input Offset Current (Note 4)	$V_{\text {S }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		1.0		nA
Input Bias Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		3.0		nA
Input Voltage Range			$\begin{aligned} & +14 \\ & -13.5 \end{aligned}$		v
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, I_{\operatorname{sinK}} \leq 8.0 \mathrm{~mA} \end{aligned}$		0.23	0.4	v
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	7.5	mA
Negative Supply Current	$T_{A}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LF111 is $+150^{\circ} \mathrm{C}$, the LF211 is $+110^{\circ} \mathrm{C}$ and the LF311 is $+85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $+45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125 \mathrm{C}$ for the LF111, unless otherwise stated. With the LF211, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\prime \prime} \mathrm{C}$ and for the LF311 $0^{\prime \prime} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5.0 mV supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.
Note 6: For input voltages greater than 15 V above the negative supply the bias and offset currents will increase-see typical performance curves.
Note 7: Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .

Typical Applications

LF111/LF211/LF311

Typical Performance

Input Bias Current
vs Temperature

Response Time for Various

Supply Current

Typical Applications（Continued）

Frequency Doubler

Zero Crossing Detector Driving MOS Switch

Driving Ground－Referred Load

Zero Crossing Detector Driving MOS Logic

Typical. Applications (Continued)

Switching Power Amplifier

Note Do Not Cround Strobe Pin

Relay Driver with Strobe

Switching Power Amplifier

Positive Peak Detector

Negative Peak Detector

Using Clamp Diodes to Improve Response

National Semiconductor

The LH2111 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2211 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LH 2311 is speci-
fied for operation over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

Features

- Wide operating supply range	$\pm 15 \mathrm{~V}$ to a single +5 V
- Low input currents	6 nA
- High sensitivity	$10 \mu \mathrm{~V}$
- Wide differential input range	$\pm 30 \mathrm{~V}$
- High output drive	$50 \mathrm{~mA}, 50 \mathrm{~V}$

Auxiliary Circuits

Offset Balancing

LH2211D or LH2311D See Package D16C
LH2111F or LH2211F or LH2311F, See Package F16B
LH2111J or LH2211J or LH2311J, See Package J16A

Connection Diagram

Order Number LH2111D or Sa Package J16A

Strobing

Increasing Input Stage Current*

Driving Ground-Referred Load

Using Clamp Diodes to Improve Responses

Comparator and Solenoid Driver

Strobing off Both Input* and Output Stages

TTL Interface with High Level Logic

Absolute Maximum Ratings

Total Supply Voltage ($V^{+}-\mathrm{V}^{-}$)	36 V
Output to Negative Supply Voltage (Vout $-\mathrm{V}^{-}$)	50 V
Ground to Negative Supply Voltage (GND $-\mathrm{V}^{-}$)	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	500 mW

Output Short Circuit Duration Operating Temperature Range		10 sec
	LH2111	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	LH2211	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
	LH2311	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)		$300^{\circ} \mathrm{C}$

Electrical Characteristics Each Side (Note 3)

PARAMETER	CONDITIONS	LIMITS			UNITS
		LH2111	LH2211	LH2311	
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$	3.0	3.0	7.5	$m \vee$ Max
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	10	50	$n A$ Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	100	100	250	$n A$ Max
Voltage Gain	$T_{A}=25^{\circ} \mathrm{C}$	200	200	200	V/mV Typ
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	200	200	200	ns Typ
Saturation Voltage	$\begin{aligned} & V_{\text {IN }} \leq-5 \mathrm{mV}, \text { I OUT }=50 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.5	1.5	1.5	\checkmark Max
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.0	3.0	3.0	$m A T y p$
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	10	50	$n A$ Max
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$	4.0	4.0	10	$m \vee$ Max
Input Offset Current (Note 4)		20	20	70	$n A$ Max
Input Bias Current		150	150	300	n n Max
Input Voltage Range		± 14	± 14	± 14	\checkmark Typ
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-5 \mathrm{mV}, I_{\operatorname{SINK}} \leq 8 \mathrm{~mA} \end{aligned}$	0.4	0.4	0.4	\checkmark Max
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.0	6.0	7.5	mA Max
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.0	5.0	5.0	mA Max

Note 1: This rating applies for ${ }^{*} \pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature is $150^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with 0.03 -inchwide, 2 ounce copper conductor. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the LH2111, $-25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ for the LH2211, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the LH2311, unless otherwise stated. The offset voltage, of fset current and bias current specifications apply for any supply, voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies. For the $\mathrm{LH} 2311, \mathrm{~V} / \mathrm{N}= \pm 10 \mathrm{mV}$.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.

National
Voltage Comparators

General Description
The LM106 series are high-speed voltage comparators designed to accurately detect low-level analog signals and drive a digital load. They are equivalent to an LM710, combined with a two input NAND gate and an output buffer. The circuits can drive RTL, DTL or TTL integrated circuits directly. Furthermore, their outputs can switch voltages up to 24 V at currents as high as 100 mA .

Features

- Improved accuracy
- Fan-out of 10 with DTL or TTL
- Added logic or strobe capability
- Useful as a relay or lamp driver
- Plug-in replacement for the LM710
- 40 ns maximum response time

The devices have short-circuit protection which limits the inrush current when it is used to drive incandescent lamps, in addition to preventing damage from accidental shorts to the positive supply. The speed is equivalent to that of an LM710. However, they are even faster where buffers and additional logic circuitry can be eliminated by the increased flexibility of the LM106 series. They can also be operated from any negative supply voltage between -3 V and -12 V with little effect on performance.

The LM106 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM206 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM306 is specified for operation over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Schematic and Connection Diagrams**

Typical Applications **

Note: Pin 4 connected to case.
Order Number LM106H, LM206H or LM306H See NS Package H08C

Level Detector and Lamp Driver

Relay Driver

Fast Response Peak Detector

Adjustable Threshold Line Receiver

Absolute Maximum Ratings

Positive Supply Voltage	15 V
Negative Supply Voltage	-15 V
Output Voltage	24 V
Output to Negative Supply Voltage	30 V
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage	$\pm 7 \mathrm{~V}$

Power Dissipation (Note 1)	600 mW
Output Short Circuit Duration	10 seconds
Operating Temperature Range	$\mathbf{T}_{\text {MIN }} \quad \mathrm{T}_{\text {MAX }}$
LM106	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM206	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM306	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics
(Note 2)

Note 1: The maximum junction temperature of LM106 is $150^{\circ} \mathrm{C}$, LM206 is $110^{\circ} \mathrm{C}$, LM306 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: These specifications apply for $-3 \mathrm{~V} \geq \mathrm{V}^{-} \geq-12 \mathrm{~V}, \mathrm{~V}^{+}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. All currents into device pins are considered positive.
Note 3: The offset voltages and offset currents given are the maximum values required to drive the output down to 0.5 V or up to 4.4 V (0.5 V or up to 4.8 V for the LM306). Thus, these parameters actually define an error band and take into account the worst-case effects of voltage gain, specified supply voltage variations, and common mode voltage variations.
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 5: All currents into device pins are considered positive.

Typical Performance Characteristics

Transconductance

Positive Output Level

General Description

The LM111 and LM211 are voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710. They are also designed to operate over a wider range of supply voltages: from standard $\pm 15 \mathrm{~V}$ op amp supplies down to the single 5 V supply used for IC logic. Their output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50 V at currents as high as 50 mA . Outstanding characteristics include:

- Operates from single 5 V supply
- Input current: 150 nA max. over temperature
- Offset current: 20 nA max. over temperature

Voltage Comparators

- Differential input voltage range: $\pm 30 \mathrm{~V}$
- Power consumption: 135 mW at $\pm 15 \mathrm{~V}$

Both the inputs and the outputs of the LM111 or the LM211 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM106 and LM710 (200 ns response time vs 40 ns) the devices are also much less prone to spurious oscillations. The LM111 has the same pin configuration as the LM106 and LM710.

The LM211 is identical to the LM111, except that its performance is specified over a $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range instead of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
${ }^{\dagger}$ See application hints LM311

Auxiliary Circuits**

Offset Balancing
Typical Applications **

Detector for Magnetic Transducer

Relay Driver with Strobe*

Strobing

Digital Transmission Isolator

Strobing off Both Input* and Output Stages

Absolute Maximum Ratings

Total Supply Voltage $\left(V_{84}\right)$	36 V
Output to Negative Supply Voltage $\left(\mathrm{V}_{74}\right)$	50 V
Ground to Negative Supply Voltage $\left(\mathrm{V}_{14}\right)$	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range LM111	LM211
	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec$)$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage at Strobe Pin	$300^{\circ} \mathrm{C}$
	$\mathrm{V}^{+}-5 \mathrm{~V}$

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		0.7	3.0	mV
Input Offset Current (Note 4)	$T_{A}=25^{\circ} \mathrm{C}$		4.0	10	$n \mathrm{~A}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60	100	nA
Voltage Gain	$T_{A}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & V_{\text {IN }} \leq-5 \mathrm{mV}, \text { I OUT }=50 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Strobe ON Current (Note 6)	$T_{A}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, I_{\text {STROBE }}=3 \mathrm{~mA} \end{aligned}$		0.2	10	$n \mathrm{~A}$
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			4.0	mV
Input Offset Current (Note 4)	,			20	$n \mathrm{~A}$
Input Bias Current				150	nA
Input Voltage Range	$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \operatorname{Pin} 7$ Pull-Up May Go To 5V	-14.5	13.8,-14.7	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-6 \mathrm{mV}, \mathrm{I}_{\text {SINK }} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	v
Output Leakage Current	$V_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
Positive Supply Current	$T_{A}=25^{\circ} \mathrm{C}$		5.1	6.0	mA
Negative Supply Current	$T_{A}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LM111 is $150^{\circ} \mathrm{C}$, while that of the LM211 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and Ground pin at ground, and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated. With the LM211, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 6: Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Applications (Continued)

Zero Crossing Detector Driving MOS Switch

100 kHz Free Running Multivibrator

10 Hz to 10 kHz Voltage Controlled Oscillator

Using Clamp Diodes to Improve Response

TTL Interface with High Level Logic

Crystal Oscillator

Comparator and Solenoid Driver

Schematic Diagram

Connection Diagrams *

TOP VIEW

Order Number LM111H or LM211H See NS Package H08C

Dual-In-Line Package

NOTE: Pin 4 connected to case. TOP VIEW
Order Number LM111J-8
See NS Package J08A
, 14-Pin Dual-In-Line Package

Note: Pin 6 connected to bottom of package. TOP VIEW

Order Number LM111J or LM211J
See NS Package J14A

National

General Description

The LM119 series are precision high speed dual comparators fabricated on a single monolithic chip. They are designed to operate over a wide range of supply voltages down to a single 5 V logic supply and ground. Further, they have higher , gain and lower input currents than devices like the LM710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA . Outstanding features include:

Features

- Two independent comparators
- Operates from a single 5 V supply
- Typically 80 ns response time at $\pm 15 \mathrm{~V}$
- Minimum fan-out of 2 each side
- Maximum input current of $1 \mu \mathrm{~A}$ over temperature
-. Inputs and outputs can be isolated from system ground
- High common mode slew rate

Although designed primarily for applications requiring operation from digital logic supplies, the LM119 series are fülly specified for power supplies up to $\pm 15 \mathrm{~V}$. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices like the LM711.
The LM119 is specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM219 is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM319 is specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

Dual-In-Line-Package

Order Number LM319N
See NS Package N14A.
Order Number LM119J, LM219J
or LM319J
See NS Package J14A

Metal Can Package

Order Number LM119H, LM219H
or LM319H
See NS Package H10C

Absolute Maximum Ratings LM119/Lm219

Total Supply, Voltage	36 V	Power Dissipation (Note 2)	500 mW
Output to Negative Supply Voltage	36 V	Output Short Circuit Duration	10 sec
Ground to Negative Supply Voltage	25 V	Operating Temperature Range LM119	LM219
Grond to Positive Supply Voltage	18 V		$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 5 \mathrm{~V}$	Storage Temperature Range	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Input Vottage (Note 1)	$\pm 15 \mathrm{~V}$	Lead Temperature (Soldering, 10 sec)	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		0.7	4.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		30	75	nA
Input Bias Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		150	500	nA
Voltage Gain	$T_{A}=25^{\circ} \mathrm{C}$	10	40		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		80		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	v
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	2	$\mu \mathrm{A}$
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$			7	mV
Input Offset Current (Note 4)				100	nA
Input Bias Current				1000	$n A^{\circ}$
Input Voltage Range	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & V^{+}=5 \mathrm{~V}, V^{-}=0 \end{aligned}$	$\begin{gathered} -12 \\ 1 \end{gathered}$	± 13	+12 3	$\begin{aligned} & v \\ & v \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-6 \mathrm{mV}, \mathrm{I}_{\operatorname{SINK}} \leq 3.2 \mathrm{~mA} \\ & T_{A} \geq 0^{\circ} \mathrm{C} \\ & T_{A} \leq 0^{\circ} \mathrm{C} \end{aligned}$		0.23	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \\ & V_{G N D}=0 \mathrm{~V} \end{aligned}$		1	10	$\mu \mathrm{A}$
Differential Input Voltage				± 5	\checkmark
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3		mA
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		8	11.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		3	4.5	mA

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum junction temperature of the LM119 is $150^{\circ} \mathrm{C}$, while that of the LM219 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$, and the Ground pin at ground, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated. With the LM219, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

Absolute Maximum Ratings LM319

Total Supply Voltage	36 V
Output to Negative Supply Voltage	36 V
Ground to Negative Supply Voltage	25 V
Ground to Positive Supply Voltage	18 V
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage (Note 1)	
15 V	

Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range LM319	$0^{\prime \prime} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		2.0	8.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		250	1000	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	40		. V / mV
Response Time (Note 5)	$T_{A}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{S}= \pm 15 \mathrm{~V}$	-	80		ns
Saturation Voltage	$\begin{aligned} & V_{\text {IN }} \leq-10 \mathrm{mV}, \text { l our }=25 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Output Leakage Current	$\begin{aligned} & V_{I N} \geq 10 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V}, \\ & V^{-}=V_{G N D}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	10	$\mu \mathrm{A}$
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$			10	mV
Input Offset Current (Note 4)				300	nA
Input Bias Current				1200	nA
Input Voltage Range	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \end{aligned}$	1	± 13	3	$\begin{aligned} & v \\ & v \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\operatorname{SINK}} \leq 3.2 \mathrm{~mA} \end{aligned}$		0.3	0.4	V
Differential Input Voltage				± 5	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3 '		mA
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		8	12.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		3	5	mA

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum junction temperature of the LM319 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.,
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.
Typical Performance Characteristics LM119/LM219

Typical Performance Characteristics Lм319

Voltage Comparators

LM139/239/339, LM139A/239A/339A, LM2901,LM3302 Low Power Low Offset Voltage Quad Comparators General Description

The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of. the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic- where the low power drain of the LM339 is a distinct advantage over standard comparators.

Advantages

- High precision comparators
- Reduced VOS drift over temperature
- Eliminates need for dual supplies
- Allows sensing near gnd
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Wide single supply voltage range or dual sup. plies
LM139 series,
$2 V_{D C}$ to $36 V_{D C}$ or LM139A series, LM2901 $\pm 1 V_{D C}$ to $\pm 18 V_{D C}$ LM3302 $2 V_{D C}$ to $28 V_{D C}$ or $\pm 1 \mathrm{~V}$ DC to $\pm 14 \mathrm{~V}_{\mathrm{DC}}$
- Very low supply current drain (0.8 mA) independent of supply voltage ($2 \mathrm{~mW} /$ comparator at $+5 \mathrm{~V}_{\mathrm{DC}}$)
- Low input biasing current
- Low input offset current $\pm 5 \mathrm{nA}$ and offset voltage $\pm 3 \mathrm{mV}$
- Input common-mode voltage range includes gnd
- Differential input voltage range equal to the power supply voltage
- Low output

250 mV at 4 mA saturation voltage

- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Schematic and Connection Diagrams

Order Number LM139J, LM139AJ, LM239J, LM239AJ, LM339J, LM339AJ, LM2901J or LM3302J See NS Package J14A

Order Number LM339N, LM339AN, LM2901N or LM3302N See NS Package N14A

Typical Applications ($\left.\mathrm{v}^{+}=5.0 \mathrm{v}_{\mathrm{DC}}\right)$

Basic Comparator

Driving TTL

Absolute Maximum Ratings

LM139/LM239/LM339
LM139A/LM239A/LM339A LM2901

Supply Voltage, V^{+}
Differential Input Voltage
input Voltage
Power Dissipation (Note 1)
Molded DIP
Cavity DIP
Flat Pack
Output Short-Circuit to GND, (Note 2)
Input Current ($\mathrm{V}_{\text {IN }}<-0.3 \mathrm{~V}_{\mathrm{DC}}$), (Note 3)
Operating Temperature Range
LM339A
LM239A
LM2901
LM139A
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$36 V_{D C}$ or $\pm 18 V_{\text {DC }}$ $36 V_{D C}$
$-0.3 V_{D C}$ to $+36 V_{D C}$

570 mW	570 mW
900 mW	
800 mW	
Continuous	Continuous
50 mA	50 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{V}^{+}=5 \mathrm{~V} \mathrm{DC}\right.$, Note 4)

PARAMETER	CONDITIONS	LM139A			LM239A, LM339A			LM139			LM239, LM339			LM2901			LM3302			UNITS
		MIN	TYP	MAX																
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 9)		± 1.0	± 2.0		± 1.0	± 2.0		± 2.0	± 5.0		± 2.0	± 5.0		± 2.0	± 7.0		± 3	± 20	$m V_{D C}$
Input Bias Current	$\operatorname{liN}(+)$ or $\operatorname{IIN(-)}$ with Output in Linear Range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		25	100		25	250		25	100		25	250		25	250		25	500	$n A_{D C}$
Input Offset Current	$\operatorname{IIN(+)}{ }^{-1} \mathrm{IN}(-), T_{A}=25^{\circ} \mathrm{C}$		± 3.0.	± 25		± 5.0	± 50		± 3.0	± 25		± 5.0	± 50		± 5	± 50		± 3	± 100	nADC
Input Common-Mode Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 6)	0		$\mathrm{v}^{+}-1.5$	V ${ }_{\text {DC }}$															
Supply Current	$\begin{aligned} & R_{L}=\infty \text { on all Comparators, } T_{A}=25^{\circ} \mathrm{C} \\ & R_{L}=\infty, V^{+}=30 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.8	2.0		0.8	2.0		0.8	2.0		0.8	2.0		$\begin{aligned} & 0.8 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		0.8	2	mADC $m A D C$
Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \text { (} \mathrm{To}^{\circ} \\ & \text { Support Large } \mathrm{V}_{\mathrm{O}} \text { Swing). } \mathrm{T}_{A^{-}}=25^{\circ} \mathrm{C} \end{aligned}$	50	200		50	200			200			200		25	100		2	30		V / mV
Large Signal Response Time	$\begin{aligned} & V_{I N}=T T L \text { Logic Swing, } V_{R E F}= \\ & 1.4 V_{D C}, V_{R L}=5 V_{D C}, R_{L}=5.1 \mathrm{k} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		300			300			300			300			300			300		ns
Response Time `	$\begin{aligned} & V_{R L}=5 V_{D C}, R_{L}=5.1 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C},(\text { Note } 7) \end{aligned}$		1.3			1.3			1.3			1.3			1.3			1.3		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & V_{I N(-)} \geq 1 V_{D C}, V_{I N(+)}=0 \\ & V_{O} \leq 1.5 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	6.0	16		6.0	16		6.0	16		6.0	16		6.0	16		6.0	16		$m A D C$
Saturation Voltage	$\begin{aligned} & V_{I N(-)} \geq 1 \mathrm{~V}_{\mathrm{DC},}, V_{I N(+)}=0, \\ & \text { ISINK } \leq 4 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		250	400		250	400		250	400		250	400			400		250	500	$m V_{\text {DC }}$
Output Leakage Current	$\begin{aligned} & V_{I N(+)} \geq 1 V_{D C}, V_{I N(-)}=0, \\ & V_{O}=5 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.1			0.1			0.1			0.1			0.1			0.1		nADC

Electrical Characteristics (Continued)

PARAMETER	CONDITIONS	LM139A			LM239A, LM339A			LM139			LM239, LM339			LM2901			LM3302			UNITS
		MIN	TYP	MAX																
Input Offset Voltage	(Note 9)			4.0			4.0			9.0			9.0		9	15			40	$m V_{\text {DC }}$
Input Offset Current	$\operatorname{liN(t)-\operatorname {IIN}(-)}$			± 100			± 150			± 100			± 150		50	200			300	$n A D C$
Input Bias Current	$\operatorname{IIN}(+)$ or IIN(-) with Output in Linear Range			300			400			300			400		200	500			1000	$n A_{D C}$
Input Common-Mode Voltage Range	.	0		$\mathrm{v}^{+}-2.0$	$V_{D C}$															
Saturation Voltage	$\begin{aligned} & V_{I N(-)} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\operatorname{IN}(+)}=0 \\ & \operatorname{ISINK} \leq 4 \mathrm{~mA} \end{aligned}$			700			700			700			700		400	700			700	$m V_{D C}$
Output Leakage Current	$\begin{aligned} & v_{I N(+)} \geq 1 V_{D C}, V_{I N(-)}=0 \\ & v_{O}=30 V_{D C} \end{aligned}$			1.0			1.0			1.0			1.0			1.0			1.0	$\mu \mathrm{ADC}$
Differential Input Voltage	Keep all $V_{I N} ' s \geq 0 V_{D C}$ (or V^{-}, if used), (Note 8)			36			36			36			36	0		36			28	$V_{D C}$

 OFF" characteristic of the outputs keeps the chip dissipation very small ($\mathrm{P}_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V^{+}

 tive, again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$).
 LM339/LM339A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$, and the LM 2901 , LM3302 temperature range is $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
 input lines.
 inputs can go to $+30 V_{D C}$ without damage (25 V for LM3302).
Note 7: The response time specified is a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section
 input voltage state must not be less than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (or 0.3 V DC below the magnitude of the negative power supply, if used) (at 25 C).
Note 9: At output switch point, $V_{O} \cong 1.4 V_{D C}, R_{S}=0 \Omega$ with V^{+}from $5 V_{D C}$; and over the full input common-mode range ($0 V_{D C}$ to $V^{+}-1.5 V_{D C}$).

Typical Performance Characteristics LM139/LM239/LM339, LM139A/LM239A/LM339A, LM3302

Response Time for Various
Input Overdrives - Negative
Transition

Response Time for Various
Input Overdrives - Positive Transition

Typical Performance Characteristics LM2901

Application Hints

The LM139 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small.amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.

The bias network of the LM139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.

It is usually unnecessary to use a bypass capacitor across the power supply line.

Typical Applications $\left(V^{+}=15 \mathrm{~V}_{\mathrm{Dc}}\right)$

The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the applications section.

The output of the LM139 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+}terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60 \Omega r_{\text {sat }}$ of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents.
LM2901,LM3302

Typical Applications (Continued) ($\left.\mathrm{v}^{+}=15 \mathrm{~V} \mathrm{DC}\right)$

One-Shot Multivibrator with Input Lock Out

Time Delay Generator

Squarewave Oscillator

Pulse Generator

Typical Applications (Continued) $\left(\mathrm{V}^{+}=5 \mathrm{~V}\right.$ ${ }_{\mathrm{DC}}$)

Comparing Input Voltages of Opposite Polarity

Inverting Comparator with Hysteresis

Basic Comparator

* or logic gate

WITHOUT PULL.UP RESISTOR

Output Strobing

Two-Decade High-Frequency VCO

LM139/LM239/LM339,
LM139A/LM239A/LM339A, LM2901, LM3302

Typical Applications (Continued) $\left(\mathrm{v}^{+}=5 \mathrm{~V}\right.$ oc $)$

Low Frequency Op Amp

Low Frequency Op Amp $\left(V_{0}=O V\right.$ for $\left.V_{I N}=0 V\right)$

Transducer Amplifier

Low Frequency Op Amp with Offset Adjust

Zero Crossing Detector (Single Power Supply)

Split-Supply Applications $\left(V^{+}=+15 V_{D C}\right.$ and $\left.V^{-}=-15 V_{D C}\right)$

MOS Clock Driver

Zero Crossing Detector

Comparator With a Negative Reference

National Semiconductor
 LM160/LM260/LM360 High Speed Differential Comparator

Schematic and Connection Diagrams

Features

- Guaranteed high speed 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

General Description

The LM160/LM260/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the $\mu \mathrm{A} 760 / \mu \mathrm{A} 760 \mathrm{C}$, for which it is a pin-forpin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 500 mV .

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disc file systems.

Order Number LM160H, LM260H or LM360H See NS Package H08C

Dual-In-Line Package

Order Number LM360N See NS Package N08B
Dual-In-Line Package

Order Number LM360N-14
See NS Package N14A
Order Number LM160J-14, LM260J-14 See NS Package J14A

Absolute Maximum Ratings

+8 V	Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-8 V	LM 160	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
20 mA	LM 260	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\pm 5 \mathrm{~V}$	LM360	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\mathrm{V}^{+} \geq \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}^{-}$	Storage Temperature Range Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}\right)$

Note 1: Response time measured from the 50% point of a 30 mVp -p 10 MHz sinusoidal input to the 50% point of the output.
Note 2: Response time measured from the 50% point of a $2 V_{P-p} 10 \mathrm{MHz}$ sinusoidal input to the 50% point of the output.
Note 3: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold.

Typical Performance Characteristics

AC Test Circuit

Voltage Comparators Semiconductor LM161/LM261/LM361 High Speed Differential Comparators

General Description

The LM161/LM261/LM361 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the SE529/NE529 for which it is a pin-for-pin replacement. The device has been optimized for greater speed performance and lower input offset voltage. Typically delay varies only 3 ins for over-drive variations of 5 mV to 500 mV . It may be operated from op amp supplies ($\pm 15 \mathrm{~V}$).

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital converters and zero-crossing detectors in disc file systems.

Features

- Independent strobes
- Guaranteed high speed 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- Operates from op amp supplies
$\pm 15 \mathrm{~V}$
- Low speed variation with overdrive variation
- Low input offset voltage
- Versatile supply voltage range

Schematic and Connection Diagrams

Logic Diagram

Dual-In-Line Package ${ }^{\text {P }}$

Order Number LM161J, LM261J or LM361J See NS Package J14A Order Number LM361N See NS Package N14A

Order Number LM161H, LM261H or LM361H
See NS Package H10C

Typical Performance Characteristics

LM193/LM293/LM393, LM193A/LM293A/LM393A, LM2903 Low Power Low Offset Voltage Dual Comparators

General Description

The LM193 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input commonmode voltage range includes ground, even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM193 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM193 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

Advantages

- High precision comparators
- Reduced $V_{\text {OS }}$ drift over temperature
- Eliminates need for dual supplies
- Allows sensing near ground
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Wide single supply $\begin{array}{lr}\text { Voltage range } & 2.0 \mathrm{~V}_{D C} \text { to } 36 \mathrm{~V}_{D C} \\ \text { or dual supplies } & \pm 1.0 \mathrm{~V}_{D C} \text { to } \pm 18 \mathrm{~V}_{D C}\end{array}$
- Very low supply current drain (0.8 mA)-independent of supply voltage ($1.0 \mathrm{~mW} /$ comparator at $5.0 \mathrm{~V}_{\mathrm{DC}}$)
a Low input biasing current 25 nA
a Low input offset current $\pm 5 \mathrm{nA}$ and maximum offset voltage $\pm 3 \mathrm{mV}$
■ Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output

250 mV at 4 mA saturation voltage

- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Schematic and Connection Diagrams

TOP VIEW
Order Number LM193H, LM193AH, LM293H, LM293AH, LM393H or LM393AH See NS Package H08C
Typical Applications ($\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}$)

Basic Comparator

Driving CMOS

Driving TTL

Absolute Maximum Ratings

Supply Voltage, V^{+}
$36 V_{\text {DC }}$ or $\pm 18 V_{\text {DC }}$
Differential Input Voltage
$36 V_{D C}$
Input Voltage
Power Dissipation (Note 1)
Molded DIP
Metal Can
Output Short-Circuit to Ground, (Note 2)
Input Current ($\mathrm{V}_{\text {IN }}<-0.3 \mathrm{~V}_{\mathrm{DC}}$). (Note 3)
Operating Temperature Range
LM393/LM393A
LM293/LM293A
LM193/LM193A
LM2903
$-0.3 \mathrm{~V}_{\mathrm{DC}}$ to $+36 \mathrm{~V}_{\mathrm{DC}}$
570 mW
830 mW
Continuous
50 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

Electrical Characteristics $\left(\mathrm{v}^{+}=5 \mathrm{~V}_{\mathrm{DC}}\right)($ Note 4)

PARAMETER	CONDITIONS	LM193A			LM293A, LM393A			LM193			LM293, LM393			LM2903			UNITS
		MIN	TYP	MAX													
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 9)		± 1.0	± 2.0		± 1.0	± 2.0		± 1.0	± 5.0		± 1.0	± 5.0		- 2.0	± 7.0	$m V_{\text {DC }}$
Input Bias Current	$\operatorname{IIN}+$ or IIN-with Output In Linear Range. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		25	100		25	250		25	100		25	250		25	250	$n A D C$
Input Offset Current	$1 / 2 N+-1 / N-T_{A}=25^{\circ} \mathrm{C}$		± 3.0	± 25		± 5.0	± 50		± 3.0	± 25		± 5.0	± 50		± 5.0	± 50	$n A D C$
Input Common-Mode Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 6)	0		$\mathrm{v}^{+}-1.5$	$V_{\text {DC }}$												
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$ on All Comparators, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.4	1		0.4	1		0.4	1		0.4	1		0.4	1.0	$\mathrm{mA}_{\text {DC }}$
	$\mathrm{R}_{\mathrm{L}}=\infty$ on All Amps, $\mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}$			2.5		1	2.5			2.5			2.5		1	2.5	$m A_{D C}$
Voltage Gain.	$\begin{aligned} & R_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \\ & \text { (To Support Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \end{aligned}$	50	200		50	200	.	50	200		50	200		25	100		V / mV
Large Signal Response Time	$\begin{aligned} & V_{I N}=T T L \text { Logic Swing, } V_{R E F}=1.4 V_{D C} \\ & V_{R L}=5 V_{D C}, R_{L}=5.1 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		300			300			300			300			300		ns
Response Time	$V_{R L}=5 V_{D C}, R_{L}=5.1 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C},$ (Note 7)		1.3			1.3			1.3			1.3			1.5		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{I N} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{I N+}=0, \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	6.0	16		6.0	16		6.0	16		6.0	16		6	16		$\mathrm{mA}^{\text {DC }}$
Saturation Voltage	$\begin{aligned} & V_{I N-} \geq 1 V_{D C}, V_{I N+}=0, \text { ISINK } \leq 4 \mathrm{~mA}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		250	400		250	400		250	400		250	400			400	$m V_{\text {DC }}$
Output Leakage Current	$\begin{aligned} & V_{I N-}=0, V_{I N+} \geq 1 V_{D C}, V_{O}=5 V_{D C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.1			0.1			0.1			0.1			0.1		$n A D C$

Electrical Characteristics (Continued)

ARAMETER	CONDITIONS	LM193A			LM293A, LM393A			LM193			LM293, LM393			LM2903			UNITS
-		MIN	TYP	MAX													
Input Offset Voltage	(Note 9)			4.0			4.0			9			9		9	15	$\mathrm{mV}_{\text {DC }}$
Input Offset Current	IIN+-IIN-			± 100			± 150			± 100			± 150		50	200	$n A D C$
Input Bias Current	IIN+ or IIN-with Output in Linear Range			300			400			300			400		200	500	nADC
Input Common-Mode Voltage Range		0		$\mathrm{v}^{+}-2.0$	0		$\mathrm{v}^{+}-20$	$V_{D C}$									
Saturation Voltage	$V_{I N}+\geq 1 V_{\text {DC, }}, V_{\text {IN }+}=0, I_{\text {SINK }} \leq 4 \mathrm{~mA}$,			700			700			700			700		400	700	$m V_{D C}$
Output Leakage Current	$V_{1 N-}=0, V_{I N+} \geq 1 V_{D C}, V_{O}=30 V_{D C}$.			1.0			1.0			1.0			1.0			1.0	$\mu \mathrm{ADC}$
Differential Input Voltage	Keep All $\mathrm{V}_{\mathrm{IN}^{\prime}} \mathrm{s} \geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}, if Used), (Note 8)			36			36			36			36			28	$V_{\text {DC }}$

 the "ON-OFF" characteristic of the outputs keeps the chip.dissipation very smalt ($\mathrm{P}_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V^{+}.

 again returns to a value greater than $-0.3 \mathrm{~V} D \mathrm{C}$.

LM393/LM393A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$. The LM2903 is limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
 input lines.
 inputs can go to $30 V_{D C}$ without damage.
Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.
 input voltage state must not be less than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (or $0.3 \mathrm{~V}_{\mathrm{DC}}$ below the magnitude of the negative power supply, if used).
Note 9: At output switch point, $V_{O} \cong 1.4 V_{D C}, R_{S}=0 \Omega$ with V^{+}from $5 V_{D C}$ to $30 V_{D C}$; and over the full input common-mode range ($0 V_{D C}$ to $V^{+}-1.5 V_{D C}$).

Typical Performance Characteristics LM193/LM293/LM393, LM193A/LM293A/LM393A

Typical Performance Characteristics Lм2903

Supply Current

Response Time for Various verdrives-Negative Transiton

Response Time for Various
Input Overdrives-Positive
Transition

Application Hints

The LM193 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1.0 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.
The bias network of the LM193 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2.0 \mathrm{~V}_{\mathrm{DC}}$ to $30 V_{D C}$.

It is usually unnecessary to use a bypass capacitor, across the power supply line.

The differential input voltage may be larger than V^{+} without damaging the device (see Note 8). Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V} C C$ (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the applications section.

The output of the LM193 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+}terminal of the LM193 package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60 \Omega \mathrm{r}_{\text {SAT }}$ of the output transistor. The low offset voltage of the output transistor (1.0 mV) allows the output to clamp essentially to ground level for small load currents.

Typical Applications (Continued) ($\mathrm{V}^{+}=15 \mathrm{~V}$ $\mathrm{VC}^{\text {) }}$

Squarewave Oscillator

Pulse Generator

- Crystal Controlled Oscillator

LM193A/LM293A/LM393A, LM2903

Typical Applications (Continued) ($\mathrm{V}^{+}=15 \mathrm{~V}$ DC)

AND Gate

Non-Inverting Comparator with Hysteresis

Inverting Comparator with Hysteresis

* or logic gate

Output Strobing

OR Gate

Large Fan-in AND Gate

Limit Comparator

Improved Op Amp

Comparing Input Voltages of Opposite Polarity

ORing the Outputs

Low Frequency Op Amp

Low Frequency Op Amp with Offset Adjust

Typical Applications (Continued) $\quad\left(\mathrm{V}^{+}=15^{\prime} \mathrm{Voc}\right)$

Time Delay Generator

One-Shot Multivibrator with Input Lock Out

Zero Crossing Detector (Single Power Supply)

One-Shot Multivibrator

Bi-Stable Multivibrator

Split-Supply Applications $\left(\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}}\right.$ and $\left.\mathrm{V}^{-}=-15 \mathrm{~V}_{\mathrm{DC}}\right)$

MOS Clock Driver

Zero Crossing Detector

Comparator With a Negative Reference

7 National Semiconductor

LM311 Voltage Comparator

General Description

The LM311 is a voltage comparator that has input currents more than a hundred times lower than devices like the LM306 or LM710C. It is also designed to operate over a wider range of supply voltages: from standard $\pm 15 \mathrm{~V}$ op amp supplies down to the single 5 V supply used for IC logic. Its output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, it can drive lamps or relays, switching voltages up to 40 V at currents as high as 50 mA .

Features

- Operates from single 5 V supply
- Maximum input current: 250 nA
- Maximum offset current: 50 nA

Voltage Comparators

- Differential input voltage range: $\pm 30 \mathrm{~V}$
- Power consumption: 135 mW at $\pm 15 \mathrm{~V}$

Both the input and the output of the LM311 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM306 and LM710C (200 ns response time vs 40 ns) the device is also much less prone to spurious oscillations. The LM311 has the same pin configuration as the LM306 and LM710C. See the "application hints" of the LM311 for application help.

Auxiliary Circuits**

Typical Applications**

Detector for Magnetic Transducer

Strobing
** Note: Pin connections shown on schematic diagram and typical applications are for TO-5 package.

Increasing Input Stage Current*

Digital Transmission Isolator

Strobing off Both Input* and Output Stages

Absolute Maximum Ratings

Total Supply Voltage $\left(V_{84}\right)$	36 V
Output to Negative Supply Voltage $\left(\mathrm{V}_{74}\right)$	40 V
Ground to Negative Supply Voltage $\left(\mathrm{V}_{14}\right)$	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Voltage at Strobe Pin	$\mathrm{V}^{+}-5 \mathrm{~V}$

Electrical Characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		2.0	7.5	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	250	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	v
Strobe ON Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$\begin{aligned} & V_{I N} \geq 10 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, I_{\text {STROBE }}=3 \mathrm{~mA} \end{aligned}$		0.2	50	$n A$
Input Offset Voltage (Note 4)	$\mathrm{R}_{S} \leq 50 \mathrm{k}$			10	mV
Input Offset Current (Note 4)				70	$n A$
Input Bias Current				300	$n A$
Input Voltage Range		-14.5	13.8,-14.7	13.0	v
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	7.5	mA
Negative Supply Current	$T_{\text {A }}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LM311 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and the Ground pin at ground, and $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$, unless otherwise specified. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 6: Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Applications

Zero Crossing Detector Driving MOS Switch

100 kHz Free Running Multivibrator

10 Hz to 10 kHz Voltage Controlled Oscillator

TTL Interface with High Level Logic

Crystal Oscillator

Comparator and Solenoid Driver

Schematic Diagram

Connection Diagrams *

TOP VIEW

Order Number LM311N See NS Package N08B Order Number LM311J-8 See NS Package J08A

Order Number LM311N-14 See NS Package N14A Order Number LM311J See NS Package J14A

Application Hints

CIRCUIT TECHNIQUES FOR AVOIDING

 OSCILLATIONS IN COMPARATOR APPLICATIONSWhen a high-speed comparator such as the LM111 is used with fast input signals and low source impedances, the output response will normally be fast and stable, assuming that the power supplies have been bypassed (with $0.1 \mu \mathrm{~F}$ disc capacitors), and that the output signal is routed well away from the inputs (pins 2 and 3) and also away from pins 5 and 6.

However, when the input signal is a voltage ramp or a slow sine wave, or if the signal source impedance is high ($1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$), the comparator may burst into oscillation near the crossing-point. This is due to the high gain and wide bandwidth of comparators like the LM111. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Figure 1 below.

1. The trim pins (pins 5 and 6) act as unwanted auxiliary inputs. If these pins are not connected to a trimpot, they should be shorted together. If they are connected to a trim-pot, a $0.01 \mu \mathrm{~A}$ capacitor C 1 between pins 5 and 6 will minimize the susceptibility to $A C$ coupling. A smaller capacitor is used if pin 5 is used for positive feedback as in Figure 1.
2. Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor C 2 is connected directly across the input pins.
3. When the signal source is applied through a resistive network, R_{S}, it is usually advantageous to choose an R_{s} ' of substantially the same value, both for $D C$ and for dynamic (AC) considerations. Carbon, tin-oxide, and metal-film resistors have all been used successfully in comparator input circuitry. Inductive wirewound resistors are not suitable.
4. When comparator circuits use input resistors (eg. summing resistors), their value and placement are particularly important. In all cases the body of the resistor should be close to the device or socket. In other words there should be very little lead length or printed-circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capacitors, pots, etc. For example, if $R_{S}=10 \mathrm{k} \Omega$, as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are very hard to damp. Twisting these input leads tightly is the only (second best) alternative to placing resistors close to the comparator.
5. Since feedback to almost any pin of a comparator can result in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a groundplane under the LM111 circuitry, for example, one side of a double-layer circuit card. Ground foil (or, positive supply or negative supply foil) should extend between. the output and the inputs, to act as a guard. The, foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides, to guard against capacitive coupling from any high-level signals (such as the output). If pins 5 and 6 are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot should be located, at most, a few inches away from the LM111, and the $0.01 \mu \mathrm{~F}$ capacitor should be installed. If this capacitor cannot be used, a shielding printedcircuit foil may be advisable between pins 6 and 7. The power supply bypass capacitors should be located within a couple inches of the LM111. (Some other comparators require the power-supply bypass to be located immediately adjacent to the comparator.)

Pin connections shown are for LM111H in 8-lead TO-5 hermetic package

FIGURE 1. Improved Positive Feedback

Application Hints (Continued)

6. It is a standard procedure to use hysteresis (positive feedback) around a comparator, to prevent oscillation, and to avoid excessive noise on the output because the comparator is a good amplifier for its own noise. In the circuit of Figure 2, the feedback from the output to the positive input will cause about 3 mV of hysteresis. However, if R_{S} is larger than 100Ω, such as $50 \mathrm{k} \Omega$, it would not be reasonable to simply increase the value of the positive feedback resistor above $510 \mathrm{k} \Omega$. The circuit of Figure 3 could be used, but it is rather awkward. See the notes in paragraph 7 below.
7. When both inputs of the LM111 are connected to active signals, or if a high-impedance signal is driving the positive input of the LM111 so that positive feedback would be disruptive, the circuit of Figure 1 is
ideal. The positive feedback is to pin 5 (one of the offset adjustment pins). It is sufficient to cause 1 to 2 mV hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz . The positive-feedback signal across the 82Ω resistor swings 240 mV below the positive supply. This signal is centered around the nominal voltage at pin 5 , so this feedback does not add to the $\mathrm{V}_{\text {os }}$ of the comparator. As much as 8 mV of V_{OS} can be trimmed out, using the $5 \mathrm{k} \Omega$ pot and $3 \mathrm{k} \Omega$ resistor as shown.
8. These application notes apply specifically to the LM111, LM211, LM311, and LF111 families of comparators, and are applicable to all high-speed comparators in general, (with the exception that not all comparators have trim pins).

Pin connections shown are for LM111H in 8-lead TO-5 hermetic package
FIGURE 2. Conventional Positive Feedback

FIGURE 3. Positive Feedback With High Source Resistance

National Semiconductor

Voltage Comparators

LM710/LM710C Voltage Comparator

General Description

The LM710 series are a high-speed voltage comparators intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differential input and a single-ended output, with saturated output levels compatible with practically all types of integrated logic.

The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minoritycarrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in saturating comparator applications. In fact, the low
stray and wiring capacitances that can be realized with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.

The LM710 series are uséful as pulse height discriminators, voltage comparators in high-speed A/D converters or go, no-go detectors in automatic test equipment. They also have applications in digital systems as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the units suggests it for applications replacing relatively simple discrete component circuitry.

Schematic* and Connection Diagrams

Order Number LM710H or LM710CH
See NS Package H08C

Typical Applications*
Schmitt Trigger

Pulse Width Modulator

*Pin connections shown are for metal can.

Line Receive With Increased Output Sink Current

Level Detector With Lamp Driver

Absolute Maximum Ratings

Positive Supply Voltage Negative Supply Voltage
Peak Output Current Output Short Circuit Duration Differential Input Voltage Input Voltage Power Dissipation TO-99, (Note 1)
Flat Package, (Note 2)
+14 V
-7 V
10 mA
10 seconds
$\pm 5 \mathrm{~V}$
$\pm 7 \mathrm{~V}$

300 mW
200 mW

Operating Temperature Range
LM710
LM710C
Storage Temperature Range
Lead Temperature (Soldering, 60 seconds)

TMIN TMAX $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics
 (Note 3)

Note 1: Rating applies for case temperatures to $125^{\circ} \mathrm{C}$ for LM 710 and to $70^{\circ} \mathrm{C}$ for LM 710 C ; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $105^{\circ} \mathrm{C}$
Note 2: Derate linearly at $4.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$.
Note 3: These specifications apply for $V^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for LM 710 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for LM 710 C unless otherwise specified. The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8 V at $-55^{\circ} \mathrm{C}$, 1.4 V at $25^{\circ} \mathrm{C}$, and 1 V at $125^{\circ} \mathrm{C}$ for LM710 and 1.5 V at $0^{\circ} \mathrm{C}, 1.4 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ and 1.2 V at $70^{\circ} \mathrm{C}$ for LM 710 C .

Note 4: The response time specified (see definitions) is a 100 mV input step with 5 mV overdrive (LM710) or a 10 mV overdrive (LM710C).

Typical Performance Characteristics

Output Voltage Level

Voltage Gain

Input Offset Current

Response Time For
Various Input Overdrives

Output Sink
Current

Voltage Gain

Supply Current

Common Mode Pulse Response

Maximum Power
Dissipation

LM711/LM711C Dual Comparator

General Description

The LM711 series contains two voltage comparators with separate differential inputs, a common output and provision for strobing each side independently. Similar to the LM710, the device features low offset and thermal drift, a large input voltage range, low power consumption, fast recovery from large overloads and compatibility with most integrated logic circuits.

With the addition of an external resistor network, the LM711 series can be used as a sense amplifier for core memories. The input thresholding, combined with the high gain of the comparator, eliminates many of the inaccuracies encountered
with conventional sense amplifier designs. Further, it has the speed and accuracy needed for reliably detecting the outputs of cores as small as 20 mils.

The LM711 series are also useful in other applications where a dual comparator with OR'ed outputs is required, such as a double-ended limit detector. By using common circuitry for both halves, the device can provide high speed with lower power dissipation than two single comparators. The LM711C is the commercial/industrial version of the LM711. With operation specified over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Schematic ** and Connection Diagrams

Typical Applications**

Sense Amplifier With Supply Strobing
for Reduced Power Consumption*

Note: Pin 5 connected to case. Order Number LM711H or LM711CH See NS Package H10C

Dual-In-Line Package

Order Number LM711CN See NS Package N14A

Double-Ended Limit Detector With Lamp Driver

Absolute Maximum Ratings

Positive Supply Voltage	+14 V	Operating Temperature Range	TMIN
Negative Supply Voltage	-7 V	LM711	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Peak Output Current	25 mA	LM711C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 5 \mathrm{~V}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input Voltage	$\pm 7 \mathrm{~V}$	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Strobe Voltage	0 to +6 V		-
Internal Power Dissipation (Note 1)	300 mW		

Electrical Characteristics (These specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V}$)

PARAMETER	CONDITIONS (Note 2)	LM711			LM711C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0$		1.0	3.5		1.0	5.0	mV
	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega,-5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+5 \mathrm{~V}$		1.0	5.0		1.0	7.5	mV
Input Offset Current			0.5	10.0		0.5	15	$\mu \mathrm{A}$
Input Bias Current			25	75		25	100	$\mu \mathrm{A}$
Voltage Gain		750	1500		700	1500		
Response Time (Note 3)			40			40		ns
Strobe Release Time			12			12		ns
Input Voltage Range	$V^{-}=7 \mathrm{~V}$	± 5.0			± 5.0			v
Differential Input Voltage Range		± 5.0			± 5.0		'	v
Output Resistance			200			200		Ω
Positive Output Level	$V_{\text {IN }} \geq 10 \mathrm{mV}$		4.5	5.0		4.5	5.0	V
Loaded Positive Output Level	$\mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=-5 \mathrm{~mA}$	2.5	3.5		2.5	3.5		V
Negative Output Level	$V_{\text {IN }} \leq-10 \mathrm{mV}$	-1.0		0	-1.0	-0.5	0	V
Strobed Output Level	$\mathrm{V}_{\text {STROBE }} \leq 0.3 \mathrm{~V}$	-1.0		0	-1.0		0	V
Output Sink Current	$\mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{V}_{\text {OUT }} \geq 0$	0.5	0.8		0.5	0.8		mA
Strobe Current	$\mathrm{V}_{\text {STROBE }}=100 \mathrm{mV}$		1.2	2.5		1.2	2.5	mA
Positive Supply Current	VIN $\leq-10 \mathrm{mV}$		8.6			8.6		mA
Negative Supply Current			3.9			3.9		mA
Power Consumption			130	200		130	230	mW

The following specifications apply for $T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$:

Note 1: Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $105^{\circ} \mathrm{C}$.
Note 2: The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8 V at $-55^{\circ} \mathrm{C}, 1.4 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, and 1 V at $125^{\circ} \mathrm{C}$.
Note 3: The response time specified is for a 100 mV input step with 5 mV overdrive (see definitions).

Response Time for Various Input Overdrives

Common Mode Pulse

Response

Power Consumption

Strobe Release Time for
Various Input Overdrives

Input Bias Current

Power Consumption

Output Pulse Stretching With Capacitive Loading

LM1514/LM1414 Dual Differential Voltage Comparator

General Description

The LM1514/LM1414 is a dual.differential voltage comparator intended for applications requiring high accuracy and fast response times. The device is constructed on a single monolithic silicon chip.

The LM1514/LM1414 is useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high-speed A-D converters, a memory sense amplifier or a high noise immunity line receiver. The output of the comparator is compatible with all integrated logic forms. The LM1514/ LM1414 meet or exceed the specifications for the MC1514/MC1414 and are pin-for-pin replacements. The LM1514 is available in the ceramic dual-in-line package. The LM1414 is available in either the ceramic or molded dual-in-line package.

The LM1514 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM1414 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Two totally separate comparators per package
- Independent strobe capability
- High speed 30 ns typ
- Low input offset voltage and current
- High output sink current over temperature
- Output compatible with TTL/DTL logic
- Molded or ceramic dual-in-line package

Schematic and Connection Diagrams

Dual-In-Line Package

Order Number LM1414J or LM1514J
See NS Package J14A
Order Number LM1414N
See NS Package N14A

Absolute Maximum Ratings (Note 1)

Positive Supply Voltage	+14.0 V
Negative Supply Voltage	-7.0 V
Peak Output Current	10 mA
Differential Input Voltage	$\pm 5.0 \mathrm{~V}$
Input Voltage	$\pm 7.0 \mathrm{~V}$
Power Dissipation (Note 2)	600 mW
Operating Temperature Range	LM1514
	LM 1414
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

Electrical Characteristics for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V}$, unless otherwise specified

PARAMETER	CONDITIONS	LM1514			LM1414			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.4 \mathrm{~V}$		0.6	2.0		1.0	5.0	mV
Input Offset Current	$V_{\text {CM }}=O \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.4 \mathrm{~V}$		0.8	30		1.2	5.0	$\mu \mathrm{A}$
Input Bias Current				20			25	$\mu \mathrm{A}$
Voltage Gain		1250			1000			
Output Resistance			200			200		Ω
Differential Input Voltage Range		± 5.0			± 5.0			\checkmark
Input Voltage Range	$V^{-}=-7.0 \mathrm{~V}$	± 5.0			± 5.0			\checkmark
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 20052, \mathrm{~V}^{-}=-7.0 \mathrm{~V}$	80	100		70	100		dB
Positive Output Voltage	$V_{\text {IN }} \geq 70 \mathrm{mV}, 0 \leq I_{\text {OUT }} \leq-5.0 \mathrm{~mA}$	2.5	3.2	4.0	2.5	3.2	4.0	V
Negative Output Voltage	$\mathrm{V}_{\text {IN }} \leq-7.0 \mathrm{mV}$	-1.0	-0.5	- 0	-1.0	-0.5	0	v
Strobed Output Voitage	$V_{\text {STROBE }} \leq 0.3 \mathrm{~V}$	- -1.0	-0.5	0	-1.0	-0.5	0	\checkmark
Strobe " 0 " Current	$V_{\text {STROBE }}=100 \mathrm{mV}$		-1.2	-2.5		-1.2	-2.5	mA
Positive Supply Current	$V_{\text {IN }} \leq-7 \mathrm{mV}$			18	,		18	mA
Negative Supply Current	$V_{\text {IN }} \leq-7 \mathrm{mV}$			-14			-14	mA
Power Consumption			180	300		180	300	mW
Response Time	(Note 3)		30			30		ns

LM1514/LM1414: The following apply for $T_{L} \leq T_{A}<T_{H}$ (Note 4) unless otherwise specified

Input Offset Voltage	$\begin{aligned} & R_{S} \leq 200 \Omega, V_{\text {OUT }}=1.8 \mathrm{~V} \text { for } T_{A}=T_{L} \\ & V_{C M}=0 V, V_{\text {OUT }}=1.0 \mathrm{~V} \text { for } T_{A}=T_{H} \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Cuirent Temperature Coefficient of Input Offset Voltage			3.0	45		, 5.0	40	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{gathered}$
Input Offset Current	$\begin{aligned} & V_{C M}=0 \mathrm{~V}, V_{\text {OUT }}=1.8 \mathrm{~V}, T_{A}=T_{L} \\ & V_{C M}=0 \mathrm{~V}, V_{\text {OUT }}=1.0 \mathrm{~V}, T_{A}=T_{H} \end{aligned}$			$\begin{array}{r} \\ \hline\end{array}$			$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Voltage Gain		1000			800			
Output Sink Current	$\mathrm{V}_{\text {IN }} \leq-9.0 \mathrm{mV}, \mathrm{V}_{\text {OUT }} \geq 0 \mathrm{~V}$	2.8	4.0		1.6	2.5		$m A$

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the referenced pin.
Note 2: LM1514 ceramic package: The maximum junction temperature is $+150^{\circ} \mathrm{C}$, for operating at elevated temperatures, devices must be derated linearly at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. LM1414 ceramic package: The maximum junction temperature is $+95^{\circ} \mathrm{C}$ for operating at elevated temperatures, devices must be derated linearly at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. LM1414 molded package: The maximum junction temperature is $+115^{\circ} \mathrm{C}$, for operating at elevated temperatures, devices must be derated linearly at 6.7 mW/ ${ }^{\circ} \mathrm{C}$.
Note 3: The response time specified (see definitions) for a 100 mV input step with 5 mV overdrive.
Note 4: For $L M 1514, T_{L}=-55^{\circ} \mathrm{C}, \mathrm{T}_{H}=+125^{\circ} \mathrm{C}$. For $\mathrm{LM} 1414, \mathrm{~T}_{\mathrm{L}}=0^{\circ} \mathrm{C}, \mathrm{T}_{H}=+70^{\circ} \mathrm{C}$.

Section 6
Analog Switches

Analog Switches

Section Contents

Analog Switches/Multiplexers Selection Guide 6-3
Definition of Terms 6-4
AH5009, AH5010, AH5011, AH5012 Monolithic Analog Current Switches 6-5
LF11331/LF13331 4 Normally Open Switches With Disable 6-17
LF11332/LF13332 4 Normally Closed Switches With Disable 6-17
LF11333/LF13333 2 Normally Closed Switches and 2 Normally . Open Switches With Disable 6-17
LF11201/LF13201 4 Normally Closed Switches 6-17
LF11202/LF13202 4 Normally Open Switches 6-17
LF11508/LF13508 8-Channel Analog Multiplexer 6-27
LF11509/LF13509 4-Channel Differential Analog Multiplexer 6-27

Note. For additional information on analog switches, see National Semiconductor's Hybrid Products Databook and FET Databook.

R_{ON} $(\Omega)^{*}$	$\begin{aligned} & V_{A} / I \\ & (V) t \end{aligned}$	Part Number	Logic Input	V_{S} (V) Typ	$t_{\text {ON }} /$ toff $_{\text {OF }}$ Typ
QUAD SPST					
100	15 mA	AH5011	15 V TTL, CMOS		150/300 ns
150	5 mA	AH5012	TTL, CMOS		$150 / 300 \mathrm{~ns}$
200	± 10	LF11201	TTL	± 15	$90 / 500$ ns
200	± 10	LF11202	TTL	± 15	90/500 ns
200	± 10	LF11331	TTL	± 15	$90 / 500 \mathrm{~ns}$
200	± 10	LF11332	TTL	± 15	$90 / 500 \mathrm{~ns}$
200	± 10	LF11333	TTL	± 15	$90 / 500 \mathrm{~ns}$
250	± 10	LF13201	TTL	± 15	90/500 ns
250	± 10	LF13202	TTL	± 15	$90 / 500 \mathrm{~ns}$
250	± 10	LF13331	TTL	± 15	$90 / 500 \mathrm{~ns}$
250	± 10	LF13332	TTL	± 15	$90 / 500 \mathrm{~ns}$
250	± 10	LF13333	TTL	± 15	$90 / 500 \mathrm{~ns}$
280	± 7.5	CD4066	CMOS	± 7.5	$50 / 50 \mathrm{~ns}$
850	± 7.5	CD4016	CMOS	± 7.5	$20 / 20 \mathrm{~ns}$
TRIPLE SPDT					
280	± 7.5	CD4053	CMOS	± 7.5	150/150 ns
4.CHANNEL					
100	15 mA	AH5009	15 V TTL, CMOS		150/300 ns
150	5 mA	AH5010	TTL, CMOS		150/300 ns
4.CHANNEL DIFFERENTIAL					
280	± 7.5	CD4052	CMOS	± 7.5	150/150 ns
350	12, - 15	LF11509	TTL	± 15	$1 / 0.2 \mu \mathrm{~s}$
270	± 7.5	CD4529B	CMOS	± 7.5	$50 / 50 \mathrm{~ns}$.
8-CHANNEL					
250-400	± 5	AM3705	TTL	-15, 5	$300 / 600 \mathrm{~ns}$
350	12, - 15	LF11508	TTL	± 15	$1 / 0.2 \mu \mathrm{~s}$
270	± 7.5	CD4529B	CMOS	± 7.5	$50 / 50 \mathrm{~ns}$
280	± 7.5	CD4501	CMOS	± 7.5	$150 / 150 \mathrm{~ns}$

[^32]$\dagger \mathrm{V}_{\mathrm{A}} / I=$ maximum voltage or current to be safely switched

Definition of Terms

\mathbf{R}_{ON} : Resistance between the output and the input of an addressed channel.
$I_{s}:$ Current at any switch input. This is leakage current when the switch is ON.
I_{D} : Current at any switch input going into the switch. This is leakage current when the switch is OFF.
C_{s} : Capacitance between any open terminal " S " and ground.
C_{D} : Capacitance between any open terminal " D " and ground.
$I_{D}-I_{S}$: Leakage current that flows from the closed switch into the body. This leakage is the difference between the current I_{D} going into the switch and the current I_{S} going out of the switch.
$t_{\text {ran: }}$: Delay time when switching from one address state to another.
$t_{\text {ON: }}$: Delay time between the 50% points of an enable input and the switch ON condition.
$t_{\text {OFF: }}$ Delay time between the 50% points of the enable input and the switch OFF condition.

National
Semiconductor
AH5009，AH5010，AH5011，AH5012 Monolithic Analog Current Switches General Description

A versatile family of monolithic JFET analog switches economically fulfills a wide variety of multiplexing and analog switching applications．

Even numbered switches may be driven directly from standard 5 V logic，whereas the odd numbered switches are intended for applications utilizing 10 V or 15 V logic． The monolithic construction guarantees tight resistance match and track．

Applications

－AD／DA converters
－Micropower converters
－Industrial controllers
－Position controllers
－Data acquisition
－Active filters
－Signal multiplexers／demultiplexers

Dual－In－Line Package

AH5009C and AH5010C
MUX Switches
（4－Channel Version Shown）
Order Number AH5009CN or AH5010CN
NS Package Number N14A

LOGIC DRIVE	4 CHANNEL MUX	4 SPST SWITCHES
$5 V$ TTL	AH5010CN	AH5012CN
$15 V$ TTL	AH5009CN	AH5011CN

AH5011C and AH5012C
SPST Switches （Quad Version Shown）
Order Number AH5011CN or AH5012CN NS Package Number N16A

－Multiple channel AGC
－Quad compressors／expanders
－Choppers／demodulators
－Programmable gain amplifiers
－High impedance voltage buffer
－Sample and hold
For voltage switching applications see LF13331，LF13332， and LF13333 Analog Switch Family．

Features

－Interfaces with standard TTL and CMOS
－＂ON＂resistance match 2 ohms
－Low＂ON＂resistance 100 ohms
－Very low leakage 50 pA
－Large analog signal range $\pm 10 \mathrm{~V}$ peak
－High switching speed ． 150 ns
－Excellent isolation between 80 dB channels at 1 kHz

Connection and Schematic Diagrams

Note：All diode cathodes are internally connected to the substrate．

Absolute Maximum Ratings

Input Voltage

AH5009/AH5010/AH5011/AH5012
30 V
Positive Analog Signal Voltage 30V
Negative Analog Signal Voltage -15V
Diode Current
10 mA
Drain Current 30 mA
Power Dissipation
Operating Temperature Range 500 mW

Storage Temperature Range
Lead Temperature (Soldering, 10 seconds) .

Electrical Characteristics

AH5010 and AH5012 (Notes 1 and 2)

	PARAMETER	CONDITIONS	TYP	MAX	UNITS
$\mathrm{I}_{\text {GSX }}$	Input Current "OFF"	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{GD}} \leq 11 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V}$	0.01	0.2	nA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		10	nA
ID(OFF)	Leakage Current "OFF'	$V_{S D}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=3.8 \mathrm{~V}$	0.01	0.2	nA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		10	nA
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$V_{G D}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	0.08	1	nA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		200	$n \mathrm{~A}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$V_{G D}=0 \mathrm{~V}, \mathrm{I}_{S}=2 \mathrm{~mA}$	0.13	5	nA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		10	$\mu \mathrm{A}$
$I_{\text {G (ON })}$	Leakage Current "ON"	$V_{G D}=0 \mathrm{~V}, \mathrm{I}_{S}=-2 \mathrm{~mA}$	0.1	10	nA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		20	$\mu \mathrm{A}$
rosion)	Drain-Source Resistance	$\mathrm{V}_{G S}=0.35 \mathrm{~V}, \mathrm{I}_{S}=2 \mathrm{~mA}$	90	150	Ω
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		240	Ω
V DIODE	Forward Diode Drop	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$		0.8	V
rosion)	Match	$V_{G S}=0, I_{D}=1 \mathrm{~mA}$	4	20	Ω
Ton	Turn "ON" Time	See ac Test Circuit	150	500	ns
Toff	Turn "OFF' Time	See ac Test Circuit	300	500	ns
CT	Cross Talk	See ac Test Circuit	120		dB

Note 1: Test conditions $25^{\circ} \mathrm{C}$ unless otherwise noted.
Note 2: "OFF" and "ON" notation refers to the conduction state of the FET switch.

Electrical Characteristics AH5009 and AH5011

	PARAMETER	CONDITIONS	TYP	MAX	UNITS
$\mathrm{I}_{\text {GSX }}$	Input Current "OFF'	$11 \mathrm{~V} \leq \mathrm{V}_{\text {GD }} \leq 15 \mathrm{~V}, \mathrm{~V}_{\text {SD }}=0.7 \mathrm{~V}$	0.01	0.2	nA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		10	nA
Idoff)	Leakage Current 'OFF',	$V_{\text {SD }}=0.7 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=10.3 \mathrm{~V}$	0.01	0.2	nA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		10	nA
$I_{\text {GION }}$	Leakage Current "ON"	$V_{G D}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	0.04	0.5	nA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		100	$n \mathrm{~A}$
$I_{\text {G(ON) }}$	Leakage Current "ON"	$V_{G D}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}$		2	nA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		1	$\mu \mathrm{A}$
$I_{\text {G(ON }}$	Leakage Current "ON"	$V_{G D}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-2 \mathrm{~mA}$		5	nA
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		2	$\mu \mathrm{A}$
r DSSON)	Drain-Source Resistance		60	100	Ω
		$T_{A}=85^{\circ} \mathrm{C}$		160	Ω
V DIODE	Forward Diode Drop	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$		0.8	V
$\mathrm{r}_{\text {DSSON }}$)	Match	$V_{G S}=0, I_{D}=1 \mathrm{~mA}$		10	Ω
Ton	Turn "ON" Time	See ac Test Circuit	150	500°	ns
Toff	Turn "OFF" Time .	See ac Test Circuit	300	500	ns
CT	Cross Talk	See ac Test Circuit	120		dB

Test Circuits and Switching Time Waveforms

Cross Talk Test Circuit

ac Test Circuit

Transconductance vs
Drain Current

Applications Information

Theory of Operation

The AH series of analog switches are primarily intended for operation in current mode switch applications; i.e., the drains of the FET switch are held at or near ground by operating into the summing junction of an operational amplifier. Limiting the drain voltage to under a few hundred millivolts eliminates the need for a special gate driver, allowing the switches to be driven directly by standard TTL (AH5010), 5V-10V CMOS (AH5010), open collector 15 V TTL/CMOS (AH5009).

Two basic switch configurations are available: 4 independent switches (SPST) and 4 pole switches used for multiplexing (4 PST-MUX). The MUX versions such as the AH5009 offer common drains and include a series FET operated at $V_{G S}=0 V$. The additional FET is placed in the feedback path in order to compensate for the "ON" resistance of the switch FET as shown in Figure 1.

The closed-loop gain of Figure 1 is:

$$
A_{V C L}=\frac{R 2+r_{\text {DSSON }(O 22}}{R 1+r_{D S(O N) Q 1}}
$$

For R1 = R2, gain accuracy is determined by the $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ match between Q1 and Q2. Typical match between Q1 and Q2 is 4 ohms resulting in a gain accuracy of 0.05% (for R1 $=R 2=10 \mathrm{k} \Omega$).

Noise Immunity

The switches with the source diodes grounded exhibit improved noise immunity for positive analog signals in
the "OFF" state. With $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$ and the $\mathrm{V}_{\mathrm{A}}=10 \mathrm{~V}$, the source of Q 1 is clamped to about 0.7 V by the diode ($\mathrm{V}_{\mathrm{GS}}=14.3 \mathrm{~V}$) ensuring that ac signals imposed on the 1.0 V will not gate the FET "ON."

Selection of Gain Setting Resistors

Since the AH series of analog switches are operated current mode, it is generally advisable to make the signal current as large as possible. However, current through the FET switch tends to forward bias the source to gate junction and the signal shunting diode resulting in leakage through these junctions. As shown in Figure 2, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$ represents a finite error in the current reaching the summing junction of the op amp.

Secondly, the $r_{\text {DS (ON) }}$ of the FET begins to "round" as I_{s} approaches loss. A practical rule of thumb is to maintain I_{S} at less than $1 / 10$ of $I_{\text {DSS }}$.

Combining the criteria from the above discussion yields:

$$
\begin{equation*}
R 1_{(M I N)} \geq \frac{V_{A(M A X)} A_{D}}{I_{G(O N)}} \tag{2a}
\end{equation*}
$$

or:

$$
\begin{equation*}
\geq \frac{V_{\mathrm{A}(\mathrm{MAX})}}{\mathrm{I}_{\mathrm{DSS}} / 10} \tag{2b}
\end{equation*}
$$

whichever is larger.

FIGURE 1. Use of Compensation FET

FIGURE 2. On Leakage Current, IG(ON)

Applications Information（Continued）

Where：$V_{A(M A X)}=$ Peak amplitude of the analog input signal
$A_{D} \quad=$ Desired accuracy
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}=$ Leakage at a given I_{S}
$I_{\text {DSS }}=$ Saturation current of the FET switch
$\cong 20 \mathrm{~mA}$
In a typical application， V_{A} might $= \pm 10 \mathrm{~V}, \mathrm{~A}_{\mathrm{D}}=0.1 \%$ ， $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ ．The criterion of equation（2b） predicts：

$$
R 1_{(\mathrm{MIN})} \geq \frac{10 \mathrm{~V}}{\frac{20 \mathrm{~mA}}{10}}=5 \mathrm{k} \Omega
$$

For $\mathrm{R} 1=5 \mathrm{k}, \mathrm{I}_{\mathrm{S}} \cong 10 \mathrm{~V} / 5 \mathrm{k}$ or 2 mA ．The electrical characteristics guarantee an $\mathrm{I}_{\mathrm{G}(\mathrm{ON})} \leq 1 \mu \mathrm{~A}$ at $85^{\circ} \mathrm{C}$ for the AH5010．Per the criterion of equation（2a）：

$$
R 1_{(\mathrm{MIN})} \geq \frac{(10 \mathrm{~V})\left(10^{-3}\right)}{1 \times 10^{-6}} \geq 10 \mathrm{k} \Omega
$$

Since equation（2a）predicts a higher value，the 10k resistor should be used．

The＂OFF＂condition of the FET also affects gain accuracy．As shown in Figure 3，the leakage across O2， $I_{D(O F F)}$ represents a finite error in the current arriving at the summing junction of the op amp．

Accordingly：

$$
R 1_{\text {(MAX) }} \leq \frac{V_{A(M I N)} A_{D}}{(N) I_{D(O F F)}}
$$

Where：$V_{A(M I N)}=$ Minimum value for the analog input signal
$A_{D} \quad=$ Desired accuracy
$\mathrm{N} \quad=$ Number of channels
$\begin{aligned} I_{D(O F F)}= & \text {＂OFF＂leakage of a given FET } \\ & \text { switch }\end{aligned}$

As an example，if $N=10, A_{D}=0.1 \%$ ，and $I_{\text {D（OFF）}}$ $\leq 10 \mathrm{nA}$ at $85^{\circ} \mathrm{C}$ for the $\mathrm{AH} 5009 . \mathrm{R} 1_{(\text {MAX })}$ is：

$$
R 1_{\text {(MAX })} \leq \frac{(1 \mathrm{~V})\left(10^{-3}\right)}{(10)\left(10 \times 10^{-9}\right)}=10 \mathrm{k}
$$

Selection of R2，of course，depends on the gain desired and for unity gain R1＝R2．

Lastly，the foregoing discussion has ignored resistor tolerances，input bias current and offset voltage of the op amp－all of which should be considered in setting the overall gain accuracy of the circuit．

TTL Compatibility

Two input logic drive versions of AH series are avail－ able：the even numbered part types are specified to be driven from standard 5V TTL logic and the odd num－ bered types from 15 V open collector TTL．

FIGURE 3.

Standard TTL gates pull-up to about 3.5V (no load). In order to ensure turn-off of the even numbered switches such as AH5010, a pull-up resistor, $\mathrm{R}_{\text {EXT }}$, of at least $10 \mathrm{k} \Omega$ should be placed between the $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and the gate output as shown in Figure 4.

Likewise, the open-collector, high voltage TTL outputs should use a pull-up resistor as shown in Figure 5. In
both cases, $t_{(O F F)}$ is improved for lower values of $R_{E X T}$ at the expense of power dissipation in the low state.

Definition of Terms

The terms referred to in the electrical characteristics tables are as defined in Figure 6.

FIGURE 4. Interfacing with $+5 V$ TTL

FIGURE 5. Interfacing with +15V Open Collector TTL

FIGURE 6. Definition of Terms

Typical Applications

Typical Applications (Continued)

8-Bit Binary (BCD) Multiplying D/A Converter*

Typical Applications (Continued)

Typical Applications (Continued)

Quad SPST JFET Analog Switches

LF11331/LF13331 4 Normally Open Switches with Disable LF11332/LF13332 4 Normally Closed Switches with Disable LF11333/LF13333 2 Normally Closed Switches and 2 Normally Open Switches with Disable LF11201/LF13201 4 Normally Closed Switches
 LF11202/LF13202 4 Normally Open Switches

General Description

These devices are a monolithic combination of bipolar and JFET technology producing the industry's first one chip quad JFET switch. A unique circuit technique is employed to maintain a constant resistance over the analog voltage range of $\pm 10 \mathrm{~V}$. The input is designed to operate from minimum TTL levels, and switch operation also ensures a break-before-make action.

Features

- Analog signals are not loaded
- Constant "ON" resistance for signals up to $\pm 10 \mathrm{~V}$ and 100 kHz
- Pin compatible with CMOS switches with the advantage of blow out free handling
a Small signal analog signals to 50 MHz
- Break-before-make action $t_{\text {OFF }}<\mathrm{t}_{\mathrm{ON}}$
- High open switch isolation at $1.0 \mathrm{MHz} \quad-50 \mathrm{~dB}$
- Low leakage in "OFF" state" $<1.0 \mathrm{nA}$
- TTL, DTL, RT'L compatibility
- Single disable pin opens all switches in package on LF11331, LF11332, LF11333
- LF11201 is pin compatible with DG201

These devices operate from $\pm 15 \mathrm{~V}$ supplies and swing a $\pm 10 \mathrm{~V}$ analog signal. The JFET switches are designed for applications where a dc to medium frequency analog signal needs to be controlled.

Connection Diagrams (Dual-In-Line Packages) (All Switches Shown are For Logical " ${ }^{\prime}$ ")

LF11201/LF13201

Order Number LF11201D, LF13201D, LF11202D, LF13202D, LF11331D, LF13331D, LF11332D, LF13332D, LF11333D, or LF13333D See NS Package D16C

Order Number LF13201N, LF13202N, LF13331N, LF13332N, or LF13333N
See NS Package N16A

LF11333/LF13333

LF11202/LF 13202

Test Circuit and Schematic Diagram

FIGURE 2. Schematic Diagram (Normally Open)

Absolute Maximum Ratings

Positive Supply - Negative Supply ($\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{EE}}$)		
Reference Voltage		
Logic Input Voltage	$V_{\text {R }}$	$\leq \mathrm{V}_{\mathrm{R}}+6.0 \mathrm{~V}$
Analog Voltage	$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{A}} \leq \mathrm{V}_{\mathrm{CC}}$	$\leq \mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}$
Analog Current		$1{ }_{\text {A }} \mathrm{K}<20 \mathrm{~mA}$
Power Dissipation (Note 1)		
Molded DIP (N Suffix)		500 mW
Cavity DIP (D Suffix)		900 mW

Operating Temperature Range
LF11201, 2 and LF11331, 2, 3
LF13201, 2 and LF13331, 2, 3
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

Note 1: For operating at high temperature the molded DIP products must be derated based on a $+100^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, devices in the cavity DIP are based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and are derated at $+100^{\circ} \mathrm{C} / \mathrm{W}$. Note 2: Unless otherwise specified, $V_{C C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$, and limits apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LF11331,2,3 and the LF11202, 2, $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$ for the LF13331, 2, 3 and the LF13201, 2.
Note 3: These parameters are limited by the pin to pin capacitance of the package.
Note 4: This is the analog signal slew rate above which the signal is distorted as a result of finite internal slew rates.
Note 5: All switches in the device are turned "OFF" by saturating a transistor at the disable node as shown in Figure 5. The delay times will be approximately equal to the tON or tOFF plus the delay introduced by the external transistor.
Note 6: This graph indicates the analog current at which 1% of the analog current is lost when the drain is positive with respect to the source.

Test Circuit and Typical Performance Curves

Delay Time, Rise Time, Settling Time, and Siwitching Transients

$200 \mathrm{~ns} /$ div

$200 \mathrm{~ns} / \mathrm{div}$

200 ns/div

$200 \mathrm{~ns} /$ div

$200 \mathrm{~ns} /$ div

Additional Test Circuits

FIGURE 3. ${ }^{\text {t ON }}$, t OFF Test Circuit and Waveforms for a Normally Open Switch

FIGURE 4. "OFF" Isolation, Crosstalk, Small Signal Response

Crosstalk and "OFF" Isolation vs Frequency Using Test Circuit

of Figure 5

Slew Rate of Analog Voltage
Above Which Signal l.oading Occurs

Small Signal Response

Maximum Accurate Analog
Current vs Temperature

Logical "1" Input Bias Current

Application Hints

GENERAL INFORMATION

These devices are monolithic quad JFET analog switches with "ON" resistances which are essentially independent of analog voltage or analog current. The leakage currents are typically less than 1 nA at $25^{\circ} \mathrm{C}$ in both the "OFF" and "ON" switch states and introduce negligible errors in most applications. Each switch is controlled by minimum TTL logic levels at its input and is designed to turn "OFF" faster than it will turn "ON." This prevents two analog sources from being transiently connected together during switching. The switches were designed for applications which require break-before-make action, no analog current loss, medium speed switching times and moderate analog currents.

Because these anaiog switches are JFET rather than CMOS , they do not require special handling.

LOGIC INPUTS

The logic input (IN), of each switch, is referenced to two forward diode drops (1.4 V at $25^{\circ} \mathrm{C}$) from the reference supply (V_{R}) which makes it compatible with DTL, RTL, and TTL logic families. For normal operation, the logic " 0 " voltage can range from 0.8 V to -4.0 V with respect to V_{R} and the logic " 1 " voltage can range from 2.0 V to 6.0V with respect to V_{R}, provided V_{IN} is not greater than ($\mathrm{V}_{\mathrm{cc}}-2.5 \mathrm{~V}$). If the input voltage is greater than ($\mathrm{V}_{\mathrm{cc}}-2.5 \mathrm{~V}$), the input current will increase. If the input voltage exceeds 6.0 V or -4.0 V with respect to V_{R}, a resistor in series with the input should be used to limit the input current to less than $100 \mu \mathrm{~A}$.

ANALOG VOLTAGE AND CURRENT

Analog Voltage

Each switch has a constant "ON" resistance (R_{ON}) for analog voltages from ($\mathrm{V}_{\mathrm{EE}}+5 \mathrm{~V}$) to ($\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V}$). For analog voltages greater than ($\mathrm{V}_{\mathrm{cc}}-5 \mathrm{~V}$), the switch will remain ON independent of the logic input voltage. For analog voltages less than ($\mathrm{V}_{\mathrm{EE}}+5 \mathrm{~V}$), the ON resistance of the switch will increase. Although the switch will not operate normally when the analog voltage is out of the previously mentioned range, the source voltage can go to either ($\mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}$) or ($\mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V}$), whichever is more positive, and can go as negative as V_{EE} without destruction. The drain (D) voltage can also go to either $\left(\mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}\right)$ or $\left(\mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V}\right)$, whichever is more positive, and can go as negative as ($\mathrm{V}_{\mathrm{cc}}-36 \mathrm{~V}$) without destruction.

Analog Current

With ihe source (S) positive with respect to the drain (D), the R_{ON} is constant for low analog currents, but will increase at higher currents ($>5 \mathrm{~mA}$) when the FET enters the saturation region. However, if the drain is positive with respect to the source and a small analog current loss at high analog currents (Note 6) is tolerable, a low R_{ON} can be maintained for analog currents greater than 5 mA at $25^{\circ} \mathrm{C}$.

LEAKAGE CURRENTS

The drain and source leakage currents, in both the ON and the OFF states of each switch, are typically less than 1 nA at $25^{\circ} \mathrm{C}$ and less than 100 nA at $125^{\circ} \mathrm{C}$. As shown in the typical curves, these leakage currents are dependent on power supply voltages, analog voltage, analog current and the source to drain voltage.

DELAY-TIMES

The delay time OFF ($t_{\text {OFF }}$) is essentially independent of both the analog voltage and temperature. The delay time ON ($t_{O N}$) will decrease as either ($V_{C C}-V_{A}$) decreases or the temperature decreases.

POWER SUPPLIES

The voltage between the positive supply (V_{cc}) and either the negative supply (V_{EE}) or the reference supply $\left(\mathrm{V}_{\mathrm{R}}\right)$ can be as much as 36 V . To accommodate variations in input logic reference voltages, V_{R} can range from V_{EE} to ($\mathrm{V}_{\mathrm{CC}}-4.5 \mathrm{~V}$). Care should be taken to ensure that the power supply leads for the device never become reversed in polarity or that the device is never inadvertantly installed backwards in a test socket. If one of these conditions occurs, the supplies would zener an interal diode to an unlimited current; and result in a destroyed device.

SWITCHING TRANSIENTS

When a switch is turned OFF or ON, transients will appear at the load due to the internal transient voltage at the gate of the switch JFET being coupled to the drain and source by the junction capacitances of the JFET. The magnitude of these transients is dependent on the load. A lower value R_{L} produces a lower transient voltage. A negative transient occurs during the delay time ON, while a positive transient occurs during the delay time OFF. These transients are relatively small when compared to faster switch families.

DISABLE NODE

This node can be used, as shown in Figure 5, to turn all the switches in the unit off independent of logic inputs. Normally, the node floats freely at an internal diode drop ($\approx 0.7 \mathrm{~V}$) above V_{R}. When the external transistor in Figure 5 is saturated, the node is pulled very close to V_{R} and the unit is disabled. Typically, the current from the node will be less than 1 mA . This feature is not available on the LF11201 or LF11202 series.

FIGURE 5. Disable Function
LF11331, LF11332, LF11333,
LF11201, LF11202 Series

Typical Applications

Programmable Inverting Non-Inverting Operational Amplifier

Typical Applications (Continued)

Self-Zeroing Operational Amplifier

Typical Applications (Continued)

Typical Applications (Continued)

LF11508／LF13508 8－Channel Analog Multiplexer LF11509／LF13509 4－Channel Differential Analog Multiplexer

General Description

The LF11508／LF13508 is an 8－channel analog multi－ plexer which connects the output to 1 of the 8 analog inputs depending on the state of a 3 －bit binary address． An enable control allows disconnecting the output， thereby providing a package select function．

This device is fabricated with National＇s BI－FET tech－ nology which provides ion－implanted JFETs for the analog switch on the same chip as the bipolar decode and switch drive circuitry．This technology makes possible low constant＂ON＂resistance with analog input voltage variations．This device does not suffer from latch－up problems or static charge blow－out problems associated with similar CMOS parts．The digital inputs are designed to operate from both TTL and CMOS levels while always providing a definite break－before－make action．

The LF11509／LF13509 is a 4－channel differential analog multiplexer．A 2 －bit binary address will connect a pair
of independent analog inputs to one of any 4 pairs of independent analog outputs．The device has all the features of the LF11508 series and should be used whenever differential analog inputs are required．

Features

－JFET switches rather than CMOS
－No static discharge blow－out problem
－No SCR latch－up problems
－Analog signal range $11 \mathrm{~V},-15 \mathrm{~V}$
－Constant＂ON＂resistance for analog signals between -11 V and 11 V
－＂ON＂resistance 380Ω typ
－Digital inputs compatible with TTL and CMOS
－Output enable control
－Break－before－make action：tOFF $=0.2 \mu \mathrm{~s}$ ；tON $=$ $2 \mu \mathrm{~s}$ typ
－Lower leakage devices available

Functional Diagrams and Truth Tables

EN	A2	A1	A0	SWITCH ON
H	L	L	L	S1
H	L	L	H	S2
H	L	H	L	S3
H	L	H	H	S4
H	H	L	L	S5
H	H	L	H	S6
H	H	H	L	S7
H	H	H	H	S8
L	X	X	X	NONE

EN	A1	AO	SWITCH	
PAIR ON				
L	X	X	None	
H	L	L	S1	
H	L	H	S2	
H	H	L	S3	
H	H	H	S4	

Absolute Maximum Ratings

	LF11508, LF11509	LF13508, LF13509	
Positive Supply - Negative Supply ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$)	36 V	36 V	
Positive Analog Input Voltage (Note 1)	$V_{C C}$	$V_{C C}$	
Negative Analog Input Voltage (Note 1)	$-V_{E E}$	- $V_{\text {EE }}$	
Positive Digital Input Voltage	$V_{\text {CC }}$	$V_{C C}$	
Negative Digital Input Voltage	$-5 \mathrm{~V}$	-5V	
Analog Switch Current	$\\|_{\text {S }} \mathrm{l}<10 \mathrm{~mA}$	$\mathrm{IIS}_{\mathrm{S}} \mathrm{l}<10 \mathrm{~mA}$	
Power Dissipation (P_{D} at $25^{\circ} \mathrm{C}$) and Thermal			
Resistance ($\theta_{\mathrm{j}} \mathrm{A}$), (Note 2)			
Molded DIP (N) $P_{\text {D }}$	-	500 mW	
${ }^{\theta} \mathrm{j}_{\mathrm{A}}$	-	$150^{\circ} \mathrm{C} / \mathrm{W}$	
Cavity DIP (D) : $P_{\text {D }}$	900 mW	900 mW	
$\theta_{j A}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	
Maximum Junction Temperature ($\mathrm{T}_{\mathrm{j} M A X}$)	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	
Operating Temperature Range	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 60 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	

Electrical Characteristics (Note 3)

SYMBOL	PARAMETER	CONDITIONS		LF11508, LF11509			LF13508, LF13509			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
RON	"ON" Resistance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{IS}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		380	500		. 380	650	Ω
					600	750		500	850	Ω
$\triangle \mathrm{R}_{\text {ON }}$	Δ RON with $^{\text {Analog Voltage }}$ Swing	$-10 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+10 \mathrm{~V}, \mathrm{IS}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.01	1		0.01	1	\%
RON Match	RON Match Between Switches	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{IS}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		20	100		20	150	Ω
IS(OFF) 1	Source Current in "OFF" Condition	Switch "OFF", $V_{S}=11, V_{D}=-11$, (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1			5	nA
					10	50		0.09	50	\dot{n} A
ID(OFF)	Drain Current in "OFF" Condition	Switch "OFF", $V_{S}=11, V_{D}=-11$, (Note 4)	$J_{\text {A }}=25^{\circ} \mathrm{C}$			10			20	nA
					25	500		0.6	500	nA
ID(ON)	Leakage Current in "ON" Condition	Switch "ON" $V_{D}=11 \mathrm{~V}$, (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10			20	$n A$
					35	500		1	500	$n \mathrm{~A}$
$V_{\text {INH }}$	Digital " 1 " Input Voltage			2.0			2.0			V
$V_{\text {INL }}$	Digital " 0 " Input Voltage					0.7			0.7	V
IINL	Digital "0" Input Current	$V_{\text {IN }}=0.7 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	20		1.5	30	$\mu \mathrm{A}$
						40			40	$\mu \mathrm{A}$
IINL(EN)	Digital "0"Enable Current	$V_{E N}=0.7 \mathrm{~V}$	$T_{A}=25^{\circ} \mathrm{C}$		1.2	20		1.2	30	$\mu \mathrm{A}$
						40			40	$\mu \mathrm{A}$
tTRAN	Switching Time of Multiplexer	(Figure 1), (Note 5)	$T_{A}=25^{\circ} \mathrm{C}$		2.0	3		1.8		$\mu \mathrm{s}$
tOPEN	Break-Before-Make	(Figure 3)	$T_{A}=25^{\circ} \mathrm{C}$		1.6			1.6		$\mu \mathrm{s}$
ton(EN)	Enable Delay "ON"	(Figure 2)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.6			1.6		$\mu \mathrm{s}$
toff(EN)	Enable Delay "OFF"	(Figure 2)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2			0.2		$\mu \mathrm{s}$
ISO(OFF)	"OFF" Isolation	(Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-66			-66	.	dB
CT	Crosstalk	LF11509 Series, (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-66			-66		dB
$\mathrm{CS}_{\text {(OFF }}$	Source Capacitance ("OFF')	Switch "OFF", VOUT = OV, $V_{S}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2		.	2.2		pF
CD(OFF)	Drain Capacitance ("OFF')	Switch "OFF", VOUT $=0 \mathrm{~V}$, $V_{S}=0 \mathrm{~V}$	$T^{\prime}=25^{\circ} \mathrm{C}$		11.4			11.4		pF
${ }^{\prime} \mathrm{CC}$	Positive Supply Current	All Digital Inputs Grounded	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.4	10		7.4	12	mA
					9.2	13		7.9	15	mA
IEE	Negative Supply Current	All Digital Inputs Grounded	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.7	4.5		2.7	5	mA
					2.9	5.5		2.8	6	mA .

Notes

Note 1: If the analog input voltage exceeds this limit, the input current should be limited to less than 10 mA .
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{j} A$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $P_{D}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} \mathrm{P}_{\mathrm{DM}}$. ever is less.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range ($T_{L} \leq T_{A} \leq T_{H}$) unless otherwise noted.
Note 4: Conditions applied to leakage tests insure worse case leakages. Exceeding 11 V on the analog input may cause an "OFF" channel to turn "ON".
Note 5: Lots are sample tested to this parameter. The measurement conditions of Figure 1 insure worse case transition time.
Note 6: "OFF" isolation is measured with all switches "OFF" and driving a source. Crosstalk is measured with a pair of switches "ON", driving channel A and measuring channel $B . R_{L}=200, C_{L}=7 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{Vrms}, \mathrm{f}=500 \mathrm{kHz}$.

Connection Diagrams

LF11508/LF13508

Dual-In-Line Package

Order Number LF11508D or LF13508D ${ }^{`}$
See NS Package D16C
Order Number LF13508N See NS Package N16A

LF11509/LF13509
Dual-In-Line Package

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Transition Time

AC Test Circuit and Switching Time Waveforms (Continued)

Transition Times and Transients

$1 \mu \mathrm{~S} / \mathrm{DIV}$

$1 \mu \mathrm{~S} / \mathrm{DIV}$

$1 \mu \mathrm{~S} / \mathrm{DIV}$

Test Circuit

Switching Times
(Figures 1 and 3)

Enable Delay Times
(Figure 2)

Application Hints

The LF11508 series is an 8-channel analog multiplexer which allows the connection of a single load to 1 of 8 different analog inputs. These multiplexers incorporate JFETs in a switch configuration which insures a constant "ON" resistance over the analog voltage range of the device. Four TTL compatible inputs are provided; a 3 -bit binary decode to select a particular channel and an enable input used as a package select. The switches operate with a break-before-make action preventing the temporary connection of 2 analog inputs during switching. Because these multiplexers are fabricated with the BI-FET process rather than CMOS, they do not require special handling.

The LF11509 series is a 4-channel differential multiplexer which allows two loads to be connected to 1 of 4 different pairs of analog inputs. The LF11509 series also has all the features of the LF11508.

ANALOG VOLTAGE AND CURRENT

The "ON" resistance, RON, of the analog switches is constant over a wide input range from positive (V_{CC}) supply to negative ($-\mathrm{V}_{\mathrm{EE}}$) supply.

The analog input should not exceed either positive or negative supply without limiting the current to less than 10 mA ; otherwise the multiplexer may get damaged. For proper operation, however, the positive analog voltage should be kept equal to or less than $\mathrm{V}_{\mathrm{CC}}-4 \mathrm{~V}$ as this will increase the switch leakage in both "ON" and "OFF" state and it may also cause a false turn "ON" of a normally "OFF" switch. This limit applies over the full temperature range.

The maximum allowable switch "ON" voltage (the drop across the switch in the "ON" condition) is $\pm 0.4 \mathrm{~V}$ over temperature. If this number is to exceed the input current should be limited to 10 mA .

The "ON" resistance of the multiplexing switches varies slightly with analog current because they are JFETs running at OV gate to source. The JFET characteristics shown in Figure 4 indicates how RON tends to vary with current. A lower RON is possible when the source voltage is negative with respect to the drain voltage because the JFET becomes enhanced. Caution should be used when operating in this mode as this may forward-bias an internal transistor and cause high currents to flow in the switches. Thus, the drain voltage should never be greater than 0.4 V positive with respect
to the source voltage without limiting the drain current to less than 10 mA .

LEAKAGE CURRENTS

Leakage currents will remain within the specified value as long as the drain and source remain within the specified analog voltage range. As the switch terminals exceed the positive analog voltage range "ON" and "OFF" leakage currents increase. The "ON" leakage increases due to an internal clamp required by the switch structure. The "OFF" leakage increases because the gate to source reverse bias has been decreased to the point where the switch becomes active. Leakage currents vary slightly with analog voltage and will approximately double for every $10^{\circ} \mathrm{C}$ rise in temperature.

SWITCHING TIMES AND TRANSIENTS

These multiplexers operate with a break-before-make switch action. The turn off time is much faster than the turn on time to guarantee this feature over the full range of analog input voltage and temperature. Switching transients are introduced when a switch is turned "OFF". The amplitude of these transients may be reduced by increasing the load capacitance or decreasing the load resistance. The actual charge transfer in the transient may be reduced by operating on reduced power supplies. Examples of switching times and transients are shown in the typical characteristic curves. The enable function switching times are specified separately from switch-to-switch transition times and may be thought of as package-to-package transition times.

LOGIC INPUTS AND ENABLE INPUT

Switch selection in the LF11508 series is accomplished by using a 3 -bit binary decode while the LF11509 series uses a 2-bit decode. These binary logic inputs are compatible with both TTL and CMOS logic voltage levels. The maximum positive voltage applied to these inputs may exceed $V_{C C}$ but should not exceed $-V_{E E}+36 V$. The maximum negative voltage should not be less than 4 V below ground as this will cause an internal device to zener and all the switches will turn "ON".

As shown in the schematic diagram, the logic low bias current will flow until the PNP input is raised above the 3 diode reference ($\approx 2.1 \mathrm{~V}$). Above this voltage the input device becomes \cdot reverse biased and the imput current drops to the leakage of the reverse biased junction (<0.1 $\mu \mathrm{A}$).

Typical Applications

A SIMPLIFIED SYSTEM DISCUSSION

Analog multiplexers (MUX) are usually used for multichannel Data Acquisition Units (DAU). Figure 5 shows a system in which 8 different analog inputs are sampled and converted into digital words for further processing. The sample and hold circuit is optional, depending on input speed requirements and on A / D converter speed.

Parameters characterizing the system are:
System Channels: The number of multiplexer channels. Accuracy: The conversion accuracy of each individual sample with the system operating at the throughput rate. Speed or Throughput Rate: Number of samples/second/ channel the system can handle.

For a discussion on system structure, addressing mode and processor interfacing, see application note AN-159.

A. ACCURACY CONSIDERATIONS

1. Multiplexer's Influence on System Accuracy (Figure 6).
a. The error, (E), caused by the finite "ON" resistance, RON, of the multiplexing switches is given by:
$E(\%)=\frac{100}{1+R_{\text {IN }} /\left(R_{\text {ON }}+R_{S}+\Delta R_{\text {ON }}\right)}$ where:
$R_{I N}=$ following stage input impedance $\triangle R_{O N}=$ "ON" resistance modulation which is negligible for JFET switches like the LF11508

Example: Let $\mathrm{R}_{\mathrm{ON}}=450 \Omega, \Delta \mathrm{R}_{\mathrm{ON}}=0, \mathrm{R}_{\mathrm{S}}=0$, $T_{A}=25^{\circ} \mathrm{C}$ and allowable $E=0.01 \%$ which is equivalent to $1 / 2$ LSB in a 12 -bit system:

$$
\left.R_{\text {IN }}\right|_{\min }=\frac{R_{\text {ON }}(100-E)}{E}=4.5 \mathrm{M} \Omega
$$

Note that if temperature effects are included, some gain (or full scale) drift will occur; but effects on linearity are small.
b. Multiplexer settling time $\left(\mathrm{t}_{\mathrm{s}}\right)$:
$\mathrm{t}_{5}(\mathrm{ON})$: is the time required for the MUX output to settle within a predetermined accuracy, as shown in Table I.
CS (Figure 6): MUX output capacitance + following stage input capacitance + any stray capaci-
tance at this node.

FIGURE 5. Random-Addressed, Multiplexed DAU

TABLE I.

ERROR \%	BITS	$\mathrm{t}_{\text {s }}$ (ON) TO 1/2 LSB
0.2	8	6.2 t
0.05	10	7.6 t
0.01	12	9 t
0.0008	16	11.8 t

$$
t=C_{S}\left(R_{O N}+R_{S}\right) \| R_{I N}
$$

$\mathrm{t}_{\mathrm{s}}(\mathrm{OFF})$: is the time it takes to discharge CS within a tolerable error. The "OFF" settling time should be taken into account for bipolar inputs where its effects will appear as a worse case doubling of the $\mathrm{t}_{\mathrm{s}}(\mathrm{ON})$.
2. Sample and Hold Influence on System Accuracy

The sample and hold, if used, also introduces errors into the system accuracy due to:

- Offset voltage of sample and hold
- Droop rate in the Hold mode
- TA: Aperture time or time delay between the time of a digital Hold command and the actual Hold occurance
- Taq: Acquisition time or time it takes to acquire an analog input and settle within a predetermined error band
- Hold step: Error created during the Sample to Hold mode caused by an undesirable charge injected into the Hold capacitor C_{h}.

For more details on sample and hold errors, see the LF198/LF298/LF398 data sheet.
3. A/D Converter Influence on System Accuracy The "accuracy" of the A/D converter is the best possible system accuracy. In most data acquisition systems, the A / D converter is the most expensive single component, so its error will often dominate system error. Care should be taken that MUX, S/H and input source errors do not exceed system error requirements when added to A/D errors. For instance, if an 8 -bit accuracy system is desired and an 8 -bit A/D converter is used, the accuracy of the MUX and S / H should be far better than 8 bits.

For details on A / D converter specifications, see AN-156.

FIGURE 6. 8-Channel MUX

Typical Applications (Continued)

B. SPEED CONSIDERATIONS

In the system of Figure 5 with the S / H omitted, if n -bit accuracy is desired, the change of the analog input voltage should be less than $\pm 1 / 2$ LSB over the A/D conversion time TC. In other words, the analog input slew rate, (rate of change of input voltage), will cause a slewinduced error and its magnitude, with respect to the total system error, will depend on the particular application.

$$
\left.\frac{\Delta V_{I N}}{\Delta t}\right|_{\max }<\frac{ \pm 1 / 2 \mathrm{LSB}}{T_{C}}=\frac{V_{F S}}{2^{n} \times T_{C}}
$$

where $V_{F S}$ is the full scale voltage of the A / D. Note that slew induced errors are not affected by the MUX switch time since we can let the unit settle before starting conversion.

Example:Let $\mathrm{T}_{\mathrm{C}}=40 \mu \mathrm{~s}$ (MM4357), $\mathrm{V}_{\mathrm{FS}}=10 \mathrm{~V}$ and $\mathrm{n}=8$.

$$
\left.\frac{\Delta V_{\mathbb{I N}}}{\Delta \mathrm{t}}\right|_{\max }<\frac{1 \mathrm{mV}}{\mu \mathrm{~s}}
$$

which is a very small number. A 10 Vp -p sine wave of a frequency greater than 32 Hz will have higher slew rate than this. The maximum throughput rate of the above 8 -channel system would be calculated using both the A/D conversion time and the sum of MUX switch "ON" time and settling time, i.e.:

$$
\begin{aligned}
& \text { Th. }\left.R\right|_{\max }=\frac{1}{8\left(T_{C}+T_{M U X}\right)}=\begin{array}{c}
\text { channel } \\
\text { camples } / \mathrm{sec} / \\
T_{M U X}=T_{O N}+T_{S(O N)}
\end{array}
\end{aligned}
$$

Also notice that Nyquist sampling criteria would allow each channel to have a signal bandwidth of 1.5 kHz max, while the slew limit dictates a maximum frequency of 32 Hz . If the input signal has a peak-to-peak voltage less than 10 V , the allowable maximum input frequency can be calculated by:

$$
f_{\text {MAX }}=\frac{(\text { Slew Rate })_{\max }}{\pi V p-p}
$$

On the other hand, if the input voltage is not bandlimited a low pass filter with an attenuation of 30 dB or better at 1.5 kHz , should be connected in front of the MUX.

1. Improving System Speed with a Sample and Hold

The system speed can be improved by using the S/H shown in Figure 5. This allows a much greater rate of change of V_{IN}.

$$
\left.\frac{\Delta V_{\text {IN }}}{\Delta t}\right|_{\max }<\frac{V_{F S}}{2^{n} \times T_{A}}
$$

where T_{A} is the aperture time of the S / H. This represents an input slew rate improvement by a factor: T_{C} / T_{A}. Here again, the slew rate error is not affected by the acquisition time of the Sample and Hold since conversion will start after the S/H has settled. An important thing to notice is that the sample and hold errors will add to the total system error budget; therefore, the inequality of the $\Delta V_{I N} / \Delta t$ expression should become more stringent.

Example: $\mathrm{T}_{\mathrm{C}}=40 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{A}}=0.5 \mu \mathrm{~s}, \mathrm{n}=8: \mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{A}}=80$

So the use of a S/H allows a speed improvement by nearly two orders of magnitude.

The maximum throughput rate can be calculated by:

Notice that $T_{M U X}$ does not affect the $\Delta \mathrm{V}_{\mathrm{IN}} / \Delta \mathrm{t}$ expression nor the throughput rate of the system since it may be switched and settled while the Sample and Hold is in the Hold mode. This is true, provided that: $T_{\text {MUX }}<T_{A}+T_{C}$.

C. SYSTEM EXAMPLE (Figure 7)

The LF398 S/H with a 1000 pF hold capacitor, has an acquisition time of 4μ so 0.1% ($1 / 4$ LSB error for 8 bits) and an aperture time of less than $200 \mu \mathrm{~s}$. On the other hand, after the hold command, the output will settle to $\pm 0.05 \mathrm{mV}$ in $1 \mu \mathrm{~s}$. This, together with the acquisition time, introduces approximately a $\pm 1 / 4$ LSB error. Allowing another $1 / 4$ LSB error for hold step and gain non-linearity, the maximum slew error (\triangle VIN/ Δt) should not exceed $1 / 4$ LSB or:

$$
\frac{\Delta V_{I N}}{\Delta t} \leq \frac{1}{4} \times \frac{1}{256} \times \frac{1}{T_{A}} \approx 5 \mathrm{mV} / \mu \mathrm{s}
$$

(which is the maximum slew rate of a 5 V peak sine wave. Also notice that, due to the above input slew restrictions, the analog delay caused by the finite BW of the S / H and the digital delay caused by the response time of the controller will be negligible. The maximum throughput rate of the system is:

$$
\text { Th. R }\left.\right|_{\max }=\frac{1}{8(5+40) 10^{-6}}=2800 \text { samples } / \mathrm{sec} /
$$

If the system speed requirements are relaxed, but the A/D converter is still too slow, then an inexpensive S/H can be built by using just a capacitor and a low cost FET input op amp as shown in Figure 8.

Typical Applications（Continued）

Typical Applications (Continued)

D. DOUBLING THE SYSTEM CHANNEL CAPABILITY

This is done in two different ways. First, we can use second level multiplexing with speed benefits, as shown in Figure 9. A fast 2-channel multiplexer, made by the dual analog switch AM182, accepts the outputs of each 8 -channel MUX, LF13508, and then feeds them sequentially into an 8 -bit successive approximation A / D converter. With this technique, the throughput rate of the system can again be made independent of the the LF13508 speed. Looking at the timing diagram, when the A / D converter converts the analog value of an upper multiplexer channel, we switch channels in the lower multiplexer for the next conversion. This can be done provided that:

$T_{\text {Mux }} \leq T_{C}+1 \mathrm{CP}$

The LF356 connected as unity. gain buffers are used because of the low input impedance of the A/D; they are connected between multiplexers for speed optimization. With a maximum clock frequency of 4.5 MHz :

Th. $R=\frac{10^{6}}{16 \times 2}=31.25 \mathrm{k}$ samples $/ \mathrm{sec} / \mathrm{channel}$

An alternate way to increase the system channel is shown in Figure 10, where the enable pins are used to disable one MUX while the other is sampling. With this method, many 8 -channel multiplexers can be connected, but the parasitic capacitance at the common output node will keep increasing and will eventually degrade the settling time, $\mathrm{t}_{\mathrm{s}}(\mathrm{ON})$. Also, the MUX speed will now affect the system throughput. If, for instance, this method was used instead of second level multiplexing, the system of Figure 9 will lose half of its speed. If, however, speed is not the prime system requirement, the approach of Figure 10 is more cost effective.

E. DIFFERENTIAL INPUT SYSTEMS

Systems operating in industrial environments may require an instrumentation amplifier to separate the desired analog signal from any common-mode signal present. The LF11509 was designed to provide 4 pairs of differential input signals to the input of an instrumentation amplifier for further process. A 4 -channel preconditioning circuit is shown in Figure 11 and a complete system is shown in Figure 12.
and

$$
\left.\frac{\Delta V_{I N}}{\Delta \mathrm{t}}\right|_{\max } ^{<} \frac{10}{256} \times \frac{1}{2 \mu \mathrm{~s}}=19.5 \mathrm{mV} / \mu \mathrm{s} \text { for } 10 \mathrm{~V}_{\mathrm{FS}}
$$

FIGURE 8. Inexpensive Sample and Hold

Typical Applications (Continued)

FIGURE 9a. A Fast 16-Channel DAU with Second Level Multiplexing

FIGURE 9b. Timing Diagram

Typical Applications (Continued)

FIGURE 10. A 16-Channel Multiplexer with Sequential Multiplexing

Typical Applications (Continued)

- ${ }^{\dagger}$ CLOCK $\max =200 \mathrm{kHz}$
- The LF352 instrumentation amplifier is auto zeroed during offset correction cycle of the LF13300 A/D
- The system accuracy will mostly depend on the instrumentation amplifier gain linearity

FIGURE 12a. 4-Channel Differential Multiplexer with Auto Zeroed Instrumentation Amplifier and 12-Bit A/D Converter

FIGURE 12b. System Timing Diagram for Differential MUX

Schematic Diagrams

Section 7
Sample and Hold

Sample and Hold

Section Contents

Sample and Hold Selection Guide 7-3
Definition of Terms 7-4
LF198/LF298/LF398, LF198A/LF398A Monolithic Sample and Hold Circuits 7-5
LH0023/LH0023C, LH0043/LH0043C Sample and Hold Circuits 7-14
LH0053/LH0053C High Speed Sample and Hold Amplifier 7-22

Note. For additional information on sample and hold, see National Semiconductor's Hybrid Products Databook.

	LF198A	LF398A	LF198	LF398	LH0023	LH0023C	LH0043	LH0043C
Accuracy (\% Max) Gain/Offset Error	0.01	0.01	0.02	0.02	0.01	0.02	0.1	0.3
Offset Voltage (mV Max)	2	3	5	10	20	20	40	40
$\begin{gathered} \text { Droop Rate }\left(\mathrm{mV} / \mathrm{sec}, 25^{\circ} \mathrm{C}\right) \\ \mathrm{C}_{\mathrm{S}}=1000 \mathrm{pF} \\ \mathrm{C}_{\mathrm{S}}=10000 \mathrm{pF} \\ \hline \end{gathered}$	$\begin{aligned} & 30 \\ & 3 \end{aligned}$	$\begin{aligned} & 30 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 3 \end{aligned}$	$\begin{aligned} & 30 \\ & 3 \end{aligned}$	$\begin{aligned} & 100 \\ & 10 \end{aligned}$	$\begin{aligned} & 100 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 1 \end{aligned}$
$\begin{gathered} \text { Acquisition Time (} \mu \mathrm{s}, 25^{\circ} \mathrm{C} \text {) } \\ \mathrm{C}_{\mathrm{S}}=1000 \mathrm{pF} \\ \mathrm{C}_{\mathrm{S}}=10000 \mathrm{pF} \end{gathered}$	$\begin{aligned} & 4 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \end{aligned}$						
Aperture Time (ns, $25^{\circ} \mathrm{C}$)	25	25	25	25	150	150	20	20
Temperature Range (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & -55 \text { to } \\ & +125 \end{aligned}$	$\begin{aligned} & 0 \text { to } \\ & +70 \end{aligned}$	$\begin{aligned} & -55 \text { to } \\ & +125 \end{aligned}$	$\begin{aligned} & 0 \text { to } \\ & +70 \end{aligned}$	$\begin{aligned} & -55 \text { to } \\ & +125 \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85 \end{aligned}$	$\begin{aligned} & -55 \text { to } \\ & +125 \end{aligned}$	$\begin{aligned} & -25 \text { to } \\ & +85 \end{aligned}$
Comment	Low Drift	Low Drift	General Purpose	General Purpose	Low Drift	Low Drift	Medium Speed	Medium Speed

Sample and Hold

Definition of Terms

Acquisition Time: The time required to acquire a new analog input voltage with an output step of 10 V . Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.

Aperture Time: The delay required between "Hold" command and an input analog transition, so that the transition does not affect the held output.

Dynamic Sampling Error: The error introduced into the held output due to a changing analog input at the time the hold command is given. Error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.

Gain Error: The ratio of output voltage swing to input voltage swing in the sample mode expressed as a percent difference.

Hold Settling Time: The time required for the output to settle within 1 mV of final value after the "hold" logic command.

Hold Step: The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (dc) analog input voltage. Logic swing is 5 V .

General Description

The LF198/LF298/LF398 are monolithic sample and hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as $6 \mu \mathrm{~s}$ to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of $10^{10} \Omega$ allows high source impedances to be used without degrading accuracy.

P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as $5 \mathrm{mV} / \mathrm{min}$ with a $1 \mu \mathrm{~F}$ hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feedthrough from input to output in the hold mode even for input signals equal to the supply voltages.

Features

- Operates from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies
- Less than $10 \mu \mathrm{~s}$ acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5 mV typical hold step at $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$
- Low input offset
- 0.002\% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth

Logic inputs on the LF198 are fully differential with low input current, allowing direct connection to TTL, PMOS, and CMOS. Differential threshold is 1.4 V . The LF198 will operate from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies. It is available in an 8 -lead TO-5 package.
$A n$ " A " version is available with tightened electrical specifications.

Typical Applications

Absolute Maximum Ratings

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Package Limitation) (Note 1)	500 mW
Operating Ambient Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LF198/LF198A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LF298	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LF398/LF398A	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Input Voltage
Equal to Supply Voltage
Logic To Logic Reference Differential Voltage +7V, -30V (Note 2)
Output Short Circuit Duration Indefinite
Hold Capacitor Short Circuit Duration
Lead Temperature (Solderíng, 10 seconds) $300^{\circ} \mathrm{C}$

Electrical Characteristics
 (Note 3)

Electrical Characteristics (Continued) (Note 3)

Note 1: The maximum junction temperature of the LF198/LF198A is $150^{\circ} \mathrm{C}$, for the LF298, $115^{\circ} \mathrm{C}$, and for the LF398/LF398A, $100^{\circ} \mathrm{C}$. When operating at elevated ambient temperature, the power dissipation must be derated based on a thermal resistance ($\Theta_{j A}$) of $150^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Although the differential voltage may not exceed the limits given, the common-mode voltage on the logic pins may be equal to the supply voltages without causing damage to the circuit. For proper logic operation, however, one of the logic pins must always be at least 2 V below the positive supply and 3 V above the negative supply.
Note 3: Unless otherwise specified, the following conditions apply. Unit is in "sample" mode, $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C},-11.5 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq+11.5 \mathrm{~V}$, $C_{h}=0.01 \mu \mathrm{~F}$, and $R_{L}=10 \mathrm{k} \Omega$. Logic reference voltage $=0 \mathrm{~V}$ and logic voltage $=2.5 \mathrm{~V}$.
Note 4: Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF , for instance, will create an additional 0.5 mV step with a 5 V logic swing and a $0.01 \mu \mathrm{~F}$ hold capacitor. Magnitude of the hold step is inversely proportional to hold capacitor value.
Note 5: Leakage current is measured at a junction temperature of $25^{\circ} \mathrm{C}$. The effects of junction temperature rise due to power dissipation or elevated ambient can be calculated by doubling the $25^{\circ} \mathrm{C}$ value for each $11^{\circ} \mathrm{C}$ increase in chip temperature. Leakage is guaranteed over full input signal range.
Note 6: These parameters guaranteed over a supply voltage range of ± 5 to $\pm 18 \mathrm{~V}$.

Typical Performance Characteristics

LF198/LF298/LF398, LF198A/LF398A
Typical Performance Characteristics (Continued)

Feedthrough Rejection Ratio

Phase and Gain (Input to Output,

(o) A甘7ヨa 3s४hd Indino ol IndNI

Output Short Circuit Current (Hold Mode)

Output Noise

Hold Step vs Input Voltage

Application Hints

Hold Capacitor

Hold step, acquisition time, and droop rate are the major trade-offs in the selection of a hold capacitor value. Size and cost may also become important for larger values. Use of the curves included with this data sheet should be helpful in selecting a reasonable value of capacitance. Keep in mind that for fast repetition rates or tracking fast signals, the capacitor drive currents may cause a significant temperature rise in the LF198.

A significant source of error in an accurate sample and hold circuit is dielectric absorption in the hold capacitor. A mylar cap, for instance, may "sag back" up to 0.2% after a quick change in voltage. A long "soak" time is required before the circuit can be put back into the hold mode with this type of capacitor. Dielectrics with very low hysteresis are polystyrene, polypropylene, and Teflon. Other types such as mica and polycarbonate are not nearly as good. Ceramic is unusable with $>1 \%$ hysteresis. The advantage of polypropylene over polystyrene is that it extends the maximum ambient temperature from $85^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. " NPO " or " COG " capacitors are now available for $125^{\circ} \mathrm{C}$ operation and also have low dielectric absorption. For more exact data, see the curve labeled dielectric absorption error vs sample time. The hysteresis numbers on the curve are final values, taken after full relaxation. The hysteresis error can be significantly reduced if the output of the LF198 is digitized quickly after the hold mode is initiated. The hysteresis relaxation time constant in polypropylene, for instance, is $10-50 \mathrm{~ms}$. If A-to-D conversion can be made within 1 ms , hysteresis error will be reduced by a factor of ten.

DC and AC Zeroing

DC zeroing is accomplished by connecting the offset adjust pin to the wiper of a $1 \mathrm{k} \Omega$ potentiometer which has one end tied to V^{+}and the other end tied through a resistor to ground. The resistor should be selected to give $\approx 0.6 \mathrm{~mA}$ through the 1 k potentiometer.

AC zeroing (hold step zeroing) can be obtained by adding an inverter with the adjustment pot tied input to output. A 10 pF capacitor from the wiper to the hold capacitor will give $\pm 4 \mathrm{mV}$. hold step adjustment with a $0.01 \mu \mathrm{~F}$ hold capacitor and 5 V logic supply. For larger logic swings, a smaller capacitor $(<10 \mathrm{pF})$ may be used.

Logic Rise Time

For proper operation, logic signals into the LF 198 must have a minimum $\mathrm{dV} / \mathrm{dt}$ of $1.0 \mathrm{~V} / \mu \mathrm{s}$. Slower signals will cause excessive hold step. If a R/C network is used in front of the logic input for signal delay, calculate the slope of the waveform at the threshold point to ensure that it is at least $1.0 \mathrm{~V} / \mu \mathrm{s}$.

Sampling Dynamic Signals

Sample error due to moving input signals probably causes more confusion among sample-and-hold users than any other parameter. The primary reason for this is that many users make the assumption that the sample and hold amplifier is truly locked on to the input signal while in the sample mode. In actuality, there are finite
phase delays through the circuit creating an input-output differential for fast moving signals. In addition, although the output may have settled, the hold capacitor has an additional lag due to the 300Ω series resistor on the chip. This means that at the moment the "hold" command arrives, the hold capacitor voltage may be somewhat different than the actual analog input. The effect of these delays is opposite to the effect created by delays in the logic which switches the circuit from sample to hold. For example, consider an analog input of $20 \mathrm{Vp-p}$ at 10 kHz . Maximum $\mathrm{dV} / \mathrm{dt}$ is $0.6 \mathrm{~V} / \mu \mathrm{s}$. With no analog phase delay and 100 ns logic delay, one could expect up to $(0.1 \mu \mathrm{~s})(0.6 \mathrm{~V} / \mu \mathrm{s})=60 \mathrm{mV}$ error if the "hold" signal arrived near maximum $\mathrm{dV} / \mathrm{dt}$ of the input. A positive-going input would give a +60 mV error. Now assume a $1 \mathrm{MHz}(3 \mathrm{~dB})$ bandwidth for the overall analog loop. This generates a phase delay of 160 ns . If the hold capacitor sees this exact delay, then error due to analog delay will be $(0.16 \mu \mathrm{~s})(0.6 \mathrm{~V} / \mu \mathrm{s})=-96 \mathrm{mV}$. Total output error is +60 mV (digital) -96 mV (analog) for a total of -36 mV . To add t : the confusion, analog delay is proportional to hold capacitor value while digital delay remains constant. A family of curves (dynamic sampling error) is included to help estimate errors.

A curve labeled Aperture Time has been included for sampling conditions where the input is steady during the sampling period, but may experience a sudden change nearly coincident with the "hold" command. This curve is based on a 1 mV error fed into the output.

A second curve, Hold Settling Time indicates the time required for the output to settle to 1 mV after the "hold" command.

Digital Feedthrough

Fast rise time logic signals can cause hold errors by feeding externally into the analog input at the same time the amplifier is put into the hold mode. To minimize this problem, board layout should keep logic lines as far as possible from the analog input. Grounded guarding traces may also be used around the input line, especially if it is driven from a high impedance source. Reducing high amplitude logic signals to 2.5 V will also help.

Use 10-pin layout. Guard around C_{h} is tied to output.

Logic Input Configurations

TTL \＆CMOS

$\mathbf{3 V} \leq \mathrm{V}_{\mathbf{L}}(\mathbf{H i}$ State $) \leq \mathbf{7 V}$

Threshold $=1.4 \mathrm{~V}$

cMOS
$\mathbf{7 V} \leq \mathrm{V}_{\mathrm{L}}(\mathrm{Hi}$ State $) \leq 15 \mathrm{~V}$

Op Amp Drive

Typical Applications（Continued）

Sample and Difference Circuit （Output Follows Input in Hold Mode）

＊For lower gains，the LM108 must be frequency compensated
Use $\approx \frac{100}{A_{V}} \mathrm{pF}$ from comp 2 to ground

Typical Applications (Continued)

DC \& AC Zeroing

*Select for step height $50 \mathrm{k} \rightarrow \simeq 1 \mathrm{~V}$ Step

Typical Applications (Continued)

Definition of Terms

Hold Step: The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (dc) analog input voltage. Logic swing is 5 V .

Acquisition Time: The time required to acquire a new analog input voltage with an output step of 10 V . Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.

Gain Error: The ratio of output voltage swing to input voltage swing in the sample mode expressed as a per cent difference.

Connection Diagrams

Order Number LF398N or LF398AN See NS Package NO8A

Hold Settling Time: The time required for the output to settle within 1 mV of final value after the "hold" logic command.

Dynamic Sampling Error: The error introduced into the held output due to a changing analog input at the time the hold command is given. Error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.

Aperture Time: The delay required between "Hold" command and an input analog transition, so that the transition does not affect the held output.

National Semiconductor

Sample and Hold

LH0023/LH0023C, LH0043/LH0043C Sample and Hold Circuits

General Description

The LH0023/LH0023C and LH0043/LH0043C are complete sample and hold circuits including input buffer amplifier, FET output amplifier, analog signal sampling gate, TTL compatible logic circuitry and level shifting. They are designed to operate from standard $\pm 15 \mathrm{~V}$ DC supplies, but provision is made on the LH0023/LH0023C for connection of a separate +5 V logic supply in minimum noise applications. The principal difference between the LHOO23/LHOO23C and the LH0043/LH0043C is a 10:1 trade-off in performance on sample accuracy vs sample acquisition time. Devices are pin compatible except that TTL logic is inverted between the two types.
The LH0023/LH0023C and LH0043/LH0043C are ideally suited for a wide variety of sample and

Features

LH0023/LH0023C

- Sample accuracy-0.01\% max
- Hold drift rate- $0.5 \mathrm{mV} / \mathrm{sec}$ typ
- Sample acquisition time-100 μ s max for 20 V
- Aperture time-150 ns typ
- Wide analog range- $\pm 10 \mathrm{~V}$ min
- Logic input-TTL/DTL
- Offset adjustable to zero with single 10 k pot
- Output short circuit proof
hold applications including data acquisition, analog to digital conversion, synchronous demodulation, and automatic test setup. They offer significant cost and size reduction over equivalent module or discrete designs. Each device is available in a hermetic TO-8 package and are completely specified over both full military and instrument temperature ranges.

The LHOO23 and LH0O43 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0O23C and LH0043C are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

LH0043/LH0043C

- Sample acquisition time-15 μ s max for 20 V
- Aperture time-20 nS typ
- Hold drift rate-1 $\mathrm{mV} / \mathrm{sec}$ typ
- Sample accuracy-0.1\% max
- Wide analog range $- \pm 10 \mathrm{~V} \mathrm{~min}$
- Logic input-TTL/DTL
- Offset adjustable to zero with single 10 k pot
- Output short circuit proof

Block and Connection Diagrams

Electrical Characteristics LH0о43/LH0043C: (Note 2)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0043			LH0043C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Hold (Logic " 1 ") Input Voltage	.	2.0			2.0			V
Hold (Logic " 1 ") Input Current	$V_{6}=2.4 \mathrm{~V}$			5.0			5.0	$\mu \mathrm{A}$
Sample (Logic " 0 ") Input Voltage	-			0.8			0.8	V
Sample (Logic " 0 ") Input Current	$V_{6}=0.4 \mathrm{~V}$			1.5			1.5	mA
Analog Input Voltage Range		± 10	± 11		± 10	± 11		V
Supply Current	$\begin{aligned} & V_{5}=0 V, V_{6}=2 V, V_{11}=0 V \\ & V_{5}=0 V, V_{6}=0.4 V \\ & V_{11}=0 V \end{aligned}$		$\begin{aligned} & 20 \\ & 14 \end{aligned}$	$\begin{aligned} & 22 \\ & 18 \end{aligned}$		$\begin{aligned} & 20 \\ & 14 \end{aligned}$	$\begin{aligned} & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Sample Accuracy	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$ (Full Scale)		0.02	0.1		0.02	0.3	\%
DC Input Resistance	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	10^{10}	10^{12}		10^{10}	10^{12}		Ω
Input Current - I_{5}			1.0	5.0		2.0	10.0	nA
Input Capacitance	.		1.5			1.5		pF
Leakage Currentpin 1	$\begin{aligned} & V_{5}= \pm 10 \mathrm{~V} ; V_{11}= \pm 10 \\ & T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & V_{5}= \pm 10 \mathrm{~V} ; V_{11}= \pm 10 \mathrm{~V} \end{aligned}$		10 10	25 25		20 2	50 \cdot 5	pA nA
Drift Rate	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{C}_{\mathrm{S}}=0.001 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$		10	25		20	50	mV / s
Drift Rate	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{C}_{\text {S }}=0.001 \mu \mathrm{~F}$		10	25		2	5	$\mathrm{mV} / \mathrm{ms}$
Drift Rate	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F}, \\ & T_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$		1 -	2.5		2	5	mV / s
Drift Rate	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{C}_{\text {S }}=0.01 \mu \mathrm{~F}$		1	2.5		0.2	0.5	$\mathrm{mV} / \mathrm{ms}$
Aperture Time			20°	60		20	60	n's
Sample Acquisition Time	$\begin{aligned} & \Delta V_{\text {OUT }}=20 \mathrm{~V}, \mathrm{C}_{\mathrm{S}}=0.001 \mu \mathrm{~F} \\ & \Delta \mathrm{~V}_{\text {OUT }}=20 \mathrm{~V}, \mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F} \\ & \Delta \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{S}}=0.001 \mu \mathrm{~F} \end{aligned}$		10 $+\quad 30$ 4	15 50		10 30 4	15 50	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
Output Amplifier Slew Rate	$V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{C}_{\text {S }}=0.001 \mu \mathrm{~F}$	1.5	3.0		1.5	3.0		$\mathrm{V} / \mu \mathrm{s}$
Output Offset Voltage (without null)	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}, \mathrm{V}_{5}=0 \mathrm{~V}, \mathrm{~V}_{6}=0 \mathrm{~V}$		-	± 40			± 40	mV
Analog Voltage Output Range	$R_{L} \geq 1 \mathrm{k}, \mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$ $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	± 11 ± 12		$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 11 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & V \\ & V \end{aligned}$

Note 2: Unless otherwise noted, these specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$, pin 9 grounded, a 5000 pF capacitor connected between pin 1 and ground over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0043, and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LH0043C. All typical values are for $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

(LH0023)

Typical Applications

Typical Applications (Continued)

Forcing Function Setup for Automatic Test Gear

*See op amp selection guide for details. Most popular types include LH0052, LM108, LM112, LH0044, LH0036, and LH0038.
Data Acquisition System

Two Channel Double Sideband Demodulator
Schematic Diagrams
LH0043/LH0043C

LH0023/LH0023C

Applications Information

1.0 Drift Error Minimization

In order to minimize drift error, care in selection of C_{S} and layout of the printed circuit board is required. The capacitor should be of high quality Teflon, polycarbonate, or polystyrene construction. Board cleanliness and layout are critical particularly at elevated temperatures. See AN-63 for detailed recommendations. A guard conductor connected to the output surrounding the storage node (pin 1) will be helpful in meeting severe environmental conditions which would otherwise cause leakage across the printed circuit board.

2.0 Capacitor Selection

The size of the capacitor is dictated by the required drift rate and acquisition time. The drift is determined by the leakage current at pin 1 and may be calculated by $\frac{d V}{d t}=\frac{I_{L}}{C_{S}}$, where I_{L} is the total leakage current at pin 1 of the device, and C_{S} is the value of the storage capacitor.

2.1 Capacitor Selection - LH0023

At room temperature leakage current for the LH0023 is approximately 100 pA . A drift rate of $10 \mathrm{mV} / \mathrm{sec}$ would require a $0.01 \mu \mathrm{~F}$ capacitor.

For values of C_{S} up to $0.01 \mu \mathrm{~F}$ the acquisition time is limited by the slew rate of the input buffer amplifier, A1, typically $0.5 \mathrm{~V} / \mu \mathrm{s}$. Beyond this point, current availability to charge C_{S} also enters the picture. The acquisition time is given by:

$$
t_{A} \cong \sqrt{\frac{2 \Delta e_{O} R C_{S}}{0.5 \times 10^{6}}}=2 \times 10^{-3} \sqrt{\Delta e_{O} R C_{S}}
$$

where: $R=$ the internal resistance in series with C_{S}

$$
\Delta e_{\mathrm{O}}=\text { change in voltage sampled }
$$

An average value for R is approximately 600 ohms. The expression for t_{A} reduces to:

$$
t_{A} \cong \frac{\sqrt{\Delta e_{O} C_{S}}}{20}
$$

For a -10 V to +10 V change and $\mathrm{C}_{\mathrm{S}}=.05 \mu \mathrm{~F}$, acquisition time is typically 50μ s.

2.2 Capacitor Selection-LH0043

At $25^{\circ} \mathrm{C}$ case temperature, the leakage current for the LH0043G is approximately 10 pA , so a drift rate of $5 \mathrm{mV} / \mathrm{s}$ would require a capacitor of $\mathrm{C}_{\mathrm{S}}=10 \cdot 10^{-12} / 5 \cdot 10^{-3}=2000 \mathrm{pF}$ or larger.

For values of C_{S} below about 5000 pF , the acquisition time of the LH0043G will be limited by the slew rate of the output amplifier (the signal will be acquired, in the sense that the voltage
will be stored on the capacitor, in much less time as dictated by the slew rate and current capacity of the input amplifier, but it will not be available at the output). For larger values of storage capacitance, the limitation is the current sinking capability of the input amplifier, typically 10 mA . With $\mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F}$, the slew rate can be estimated by $\frac{d V}{d t}=\frac{10 \cdot 10^{-3}}{0.01 \cdot 10^{-6}}=1 \mathrm{~V} / \mu$ s or a slewing time for a 5 volt signal change of $5 \mu \mathrm{~s}$.

3.0 Offset Null

Provision is made to null both the LH0O23 and LH0043 by use of a 10 k pot between pins 3 and 4 . Offset null should be accomplished in the sample mode at one half the input voltage range for minimum average error.

4.0 Switching Spike Minimization-LH0043

A capacitive divider is formed by the storage capacitor and the capacitance of the internal FET switch which causes a small error current to be injected into the storage capacitor at the termination of the sample interval. This can be considered a negative DC offset and nulled out as described in (3.0), or the transient may be nulled by coupling an equal but opposite signal to the storage capacitor. This may be accomplished by connecting a capacitor of about 30 pF (or a trimmer) between the logic input (pin 6) and the storage capacitor (pin 1). Note that this capacitor must be chosen as carefully as the storage capacitor itself with respect to leakage. The LHOO23 has switch spike minimization circuitry built into the device.

5.0 Elimination of the 5V Logic Supply-LH0023

The 5 V logic supply may be eliminated by shorting pin 7 to pin 8 which connects a 10 k dropping resistor between the +15 V and V_{C}. Decoupling pin 8 to ground through $0.1 \mu \mathrm{~F}$ disc capacitor is recommended in order to minimize transients in the output.

6.0 Heat Sinking

The LH0023 and LH0043G may be operated without damage throughout the military temperature range of -55 to $+125^{\circ} \mathrm{C}\left(-25\right.$ to $+85^{\circ} \mathrm{C}$ for the LH0023CG and LH0043CG) with no explicit heat sink, however power dissipation will cause the internal temperature to rise above ambient. A simple clip-on heat sink such as Wakefield \#215-1.9 or equivalent will reduce the internal temperature about $20^{\circ} \mathrm{C}$ thereby cutting the leakage current and drift rate by one fourth at max. ambient. There is no internal electrical connection to the case, so it may be mounted directly to a grounded heat sink.

7.0 Theory of Operation-LH0023

The LH0023/LH0023C is comprised of input buffer amplifier, A1, analog switches, S1 and S2, a

Applications Information (Continued)

TTL to MOS level translator, and output buffer amplifier, A2. In the "sample" mode, the logic input is raised to logic " 1 " $\left(\mathrm{V}_{6} \leq 2.0 \mathrm{~V}\right)$ which closes S1 and opens S2. Storage capacitor, C_{S}, is charged to the input voltage through S1 and the output slews to the input voltage. In the "hold" mode, the logic input is lowered to logic " 0 " $\left(\mathrm{V}_{6} \leq 0.8 \mathrm{~V}\right.$) opening S 1 and closing $\mathrm{S} 2 . \mathrm{C}_{\mathrm{S}}$ retains the sample voltage which is applied to the output via A2. Since S1 is open, the input signal is overridden, and leakage across the MOS switch is therefore minimized. With S1 open, drift is primarily determined by input bias current of A2, typically 100 pA at $25^{\circ} \mathrm{C}$.

7.1 Theory of Operation-LH0043

The LH0043/LH0043C is comprised of input buffer amplifier A1, FET switch S1 operated by a TTL compatible level translator, and output buffer amplifier A2. To enter the "sample" mode, the logic input is taken to the TTL logic " 0 " state ($\mathrm{V}_{6}=0.8 \mathrm{~V}$) which commands the switch S1

closed and allows A1 to make the storage capacitor voltage equal to the analog input voltage. In the "hold" mode ($\mathrm{V}_{6}=2.0 \mathrm{~V}$), S1 is opened isolating the storage capacitor from the input and leaving it charged to a voltage equal to the last analog input voltage before entering the hold mode. The storage capacitor voltage is brought to the output by low leakage amplifier A2.

8.0 Definitions

V_{5} : The voltage at pin 5, e.g., the analog input voltage.
V_{6} : The voltage at pin 6, e.g., the logic control input signal.
V_{11} : The voltage at pin 11, e.g., the output signal.
T_{A} : The temperature of the ambient air.
T_{C} : The temperature of the device case at the center of the bottom of the header.

Acquisition Time:

The time required for the output (pin 11) to settle within the rated accuracy after a specified input change is applied to the input (pin 5) with the logic input (pin 6) in the low state.
Aperture Time:
The time indeterminacy when switching from sample mode to hold including the delay from the time the mode control signal (pin 6) passes through its threshold (1.4 volts) to the time the circuit actually enters the hold mode.

Output Offset Voltage:
The voltage at the output terminal (pin 11) with the analog input (pin 5) at ground and logic input (pin 6) in the "sample" mode. This will always be adjustable to zero using a 10 k pot between pins 3 and 4 with the wiper arm returned to V^{-}.

LH0053/LH0053C High Speed Sample and Hold Amplifier

General Description

The LH0053/LH0053C is a high speed sample and hold circuit capable of acquiring a 20 V step signal in under $5.0 \mu \mathrm{~s}$.

The device is ideally suited for a variety of high speed data acquisition applications including analog buffer memories for A to D conversion and synchronous demodulation.

Features

- Sample acquisition time $10 \mu \mathrm{~s}$ max. for 20 V signal
- FET switch for preset or reset function
- Sample accuracy null
- Offset adjust to OV
- DTL/TTL' compatible FET gate
- Single storage capacitor

Schematic and Connection Diagrams

AC Test Circuit

Acquisition Time Test Circuit

Absolute Maximum Ratings

Supply Voltage (V^{+}and V^{-})
Gate Input Voltage (V_{6})
Analog Input Voltage $\left(\mathrm{V}_{4}\right)$
Input Current (I_{8} and I_{5})
Power Dissipation
Output Short Circuit Duration
Operating Temperature Range

LH0053

LH0053C
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

$$
\pm 18 \mathrm{~V}
$$

$$
\pm 20 \mathrm{~V} \text {. }
$$

$$
\pm 15 \mathrm{~V}
$$

$$
\pm 10 \mathrm{~mA}
$$

$$
1.5 \mathrm{~W}
$$

Continuous

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics (Note 1)

Parameter	Conditions	Limits						Units
		LH0053			LH0053C			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Sample (Gate "0') Input Voltage				0.5			0.5	V
Sample (Gate "0') Input Current	$V_{6}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-5.0			-5.0	$\mu \mathrm{A}$
	$V_{6}=0.5 \mathrm{~V}$			-100			-100	$\mu \mathrm{A}$
Hold (Gate " 1 ') Input Voltage		4.5			4.5			V
Hold (Gate ' 1 ') Input Current	$V_{6}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.0				nA
	$\mathrm{V}_{6}=4.5 \mathrm{~V}$			1.0				$\mu \mathrm{A}$
Analog Input Voltage Range		± 10	± 11		± 10	± 11		\checkmark
Supply Current	$\mathrm{V}_{4}=0 \mathrm{~V}, \mathrm{~V}_{6}=0.5 \mathrm{~V}$		13	18		13	18	mA
Input Bias Current (I_{4})	$V_{4}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		120	250		150	500	nA
Input Resistance		5.0	10	15	5.0	10	15	k Ω
Analog Output Voltage Range	$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$	± 10	± 12		± 10	± 12		V
Output Offset Voltage	$\mathrm{V}_{4}=0 \mathrm{~V}, \mathrm{~V}_{6}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.0	7.0		5.0	10	mV
	$\mathrm{V}_{4}=0 \mathrm{~V}, \mathrm{~V}_{6}=0.5 \mathrm{~V}$			10			15	mV
Sample Accuracy (Note 2)	$\mathrm{V}_{4}= \pm 10 \mathrm{~V}, \mathrm{~V}_{6}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1	0.2		0.1	0.3	\%
Aperture Time	$\Delta V_{6}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	25		10	25	ns
Sample Acquisition Time	$\begin{aligned} & V_{4}= \pm 10 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{F}}=1000 \mathrm{pF}, \mathrm{~V}_{6}=0 \mathrm{~V} \end{aligned}$		5.0	10		8.0	15.	$\mu \mathrm{S}$
Sample Acquisition Time	$\begin{aligned} & V_{4}= \pm 10 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & C_{F}=100 \mathrm{pF}, V_{6}=0 \mathrm{~V} \end{aligned}$		4.0			4.0		$\mu \mathrm{S}$
Output Slew Rate	$\begin{aligned} & \Delta V_{I N}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{F}}=100 \mathrm{pF}, \mathrm{~V}_{6}=0 \mathrm{~V} \end{aligned}$		20			20		$\mathrm{V} / \mu \mathrm{s}$
Large Signal Bandwidth	$\begin{aligned} & V_{4}= \pm 10 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & C_{F}=1000 \mathrm{pF} \end{aligned}$		200			200		kHz
Leakage Current (Pin 5)	$\mathrm{V}_{4}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,		6.0	50		10	100	pA
	$\mathrm{V}_{4}= \pm 10 \mathrm{~V}$			30			30	nA
Drift Rate	$\begin{aligned} & V_{4}= \pm 10 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \\ & C_{F}=1000 \mathrm{pF} \end{aligned}$		6.0	50		10	100	mV / s
Drift Rate	$V_{4}= \pm 10 \mathrm{~V}, \mathrm{C}_{\mathrm{F}}=1000 \mathrm{pF}$			30			30	V/s

Note 1: Unless otherwise noted, these specifications apply for $V_{S}= \pm 15 \mathrm{~V}$, pin 9 grounded, a 1000 pF capacitor between pin 5 and pin 11, pin 3 shorted to pin 11 , over the temperture range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0053 and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LH0053C. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 2: Sample accuracy may be nulled by inserting a potentiometer in the feedback loop. This compensates for source impedance and feedback resistor tolerances.

Typical Performance Characteristics

Sample Acquisition Time

Supply Current vs.
Temperature

Leakage Current at Pin 5

Acquisition Time vs. Temperature

Typical Applications

Increasing Output Drive Capability

Sample and Hold

Applications Information

Source Impedance Compensation

The gain accuracy (linearity) of the LH0053/LH0053C is set by two internal precision resistors. Circuit applications in which the source impedance is non-zero will result in a closed loop gain error, e.g. if $R_{S}=10 \Omega$, a gain error of 0.1% results. Figures 1 and 2 show methods for accomodating non-zero source impedance.

Drift Error Minimization

In order to minimize drift error, care in selecting C_{F} and layout of the printed circuit board are required. The capacitor should be of high quality teflon, polycarbonate, or polystyrene construction. Board layout and clean lines are critical particularly at elevated temperature.

A ground guard (shield) surrounding pin 5 will minimize leakage currents to and from the summing junction, arlsing from extraneous signals. See AN-63 for detailed recommendations.

Capacitor Selection

The size of the capacitor is determined by the required drift rate usually at the expense of acquisition time.

The drift is dictated by leakage current at pin 5 and is given by:

$$
\frac{d v}{d t}=\frac{I_{L}}{C_{F}}
$$

Where I_{L} is the leakage current at pin 5 and C_{F} is the value of the capacitance. The room temperature leakage of the LH0053 is typically 6.0 pA , and a 1000 pF capacitor will yield a drift rate of 6.0 mV per second.

For values of C_{F} below 1000 pF acquisition for the LH0053 is primarily governed by the slew rate of the input amplifier ($20 \mathrm{~V} / \mu \mathrm{s}$) and the setting time of the output amplifier $\left(\cong 1.0 \mu \mathrm{~s}\right.$). For values above $\mathrm{C}_{\mathrm{F}}=1000 \mathrm{pF}$, acquisition time is given by:

$$
t_{a}=\frac{C_{F} \Delta V}{I_{D S S}}+t_{S 2}
$$

Where:
$C_{F}=$ The value of the capacitor
$\Delta \mathrm{V}=$ The magnitude of the input step, e.g. 20 V
loss $=$ The ON current of switch Q1 $\cong 5.0 \mathrm{~mA}$
$\mathrm{t}_{\mathrm{s} 2}=$ The setting time of output amplifier $\cong 1.0 \mu \mathrm{~s}$

Applications Information (Continued)

Figure 1. Non-Zero Source Impedance Compensation

Figure 2. Non-Zero Source Impedance Buffering

Gate Input Considerations

5.0V TTL Applications

The LH0053 Gate input (pin 6) will interface directly with 5.0V TTL. However, TTL gates typically pull up to 2.5 V in the logic " 1 " state. It is therefore advisable to use a $10 \mathrm{k} \Omega$ pull-up resistor between the $5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$, and the output of the gate as shown in Figure 3.

To obtain the highest speed and fastest acquisition time, the gate drive shown in Figure 6 is recommended.

Figure 3. TTL Logic Compatibility

CMOS Applications

The LH0053 gate input may be interfaced directly with $74 \mathrm{C}, \mathrm{CMOS}$ operating off of V_{Cc} 's from 5.0 V to 15 V . However, transient currents of several milliamps can flow on the rising and falling edges of the input signal. It is, therefore, advisable to parallel the outputs of two 54C/74C gates as shown in Figure 4.

It should be noted that leakage at pin 5 in the hold mode will be increased by a factor of 2 to 3 when operating into 15V logic levels.

Figure 4. CMOS Logic Compatibility

Heat Sinking.

The LH0053 may be operated over the military temperature range, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, without incurring damage to the device. However, a clip on heat sink such as the Wakefield 215 Series or Thermalloy 2240 will reduce the internal temperature rise by about $20^{\circ} \mathrm{C}$. The result is a two-fold improvement in drift rate at temperature.

Applications Information (Continued)

Since the case of the device is electrically isolated from the circuit, the LH0053 may be mounted directly to a grounded heat sink.

Power Supply Decoupling

Amplifiers A1 and A2 within the LH0053 are very wide band devices and are sensitive to power supply inductance. It is advisable to bypass V^{+}(pin 12) and V^{-}(pin 10) to ground with $0.1 \mu \mathrm{~F}$ disc capacitors in order to prevent
oscillation. Should this procedure prove inadequate, the disc capacitors should be paralleled with $4.7 \mu \mathrm{~F}$ solid tantalum electrolytic capacitors.

DC Offset Adjust

Output offset error may be adjusted to zero using the circuit shown in Figure 5. Offsèt null should be accomplished in the sample mode ($\mathrm{V}_{6} \leqslant 0.5 \mathrm{~V}$) and analog input (pin 4) equal to zero volts.

Figure 5. Offset Null Circuit

Figure 6. High Speed Gate Drive Circuit

Definition of Terms

Voltage, \mathbf{V}_{4} : The voltage at pin 4, i.e., the analog input voltage.

Voltage, \mathbf{V}_{6} : The voltage at pin 6, i.e., the logic control signal. A logic " 1 " input, $\mathrm{V}_{6} \leqslant 4.5 \mathrm{~V}$, places the LH0053 in the HOLD mode; a logic " 0 " input ($V_{6} \leqslant 0.5 \mathrm{~V}$) places the device in sample mode.

Acquisition Time: The time required for the output (pin 11). to settle within the rated accuracy after a specified input change is applied to Analog Input 1 (pin 4) with logic input, (pin 6) in the logic " 0 " state.

Aperture Time: The time indeterminacy when switching from the "sample" mode to the HOLD mode measured from the time the logic input passes through its threshold (2.0V) to the time the device actually enters the HOLD mode.

Sample Accuracy: Difference between input voltage and output voltage while in the sample mode, expressed as a percent of the input voltage.

Section 8
A to D, D to A

A to \mathbf{D}, \mathbf{D} to \mathbf{A}^{\dagger}

Section Contents

A/D Converter/DVM Selection Guide 8-3
D/A Converter Selection Guide 8.5
Definition of Terms 8.7
DIA Converters
AD7520/AD7530 10-Bit Binary Multiplying D/A Converter 8-8
AD7521/AD7531 12-Bit Binary Multiplying D/A Converter 8-8
DAC0800, DAC0801, DAC0802 8-Bit Digital-to-Analog Converters 8-118
DAC0808, DAC0807, DAC0806 8-Bit D/A Converters 8-126
DAC0830/DAC0831/DAC0832 MICRO-DAC ${ }^{\text {TM }} 8$ 8-Bit μ P Compatible, Double-Buffered D to A Converters 8-133
DAC1000/1/2 and DAC1006/7/8 MICRO-DAC ${ }^{T M}{ }_{\mu}$ P Compatible, Double-Buffered D to A Converters 8-151
DAC1020, DAC1021, DAC1022 10-Bit Binary Multiplying D/A Converter 8-173
DAC1200, DAC1201 12-Bit Digital-to-Analog Converters 8-183
DAC1208, DAC1209, DAC1210, DAC1230, DAC1231, DAC1232 MICRO-DAC ${ }^{\text {TM }}$ 12-Bit, $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converters 8-189
DAC1218, DAC1219 12-Bit Binary Multiplying D to A Converter 8-204
DAC1220, DAC1221, DAC1222 12-Bit Binary Multiplying DIA Converter 8-173
DAC1280A, DAC1280 12-Bit Digital-to-Analog Converters 8-208
DAC1280A-I, DAC1280-I 12-Bit Digital-to-Analog Converters 8-216
DAC1285A, DAC1285 (DAC85, DAC87) 12-Bit Digital-to-Analog Converters 8-220
AID Converters
ADC0800 8-Bit A/D Converter 8-17
ADC0801, ADC0802, ADC0803, ADC0804, ADC0805 8-Bit μ P Compatible A/D Converters 8-28
ADC0808, ADC0809 8-Bit μ P Compatible A/D Converters with 8-Channel Multiplexer 8-60
ADC0816, ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer 8-71
ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer 8-82
ADC1001, ADC1021 10-Bit μ P Compatible A/D Converters 8-89
ADC1080, ADC1280 12-Bit Successive Approximation A/D Converter 8-97
ADC1210, ADC1211 12-Bit CMOS A/D Converters 8-107
Building Blocks
ADB1200 12-Bit Binary A/D Building Block 8-10
DM2502, DM2503, DM2504 Successive Approximation Registers 8-228
LF13300 Integrating A/D Analog Building Block 8-233
LM131A/LM131, LM231A/LM231, LM331A/LM331 Precision Voltage-to-Frequency Converters 8-251
MM54C905/MM74C905 12-Bit Successive Approximation Register 8-262

[^33]| Part
 No. | Resolution (Bits) | Absolute Accuracy (Max) | ConversionTime | Input
 Voltage
 Range | Output Logic Levels | Supplies
 (V) | $\begin{gathered} \text { Temperature } \\ \text { Range }^{*} \\ \hline \end{gathered}$ | | | Package | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | M | 1 | C | | |

A/D CONVERTER

ADC0800	8	$\pm 2 \mathrm{LSB}$	$50 \mu \mathrm{~S}$	$\pm 5 \mathrm{~V}$	TTL, TRI-STATE ${ }^{\oplus}$	$+5,-12$	-		-	18-Pin DIP	
ADC0801	8	$\pm 1 / 4$ LSB	$110 \mu \mathrm{~S}$	5 V	TTL, TRI-STATE	+5	-	-	-	20-Pin DIP	Differential Input
ADC0802	8	$\pm 1 / 2 \mathrm{LSB}$	$110 \mu \mathrm{~S}$	5V	TTL, TRI-STATE	+5	-	-	-	20-Pin DIP	Differential Input
ADC0803	8	$\pm 1 / 2 \mathrm{LSB}$	$110 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		-	-	20-Pin DIP	Differential Input
ADC0804	8	$\pm 1 \mathrm{LSB}$	$110 \mu \mathrm{~S}$	5 V	TTL, TRI-STATE	+5			-	20-Pin DIP	Differential Input
ADC0805	8	± 1 LSB	$110 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		-	-	20-Pin DIP	Works with 5V Reference
ADC0808	8	$\pm 1 / 2 \mathrm{LSB}$	$100 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5	-	-	-	28-Pin DIP	8-Channel MUX
ADC0809	8	$\pm 1 \mathrm{LSB}$	$100 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+ 5		-	-	28-Pin DIP	8-Channel MUX
ADC0816	8	$\pm 1 / 2 \mathrm{LSB}$	$100 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5	-	-	\bullet	40-Pin DIP	16-Channel MUX
ADC0817	8	± 1 LSB	$100 \mu \mathrm{~S}$	5 V	TTL, TRI-STATE	+5		-	-	40-Pin DIP	16-Channel MUX
†ADC0831B	8	$\pm 1 / 2 \mathrm{LSB}$	$80 \mu \mathrm{~S}$	5 V	TTL	+5 to +9		-	-	8-Pin DIP	Serial I/O
†ADC0831C	8	± 1 LSB	$80 \mu \mathrm{~s}$	5 V	TTL	+5 to +9		-	-	8-Pin DIP	Serial I/O
\dagger tadC0832B	8	$\pm 1 / 2$ LSB	$80 \mu \mathrm{~S}$	5 V	TTL	+5 to +9		-	-	8-Pin DIP	2-Channel MUX Serial I/O
†ADC0832C	8	± 1 LSB	$80 \mu \mathrm{~S}$	5 V	TTL	+5 to +9		-	-	8-Pin DIP	2-Channel MUX Serial I/O
ADC0833B	8	$\pm 1 / 2 \mathrm{LSB}$	$80 \mu \mathrm{~S}$	5 V	TTL	+5 to +9		-	-	14-Pin DIP	4-Channel MUX Serial I/O
ADC0833C	8	± 1 LSB	$80 \mu \mathrm{~S}$	5 V	TTL	+5 to +9		-	-	14-Pin DIP	4-Channel MUX Serial I/O
\dagger tadc0834B	8	$\pm 1 / 2 \mathrm{LSB}$	$80 \mu \mathrm{~s}$	5 V	TTL	+5 to +9		-	-	14-Pin DIP	4-Channel MUX Serial I/O
†ADC0834C	8	± 1 LSB	$80 \mu \mathrm{~S}$	5 V	TTL	+ 5 to +9		-	-	14-Pin DIP	4-Channel MUX Serial I/O
†ADC0838B	8	$\pm 1 / 2 \mathrm{LSB}$	$80 \mu \mathrm{~S}$	5 V	TTL	+5 to +9		-	\bullet	20-Pin DIP	8-Channel MUX Serial I/O
†ADC0838C	8	± 1 LSB	$80 \mu \mathrm{~S}$	5 V	TTL	+5 to +9		-	-	20-Pin DIP	8-Channel MUX Serial I/O
†ADC1001B	10	$\pm 1 / 2 \mathrm{LSB}$	$200 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		-	-	20-Pin DIP	Differential Input
ADC1001C	10	$\pm 1 \mathrm{LSB}$	$200 \mu \mathrm{~S}$	5 V	TTL, TRI-STATE	+5		-	-	20-Pin DIP	Differential Input
tADC1021B	10	$\pm 1 / 2 \mathrm{LSB}$	$200 \mu \mathrm{~S}$	5 V	TTL, TRI-STATE	+5		-	-	24-Pin DIP	Differential Input
ADC1021C	10	± 1 LSB	$200 \mu \mathrm{~S}$	5 V	TTL, TRI-STATE	+5		-		24-Pin DIP	Differential Input
tadc1080	10	$\pm 1 / 2 \mathrm{LSB}$	${ }^{18} \mu \mathrm{~S}$	$\pm 10 \mathrm{~V}$	TTL	$+5, \pm 12$ to ± 15		\bullet		32-Pin DIP	With Reference and Clock

Part No.	Resolution (Bits)	Absolute Accuracy (Max)	Conversion Time	Input Voltage Range	Output Logic Levels	Supplies (V)	Temperature Range*			Package	Comments
							M		C		

AID CONVERTER (Continued)

$\begin{aligned} & \text { ADB1200 } \\ & \text { LF13300 } \end{aligned}$	12	$\pm 1 / 2 \mathrm{LSB}$	36 ms	$\pm 11 \mathrm{~V}$	TTL, TRI-STATE	$\begin{aligned} & +5,-15 \\ & \pm 15 \end{aligned}$			-	28-Pin DIP 18-Pin DIP	Dual Slope
ADC1210	12	$\pm 1 / 2 \mathrm{LSB}$	$26 \mu \mathrm{~S}$	10.2 V	CMOS	+5 to ± 15	-	-		24-Pin DIP	
ADC1211	12(10)	± 1 LSB	$30 \mu \mathrm{~S}$	10.2 V	CMOS	+ 5 to ± 15	-	-		24-Pin DIP	
\dagger tade1280	12	$\pm 1 / 2 \mathrm{LSB}$	$22 \mu \mathrm{~S}$	$\pm 10 \mathrm{~V}$	TTL	$+5, \pm 12$ to ± 15		-		32-Pin DIP	With Reference and Clock
ADC3511	$31 / 2$-Digit	0.05\%	200 ms	2V	TTL, TRI-STATE	+ 5			-	24-Pin DIP	Integrating $\mu \mathrm{P}$ Compatible
ADC3711	$33 / 4$-Digit	0.05\%	400 ms	2V	TTL, TRI-STATE	+5			-	24-Pin DIP	Integrating $\mu \mathrm{P}$ Compatible
LM131	V-F	0.01\%	N/A	$\mathrm{V}_{C C}-2 \mathrm{~V}$	N/A	+5 to +40	-	-	-	8-Pin DIP or TO-99 Can	Voltage-to- Frequency Converter 100 kHz Max

DIGITAL VOLTMETER

ADD3501	3 1/2-Digit	0.05%	200 ms	2 V	7-Segment LED Drive	+5		\bullet	$28-$ Pin DIP	3 1/2-Digit LED DVM
ADD3701	3 3/4-Digit	0.05%	400 ms	2 V	7-Segment LED Drive	+5		\bullet	28 -Pin DIP	3 3/4-Digit LED DVM

"Temperature ranges are: " M " is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ambient; " I " is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; " C " is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
tProduct to be announced.

Part No.	Resolution (Bits)	Linearity (a) $25^{\circ} \mathrm{C}$ (Max)	Internal Reference	$\left\|\begin{array}{c} \text { Output } \\ \text { Op } \\ \text { Amp } \end{array}\right\|$	$\begin{aligned} & \text { Settling } \\ & \text { Time } \\ & \text { (+1/2 LSB) } \end{aligned}$	Supplies (V)	Temperature Range*			Package	Comments
							M	1	C		
DAC0800	8	0.19			100 ns	± 5 to ± 15	-		-	16-Pin DIP	High Speed Multiplying
DAC0801	8	0.39			100 ns	± 5 to ± 15	-		\bullet	16-Pin DIP	High Speed Multiplying
DAC0802	8	0.10			100 ns	± 5 to ± 15	\bullet		\bullet	16-Pin DIP	High Speed Multiplying
DAC0806	8	0.78			150 ns	± 5 to ± 15			-	16-Pin DIP	Multiplying
DAC0807	8	0.39			150 ns	± 5 to ± 15			-	16-Pin DIP	Multiplying
DAC0808	8	0.19			150 ns	± 5 to ± 15	-		-	16-Pin DIP	Multiplying
DAC0830	8	0.05			$1 \mu \mathrm{~S}$	5 to 15	-	-	-	20-Pin DIP	${ }_{\mu} \mathrm{P}$ Compatible 4-Quadrant Multiplying
DAC0831	8	0.10			$1 \mu \mathrm{~S}$	5 to 15		-	-	20-Pin DIP	$\mu \mathrm{P}$ Compatible 4-Quadrant Multiplying
DAC0832	8	0.20			$1 \mu \mathrm{~S}$	5 to 15		-	-	20-Pin DIP	$\mu \mathrm{P}$ Compatible 4-Quadrant Multiplying
DAC1000	10	0.05			500 ns	5 to 15	-	-	-	24-Pin DIP	$\mu \mathrm{P}$ Compatible Double Buffered
DAC1001	10	0.1			500 ns	5 to 15		-	\bullet	24-Pin DIP	$\mu \mathrm{P}$ Compatible Double Buffered
DAC1002	10	0.2			500 ns	5 to 15	,	-	-	24-Pin DIP	$\mu \mathrm{P}$ Compatible Double Buffered
DAC1006	10	0.05			500 ns	5 to 15	-	-	-	20-Pin DIP	$\mu \mathrm{P}$ Compatible Double Buffered
DAC1007	10	0.1			500 ns	5 to 15		-	-	20-Pin DIP	$\mu \mathrm{P}$ Compatible Double Buffered
DAC1008	10	0.2			500 ns	5 to 15		\bullet	-	20-Pin DIP	${ }_{\mu} \mathrm{P}$ Compatible Double Buffered
DAC1020	10	0.05			500 ns	5 to 15	-	-	\bullet	16-Pin DIP	4-Quadrant Multiplying
DAC1021	10	0.1			500 ns	5 to 15	-	-	\bullet	16-Pin DIP	4-Quadrant Multiplying
DAC1022	10	0.2			500 ns	5 to 15	-	\bullet	-	16-Pin DIP	4-Quadrant Multiplying
DAC1200	12	0.012		-	$\begin{aligned} & 300 \mathrm{~ns}-\text { I OUT } \\ & 2.5 \mu \mathrm{~s}-\mathrm{V}_{\text {OUT }} \end{aligned}$	± 15	-	\bullet		24-Pin DIP	Current or Voltage Mode
DAC1201	12	0.049	\bullet	-	$\begin{aligned} & 300 \mathrm{~ns}-\mathrm{I}_{\text {OUT }} \\ & 2.5 \mu \mathrm{~s}-\mathrm{V}_{\text {OUT }} \end{aligned}$	± 15	-	-		24-Pin DIP	Current or Voltage Mode
DAC1208	12	0.012			$1 \mu \mathrm{~S}$	5 to 15		-	-	24-Pin DIP	${ }_{\mu} \mathrm{P}$ Compatible 4-Quadrant Multiplying
DAC1209	12	0.024			$1 \mu \mathrm{~S}$	5 to 15		\bullet	-	24-Pin DIP	${ }_{\mu} \mathrm{P}$ Compatible 4-Quadrant Multiplying

Part No.	Resolution (Bits)	Linearity @ $25^{\circ} \mathrm{C}$ (Max)	Internal Reference		$\begin{aligned} & \text { Settling } \\ & \text { Time } \\ & (+1 / 2 \text { LSB }) \end{aligned}$	Supplies (V)	Temperature Range*			Package	Comments
DAC1210	12	0.05			$1 \mu \mathrm{~S}$	5 to 15		-	-	24-Pin DIP	$\mu \mathrm{P}$ Compatible 4-Quadrant Multiplying
DAC1218	12	0.012			$1 \mu \mathrm{~S}$	5 to 15	-		\bullet	18-Pin DIP	4-Quadrant Multiplying
DAC1219	12	0.024			$1 \mu \mathrm{~S}$	5 to 15	-		\bullet	18-Pin DIP	4-Quadrant Multiplying
DAC1220	12	0.05			500 ns	5 to 15	-	-	-	18-Pin DIP	4-Quadrant Multiplying
DAC1221	12	0.1			500 ns	5 to 15	-	-	-	18-Pin DIP	4-Quadrant Multiplying
DAC1222	12	0.2			500 ņ	5 to 15	-	-	-	18-Pin DIP	4-Quadrant Multiplying
DAC1230	12	0.012			$1 \mu \mathrm{~S}$	5 to 15	-	-	-	20-Pin DIP	$\mu \mathrm{P}$ Compatible 4-Quadrant Multiplying
DAC1231	12	0.024			$1 \mu \mathrm{~S}$	5 to 15		-	-	20-Pin DIP	$\mu \mathrm{P}$ Compatible 4-Quadrant Multiplying
DAC1232	12	0.05			$1 \mu \mathrm{~S}$	5 to 15		-	-	20-Pin DIP	$\mu \mathrm{P}$ Compatible 4-Quadrant Multiplying
tDAC1265A	12	0.006	-		200 ns	± 15	-		-	24-Pin DIP	Hi-Speed
†DAC1265	12	0.012	-		200 ns	± 15	-		-	24-Pin DIP	Hi-Speed
DAC1280	12	0.024	-	-	$\left\|\begin{array}{l} 300 \mathrm{~ns}-\mathrm{I}_{\text {OUT }} \\ 2.5 \mu \mathrm{~s}-\mathrm{V}_{\text {OUT }} \end{array}\right\|$	± 15			-	24-Pin DIP	Current or Voltage Mode
DAC1280A	12	0.012	-	-	$\begin{array}{\|c\|} 300 \mathrm{~ns}-\mathrm{I}_{\text {OUT }} \\ 2.5 \mu \mathrm{~s}-\mathrm{V}_{\text {OUT }} \end{array}$	± 11.4 to ± 15.75			-	24-Pin DIP	Current or Voltage Mode
DAC1285	12	0.012	-	-	$\begin{aligned} & 300 \mathrm{~ns}-\mathrm{I}_{\text {OUT }} \\ & 2.5 \mu \mathrm{~s}-\mathrm{V}_{\text {OUT }} \end{aligned}$	± 15	-	-		24-Pin DIP	Current or Voltage Mode
DAC1285A	12	0.012	-	-	$\begin{array}{\|l\|} \hline 300 \mathrm{~ns}-\mathrm{I}_{\text {OUT }} \\ 2.5 \mu \mathrm{~s}-\mathrm{V}_{\text {OUT }} \end{array}$	± 11.4 to ± 15.75	-	-		24-Pin DIP	Current or Voltage Mode

*Ambient temperature range for " M " is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, "l" is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, " C " is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. tProduct to be announced.

Definition of Terms

Accuracy: Sum of all errors: non-linearity, zero-scale, fullscale, temperature drift, etc. Careful-this term is sometimes confused with resolution and/or non-linearity.

Conversion Time: The time required for a complete measurement by an A/D converter.

Full-Scale Error: Deviation from true full-scale output when specified reference voltage is applied.
Full-Scale Tempco: Change in scale error due to temperature, usually expressed in parts per million per degree (ppm/ ${ }^{\circ} \mathrm{C}$).

Monotonicity: A DAC whose output always increases for increasing digital input codes is said to be monotonic, i.e., does not decrease at any point.

Non-Linearity: Worst-case deviation from the line between the endpoints (zero and full-scale). Can be expressed as a percentage of full-scale or in fractions of an LSB. $\pm 1 / 2$ LSB is a desirable specification.
Power-Supply Sensitivity: The sensitivity of a converter to DC changes in power-supply voltages is normally expressed in terms of percentage change in analog input value. Power-supply sensitivity may also be expressed in relation to a specified DC shift of the supply voltage.
Quantizing Error: $\pm 1 / 2$ LSB error inherent in all A/D conversions. Cannot be eliminated.

Ratiometric Converter: The output of án A/D converter is a digital number proportional to the ratio of (some measure of) the input to a reference. Most requirements for conversions call for an absolute measurement, i.e., against a fixed reference. In some cases, where the measurement is
affected by a changing reference voltage, it is advantageous to use that same reference as the reference for the conversion, to eliminate the effect of variation.
Resolution: The most important converter specification. This is the number of steps the full-scale signal can be divided into, and therefore the size of the steps. May be expressed as the number of bits in the digital word, the size of a least significant bit (smallest step) as a percent of fullscale, or an LSB in millivolts (for a given full-scale).

Bits	Steps (2N)	LSB Size (\% of Full-Scale)	LSB Size (10V Fuli-Scale)
6	64	1.588%	158.8 mV
8	256	0.392%	39.2 mV
10	1,024	0.0978%	9.78 mV
12	4,096	0.0244%	2.44 mV
14	16,384	0.0061%	0.61 mV
16	65,536	0.0015%	0.15 mV

Settling Time: Time from change in input until output remains within $\pm 1 / 2$ LSB (or some specified percentage) of final output.

3 1/2 Digit BCD: Maximum output count or display is ± 1.999 (± 2000 counts)-approximately 11 binary bits plus sign.

3 3/4 Digit BCD: Maximum output count or display is ± 3.999 (± 4000 counts)-approximately 12 binary bits plus sign.

National Semiconductor

AD7520/AD7530 10-Bit, AD7521/AD7531 12-Bit Binary Multiplying DIA Converters

General Description

The AD7520 and the AD7521 are, respectively, 10 and 12 -bit binary multiplying digital-to-analog converters. A deposited thin film R-2R resistor ladder divides the reference current and provides the circuit with excellent temperature tracking characteristics (typically $0.0002 \% /{ }^{\circ} \mathrm{C}$ linearity error temperature coefficient). The circuit uses CMOS current switches and drive circuitry to achieve low power consumption (30 mW max) and low leakages (200 nA max). The digital inputs are compatible with DTL/TTL logic levels as well as full CMOS logic level swings. This part, combined with an external amplifier and voltage reference, can be used as a standard D/A converter; however, it is also very attractive for multiplying applications (such as digitally controlled gain blocks) since its linearity error is essentially independent of the voltage reference.

This part is available with 10 -bit (0.05%), 9 -bit (0.10%), and 8 -bit (0.20%) non-linearity. The AD7520L, AD7520K, and AD7520J are direct replacements for
the 10 -bit resolution AD7520 and AD7530 family, and equivalent to AD7533 family. The AD7521K, AD7521J and AD7521L are direct replacements for the 12 -bit resolution AD7521 and AD7531 family. For more information, see DAC1020 data sheet.

Features

- Linearity specified with zero and full-scale adjust only
- Integrated thin film on CMOS structure
- 10-bit or 12 -bit resolution
- Low power dissipation 10 mW @ 15 V typ
- Accepts variable or fixed reference $-25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq$ $+25 \mathrm{~V}$
- 4-quadrant multiplying capability
- Interfaces directly with DTL, TTL and CMOS
- Fast settling time-600 ns typ
- Low feedthrough error-1/2 LSB @ 100 kHz typ

Connection Diagrams

AD7520/AD7530
Dual-In-Line Package

AD7521/AD7531
Dual-In-Line Package

Equivalent Circuit

Ordering Information*

10-BIT D/A CONVERTERS

TEMPERATURE RANGE		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ACCURACY	0.05%	AD7520LN	AD7530LN	AD7520LD	AD7530LD	AD75200D
	0.10%	AD7520KN	AD7530KN	AD7520KD	AD7530KD	AD7520TD
	0.20%	AD7520JN	AD7530JN	AD7520JD	AD7530JD	AD7520SD
PACKAGE OUTLINE		N16A			D16C	

12-BIT D/A CONVERTERS

TEMPERATÜRE RANGE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
	0.05%	AD7521LN	AD7531LN	AD7521LD	AD7531LD	AD7521UD
	0.10%	AD7521KN	AD7531KN	AD7521KD	AD7531KD	AD7521TD
	0.20%	AD7521JN	AD7531JN	AD7521JD	AD7531JD	AD7521SD
PACKAGE OUTLINE		N18A		D18A		D18A

*Note: Devices ordered using these P/N's will be marked with AD7520 series and DAC102X series numbers.

Absolute Maximum Ratings
V^{+}to Gnd
$V_{\text {REF }}$ to Gnd
Digital Input Voltage Range
DC Voltage at Pin 1 or Pin 2 （Note 3）
Storage Temperature Range
Lead Temperature（Soldering， 10 seconds）

17V
$\pm 25 \mathrm{~V}$
V^{+}to Gnd
-100 mV to V^{+} $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range

	MIN	MAX	UNITS
AD7520LN，AD7520KN，AD7520JN	0	+70	${ }^{\circ} \mathrm{C}$
AD7521LN，AD7521KN，AD7521JN	0	+70	${ }^{\circ} \mathrm{C}$
AD7530LN，AD7530KN，AD7530JN	0	+70	${ }^{\circ} \mathrm{C}$
AD7531LN，AD7531KN，AD7531JN	0	+70	${ }^{\circ} \mathrm{C}$
AD7520LD，AD7520KD，AD7520JD	-40	+85	${ }^{\circ} \mathrm{C}$
AD7521LD，AD7521KD，AD7521JD	-40	+85	${ }^{\circ} \mathrm{C}$
AD7530LD，AD7530KD，AD7530JD	-40	+85	${ }^{\circ} \mathrm{C}$
AD7531LD，AD7531KD，AD7531JD	-40	+85	${ }^{\circ} \mathrm{C}$
AD7520UD，AD7520TD，AD7520SD	-55	+125	${ }^{\circ} \mathrm{C}$
AD7521UD，AD7521TD，AD7521SD	-55	+125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified）

Note 1：$V_{R E F}= \pm 10 \mathrm{~V}$ and $V_{\text {REF }}= \pm 1 \mathrm{~V}$ ．
Note 2：Using internal feedback resistor．
Note 3：Both lOUT1 and IOUT2 must go to ground or the virtual ground of an operational amplifier．For every millivolt offset between IOUT1 or IOUT2， 0.005% linearity error will be introduced．
Note 4：To achieve this low feedthrough in D package，the user must ground the metal lid．

ADB1200 12-Bit Binary A/D Building Block

General Description

The ADB1200 is the digital controller for the LF13300D* analog building block. Together they form an integrating 12-bit A/D converter. The ADB1200 provides all the necessary control functions, plus features like auto zeroing, polarity and overrange indication, as well as continuous conversion. The 12 -bit plus sign parallel and serial outputs are TRI-STATE ${ }^{\circledR}$ TTL level compatible. The device also includes output latches to simplify data bus interfacing.
*See LF13300D data sheet for more information

Features

- 12-bit binary output

最 Parallel or serial output

- TRI-STATE output

E Polarity indication

- Overrange indication
- Continuous conversion capability
- 100\% overrange capability
- 5V, -15 V power requirements
- TTL compatible

Clock frequency to 1 MHz

Circuit Diagram/Typical Applications

12-Bit A/D Converter

Absolute Maximum Ratings

Supply Voltage (VSS)	5.25 V
Supply Voltage (VGG)	-16.5 V
Voltage at Any Input	5.25 V
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

$V_{S S}=5 \mathrm{~V}, V_{\mathrm{GG}}=-15 \mathrm{~V}, 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Voltage ($\mathrm{V}_{\text {SS }}$)		4.75	5.00	5.25	V
Power Supply Voltage (VGG)		-13.5	-15.00	-16.5	V
Power Supply Current (ISS)				28	mA
Power Supply Current (IGG)	1			34	mA
Logic " 1 " Input Voltage		3.4			v
Logic " 0 " Input Voltage				0.8	V
Logic "1" Output Voltage	$\mathrm{V}_{\mathrm{SS}}=4.75 \mathrm{~V}, \mathrm{IOH}=100 \mu \mathrm{~A}$	3.8			V
Logic "0" Output Voltage	$\mathrm{V}_{\mathrm{SS}}=5.25 \mathrm{~V}, \mathrm{IOL}=-1.6 \mathrm{~mA}$			0.4	V
Width of EOC	Auto Cycle	5/f			sec
Prop. Delay COMP to EOC		4/f		5/f+1 $\mu \mathrm{s}$	sec
Output Enable Time	$\overline{\mathrm{OE}}$ to Any Data Output, $S C=1, \bar{P} / S=0$			1.0	$\mu \mathrm{s}$
Output Disable Time	$\overline{\mathrm{OE}}$ to Any Data Output, $S C=1, \bar{P} / \grave{S}=0$			2.4	$\mu \mathrm{s}$
Output Enable Time	$\overline{\mathrm{P}} / \mathrm{S}$ to Any Data Output Except Polarity, $\mathrm{SC}=1$, $\overline{O E}=0$			0.9	$\mu \mathrm{s}$
Output Disable Time	$\overline{\mathrm{P}} / \mathrm{S}$ to Any Data Output Except Polarity, $\mathrm{SC}=1$, $\overline{O E}=0$			2.2	${ }^{\text {s }}$
Output Enable Time	SC to Any Data Output, $\overline{\mathrm{OE}}=0, \overline{\mathrm{P}} / \mathrm{S}=0$			1.0	$\mu \mathrm{s}$
Output Disable Time	SC to Any Data Output, $\overline{\mathrm{OE}}=0, \overline{\mathrm{P}} / \mathrm{S}=0$			2.4	$\mu \mathrm{s}$
Prop. Delay Serial Clock	SCLK to POL/SDO			0.6	$\mu \mathrm{s}$
Conversion Time	Full Scate			8966/f	sec
Conversion Time	100\% Overrange			13062/f	sec
Maximum Clock Frequency	CLK, Pin 27	500	1000		kHz
Maximum Serial Clock Frequency	SCLK, Pin 1	500	1000		kHz

Block Diagram

Connection Diagram

Order Number ADB1200PCN

Functional Description

OPERATION

The ADB1200 is designed for use with the LF13300 analog front end. Four control signals are supplied to the LF13300 and 1 control signal is required from the LF13300. The conversion cycle is composed of 5 distinct phases. They are: Phase 1 - Offset Correct; Phase II - Polarity Detect; Phase III - Initialization; Phase IV - Ramp Unknown; Phase V - Ramp Reference.

Phase I - Offset Correct (256 Clock Periods)

This phase is initiated by taking the Start Conversion
 At this time, Offset Correct ($O C$) will be a logic " 1 ". The LF13300 requires this phase to correct any intrinsic offset voltage errors prior to the polarity detect phase.

Phase II - Polarity Detect (256 Clock Periods)

This phase is used to determine polarity of the analog input. At the midpoint of this phase, COMP from the LF13300 is examined for polarity. If COMP = logic " 1 ", then the input voltage is positive. If COMP = logic " 0 ", then the input is negative. The Polarity Detect signal (PD/RU+) will be at a logic " 1 " during this entire phase. The above operation is also necessary to determine which integrator input (positive or negative) of the LF13300 should be used for proper A/D conversion (see LF13300 data sheet).

Phase III - Initialization (256 Clock Periods)

This phase is identical to Phase I and is used by the LF13300 to eliminate any offsets induced as a result of the Polarity Detect Phase. Offset Correct (OC) will be at a logic " 1 ".

Phase IV - Ramp Unknown (4096 Clock Periods)

The unknown input voltage is integrated for a fixed time, 4096 clock periods, during this phase. The result of the Phase II Polarity Detect Cycle determines whether $\mathrm{PD} / \mathrm{RU}+$ or RU- will be at logic " 1 ". If Phase II indicates a positive input, the PD/RU+ signal will be a logic " 1 ". If phase II indicates a negative input, Ramp Negative
(RU-) will be a logic " 1 ". These 2 signals will never be at logic " 1 " simultaneously.

Phase V - Ramp Reference

This phase is a variable length phase depending on the magnitude of the analog input voltage. During this time, Ramp Reference (RR) will be in the logic " 1 " state. When COMP goes to a logic " 0 " state, or when the internal counter reaches 100% of full scale (8192 clock periods), the Ramp Reference (RR) signal goes to the logic " 0 " state, the counter output is loaded into the output register, and the End of Conversion (EOC) signal goes to a logic " 1 ". The Polarity Bit will reflect whatever value was determined during Phase II. The output register will hold the data until a new conversion is completed and new data is loaded into the register. The $\overline{\mathrm{OE}}$ line must be low in the logic " 0 " state and SC must be high in the logic " 1 " state to enable the outputs.

DATA OUTPUTS

Both serial and parallel outputs are available. In either case, $\overline{\mathrm{OE}}$ must be low and SC must be high to enable the outputs. For parallel output, the $\overline{\mathrm{P}} / \mathrm{S}$ line must be low in the logic " 0 " state. For serial outputs, the \bar{P} / S line must be high. In the serial mode, the data is shifted out of the Polarity/Serial Output (POL/SDO) line and all other data outputs are in the high impedance state. Each Serial Clock (SCLK) will right shift the output register one bit. Thus, 13 clock pulses are required to fully shift out the data. The data will be shifted out in the following order: Polarity, Overrange, MSB, 2SB, $3 S B, \ldots$, LSB. If $\overline{O E}$ and \bar{P} / S are in the logic " 0 ' state and SC in the logic " 1 " state, all outputs will momentarily go to the logic " 1 " state for 1 clock period immediately preceding EOC.

CONTINUOUS CONVERT MODE

In this mode, the End of Conversion (EOC) output is connected to the $\overline{\mathrm{OE}}$ input. As long as SC is in the logic " 1 " state, then each EOC will initiate a new conversion. The data outputs will be disabled for the first 5 clock cycles after EOC goes high.

Truth Table

INPUT	SC	OE	P/S	LSB											MSB	OVERRANGE	POLARITY
100\% Full Scale	1	0	0	1	1	1	'1	1	1	1	1	1	1	1	1	1	1
Full Scale	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1
Zero	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Zero	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-Full Scale	1	0	0	1.	1	1	1	1	1	1	1	1	1	1	1	0	0
-100\% Full Scale	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Any	1	1	X	z	Z	z	z	z	z	z	Z	z	z	z	z	z	Z
Any	1	0	1	z	Z	Z	z	Z	z	Z	z	Z	Z	z	z	Z	Serial Output
Any	0	X	X	Z	Z	Z	Z	Z	z	Z	Z	z	Z	z	z	Z	Z
$1=$ High																	
0 = Low																	
$Z=$ High Impedance																	
X $=$ Don't Care																	

Timing Diagrams

FIGURE 1. Parallel Data

Serial Output

FIGURE 2. Serial Data

Timing Diagrams (Continued)

FIGURE 3. Continuous Conversion Mode

FIGURE 4. $i^{\text {th }}$ A/D Converter Data Retrieval Sequence

Typical Applications (Continued)

Multi A/D Converter System on Common Bus

$i^{\text {th }}$ A/D Converter

${ }^{\text {* }}$ May be common or separate. Care should be taken to avoid ground currents
${ }^{* *}$ Direct or multiplexed access to the processor
Note. This application is related to Figure 4 of timing diagrams

General Description

The ADC0800 is an 8 -bit monolithic A/D converter using P-channel ion-implanted MOS technology. It contains a high input impedance comparator, 256 series resistors and analog switches, control logic and output latches. Conversion is performed using a successive approximation technique where the unknown analog voltage is compared to the resistor tie points using analog switches. When the appropriate tie point voltage matches the unknown voltage, conversion is complete and the digital outputs contain an 8 -bit complementary binary word corresponding to the unknown. The binary output is TRI-STATE ${ }^{\circledR}$ to permit bussing on common data lines.

The ADC0800PD is specified over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the ADC0800PCD is specified over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Features

- Low cost
- $\pm 5 \mathrm{~V}, 10 \mathrm{~V}$ input ranges
- No missing codes
- Ratiometric conversion
- TRI-STATE outputs
- Fast
$T_{C}=50 \mu \mathrm{~s}$
- Contains output latches
- TTL compatible
- Supply voltages $5 V_{D C}$ and $-12 V_{D C}$
- Resolution 8 bits
- Linearity ± 1 LSB
- Conversion speed 40 clock periods
- Clock range 50 to 800 kHz

Block Diagram

Absolute Maximum Ratings

Supply Voltage (VDD)
$V_{S S}-22 \mathrm{~V}$ $V_{S S}-22 \mathrm{~V}$ $V_{S S}+0.3 V$ to \(\begin{array}{r}SS-22 \mathrm{~V}
150^{\circ} \mathrm{C}\end{array}\)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics

These specifications apply for $V_{S S}=5.0 V_{D C}, V_{G G}=-12.0 V_{D C}, V_{D D}=0 V_{D C}$, a reference voltage of $10.000 V_{D C}$ across the on-chip R-network ($V_{\text {R-NETWORK }}$ TOP $=5.000 V_{D C}$ and $V_{\text {R-NETWORK }}$ BOTTOM $=-5.000 V_{D C}$), and a clock frequency of 800 kHz . For all tests, a 475Ω resistor is used from pin 5 to ground. Unless otherwise noted, these specifications apply over an ambient temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the ADC0800PD and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the ADC0800PCD.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Non-Linearity	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 1)			± 1	LSB
	Over Temperature, (Note 1)			± 2	LSB
Differential Non-Linearity		.		$\pm 1 / 2$	LSB
Zero Error				± 2	LSB
Zero Error Temperature Coefficient	(Note 2)			0.01	\%/ ${ }^{\circ} \mathrm{C}$
Full-Scale Error				± 2	LSB
Full-Scale Error Tempèrature Coefficient	(Note 2)			0.01	$\% /^{\circ} \mathrm{C}$
Input Leakage				1	$\mu \mathrm{A}$
Logical "1" Input Voltage	All Inputs	$\mathrm{V}_{\text {SS }}{ }^{-1.0}$		$\mathrm{V}_{\text {SS }}$	v
Logical "0' Input Voltage	All Inputs	VGG		$\mathrm{V}_{\text {SS }}{ }^{-4.2}$	V
Logical Input Leakage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \text { All Inputs, } \mathrm{V}_{\mathrm{IL}}= \\ & \mathrm{V}_{S S}-10 \mathrm{~V} \end{aligned}$			1	$\mu \mathrm{A}$
Logical "1" Output Voltage	All Outputs, $\mathrm{IOH}^{\prime}=100 \mu \mathrm{~A}$	2.4			V
Logical "0" Output Voltage	All Outputs, $1 \mathrm{OL}=1.6 \mathrm{~mA}$			0.4	V
Disabled Output Leakage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \text { All Outputs, } \mathrm{V}_{\mathrm{OL}}= \\ & \mathrm{V}_{\mathrm{SS}} @ 10 \mathrm{~V} \end{aligned}$			2	$\mu \mathrm{A}$
Clock Frequency	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	50		800	kHz
	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	100		500	kHz
Clock Pulse Duty Cycle		40	.	60	\%
TRI-STATE Enable/Disable Time			,	1	$\mu \mathrm{s}$
Start Conversion Pulse	(Note 3)	1		$31 / 2$	Clock
					Periods
Power Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			20	mA

Note 1: Non-linearity specifications are based on best straight line.
Note 2: Guaranteed by design only.
Note 3: Start conversion pulse duration greater than $31 / 2$ clock periods will cause conversion errors.

Timing Diagram

Data is complementary binary (full scale is all " 0 ' s " output).

Application Hints

OPERATION

The ADC0800 contains a network with 256-300 Ω resistors in series. Analog switch taps are made at the junction of each resistor and at each end of the network. In operation, a reference (10.00 V) is applied across this network of 256 resistors. An analog input ($V_{I N}$) is first compared to the center point of the ladder via the appropriate switch. If $\mathrm{V}_{\text {IN }}$ is larger than $V_{\text {REF }} / 2$, the internal logic changes the switch points and now compares $V_{I N}$ and $3 / 4$ VREF. This process, known as successive approximation, continues until the best match of $V_{I N}$ and $V_{\text {REF }} / N$ is made. N now defines a specific tap on the resistor network. When the conversion is complete, the logic loads a binary word corresponding to this tap into the output latch and an end of conversion (EOC) logic level appears. The output latches hold this data valid until a new conversion is completed and new data is loaded into the latches. The data transfer occurs in about 200 ns so that valid data is present virtually all the time. Conversion requires 40 clock periods. The device may be operated in the free running mode by connecting the Start Conversion line to the End of Conversion line. However, to ensure start-up under all possible conditions, an external Start Conversion pulse is required during power up conditions.

REFERENCE

The reference applied across the 256 resistor network determines the analog input range. $\mathrm{V}_{\text {REF }}=10.00 \mathrm{~V}$ with the top of the R-network connected to 5 V and the bottom connected to -5 V gives a $\pm 5 \mathrm{~V}$ range. The reference can be level shifted between $V_{S S}$ and $V_{G G}$. However, the voltage, which is applied to the top of the R-network (pin 15), must not exceed $V_{\text {SS }}$ to prevent forward biasing the on-chip parasitic silicon diode which exists between the P-diffused resistors (pin 15) and the N -type body (pin $10, \mathrm{~V}_{\mathrm{SS}}$). Use of a standard logic power supply for $V_{S S}$ can cause problems, both due to initial voltage tolerance and changes over temperature. A solution is to power the $\mathrm{V}_{\text {SS }}$ line (15 mA max drain) from the output of the op amp which is used to bias the top of the R-network (pin 15). The analog input voltage and the voltage which is applied to the bottom of the R-network (pin 5) must be at
least 7 V above the $-V_{D D}$ supply voltage to insure adequate voltage drive to the analog switches.

Other reference voltages may be used (such as 10.24 V). If a 5 V reference is used, the analog range will be 5 V and accuracy will be reduced by a factor of 2. Thus, for maximum accuracy, it is desirable to operate with at least a 10 V reference. For TTL logic levels, this requires 5 V and -5 V for the R-network. CMOS can operate at the $10 V_{D C} V_{S S}$ level and a single $10 V_{D C}$ reference can be used. All digital voltage levels for both inputs and outputs will be from ground to V_{SS}.

ANALOG INPUT AND SOURCE RESISTANCE CONSIDERATIONS

The lead to the analog input (pin 12) should be kept as short as possible. Both noise and digital clock coupling to this input can cause conversion errors. To minimize any input errors, the following source resistance considerations should be noted:

For $R_{s} \leq 5 k$
No analog input bypass capacitor required, although a $0.1 \mu \mathrm{~F}$ input bypass capacitor will prevent pickup due to unavoidable series lead inductance.

For $5 k<R_{s} \leq 20 k$ A $0.1 \mu \mathrm{~F}$ capacitor from the input (pin 12) to ground should be used.

For $\mathrm{R}_{\mathrm{S}}>20 \mathrm{k}$ Input buffering is necessary.

If the overall converter system requires lowpass filtering of the analog input signal, use a $20 \mathrm{k} \Omega$ or less series resistor for a passive RC section or add an op amp RC active lowpass filter (with its inherent low output resistance) to insure accurate conversions.

CLOCK COUPLING

The clock lead should be kept away from the analog input line to reduce coupling.

LOGIC INPUTS

The logical " 1 " input voltage swing for the Clock, Start Conversion and Output Enable should be ($V_{S S}-1.0 \mathrm{~V}$).

Application Hints (Continued)

CMOS will satisfy this requirement but a pull-up resistor should be used for TTL logic inputs.

RE-START AND DATA VALID AFTER EOC

The EOC line ($\operatorname{pin} 9$) will be in the low state for a maximum of 40 clock periods to indicate "busy". A START pulse which occurs while the A / D is BUSY will reset the SAR and start a new conversion with the EOC signal remaining in the low state until the end of this new conversion. When the conversion is complete, the EOC line will go to the high voltage state. An additional 4 clock periods must be allowed to elapse after EOC goes high, before a new conversion cycle is requested. Start Conversion pulses which occur during this last 4 clock period interval may be ignored (see Figures 1 and 2 for high speed operation). This is only a problem for high conversion rates and keeping the number of conversions per second less than $(1 / 44) \times$ fCLOCK automatically guarantees proper operation. For example, for an 800 kHz clock, 18,000 conversions per second are allowed. The transfer of the new digital data to the output is initiated when EOC goes to the high voltage state.

POWER SUPPLIES

Standard supplies are $\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$. Device accuracy is dependent on stability of the reference voltage and has slight sensitivity to $V_{S S}-V_{G G} . V_{D D}$ has no effect on accuracy. Noise spikes on the VSS and VGG supplies can cause improper conversion; therefore, filtering each supply with a $4.7 \mu \mathrm{~F}$ tantalum capacitor is recommended.

CONTINUOUS CONVERSIONS AND LOGIC CONTROL

Simply tying the EOC output to the Start Conversion input will allow continuous conversions, but an oscillation on this line will exist during the first 4 clock periods after EOC goes high. Adding a D flip-flop between EOC (D input) to Start Conversion (O output) will prevent the oscillation and will allow a stop/continuous control via the "clear" input.

To prevent missing a start pulse which may occur after EOC goes high and prior to the required 4 clock period time interval, the circuit of Figure 1 can be used. The RS latch can. be set at any time and the 4 -stage shift register delays the application of the start pulse to the A / D by 4 clock periods. The RS latch is reset 1 clock period after the A/D EOC signal goes to the low voltage state. This circuit also provides a Start Conversion pulse to the A / D which is 1 clock period wide.

A second control logic application circuit is shown in Figure 2. This allows an asynchronous start pulse ofarbitrary length less than T_{C}, continuously converts for a fixed high level and provides a single clock period start pulse to the A/D. The binary counter is loaded with a count of 11 when the start pulse to the A / D appears. Counting is inhibited until the EOC signal from the A/D goes high. A carry pulse is then generated 4 clock periods after EOC goes high and is used to reset the input RS latch. This carry pulse can be used to indicate that the conversion is complete, the data has transferred to the output buffers and the system is ready for a new conversion cycle.

FIGURE 1. Delaying an Asynchronous Start Pulse

FIGURE 2. A/D Control Logic

Application Hints (Continued)

ZERO AND FULL-SCALE ADJUSTMENT

Zero Adjustment: This is the offset voltage required at the bottom of the R-network (pin 5) to make the 11111111 to 11111110 transition when the input voltage is $1 / 2 \mathrm{LSB}$ (20 mV for a 10.24 V scale). In most cases, this can be accomplished by having a $1 \mathrm{k} \Omega$ pot on pin 5. A resistor of 475Ω can be used as a non-adjustable best approximation from pin 5 to ground.

Full-Scale Adjustment: This is the offset voltage required at the top of the R-network (pin 15) to make the 00000001 to 00000000 transition when the input voltage is $11 / 2$ LSB from full-scale (60 mV less than full-scale for a 10.24 V scale). This voltage is guaranteed to be within 2 LSB for the ADC0800. In most cases, this can be accomplished by having a $1 \mathrm{k} \Omega$ pot on pin 15.

Ratiometric Input Signal with Tracking Reference

Level Shifted Input Signal Range

Typical Applications

General Connection

Hi-Voltage CMOS Output Levels

0 V to $10 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ range 0 V to 10 V output levels

Level Shifted Zero and Full-Scale for Transducers

Typical Applications (Continued)

Input Level Shifting

- Permits TTL compatible outputs with 0 V to 10 V input range (0V to -10 V input range achieved by reversing polarity of zener diodes and returning the 6.8 k resistor to V^{-}).

MICROPROCESSOR INTERFACE

Figure 3 and the following sample program are included to illustrate both hardware and software requirements to allow output data from the ADC0800 to be loaded into the memory of a microprocessor system. For this example, National's INS8060, SC/MP II, microprocessor has been used.

The sample program, as shown, will start the converter, load the converter's output data into the accumulator, keep track of the number of data bytes entered, complement the data and store this data into sequential memory locations. After 256 bytes have been entered, the control jumps to the user's program where proces-

Typical Applications (Continued)

sing of the data entered will be implemented. A more practical program whereby each data byte entered will be processed before another entry is made can easily be done by jumping back to the user's program at the end of the interrupt routine (where the data is loaded into the accumulator and stored in memory). The end of the user's program should provide a jump back to the INITIALIZE statement to start a new conversion and generate a new data entry.

The following arbitrarily chosen addresses and pointer assignments are used in this example:

Pointer 1 - WORD COUNT (ADDR:0100) .
Also used to point to the A/D converter at address 0500 for this example when data is to be entered.

Pointer 2 - ENTERED DATA (ADDR's: 0200 $\rightarrow 02 \mathrm{FF}$) Data is stored in 2's complement binary form, i.e, $01111111 \rightarrow$ tfull-scale and $10000000 \rightarrow$ - full-scale.

Pointer 3 - LOAD DATA SUBROUTINE (starts at ADDR:0300)
Executed when an EOC signal generates an interrupt request via sense A after an IEN (interrupt enable) instruction.

The address for the converter (0500) is unique for this particular sample program but may not be in a user's system so a different converter address must be used. Note that in Figure 3 ADX and ADY for the address decode circuitry would be address bits ADB10 and ADB8 (pins 35 and 33 on the SC/MP II package) for converter address 0500.

SAMPLE PROGRAM TO LOAD DATA INTO MEMORY WITH SC/MP II.

0001	08	START:	NOP	
0002	C4 01		LDIX'01	
0004	35		XPAH 1	
0005	C4 00		LDIX'OO	
0007	31		XPAL 1	; P1 = 0100
0008	C4 02		LDIX'02	
000A	36		XPAH 2	
000B	C4 00		LDIX'00	
000D	C9 00		ST(P1)	; Zero word count (P1)
000F	32		XPAL 2	; P2 = 0200
0010	C4 03		LDIX'03	
0012	37		XPAH 3	
0013	08	INITIALIZE:	NOP	
0014	C4 00		LDIX'00	
0016	33		XPAL 3	; P3 = 0300
0017	C4 01		LDIX'01	
0019	07		CAS	; Starts converter via flag 0
001A	C1 00		LD (P1)	
001C	F4 FF		XRIX'FF	
001E	9805		JZ DTA IN	; Test to see if word count is FF, if so, jump to DTA IN
0020	05		IEN	; Enables INTERRUPT
0021	08	LOOP:	NOP	
0022	90 FE		JMP LOOP	; Loop until EOC
0024	08	DTA IN:	NOP	

; User program to process data
:DATA ENTRY SUBROUTINE

0300	08	DATA INSR:	NOP	
0301	A9 00		ILD (P1)	; Increment word count
0303	C4 05		LDIX'05	
0305	35		XPAH 1	; P1 will point to converter
0306	C1 00		LD (P1)	; Converter data loaded into accumulator
0308	F4 7F		XRIX'7F	; Put data in 2's complement form
030A	CE 01		ST @ 1(P2)	; Store data
030C	C4 00		LDIX'00	
O30E	07		CAS	; Resets flag 0
030F	C4 01		LDIX'01	
0311	35		XPAH 1	; Resets P1 to point at word count
0312	C4 13		LDIX'13	
0314	33		XPAL 3	
0315	3 F		XPPC 3	; Return to INITIALIZE to start a new conversion

Typical Applications (Continued)

- Setting flag 0 ($F L G O=1$) with software, starts conversion (FLGO must be cleared before another conversion can be initiated)
- With interrupt enabled an EOC will force an interrupt. Interrupt subroutine should load converter data into the accumulator.
- Output data is in complementary offset binary form
- Numbers in parentheses denote pin numbers of SC/MP chip
${ }^{*} A D X$ and ADY can be any of the address lines but they must be high only at the time the converter output data is to be put on the data bus (i.e., the converter must have its own unique address)

FIGURE 3. Interfacing to the SC/MP II Microprocessor

Typical Applications (Continued)

TESTING THE A/D CONVERTER

There are many degrees of complexity associated with testing an A/D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LED's to display the resulting digital output code as shown in Figure 4. Note that the LED drivers invert the digital output of the A/D converter to provide a binary display. A lab DVM can be used if a precision voltage source is not available. After adjusting the zero and full-scale, any number of points can be checked, as desired.

For ease of testing, a $10.24 \mathrm{~V}_{\mathrm{DC}}$ reference is recommended for the A/D converter. This provides an LSB of $40 \mathrm{mV}(10.240 / 256)$. To adjust the zero of the A / D, an analog input voltage of $1 / 2 \mathrm{LSB}$ or 20 mV should be
applied and the zero adjust potentiometer should be set to provide a flicker on the LSB LED readout with all the other display LEDs OFF.

To adjust the full-scale adjust potentiometer, an analog input which is $11 / 2$ LSB less than the reference ($10.240-$ 0.060 or $10.180 \mathrm{~V}_{\mathrm{DC}}$) should be applied to the analog input and the full-scale adjusted for a flicker on the LSB LED, but this time with all the other LEDs ON.

A complete circuit for a simple A/D tester is shown in Figure 5. Note that the clock input voltage swing and the digital output voltage swings are from 0 V to 10.24 V . The MM74C901 provides a voltage translation to 5 V operation and also the logic inversion so the readout LEDs are in binary.

FIGURE 4. Basic A/D Tester

FIGURE 5. Complete Basic Tester Circuit

Typical Applications (Continued)

The digital output LED display can be decoded by dividing the 8 bits into the 4 most significant bits and 4 least significant bits. Table 1 shows the fractional binary equivalent of these two 8 -bit groups. By adding the decoded voltages which are obtained from the column: "Input Voltage Value with a $10.240 V_{R E F}$ " of both the MS and LS groups, the value of the digital display can be determined. For example, for an output LED display of "1011 0110" or "B6" (in hex) the voltage values from the table are $7.04+0.24$ or
7.280 VDC. These voltage values represent the center values of a perfect A / D converter. The input voltage has to change by $\pm 1 / 2$ LSB ($\pm 20 \mathrm{mV}$), the "quantization uncertainty" of an A/D, to obtain an output digital code change. The effects of this quantization error have to be accounted for in the interpretation of the test results. A plot of this natural error source is shown in Figure 6 where, for clarity, both the analog input voltage and the error voltage are normalized to LSBs.

TABLE I. DECODING THE DIGITAL OUTPUT LEDs

HEX	BINARY				FRACTIONAL BINARY VALUE FOR								INPUT VOLTAGE VALUE WITH $10.24 V_{\text {REF }}$	
					MS GROUP				LS GROUP				MS GROUP	LS GROUP
F	1	1	1	1				15/16				15/256	9.600	0.600
E	1	1	1	0			7/8				7/128		8.960	0.560
D	1	1	0.					13/16				13/256	8.320	0.520
C	1	1	0	0		3/4				3/64			7.680	0.480
B	1	0	1	1				11/16				11/256	7.040	0.440
A	1	0	1	0			5/8				5/128		6.400	0.400
9	1	0	0	1				9/16				9/256	5.760	0.360
8	1	0	0	0	$1 / 2$				1/32				5.120	0.320
7	0	1	1	1				7/16				7/256	4.480	0.280
6	0	1	1	0			3/8				3/128		3.840	0.240
5	0	1	0	1				5/16				5/256	3.200	0.200
4	0	1	0	0		1/4				1/64			2.560	0.160
3	0	0	1	1				3/16				3/256	1.920	0.120
2	0	0	1	0			1/8				1/128		1.280	0.080
1	0	0	0	1				1/16				1/256	0.640	0.040
0		0	0	0									0	0

FIGURE 6. Error Plot of a Perfect A/D Showing Effects of Quantization Error

Typical Applications (Continued)

A low speed ramp generator can also be used to sweep the analog input voltage and the LED outputs will provide a binary counting sequence from zero to fullscale.

The techniques described so far are suitable for an engineering evaluation or a quick check on performance. For a higher speed test system, or to obtain plotted data, a digital-to-analog converter is needed for the test set-up. An accurate 10 -bit DAC can serve as the precision voltage source for the A / D. Errors of the A / D under test can be provided as either analog voltages or differences in two digital words.

A basic A/D tester which uses a DAC and provides the error as an analog output voltage is shown in Figure 7. The 2 op amps can be eliminated if a lab DVM with a numerical subtraction feature is available to directly readout the difference voltage, " $\mathrm{A}-\mathrm{C}$ ". The analog
input voltage can be supplied by a low frequency ramp generator and an $X-Y$ plotter can be used to provide analog error (Y axis) versus analog input (X axis). The construction details of a tester of this type are provided in the NSC application note AN-179, "Analog-toDigital Converter Testing".

For operation with a microprocessor or a computerbased test system, it is more convenient to present the errors digitally. This can be done with the circuit of Figure 8 where the output code transitions can be detected as the 10 -bit DAC is incremented. This provides 1/4 LSB steps for the 8-bit A/D under test. If the results of this test are automatically plotted with the analog input on the X axis and the error (in LSB's) as the Y axis, a useful transfer function of the A / D under test results. For acceptance testing, the plot is not necessary and the testing speed can be increased by establishing internal limits on the allowed error for each code.

FIGURE 7. A/D Tester with Analog Error Output

FIGURE 8. Basic "Digital" A/D Tester

Connection Diagram

Order Number ADC0800PD ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) or ADC0800PCD ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) See NS Package D18A A to D, D to A

ADC0801, ADC0802, ADC0803, ADC0804, ADC0805 8-Bit μ P Compatible A/D Converters

General Description

The ADC0801, ADC0802, ADC0803, ADC0804 and ADC0805 are CMOS 8-bit successive approximation A/D converters which use a differential potentiometric ladder-similar to the 256R products. These converters are designed to allow operation with the NSC800 and INS8080A derivative control bus, and TRI-STATE ${ }^{\circledR}$ output latches directly drive the data bus. These A/Ds appear like memory locations or I/O ports to the microprocessor and no interfacing logic is needed.

A new differential analog voltage input allows increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

Features

- Compatible with $8080 \mu \mathrm{P}$ derivatives-no interfacing logic needed - access time - 135 ns
- Easy interface to ali microprocessors, or operates "stand alone"
- Differential analog voltage inputs
- Logic inputs and outputs meet both MOS and T^{2} L voltage level specifications
- Works with 2.5 V (LM336) voltage reference
- On-chip clock generator
- 0 V to 5 V analog input voltage range with single 5 V supply
- No zero adjust required
- 0.3" standard width 20-pin DIP package
- Operates ratiometrically or with 5 VDC, 2.5 VDC , or analog span adjusted voltage reference

Key Specifications

[^34]Typical Applications

Absolute Maximum Ratings (Notes 1 and 2)

Supply Voltage (VCC) (Note 3)	6.5 V
Voltage	
Logic Control Inputs	-0.3 V to +18 V
At Other Input and Outputs	-0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	875 mW
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

The following specifications apply for $V_{C C}=5 V_{D C}, T_{M I N} \leq T_{A} \leq T_{M A X}$ and $f_{C L K}=640 \cdot \mathrm{kHz}$ unless otherwise specified.

AC Electrical Characteristics

The following specifications apply for $V_{C C}=5 V_{D C}$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
T_{c}	Conversion Time	${ }^{\text {f CLK }}=640 \mathrm{kHz}$ (Note 6)	103		114	$\mu \mathrm{s}$
T_{c}	Conversion Time	(Note.5, 6)	66		73	1/fCLK
${ }^{\mathrm{f}} \mathrm{CLK}$	Clock Frequency	$V_{C C}=5 \mathrm{~V}$, (Note 5)	100	640	1460	kHz
	Clock Duty Cycle	(Note 5)	40		60	\%
CR	Conversion Rate In Free-Running Mode	INTR tied to $\overline{W R}$ with $\overline{\mathrm{CS}}=0 \mathrm{~V}$ DC, $\mathrm{fCLK}=640 \mathrm{kHz}$			8770	conv/s
$t W(\overline{W R}) L$	Width of $\overline{W R}$ Input (Start Pulse Width)	$\overline{\mathrm{CS}}=0 \mathrm{~V}_{\text {DC }}($ Note 7$)$	100			ns
${ }^{\text {t }}$ ACC	Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$C_{L}=100 \mathrm{pF}$		135	200	. ns
${ }^{1} 1 \mathrm{H}, \mathrm{tOH}$	TRI-STATE Còntrol (Delay from Rising Edge of $\overline{R D}$ to Hi-Z State)	$C_{L}=10 \mathrm{pF}, R_{L}=10 \mathrm{k}$ (See TRI-STATE Test Circuits)		125	200	ns
${ }^{t}{ }_{W},{ }^{t_{R}}$	Delay from Falling Edge of $\overline{W R}$ or $\overline{R D}$ to Reset of $\overline{\text { NTR }}$			300	450	ns
CIN	Input Capacitance of Logic Control Inputs			5	7.5	pF
COUT	TRI-STATE Output Capacitance (Data Buffers)			5	7.5	pF

Electrical Characteristics

The following specifications apply for $V_{C C}=5 V_{D C}$ and $T_{M I N} \leq T_{A} \leq T_{M A X}$, unless otherwise specified.

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: All voltages are measured with respect to Gnd, unless otherwise specified. The separate A Gnd point should always be wired to the D Gnd.
Note 3: A zener diode exists, internally, from $V_{C C}$ to G nd and has a typical breakdown voltage of $7 V_{D C}$.
Note 4: For $V_{I N}(-) \geq V_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see block diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $V_{C C}$ supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $V_{\text {IN }}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Accuracy is guaranteed at ${ }^{f} C L K=640 \mathrm{kHz}$. At higher clock frequencies accuracy can degrade. For lower clock frequencies, the duty cycle limits can be extended so long as the minimum clock high time interval or minimum clock low time interval is no less than 275 ns.
Note 6: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. The start request is internally latched, see Figure 2 and section 2.0.
Note 7: The $\overline{C S}$ input is assumed to bracket the $\overline{W R}$ strobe input and therefore timing is dependent on the WR pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see timing diagrams).
Note 8: None of these A / D s requires a zero adjust (see section 2.5.1). To obtain zero code at other analog input voltages see section 2.5 and Figure 5.
Note 9: For ADC0804LCD typical value of $V_{R E F} / 2$ input resistance is $8 \mathrm{k} \Omega$ and of ${ }^{1} C C$ is 1.1 mA .

Typical Performance Characteristics

Delay From Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid vs. Load Capacitance

Full-Scale Error vs
Conversion Time

Power Supply Current vs Temperature (Note 9)

CLK IN Schmitt Trip Levels vs. Supply Voltage

Effect of Unadjusted Offset Error vs. $V_{\text {REF }} / 2$ Voltage

TRI-STATE ${ }^{\circledR}$ Test Circuits and Waveforms

Timing Diagrams (All timing is measured from the 50% voltage points)

Output Enable and Reset INTR

Note: Read strobe must occur 8 clock periods ($8 / \mathrm{f} \mathrm{CLK}$) after assertion of interrupt to guarantee reset of INTR.

Absolute with a $\mathbf{2 . 5 0 0}$ V Reference

Zero-Shift and Span Adjust: $\mathbf{2 V} \leq \mathrm{V}_{\text {IN }} \leq \mathbf{5 V}$

Ratiometric with Full-Scale Adjust

Absolute with a 5V Reference

Span Adjust: $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3 \mathrm{~V}$

A $\mu \mathrm{P}$ Interfaced Comparator

For: $\mathrm{V}_{\text {IN }}(+)>\mathrm{V}_{\text {IN }}(-)$ Output $=$ FFHEX $_{\text {HEX }}$
For: $\mathrm{V}_{\text {IN }}(+)<\mathrm{V}_{\text {IN }}(-)$
Output $=00 \mathrm{HEX}$

1 mV Resolution with $\mu \mathrm{P}$ Controlled Range

Digitizing a Current Flow

Typical Applications (Continued)

Typical Applications (Continued)

μ P Compatible Differential-Input Comparator with Pre-Set VoS (with or without Hysteresis)

DB7 $=$ " 1 " for $V_{\text {IN }}(+)>V_{\text {IN }}(-)+\left(V_{\text {REF }} / 2\right)$
Omit circuitry within the dotted area if
hysteresis is not needed

Handling $\pm 10 \mathrm{~V}$ Analog Inputs

*Beckman Instruments \#694-3-R10K resistor array
$\mu \mathrm{P}$ Interfaced Temperature-to-Digital Converter

Typical Applications (Continued)

Read-Only Interface

Analog Self-Test for a System

* LM389 transistors
$A, B, C, D=L M 324 A$ quad op amp
A Low-Cost, 3-Decade Logarithmic Converter

3-Decade Logarithmic A/D Converter

Noise Filtering the Analog Input
 is used

Output Buffers with A/D Data Enabled

*A/D output data is updated 1 CLK period prior to assertion of INTR

Increasing Bus Drive and/or Reducing Time on Bus

Typical Applications (Continued)

- Sampling an AC Input Signal

Note 1: Oversample whenever possible [keep fs $>2 f(-60)$] to eliminate input frequency folding
(aliasing) and to allow for the skirt response of the filter.
Note 2: Consider the amplitude errors which are introduced within the passband of the filter.

70\% Power Savings by Clock Gating

Power Savings by A / D and $V_{\text {REF }}$ Shutdown

*Use ADC0801, 02, 03 or 05 for lowest power consumption.
Note: Logic inputs can be driven to $V_{C C}$ with A / D supply at zero volts.
Buffer prevents data bus from overdriving outputs of A / D when in shutdown mode.

1.0 UNDERSTANDING A/D ERROR SPECS

A perfect A / D transfer characteristic (staircase waveform) is shown in Figure 1a. T, he horizontal scale is analog input voltage and the particular points labeled are in steps of 1 LSB (19.53 mV with 2.5 V tied to the $\mathrm{V}_{\mathrm{REF}} / 2 \mathrm{pin}$). The digital output codes which correspond to these inputs are shown as $D-1, D$, and $D+1$. For the perfect A / D, not only will center-value ($A-1, A$, $A+1$, . . .) analog inputs produce the correct output digital codes, but also each riser (the transitions between adjacent output codes) will be located $\pm 1 / 2$ LSB away from each center-value. As shown, the risers are ideal and have no width. Correct digital output codes will be provided for a range of analog input voltages which extend $\pm 1 / 2$ LSB from the ideal center-values. Each tread (the range of analog input voltage which provides the same digital output code) is therefore 1 LSB wide.

Figure $1 b$ shows a worst case error plot for the ADC0801. All center-valued inputs are guaranteed to produce the correct output codes and the adjacent risers are guaranteed to be no closer to the center-value points than

Transfer Function

a) Accuracy $= \pm 0$ LSB A Perfect A/D

Transfer Function

$\pm 1 / 4$ LSB. In other words, if we apply an analog input equal to the center-value $\pm 1 / 4 \mathrm{LSB}$, we guarantee that the A / D will produce the correct digital code. The maximum range of the position of the code transition is indicated by the horizontal arrow and it is guaranteed to be no more than $1 / 2$ LSB.

The error curve of Figure $1 c$ shows a worst case error plot for the ADC0802. Here we guarantee that if we apply an analog input equal to the LSB analog voltage center-value the A / D will produce the correct digital code.

Next to each transfer function is shown the corresponding error plot. Many people may be more familiar with error plots than transfer functions. The analog input voltage to the A / D is provided by either a linear ramp or by the discrete output steps of a high resolution DAC. Notice that the error is continuously displayed and includes the quantization uncertainty of the A/D. For example the error at point 1 of Figure $1 a$ is $+1 / 2$ LSB because the digital code appeared $1 / 2$ LSB in advance of the center-value of the tread. The error plots always have a constant negative slope and the abrupt upside steps are always 1 LSB in magnitude.

ANALOG INPUT (VIN)

Error Plot

c) Accuracy $= \pm 1 / 2$ LSB

FIGURE 1. Clarifying the Error Specs of an A/D Converter

2.0 FUNCTIONAL DESCRIPTION

The ADC0801 series contains a circuit equivalent of the 256 R network. Analog switches are sequenced by successive approximation logic to match the analog difference input voltage $\left[\mathrm{V}_{\left.1 \mathrm{~N}^{(}+\right)}-\mathrm{V}_{1 \mathrm{~N}}(-)\right]$ to a corresponding tap on the R network. The most significant bit is tested first and after 8 comparisons (64 clock cycles) a digital 8-bit binary code (1111 $1111=$ fullscale) is transferred to an output latch and then an interrupt is asserted (IINTR makes a high-to-low transition). A conversion in process can be interrupted by issuing a second start command. The device may be operated in the free-running mode by connecting INTR to the $\overline{W R}$ input with $\overline{\mathrm{CS}}=0$. To insure start-up under all possible conditions, an external $\overline{W R}$ pulse is required during the first power-up cycle.

On the high-to-low transition of the $\overline{W R}$ input the internal SAR latches and the shift register stages are reset. As long as the $\overline{\mathrm{CS}}$ input and $\overline{\mathrm{WR}}$ input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-to-high transition.

A functional diagram of the A/D converter is shown in Figure 2. All of the package pinouts are shown and the major logic control paths are drawn in heavier weight lines.

The converter is started by having $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a " 1 " to the D flop, F/F1, which is at the input end of the 8 -bit shift register. Internal clock signals then transfer this " 1 " to the Q output of $\mathrm{F} / \mathrm{F} 1$. The AND gate, G1, combines this " 1 " output with a clock signal to provide a reset signal to the start F / F. If the set signal is no longer present (either $\overline{W R}$ or $\overline{C S}$ is a " 1 ") the start F / F is reset and the 8 -bit shift register then can have the " 1 " clocked in, which starts the conversion process. If the set signal were to still be present, this reset pulse would have no effect (both outputs of the start F/F would momentarily be at a " 1 " level) and the 8 -bit shift register would continue to be held in the reset mode. This logic therefore allows for wide $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals and the converter will start after at least one of these signals returns high and the internal clocks again provide a reset signal for the start F/F.

Note 1: $\overline{C S}$ shown twice for clarity.
Note 2: SAR = Successive Approximation Register.
FIGURE 2. Block Diagram

After the " 1 " is clocked through the 8 -bit shift register (which completes the SAR search) it appears as the input to the D-type latch, LATCH 1. As soon as this " 1 " is output from the shift register, the AND gate, G2, causes the new digital word to transfer to the TRI-STATE output latches. When LATCH 1 is subsequently enabled, the Q output makes a high-to-low transition which causes the INTR F/F to set. An inverting buffer then supplies the TNTR output signal.

Note that this $\overline{\text { SET }}$ control of the INTR F/F remains low for 8 of the external clock periods (as the internal clocks run at $1 / 8$ of the frequency of the external clock). If the data output is continuously enabled ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ both held low), the $\overline{\mathrm{NTR}}$ output will still signal the end of conversion (by a high-to-low transition), because the $\overline{\text { SET input can control the } \mathrm{Q}}$ output of the INTR F/F even though the RESET input is constantly at a " 1 " level in this operating mode. This INTR output will therefore stay low for the duration of the SET signal, which is 8 periods of the external clock frequency (assuming the A / D is not started during this interval).

When operating in the free-running or continuous conversion mode (INTR pin tied to $\overline{W R}$ and $\overline{\mathrm{CS}}$ wired low-see also section 2.8), the START F/F is SET by the high-to-low transition of the TNTR signal. This resets the SHIFT REGISTER which causes the input to the D-type latch, LATCH 1, to go low. As the latch enable input is still present, the $\overline{\mathrm{Q}}$ output will go high, which then allows the INTR F/F to be RESET. This reduces the width of the resulting TNTR output pulse to only a few propagation delays (approximately 300 ns).

When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ being low will cause the INTR F/F to be reset and the TRI-STATE output latches will be enabled to provide the 8 -bit digital outputs.

2.1 Digital Control Inputs

The digital control inputs ($\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$) meet standard $\mathrm{T}^{2} \mathrm{~L}$ logic voltage levels. These signals have been renamed when compared to the standard A/D Start and Output Enable labels. In addition, these inputs are active low to allow an easy interface to microprocessor control busses. For non-microprocessor based applications, the $\overline{\mathrm{CS}}$ input (pin 1) can be grounded and the standard A / D Start function is obtained by an active low puilse applied at the $\overline{W R}$ input ($\operatorname{pin} 3$) and the Output Enable function is caused by an active low pulse at the $\overline{\mathrm{RD}}$ input (pin 2).

2.2 Analog Differential Voltage Inputs and Common-Mode Rejection

This A/D has additional applications flexibility due to the analog differential voltage input. The $\mathrm{V}_{\mathrm{IN}}(-)$ input (pin 7) can be used to automatically subtract a fixed voltage value from the input reading (tare correction). This is also useful in $4 \mathrm{~mA}-20 \mathrm{~mA}$ current loop conversion. In addition, common-mode noise can be reduced by use of the differential input.

The time interval between sampling $\mathrm{V}_{1 N^{(}}{ }^{(+)}$and $\mathrm{V}_{\text {IN }}(-)$ is $4-1 / 2$ clock periods. The maximum error voltage due
to this slight time difference between the input voltage samples is given by:

$$
\Delta V_{\mathrm{e}}(\mathrm{MAX})=\left(\mathrm{V}_{\mathrm{P}}\right)\left(2 \pi \mathrm{f}_{\mathrm{cm}}\right)\left(\frac{4.5}{\mathrm{f}_{\mathrm{CLK}}}\right)
$$

where:
ΔV_{e} is the error voltage due to sampling delay
V_{P} is the peak value of the common-mode voltage
f_{cm} is the common-mode frequency

As an example, to keep this error to $1 / 4$ LSB ($\sim 5 \mathrm{mV}$) when operating with a 60 Hz common-mode frequency, f_{cm}, and using a 640 kHz A/D clock, f_{CL}, would allow a peak value of the common-mode voltage, V_{p}, which is given by:

$$
V_{p}=\frac{\left[\Delta V_{e}(M A X)\left(f_{C L K}\right)\right]}{\left(2 \pi f_{\mathrm{cm}}\right)(4.5)}
$$

or

$$
V p=\frac{\left(5 \times 10^{-3}\right)\left(640 \times 10^{3}\right)}{(6.28)(60)(4.5)}
$$

which gives

$$
V p \cong 1.9 V
$$

The allowed range of analog input voltages usually places more severe restrictions on input common-mode noise levels.

An analog input voltage with a reduced span and a relatively large zero offset can be easily handled by making use of the differential input (see section 2.4 Reference Voltage).

2.3 Analog Inputs

2.3.1 Input Current

-Normal Mode

Due to the internal switching action, displacement currents will flow at the analog inputs. This is due to onchip stray capacitance to ground as shown in Figure 3.

FIGURE 3. Analog Input Impedance

The voltage on this capacitance is switched and will result in currents entering the $\mathrm{V}_{1 \mathrm{~N}}(+)$ input pin and leaving the $V_{I N}(-)$ input which will depend on the analog differential input voltage levels. These current transients occur at the leading edge of the internal clocks. They rapidly decay and do not cause errors as the on-chip comparator is strobed at the end of the clock period.

Fault Mode

If the voltage source which is applied to the $\mathrm{V}_{\text {IN }}(+)$ pin exceeds the allowed operating range of $\mathrm{V}_{\mathrm{CC}}+$ 50 mV , large input currents can flow through a parasitic diode to the $V_{C C}$ pin. If these currents could exceed the 1 mA max allowed spec, an external diode (1N914) should be added to bypass this current to the $V_{C C}$ pin (with the current bypassed with this diode, the voltage at the $\mathrm{V}_{\mathrm{IN}}(+)$ pin can exceed the V_{CC} voltage by the forward voltage of this diode).

2.3.2 Input Bypass Capacitors

Bypass capacitors at the inputs will average these charges and cause a DC current to flow through the output resistances of the analog signal sources. This charge pumping action is worse for continuous conversions with the $V_{1 N}(+)$ input voltage at full-scale. For continuous conversions with a 640 kHz clock frequency with the $V_{1 N}(+)$ input at 5 V , this DC current is at a maximum of approximately $5 \mu \mathrm{~A}$. Therefore, bypass capacitors should not be used at the analog inputs or the $V_{R E F} / 2$ pin for high resistance sources ($>1 \mathrm{k} \Omega$). If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor, size, the detrimental effects of the voltage drop across this input resistance, which is due to the average value of the input current, can be eliminated with a full-scale adjustment while the given source resistor and input bypass capacitor are both in place. This is possible because the average value of the input current is a precise linear function of the differential input voltage.

2.3.3 Input Source Resistance

Large values of source resistance where an input bypass capacitor is not used, will not cause errors as the input currents settle out prior to the comparison time. If a low pass filter is required in the system, use a low valued series resistor ($\leq 1 \mathrm{k} \Omega$) for a passive $R C$ section or add an op amp $R \bar{C}$ active low pass filter. For low source resistance applications, $(\leq 1 \mathrm{k} \Omega)$, a $0.1 \mu \mathrm{~F}$ bypass capacitor at the inputs will prevent pickup due to series lead inductance of a long wire. A 100Ω series resistor can be used to isolate this capacitor-both the R and C are placed outside the feedback loop-from the output of an op amp, if used.

2.3.4 Noise

The leads to the analog inputs (pins 6 and 7) should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to these inputs can cause system errors. The source resistance for these inputs should, in general, be kept below $5 \mathrm{k} \Omega$. Larger values of source resistance can cause undesired system noise pickup. Input bypass capacitors, placed from the analog inputs to ground, will eliminate
system noise pickup but can create analog scale errors as these capacitors will average the transient input switching currents of the A/D (see section 2.3.1). This scale error depends on both a large source resistance and the use of an input bypass capacitor. This error can be eliminated by doing a full-scale adjustment of the A/D (adjust $\mathrm{V}_{\text {REF }} / 2$ for a proper full-scale reading-see section 2.5.2 on Full-Scale Adjustment) with the source resistance and input bypass capacitor in place.

2.4 Reference Voltage

2.4.1 Span Adjust

For maximum applications flexibility, these $A / D s$ have been designed to accommodate a 5 VDC, 2.5 VDC or an adjusted voltage reference. This has been achieved in the design of the IC as shown in Figure 4.

FIGURE 4. The VREFERENCE Design on the IC
Notice that the reference voltage for the IC is either $1 / 2$ of the voltage which is applied to the V_{CC} supply pin, or is equal to the voltage which is externally forced at the $\mathrm{V}_{\mathrm{REF}} / 2 \mathrm{pin}$. This allows for a ratiometric voltage reference using the $V_{C C}$ supply, a $5 V_{D C}$ reference voltage can be used for the $V_{C C}$ supply or a voltage less than 2.5 V_{DC} can be applied to the $\mathrm{V}_{\mathrm{REF}} / 2$ input for increased application flexibility. The internal gain to the $\mathrm{V}_{\mathrm{REF}} / 2$ input is 2 making the full-scale differential input voltage twice the voltage at pin 9.

An example of the use of an adjusted reference voltage is to accommodate a reduced span-or dynamic voltage range of the analog input voltage. If the analog input voltage were to range from $0.5 \mathrm{~V}_{\mathrm{DC}}$ to $3.5 \mathrm{~V}_{\mathrm{DC}}$, instead of $O \mathrm{~V}$ to $5 \mathrm{~V}_{\mathrm{DC}}$, the span would be 3 V as shown in Figure 5. With $0.5 \mathrm{~V}_{\mathrm{DC}}$ applied to the $\mathrm{V}_{\mathrm{IN}}(-)$ pin to absorb the offset, the reference voltage can be made equal to $1 / 2$ of the 3 V span or 1.5 V DC. The A / D now will encode the $\mathrm{V}_{1 \mathrm{~N}}(+)$ signal from 0.5 V to 3.5 V with the 0.5 V input corresponding to zero and the $3.5 \mathrm{~V}_{\mathrm{DC}}$ input corresponding to full-scale. The full 8 bits of resolution are therefore applied over this reduced analog input voltage range.

FIGURE 5. Adapting the A/D Analog Input Voltages to Match an Arbitrary Input Signal Range

2.4.2 Reference Accuracy Requirements

The converter can be operated in a ratiometric mode or an absolute mode. In ratiometric converter applications, the magnitude of the reference voltage is a factor in both the output of the source transducer and the output of the A / D converter and therefore cancels out in the final digital output code. The ADC0805 is specified particularly for use in ratiometric applications with no adjustments required. In absolute conversion applications, both the initial value and the temperature stability of the reference voltage are important accuracy factors in the operation of the A/D converter. For $\mathrm{V}_{\text {REF }} / 2$ voltages of $2.5 \mathrm{~V}_{\mathrm{DC}}$ nominal value, initial errors of $\pm 10 \mathrm{mV}$ DC will cause conversion errors of ± 1 LSB due to the gain of 2 of the $V_{\text {REF }} / 2$ input. In reduced span applications, the initial value and the stability of the VREF/2 input voltage become even more important. For example, if the span is reduced to 2.5 V , the analog input LSB voltage value is correspondingly reduced from 20 mV (5 V span) to 10 mV and 1 LSB at the $\mathrm{V}_{\text {REF }} / 2$ input becomes 5 mV . As can be seen, this reduces the allowed initial tolerance of the reference voltage and requires correspondingly less absolute change with temperature variations. Note that spans smaller than 2.5 V place even tighter requirements on the initial accuracy and stability of the reference source.

In general, the magnitude of the reference voltage will require an initial adjustment. Errors due to an improper value of reference voltage appear as full-scale errors in the A / D transfer function. IC voltage regulators may be used for references if the ambient temperature changes are not excessive. The LM336B 2.5V IC reference diode
(from National Semiconductor) is available which has a temperature stability of 1.8 mV typ (6 mV max) over $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. Other temperature range parts are also available.

2.5 Errors and Reference Voltage Adjustments

2.5.1 Zero Error

The zero of the A / D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}}(\mathrm{MIN})$, is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the $A / D V_{\text {IN }}(-)$ input at this $\operatorname{VIN}($ MIN) value (see Applications section). This utilizes the differential mode operation of the A / D.

The zero error of the A / D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\vee(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}(+)$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 0000 0001 and the ideal $1 / 2$ LSB value $(1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}$ for $\left.\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}\right)$.

2.5.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is 1-1/2 LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }} / 2$ input (pin 9 or the $V_{C C}$ supply if pin 9 is not used) for a digital output code which is just changing from 11111110 to 11111111.

2.5.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A / D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground) this new zero reference should be properly adjusted first. A $\mathrm{V}_{\text {IN }}{ }^{(+)}$voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, $1 \mathrm{LSB}=$ analog span/256) is applied to pin 6 and the zero reference voltage at pin 7 should then be adjusted to just obtain the 00 HEX to 01 HEX code transition.

The full-scale, adjustment should then be made (with the proper $\mathrm{V}_{\mathrm{N}}(-)$ voltage applied) by forcing a voltage to the $\mathrm{V}_{\text {IN }} \mathrm{N}^{(+)}$input which is given by:

$$
V_{I N}(+) \text { fs adj }=V_{M A X}-1.5\left[\frac{\left(V_{M A X}-V_{M I N}\right)}{256}\right]
$$

where:

$$
\mathrm{V}_{\mathrm{MAX}}=\text { The high end of the analog input range }
$$

and
$\mathrm{V}_{\mathrm{MIN}}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)
The $V_{\text {REF }} / 2$ (or $V_{C C}$) voltage is then adjusted to provide a code change from FEHEX to FFHEX. This completes the adjustment procedure.

2.6 Clocking Option

The clock for the A/D can be derived from the CPU clock or an external RC can be added to provide selfclocking. The CLK IN (pin 4) makes use of a Schmitt trigger as shown in Figure 6.

FIGURE 6. Self-Clocking the A/D

Heavy capacitive or DC loading of the clock R pin should be avoided as this will disturb normal converter operation. Loads less than 50 pF , such as driving up to 7 A/D converter clock inputs from a single clock R pin of 1 converter, are allowed. For larger clock line loading, a CMOS or low power $\mathrm{T}^{2} \mathrm{~L}$ buffer or PNP input logic should be used to minimize the loading on the clock R pin (do not use a standard $T^{2} L$ buffer).

2.7 Restart During a Conversion

If the A/D is restarted ($\overline{C S}$ and $\overline{W R}$ go low and return high) during a conversion, the converter is reset and a new conversion is started. The output data latch is not updated if the conversion in process is not allowed to
be completed, therefore the data of the previous con'version remains in this latch. The $\overline{\text { NTR }}$ output also simply remains at the " 1 " level.

2.8 Continuous Conversions

For operation in the free-running mode an initializing pulse should be used, following power-up, to insure circuit operation. In this application, the $\overline{\mathrm{CS}}$ input is grounded and the $\overline{W R}$ input is tied to the $\overline{\operatorname{NTR}}$ output. This $\overline{W R}$ and $\overline{\operatorname{INTR}}$ node should be momentarily forced to logic low following a power-up cycle to guarantee operation.

2.9 Driving the Data Bus

This MOS A/D, like MOS microprocessors and memories, will require a bus driver when the total capacitance of the data bus gets large. Other circuitry, which is tied to the data bus, will add to the total capacitive loading, even in TRI-STATE (high impedance mode). Backplane bussing also greatly adds to the stray capacitance of the data bus.

There are some alternatives available to the designer to handle this problem. Basically, the capacitive loading of the data bus slows down the response time, even though DC specifications are still met. For systems operating with a relatively slow CPU clock frequency, more time is available in which to establish proper logic levels on the bus and therefore higher capacitive loads can be driven (see typical characteristics curves).

At higher CPU clock frequencies time can be extended for I/O reads (and/or writes) by inserting wait states (8080) or using clock extending circuits (6800).

Finally, if time is short and capacitive loading is high, external bus drivers must be used. These can be TRISTATE buffers (low power Schottky is recommended such as the DM74LS240 series) or special higher drive current products which are designed as bus drivers. High current bipolar bus drivers with PNP inputs are recommended.

2.10 Power Supplies

Noise spikes on the $V_{C C}$ supply line can cause conversion errors as the comparator will respond to this noise. A low inductance tantalum filter capacitor should be used close to the converter V_{CC} pin and values of $1 \mu \mathrm{~F}$ or greater are recommended. If an unregulated voltage is available in the system, a separate LM340LAZ-5.0, TO-92, 5 V voltage regulator for the converter (and other analog circuitry) will greatly reduce digital noise on the $V_{C C}$ supply.

2.11 Wiring and Hook-Up Precautions

Standard digital wire wrap sockets are not satisfactory for breadboarding this A/D converter. Sockets on PC boards can be used and all logic signal wires and leads should be grouped and kept as far away as possible from the analog signal leads. Exposed leads to the analog inputs can cause undesired digital noise and hum pickup, therefore shielded leads may be necessary in many applications.

A single point analog ground should be used which is separate from the logic ground points. The power supply' bypass capacitor and the self-clocking capacitor (if used) should both be returned to digital ground. Any $V_{\text {REF }} / 2$ bypass capacitors, analog input filter capacitors, or input signal shielding should be returned to the analog ground point. A test for proper grounding is to measure the zero error of the A/D converter. Zero errors in excess of 1/4 LSB can usually be traced to improper board layout and wiring (see section 2.5.1 for measuring the zero error).

3.0 TESTING THE A/D CONVERTER

There are many degrees of complexity associated with testing an A / D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 7.
For ease of testing, the $\mathcal{V}_{R E F} / 2$ (pin 9) should be supplied with $2.560 V_{D C}$ and a $V_{C C}$ supply voltage of 5.12 VDC should be used. This provides an LSB value of 20 mV .

If a full-scale adjustment is to be made, an analog input voltage of $5.090 V_{D C}(5.120-11 / 2$ LSB) should be applied to the $V_{I N}(+)$ pin with the $V_{I N}(-)$ pin grounded. The value of the $V_{\text {REF }} / 2$ input voltage should then be adjusted until the digital output code is just changing from 11111110 to 1111 1111. This value of $\mathrm{V}_{\mathrm{REF}} / 2$ should then be used for all the tests.

The digital output LED display can be decoded by dividing the 8 bits into 2 hex characters, the 4 most significant (MS) and the 4 least significant (LS). Table I shows the fractional binary equivalent of these two 4 -bit groups. By adding the decoded voltages which are obtained from the column: Input voltage value for a 2.560 $V_{\text {REF/2 }}$ of both the MS and the LS groups, the value of

FIGURE 7. Basic A/D Tester
the digital display can be determined. For example, for an output LED display of 10110110 or B 6 (in hex), the voltage values from the table are $3.520+0.120$ or 3.640 V DC. These voltage values represent the centervalues of a perfect A / D converter. The effects of quantization error have to be accounted for in the interpretation of the test results.

For a higher speed test system, or to obtain plotted data, a digital-to-analog converter is needed for the test set-up. An accurate 10 -bit DAC can serve as the precision voltage source for the A / D. Errors of the A / D under test can be provided as either analog voltages or differences in 2 digital words.

A basic A/D tester which uses a DAC and provides the error as an analog output voltage is shown in Figure 8. The 2 op amps can be eliminated if a lab DVM with a numerical subtraction feature is available to directly readout the difference voltage, " $\mathrm{A}-\mathrm{C}$ ". The analog input voltage can be supplied by a low frequency ramp generator and an $\mathrm{X}-\mathrm{Y}$ plotter can be used to provide analog error (Y axis) versus analog input (X axis). The construction details of a tester of this type are provided in the NSC application note AN-179, "Analog-to-Digital Converter Testing"'.

For operation with a microprocessor or a computerbased test system, it is more convenient to present the errors digitally. This can be done with the circuit of Figure 9, where the output code transitions can be detected as the 10 -bit DAC is incremented. This provides $1 / 4$ LSB steps for the 8 -bit A/D under test. If the results of this test are automatically plotted with the analog input on the X axis and the error (in LSB's) as the Y axis, a useful transfer function of the A/D under test results. For acceptance testing, the plot is not necessary and the testing speed can be increased by establishing internal limits on the allowed error for each code.

4.0 MICROPROCESSOR INTERFACING

To discuss the interface with 8080A and '6800 microprocessors, a common sample subroutine structure is used. The microprocessor starts the A/D, reads and stores the results of 16 successive conversions, then returns to the user's program. The 16 data bytes are stored in 16 successive memory locations. All Data and Addresses will be given in hexadecimal form. Software and hardware details are provided separately for each type of microprocessor.

4.1 Interfacing 8080 Microprocessor Derivatives (8048, 8085)

This converter has been designed to directly interface with derivatives of the 8080 microprocessor. The A/D can be mapped into memory space (using standard memory address decoding for $\overline{\mathrm{CS}}$ and the $\overline{\mathrm{MEMR}}$ and $\overline{\text { MEMW }}$ strobes) or it can be controlled as an I/O device by using the $\overline{\mathrm{I} / \mathrm{OR}}$ and $\overline{1 / \mathrm{O} \mathrm{W}}$ strobes and decoding the address bits $A 0 \rightarrow$ A7 (or address bits A8 \rightarrow A15 as they will contain the same 8 -bit address information) to obtain the $\overline{\mathrm{CS}}$ input. Using the I/O space provides 256 additional addresses and may allow a simpler 8 -bit address decoder but the data can only be input to the accumulator. To make use of the additional memory reference instructions, the A / D should be mapped into memory space. An example of an A/D in I/O space is shown in Figure 10.

FIGURE 8. A/D Tester with Analog Error Output

FIGURE 9. Basic "Digital" A/D Tester

TABLE I. DECODING THE DIGITAL OUTPUT LEDs

[^35]

Note 1: *Pin numbers for the INS8228 system controller, others are INS8080A.
Note 2: Pin 23 of the INS8228 must be tied to +12 V through a $1 \mathrm{k} \Omega$ resistor to generate the RST 7 instruction when an interrupt is acknowledged as required by the accompanying sample program.

FIGURE 10. ADC0801-INS8080A CPU Interface

SAMPLE PROGRAM FOR FIGÜRE 10 ADC0801-INS8080A CPU INTERFACE

Note 1: The stack pointer must be dimensioned because a RST 7 instruction pushes the PC onto the stack.
Note 2: All addresses used were arbitrarily chosen.

The standard control bus signals of the 8080 ($\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ and $\overline{W R}$) can be directly wired to the digital control inputs of the A / D and the bus timing requirements are met to allow both starting the converter and outputting the data onto the data bus. A bus driver should be used for larger microprocessor systems where the data bus leaves the PC board and/or must drive capacitive loads larger than 100 pF .

4.1.1 Sample 8080A CPU Interfacing Circuitry and Program

The following sample program and associated hardware shown in Figure 10 may be used to input data from the converter to the INS8080A CPU chip set (comprised of the INS8080A microprocessor, the INS8228 system controller and the INS8224 clock generator). For simplicity, the A / D is controlled as an I/O device, specifically an 8 -bit bi-directional port located at an arbitrarily chosen port address, EO. The TRI-STATE output capability of the A / D eliminates the need for a peripheral interface device, however address decoding
is still required to generate the appropriate $\overline{\mathrm{CS}}$ for the converter.

It is important to note that in systems where the A / D converter is 1 -of 8 or less I/O mapped devices, no address decoding circuitry is necessary. Each of the 8 address bits (AO to A7) can be directly used as $\overline{\mathrm{CS}}$ inputs-one for each I/O device.

4.1.2 INS8048 Interface

The INS8048 interface technique with the ADC0801 series (see Figure 11) is simpler than the 8080A CPU interface. There are 24 I/O lines and three test input lines in the 8048 . With these extra $1 / \mathrm{O}$ lines available, one of the $1 / O$ lines (bit 0 of port 1) is used as the chip select signal to the A / D, thus eliminating the use of an external address decoder. Bus control signals $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and $\overline{\mathrm{INT}}$ of the 8048 are tied directly to the A/D. The 16 converted data words are stored at onchip RAM locations from 20 to $2 F$ (Hex). The $\overline{R D}$ and $\overline{W R}$ signals are generated by reading from and writing into a dummy address, respectively. A sample interface program is shown below.

FIGURE 11. INS8048 Interface
SAMPLE PROGRAM FOR FIGURE 11 INS8048 INTERFACE

0410		JMP	10 H	; Program starts at addr 10
		ORG	3 H	
0450		JMP	50 H	; Interrupt jump vector
		ORG	10 H	; Main program
99 FE		ANL	P1, \#OFEH	; Chip select
81		MOVX	A, @R1	; Read in the 1 st data ; to reset the intr
8901	START:	ORL	P1, \#1	; Set port pin high
B8 20		MOV	RO, \#20H	; Data address
B9 FF		MOV	R1, \#0FFH	; Dummy address
BA 10		MOV	R2, \#10H	; Counter for 16 bytes
23 FF	AGAIN:	MOV	A, \#OFFH	; Set ACC for intr loop
99 FE		ANL	P1, \#OFEH	; Send CS (bit 0 of P1)
91		MOVX	@R1, A	; Send WR out
05		EN	1	; Enable interrupt
9621	LOOP:	JNZ	LOOP	; Wait for interrupt
EA 1B		DJNZ	R2, AGAIN	; If 16 bytes are read
00		NOP		; go to user's program
00		NOP		
		ORG	50 H	
81	INDATA:	movx	A, @R1	; Input data, CS still low
A0		MOV	@RO, A	; Store in memory
18		INC	RO	; Increment storage counter
8901		ORL	P1, \#1	; Reset CS signal
27		CLR	A	; Clear ACC to get out of
93		RETR		; the interrupt loop

SAMPLE PROGRAM FOR FIGURE 12 - INS8073 INTERFACE

```
C= 16
D=#13D0 ; REM D points to data address
@ #3000 = A
A = STAT AND #20
IF A<>0 THEN GO TO 130
@ D = @ #3000
D=D +1
C=C-1
IF C > O THEN GO TO 120
RETURN
; REM C is the 16 bytes counter
; REM start A/D
; REM wait until interrupt
REM from A/D
; REM input converted data
; REM increment data address
; REM check counter
```

; REM C is the $\mathbf{1 6}$ bytes counter
; REM D points to data address
; REM start A/D
; REM wait until interrupt
; REM from A/D
; REM increment data address
; REM check counter
; REM if 16 data have been read
; REM return to main program

FIGURE 12. INS8073 Interface

4.1.3 INS8073 Interface

The INS8073 allows users to program directly in Tiny Basic. DS1488/1489 driver/receiver chips are used for level buffering to communicate via RS-232. (For a detailed description of the INS8073 and the Tiny Basic, see INS8073 data sheet.) The ADC0801 is mapped into the memory space of the 8073 system (see Figure 12). A RAM of 1 k bytes is provided in which the first 256 bytes are used by the Tiny Basic microinterpreter. Address 3000 (Hex) is assigned to the A/D and the 16 converted data bytes are stored at external RAM locations from 13D0 to 13DF (Hex). STAT function is used to examine the interrupt signal from the A / D. A sample Tiny Basic subroutine is given in the sample program for Figure 12 - INS8073 Interface.

4.2 Interfacing the Z-80

The Z-80 control bus is slightly different from that of the 8080. General $\overline{R D}$ and $\overline{W R}$ strobes are provided and separate memory request, $\overline{\mathrm{MREQ}}$, and I/O request, $\overline{\text { IORO, signals are used which have to be combined with }}$ the generalized strobes to provide the equivalent 8080 signals. An advantage of operating the A/D in I/O space with the Z-80 is that the CPU will automatically insert one wait state (the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobes are extended one clock period) to allow more time for the I/O devices to respond. Logic to map the A/D in I/O space is shown in Figure 13.

FIGURE 13. Mapping the A / D as an I/O Device for Use with the Z-80 CPU
Additional I/O advantages exist as software DMA routines are available and use can be made of the output data transfer which exists on the upper 8 address lines (A8 to A15) during I/O input instructions. For example, MUX channel selection for the A/D can be accomplished with this operating mode.

4.3 Interfacing 6800 Microprocessor Derivatives (6502, etc.)

The control bus for the 6800 microprocessor derivatives does not use the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobe signals. Instead it employs a single R / \bar{W} line and additional timing, if needed, can be derived from the $\phi 2$ clock. All I/O devices are memory mapped in the 6800 system, and a special signial, VMA, indicates that the current address is valid. Figure 14 shows an interface schematic where the A/D is memory mapped in the 6800 system. For simplicity, the $\overline{C S}$ decoding is shown using $1 / 2$ DM8092. Note that in many 6800 systems, an already decoded $\overline{4 / 5}$ line is brought out to the common bus at pin 21 . This can be tied directly to the $\overline{C S}$ pin of the A/D, provided that no other devices are addressed at HEX ADDR: $4 \times X X$ or $5 X X X$.

The following subroutine essentially performs the same function as in the case of the 8080A interface and it can be called from anywhere in the user's program.

In Figure 15 the ADC0801 series is interfaced to the M6800 microprocessor through (the arbitrarily chosen) Port B of the MC6820 or MC6821 Peripheral Interface Adapter, (PIA). Here the $\overline{\mathrm{CS}}$ pin of the A / D is grounded since the PIA is already memory mapped in the M6800 system and no $\overline{\mathrm{CS}}$ decoding is necessary. Also notice that the A / D output data lines are connected to the microprocessor bus under program control through the PIA and therefore the A/D $\overline{\mathrm{RD}}$ pin can be grounded.

A sample interface program equivalent to the previous one, is shown below Figure 15. The PIA Data and Control Registers of Port B are located at HEX addresses 8006 and 8007 , respectively.

5.0 GENERAL APPLICATIONS

The following applications show some interesting uses for the A/D. The fact that one particular microprocessor is used is not meant to be restrictive. Each of these application circuits would have its counterpart using any microprocessor which is desired.

5.1 Multiple ADC0801 Series to MC6800 CPU Interface

To transfer analog data from several channels to a single microprocessor system, a multiple converter scheme presents several advantages over the conventional multiplexer single-converter approach. With the ADC0801
series, the differential inputs allow individual span adjustment for each channel. Furthermore, all analog input channels are sensed simultaneously, which essentially divides the microprocessor's total system servicing time by the number of channels, since all conversions occur simultaneously. This scheme is shown in Figure 16.

FIGURE 14. ADC0801-MC6800 CPU Interface SAMPLE PROGRAM FOR FIGURE 14 ADC0801-MC6800 CPU INTERFACE

0010	DF 36	DATAIN	STX	TEMP2	; Save contents of X
0012	CE 002 C		LDX		; Upon $\overline{\mathrm{RO}}$ low CPU
0015	FF FF F8		STX	\$FFF8	; jumps to 002C
0018	B7 5000		STAA	\$5000	; Starts ADC0801
001B	OE		CLI		
001C	3E	CONVRT	WAI		; Wait for interrupt
001D	DE 34		LDX	TEMP1	
001F	8C 02 OF		CPX	- \$020F	; Is final data stored?
0022	2714		BEQ	ENDP	
0024	B7 5000		STAA	\$5000	Restarts ADC0801
0027	08		INX		
0028	DF 34		STX	TEMP1	
002A	20 FO		BRA	CONVRT	
002C	DE 34	INTRPT	LDX	TEMP 1	
002E	B6 5000		LDAA	\$5000	; Read data
0031	A7 00		STAA	X	; Store it at X
0033	3B		RTI		
0034	0200	TEMP1	FDB	\$0200	; Starting address for ; data storage
0036	0000	TEMP2 -	FDB	\$0000	
0038	CE 0200	ENDP	LDX	\#\$0200	; Reinitialize TEMP1
003B	DF 34		STX	TEMP1	
003D	DE 36		LDX	TEMP2	
003F	39		RTS		; Return from subroutine ; To user's program

Note 1: In order for the microprocessor to service subroutines and interrupts, the stack pointer must be dimensioned in the user's program.

FIGURE 15. ADC0801-MC6820 PIA Interface

SAMPLE PROGRAM FOR FIGURE 15 ADC0801-MC6820 PIA INTERFACE

0010	CE 0038	DATAIN	LDX	\#\$0038	; Upon $\overline{\mathrm{IRO}}$ low CPU
0013	FF FF F8		STX	\$FFF8	; jumps to 0038
0016	B6 8006		LDAA	PIAORB	; Clear possible $\overline{\mathrm{IRO}}$ flags
0019	4F		CLRA		
001A	B7 8007		STAA	PIACRB	,
001D	B7 8006		STAA	PIAORB	; Set Port B as input
0020	OE		CLI		
0021	C6 34		LDAB	\#\$34	
0023	863 D		LDAA	\#\$3D	
0025	F7 8007	CONVRT	STAB	PIACRB	; Starts ADC0801
0028	B7 8007		STAA	PIACRB	
002B	3E		WAI		; Wait for interrupt
002C	DE 40		LDX	TEMP1	
002E	8C 02 OF		CPX	\#S020F	; Is final data stored?
0031	27 OF		BEQ	ENDP	
0033	08		INX		
0034	DF 40		STX	TEMP1	
0036	20 ED		BRA	CONVRT	
0038	DE 40	INTRPT	LDX	TEMP1	
003A	B6 8006		LDAA	PIAORB	; Read data in
003D	A7 00		STAA	X	; Store it at X
003F	3B		RTI		
0040	0200	TEMP1	FDB	\$0200	; Starting address for ; data storage
0042	CE 0200	ENDP	LDX	\#\$0200	; Reinitialize TEMP1
0045	DF 40		STX	TEMP1	
0047	39		RTS		; Return from subroutine
		PIAORB	EQU	\$8006	; To user's program
		PIACRB	EQU	\$8007	

The following schematic and sample subroutine (DATA IN) may be used to interface (up to) 8 ADC0801's directly to the MC6800 CPU. This scheme can easily be extended to allow the interface of more converters. In this configuration the converters are (arbitrarily) located at HEX address 5000 in the MC6800 memory space. To save components, the clock signal is derived from just one RC pair on the first converter. This output drives the other A/Ds.

All the converters are started simultaneously with a STORE instruction at HEX address 5000 . Note that any other HEX address of the form $5 \times X X$ will be decoded by the circuit, pulling all the $\overline{\mathrm{CS}}$ inputs low. This can easily be avoided by using a more definitive address decoding scheme. All the interrupts are ORed together to insure that all $A / D s$ have completed their conversion before the microprocessor is interrupted.

The subroutine, DATA IN, may be called from anywhere in the user's program. Once called, this routine initializes
the CPU, starts all the converters simultaneously and waits for the interrupt signal. Upon receiving the interrupt, it reads the converters (from HEX addresses 5000 through 5007) and stores the data successively at (arbitrarily chosen) HEX addresses 0200 to 0207, before returning to the user's program. All CPU registers then recover the original data they had before servicing DATA IN.

5.2 Auto-Zeroed Differential Transducer Amplifier and A/D Converter

The differential inputs of the ADC0801 series eliminate the need to perform a differential to single ended conversion for a differential transducer. Thus, one op amp can be eliminated since the differential to single ended conversion is provided by the differential input of the ADC0801 series. In general, a transducer preamp is required to take advantage of the full A / D converter input dynamic range.

Note 1: Numbers in parentheses refer to MC6800 CPU pin out.
Note 2: Numbers or letters in brackets refer to standard M6800 system common bus code.
FIGURE 16. Interfacing Multiple A/Ds in an MC6800 System

SAMPLE PROGRAM FOR FIGURE 16 INTERFACING MULTIPLE A/Ds IN AN MC6800 SYSTEM

ADDRESS	HEX CODE	MNEMONICS			COMMENTS
0010	DF 44	DATAIN	STX	TEMP	; Save Contents of X
0012	CE 00 2A		LDX	\#\$002A	; Upon $\overline{\mathrm{IRQ}}$ LOW CPU
0015	FF FF F8	\cdots	STX	\$FFF8	; Jumps to 002A
0018	B7 5000		STAA	\$5000	; Starts all A/D's
001B	OE		CLI		
001C	3E		WAI		; Wait for interrupt
001D	CE 5000		LDX	\#\$5000	
0020	DF 40		STX	INDEX1	; Reset both INDEX
0022	CE 0200		LDX	\#\$0200	; 1 and 2 to starting
0025	DF 42		STX	INDEX2	;addresses
0027	DE 44		LDX	TEMP	
0029	39		RTS		; Return from subroutine
002A	DE 40	INTRPT	LDX	INDEX1	; ${ }^{\text {d }}$ DEX1 \rightarrow X
002C	A6 00		LDAA	X	; Read data in from A/D at X
002E	08		INX		; Increment X by one
002F	DF 40		STX	INDEX1	; $\mathrm{X} \rightarrow$ INDEX1
0031	DE 42		LDX	INDEX2	; INDEX2 \rightarrow X
0033	A7 00		STAA	X	;Store data at X
0035	8C 0207		CPX	\#\$0207	;Have all A/D's been read?
0038	2705		BEQ	RETURN	;Yes: branch to RETURN
003A	08		INX		;No: increment X by one
003B	DF 42		STX	INDEX2	; $\mathrm{X} \rightarrow$ INDEX2
003D	20 EB		BRA	INTRPT	;Branch to 002A
003F	3B	RETURN	RTI		
0040	5000	INDEX1	FDB	\$5000	;Starting address for A/D
0042	0200	INDEX2	FDB	\$0200	;Starting address for data storage
0044	0000	TEMP	FDB	\$0000	

Note 1: In order for the microprocessor to service subroutines and interrupts, the stack pointer must be dimensioned in the user's program.

For amplification of DC input signals, a major system error is the input offset voltage of the amplifiers used for the preamp. Figure 17 is a gain of 100 differential preamp whose offset voltage errors will be cancelled by a zeroing subroutine which is performed by the INS8080A microprocessor system. The total allowable input offset voltage error for this preamp is only $50 \mu \mathrm{~V}$ for $1 / 4$ LSB error. This would obviously require very precise amplifiers. The expression for the differential output voltage of the preamp is:

where I_{X} is the current through resistor R_{X}. All of the offset error terms can be cancelled by making $\pm\left.\right|_{X} R_{X}=$ $V_{o s 1}+V_{o s 3}-V_{o s 2}$. This is the principle of this auto-zeroing scheme.

The INS8080A uses the 3 I/O ports of an INS8255 Programmable Peripheral Interface (PPI) to control the auto zeroing and input data from the ADC0801 as shown in Figure 18. The PPI is programmed for basic I/O operation (mode 0) with Port A being an input port and Ports B and C being output ports. Two bits of Port C are used to alternately open or close the 2 switches at the input
of the preamp. Switch SW1 is closed to force the preamp's differential input to be zero during the zeroing subroutine and then opened and SW2 is then closed for conversion of the actual differential input signal. Using 2 switches in this manner eliminates concern for the ON resistance of the switches as they must conduct only the input bias current of the input amplifiers.

Output Port B is used as a successive approximation register by the 8080 and the binary scaled resistors in series with each output bit create a D/A converter. During the zeroing subroutine, the voltage at V_{x} increases or decreases as required to make the differential output voltage equal to zero. This is accomplished by insuring that the voltage at the output of A1 is approximately 2.5 V so that a logic " 1 " (5 V) on any output of Port B will source current into node V_{x} thus raising the voltage at V_{X} and making the output differential more negative. Conversely, a logic " 0 " (0 V) will pull current out of node V_{X} and decrease the voltage, causing the differential output to become more positive. For the resistor values shown, V_{X} can move $\pm 12 \mathrm{mV}$ with a resolution of $50 \mu \mathrm{~V}$ which will null the offset error term to $1 / 4$ L.SB of full-scale for the ADC0801. It is important that the voltage levels which drive the autozero resistors be constant. Also, for symmetry, a logic swing of 0 V to 5 V is convenient. To achieve this, a CMOS buffer is used for the logic output signals of Port B and this CMOS package is powered with a stable 5 V source. Buffer amplifier A1 is necessary so that it can source or sink the D/A output current.

Note 1: R2 $=49.5$ R1
Note 2: Switches are CD4066BC CMOS analog switches.
Note 3: The 9 resistors used in the auto-zero section can be $\pm 5 \%$ tolerance.
FIGURE 17. Gain of 100 Differential Transducer Preamp

FIGURE 18. Microprocessor Interface Circuitry for Differential Preamp

A flow chart for the zeroing subroutine is shown in Figure 19. It must be noted that the ADC0801 series will output an all zero code when it converts a negative input $\left[\mathrm{V}_{1 \mathrm{~N}}(-) \geq \mathrm{V}_{\text {IN }}(+)\right]$. Also, a logic inversion exists as all of the I/O ports are buffered with inverting gates.

Basically, if the data read is zero, the differential output voltage is negative, so a bit in Port B is cleared to pull V_{X} more negative which will make the output more positive for the next conversion. If the data read is not zero, the output voltage is positive so a bit in Port B is set to make V_{X} more positive and the output more negative. This continues for 8 approximations and the differential output eventually converges to within 5 mV of zero.

The actual program is given in Figure 20. All addresses used are compatible with the BLC 80/10 microcomputer system. In particular:

Port A and the ADC0801 are at port address E4
Port B is at port address E5
Port C is at port address E6
PPI control word port is at port address E7
Program Counter automatically goes to ADDR:3C3D upon acknowledgement of an interrupt from the ADC0801

5.3 Multiple A/D Converters in a Z-80 Interrupt Driven Mode

In data acquisition systems where more than one A/D converter (or other peripheral device) will be interrupting program execution of a microprocessor, there is obviously a need for the CPU to determine which device requires servicing. Figure 21 and the accompanying software is a method of determining which of 7 ADC0801 converters has completed a conversion (INTR asserted) and is requesting an interrupt. This circuit allows starting the A / D converters in any sequence, but will input and store valid data from the converters with a priority sequence of $A / D 1$ being read first, A/D 2 second, etc., through A/D 7 which would have the lowest priority for data being read. Only the converters whose INT is asserted will be read.

The key to decoding circuitry is the DM74LS373, 8 -bit D type flip-flop. When the $2-80$ acknowledges the interrupt, the program is vectored to a data input Z-80 subroutine. This subroutine will read a peripheral status word from the DM74LS373 which contains the logic state of the $\overline{\mathrm{INTR}}$ outputs of all the converters. Each converter which initiates an interrupt will place a logic " 0 " in a unique bit position in the status word and the subroutine will determine the identity of the converter and execute a data read. An identifier word (which indicates which A / D the data came from) is stored in the next sequential memory location above the location of the data so the program can keep track of the identity of the data entered.

FIGURE. 19. Flow Chart for Auto-Zero Routine

3D00	$3 E 90$	MVI 90	
3D02	D3E7	Out Control Port	
3D04	2601	MVI H 01	Auto-Zero Subroutine

Note: All numerical values are hexadecimal representations.
FIGURE 20. Software for Auto-Zeroed Differential A/D

5.3 Multiple A/D Converters in a Z-80 Interrupt Driven Mode (Continued)

The following notes apply:

1) It is assumed that the CPU automatically performs a RST 7 instruction when a valid interrupt is acknowledged (CPU is in interrupt mode 1). Hence, the subroutine starting address of X0038.
2) The address bus from the $Z-80$ and the data bus to the Z-80 are assumed to be inverted by bus drivers.
3) A / D data and identifying words will be stored in sequential memory locations starting at the arbitrarily chosen address X 3E00.
4) The stack pointer must be dimensioned in the main program as the RST 7 instruction automatically pushes the PC onto the stack and the subroutine uses an additional 6 stack addresses.
5) The peripherals of concern are mapped into I/O space with the following port assignments:

HEX PORT ADDRESS

00	MM74C374 8-bit flip-flop
01	A/D 1
02	A/D 2
03	A/D 3
04	A/D 4
05	A/D 5
06	A/D 6
07	A/D 7

This port address also serves as the A / D identifying word in the program.

FIGURE 21. Multiple A/Ds with Z-80 Type Microprocessor

INTERRUPT SERVICING SUBROUTINE

			SOURCE	
LOC	OBJ CODE		STATEMENT	COMMENT
0038	E5		PUSH HL	; Save contents of all registers affected by
0039	C5		PUSH BC	; this subroutine.
003A	F5		PUSH AF	; Assumed INT mode 1 earlier set.
003B	21003 E		LD (HL), X3E00	; Initialize memory pointer where data will be stored.
003E	OE 01		LD C, X01	; C register will be port ADDR of A/D converters.
0040	D300		OUT X00,A	; Load peripheral status word into 8-bit latch.
0042 .	DB00		IN A, X00	; Load status word into accumulator.
0044	47		LD B,A	; Save the status word.
0045	79	TEST	LD A,C	; Test to see if the status of all A/D's have
0046	FE 08		CP, X08	; been checked. If so, exit subroutine.
0048	CA 6000		JPZ, DONE	
004B	78		LD A,B	; Test a single bit in status word by looking for
004C	1F.		RRA	; a " 1 " to be rotated into the CARRY (an INT
004D	47		LD B,A	; is loaded as a " 1 "). If CARRY is set then load
004E	DA 5500		JPC, LOAD	; contents of A/D at port ADDR in C register.
0051	OC	NEXT	INC C	; If CARRY is not set, increment C register to point
0052	C3 4500		JP, TEST	; to next A/D, then test next bit in status word.
0055	ED 78	LOAD	IN A, (C)	; Read data from interrupting A/D and invert
0057	EE FF		XOR FF	; the data.
0059	77		LD (HL), A	; Store the data.
005A	2C		INC L	
005B	71		LD (HL), C	; Store A/D identifier (A/D port ADDR).
005C	2C		INC L	
005D	C3 5100		JP,NEXT	; Test next bit in status word.
0060	F1	DOTNE	POP AF	; Re-establish all registers as they were
0061	C1		POP BC	; before the interrupt.
0062	E1		POP HL	
0063	C9		RET	; Return to original program.

Ordering Information

TEMPERATURE RANGE		$0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
ERROR	$\pm 1 / 4$ Bit Adjusted		ADC0801LCN	ADC0801LCD	ADC0801LD
	$\pm 1 / 2$ Bit Unadjusted		ADC0802LCN	ADC0802LCD	ADC0802LD
	$\pm 1 / 2$ Bit Adjusted		ADC0803LCN	ADC0803LCD	
	± 1 Bit Unadjusted	ADC0804LCN	ADC0805LCN	ADC0804LCD	
PACKAGE OUTLINE		N2OA-MOLDED DIP		D20A-CAVITY DIP	D20A-CAVITY DIP

Connection Diagram

ADC0808, ADC0809 8-Bit μ P Compatible A/D Converters With 8-Channel Multiplexer

General Description

The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8 -bit analog-to-digital converter, 8-channel multiplexer and microprocessor compatible control logic. The 8-bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256R voltage divider with analog switch tree and a successive approximation register. The 8 -channel multiplexer can directly access any of 8 -single-ended analog signals.
The device eliminates the need for external zero and fullscale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE ${ }^{\circledR}$ outputs.
The design of the ADC0808, ADC0809 has been optimized by incorporating the most desirable aspects of several A/D conversion techniques. The ADC0808, ADC0809 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications. For 16-channel multiplexer with common output (sample/hold port) see ADC0816 data sheet. (See AN-247 for more information.

Features

- Resolution - 8-bits
- Total unadjusted error $- \pm 1 / 2$ LSB and ± 1 LSB
- No missing codes
- Conversion time - $100 \mu \mathrm{~s}$
- Single supply - $5 \mathrm{~V}_{\mathrm{DC}}$
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ or analog span adjusted voltage reference
- 8-channel multiplexer with latched control logic
- Easy interface to all microprocessors, or operates "stand alone"
- Outputs meet T^{2} L voltage level specifications
- OV to 5 V analog input voltage range with single 5 V supply
- No zero or full-scale adjust required
- Standard hermetic or molded 28 -pin DIP package
- Temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Low power consumption - 15 mW
- Latched TRI-STATE ${ }^{\oplus}$ output

Electrical Characteristics

Converter Specifications: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{REF}(+)}, \mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise stated.

	Parameter	Conditions	Min	Typ	Max	Units
	ADC0808					
	Total Unadjusted Error	$25^{\circ} \mathrm{C}$			$\pm 1 / 2$	LSB
	(Note 5)	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			$\pm 3 / 4$	LSB
	ADC0809					
	Total Unadjusted Error	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			± 1	LSB
	(Note 5)	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			$\pm 11 / 4$	LSB
	Input Resistance	From $\operatorname{Ref}(+)$ to $\operatorname{Ref}(-)$	1.0	2.5		k Ω
	Analog Input Voltage Range	(Note 4) V(+) or V(-)	GND-0.10		$\mathrm{V}_{\mathrm{CC}}+0.10$	$V_{D C}$
$\mathrm{V}_{\text {REF }(+)}$	Voltage, Top of Ladder	Measured at Ref(+)		V_{cc}	$v_{C C}+0.1$	V
$\frac{\mathrm{V}_{\text {REF }(+)}+\mathrm{V}_{\text {REF }(-)}}{2}$	Voltage, Center of Ladder		$\mathrm{V}_{\mathrm{Cc}} / 2-0.1$	$\mathrm{V}_{\mathrm{cc}} / 2$	$\mathrm{V}_{\mathrm{CC}} / 2+0.1$	V
$\mathrm{V}_{\text {REF(}- \text {) }}$	Voltage, Bottom of Ladder	Measured at Ref(-)	-0.1	0		V
	Comparator Input Current	$\mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$, (Note 6)	-2	± 0.5	2	$\mu \mathrm{A}$

Electrical Characteristics

Digital Levels and DC Specifications: ADC0808CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted ADC0808CCJ, ADC0808CCN, and ADC0809CCN $4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted

	Parameter	Conditions	Min	Typ	Max	Units
ANALOG MULTIPLEXER						
$\mathrm{IOFF}(+)$	OFF Channel Leakage Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{I N}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{aligned}$		10	$\begin{aligned} & 200 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{l}_{\text {OFF(-) }}$	OFF Channel Leakage Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{gathered} -200 \\ -1.0 \end{gathered}$	-10		$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$

CONTROL INPUTS

$V_{\text {IN(1) }}$	Logical "1" Input Voltage		$V_{C C}-1.5$			V
$\mathrm{V}_{\text {IN(0) }}$	Logical "0" Input Voltage				1.5	V
$I_{\text {IN(1) }}$	Logical "1" Input Current (The Control Inputs)	$V_{\text {IN }}=15 \mathrm{~V}$			1.0	${ }_{\mu} \mathrm{A}$
$\mathrm{I}_{\text {IN(0) }}$	Logical " 0 " input Current (The Control Inputs)	$V_{\text {IN }}=0$	-1.0			$\mu \mathrm{A}$
$I_{\text {cc }}$	Supply Current	$\mathrm{f}_{\text {CLK }}=640 \mathrm{kHz}$		0.3	3.0	mA

Electrical Characteristics (Continued)

Digital Levels and DC Specifications: ADC0808CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted ADC0808CCJ, ADC0808CCN, and ADC0809CCN $4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted

Parameter		Conditions	Min	Typ	Max	Units
DATA OUTPUTS AND EOC (INTERRUPT)						
$V_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\mathrm{I}_{0}=-360 \mu \mathrm{~A}$	$V_{C C}-0.4$			V
$V_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\mathrm{I}_{0}=1.6 \mathrm{~mA}$			0.45	V
$V_{\text {OUT(0) }}$	Logical " 0 " Output Voltage EOC	$\mathrm{I}_{\mathrm{O}}=1.2 \mathrm{~mA}$			0.45	V
lout	TRI-STATE ${ }^{\text {® }}$ Output Current	$\begin{aligned} & V_{0}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0 \end{aligned}$	-3		3	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Electrical Characteristics

Timing Specifications: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {ws }}$	Minimum Start Pulse Width	(Figure 5)		100	200	ns
$t_{\text {WALE }}$	Minimum ALE Pulse Width	(Figure 5)		100	200	ns
$\mathrm{t}_{\text {s }}$	Minimum Address Set-Up Time	(Figure 5)		25	50	ns
t_{H}	Minimum Address Hold Time	(Figure 5)		25	50	ns
t_{D}	Analog MUX Delay Time From ALE	$\mathrm{R}_{\mathrm{S}}=0 \Omega$ (Figure 5)		1	2.5	$\mu \mathrm{S}$
$t_{\mathrm{H}_{1}}, \mathrm{t}_{\mathrm{HO}}$	OE Control to Q Logic State	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
$t_{1 H}, t_{0 H}$	OE Control to $\mathrm{Hi}-\mathrm{Z}$	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
t_{c}	Conversion Time	$\mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$, (Figure 5) (Note 7),	90	100	116	$\mu \mathrm{S}$
f_{c}	Clock Frequency		10	640	1280	kHz
$\mathrm{t}_{\text {EOC }}$	EOC Delay Time	(Figure 5)	0		$8+2 \mu \mathrm{~S}$	Clock Periods
$\mathrm{C}_{\text {IN }}$	Input Capacitance	At Control Inputs		10	15	pF
Cout	TRI-STATE ${ }^{\circledR}$ Output Capacitance	At TRI-STATE® Outputs, (Note 12)		10	15	pF

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G N D$ and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$.
Note 4: Two on-chip diodes are tled to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $V_{C C}$ supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog $V_{I N}$ does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achleve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.900 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.5 V full-scale) the reference voltages can be adjusted to achieve this. See Figure 13.
Note 6: Comparator input current is a bias current into or out of the chopper stabilized comparator. The blas current varles directly with clock frequency and has little temperature dependence (Figure 6). See paragraph 4.0.
Note 7: The outputs of the data register are updated one clock cycle before the rising edge of EOC.

Functional Description

Multiplexer: The device contains an 8-channel singleended analog signal multiplexer. A particular input channel is selected by using the address decoder. Table I shows the input states for the address lines to select any channel. The address is latched into the decoder on the low-to-high transition of the address latch enable signal.

TABLEI

SELECTED			
ANALOG CHANNEL	ADDRESS LINE		
	C	B	A
INO	L	L	L
IN1	L	L	H
IN2	L	H	L
IN3	L	H	H
IN4	H	L	L
IN5	H	L	H
IN6	H	H	L
IN7	H	H	H

CONVERTER CHARACTERISTICS

The Converter

The heart of this single chip data acquisition system is its 8 -bit analog-to-digital converter. The converter is designed
to give fast, accurate, and repeatable conversions over a wide range of temperatures. The converter is partitioned into 3 major sections: the 256R ladder network, the successive approximation register, and the comparator. The converter's digital outputs are positive true.
The 256R ladder network approach (Figure 1) was chosen over the conventional R/2R ladder because of its inherent monotonicity, which guarantees no missing digital codes. Monotonicity is particularly important in closed loop feedback control systems. A non-monotonic relationship can cause oscillations that will be catastrophic for the system. Additionally, the 256R network does not cause load variations on the reference voltage.

The bottom resistor and the top resistor of the ladder network in Figure 1 are not the same value as the remainder of the network. The difference in these resistors causes the output characteristic to be symmetrical with the zero and full-scale points of the transfer curve. The first output transition occurs when the analog signal has reached $+1 / 2$ LSB and succeeding output transitions occur every 1 LSB later up to full-scale.

The successive approximation register (SAR) performs 8 iterations to approximate the input voltage. For any SAR type converter, n-iterations are required for an n-bit converter. Figure 2 shows a typical example of a 3 -bit converter. In the ADC0808, ADC0809, the approximation technique is extended to 8 bits using the 256R network.

FIGURE 1. Resistor Ladder and Switch Tree

Functional Description (Continued)

The A/D converter's successive approximation register (SAR) is reset on the positive edge of the start conversion (SC) pulse. The conversion is begun on the falling edge of the start conversion pulse. A conversion in process will be interrupted by receipt of a new start conversion pulse. Continuous conversion may be accomplished by tying the end-of-conversion (EOC) output to the SC input. If used in this mode, an external start conversion pulse should be applied after power up. End-of-conversion will go low between 0 and 8 clock pulses after the rising edge of start conversion.

The most important section of the A/D converter is the comparator. It is this section which is responsible for the ultimate accuracy of the entlre converter. It is also the
comparator drift which has the greatest influence on the repeatability of the device. A chopper-stabilized comparator provides the most effective method of satisfying all the converter requirements.
The chopper-stabilized comparator converts the DC input signal into an AC signal. This signal is then fed through a high gain AC amplifier and has the DC level restored. This technique limits the drift component of the amplifier since the drift is a DC component which is not passed by the AC amplifier. This makes the entire AID converter extremely insensitive to temperature, long term drift and input offset errors.

Figure 4 shows a typical error curve for the ADC0808 as measured using the procedures outlined in AN-179.

FIGURE 2. 3-Bit A/D Transfer Curve

FIGURE 4. Typical Error Curve

Connection Diagram

Dual-In-LIne Package

Timing Diagram

Typical Performance Characteristics

FIGURE 6. Comparator $I_{I N}$ vs $V_{I N}$ $\left(\mathbf{V}_{\mathrm{CC}}=\mathbf{V}_{\mathrm{REF}}=5 \mathrm{~V}\right)$

FIGURE 7. Multiplexer $R_{\text {ON }}$ vs $V_{\text {IN }}$ $\left(\mathbf{V}_{\mathbf{C C}}=\mathbf{V}_{\mathbf{R E F}}=5 \mathrm{~V}\right)$

TRI-STATE ${ }^{\circledR}$ Test Circuits and Timing Diagrams

$$
t_{\mathrm{HO}}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
$$

FIGURE 8

Applications Information

OPERATION

1.0 Ratiometric Conversion

The ADC0808, ADC0809 is designed as a complete Data Acquisition System (DAS) for ratiometric conversion systems. In ratiometric systems, the physical variable being measured is expressed as a percentage of full-scale which is not necessarily related to an absolute standard. The voltage input to the ADC0808 is expressed by the equation

$$
\begin{equation*}
\frac{V_{I N}}{V_{\mathrm{fs}}-V_{Z}}=\frac{D_{X}}{D_{M A X}-D_{M I N}} \tag{1}
\end{equation*}
$$

$\mathrm{V}_{\text {IN }}=$ Input voltage into the ADC0808
$V_{\text {fs }}=$ Full-scale voltage
$\mathrm{V}_{\mathrm{Z}}=$ Zero voltage
$\mathrm{D}_{\mathrm{x}}=$ Data point being measured
$\mathrm{D}_{\mathrm{MAX}}=$ Maximum data limit
$D_{\text {MIN }}=$ Minimum data limit
A good example of a ratiometric transducer is a potentiometer used as a position sensor. The position of the wiper is directly proportional to the output voltage which is a ratio of the full-scale voltage across it. Since the data is represented as a proportion of full-scale, reference requirements are greatly reduced, eliminating a large source of error and cost for many applications. A major advantage of the ADC0808, ADC0809 is that the input voltage range is equal to the supply range so the transducers can be connected directly across the supply and their outputs connected directly into the multiplexer inputs, (Figure 9).

Ratiometric transducers such as potentiometers, strain gauges, thermistor bridges, pressure transducers, etc., are suitable for measuring proportional relationships; however, many types of measurements must be referred to an absolute standard such as voltage or current. This means a system reference must be used which relates the full-scale voltage to the standard volt. For example, if $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5.12 \mathrm{~V}$, then the full-scale range is divided into 256 standard steps. The smallest standard step is 1 LSB which is then 20 mV .

2.0 Resistor Ladder Limitations

The voltages from the resistor ladder are compared to the selected input 8 times in a conversion. These voltages are coupled to the comparator via an analog switch tree which is referenced to the supply. The voltages at the top, center and bottom of the ladder must be controlled to maintain proper operation.

The top of the ladder, Ref(+), should not be more positive than the supply, and the bottom of the ladder, $\operatorname{Ref}(-)$, should not be more negative than ground. The center of the ladder voltage must also be near the center of the supply because the analog switch tree changes from N -channel switches to P -channel switches. These limitations are automatically satisfied in ratiometric systems and can be easily met in ground referenced systems.

Figure 10 shows a ground referenced system with a separate supply and reference. In this system, the supply must be trimmed to match the reference voltage. For instance, if a 5.12 V is used, the supply should be adjusted to the same voltage within 0.1 V .

FIGURE 9. Ratiometric Conversion System

Applications Information (Continuod)

The ADC0808 needs less than a milliamp of supply current so developing the siupply from the reference is readily accomplished. In Figure 11 a ground referenced system is shown which generates the supply from the reference. The buffer shown can be an op amp of sufficient drive to supply the milliamp of supply current and the desired bus drive, or If a capacitive bus is driven by the outputs a large capacitor will supply the transient supply current as seen in Figure 12. The LM301 is overcompensated to insure stability when loaded by the $10 \mu \mathrm{~F}$ output capacitor.

The top and bottom ladder voltages cannot exceed V_{Cc} and ground, respectively, but they can be symmetrically less than V_{CC} and greater than ground. The center of the ladder voltage should always be near the center of the supply. The sensitivity of the converter can be increased, (i.e., size of the LSB steps decreased) by using a symmetrical reference system. In Figure 13, a 2.5 V reference is symmetrically centered about $\mathrm{V}_{\mathrm{Cd}} / 2$ since the same current flows in identical resistors. This system with a 2.5 V reference allows the LSB bit to be half the size of a 5 V reference system.

FIGURE 10. Ground Referenced Conversion System Using Trimmed Supply

FIGURE 11. Ground Referenced Conversion System with Reference Generating $\mathbf{V}_{\text {CC }}$ Supply

Applications Information (Continued)

FIGURE 12. Typical Reference and Supply Circuit

FIGURE 13. Symmetrically Centered Reference

3.0 Converter Equations

The transition between adjacent codes N and $\mathrm{N}+1$ is given by:

$$
\begin{equation*}
V_{I N}=\left\{\left(V_{\operatorname{REF}(+)}-V_{\operatorname{REF}(-)}\right)\left[\frac{N}{256}+\frac{1}{512}\right] \pm V_{\operatorname{TUE}}\right\}+V_{\operatorname{REF}(-)} \tag{2}
\end{equation*}
$$

The center of an output code N is given by:

$$
\begin{equation*}
V_{I N}=\left\{\left(V_{\text {REF }(+)}-V_{\operatorname{REF}(-)}\right)\left[\frac{N}{256}\right] \pm V_{\text {TUE }}\right\}+V_{\text {REF }(-)} \tag{3}
\end{equation*}
$$

The output code N for an arbitrary input are the integers within the range:

$$
\begin{equation*}
N=\frac{V_{I N}-V_{\operatorname{REF}(-)}}{V_{R E F(+)}-V_{\operatorname{REF}(-)}} \times 256 \pm \text { Absolute Accuracy } \tag{4}
\end{equation*}
$$

where: $\mathrm{V}_{\mathrm{IN}}=$ Voltage at comparator input
$\mathrm{V}_{\text {REF(}+ \text {) }}=$ Voltage at Ref(+)
$\mathrm{V}_{\text {REF(}-)}=$ Voltage at $\operatorname{Ref}(-)$
$\mathrm{V}_{\text {TUE }}=$ Total unadjusted error voltage (typically
$\mathrm{V}_{\mathrm{REF}(+)} \div 512$)

4.0 Analog Comparator Inputs

The dynamic comparator input current is caused by the periodic switching of on-chip stray capacitances. These are connected alternately to the output of the resistor ladder/switch tree network and to the comparator input as part of the operation of the chopper stabilized comparator.

The average value of the comparator input current varies directly with clock frequency and with $\mathrm{V}_{\mathbb{I}}$ as shown in Figure 6.

If no filter capacitors are used at the analog inputs and the signal source impedances are low, the comparator input current should not introduce converter errors, as the transient created by the capacitance discharge will die out before the comparator output is strobed.

If input filter capacitors are desired for noise reduction and signal conditioning they will tend to average out the dynamic comparator input current. It will then take on the characteristics of a DC bias current whose effect can be predicted conventionally.

Typical Application

* Address latches needed for 8085 and SC/MP interfacing the ADC0808 to a microprocessor

MICROPROCESSOR INTERFACE TABLE

PROCESSOR	$\overline{\text { READ }}$	$\overline{\text { WRITE }}$	INTERRUPT (COMMENT)
8080	$\overline{\text { MEMR }}$	$\overline{\text { MEMW }}$	INTR (Thru RST Circuit)
8085	$\overline{\text { RD }}$	$\overline{\text { WR }}$	-
Z-80	$\overline{\text { INTR (Thru RST Circuit) }}$		
SCIMP	NRDS	$\overline{\text { WR }}$	NWDS
6800	$\overline{\text { INT (Thru RST Circuit, Mode 0) }}$		

Ordering Information

TEMPERATURE RANGE		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Error	$\pm 1 / 2$ Bit Unadjusted	ADC0808CCN	ADC0808CCJ	ADC0808CJ
	± 1 Bit Unadjusted	ADC0809CCN		
Package Outline		N28A Molded DIP	J28A Hermetic DIP	J28A Hermetic DIP

ADC0816, ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer

General Description

The ADC0816, ADC0817 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital converter, 16-channel multiplexer and microprocessor compatible control logic. The 8 -bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256 R voltage divider with analog switch tree and a successive approximation register. The 16-channel multiplexer can directly access any one of 16 -singleended analog signals, and provides the logic for additional channel expansion. Signal conditioning of any analog input signal is eased by direct access to the multiplexer output, and to the input of the 8 -bit A/D converter.

The device eliminates the need for external zero and fullscale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE ${ }^{\oplus}$ outputs.

The design of the ADC0816, ADC0817 has been optimized by incorporating the most desirable aspects of several A/D conversion techniques. The ADC0816, ADC0817 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications. For similar performance in an 8-channel, 28-pin,

8 -bit A/D converter, see the ADC0808, ADC0809 data sheet. (See AN-258 for more information.)
Features

- Resolution - 8 -bits
- Total unadjusted error $- \pm 1 / 2$ LSB and ± 1 LSB
- No missing codes
- Conversion time - $100 \mu \mathrm{~s}$
- Single supply - $5 \mathrm{~V}_{\mathrm{DC}}$
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ or analog span adjusted voltage reference
- 16-channel multiplexer with latched control logic
- Easy interface to all microprocessors, or operates "stand alone"
- Outputs meet $T^{2} L$ voltage level specifications
- 0 V to 5 V analog input voltage range with single 5 V supply
- No zero or full-scale adjust required
- Standard hermetic or molded 40-pin DIP package
- Temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Low power consumption - 15 mW
- Latched TRI-STATE® output
- Direct access to "comparator in" and "multiplexer out" for signal conditioning
TRI-STATE ${ }^{\text {s }}$ is a registered trademark of National Semiconductor Corp.

Block Diagram

Absolute Maximum Ratings (Notes 1 and 2)
Supply Voltage (V_{CC})(Note3)
Voltage at Any Pin $\quad-0.3 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Except Control Inputs
Voltage at Control Inputs
(START, OE, CLOCK, ALE, EXPANSION CONTROL,
ADD A, ADD B, ADD C, ADD D)
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad 875 \mathrm{~mW}$
Lead Temperature (Soldering, 10 seconds)

Operating Ratings (Notes 1 and 2)
Temperature Range (Note 1)
$T_{M I N} \leq T_{A} \leq T_{M A X}$
ADC0816CJ
ADC0816CCJ, ADC0816CCN,
$55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ ADC0817CCN
Range of V_{CC} (Note 1)
Voltage at Any Pin Except Control Inputs
Voltage at Control Inputs (START, OE, CLOCK, ALE, EXPANSION CONTROL, ADD A, ADD B, ADD C, ADD D)

Electrical Characteristics

Converter Specifications: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{REF}(+)}, \mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {COMPARATOR IN }}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq T_{\mathrm{MAX}}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise stated.

Parameter	Conditions	Min	Typ	Max	Units
ADC0816					
Total Unadjusted Error	$25^{\circ} \mathrm{C}$			$\pm 1 / 2$	LSB
(Note 5)	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			$\pm 3 / 4$	LSB
ADC0817					
Total Unadjusted Error	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			± 1	LSB
(Note 5)	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			$\pm 11 / 4$	LSB
Input Resistance	From Ref(+) to $\operatorname{Ref}(-)$	1.0	4.5		$\mathrm{k} \Omega$
Analog Input Voltage Range	(Note 4) $\mathrm{V}(+)$ or $\mathrm{V}(-)$	GND-0.10		$\mathrm{V}_{\mathrm{CC}}+0.10$	$V_{D C}$
$\mathrm{V}_{\mathrm{REF}(+)} \quad$ Voltage, Top of Ladder	Measured at $\operatorname{Ref}(+)$		$V_{\text {cc }}$	$\mathrm{V}_{\mathrm{CC}}+0.1$	V
$\frac{\mathrm{V}_{\text {REF }(+)+}+\mathrm{V}_{\text {REF }(-)}}{2}$ Voltage, Center of Ladder		$V_{C C} / 2-0.1$	$\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{V}_{\mathrm{CC}} / 2+0.1$	V
$V_{\text {REF }}$ - \quad Voltage, Bottom of Ladder	Measured at Ref(${ }^{\prime}$ -)	-0.1	0		V
Comparator Input Current	$\mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$, (Note 6)	-2	± 0.5	2	$\mu \mathrm{A}$

Electrical Characteristics

Digital Levels and DC Specifications: ADC0816CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted. ADC0816CCJ, ADC0816CCN, ADC0817CCN $4.75 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted.

Electrical Characteristics (Continued)

Digital Levels and DC Specifications: ADC0816CJ - $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$ unless otherwise noted. ADC0816CCJ, ADC0816CCN, ADC0817CCN $-4.75 \mathrm{~V} \leqslant \mathrm{~V}_{C C} \leqslant 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leqslant+85^{\circ} \mathrm{C}$ unless otherwise noted.

	Parameter	Conditions	Min.	Typ.	Max.	Units
DATA OUTPUTS AND EOC (INTERRUPT)						
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & I_{O}=-360 \mu A, T_{A}=85^{\circ} \mathrm{C} \\ & I_{O}=-300 \mu A, T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	$V_{C C}-0.4$			V
$V_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\mathrm{l}_{0}=1.6 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage EOC	$\mathrm{I}_{0}=1.2 \mathrm{~mA}$			0.45	V
lout	TRI-STATE ${ }^{\text {® }}$ Output Current	$\begin{aligned} & V_{O}=V_{c c} \\ & V_{O}=0 \end{aligned}$	-3.0		3.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Electrical Characteristics

Timing Specifications: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {ws }}$	Minimum Start Pulse Width	(Figure 5)		100	200	ns
$t_{\text {WALE }}$	Minimum ALE Pulse Width	(Figure 5)		100	200	ns
$t_{\text {s }}$	Minimum Address Set-Up Time	(Figure 5)		25	50	ns
t_{H}	Minimum Address Hold Time	(Figure 5)		25	50	ns
${ }^{\text {D }}$	Analog MUX Delay Time From ALE	$\mathrm{R}_{\mathrm{S}}=0 \Omega$ (Figure 5)		1	2.5	$\mu \mathrm{S}$
$t_{\text {H1 }}, t_{\text {HO }}$	OE Control to Q Logic State	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{0 \mathrm{H}}$	OE Control to Hi-Z	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
t_{c}	Conversion Time	$\mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$, (Figure 5) (Note 7)	90	100	116	$\mu \mathrm{S}$
f_{c}	Clock Frequency		10	640	1280	kHz
$t_{\text {EOC }}$	EOC Delay Time	(Figure 5)	0		$8+2 \mu \mathrm{~s}$	Clock Periods
$\mathrm{C}_{\text {IN }}$	Input Capacitance	At Control Inputs		10	15	pF
$\mathrm{C}_{\text {OUt }}$	TRI-STATE ${ }^{\oplus}$ Output Capacitance	At TRI-STATE Outputs. (Note 7)		10	15	pF

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G N D$ and has a typical breakdown voltage of 7 VDC.
Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $V_{C C}$ supply. The spec allows 100 mV forward bias of either diode. This mearis that as long as the analog $V_{1 N}$ does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achieve an absolute 0 V DC to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of 4.900 VDC over temperature variations, initial tolerance and loading.
Note 5: Total unadjusted error includes offset, full-scale, and linearity errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.5 V full-scale) the reference voltages can be adjusted to achieve this. See Figure 13.
Note 6: Comparator input current is a blas current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has little temperature dependence (Figure 6). See paragraph 4.0
Note 7: The outputs of the data register are updated one clock cycle before the rising edge of EOC.

Functional Description

Multiplexer: The device contains a 16 -channel singleended analog signal multiplexer. A particular input channel is selected by using the address decoder. Table I shows the input states for the address line and the expansion control line to select any channel. The address is latched into the decoder on the low-to-high transition of the address latch enable signal.

TABLE

SELECTED ANALOG CHANNEL	ADDRESS LINE				EXPANSION
	D	C	B	A	CONTROL
INO	L	L	L	L	H
IN1	L	L	L	H	H
IN2	L	L	H	L	H
IN3	L	L	H	H	H
IN4	L	H	L	L	H
IN5	L	H	L	H	H
IN6	L	H	H	L	H
IN7	L	H	H.	H	H
IN8	H	L	L	L	H
IN9	H	L	L	H	H
IN10	H	L	H	L	H
IN11	H	L	H	H	H
- IN12	H	H	L	L	H
IN13	H	H	L	- H	H
IN14	H	H	H	L	H
IN15	H	H	H	H	H
All Channels OFF	X	X	X	X	L

$X=$ don't care

Additional single-ended analog signals can be multiplexed to the A/D converter by disabling all the multiplexer inputs using the expansion control. The additional external signals are connected to the comparator input and the device ground. Additional signal conditioning (i.e.; prescaling, sample and hold, instrumentation amplification, etc.) may also be added between the analog input signal and the comparator input.

CONVERTER CHARACTERISTICS

The Converter

The heart of this single chip data acquisition system is its 8 -bit analog-to-digital converter. The converter is designed to give fast, accurate, and repeatable conversions over a wide range of temperatures. The converter is partitioned into 3 major sections: the 256R ladder network, the successive approximation register, and the comparator. The converter's digital outputs are positive true.
The 256R ladder network approach (Figure 1) was chosen over the conventional R/2R ladder because of its inherent monotonicity, which guarantees no missing digital codes. Monotonicity is particularly important in closed loop feedback control systems. A non-monotonic relationship can cause oscillations that will be catastrophic for the system. Additionally, the 256R network does not cause load variations on the reference voltage.

The bottom resistor and the top resistor of the ladder network in Figure 1 are not the same value as the remainder of the network. The difference in these resistors causes the output characteristic to be symmetrical with the zero and full-scale points of the transfer curve. The first output transition occurs when the analog signal has reached $+1 / 2$ LSB and succeeding output transitions occur every 1 LSB later up to full-scale.

FIGURE 1. Resistor Ladder and Switch Tree

Functional Description (Continued)

The successive approximation register (SAR) performs 8 iterations to approximate the input voltage. For any SAR type converter, n-iterations are required for an n-bit converter. Figure 2 shows a typical example of a 3-bit converter. In the ADC0816, ADC0817, the approximation technique is extended to 8 bits using the 256R network.

The AID converter's successive approximation register (SAR) is reset on the positive edge of the start conversion (SC) pulse. The conversion is begun on the falling edge of the start conversion pulse. A conversion in process will be interrupted by receipt of a new start conversion pulse. Continuous conversion may be accomplished by tying the end-of-conversion (EOC) output to the SC input. If used in this mode, an external start conversion pulse should be applied after power up. End-of-conversion will go low between 0 and 8 clock pulses after the rising edge of start conversion.

The most important section of the A/D converter is the comparator. It is this section which is responsible for the ultimate accuracy of the entire converter. It is also the comparator drift which has the greatest influence on the repeatability of the device. A chopper-stabilized comparator provides the most effective method of satisfying all the converter requirements.

The chopper-stabilized comparator converts the DC input signal into an AC signal. This signal is then fed through a high gain AC amplifier and has the DC level restored. This technique limits the drift component of the amplifier since the drift is a DC component which is not passed by the AC amplifier. This makes the entire A/D converter extremely insensitive to temperature, long term drift and input offset errors.

Figure 4 shows a typical error curve for the ADC0816 as measured using the procedures outlined in AN-179.

FIGURE 2. 3.Bit AID Transfer Curve

FIGURE 3. 3-Bit AID Absolute Accuracy Curve

FIGURE 4. Typical Error Curve

Connection Diagram

Dual-In-Line Package

Timing Diagram

Typical Performance Characteristics

FIGURE 6. Comparator IIN vs $V_{I N}$ $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}\right.$)

FIGURE 7. Multiplexer R_{ON} vs V_{IN} $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}\right)$

TRI-STATE ${ }^{\circledR}$ Test Circuits and Timing Diagrams

FIGURE 8

Applications Information

operation

1.0 Ratiometric Conversion

The ADC0816, ADC0817 is designed as a complete Data Acquisition System (DAS) for ratiometric conversion systems. In ratiometric systems, the physical variable being measured is expressed as a percentage of full-scale which is not necessarily related to an absolute standard. The voltage input to the ADC0816 is expressed by the equation

$$
\begin{equation*}
\frac{V_{I N}}{V_{t s}-V_{Z}}=\frac{D_{X}}{D_{\text {MAX }}-D_{\text {MIN }}} \tag{1}
\end{equation*}
$$

$\mathrm{V}_{\text {IN }}=$ Input voltage into the ADC0816
$\mathrm{V}_{\mathrm{fs}}=$ Full-scale voltage
$\mathrm{V}_{\mathrm{Z}}=$ Zero voltage
$\mathrm{D}_{\mathrm{X}}=$ Data point being measured
$D_{\text {MAX }}=$ Maximum data limit
$D_{\text {MIN }}=$ Minimum data limit
A good example of a ratiometric transducer is a potentiometer used as a position sensor. The position of the wiper is directly proportional to the output voltage which is a ratio of the full-scale voltage across it. Since the data is represented as a proportion of full-scale, reference requirements are greatly reduced, eliminating a large source of error and cost for many applications. A major advantage of the ADC0816, ADC0817 is that the input voltage range is equal to the supply range so the transducers can be connected directly across the supply and their outputs connected directly into the multiplexer inputs, (Figure 9).

Ratiometric transducers such as potentiometers, strain gauges, thermistor bridges, pressure transducers, etc., are suitable for measuring proportional relationships; however, many types of measurements must be referred to an absolute standard such, as voltage or current. This means a system reference must be used which relates the full-scale voltage to the standard volt. For example, if $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5.12 \mathrm{~V}$, then the full-scale range is divided into 256 standard steps. The smallest standard step is 1 LSB which is then 20 mV .

2.0 Resistor Ladder Limitations

The voltages from the resistor ladder are compared to the selected input 8 times in a conversion. These voltages are coupled to the comparator via an analog switch tree which is referenced to the supply. The voltages at the top, center and bottom of the ladder must be controlled to maintain proper operation.

The top of the ladder, $\operatorname{Ref}(+$), should not be more positive than the supply, and the bottom of the ladder, $\operatorname{Ref}(-)$, should not be more negative than ground. The center of the ladder voltage must also be near the center of the supply because the analog switch tree changes from N -channel switches to P -channel switches. These limitations are automatically satisfied in ratiometric systems and can be easily met in ground referenced systems.

Figure 10 shows a ground referenced system with a separate supply and reference. In this system, the supply must be trimmed to match the reference voltage. For instance, if a 5.12 V reference is used, the supply should be adjusted to the same voltage within 0.1 V .

FIGURE 9. Ratiometric Conversion System

Applications Information (Continued)

The ADC0816 needs less than a milliamp of supply current so developing the supply from the reference is readily accomplished. In Figure 11 a ground referenced system is shown which generates the supply from the reference. The buffer shown can be an op amp of sufficient drive to supply the milliamp of supply current and the desired bus drive, or if a capacitive bus is driven by the outputs a large capacitor will supply the transient supply current as seen in Figure 12. The LM301 is overcompensated to insure stability when loaded by the $10 \mu \mathrm{~F}$ output capacitor.

The top and bottom ladder voltages cannot exceed $V_{C C}$ and ground, respectively, but they can be symmetrically less than V_{CC} and greater than ground. The center of the ladder voltage should always be near the center of the supply. The sensitivity of the converter can be increased, (i.e., size of the LSB steps decreased) by using a symmetrical reference system. In Figure 13, a 2.5 V reference is symmetrically centered about $\mathrm{V}_{\mathrm{cc}} / 2$ since the same current flows in identical resistors. This system with a 2.5 V reference allows the LSB to be half the size of the LSB in a 5 V reference system.

FIGURE 10. Ground Referenced
Conversion System Using Trimmed Supply

FIGURE 11. Ground Referenced Conversion System with Reference Generating $\mathbf{V}_{\mathbf{C C}}$ Supply

Applications Information (Continued)

FIGURE 12. Typical Reference and Supply Circuit

FIGURE 13. Symmetrically Centered Reference

3.0 Converter Equations

The transition between adjacent codes N and $N+1$ is given by:

$$
\begin{equation*}
V_{I N}=\left\{\left(V_{R E F(+)}-V_{\operatorname{REF}(-)}\right)\left[\frac{N}{256}+\frac{1}{512}\right] \pm V_{\operatorname{TUE}}\right\}+V_{\operatorname{REF}(-)} \tag{2}
\end{equation*}
$$

The center of an output code N is given by:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{IN}}=\left\{\left(\mathrm{V}_{\mathrm{REF}(+)}-\mathrm{V}_{\mathrm{REF}(-)}\right)\left[\frac{\mathrm{N}}{256}\right] \pm \mathrm{V}_{\mathrm{TUE}}\right\}+\mathrm{V}_{\mathrm{REF}(-)} \tag{3}
\end{equation*}
$$

The output code N for an arbitrary input are the integers within the range:

$$
\begin{equation*}
N=\frac{V_{I N}-V_{\text {REF }(-)}}{V_{\text {REF }(+)}-V_{\text {REF }(-)}} \times 256 \pm \text { Absolute Accuracy } \tag{4}
\end{equation*}
$$

where: $\mathrm{V}_{I N}=$ Voltage at comparator input
$\mathrm{V}_{\text {REF }(+)}=$ Voltage at $\operatorname{Ref}(+)$
$\mathrm{V}_{\mathrm{REF}(-)}=$ Voltage at $\operatorname{Ref}(-)$
$V_{\text {TUE }}=$ Total unadjusted error voltage (typically $\mathrm{V}_{\mathrm{REF}(+)} \div 512$)

Applications Information (Continued)

4.0 Analog Comparator Inputs

The dynamic comparator input current is caused by the periodic switching of on-chip stray capacitances. These are connected alternately to the output of the resistor ladder/switch tree network and to the comparator input as part of the operation of the chopper stabilized comparator.

The average value of the comparator input current varies directly with clock frequency and with V_{IN} as shown in Figure 6.

Typical Application

If no filter capacitors are used at the analog or comparator inputs and the signal source impedances are low, the comparator input current should not introduce converter errors, as the transient created by the capacitance discharge will die out before the comparator output is strobed.

If input filter capacitors are desired for noise reduction and signal conditioning they will tend to average out the dynamic comparator input current. It will then take on the characteristics of a DC bias current whose effect can be predicted coniventionally. See AN-258 for further discussion.

* Address latches needed for 8085 and SC/MP interfacing the ADC0816, 17 to a microprocessor

Microprocessor Interface Table

PROCESSOR	$\overline{\text { READ }}$	WRITE	INTERRUPT (COMMENT)
8080	$\overline{\text { MEMR }}$	MEMW	INTR (Thru RST Circuit)
8085	$\overline{R D}$	$\overline{W R}$	INTR (Thru RST Circuit)
Z-80	$\overline{R D}$	$\overline{W R}$	$\overline{\text { INT }}$ (Thru RST Circuit, Mode 0)
SC/MP	NRDS	NWDS	SA (Thru Sense A)
6800	VMA ${ }^{\text {¢ }}$ 2.RW	VMA ${ }^{\text {¢ }} 2 \cdot \overline{\mathrm{R} W}$	$\overline{\text { IRQA }}$ or $\overline{\text { IRQB }}$ (Thru PIA)

Ordering Information

TEMPERATURE RANGE		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Error	$\pm 1 / 2$ Bit Unadjusted	ADC0816CCN	ADC0816CCJ	ADC0816CJ
	± 1 Bit Unadjusted	ADC0817CCN		
Package Outline			N40A Molded DIP	J40A Hermetic DIP

ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer

General Description

The ADC0833 series is an 8-bit successive approximation A/D converter with a serial I/O and configurable input multiplexer with 4 channels. The serial I/O is configured to comply with the NSC MICROWIRE ${ }^{\text {TM }}$ serial data exchange standard for easy interface to the COPS ${ }^{\text {TM }}$ family of processors, and can interface with standard shift registers or $\mu \mathrm{Ps}$.
The 4-channel multiplexer is software configured for single ended or differential inputs and channel assigned by a 4-bit serial word at the serial I/O.

The differential analog voltage input allows increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 -bits of resolution.

Features

- NSC MICROWIRE compatible-direct interface to COPS family processors
- Easy interface to 8048,8049 or 8050
- Works with 2.5 V (LM336) voltage reference
- No full-scale or zero adjust required
- Differential analog voltage inputs
- 4-channel analog multiplexer
- Shunt regulator allows operation with high voltage supplies
- 0 V to 5 V input range with single 5 V power supply
- Remote operation with serial digital data link
- T²L/MOS input/output compatible
- $0.3^{\prime \prime}$ standard width 14 -pin DIP package

Key Specifications

Resolution	8 -Bits
Total Unadjusted Error	$\pm 1 / 2$ LSB and $\pm 1 \mathrm{LSB}$
Single Supply	5 V DC
■ Low Power	15 mW
Conversion Time	$80 \mu \mathrm{~S}$

Typical Application

[^36]| Absolute Maximum RatingS (Notes 1 and 2) | |
| :--- | ---: |
| Current into V^{+}(Note5) | 10 mA |
| Supply Voltage, V_{CC} (Note 5) | 6.5 V |
| Voltage | |
| \quad Logic Inputs | -0.3 V to +18 V |
| Analog Inputs | -0.3 V to V CC +0.3 V |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount) | 0.8 W |
| Lead Temperature (Soldering, 10 seconds) | $300^{\circ} \mathrm{C}$ |

Operating Ratings (Notes 1 and 2)

Supply Voltage, $V_{C C}$	$4.5 \mathrm{~V}_{D C}$ to $6.3 \mathrm{~V}_{D C}$
Temperature Range	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
ADC0833BD, ADC0833CD	$-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$
ADC0833BCD, ADC0833CCD	$-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$
ADC0833BCN, ADC0833CCN	$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$

Converter and Multiplexer Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$, and $\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Total Unadjusted Error: ADC0833B ADC0833C	$\mathrm{V}_{\text {REF }} / 2$ Forced to $2.500 \mathrm{~V}_{\mathrm{DC}}$ $\mathrm{V}_{\text {REF }} / 2$ Forced to $2.500 \mathrm{~V}_{\mathrm{DC}}$	GND - 0.05	9	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Reference Input Resistance (Thevinin Equivalent)					k Ω
Common-Mode Input Range (Note 4)	All MUX Inputs and COM Input			$V_{C C}+0.05$	V
DC Common-Mode Error	Differential Mode		$\begin{aligned} & \pm 1 / 16 \\ & \pm 1 / 16 \end{aligned}$		LSB
Power Supply Sensitivity	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$				LSB
loff, Off Channel Leakage Current (Note 3)	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V} \\ & \text { Off Channels }=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-1 -50			$\mu \mathrm{A}$ nA
	$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \\ & \text { Off Channels }=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			1 50	$\mu \mathrm{A}$ nA
Ion, On Channel Leakage Current (Note 3)	$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \\ & \text { Off Channels }=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} -1 \\ -200 \end{gathered}$			$\mu \mathrm{A}$ nA
	On Channel $=5 \mathrm{~V}$ Off Channel $=0 \mathrm{~V}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1 200	$\mu \mathrm{A}$ nA

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}^{\prime}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
${ }^{\text {f CLK }}$, Clock Frequency		10		200	kHz
Clock Duty Cycle		40		60	\%
T_{C}, Conversion time	Not Including MUX Addressing Time			8	$1 / \mathrm{f}_{\mathrm{GLK}}$
$\mathrm{t}_{\text {SETUP }}, \overline{\mathrm{SE}}$ or $\overline{\mathrm{CS}}$ Falling Edge or Data Input Valid to CLK Rising Edge			200		ns
$t_{\text {HOLD }}$, Data Input Valid after CLK Rising Edge			200		ns

AC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
${ }^{\text {tpd1, }}$ tpd0-CLK	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$				
Falling Edge to Output	Data MSB First		650		ns
Data Valid (Note 6)	Data LSB First		250		ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$-Rising Edge of $\overline{\mathrm{CS}}$ to Data Output and SARS Hi-Z	$\begin{aligned} & C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \text { (See TRI-STATE }^{\oplus} \\ & \text { Test Circuits) } \end{aligned}$		125		ns
$\mathrm{C}_{\text {IN }}$, Capacitance of Logic Inputs			5		pF
Cout , Capacitance of Logic Outputs			5		pF

DC Electrical Characteristics

The following specifications apply for $V_{C C}=5 V$ and $T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN(1) }}$, Logical " 1 " Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	2.0		15	V
$V_{\text {IN(0) }}$, Logical " 0 " Input Voltage	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$			0.8	V
$I_{\text {IN(1) }}$, Logical "1" Input Current	$V_{\text {IN }}=V_{\text {CC }}$		0.005	1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{N}(0)}$, Logical "0" Input Current	$V_{\text {IN }}=0 \mathrm{~V}$	-1	-0.005		$\mu \mathrm{A}$
$V_{\text {OUT(1) }}$, Logical "1" Output Voltage	$\begin{aligned} & \text { I OUT }=-360 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { I OUT }=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {OUT(0) }}$, Logical "0" Output Voltage	$\mathrm{l}_{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=4.75 \mathrm{~V}$			0.4	V
Iout, TRI-STATE Output Current (DO, SARS)	$\begin{aligned} & V_{\text {OUT }}=0.4 \mathrm{~V} \\ & V_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{gathered} 100 \\ 3 \end{gathered}$	$\mu A_{D C}$ $\mu A_{D C}$
Isource	$V_{\text {OUT }}$ Short to GND, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		14		mA
$\mathrm{I}_{\text {SINK }}$	$V_{\text {OUT }}$ Short to $\mathrm{V}_{\text {CC }}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$		16		mA
${ }^{\text {cc, }}$, Supply Current (Note 5)	$V_{\text {REF }} / 2$ Open Circuit		3.0		mA
$1+$, Current into V ${ }^{+}$(Note 5)				10	mA

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.
Note 2: All voltages are measured with respect to ground.
Note 3: Leakage current is measured with the clock not switching.
Note 4: For $\mathrm{V}_{I N}(-) \geq \mathrm{V}_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $V_{C C}$ supply. Be careful, during testing at low $V_{C C}$ levels (4.5V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near fullscale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $V_{\mathbb{N}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{D C}$ to $5 \mathrm{~V}_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{D C}$ over temperature variations, initial tolerance and loading.
Note 5: An internal zener diode exists from $V_{C C}$ to $G N D$ on the V^{+}and $V_{C C}$ inputs. The breakdown of these zeners is approximately $7 V$. The V^{+}zener is intended to operate as a shunt regulator and connects to the $V_{C C}$ via a diode. When using this regulator to power the A / D, this diode guarantees the $V_{C C}$ input to be operating below the zener voltage ($7 \mathrm{~V}-0.6 \mathrm{~V}$). It is recommended that a series resistor be used to limit the maximum current into the V^{+}input.
Note 6: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (see Block Diagram) to allow for comparator response time.

Timing Diagrams

TRI-STATE Test Circuits and Waveforms

Leakage Current Test Circuit

MUX Addressing

The 4 -channel multiplexer is software configurable as single ended or differential inputs. The configuration and channel assignment of the multiplexer is accomplished with a 4-bit serial input word which must be preceded by a leading " 1 " or start bit (leading zeros are ignored).

Differential inputs are restricted to adjacent channel pairs. For example channel 0 and channel 1 may be selected as a differential pair. Channel 0 or 1 cannot act
differentially with any other channel. In addition to selecting differential mode the sign may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa.
Data is always shifted in on the rising clock edge and shifted out on the falling clock edge.
If $\overline{C S}$ goes high, the conversion is stopped and all internal circuitry is reset. If another conversion is desired, $\overline{\mathrm{CS}}$ must make a high-to-low transition followed by address information.

TABLE I. MUX ADDRESSING

Single-Ended MUX Mode

Address				Channel \#			
$\overline{\text { SGL }}$	$\begin{aligned} & \overline{\mathrm{ODD} I} \\ & \overline{\mathrm{SIGN}} \end{aligned}$	SELECT		0	1	2	3
		1	0				
1	0	0	1	$+$			
1	0	1	1			+	
1	1	0	1		+		
1	1	1	1				$+$

COM is internally tied to A GND
Differential MUX Mode

Address				Channel \#				
$\begin{array}{c}\text { SGL } \\ \text { SIF }\end{array}$	ODD/	SIGN						

Connection Diagram

Ordering Information

Part Number	Temperature Range	Total Unadjusted Error
ADC0833BCD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$
ADC0833BCN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
ADC0833BD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
ADC0833CCD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	± 1 LSB
ADC0833CCN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
ADC0833CD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

ADC1001, ADC1021 10-Bit μ P Compatible A/D Converters

General Description

The ADC1001 and ADC1021 are CMOS, 10-bit successive approximation A/D converters. The 20-pin ADC1001 is pin compatible with the ADC0801 8-bit A/D family. The 10 -bit data word is read in two 8 -bit bytes, formatted left justified and high byte first. The six least significant bits of the second byte are set to zero, as is proper for a 16 -bit word.

The 24-pin ADC1021 outputs 10 bits in parallel and is intended for interface to a 16 -bit data bus.

A differential analog voltage input allows increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 10 bits of resolution.

Features

ADC1001 is pin compatible with ADC0801 series 8-bit AID

- Compatible with NSC800 and $8080 \mu \mathrm{P}$ derivatives - no interfacing logic needed - access time 170 ns

Easily interfaced to $6800 \mu \mathrm{P}$ derivatives with minimal external logic

- Differential analog voltage inputs
- Logic inputs and outputs meet both MOS and $\mathrm{T}^{2} \mathrm{~L}$ voltage level specifications
- Works with 2.5 V (LM336) voltage reference
- On-chip clock generator
- 0 V to 5 V analog input voltage range with single 5 V supply
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$, or analog span adjusted voltage reference
- $0.3^{\prime \prime}$ standard width 20-pin DIP package or 24 pins with 10-bit parallel output

Key Specifications

[^37]
Typical Application

Absolute Maximum Ratings (Notes 1and2)
Supply Voltage (V_{CC})(Note3) 6.5 V
Logic Control Inputs
-0.3 V to +18 V
Voltage at Other Inputs and Outputs -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ 875 mW
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

Operating Ratings (Notes 1 and 2)

Temperature Range	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$
ADC1001BD, ADC1001CD ADC1021BD, ADC1021CD	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
ADC1001BCD, ADC1001CCD ADC1021BCD, ADC1021CCD	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
ADC1001BCN, ADC1001CCN ADC1021BCN, ADC1021CCN	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Range of V_{CC}	$4.5 \mathrm{~V}_{\text {DC }}$ to 6.3 V

Converter Characteristics

Converter Specifications: $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{R E F} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}, T_{\mathrm{MIN}} \leq T_{A} \leq T_{M A X}$ and $f_{C L K}=410 \mathrm{kHz}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
ADC1001B, ADC1021B: Linearity Error Zero Error Full-Scale Error				$\pm 1 / 2$ ± 1 ± 1	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
ADC1001C, ADC1021C: Linearity Error Zero Error Full-Scale Error				$\begin{aligned} & \pm 1 \\ & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
$\mathrm{V}_{\text {REF }} / 2$ Input Resistance	Input Resistance at Pin 9	3.2	5.2	.	k Ω
Analog Input Voltage Range	(Note 4) $\mathrm{V}(+)$ or $\mathrm{V}(-)$	GND - 0.05		$\mathrm{V}_{\mathrm{CC}}+0.05$	$V_{D C}$
DC Common-Mode Error	Over Analog Input Voltage Range		$\pm 1 / 8$		LSB
Power Supply Sensitivity	$\begin{aligned} & V_{C C}=5 \mathrm{~V}_{D C} \pm 5 \% \text { Over } \\ & \text { Allowed } \mathrm{V}_{\text {IN }}(+) \text { and } \mathrm{V}_{\text {IN }}(-) \\ & \text { Voltage Range (Note } 4 \text {) } \end{aligned}$		$\pm 1 / 8$		LSB

AC Electrical Characteristics

Timing Specifications: $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

	Parameter	Conditions	Min	Typ	Max	Units
T	Conversion Time	(Note 5) $\mathrm{f}_{\mathrm{CLK}}=410 \mathrm{kHz}$	$\begin{gathered} 82 \\ 200 \end{gathered}$		$\begin{aligned} & 89 \\ & 217 \end{aligned}$	$\begin{gathered} 1 / \mathrm{f}_{\mathrm{CLK}} \\ \mu \mathrm{~S} \end{gathered}$
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency	(Note 8)	100		1260	kHz
	Clock Duty Cycle		40		60	\%
CR	Conversion Rate In Free-Running Mode	INTR tied to $\overline{\mathrm{WR}}$ with $\overline{\mathrm{CS}}=0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{CLK}}=410 \mathrm{kHz}$			4600	conv/s
$t_{W(\overline{W R})}$	Width of $\overline{W R}$ Input (Start Pulse Width)	$\overline{\mathrm{CS}}=0 \mathrm{~V}_{\text {DC }}($ Note 6$)$	150			ns
$t_{\text {ACC }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Data Valid)	$C_{L}=100 \mathrm{pF}$		170	300	ns
$t_{1 H}, t_{0 H}$	TRI-STATE ${ }^{\oplus}$ Control (Delay from Rising Edge of $\overline{R D}$ to Hi-Z State)	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (See TRI-STATE Test Circuits)		125	200	ns
$t_{\text {WI }}, t_{\text {RI }}$	Delay from Falling Edge of $\overline{W R}$ or $\overline{R D}$ to Reset of INTR			300	450	ns
$t_{\text {ris }}$	INTR to 1st Read Set-Up Time		550	400		ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance of Logic Control Inputs			5	7.5	pF
$\mathrm{C}_{\text {OUT }}$	TRI-STATE Output Capacitance (Data Buffers)			5	7.5	pF

[^38]
DC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{D C}$ and $T_{M I N} \leq T_{A} \leq T_{M A X}$, unless otherwise specified.

	Parameter	Conditions	Min	Typ	Max	Units
CONTROL INPUTS [Note: CLK IN is the input of a Schmitt trigger circuit and is therefore specified separateiy]						
$\mathrm{V}_{\text {IN }}(1)$	Logical "1" Input Voltage (Except CLK IN)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}_{\mathrm{DC}}$	2.0		15	V_{DC}
$V_{\text {IN }}(0)$	Logical " 0 ". Input Voltage (Except CLK IN)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$			0.8	$V_{D C}$
$I_{\mathbb{N}}(1)$	Logical " 1 " Input Current (All Inputs)	$V_{I N}=5 V_{D C}$		0.005	1	$\mu \mathrm{A}_{\text {DC }}$
$\mathrm{I}_{\text {IN }}(0)$	Logical "0" Input Current (All Inputs)	$V_{I N}=0 V_{D C}$	-1	-0.005		$\mu \mathrm{A}_{\text {DC }}$
CLOCK IN						
$V_{T}+$	CLK IN Positive Going Threshold Voltage		2.7	3.1	3.5	$V_{D C}$
$V_{T}-$	CLK IN Negative Going Threshold Voltage		1.5	1.8	2.1	$V_{D C}$
V_{H}	CLK IN Hysteresis $\left(V_{T}+\right)-\left(V_{T}-\right)$		0.6	1.3	2.0	$V_{D C}$
OUTPUTS AND INTR						
$\mathrm{V}_{\text {OUT }}(0)$	Logical "0" Output Voltage	$\mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{C C}=4.75 \mathrm{~V}_{\text {DC }}$			0.4	$V_{D C}$
$V_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}, \mathrm{~V}_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$			$V_{D C}$ $V_{D C}$
Iout	TRI-STATE Disabled Output Leakage (All Data Buffers)	$\begin{aligned} & V_{\text {OUT }}=0.4 \mathrm{~V}_{D C} \\ & V_{\text {OUT }}=5 \mathrm{~V}_{D C} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{gathered} -100 \\ 3 \end{gathered}$	$\mu A_{D C}$ $\mu A_{D C}$
ISOURCE		$V_{\text {OUT }}$ Short to GND, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4.5	6		$m A_{D C}$
$\mathrm{I}_{\text {SINK }}$		$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{\text {CC }}, T_{A}=25^{\circ} \mathrm{C}$	9.0	16		$m A_{D C}$
POWER SUPPLY						
$I_{\text {cc }}$	Supply Current (Includes Ladder Current)	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=410 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{REF}} / 2=\mathrm{NC}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { and } \mathrm{CS}=1 \end{aligned}$		1.5	2.5	mA

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.
Note 2: All voltages are measured with respect to GND, unless otherwise specified. The separate A GND point should always be wired to the D GND. Note 3: A zener diode exists, internally, from $V_{C C}$ to $G N D$ and has a typical breakdown voltage of $7 V_{D C}$.
Note 4: For $V_{I N}(-) \geq V_{I N}(+)$ the digital output code will be all zeros. Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $V_{C C}$ supply. Be careful, during testing at low $V_{C C}$ levels (4.5V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near fullscale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{D C}$ to $5 \mathrm{~V}_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{D C}$ over temperature variations, initial tolerance and loading.
Note 5: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. The start request is internally latched, see Figure 1.
Note 6: The $\overline{C S}$ input is assumed to bracket the $\overline{W R}$ strobe input and therefore timing is dependent on the $\overline{W R}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the $\overline{W R}$ pulse (see Timing Diagrams).
Note 7: All typical values are for $T_{A}=25^{\circ} \mathrm{C}$:
Note 8: Accuracy is guaranteed at ${ }^{f}$ CLK $=410 \mathrm{kHz}$. At higher clock frequencies accuracy can degrade.

Typical Performance Characteristics

$\mathbf{f}_{\text {CLK }}$ vs Clock Capacitor

Output Current vs Temperature

CLK IN Schmitt Trip Levels vs Supply Voltage

Typical Linearity Error vs Conversion Time

TRI-STATE Test Circuits and Waveforms

Timing Diagrams

Output Enable and Reset $\overline{\text { INTR }}$

*The 24 -pin ADC1021 outputs all 10 bits on each RD.
Note: All timing is measured from the 50% voltage points.

BYTE SEQUENCING FOR THE 20-PIN ADC1001

Byte Order	8-Bit Data Bus Connection							
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1st	MSB							
Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	
2nd	Bit 1	Bit 0	0	0	0	0	0	0

Functional Description

The ADC1001, ADC1021 are mechanized using an advanced potentiometric resistive ladder network. The analog inputs, as well as the taps of this ladder network, are switched into a weighted capacitor array. The output of this capacitor array is the input to a sampled data comparator. This comparator allows the successive approximation logic to match the analog difference input voltage $\left[V_{I N}(+)-V_{I N}(-)\right]$ to taps on the R network. The most significant bit is tested first and after 10 comparisons (80 clock cycles) a digital 10 -bit binary code (all " 1 " $s=$ full-scale) is transferred to an output latch and then an interrupt is asserted (INTR makes a high-to-low transition). The device may be operated in the free-running mode by connecting $\overline{\mathrm{INTR}}$ to the $\overline{\mathrm{WR}}$ input with $\overline{\mathrm{CS}}=0$. To insure start-up under all possible conditions, an external $\overline{W R}$ pulse is required during the first power-up cycle. A conversion in process can be interrupted by issuing a second start command.

On the high-to-low transition of the $\overline{W R}$ input the internal SAR latches and the shift register stages are reset. As long as the $\overline{C S}$ input and $\overline{W R}$ input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-to-high transition.

A functional diagram of the AID converter is shown in Figure 1. All of the inputs and outputs are shown and the major logic control paths are drawn in heavier weight lines.

The converter is started by having $\overline{C S}$ and $\overline{W R}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a " 1 " to the D flop, F/F1, which is at the input end of the 10 -bit shift register. Internal clock signals then transfer this " 1 " to the Q output of F/F1. The AND gate, G1, combines this " 1 " output with a clock signal to provide a reset signal to the start F/F. If the set signal is no longer present (either $\overline{W R}$ or $\overline{C S}$ is a " 1 ") the start F/F is reset and the 10 -bit shift register then can have the " 1 " clocked in, which allows the conversion process to

NOTE: $V_{I N}(-)$ should be biased so that $\mathrm{V}_{I N}(-) \geq-0.05 \mathrm{~V}$ when potentiometer wiper is set at most negative voltage position.
continue. If the set signal were to still be present, this reset pulse would have no effect and the 10 -bit shift register would continue to be held in the reset mode. This logic therefore allows for wide $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals and the converter will start after at least one of these signals returns high and the internal clocks again provide a reset signal for the start F/F.

After the " 1 " is clocked through the 10 -bit shift register (which completes the SAR search) it causes the new digital word to transfer to the TRI-STATE output latches. When this XFER signal makes a high-to-low transition the one shot fires, setting the INTR F/F. An inverting buffer then supplies the INTR output signal.
Note that this $\overline{\text { SET }}$ control of the INTR F/F remains low for approximately 400 ns . If the data output is continuously enabled ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ both held low), the $\overline{\mathrm{NTR}}$ output will still signal the end of conversion (by a high-to-low transition), because the $\overline{\text { SET input can control the Q output of }}$ the INTR F/F even though the RESET input is constantly at a " 1 " level. This INTR output will therefore stay low for the duration of the SET signal.
When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{R D}$ being low will cause the INTR F/F to be reset and the TRI-STATE output latches will be enabled.

Zero and Full-Scale Adjustment

Zero error can be adjusted as shown in Figure 2. $\mathrm{V}_{\mathrm{IN}}(+)$ is forced to $+2.5 \mathrm{mV}(+1 / 2 \mathrm{LSB})$ and the potentiometer is adjusted until the digital output code changes from 00 00000000 to 0000000001.

Full-scale is adjusted as shown in Figure 3, with the $\mathrm{V}_{\mathrm{REF}} / 2$ input. With $\mathrm{V}_{I N}(+)$ forced to the desired full-scale voltage less $11 / 2$ LSBs ($V_{F S}-11 / 2$ LSBS), $V_{R E F} / 2$ is adjusted until the digital output code changes from 1111111110 to 11 11111111.

FIGURE 2. Zero Adjust Circuit

FIGURE 3. Full-Scale Adjust

Connection Diagrams

ADC1001 (for an 8-bit data bus) Dual-In-Line Package

Block Diagram

ADC1080, ADC1280 12-Bit Successive Approximation A/D Converters

General Description

The ADC1080 and ADC1280 are complete successive approximation analog-to-digital converters that include an internal clock, reference and comparator.
The design of the ADC1080 and ADC1280 includes scaling resistors that provide analog signal ranges of $\pm 2.5 \mathrm{~V}$, $\pm 5.0 \mathrm{~V}, \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to 5 V , or 0 V to 10 V . The 6.2 V precision reference may be used for external applications. All digital signals are fully TTL compatible; output data may be read in both serial and parallel form.
The ADC1280 has a maximum linearity of 0.012% of FSR and the ADC1080 has a maximum linearity of 0.048% of FSR. Both grades are specified for use over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range and both are available in a 32-pin DIP.

Features

- Completely self-contained with internal reference, clock, and comparator
- High reliability exact replacement for ADC80
- $\pm 1 / 2$ LSB linearity for ADC1280
- Input voltage ranges of $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to 5 V , and 0 V to 10 V
- 6.2V reference available for external use at 1.5 mA
m Conversion speed-22 $\mu \mathrm{S}$
- Short cycle and external clock options for faster conversion time

Block Diagram

Connection Diagram

Absolute Maximum Ratings

Supply Voltage (V^{+}and V^{-})
$\pm 18 \mathrm{~V}$
7 V
0V, 18V

Operating Temperature Range
$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

Reference Input Voltage (VREF)

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 11.4 \mathrm{~V}$ to $\pm 16.00 \mathrm{~V}, \mathrm{~V}_{C C}=4.75 \mathrm{~V}$ to 5.25 V unless otherwise noted.

Parameter	Conditions		ADC1280			ADC1080			Units
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Min	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 1) } \end{array}$	Max	
CONVERTER CHARACTERISTICS									
Resolution			12			10			Bits
Linearity Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				± 0.012			± 0.048	\% FSR (Note 3)
Linearity Error Tempco					± 3			± 3	ppm of FSR $/{ }^{\circ} \mathrm{C}$
Differential Linearity Error				$\pm 1 / 2$			$\pm 1 / 2$.	LSB
No Missing Codes	(Note 2)		12			10			Bits
Full-Scale (Gain) Error	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ (Note 4)			± 0.1			± 0.1		\% FSR
Zero-Scale (Offset)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	Unipolar		± 0.05			± 0.05		\%FSR
Error		Bipolar		± 0.1			± 0.1		
Full-Scale (Gain) Tempco					± 30			± 30	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Zero-Scale (Offset) Tempco	Unipolar				± 3			± 3	ppm of FSR $/{ }^{\circ} \mathrm{C}$
	Bipolar				± 15			± 15	
Analog Input Voltage Range	Unipolar		0 V to $5 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V						V
	Bipolar		$\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$						
Input Impedance (Direct Input)	OV to $5 \mathrm{~V}, \pm 2.5 \mathrm{~V}$			2.5k			2.5k		
	0 V to $10 \mathrm{~V}, \pm 5 \mathrm{~V}$			5k			5k		Ω
	$\pm 10 \mathrm{~V}$			10k			10k		

REFERENCE CHARACTERISTICS

Reference Voltage		6.07	6.2	6.33	6.07	6.2	6.33	V
Tempco of Drift			10	20		10	20	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
External Use Current				1.5			1.5	mA
Output Impedance			0.05	1.0		0.05	1.0	Ω

DIGITAL AND DC CHARACTERISTICS

Logic 1 Input Voltage (Bit Off)	Incl Ext Clock Input		2.0			2.0			V
Logic 0 Input Voltage (Bit On)					0.8			0.8	
Logic 1 Input Current		$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$		0.05	1		0.05	1	$\mu \mathrm{A}$
Logic 0 Input Current		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			-100			-100	
Logic 0 Output Voltage	$\mathrm{I}_{\text {OUT }}=3.2 \mathrm{~mA}$				0.4			0.4	V
Logic 1 Output Voltage	$\mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}$		2.4			2.4			
Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=$ Max		-18		-57	-18		-57	mA
Power Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1^{+}		16			16		mA
		1^{-}		12			12		mA
		$I_{\text {cc }}$		92			92		mA
Power Supply Sensitivity	V_{S}			0.003			0.003		FSR/\% V ${ }_{\text {S }}$
	V_{CC}			0.0015			0.0015	.	FSR/\% V ${ }_{\text {CC }}$

Electrical Characteristics (Continued)

$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 11.4 \mathrm{~V}$ to $\pm 16.00 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V unless otherwise noted.

Parameter	Conditions		ADC1280			ADC1080			Units
			Min	Typ (Note 1)	Max	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	
AC CHARACTERISTICS									
Conversion Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Internal Clock		22	25			21	$\mu \mathrm{S}$
		External Clock		16	18			12	
Clock Frequency	Internal			575			575		kHz
Convert Command			100			100			ns

Note 1: All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Guarantees that for increasing analog voltage, the digital code increases. This specification guarantees monotonicity.
Note 3: FSR means "full-scale range" and is 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for $\pm 5 \mathrm{~V}$ range.
Note 4: Externally adjustable to zero.

Typical Performance Curves

1.0 Definition of Terms and Applications

The accuracy of an A/D converter is described by the transfer function shown in Figure 1. There is an inherent quantization uncertainty of $\pm 1 / 2$ LSB associated with the resolution.

FIGURE 1. Transfer Characteristics for an Ideal Bipolar AID
The remaining errors in the A/D converters are combinations of analog errors due to the linear circuitry, matching and tracking properties of the ladder and scaling networks, reference error, and power supply rejection. The matching and tracking errors in the ADC1080 and ADC1280 have been minimized by the use of a monolithic DAC that includes the scaling network. The initial gain and offset errors are specified at $\pm 0.1 \%$ FSR for gain and $\pm 0.05 \%$ FSR for offset. These errors may be trimmed to zero by the use of the external trim circuits as shown in Figures 2 and 3 . Linearity error is defined as the deviation
from a true straight line transfer characteristic from a zero analog input which calls for a zero digital output to a point which is defined as full-scale. The linearity error is unadjustable and is the most meaningful indication of A/D converter accuracy. Differential nonlinearity is a measure of the deviation in staircase step width between codes from the ideal least significant bit step size (Figure 1).

Monotonic behavior requires that the differential linearity error be less than 1 LSB; however, a monotonic converter can have missing codes.

There are three types of drift error over temperature: offset, gain, and linearity. Offset drift causes a shift of the transfer characteristics left or right over the operating temperature range. Gain drift causes a rotation of the transfer characteristic about the zero or minus full-scale point.

1.1 Gain and Offset Error

Initial gain and offset errors are factory trimmed to $\pm 0.1 \%$ of FSR ($\pm 0.05 \%$ for unipolar offset) at $25^{\circ} \mathrm{C}$.

Gain and offset errors may be trimmed to zero using external gain and offset trim potentiometers connected to the ADC1080 and ADC1280 as shown in Figures 2 and 3. Multiturn potentiometers with $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better TCRs are recommended for minimum drift over temperature and time. These pots may be any value from $10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$. All resistors should be 20% or better. Pin 16 (gain adjust) may be left open if no external adjustment is required.

FIGURE 2. Two Methods of Connecting Optional Offset Adjust with a 0.4% of FSR Range of Adjustment

FIGURE 3. Two Methods of Connecting Optional Gain Adjust with a 0.6% Range of Adjustment

Adjustment Procedure

Offset－Connect the offset potentiometer as shown in Figure 2．Sweep the input through the end point transition voltage that should cause an output transition to all ones．
Adjust the offset potentiometer until the actual end point transition voltage occurs at EMFF．The ideal transition volt－ age values of the input are given in Table I．
Gain－Connect the gain adjust potentiometer as shown in Figure 3．Sweep the input through the end point transi－ tion voltage that should cause an output transition to all zeros．

Adjust the gain potentiometer until the actual end point transition voltage occurs EIN．Table I details the transi－ tion voltage levels required．

1．2 Accuracy Drift vs Temperature

Three major drift parameters degrade A／D converter ac－ curacy over temperature：they are gain，offset and linearity drift．The worst case accuracy drift is the summation of all three drift errors over temperature．Statistically，these er－ rors do not add algebraically，but are random variables which behave as root－sum－squared（RSS）or $1 \boldsymbol{\sigma}$ errors as follows：

$$
\begin{aligned}
& \text { RSS }=\sqrt{\epsilon \mathrm{g}^{2}+\in \mathrm{o}^{2}+\in \mathrm{e}^{2}} \\
& \text { where } \in \mathrm{g}=\text { gain drift error }\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \\
& \in \mathrm{o}=\text { offset drift error }\left(\mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C}\right) \\
& \in \mathrm{e}=\text { linearity error }\left(\mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

For unipolar operation，the total RSS drift is $\pm 30.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and for bipolar operation，the total RSS drift is $\pm 33.7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ．

1．3 Accuracy vs Speed

In successive approximation A／D converters，the conver－ sion speed affects linearity and differential linearity errors．Conversion speed and its effect on linearity and dif－ ferential linearity errors for the ADC1080 and ADC1280 are shown in Figures 3 and 4.

FIGURE 4．Input Scaling Circuit

The ADC1080 and ADC1280 conversion speeds are speci－ fied for a maximum linearity error of $\pm 1 / 2$ LSB and a dif－ ferential linearity error of $\pm 1 / 2 \mathrm{LSB}$ with the internal clock． Faster conversion speeds up to $23 \mu \mathrm{~s}$ for 12 bits， $12 \mu \mathrm{~s}$ for 10 bits，and 6μ for 8 bits are possible with an external clock．

1．4 Power Supply Sensitivity

Changes in the DC power supplies will affect the accuracy of the ADC1080 and ADC1280．Normally，regulated power supplies with 1% or less ripple are recommended．

1．5 Layout Precautions

Analog and digital commons are not connected internally in the ADC1080 and ADC1280，but should be connected together as close to the unit as possible，preferably to a large ground plane under the A／D．If these grounds must be run separately，use a wide conductor pattern between analog and digital commons at the unit．Low impedance analog and digital common returns are essential for low noise performance．Coupling between analog inputs and digital lines should be minimized by careful layout．

1．6 Input Scaling

The ADC1080 and ADC1280 input should be scaled as close to the maximum input signal range as possible in order to utilize the maximum signal resolution of the AID converter．Connect the input signal as shown in Table I． See Figure 4 for circuit details．

TABLE I．INPUT SCALING CONNECTIONS

Input Signal Range	Output Code	Connect Pin 12 To Pin	Connect Pin 14 To	Connect Input Signal To
$\pm 10 \mathrm{~V}$	COB or CTC	11	Input Signal	14
$\pm 5 \mathrm{~V}$	COB or CTC	11	Open	13
$\pm 2.5 \mathrm{~V}$	COB or CTC	11	Pin 11	13
0 V to 5 V	CSB	15	Pin 11	13
OV to 10 V	CSB	15	Open	13

2．0 Functional Description

On receipt of a CONVERT START command，the ADC1080 and ADC1280 convert the voltage at its analog input into an equivalent 12 －bit binary number．This conversion is accomplished as follows：the 12－bit successive approxi－ mation register（SAR）has its 12 －bit outputs connected both to the device bit output pins and to the corresponding bit inputs of the feedback DAC．The analog input is suc－ cessively compared to the feedback DAC output，one bit at a time（MSB first，LSB last）．The decision to keep or re－ ject each bit is then made at the completion of each bit comparison period，depending on the state of the compar－ ator at that time．

2.1 Timing

The Timing Diagram is shown in Figure 5. Receipt of a CONVERT START signal sets the STATUS flag, indicating conversion in progress. This, in turn, removes the inhibit applied to the gated clock, permitting it to run through 13 cycles. All SAR parallel bit and STATUS flip-flops are initialized on the leading edge, and the gated clock inhibit signal is removed on the trailing edge of the CONVERT START signal. At time t0, B1 is reset and B2-B12 are set unconditionally. At t1 the bit 1 decision is made (keep) and bit 2 is unconditionally reset. At t2, the bit 2 decision is made (keep) and bit 3 is reset unconditionally. This se-
quence continues until the bit 12 (LSB) decision (keep) is made at t12. After a 40 ns delay period, the STATUS flag is reset, indicating that the conversion is complete and that the parallel output data is valid. Resetting the STATUS flag restores the gated clock inhibit signal, forcing the clock output to the Logic 0 state.

Corresponding serial and parallel data bits become valid on the same positive-going clock edge. Serial data does not change and is guaranteed valid on negative-going clock edges, however; serial data can be transferred quite simply by clocking it into a receiving shift register on these edges (see Figure 5).

Note 1: The convert start pulse width is 100 ns min and must remain low during a conversion. The conversion is initiated by the rising edge of the convert command.
Note 2: $25 \mu \mathrm{~s}$ for 12 bits and $21 \mu \mathrm{~s}$ for 10 bits (max).
Note 3: MSB decision
Note 4: LSB decision 40 ns prior to the status going low.
*Bit decisions
FIGURE 5. Timing Diagram (Binary Code 011001110110)

Incorporation of this 40 ns delay guarantees that the parallel (and serial) data are valid at the Logic 1 to Logic 0 transition of the STATUS flag, permitting parallel data transfer to be initiated by the trailing edge of the STATUS signal.

2.2 Digital Output Data

Both parallel and serial data from TTL storage registers are in negative true form. Parallel data output coding is complementary binary for unipolar ranges and either complementary offset binary or complementary two's complement binary, depending on whether bit 1 (pin 6) or its logical inverse bit 1 (pin 8) is used as the MSB. Parallel data becomes valid approximately 40 ns before the STATUS flag returns to Logic 0 , permitting parallel data transfer to be clocked on the " 1 " to "0" transition of the STATUS flag.
Serial data coding is complementary binary for unipolar input ranges and complementary offset binary for bipolar input ranges. Serial output is by bit (MSB first, LSB last) in NRZ (non-return-to-zero) format. Serial and parallel data outputs change state on positive-going clock edges. Serial data is guaranteed valid 200 ns after the rising clock edges, permitting serial data to be clocked directly into a receiving register on these edges as shown in Figure 5. There are 13 negative-going clock edges in the complete 12-bit conversion cycle, as shown in Figure 5. The first edge shifts an invalid bit into the register, which is shifted out on the 13th negative-going clock edge. All serial data bits will have been correctly transferred and be in the receiving shift register locations shown at the completion of the conversion period.

2.3 Short Cycle Input

A short cycle input, pin 21, permits the timing cycle shown in Figure 5 to be terminated after any number of desired
bits has been converted, permitting somewhat shorter conversion times in applications not requiring full 12 -bit resolution. When 12-bit resolution is required, pin 21 is connected to 5 V (pin 9). When 10 -bit resolution is desired, pin 21 is connected to bit 11 output pin 28 . The conversion cycle then terminates, and the STATUS flag resets after the bit 10 decision ($\mathrm{t} 10+40 \mathrm{~ns}$ in the Timing Diagram of Figure 5). Short cycle pin connections and associated maximum 12-bit, 10 -bit and 8 -bit conversion times are summarized in Table II.

TABLE II. SHORT CYCLE CONNECTIONS

Connect Short Cycle Pin 21 To Pin	Bits	Resolution (\% FSR)	Maximum Conversion Time $(\mu \mathbf{s})$	Status Flag Reset
9	12	0.024	25	$\mathrm{t} 12+40 \mathrm{~ns}$
28	10	0.100	21	$\mathrm{t} 10+40 \mathrm{~ns}$
30	8	0.390	17	$\mathrm{t} 8+40 \mathrm{~ns}$

2.4 Control Modes

The timing sequence of the ADC1080 and ADC1280 allows the device to be easily operated in a variety of systems with different control modes. The most common control modes are illustrated in Figures 6-9.

2.5 Calibration

External ZERO ADJ and GAIN ADJ potentiometers, connected as shown in Figures 10 and 11, are used for device calibration. To prevent interaction of these two adjustments, zero is always adjusted first and then gain. Zero is adjusted with the analog input near the most negative end of the analog range (0 for unipolar and - FS for bipolar input ranges). Gain is adjusted with the analog input near the most postive end of the analog range.

FIGURE 6. Internal Clock - Normal Operating Mode. Conversion Initiated by the Rising Edge of the Convert Command. The Internal Clock Runs Only During Conversion.

FIGURE 7. Continuous Conversion with External Clock. Conversion is Initiated by 14th Clock Pulse. Clock Runs Continuously.

FIGURE 8. Continuous External Clock. Conversion Initiated by Rising Edge of Convert Command. The Convert Command Must be Synchronized with Clock.

FIGURE 9. Continuous Conversion with Internal Clock. Conversion is initiated by the 14th Clock Pulse. Clock Runs Continuously. The Oscillator Formed by Gates 2 and 3 Insures that the Conversion Process will Start When Logic Power is First Turned On.

FIGURE 10. Analog and Power Connections for Unipolar OV-10V Input Range

FIGURE 11．Analog and Power Connections for Bipolar $\pm 10 \mathrm{~V}$ Input Range

OV to 10V Range：Set analog input to $+1 \mathrm{LSB}=+0.0024 \mathrm{~V}$ ． Adjust zero for digital cutput $=111111111110$ ．Zero is now calibrated．Set analog input to $+\mathrm{FSR}-2 \mathrm{LSB}=$ +9.9952 V ．Adjust gain for 000000000001 digital out－ put code；full－scale（gain）is now calibrated．Half－scale calibration check：set analog input to +5.0000 V ；digital output code should be 011111111111.
-10 V to +10 V Range：Set analog input to -9.9951 V ；ad－ just zero for 111111111110 digital output（com－ plementary offset binary）code．Set analog input to +9.9902 V ；adjust gain for 000000000001 digital out－ put（complementary offset binary）code．Half－scale calibration check：set analog input to 0.0000 V ；digital out－ put（complementary offset binary）code should be 011111111111.

Other Ranges：Representative digital coding for 0 V to 10 V and -10 V to +10 V ranges is given above．Coding relation－ ships and calibration points for OV to $5 \mathrm{~V},-2.5 \mathrm{~V}$ to +2.5 V and -5 V to +5 V ranges can be found by halving the corre－ sponding code equivalents listed for the 0 V to 10 V and -10 V to +10 V ranges，respectively．

Zero and full－scale calibration can be accomplished to a precision of approximately $\pm 1 / 4$ LSB using the static ad－ justment procedure described in paragraph 1．1．By sum－ ming a small sine or triangular wave voltage with the signal applied to the analog input，the output can be cycled through each of the calibration codes of interest to more accurately determine the center（or end points）of each discrete quantization level．

TABLE III. INPUT VOLTAGES AND CODE DEFINITIONS							
Binary (BIN) Output	InPUT VOLTAGE RANGE AND LSB VALUES						
Analog Input Voltage Range	Defined As:	$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$	OV to 20V	OV to 10V	OV to 5V
Code Designation		$\begin{gathered} \text { COB* }^{*} \\ \text { or CTC** } \end{gathered}$	$\begin{gathered} \mathrm{COB}^{*} \\ \text { or } \mathrm{CTC}^{* *} \end{gathered}$	$\begin{gathered} \mathrm{COB}^{*} \\ \text { or CTC** } \end{gathered}$	CSB***	CSB***	CSB***
One Least Significant Bit (LSB)	$\begin{aligned} & \frac{\text { FSR }}{2^{n}} \\ & n=8 \\ & n=10 \\ & n=12 \end{aligned}$	$\begin{gathered} \frac{20 \mathrm{~V}}{2^{n}} \\ 78.13 \mathrm{mV} \\ 19.53 \mathrm{mV} \\ 4.88 \mathrm{mV} \end{gathered}$	$\begin{gathered} \frac{10 \mathrm{~V}}{2^{n}} \\ 39.06 \mathrm{mV} \\ 9.77 \mathrm{mV} \\ 2.44 \mathrm{mV} \end{gathered}$	$\begin{gathered} \frac{5 V}{2^{n}} \\ 19.53 \mathrm{mV} \\ 4.88 \mathrm{mV} \\ 1.22 \mathrm{mV} \end{gathered}$	$\begin{gathered} \frac{20 \mathrm{~V}}{2^{n}} \\ 78.13 \mathrm{mV} \\ 19.53 \mathrm{mV} \\ 4.88 \mathrm{mV} \end{gathered}$	$\begin{gathered} \frac{10 \mathrm{~V}}{2^{n}} \\ 39.06 \mathrm{mV} \\ 9.77 \mathrm{mV} \\ 2.44 \mathrm{mV} \end{gathered}$	$\begin{gathered} \frac{5 V}{2^{n}} \\ 19.53 \mathrm{mV} \\ 4.88 \mathrm{mV} \\ 1.22 \mathrm{mV} \end{gathered}$
$\begin{aligned} & \text { Transition Values } \\ & \text { MSB LSB } \\ & 000 \ldots 000^{* * * *} \\ & 011 \ldots .111 \\ & 111 \ldots 110 \end{aligned}$	+ Full-Scale Mid-Scale - Full-Scale	$\begin{gathered} 10 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ 0 \\ -10 \mathrm{~V}+1 / 2 \mathrm{LSB} \end{gathered}$	$\begin{gathered} 5 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ 0 \\ -5 \mathrm{~V}+1 / 2 \mathrm{LSB} \\ \hline \end{gathered}$	$\begin{array}{\|c} 2.5 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ 0 \\ -2.5 \mathrm{~V}+1 / 2 \mathrm{LSB} \\ \hline \end{array}$	$\begin{gathered} 20 \mathrm{~V}-3 / 2 \text { LSB } \\ 10 \mathrm{~V} \\ 0+1 / 2 \mathrm{LSB} \end{gathered}$	$\begin{gathered} 10 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ 5 \mathrm{~V} \\ 0+1 / 2 \mathrm{LSB} \\ \hline \end{gathered}$	$\begin{gathered} 5 \mathrm{~V}-3 / 2 \mathrm{LSB} \\ 2.5 \mathrm{~V} \\ 0+1 / 2 \mathrm{LSB} \\ \hline \end{gathered}$

* $\mathrm{COB}=$ Complementary Offset Binary.
**CTC = Complementary Two's complement -obtained by using the complement of the most significant bit ($\overline{\mathrm{MSB}}$). $\overline{\mathrm{MSB}}$ is available on pin 8 .
***CSB = Complementary Straight Binary.
****Voltages given are the nominal value for transition to the code specified.

Ordering Information

Temperature Range		$\mathbf{- 2 5}{ }^{\circ} \mathrm{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$			
	0.012%	$\begin{array}{l}\text { *ADC1280HCD } \\ \text { ADC80AG-12 } \\ \text { Linearity } \\ \text { (Accuracy) }\end{array}$			
	0.048%	$\begin{array}{l}\text { ADC80AGZ-12 }\end{array}$			
ADC1080HCD					
ADC80AG-10					
ADC80AGZ-10			$]$	Package	
:---	:---				

*Devices may be ordered by either part number

National

General Description

The ADC1210, ADC1211 are low power, medium speed, 12 -bit successive approximation, analog-to-digital converters. The devices are complete converters requiring only the application of a reference voltage and a clock for operation. Included within the device are the successive approximation logic, CMOS analog switches, precision laser trimmed thin film R-2R ladder network and FET input comparator.

The ADC1210 offers 12 -bit resolution and 12 -bit accuracy, and the ADC1211 offers 12 -bit resolution with 10 -bit accuracy. The inverted binary outputs are directly compatible with CMOS logic. The ADC1210, ADC1211 will operate over a wide supply range, convert both bipolar and unipolar analog inputs, and operate in either a continuous conversion mode or logic-controlled

START-STOP conversion mode. The devices are capable of making a 12 -bit conversion in $100 \mu \mathrm{~s}$ typ, and can be connected to convert 10 bits in $30 \mu \mathrm{~s}$.
Both devices are available in military and industrial temperature ranges.

Features

- 12-bit resolution
- $\pm 1 / 2$ LSB linearity
- Single +5 V to $\pm 15 \mathrm{~V}$ supply range
- $100 \mu \mathrm{~s} 12$-bit, $30 \mu \mathrm{~s} 10$-bit conversion rate
- CMOS compatible outputs
- Bipolar or unipolar analog inputs
- $200 \mathrm{k} \Omega$ analog input impedance
a Low cost

Block Diagram

Connection Diagram

Absolute Maximum Ratings

Maximum Reference Supply Voltage $\left(\mathrm{V}^{+}\right)$	16 V
Maximum Negative Supply Voltage $\left(\mathrm{V}^{-}\right)$	-20 V
Voltage At Any Logic Pin	$\mathrm{V}^{+}+0.3 \mathrm{~V}$
Analog Input Voltage	$\pm 15 \mathrm{~V}$
Maximum Digital Output Current	$\pm 10 \mathrm{~mA}$.
Maximum Comparator Output Current	50 mA
Comparator Output Short-Circuit Duration	5 Seconds

Power Dissipation	See Curves
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ADC 1210 HD, ADC1211 HD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADC1210HCD, ADC1211 HCD	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Notes 1 and 2)

PARAMETER	CONDITIONS	ADC1210			ADC1211			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Resolution		12			12			Bits
Linearity Error	(Note 3)							
	${ }^{\text {f }} \mathrm{CLK}$ K $=65 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			± 0.0122			± 0.0488	\% FS
	$\mathrm{f}_{\text {CLK }}=65 \mathrm{kHz}$			± 0.0244				\% FS
Full Scale Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unadjusted			0.1 ,			0.25	\% FS
Zero Scale Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unadjusted			0.1			0.25	\% FS
Quantization Error				$\pm 1 / 2$			$\pm 1 / 2$	LSB
Input Resistor Values	R27, R28		20			20		$k \Omega$
Input Resistor Values	R25, R26		200			200		$k \Omega$
Input Resistor Ratios	R25/R26, R27/R28			0.1			0.1	\%
Logic "1" Input Voltage		8			8			V
Logic "0" Input Voltage				2			2	V
Logic "1" Input Current	$V_{\text {IN }}=10.24 \mathrm{~V}$			1			1	$\mu \mathrm{A}$
Logic " 0 ' Input Current	$V_{1 N}=0 V$			-1			-1	$\mu \mathrm{A}$
Logic "1" Output Voltage	IOUT $\leq-1 \mu \mathrm{~A}$	9.2			9.2			V
Logic "0' Output Voltage	IOUT $\leq 1 \mu \mathrm{~A}$			0.5			0.5	V
Positive Supply Current	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{f} C L K=65 \mathrm{kHz}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		5	8		5	8	mA
Negative Supply Current	$V^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	6		4	6	mA

AC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}$, (Notes 1 and 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Time			100	200	$\mu \mathrm{s}$
Maximum Clock Frequency			130	65.	kHz
Clock Pulse Width		100	50		ns
Propagation Delay From Clock to Data Output (O0 to Q11)	$\mathrm{tr}_{\mathrm{r}} \leq \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$		60	150	ns
Propagation Delay From Clock to Conversion Complete	$\mathrm{t}_{\mathrm{r}} \leq \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$		60	150	ns ${ }^{\text {, }}$
Clock Rise and Fall Time				5	$\mu \mathrm{s}$
, Input Capacitance			10		pF
Start Conversion Set-Up Time		30			ns

Note 1: Unless otherwise noted, these specifications apply for $\mathrm{V}^{+}=10.240 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the ADC1210HD, ADC1211HD, and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the ADC1210HCD, ADC1211HCD
Note 2: All typical values are for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
Note 3: Unless otherwise noted, this specification applies over the temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Provision is made to adjust zero scale error to 0 V and full-scale to 10.2375 V during testing. Standard linearity test circuit is shown in Figure 5 a.

Schematic Diagram

Note: 3 bits shown for clarity

1.0 THEORY OF OPERATION

The ADC1210, ADC1211 are successive approximation analog-to-digital converters, i.e., the conversion takes place 1 bit at a time by comparing the output of the internal D / A to the (unknown) input voltage. The START input (pin 13), when taken low, causes the register to reset synchronously on the next CLOCK low-to-high transition. The MSB, Q11 is set to the low state, and the remaining bits, 00 through $Q 10$, will be set to the high state. The register will remain in this state until the $\overline{\mathrm{SC}}$ input is taken high. When START goes high, the conversion will begin on the low-to-high transition of the CLOCK pulse. Q11 will then assume the state of pin 23. If pin 23 is high, Q11 will be high; if pin 23 is low, Q11 will remain low. At the same time, the next bit, Q 10 is set low. All remaining bits, $\mathrm{Q} 0-\mathrm{Q} 9$
will remain unchanged (high). This process will continue until the LSB (QO) is found. When the conversion process is completed, it is indicated by CONVERSION COMPLETE ($\overline{\mathrm{CC}}$) (pin 14) going low. The logic levels at the data output pins (pins 1-12) are the complementedbinary representation of the converted analog signal with Q11 being the MSB and Q0 being the LSB. The register will remain in the above state until the $\overline{\mathrm{SC}}$ is again taken low.

An application example is shown in Figure 1. In this case, a 0 to -10.2375 V input is being converted using the ADC1210 with $\mathrm{V}^{+}=10.240 \mathrm{~V}, \mathrm{~V}^{--}=-15 \mathrm{~V}$. Figure $1 b$ is the timing diagram for full scale input. Figure $1 c$ is the timing diagram for zero scale input, Figure $1 d$ is the timing diagram for -3.4125 V input $(010101010101=$ output).

FIGURE 1a. ADC1210 Connected for OV to -10.2375V (Natural Binary Output)

FIGURE 1b. Timing Diagram for $\mathrm{V}_{\mathbf{I N}}=$ Full Scale Input

FIGURE 1c. Timing Diagram for $\mathrm{V}_{\mathrm{IN}}=$ Zero Scale

TABLE I. Pin Assignments and Explanations

PIN NUMBER	MNEMONIC	FUNCTION
1-12	Q11-00	Digital (data) output pins. This information is a parallel 12 -bit complemented binary representation of the converted analog signal. All data is valid when "Conversion Complete" goes low. Logic levels are ground and V^{+}.
13	$\overline{\mathrm{SC}}$	Start Conversion is a logic input which causes synchronous reset of the successive approximation register and initiates conversion. Logic levels are ground and V^{+}.
14	$\overline{\mathrm{CC}}$	"Conversion Complete" is a digital output signal which indicates the status of the converter. When $\overline{\mathrm{CC}}$ is high, conversion is taking place, when low conversion is completed. Logic levels are ground and V^{+}.
15,16	R27, R28	R27 and R28 are two application resistors connected to the comparator non-inverting input. The resistors may be used in various modes of operation. Their nominal values are $20 \mathrm{k} \Omega$ each. See Applications section.
17	$+\mathrm{IN}$	Non-inverting input of the analog comparator. This node is used in various configurations and for compensation of the loop. See Applications section.
18, 19	R25, R26	R25 and R26 are two application resistors that are tied internally to the inverting input of the comparator. Their nominal values are $200 \mathrm{k} \Omega$ each. See Applications section. The R-2R ladder network will have the same temperature coefficient as these resistors.
20	V^{-}	Negative supply voltage for bias of the analog comparator. Optionally may be grounded or operated with voltages to -20 V .
21	GND	Ground for both digital and analog signals.
22	V^{+}(VREF)	V^{+}sets both maximum full scale and input and output logic levels.
23	CO	Comparator output.
24	Cp	Clock is an input which causes the successive approximation (shift) register to advance through the conversion sequence. Logic levels are ground and V^{+}.

2.0 APPLICATIONS

2.1 Power Supply Considerations and Decoupling

Pin 22 is both the positive supply and voltage reference input to the ADC1210, ADC1211. The magnitude of V^{+} determines the input logic " 1 " threshold and the output voltage from the CMOS SAR. The device will operate over a range of V^{+}from 5 V to 15 V . However, in order to preserve 12 -bit accuracy, V^{+}should be well regulated (0.01%) and isolated from external switching transients. It is therefore recommended that pin 22 be decoupled with a $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor.

The V^{-}supply (pin 20) provides negative bias for the FET comparator. Although pin 20 may be grounded in some applications, it must be at least 2 V more negative than the most negative analog input signal. When a negative supply is used, $\operatorname{pin} 20$ should also be bypassed with $4.7 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$.

Grounding and circuit layout are extremely important in preserving 12 -bit accuracy. The user is advised to employ separate digital and analog returns, and to make these PC board traces as "heavy" as practical.

2.2 Short Cycle for Improved Conversion Time (Figure 2)

The ADC1210, ADC1211 counting sequence may be truncated to decrease conversion time. For example, when using the ADC1211, 2 clock intervals may be
"saved" if 10 -bit conversion accuracy is taking place. The 02 output should be "OR'd" with CONVERSION COMPLETE $(\overline{\mathrm{CC}})$ in order to ensure that the register does not lock-up upon power turn-on.

FIGURE 2. Short Cycling the ADC1211 to Improve 10-Bit Conversion Time (Continuous Conversion)

2.3 Logic Compatibility

The ADC1210, ADC1211 is intended to interface with CMOS logic levels: i.e., the logic inputs and outputs are directly compatible with series $54 \mathrm{C} / 74 \mathrm{C}$ and CD4000 family of logic components. The outputs of the ADC1210, ADC1211 will not drive LPTTL, TTL or PMOS logic directly without degrading accuracy. Various recommended interface techniques are shown in Figures 3 and 4.

2.4 Operating Configurations

Several recommended operating configurations are shown in Figure 5.

FIGURE 3. Interfacing an ADC1210, ADC1211 Running on $\mathrm{V}^{+}>\mathrm{V}_{\mathrm{CC}}$. Example: $\mathrm{V}^{+}=10.24 \mathrm{~V}$, System $\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V}$

FIGURE 4. Interfacing an ADC1210, ADC1211 Running on $\mathrm{V}^{+}<\mathrm{V}_{\mathrm{CC}}$. Example: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathbf{C C}}=15 \mathrm{~V}$

2.5 Offset and Full Scale Adjust

A variety of techniques may be employed to adjust Offset and Full Scale on the ADC1210, ADC1211. A straight-forward Full Scale Adjust is to incrementally vary $\mathrm{V}^{+}\left(\mathrm{V}_{\mathrm{REF}}\right)$ to match the analog input voltage. A recommended technique is shown in Figure 6. An LM199 and low drift op amp (e.g., the LHOO44) are used to provide the precision reference. The ADC1210, ADC1211 is put in the continuous convert mode by shorting pins 13 and 14. An analog voltage equal to $V_{\text {REF }}$ minus $11 / 2 \operatorname{LSB}(10.23625 \mathrm{~V})$ is applied to pins 18 and 19, and R1 is adjusted until the LSB flickers equally between logic " 1 " and logic " 0 " (all other out-
puts must be stable logic " 0 "). Offset Null is accomplished by then applying an analog input voltage equal to $1 / 2$ LSB at pins 18 and 19 . R2 is adjusted until the LSB output flickers equally between logic " 1 " and logic " 0 " (all other bits are stable). In the circuit of Figure 6, the ADC1210, ADC1211 is configured for Complementary Binary logic and the values shown are for $V^{+}=10.240 \mathrm{~V}, \mathrm{~V}_{\mathrm{FS}}=10.2375 \mathrm{~V}, \mathrm{LSB}=2.5 \mathrm{mV}$.

An alternate technique is shown in Figure 7. In this instance, an LH0071 is used to provide the reference voltage. An analog input voltage equal to $\mathrm{V}_{\text {REF }}$ minus $11 / 2$ LSB (10.23625 V) is applied to pins 18 and 19.

Applications Information（Contirued）

FIGURE 6．Offset and Full Scale Adjustment for Complementary Binary

R1 is adjusted until the LSB output flickers equally between logic＂ 1 ＂and logic＂ 0 ＂（all other outputs must be a stable logic＂ 0 ＂）．For Offset Null，an analog voltage equal to $1 / 2 \mathrm{LSB}(1.25 \mathrm{mV})$ is then applied to pins 18 and 19 ，and R2，is adjusted until the LSB output flickers equally between logic＂ 1 ＂and＂ 0 ＂．

FIGURE 7．Offset and Fuil－Scale Adjustment Technique Using LH0071
In both techniques shown，adjusting the Full－Scale first and then Offset minimizes adjustment interaction．At least one iteration is recommended as a self－check．

2．6 Start Pulse Considerations

To assure reliable conversion accuracy，the $\overline{\operatorname{START}}$（ $\overline{\mathrm{SC}}$ ） pulse applied to pin 13 of the ADC1210 should be syn－ chronized to the conversion clock．One simple way to do that is the circuit shown in Figure 8．Note that once a conversion cycle is initiated，the START signal cannot effect the conversion operation until it is completed．

FIGURE 8．Synchronizing the START Pulse

The circuit insures that in no case can the ADC1210 make an error in the Most Significant Bit（MSB）deci－ sion．Without the circuit，it is possible for energy from＇ the trailing edge of an asynchronous START pulse to be coupled into the ADC1210＇s comparator．If the analog input is near half－scale，the charge injected can force an error in the MSB decision．The circuit allows one clock period for this energy to dissipate before the decision is recorded．

2．7 ADC1210 Conversion at $26 \mu \mathrm{~s}$

The ADC1210 can run at 500 kHz clock frequency，or 12 －bit conversion time of $26 \mu \mathrm{~s}$（Figure 9）．The compara－ tor output is clamped low until the successive approxi－ mation register（SAR）is ready to strobe in the data at the rising edge of the conversion clock．Comparator oscillation is suppressed and kept from influencing the conversion decisions，eliminating the need for the AC hysteresis circuit above clock frequency of 65 kHz that is recommended．

FIGURE 9．Conversion at $\mathbf{2 6} \mu \mathrm{s}$
A complementary phased clock is required．The posi－ tive phase is used to clock the converter SAR as is normally the case．The same signal is buffered and in－ verted by the transistor．The open collector is wire－ORed to the output of the comparator．During the first half of the clock cycle（ 50% duty cycle），the comparator output is clamped and disabled，though its internal operation is still in normal working order．The last half cycle of the clock unclamps the comparator output．Thus，the out－ put is permitted to slew to the final logic state just before the decision is logged into the SAR．The MM74C906 buffer（or with two inverting buffers）provides adequate propogation delay such that the comparator output data is held long enough to resolve any internal logic set－ up time requirements．

The 500 kHz clock implies that the absolute minimum amount of time for the comparator output is unclamped is $1 \mu \mathrm{~s}$. Therefore, if the clock is not 50% duty cycle, this $1 \mu \mathrm{~s}$ requirement must be observed.

3.0 DEFINITION OF TERMS

Resolution: The Resolution of an A / D is an expression of the smallest change in input which will increment (or decrement) the output from one code to the next adjacent code. It is defined in number of bits, or 1 part in 2^{n}. The ADC1210 and ADC1211 have a resolution of 12 bits or 1 part in $4,096(0.0244 \%)$.

Quantization Uncertainty: Quantization Uncertainty is a direct consequence of the resolution of the converter. All analog voltages within a given range are represented by a single digital output code. There is, therefore, an inherent conversion error even for a perfect A/D. As an example, the transfer characteristic of a perfect 3 -bit A / D is shown in Figure 10.

FIGURE 10. Quantization Uncertainty of a Perfect 3-Bit A/D

As can be seen, all input voltages between 0 V and 1 V are represented by an output code of 000 . All input voltages between 1 V and 2 V are represented by an output code of 001, etc. If the midpoint of the range is assumed to be the nominal value (e.g., 0.5 V), there is an Uncertainty of $\pm 1 / 2$ LSB. It is common practice to offset the converter $1 / 2$ LSB in order to reduce the Uncertainty to $\pm 1 / 2$ LSB is shown in Figure 11, rather than $+1,-0$ shown in Figure 10. Quantization Uncertainty can only be reduced by increasing Resolution. It is expressed as $\pm 1 / 2$ LSB or as an error percentage of full scale ($\pm 0.0122 \%$ FS for the ADC1210).

FIGURE 11. Transfer Characteristic Offset 1/2 LSB to Minimize Quantizing Uncertainty

Linearity Error: Linearity Error is the maximum deviation from a straight line passing through the end points of the A/D transfer characteristic. It is measured after calibrating Zero and Full Scale Error. The Linearity Error of the ADC1210 is guaranteed to be less than $\pm 1 / 2$ LSB or $\pm 0.0122 \%$ of ${ }^{\prime} F S$ and $\pm 0.0488 \%$ of FS for the AD1211. Linearity is a performance characteristic intrinsic to the device and cannot be externally adjusted.

Zero Scale Error (or Offset): Zero Scale Error is a measure of the difference between the output of an ideal and the actual A / D for zero input voltage. As shown in Figure 12, the effect of Zero Scale Error is to shift the transfer characteristic to the right or left along the abscissa. Any voltage more negative than the LSB transition gives an output code of 000 . In practice, therefore, the voltage at which the 000 to 001 transition takes place is ascertained, this input voltage's departure from the ideal value is defined as the Zero Scale Error (Offset) and is expressed as a percentage of FS. In the example of Figure 12, the offset is 2 LSB's or 0.286% of FS.

FIGURE 12. A/D Transfer Characteristic with Offset

The Zero Scale Error of the ADC1210, ADC1211 is caused primarily by offset voltage in the comparator. Because it is common practice to offset the A/D 1/2 LSB to minimize Quantization Error, the offsetting techniques described in the Applications Section may be used to null Zero Scale Error and accomplish the $1 / 2$ LSB offset at the same time.

Full Scale Error (or Gain Error): Full Scale Error is a measure of the difference between the output of an ideal A / D converter and the actual A / D for an input voltage equal to full scale. As shown in Figure 13, the Full Scale Error effect is to rotate the transfer characteristic angularly about the origin. Any voltage more positive than the Full Scale transition gives an output code of 111. In practice, therefore, the voltage at which the transition from 111 to 110 occurs is ascertained. The input voltage's departure from the ideal value is defined as Full Scale Error and is expressed as a percentage of FS. In the example of Figure 13, Full Scale Error is $1 \mathbf{1 / 2}$ LSB's, or 0.214% of FS .

FIGURE 13. Full Scale (Gain Error)
Full Scale Error of the ADC1210, ADC1211 is due primarily to mismatch in the R-2R ladder equivalent output impedance and input resistors R25, R26, R27, and R28. The gain error may be adjusted to zero as outlined in section 2.5.

Monotonicity and Missing Codes: Monotonicity is a property of a D/A which requires an increasing or constant output voltage for an increasing digital input code. Monotonicity of a D/A converter does not, in itself, guarantee that an A / D built with that D / A will not have missing codes. However, the ADC1210 and ADC1211 are guaranteed to have no missing codes.

Conversion Time: The ADC1210, ADC1211 are successive approximation A / D converters requiring 13 clock intervals for a conversion to specified accuracy for the ADC1210 and 11 clocks for the ADC1211. There is a trade-off between accuracy and clock frequency due
to settling time of the ladder and propagation delay through the comparator. By modifying the hysteresis network around the comparator, conversions with 10 bit accuracy can be made in $30 \mu \mathrm{~s}$. Replace $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$ and C_{A} in Figure 5 with a $10 \mathrm{M} \Omega$ resistor between pin 23 (Comparator Output) and pin 17 (+ IN), and increase the clock rate to 366 kHz .

In order to prevent errors during conversion, the analog input voltage should not be allowed to change by more than $\pm 1 / 2$ LSB. This places a maximum slew rate of $12.5 \mu \mathrm{~V} / \mu \mathrm{s}$ on the analog input voltage. The usual solution to this restriction is to place a Sample and Hold in front of the A / D. For additional application information, refer to application note AN245.

DAC0800, DAC0801, DAC0802 8-Bit Digital-to-Analog Converters

General Description

The DAC0800 series are monolithic 8 -bit high-speed current-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns . When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of 20 Vp -p with simple resistor loads as shown in Figure 1. The reference-to-full-scale current matching of better than ± 1 LSB eliminates the need for full-scale trims in most applications. while the nonlinearities of better than $\pm 0.1 \%$ over temperature minimizes system error accumulations.

The noise immune inputs of the DAC0800 series will accept TTL levels with the logic threshold pin, $V_{L C}$, pin 1 grounded. Simple adjustments of the $V_{\text {LC }}$ potential allow direct interface to all logic families. The performance and characteristics of the device are essentially unchanged over the full $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply range; power dissipation is only 33 mW with $\pm 5 \mathrm{~V}$ supplies and is independent of the logic input states.

The DAC0800, DAC0802, DAC0800C, DAC0801C and DAC0802C are a direct replacement for the DAC-08, DAC-08A, DAC-08C, DAC-08E and DAC-08H, respectively.

Features

- Fast settling output current 100 ns
- Full scale error ± 1 LSB
- Nonlinearity over temperature $\pm 0.1 \%$
- Full scale current drift
$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
- High output compliance
-10 V to +18 V
- Complementary current outputs
- Interface directly with TTL, CMOS, PMOS and others
- 2 quadrant wide range multiplying capability
- Wide power supply range $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low power consumption 33 mW at $\pm 5 \mathrm{~V}$
- Low cost

Typical Applications

FIGURE 1. ± 20 Vp-p Output Digital-to-Analog Converter

Connection Diagram

Ordering Information

NON LINEARITY	TEMPERATURE RANGE	ORDER NUMBERS*					
		D PACKAGE (D16C)		JPACKAGE (J16A)		N PACKAGE (N16A)	
$\pm 0.1 \%$ FS	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	DAC0802LD	DAC-08AQ				
$\pm 0.1 \%$ FS	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			DAC0802LCJ	DAC-08HO	DAC0802LCN	DAC-08HP
$\pm 0.19 \%$ FS	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	DAC0800LD	DAC-080				
$\pm 0.19 \%$ FS	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			DAC0800LCJ	DAC-08EQ	DAC0800LCN	DAC-08EP
$\pm 0.39 \%$ FS	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			DAC0801LCJ	DAC-08CQ	DAC0801LCN	DAC-08CP

[^39]
Absolute Maximum Ratings

Supply Voltage
$\pm 18 \mathrm{~V}$ or 36 V
Power Dissipation (Note 1)
Reference Input Differential Voltage (V14 to V15)
Reference Input Common-Mode Range (V14, V15)
500 mW
$\mathrm{~V}^{-}$to V^{+}

Reference Input Current
V^{-}to V^{+} Logic Inputs
Analog Current Outputs
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

V^{-}to V^{-}plus 36 V
 Figure 24

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Operating Conditions

	MIN	MAX	UNITS
Temperature (TA)			
DAC0802L	-55	+125	${ }^{\circ} \mathrm{C}$
DAC0800L	-55	+125	${ }^{\circ} \mathrm{C}$
DAC0800LC	0	+70	${ }^{\circ} \mathrm{C}$
DAC0801LC	0	+70	${ }^{\circ} \mathrm{C}$
DAC0802LC	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics IVS $_{S}= \pm 15 \mathrm{~V}, I_{\text {REF }}=2 \mathrm{~mA}, T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ unless otherwise specified.
Output characteristics refer to both IOUT and loUT.)

Note 1: The maximum junction temperature of the DAC0800, DAC0801 and DAC0802 is $125^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the dual-in-line J or D package must be derated based on a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, $175^{\circ} \mathrm{C} / \mathrm{W}$ for the molded dual-in-line N package.

Equivalent Circuit

FIGURE 2

Typical Performance Characteristics

FIGURE 3

Common-Mode Range

V15 - reference common-mode voltage (v)
Note. Positive common-mode range is always (V+) $\mathbf{- 1 . 5 V}$.

FIGURE 6

FIGURE 9

FIGURE 4

FIGURE 7

Reference Input
Frequency Response

Curve 1: $C_{C}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=2 \mathrm{Vp}-\mathrm{p}$ centered at 1 V .
Curve 2: $C_{C}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mVp}$-p centered at 200 mV .
Curve 3: $C_{C}=0 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mVp}-\mathrm{p}$ at $O V$ and applied through 50Ω connected to pin 14. 2V applied to R14.

FIGURE 5

FIGURE 8

Note. B1-B8 have identical transfer characteristics. Bits are fully switched with less than $1 / 2$ LSB error, at less than $\pm 100 \mathrm{mV}$ from actual threshold. These switching points are guaranteed to lie between 0.8 and 2 V over the operating temperature range ($\mathrm{V}_{\mathrm{LC}}=0 \mathrm{~V}$).

Typical Performance Characteristics (Continued)

FIGURE 12

FIGURE 13

FIGURE 14

Typical Applications (Continued)

$\mathrm{I}_{\text {FS }} \approx \frac{+\mathrm{V}_{\text {REF }}}{\text { R REF } \times \frac{255}{256}}$
$I_{0}+\overline{1_{0}}=I_{\text {FS }}$ for all
logic states

For fixed reference, TTL operation,
typical values are:
$V_{\text {REF }}=10.000 \mathrm{~V}$
$\mathrm{R}_{\text {REF }}=5.000 \mathrm{k}$
R15 \approx RREF
$\mathrm{C}_{\mathrm{C}}=0.01 \mu \mathrm{~F}$
$\mathrm{V}_{\mathrm{LC}}=\mathrm{OV}$ (Ground)

FIGURE 15. Basic Positive Reference Operation

$$
I_{F S} \approx \frac{-V_{\text {REF }}}{R_{\text {REF }}} \times \frac{255}{256} \quad \begin{aligned}
& \text { Note. R REF sets } I_{\text {FS }} ; R 15 \text { is } \\
& \text { for bias current cancellation }
\end{aligned}
$$

FIGURE 17. Basic Negative Reference Operation

	B1	B2	B3	B4	B5	B6	B7	B8	IO mA	$\overline{\text { IO }} \mathrm{mA}$	E $_{\mathbf{O}}$	$\overline{\mathrm{E}}$ E
Full Scale	1	1	1	1	1	1	1	1	1.992	0.000	-9.960	0.000
Full Scale-LSB	1	1	1	1	1	1	1	0	1.984	0.008	-9.920	-0.040
Half Scale+LSB	1	0	0	0	0	0	0	1	1.008	0.984	-5.040	-4.920
Half Scale.	1	0	0	0	0	0	0	0	1.000	0.992	-5.000	-4.960
Half Scale-LSB	0	1	1	1	1	1	1	1	0.992	1.000	-4.960	-5.000
Zero Scale+LSB	0	0	0	0	0	0	0	1	0.008	1.984	-0.040	-9.920
Zero Scale	0	0	0	0	0	0	0	0	0.000	1.992	0.000	-9.960

[^40]

	B1	B2	B3	B4	B5	B6	B7	B8	E_{O}	$\overline{E_{0}}$
Pos. Full Scale	1	1	1	1	1	1	1	1	-9.920	+10.000
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	-9.840	+9.920
\quad Zero Scale+LSB	1	0	0	0	0	0	0	1	-0.080	+0.160
Zero Scale	1	0	0	0	0	0	0	0	0.000	+0.080
Zero Scale-LSB	0	1	1	1	1	1	1	1	+0.080	0.000
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	+9.920	-9.840
Neg. Full Scale	0	0	0	0	0	0	0	0	+10.000	-9.920

FIGURE 19. Basic Bipolar Output Operation

If $R_{L}=\overline{R_{L}}$ within $\pm 0.05 \%$, output is symmetrical about ground

	B1	B2	B3	B4	B5	B6	B7	B8	E
Pos. Full Scale	$\mathbf{1}$	$\mathbf{1}$	1	1	$\mathbf{1}$	$\mathbf{1}$	1	1	+9.920
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	+9.840
$\quad(+)$ Zero Scale	1	0	0	0	0	0	0	0	+0.040
(-) Zero Scale	0	1	1	1	1	1	1	1	-0.040
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	-9.840
Neg. Full Scale	0	0	0	0	0	0	0	0	-9.920

FIGURE 20. Symmetrical Offset Binary Operation

For complementary output (operation as negative logic DAC), connect inverting input of op amp to I_{O} (pin 2), connect I_{O} (pin 4) to ground.

FIGURE 21. Positive Low Impedance Output Operation

For complementary output (operation as a negative logic DAC) connect non-inverting input of op amp to T_{O} (pin 2); connect I_{O} (pin 4) to ground.

FIGURE 22. Negative Low Impedance Output Operation

Typical Applications (Continued)

Note. Do not exceed negative logic input range of DAC.
FIGURE 23. Interfacing with Various Logic Families
FIGURE 24. Pulsed Reference Operation

(a) $I_{\text {REF }} \geq$ peak negative swing of IIN

(b) $+V_{\text {REF }}$ must be above peak positive swing of $V_{\text {IN }}$

FIGURE 25. Accommodating Bipolar References

FIGURE 26. Settling Time Measurement

Typical Applications (Continued)

 accuracy, an LM361 comparator replaces the LM319 and the reference current is doubled by reducing R1, R2 and R3 to $2.5 \mathrm{k} \Omega$ and R 4 to $2 \mathrm{M} \Omega$.
FIGURE 27. A Complete 2μ s Conversion Time, 8-Bit A/D Converter

DAC0808, DAC0807, DAC0806 8-Bit D/A Converters

General Description

The DAC0808 series is an 8 -bit monolithic digital-toanalog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with $\pm 5 \mathrm{~V}$ supplies. No reference current (IREF) trimming is required for most applications since the full scale output current is typically ± 1 LSB of 255 IREF/ 256. Relative accuracies of better than $\pm 0.19 \%$ assure 8 -bit monotonicity and linearity while zero level output current of less than $4 \mu \mathrm{~A}$ provides 8 -bit zero accuracy for $I_{\text {REF }} \geq 2 \mathrm{~mA}$. The power supply currents of the DAC0808 series are independent of bit codes, and exhibits essentially constant device characteristics over the entire supply voltage range.

The DAC0808 will interface directly with popular TTL, DTL or CMOS logic levels, and is a direct replacement for the MC1508/MC1408. For higher speed applications, see DAC0800 data sheet.

Features

- Relative accuracy: $\pm 0.19 \%$ error maximum (DAC0808)
- Full scale current match: ± 1 LSB typ
- 7 and 6 -bit accuracy available (DAC0807, DAC0806)
- Fast settling time: 150 ns typ
- Noninverting digital inputs are TTL and CMOS compatible
- High speed multiplying input slew rate: $8 \mathrm{~mA} / \mu \mathrm{s}$
- Power supply voltage range: $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low power consumption: $33 \mathrm{~mW} @ \pm 5 \mathrm{~V}$

Block and Connection Diagrams

Typical Application

Ordering Information

FIGURE 1. +10V Output Digital to Analog Converter

ACCURACY	OPERATING TEMPERATURE RANGE	ORDER NUMBERS*					
		D PACKAGE (D16C)		JPACKAGE (J16A)		N PACKAGE (N16A)	
8-bit	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq+125^{\circ} \mathrm{C}$	DAC0808LD	MC1508L8				
8 -bit	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$			DAC0808LCJ	MC1408L8	DAC0808LCN	MC1408P8
7-bit	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$			DAC0807LCJ	MC1408L7	DAC0807LCN	MC1408P7
6-bit	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$			DAC0806LCJ	MC1408L6	DAC0806LCN	MC1408P6

[^41]
Absolute Maximum Ratings

Power Supply Voltage	
V_{CC}	$+18 \mathrm{~V}_{\text {DC }}$
$V_{\text {EE }}$	-18 V DC
Digital Input Voltage, V5-V12	$-10 \mathrm{~V}_{\mathrm{DC}}$ to $+18 \mathrm{~V}_{\mathrm{DC}}$
Applied Output Voltage, V_{O}	$-11 V_{D C}$ to $+18 V_{D C}$
Reference Current, 114	5 mA
Reference Amplifier Inputs, V14, V15	V_{cc},

Electrical Characteristics

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 . \mathrm{V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}} / \mathrm{R} 14=2 \mathrm{~mA}, \mathrm{DAC0808:} \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{DAC} 0808 \mathrm{C}, \mathrm{DAC0807C}$, DAC0806C, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, and all digital inputs at high logic level unless otherwise noted.)

Note 1: All current switches are tested to guarantee at least 50% of rated current.
Note 2: All bits switched.
Note 3: Range control is not required.

Typical Performance Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

[^42]

FIGURE 2. Equivalent Circuit of the DAC0808 Series

Test Circuits

V_{1} and I_{1} apply to inputs $A 1$-A8.
The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.
$I_{0}=K\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right)$
where $K \cong \frac{V_{\text {REF }}}{R 14}$
and $A_{N}=" 1 "$ if A_{N} is at high level $A_{N}=$ " 0 " if A_{N} is at low level

FIGURE 3. Notation Definitions Test Circuit

FIGURE 4. Relative Accuracy Test Circuit

Test Circuits (Continued)

FIGURE 6. Reference Current Slew Rate Measurement

FIGURE 7. Positive VREF

FIGURE 8. Negative $V_{\text {REF }}$

FIGURE 9. Programmable Gain Amplifier or Digital Attenuator Circuit

Application Hints
REFERENCE AMPLIFIER DRIVE AND COMPENSATION

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, l 14 , must always flow into pin 14, regardless of the set-up method or reference voltage polarity.

Connections for a positive voltage are shown in Figure 7. The reference voltage source supplies the full current
114. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of $1,2.5$ and $5 \mathrm{k} \Omega$, minimum capacitor values are 15,37 and 75 pF . The capacitor may be tied to either V_{EE} or ground, but using V_{EE} increases negative supply rejection.

Application Hints (Continued)

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to VEE on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 4 V above the V_{EE} supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a DC reference voltage is used, capacitive bypass to ground is recommended. The 5 V logic supply is not recommended as a reference voltage. If a well regulated 5 V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to 5 V through another resistor and bypassing the junction of the 2 resistors with $0.1 \mu \mathrm{~F}$ to ground. For reference voltages greater than 5 V , a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

OUTPUT VOLTAGE RANGE

The voltage on pin 4 is restricted to a range of -0.6 to 0.5 V when $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$ due to the current switching methods employed in the DAC0808.

The negative output voltage compliance of the DAC0808 is extended to -5 V where the negative supply voltage is more negative than -10 V . Using a full-scale current of 1.992 mA and load resistor of $2.5 \mathrm{k} \Omega$ between pin 4 and ground will yield a voltage output of 256 levels' between 0 and -4.980 V . Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_{L} up to 500Ω do not significantly affect performance, but a $2.5 \mathrm{k} \Omega$ load increases worst-case settling time to $1.2 \mu \mathrm{~s}$ (when all bits are switched ON). Refer to the subsequent text section on Settling Time for more details on output loading.

OUTPUT CURRENT RANGE

The output current maximum rating of 4.2 mA may be used only for negative supply voltages more negative than -7 V , due to the increased voltage drop across the resistors in the reference current amplifier.

ACCURACY

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full-scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full-scale current. The relative accuracy of the DAC0808 is essentially constant with temperature due to the excellent temperature tracking
of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the DAC0808 has a very low full-scale current drift with temperature.

The DAC0808 series is guaranteed accurate to within $\pm 1 / 2$ LSB at a full-scale output current of 1.992 mA . This corresponds to a reference amplifier output current drive to the ladder network of 2 mA , with the loss of 1 LSB ($8 \mu \mathrm{~A}$) which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA , allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12 -bit converter is calibrated for a full-scale output current of 1.992 mA . This is an optional step since the DAC0808 accuracy is essentially the same between 1.5 and 2.5 mA . Then the DAC0808 circuits' full-scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16 -bit accuracy D-to-A converter. 16 -bit accuracy implies a total error of $\pm 1 / 2$ of one part in 65,536 , or $\pm 0.00076 \%$, which is much more accurate than the $\pm 0.019 \%$ specification provided by the DAC0808.

MULTIPLYING ACCURACY

The DAC0808 may be used in the multiplying mode with 8 -bit accuracy when the reference current is varied over a range of $256: 1$. If the reference current in the multiplying mode ranges from $16 \mu \mathrm{~A}$ to 4 mA , the additional error contributions are less than $1.6 \mu \mathrm{~A}$. This is well within 8 -bit accuracy when referred to full-scale.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the DAC0808 is monotonic for all values of reference current above 0.5 mA . The recommended range for operation with a DC reference current is 0.5 to 4 mA .

SETTLING TIME

The worst-case switching condition occurs when all bits are switched ON, which corresponds to a low-to-high transition for all bits. This time is typically 150 ns for settling to within $\pm 1 / 2$ LSB, for 8 -bit accuracy, and 100 ns to $1 / 2$ LSB for 7 and 6 -bit accuracy. The turn OFF is typically under 100 ns . These times apply when $\mathrm{R}_{\mathrm{L}} \leq 500 \Omega$ and $\mathrm{C}_{\mathrm{O}} \leq 25 \mathrm{pF}$.

Extra care must be taken in board layout since this is usually the dominant factor in satisfactoy test results when measuring settling time. Short leads, $100 \mu \mathrm{~F}$ supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

General Description

The DAC0830 is an advanced CMOS/Si-Cr 8-bit multiplying DAC designed to interface directly with the 8080, 8048, 8085, Z-80, and other popular microprocessors. A deposited silicon-chromium R-2R resistor ladder network divides the reference current and provides the circuit with excellent temperature tracking characteristics (0.05% of Full Scale Range maximum linearity error over temperature). The circuit uses CMOS current switches and control logic to achieve low power consumption and low output leakage current errors. Special circuitry provides TTL logic input voltage level compatibility.

Double buffering allows these DACs to output a voltage corresponding to one digital word while holding the next digital word. This permits the simultaneous updating of any number of DACs.

The DAC0830 series are the 8 -bit members of a family of microprocessor-compatible DAC's (MICRO-DAC's ${ }^{\text {TM }}$). For applications demanding higher resolution, the DAC1000 series (10-bits) and the DAC1208 and DAC1230 (12-bits) are available alternatives.

Features

- Double-buffered, single-buffered or flow-through digital data inputs
- Easy interchange and pin-compatible with 12-bit DAC1230 series
- Direct interface to all popular microprocessors
- Linearity specified with zero and full scale adjust only-NOT BEST STRAIGHT LINE FIT.
- Works with $\pm 10 \mathrm{~V}$ reference-full 4 -quadrant multiplication
- Can be used in the voltage switching mode
- Logic inputs which meet TTL voltage level specs (1.4V logic threshold)
- Operates "STAND ALONE" (without $\mu \mathrm{P}$) if desired

Key Specifications

- Current settling time	$1 \mu \mathrm{~s}$
Resolution	8 -bits
- Linearity	8,9, or 10 bits
\quad (guaranteed over temp.)	
Gain Tempco	$0.0002 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
Low power dissipation	20 mW
- Single power supply	5 to $15 \mathrm{~V}_{\mathrm{DC}}$

Typical Application

Pin Configuration top View

Absolute Maximum Ratings (Notes 1 and 2)
Supply Voltage ($V_{C C}$)
Voltage at any digital input
Voltage at $\mathrm{V}_{\text {REF }}$ input
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package dissipation at $T_{A}=25^{\circ} \mathrm{C}$ (Note 3) $\quad 500 \mathrm{~mW}$
DC voltage applied to IOUT1 or IOUT2 $\quad-100 \mathrm{mV}$ to V_{CC} (Note 4)
Lead temperature (soldering, 10 seconds) $\quad 300^{\circ} \mathrm{C}$

Operating Ratings

Temperature Range
Part numbers with 'LCN' suffix
Part numbers with 'LCD' suffix
Part numbers with 'LD' Suffix
Voltage at any digital input
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$V_{c c}$ TO GND

General Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted

General Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted

Parameter		Conditions	See Note	$\begin{gathered} V_{C C}=12 V_{D C} \pm 5 \% \\ \text { to } 15 V_{D C} \pm 5 \% \end{gathered}$			$V_{C C}=5 V_{\text {DC }} \pm 5 \%$			Units
				Min.	Typ.	Max.	Min. 1	Typ.	Max.	
Output Leakage -Current		$\mathrm{T}_{\text {MIN }} \leqslant \mathrm{T}_{\text {A }} \leqslant \mathrm{T}_{\text {MAX }}$	6							
	IOUT1	All data inputs latched low				100			100	nA
	lout2	All data inputs latched high				100			100	nA
Digital Input Voltages		$T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$. Low Level	6							
		LD suffix				0.8			0.6	$V_{D C}$
		Parts with LCD or LCN suffix				0.8			0.8	$V_{D C}$
		High Level-All Parts		2.0			2.0			$V_{D C}$
Digital Input Currents		$\begin{aligned} & T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }} \\ & \text { Digital inputs }<0.8 \mathrm{~V} \\ & \text { Digital inputs }>2.0 \mathrm{~V} \end{aligned}$	6		$\begin{gathered} -50 \\ 0.1 \end{gathered}$	$\begin{aligned} & -200 \\ & +10 \end{aligned}$		$\begin{gathered} -50 \\ 0.1 \end{gathered}$	$\begin{aligned} & -200 \\ & +10 \end{aligned}$	$\mu A_{D C}$ $\mu A_{D C}$
Current Settling Time	t_{s}	$\mathrm{V}_{I L}=0 \mathrm{~V}, \mathrm{~V}_{1 H}=5 \mathrm{~V}$			1.0			1.0		$\mu \mathrm{s}$
Write and XFER Pulse Width	t_{W}	$\begin{aligned} & V_{I L}=0 \mathrm{~V}, \mathrm{~V}_{1 H}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	8	320	60		320	250		ns
		$\mathrm{T}_{\text {MIN }} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \mathrm{T}_{\text {MAX }}$	10	320	100		500	350		ns
Data Set Up Time	$t_{\text {DS }}$	$\begin{gathered} V_{I L}=0 \mathrm{~V}, V_{I H}=5 \mathrm{~V}, \\ T_{A}=25^{\circ} \mathrm{C} \end{gathered}$	10	320	60		320	250		ns
		$T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$		320	100		500	350		ns
Data Hold Time	$t_{\text {DH }}$	$\begin{aligned} & V_{1 L}=0 \mathrm{~V}, V_{1 H}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	- 90	50		300	200		ns
		- $\mathrm{T}_{\text {MIN }} \leqslant \mathrm{T}_{\text {A }} \leqslant \mathrm{T}_{\text {MAX }}$		90	60		350	260		ns
Control Set Up Time	t_{CS}	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~L}}=5 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	10	320	60		320	250		ns
		$T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$		320	100		500	350		ns
Control Hold Time	$t_{\text {CH }}$	$\begin{aligned} & V_{I L}=0 \mathrm{~V}, V_{I H}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }} \end{aligned}$	10	10 10			10 10			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. These specifications are not meant to imply that the devices should be operated at these "Absolute Maximum" limits.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: This 500 mW specification applies for all packages. The low intrinsic power dissipation of this part (and the fact that there is no way to significantly modify the power dissipation) removes concern for heat sinking.
Note 4: For current switching applications, both IOUT1 and IOUT2 must go to ground or the "Virtual Ground" of an operational amplifier. The linearity error is degraded by approximately $V_{O S} \div V_{R E F}$. For example, if $V_{R E F}=10 \mathrm{~V}$ then a 1 mV offset, $V_{O S}$, on $l_{\text {OUT1 }}$ or $l_{O U T 2}$ will introduce an additional 0.01% linearity error.
Note 5: Guaranteed at $V_{\text {REF }}= \pm 10 V_{D C}$ and $V_{R E F}= \pm 1 V_{D C}$.
Note 6: $T_{M I N}=0^{\circ} \mathrm{C}$ and $T_{M A X}=70^{\circ} \mathrm{C}$ for "LCN" suffix parts.
$T_{\text {MIN }}=-40^{\circ} \mathrm{C}$ and $T_{\text {MAX }}=85^{\circ} \mathrm{C}$ for "LCD" suffix parts.
$T_{\text {MIN }}=-55^{\circ} \mathrm{C}$ and $T_{\text {MAX }}=125^{\circ} \mathrm{C}$ for "LD" suffix parts.
Note 7: The unit "FSR" stands for "Full Scale Range." "Linearity Error" and "Power Supply Rejection" specs are based on this unit to eliminate dependence on a particular VREF value and to indicate the true performance of the part. The "Linearity Error" specification of the DAC0830 is " 0.05% of FSR (MAX)." This guarantees that after performing a zero and full scale adjustment (See Sections 2.5 and 2.6), the plot of the 256 analog voltage outputs will each be within $0.05 \% \times V_{\text {REF }}$ of a straight line which passes through zero and full scale.
Note 8: This specification implies that all parts are guaranteed to operate with a write pulse or transfer pulse width (tw) of 320 ns . A typical part will operate with t_{W} of only 100 ns . The entire write pulse must occur within the valid data interval for the specified $t_{W}, t_{D S}$, t_{DH}, and t_{S} to apply.
Note 9: To achieve this low feedthrough in the D package, the user must ground the metal lid. If the lid is left floating, the feedthrough is typically 6 mV .
Note 10: Guaranteed by design but not tested.
Note 11: A 100 nA leakage current with $\mathrm{R}_{\mathrm{fb}}=20 \mathrm{k}$ and $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(100 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 / 10 \mathrm{which}$ is 0.02% of FS.

Switching Waveforms:

Definition of Package Pinouts

Control Signals (All control signals level actuated)

$\overline{C S}$: Chip Select (active low). The $\overline{\mathrm{CS}}$ in combination with ILE will enable WR_{1}.
ILE: Input Latch Enable (active high). The ILE in combination with CS enables WR_{1}.
$\overline{W_{1}}$: Write 1. The active low $\overline{W R}_{1}$ is used to load the digital input data bits (DI) into the input latch. The data in the input latch is latched when WR_{1} is high. To update the input latch - $\overline{\mathrm{CS}}$ and WR_{1} must be low while ILE is high.
$\overline{W_{2}}$: Write 2 (active low). This signal, in combination with XFER, causes the 8 -bit data which is available in the input latch to transfer to the DAC register.
$\overline{\mathrm{XFER}}$: Transfer control signal (active low).The $\overline{\mathrm{XFER}}$ will enable WR $_{2}$.

Other Pin Functions

$D I_{0}-D I_{7}$: Digital Inputs. $D I_{0}$ is the least significant bit (LSB) and DI_{7} is the most significant bit (MSB).

Iout1: DAC Current Output 1. Iout1 iṣ a maximum for a digital code of all 1's in the DAC register, and is zero for all 0's in DAC register.

Iout2: DAC Current Output 2. Iout2 is a constant minus lout 1 , or $\mathrm{l}_{\text {OUT } 1}+\mathrm{l}_{\text {OUT } 2}=$ constant (l full scale for a fixed reference voltage).
\mathbf{R}_{fb} : Feedback Resistor. The feedback resistor is provided on the IC chip for use as the shunt feed-. back resistor for the external op amp which is used to provide an output voltage for the DAC. This on-chip resistor should always be used (not an external resistor) since it matches the resistors which are used in the on-chip R-2R ladder and tracks these resistors over temperature.
$\mathbf{V}_{\text {REF }}$: Reference Voltage Input. This input connects an external precision voltage source to the internal R-2R ladder. V REF can be selected over the range of +10 to -10 V . This is also the analog voltage input for a 4 -quadrant multiplying DAC application.
\mathbf{V}_{cc} : Digital Supply Voltage. This is the power supply pin for the part. V_{CC} can be from +5 to $+15 \mathrm{~V}_{\mathrm{DC}}$. Operation is optimum for $+15 \mathrm{~V}_{\mathrm{DC}}$.
AGND: Analog Ground. This is the ground for the analog circuitry. This pin must always be connected to the digital ground potential.

DGND: Digital Ground. This is the ground for the digital logic.

a) End point test after zero and fs adj.

b) Best straight line

c) Shifting is adj. to pass best straight line test

Definition of Terms

Resolution: Resolution is directly related to the number of switches or bits within the DAC. For example, the DAC0830 has 2^{8} or 256 steps and therefore has 8 -bit resolution.

Linearity Error: Linearity Error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.

National's linearity "end point test" (a) and the "best straight line" test (b,c) used by other suppliers are illustrated above. The "end point test" greatly simplifies the adjustment procedure by eliminating the need for multiple iterations of checking the linearity and then adjusting full scale until the linearity is met. The "end point test" guarantees that linearity is met after a single full scale adjust. (One adjustment vs. multiple iterations of the adjustment.) The "end point test" uses a standard zero and F.S. adjustment procedure and is a much more stringent test for DAC linearity.

Settling Time: Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value. Full-scale settling time requires a zero to full-scale or full-scale to zero output change.
Full-Scale Error: Full scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC0830 series, full-scale is $\mathrm{V}_{\text {REF }}-1$ LSB. For $V_{\text {REF }}=10 \mathrm{~V}$ and unipolar operation, $V_{\text {FULL. }}$ SCALE $=10.0000 \mathrm{~V}-39 \mathrm{mV}=9.961 \mathrm{~V}$. Full-scale error is adjustable to zero.
Differential Nonlinearity: The difference between any two consecutive codes in the transfer curve from the theoretical 1LSB is differential nonlinearity.
Monotonic: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. An 8 -bit DAC which is monotonic to 8 bits simply means that increasing digital input codes will produce an increasing analog output.

Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output.

Figure 1. DAC0830 Functional Diagram

DAC0830 Series Application Hints

These DAC's are the industry's first microprocessor compatible, double-buffered 8 -bit multiplying D to A converters. Double-buffering allows the utmost application flexibility from a digital control point of view. This 20-pin device is also pin for pin compatible (with one exception) with the DAC1230, a 12-bit MICRO-DAC ${ }^{\text {TM }}$. In the event that a system's analog output resolution and accuracy must be upgraded, substituting the DAC1230 can be easily accomplished. By tying address bit A_{0} to the ILE pin, a two-byte $\mu \mathrm{P}$ write instruction (double precision) which automatically increments the address for the second byte write (starting with $A_{0}=" 1$ ") can be used. This allows either an 8 -bit or the 12 -bit part to be used with no hardware or software changes. For the simplest 8 -bit application, this pin should be tied to V_{Cc} (also see other uses in section 1.1).

Analog signal control versatility is provided by a precision R-2R ladder network which allows full 4-quadrant multiplication of a wide range bipolar reference voltage by an applied digital word.

1.0 Digital Considerations

A most unique characteristic of these DAC's is that the 8 -bit digital input byte is double-buffered. This means that the data must transfer through two independently controlled 8 -bit latching registers before being applied to the R-2R ladder network to change the analog output. The addition of a second register allows two useful control features. First, any DAC in a system can simultaneously hold the current DAC data in one register (DAC register) and the next data word in the second register (input register) to allow fast updating of the DAC output on demand. Second, and probably more important, double-
buffering allows any number of DAC's in a system to be updated to their new analog output levels simultaneously via a common strobe signal.

The timing requirements and logic level convention of the register control signals have been designed to minimize or eliminate external interfacing logic when applied to most popular microprocessors and development systems. It is easy to think of these converters as 8 -bit "write only" memory locations that provide an analog output quantity. All inputs to these DAC's meet TTL voltage level specs and can also be driven directly with high voltage CMOS logic in non-microprocessor based systems. To prevent damage to the chip from static discharge, all unused digital inputs should be tied to V_{CC} or ground. If any of the digital inputs are inadvertantly left floating, the DAC interprets the pin as a logic " 1 ".

1.1 Double-Buffered Operation

Updating the analog output of these DAC's in a doublebuffered manner is basically a two step or double write operation. In a microprocessor system two unique system addresses must be decoded, one for the input latch controlled by the $\overline{C S}$ pin and a second for the DAC latch which is controlled by the XFER line. If more than one DAC is being driven, Figure 2, the $\overline{C S}$ line of each DAC would typically be decoded individually, but all of the converters could share a common XFER address to allow simultaneous updating of any number of DAC's. The timing for this operation is shown, Figure 3.
It is important to note that the analog outputs that will change after a simultaneous transfer are those from the DAC's whose input register had been modified prior to the XFER command.

Figure 2. Controlling Multiple DAC's

Figure 3.

The ILE pin is an active high chip select which can be decoded from the address bus as a qualifier for the normal $\overline{\mathrm{CS}}$ signal generated during a write operation. This can be used to provide a higher degree of decoding unique control signals for a particular DAC, and thereby create a more efficient addressing scheme.
Another useful application of the ILE pin of each DAC in a multiple DAC system is to tie these inputs together and use this as a control line that can effectively "freeze" the outputs of all the DAC's at their present value. Pulling this line low latches the input register and prevents new data from being written to the DAC. This can be particularly useful in multiprocessing systems to allow a pro-
cessor other than the one controlling the DAC's to take over control of the data bus and control lines. If this second system were to use the same addresses as those decoded for DAC control (but for a different purpose) the ILE function would prevent the DAC's from being erroneously altered.
In a "Stand-Alone" system the control signals are generated by discrete logic. In this case double-buffering can be controlled by simply taking CS and XFER to a logic " 0 ", ILE to a logic " 1 " and pulling $\overline{W_{1}}$ low to load data to the input latch. Pulling $\overline{\mathrm{WR}_{2}}$ low will then update the analog output. A logic " 1 " on either of these lines will prevent the changing of the analog output.

ILE = LOGIC " 1 "; WR2 and XFER GROUNDED

Figure 4.

1.2 Single-Buffered Operation

In a microprocessor controlled system where maximum data throughput to the DAC is of primary concern, or when only one DAC of several needs to be updated at a time, a single-buffered configuration can be used. One of the two internal registers allows the data to flow through and the other register will serve as the data latch.

Digital signal feedthrough (see Section 1.5) is minimized if the input register is used as the data latch. Timing for this mode is shown in figure 4.

Single-buffering in a "stand-alone" system is achieved by strobing $\overline{W R_{1}}$ low to update the DAC with $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}{ }_{2}$ and $\overline{\mathrm{XFER}}$ grounded and ILE tied high.

1.3 Flow-Through Operation

Though primarily designed to provide microprocessor interface compatibility, the MICRO-DAC's can easily be configured to allow the analog output to continuously reflect the state of an applied digital input. This is most useful in applications where the DAC is used in a continuous feedback control loop and is driven by a binary up-down counter, or in function generation circuits where a ROM is continuosly providing DAC data.
Simply grounding $\overline{C S}, \overline{W R_{1}}, \overline{W R_{2}}$, and $\overline{X F E R}$ and tying ILE high allows both internal registers to follow the applied digital inputs (flow-through) and directly affect the DAC analog output.

1.4 Control Signal Timing

When interfacing these MICRO-DAC's to any microprocessor, there are two important time relationships that must be considered to insure proper operation. The first is the minimum $\overline{W R}$ strobe pulse width which is specified as 500 ns for all valid operating conditions of supply voltage and ambient temperature, but typically a pulse width of only 100 ns is adequate if $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \mathrm{~V}_{\mathrm{D}}$. A second consideration is that the guaranteed minimum data hold
time of 90 ns should be met or erroneous data can be latched. This hold time is defined as the length of time data must be held valid on the digital inputs after a qualified (via $\overline{C S}) \overline{W R}$ strobe makes a low to high transition to latch the applied data.

If the controlling device or system does not inherently meet these timing specs the DAC can be treated as a slow memory or peripheral and utilize a technique to extend the write strobe. A simple extension of the write time, by adding a wait state, can simultaneously hold the write strobe active and data valid on the bus to satisfy the minimum $\overline{W R}$ pulsewidth. If this does not provide a sufficient data hold time at the end of the write cycle, a negative edge triggered one-shot can be included between the system write strobe and the $\overline{W R}$ pin of the DAC. This is illustrated in Figure 5 for an exemplary system which provides a $250 \mathrm{~ns} \overline{\mathrm{WR}}$ strobe time with a data hold time of only 10 ns .
The proper data set-up time prior to the latching edge (LO to HI transition) of the $\overline{\mathrm{WR}}$ strobe, is insured if the $\overline{W R}$ pulsewidth is within spec and the data is valid on the bus for the duration of the DAC $\overline{W R}$ strobe.

1.5 Digital Signal Feedthrough

When data is latched in the internal registers, but the digital inputs are changing state, a narrow spike of current may flow out of the current output terminals. This spike is caused by the rapid switching of internal logic gates that are responding to the input changes.
There are several recommendations to minimize this effect. When latching data in the DAC, always use the input register as the latch. Second, reducing the $V_{C C}$ supply for the DAC from +15 volts to the +5 V offers a factor of 5 improvement in the magnitude of the feedthrough, but at the expense of internal logic switching speed. Finally, increasing C_{C} (Figure 8) to a value consistent with the actual circuit bandwidth requirements can provide a substantial damping effect on any output spikes.

Figure 5. Accommodating a High Speed System

2.0 Analog Considerations

The fundamental purpose of any D to A converter is to provide an accurate analog output quantity which is representative of the applied digital word. In the case of the DAC0830, the output, $\mathrm{I}_{\text {OUT1 }}$, is a current directly proportional to the product of the applied reference voltage and the digital input word. For application versatility, a second output, IOUT2, is provided as a current directly proportional to the complement of the digital input. Basically:
$\mathrm{I}_{\mathrm{OUT} 1}=\frac{\mathrm{V}_{\text {REF }}}{15 \mathrm{k} \Omega} \times \frac{\text { Digital Input }}{256} ;$
$\mathrm{I}_{\text {OUT2 }}=\frac{\mathrm{V}_{\text {REF }}}{15 \mathrm{k} \Omega} \times \frac{255-\text { Digital Input }}{256}$
where the digital input is the decimal (base 10) equivalent of the applied 8 -bit binary word (0 to 255), $\mathrm{V}_{\text {REF }}$ is the voltage at pin 8 and $15 \mathrm{k} \Omega$ is the nominal value of the internal resistance, R, of the R-2R ladder network (discussed in Section 2.1).
Several factors external to the DAC itself must be considered to maintain analog accuracy and are covered in subsequent sections.

2.1 The Current Switching R-2R Ladder

The analog circuitry, Figure 6, consists of a silicon-chromium (SiCr or Si -chrome) thin film R-2R ladder which is deposited on the surface oxide of the monolithic chip. As a result, there are no parasitic diode problems with the ladder (as there may be with diffused resistors) so the reference voltage, $\mathrm{V}_{\text {REF }}$, can range -10 V to +10 V even if $V_{C C}$ for the device is $5 V_{D C}$.
The digital input code to the DAC simply controls the position of the SPDT current switches and steers the available ladder current to either Iout1 or lout2 as determined by the logic input level (" 1 " or " 0 ") respectively, as
shown in Figure 6. The MOS switches operate in the current mode with a small voltage drop across them and can therefore switch currents of either polarity. This is the basis for the 4 -quadrant muliplying feature of this DAC.

2.2 Basic Unipolar Output Voltage

To maintain linearity of output current with changes in the applied digital code, it is important that the voltages at both of the current output pins be as near ground potential ($0 \mathrm{~V}_{\mathrm{DC}}$) as possible. With $\mathrm{V}_{\mathrm{REF}}=+10 \mathrm{~V}$ every millivolt appearing at either lout1 or lout2 will cause a 0.01% linearity error. In most applications this output current is converted to a voltage by using an op amp ás shown in Figure 7.

The inverting input of the op amp is a "virtual ground" created by the feedback from its output through the internal $15 \mathrm{k} \Omega$ resistor, R_{fb}. All of the output current (determined by the digital input and the reference voltage) will flow through R_{fb} to the output of the amplifier. Twoquadrant operation can be obtained by reversing the polarity of $\mathrm{V}_{\text {REF }}$ thus causing lout1 to flow into the DAC and be sourced from the output of the amplifier. The output voltage, in either case, is always equal to Iout1 $\times \mathrm{R}_{\mathrm{fb}}$ and is the opposite polarity of the reference voltage.

The reference can be either a stable DC voltage souce or an AC signal anywhere in the range from -10 V to +10 V . The DAC can be thought of as a digitally controlled attenuator: the output voltage is always less than or equal to the applied reference voltage. The $\mathrm{V}_{\text {REF }}$ terminal of the device presents a nominal impedance of $15 \mathrm{k} \Omega$ to ground to external circuitry.
Always use the internal $R_{f b}$ resistor to create an output voltage since this resistor matches (and tracks with temperature) the value of the resistors used to generate the output current (louti).

Figure 6.

Figure 7.

2.3 Op Amp Considerations

The op amp used in Figure 7 should have offset voltage nulling capability (See Section 2.5).

The selected op amp should have as low a value of input bias current as possible. The product of the bias current times the feedback resistance creates an output voltage error which can be significant in low reference voltage applications. BI-FET ${ }^{\text {TM* }}$ op amps are highly recommended for use with these DACs because of their very low input current.
Transient response and settling time of the op amp are important in fast data throughput applications. The largest stability problem is the feedback pole created by the feedback resistance, R_{fb}, and the output capacitance of the DAC. This appears from the op amp output to the (-) input and includes the stray capacitance at this node. Addition of a lead capacitance, C_{C} in Figure 8, greatly reduces overshoot and ringing at the output for a step change in DAC output current.
Finally, the output voltage swing of the amplifier must be greater than $\mathrm{V}_{\text {REF }}$ to allow reaching the full scale output voltage. Depending on the loading on the output of the amplifier and the available op amp supply voltages (only ± 12 volts in many development systems), a reference voltage less than 10 volts may be necessary to obtain the full analog output voltage range.
*BI-FET is a trademark of National Semiconductor Corporation.

2.4 Bipolar Output Voltage with a Fixed Reference

The addition of a second op amp to the previous circuitry can be used to generate a bipolar output voltage from a fixed reference voltage. This, in effect, gives sign significance to the MSB of the digital input word and allows two-quadrant multiplication of the reference voltage.

The polarity of the reference can also be reversed to realize full 4-quadrant multiplication: $\pm \mathrm{V}_{\text {REF }} \times \pm$ Digital Code $=\mp V_{\text {OUT }}$. This circuit is shown in Figure 9.
This configuration features several improvements over existing circuits for bipolar outputs with other multiplying DAC's. Only the offset voltage of amplifier 1 has to be nulled to preserve linearity of the DAC. The offset voltage error of the second op amp (although a constant output voltage error) has no effect on linearity. It should be nulled only if absolute output accuracy is required. Finally, the values of the resistors around the second amplifier do not have to match the internal DAC resistors, they need only to match and temperature track each other. A thin film 4-resistor network available from Beckman Instruments, Inc. (part no. 694-3-R10K-D) is ideally suited for this application. These resistors are matched to 0.1% and exhibit only $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ resistance tracking tempco. Two of the four available $10 \mathrm{k} \Omega$ resistors can be paralleled to form R in Figure 9 and the other two can be used independently as the resistances labeled 2R.

2.5 Zero Adjustment

For accurate conversions, the input offset voltage of the output amplifier must always be nulled. Amplifier offset errors create an overall degradation of DAC linearity.

The fundamental purpose of zeroing is to make the voltage appearing at the DAC outputs as near $O V_{D C}$ as possible. This is accomplished for the typical DAC - op amp connection (Figure 7) by shorting out R_{fb}, the amplifier feedback resistor, and adjusting the V_{OS} nulling potentiometer of the op amp until the output reads zero volts. This is done, of course, with an applied digital code of all zeros if lout1 is driving the op amp (all one's for $I_{\text {OUT2 }}$). The short around $R_{f b}$ is then removed and the converter is zero adjusted.

Figure 8.

Figure 9.

2.6 Full-Scale Adjustment

In the case where the matching of $R_{f b}$ to the R value of the R-2R ladder (typically $\pm 0.2 \%$) is insufficient for fullscale accuracy in a particular application, the $V_{\text {REF }}$ voltage can be adjusted or an external resistor and potentiometer can be added as shown in Figure 10 to provide a full-scale adjustment.
The temperature coefficients of the resistors used for this adjustment are an important concern. To prevent degradation of the gain error tempco by the external resistors, their temperature coefficients'ideally would have to match that of the internal DAC resistors, which is a highly impractical constraint. For the values shown in Figure 10, if the resistor and the potentiometer each had a temperature coefficient of $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum, the overall gain error tempco would be degraded a maximum of $0.0025 \% /{ }^{\circ} \mathrm{C}$ for an adjustment pot setting of less than 3% of $R_{f b}$.

2.7 Using the DAC0830 in a Voltage Switching Configuration

The R-2R ladder can also be operated as a voltage switching network. In this mode the ladder is used in an inverted manner from the standard current switching configuration. The reference voltage is connected to one
of the current output terminals (lout1 for true binary digital control, lout2 is for complementary binary) and the output voltage is taken from the normal $\mathrm{V}_{\text {REF }}$ pin. The converter output is now a voltage in the range from OV to $255 / 256 \mathrm{~V}_{\text {REF }}$ as a function of the applied digital code as shown in Figure 11.

Figure 10. Adding Full-Scale Adjustment

Figure 11. Voltage Mode Switching

This configuration offers several useful application advantages. Since the output is a voltage, an external op amp is not necessarily required but the output impedance of the DAC is fairly high (equal to the specified reference input resistance of 10 kQ to 20 kQ) so an op amp may be used for buffering purposes. Some of the advantages of this mode are illustrated in Figures 12, 13, 14 and 15.
There are two important things to keep in mind when using this DAC in the voltage switching mode. The applied reference voltage must be positive since there are internal parasitic diodes from ground to the lout1 and lout2 terminals which would turn on If the applied reference went negative. There is also a dependence of conversion linearity and gain error on the voltage difference

-Voltage switching mode eliminates output signal inversion and therefore a need for a negative power supply.

- Zero code output voltage is limited by the low level output saturation voltage of the op amp. The $2 \mathrm{k} \Omega$ pull-down resistor helps to reduce this voltage.
- Vos of the op amp has no effect on DAC linearity.
between V_{CC} and the voltage applied to the normal current output terminals. This is a result of the voltage drive requirements of the ladder switches. To insure that all 8 switches turn on sufficiently (so as not to add significant resistance to any leg of the ladder and thereby introduce additional linearity and gain errors) it is recommended that the applied reference voltage be kept less than $+5 \mathrm{~V}_{D C}$ and $\mathrm{V}_{C C}$ be at least 9 V more positive than $\mathrm{V}_{\text {REF }}$. These restrictions insure less than 0.1% linearity and gain error change. Figures 16, 17 and 18 characterize the effects of bringing $V_{\text {REF }}$ and $V_{C C}$ closer together as well as typical temperature performance of this voltage switching configuration.

- $V_{\text {OUT }}=2.5 \mathrm{~V}\left(\frac{\mathrm{D}}{128}-1\right)$
- Slewing and settling time for a full scale output change is $\approx 1.8 \mu \mathrm{~S}$

Figure 13. Obtaining a Blpolar Output from a Fixed Reference with a Single Op Amp

Figure 14. Blpolar Output with Increased Output Voltage Swing

- Only a single +15 V supply required
- Non-interactive full-scale and zero code output adjustments
- $\mathrm{V}_{\text {MAX }}$ and $\mathrm{V}_{\text {MIN }}$ must be $\leqslant+5 \mathrm{VDC}$ and $\geqslant 0 \mathrm{~V}$.
- Incremental Output Step $=\frac{1}{256}\left(\mathrm{~V}_{\text {MAX }}-\mathrm{V}_{\text {MIN }}\right)$.
- $V_{\text {OUT }}=\frac{D}{256}\left(V_{\text {MAX }}-V_{\text {MIN }}\right)+\frac{255}{256} V_{\text {MIN }}$

Figure 15. Single Supply DAC with Level Shift and SpanAdjustable Output

NOTE: For these curves, $\mathrm{V}_{\text {REF }}$ is the voltage applied to pin 11 (lout1) with pin 12 (lout2) grounded.

2.8 Miscellaneous Application Hints

These converters are CMOS products and reasonablé care should be exercised in handling them to prevent catastrophic failures due to static discharge.
Conversion accuracy is only as good as the applied reference voltage so providing a stable source over time and temperature changes is an important factor to consider.

A "good" ground is most desirable. A single point ground distribution technique for analog signals and supply returns keeps other devices in a system from affecting the output of the DAC's.
During power-up supply voltage sequencing, the -15 V (or -12 V) supply of the op amp may appear first. This will typically cause the output of the op amp to bias near the negative supply potential. No harm is done to the DAC, however, as the on-chip $15 \mathrm{k} \Omega$ feedback resisttor sufficiently limits the current flow from lout1 when this lead is internally clamped to one diode drop below ground.
Careful circuit construction with minimization of lead lengths around the analog circuitry, is a primary concern. Good high frequency supply decoupling will aid in preventing inadvertant noise from appearing on the analog output.

DAC Controlled Amplifier (Volume Control)

- $V_{\text {OUT }}=\frac{-V_{\text {IN }}(256)}{D}$
- When $\mathrm{D}=0$, the amplifier will go open loop and the output will saturate.
- Feedback impedance from the -input to the output varies from $15 \mathrm{k} \Omega$ to ∞ as the input code changes from full-scale to zero.

Overall noise reduction and reference stability is of particular concern when using the higher accuracy versions, the DAC0830 and DAC0831, or their advantages are wasted.

3.0 General Application Ideas

The connections for the control pins of the digital input registers are purposely omitted. Any of the control formats discussed in Section 1 of the accompanying text will work with any of the circuits shown. The method used depends on the overall system provisions and requirements.

The digital input code is referred to as D and represents the decimal equivalent value of the 8 -bit binary input, for example:
$\left.\begin{array}{cc}\hline \begin{array}{c}\text { Binary } \\ \text { Pin 13 } \\ \text { MSB }\end{array} & \begin{array}{c}\text { Int } \\ \text { Pin 7 } \\ \text { LSB }\end{array}\end{array} \begin{array}{c}\text { Decimal Equivalent }\end{array}\right]$

Capacitance Multiplier

- $\mathrm{C}_{\text {EQUIV }}=\mathrm{C}_{1}\left(1+\frac{256}{\mathrm{D}}\right)$
- Maximum voltage across the equivalent capacitance is
limited to $\frac{V_{\text {OMAX (op amp) }}}{1+\frac{256}{D}}$

[^43]

Varlable $\mathbf{f}_{\mathbf{O}}$, Varlable $\mathbf{Q}_{\mathbf{O}}$, Constant BW Bandpass Filter

- $f_{O}=\frac{\sqrt{\frac{K D}{256}}}{\frac{2 \pi R_{1} C}{C}} ; Q_{O}=\sqrt{\frac{K D}{256}} \frac{\left(2 R_{Q}+R_{1}\right)}{R_{Q}(K+1)} ; 3 d b B W=\frac{R_{Q}(K+1)}{2 \pi R_{1} C\left(2 R_{Q}+R_{1}\right)}$
where $C_{1}=C_{2}=C ; K=\frac{R_{6}}{R_{5}}$ and $R_{1}=R$ of $D A C=15 k$
- $H_{O}=1$ for $R_{I N}=R_{4}=R_{1}$
- Range of fo and Q is ≈ 16 to 1 for circuit shown. The range can be extended to 255 to 1 by replacing R_{1} with a second DAC0830 driven by the same digital input word.
- Maximum $f_{0} \times Q$ product should be $\leqslant 200 \mathrm{kHz}$.

DAC Controlled Function Generator

- DAC controls the frequency of sine, square, and triangle outputs.
- $f=\frac{D}{256(20 \mathrm{k}) \mathrm{C}}$ for $V_{O M A X}=V_{\text {OMIN }}$ of square wave output and $\mathrm{R}_{1}=3 \mathrm{R}_{2}$.
- 255 to 1 linear frequency range: oscillator stops with $D=0$
- Trim symmetry and wave-shape for minimum sine wave distortion.

Two Terminal Floating 4 to $\mathbf{2 0 m A}$ Current Loop Controller

- DAC0830 linearly controls the current flow from the input terminal to the output terminal to be $4 \mathrm{~mA}($ for $D=0$) to 19.94 mA (for $\mathrm{D}=255$).
- Circuit operates with a terminal voltage differential of 16 V to 55 V .
- P_{2} adjusts the magnitude of the output current and P_{1} adjusts the zero to full scale range of output current.
- Digital inputs can be supplied from a processor using opto isolators on each input or the DAC latches can flowthrough (connect control lines to pins 3 and 10 of the DAC) and the input data can be set by SPST toggle switches to ground (pins 3 and 10).

DAC Controlied Exponential Time Response

- Output responds exponentially to input changes and automatically stops when $V_{\text {OUT }}=V_{I N}$
- Output time constant is directly proportional to the DAC input code and capacitor C
- Input voltage must be positive (See section 2.7)

Temperature Range		$0^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Linearity Error	0.05% FSR	DAC0830LCN	DAC0830LCD	DAC0830LD
	0.10% FSR	DAC0831LCN	DAC0831LCD	DAC0831LD
	0.20% FSR	DAC0832LCN	DAC0832LCD	DAC0832LD
Package Outline		N20A	D20A	D20A

A to D, D to A

MICRO-DAC:'"' DAC1000/1/2 and DAC1006/7/7, μ P Compatible, Double-Buffered D to A Converters

General Description

The DAC1000/1/2 and DAC1006/7/8 are advanced CMOS/ $\mathrm{Si}-\mathrm{Cr} 10-$ - 9 - and 8 -bit accurate multiplying DACs which are designed to interface directly with the 8080, 8048, 8085, Z-80 and other popular microprocessors. These DACs appear as a memory location or an I/O port to the $\mu \mathrm{P}$ and no interfacing logic is needed.
These devices, combined with an external amplifier and voltage reference, can be used as standard D/A converters; and they are very attractive for multiplying applications (such as digitally controlled gain blocks) since their linearity error is essentially independant of the voltage reference. They become equally attractive in audio signal processing equipment as audio gain controls or as programmable attenuators which marry high quality audio signal processing to digitally based systems under microprocessor control.
All of these DACs are double buffered. They can load all 10 bits or two 8 -bit bytes and the data format can be either right justified or left justified. The analog section of these DACs is essentially the same as that of the DAC1020.

The DAC1000 series are the 10 -bit members of a family of microprocessor-compatible DAC's (MICRO-DAC's ${ }^{T M}$). For applications requiring other resolutions, the DAC0830 series (8 bits) and the DAC1208 and DAC1230 (12 bits) are avallable alternatives.

Part \#	Accuracy (bits)	Pin	Description
DAC1000	10	24	Has all logic features
DAC1001	9		20
DAC1002	8	For left. justified data	
DAC1006	10		
DAC1007	9	8	
DAC1008	8		

MICRO-DACTM is a trademark of National Semiconductor Corp.

Features

- Uses easy to adjust END POINT specs, NOT BEST STRAIGHT LINE FIT
- Low power consumption
- Direct interface to all popular microprocessors.
- Integrated thin film on CMOS structure
- Double-buffered, single-buffered or flow through digital data inputs.
- Loads two 8 -bit bytes or a single 10 -bit word.
- Logic inputs which meet $T^{2} \mathrm{~L}$ voltage level specs (1.4V logic threshold).
- Works with $\pm 10 \mathrm{~V}$ reference - full 4-quadrant multiplication.
- Operates STAND ALONE (without $\mu \mathrm{P}$) if desired.
- Available in $0.3^{\prime \prime}$ standard 20 -pin and 0.6 " 24 -pin package.
- Differential non-linearity selection available as special order.

Key Specifications

- Output Current Settling Time	500 ns
- Resolution	10 bits
- Linearity	10,9, and 8 bits
	(guaranteed over temp.)
- Gain Tempco	-0.0003% of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$
- Low Power Dissipation	20 mW
(including ladder)	
- Single Power Supply	5 to 15 V VC

Absolute Maximum Ratings (Notes 1 and 2)	
Supply Voltage (VCC)	$17 \mathrm{~V}_{D C}$
Voltage at any digital input	$V_{C C}$ to GND
Voltage at $V_{\text {REF }}$ input	$\pm 25 \mathrm{~V}$
Storage temperature range -6	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3	3) 500 mW
DC voltage applied to lout1 or lout2 (Note 4)	$-100 \mathrm{mV} \text { to }$
Lead temperature (soldering, 10 seconds)	ds) 300°

Operating Ratings

Temperature Range
$\begin{array}{lr}\text { Part numbers with 'LCN' suffix } & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \text { Part numbers with ' } \mathrm{CCD} \text { ' suffix } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { Part numbers with ' } \mathrm{LD} \text { ' Suffix } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { Voltage at any digital input } & V_{C C} \text { to } \mathrm{GND}\end{array}$

General Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{D C}$ unless otherwise noted

Parameter	Conditions	See Note	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}_{\mathrm{DC}} \pm 5 \% \\ & \text { to } 15 \mathrm{~V}_{\mathrm{DC}} \pm 5 \% \end{aligned}$			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}} \pm 5 \%$			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Resolution Linearity Error					10			10	bits
	Endpoint adjust only	4,7							
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\text {A }}<\mathrm{T}_{\text {MAX }}$	4,7							
	$-10 \mathrm{~V} \leqslant \mathrm{~V}_{\text {REF }} \leqslant+10 \mathrm{~V}$	5							
	DAC1000 and 1006				0.05			0.05	\% of FSR
	DAC1002 and 1008				0.2			0.1 0.2	\% of FSR
Differential Nonlinearity	Endpoint adjust only	4,7							
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\text {A }}<\mathrm{T}_{\text {MAX }}$	6							
	$-10 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{REF}} \leqslant+10 \mathrm{~V}$	5							
	DAC1000 and 1006				0.1			0.1	\% of FSR
	DAC1001 and 1007				0.2			0.2	\% of FSR
	DAC1002 and 1008				0.4			0.4	\% of FSR
Monotonicity	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\text {A }}<\mathrm{T}_{\text {MAX }}$	4,6							
	$-10 \mathrm{~V} \leqslant \mathrm{~V}_{\text {REF }} \leqslant+10 \mathrm{~V}$	5							
	DAC1000 and 1006		10			10			bits
	DAC1001 and 1007		9			. 9			bits
	DAC1002 and 1008		8			8			bits
Gain Error	Using internal R_{fb}								
	$-10 \mathrm{~V} \leqslant \mathrm{~V}_{\text {REF }} \leqslant+10 \mathrm{~V}$	5	-1.0	± 0.3	1.0	-1.0	± 0.3	1.0	\% of FS
Gain Error Tempco	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\text {A }}<\mathrm{T}_{\text {MAX }}$	6							
	Using internal R_{fb}	9		-0.0003	-0.001		-0.0006	-0.002	\% of FS/ ${ }^{\circ} \mathrm{C}$
Power Supply Rejection	All digital inputs latched high								
	$V_{C C}=14.5 \mathrm{~V} \text { to } 15.5 \mathrm{~V}$			0.003	0.008				\% FSRR/V
	11.5 V to 12.5 V			0.004	0.010				\% FSR/V
	4.75 V to 5.25 V						0.033	0.10	\%FSR/V
Reference Input Resistance			10	15	20	10	15	20	k Ω
Output Feedthrough Error	$\mathrm{V}_{\text {REF }}=20 \mathrm{~V}_{\text {P.P, }} \mathrm{f}=100 \mathrm{kHz}$								
	All data inputs								
	latched low								
	D Package			130			130		
	N Package			90			90		mV P-P
Output lout1 Capacitance lout2 lout1 lout2	All data inputs			60			60		pF
	latched low			250	,		250		pF
	All data inputs latched high			250 60			250 60		pF
Supply Current Drain									
	$T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$	6		0.5	2.0		0.5	2.0	mA
Output Leakage Current Iout1 Iout2	$T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$	6							
	All data inputs								
	latched low	10			200			200	nA
	All data inputs latched high				200			200	nA
Digital Input Voltages									
	$T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$	6							
	LD suffix				0.8			0.6	
	LCD or LCN suffix				0.8			0.8	$V_{D C}$
	High level (all parts)		2.0			2.0			$V_{D C}$

General Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted

Parameter	Conditions	See Note	$\begin{gathered} V_{C C}=12 V_{D C} \pm 5 \% \\ \text { to } 15 V_{D C} \pm 5 \% \end{gathered}$			$V_{C C}=5 V_{D C} \pm 5 \%$			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Digital Input Currents	$T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$ Digital inputs $<0.8 \mathrm{~V}$ Digital inputs $>2.0 \mathrm{~V}$	6		$\begin{array}{r} -40 \\ 1.0 \end{array}$	$\begin{gathered} -150 \\ +10 \end{gathered}$		$\begin{array}{r} -40 \\ 1.0 \end{array}$	$\begin{gathered} -150 \\ +10 \end{gathered}$	$\mu A_{D C}$ $\mu A_{D C}$
Current Settling t_{s} Time	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$			500			500		ns
Write and $\overline{\text { XFER }} \quad t_{w}$ Pulse Width	$\begin{gathered} V_{I L}=0 \mathrm{~V}, \mathrm{~V}_{1 H}=5 \mathrm{~V}, \\ T_{A}=25^{\circ} \mathrm{C} \\ T_{\text {MIN }} \leqslant T_{A} \leqslant T_{M A X} \end{gathered}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 150 \\ & 320 \end{aligned}$	60 100		$\begin{aligned} & 320 \\ & 500 \end{aligned}$	200		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Data Set Up Time $t_{\text {DS }}$	$\begin{aligned} & V_{I L}=O V, V_{I H}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{M I N} \leqslant T_{A} \leqslant T_{M A X} \end{aligned}$	9	$\begin{aligned} & 150 \\ & 320 \end{aligned}$	$\begin{gathered} 80 \\ 120 \end{gathered}$		$\begin{aligned} & 320 \\ & 500 \end{aligned}$	$\begin{aligned} & 170 \\ & 250 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Data Hold Time $t_{\text {DH }}$	$\begin{aligned} & V_{I L}=0 V, V_{1 H}=5 V \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \leqslant T_{A} \leqslant T_{M A X} \end{aligned}$	9	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	100		$\begin{aligned} & 320 \\ & 500 \end{aligned}$	$\begin{aligned} & 220 \\ & 320 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Control Set Up $t_{c s}$ Time	$\begin{gathered} V_{I L}=0 \mathrm{~V}, \mathrm{~V}_{1 L}=5 \mathrm{~V}, \\ T_{A}=25^{\circ} \mathrm{C} \\ T_{\text {MIN }} \leqslant T_{A} \leqslant T_{M A X} \end{gathered}$	9	$\begin{aligned} & 150 \\ & 320 \end{aligned}$	$\begin{gathered} 60 \\ 100 \end{gathered}$		$\begin{aligned} & 320 \\ & 500 \end{aligned}$	$\begin{aligned} & 180 \\ & 260 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Control Hold Time t_{CH}	$\begin{gathered} V_{I L}=0 \mathrm{~V}, \mathrm{~V}_{1 H}=5 \mathrm{~V}, \\ T_{A}=25^{\circ} \mathrm{C} \\ T_{\text {MIN }} \leqslant T_{A} \leqslant T_{M A X} \end{gathered}$	9	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. These specifications are not meant to imply that the devices should be operated at these "Absolute Maximum" limits.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: This 500 mW specification applies for all packages. The low intrinsic power dissipation of this part (and the fact that there is no way to significantly modify the power dissipation) removes concern for heat sinking.
Note 4: For current switching applications, both Iout1 and lout2 must go to ground or the "Virtual Ground" of an operational amplifier. The linearity error is degraded by approximately $\mathrm{V}_{\mathrm{OS}} \div \mathrm{V}_{\mathrm{REF}}$. For example, if $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ then a 1 mV offset, $\mathrm{V}_{\text {OS, on }}$ lout1 or lout2 will introduce an additional 0.01% linearity error.
Note 5: Guaranteed at $\mathrm{V}_{\mathrm{REF}}= \pm 10 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{V}_{\mathrm{REF}}= \pm 1 \mathrm{~V}_{\mathrm{DC}}$.
Note 6: $\mathrm{T}_{\text {MIN }}=0^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {MAX }}=70^{\circ} \mathrm{C}$ for " $L C N$ " suffix parts.
$T_{M I N}=-40^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {MAX }}=85^{\circ} \mathrm{C}$ for "LCD" suffix parts.
$\mathrm{T}_{\text {MIN }}=-55^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {MAX }}=125^{\circ} \mathrm{C}$ for " LD " suffix parts.
Note 7: The unit "FSR" stands for "Full Scale Range." "Linearity Error" and "Power Supply Rejection" specs are based on this unit to eliminate dependence on a particular $\mathrm{V}_{\mathrm{REF}}$ value and to indicate the true performance of the part. The "Linearity Error" specification of the DAC1000 is " 0.05% of FSR (MAX)." This guarantees that after performing a zero and full scale adjustment (See Sections 2.5 and 2.6), the plot of the 1024 analog voltage outputs will each be within $0.05 \% \times \mathrm{V}_{\text {REF }}$ of a straight line which passes through zero and full scale.
Note 8: This specification implies that all parts are guaranteed to operate with a write pulse or transfer pulse width (tw) of 320 ns . A typical part will operate with t_{W} of only 100 ns . The entire write pulse must occur within the valld data interval for the specifled $\mathrm{t}_{\mathrm{w}}, \mathrm{t}_{\mathrm{DS}}$, t_{DH}, and t_{S} to apply.
Note 9: Guaranteed by design but not tested.
Note 10: A 200 nA leakage current with $\mathrm{R}_{\mathrm{fb}}=20 \mathrm{k}$ and $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(200 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 \div 10$ which is 0.04% of FS .

Switching Waveforms

$\overline{\mathrm{CS}}, \mathrm{BYTE} 1 / \overline{\mathrm{BYTE}}$
$\overline{\text { W⿵ }}$

DATA BITS

IOUT1, IOUT2

Typical Performance Characteristics

Block and Connection Diagrams

DAC1000/1001/1002
(24-Pin Parts)

Block and Connection Diagrams (cont'd)

DAC1006/1007/1008 (20-Pin Parts)

TOP VIEW

DAC1000/1001/1002 - Simple Hookup for a "Quick Look"

Notes:

1. For $V_{R E F}=-10.240 V_{D C}$ the output voltage steps are approximately 10 mV each.
2. Operation is set up for flow through - no latching of digital input data.
3. Single point ground is strongly recommended.

DAC1006/1007/1008 - Simple Hookup for a "Quick Look"

Notes:

1. For $V_{R E F}=-10.240 V_{D C}$ the output voltage steps are approximately 10 mV each.
2. SW1 is a normally closed switch. While SW1 is closed, the DAC register is latched and new data can be loaded into the input latch via the 10 SW2 switches. When SW1 is momentarily opened the new data is transferred from the input latch to the DAC register and is latched when SW1 again closes.

1.0 Definition of Package Pinouts

1.1 Control Signals (All control signals are level actuated.)

C̄S: Chip Select - active low, it will enable WR (DAC1003-1008) or WR ${ }_{1}$ (DAC1000-1002).
$\overline{\mathrm{WR}}$ or $\overline{\mathrm{WR}_{1}}$: Write - The active low $\overline{\mathrm{WR}}$ (or $\overline{\mathrm{WR}_{1}}$ -DAC1000-1002) is used to load the digital data bits (DI) into the input latch. The data in the input latch is latched when $\overline{\mathrm{WR}}$ (or $\overline{\mathrm{WR}_{1}}$) is high. The 10 -bit input latch is split into two latches; one holds 8 blts and the other holds 2 bits. The Byte1/Byte2 control pin is used to select both input latches when Byte1/Byte2 $=1$ or to overwrite the 2-bit input latch when in the low state.
WR ${ }_{2}$: Extra Write (DAC1000-1002) - The active low WR_{2} is used to load the data from the input latch to the DAC register while XFER is low. The data in the DAC register is latched when WR_{2} is high.
Byte1/Byte2: Byte Sequence Control - When this control is high, all ten locations of the input latch are enabled. When low, only two locations of the input latch are enabled and these two locations are overwritten on the second byte write. On the DAC1006, 1007, and 1008, the Byte1/Byte2 must be low to transfer the 10 -bit data in the input latch to the DAC register.
XFER: Transfer Control Signal, active low - This signal, in combination with others, is used to transfer the 10-bit data which is avallable in the input latch to the DAC register - see timing diagrams.
LJ/RJ: Left Justify/Right Justify (DAC1000-1002) When LJ/RJ is high the part is set up for left justified (fractional) data format. (DAC1006-1008 have this done internally.) When $L J / \overline{R J}$ is low, the part is set up for right justified (integer) data.

1.2 Other Pin Functions

Dl_{1} ($\mathbf{i}=\mathbf{0}$ to 9): Digital Inputs - Dl_{0} is the least significant bit (LSB) and DI_{g} is the most significant bit (MSB).
louti: DAC Current Output 1 - lout1 is a maximum for a digital input code of all 1 s and is zero for a digital input code of all Os .
lout2: $^{\text {DAC Current }}$ Output 2 - lout2 is a constant minus lout, or
$\mathrm{l}_{\text {OUT1 }}+\mathrm{l}_{\text {OUT2 }}=\frac{1023 \mathrm{~V}_{\text {REF }}}{1024 \mathrm{R}}$
where $R \cong 15 \mathrm{k} \Omega$.

a. End Point Test After Zero and FS Adj.
$\mathbf{R}_{\text {FB }}$: Feedback Resistor - This is provided on the IC chip for use as the shunt feedback resistor when an external op amp is used to provide an output voltage for the DAC. This on-chip resistor should always be used (not an external resistor) because it matches the resistors used in the on-chip R-2R ladder and tracks these resistors over temperature.
$\mathbf{V}_{\text {REF }}$: Reference Voltage Input - This is the connection for the external precision voltage source which drives the R-2R ladder. VREF can range from -10 to +10 volts. This is also the analog voltage input for a 4 -quadrant multiplying DAC application.
$\mathbf{V}_{\mathbf{C C}}$: Digital Supply Voltage - This is the power supply pin for the part. $V_{C C}$ can be from +5 to $+15 V_{D C}$. Operation is optimum for +15 V . The input threshold voltages are nearly independent of V_{CC}. (See Typical Performance Characteristics and Description in Section 3.0, $\mathrm{T}^{2} \mathrm{~L}$ compatible logic inputs.)
GND: Ground - the ground pin for the part.

1.3 Definition of Terms

Resolution: Resolution is directly related to the number of switches or bits within the DAC. For example, the DAC1000 has 2^{10} or 1024 steps and therefore has 10 -bit resolution.

Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.

National's linearity test (a) and the "best straight line" test (b) used by other suppliers are illustrated below. The "best straight line" requires a special zero and FS adjustment for each part, which is almost impossible for the user to determine. The "end point test" uses a standard zero and FS adjustment procedure and is a much more stringent test for DAC linearity.

Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output (which is the worst case).

Power Supply Sensitlvity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output (which is the worst case).

Settling Time: Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value. Full-scale settling time requires a zero to full-scale or full-scale to zero output change.
Full-Scale Error: Full scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC1000 series, full-scale is $V_{\text {REF }}-1$ LSB. For $V_{\text {REF }}=-10 \mathrm{~V}$ and unipolar operation, $\mathrm{V}_{\text {FULL-SCALE }}=10.0000 \mathrm{~V}-9.8 \mathrm{mV}=9.9902 \mathrm{~V}$. Full-scale error is adjustable to zero.
Monotonicity: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. A 10 -bit DAC with 10-bit monotonicity will produce an increasing analog output when all 10 digital inputs are exercised. A 10-bit DAC with 9-bit monotonicity will be monotonic when only the most significant 9 bits are exercised. Similarly, 8 -bit monotonicity is guaranteed when only the most significant 8 bits are exercised.

2.0 Double Buffering

These DACs are double-buffered, microprocessor compatible versions of the DAC1020 10-bit multiplying DAC. The addition of the buffers for the digital input data not only allows for storage of this data, but also provides a way to assemble the 10 -bit input data word from two write cycles when using an 8 -bit data bus. Thus, the next data update for the DAC output can be made with the complete new set of 10 -bit data. Further, the double buffering allows many DACs in a system to store current data and also the next data. The updating of the new data for each DAC is also not time critical. When all DACs are updated, a common strobe signal can then be used to cause all DACs to switch to their new analog output levels.

$3.0 \mathbf{T}^{2}$ L Compatible Logic Inputs

To guarantee $T^{2} L$ voltage compatibility of the logic inputs, a novel bipolar (NPN) regulator circuit is used. This makes the input logic thresholds equal to the forward drop of two diodes (and also matches the temperature variation) as occurs naturally in $T^{2} L$. The basic circuit is shown in Figure 1. A curve of digital input threshold as a function of power supply voltage is shown in the Typical Performance Characteristics section.

4.0 Application Hints

The DC stability of the $V_{\text {REF }}$ source is the most important factor to maintain accuracy of the DAC over time and temperature changes. A good single point ground for the analog signals is next in importance.

These MICRO-DAC ${ }^{\text {TM }}$ converters are CMOS products and reasonable care should be exercised in handling them prior to final mounting on a PC board. The digital inputs are protected, but permanent damage may occur if the part is subjected to high electrostatic fields. Store unused parts in conductive foam or anti-static rails.

4.1 Power Supply Sequencing \& Decoupling

Some IC amplifiers draw excessive current from the Analog inputs to V - when the supplies are first turned on. To prevent damage to the DAC - an external Schottky diode connected from lout1 or lout2 to ground may be required to prevent destructive currents in lout1 or lout2. If an LM741 or LF356 is used - these diodes are not required.
The standard power supply decoupling capacitors which are used for the op amp are adequate for the DAC.

4.2 Op Amp Bias Current \& Input Leads

The op amp bias current (I_{B}) CAN CAUSE DC ERRORS. $\mathrm{BI}-\mathrm{FET}^{\text {TM }}$ op amps have very low bias current, and there-

Figure 1. Basic Logic Threshold Loop
fore the error introduced is negligible. BI-FET ${ }^{T M}$ op amps are strongly recommended for these DACs.
The distance from the lout1 pin of the DAC to the inverting input of the op amp should be kept as short as possible to prevent inadvertent noise pickup.

5.0 Analog Applications

The analog section of these DACs uses an R-2R ladder which can be operated both in the current switching mode and in the voltage switching mode.

The major product changes (compared with the DAC1020) have been made in the digital functioning of the DAC. The analog functioning is reviewed here for completeness. For additional analog applications, such as multipliers, attenuators, digitally controlled amplifiers and low frequency sine wave oscillators, refer to the DAC1020 data sheet. Some basic circuit ideas are presented in this section in addition to complete applications circuits.

5.1 Operation in Current Switching Mode

The analog circuitry, Figure 2, consists of a siliconchromium ($\mathrm{Si}-\mathrm{Cr} \mathrm{)} \mathrm{thin} \mathrm{film} \mathrm{R-2R} \mathrm{ladder} \mathrm{which} \mathrm{is}$ deposited on the surface oxide of the monolithic chip. As a result, there is no parasitic diode connected to the $V_{\text {REF }}$ pin as would exist if diffused resistors were used. The reference voltage input ($\mathrm{V}_{\text {REF }}$) can therefore range from -10 V to +10 V .

The digital input code to the DAC simply controls the position of the SPDT current switches, SW0 to SW9. A logical 1 digital input causes the current switch to steer
the available ladder current to the lout1 output pin. These MOS switches operate in the current mode with a small voltage drop across them and can therefore switch currents of either polarity. This is the basis for the 4-quadrant multiplying feature of this DAC.

5.1.1 Providing a Unipolar Output Voltage with the DAC in the Current Switching Mode

A voltage output is provided by making use of an external op amp as a current-to-voltage converter. The idea is to use the internal feedback resistor, R_{FB}, from the output of the op amp to the inverting (-) input. Now, when current is entered at this inverting input, the feedback action of the op amp keeps that input at ground potential. This causes the applied input current to be diverted to the feedback resistor. The output voltage of the op amp is forced to a voltage given by:

$$
V_{\text {OUT }}=-\left(\text { louT1 } \times R_{\text {FB }}\right)
$$

Notice that the sign of the output voltage depends on the direction of current flow through the feedback resistor.

In current switching mode applications, both current output pins (lout1 and lout2) should be operated at $0 V_{D C}$. This is accomplished as shown in Figure 3. The capacitor, C_{C}, is used to compensate for the output capacitance of the DAC and the input capacitance of the op amp. The required feedback resistor, $R_{F B}$, is available on the chip (one end is internally tied to louti) and must be used since an external resistor will not provide the needed matching and temperature tracking. This circuit can therefore be simplified as shown in

DIGITAL INPUT CODE

Figure 2. Current Mode Switching

Figure 3. Converting lout to Vout

Figure 4, where the sign of the reference voltage has been changed to provide a positive output voltage. Note that the output current, lout1, now flows through the $\mathrm{R}_{\mathrm{FB}} \mathrm{pin}$.

5.1.2 Providing a Bipolar Output Voltage with the DAC in the Current Switching Mode

The addition of a second op amp to the circuit of Figure 4 can be used to generate a bipolar output voltage from a fixed reference voltage (Figure 5). This, in effect, gives sign significance to the MSB of the digital input word to allow two quadrant multiplication of the reference voltage. The polarity of the reference can also be reversed to realize the full four-quadrant multiplication.

The applied digital word is offset binary which includes a code to output zero volts without the need of a large valued resistor common to existing bipolar multiplying DAC circuits. Offset binary code can be derived from 2's complement data (most common for signed processor arithmetic) by inverting the state of the MSB in either software or hardware. After doing this the output then responds in accordance to the following expression:
$V_{O}=V_{\text {REF }} \times \frac{D}{512}$
where $V_{\text {REF }}$ can be positive or negative and D is the signed decimal equivalent of the 2's complement processor data. $(-512 \leqslant D \leqslant+511$ or $1000000000 \leqslant D \leqslant 0111111111)$. If the applied digital input is interpreted as the decimal equivalent of a true binary word, Vout can be found by: $V_{O}=V_{\text {REF }}\left(\frac{D-512}{512}\right)$
$0 \leqslant D \leqslant 1023$

With this configuration, only the offset voltage of amplifier 1 need be nulled to preserve linearity of the DAC. The offset voltage error of the second op amp has no effect on linearity. It presents a constant output voltage error and should be nulled only if absolute accuracy is needed. Another advantage of this configuration is that the values of the external resistors required do not have to match the value of the internal DAC resistors; they need only to match and temperature track each other.
A thin film 4 resistor network available from Beckman Instruments, Inc. (part no. 694-3-R10K-D) is ideally suited for this application. Two of the four available $10 \mathrm{k} \Omega$ resistor can be paralleled to form R in Figure 5 and the other two can be used separately as the resistors labeled 2R.

Operation is summarized in the table below:

2's Comp. (Decimal)	2's Comp. (Binary)	Aplied Digital Input	Applied True (Decinary	$+\mathrm{V}_{\text {REF }}$	V $_{\text {OUT }}$	$-\mathrm{V}_{\text {REF }}$
+511	0111111111	1111111111	1023	$\mathrm{~V}_{\text {REF }}-1$ LSB	$-\left\|V_{\text {REF }}\right\|+1$ LSB	
+256	0100000000	1100000000	768	$\mathrm{~V}_{\text {REF }} / 2$	$-\left\|V_{\text {REF }}\right\| / 2$	
0	0000000000	100000000	512	0	0	
-1	1111111111	0111111111	511	-1 LSB	+1 LSB	
-256	1100000000	0100000000	256	$-V_{\text {REF }} / 2$	$+\left\|V_{\text {REE }}\right\| / 2$	
-512	1000000000	0000000000	0	$-V_{\text {REF }}$	$+\left\|V_{\text {REFF }}\right\|$	

with: 1 LSB $=\frac{\left|V_{\text {REF }}\right|}{512}$

Figure 4. Providing a Unipolar Output Voltage

Figure 5. Providing a Bipolar Output Voltage with the DAC in the Current Switching Mode

5.2 Analog Operation in the Voltage Switching Mode

Some useful application circuits result if the R-2R ladder is operated in the voltage switching mode. There are two very important things to remember when using the DAC in the voltage mode. The reference voltage (+V) must always be positive since there are parasitic diodes to ground on the loutt pin which would turn on if the reference voltage went negative. To maintain a degradation of linearity less than $\pm 0.005 \%$, keep $+V \leqslant 3 V_{D C}$ and $V_{C C}$ at least 10 V more positive than +V . Figures 6 and 7 show these errors for the voltage switching mode. This operation appears unusual, since a reference voltage $(+V)$ is applied to the lout1 pin and the voltage output is the $V_{\text {REF }}$ pin. This basic idea is shown in Figure 8.

This $\mathrm{V}_{\text {Out }}$ range can be scaled by use of a non-inverting gain stage as shown in Figure 9.

Figure 6.

Notice that this is unipolar operation since all voltages are positive. A bipolar output voltage can be obtained by using a single op amp as shown in Figure 10. For a digital input code of all zeros, the output voltage from the $V_{\text {REF }}$ pin is zero volts. The external op amp now has a single input of +V and is operating with a gain of -1 to this input. The output of the op amp therefore will be at -V for a digital input of all zeros. As the digital code increases, the output voltage at the $V_{\text {REF }}$ pin increases.
Notice that the gain of the op amp to voltages which are applied to the $(+)$ input is +2 and the gain to voltages which are applied to the input resistor, R , is -1 . The output voltage of the op amp depends on both of these inputs and is given by:

$$
V_{\text {OUT }}=(+V)(-1)+V_{\text {REF }}(+2)
$$

Figure 7.

digital input code

Figure 8. Voltage Mode Switching

Figure 9. Amplifying the Voltage Mode Output (Single Supply Operation)

Figure 10. Providing a Bipolar Output Voltage with a Single Op Amp

Figure 11. Increasing the Output Voltage Swing

The output voltage swing can be expanded by adding 2 resistors to Figure 10 as shown in Figure 11. These added resistors are used to attenuate the $+V$ voltage. The overall gain, $A_{V}(-)$, from the $+V$ terminal to the output of the op amp determines the most negative output voltage, $-4(+V)$ (when the $V_{\text {REF }}$ voltage at the + input of the op amp is zero) with the component values shown. The complete dynamic range of $V_{O U T}$ is provided by the gain from the (+) input of the op amp. As the voltage at the $V_{\text {REF }}$ pin ranges from $O V$ to $+V(1023 / 1024)$ the output of the op amp will range from $-10 V_{D C}$ to $+10 \mathrm{~V}(1023 / 1024)$ when using a +V voltage of +2.500 V DC . The $2.5 \mathrm{~V} D$ reference voltage can be easily developed by using the LM336 zener which can be biased through the R FB_{B} internal resistor, connected to V_{CC}.

5.3 Op Amp Vos Adjust (Zero Adjust) for Current Switching Mode

Proper operation of the ladder requires that all of the $2 R$ legs always go to exactly $0 V_{D C}$ (ground). Therefore offset voltage, V_{OS}, of the external op amp cannot be tolerated as every millivolt of V_{OS} will introduce 0.01% of added linearity error. At first this seems unusually sensitive, until it becomes clear the 1 mV is 0.01% of the 10 V reference! High resolution converters of high accuracy require attention to every detail in an application to achieve the available performance which is inherent in the part. To prevent this source of error, the $V_{O S}$ of the op amp has to be initially zeroed. This is the "zero adjust" of the DAC calibration sequence and should be done first.

If the $V_{O S}$ is to be adjusted there are a few points to consider. Note that no "dc balancing" resistance should be used in the grounded positive input lead of the op amp. This resistance and the input current of the op amp can also create errors. The low input biasing current of the BI-FET ${ }^{\text {TM }}$ op amps makes them ideal for use in DAC current to voltage applications. The $\mathrm{V}_{0 S}$ of the op amp should be adjusted with a digital input of all zeros to force lout $=0 \mathrm{~mA}$. A $1 \mathrm{~K} \Omega$ resistor can be temporarily connected from the inverting input to ground to provide a dc gain of approximately 15 to the $V_{\text {OS }}$ of the op amp and make the zeroing easier to sense.

5.4 Full-Scale Adjust

The full-scale adjust procedure depends on the application circuit and whether the DAC is operated in the current switching mode or in the voltage switching mode. Techniques are given below for all of the possible application circuits.

5.4.1 Current Switching with Unipolar Output Voltage

After doing a "zero adjust," set all of the digital input levels HIGH and adjust the magnitude of $V_{\text {REF }}$ for
$V_{\text {OUT }}=-\left(\right.$ ideal $\left.V_{\text {REF }}\right) \frac{1023}{1024}$
This completes the DAC calibration.

5.4.2 Current Switching with Bipolar Output Voltage

The circuit of Figure 12 shows the 3 adjustments needed. The first step is to set all of the digital inputs LOW (to force $\mathrm{I}_{\text {OUT1 }}$ to 0) and then trim "zero adj." for zero volts at the inverting input (pin 2) of OA1. Next, with a code of all zeros still applied, adjust "-FS adj.", the reference voltage, for $V_{\text {OUT }}= \pm \mid\left(\right.$ ideal $\left.V_{\text {REF }}\right) \mid$. The sign of the output voltage will be opposite that of the applied reference.

Finally, set all of the digital. inputs HIGH and adjust "+FS adj." for $V_{\text {OUT }}=V_{\text {REF }}$ (511/512). The sign of the output at this time will be the same as that of the reference voltage. The addition of the 200Ω resistor in series with the $V_{\text {REF }}$ pin of the DAC is to force the circuit gain error from the DAC to be negative. This insures that adding resistance to R_{fb}, with the 500Ω pot, will always compensate the gain error of the DAC.

5.4.3 Voltage Switching with a Unipolar Output Voltage

Refer to the circuit of Figure 13 and set all digital inputs LOW. Trim the "zero adj." for $V_{O U T}=0 V_{D C} \pm 1 \mathrm{mV}$. Then set all digital inputs HIGH and trim the "FS Adj." for:
$V_{\text {OUT }}=(+V)\left(1+\frac{R_{1}}{R_{2}}\right) \frac{1023}{1024}$

5.4.4 Voltage Switching with a Bipolar Output Voltage

Refer to Figure 14 and set all digital inputs LOW. Trim the " - FS Adj." for $\mathrm{V}_{\text {OUT }}=-2.5 \mathrm{~V}_{\text {DC }}$. Then set all digital inputs HIGH and trim the " + FS Adj." for $V_{\text {OUT }}=+2.5$ $(511 / 512) V_{D C}$. Test the zero by setting the MS digital input HIGH and all the rest LOW. Adjust $\mathrm{V}_{\text {Os }}$ of amp \#3, if necessary, and recheck the full-scale values.

Figure 12. Full Scale Adjust - Current Switching with Bipolar Output Voltage

Figure 13. Full Scale Adjust - Unipolar Output Voltage

Figure 14. Voltage Switching with a Bipolar Output Voltage

6.0 Digital Control Description

The DAC1000 series of products can be used in a wide variety of operating modes. Most of the options are shown in Table I. Also shown in this table are the section numbers of this data sheet where each of the operating modes is discussed. For example, if your main interest is interfacing to a $\mu \mathrm{P}$ with an 8 -bit data bus you will be directed to Section 6.1.0.

The first consideration is "will the DAC be interfaced to a $\mu \mathrm{P}$ with an 8 -bit or a 16 -bit data bus or used in the stand-alone mode?'' For the 8 -bit data bus, a second selection is made on how the 2nd digital data buffer (the DAC Latch) is updated by a transfer from the 1st digital data buffer (the Input Latch). Three options are provided: 1) an automatic transfer when the 2nd data byte is written to the DAC, 2) a transfer which is under the control of the $\mu \mathrm{P}$ and can include more than one DAC in a simultaneous transfer, or 3) a transfer which is under the control of external logic. Further, the data format can be either left justified or right justified.

When interfacing to a $\mu \mathrm{P}$ with a 16 -bit data bus only two selections are available: 1) operating the DAC with a single digital data buffer (the transfer of one DAC does not have to be synchronized with any other DACs in the system), or 2) operating with a double digital data buffer
for simultaneous transfer, or updating, of more than one DAC.

For operating without a $\mu \mathrm{P}$ in the stand alone mode, three options are provided: 1) using only a single digital data buffer, 2) using both digital data buffers - "double buffered," or 3) allowing the input digital data to "flow through" to provide the analog output without the use of any data latches.

To reduce the required reading, only the applicable sections of 6.1 through 6.4 need be considered.

6.1 Interfacing to an 8-Bit Data Bus

Transferring 10 bits of data over an 8 -bit bus requires two write cycles and provides four possible combinations which depend upon two basic data format and protocol decisions:

1. Is the data to be left justified (considered as fractional binary data with the binary point to the left) or right justified (considered as binary weighted data with the binary point to the right)?
2. Which byte will be transferred first, the most significant byte (MS byte) or the least significant byte (LS byte)?

Table 1.

	Automatic Transfer		$\mu \mathrm{P}$ Control Transfer		External Transfer	
	Section	Figure No. (24-Pin) (20-Pin)	Section	$\begin{array}{cl} \text { Figure No. } \\ (24 \cdot-\mathrm{Pin}) & (20 \cdot \mathrm{Pin}) \end{array}$	Section	Figure No. (24-Pin) (20-Pin)
8-Bit Data Bus (6.1.0)						
Right Justified (6.1.1)	6.2.1	16	6.2.2	16	6.2.3	16
Left Justified (6.1.2)	6.2.1	$17 \quad 18$	6.2.2	$17 \quad 18$	6.2.3	$17 \quad 18$
16-Bit Data Bus (6.3.0)	Single Buffered		Double Buffered		Flow Through	
	6.3.1	1920	6.3.2	1920		Applicable
Stand Alone (6.4.0)	Single Buffered		Double Buffered		Flow Through	
	6.4.1	1920	6.4.2	1920	6.4.3	19 NA

These data possibilities are shown in Figure 15. Note that the justification of data depends on how the 10-bit data word is located within the 16 -bit data source (CPU) register. In either case, there is a surplus of 6 bits and these are shown as "don't care" terms (" X ") in this figure.

All of these DACs load 10 bits on the 1st write cycle. A particular set of 2 bits is then overwritten on the 2nd write cycle, depending on the justification of the data. This requires the 1st write cycle to contain the LS or LO Byte data group for all right justified data options. For all left justified data options, the 1st write cycle must contain the MS or Hi Byte data group.

6.1.1 Providing for Optional Data Format

The DAC1000/1/2 (24-pin parts) can be used for either data formatting by tying the $L J / \overline{R J}$ pin either high or low, respectively. A simplified logic diagram which shows the external connections to the data bus and the internal functions of both of the data buffer registers (Input Latch and DAC Register) is shown in Figure 16 for the right justified data operation. Figure 17 is for left justified data.

6.1.2 For Left Justified Data

For applications which require left justified data, DAC1006-1008 (20-pin parts) can be used. A simplified logic diagram which shows the external connections to the data bus and the internal functions of both of the data buffer registers (Input Latch and DAC Register) is shown in Figure 18. These parts require the MS or Hi Byte data group to be transferred on the 1st write cycle.

6.2 Controlling Data Transfer for an 8-Bit Data Bus

Three operating modes are possible for controlling the transfer of data from the Input Latch to the DAC Register, where it will update the analog output voltage. The simplest is the automatic transfer mode, which causes the data transfer to occur at the time of the 2nd write cycle. This is recommended when the exact timing of the changes of the DAC analog output are not critical. This typically happens where each DAC is operating individually in a system and the analog updating of one DAC is not required to be synchronized to any other DAC. For synchronized DAC updating, two options are provided: $\mu \mathrm{P}$ control via a common XFER strobe or external update timing control via an external strobe. The details of these options are now shown.

Figure 15. Fitting a 10 -Bit Data Word into 16 Available Bit Locations

DAC1000/1001/1002 (24-Pin Parts)

Figure 16. Input Connections and Controls for DAC1000-1002 Right Justified Data Option

Figure 17. Input Connections and Controls for DAC1000-1002 Left Justified Data Option

DAC1006/1007/1008 (20-Pin Parts for Left Justified Data)

Figure 18. Input Connections and Controls for DAC1006/1007/1008 Left Justified Data

6.2.1 Automatic Transfer

This makes use of a double byte (double precision) write. The first byte (8 bits) is strobed into the input latch and the second byte causes a simultaneous strobe of the two remaining bits into the input latch and also the transfer of the complete 10 -bit word from the input latch to the DAC register. This is shown in the following timing diagrams; the point in time where the analog output is updated is also indicated on these diagrams.

DAC1000/1001/1002 (24-Pin Parts)

DAC1006/1007/1008 (20.Pin Parts)

6.2.2 Transfer Using $\mu \mathrm{P}$ Write Strobe

The input latch is loaded with the first two write strobes. The $\overline{X F E R}$ signal is provided by external logic, as shown below, to cause the transfer to be accomplished on a third write strobe. This is shown in the following diagrams:

6.2.3 Transfer Using an External Strobe

This is similar to the previous operation except the $\overline{\mathrm{XFER}}$ signal is not provided by the $\mu \mathrm{P}$. The timing diagram for this is:

6.3 Interfacing to a 16-Bit Data Bus

The interface to a 16 -bit data bus is easily handled by connecting to 10 of the available bus lines. This allows a wiring selected right justified or left justified data format. This is shown in the connection diagrams of Figures 19 and 20, where the use of DB6 to DB15 gives left justified data operation. Note that any part number can be used and the Byte1/Byte2 control should be wired Hi .

Figure 19. Input Connections and Logic for DAC1000-1002 with 16-Bit Data Bus

Figure 20. Input Connections and Logic for DAC1006/1007/1008 with 16-Bit Data Bus

Three operating modes are possible: flow through, single buffered, or double buffered. The timing diagrams for these are shown below:

6.3.1 Single Buffered

DAC1000/1001/1002 (24-Pin Parts)

6.3.2 Double Buffered

DAC1000/1001/1002 (24-Pin Parts)

6.4 Stand Alone Operation

For applications for a DAC which are not under $\mu \mathrm{P}$ control (stand alone) there are two basic operating modes, single buffered and double buffored. The timing diagrams for these are shown below:

6.4.1 Single Buffered

6.4.2 Double Buffered

DAC1006/1007/1008 (20-Pin Parts)*

[^44]
6.4.3 Flow Through

This operating mode causes the 10 -bit input word to directly create the DAC output without any latching involved.

DAC1000/1001/1002 (24-Pin Parts)

$\overline{\mathrm{WR1}}=\overline{\mathrm{WR2}}=\overline{\mathrm{CS}}=\overline{\mathrm{XFER}}=0$
Byte $1 / \overline{\text { Byte } 2}=1$

7.0 Microprocessor Interface

The logic functions of the DAC1000 family have been oriented towards an ease of interface with all popular μ Ps. The following sections discuss in detail a few useful interface schemes.

7.1 DAC1000/1/2 to INS8080A Interface

Figure 21 illustrates the simplicity of interfacing the DAC1000 to an INS8080A based microprocessor system.

The circuit will perform an automatic transfer of the 10 bits of output data from the CPU to the DAC register as outlined in Section 6.2.1, "Controlling Data Transfer for an 8-Bit Data Bus."

Since a double byte write is necessary to control the DAC with the INS8080A, a possible instruction to achieve this is a PUSH of a register pair onto a "stack" in memory. The 16 -bit register pair word will contain the 10 bits of the eventual DAC input data in the proper

NOTE: DOUBLE BYTE STORES CAN BE USED.
e.g. THE INSTRUCTION SHLD FФФ1 STORES THE L

REG INTO B1 AND THE H REG INTO B2 AND
TRANSFERS THE RESULT TO THE DAC REGISTER.
THE OPERAND OF THE SHLD INSTRUCTION MUST
BE AN ODD ADDRESS FOR PROPER TRANSFER.

Figure 21. Interfacing the DAC1000 to the INS8080A CPU Group
sequence to conform to both the requirements of the DAC (with regard to right or left justified data) and the implementation of the PUSH instruction which will output the higher order byte of the register pair (i.e., register B of the BC pair) first. The DAC will actually appear as a two-byte "stack" in memory to the CPU. The auto-decrementing of the stack pointer during a PUSH allows using address bit 0 of the stack pointer as the Byte1/Byte2 and XFER strobes if bit 0 of the stack pointer address-1, (SP-1), is a " 1 " as presented to the DAC. Additional address decoding by the DM8131 will generate a unique DAC chip select (CS) and synchronize this CS to the two memory write strobes of the PUSH instruction.
To reset the stack pointer so new data may be output to the same DAC, a POP instruction followed by instructions to insure that proper data is in the DAC data register pair before it is "PUSHED" to the DAC should be executed, as the POP instruction will arbitrarily alter the contents of a register pair.
Another double byte write instruction is Store H and L Direct (SHLD), where the HL register pair would temporarily contain the DAC data and the two sequential addresses for the DAC are specified by the instruction op code. The auto incrementing of the DAC address by the SHLD instruction permits the same simple scheme of using address bit 0 to generate the byte number and transfer strobes.

7.2 DAC1000 to MC6820/1 PIA Interface

In Figure 22 the DAC1000 is interfaced to an M6800 system through an MC6820/1 Peripheral Interface Adapter (PIA). In this case the CS pin of the DAC is grounded since the PIA is already mapped in the 6800 system memory space and no decoding is necessary. Furthermore, by using both Ports A and B of the PIA the 10-bit data transfer, assumed right justified again in two 8 -bit bytes, is greatly simplified. The HIGH byte is
loaded into Output Register A (ORA) of the PIA, and the LOW byte is loaded into ORB. The 10-bit data transfer to the DAC and the corresponding analog output change occur simultaneously upon CB2 going LOW under program control. The 10-bit data word in the DAC register will be latched (and hence $V_{\text {OUt }}$ will be fixed) when CB2 is brought back HIGH.
If both output ports of the PIA are not available, it is possible to interface the DAC1000 through a single port without much effort. However, additional logic at the CB2 (or CA2) lines or access to some of the 6800 system control lines will be required.

7.3 Noise Considerations

A typical digital/microprocessor bus environment is a tremendous potential source of high frequency noise which can be coupled to sensitive analog circuitry. The fast edges of the data and address bus signals generate frequency components of 10's of megahertz and can cause noise spikes to appear at the DAC output. These noise splkes occur when the data bus changes state or when data is transferred between the latches of the device.

In low frequency or DC applications, low pass filtering can reduce these noise spikes. This is accomplished by over-compensating the DAC output amplifier by increasing the value of the feedback capacitor (C_{C} in Figure 3).
In applications requiring a fast transient response from the DAC and op amp, filtering may not be feasible. Adding a latch, DM74LS374, as shown in Figure 23 isolates the device from the data bus, thus eliminating noise spikes that occur every time the data bus changes state. Another method for eliminating noise spikes is to add a sample and hold after the DAC op amp. This also has the advantage of eliminating noise spikes when changing digital codes.

Figure 22. DAC1000 to MC6820/1 PIA Interface

Figure 23. Isolating Data Bus from DAC Circuitry to Eliminate Digital Noise Coupling

Figure 24. Digitally Controlled Amplifler/Attenuator

7.4 Digitally Controlled Amplifier/Attenuator

An unusual application of the DAC, Figure 24, applies the input voltage via the on-chip feedback resistor. The lower op amp automatically adjusts the $\mathrm{V}_{\text {REF IN }}$ voltage such that louty is equal to the input current $\left(V_{I N} / R_{B}\right)$. The magnitude of this $\mathrm{V}_{\text {REF }}$ in voltage depends on the digital word which is in the DAC register. Iout2 then depends upon both the magnitude of $\mathrm{V}_{\text {IN }}$ and the digital word. The second op amp converts lout2 to a voltage, $V_{\text {OUT, }}$ which is given by:
$V_{\text {OUT }}=V_{\text {IN }}\left(\frac{1023-N}{N}\right)$, where $0<N \leqslant 1023$.

Note that $N=0$ (or a digital code of all zeros) is not allowed or this will cause the output amplifier to saturate at either $\pm \mathrm{V}_{\mathrm{MAX}}$, depending on the sign of V_{IN}.
To provide a digitally controlled divider, the output op amp can be eliminated. Ground the lout2 pin of the DAC and $V_{\text {OUT }}$ is now taken from the lower op amp (which also drives the $\mathrm{V}_{\text {REF }}$ input of the DAC). The expression for $V_{\text {Out }}$ is now given by
$V_{\text {OUT }}=-\frac{V_{\text {IN }}}{M}$ where $M=$ Digital input (expressed as a fractional binary number). $0<M<1$.

Figure 25. Digital to Synchro Converter

Ordering Information

1. All Logic Features - 24-pin package.

Temperature Range

Accuracy	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0° to $+70^{\circ} \mathrm{C}$
0.05\% (10-bit)	DAC1000LCD	DAC1000LD	DAC 1000LCN
0.10\% (9-bit)	DAC1001LCD	DAC1001LD	DAC1001LCN
0.20\% (8-bit)	DAC1002LCD	DAC1002LD	DAC1002LCN
Package Outline	D24C	D24C	N24

2. For Left Justified Data - 20-pin package. (See package outline D20C.)

Temperature Range

Accuracy	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0° to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
0.05% (10-bit)	DAC1006LCD	DAC1006LD	DAC1006LCN
0.10% (9-bit)	DAC1007LCD	DAC1007LD	DAC1007LCN
0.20% (8-bit)	DAC1008LCD	DAC1008LD	DAC1008LCN
Package Outline	D20C	D20C	N20

National Semiconductor DAC1020, DAC1021, DAC1022 10-Bit Binary Multiplying D/A Converter DAC1220, DAC1221, DAC1222 12-Bit Binary Multiplying D/A Converter

General Description

The DAC1020 and the DAC1220 are, respectively, 10 and 12 -bit binary multiplying digital-to-analog converters. A deposited thin film R-2R resistor ladder divides the reference current and provides the circuit with excellent temperature tracking characteristics (0.0002% / ${ }^{*} \mathrm{C}$ linearity error temperature coefficient maximum). The circuit uses CMOS current switches and drive circuitry to achieve low power consumption $(30 \mathrm{~mW}$ max) and low output leakages (200 nA max). The digital inputs are compatible with DTL/TTL logic levels as well as full CMOS logic level swings. This part, combined with an external amplifier and voltage reference, can be used as a standard D/A converter; however, it is also very attractive for multiplying applications (such as digitally controlled gain blocks) since its linearity error is essentially independent of the voltage reference. All inputs are protected from damage due to static discharge by diode clamps to V^{+}and ground.

This part is available with 10 -bit (0.05%), 9 -bit (0.10%),
and 8 -bit (0.20%) non-linearity guaranteed over temperature (note 1 of electrical characteristics). The DAC1020, DAC1021 and DAC1022 are direct replacements for the 10 -bit resolution AD7520 and AD7530 and equivalent to the AD7533 family. The DAC1220, DAC1221 and DAC1222 are direct replacements for the 12-bit resolution AD7521 and AD7531 family.

Features

- Linearity specified with zero and full-scale adjust only
- Non-linearity guaranteed over temperature
- Integrated thin film on CMOS structure
- 10-bit or 12-bit resolution
- Low power dissipation 10 mW @15V typ
- Accepts variable or fixed reference $-25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq 25 \mathrm{~V}$
- 4-quadrant multiplying capability
- Interfaces directly with DTL, TTL and CMOS
- Fast settling time-500 ns typ
- Low feedthrough error-1/2 LSB @ 100 kHz typ

Equivalent Circuit

Note. Switches shown in digital high state

Ordering Information

10-BIT D/A CONVERTERS

TEMPERATURE RANGE		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
ACCURACY	0.05\%	DAC1020LCN	$\begin{array}{\|l\|} \hline \text { AD7520LN } \\ \text { AD7530LN } \\ \hline \end{array}$	DAC1020LCD	$\begin{array}{\|l\|} \hline \text { AD7520LD } \\ \text { AD7530LD } \\ \hline \end{array}$	DAC1020LD	AD7520UD
	0.10\%	DAC1021LCN	$\begin{array}{\|l\|} \hline A D 7520 \mathrm{KN} \\ \text { AD7530KN } \end{array}$	DAC1021LCD	$\begin{array}{\|l\|} \hline \text { AD7520KD } \\ \text { AD7530KD } \end{array}$	DAC1021LD	AD7520TD
	0.20\%	DAC1022LCN	$\begin{aligned} & \text { AD7520JN } \\ & \text { AD7530JN } \end{aligned}$	DAC1022LCD	$\begin{array}{\|l\|} \hline \text { AD7520.JD } \\ \text { AD7530.JD } \\ \hline \end{array}$	DAC1022LD	AD7520SD
PACKAGE OUTLINE		N16A		D16C		D16C	

12-BIT D/A CONVERTERS

TEMPERATUR	ANGE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
ACCURACY	0.05\%	DAC1220LCN	$\begin{aligned} & \text { AD7521LN } \\ & \text { AD7531LN } \end{aligned}$	DAC1220LCD	$\begin{aligned} & \text { AD7521LD } \\ & \text { AD7531LD } \end{aligned}$	DAC1220LD	AD7521UD
	0.10\%	DAC1221LCN	$\begin{aligned} & A D 7521 \mathrm{KN} \\ & \text { AD7531KN } \end{aligned}$	DAC1221LCD	$\begin{aligned} & \text { AD7521KD } \\ & \text { AD7531KD } \\ & \hline \end{aligned}$	DAC1221LD	AD7521TD
	0.20\%	DAC1222LCN	$\begin{aligned} & \text { AD7521JN } \\ & \text { AD7531JN } \end{aligned}$	DAC1222LCD	$\begin{aligned} & \text { AD7521JD } \\ & \text { AD7531JD } \end{aligned}$	DAC1222LO	AD7521SD
PACKAGE OUTLINE		N18A		D18A		D18A	

[^45]
Absolute Maximum Ratings

V^{+}to Gnd
$V_{\text {REF }}$ to G nd
Digital Input Voltage Range
DC Voltage at Pin 1 or Pin 2 (Note 3)
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

Operating Conditions

	MIN	MAX	UNITS
Temperature (TA)			
DAC1020LD, DAC1021LD,	-55	+125	${ }^{\circ} \mathrm{C}$
DAC1022LD, DAC1220LD,	-55	+125	${ }^{\circ} \mathrm{C}$
DAC1221LD, DAC1222LD	-55	+125	${ }^{\circ} \mathrm{C}$
DAC1020LCD, DAC1021LCD,	-40	+85	${ }^{\circ} \mathrm{C}$
DAC1022LCD, DAC1220LCD,	-40	+85	${ }^{\circ} \mathrm{C}$
DAC1221LCD, DAC1222LCD	-40	+85	${ }^{\circ} \mathrm{C}$
DAC1020LCN, DAC1021LCN	0	+70	${ }^{\circ} \mathrm{C}$
DAC1022LCN, DAC1220LCN	0	+70	${ }^{\circ} \mathrm{C}$
DAC1221LCN, DAC1222LCN	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(V^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Electrical Characteristics (Continued)
$\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	CONDITIONS	$\begin{gathered} \text { DAC1020, DAC1021 } \\ \text { DAC1022 } \end{gathered}$			$\begin{gathered} \hline \text { DAC1220, DAC1221 } \\ \text { DAC1222 } \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Digital Input Current	$T_{M I N} \leq T_{A} \leq T_{M A X}$ Digital Input High Digital Input Low		1 -50	100 -200		$\xrightarrow{1}$	100	μA μA
Supply Current	All Digital Inputs High All Digital Inputs Low		$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2 \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2 . \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Operating Power Supply Range	(Figures 1 and 2)	5		15	5		15	V

Note 1: $\mathrm{V}_{\mathrm{REF}}= \pm 10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{REF}}= \pm 1 \mathrm{~V}$. A linearity error temperature coefficient of $0.0002 \% \mathrm{FS}$ for a $45^{\circ} \mathrm{C}$ rise only guarantees 0.009% maximum change in linearity error. For instance, if the linearity error at $25^{\circ} \mathrm{C}$ is $0.045 \% \mathrm{FS}$ it could increase to 0.054% at $70^{\circ} \mathrm{C}$ and the DAC will be no longer a 10 -bit part. Note, however, that the linearity error is specified over the device full temperature range which is a more stringent specification since it includes the linearity error temperature coefficient.
Note 2: Using internal feedback resistor as shown in Figure 3.
Note 3: Both IOUT 1 and IOUT 2 must go to ground or the virtual ground of an operational amplifier. If $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$, every millivolt offset between IOUT 1 or IOUT 2, 0.005% linearity error will be introduced.
Note 4: To achieve this low feedthrough in the D package, the user must ground the metal lid.

Typical Performance Characteristics

FIGURE 1. Digital Input Threshold vs Ambient Temperature

FIGURE 2. Gain Error Variation vs \mathbf{V}^{+}

Typical Applications

The following applications are also valid for 12 -bit systems using the DAC1220 and 2 additional digital inputs.

Operational Amplifier Bias Current (Figure 3)

The op amp bias current, I_{b}, flows through the $15 k$ internal feedback resistor. BI-FET op amps have low I_{b} and, therefore, the $15 \mathrm{k} \times \mathrm{I}_{\mathrm{b}}$ error they introduce is negligible; they are strongly recommended for the DAC1020 applications.

VOS Considerations

The output impedance, ROUT, of the DAC is modulated by the digital input code which causes a modulation of the operational amplifier output offset. It is therefore recommended to adjust the op amp VOS. ROUT is $\sim 15 \mathrm{k}$ if more than 4 digital inputs are high; ROUT
is $\sim 45 \mathrm{k}$ if a single digital input is high, and ROUT approaches infinity if all inputs are low.

Operational Amplifier VOS Adjust (Figure 3)

Connect all digital inputs, A1-A10, to ground and adjust the potentiometer to bring the op amp VOUT pin to within $\pm 1 \mathrm{mV}$ from ground potential. If $\mathrm{V}_{\text {REF }}$ is less than 10 V , a finer V_{OS} adjustment is required. It is helpful to increase the resolution of the $\mathrm{V}_{\text {OS }}$ adjust procedure by connecting a $1 \mathrm{k} \Omega$ resistor between the inverting input of the op amp to ground. After V_{OS} has been adjusted, remove the $1 \mathrm{k} \Omega$.

Full-Scale Adjust (Figure 4)

Switch high all the digital inputs, A1-A10, and measure the op amp output voltage. Use a 500Ω potentiometer, as shown, to bring $\| V$ OUT $\|$ to a voltage equal to $V_{\text {REF }} \times$ 1023/1024.

SELECTING AND COMPENSATING THE OPERATIONAL AMPLIFIER

OP AMP FAMILY	$\mathbf{C}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{i}}$	P	$\mathrm{V}_{\mathbf{w}}$	CIRCUIT SETTLING TIME, $\mathrm{t}_{\mathbf{s}}$	CIRCUIT SMALL SIGNAL BW
LM357	10 pF	2.4 k	25 k	V^{+}	$1.5 \mu \mathrm{~s}$	1 M
LM356	22 pF	∞	25 k	V^{+}	$3 \mu \mathrm{~s}$	0.5 M
LF351	24 pF	∞	10 k	V^{-}	$4 \mu \mathrm{~s}$	0.5 M
LM741	0	∞	10 k	V^{-}	$40 \mu \mathrm{~s}$	200 kHz

$\mathrm{V}_{\text {OUT }}=-\mathrm{V}_{\text {REF }}\left(\frac{\mathrm{A} 1}{2}+\frac{\mathrm{A} 2}{4}+\frac{\mathrm{A} 3}{8}+\ldots \frac{\mathrm{A} 10}{1024}\right)$
$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq 10 \mathrm{~V}$
$0 \leq V_{\text {OUT }} \leq-\frac{1023}{1024} V_{\text {REF }}$
where $\quad A_{N}=1$ if the A_{N} digital input is high
$A_{N}=0$ if the A_{N} digital input is low
FIGURE 3. Basic Connection: Unipolar or 2-Quadrant Multiplying Configuration (Digital Attenuator)

Typical Applications (Continued)

FIGURE 4: Full-Scale Adjust

FIGURE 5. Alternate Full-Scale Adjust: (Allows Increasing or Decreasing the Gain)

FIGURE 6. Precision Analog-to-Digital Multiplier

Typical Applications (Continued)

COMPLEMENTARY OFFSET BINARY (BIPOLAR) OPERATION

DIGITAL INPUT								VOUT		
0	0	0	0	0	0	0	0	0	0	$+V_{\text {REF }}$
0	0	0	0	0	0	0	0	0	1	$V_{\text {REF }} \times 1022 / 1024$
0	1	1	1	1	1	1	1	1	1	$V_{\text {REF }} \times 2 / 1024$
1	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1	$-V_{\text {REF }} \times 2 / 1024$
1	1	1	1	1	1	1	1	1	1	$-V_{\text {REF }}(1022 / 1024)$

Note that:

- IOUT $1+$ IOUT $2=\frac{V_{\text {REF }}}{R_{\text {LADDER }}} \times\left(\frac{1023}{1024}\right)$.

$$
V_{\text {OUT }}=-V_{\text {REF }}\left(\frac{A 1}{2}+\frac{A 2}{4}+\ldots+\frac{A 10}{1024}-\frac{1}{1024}\right)
$$

where: $A N=+1$ if A_{N} input is high
$A N=-1$ if A_{N} input is low

- By doubling the output range we get half the resolution
- The 10 M resistor, adds a 1 LSB "thump", to allow full offset binary operation where the output reaches zero for the half-scale code. If symmetrical output excursions are required, omit the 10 M resistor.

FIGURE 7. Bipolar 4-Quadrant Multiplying Configuration

Operational Amplifiers VoS Adjust (Figure 7)

a) Switch all the digital inputs high; adjust the $V_{O S}$ potentiometer of op amp B to bring its output to a value equal to -(VREF/1024) (V).
b) Switch the MSB high and the remaining digital inputs low. Adjust the VOS potentiometer of op amp A, to bring its output value to within a 1 mV from ground potential. For $V_{\text {REF }}<10 \mathrm{~V}$, a finer adjust is necessary, as already mentioned in the previous application.

TRUE OFFSET BINARY OPERATION

DIGITAL INPUT							VOUT			
1	1	1	1	1	1	1	1	1	1	$V_{\text {REF }} \times 1022 / 1024$
1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	$-V_{\text {REF }}$

$\mathrm{t}_{\mathrm{s}}=1.8 \mu \mathrm{~s}$
use LM336 for a voltage reference

FIGURE 8. Bipolar Configuration with a Single Op Amp

Gain Adjust (Full-Scale Adjust)

Assuming that the external 10 k resistors are matched to better than 0.1%, the gain adjust of the circuit is the same with the one previously discussed.

- $R 4=\left(2 A V^{-}-1\right) R, \frac{R 2}{R 1}=\frac{A V^{-}}{A^{-}-1}$

$$
R 3+R 1 \| R 2=R ; A V^{-}=\frac{V_{\text {OUT }}(P E A K)}{V_{R E F}}, R=20 k
$$

- Example: $\mathrm{V}_{\mathrm{REF}}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}($ swing $) \simeq \pm 10 \mathrm{~V}: \mathrm{AV}^{-}=5 \mathrm{~V}$ Then $R 4=9 R, R 1=0.8 R 2$. If $R 1=0.2 R$ then $R 2=0.25 R$, $R 3=0.64 R$

FIGURE 9. Bipolar Configuration with Increased Output Swing

Typical Applications (Continued)

$V_{\text {OUT }}=\frac{-V_{\text {REF }}}{\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\ldots \frac{A 10}{1024}\right)}$
where: VREF can be an AC signal

- By connecting the DAC in the feedback loop of an operational amplifier a linear digitally control gain block can be realized
- Note that with all digital inputs low, the gain of the amplifier is infinity, that is, the op amp will saturate. In other words, we cannot divide the $V_{\text {REF }}$ by zero!

FIGURE 10. Analog-to-Digital Divider (or Digitally Gain Controlled Amplifier)

FIGURE 11. Digitally Controlled Amplifier-Attenuator

Typical Applications (Continued)

- Output frequency $=\frac{{ }^{\mathrm{f}} \mathrm{CLK}}{512} ; \mathrm{f}_{\mathrm{MAX}} \cong 2 \mathrm{kHz}$
- Output voltage range $=0 \mathrm{~V}-10 \mathrm{~V}$ peak
- THD $<0.2 \%$
- Excellent amplitude and frequency stability with temperature
- Low pass filter shown has a 1 kHz corner (for output frequencies below 10 Hz , filter corner should be reduced)
- Any periodic function can be implemented by modifying the contents of the look up table ROM
- No start up problems

FIGURE 12. Precision Low Frequency Sine Wave Oscillator Using Sine Look-Up ROM

Typical Applications (Continued)

FIGURE 13. A Useful Digital Input Code Generator for DAC Attenuator or Amplifier Circuits

Definition of Terms

Resolution: Resolution is defined as the reciprocal of the number of discrete steps in the D/A output. It is directly related to the number of switches or bits within the D/A. For example, the DAC1020 has 2^{10} or 1024 steps while the DAC1220 has 2^{12} or 4096 steps. Therefore, the DAC1020 has 10 -bit resolution, while the DAC1220 has 12 -bit resolution.

Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the D/A transfer characteristic. It is measured after calibrating for zero (see VOS adjust in typical applications) and full-scale. Linearity error is a design parameter intrinsic to the device and cannot be externally adjusted.

Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the D/A full-scale output.

Settling Time: Full-scale settling time requires a zero to full-scale or full-scale to zero output change. Settling time is the time required from a code transition until the D / A output reaches within $\pm 1 / 2$ LSB of final output value.

Full-Scale Error: Full-scale error is a measure of the output error between an ideal D/A and the actual device output. Ideally, for the DAC1020 full-scale is $V_{\text {REF }}$ 1 LSB. For $V_{\text {REF }}=10 \mathrm{~V}$ and unipolar operation, VFULL-SCALE $=10.0000 \mathrm{~V}-9.8 \mathrm{mV}=9.9902 \mathrm{~V}$. Full-scale error is adjustable to zero as shown in Figure 5.

(a) End point test after zero and full-scale adjust.

The DAC has 1 LSB linearity error
(b) By shifting the full-scale calibration on of the DAC of Figure (b1) we could pass the "best straight line" (b2) test and meet the $\pm 1 / 2$ LSB linearity error specification

Note. (a), (b1) and (b2) above illustrate the difference between "end point" National's linearity test (a) and "best straight line" test. Note that both devices in (a) and (b2) meet the $\pm 1 / 2$ LSB linearity error specification but the end point test is a more "real life" way of characterizing the DAC.

Connection Diagrams

DAC102X
Dual-In-Line Package

DAC122X
Dual-In-Line Package

A to D，D to A

DAC1200，DAC1201 12－Bit Digital－to－Analog Converters

General Description

The DAC1200 series of D／A converters is a family of precision low－cost converter building blocks intended to fulfill a wide range of industrial and military D / A applications．These devices are complete functional blocks requiring only application of power for operation． The design combines a precision 12 －bit weighted current source（12 current switches and 12 －bit thin－film resistor network），a rapid－settling operational amplifier，and 10.24 V buffered reference．

Input coding is complementary binary．In all instances， a logic＂low＂（ $\leqslant 0.8 \mathrm{~V}$ ）turns a given bit ON ，and a logic ＂high＂$\geqslant 2.0 \mathrm{~V})$ turns the bit OFF．Output format may be programmed for bipolar（ $\pm 10 \mathrm{~V}$ ）or unipolar（ 0 to 10 V ）operation using internally supplied thin－film resistor pin strap options．Current mode operation is also available from 0 to 2 mA ．

Features
－Circuit completely self－contained
－Both current and voltage－mode outputs
－Standard power supplies：$\pm 15 \mathrm{~V}$ and +5 V
－Internal buffered reference： 10.24 V
－ 0 to $2 \mathrm{~mA}, \pm 10 \mathrm{~V}$ or 0 to 10 V output by strapping internal resistors；other scales by external resistors
－$\pm 1 / 2$ LSB linearity
－Fast settling time： $1.5 \mu \mathrm{~s}$ in current mode $2.5 \mu \mathrm{~s}$ in voltage mode
－High slew rate： $15 \mathrm{~V} / \mu \mathrm{s}$
－TTL and CMOS compatible complementary binary input logic
－ 12 bit linearity
－Standard 0．6＂24－pin DIP package

The entire series is available in hermetically sealed 24 － lead DIP．

Block and Connection Diagrams

Absolute Maximum Ratings

Supply Voltage $\left(\mathrm{V}^{+} \& \mathrm{~V}^{-}\right)$	$\pm 18 \mathrm{~V}$
Logic Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	+10 V
Logic Input Voltage	-0.7 V to +18 V
Reference Input Voltage	$-0 \mathrm{~V},+18 \mathrm{~V}$
Power Dissipation	(see graphs)

DC Electrical Characteristics DAC1200,1201 Binary D/A (Notes 1, 2)

PARAMETER	CONDITIONS		DAC1200/1200C			DAC1201/1201C			UNITS	
			MIN	TYP	MAX	MIN	TYP	MAX		
Resolution Linearity Error (Note 3)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		12			12			Bits	
				± 0.0122			± 0.0488	$\because \mathrm{FS}$		
				± 0.0244			± 0.0976	\% FS		
Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1	5		1	10	mV	
				10			15	mV		
Voltage Mode Full-Scale Error (Note 3)	$V_{\text {REF }}=10.240 \mathrm{~V}$			0.01	0.1		0.02	0.2	$\% \mathrm{FS}$	
Voltage Mode Full-Scale Error Monotonicity (Notes 3, 4)	Pin 21 connected to $\operatorname{Pin} 14, T_{A}=25^{\circ} \mathrm{C}$			0.1	0.6		0.1	0.7	\% FS	
			Guaranteed over the temperature range							
Voltage Mode Power Supply Sensitivity	$\begin{array}{ll} \Delta V^{+}= \pm 2 \mathrm{~V} & T_{A}=25^{\circ} \mathrm{C} \\ \Delta V^{-}= \pm 2 \mathrm{~V} & V_{\text {REF }}=10.240 \mathrm{~V} \\ \Delta V_{C C}= \pm 1 \mathrm{~V} & \end{array}$				0.002	0.02		0.002	0.02	$\% \mathrm{FS} / \mathrm{V}$
				0.002	0.02		0.002	0.02	$\% \text { FS/V }$	
				0.002	0.02		0.002	0.02	\% FS/V	
Output Voltage Range Voltage Mode Output Short Circuit Current Limit	$\mathrm{R}_{\mathrm{I}}=5 \mathrm{k}$			± 10.5	± 12		± 10.5	± 12		v
	$T_{A}=25^{\prime \prime} \mathrm{C}$				20	50		20	50	mA
Current Mode Voltage Compliance	(Note 5)		± 2.5			± 2.5			V	
Current Mode Output Impedance				15			15		$k \Omega$	
Reference Voltage	$0 \mathrm{~mA} \leqslant I_{\text {REF }} \leqslant 2 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}$		10.190	10.240	10.290	10.190	10.240	10.290	V	
Logic "1" Input Voltage (Bit OFF)			2.0			2.0 "			V	
Logic "0' Input Voltage (Bit ON)					0.8			0.8	V	
Logic "1" Input Current. (Bit OFF)	$\begin{aligned} & V_{I N}=2.5 V \\ & V_{I N}=0 V \end{aligned}$			1	10		1	10	$\mu \mathrm{A}$	
Logic "0' Input Current (Bit ON)				- 10	-100		-10	-100	$\mu \mathrm{A}$	
1^{+}	$\mathrm{V}^{+}=15.0 \mathrm{~V}$			10	15		10	15	mA	
Power Supply Current 1^{-}	$V^{-}=-15.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25 \mathrm{C}$		25	30		25	30	mA	
. ICC	$V_{C C}=5.0 \mathrm{~V}$			20	25		20	25	mA	

AC Electrical Characteristics DAC1200,1201

PARAMETER	CONDITIONS ($T_{A}=25^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
Voltage Mode	DAC1200, $\mathrm{V}_{\epsilon} \leqslant 1.25 \mathrm{mV}$		1.5	3.0	$\mu \mathrm{s}$
± 1 LSB Settling Time (Note 5)	DAC1201, $\mathrm{V}_{\epsilon} \leqslant 5.0 \mathrm{mV}$		1	3.0	$\mu \mathrm{s}$
Voltage Mode Full-Scale	DAC1200, $\mathrm{V}_{\epsilon} \leqslant 1.25 \mathrm{mV}$		2.5	5.0	$\mu \mathrm{s}$
Change Settling Time (Note 5)	DAC1201, $V_{\epsilon} \leqslant 5.0 \mathrm{mV}$		2.0	5.0	$\mu \mathrm{s}$
Current Mode ${ }^{\text {Full-Scale Settling Time }}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, C_{L} \leqslant 20 \mathrm{pF} \\ & 0 \leqslant \Delta I_{O U T} \leqslant 2 \mathrm{~mA} \end{aligned}$		* 1.5		$\mu \mathrm{s}$
Voltage Mode Slew Rate	$-10 \mathrm{~V} \leqslant \Delta \mathrm{~V}_{\text {OUT }} \leqslant+10 \mathrm{~V}$		15		$\mathrm{V} / \mu \mathrm{s}$

Note 1: Unless otherwise noted, these specifications apply for $\mathrm{V}^{+}=15.0 \mathrm{~V}, \mathrm{~V}^{-}=-15.0 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DAC1200HD/ 1201 HD and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the DAC1200HCD/1201HCD.
Note 2: All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: Unless otherwise noted, this specification applies for $V_{R E F}=10.24 \mathrm{~V}$, and over the temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Testing conditions include adjustment of offset to 0 V and full-scale to 10.2375 V .
Note 4: The DAC1200 is tested for monotonicity by stimulating all bits; the DAC1201 is tested for monotonicity by stimulating only the 10 MSBs and holding the 2 LSBs at 2.0 V (i.e., 2 LSBs are OFF).
Note 5: Not tested - guaranteed by design.

Typical Performance Characteristics

Applications Information

1. Introduction

The DAC1200 series D/A converters are designed to minimize adjustments and user-supplied external components. For example, included in the package are a buffered reference, offset nulled output amplifier, and application resistors as well as the basic 12 -bit current mode D/A.
However, the DAC1200 series is a sophisticated building block. Its principles of operation and the following applications information should be read before applying power to the device.
The user is referred to National Semiconductor Application Notes AN-156 and AN-157 for additional information.

2. Power Supply Selection \& Decoupling .

Selection of power supplies is important in applications requiring 0.01% accuracy. The $\pm 15 \mathrm{~V}$ supplies should be well regulated ($\pm 15 \mathrm{~V} \pm 0.1 \%$) with less than 0.5 mVrms of output noise and hum.
To realize the full speed capability of the device, all three power supply leads should be bypassed with $1 \mu \mathrm{~F}$ tantalum electrolytic capacitors in shunt with $0.01 \mu \mathrm{~F}$ ceramic disc capacitors no farther than $1 / 2$ inch from the device package.

3. Unipolar and Bipolar Operation

The DAC1200 series D/A's may be configured for either unipolar or bipolar operation using resistors provided with the device. Figure 1A illustrates the proper connection for unipolar operation.
Bipolar operation is accomplished by offsetting the output amplifier A3 as shown in Figure 2A.

${ }^{*} V_{\text {OUT }}=($ IZERO to IFULLSCALE $)\left(\frac{R 21 \cdot R 22}{R 21+R 22}\right)$
$=(0 \mathrm{~mA}$ to 2.0475 mA$)(5 \mathrm{kS}))$
$=0 \mathrm{~V}$ to +10.2375 V
*Values shown are for $V_{\text {REF }}=10.240 \mathrm{~V}$.
1 LSB Voltage Step $=\frac{10.240 \mathrm{~V}}{4096}=2.5 \mathrm{mV}$.
1 LSB Current Step $=\frac{2.5 \mathrm{mV}}{5.0 \mathrm{k} \Omega}=0.5 \mu \mathrm{~A}$
FIGURE 1A. DAC1200/DAC1201 Unipolar Operation

$$
\begin{aligned}
&{ }^{*} \mathrm{~V}_{\text {OUT }}=(0 \text { to } 2.0475 \mathrm{~mA}) \mathrm{R} 22-\frac{\mathrm{V}_{\text {REF }}}{\mathrm{R} 22} \mathrm{R} 21 \\
&=(0 \text { to } 2.0475 \mathrm{~mA}) \mathrm{R} 22-\mathrm{V}_{\text {REF }}, R 21 \equiv \mathrm{R} 22 \\
&=-10.240 \text { to }+10.235 \mathrm{~V} \\
& * \text { Values shown are for } \mathrm{V}_{\text {REF }}=10.240 \mathrm{~V} \\
& 1 \text { LSB }=5 \mathrm{mV} . \\
& \text { FIGURE 2A. DAC1200/DAC1201 Bipolar Operation }
\end{aligned}
$$

External resistors may be used to achieve alternate zero and full-scale voltages. It is advantageous to utilize R21 and R22 even in these applications since they are closely matched in TCR and temperature to the internal array. Figure 3 illustrates the recommended circuit for zero to 5 V operation. REXT should be of metal film or wirewound construction with a TCR of less than $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

$R_{T O T A L}=(R 21)\|(R 22)\|(R E X T)=\frac{V_{F U L L S C A L E}}{2.0475 \mathrm{~mA}}=2.5 \mathrm{k} \Omega$.
FIGURE 3. DAC1200 0 to 5.120 V Operation

4. Offset and Full-Scale Adjust

If higher precision is required in the zero and full-scale, external adjustments may be made. The circuit of figure 4 illustrates the recommended circuit to adjust offset and full-scale of the DAC1200 series. The circuit will work equally well for unipolar or bipolar operation.
In bipolar operation, the offset is adjusted at minus fullscale; in the unipolar case at zero scale.

FIGURE 4. Offset \& Full-Scale Adjust
For the values shown in figure 4, R1 will allow a $\pm 7 \mathrm{mV}$ offset adjustment for the unipolar case and $\pm 15 \mathrm{mV}$ for the bipolar case. R2 will allow a $\pm 50 \mathrm{mV}$ adjustment of full scale.

5. Current Mode Operation

Access to the summing junction of A3 affords current mode operation either with a resistive load or to drive a fast-settling external operational amplifier. The loop around A3 should not be closed in current mode operation. There is a $\pm 2.5 \mathrm{~V}$ maximum compliance voltage at A2's output (pin 18) which restricts the maximum size of the load resistor; i.e., $R_{L} \times I_{\text {FULLS }}$ (

Note: IFULLSCALE $\approx 2 \mathrm{~mA}$.

6. Settling Time \& Glitch Minimization

The settling time of the DAC1200 series and the glitch which occurs between major input code changes may be improved by placing a 10 to 30 pF capacitor between pins 18 (current-mode output) and 19 (voltage mode output). The capacitor is used to cancel output capacitance of the current mode D/A and stray capacitance at pin 18.

7. Current Output Boosting

The DAC1200 series may be operated as a "power D/A" by including a current buffer such as the LH0002 or LH0063 in the loop with A3 as shown in figure 5.

FIGURE 5. Current Boosted Output

8. Logic Input Coding

The sense of the logic inputs to the DAC1200 series is complementary; i.e., a given bit is turned ON by an active "low" input. Table I summarizes input status for the unipolar and bipolar complementary binary and BCD codes.
Other input codes may also be used. For example, the twos complement code, which is used extensively in computer and microprocessor applications, may be converted to the DAC1200 complementary bipolar format by inverting all bits except the MSB. The inversion may be accomplished in the microprocessor by software control, or by hardware using standard hex-inverters.

9. Reference Voltage

External reference voltages may be used with the DAC1200 series. Voltages other than 10.240 or 10.000 V in the range of +5.0 V to 11 V will work satisfactorily for voltage mode operation. Full-scale voltage is always $V_{\text {REF }}-1$ LSB where 1 LSB $=V_{\text {REF }} / 4096$. Full-scale current may be predicted by:
$I_{\text {FULLSCALE }}=\left(\mathrm{V}_{\text {REF }}\right)(0.19995117) \mathrm{mA}$

CODE TYPE	（Note 8） INPUT CODE			OUTPUT STATE	OUtPut Voltage output current$V_{R E F}=10.240 \mathrm{~V}$	
	MSB		LSB			
Unipolar Complementary Binary	0000	0000	0000	Full－Scale	＋10．2375V	2.0475 mA
	1111	1111	1110	1 LSB ON．	＋2．500mV	$0.500 \mu \mathrm{~A}$
	1111	1111	1111	Zero Scale	Zero	Zero
Bipolar Complementary Binary	0000	0000	0000	Full：Scale	$+10.235 \mathrm{~V}$	$+1.0235 \mathrm{~mA}$
	0111	1111	1111	Half Full－Scale	－0．000V	0.000 mA
	． 1111	1111	1110	1 LSB ON	－10．235V	－ 1.0235 mA
	1111	1111	1111	Zero Scale	－10．240V	$-1.0240 \mathrm{~mA}$

Note 8：Logic input sense is such that an active low（ $V_{I N} \leqslant 0.8 V$ ）turns a given bit $O N$ and is represented as a logic＂ 0 ＂in the table．

Definition of Terms

Resolution

Resolution is defined as the reciprocal of the number of discrete steps in the D／A output（as designed）．It is directly related to the number of switches or bits within the D／A．For example，the DAC1200 has 2^{12} or 4096 steps．Resolution may therefore be expressed variously as 12 bits，as 1 part in 212 ，as 1 part in 4096 ，or as a percentage（ $1 / 4096 \times 100=0.0244 \%$ ）．

Linearity Error

Linearity error is the maximum deviation from a straight line passing through the endpoints of the D／A transfer characteristic．It is measured after calibrating for zero and full－scale．The linearity error of the DAC1200 series is guaranteed to be less than $\pm 1 / 2$ LSB or 0.0122% of F ．S． for the DAC1200／1200C and $\pm 0.0488 \%$ of F．S．for the DAC1201／DAC1201C．Linearity error is a design para－ meter intrinsic to the device and cannot be externally adjusted．

Offset Voltage

Offset voltage is an output voltage other than zero volts for unipolar operation（and other than minus full－scale for bipolar operation）with all bits turned OFF．In the DAC1200 series this error resides primarily in the output amplifier，A3．Offset voltage is adjustable to zero as discussed in the applications section．

Power Supply Sensitivity

Power supply sensitivity is a measure of the effect of power supply changes on the D／A full－scale output．

Settling Time

Two settling time parameters are specified for the DAC1200 series．Fuil－scale settling time requires a zero to full－scale or full－scale to zero output change．One LSB settling time requires one LSB output change．In both instances，settling time is the time required from a code transition until the D／A output reaches within $\pm 1 / 2$ LSB of final output value．

Monotonicity

Monotonicity is a characteristic of the D／A which re－ quires a non－negative output step for an increasing input digital code．Monotonicity，therefore，demands no back steps or changes in sign of the slope of the D／A transfer characteristic．

Full－Scale Error

Full－scale error is a measure of the output error between an ideal D／A and the actual device output．Ideally，for the DAC1200 full－scale is $V_{\text {REF }}-1$ LSB．For $V_{\text {REF }}=$ 10.240 V and unipolar operation，VFULLSCALE $=$ $10.240 \mathrm{~V}-2.5 \mathrm{mV}=10.2375 \mathrm{~V}$ ：Departures from this value include internal gain，scaling，and reference errors． Full－scale error is adjustable to zero as discussed in the Applications section．

Typical Application

DC Test Circuit

$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=4.7 \mu \mathrm{~F}$ (solid tantalum) in parallel with a $0.01 \mu \mathrm{~F}$ ceramic disc

Ordering Information

PART NUMBER	PACKAGE	$25^{\circ} \mathrm{C}$ LINEARITY ERROR	OPERATING TEMPERATURE RANGE
DAC1200HD	Ceramic DIP	0.01%	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DAC1201HD	Ceramic DIP	0.05%	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DAC1200HCD	Ceramic DIP	0.01%	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1201HCD	Ceramic DIP	0.05%	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

General Description

The DAC1208 and the DAC1230 series are 12-bit multiplying D to A converters designed to interface directly with a wide variety of microprocessors $(8080,8048,8085, Z-80$, etc.). Double buffering input registers and associated control lines allow these DACs to appear as a two-byte "stack" in the system's memory or l/O space with no additional interfacing logic required.
The DAC1208 series provides all 12 input lines to allow single buffering for maximum throughput when used with 16 -bit processors. These input lines can also be externally configured to permit an 8 -bit data interface. The DAC1230 series can be used with an 8-bit data bus directly as it internally formulates the 12 -bit DAC data from its 8 input lines. All of these DACs accept left-justified data from the processor.

The analog section is a precision silicon-chromium (Si-Cr) R-2R ladder network and twelve CMOS current switches. An inverted R-2R ladder structure is used with the binary weighted currents switched between the IOUT1 and lout2 maintaining a constant current in each ladder leg independent of the switch state. Special circuitry provides TTL logic input voltage level compatibility.
The DAC1208 series and DAC1230 series are the 12-bit members of a family of microprocessor compatible DACs (MICRO-DACs ${ }^{\text {TM }}$). For applications requiring other resolutions, the DAC1000 series for 10 -bit and DAC0830 series for 8 -bit are available alternatives.

Features

- Linearity specified with zero and full-scale adjust only
- Direct interface to all popular microprocessors
- Double-buffered, single-buffered or flow through digital data inputs
- Logic inputs which meet TTL voltage level specs (1.4V logic threshold)
- Works with $\pm 10 \mathrm{~V}$ reference-full 4-quadrant multiplication
- Operates stand-alone (without $\mu \mathrm{P}$) if desired
- All parts guaranteed 12 -bit monotonic
- DAC1230 series is pin compatible with the DAC0830 series 8 -bit MICRO-DACs

Key Specifications

- Current Settling Time
$1 \mu \mathrm{~S}$
- Resolution 12 Bits
- Linearity (Guaranteed over temperature)
- Gain Tempco
- Low Power Dissipation
- Single Power Supply

10,11 , or 12 Bits of FS
$1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
20 mW
$5 \mathrm{~V}_{\mathrm{DC}}$ to $15 \mathrm{~V}_{\mathrm{DC}}$

Typical Application

Ordering Information

Accuracy	Package	
	20-Pin D20A	24-Pin D24C
	DAC1230LCD	DAC1208LCD
0.024%	DAC1231LCD	DAC1209LCD
0.05%	DAC1232LCD	DAC1210LCD

MICRO-DAC ${ }^{\text {TM }}$ is a trademark of National Semiconductor Corp.

Absolute Maximum Ratings (Notes 1 and 2)
Supply Voltage ($V_{C C}$)
Voltage at Any Digital Input
Voltage at $V_{\text {REF }}$ Input
$17 V_{D C}$
$V_{C C}$ to GND
$\pm 25 \mathrm{~V}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $T_{A}=25^{\circ} \mathrm{C}$ (Note3) $\quad 500 \mathrm{~mW}$
DC Voltage Applied to lout1 or Iout2 $\quad-100 \mathrm{mV}$ to $\mathrm{V}_{\text {CC }}$ (Note 4)
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

Operating Ratings

$$
\begin{array}{lr}
\text { Temperature Range } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} * \\
\text { Range of } \mathrm{V}_{\mathrm{CC}} & 4.75 \mathrm{~V}_{\mathrm{DC}} \text { to } 16 \mathrm{~V}_{\mathrm{DC}} \\
\text { Voltage at Any Digital Input } & \mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}
\end{array}
$$

* Military temperature range device will be available in future.

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{C C}=11.4 \mathrm{~V}_{\mathrm{DC}}$ to $15.75 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Units	Notes
Resolution		12,	12	12	Bits	
Linearity Error (End Point Linearity)	Zero and Full-Scale Adjusted					4,7
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$					6
	$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 10 \mathrm{~V}$					5
	DAC1208, DAC1230			0.012	\% of FSR	
	DAC1209, DAC1231			0.024	\% of FSR	
	DAC1210, DAC1232			0.05	\% of FSR	
Differential Non-Linearity	Zero and Full-Scale Adjusted					4,7
	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\text {A }}<T_{\text {MAX }}$					6
	$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 10 \mathrm{~V}$					5
	DAC1208, DAC1230			0.012	\% of FSR	
	DAC1209, DAC1231			0.024	\% of FSR	
	DAC1210, DAC1232			0.05	\% of FSR	
Monotonicity	$\begin{aligned} & T_{\text {MIN }}<T_{A}<T_{\text {MAX }} \\ & -10 V \leq V_{\text {REF }} \leq 10 V \end{aligned}$	12	12	12	Bits	4,6 5
Gain Error	Using Internal R_{Fb}	-0.2	-0.01	0	\% of FS	5
Gain Error Tempco	$T_{\text {MIN }}<T_{A}<T_{\text {MAX }}$					6,7
	Using Internal R_{Fb}		± 1.3	± 6.0	ppm of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$	10
Power Supply Rejection	All Digital Inputs Latched High		± 3.0		ppm of FSR/V	7
Reference Input Resistance Output Feedthrough Error		10	15	20	k Ω	
	$V_{\text {REF }}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=100 \mathrm{kHz}$ All Data Inputs Latched		3		$m \vee p-p$	9
	Low					
Output Capacitance	All Data Inputs lout1		200		pF	
	Latched High lout2		70		pF	
	All Data Inputs lout1		70		pF	
	Latched Low lout2		200		pF	
Supply Current Drain	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq T_{\text {MAX }}$		1.2	2.0	mA	6
Output Leakage Current lout1	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$					6, 11
	All Data Inputs Latched			15	nA	6, 11
Iout2	All Data Inputs Latched			15	nA	
	High					
Digital Input Threshold	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ Low Threshold			0.8		, 6
	High Threshold	2.0		0.8	$\begin{aligned} & V_{D C} \\ & V_{D C} \end{aligned}$	
Digital Input Currents						6
	Digital Inputs $<0.8 \mathrm{~V}$		- 50	-200	$\mu A_{D C}$	
	Digital Inputs $>2.0 \mathrm{~V}$		0.1	10	$\mu A_{D C}$	

Electrical Characteristics (Continued)

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{C C}=11.4 \mathrm{~V}_{\mathrm{DC}}$ to $15.75 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted.

	Parameter	Conditions	Min	Typ	Max	Units	Notes
t_{s}	Full-Scale Current Settling Time	$\begin{aligned} & R_{\mathrm{L}}=100 \Omega, \text { Output Settled } \\ & \text { to } 0.01 \% \overline{\mathrm{CS}}=\overline{\mathrm{WR} 1}= \\ & \overline{\mathrm{WR2}}=\overline{\mathrm{XFER}}=0 \mathrm{~V}, \text { Byte } 1 / \\ & \overline{\text { Byte } 2}=5 \mathrm{~V}, \mathrm{DI} \\ & 0 \text { through } \\ & \mathrm{DI} \\ & 11 \\ & \text { Switched } \\ & \text { Simultaneously } \end{aligned}$		1		$\mu \mathrm{S}$	
$t_{\text {w }}$	Write and $\overline{X F E R}$ Pulse Width	$\begin{aligned} & V_{I L}=0 V, V_{I H}=5 V \\ & T_{M I N} \leq T_{A} \leq T_{M A X} \end{aligned}$	$\begin{aligned} & 320 \\ & 320 \end{aligned}$	$\begin{aligned} & 50 \\ & 80 \end{aligned}$	-	ns	$\begin{array}{r} 8,10 \\ 6,8,10 \end{array}$
$t_{\text {DS }}$	Data Set-Up Time	$\begin{aligned} & V_{I L}=0 V, V_{I H}=5 V \\ & T_{M I N} \leq T_{A} \leq T_{M A X} \end{aligned}$		$\begin{aligned} & 70 \\ & 80 \end{aligned}$	-	ns	10 6,10
$t_{\text {DH }}$	Data Hold Time	$\begin{aligned} & V_{I L}=0 V, V_{I H}=5 V \\ & T_{M I N} \leq T_{A} \leq T_{M A X} \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$		ns	10 6,10
$t_{\text {cs }}$	Control Set-Up Time	$\begin{aligned} & V_{I L}=0 V, V_{I H}=5 \mathrm{~V} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$	320 320	$\begin{gathered} 60 \\ 100 \end{gathered}$	-	ns	
t_{CH}	Control Hold Time	$\begin{aligned} & V_{I L}=0 V, V_{I H}=5 V \\ & T_{M I N} \leq T_{A} \leq T_{M A X} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	ns	10 6,10

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. These specifications are not meant to imply that the devices should be operated at these "Absolute Maximum" limits.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: This 500 mW specification applies for all packages. The low intrinsic power dissipation of this part (and the fact that there is no way to significantly modify the power dissipation) removes concern for heat sinking.
Note 4: Both lOUT1 and IOUT2 must go to ground or the virtual ground of an operational amplifier. The linearity error is degraded by approximately $V_{O S} \div V_{\text {REF }}$. For example, if $V_{\text {REF }}=10 \mathrm{~V}$ then a 1 mV offset, $V_{O S}$, on IOUT1 or IOUT2 will introduce an additional 0.01% linearity error.
Note 5: Guaranteed at $V_{\text {REF }}= \pm 10 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{V}_{\text {REF }}= \pm 1 \mathrm{~V}_{\mathrm{DC}}$.
Note 6: $T_{M I N}=-40^{\circ} \mathrm{C}$ and $T_{M A X}=85^{\circ} \mathrm{C}$.
Note 7: The unit FSR stands for full-scale range. Linearity Error and Power Supply Rejection specs are based on this unit to eliminate dependence on a particular $V_{\text {REF }}$ value to indicate the true performance of the part. The Linearity Error specification of the DAC1208 is 0.012% of FSR (max). This guarantees that after performing a zero and full-scale adjustment, the plot of the 4096 analog voltage outputs will each be within $0.012 \% \times V_{\text {REF }}$ of a straight line which passes through zero and fuli-scale. The unit ppm of FSR (parts per million of full-scale range) and ppm of FS (parts per million of full-scale) are used for convenlence to define specs of very small percentage values, typical of higher accuracy converters. In this instance, 1 ppm of $\mathrm{FSR}=\mathrm{V}_{\mathrm{REF}} / 10^{6}$ is the conversion factor to provide an actual output voltage quantity. For example, the gain error tempco spec of $\pm 6 \mathrm{ppm}$ of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ represents a worst-case full-scale gain error change with temperature from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ of $\pm(6)\left(V_{\text {REF }} / 10^{6}\right)\left(125^{\circ} \mathrm{C}\right)$ or $\pm 0.75\left(10^{-3}\right) V_{R E F}$ which is $\pm 0.075 \%$ of $V_{\text {REF }}$.
Note 8: This spec implies that all parts are guaranteed to operate with a write pulse or transfer pulse width (t W) of 320 ns . A typical part will operate with tw of only 100 ns . The entire write pulse must occur within the valid data interval for the specified $t_{W}, t_{D S}, t_{D H}$ and ts to apply. $^{\text {to }}$
Note 9: To achieve this low feedthrough in the D package, the user must ground the metal lid. If the lid is left floating the feedthrough is typically 6 mV . Note 10: Guaranteed by design but not tested.
Note 11: A 10 nA leakage current with $\mathrm{R}_{\mathrm{Fb}}=20 \mathrm{k}$ and $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(10 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 \% 10 \mathrm{~V}$ or 0.002% of FS .
Connection Diagrams

Dual-In-Line Package

Switching Waveforms

$\overline{\text { CS }}$, BYTE $1 / \overline{\text { BYTE } 2}$

WR

Typical Performance Characteristics

Definition of Package Pinouts

CONTROL SIGNALS (all control signals are level actuated)
$\overline{\mathrm{CS}}$: Chip Select (active low). The $\overline{\mathrm{CS}}$ will enable $\overline{\mathrm{WR1}}$.
$\overline{W R 1}$: Write 1. The active low $\overline{W R 1}$ is used to load the digital data bits (DI) into the input latch. The data in the input latch is latched when $\overline{W R 1}$ is high. The 12-bit input latch is split into two latches, one holds the first 8 bits, while the other holds 4 bits. The Byte $1 / \overline{\mathrm{Byte} 2}$ control pin is used to select both latches when Byte $1 / \overline{\text { Byte } 2}$ is high or to overwrite the 4-bit input latch when in the low state.
Byte 1/Byte 2: Byte Sequence Control. When this control is high, all 12 locations of the input latch are enabled. When low, only the four least significant locations of the input latch are enabled.

XFER: Transfer Control Signal (active low). This signal, in combination with $\overline{\text { WR2, causes the } 12 \text {-bit data which is }}$ available in the input latches to transfer to the DAC register.
DI_{0} to Dl_{11} : Digital Inputs. DI_{0} is the least significant digital input (LSB) and Dl_{11} is the most significant digital input (MSB).

Iout1: DAC Current Output 1. Iout1 is a maximum for a digital code of all is in the DAC register, and is zero for all Os in the DAC register.

Iout2: DAC Current Output 2. Iout2 is a constant minus lout1, or lout $1+$ l $_{\text {OUT2 }}=$ constant (for a fixed reference voltage). This constant current is

$$
V_{\mathrm{REF}} \times\left(1-\frac{1}{4096}\right)
$$

divided by the reference input resistance.
$\mathbf{R}_{\text {Fb }}$: Feedback Resistor. The feedback resistor is provided on the IC chip for use as the shunt feedback resistor for the external op amp which is used to provide an output voltage for the DAC. This on-chip resistor should always be used (not an external resistor) since it matches the resistors which are used in the on-chip R-2R ladder and tracks these resistors over temperature.
$V_{\text {REF }}$: Reference Voltage Input. This input connects an external precision voltage source to the internal R-2R ladder. $\mathrm{V}_{\mathrm{REF}}$ can be selected over the range of 10 V to -10 V . This is also the analog voltage input for a 4-quadrant multiplying DAC application.

a) End point test after zero and FS adjust
$V_{c c}$: Digital Supply Voltage. This is the power supply pin for the part. $\mathrm{V}_{C C}$ can be from $5 \mathrm{~V}_{D C}$ to $15 \mathrm{~V}_{D C}$. Operation is optimum for $15 \mathrm{~V}_{\mathrm{DC}}$.
AGND: Analog Ground. This is the ground for the analog circuitry.
DGND: Digital Ground. This is the ground for the digital logic.

Definition of Terms

Resolution: Resolution is defined as the reciprocal of the number of discrete steps in the DAC output. It is directly related to the number of switches or bits within the DAC. For example, the DAC1208 has 2^{12} or 4096 steps and therefore has 12-bit resolution.

Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.
National's linearity test (a) and the best straight line test (b) used by other suppliers are illustrated below. The best straight line (b) requires a special zero and FS adjustment for each part, which is almost impossible for the user to determine. The end point test uses a standard zero FS adjustment procedure and is a much more stringent test for DAC linearity.
Power Suppiy Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output.
Settling Time: Full-scale current settling time requires zero to full-scale or full-scale to zero output change. Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value.
Full-Scale Error: Full-scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC1208 or DAC1230 series, fullscale is $V_{\text {REF }}-1$ LSB. For $V_{\text {REF }}=10 \mathrm{~V}$ and unipolar operation, $\mathrm{V}_{\text {FULL-SCALE }}=10.0000 \mathrm{~V}-2.44 \mathrm{mV}=9.9976 \mathrm{~V}$. Full. scale error is adjustable to zero.
Differential Non-Linearity: The difference between any two consecutive codes in the transfer curve from the theoretical 1 LSB is differential non-linearity.

Monotonic: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. A 12-bit DAC which is monotonic to 12 bits simply means that input increasing digital input codes will produce an increasing analog output.

b) Shifting FS adjust to pass best straight line test

Application Hints

1.0 DIGITAL INTERFACE

These DACs are designed to provide all of the necessary digital input circuitry to permit a direct interface to a wide variety of microprocessor systems. The timing and logic level convention of the input control signals allow the DACs to be treated as a typical memory device or I/O peripheral with no external logic required in most systems. Essentially these DACs can be mapped as a two-byte stack in memory (or I/O space) to receive their 12 bits of input data in two successive 8 -bit data writing sequences. The DAC1230 series is intended for use in systems with an 8 -bit data bus. The DAC1208 series provides all 12 digital input lines which can be externally configured to be controlled from an 8-bit bus or can be driven directly from a 16-bit data bus.

All of the digital inputs to these DACs contain a unique threshold regulator circuit to maintain TTL voltage level compatibility independent of the applied V_{CC} to the DAC. Any input can also be driven from higher voltage CMOS logic levels in non-microprocessor based systems. To prevent damage to the chip from static discharge, all unused digital inputs should be tied to $V_{C C}$ or ground. As a troubleshooting aid, if any of the digital inputs are inadvertently left floating, the DAC will interpret the pin as a logic " 1 ".

Double buffered digital inputs allow the DAC to internally format the 12 -bit word used to set the current switching R-2R ladder network (see section 2.0) from two 8-bit data write cycles. Figures 1 and 2 show the internal data registers and their controlling logic circuitry. The timing diagrams for updating the DAC output are shown in sections 1.1, 1.2 and 1.3 for three possible control modes. The method used depends strictly upon the particular application.

FIGURE 1. DAC1208, DAC1209, DAC1210 Functional Diagram

FIGURE 2. DAC1230, DAC1231, DAC1232 Functional Diagram

Application Hints (Continued)

1.1 Automatic Transfer

The 12-bit DAC word is automatically transferred to the DAC register and the R-2R ladder when the second write (the 4 LSBs of the data) occurs.

1.2 Independent Processor Transfer Control

In this case a separate address is decoded to provide the $\overline{\text { XFER }}$ signal. This allows the processor to load the next required DAC word but not change the analog output until some time later, most useful for the simultaneous updating of several DACs in a system where their $\overline{X F E R}$ lines would be tied together.

1.3 Transfer via an External Strobe

This method is basically the same as the previous operation except the $\overline{X F E R}$ signal is provided by a device other than the processor. This allows the DAC to hold the code for a conditional analog output signal which will be required on demand from an external monitoring device (an analog voltage comparator for instance).

DAC1208, DAC1209, DAC1210, DAC1230,
DAC1231, DAC1232

Application Hints (Continued)

1.4 Left-Justified Data Format

It is important to realize that the input registers of these DACs are arranged to accept a left-justified data word from the microprocessor with the most significant 8 bits coming first (Byte 1) and the lower 4 bits second. Left justification simply means that the binary point is assumed to be located to the left of the most significant bit. Figure 3 shows how the 12 bits of DAC data should be arranged in 28 -bit registers of an 8 -bit processor before being written to the DAC.

$X=$ don't care

1.5 16-Bit Data Bus Interface

The DAC1208 series provides all 12 digital input lines to permit a direct parallel interface to a 16 -bit data bus. In this instance, double buffering is not always necessary (unless a simultaneous updating of several DACs or a data transfer via an external strobe is desired) so the 12-bit DAC register can be wired to flow-through whereby its Q outputs always reflect the state of its D inputs. The external connections required and the timing diagram for this single buffered application are shown in Figure 4. Note that either left or right-justified data from the processor can be accommodated with a 16 -bit data bus.

1.6 Flow-Through Operation

Through primarily designed to provide microprocessor interface compatibility, the MICRO-DACs can easily be configured to allow the analog output to continuously reflect the state of an applied digital input. This is most useful in applications where the DAC is used in a continuous feedback control loop and is driven by a binary updown counter, or in function generation circuits where a ROM is continuously providing DAC data.

FIGURE 3. Left-Justified Data Format

Application Hints (Continued)

Only the DAC1208, DAC1209, DAC1210 devices can have all 12 inputs flow-through. Simply grounding $\overline{\mathrm{CS}}, \overline{\mathrm{WR1}}$, $\overline{\mathrm{WR2}}$ and $\overline{\mathrm{XFER}}$ and tying Byte $1 / \overline{\text { Byte } 2}$ high allows both internal registers to follow the applied digital inputs (flowthrough) and directly affect the DAC analog output.

1.7 Address Decoding Tips

It is possible to map the MICRO-DACs into system ROM space to allow more efficient use of existing address decoding hardware. The DAC in effect could share the same addresses of any number of ROM locations. The ROM outputs will only be enabled by a READ of its address (gated by the system READ strobe) and the DAC will only accept data that is written to the same address (gated by the system WRITE strobe).

The Byte $1 / \overline{\text { Byte } 2}$ control function can easily be generated by the processor's least significant address bit (A0) by placing the DAC at two consecutive address locations and utilizing double-byte WRITE instructions which automatically increment or decrement the address. The $\overline{\mathrm{CS}}$ and $\overline{\mathrm{XFER}}$ signals would then be decoded from the remaining address bits. Care must be taken in selecting the actual address used for Byte 1 of the DAC to prevent a carry (as a result of incrementing the address for Byte 2) from propagating through the address word and changing any of the bits being decoded for $\overline{\mathrm{CS}}$ or $\overline{\mathrm{XFER}}$. Figure 5 shows how to prevent this effect.

The same problem can occur from a borrow when an autodecremented address is used; but only if the processor's address outputs are inverted before being decoded.

1.8 Control Signal Timing

When interfacing these MICRO-DACs to any microprocessor, there are two important time relationships that must be considered to insure proper operation. The first is the minimum $\overline{W R}$ strobe pulse width which is specified as 320 ns for $\mathrm{V}_{\mathrm{CC}}=11.4 \mathrm{~V}$ to 15.75 V and operation over temperature, but typically a pulse width of only 250 ns is adequate. A second consideration is that the guaranteed minimum data hold time of 90 ns should be met or erroneous data can be latched. This hold time is defined as the length of time data must be held valid on the digital inputs after a qualified (via $\overline{C S}$) $\overline{W R}$ strobe makes a low to high transition to latch the applied data.

If the controlling device or system does not inherently meet these timing specs the DAC can be treated as a slow memory or peripheral and utilize a technique to extend the write strobe. A simple extension of the write time, by adding a wait state, can simultaneously hold the write strobe active and data valid on the bus to satisfy the minimum $\overline{W R}$ pulse width. If this does not provide a sufficient data hold time at the end of the write cycle, a negative edge triggered one-shot can be included between the system write strobe and the $\overline{W R}$ pin of the DAC. This is illustrated in Figure 6 for an exemplary system which provides a 250 ns $\overline{W R}$ strobe time with a data hold time of only 10 ns.

Write Cycle	Address Bits			
	15	2	$\mathbf{1}^{*}$	$0^{* *}$
	Decoded to Address DAC	0	1	
Second (Byte 2)		1	0	

* Starting with a 0 prevents a carry on address incrementing.
* Used as Byte $1 /$ Byte2
Control

FIGURE 5

FIGURE 6. Accommodating a High Speed System

Application Hints (Continued)

The proper data set-up time prior to the latching edge (low to high transition) of the $\overline{W R}$ strobe, is insured if the $\overline{W R}$ pulse width is within spec and the data is valid on the bus for the duration of the DAC $\overline{W R}$ strobe.

1.9. Digital Signal Feedthrough

A typical digital/microprocessor is a tremendous potential source of high frequency noise which can be coupled to sensitive analog circuitry. The fast edges of the data and address bus signals generate frequency components of 10's of megahertz and may cause fast transients to appear at the DAC output, even when data is latched internally.
In low frequency or DC applications, low pass filtering can 'reduce the magnitude of any fast transients. This is most easily accomplished by over-compensating the DAC output amplifier by increasing the value of its feedback capacitor.

In applications requiring a fast output response from the DAC and op amp, filtering may not be feasible. In this event, digital signals can be completely isolated from the DAC circuitry, by the use of a DM74LS374 latch, until a valid CS signal is applied to update the DAC. This is shown in Figure 7.
A single TRI-STATE ${ }^{\oplus}$ data buffer such as the DM81LS95 can be used to isolate any number of DACs in a system. Figure 8 shows this isolating circuitry and decoding hardware for a multiple DAC analog output card. Pull-up resistors are used on the buffer outputs to limit the impedance at the DAC digital inputs when the card is not selected. A unique feature of this card is that the DAC $\overline{X F E R}$ strobes are controlled by the data bus. This allows a very flexible update of any combination of analog outputs via a transfer word which would contain a zero in the bit position assigned to any of the DACs required to change to a new output value.

FIGURE 7. Isolating Data Bus from DAC Circuitry to Eliminate Digital Noise Coupling

Application Hints (Continued)

2.0 ANALOG APPLICATIONS

The analog output signal for these DACs is derived from a conventional R-2R current switching ladder network. A detailed description of this network can be found on the DAC1000 series data sheet. Basically, output lout1 provides a current directly proportional to the product of the applied reference voltage and the digital input word. A second output, I Iout2 will be a current proportional to the complement of the digital input. Specifically:

$$
\begin{aligned}
& I_{\text {OUT1 }}=\frac{V_{\text {REF }}}{15 k} \times \frac{D}{4096} \\
& I_{\text {OUT2 }}=\frac{V_{\text {REF }}}{15 k} \times \frac{4095-D}{4096}
\end{aligned}
$$

where D is the decimal equivalent of the applied 12-bit binary word (ranging from 0 to 4095), $\mathrm{V}_{\text {REF }}$ is the voltage applied to the $V_{\text {REF }}$ terminal and $15 \mathrm{k} \Omega$ is the nominal value of the internal resistance, R, of the R-2R ladder.

2.1 Obtaining a Unipolar Output Voltage

To maintain linearity of output current with changes in the applied digital code, it is important that the voltages at both of the current output pins be as near ground potential ($0 \mathrm{~V}_{\mathrm{DC}}$) as possible. With $\mathrm{V}_{\mathrm{REF}}=+10 \mathrm{~V}$ every millivolt appearing at either lout1 or lout2 will cause a 0.01% linearity error. In most applications this output current is converted to a voltage by using an op amp as shown in Figure 9.

The inverting input of the op amp is a virtual ground created by the feedback from its output through the internal $15 \mathrm{k} \Omega$ resistor, R_{Fb}. All of the output current (determined by the digital input and the reference voltage) will flow through $R_{F b}$ to the output of the amplifier. Twoquadrant operation can be obtained by reversing the polarity of $\mathrm{V}_{\text {REF }}$ thus causing louti to flow into the DAC and be sourced from the output of the amplifier. The output voltage, in either case, is always equal to $\mathrm{l}_{\text {OUT1 }} \times \mathrm{R}_{\mathrm{Fb}}$ and is the opposite polarity of the reference voltage.
The reference can be either a stable DC voltage source or an $A C$ signal anywhere in the range from -10 V to +10 V . The DAC can be thought of as a digitally controlled attenuator: the output voltage is always less than the applied reference voltage. The $\mathrm{V}_{\mathrm{REF}}$ terminal of the device presents a nominal impedance of $15 \mathrm{k} \Omega$ to ground to external circuitry.
Always use the internal $R_{F b}$ resistor to create an output voltage since this resistor matches (and tracks with temperature) the value of the resistors used to generate the output current (lout1).
The selected op amp should have as low a value of input bias current as possible. The product of the bias current times the feedback resistance creates an output voltage error which can be significant in low reference voltage applications. BI-FET ${ }^{\text {TM }}$ op amps are highly recommended for use with these DACs because of their very low input current.

$$
\begin{aligned}
V_{\text {OUT }} & =-\left(\text { IOUT } 1 \times R_{\text {Fb }}\right) \\
& =\frac{-V_{\text {REF }}(D)}{4096}
\end{aligned}
$$

for $0 \leq D \leq 4095$

FIGURE 9. Unipolar Output Configuration

Application Hints (Continued)

Transient response and settling time of the op amp are important in fast data throughput applications. The largest stability problem is the feedback pole created by the feedback resistance, $R_{F b}$, and the output capacitance of the DAC. This appears from the op amp output to the (-) input and includes the stray capacitance at this node. Addition of a lead capacitance, C_{C} in Figure 9, greatly reduces overshoot and ringing at the output for a step change in DAC output current.

2.1.1 Zero and Full-Scale Adjustments

For accurate conversions, the input offset voltage of the output amplifier must always be nulled. Amplifier offset errors create an overall degradation of DAC linearity.
The fundamental purpose of zeroing is to make the voltage appearing at the DAC outputs as near $0 V_{D C}$ as possible. This is accomplished by shorting out $R_{\text {Fb }}$, the amplifier feedback resistor, and adjusting the V_{OS} nulling potentiometer of the op amp until the output reads zero volts. This is done, of course, with an applied digital code of all zeros if lout1 is driving the op amp (all ones for lout2). The short around $R_{F b}$ is then removed and the converter is zero adjusted.
A unique feature of this series of DACs is that the fullscale or gain error is guaranteed to be negative. The gain error specification is a measure of how close the value of
the internal feedback resistor, R_{Fb}, matches the R-2R ladder resistors. A negative gain error indicates that $R_{F b}$ is a smaller resistance value than it should be. To adjust this gain error, some resistance must always be added in series with R_{Fb}. The 50Ω potentiometer shown is sufficient to adjust the worst-case gain error for these devices.

2.2 Bipolar Output Voltage from a Fixed Reference

The addition of a second op amp to the unipolar output circuit can generate a bipolar output voltage from a fixed reference voltage. This, in effect, gives sign significance to the MSB of the digital input word to allow two quadrant multiplication of the reference voltage. The polarity of the reference can also be reversed to realize full 4-quadrant multiplication. This circuit is shown in Figure 10.
This configuration features several improvements over existing circuits for a bipolar output shown with other multiplying DACs. Only the offset voltage of amplifier 1 affects the linearity of the DAC. The offset voltage error of the second op amp (although a constant output error) has no effect on linearity. In addition, this configuration offers a non-interactive positive and negative full-scale calibration procedure.

Input Code MSB LSB	Ideal $\mathrm{V}_{\text {OUT }}$	
	+ $\mathrm{V}_{\text {REF }}$	- VREF
111111111111.	$V_{\text {REF }}-1$ LSB	$-\left\|V_{\text {REF }}\right\|+1$ LSB
110000000000	$V_{\text {REF } / 2}$	$-\left\|V_{\text {REF }}\right\| / 2$
100000000000	0	0
011111111111	-1 LSB	+1 LSB
001111111111	$-\frac{V_{\text {REF }}}{2}-1 L S B$	$\frac{\left\|V_{\text {REF }}\right\|}{2}+1 \mathrm{LSB}$
000000000000	$-V_{\text {REF }}$	$+\left\|V_{\text {REF }}\right\|$

FIGURE 10. Bipolar Output Voltage Configuration

Application Hints (Continued)

2.2.1 Zero and Full-Scale Adjustments

To calibrate the bipolar output circuit, three adjustments are required. The first step is to set all of the digital input LOW (to force $\mathrm{I}_{\text {OUT1 }}$ to 0) then null the V_{OS} of amplifier 1 by setting the voltage at its inverting input (pin 2) to zero volts. Next, with a code of all zeros still applied, adjust "- fullscale adjust", the reference voltage, for $\mathrm{V}_{\text {OUT }}= \pm \mid \mathrm{V}_{\text {REF }}$ ideal|. The polarity of the output voltage at this time will be opposite that of the applied reference. Finally, set all of the digital inputs HIGH and adjust "+ full-scale adjust" for

The polarity of the output will be the same as that of the reference voltage.

3.0 APPLICATION IDEAS

In this section the digital input word is represented by the letter D and is equal to the decimal equivalent of the 12 -bit binary input. Hence D can be any integer value between 0 and 4095.

$$
V_{\text {OUT }}=V_{\text {REF }} \frac{2047}{2048} .
$$

Composite Amplifier for Good DC Characteristics and Fast Output Response

High Voltage, Power DAC

High Current Controller

8-Bit Course, 4-Bit Vernier DAC

DAC1218, DAC1219 12-Bit Binary Multiplying D/A Converter

General Description

The DAC1218 and the DAC1219 are 12-bit binary, 4 -quadrant multiplying D to A converters. The linearity, differential non-linearity and monotonicity specifications for these converters are all guaranteed over temperature. In addition, these parameters are specified with standard zero and full-scale adjustment procedures as opposed to the impractical best fit straight line guarantee.
This level of precision is achieved through the use of an advanced silicon-chromium (SiCr) R-2R resistor ladder network. This type of thin-film resistor eliminates the parasitic diode problems associated with diffused resistors to allow the applied reference voltage to range from -25 V to 25 V , independent of the logic supply voltage.

CMOS current switches and drive circuitry are used to achieve low power consumption (20 mW typical) and minimize output leakage current errors (10 nA maximum). Unique digital input circuitry maintains TTL compatible input threshold voltages over the full operating supply voltage range.
The DAC1218 and DAC1219 are direct replacements for the AD7541 series, AD7521 series, and AD7531 series with a significant improvement in the linearity specification. In applications where direct interface of the D to A converter to a microprocessor bus is desirable, the DAC1208 and DAC1230 series eliminate the need for additional interface logic.

Features

- Linearity specified with zero and full-scale adjust only
- Logic inputs which meet TTL voltage level specs (1.4V logic threshold)
- Works with $\pm 10 \mathrm{~V}$ reference-full 4-quadrant multiplication
- All parts guaranteed 12-bit monotonic

Key Specifications

- Current Settling Time	$1 \mu \mathrm{~S}$
- Resolution	12 Bits
Linearity (Guaranteed over temperature)	12 Bits (DAC1218) 11 Bits (DAC1219)
- Gain Tempco	$1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Low Power Dissipation	20 mW
- Single Power Supply	$5 \mathrm{~V}_{\text {DC }}$ to $15 \mathrm{~V}_{\text {DC }}$

Typical Application

$V_{\text {OUT }}=-V_{\text {REF }}\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\cdots \frac{A 12}{4096}\right)$
where: $A N=1$ if digital input is high
$A N=0$ if digital input is low

Connection Diagram

Dual-In-Line Package

Lead Temperature (Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{CC}}=11.4 \mathrm{~V}_{\mathrm{DC}}$ to $15.75 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted.

	Parameter	Conditions	Min	Typ	Max	Units	Notes
	Resolution		12	12	12	Bits.	
	Linearity Error (End Point Linearity)	Zero and Full-Scale Adjusted $\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$ $-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 10 \mathrm{~V}$ DAC1218 DAC1219			0.012 0.024	\% of FSR \% of FSR	4,7 6 5
	Differential Non-Linearity	Zero and Full-Scale Adjusted $T_{\text {MIN }}<T_{A}<T_{\text {MAX }}$ $-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq 10 \mathrm{~V}$ DAC1218 DAC1219			$\begin{aligned} & 0.012 \\ & 0.024 \end{aligned}$	\% of FSR \% of FSR	4,7 6 5
	Monotonicity	$\begin{aligned} & T_{\text {MIN }}<T_{A}<T_{\text {MAX }} \\ & -10 V \leq V_{\text {REF }} \leq 10 V \end{aligned}$	12	12	12	Bits	4,6 5
	Gain Error	Using Internal $R_{\text {Fb }}$ $-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 10 \mathrm{~V}$	-0.2	-0.01	0.0	\% of FSR	5,7
	Gain Error Tempco	$T_{\text {MIN }}<T_{A}<T_{\text {MAX }}$ Using Internal R_{Fb}		± 1.3	± 6.0	ppm of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$	6,7 9
	Power Supply Rejection	All Digital Inputs High		± 3.0		ppm of FSR/V	7
	Reference Input Resistance		10	15	20	$\mathrm{k} \Omega$	
	Output Feedthrough Error	$V_{\text {REF }}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=100 \mathrm{kHz}$ All Data Inputs Low D Package		3 3		$\begin{aligned} & m \vee p-p \\ & m \vee p-p \end{aligned}$	8
	Output Capacitance	All Data Inputs I Out1 $^{\text {OUT2 }}$ High I OUT2 All Data Inputs $I_{\text {OUT1 }}$ Low IOUT2 $^{\text {OWX }}$		$\begin{gathered} 200 \\ 70 \\ 70 \\ 200 \end{gathered}$		pF pF pF pF	
	Supply Current Drain	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$		1.2	2.0	mA	6
	Output Leakage Current lout1 Iout2	$-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ All Data Inputs Low All Data Inputs High			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	6,10
	Output Leakage Current Iout1 I OUT2	$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$ All Data Inputs Low All Data Inputs High			$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
	Digital Input Threshold	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ Low Threshold High Threshold	2.0		0.8	$V_{D C}$ $V_{D C}$	6
	Digital Input Currents	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ Digital Inputs $<0.8 \mathrm{~V}$ Digital Inputs $>2.0 \mathrm{~V}$		-50 0.1	$\begin{gathered} -200 \\ 10 \end{gathered}$	$\mu A_{D C}$ $\mu A_{D C}$	6
t_{s}	Current Settling Time	$R_{L}=100 \Omega$, Output Settled to 0.01\%, All Digital Inputs Switched Simultaneously		1		$\mu \mathrm{S}$	

Electrical Characteristics Notes

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. These specifications are not meant to imply that the devices should be operated at these "Absolute Maximum" limits.
Note 2: 'All voltages are measured with respect to GND, unless otherwise specified.
Note 3: This 500 mW specification applies for all packages. The low intrinsic power dissipation of this part (and the fact that there is no way to significantly modify the power dissipation) removes concern for heat sinking.
Note 4: Both IOUT1 and IOUT2 must go to ground or the virtual ground of an operational amplifier. The linearity error is degraded by approximately $\mathrm{V}_{\mathrm{OS}} \div \mathrm{V}_{\text {REF }}$. For example, if $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$ then a 1 mV offset, V_{OS}, on IOUT1 or IOUT2 will introduce an additional 0.01% linearity error.
Note 5: Guaranteed at $V_{\text {REF }}= \pm 10 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{V}_{\text {REF }}= \pm 1 \mathrm{~V} \mathrm{VC}$.
Note 6: $T_{\text {MIN }}=-40^{\circ} \mathrm{C}$ and $T_{M A X}=85^{\circ} \mathrm{C}$ for "LCD" suffix parts.
Note 7: The unit FSR stands for full-scale range. Linearity Error and Power Supply Rejection specs are based on this unit to eliminate dependence on a particular $V_{\text {REF }}$ value to indicate the true performance of the part. The Linearity Error specification of the DAC1218 is 0.012% of FSR. This guarantees that after performing a zero and full-scale adjustment, the plot of the 4096 analog voltage outputs will each be within $0.012 \% \times \mathrm{V}_{\text {REF }}$ of a straight line which passes through zero and full-scale. The unit ppm of FSR (parts per million of full-scale range) and ppm of FS (parts per million of full-scale) are used for convenience to define specs of very small percentage values, typical of higher accuracy converters. 1 ppm of $\mathrm{FSR}=\mathrm{V}_{\mathrm{REF}} / 10^{6}$ is the conversion factor to provide an actual output voltage quantity. For example, the gain error tempco spec of $\pm 6 \mathrm{ppm}$ of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ represents a worst-case full-scale gain error change with temperature from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ of $\pm(6)\left(V_{\text {REF }} / 10^{6}\right)\left(125^{\circ} \mathrm{C}\right)$ or $\pm 0.75\left(10^{-3}\right) V_{\text {REF }}$ which is $\pm 0.075 \%$ of $V_{\text {REF }}$.
Note 8: To achieve this low feedthrough in the D package, the user must ground the metal lid. If the lid is left floating the feedthrough is typically 6 mV .
Note 9: Guaranteed by design but not tested.
Note 10: A 10 nA leakage current with $\mathrm{R}_{\mathrm{Fb}}=20 \mathrm{k}$ and $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(10 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 \% 10 \mathrm{~V}$ or 0.002% of FS .

Typical Performance Characteristics

 vs \(V_{C C}\)
 Digital Input Threshold vs Temperature

Gain and LInearity Error Variation vs Supply Voltage

Digital Input Threshold

Gain and Linearity Error Variation vs Temperature

TA - AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Definition of Package Pinouts

A1 to A12: Digital Inputs. A12 is the least significant digital input (LSB) and A1 is the most significant digital input (MSB).

Iout1: DAC Current Output 1. I Iout1 is a maximum for a digital input of all 1s; and is zero for a digital input of all 0 s .

Iout2: DAC Current Output 2. Iout2 is a constant minus $\mathrm{I}_{\text {OUT1 }}$, or $\mathrm{I}_{\text {OUT1 }}+\mathrm{I}_{\text {OUT2 }}=$ constant (for a fixed reference voltage).
$\mathbf{R}_{\text {Fb }}$: Feedback Resistor. The feedback resistor is provided on the IC chip for use as the shunt feedback resistor for the external op amp which is used to provide an output voltage for the DAC. This on-chip resistor should always
be used (not an external resistor) since it matches the resistors which are used in the on-chip R-2R ladder and tracks these resistors over temperature.
$V_{\text {REF: }}$ Reference Voltage Input. This input connects to an external precision voltage source to the internal R-2R ladder. $\mathrm{V}_{\text {REF }}$ can be selected over the range of 10 V to -10 V . This is also the analog voltage input for a 4-quadrant multiplying DAC application.
$\mathbf{V}_{\mathbf{C C}}$: Digital Supply Voltage. This is the power supply pin for the part. V_{CC} can be from $5 \mathrm{~V}_{\mathrm{DC}}$ to $15 \mathrm{~V}_{\mathrm{DC}}$. Operation is optimum for $15 \mathrm{~V}_{\mathrm{DC}}$.
GND: Ground. This is the ground for the circuit.

Definition of Terms

Resolution: Resolution is defined as the reciprocal of the number of discrete steps in the DAC output. It is directly related to the number of switches or bits within the DAC. For example, the DAC1218 has 2^{12} or 4096 steps and therefore has 12 -bit resolution.

Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.

National's linearity test (a) and the best straight line test (b) used by other suppliers are illustrated below. The best straight line (b) requires a special zero and FS adjustment for each part, which is almost impossible for the user to determine. The end point test uses a standard zero FS adjustment procedure and is a much more stringent test for DAC linearity.
Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output.

a) End point test after zero and FS adjust

Settling Time: Full-scale current settling time requires zero to full-scale or full-scale to zero output change. Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value.

Full-Scale Error: Full-scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC1218 full-scale is $\mathrm{V}_{\text {REF }}-1$ LSB. For $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$ and unipolar operation, $\mathrm{V}_{\text {FULL-SCALE }}=$ $10.0000 \mathrm{~V}-2.44 \mathrm{mV}=9.9976 \mathrm{~V}$. Full-scale error is adjustable to zero.

Differential Non-Linearity: The difference between any two consecutive codes in the transfer curve from the theoretical 1 LSB is differential non-linearity.

Monotonic: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. A 12-bit DAC which is monotonic to 12 bits simply means that input increasing digital input codes will produce an increasing analog out.put.

b) Shifting FS adjust to pass best straight line test

DAC1280A, DAC1280 12-Bit Digital-to-Analog Converters

General Description

The DAC1280 series is a family of precision, low cost, fully self-contained digital-to-analog converters. The devices include 12 precision current switches, a 12 -bit thin film resistor network, output amplifier, buffered internal reference, and several precision resistors, which allow the user to tailor his system needs to accommodate a variety of bipolar and unipolar output voltage and current ranges. Logic inputs are TTL, DTL and CMOS compatible, and are complementary binary (CBI) format. In all instances, a logic low ($\leq 0.8 \mathrm{~V}$) turns a given bit ON , and a logic high $(\geq 2 \mathrm{~V}$) turns a given bit OFF. Internally supplied resistor options provide low drift bipolar output voltage ranges of $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$, and unipolar ranges of 0 V to 5 V or 0 V to 10 V . Current mode output is 0 mA to 2 mA .

Features

Completely self-contained with internal reference and output amplifier

- High reliability exact replacement for DAC80-CBI-V or DAC80Z.CBI-V
- $\pm 1 / 2 \mathrm{LSB}$ linearity max over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range for DAC1280A
$\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $5 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V voltage outputs
- 0 mA to 2 mA current output
- Fast settling time: 300 ns current mode; $2.5 \mu \mathrm{~s}$ voltage mode
- Standard 24-pin IC package
- Low cost
- TTL CMOS compatible binary input logic over temperature

Connection Diagram Dual-In.Line Package

Absolute Maximum Ratings

Supply Voltage $\left(\mathrm{V}^{+}\right.$and $\left.\mathrm{V}^{-}\right)$	$\pm 18 \mathrm{~V}$	Short-Circuit Duration(Pins 15,20 and 24$)$	Continuous
Current Output (Pin 20) Voltage Compliance	$\pm 10 \mathrm{~V}$	Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Logic Input Voltage	$-0.7 \mathrm{~V}, 10 \mathrm{~V}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reference Input Voltage $\left(V_{\text {REF }}\right)$	$0 \mathrm{~V}, 18 \mathrm{~V}$	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 11.4 \mathrm{~V}$ to $\pm 15.75 \mathrm{~V}$ for DAC1280A, $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ for DAC1280 unless otherwise noted.

Parameter	Conditions	DAC1280A			DAC1280			Units
		Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	

CONVERTER CHARACTERISTICS

Resolution		12			12			Bits
Linearity Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\pm 1 / 4$	$\pm 1 / 2$		$\pm 1 / 4$	± 1	LSB
				$\pm 1 / 2$			± 2	
Differential Non-Linearity			$\pm 1 / 2$	$\pm 3 / 4$		$\pm 1 / 2$		
Monotonicity		12			11	12		Bits
Full-Scale (Gain) Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)		± 0.1	± 0.3		± 0.1		\% FSR
Zero-Scale (Offset) Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)		± 0.02	± 0.15		± 0.02		
Full-Scale (Gain) Tempco	Internal Reference		± 15	± 30		± 15		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	External Constant Reference		± 5	± 7		± 5		
Zero-Scale (Offset) Tempco	Unipolar		± 1	± 3		± 1		$\begin{gathered} \mathrm{ppm} \\ \mathrm{FSR} /{ }^{\circ} \mathrm{C} \end{gathered}$
	Bipolar		± 3	± 10		± 3		
Total Bipolar Tempco (Note 4)	Includes Gain, Offset, and Linearity		± 10	± 20		± 10		
Total Error (Note 5)	Unipolar		± 0.08	± 0.15		± 0.08		\% FSR
	Bipolar		± 0.06	± 0.10		± 0.06		
Output Voltage Range	Using Internally Supplied Resistors (Note 6)	$\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $5 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V						V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{k} \Omega$, Pin 15	± 10			± 10			
Output Short Circuit Current	Pin 15	± 5	± 25	± 50	± 5	± 25	± 50	mA
Output Resistance	Pin 15, Closed Loop		0.05			0.05		Ω
Current Mode Output Range	Unipolar, Pin 20		0 to -2			0 to -2		mA
	Bipolar, Pin 20		± 1.0			± 1.0		
Current Mode Compliance				± 2.5			± 2.5	V
Current Mode Output Impedance	Unipolar		2			2		k Ω
	Bipolar		1.5	,		1.5		

Reference Voltage	$\mathrm{I}_{\text {REF }} \leq 2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.07	6.2	6.33	6.2		V
Tempco of Drift			± 10	± 20	± 10		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
External Use Current				2.5		2.5	mA
Output Resistance			0.05	1.0	0.05	1.0	Ω

Electrical Characteristics (Continued)
$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 11.4 \mathrm{~V}$ to $\pm 15.75 \mathrm{~V}$ for.DAC1280A, $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ for DAC1280 unless otherwise noted.

Parameter	Conditions		DAC1280A			DAC1280			Units
			Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	
DIGITAL AND DC CHARACTERISTICS									
Logic "1" Input Voltage (Bit OFF)			2.0			2.0			V
Logic " 0 " Input Voltage (Bit ON)					0.8			0.8	
Logic "1" Input Current	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$			0.05	1		0.05	1	$\mu \mathrm{A}$
Logic "0" Input Current	$\mathrm{V}_{1 \mathrm{IN}}=0 \mathrm{~V}$				-100			-100	
Power Supply Current	$1{ }^{+}, T_{A}=25^{\circ} \mathrm{C}$			10	18		10		mA
	$1^{-}, T_{A}=25^{\circ} \mathrm{C}$			25	30		25		
Power Supply Sensitivity			:	0.001	0.002		0.001		\% FSR/\%V
AC CHARACTERISTICS									
Voltage Mode Settling Time	$\begin{array}{\|l\|l\|} \hline 1 \text { LSB Change } \\ \hline \text { FSR Change } \end{array}$			400			400		ns
		10 V		2.5			2.5		$\mu \mathrm{S}$
		20 V		4			4		
Voltage Mode Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	15			15		$\mathrm{V} / \mu \mathrm{s}$
Current Mode Settling Time	10Ω to 100Ω Load			300			300		ns

Note 1: All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 2: Externally adjustable to zero.
Note 3: FSR means "full-scale range" and is 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for $\pm 5 \mathrm{~V}$, etc.
Note 4: See paragraph 2.0 for definition.
Note 5: With gain and offset errors adjusted to zero at $25^{\circ} \mathrm{C}$
Note6: $\pm V_{S}$ must have absolute value 2 V greater than $\mathrm{V}_{\text {OUT }}$. Output voltage ranges -10 V to +10 V and 0 V to +10 V are not recommended with V_{S} less than 12 V .

1.0 Definition of Terms

1.1 Accuracy

Accuracy of a D/A converter is the difference between the actual analog output that is measured when a given digital code is applied and the analog output that is expected with that code applied to the converter. Accuracy errors can be specified by the three parameters of gain or fullscale error, zero-scale or offset error, and linearity error.

1.2 Linearity Error

Linearity error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.

1.3 Differential Linearity Error and Monotonicity

Differential linearity error of a D/A converter is the deviation from an ideal 1 LSB voltage change from one adjacent output state to the next. A differential linearity error specification of $\pm 1 / 2$ LSB means that the output voltage
step sizes can range from $1 / 2$ LSB to $3 / 2$ LSB when the input changes from one adjacent input state to the next. Monotonicity is guaranteed in the DAC1280A and DAC1280 to ensure that the analog output will not decrease with increasing input digital codes.

1.4 Gain Tempco

Gain tempco is a measure of the change in the full-scale range output over temperature expressed in parts per million per ${ }^{\circ} \mathrm{C}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$.

1.5 Offset Tempco

Offset tempco is a measure of the actual change in output with all " 1 "s on the input over the specified temperature range. The offset is measured at $0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The maximum change in offset is referenced to the offset at $25^{\circ} \mathrm{C}$ and is divided by the temperature range. This offset change is expressed in parts per million of full-scale range per ${ }^{\circ} \mathrm{C}$ (ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$).

1．6 Settling Time

Settling time for each DAC1280A or DAC1280 is the total time（including slew time）required for the output to settle within an error band around its final value after a change in input（Figures 1 and 2）．

FIGURE 1．Voltage Mode Settling Time－FSR Change

FIGURE 2．Voltage Mode Settling Time－1 LSB Change

Voltage Output．Three settling times are specified to $\pm 0.01 \%$ of full－scale range（FSR）；two for maximum full－ scale range changes of $20 \mathrm{~V}, 10 \mathrm{~V}$ and one for a 1 LSB change．The 1 LSB change is measured at the major carry （ $0111 \ldots 11$ to $1000 \ldots 00$ ），the point at which the worst case settling time occurs．
Current Output．Settling time is specified to $\pm 0.01 \%$ of FSR．This is given with a range of resistive loads： 10Ω to 100 ．

1．7 Compliance

Compliance voltage is the maximum voltage swing al－ lowed on the current output pin（pin 20）．Note that the absolute current offset error with any DAC will be in－ creased by an amount given by $\mathrm{V}_{\text {OUT }} / \mathrm{R}_{\text {OUT }}$ ．In many situa－ tions this will be a significant error term if the voltage on the current output pin is allowed to exceed a few millivolts．

1．8 Power Supply Sensitivity

Power supply sensitivity is a measure of the effect of a power supply change on the D／A converter output．It is
defined as a percent of FSR per percent of change in either the positive，negative，or logic supplies about the nominal power supply voltages．

1．9 Reference Supply

The DAC1280A and DAC1280 are supplied with an internal 6.2 V reference voltage supply．This voltage（pin 24）is accurate to $\pm 2 \%$ and must be connected to the Reference Input（pin 16）for specified operation．This reference may also be used externally with external cur－ rent drain limited to 2.5 mA ．All gain adjustments should be made under constant load conditions．

2．0 Analyzing Device Accuracy Over the Temperature Range

For the purposes of temperature drift analysis，the major device components are shown in Figure 3．The reference element and buffer amplifier drifts are combined to give the total reference temperature coefficient，which is specified as $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum for the DAC1280A． The input reference current to the DAC， $\mathrm{I}_{\mathrm{REF}}$ ，is developed from the internal reference and will show the same drift rate as the reference voltage．The DAC output current， $I_{D A C}$ ，which is a function of the digital input code，is designed to track $I_{\text {REF }}$ ；if there is a slight mismatch in these currents over temperature，it will contribute to the gain TC．The bipolar offset resistor， R_{BP} ，and gain setting resistor， $\mathrm{R}_{\mathrm{GAIN}}$ ，also have temperature coefficients which contribute to system drift errors．The input offset voltage drift of the output amplifier，OA，also contributes a small error．

FIGURE 3．Bipolar Configuration
There are three types of drift errors over temperature：off－ set，gain，and linearity．Offset drift causes a vertical translation of the entire transfer curve；gain drift is a change in the slope of the curve；and linearity drift represents a change in the shape of the curve．The com－ bination of these three drifts results in the complete specification for total error over temperature．
Total error is defined as the deviation from a true straight line transfer characteristic from exactly zero at a digital in－ put which calls for zero output to a point which is defined as full－scale．A specification for total error over tempera－ ture assumes that both the zero and full－scale points have been trimmed for zero error at $25^{\circ} \mathrm{C}$ ．Total error is normally expressed as a percentage of the full－scale range．In the bipolar situation，this means the total range from $-V_{F S}$ to $+\mathrm{V}_{\mathrm{FS}}$ ．

2.1 Monotonicity and Linearity

The initial linearity error and the differential linearity error guarantee monotonic performance over the range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. It can therefore be assumed that linearity errors are insignificant in computation of total temperature errors.

2.2 Unipolar Errors

Temperature error analysis in the unipolar mode is straightforward: there is an offset drift and a gain drift. The offset drift, which comes from leakage currents and drift in the output amplifier, causes a linear shift in the transfer curve as shown in Figure 4. The gain drift causes a change = in the slope of the curve and results from reference drift, DAC drift, and drift in $R_{\text {GAiN }}$ relative to the DAC resistors.

2.3 Bipolar Range Errors

The analysis is slightly more complex in the bipolar mode. In this mode $R_{B P}$ is connected to the summing node of the
output amplifier (see Figure 3) to generate a current which exactly balances the current of the MSB so that the output voltage is zero with only the MSB on.
Note that if the DAC and application resistors track perfectly, the bipolar offset drift will be zero even if the reference drifts. A change in the reference voltage, which causes a shift in the bipolar offset, will also cause an equivalent change in $I_{\text {REF }}$ and thus $I_{D A C}$, so that $I_{D A C}$ will always be exactly balanced by $I_{B P}$ with the MSB turned on. This effect is shown in Figure 6. The net effect of the reference drift then is simply to cause a rotation in the transfer around bipolar zero. However, consideration of second order effects (which are often overlooked) reveals the errors in the bipolar mode. The unipolar offset drifts discussed before will have the same effect on the bipolar offset. A mismatch of $R_{B P}$ to the DAC resistors is usually the largest component of bipolar drift. Gain drift in the DAC also contributes to bipolar offset drift, as well as fullscale drift. In the bipolar ranges, full-scale is defined as the total range from $-V_{F S}$ to $+V_{F S}$.

FIGURE 4. Unipolar and Bipolar Drifts

FIGURE 5. $\pm 10 \mathrm{~V}$ Bipolar Operation

FIGURE 6. $\pm 5 \mathrm{~V}$ Bipolar Operation

3.0 Applications and Functional Description

3.1 Voltage Mode Operation

The DAC1280A and DAC1280 D/As provide internal scaling resistors which permit a wide range of bipolar and unipolar output configurations. Bipolar output formats of $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$ and unipolar formats of 0 V to 5 V and 0 V to 10 V are possible using resistor strap options included within the 'device. Table I and Figures 5, 6 and 7 summarize the proper pin connections required for these formats.

3.2 Current Mode Operation

Current mode applications which make use of an external op amp, comparator, or a resistive load are possible with
the DAC1280 series using pin 20. When an external op amp is used, the internal scaling resistors should be utilized to minimize full-scale drift. Configurations shown in Table I apply directly. Figure 8 shows one application using an external fast operational amplifier.

Current mode operation into a resistive load or open circuit must account for the DACs nominal output resistance of 2 k at pin 20 . With this in mind, the output will swing 0 V to -4 V open circuit and about -1.5 V to +1.5 V with the bipolar offset resistor connected. An external load resistor may be used as part of the load, but there will be an error due to temperature coefficients mistracking.

TABLE I. Output Voltage/Current Ranges for DAC1280 Series

Output Voltage Range	Digital Input Code	Connect Pin 15 to	Connect Pin 16 to	Connect Pin 17 to	Connect Pin 19 to
$\pm 10 \mathrm{~V}$	Complementary Offset Binary	19	24	20	15
$\pm 5 \mathrm{~V}$	Complementary Offset Binary	18	24	20	NC
$\pm 2.5 \mathrm{~V}$	Complementary Offset Binary	18	24	20	20
10 V	Complementary Binary	18	24	21^{*}	NC
5 V	Complementary Binary	18	24	21^{*}	20
$\pm 1 \mathrm{~mA}$	Complementary Offset Binary	NC	24	20	NC
-2 mA	Complementary Binary	NC	24	21^{*}	NC

*Optional, no connection necessary

$$
\begin{aligned}
\mathrm{V}_{\text {OUT }} & =(0 \mathrm{~mA} \text { to } 1.9995 \mathrm{~mA})(\mathrm{R} 20) \\
& =(0 \mathrm{~mA} \text { to } 1.9995 \mathrm{~mA})(5 \mathrm{k}) \\
& =0 \mathrm{~V} \text { to } 9.9976 \mathrm{~V} \\
1 \mathrm{LSB} & =2.44 \mathrm{mV}
\end{aligned}
$$

FIGURE 7. 10V Unipolar Operation
FIGURE 8. $\pm 10 \mathrm{~V}$ Bipolar Operation with External Operational Amplifier

3.3 Offset and Full-Scale Adjust

The DAC1280 series may be offset and full-scale adjusted using the circuit shown in Figure 9. Offset voltage should be adjusted first. A logic " 1 " ($\geq 2 \mathrm{~V}$) should be applied to all logic inputs. In bipolar mode, the offset is adjusted to equal minus full-scale. In unipolar mode, the offset is adjusted to read OV at the output. Full-scale is then adjusted by applying a logic " 0 " ($\leq 0.8 \mathrm{~V}$) to all inputs for operation. The range of R1 and R2 shown in Figure 9 is approximately $\pm 0.2 \%$ of full-scale for the values shown.

A 30 second "warm-up" period should be allowed (after power turn-on) before making the above adjustments.

3.4 Logic Input Coding

The logic inputs to the DAC1280 series are complementary; i.e., a given bit is turned ON by an active low input. Table Il summarizes input status for unipolar and bipolar codes.

3.5 Reference Supply

The DAC1280 series is supplied with an internal 6.2 V reference regulator (pin 24). In order to obtain the specified unadjusted performance, the reference output (pin 24) should be connected to the reference input (pin 16). An external reference voltage may be used with the DAC1280 series if provision is made to calibrate full-scale as shown in Figure 9. Since the reference is buffered, it may be used externally at currents up to 2.5 mA .

FIGURE 9. External Adjustment and Voltage Supply Connection Diagram

TABLE II

Code Type		Output State	Unipolar Output Ranges			
	MSB LSB		OV to 10V		OV to 5V	$0 \mathrm{~mA}-2 \mathrm{~mA}$ $0 \mathrm{~mA}-1.25 \mathrm{~mA}$
Unipolar ,	000000000000	Full-Scale	9.9976 V		4.9988 V	$-1.9995 \mathrm{~mA}$
Complementary	111111111110	1 LSB ON	0.0024 V		0.0012 V	$-0.0005 \mathrm{~mA}$
Binary	111111111111	Zero-Scale	0.0000 V		0.0000 V	0.0000 mA
Code Type	Input Code (Note 7)	Output State	Bipolar Output Voltage Ranges			
	MSB LSB		$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	± 2.50	$\pm 1 \mathrm{~mA}$
Bipolar	000000000000	Full-Scale	9.9951 V	4.9976 V	2.4988 V	$-0.9995 \mathrm{~mA}$
Complementary	011111111111	Half-Scale	0.0000 V	0.0000 V	0.0000 V	0.0000 mA
Binary	1 11111111111110	1 LSB ON	-9.9951V	-4.9976V	-2.4988V	0.9995 mA
	11111111111111	Zero-Scale	$-10.0000 \mathrm{~V}$	$-5.0000 \mathrm{~V}$	-2.5000V	1.0000 mA

Note 7: Logic input sense is such that an active low ($\mathrm{V}_{1 \mathrm{~N}} \leq 0.8 \mathrm{~V}$) turns a given bit ON and is represented as a logic " 0 " in the table.

3．6 Logic Input Compatibility

The design of the current mode switches in the DAC1280 series gives the device true TTL compatibility．It is TTL compatible over the entire operating temperature range and is independent of the reference voltage and V_{Cc} ．Fur－ thermore，since the input breakdown ratings are in excess of 10V，the DAC1280 series may be driven directly from high（or low）voltage CMOS．

3.7 ± 12 Volt Supply Operation

The DAC1280A will operate with supply voltages as low as $\pm 11.4 \mathrm{~V}$ ．It is recommended that output voltage ranges -10 V to +10 V and 0 V to 10 V not be used with the

DAC1280A if the supply voltages are ever less than the recommended $\pm 12 \mathrm{~V}$ ．The output amplifier may saturate if $\left|\mathrm{V}_{\text {SUPPLY }}\right|-\mid \mathrm{V}_{\text {OUT }}$ maximum $\mid<2.0 \mathrm{~V}$ ．

3．8 Power Supply Connections

For optimum performance power supply decoupling capacitors should be added as shown in the connection diagrams（Figure 5）．These capacitors（ $1 \mu \mathrm{~F}$ electrolytic recommended）should be located close to the DAC1280A or DAC1280．Electrolytic capacitors，if used，should be paralleled with $0.01 \mu \mathrm{~F}$ ceramic capacitors for optimum high frequency performance．

DAC1280A-I, DAC1280-I 12-Bit Digital-to-Analog Converters

General Description

The DAC1280-I series is a family of precision, low cost, fully self-contained digital-to-analog converters. The devices include 12 precision current switches, a 12-bit thin film resistor network, buffered internal reference, and several precision resistors, which allow the user to tailor his system needs to accommodate a variety of bipolar and unipolar output voltage and current ranges. Logic inputs are TTL, DTL and CMOS compatible, and are complementary binary (CBI) format. In all instances, a logic low ($\leq 0.8 \mathrm{~V}$) turns a given bit ON , and a logic high ($\geq 2 \mathrm{~V}$) turns a given bit OFF. Internally supplied resistor options provide low drift bipolar output voltage ranges of $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, $\pm 10 \mathrm{~V}$, and unipolar ranges of 0 V to 5 V or 0 V to 10 V . Current mode output is 0 mA to 2 mA .

Features

- Self-contained with internal reference
- High reliability replacement for DAC80-CBI-I or DAC80Z-CBI-I
- $\pm 1 / 2$ LSB linearity max over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range for DAC1280A-I
- $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $5 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V output voltage ranges with external op amp
- 0 mA to 2 mA current output

Fast settling time: 300 ns current
. Standard 24-pin IC package
m Low cost

- TTL CMOS compatible binary input logic over temperature

Block Diagram

Connection Diagram

Ordering Information

Temperature Range		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Linearity	0.01%	DAC1280AD-I (DAC80Z-CBI-I)
	0.05%	DAC1280HCD-1
Package		D24G

Absolute Maximum Ratings

Supply Voltage (V+ and V^{-})	$\pm 18 \mathrm{~V}$
Current Output (Pins 15, 20) Voltage Compliance	$\pm 10 \mathrm{~V}$
Logic Input Voltage	$-0.7 \mathrm{~V}, 10 \mathrm{~V}$
Reference Input Voltage (V ${ }_{\text {REF }}$)	$0 \mathrm{~V}, 18 \mathrm{~V}$
Short-Circuit Duration (Pins 15, 20 and 24)	Continuous
Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 11.4 \mathrm{~V}$ to $\pm 15.75 \mathrm{~V}$ for DAC1280A-I, $\mathrm{V}_{\mathrm{S}} \geq \pm 15 \mathrm{~V}$ for DAC1280-I unless otherwise noted.

Parameter	Conditions	DAC1280A.I			DAC1280-I			Units
		Min	Typ (Note 1)	Max	Min		Max	
CONVERTER CHARACTERISTICS								
Resolution		12			12			Bits
Linearity Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\pm 1 / 4$	$\pm 1 / 2$		$\pm 1 / 4$	± 1	LSB
				$\pm 1 / 2$			± 2	
Differential Non-Linearity			$\pm 1 / 2$	$\pm 3 / 4$		$\pm 1 / 2$		
Monotonicity		12			11	12		Bits
Full-Scale (Gain) Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)		± 0.1	± 0.3		± 0.1		\% FSR
Zero-Scale (Offset) Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)		± 0.02	± 0.15		± 0.02		
Full-Scale (Gain) Tempco	Internal Reference		± 15	± 30		± 15		$\begin{gathered} \mathrm{ppm} \\ \text { FSR/ }{ }^{\circ} \mathrm{C} \end{gathered}$
	External Constant Reference		± 5	± 7		± 5		
Zero-Scale (Offset) Tempco	Unipolar		± 1	± 3		± 1		
	Bipolar		± 3	± 10		± 3		
Total'Bipolar Tempco (Note 4)	Includes Gain, Offset, and Linearity	.	± 10	± 20		± 10		
Total Error (Note 5)	Unipolar		± 0.08	± 0.15		± 0.08		\% FSR
	Bipolar		± 0.06	± 0.10		± 0.06		
Output Voltage Range	Using Internally Supplied Resistors, External Op Amp	$\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $5 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V						V
Current Mode Output Range	Unipolar, Pin 15		0 to -2			0 to -2		mA
	Bipolar, Pin 15		± 1.0			± 1.0		
Current Mode Compliance				± 2.5			± 2.5	V
Current Mode Output Impedance	Unipolar		2			2		k ת
	Bipolar		1.5			1.5		
REFERENCE CHARACTERISTICS								
Reference Voltage	$\mathrm{I}_{\text {REF }} \leq 2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.07	6.2	6.33		6.2		V
Tempco of Drift			± 10	± 20		± 10		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
External Use Current				2.5			2.5	mA
Output Resistance			0.05	1.0		0.05	1.0	Ω

Electrical Characteristics (Continued) $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 11.4 \mathrm{~V}$ to $\pm 15.75 \mathrm{~V}$ for DAC1280A-I, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for DAC1280-I unless otherwise noted.

Parameter	Conditions	DAC1280A-I			DAC1280-I			Units
		Min	Typ (Note 1)	Max	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	
DIGITAL AND DC CHARACTERISTICS								
Logic " 1 " Input Voltage (Bit OFF)		2.0			2.0			V
Logic " 0 " Input Voltage (Bit ON)				0.8			0.8	
Logic "1" Input Current	$\mathrm{V}_{1 \mathrm{~N}}=2.5 \mathrm{~V}$		0.05	1		0.05	1	$\mu \mathrm{A}$
Logic "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			-100			-100	
Power Supply Current	$1^{+}, T_{A}=25^{\circ} \mathrm{C}$		10	18		10		mA
	$1^{-}, T_{A}=25^{\circ} \mathrm{C}$		25	30	-	25		
Power Supply Sensitivity			0.001	0.002		0.001		\% FSR/\%V
AC CHARACTERISTICS								
Current Mode Settling Time	10Ω to 100Ω Load		300			300		ns

Note 1: All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Externally adjustable to zero.
Note 3: FSR means full-scale range and is 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for $\pm 5 \mathrm{~V}$, etc.
Note 4: See paragraph 1.6 for definition.
Note 5: With gain and offset errors adjusted to zero at $25^{\circ} \mathrm{C}$.

1.0 Definition of Terms

1.1 ACCURACY

Accuracy of a D/A converter is the difference between the actual analog output that is measured when a given digital code is applied and the analog output that is expected with that code applied to the converter. Accuracy errors can be specified by the three parameters of gain or fullscale error, zero-scale or offset error, and linearity error.

1.2 LINEARITY ERROR

Linearity error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.

1.3 DIFFERENTIAL LINEARITY ERROR AND MONOTONICITY

Differential linearity error of a D/A converter is the deviation from an ideal 1 LSB voltage change from one adjacent output state to the next. A differential linearity error specification of $\pm 1 / 2$ LSB means that the output voltage step sizes can range from $1 / 2$ LSB to $3 / 2$ LSB when the input changes from one adjacent input state to the next. Monotonicity is guaranteed in the DAC1280A-1 and DAC1280-I to ensure that the analog output will not decrease with increasing input digital codes.

1.4 GAIN TEMPCO

Gain tempco is a measure of the change in the full-scale range output over temperature expressed in parts per million per ${ }^{\circ} \mathrm{C}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$. This test uses the internally supplied DAC, feedback and offset resistors.

1.5 OFFSET TEMPCO

Offset tempco is a measure of the actual change in output with all " 1 "s on the input over the specified temperature range. The offset is measured at $0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The maximum change in offset is referenced to the offset at $25^{\circ} \mathrm{C}$ and is divided by the temperature range. This offset change is expressed in parts per million of full-scale range per ${ }^{\circ} \mathrm{C}$ (ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$).

1.6 TOTAL BIPOLAR TEMPCO

In the bipolar mode, the internal $6.2 \mathrm{k} \Omega$ resistor is connected to the current output pin which is the summing junction of the output amplifier (external). This resistor injects a current that exactly balances the output current of the DAC with only the MSB ON such that the output voltage of the amplifier is 0 V .

If the internal resistors track perfectly, the cancellation effect is also perfect, even if the reference voltage drifts. Thus, any imperfection in resistor tracking gives rise to an error term.
The total bipolar mode tempco includes this tracking tempco as well as offset tempco and linearity tempco as defined above.

2.0 Functional Description

2.1 OFFSET AND FULL-SCALE ADJUST

The DAC1280-I series may be offset and full-scale adjusted using the circuit shown in Figure 1. Offset voltage should be adjusted first. A logic " 1 " $(\geq 2 \mathrm{~V})$ should be applied to all logic inputs. In bipolar mode, the offset is adjusted to
equal minus full-scale. In unipolar mode, the offset is adjusted to read $O V$ at the output. Full-scale is then adjusted by applying a logic " 0 " ($\leq 0.8 \mathrm{~V}$) to all inputs for operation. The range of adjustment shown in Figure 1 is approximately $\pm 0.2 \%$ of full-scale for the values shown.
A 30 second "warm-up" period should be allowed (after power turn-on) before making the above adjustments.

2.2 LOGIC INPUT CODING

The logic inputs to the DAC1280-I series are complementary; i.e., a given bit is turned ON by an active low input. Table I summarizes input status for unipolar and bipolar codes.

2.3 REFERENCE SUPPLY

The DAC1280-I series is supplied with an internal 6.2 V reference regulator (pin 24). In order to obtain the specified unadjusted performance, the reference output (pin 24) should be connected to the reference input (pin 16). An external reference voltage may be used with the DAC1280-I series if provision is made to calibrate full-scale as shown in Figure 1. Since the reference is buffered, it may be used externally at currents up to 2.5 mA .

2.4 LOGIC INPUT COMPATIBILITY

The design of the current mode switches in the DAC1280-1 series gives the device true TTL compatibility. It is TTL
compatible over the entire operating temperature range and is independent of the reference voltage and V_{Cc}. Furthermore, since the input breakdown ratings are in excess of 10 V , the DAC1280-I series may be driven directly from high (or low) voltage CMOS.

2.5 ± 12 VOLT SUPPLY OPERATION

The DAC1280A-I will operate with supply voltages as low as $\pm 11.4 \mathrm{~V}$.

2.6 PIN 20 USAGE

Pin 20 is internally connected to pin 15 ; either may be used as the current output. Standard DAC80-CBI-I devices use pin 20 as an alternate feedback resistor tap; this tap is not available on the DAC1280A-I series.

2.7 POWER SUPPLY CONNECTIONS

For optimum performance power supply decoupling capacitors should be added as shown in the connection diagram. These capacitors ($1 \mu \mathrm{~F}$ electrolytic recommended) should be located close to the DAC1280A-I or DAC1280-I. Electrolytic capacitors, if used, should be paralleled with $0.01 \mu \mathrm{~F}$ ceramic capacitors for optimum high frequency performance.

FIGURE 1. External Adjustment and Voltage Supply Connection Diagram
tablel

Code Type	Input Code (Note 6) MSB LSB	Output State	Unipolar Output Ranges $0 \mathrm{~mA}-2 \mathrm{~mA}$ $0 \mathrm{~mA}-1.25 \mathrm{~mA}$
Unipolar	000000000000	Full-Scale	$-1.9995 \mathrm{~mA}$
Complementary	111111111110	1 LSB ON	-0.0005 mA
Binary	111111111111	Zero-Scale	0.0000 mA
Code Type	Input Code (Note 6) MSB LSB	Output State	Bipolar Output Ranges $\pm 1 \mathrm{~mA}$
Bipolar	000000000000	Full-Scale	- 0.9995 mA
Complementary	011111111111	Half-Scale	0.0000 mA
Binary	111111111110	1 LSB ON	0.9995 mA
	111111111111	Zero-Scale	1.0000 mA

Note 6: Logic input sense is such that an active low ($V_{I N} \leq 0.8 \mathrm{~V}$) turns a given bit ON and is represented as a logic " 0 " in the table.

DAC1285A, DAC1285 (DAC85, DAC87) 12-Bit Digital-to-Analog Converters

General Description

The DAC1285 series is a family of precision, low cost, fully self-contained digital-to-analog converters. The devices include 12 precision current switches, a 12-bit thin film resistor network, output amplifier, buffered internal reference, and several precision resistors, which allow the user to tailor his system needs to accommodate a variety of bipolar and unipolar output voltage and current ranges. Logic inputs are TTL, DTL and CMOS compatible, and are complementary binary (CBI) format. In all instances, a logic low ($\leq 0.8 \mathrm{~V}$) turns a given bit ON , and a logic high $(\geq 2 \mathrm{~V}$) turns a given bit OFF. Internally supplied resistor options provide low drift bipolar output voltage ranges of $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$, and unipolar ranges of 0 V to 5 V or 0 V to 10 V . Current mode output is 0 mA to 2 mA .

Features

- Completely self-contained with internal reference and output amplifier
- High reliability exact replacement for DAC85-CBI-V, DAC85LD-CBI-V, and DAC87-CBI-V
- $\pm 1 / 2$ LSB linearity max over temperature range
- $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $5 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V voltage outputs
- 0 mA to 2 mA current output
- Fast settling time: 300 ns current mode; $2.5 \mu \mathrm{~s}$ voltage mode
- Hermetic 24-pin IC package
- Low cost
- TTL CMOS compatible binary input logic over temperature
- Parameters guaranteed over operating temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Supply Voltage (V^{+}and V^{-})
Current Output (Pin 20) Compliance
Logic Input Voltage
Reference Input Voltage (VRE)
Short-Circuit Duration (Pins 15, 20 and 24)
$\pm 18 \mathrm{~V}$
$\pm 10 \mathrm{~V}$
$-0.7 \mathrm{~V}, 10 \mathrm{~V}$
$0 \mathrm{~V}, 18 \mathrm{~V}$
Continuous

Operating Temperature Range

DAC1285A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DAC1285AC	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1285HC	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for DAC1285A and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for DAC1285AC and DAC1285HC, $\mathrm{V}_{\mathrm{S}}= \pm 11.4 \mathrm{~V}$ to $\pm 15.75 \mathrm{~V}$ for DAC1285A and DAC1285AC and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for DAC1285HC unless otherwise noted.

- Parameter	Conditions	DAC1285A			DAC1285AC			DAC1285HC			Units
		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	
CONVERTER CHARACTERISTICS											
Resolution		12			12			12			Bits
Linearity Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\pm 1 / 4$	$\pm 1 / 2$		$\pm 1 / 4$	$\pm 1 / 2$		$\pm 1 / 4$	$\pm 1 / 2$	LSB
				$\pm 3 / 4$			$\pm 1 / 2$			$\pm 1 / 2$	
Differential Non-Linearity	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\pm 1 / 2$	$\pm 3 / 4$		$\pm 1 / 2$			$\pm 1 / 2$		
				± 1							
Monotonicity		12			12	.		12			Bits
Full-Scale (Gain) Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)		± 0.1	± 0.2		± 0.1			± 0.1		\% FSR (Note 3)
Zero-Scale (Offset) Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)		± 0.02	± 0.1		± 0.02		,	± 0.02		
Full-Scale (Gain) Tempco	With Internal Reference		± 10	± 20		± 10			± 15	± 30	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Without Internal Reference		± 5	± 10		± 5	± 10		± 5	± 20	
Zero-Scale (Offset) Tempco	Unipolar		± 1	± 3		± 1			± 1		$\begin{aligned} & \text { ppm } \\ & \text { FSR } /{ }^{\circ} \mathrm{C} \end{aligned}$
	Bipolar		± 3	± 10		± 3	± 5		± 3	± 10	
Total Bipolar Tempco (Note 4)	Includes Gain, Offset, and Linearity		± 10	± 30		± 10			± 10		
Total Error (Note 5)	Unipolar		± 0.08	± 0.3		± 0.08			± 0.08		\% FSR
	Bipolar		± 0.06	± 0.24		± 0.06			± 0.06		
Output Voltage Range	Using Internally Supplied Resistors (Note 6)	$\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $5 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V									V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{k} \Omega$, Pin 15	± 10			± 10			± 10			
Output Short Circuit Current	Pin 15	± 5	± 25	± 50	± 5	± 25	± 50	± 5	± 25	± 50	mA
Output Impedance	Pin 15, Closed Loop		0.05			0.05			0.05		Ω
Current Mode Output Range	Unipolar, Pin 20		0 to -2			0 to -2			0 to -2		mA
	Bipolar, Pin 20		± 1.0			± 1.0			± 1.0		
Current Mode Compliance				± 2.5			± 2.5			± 2.5	V
Current Mode Output Impedance	Unipolar		2			2			2		$k \Omega$
	Bipolar		1.5			1.5			1.5		
REFERENCE CHARACTERISTICS											
Reference Voltage	$\mathrm{I}_{\text {REF }} \leq 2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.07	6.2	6.33	6.07	6.2	6.33		6.2		V
Tempco of Drift			± 5	± 10		± 10	± 20		± 10	± 20	ppm/ ${ }^{\circ} \mathrm{C}$
External Use Current				2.5			2.5			2.5	mA
Output Impedance			0.05	1.0		0.05	1.0		0.05	1.0	Ω

Electrical Characteristics (Continued)
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for DAC1285A and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for DAC1285AC and DAC1285HC, $\mathrm{V}_{\mathrm{S}}= \pm 11.4 \mathrm{~V}$ to $\pm 15.75 \mathrm{~V}$ for DAC1285A and DAC1285AC and $V_{S}= \pm 15 \mathrm{~V}$ for DAC1285HC unless otherwise noted.

Parameter	Conditions	DAC1285A, DAC1285AC			DAC1285HC			Units
		Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	

DIGITAL AND DC CHARACTERISTICS

Logic " 1 " Input Voltage (Bit OFF)		2.0			2.0			V
Logic " 0 " Input Voltage (Bit ON)				0.8			0.8	
Logic "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$		0.05	1		0.05	1	$\mu \mathrm{A}$
Logic " 0 ' Input Current	$\mathrm{V}_{1 \mathrm{IN}}=0 \mathrm{~V}$			-100			-100	
Power Supply Current	$1^{+}, T_{A}=25^{\circ} \mathrm{C}$		10	18	,	10		mA
	$1^{-}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$		25	30		25		
Power Supply Sensitivity			0.001	0.002		0.001		\% FSRI\%V

AC CHARACTERISTICS

Note 1: All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Externally adjustable to zero.
Note 3: FSR means "full-scale range" and is 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for $\pm 5 \mathrm{~V}$, etc.
Note 4: See paragraph 2.0 for definition.
Note 5: With gain and offset errors adjusted to zero at $25^{\circ} \mathrm{C}$
Note 6: $\pm \mathrm{V}_{S}$ must have absolute value 2 V greater than $\mathrm{V}_{\text {OUT }}$. Output voltage ranges -10 V to +10 V and 0 V to +10 V are not recommended with V_{S} less than $\pm 12 \mathrm{~V}$.

1.0 Definition of Terms

1.1 Accuracy

Accuracy of a D/A converter is the difference between the actual analog output that is measured when a given digital code is applied and the analog output that is expected with that code applied to the converter. Accuracy errors can be specified by the three parameters of gain or fullscale error, zero-scale or offset error, and linearity error.

1.2 Linearity Error

Linearity error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.

1.3 Differential Linearity Error and Monotonicity

Differential linearity error of a D/A converter is the deviation from an ideal 1 LSB voltage change from one adjacent output state to the next. A differential linearity error specification of $\pm 1 / 2$ LSB means that the output voltage
step sizes can range from $1 / 2$ LSB to $3 / 2$ LSB when the input changes from one adjacent input state to the next. 12-bit monotonicity is guaranteed to ensure that the analog output will not decrease with increasing input digital codes.

1.4 Gain Tempco

Gain tempco is a measure of the change in the full-scale range output over temperature expressed in parts per million per ${ }^{\circ} \mathrm{C}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$.

1.5 Offset Tempco

Offset tempco is a measure of the actual change in output with all " 1 "s on the input over the specified temperature range. The offset is measured at low and high temperature. The maximum change in offset is referenced to the offset at $25^{\circ} \mathrm{C}$ and is divided by the temperature range. This offset change is expressed in parts per million of full-scale range per ${ }^{\circ} \mathrm{C}$ (ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$).

1.6 Settling Time

Settling time for each DAC1285 series part is the total time (including slew time) required for the output to settle within an error band around its final value after a change in input (Figures 1 and 2).

FIGURE 1. Voltage Mode Settling Time-FSR Change

FIGURE 2. Voltage Mode Settling Time-1 LSB Change

Voltage Output. Three settling times are specified to $\pm 0.01 \%$ of full-scale range (FSR); two for maximum fullscale range changes of $20 \mathrm{~V}, 10 \mathrm{~V}$ and one for a 1 LSB change. The 1 LSB change is measured at the major carry ($0111 \ldots 11$ to 1000...00), the point at which the worst case settling time occurs.
Current Output. Settling time is specified to $\pm 0.01 \%$ of FSR. This is given with a range of resistive loads: 10Ω to 100Ω.

1.7 Compliance

Compliance voltage is the maximum voltage swing allowed on the current output pin (pin 20). Note that the absolute current offset error with any DAC will be increased by an amount given by $\mathrm{V}_{\text {OUT }} / \mathrm{R}_{\text {OUT }}$. In manysituations this will be a significant error term if the voltage on the current output pin is allowed to exceed a few millivolts.

1.8 Power Supply Sensitivity

Power supply sensitivity is a measure of the effect of a power supply change on the D/A converter output. It is
defined as a percent of FSR per percent of change in either the positive, negative, or logic supplies about the nominal power supply voltages.

1.9 Reference Supply

The DAC1285 series are supplied with an internal 6.2V reference voltage supply. This voltage (pin 24) is accurate to $\pm 2 \%$ and must be connected to the Reference Input (pin 16) for specified operation. This reference may also be used externally with external current drain limited to 2.5 mA . All gain adjustments should be made under constant load conditions.

2.0 Analyzing Device Accuracy Over the Temperature Range

For the purposes of temperature drift analysis, the major device components are shown in Figure 3. The reference element and buffer amplifier drifts are combined to give the total reference temperature coefficient, which is specified as a maximum. The input reference current to the DAC, $I_{\text {REF }}$, is developed from the internal reference and will show the same drift rate as the reference voltage. The DAC output current, $I_{D A C}$, which is a function of the digital input code, is designed to track $I_{\text {REF }}$; if there is a slight mismatch in these currents over temperature, it will contribute to the gain TC. The bipolar offset resistor, $R_{B P}$, and gain setting resistor, $\mathrm{R}_{\text {GAIN }}$, also have temperature coefficients which contribute to system drift errors. The input offset voltage drift of the output amplifier, OA, also contributes a small error.

FIGURE 3. Bipolar Configuration
There are three types of drift errors over temperature: offset, gain, and linearity. Offset drift causes a vertical translation of the entire transfer curve; gain drift is a change in the slope of the curve; and linearity drift represents a change in the shape of the curve. The combination of these three drifts results in the complete specification for total error over temperature.
Total error is defined as the deviation from a true straight line transfer characteristic from exactly zero at a digital input which calls for zero output to a point which is defined as full-scale. A specification for total error over temperature assumes that both the zero and full-scale points have been trimmed for zero error at $25^{\circ} \mathrm{C}$. Total error is normally expressed as a percentage of the full-scale range. In the bipolar situation, this means the total range from $-V_{F S}$ to $+V_{F S}$.

2.1 Monotonicity and Linearity

The initial linearity error and the differential linearity error guarantee monotonic performance over the operating temperature range. It can therefore be assumed that linearity errors are insignificant in computation of total temperature errors.

2.2 Unipolar Errors

Temperature error analysis in the unipolar mode is straightforward: there is an offset drift and a gain drift. The offset drift, which comes from leakage currents and drift in the output amplifier, causes a linear shift in the transfer curve as shown in Figure 4. The gain drift causes a change in the slope of the curve and results from reference drift, DAC drift, and drift in R GAiN relative to the DAC resistors.

2.3 Bipolar Range Errors

The analysis is slightly more complex in the bipolar mode. In this mode $R_{B P}$ is connected to the summing node of the
output amplifier (see Figure 3) to generate a current which exactly balances the current of the MSB so that the output voltage is zero with only the MSB on.
Note that if the DAC and application resistors track perfectly, the bipolar offset drift will be zero even if the reference drifts. A change in the reference voltage, which causes a shift in the bipolar offset, will also cause an equivalent change in $I_{\text {REF }}$ and thus $I_{D A C}$, so that $I_{D A C}$ will always be exactly balanced by $I_{B P}$ with the MSB turned on. This effect is shown in Figure 6. The net effect of the reference drift then is simply to cause a rotation in the transfer around bipolar zero. However, consideration of second order effects (which are often overlooked) reveals the errors in the bipolar mode. The unipolar offset drifts discussed before will have the same effect on the bipolar offset. A mismatch of $R_{B P}$ to the DAC resistors is usually the largest component of bipolar drift. Gain drift in the DAC also contributes to bipolar offset drift, as well as fullscale drift. In the bipolar ranges, full-scale is defined as the total range from $-V_{F S}$ to $+V_{F S}$.

FIGURE 4. Unipolar and Bipolar Drifts

FIGURE 5. $\pm 10 \mathrm{~V}$ Bipolar Operation

FIGURE 6. $\pm 5 \mathrm{~V}$ Bipolar Operation

3.0 Applications and Functional Description

3.1 Voltage Mode Operation

These D/As provide internal scaling resistors which permit a wide range of bipolar and unipolar output configurations. Bipolar output formats of $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$ and unipolar formats of $O \mathrm{~V}$ to 5 V and 0 V to 10 V are possible using resistor strap options included within the device. Table I and Figures 5, 6 and 7 summarize the proper pin connections required for these formats.

3.2 Current Mode Operation

Current mode applications which make use of an external op amp, comparator, or a resistive load are possible with
the DAC1285 series using pin 20. When an external op amp is used, the internal scaling resistors should be utilized to minimize full-scale drift. Configurations shown in Table 1 apply directly. Figure 8 shows one application using an external fast operational amplifier.

Current mode operation into a resistive load or open circuit must account for the DACs nominal output resistance of 2 k at pin 20 . With this in mind, the output will swing 0 V to -4 V open circuit and about -1.5 V to +1.5 V with the bipolar offset resistor connected. An external load resistor may be used as part of the load, but there will be an error due to temperature coefficients mistracking.

TABLE I. Output Voltage/Current Ranges for DAC1285 Series

Output Range	Digital Input Code	Connect Pin 15 to	Connect Pin 16 to	Connect Pin 17 to	Connect Pin 19 to
$\pm 10 \mathrm{~V}$	Complementary Offset Binary	19	24	20	15
$\pm 5 \mathrm{~V}$	Complementary Offset Binary	18	24	20	NC
$\pm 2.5 \mathrm{~V}$	Complementary Offset Binary	18	24	20	20
10 V	Complementary Binary	18	24	21^{*}	NC
5 V	Complementary Binary	18	24	21^{*}	20
$\pm 1 \mathrm{~mA}$	Complementary Offset Binary	NC	24	20	NC
-2 mA	Complementary Binary	NC	24	21^{*}	NC

*Optional, no connection necessary

$V_{\text {OUT }}=(0 \mathrm{~mA}$ to 1.9995 mA$)(\mathrm{R2O})$
$=(0 \mathrm{~mA}$ to 1.9995 mA$)(5 \mathrm{k})$
$=0 \mathrm{~V}$ to 9.9976 V
$1 \mathrm{LSB}=2.44 \mathrm{mV}$
FIGURE 7. 10V Unipolar Operation
FIGURE 8. $\pm 10 \mathrm{~V}$ Bipolar Operation with External Operational Amplifier

3.3 Offset and Full-Scale Adjust

The DAC1285 series may be offset and full-scale adjusted using the circuit shown in Figure 9. Offset voltage should be adjusted first. A logic " 1 " $(\geq 2 \mathrm{~V})$ should be applied to all logic inputs. In bipolar mode, the offset is adjusted to equal minus full-scale. In unipolar mode, the offset is adjusted to read OV at the output. Full-scale is then adjusted by applying a logic " 0 " ($\leq 0.8 \mathrm{~V}$) to all inputs for operation. The range of R1 and R2 shown in Figure 9 is approximately $\pm 0.2 \%$ of full-scale for the values shown.
A 30 second "warm-up" period should be allowed (after power turn-on) before making the above adjustments.

3.4 Logic Input Coding

The logic inputs to the DAC1285 series are complementary; i.e., a given bit is turned ON by an active low input. Table II summarizes input status for unipolar and bipolar codes.

3.5 Reference Supply

The DAC1285 series is supplied with an internal 6.2V reference regulator (pin 24). In order to obtain the specified unadjusted performance, the reference output (pin 24) should be connected to the reference input (pin 16). An external reference voltage may be used with the DAC1285 series if provision is made to calibrate full-scale as shown in Figure 9 . Since the reference is buffered, it may be used externally at currents up to 2.5 mA .

FIGURE 9. External Adjustment and Voltage Supply Connection Diagram

TABLE II

Code Type	Input Code (Note 7)	Output State	Unipolar Output Ranges			
	MSB LSB		OV to 10V		OV to 5V	$\begin{gathered} 0 \mathrm{~mA}-2 \mathrm{~mA} \\ 0 \mathrm{~mA}-1.25 \mathrm{~mA} \end{gathered}$
Unipolar	000000000000	Full-Scale	9.9976 V		4.9988 V	$-1.9995 \mathrm{~mA}$
Complementary	111111111110	1 LSB ON	0.0024 V		0.0012 V	$-0.0005 \mathrm{~mA}$
Binary	111111111111111	Zero-Scale	0.0000 V		0.0000 V	0.0000 mA
Code Type	Input Code (Note 7)	Output State	Bipolar Output Voltage Ranges			
	MSB LSB		$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 2.5 \mathrm{~V}$	$\pm 1 \mathrm{~mA}$
Bipolar	000000000000	Full-Scale	9.9951 V	4.9976 V	2.4988 V	$-0.9995 \mathrm{~mA}$
Complementary	0 1 1 1 1 1 1 1 1 1 111	Half-Scale	0.0000 V	0.0000 V	0.0000 V	0.0000 mA
Binary	11111111111111110	1 LSB ON	-9.9951V	-4.9976V	$-2.4988 \mathrm{~V}$	0.9995 mA
	1111111111111	Zero-Scale	$-10.0000 \mathrm{~V}$	$-5.0000 \mathrm{~V}$	$-2.5000 \mathrm{~V}$	1.0000 mA

Note 7: Logic input sense is such that an active low ($\mathrm{V}_{\mathrm{IN}} \leq 0.8 \mathrm{~V}$) turns a given bit ON and is represented as a logic " 0 " in the table.

3.6 Logic Input Compatibility

The design of the current mode switches in the DAC1285 series gives the device true TTL compatibility. It is TTL compatible over the entire operating temperature range and is independent of the reference voltage and V_{cc}. Furthermore, since the input breakdown ratings are in excess of 10 V , the DAC1285 series may be driven directly from high (or low) voltage CMOS.
3.7 ± 12 Volt Supply Operation
These DACs will operate with supply voltages as low as $\pm 11.4 \mathrm{~V}$. It is recommended that output voltage ranges -10 V to +10 V and 0 V to 10 V not be used if the supply
voltages are ever less than the recommended $\pm 12 \mathrm{~V}$. The output amplifier may saturate if $\left|V_{\text {SUPPLY }}\right|-\mid V_{\text {OUT }}$ maximum $\mid<2.0 \mathrm{~V}$.

3.8 Power Supply Connections

For optimum performance power supply decoupling capacitors should be added as shown in the connection diagrams (Figure 9). These capacitors ($1 \mu \mathrm{~F}$ electrolytic recommended) should be located close to the device. Electrolytic capacitors, if used, should be paralleled with $0.01 \mu \mathrm{~F}$ ceramic capacitors for optimum high frequency performance.

General Description

The DM2502, DM2503 and DM2504 are 8-bit and 12-bit TTL registers designed for use in successive approximation A/D converters. These devices contain all the logic and control circuits necessary in combination with a D/A converter to perform successive approximation analog-to-digital conversions.
The DM2502 has 8 bits with serial capability and is not expandable.

The DM2503 has 8 bits and is expandable without serial capability.

The DM2504 has 12 bits with serial capability and expandability.
All three devices are available in ceramic DIP, ceramic flatpak, and molded Epoxy-B DIPs. The DM2502,

DM2503 and DM2504 operate over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the DM2502C, DM2503C and DM2504C operate over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Complete logic for successive approximation A/D converters
- 8 -bit and 12 -bit registers
- Capable of short cycle or expanded operation
- Continuous or start-stop operation
- Compatible with D/A converters using any logic code
- Active low or active high logic outputs
- Use as general purpose serial-to-parallel converter or ring counter

Logic Diagram

Connection Diagrams (Dual-In-Line and Flat Packages)

Order Number DM2502J DM2502CJ, DM2503J
or DM2503CJ
See NS Package J16A
Order Number DM2502CN or DM2503CN
See NS Package N16A
Order Number DM2502W, DM2502CW, DM2503W, or DM2503CW
See NS Package W16A

DM2504

top view
Order Number DM2504F or DM2504CF See NS Package F24A

Order Number DM2504J or DM2504CJ
See NS Package J24A
Order Number DM2504CN
See NS Package N24A

Absolute Maximum Ratings
 (Note 1)

Operating Conditions

			MIN	MAX	UNITS
Supply Voltage	7 V	Supply Voltage, V_{CC}			
Input Voltage	5.5 V	DM2502C, DM2503C,	4.75	5.25	V
Output Voltage	5.5 V	DM2504C			
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DM2502, DM2503,	4.5	5.5	V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	DM2504	4.5	5.5	V
		```Temperature, TA DM2502C, DM2503C, DM2504C```	0	+70	${ }^{\circ} \mathrm{C}$
		DM2502, DM2503, DM2504	-55	+125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2and 3) $V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage ( $\mathrm{V}_{1}$ )	$V_{\text {cc }}=\mathrm{Min}$	2.0			$\checkmark$
Logical " 1 " Input Current ( ${ }_{\text {IH }}$ )	$V_{C C}=$ Max				
CP input	$\mathrm{V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$		6	40	$\mu \mathrm{A}$
D, $\bar{E}, \bar{S}$ Inputs	$\because_{1 H}-2.7{ }^{\text {a }}$		6	80	$\mu \mathrm{A}$
All Inputs	$V_{1 H}=5.5 \mathrm{~V}$			1.0	mA
Logical " 0 " Input Voltage ( $\mathrm{V}_{\mathrm{LL}}$ )	$\mathrm{V}_{\text {cc }}=\mathrm{Min}$			0.8	$v$
Logical " 0 " Input Current ( $I_{\text {IL }}$ )	$V_{\text {cc }}=$ Max				
CP, $\overline{\mathrm{S}}$ inputs	$V_{\text {IL }}=0.4 \mathrm{~V}$		-1.0	-1.6	$m \mathrm{~A}$
D, E Inputs	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$		-1.0	-3.2	mA
Logical "1" Output Voltage ( $\mathrm{V}_{\mathrm{OH}}$ )	$V_{\text {cC }}=$ Min, $\mathrm{I}_{\mathrm{OH}}=-0.48 \mathrm{~mA}$	2.4	3.6		$\checkmark$
Output Short Circuit Current (Note 4) (los)	$\begin{aligned} & V_{\mathrm{CC}}=\text { Max; } V_{\text {Out }}=0.0 \mathrm{~V} \text {; } \\ & \text { Output High; CP, D, } \overline{\mathrm{S}}, \text { High; } \\ & \overline{\mathrm{E}} \text { Low } \end{aligned}$	-10	-20	-45	mA
Logical " 0 " Output Voltage ( $\mathrm{V}_{\mathrm{OL}}$ )	$V_{C C}=M i n, \mathrm{I}_{\text {OL }}=9.6 \mathrm{~mA}$		0.2	0.4	V
Supply Current ( ${ }_{\text {CC }}$ )	$\mathrm{V}_{\mathrm{cc}}=$ Max, All Outputs Low		65		
DM2502C			65	95	mA
DM2502			65	85	mA
DM2503C			60	90	mA
DM2503			60	80	mA
DM2504C			90	124	mA
DM2504			90	110	mA
Propagation Delay to a Logical " 0 " From CP to Any Output ( $t_{\text {pao }}$ )		10	18	28	ns
Propagation Delay to a Logical " 0 " From $\overline{\mathrm{E}}$ to Q 7 (Q11) Output ( $\mathrm{t}_{\mathrm{paO}}$ )	CP High, $\overline{\mathrm{S}}$ Low DM2503, DM2503C, DM2504, DM2504C Only		16	24	ns
Propagation Delay to a Logical " 1 " From CP to Any Output ( $\mathrm{t}_{\mathrm{pd} 1}$ )		10	26	38	ns
Propagation Delay to a Logical " 1 " From $\bar{E}$ to $Q 7$ (Q11) Output ( $t_{p a 1}$ )	CP High, $\overline{\mathrm{S}}$ Low DM2503, DM2503C, DM2504, DM2504C Only		13	19	ns
Set-Up Time Data Input ( $\mathrm{t}_{\text {s(D) }}$ )		-10	4	8	ns
Set-Up Time Start Input ( $\mathrm{t}_{\text {s( }}^{(\bar{S})}$ )		0	9	16	ns
Minimum Low CP Width ( $\mathrm{t}_{\text {PWL }}$ )			30	42	ns
Minimum High CP Width ( $\mathrm{t}_{\text {PWH }}$ )			17	24	ns
Maximum Clock Frequency ( $\mathrm{f}_{\text {MAX }}$ )		15	21		MHz

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DM2502, DM2503 and DM2504, and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DM2502C, DM2503C and DM2504C. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 4: Only one output at a time should be shorted.

## Application Information <br> operation

The registers consist of a set of master latches that act as the control elements in the device and change state on the input clock high-to-low transition and a set of slave latches that hold the register data and change on the input clock low-to-high transition. Externally the device acts as a special purpose serial-to-parallel converter that accepts data at the $D$ input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the DM2502 and DM2504 when the clock goes from low-to-high. There are no restrictions on the data input; it can change state at any time except during a short interval centered about the clock low-to-high transition. At the same time that data enters the register bit the next less significant bit register is set to a low ready for the next iteration.

The register is reset by holding the $\overline{\mathrm{S}}$ (Start) signal low during the clock low-to-high transition. The register synchronously resets to the state 07 (11) low, and all the remaining register outputs high. The $\mathrm{O}_{\mathrm{Cc}}$ (Conversion Complete) signal is also set high at this time. The $\overline{\mathrm{S}}$ signal should not be brought back high until after the clock low-to-high transition in order to guarantee correct resetting. After the clock has gone high resetting the register, the $\overline{\mathrm{S}}$ signal must be removed. On the next clock low-to-high transition the data on the D input is set into the $\mathbf{Q 7}$ (11) register bit and the $\mathbf{Q 6}$ (10) register bit is set to a low ready for the next clock cycle. On the next clock low-to-high transition data enters the O 6 (10) register bit and $\mathrm{Q} 5(9)$ is set to a low. This operation is repeated for each register bit'in turn until the register has been filled. When the data goes into QO , the $\mathrm{Q}_{\mathrm{Cc}}$ signal goes low, and the register is inhibited from further change until reset by a Start signal.

The DM2502, DM2503 and DM2504 have a specially tailored two-phase clock generator to provide nonoverlapping two-phase clock pulses li.e., the clock waveforms intersect below the thresholds of the gates
they drive). Thus, even at very slow $\mathrm{dV} / \mathrm{dt}$ rates at the clock input (such as from relatively weak comparator outputs), improper logic operation will not result.

## LOGIC CODES

All three registers can be operated with various logic codes. Two's complement code is used by offsetting the comparator $1 / 2$ full range $+1 / 2$ LSB and using the complement of the MSB ( $\overline{\mathrm{Q}} 7$ or $\overline{\mathrm{Q}} 11$ ) with a binary D/A converter. Offset binary is used in the same manner but with the MSB (Q7 or Q11). BCD D/A converters can be used with the addition of illegal code suppression logic.

## ACTIVE HIGH OR ACTIVE LOW LOGIC

The register can be used with either D/A converters that require a low voltage level to turn on, or D/A converters that require a high voltage level to turn the switch on. If D/A converters are used which turn on with a low logic level, the resulting digital output from the register is active low. That is, a logic " 1 " is represented as a low voltage level. If D/A converters are used that turn on with a high logic level then the digital output is active high; a logic " 1 " is represented as a high voltage level.

## EXPANDED OPERATION

An active low enable input, $\bar{E}$, on the DM2503 and DM2504 allows registers to be connected together to form a longer register by connecting the clock, D, and $\bar{S}$ inputs in parallel and connecting the $\mathrm{Q}_{\mathrm{Cc}}$ output of one register to the $\bar{E}$ input of the next less significant register. When the start signal resets the register, the $\overline{\mathrm{E}}$ signal goes high, forcing the Q7 (11) bit high and inhibiting the register from accepting data until the previous register is full and its $\mathrm{O}_{\mathrm{CC}}$ goes low. If only one register is used the $\bar{E}$ input should be held at a low logic level.

## Timing Diagram

DM2502, DM2503


## Application Information (Continued)

## SHORT CYCLE

If all bits are not required, the register may be truncated and conversion time saved by using a register output going low rather than the $\mathrm{Q}_{\mathrm{cc}}$ signal to indicate the end of conversion. If the register is truncated and operated in the continuous conversion mode, a lock-up condition may occur on power turn-on. This condition can be avoided by making the start input the OR function of $\mathrm{Q}_{\mathrm{CC}}$ and the appropriate register output.

## COMPARATOR BIAS

To minimize the digital error below $\pm 1 / 2$ LSB, the comparator must be biased. If a D/A converter is used which requires a low voltage level to turn on, the comparator should be biased $+1 / 2$ LSB. If the $D / A$
 comparator must be biased -1/2 LSB.

## Definition of Terms

CP: The clock input of the register.
D: The serial data input of the register.
DO: The serial data out. (The $D$ input delayed one bit). $\overline{\mathrm{E}}$ : The register enable. This input is used to expand the length of the register and when high forces the $\mathrm{Q7}$ (11) register output high and inhibits conversion. When not used for expansion the enable is held at a low logic level (ground).
$\mathbf{a}_{\mathbf{i}} \mathbf{i = 7 ( 1 1 )}$ to $\mathbf{0}$ : The outputs of the register.
$\mathrm{O}_{\mathrm{Cc}}$ : The conversion complete output. This output remains high during a conversion and goes low when'a conversion is complete.
07 (11): The true output of the MSB of the register.
$\overline{\mathbf{Q}} 7$ (11): The complement output of the MSB of the register.
$\overline{\mathbf{S}}$ : The start input. If the start input is held low for at least a clock period the register will be reset to 07 (11) low and all the remaining outputs high. A start pulse that is lnw for a shorter period of time can be used if it meets the set-up time requirements of the $\overline{\mathrm{S}}$ input.

## Truth Table

## DM2502, DM2503

TIME	INPUTS			OUTPUTS ${ }^{1}$									
$\mathrm{t}_{\mathrm{n}}$	D	$\overline{\mathrm{S}}$	$\bar{E}^{2}$	D0 ${ }^{3}$	07	06	Q5	04	03	02	01	00	$\mathrm{a}_{\text {cc }}$
0	$\times$	L	L	$x$	X	X	X	X	X	X	X	X	X
1	D7	H	L	X	L	H	H	H	H	H	H	H	H
2	D6	H	L	D7	D7	L	H	H	H	H	H	H	H
3	D5	H	L	D6	D7	D6	L	H	H	H	H	H	H
4	D4	H	L	D5	D7	D6	D5	L	H	H	H	H	H
5	D3	H	L	D4	D7	D6	D5	D4	L	H	H	H	H
6	D2	H	L	D3	D7	D6	D5	D4	D3	L	H	H	H
7	D1	H	L	D2	D7	D6	D5	D4	D3	D2	L	H	H
8	D0	H	L	D1.	D7	D6	D5	D4	D3	D2	D1	L	H
9	$x$	H	$L$	DO	D7	D6	D5	D4	D3	D2	D1	DO	L
10	X	X	L	X	D7	D6	D5	D4	D3	D2	D1	DO	L
	$x$	X	H	x	H	NC							

Note 1: Truth table for DM2504 is extended to include 12 . outputs.
Note 2: Truth table for DM2502 does not include $\bar{E}$ column or last line in truth table shown.
Note 3: Truth table for DM2503 does not include DO column.
$H=$ High Voltage Level
$L$ = Low Voltage Level
$X=$ Don't Care
$N C=$ No Change

## Typical Applications




Typical Applications (Continued)
Fast Precision Analog-to-Digital Converter



## LF13300 Integrating AID Analog Building Block

## General Description

The LF13300 is the analog section of a precision integrating analog-to-digital (A/D) system. JFET and bipolar transistors (BI-FET) are combined on the same chip to nrovide a hiah input impedance unity gain buffer, comparator and integrator, along with 9 JFET analog switches. The LF13300 has sufficient resolution to construct up to a $41 / 2$-digit Digital Panel Meter (DPM) or a 12 -bit (plus sign) Data Acquisition System and is specifically designed for use with the ADB1200 12-bit binary building block.
*See ADB1200 data sheet for more information.

## Features

- Rugged JFETs allow blow-out free handling
- High input impedance $10,000 \mathrm{M} \Omega$ typ
- Automatic offset correction
 isolated from high noise digital circuits
- Analog input range of $\pm 11 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies
- Wide power supply voltage range $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- TTL and CMOS compatible logic
- Can interface directly with microprocessors
- Versatile: can be used as a 12 -bit plus sign binary A/D, 4 1/2-digit, 3 3/4-digit and 3 1/2-digit Digital Panel Meter (DPM)
- Low cost


## Block and Connection Diagrams




Order Number LF13300D See NS Package D18A

## Absolute Maximum Ratings

Supply Voltage
Power Dissipation, (Note 1)
Junction Temperature
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 seconds)

```
\(\pm 18 \mathrm{~V}\)
570 mW
 \pm18V
 570 mW
 110}\mp@subsup{}{}{\circ}\textrm{C
-65 ' C to +150 %
 0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }+7\mp@subsup{0}{}{\circ}\textrm{C
 300 C
```

Electrical Characteristics $\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)


Note 1: For operating at elevated temperatures, the LF13300 in the dual-in-line package must be derated based on the thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

## Typical Performance Characteristics



The offset voltages are assigned as follows: VOS1 - the input offset voltage of the buffer; VOS2 - the input offset voltage of $\mathrm{A} 1 ; \mathrm{V}_{\mathrm{OS}}$ - the input offset voltage of A2; VOS4 - the input offset voltage of the comparator.

S5 grounds the input of the buffer so that its output voltage is simply VOS1. S6 bypasses R to keep the integration time constant, RC, from affecting the circuit operation. S4 makes the total equivalent input voltage to A1 be -VOS1 - VOS2. S7 puts the op amp in a unity gain configuration with respect to the input of A2. S8 keeps the output voltage of the op amp at $-V_{B}+V_{\text {OS4 }}=-V_{B}$ (the Offset Correction potential) since the comparator is placed inside the loop. $\mathrm{C}_{3}$ samples the output of the $-V_{B}$ generator. The voltage at the non-inverting input of $A 2$ is $-V_{B}-V_{O S 1}-$

## Functional Description (Continued)

$V_{\text {OS2 }}-V_{\text {OS3 }}+V_{\text {OS } 4}=V_{1}$. Thus, the sum of the offsets is stored on C 1 , and the differential voltage across the comparator is zero.

## Polarity Determination (Figure 2)

The simplified diagram of the LF13300 in the Polarity Determination state is shown in Figure 2. S5 and S3 are closed during this period. S5 grounds the buffer input and $V_{X}$ (the unknown voltage) is applied through S3 to the non-inverting input of A 1 . The equation that describes the op amp output voltage is given in Figure 2. When $V_{X}$ is applied to $A 1$ at $t_{1}$, the output of the op amp slews to $V_{X}$ and is integrated until $t_{2}$, when S 3 opens and S 4 closes. At $\mathrm{t}_{2}$, VOUT slews down by $-\mathrm{V}_{\mathrm{X}}$
leaving $\frac{1}{R C} \int_{t_{2}}^{t_{2}} V_{X d t}-V_{B^{\prime}}$ at the op amp output.
Just before $\mathrm{t}_{2}$, the comparator senses the op amp output with respect to $-V_{B}$; the comparator output goes high if $\mathrm{V}_{\mathrm{X}}>0$ and remains low if $\mathrm{V}_{\mathrm{X}} \leq 0$.

Initialization (Figure 1)
During initialization, the configuration is the same way as it is in the Offset Correction state and the op amp output is brought back to the Offset Correction potential $-V_{B}$.

## Ramp Unknown (Figures 2 and 3)

In the Ramp Unknown state, if $\mathrm{V}_{\mathrm{X}} \geq 0$, S 3 and S 5 are closed, as shown in Figure 2, and $V_{X}$ is applied to the

+ input of the integrator. If $V_{X}<0$, the device is connected as in Figure 3 with S2 and S4 closed. $\mathrm{V}_{\mathrm{X}}$ is now applied through the buffer to the - input of the integrator. In either Ramp Unknown case, the op amp output ramps in the positive direction and $\mathrm{V}_{\mathrm{X}}$ is applied to a high impedance JFET input.


## Ramp Reference (Figure 4)

In this state, the LF13300 is configured with switches S1 and S4 closed. The reference voltage, $\mathrm{V}_{\mathrm{R}}$, a positive voltage, is applied to the buffer input and the op amp output ramps down until $\mathrm{V}_{\text {OUT }}=-\mathrm{V}_{\mathrm{B}^{\prime}}$ where the comparator will trip.

If $\mathrm{V}_{\mathrm{X}}$ and $\mathrm{V}_{\mathrm{R}}$ are assumed to be constant over their respective integration periods, the integrals of Figure 4 are reduced to,

$$
\frac{V_{X}\left(t_{4}-t_{3}\right)}{R C}=\frac{V_{R}\left(t_{5}-t_{4}\right)}{R C}
$$

or

$$
\frac{V_{x}}{V_{R}}=\frac{t_{5}-t_{4}}{t_{4}-t_{3}}
$$

Since $t_{4}-t_{3}=4096$ clock periods and $t_{5}-t_{4}$ can be measured in clock periods, $V_{X} / V_{R}=X / 212$, where $X$ is a digital binary output representing an analog input $V_{X}$ with respect to $V_{R}$.


FIGURE 1. Offset Correction Circuit

Functional Description (Continued)

$$
-V_{B^{\prime}}+V_{X}+\frac{1}{R C} \int_{t_{3}}^{t_{4}} V_{X} d t: \text { Ramp Unknown for } V_{X} \geq 0
$$

$V_{\text {OUT }}=$

$$
-V_{B^{\prime}}+V_{X}+\frac{1}{R C} \int_{t_{1}}^{t_{2}} \quad V_{X} d t \text { : Polarity Determination }
$$



FIGURE 2. Polarity Determination Circuit or Ramp Unknown Circuit for $\mathbf{V}_{\mathbf{X}} \geq 0$


Functional Description (Continued) $\quad \therefore \quad v_{\text {OUT }}{ }^{*}=-v_{B^{\prime}}+\frac{1}{\mathrm{RC}}\left(\int_{\mathrm{t}_{3}}^{\mathrm{t}_{4}} v_{X} d t-\int_{\mathrm{t}_{4}}^{\mathrm{t}_{5}} \mathrm{v}_{\mathrm{R}} d t\right)$

*More accurately
$V_{\text {OUT }}=-V_{B^{\prime}}+\frac{1}{R C}\left(\int_{\mathrm{t}_{4}}^{\mathrm{t}_{5+\Delta}} \mathrm{V}_{\mathrm{Rdt}}+\int_{\mathrm{t}_{3}}^{\mathrm{t}_{4}} \mathrm{v}_{\mathrm{X}} d \mathrm{tr}\right)+\delta$
Where $\delta$ is the incremental voltage overdrive needed to fully switch the comparator and $\Delta$ is the sum of the additional time required to develop $\delta$ and the comparator propagation delay.

FIGURE 4. Ramp Reference Circuit

## 12-Bit A/D Converter Electrical Characteristics

12-bit plus sign. (LF13300 with ADB1200). ( $\mathrm{V}_{\mathrm{R}}=10.000 \mathrm{~V}, \mathrm{~F}_{\mathrm{C}}=250 \mathrm{kHz}, 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Resolution (Note 3)	$\mathrm{V}_{\mathrm{R}}=5.000 \mathrm{~V},-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{X}} \leq+10 \mathrm{~V}$	13			Bits
	$\mathrm{F}_{\mathrm{C}}=125 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	14			Bits
Non-Linearity			$\pm 1 / 8$	$\pm 1 / 2$	LSB
Ratiometric Gain Error (Def.)	$V_{X}= \pm 10.000 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, (Note 2)		$\pm 1 / 2$	$\pm 2$	LSB
Gain Error Drift	$V_{X}=10.000 \mathrm{~V}$		$\pm 1$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Zero Reading Drift	$V_{X}=0 V$		$\pm 0.5$		ppm/ $/{ }^{\circ} \mathrm{C}$
Analog Input Voltage Range		$\pm 11$	$\pm 12$		V
Analog Input Leakage Current	$V_{X}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		80	500	pA
Analog Input Resistance	$V_{X}=0 V_{1} T_{A}=25^{\circ} \mathrm{C}$	100	1000		$\mathrm{M} \Omega$
Reference Input Voltage Range	$V_{R}$ Varied, $T_{A}=25^{\circ} \mathrm{C}$	4		12	V
Reference Input Leakage Current	$V_{R}=10.000 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		1	100	nA
Reference Input Resistance	$V_{R}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	100	1000		$\mathrm{M} \Omega$
Start Conversion Pulse Width	$\mathrm{V}_{\mathrm{SC}}=2.4 \mathrm{~V}$	2.4			$\mu \mathrm{s}$
Conversion Time	$\begin{aligned} & V_{I N}=10.000 \mathrm{~V} \\ & t_{C}=8960 / F_{C} \end{aligned}$			36	ms
15V Supply Currents	LF13300, $\mathrm{V}^{+}$Current			11	mA
-15V Supply Currents	LF13300, V- Current, $^{-}$ADB1200 $\mathrm{V}_{\mathrm{GG}}$ Current		27	45	mA
5V Supply Currents	$V_{I N}=0 V, A D B 1200$   $V_{\text {SS }}$ Current		23	39	mA

Note 2: The A/D converter system must have been operational for a minimum of $\mathbf{3 0}$ seconds before this measurement is made. This is to relax the dielectric absorption effects of the integration capacitor, C.
Note 3: Polarity and Overrange outputs are considered as additional output bits.

## 12-Bit A/D Converter Circuit and Timing Diagrams



## Application Hints

Increasing the Input Impedance of the LF13300, MM5863 12-Bit A/D Converter

The input impedance of the LF13300, ADB1200 (MM5863) A/D converter can be increased 1 to 2 orders of magnitude over the typical $1000 \mathrm{M} \Omega$ cited in the 12 -bit $A / D$ specifications by insuring that the signals that switch the LF13300 do not overlap. A circuit that eliminates switching overlap by introducing a Delay $\left(t_{\mathrm{d}}\right) \approx 3.3 \mathrm{k} \times 100 \mathrm{pF} \approx 300 \mathrm{~ns}$ to the rising edge of the signals from the ADB1200 (MM5863) is shown in Figure 6. Figure 7 shows the operation of this circuit. The total delay time $t_{r}{ }^{\prime}$ of the output will be equal to the inherent gate rise time, $t_{r}$, plus the RC delay, $t_{d}$. The fall time, $\mathrm{tf}_{\mathrm{f}}$ will be the basic gate delay.

## Nulling the Residual Offset

The residual offset is $<200 \mu \mathrm{~V}$ which is negligible for most applications. This can be reduced to $<40 \mu \mathrm{~V}$ by lowering the clock frequency from 250 kHz to about 75 kHz . If a lower residual offset is required, we may trim out the remainder as shown in Figure 8. This circuit applies a negative step to the offset correction capacitor, $\mathrm{C}_{\mathrm{OC} 2}$, by means of a variable capacitor which is adjusted until charge injection imbalance of the offset correction switches are cancelled.


FIGURE 6. Overlap Elimination Circuit


FIGURE 8. Residual Offset Nulling Circuit

## Eliminating Errors Due to Power Supply Noise

For many applications, power supply noise (f $\geq 10 \mathrm{~Hz}$ ) causes errors which reduces the accuracy of the system. In most applications, noise can be adequately eliminated by putting a series resistor ( $100 \Omega$ ) in the power supply line with a $10 \mu \mathrm{~F}$ tantalum capacitor connected at the power supply pins (Figure 9). The $10 \mu \mathrm{~F}$ capacitor is, in addition to the normal $0.1 \mu \mathrm{~F}$ ceramic disc capacitors, used as supply bypass capacitors.
Errors caused by noise on the negative supply, $-V_{S}$, can be further reduced by replacing, $\mathrm{C}_{\mathrm{OC}}$ with a $10 \mu \mathrm{~F}$ low leakage tantalum capacitor. Since $-V_{B}$ is $3 V$ above $-V_{S}$, any noise appearing at $-V_{S}$ appears at $-V_{B}$; the $10 \mu \mathrm{~F}$ capacitor eliminates this noise.

## Continuous Conversion Mode

For using the MM5863 in the continuous conversion mode, connect the end of conversion output, EOC (pin 23), to the output enable input, OE (pin 3), and connect the start conversion input, SC (pin 2) to 5 V .

## Miscellaneous

Since none of the output pins employ short-circuit protection, extreme care should be taken when breadboarding or troubleshooting with the power ON.


FIGURE 7. Rise Time Delay Circuit


FIGURE 9. Power Supply Noise Reduction Circuit

## Typical Applications



* SC at logic " 1 "' for continuous conversion mode


FIGURE 10. Continuous Conversion 12-Bit Plus Sign Serial Output A/D Using the LF13300 and the ADB1200

## Typical Applications (Continued)



* Note. Prior to the first conversion cycle, the data outputs will all be in a "1" state when the outputs are enabled ( $\overline{O E}$ in " 0 " state).

FIGURE 11. 12-Bit Plus Sign A/D in Command Conversion Mode

## 4-Channel Differential Multiplexer with Autozeroed Instrumentation Amplifier and 12-Bit A/D Converter

Figure 12 shows a low speed, high accuracy, data acquisition unit where the analog input signal is acquired differentially and preconditioned through an LF352 monolithic instrumentation amplifier. To eliminate amplifier offset errors, autozeroing circuitry is added around the LF352 and is timed through the ADB1200 and flip-flop C. Flip-flops A and B form a 2-bit up counter for channel select.

The instrumentation amplifier is zeroed at power-up and after each conversion as shown in the timing diagram;
during autozero the multiplexer is disabled. When the system does polarity detection and $A / D$ conversion, the LF352 is active and the multiplexer is enabled. The zeroing cycle for the LF13300 and the LF352 lasts for 256 clock periods, so the maximum clock frequency will depend upon the required accuracy and the minimum zeroing time of the instrumentation amplifier. Notice here that the system accuracy will be less than 12 bits since it will be affected by the gain linearity of the instrumentation amplifier.

For more details concerning data acquisition, see AN-156 and LF11508/LF11509 data sheet. For details on the instrumentation amplifier, see the LF352 data sheet.

Typical Applications (Continued)


0

FIGURE 12. 4-Channel Differential Multiplexer with Autozeroed Instrumentation Amplifier and 12-Bit A/D Converter


FIGURE 13. Timing Diagram for Figure 12

Typical Applications (Continued)

*Low leakage mylar
**Polypropylene

Note 1: All diodes, 1 N914.
Note 2: All resistors $1 / 4 \mathrm{~W}, 5 \%$ tolerance.
Note 3: Circuit drawn for 8 V full scale operation input scaling not shown
Note 4: Inductive components U4X003 or Microtran PC6714.

## Typical Applications (Continued)

3 3/4 Plus Digit ( $\pm 8191$ Counts)/3 1/2-Digit $( \pm 1999$ Counts) DPM

In this circuit of Figure 14, the LF13300 and ADB1200 interact as previously described. The CMOS counter (MM74C926, MM74C928) is connected to count clock pulses during the ramp reference cycle. The counts are latched into the display when the comparator output trips, (goes low), as shown in the timing diagram Figure 15.

The RC network consisting of R1 and C1 is a low pass filter that prohibits the fast transients that occur on the comparator output during Offset Correction from loading any erroneous counts into the counter.

The DPM is able to operate from a single 15 V power supply with the aid of a dc-dc converter. The LM555 generates the negative voltages required in the circuit and also doubles as the clock. The combination of Q1, R2, R3 and R4 forms a level shift to convert the output swing of the LM555 to a $0 V-5 \mathrm{~V}$ swing that is compatible with the logic. The LM340-5 drops the incoming 15 V to 5 V for use by the logic circuits and the LED display.

This circuit can be a $33 / 4$ plus digit DPM if the MM74C926 is used or a $31 / 2$-digit DPM if the MM74C928 is used. These counters are pin compatible and physically interchangeable.


FIGURE 15. Timing Diagram for 3 3/4-Digit DVM

## 3 3/4-Digit DPM Electrical Characteristics

3 3/4 plus digits plus sign ( $\pm 8191$ counts) DPM system characteristics.
(Circuit as in Figure 14, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=4.096 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Resolution	$-8.2 \mathrm{~V} \leq \mathrm{V} \mathrm{X} \leq+8.2 \mathrm{~V}$	16,382			Counts
Nonlinearity	$\mathrm{V}_{\text {IN }}=4.000 \mathrm{~V}$		$\pm 1 / 8$	$\pm 1 / 2$	Counts
Ratiometric Gain Error	$\mathrm{V}_{\text {IN }}=4.000 \mathrm{~V}$		$\pm 1 / 2$	$\pm 2$	Counts
Gain Error Drift	$\mathrm{V}_{\text {IN }}=4.000 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.		$\pm 1$		ppm/ ${ }^{\text {c }}$ C
Zero Reading Drift	$V_{\text {IN }}=0 V$		$\pm 1$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Analog Input Voltage Range				$\pm 11$	V
Reference Input Voltage Range	Reference Varied	0		+12	V
Analog Input Leakage Current	$V_{\text {IN }}=0 \mathrm{~V}$		80	500	pA
Reference Input Leakage Current			1	100	nA
Analog Input Resistance	$V_{\text {IN }}=0 \mathrm{~V}$		1000		$\mathrm{M} \Omega$
Conversion Time	$\mathrm{V}_{1 \mathrm{~N}}=4.000 \mathrm{~V}, \mathrm{f} \mathrm{C}=125 \mathrm{kHz}$			74	ms



FIGURE 16. PC Board for 3 3/4 Plus ( $\pm 8191$ Counts) and 3 1/2-Digit DPM


FIGURE 17. Stuffing Diagram for 3 3/4 Plus ( $\pm 8191$ Counts) and 3 1/2-Digit DPM

## AC Test Circuits



Test Circuit 3
Reference Input Characteristic Test with RR High


Test Circuit 5
Offset Correction Input Current, IOC Test


Test Circuit 2
Analog Input Characteristics Test with PD/RU+ High


Test Circuit 4
-VB Voltage Measurement Test


Test Circuit 6
Op Amp Slew Rate Test


Test Circuit 7
Frequency Response Test


Test Circuit 8
Open Loop Gain Test


Test Circuit 9 Buffer Slew Rate Test


## AC Test Circuits (Cōntinued)



Test Circuit 11
Comparator Response Time Test



## General Description

The LM131/LM231/LM331 family of voltage-tofrequency converters are ideally suited for use in simple low-cost circuits for analog-to-digital conversion, precision frequency-to-voltage conversion, long-term integration, linear frequency modulation or demodulation, and many other functions. The output when used as a voltage-to-frequency converter is a pulse train at a frequency precisely proportional to the applied input voltage. Thus, it provides all the inherent advantages of the voltage-to-frequency conversion techniques, and is
 converter applications. Further, the LM131A/LM231A/ LM331A attains a new high level of accuracy versus temperature which could only be attained with expensive voltage-to-frequency modules. Additionally the LM131 is ideally suited for use in digital systems at low power supply voltages and can provide low-cost analog-to-digital conversion in microprocessor-controlled systems. And, the frequency from a battery powered voltage-to-frequency converter can be easily channeled through a simple photoisolator to provide isolation against high common mode levels.

The LM131/LM231/LM331 utilizes a new temperaturecompensated band-gap reference circuit, to provide excellent accuracy over the full operating temperature range, at power supplies as low as 4.0 V . The precision timer circuit has low bias currents without degrading
the quick response necessary for 100 kHz voltage-tofrequency conversion. And the output is capable of driving 3 TTL loads, or a high voltage output up to 40 V , yet is short-circuit-proof against $\mathrm{V}_{\mathrm{CC}}$.

## Features

- Guaranteed linearity 0.01\% max
- Improved performance in existing voltage-to-frequency conversion applications
- Split or single supply operation
- Operates on single 5 V supply
- Pulse output compatible with all logic forms
- Excellent temperature stability, $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max
- Low power dissipation, 15 mW typical at 5 V
- Wide dynamic range, 100 dB min at 10 kHz full scale frequency
- Wide range of full scale frequency, 1 Hz to 100 kHz
- Low cost

*Use stable components with low temperature coefficients. See Typical Applications section.
FIGURE 1. Simple Stand-Alone Voltage-to-Frequency Converter with $\pm 0.03 \%$ Typical Linearity ( $f=10 \mathrm{~Hz}$ to 11 kHz )

Absolute Maximum Ratings

	LM131A/LM131	LM231A/LM231	LM331A/LM331
Supply Voltage	40V	40 V	40 V
Output Short Circuit to Ground	Continuous	Continuous	Continuous
Output Short Circuit to V CC	Continuous	Continuous	Continuous
Input Vol'tage	-0.2 V to $+\mathrm{V}_{\mathrm{S}}$	-0.2 V to $+\mathrm{V}_{\mathrm{S}}$	-0.2 V to $+\mathrm{V}_{S}$
	TMIN TMAX	$\mathrm{T}_{\text {MIN }} \mathrm{T}_{\text {MAX }}$	TMIN TmAX
Operating Ambient Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Power Dissipation ( $\mathrm{PD}_{\mathrm{D}}$ at $25^{\circ} \mathrm{C}$ ) and Thermal Resistance $\left(\theta_{\mathrm{j}} \mathrm{A}\right)$			
$\begin{array}{ll} \text { (H Package) } & \mathrm{PD}_{\mathrm{D}} \\ & \theta_{\mathrm{jA}} \end{array}$	$\begin{aligned} & 670 \mathrm{~mW} \\ & 150^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 570 \mathrm{~mW} \\ & 150^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 570 \mathrm{~mW} \\ & 150^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
(N Package) $\begin{array}{ll}\mathrm{PD}_{\mathrm{D}} \\ & \theta_{\mathrm{j} A}\end{array}$		$\begin{aligned} & 500 \mathrm{~mW} \\ & 155^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~mW} \\ & 155^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VFC Non-Linearity (Note 2)	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 20 \mathrm{~V}$		$\pm 0.003$	$\pm 0.01$	\% Full-   Scale
	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$		$\pm 0.006$	$\pm 0.02$	\% Full. Scale
In Circuit of Figure 1	$V_{S}=15 \mathrm{~V}, \mathrm{f}=10 \mathrm{~Hz}$ to 11 kHz		$\pm 0.024$	$\pm 0.14$	\% Full. Scale
Conversion Accuracy Scale Factor (Gain)	$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}, \mathrm{R}_{\text {S }}=14 \mathrm{k} \Omega$				
LM131, LM131A, LM231, LM231A		0.95	1.00	1.05	kHz/V
LM331, LM331A		0.90	1.00	1.10	kHz/V
Temperature Stability of Gain	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} 4.5 \mathrm{~V} \leq \mathrm{V}_{S} \leq 20 \mathrm{~V}$				
L̇M131/LM231/LM331			$\pm 30$	$\pm 150$	ppm/ ${ }^{\circ} \mathrm{C}$
LM131A/LM231A/LM331A			$\pm 20$	$\pm 50$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Change of Gain with $\mathrm{V}_{S}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 10 \mathrm{~V}$		0.01	0.1	\%/V
	$10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 40 \mathrm{~V}$		0.006	0.06	\%/V
Rated Full-Scale Frequency	$V_{\text {IN }}=-10 \mathrm{~V}$	10.0			kHz
Overrange (Beyond Full-Scale)	$V_{\text {IN }}=-11 \mathrm{~V}$	10			\%
Frequency					
INPUT COMPARATOR					
Offset Voltage			$\pm 3$	$\pm 10$	mV
LM131/LM231/LM331	$T_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$		$\pm 4$	$\pm 14$	mV
LM131A/LM231A/LM331A	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$		$\pm 3$	$\pm 10$	mV
Bias Current			-80	-300	nA
Offset Current			$\pm 8$	$\pm 100$	$n A$
Common-Mode Range	$T_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	-0.2		$\mathrm{v}_{\mathrm{CC}}-2.0$	$v$
TIMER					
Timer Threshold Voltage, Pin 5		0.63	0.667	0.70	$\times \mathrm{V}_{\text {S }}$
Input Bias Current, Pin 5	$\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}$				
All Devices	$0 \mathrm{~V} \leq$ VPIN $5 \leq 9.9 \mathrm{~V}$		$\pm 10$	$\pm 100$	nA
LM131/LM231/LM331	VPIN $5=10 \mathrm{~V}$		200	1000	nA
LM131A/LM231A/LM331A	VPIN $5=10 \mathrm{~V}$		200	500	nA
VSAT PIN 5 (Reset)	$\mathrm{I}=5 \mathrm{~mA}$		0.22	0.5	v

Electrical Characteristics (Continued) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CURRENT SOURCE (Pin 1 )					
Output Current	$\mathrm{R}_{\mathrm{S}}=14 \mathrm{k} \Omega, \mathrm{~V}_{\text {PIN }} 1=0$	126116			
LM131, LM131A, LM231, LM231A			135	144	$\mu \mathrm{A}$
Lм 331, Lм 331 A			136	156	$\mu \mathrm{A}$
Change with Voltage	$0 \mathrm{~V} \leq \mathrm{VPIN}_{1} \leq 10 \mathrm{~V}$		0.2	1.0	$\mu \mathrm{A}$
Current Source OFF Leakage					
LM131, LM131A			0.01	1.0	nA
LM231, LM231A, LM331, LM331A			0.02	10.0	nA
All Devices	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$		2.0	50.0	nA
Operating Range of Current (Typical)			(10 to 500)		$\mu \mathrm{A}$
Reference voltage (Pin 2)					
LM131, LM131A, LM231, LM231A		1.76	1.89	2.02	VDC
Lм331. Lm331A		1.70	1.89	2.08	$\mathrm{v}_{\mathrm{DC}}$
Stability vs Temperature			$\pm 60$		ppm $/{ }^{\circ} \mathrm{C}$
Stability vs Time, 1000 Hours			$\pm 0.1$		\%
LOGIC OUTPUT (Pin 3)					
$\mathrm{v}_{\text {SAT }}$	$1=5 \mathrm{~mA}$$1=3.2 \mathrm{~mA}$ (2 TTL Loads), $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \mathrm{l}$		015	0.50	$v$
			0.10	0.40	$v$
OFF Leakage			$\pm 0.05$	1.0	$\mu \mathrm{A}$
SUPPLY CURRENT					
LM131, LM 131A, LM231,	$\mathrm{v}_{\mathrm{s}}=5 \mathrm{~V}$	2.0	3.0	4.0	mA
LM231A	$\mathrm{V}_{\mathrm{S}}=40 \mathrm{~V}$	2.5	4.0	6.0	mA
LM331, LM331A	$\mathrm{v}_{\mathrm{S}}=5 \mathrm{~V}$	1.5	3.0	6.0	mA
	$\mathrm{V}_{\mathrm{S}}=40 \mathrm{~V}$	2.0	4.0	8.0	mA

Note 1: All specifications apply in the circuit of Figure 3, with $4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 40 \mathrm{~V}$, unless otherwise noted.
Note 2: Nonlinearity is defined as the deviation of ${ }^{\prime} O U T$ from $V_{I N} \times\left(10 \mathrm{kHz} /-10 \mathrm{~V}_{\mathrm{DC}}\right)$ when the circuit has been trimmed for zero error at 10 Hz and at 10 kHz , over the frequency range 1 Hz to 11 kHz . For the timing capacitor, $\mathrm{C}_{\mathrm{T}}$, use NPO ceramic, Teflon*, or polystyrene.

Functional Block Diagrams


[^46]FIGURE 1a

## Typical Performance Characteristics

(All electrical characteristics apply for the circuit of Figure 3, unless otherwise noted.)


## Typical Applications (Continued)

## PRINCIPLES OF OPERATION OF A SIMPLIFIED VOLTAGE-TO-FREQUENCY CONVERTER

The LM131 is a monolithic circuit designed for accuracy and versatile operation when applied as a voltage-tofrequency ( $V$-to-F) converter or as a frequency-tovoltage ( F -to-V) converter. A simplified block diagram of the LM131 is shown in Figure 2 and consists of a switched current source, input comparator, and 1 -shot timer.

The operation of these blocks is best understood by going through the operating cycle of the basic V-to-F converter, Figure 2, which consists of the simplified block diagram of the LM131 and the various resistors and capacitors connected to it.

The voltage comparator compares a positive input voltage, V 1 , at pin 7 to the voltage, $\mathrm{V}_{\mathrm{x}}$, at pin 6 . If V 1 is greater, the comparator wiii iuyyei the -stiot timor. The output of the timer will turn ON both the frequency output transistor and the switched current source for a period $t=1.1 R_{t} C_{t}$. During this period, the current $i$ will flow out of the switched current source and provide a fixed amount of charge, $Q=i \times t$, into the capacitor, $C_{L}$. This will normally charge $V_{x}$ up to a higher level than V1. At the end of the timing period, the current i will turn OFF, and the timer will reset itself.

Now there is no current flowing from pin 1, and the capacitor $C_{L}$ will be gradually discharged by $R_{L}$ until $V_{x}$ falls to the level of V 1 . Then the comparator will trigger the timer and start another cycle.

The current flowing into $C_{L}$ is exactly IAVE $=i x$ ( $\left.1.1 \times R_{t} C_{t}\right) \times f$, and the current flowing out of $C_{L}$ is exactly $V_{X} / R_{L} \cong V_{I N} / R_{L}$. If $V_{I N}$ is doubled, the frequency will double to maintain this balance. Even a simple V-to-F converter can provide a frequency precisely proportional to its input voltage over a wide range of frequencies.


FIGURE 2. Simplified Block Diagram of Stand-Alone Voltage-to-Frequency Converter Showing LM131 and External Components

## DETAIL OF OPERATION, FUNCTIONAL BLOCK DIAGRAM (FIGURE 1a)

The block diagram shows a band gap reference which provides a stable $1.9 \mathrm{~V}_{\mathrm{DC}}$ output. This $1.9 \mathrm{~V}_{\mathrm{DC}}$ is well regulated over a $\mathrm{V}_{\mathrm{S}}$ range of 3.9 V to 40 V . It also has a flat, low temperature coefficient, and typically changes less than $1 / 2 \%$ over a $100^{\circ} \mathrm{C}$ temperature change.

The current pump circuit forces the voltage at pin 2 to be at 1.9 V , and causes a current $\mathrm{i}=1.90 \mathrm{~V} / \mathrm{R}_{\mathrm{S}}$ to flow. For $R_{S}=14 \mathrm{k}, \mathrm{i}=135 \mu \mathrm{~A}$. The precision current reflector provides a current equal to $i$ to the current switch. The current switch switches the current to pin 1 or to ground depending on the state of the RS flip-flop.

The timing function consists of an RS flip-flop, and a timer comparator connected to the external $\mathrm{R}_{\mathrm{t}} \mathrm{C}_{\mathrm{t}}$ network. When the input comparator detects a voltage 2t nin 7 higher than oin 6 , it sets the RS flip-flop which turns ON the current switch and the output driver transistor. When the voltage at pin 5 rises to $2 / 3 \mathrm{~V} \mathrm{CC}$, the timer comparator causes the RS flip-flop to reset. The reset transistor is then turned ON and the current switch is turned OFF.

However, if the input comparator still detects pin 7 higher than pin 6 when pin 5 crosses $2 / 3 V_{C C}$, the flip-flop will not be reset, and the current at pin 1 will continue to flow, in its attempt to make the voltage at pin 6 higher than pin 7. This condition will usually apply under start-up conditions or in the case of an overload voltage at signal input. It should be noted that during this sort of overload, the output frequency will be 0 ; as soon as the signal is restored to the working range, the output frequency will be resumed.

The output driver transistor acts to saturate pin 3 with an ON resistance of about $50 \Omega$. In case of overvoltage, the output current is actively limited to less than 50 mA .

The voltage at pin 2 is regulated at $1.90 \mathrm{~V}_{\mathrm{DC}}$ for all values of $i$ between $10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$. It can be used as a voltage reference for other components, but care must be taken to ensure that current is not taken from it which could reduce the accuracy of the converter.

## PRINCIPLES OF OPERATION OF BASIC VOLTAGE-TO-FREQUENCY CONVERTER (FIGURE 1)

The simple stand-alone V-to-F converter shown in Figure 1 includes all the basic circuitry of Figure 2 plus a few components for improved performance.

A resistor, $R_{1 N}=100 \mathrm{k} \Omega \pm 10 \%$, has been added in the path to pin 7, so that the bias current at pin $7(-80 \mathrm{nA}$ typical) will cancel the effect of the bias current at pin 6 and help provide minimum frequency offset.

The resistance $R_{S}$ at pin 2 is made up of a $12 \mathrm{k} \Omega$ fixed resistor plus a $5 \mathrm{k} \Omega$ (cermet, preferably) gain adjust rheostat. The function of this adjustment is to trim out the gain tolerance of the LM131, and the tolerance of $R_{t}, R_{L}$ and $C_{t}$. For best results, all the components

## Typical Applications (Continued)

should be stable low-temperature-coefficient components, such as metal-film resistors. The capacitor should have low dielectric absorption; depending on the temperature characteristics desired, NPO ceramic, polystyrene, Teflon* or polypropylene are best suited.

A capacitor is added from pin 7 to ground to act as a filter for $V_{\text {IN }}$. A value of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ will be adequate in most cases; however, in cases where better filtering is required, a $1 \mu \mathrm{~F}$ capacitor can be used. When the RC time constants are matched at pin 6 and pin 7, a voltage step at $\mathrm{V}_{\text {IN }}$ will cause a step change in fOUT. If $C_{I N}$ is much less than $C_{L}$, a step at $V_{I N}$ may cause fOUT to stop momentarily.

A $47 \Omega$ resistor, in series with the $1 \mu \mathrm{~F} \mathrm{C}_{\mathrm{L}}$, is added to give hysteresis effect which helps the input comparator provide the excellent linearity ( $0.03 \%$ typical).

## DETAIL OF OPERATION OF PRECISION V-TO-F CONVERTER (FIGURE 3)

In this circuit, integration is performed by using a conventional operational amplifier and feedback capacitor, CF. When the integrator's output crosses the nominal threshold level at pin 6 of the LM131, the timing cycle is

[^47]initiated. The average current fed into the op amp's summing point (pin 2) is $i \times\left(1.1 R_{t} C_{t}\right) \times f$ which is perfectly balanced with $-V_{\text {IN }} /$ RIN. In this circuit, the voltage offset of the LM131 input comparator does not affect the offset or accuracy of the V-to-F converter as it does in the stand-alone V -to- F converter; nor does the LM131 bias current or offset current. Instead, the offset voltage and offset current of the operational amplifier are the only limits on how small the signal can be accurately converted. Since op amps with voltage offset well below 1 mV and offset currents well below 2 nA are available at low cost, this circuit is recommended for best accuracy for small signals. This circuit also responds immediately to any change of input signal (which a stand-alone circuit does not) so that the output frequency will be an accurate representation of $V_{I N}$, as quickly as 2 output pulses' spacing can be measured.

In the precision mode, excellent linearity is obtained because the current source (pin 1) is always at ground potential and that voltage does not vary with VIN or fOUT. (In the stand-alone V-to-F converter, a major cause of non-linearity is the output impedance at pin 1 which causes $i$ to change as a function of $V_{I N}$ ).

The circuit of Figure 4 operates in the same way as Figure 3, but with the necessary changes for high speed operation.

*Use stable components with low temperature coefficients. See Typical Applications section.
**This resistor can be $5 \mathrm{k} \Omega$ or $10 \mathrm{k} \Omega$ for $\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$ to 22 V , but must be $10 \mathrm{k} \Omega$ for $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 8 V .
***Use low offset voltage and low offset current op amps for A1: recommended types LM108, LM308A, LF351B
FIGURE 3. Standard Test Circuit and Applications Circuit, Precision Voltage-to-Frequency Converter

## Typical Applications (Continued)

## DETAILS OF OPERATION, FREQUENCY-TOVOLTAGE CONVERTERS (FIGURES 5 AND 6)

In these applications, a pulse input at $\mathrm{f} / \mathrm{N}$ is differentiated by a C-R network and the negative-going edge at pin 6 causes the input comparator to trigger the timer circuit. Just as with a V-to-F converter, the average current flowing out of pin 1 is IAVERAGE $=i x$ $\left(1.1 R_{t} C_{t}\right) \times f$.

In the simple circuit of Figure 5, this current is filtered in the network $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ and $1 \mu \mathrm{~F}$. The ripple will be less than 10 mV peak, but the response will be slow,
with a 0.1 second time constant, and settling of 0.7 second to $0.1 \%$ accuracy.

In the precision circuit, an operational amplifier provides a buffered output and also acts as a 2 -pole filter. The ripple will be less than 5 mV peak for all frequencies above 1 kHz , and the response time will be much quicker than in Figure 5. However, for input frequencies below 200 Hz , this circuit will have worse ripple than Figure 5. The engineering of the filter time-constants to get adequate response and small enough ripple simply requires a study of the compromises to be made. Inherently, V-to-F converter response can be fast, but F-to-V response can not.

*Use stable components with low temperature coefficients. See Typical Applications section.
**This resistor can be $5 \mathrm{k} \Omega$ or $10 \mathrm{k} \Omega$ for $\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$ to 22 V , but must be $10 \mathrm{k} \Omega$ for $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 8 V .
***Use low offset voltage and low offset current op amps for A1: recommended types LF351B or LF356.
FIGURE 4. Precision Voltage-to-Frequency Converter, 100 kHz Full-Scale, $\pm 0.03 \%$ Non-Linearity

$V_{\text {OUT }}=f_{I N} \times 2.09 V \times \frac{R_{L}}{R_{S}} \times\left(R_{R_{t}} C_{t}\right)$
*Use stable components with low temperature coefficients.
FIGURE 5. Simple Frequency-to-Voltage Converter, 10 kHz Full-Scale, $\pm 0.06 \%$ Non-Linearity


SELECT RX $=\frac{\left(\mathrm{V}_{S}-2 \mathrm{~V}\right)}{0.2 \mathrm{~mA}}$
*Use stable components with low temperature coefficients.
FIGURE 6. Precision Frequency-to-Voltage Converter, 10 kHz Full-Scale with 2-Pole Filter, $\pm 0.01 \%$
Non-Linearity Maximum

## Typical Applications (Continued)

## Light Intensity to Frequency Converter


*L14F-1, L14G-1 or L14H-1, photo transistor (General Electric Co.) or similar

Temperature to Frequency Converter .


Long-Term Digital Integrator Using VFC


Basic Analog-to-Digital Converter Using
Voltage-to-Frequency Converter


Analog-to-Digital Converter with Microprocessor


Remote Voltage-to-Frequency Converter with 2-Wire Transmitter and Receiver


Voltage-to-Frequency Converter with Square-Wave Output Using $\div 2$ Flip-Flop


Voltage-to-Frequency Converter with Isolators


Typical Applications (Continued)
Voltage-to-Frequency Converter with Isolators


Voltage-to-Frequency Converter with Isolators


Voltage-to-Frequency Converter with Isolators


## Connection Diagrams



Order Number LM131AH, LM131H, LM231AH, LM231H, LM331AH or LM331H See NS Package H08C


Order Number LM231AN, LM231N, LM331AN, or LM331N
See NS Package N08B

Schematic Diagram


# A to D, D to A Semiconductor <br> MM54C905/MM74C905 12-Bit Successive Approximation Register 

## General Description

The MM54C905/MM74C905 CMOS 12-bit successive approximation register contains all the digit control and storage necessary for successive approximation analog-to-digital conversion. Because of the unique capability of CMOS to switch to each supply rail without any offset voltage, it can also be used in digital systems as the control and storage element in repetitive routines.
Features

- Wide supply voltage range
3.0 V to 15 V
- Guaranteed noise margin 1.0 V
- High noise immunity
$0.45 V_{c c}$ typ
fan out of 2 driving 74L
Low power TTL
- Provision for register extension or truncation
- Operates in START/STOP or continuous conversion mode
- Drive ladder switches directly. For 10 bits or less with $50 \mathrm{k} / 100 \mathrm{k}$ R/2R ladder network


## Connection Diagram



Order Number MM54C905D or MM74C905D
See NS Package D24A

Order Number MM74C905N
See NS Package N18A

## Truth Table

TIME	INPUTS			OUTPUTS													
$t_{n}$	D	$\stackrel{\rightharpoonup}{S}$	$\overline{\mathrm{E}}$	D0	Q11	Q10	Q9	Q8	07	Q6	Q5	Q4	Q3	Q2	Q1	Q0	$\overline{\mathrm{CC}}$
0	$X$	L	L	$x$	X	X	$X$.	X	X	X	X	X	X	X	X	X	X
1	D11	H	L	$x$	L	H	H	H	H	H	H	H	H	H	H	H	H
2	D10	H	$L$	D11	D11	L	H	H	H	H	H	H	H	H	H	H	H
3	D9	H	L	D10	D11	D10	L	H	H	H	H	H	H	H	H	H	H
4	D8	H	L	D9	D11	D10	D9	L	H	H	H	H	H	H	H	H	H
5	D7	H	L	D8	D11	D10	D9	D8	L	H	H	H	H	H	H	H	H
6	D6	H	L	D7	D11	D10	D9	D8	D7	L	H	H	H	H	H	H	H
7	D5	H	L	D6	D11	D10	D9	D8	D7	D6	L	H	H	H	H	H	H
8	D4	H	L	D5	D11	D10	D9	D8	D7	D6	D5	L	H	H	H	H	H
9	D3	H	L	D4	D11	D10	D9	D8	D7	D6	D5	D4	L	H	H	H	H
10	D2	H	L	D3	D11	D10	D9	D8	D7	D6	D5	D4	D3	L	H	H	H
11	D1	H	L	D2	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	$L$	H	H
12	DO	H	L	D1	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	L	H
13	$x$	H	L	D0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	L
14	$x$	X	L	X	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	L
	$x$	$x$	H	$x$	H	NC											

[^48]L = Low level
X $=$ Don't care
NC $=$ No change

Absolute Maximum Ratings	(Note 1)
Voltage at Any Pin	-0.3 V to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
Operating Temperature Range	
MM54C905	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MM74C905	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation	500 mW
Operating $\mathrm{V}_{\mathrm{cc}}$ Range	3.0 V to 15 V
Absolute Maximum $\mathrm{V}_{\mathrm{Cc}}$	16 V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics Min/max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
Logical " 1 " Input Voltage ( $\mathrm{V}_{\text {IN(1) }}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
	$V_{\text {cr }}=5.0 \mathrm{~V}$			1.5	$v$
	$\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$			$2 . \bar{u}$	v
Logical " 1 " Output Voltage ( $\mathrm{V}_{\text {Out(1) }}$ )	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Logical "0" Output Voltage ( $\mathrm{V}_{\text {Outio }}$ )	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, I_{0}=10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{0}=10 \mu \mathrm{~A} \end{aligned}$			0.5 1.0	$\begin{aligned} & v \\ & v \end{aligned}$
Logical "1" Input Current (1) ${ }_{\text {IN(1) }}$ )	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical " 0 " input Current (1 ${ }_{\text {IN }}$ (0) )	$\mathrm{V}_{C C}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
Supply Current ( $\mathrm{Cc}_{\text {c }}$ )	$V_{C C}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
CMOS/LPTTL INTERFACE					
Logical " 1 " Input Voltage ( $\mathrm{V}_{\text {IN }}(1)$ )   MM54C905   MM74C905	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V} \end{aligned}$	$\left\lvert\, \begin{aligned} & V_{c c^{-1}} 1.5 \\ & V_{c c^{-1}}-5 \end{aligned}\right.$			$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Logical " 0 " Input Voltage ( $\mathrm{V}_{\text {IN }}(0)$ )   MM54C905   MM74C905	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V} \\ & V_{c c}=4.75 \mathrm{~V} \end{aligned}$		.	0.8 0.8	v
Logical " 1 " Output Voltage ( $V_{\text {OUT(1) }}$ ) MM54C905   MM74C905	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V}, I_{0}=-360 \mu \mathrm{~A} \\ & V_{c c}=4.75 \mathrm{~V}, I_{O}=-360 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Logical " 0 " Output Voltage ( $\mathrm{V}_{\text {OUT(O) }}$ )   MM54C905   MM74C905	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V}, \quad I_{0}=360 \mu \mathrm{~A} \\ & V_{C C}=4.75 \mathrm{~V}, I_{0}=360 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)					
Output Source Current (ISOURCE (F.Channel)	$\begin{aligned} & V_{c C}=5.0 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-1.75	$-3.3$		mA
Output Source Current (ISOURCE)   (P-Channel)	$\begin{aligned} & V_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-8.0	$-1.5$		mA
Output Sink Current (I $I_{\text {SINK }}$ )   (N-Channel)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6		mA
Output Sink Current (Isink) ( N -Channel)	$\begin{aligned} & V_{\mathrm{CC}}=10 \mathrm{~V}, V_{\text {OUT }}=V_{\mathrm{CC}} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	8.0	16		mA
Q11-Q0 Outputs $\mathrm{R}_{\text {SOURCE }}$	$\begin{aligned} & V_{C C}=10 \mathrm{~V} \pm 5 \% \\ & V_{\text {OUT }}=V_{C C}-0.3 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	150		350	$\Omega$
$\mathrm{R}_{\text {SINK }}$	$\begin{aligned} & V_{\text {CC }}=10 \mathrm{~V} \pm 5 \% \\ & V_{\text {OUT }}=0.3 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	80		230	$\Omega$

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	, UNITS
Propagation Delay Time From Clock	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		200	350	ns
Input To Outputs (00-011) ( $\mathrm{t}_{\mathrm{pd} \text { (Q) }}$ )	$\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$		80	150	ns
Propagation Delay Time From Cliock	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		180	325	ns
Input To $\mathrm{D}_{\mathrm{O}}\left(\mathrm{t}_{\mathrm{pd}\left(\mathrm{D}_{\mathrm{O}}\right)}\right)$	$V_{C C}=10 \mathrm{~V}$		70	125	ns
Propagation Delay Time From Register	$V_{c c}=5.0 \mathrm{~V}$		190	350	ns
Enable ( $\overline{\mathrm{E}})$ To Output (Q11) ( $\mathrm{t}_{\text {pd(E) }}$ )	$V_{C C}=10 \mathrm{~V}$		75	150	ns
Propagation Delay Time From Clock	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		190	350	ns
To $\overline{\mathrm{CC}}\left(\mathrm{t}_{\mathrm{pd}(\overline{\mathrm{CC}})}\right)$	$V_{C C}=10 \mathrm{~V}$		75	0.50	ns
Data Input Set-Up Time ( $\mathrm{t}_{\text {DS }}$ )	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	80			ns
	$V_{c c}=10 \mathrm{~V}$	30			ns
Start Input Set-Up Time ( $\mathrm{tss}^{\text {) }}$	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	80			ns
	$V_{c c}=10 \mathrm{~V}$	30			ns
Minimum Clock Pulse Width ( $\mathrm{t}_{\text {PWL }}, \mathrm{t}_{\text {PWH }}$ )	$V_{c C}=5.0 \mathrm{~V}$	250	125		ns
	$V_{c c}=10 \mathrm{~V}$	100	50		ns
Maximum Clock Rise and Fall Time ( $\mathrm{r}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ )	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$			15	$\mu \mathrm{s}$
	$\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$			5	$\mu \mathrm{s}$
Maximum Clock Frequency ( $\mathrm{f}_{\text {MAX }}$ )			4		MHz
	$V_{c c}=10 \mathrm{~V}$	5	10		MHz
Clock Input Capacitance ( $\mathrm{C}_{\mathrm{CLK}}$ )	Clock Input (Note 2)		10		pF
Input Capacitance ( $\mathrm{C}_{1 \mathrm{~N}}$ )	Any Other Input (Note 2)		5		pF
Power Dissipation Capacitance ( $\mathrm{C}_{\text {PD }}$ )	(Note 3)		100		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

## Typical Performance Characteristics




TA - AMBIENT TEMPERATURE (C)

- These ponts are quaranteed by automatic testung.


## Timing Diagram



## Switching Time Waveforms



## USER NOTES FOR A/D CONVERSION

The register can be used with either current switches that require a low voltage level to turn the switch ON or current switches that require a high voltage level to turn the switch ON. If current switches are used which turn ON with a low logic level, the resulting digit output from the register is active low. That is, a logic " 1 " is represented as a low voltage level. If current switches are used which turn ON with a high logic level, the resulting digit output is active high. A logic " 1 " is represented as a high voltage level.

For a maximum error of $\pm 1 / 2$ LSB, the comparator must be biased. If current switches that require a high voltage level to turn ON are used, the comparator should be biased $+1 / 2$ LSB and if the current switches require a low logic level to turn ON, then the comparator must be biased $-1 / 2$ LSB.

The register can be used to perform 2's complement conversion by offsetting the comparator one half full
range $+1 / 2$ LSB and using the complement of the MSB Q11 as the sign bit.

If the register is truncated and operated in the continuous conversion mode, a lock-up condition may occur on power-ON. This situation can be overcome by making the START input the "OR" function of $\overline{C C}$ and the appropriate register output.

The register, by suitable selection of register ladder network, can be used to perform either binary or $B C D$ conversion.

The register outputs can drive the 10 bits or less with $50 \mathrm{k} / 100 \mathrm{k} \mathrm{R} / 2 \mathrm{R}$ ladder network directly for $\mathrm{V}_{\mathrm{Cc}}=10 \mathrm{~V}$ or higher. In order to drive the 12 -bit $50 \mathrm{k} / 100 \mathrm{k}$ ladder network and have the $\pm 1 / 2$ LSB resolution, the MM54C902/MM74C902 or MM54C904/MM74C904 is used as buffers, three buffers for MSB (Q11), two buffers for Q10, and one buffer for Q9.

## Typical Applications

12-Bit Successive Approximation A-to-D Converter, Operating in Continuous Mode, Drives the 50k/100k Ladder Network Directly

## 12-Bit Successive Approximation A-to-D Converter Operating in Continuous 8-Bit Truncated Mode



## Definition of Terms

## CP: Register clock input.

$\overline{\mathrm{CC}}$ : Conversion complete-this output remains at $\mathrm{V}_{\text {OUT(1) }}$ during a conversion and goes to $\mathrm{V}_{\text {OUT(0) }}$ when conversion is complete.
D: Serial data input-connected to comparator output in A-to-D applications.
$\overline{\mathrm{E}}$ : Register enable-this input is used to expand the length of the register. When $\bar{E}$ is at $V_{I N(1)} Q 11$ is forced to $\mathrm{V}_{\text {Out(1) }}$ and inhibits conversion. When not used for expansion $E$ must be connected to $\mathrm{V}_{\mathrm{IN}(0)}$ (GND).
Q11: True register MSB output.
$\overline{\mathrm{Q}} 11$ : Complement of register MSB output.
Qi ( $i=0$ to 11): Register outputs.
$\overline{\mathbf{S}}$ : Start input-holding start input at $\mathrm{V}_{\text {IN }(0)}$ for at least one clock period will initiate a conversion by setting MSB ( Q 11 ) at $\mathrm{V}_{\text {OUT(0) }}$ and all other output ( $\mathrm{Q} 10-\mathrm{O}$ ) at $\mathrm{V}_{\text {OUT(1) }}$. If set-up time requirements are met, a conversion may be initiated by holding start input at $\mathrm{V}_{\text {IN }}(0)$ for less than one clock period.

DO: Serial data output-D input delayed by one clock period.

Section 9 Industrial Blocks
Functional
Automotive
Telecommunications Monolithic Filters

## Industrial Blocks: Functional/Automotivel

 Telecommunications/Monolithic Filters
## Section Contents

Automotive
ADC0808, ADC0809 8-Bit $\mu$ P Compatible A/D Converters with 8-Channel Multiplexer ..... 8-60
LF351 Wide Bandwidth JFET Input Operational Amplifier ..... 3-35
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier ..... 3-42
LM117/LM217/LM317 3-Terminal Adjustable Regulator ..... 1-23
LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers ..... 3-172
LM131A/LM131, LM231A/LM231, LM331A/LM331 Precision Voltage-to-Frequency Converters ..... 8-251
LM134/LM234/LM334 3-Terminal Adjustable Current Sources ..... 9-17
LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors ..... 9-25
LM136/LM236/LM336 2.5V Reference Diode ..... 2-30
LM136-5.0/LM236-5.0/LM336-5.0 5.0V Reference Diode ..... 2-36
LM139/LM239/LM339, LM139A/LM239A/LM339A, LM2901, LM3302 Low Power Low Offset Voltage Quad Comparators ..... $5-27$
LM158/LM258/LM358, LM158A/LM258A/LM358A, LM2904 Low Power Dual Operational Amplifiers ..... 3-216
LM383/LM383A 7 Watt Audio Power Amplifier ..... 10-32
LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode ..... 2-42
LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diode ..... 2-48
LM903 Fluid Level Detector ..... 9-58
LM1815 Adaptive Sense Amplifier ..... 9.85
LM1830 Fluid Detector ..... $9-88$
LM2877 Dual 4-Watt Power Audio Amplifier ..... 10-204
LM2878 Dual 5 Watt Power Audio Amplifier ..... 10-210
LM2907, LM2917 Frequency to Voltage Converter ..... 9-135
LM2930 3 Terminal Positive Regulator ..... 1-170
LM2931 Series Low Dropout Regulators ..... 1-176
LM3909 LED Flasher/Oscillator ..... 9-152
LM3914 Dot/Bar Display Driver ..... 9-163
LM3915 Dot/Bar Display Driver ..... 9-177
LM3916 Dot/Bar Display Driver ..... 9-193
LM13700/LM13700A/LM11700A Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers ..... $10-258$
Appliance
LM383/LM383A 7 Watt Audio Power Amplifier ..... 10-32
LM903 Fluid Level Detector ..... 9-58
LM1815 Adaptive Sense Amplifier ..... 9-85
LM1830 Fluid Detector ..... 9-88
LM2877 Dual 4-Watt Power Audio Amplifier ..... 10-204
LM2878 Dual 5 Watt Power Audio Amplifier ..... 10-210
LM3914 Dot/Bar Display Driver ..... 9-163

## Section Contents (Continued)

Functional Blocks
LM122/LM222/LM322, LM2905/LM3905 Precision Timers ..... $9-5$
LM131A/LM131, LM231A/LM231, LM331A/LM331
Precision Voltage-to-Frequency Converters ..... 8-251
LM134/LM234/LM334 3-Terminal Adjustable Current Sources ..... 9-17
LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors ..... $9-25$
LM555/LM555C Timer ..... $9-33$
LM556/LM556C Dual Timer ..... 9-39
LM565/LM565C Phase Locked Loop ..... 9-42
LM566/LM566C Voltage Controlled Oscillator ..... $9-47$
LM567/LM567C Tone Decoder ..... 9-50
LM733/LM733C Differential Video Amp ..... 9-54
LM909 Remote Control Receiver ..... 9-64
LM1014/LM1014A Motor Speed Regulator ..... 9-69
LM1391 Phase-Locked Loop Block ..... 10-104
LM1801 Smoke Detector ..... $9-73$
Liviiōiž Uiirasunic Transueivei ..... Q.77
LM1851 Ground Fault Interrupter ..... $9-94$
LM1871 RC Encoder/Transmitter ..... 9-101
LM1872 Radio Control Receiver/Decoder ..... 9-116
LM3080/LM3080A Operational Transconductance Amplifier ..... 9-148
LM3909 LED Flasher/Oscillator ..... 9-152
LM3911 Temperature Controller ..... 9-156
LM13600/LM13600A/LM11600A Dual Operational Transconductance Amplifiers With Linearizing Diodes and Buffers ..... $10-242$
LM13700/LM13700A/LM11700A Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers ..... 10-258
MF10 Universal Monolithic Dual Switched Capacitor Filter ..... 9-212
Display Drivers
LM3909 LED Flasher/Oscillator ..... 9-152
LM3914 Dot/Bar Display Driver ..... 9-163
LM3915 Dot/Bar Display Driver ..... 9-177
LM3916 Dot/Bar Display Driver ..... 9-193
Telecommunications
TP5116A, TP5117A, TP5156A Monolithic CODECs ..... 9-223
TP3020/TP3021 Monolithic CODECs ..... 9-229
TP3040/TP3040A PCM Monolithic Filter ..... 9-238
TP3051, TP3056 Monolithic Parallel Interface CODEC/Filter Family ..... 9-245
TP3052, TP3053, TP3054, TP3057 Monolithic Serial Interface CODEC/Filter Family ..... 9-247
TP3110, TP3120 Digital Line Interface Controllers (DLIC) ..... 9-249
TP5087/TP5087A, TP5092/TP5092A, TP5094/TP5094A DTMF (TOUCH-TONE ${ }^{\oplus}$ ) Generators ..... 9-250
TP5088 DTMF Generator for Binary Input Data ..... 9-254
TP9151, TP9152, TP9156, TP9158 Push Button Pulse Dialer Circuits with Redial ..... 9-255
TP50981/TP50981A, TP50982/TP50982A, TP50985/TP50985A Push Button Pulse Dialer Circuits ..... 9-260
TP5395, TP53125 DTMF (TOUCH-TONE ${ }^{\circledR}$ ) Generators ..... 9-266
TP5393, TP5394, TP53143, TP53144 Pushbutton Pulse Dialer Circuits ..... 9-271
TP53130 DTMF (TOUCH-TONE ${ }^{\text {© }}$ ) Generator ..... 9-276
TP5600, TP5605, TP5610, TP5615 Ten-Number Repertory Pulse Dialers ..... 9-281
TP5650, TP5660 Ten-Number Repertory DTMF Generators ..... 9-287

National

## Definition of Terms

Capacitor Saturation Voltage: The offset voltage remaining on the timing capacitor after capacitor discharge current has dropped to zero.

Collector Saturation Voltage: The collector to emitter voltage on the output transistor when it is in the "ON" state with specified sink current flowing into the collector terminal.

Common-Mode Rejection Ratio: The ratio of the change in input offset voltage to the peak-to-peak input voltage range.

Comparator Input Current: The average current flowing from the R/C pin during the timing cycle.
$\mathbf{C}_{\boldsymbol{t}}$ : Timing capacitor connected between the $R / C$ terminal and the ground terminal.

Emitter Saturation Voltage: The voltage across the output transistor when the collector is tied to $\mathrm{V}^{+}$, the transistor is in the "ON" state, and the specified output current is flowing from the emitter terminal.

Input Bias Current: The average of the two input currents.

Input Offset Current: The difference in the current into the two input terminals when the supply (output) current is 4.0 mA .

Input Offset Voltage: The voltage which must be applied between the input terminals through equal resistances to obtain 4.0 mA of supply (output) current.

Input Resistance: The ratio of the change in input voltage to the change in input current at either input with the other input connected to 1.0 Vdc .

Input Voltage Range: The range of voltages on the input terminals for which the device operates within specifications.

Linearity: The deviation in output voltage from a straight line output over a specified temperature excursion.

Long Term Stability: The change of a particular parameter when operated at maximum temperature for 1000 hours.

Maximum Power Dissipation: The maximum total device dissipation for which the timer will operate within specifications.

Open Loop Output Resistance: The ratio of a specified supply (output) voltage change to the resulting change in supply (output) current at the specified current level.

Open Loop Transconductance: The ratio of the supply (output) current SPAN to the input voltage required to produce that SPAN.

Open Loop Supply Current: The supply current required with the signal amplifier A2 biased off (inverting input positive, non-inverting input negative) and no load on the $V_{\text {REF }}$ terminal.

This represents a measure of the minimum low end signal current.

Output Leakage Current: The maximum current flowing into the collector of the output transistor when the transistor is in the "OFF" state.

Output Sink Current: The current available to flow into a load from a positive supply over a specified output voltage range.

Output Source Current: The current available to flow into a load from the output to $\mathrm{V}^{-}$, over a specified output voltage range.

Output Voltage: The voltage referred to the $\mathrm{V}^{+}$terminal from the output terminal with the input and output connected. (This voltage is the temperature dutput of the LM3911 and so includes errors in the sensor section and op amp section.)

Power Supply Rejection Ratio: The ratio of the change in input offset voltage to the change in supply (output) voltage producing it.

Reference Voltage Line Regulation: The ratio of the change in $V_{\text {REF }}$ to the peak-to-peak change in supply (output) voltage producing it.

Reference Voltage Load Regulation: The change in $\mathrm{V}_{\text {REF }}$ for a stipulated change in IREF.

Reset Resistor: The equivalent resistor which may be used to calculate the discharge time of the timing capacitor, tDISCHARGE $=(5)\left(C_{t}\right)($ RRESET $)$.

Reverse Breakdown Voltage: The voltage appearing between the $\mathrm{V}^{+}$and $\mathrm{V}^{-}$terminals at a specified current.
$\mathbf{R}_{\mathbf{t}}$ : Timing resistor connected between $\mathrm{V}_{\text {REF }}$ and the $R / C$ terminal.

Temperature Stability: The percentage in output voltage for a thermal variation from room temperature to either temperature extreme.

Timing Ratio: The ratio of the firing voltage at the $\mathrm{R} / \mathrm{C}$ pin to the reference voltage.

Trigger Current: The current flowing into or out of the trigger terminal at the specified trigger voltage.

Trigger Voltage: The voltage required at the trigger terminal to initiate a timing cycle, referenced to the ground pin.

National Semiconductor
LM122/LM222LLM322, LM2905/LM3905 Precision Timers General Description

The LM122 series are precision timers that offer great versatility with high accuracy. They operate with unregulated supplies from 4.5 V to 40 V while maintaining constant timing periods from microseconds to hours. Internal logic and regulator circuits complement the basic timing function enabling the LM122 series to operate in many different applications with a minimum of external components.

The output of the timer is a floating transistor with built in current limiting. It can drive either ground referred or supply referred loads up to 40 V and 50 mA . The floating nature of this output makes it ideal for interfacing, lamp or relay driviny, ün sigrial sonditioning :ahere an open co!lector or emitter is required. A "logic reverse" circuit can be programmed by the user to make the output transistor either "on" or "off" during the timing period.

The trigger input to the LM122 series has a threshold of 1.6 V independent of supply voltage, but it is fully protected against inputs as high as $\pm 40 \mathrm{~V}$ even when using a 5 V supply. The circuitry reacts only to the rising edge of the trigger signal, and is immune to any trigger voltage during the timing periods.

An internal 3.15 V regulator is included in the timer to reject supply voltage changes and to provide the user with a convenient reference for applications other than a basic timer. External loads up to 5 mA can be driven by the regulator. An internal 2 V divider between the reference and ground sets the timing period to 1 RC. The timing period can be voltage controlled by driving this divider
with an external source through the $\mathrm{V}_{\text {ADJ }}$ pin. Timing ratios of $50: 1$ can be easily achieved.

The comparator used in the LM122 utilizes high gain PNP input transistors to achieve 300 pA typical input bias current over a common mode range of 0 V to 3 V . A boost terminal allows the user to increase comparator operating current for timing periods less than 1 ms . This lets the timer operate over a $3 \mu \mathrm{~s}$ to multi-hour timing range with excellent repeatability.

The LM122 operates over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. An electrically identical LM222 is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM322 is specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The LM2905/
 that the boost and $V_{\text {ADJ }}$ pin options are not available, limiting minimum timing period to 1 ms .

## Features

- Immune to changes in trigger voltage during timing interval
- Timing periods from microseconds to hours
- Internal logic reversal
- Immune to power supply ripple during the timing interval
- Operates from 4.5 V to 40 V supplies
- Input protected to $\pm 40 \mathrm{~V}$
- Floating transistor output with internal current limiting
- Internal regulated reference
- Timing period can be voltage controlled
- TTL compatible input and output


## Typical Applications



Basic Timer-Collector Output and Timing Chart


One Hour Timer with Reset and Manual Cycle End

## Absolute Maximum Ratings

Power Dissipation
$\mathrm{V}^{+}$Voltage
Collector Output Voltage
V ${ }^{\text {ref }}$ Current
Trigger Voltage
$V_{\text {ADJ }}$ Voltage (Forced)
Logic Reverse Voltage
Output Short Circuit Duration (Note 1)
Lead Temperature (Soldering, 10 sec )
500 mW

Operating Temperature Range
LM122 $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
M222
$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
LM322
LM2905
LM3905
$-40^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Electrical Characteristics
(Note 2)


Note 1: Continuous output shorts are not allowed. Short circuit duration at ambient temperatures up to $40^{\circ} \mathrm{C}$ may be calculated from $t=120 /$ $V_{C E}$ seconds, where $V_{C E}$ is the collector to emitter voltage across the output transistor during the short.
Note 2: These specifications apply for $T_{A M I N} \leq T_{A} \leq T_{A M A X}$ unless otherwise noted.
Note 3: Output pulse width can be calculated from the following equation: $t=\left(R_{t}\right)\left(C_{t}\right)\left[1-2(0.632-r)-V_{C} / V_{R E F}\right)$ where $r$ is timing ratio and $V_{C}$ is capacitor saturation voltage. This reduces to $t=\left(R_{t}\right)\left(C_{t}\right)$ for all but the most critical applications.
Note 4: Sign reversal may occur at high temperatures ( $>100^{\circ} \mathrm{C}$ ) where comparator input current is predominately leakage. See typical curves.

## Typical Performance Characteristics




COMPARATOR INPUT VOLTAGE (V)


## Typical Performance Characteristics <br> (Continued)



Output Transistor Saturation
Characteristics at Low Currents



Short Output Pulse
(LM122/LM222/LM322)


Trigger Input Characteristics


Collector Output Saturation
Characteristics at High Current



Short Output Pulse
(LM122/LM222/LM322)


Trigger Threshold


Timing Error Due to
Comparator Bias Current




## Connection Diagrams



TOP VIEW
Order Number LM122H, LM222H or LM322H See NS Package H10C


Order Number LM322N See NS Package N14A

Functional Diagram


Timing Diagram


## Pin Function Description

One of the main features of the LM122 is its great versatility. Since this device is unique, a description of the functions and limitations of each pin is in order. This will make it much easier to follow the discussion of the various applications presented in this note.
$\mathbf{V}^{+}$is the positive supply terminal of the LM122. When using a single supply, this terminal may be driven by any voltage between 4.5 V and 40 V . The effect of supply variations on timing period is less than $0.005 \% / \mathrm{V}$, so supplies with high ripple content may be used without causing pulse width changes. Supply bypassing on $\mathrm{V}^{+}$is not generally needed but may be necessary when driving highly reactive loads. Quiescent current drawn from the $\mathbf{V}^{\boldsymbol{+}}$ terminal is typically 2.5 mA , independent of the supply voltage. Of course, additional current will be drawn if the reference is externally loaded.

The $\mathrm{V}_{\text {REF }}$ pin is the output of a 3.15 V series regulator referenced to the ground pin. Up to 5.0 mA can be drawn from this pin for driving external networks. In most applications the timing resistor is tied to $\mathbf{V}_{\text {REF }}$, but it need not be in situations where a more linear charging current is
required. The regulated voltage is very useful in applications where the LM122 is not used as a timer; such as switching regulators, variable reference comparators, and temperature controllers. Typical temperature drift of the reference is less than $0.01 \% /{ }^{\circ} \mathrm{C}$.

The trigger terminal is used to start a timing cycle (see functional diagram). Initially, Q1 is saturated, $C_{t}$ is discharged and the latching buffer output (V1) is latched high. A trigger pulse unlatches the buffer, V1 goes low and turns Q1 off. The țiming capacitor $\mathrm{C}_{\mathrm{t}}$ connected from R/C to GND will begin to charge. When the voltage at the R/C terminal reaches the 2.0 V threshold of the comparator, the comparator toggles, latching the buffer output (V1) in the high state. This turns on Q1, discharges the capacitor $\mathrm{C}_{\mathrm{t}}$ and the cycle is ready to begin again.

If the trigger is held high as the timing period ends, the comparator will toggle and V1 will go high exactly as before. However, V1 will not be latched and the capacitor will not discharge until the trigger again goes low. When the trigger goes low, V1 remains high but is now latched.

## Pin Function Description (Continued)

Trigger threshold is typically 1.6 V at $25^{\circ} \mathrm{C}$ and has a temperature dependence of $-5.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Current drawn from the trigger source is typically $20 \mu \mathrm{~A}$ at threshold, rising to $600 \mu \mathrm{~A}$ at 30 V , then leveling off due to FET action of the series resistor, R5. For negative input trigger voltages, the only current drawn is leakage in the nA region. The trigger can be driven from supplies as high as $\pm 40 \mathrm{~V}$, even when device supply voltage is only 5 V .

The R/C pin is tied to the non-inverting side of the comparator and to the collector of Q1. Timing ends when the voltage on this pin reaches 2.0 V (1 RC time constant referenced to the 3.15 V regulator). Q1 turns on only if the trigger voltage has dropped below threshold. In comparator or regulator applications of the timer, the trigger is held permanently high and the R/C pin acts just like the input to an ordinary comparator. The maximum voltages which can be applied to this pin are +5.5 V and -0.7 V . Current from the R/C pin is typically 300 pA when the voltage is negative with respect to the $\mathrm{V}_{\text {ADJ }}$ terminal. For higher voltages, the current drops to leakage levels. In the boosted mode, input current is typically 30 nA . Gain of the comparator is very high, 200,000 or more, depending on the state of the logic reverse pin and the connection of the output transistor.

The ground pin of the LM122 need not necessarily be tied to system ground. It can be connected to any positive or negative voltage as long as the supply is negative with respect to the $\mathbf{V}^{+}$terminal. Level shifting may be necessary for the input trigger if the trigger voltage is referred to system ground. This can be done by capacitive coupling or by actual resistive or active level shifting. One point must be kept in mind; the emitter output must not be held above the ground terminal with a low source impedance. This could occur; for instance, if the emitter were grounded when the ground pin of the LM122 was tied to a negative supply.

The terminal labeled $\mathrm{V}_{\text {ADJ }}$ is tied to one side of the comparator and to a voltage divider between $\mathrm{V}_{\text {REF }}$ and ground. The divider voltage is set at $63.2 \%$ of $\mathrm{V}_{\text {REF }}$ with respect to ground-exactly one RC time constant. The impedance of the divider is increased to about 30 k with a series resistor to present a minimum load on external signals tied to $\mathrm{V}_{\text {ADJ }}$. This resistor is a pinched type with a typical variation in nominal value of $-50 \%,+100 \%$, and a TC of $0.7 \% /{ }^{\circ} \mathrm{C}$. For this reason, external signals (typically a pot between $\mathrm{V}_{\text {REF }}$ and ground) connected to $\mathrm{V}_{\text {ADJ }}$ should have a source resistance as low as possible. For small changes in $\mathrm{V}_{\text {ADJ, }}$, up to several $\mathrm{k} \Omega$ is all right, but for large variations, $250 \Omega$ or less should be maintained. This can be accomplished with a 1 k pot, since the maximum impedance from the wiper is $250 \Omega$. If a voltage is forced on $\mathrm{V}_{\text {ADJ }}$ from a hard source, voltage should be limited to -0.5 , and +5.0 V , or current limited to $\pm 1.0 \mathrm{~mA}$. This
includes capacitively coupled signals because even small values of capacitors contain enough energy to degrade the input stage if the capacitor is driven with a large, fast slewing signal. The V ${ }_{\text {ADJ }}$ pin may be used to abort the timing cycle. Grounding this pin during the timing period causes the timer to react just as if the capacitor voltage had reached its normal RC trigger point; the capacitor discharges and the output charges state. An exception to this occurs if the trigger pin is held high when the $\mathrm{V}_{\text {ADJ, }}$ pin is grounded. In this case, the output changes state, but the capacitor does not discharge.

If the trigger drops while $\mathrm{V}_{\text {ADJ }}$ is being held low, discharge will occur immediately and the cycle will be over. If the trigger is still high when $\mathrm{V}_{\text {ADJ }}$ is released, the output may or may not change state, depending the voltage across the timing capacitor. For voltages below 2.0 V across the timing capacitor, the output will change state immediately, then once more as the voltage rises past 2.0 V . For voltages above 2.0 V , no change will occur in the output. This pin is not available on the LM2905/LM3905.

In noisy environments or in comparator-type applications, a bypass capacitor on the $\mathrm{V}_{\text {ADJ }}$ terminal may be needed to eliminate spurious outputs because it is high impedance point. The size of the cap will depend on the frequency and energy content of the noise. $\mathrm{A} 0.1 \mu \mathrm{~F}$ will generally suffice for spike suppression, but several $\mu \mathrm{F}$ may be used if the timer is subjected to high level 60 Hz EMI.

The emitter and the collector outputs of the timer can be treated just as if they were an ordinary transistor with 40 V minimum collectoremitter breakdown voltage. Normally, the emitter is tied to the ground pin and the signal is taken from the collector, or the collector is tied to $\mathbf{V}^{+}$ and the signal is taken from the emitter. Variations on these basic connections are possible. The collector can be tied to any positive voltage up to 40 V when the signal is taken from the emitter. However, the emitter will not be pulled higher than the supply voltage on the $\mathrm{V}^{+}$pin. Connecting the collector to a voltage less than the $\mathrm{V}^{+}$voltage is allowed The emitter should not be connected to a low impedance load other than that to which the ground pin is tied. The transistor has built-in current limiting with a typical knee current of 120 mA . Temporary short circuits are allowed; even with collector-emitter voltages up to 40 V . The power $x$ time product, however, must not exceed 15 watt-seconds for power levels above the maximum rating of the package. A short to 30 V , for instance, can not be held for more than 4 seconds. These levels are based on $40^{\circ} \mathrm{C}$ maximum initial chip temperature. When driving inductive loads, always use a clamp diode to protect the transistor from inductive kick-back.

A boost pin is provided on the LM122 to increase the speed of the internal comparator. The comparator is normally operated at low current levels for lowest possible input current.

## Pin Function Description (Continued)

For timing periods less than 1 ms , where low input current is not needed, comparator operating current can be increased several orders of magnitude. Shorting the boost terminal to $\mathrm{V}^{+}$increases the emitter current of the vertical PNP drivers in the differential stage from 25 nA to $5 \mu \mathrm{~A}$. This pin is not available on the LM2905/LM3905.

With the timer in the unboosted state, timing periods are accurate down to about 1 ms . In the boosted mode, loss of accuracy due to comparator speed is only about 800 ns , so timing periods of several microseconds can be used. The 800 ns error is relatively insensitive to temperature, so temperature coefficient of pulse width is still good.

The Logic pin is used to reverse the signal appearing at the output transistor. An open or "high" condition on the logic pin programs the output transistor to be "off" during the timing period and "on" all nther times. Grounding the logic pin reverses the sequence to make the transistor "on" during the timing period. Threshold for the logic pin is typically 100 mV with $150 \mu \mathrm{~A}$ flowing out of the terminal. If an active drive to the logic pin is desired, a saturated transistor drive is recommended, either with a discrete transistor or the open collector output of integrated logic. A maximum $V_{S A T}$ of 25 mV at $200 \mu \mathrm{~A}$ is required. Minimum and maximum voltages that may appear on the logic pin are 0 and +5.0 , respectively.

## Typical Applications (Continued)

## Basic Timers

Figure 1 is a basic timer using the collector output. $R_{t}$ and $C_{t}$ set the time interval with $R_{L}$ as the load. During the timing interval the output may be


FIGURE 1. Basic Timer-Collector Output and Timing Chart
either high or low depending on the connection of the logic pin. Timing waveforms are shown in the sketch along side Figure 1. Note that the trigger pulse may be either shorter or longer than the output pulse width.

Figure 2 is again a basic timer, but with the output taken from the emitter of the output transistor. As with the collector output, either a high or low condition may be obtained during the timing period.


FIGURE 2. Basic Timer-Emitter Output and Timing Chart

Sim:.a!zting a Thermal nolay Relay
Figure 3 is an application where the LM122 is used, to simulate a thermal delay relay which


FIGURE 3. Time Out on Power Up (Relay Energized $R_{t} C_{t}$ Seconds After $V_{C C}$ is Applied)
prevents power from being applied to other circuitry until the supply has been on for some time. The relay remains de-energized for $R_{t} C_{t}$ seconds after $V_{\text {cc }}$ is applied, then closes and stays energized until $V_{c c}$ is turned off. Figure 4 is a similar circuit except that the relay is energized


FIGURE 4. Time Out on Power Up (Relay Energized Until $\mathbf{R}_{\mathbf{t}} \mathrm{C}_{\mathbf{t}}$ Seconds After $\mathrm{V}_{\mathbf{C}}$ is Applied)
as soon as $V_{c c}$ is applied. $R_{t} C_{t}$ seconds later, the relay is de-energized and stays off until the $\mathrm{V}_{\text {cc }}$ supply is recycled.

Typical Applications (Continued)

## +5V Supply Driving 28V Relay

Figure 5 shows the timer interfacing 5 V logic to a high voltage relay. Although the $\mathrm{V}^{+}$terminal could be tied to the +28 V supply, this may be


FIGURE 5. 5V Logic Supply Driving 28V Relay
an unnecessary waste of power in the IC or require extra wiring if the LM122 is on a logic card. In either case, the threshold for the trigger is 1.6 V .

## 30V Supply Interfacing with 5V Logic

Figure 6 indicates the ability of the timer to interface to digital logic when operating off a high supply voltage. $\mathrm{V}_{\text {OUt }}$ swings between +5 V and ground with a minimum fanout of 5 for medium speed TTL. If the logic is sensitive to rise/fall time of the trailing edge of the output pulse, the trigger pin should be low at that time.


FIGURE 6. 30V Supply Interfacing with 5V Logic

## Astable Operation

The LM122 can be made into a self-starting oscillator by feeding the output back to the trigger input through a capacitor as shown in Figure 7. Operating frequency is $1 /\left(R_{t}+R_{1}\right)\left(C_{t}\right)$. The output is a narrow negative pulse whose width is approximately $2 R_{2} C_{f}$. For optimum frequency stability, $\mathrm{C}_{\mathrm{f}}$ should be as small as possible. The minimum value is determined by the time required to discharge $C_{t}$ through the internal discharge transistor. A conservative value for $\mathrm{C}_{\mathrm{f}}$ can be chosen from the graph included with Figure 20. For frequencies below 1 kHz , the frequency error
introduced by $\mathrm{C}_{\mathrm{f}}$ is a few tenths of one percent or less for $R_{t} \geq 500 k$.



FIGURE 7. Oscillator

## One Hour Timer with Reset and Manual Cycle End

Figure 8 shows the LM122 connected as a one hour timer with manual controls for start, reset, and cycle end. S1 starts timing, but has no effect after timing has started. S2 is a center off switch which can either end the cycle prematurely with the appropriate change in output state and discharging of $C_{t}$, or cause $C_{t}$ to be reset to $O V$. without a change in output. In the latter case, a new timing period starts as soon as S 2 is released.


FIGURE 8. One Hour Timer with Reset and Manual Cycle End

The average charging current through $R_{t}$ is about 30 nA , so some attention must be paid to parts layout to prevent stray leakage paths. The suggested timing capacitor has a typical self time constant of 300 hours and a guaranteed minimum of 25 hours at $+25^{\circ} \mathrm{C}$. Other capacitor types may be used if sufficient data is available on their leakage characteristics.

## Typical Applications (Continued)

Two Terminal Time Delay Switch

The LM122 can be used as a two terminal time delay switch if an "on" voltage drop of 2 V to 3 V can be tolerated. In Figure 9, the timer is used to drive a relay "on" $R_{t} \cdot C_{t}$ seconds after application of power. "off" current of the switch is 4 mA maximum, and "on" current can be as high


FIGURE 9. 2-Terminal Time Delay Switch
Zero Power Dissipation Between Timing Intervals
In some applications it is desirable to reduce supply current drain to zero between timing cycles. In Figure 10 This is accomplished by using an external PNP as a latch to drive the $\mathrm{V}^{+}$pin of the timer.


FIGURE 10. Zero Power Dissipation Between Timing Intervals
Between timing periods Q1 is off and no supply current is drawn. When a trigger pulse of 5 V minimum amplitude is received, the LM 122 output transistor and Q1 latch for the duration of the timing period. D1 prevents the step on the $\mathrm{V}^{+}$pin from coupling back into the trigger pin. If the trigger input is a short pulse, C1 and R2 may be eliminated. $\mathrm{R}_{\mathrm{L}}$ must have a minimum value of $\left(V_{c c}\right) /(2.5 \mathrm{~mA})$.

## Frequency to Voltage Converter

An accurate frequency to voltage converter can be made with the LM122 by averaging output pulses with a simple one pole filter as shown in Figure 11. Pulse width is adjusted with R2 to provide initial calibration at 10 kHz . The collector of the output transistor is tied to $\mathrm{V}_{\text {REF }}$, giving constant amplitude pulses equal to $\mathrm{V}_{\text {REF }}$ at the emitter output. R4 and C1 filter the pulses to
give a dc output equal to, $\left(R_{t}\right)\left(C_{t}\right)\left(V_{\text {REF }}\right)(f)$. Linearity is about $0.2 \%$ for a 0 V to 1 V output. If better linearity is desired R5 can be tied to the summing node of an op amp which has the filter in the feedback path. If a low output impedance is desired, a unity gain buffer such as the LM110 can be tied to the output. An analog meter can be driven directly by placing it in series with R5 to ground. A series RC network across the meter to provide damping will improve response at very low frequencies.


FIGURE 11. Frequency to Voltage Converter. (Tachometer) Output Independent of Supply Voltage
Pulse Width Detector
By driving the logic terminal of the LM122 simultaneous to the trigger input, a simple, accurate pulse width detector can be made (Figure 12).


FIGURE 12. Pulse Width Detector
In this application the logic terminal is normally held high by R3. When a trigger pulse is received, Q1 is turned on, driving the logic terminal to ground. The result of triggering the timer and reversing the logic at the same time is that the output does not change from its initial low condition. The only time the output will change states is when the trigger input stays high longer than one time period set by $R_{t}$ and $C_{t}$. The output pulse width is equal to the input trigger width minus $R_{t} \cdot C_{t}$. C2 insures no output pulse for short ( $<R C$ ) trigger pulses by prematurely resetting the timing capacitor when the trigger pulse drops. $C_{L}$ filters the narrow spikes which would occur at the output due to propagation delays during switching.

## Typical Applications (Continued)

## 5V Switching Regulator

Figure 13 is an application where the LM122 does not use its timing function. A switching regulator is made using the internal reference and comparator to drive a PNP transistor switch. Features of this circuit include a 5.5 V minimum input voltage at 1 A output current, low part count, and good efficiency ( $>75 \%$ ) for input voltages to 10 V . Line and load regulation are less than $0.5 \%$ and output ripple at the switching frequency is only 30 mV . Q1 is an inexpensive plastic device which does not need a heatsink for ambient temperature up to $50^{\circ} \mathrm{C}$. D1 should be a fast switching diode. Output voltage can be adjusted between 1 V and 30 V by , choosing proper values for R2, R3, R4, and R5. For outputs less than 2 V , a divider with $250 \Omega$ Thevinin resistance must be connected between $\mathrm{V}_{\text {REF }}$ and ground with its tap point tied to $\mathrm{V}_{\text {ADJ }}$.


FIGURE 13. 5V Switching Regulator with 1 Amp Output and 5.5V Minimum Input

## Application Hints

## Aborting a Timing Cycle

The LM122 does not have an input specifically allocated to a stop-timing function. If such a function is desired, it may be accomplished several ways:

- Ground $V_{A D J}$
- Raise $\mathrm{R} / \mathrm{C}$ more positive than $\mathrm{V}_{\mathrm{ADJ}}$
- Wire "OR" the output

Grounding $V_{\text {ADJ }}$ will end the timing cycle just as if the timing capacitor had reached its normal discharge point. A new timing cycle can be started by the trigger terminal as soon as the ground is released. A switching transistor is best for driving $V_{\text {ADJ }}$ to as near ground as possible. Worst case sink current is about $300 \mu \mathrm{~A}$.

A timing cycle may also be ended by a positive pulse to a resistor ( $R \leq R_{t} / 100$ ) in series with the timing capacitor. The pulse amplitude must be at least equal to $V_{\text {ADJ }}(2.0 \mathrm{~V})$, but should not exceed 5.0 V . When the timing capacitor discharges,
a negative spike of up to 2.0 V will occur across the resistor, so some caution must be used if the drive pulse is used for other circuitry.


FIGURE 14. Cycle Interrupt

The output of the timer can be wire ORed with a discrete transistor or an open collector logic gate output. This allows overriding of the timer output, but does not cause the timer to be reset until its normal cycle time has elapsed.

## Using the LM122 as a Comparator

A built-in reference and zero volt common mode limit make the LM122 very useful as a comparator. Threshold may be adjusted from zero to three volts by driving the $V_{A D J}$ terminal with a divider tied to $\mathrm{V}_{\text {REF }}$. Stability of the reference voltage is typically $\pm 1 \%$ over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Offset voltage drift in the comparator is typically $25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ in the boosted mode and $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ unboosted. A resistor can be inserted in series with the input to allow overdrives up to $\pm 50 \mathrm{~V}$ as shown in Figure 15. There is actually no limit on input voltage as long as current is limited to $\pm 1 \mathrm{~mA}$. The resistor shown contributes


FIGURE 15. Comparator with OV to 3 V Threshold
a worst case of 5 mV to initial offset. In the unboosted mode, the error drops to 0.25 mV maximum. The capability of operating off a single 5 V supply with internal reference should make this comparator very useful.

## Application Hints (Continued)

## Eliminating Timing Cycle Upon Initial Application of Power

The LM122 will normally start a timing cycle (with no trigger input) when $\mathrm{V}^{+}$is first turned on. If this characteristic is undesirable, it can be defeated by tying the timing capacitor to $V_{\text {REF }}$ instead of ground as shown in Figure 16. This connection does not affect operation of the timer in any other way. If an electrolytic timing capacitor is used, be sure the negative end is tied to the $\mathrm{R} / \mathrm{C}$ pin and the positive end to $\mathrm{V}_{\mathrm{REF}}$. A $1.0 \mathrm{k} \Omega$ resistor should be included in series with the timing capacitor to limit the surge current load on $V_{\text {REF }}$ when the capacitor is discharged.


FIGURE 16. Eliminating Initial Timing Cycle

## Using Dual Supplies

The LM122 can be operated off dual supplies as shown in Figure 17. The only limitation is that the emitter terminal cannot be tied to ground, it must either drive a load referred to $\mathrm{V}^{-}$or be actually tied to $\sqrt{ }$ as shown. Although capacitive coupling is shown for the trigger input (to allow 5 V triggering), a resistor can be substituted for C1. R2 must be chosen to give proper level shifting between the trigger signal and the trigger pin of the timer. Worst case "lo" on the trigger pin (with respect to V ) is 0.8 V , and worst case "high" is 2.5 V . R2 may be calculated from the divider equation with R1 to give these levels.

-select for proper level shiet
emitter terminal or emitter load must be tied ta gnd pin of timer.

## Linearizing the Charging Sweep

In some applications (such as a linear pulse width modulator) it may be desirable to have the timing capacitor charge from a constant current source. A simple way to accomplish this is shown in Figure 18.


FIGURE 18. Temperature Compensated Linear Charging Sweep
Q1 converts the current through R1 to a current source independent of the voltage across $C_{t}$. R2, R3, D1, and D2 are added to make the current through R1 independent of supply variations and temperature changes. (D2 is a low TC type) D2 and R3 can be omitted if the $\mathrm{V}^{+}$supply is stable and D1 and R2 can be omitted also if temperature stability if not critical. With D1, D2, R2 and R3 omitted, the current through R1 will change about $0.015 \% /{ }^{\circ} \mathrm{C}$ with a 15 V supply and $0.1 \% /{ }^{\circ} \mathrm{C}$ with a 5.0 V supply.

## Triggering with Negative Edge

Although the LM122 is triggered by a positive going trigger signal, a differentiator tied to a normally "high" trigger will result in negative edge triggering. In Figure 19, R1 serves the dual purpose of holding the trigger pin normally high and differentiating the input trigger pulse coupled through C 1 . The timing diagram included with Figure 21 shows that triggering actually occurs a short time after the negative going trigger, while positive going triggers have no effect. The delay time between a negative trigger signal and actual


FIGURE 19. Timer Triggered by Negative Edge of Input Pulse

## Application Hints (Continued)

starts of timing is approximately ( 0.5 to 1.5 ) (R1 - C1) depending on the trigger amplitude, or about 2.5 to $7.5 \mu \mathrm{~s}$ with the values shown. This time will have to be increased for $\mathrm{C}_{\mathrm{t}}$ larger than $0.01 \mu \mathrm{~F}$ because $\mathrm{C}_{\mathrm{t}}$ is charged to $\mathrm{V}_{\text {REF }}$ whenever the trigger pin is kept high and must reset itself during the short time that the trigger pin voltage is low. A conservative value for C 1 is:
$\mathrm{C} 1 \geq \frac{\mathrm{C}_{\mathrm{t}}}{10}$

## Chain of Timers

The LM122 can be connected as a chain of timers quite easily with no interface required. In Figure 20A and 20B, two possible connections are shown. In both cases, the output of the timer is low during the timing period so that the positive going signal at the end of timing period can trigger the next timer. There is no limitation on the timing period of one timer with respect to any other timer before or after it, because the trigger input to any timer can be high or low when that timer ends its timing period.

(A)

(B)

FIGURE 20. Chain of Timers

National

## General Description

The LM134/LM234/LM334 are 3-terminal adjustable current sources featuring 10,000:1 range in operating current, excellent current regulation and a wide dynamic voltage range of 1 V to 40 V . Current is established with one external resistor and no other parts are required. Initial current accuracy is $\pm 3 \%$. The LM134/LM234/ LM334 are true floating current sources with no separate power supply connections. In addition, reverse applied voltages of up to 20 V will draw only a few microamperes of current, allowing the devices to act as both a rectifier and current source in AC applications.

The sense voltage used to establish operating current in the LM134 is 64 mV at $25^{\circ} \mathrm{C}$ and is directiy propurtional to absolute temperature ( ${ }^{\circ} \mathrm{K}$ ). The simplest one external resistor connection, then, generates a current with $\approx+0.33 \% /{ }^{\circ} \mathrm{C}$ temperature dependence. Zero drift operation can be obtained by adding one extra resistor and a diode.

Applications for the new current sources include bias networks, surge protection, low power reference, ramp generation LED driver, and temperature sensing The

LM134-3/LM234-3 and LM134-6/LM234-6 are specified as true temperature sensors with guaranteed initial accuracy of $\pm 3^{\circ} \mathrm{C}$ and $\pm 6^{\circ} \mathrm{C}$, respectively. These devices are ideal in remote sense applications because series resistance in long wire runs does not affect accuracy. In addition, only 2 wires are required.

The LM134 is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM234 from $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and the LM334 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. These devices are available in TO-46 hermetic and TO-92 plastic packages.

## Features

- Operates from 1 V to 40 V
- $0.02 \% / \mathrm{V}$ current regulation
- Programmable from $1 \mu \mathrm{~A}$ to 10 mA
- True 2-terminal operation
- Available as fully specified temperature sensor
- $\pm 3 \%$ initial accuracy


## Typical Applications

Basic 2-Terminal Current Source


Zero Temperature Coefficient Current Source

*Select ratio of R1 to RSET to obtain zero drift. $1^{+} \approx 2$ ISET

*Select R3 $=V_{\text {REF }} / 583 \mu \mathrm{~A} . \mathrm{V}_{\text {REF }}$ may be any stable positive voltage $\geq \mathbf{2 V}$ Trim R3 to calibrate

## Absolute Maximum Ratings

$\mathrm{V}^{+}$to $\mathrm{V}^{-}$Forward Voltage LM134/LM234 40V
LM334/LM134-3/LM134-6/LM234-3/LM234-6 30V
$\mathrm{V}^{+}$to $\mathrm{V}^{-}$Reverse Voltage 20 V
R Pin to $\mathrm{V}^{-}$Voltage 5 V
Set Current 10 mA
Power Dissipation
Operating Temperature Range
LM134/LM134-3/LM134-6
LM234/LM234-3/LM234-6
LM334
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LM134/LM234			LM334			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Set Current Error, $\mathrm{V}^{+}=2.5 \mathrm{~V}$, (Note 2)	$\begin{aligned} & 10 \mu \mathrm{~A} \leq \mathrm{I} \text { SET } \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<\mathrm{ISET} \leq 5 \mathrm{~mA} \\ & 2 \mu \mathrm{~A} \leq \mathrm{ISET}<10 \mu \mathrm{~A} \end{aligned}$			3 5 8.			$\begin{aligned} & 6 \\ & 8 \\ & 12 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$
Ratio of Set Current to $\mathrm{V}^{-}$Current	$\begin{aligned} & 10 \mu \mathrm{~A} \leq \mathrm{ISET} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leq \mathrm{ISET} \leq 5 \mathrm{~mA} \\ & 2 \mu \mathrm{~A} \leq \mathrm{ISET} \leq 10 \mu \mathrm{~A} \end{aligned}$	14	$\begin{aligned} & 18 \\ & 14 \\ & 18 \end{aligned}$	23 23	14 14	$\begin{aligned} & 18 \\ & 14 \\ & 18 \end{aligned}$	26 26	
Minimum Operating Voltage	$\begin{aligned} & 2 \mu \mathrm{~A} \leq \mathrm{I} \text { SET } \leq 100 \mu \mathrm{~A} \\ & 100 \mu \mathrm{~A}<\mathrm{ISET} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<\mathrm{ISET} \leq 5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$		$\begin{aligned} & V \\ & v \\ & v \end{aligned}$
Average Change in Set Current with Input Voltage	$\begin{aligned} & 1.5 \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & 2 \mu \mathrm{~A} \leq 1 \mathrm{SET} \leq 1 \mathrm{~mA} \\ & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V} \\ & 1.5 \mathrm{~V} \leq \mathrm{V} \leq 5 \mathrm{~V} \\ & 1 \mathrm{~mA}<\mathrm{ISET} \leq 5 \mathrm{~mA} \\ & 5 \mathrm{~V} \leq \mathrm{V} \leq 40 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.03 \\ & 0.02 \end{aligned}$	0.05 0.03		$\begin{aligned} & 0.02 \\ & \\ & 0.01 \\ & 0.03 \\ & \\ & 0.02 \end{aligned}$	0.1 0.05	\%/V   \%/V   \%/V   \%/V
Temperature Dependence of Set Current (Note 3)   Effective Shunt Capacitance	$25 \mu \mathrm{~A} \leq \mathrm{ISET} \leq 1 \mathrm{~mA}$	0.96 T	T   15	1.04 T	0.96 T	T   15	1.04 T	pF

Note 1: Unless otherwise specified, tests are performed at $T_{j}=25^{\circ} \mathrm{C}$ with pulse testing so that junction temperature does not change during test.
Note 2: Set current is the current flowing into the $\mathrm{V}^{+}$pin. It is determined by the following formula: ISET $=67.7 \mathrm{mV} / \mathrm{R}_{\mathrm{SET}}$ (@ $25^{\prime} \mathrm{C}$ ). Set current error is expressed as a percent deviation from this amount. ISET increases at $0.336 \% /{ }^{\circ} \mathrm{C} @ \mathrm{~T}_{\mathrm{j}}=\mathbf{2 5} 5^{\circ} \mathrm{C}$.
Note 3: ISET is directly proportional to absolute temperature ( ${ }^{\circ} \mathrm{K}$ ). ISET at any temperature can be calculated from: $I_{S E T}=I_{0}\left(T / T_{0}\right)$ where $I_{0}$ is ISET measured at $T_{0}\left({ }^{\circ} \mathrm{K}\right)$.

Electrical Characteristics (Continued) (Note 1)

PARAMETER	CONDITIONS	LM134-3, LM234-3			LM134-6, LM234-6			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Set Current Error, $\mathrm{V}^{+}=2.5 \mathrm{~V}$, (Note 2)	$\begin{aligned} & 100 \mu \mathrm{~A} \leq \mathrm{ISET} \leq 1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$			$\pm 1$			$\pm 2$	\%
Equivalent Temperature Error				$\pm 3$			$\pm 6$	${ }^{\circ} \mathrm{C}$
Ratio of Set Current to $\mathrm{V}^{-}$ Current	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$	14	18	26	14	18	26	
Minimum Operating Voltage	$100 \mu \mathrm{~A}$ ISET $\leq 1 \mathrm{~mA}$		0.9			0.9	/	V
Average Change in Set Current with Input Voltage	$\begin{aligned} & 1.5 \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \end{aligned}$		0.02	0.05		0.02	0.1	\%/V
	$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}$		0.01	0.03		0.01	0.05	\%/V
Temperature Dependence of Set Current (Note 3) and	$100 \mu \mathrm{~A} \leq \mathrm{ISET} \leq 1 \mathrm{~mA}$	0.98T	T	1.02 T	0.97T	T	1.03 T	
Equivalent Slope Error		.		$\pm 2$			$\pm 3$	\%
Effective Shunt Capacitance			15			15		pF

## Typical Performance Characteristics




## Application Hints

The LM134 has been designed for ease of application, but a general discussion of design features is presented here to familiarize the designer with device characteristics which may not be immediately obvious. These include the effects of slewing, power dissipation, capacitance, noise, and contact resistance.

## SLEW RATE

At slew rates above a given threshold (see curve), the LM134 may exhibit non-linear current shifts. The slewing rate at which this occurs is directly proportional to ISET. At ISET $=10 \mu \mathrm{~A}$, maximum $\mathrm{dV} / \mathrm{dt}$ is $0.01 \mathrm{~V} / \mu \mathrm{s}$; at $\operatorname{ISET}=1 \mathrm{~mA}$, the limit is $1 \mathrm{~V} / \mu \mathrm{s}$. Slew rates above the limit do not harm the LM134, or cause large currents to flow.

## THERMAL EFFECTS

Internal heating can have a significant effect on current regulation for ISET greater than $100 \mu \mathrm{~A}$. For example, each 1 V increase across the LM134 at ISET $=1 \mathrm{~mA}$ will increase junction temperature by $\approx 0.4^{\circ} \mathrm{C}$ in still air. Output current (ISET) has a temperature coefficient of $\approx 0.33 \% /{ }^{\circ} \mathrm{C}$, so the change in current due to temperature rise will be $(0.4)(0.33)=0.132 \%$. This is a $10: 1$ degradation in regulation compared to true electrical effects. Thermal effects, therefore, must be taken into account when DC regulation is critical and ISET exceeds $100 \mu \mathrm{~A}$. Heat sinking of the TO-46 package or the TO-92 leads can reduce this effect by more than 3:1.

## SHUNT CAPACITANCE

In certain applications, the 15 pF shunt capacitance of the LM134 may have to be reduced, either because of loading problems or because it limits the AC output impedance of the current source. This can be easily accomplished by buffering the LM134 with an FET as shown in the applications. This can reduce capacitance to less than 3 pF and improve regulation by at least an order of magnitude. DC characteristics (with the exception of minimum input voltage), are not affected.

## NOISE

Current noise generated by the LM134 is approximately 4 times the shot noise of a transistor. If the LM134 is used as an active load for a transistor amplifier, input

referred noise will be increased by about 12 dB . In many cases, this is acceptable and a single stage amplifier can be built with a voltage gain exceeding 2000.

## LEAD RESISTANCE

The sense voltage which determines operating current of the LM134 is less than 100 mV . At this level, thermocouple or lead resistance effects should be minimized by locating the current setting resistor physically close to the device. Sockets should be avoided if possible. It takes only $0.7 \Omega$ contact resistance to reduce output current by $1 \%$ at the 1 mA level.

## SENSING TEMPERATURE

The LM134 makes an ideal remote temperature sensor because its current mode operation does not lose accuracy over long wire runs. Output current is directly proportional to absolute temperature in degrees Kelvin, according to the following formula:

$$
\text { ISET }=\frac{(227 \mu \mathrm{~V} / \mathrm{K})(\mathrm{T})}{\mathrm{R}_{\mathrm{SET}}}
$$

Calibration of the LM134 is greatly simplified because of the fact that most of the initial inaccuracy is due to a gain term (slope error) and not an offset. This means that a calibration consisting of a gain adjustment only will trim both slope and zero at the same time. In addition, gain adjustment is a one point trim because the output of the LM134 extrapolates to zero at $0^{\circ} \mathrm{K}$, independent of RSET or any initial inaccuracy.


This property of the LM134 is illustrated in the accompanying graph. Line abc is the sensor current before

## Application Hints (Continued)

trimming. Line $a^{\prime} b^{\prime} c^{\prime}$ is the desired output. A gain trim done at T2 will move the output from $b$ to $b^{\prime}$ and will simultaneously correct the slope so that the output at T1 and T3 will be correct. This gain trim can be done on RSET or on the load resistor used to terminate the LM134. Slope error after trim will normally be less than $\pm 1 \%$. To maintain this accuracy, however, a low temperature coefficient resistor must be used for RSET.

A $33 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift of RSET will give a $1 \%$ slope error because the resistor will normally see about the same temperature variations as the LM134. Separating RSET from the LM134 requires 3 wires and has lead resistance problems, so is not normally recommended. Metal film resistors with less than $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift are readily available. Wire wound resistors may also be used where best stability is required.

## Typical Applications (Continued)

Low Output Impedance Thermometer


Higher Output Current

*Select R1 and C1 for optimum stability

Typical Applications (Continued)

Micropower Bias





1.2V Reference Operates on $10 \mu \mathrm{~A}$ and 2 V

*Select ratio of R1 to R2 to obtain zero temperature drift

*Select ratio of R1 to R2 for zero temperature drift

## Typical Applications (Continued)



## FET Cascoding for Low Capacitance and/or Ultra High Output Impedance


${ }^{*}$ Select Q 1 or Q 2 to ensure at least 1 V across the LM134. $\mathrm{V}_{\mathrm{p}}\left(1-I_{\mathrm{SET}} / I_{\mathrm{DSS}}\right) \geq 1.2 \mathrm{~V}$.

## Generating Negative Output Impedance


${ }^{*} Z_{\text {OUT }} \approx-16 \cdot$ R1 (R1/VIN must not exceed ISET)

In-Line Current Limiter


[^49]Schematic and Connection Diagrams


T0-46
Metal Can Package


BOTTOM VIEW
Pin 3 is electrically connected to case
Order Number LM134H, LM134H-3, LM134H-6, LM234H, LM234H-3, LM234H-6 or LM334H See NS Package H03H

то.92
Plastic Package


BOTTOM VIEW

Order Number LM334Z, LM234Z-3 or LM234Z-6 See NS Package Z03A

## LM135/LM235/LM335, LM135A/LM235A/LM335A <br> Precision Temperature Sensors

## General Description

The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal zener, the LM135 has a breakdown voltage directly proportional to absolute temperature at $+10 \mathrm{mV} /$ ${ }^{\circ} \mathrm{K}$. With less than $1 \Omega$ dynamic impedance the device operates over a current range of $400 \mu \mathrm{~A}$ to 5 mA with virtually no change in performance. When calibrated at $25^{\circ} \mathrm{C}$ the LM135 has typically less than $1^{\circ} \mathrm{C}$ error over a $100^{\circ} \mathrm{C}$ temperature range. Unlike other sensors the LM135 has a linear output.

Applications for the LM135 include almost any type of temperature sensing over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range. The low impedance and linear output make interfacing to readout or control circuitry especially easy.

The LM135 operates over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range while the LM235 operates over a $-40^{\circ} \mathrm{C}$
to $+125^{\circ} \mathrm{C}$ temperature range. The LM335 operates from $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The LM135/LM235/LM335 are available packaged in hermetic TO-46 transistor packages while the LM335 is also available in plastic TO. 92 packages.

## Features

- Directly calibrated in ${ }^{\circ}$ Kelvin
- $1^{\circ} \mathrm{C}$ initia! acrurary available
a Operates from $400 \mu \mathrm{~A}$ to 5 mA
- Less than $1 \Omega$ dynamic impedance
- Easily calibrated
- Wide operating temperature range
- $200^{\circ} \mathrm{C}$ overrange
- Low cost


## Schematic Diagram



## Typical Applications

Basic Temperature Sènsor


Calibrated Sensor

${ }^{*}$ Calibrate for 2.982 V at $25^{\circ} \mathrm{C}$

Wide Operating Supply


## Absolute Maximum Ratings

Reverse Current
Forward Current
Storage Temperature
TO-46 Package
TO.92 Package
Specified Operating Temperature Range
Continuous
LM135, LM135A
LM235, LM235A
LM335, LM335A $\quad-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)

15 mA
10 mA
$-60^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$
$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Intermittent (Note 2)
$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
$125^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Temperature Accuracy LM135/LM235, LM135A/LM235A (Note 1)

PARAMETER	CONDITIONS	LM135A/LM235A			LM135/LM235			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Operating Output Voltage	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	2.97	2.98	2.99	2.95	2.98	3.01	$V$
Uncalibrated Temperature Error	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, I_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		1	3	${ }^{\circ} \mathrm{C}$
Uncalibrated Temperature Error	$T_{\text {MIN }}<T_{C}<T_{\text {MAX }}, I_{R}=1 \mathrm{~mA}$		1.3	2.7		2	5	${ }^{\circ} \mathrm{C}$
Temperature Error with $25^{\circ} \mathrm{C}$ Calibration	$\mathrm{T}_{\mathrm{MIN}}<\mathrm{T}_{\mathrm{C}}<\mathrm{T}_{\mathrm{MAX}}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	1		0.5	1.5	${ }^{\circ} \mathrm{C}$
Calibrated Error at Extended Temperatures	$T_{C}=T_{\text {MAX }}$ (Intermittent)		2			2		${ }^{\circ} \mathrm{C}$
Non-Linearity	$I_{R}=1 \mathrm{~mA}$		$0.3$	0.5		0.3	1	${ }^{\circ} \mathrm{C}$

Temperature Accuracy LM335, Lм335A (Note 1)

PARAMETER	CONDITIONS	LM335A			LM335			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Operating Output Voltage	$\mathrm{T}^{\prime} \mathrm{C}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	2.95	2.98	3.01	2.92	2.98	3.04	V
Uncalibrated Temperature Error	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		1	3		2	6	${ }^{\circ} \mathrm{C}$
Uncalibrated Temperature Error	$T_{\text {MIN }}<T_{C}<T_{\text {MAX }}, I_{R}=1 \mathrm{~mA}$		2	5		4	9	${ }^{\circ} \mathrm{C}$
Temperature Error with $25^{\circ} \mathrm{C}$ Calibration	$T_{M I N}<T_{C}<T_{M A X}, I_{R}=1 \mathrm{~mA}$		0.5	1		1	2	${ }^{\circ} \mathrm{C}$
Calibrated Error at Extended Temperatures	$T_{C}=T_{\text {MAX }}$ (Intermittent)		2			2		${ }^{\circ} \mathrm{C}$
Non-Linearity	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	1.5		0.3	1.5	${ }^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LM135/LM235 LM135A/LM235A			LM335   LM335A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Operating Oùtput Voltage Change with Current	$400 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{R}}<5 \mathrm{~mA}$   At Constant Temperature $I R=1 \mathrm{~mA}$		2.5	10		3	14	mV$\Omega$$\mathrm{mV} /{ }^{\circ} \mathrm{C}$secsecsec${ }^{\circ} \mathrm{C} / \mathrm{khr}$
Dynamic Impedance			0.5			0.6		
Output Voltage Temperature Drift			+10			+10		
Time Constant	Still Air		80			80		
	$100 \mathrm{ft} / \mathrm{Min}$ Air		10			10		
	Stirred Oil		1			1		
Time Stability	$\mathrm{T}^{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.2			0.2		

[^50]Note 2: Continuous operation at these temperatures for 10,000 hours for $H$ package and 5,000 hours for $Z$ package may decrease life expectancy of the device.

## Typical Performance Characteristics



## Application Hints

## CALIBRATING THE LM135

Included on the LM135 chip is an easy method of calibrating the device for higher accuracies. A pot connected across the LM135 with the arm tied to the adjustment terminal allows a 1 -point calibration of the sensor that corrects for inaccuracy over the full temperature range.
This single point calibration works because the output of the LM135 is proportional to absolute temperature with the extrapolated output of sensor going to OV output at $0^{\circ} \mathrm{K} \cdot\left(-273.15^{\circ} \mathrm{C}\right)$. Errors in output voltage versus temperature are only slope (or scale factor) so a slope calibration at one temperature corrects at all temperatures.
The output of the device (calibrated or uncalibrated) can be expressed as:

$$
V_{O U T T}=\operatorname{VOUT}_{T_{0}} \times \frac{T}{T_{0}}
$$

where $T$ is the unknown temperature and $T_{0}$ is a reference temperature, both expressed in degrees Kelvin. By calibrating the output to read correctly at one
temperature the output at all temperatures is correct. Nominally the output is calibrated at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$.
To insure good sensing accuracy several precautions must be taken. Like any temperature sensing device, self heating can reduce accuracy. The LM135 should be operated at the lowest current suitable for the application. Sufficient current, of course, must be available to drive both the sensor and the calibration pot at the maximum operating temperature.

If the sensor is used in an ambient where the thermal resistance is constant, self heating errors can be calibrated out. This is possible if the device is run with a temperature stable current. Heating will then be proportional to zener voltage and therefore temperature. This makes the self heating error proportional to absolute temperature the same as scale factor errors.

## WATERPROOFING SENSORS

Meltable inner core heat shrinkable tubing such as manufactured by Raychem can be used to make lowcost waterproof sensors. The LM335 is inserted into the tubing about $1 / 2^{\prime \prime}$ from the end and the tubing heated above the melting point of the core. The unfilled $1 / 2^{\prime \prime}$ end melts and provides a seal over the device.

Typical Applications (Continued)

Minimum Temperature Sensing


Average Temperature Sensing


Remote Temperature Sensing


Wire length for $1^{\circ} \mathrm{C}$ error due to wire drop		
	$\mathbf{I}_{\mathbf{R}}=1 \mathrm{~mA}$	$\mathbf{I}_{\mathbf{R}}=0.5 \mathrm{~mA}$
AWG	FEET	FEET
14	4000	8000
16	2500	5000
18	1600	3200
20	1000	2000
22	625	1250
24	400	800

Isolated Temperature Sensor


## Typical Applications (Continued)



Ground Referred Fahrenheit Thermometer


* Adjust R2 for 2.554 V across LM336.

Adjust R1 for correct output.
Fahrenheit Thermometer


* To calibrate adjust R2 for 2.554 V across LM336. Adjust R1 for correct output.


## Typical Applications (Continued)

THERMOCOUPLE COLD JUNCTION COMPENSATION

## Compensation for Grounded Thermocouple


*Select R3 for proper thermocouple type

THERMO

J	$377 \Omega$
T	$308 \Omega$
K	$293 \Omega$
S	$258 \Omega$

$\begin{array}{ll} & 45.8 \Omega \\ 6.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\end{array}$
Adjustments: Compensates for both sensor and resistor toler-

1. Short LM329B
2. Adjust R1 for Seebeck Coefficient times ambient temper ature (in degrees K) across R3
3. Short LM335 and adjust R2 for voltage across R3 corresponding to thermocouple type

$J$	14.32 mV	K	11.17 mV
T	11.79 mV	S	1.768 mV

Single Power Supply Cold Junction Compensation


*	Select R3	
THERMO.	R4 4 for thermocouple type	
COUPLE	R3	R4
J	1.05 K	$385 \Omega$
J	$856 \Omega$	$315 \Omega$
K	$816 \Omega$	$300 \Omega$
S	$128 \Omega$	$46.3 \Omega$

[^51]SEEBECK

Adjustments:

1. Adjust R1 for the voltage across R3 equal to the Seebeck Coefficient times ambient temperature in degrees Kelvin
2. Adjust R2 for voltage across R4 corresponding to thermocouple

J	14.32 mV	K	11.17 mV
T	11.79 mV	S	1.768 mV

Centigrade Calibrated Thermocouple Thermometer


Terminate thermocouple reference junction in close proximity to LM335.

Adjustments:

1. Apply signal in place of thermocouple and adjust R3 for a gain of 245.7.
2. Short non-inverting input of LM308A and output of LM329B to ground.
3. Adjust R 1 so that $\mathrm{V}_{\text {OUT }}=2.982 \mathrm{~V} @ 25^{\circ} \mathrm{C}$.
4. Remove short across LM329B and adjust R2 so that $\mathrm{V}_{\text {OUT }}=$ 246 mV @ $25^{\circ} \mathrm{C}$.
5. Remove short across thermocouple.

Fast Charger for Nickel-Cadmium Batteries


Differential Temperature Sensor


Variable Offset Thermometer ${ }^{\ddagger}$
 + at $100^{\circ} \mathrm{C}$ of 10 T pot

Ground Referred Centigrade Thermometer


Air Flow Detector*


## Definition of Terms

Operating Output Voltage: The voltage appearing across the positive and negative terminals of the device at specified conditions of operating temperature and current.

Uncalibrated Temperature Error: The error between the operating output voltage at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ and case temperature at specified conditions of current and case temperature.

## Connection Diagrams

TO-92
Plastic Package


Order Number LM335Z
or LM335AZ
See NS Package Z03A

Calibrated Temperature Error: The error between operating output voltage and case temperature at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ over a temperature range at a specified operating current with the $25^{\circ} \mathrm{C}$ error adjusted to zero.

> TO-46
> Metal Can Package*


* Case is connected to negative pin

Order Number LM135H, LM235H, LM335H, LM135AH, LM235AH or LM335AH See NS Package H03H

National Semiconductor

## LM555/LM555C Timer

## General Description

The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to $\mathbf{2 0 0} \mathrm{mA}$ or drive TTL circuits.

## Features

- Direct replacement for SE555/NE555
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than $0.005 \%$ per ${ }^{\circ} \mathrm{C}$
- Normally on and normally off output


## Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time dolay cenoration
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator


## Schematic Diagram



## Connection Diagrams



Order Number LM555H, LM555CH
See NS Package H08C

Dual-In-Line Package


Order Number LM555CN
See NS Package N08B
Order Number LM555J or LM555CJ
See NS Package J08A

## Absolute Maximum Ratings

## Supply Voltage

Power Dissipation (Note 1)
Operating Temperature Ranges LM555C LM555
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)
$+18 \mathrm{~V}$
600 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}\right.$ to +15 V , unless otherwise specified)


Note 1: For operating at elevated temperatures the device must be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case for TO-5 and $+150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for both packages.
Note 2: Supply current when output high typically 1 mA less at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: Tested at $V_{C C}=5 \mathrm{~V}$ and $V_{C C}=15 \mathrm{~V}$.
Note 4: This will determine the maximum value of $R_{A}+R_{B}$ for $15 V$ operation. The maximum total ( $R_{A}+R_{B}$ ) is $20 M \Omega$.
Note 5: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded.

## Typical Performance Characteristics



Discharge Transistor (Pin 7)
Voltage vs Sink Current


## Applications Information

## MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot (Figure 1). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than $1 / 3 \mathrm{~V}_{\mathrm{Cc}}$ to pin 2, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high.


FIGURE 1. Monostable
The voltage across the capacitor then increases exponentially for a period of $t=1.1 R_{A} C$, at the end of which time the voltage equals $2 / 3 \mathrm{~V}_{\mathrm{cc}}$. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. Figure 2 shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing internal is independent of supply.


During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit. However the circuit can be reset during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied.
When the reset function is not in use, it is recommended that it be connected to $\mathrm{V}_{\mathrm{Cc}}$ to avoid any possibility of false triggering.
Figure 3 is a nomograph for easy determination of R, C values for various time delays.
NOTE: In monostable operation, the trigger should be driven high before the end of timing cycle.

## ASTABLE OPERATION

If the circuit is connected as shown in Figure 4 (pins 2 and 6 connected) it will trigger itself and free run as a


FIGURE 3. Time Delay
multivibrator. The external capacitor charges through $R_{A}+R_{B}$ and discharges through $\mathrm{R}_{\mathrm{B}}$. Thus the duty cy.cle may be precisely set by the ratio of these two resistors.


FIGURE 4. Astable
In this mode of operation, the capacitor charges and discharges between $1 / 3 \mathrm{~V}_{\mathrm{Cc}}$ and $2 / 3 \mathrm{~V}_{\mathrm{Cc}}$. As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.

Figure 5 shows the waveforms generated in this mode of operation.


FIGURE 5. Astable Waveforms
The charge time (output high) is given by:

$$
t_{1}=0.693\left(R_{A}+R_{B}\right) C
$$

And the discharge time (output low) by:

$$
t_{2}=0.693\left(R_{B}\right) C
$$

Thus the total period is:
$T=t_{1}+t_{2}=0.693\left(R_{A}+2 R_{B}\right) C$

## Applications Information

The frequency of oscillation is:

$$
f=\frac{1}{T}=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
$$

Figure 6 may be used for quick determination of these RC values.

The duty cycle is:

$$
D=\frac{R_{B}}{R_{A}+2 R_{B}}
$$



FIGURE 6. Free Running Frequency

## FREQUENCY DIVIDER

The monostable circuit of Figure 1 can be used as a frequency divider by adjusting the length of the timing cycle. Figure 7 shows the waveforms generated in a divide by three circuit.


FIGURE 7. Frequency Divider

## PULSE WIDTH MODULATOR

When the timer is connected in the monostable mode and triggered with a continuous pulse train, the output pulse width can be modulated by a signal applied to pin 5. Figure 8 shows the circuit, and in Figure 9 are some waveform examples.


FIGURE 8. Pulse Width Modulator


FIGURE 9. Pulse Width Modulator

## PULSE POSITION MODULATOR

This application uses the timer connected for astable operation, as in rigure is, witita a madulating signa! again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. Figure 11 shows the waveforms generated for a triangle wave modulation signal.


FIGURE 10. Pulse Position Modulator


FIGURE 11. Pulse Position Modulator

## LINEAR RAMP

When the pullup resistor, $\mathrm{R}_{\mathrm{A}}$, in the monostable circuit is replaced by a constant current source, a linear ramp is

Applications Information (Continued)
generated. Figure 12 shows a circuit configuration that will perform this function.


Figure 13 shows waveforms generated by the linear ramp.
The time interval is given by:


FIGURE 13. Linear Ramp

## 50\% DUTY CYCLE OSCILLATOR

For a $50 \%$ duty cycle, the resistors $R_{A}$ and $R_{B}$ may be connected as in Figure 14. The time period for the out-
put high is the same as previous, $t_{1}=0.693 R_{A} C$. For the output low it is $\mathrm{t}_{2}=$
$\left[\left(R_{A} R_{B}\right) /\left(R_{A}+R_{B}\right)\right] C \operatorname{cn}\left[\frac{R_{B}-2 R_{A}}{2 R_{B}-R_{A}}\right]$
Thus the frequency of oscillation is $f=\frac{1}{t_{1}+t_{2}}$


FIGURE 14. 50\% Duty Cycle Oscillator
Note that this circuit will not oscillate if $R_{B}$ is greater than $1 / 2 R_{A}$ because the junction of $R_{A}$ and $R_{B}$ cannot bring pin 2 down to $1 / 3 \mathrm{~V}_{\mathrm{cc}}$ and trigger the lower comparator.

## ADDITIONAL INFORMATION

Adequate power supply bypassing is necessary to protect associated circuitry. Minimum recommended is $0.1 \mu \mathrm{~F}$ in parallel with $1 \mu \mathrm{~F}$ electrolytic.

Lower comparator storage time can be as long as $10 \mu \mathrm{~s}$ when pin 2 is driven fully to ground for triggering. This limits the monostable pulse width to $10 \mu \mathrm{~s}$ minimum.

Delay time reset to output is $0.47 \mu \mathrm{~s}$ typical. Minimum reset pulse width must be $0.3 \mu \mathrm{~s}$, typical.

Pin 7 current switches within 30 ns of the output (pin 3) voltage.

National Semiconductor

## LM556/LM556C Dual Timer

## General Description

The LM556 Dual timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. The 556 is a dual 555 . Timing is provided by an external resistor and capacitor for each timing function. The two timers operate independently of each other sharing only $\mathrm{V}_{\mathrm{cc}}$ and ground. The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200 mA .

## Features

- Direct replacement for SE556/NE556
- Timing from misroseronde throunh hours
- Operates in both astable and monostable modes
- Replaces two 555 timers
- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than $0.005 \%$ per ${ }^{\circ} \mathrm{C}$
- Normally on and normally off output


## Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator

Schematic Diagram


## Connection Diagram



## Order Number LM556CN

 See NS Package N14AOrder Number LM556J or LM556CJ
See NS Package J14A

Absolute Maximum Ratings

Supply Voltage	+18 V
Power Dissipation (Note 1)	600 mW
Operating Temperature Ranges	
$\quad$ LM556C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\quad$ LM556	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}$ to +15 V , unless otherwise specified)


Note 1: For operating at elevated temperatures the device must be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for both packages.
Note 2: Supply current when output high typically 1 mA less at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: Tested at $V_{C C}=5 \mathrm{~V}$ and $V_{C C}=15 \mathrm{~V}$.
Note 4: As reset voltage lowers, timing is inhibited and then the output goes low.
Note 5: This will determine the maximum value of $R_{A}+R_{B}$ for 15 V operation. The maximum total $\left(R_{A}+R_{B}\right)$ is $20 M \Omega$.
Note 6: No protection against excessive pin 1, 13 current is necessary providing the package dissipation rating will not be exceeded.
Note 7: Matching characteristics refer to the difference between performance characteristics of each timer section.

## Typical Performance Characteristics




## General Description

The LM565 and LM565C are general purpose phase locked loops containing a stable, highly linear voltage controlled oscillator for low distortion FM demodulation, and a double balanced phase detector with good carrier suppression. The VCO frequency is set with an external resistor and capacitor, and a tuning range of $10: 1$ can be obtained with the same capacitor. The characteristics of the closed loop system-bandwidth, response speed, capture and pull in range-may be adjusted over a wide range with an external resistor and capacitor. The loop may be broken between the VCO and the phase detector for insertion of a digital frequency divider to obtain frequency multiplication.

The LM565H is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM565CH and LM565CN are specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

## Features

- $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ frequency stability of the VCO
- Power supply range of $\pm 5$ to $\pm 12$ volts with 100 ppm/\% typical
- $0.2 \%$ linearity of demodulated output
- Linear triangle wave with in phase zero crossings available
- TTL and DTL compatible phase detector input and square wave output
- Adjustable hold in range from $\pm 1 \%$ to $> \pm 60 \%$.


## Applications

- Data and tape synchronization
- Modems
- FSK demodulation
- FM demodulation
- Frequency synthesizer
- Tone decoding
- Frequency multiplication and division
- SCA demodulators
- Telemetry receivers
- Signal regeneration
- Coherent demodulators.


## Schematic and Connection Diagrams



## Absolute Maximum Ratings

Supply Voltage	$\pm 12 \mathrm{~V}$
Power Dissipation (Note 1)	300 mW
Differential Input Voltage	1 V
Operating Temperature Range LM565H	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM565CH, LM565CN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )	$300^{\circ} \mathrm{C}$

Electrical Characteristics ( AC Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}= \pm 6 \mathrm{~V}$ )

PARAMETER	CONDITIONS	LM565			LM565C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Power Supply Current			8.0	12.5		8.0	12.5	mA
Input Impedance (Pins 2, 3)	$-4 \mathrm{~V}<\mathrm{V}_{2}, \mathrm{~V}_{3}<0 \mathrm{~V}$	7	10			5		$k \Omega$
VCO Maximum Operating Frequency	$c_{0}-2.7 \%$	300	500		250	500		kHz
Operating Frequency Temperature Coefficient			-100	300		-200	500	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Frequency Drift with Supply Voltage			0.01	0.1		0.05	0.2	\%/V
Triangle Wave Output Voltage		2	2.4	3	2	2.4	3	$\mathrm{V}_{\mathrm{p} \text {-p }}$
Triangle Wave Output Linearity			0.2	0.75		0.5	1	\%
Square Wave Output Level		4.7	5.4		4.7	5.4		$V_{p-p}$
Output Impedance (Pin 4)			5			5		$k \Omega$
Square Wave Duty Cycle		45	50	55	40	50	60	\%
Square Wave Rise Time			20	100		20		ns
Square Wave Fall Time			50	200		50		ns
Output Current Sink (Pin 4)		0.6	1		0.6	1		mA
VCO Sensitivity	$\mathrm{f}_{0}=10 \mathrm{kHz}$	6400	6600	6800	6000	6600	7200	$\mathrm{Hz} / \mathrm{V}$
Demodulated Output Voltage (Pin 7)	$\pm 10 \%$ Frequency Deviation	250	300	350	200	300	400	$m V_{p p}$
Total Harmonic Distortion	$\pm 10 \%$ Frequency Deviation		0.2	0.75		0.2	1.5	\%
Output Impedance (Pin 7)			3.5			3.5		k $\Omega$
DC Level (Pin 7)		4.25	4.5	4.75	4.0	4.5	5.0	$\checkmark$
Output Offset Voltage $\left\|V_{7}-V_{6}\right\|$			30	100		50	200	mV
Temperature Drift of $\left\|\mathrm{V}_{7}-\mathrm{V}_{6}\right\|$	,		500			500		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
AM Rejection		30	40			40		dB
Phase Detector Sensitivity K ${ }_{\text {D }}$		0.6	. 68	0.9	0.55	. 68	0.95	$\mathrm{V} / \mathrm{radian}$

Note 1: The maximum junction temperature of the LM565 is $150^{\circ} \mathrm{C}$, while that of the LM565C and LM565CN is $100^{\circ} \mathrm{C}$. For operation at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. Thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics


## AC Test Circuit



Typical Applications


FSK Demodulator (2025-2225 cps)

## 2400 Hz Synchronous AM Demodulator



FSK Demodulator with DC Restoration.


## Applications Information

In designing with phase locked loops such as the LM565, the important parameters of interest are:

## FREE RUNNING FREQUENCY

$$
f_{o} \cong \frac{1}{3.7 R_{0} C_{0}}
$$

LOOP GAIN: relates the amount of phase change between the input signal and the VCO signal for a shift in input signal frequency (assuming the loop remains in lock). In servo theory, this is called the "velocity error coefficient".

$$
\begin{aligned}
\text { Loop gain } & =K_{0} K_{D}\left(\frac{1}{\text { sec }}\right) \\
K_{\circ} & =\text { oscillator sensitivity }\left(\frac{\text { radians } / \mathrm{sec}}{\text { volt }}\right) \\
K_{D} & =\text { phase detector sensitivity }\left(\frac{\text { volts }}{\text { radian }}\right)
\end{aligned}
$$

The loop gain of the LM565 is dependent on supply voltage, and may be found from:

$$
\begin{aligned}
K_{0} K_{D} & =\frac{33.6 f_{o}}{V_{c}} \\
f_{0} & =V C O \text { frequency in } \mathrm{Hz} \\
V_{c} & =\text { total supply voltage to circuit. }
\end{aligned}
$$

Loop gain may be reduced by connecting a resistor between pins 6 and 7 ; this reduces the load impedance on the output amplifier and hence the loop gain.

HOLD IN RANGE: the range of frequencies that the loop will remain in lock after initially being locked.

$$
\begin{aligned}
f_{H} & = \pm \frac{8 f_{o}}{V_{c}} \\
f_{o} & =\text { free running frequency of } V C O \\
V_{c} & =\text { total supply voltage to the circuit. }
\end{aligned}
$$

## THE LOOP FILTER

In almost all applications, it will be desirable to filter the signal at the output of the phase detector ( pin 7 ) this filter may take one of two forms:


A simple lag filter may be used for wide closed loop bandwidth applications such as modulation following where the frequency deviation of the carrier is fairly high (greater than 10\%), or where wideband modulating signals must be followed.

The natural bandwidth of the closed loop response may be found from:

$$
f_{n}=\frac{1}{2 \pi} \sqrt{\frac{K_{0} K_{D}}{R_{1} C_{1}}}
$$

Associated with this is a damping factor:

$$
\delta=\frac{1}{2} \sqrt{\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1} \mathrm{~K}_{\mathrm{o}} K_{D}}}
$$

For narrow band applications where a narrow noise bandwidth is desired, such as applications involving tracking a slowly varying carrier, a lead lag filter should be used. In general, if $1 / R_{1} C_{1}<K_{o} K_{d}$, the damping factor for the loop becomes quite small resulting in large overshoot and possible instability in the transient response of the loop. In this case, the natural frequency of the loop may be found from

$$
\begin{aligned}
\mathrm{f}_{n} & =\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~K}_{0} \mathrm{~K}_{\mathrm{D}}}{\tau_{1}+\tau_{2}}} \\
\tau_{1}+\tau_{2} & =\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{C}_{1}
\end{aligned}
$$

$R_{2}$ is selected to produce a desired damping factor $\delta$, usually between 0.5 and 1.0. The damping factor is found from the approximation:

$$
\delta \simeq \pi \tau_{2} f_{n}
$$

These two equations are plotted for convenience.


Filter Time Constant vs Natural Frequency


Damping Time Constant vs Natural Frequency
Capacitor $\mathrm{C}_{2}$ should be much smaller than $\mathrm{C}_{1}$ since its function is to provide filtering of carrier. In general $C_{2} \leq 0.1 C_{1}$.

National

## LM566/LM566C Voltage Controlled Oscillator

## General Description

The LM566/LM566C are general purpose voltage controlled oscillators which may be used to generate square and triangular waves, the frequency of which is a very linear function of a control voltage. The frequency is also a function of an external resistor and capacitor.

The LM566 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM566C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

## Features

- Wide supply voltage range: 10 to 24 volts
- Very linear modulation characteristics

』 High temperature stability

- Excellent supply voltage rejection
- 10 to 1 frequency range with fixed capacitor
- Frequency programmable by means of current, voltage, resistor or capacitor.


## Applications

- FM modulation
- Sianal qeneration
- Function generation
- Frequency shift keying
- Tone generation


## Schematic and Connection Diagrams




Order Number LM566CN See NS Package N08B

Typical Application


## Applications Information

The LM566 may be operated from either a single supply as shown in this test circuit, or from a split ( $\pm$ ) power supply. When operating from a split supply, the square wave output ( pin 4 ) is TTL compatible $(2 \mathrm{~mA}$ current sink) with the addition of a $4.7 \mathrm{k} \Omega$ resistor from pin 3 to ground.
A . $001 \mu \mathrm{~F}$ capacitor is connected between pins 5 and 6 to prevent , parasitic oscillations that may occur during VCO switching.
$\mathrm{f}_{\mathrm{O}}=\frac{2\left(\mathrm{~V}^{+}-\mathrm{V}_{5}\right)}{\mathrm{R}_{1} \mathrm{C}_{1} \mathrm{~V}^{+}}$
where
$2 \mathrm{~K}<\mathrm{R}_{1}<20 \mathrm{~K}$
and $V_{5}$ is voltage between pin 5 and pin 1

## Absolute Maximum Ratings

Power Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Range
LM566
LM566C
Lead Temperature (Soldering, 10 sec )

26 V
300 mW
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{cC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{AC}$ Test Circuit

PARAMETER	CONDITIONS	LM566			LM566C			UNITS
		MIN	T.YP	MAX	MIN	TYP	MAX	
Maximum Operating Frequency	$\begin{aligned} & \mathrm{RO}=2 \mathrm{k} \\ & \mathrm{CO}=2.7 \mathrm{pF} \end{aligned}$	$3 / 4 V_{C C}$	1			1		MHz .
						.		
Input Voltage Range Pin 5				VCC	$3 / 4 V_{C C}$		VCC	
Average Temperature Coefficient of Operating Frequency			100			200		ppm/ ${ }^{\circ} \mathrm{C}$
Supply Voltage Rejection	10-20V		0.1	1		0.1	2	\%/V
Input Impedance Pin 5		0.5	1		0.5	1		$\mathrm{M} \Omega$
VCO Sensitivity	For Pin 5, From $8-10 \mathrm{~V}, \mathrm{fO}=10 \mathrm{kHz}$	6.4	6.6	6.8	6.0	6.6	7.2	$\mathrm{kHz} / \mathrm{V}$
FM Distortion	$\pm 10 \%$ Deviation		0.2	0.75		0.2	1.5	\%
Maximum Sweep Rate		800	1		500	1		MHz
Sweep Range			10:1			10:1		
Output Impedance								
Pin 3			50			50		$\Omega$
Pin 4			50			50		$\Omega$
Square Wave Output Level	$\mathrm{R}_{\mathrm{L} 1}=10 \mathrm{k}$	5.0	5.4		5.0	5.4		Vp-p
Triangle Wave Output Level	$\mathrm{R}_{\mathrm{L} 2}=10 \mathrm{k}$	2.0	2.4		2.0	2.4		Vp-p
Square Wave Duty Cycle		45	50	55	40	50	60	\%
Square Wave Rise Time			20			20		ns
Square Wave Fall Time			50			50		ns
Triangle Wave Linearity	$+1 V$ Segment at $1 / 2 V_{C C}$		0.2	0.75		0.5	1	\%

Note 1: The maximum junction temperature of the LM566 is $150^{\circ} \mathrm{C}$, while that of the LM566C is $100^{\circ} \mathrm{C}$. For operating at elevated junction temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$.

## Typical Performance Characteristics



Power Supply Current


Frequency Stability vs Load Resistance (Square Wave Output)





Temperature Stability .



Frequency Stability vs Load Impedance (Triangle Output)


## AC Test Circuit



National

## LM567/LM567C Tone Decoder

## General Description

The LM567 and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and Q detector driven by a voltage controlled oscillator which determines the center frequency of the decoder. External components are used to independently set center frequency, bandwidth and output delay.

## Features

- 20 to 1 frequency range with an external resistor
- Logic compatible output with 100 mA current sinking capability
- Bandwidth adjustable from 0 to $14 \%$
- High rejection of out of band signals and noise
- Immunity to false signals
- Highly stable center frequency
- Center frequency adjustable from 0.01 Hz to 500 kHz


## Applications

- Touch tone decoding
- Precision oscillator
- Frequency monitoring and control
- Wide band FSK demodulation
- Ultrasonic controls
- Carrier current remote controls
- Communications paging decoders


## Schematic and Connection Diagrams

Metal Can Package


TOP VIEW
Order Number LM567H or LM567CH See NS Package HOBC

Dual-In-Line Package

top VIEW
Order Number LM567CN See NS Package N08B


## Absolute Maximum Ratings



Note 1: The maximum junction temperature of the LM567 is $150^{\circ} \mathrm{C}$, while that of the LM567C and LM567CN is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the DIP the device must be derated based on a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.

Typical Performance Characteristics


## Typical Applications



Oscillator with Quadrature Output


Oscillator with Double Frequency Output


Precision Oscillator Drive 100 mA Loads


## AC Test Circuit



[^52]
## Applications Information

The center frequency of the tone decoder is equal to the free running frequency of the VCO. This is given by

$$
f_{o} \cong \frac{1}{1.1 R_{1} C_{1}}
$$

The bandwidth of the filter may be found from the approximation

$$
B W=1070 \sqrt{\frac{V_{i}^{\prime}}{f_{o} C_{2}}} \quad \text { in } \% \text { of } f_{o}
$$

Where:
$V_{i}=$ Input voltage (volts rms), $V_{i} \leq 200 \mathrm{mV}$
$C_{2}=$ Capacitance at $\operatorname{Pin} 2(\mu F)$

## LM733/LM733C Differential Video Amp

## General Description

The LM733/LM733C is a two-stage, differential input, differential output, wide-band video amplifier. The use of internal series-shunt feedback gives wide bandwidth with low phase distortion and high gain stability. Emitter-follower outputs provide a high current drive, low impedance capability. It's 120 MHz bandwidth and selectable gains of 10 , 100, and 400, without need for frequency compensation, make it a very useful circuit for memory element drivers, pulse amplifiers, and wide band linear gain stages.

The LM733 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM733C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

## Features

- 120 MHz bandwidth
- $250 \mathrm{k} \Omega$ input resistance
- Selectable gains of $10,100,400$
- No frequency compensation
- High common mode rejection ratio at high frequencies.


## Applications

- Magnetic tape systems
- Disk file memories
- Thin and thick film memories
- Woven and plated wire memories
- Wide band video amplifiers.


## Schematic and Connection Diagrams



Test Circuits



Voltage Gain Adjust Circuit


## Absolute Maximum Ratings

Differential Input Voltage	$\pm 5 \mathrm{~V}$
Common Mode Input Voltage	$\pm 6 \mathrm{~V}$
Vcc	$\pm 8 \mathrm{~V}$
Output Current	10 mA
Power Dissipation (Note 1)	500 mW
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range LM733	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

Electrical Characteristics ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified, see test circuits, $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$ )

CHARACTERISTICS	TESTCIRCUIT	TEST CONDITIONS	LM733			LM733C			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
nifforential Voltage Gain									
Gain 1 (Note 2) '			030	¢00	500	250	400	600	
Gain 2 \|(Note 3)	1	$R_{L}=2 \mathrm{k} \Omega \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\mathrm{pp}}$	90	100	110	80	100	120	
Gain 3 (Note 4)			9.0	- 10	11	8.0	10	.12	
Bandwidth									
Gain 1				40			40		MHz
Gain 2	2			90			90		MHz
Gain 3				120			120		MHz
Rise Time									
Gain 1		$V_{\text {OUT }}=1 \mathrm{~V}_{\text {pp }}$		10.5			10.5		ns
Gain 2	2			4.5	10		4.5	12	ns
Gain 3				2.5			2.5		ns
Propagation Delay		$\mathrm{V}_{\text {Out }}=1 \mathrm{~V}_{\mathrm{p} \text {-p }}$							
Gain 1				7.5			7.5		ns
Gain 2	2			6.0	10		6.0	10	ns
Gain 3				3.6			3.6		ns
Input Resistance									
Gain 1				4.0			4.0		k $\Omega$
Gain 2			20	30		10	30		$\mathrm{k} \Omega$
Gain 3				250			250		$k \Omega$
Input Capacitance		Gain 2		2.0			2.0		pF
Input Offset Current		,		0.4	3.0		0.4	5.0	$\mu \mathrm{A}$
Input Bias Current				9.0	20		9.0	30	$\mu \mathrm{A}$
Input Noise Voltage		$B W=1 \mathrm{kHz}$ to 10 MHz		12			12		$\mu \mathrm{V}$ rms
Input Voltage Range	1		$\pm 1.0$			$\pm 1.0$			$v$
Common Mode Rejection Ratio									
Gain 2	1	$V_{C M}= \pm 1 \mathrm{~V} \mathrm{f} \leq 100 \mathrm{kHz}$	60	86		60	86		dB
Gain 2		$V_{C M}= \pm 1 \mathrm{~V} \mathrm{f}=5 \mathrm{MHz}$		60			60		dB
Supply Voltage Rejection Ratio Gain 2	1	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50	70		50	70		dB
Output Offset Voltage									
Gain 1	1	$\mathrm{R}_{\mathrm{L}}=, \infty$		0.6	1.5		0.6	1.5	V
Gain 2 and 3				0.35	1.0		0.35	1.5	v
Output Common Mode Voltage	1	$\mathrm{R}_{\mathrm{L}}=\infty$	2.4	2.9	3.4	2.4	2.9	3.4	$v$
Output Voltage Swing	1	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	3.0	4.0		3.0	4.0		
Output Sink Current			2.5	3.6		2.5	3.6		mA
Output Resistance				20			20		$\Omega$
Power Supply Current	1	$\mathrm{R}_{\mathrm{L}}=\infty$		18	24		18	24	mA

Electrical Characteristics (Continued)
(The following specifications apply for $-55^{\circ} \mathrm{C}<T_{A}<125^{\circ} \mathrm{C}$ for the LM733 and $0^{\circ} \mathrm{C}<\mathrm{T}_{A}<70^{\circ} \mathrm{C}$ for the LM733C, $V_{S}= \pm 6.0 \mathrm{~V}$ )


Note 1: The maximum junction temperature of the LM733 is $150^{\circ} \mathrm{C}$, while that of the LM733C is $100^{\circ} \mathrm{C}$. For operation at elevated temperatures devices in the TO-100 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. Thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Pins G1A and G1B connected together.
Note 3: Pins G2A and G2B connected together.
Note 4: Gain select pins open.

## Typical Performance Characteristics



Typical Performance Characteristics (Continued)


## Industrial Blocks

## LM903 Fluid Level Detector

## General Description

The LM903 is a fluid level detector circuit which measures the level of non-inflammable fluids with the aid of a thermo-resistive probe. A low fluid level is indicated by a warning lamp operating in continuous or flashing mode. The circuit has possible applications in the detection of hydraulic fluid, oil levels, etc., and may be used with partially conducting fluids.

## Features

- Flashing or continuous warning indication
- 7V-18V supply range
- 80V supply transient protection
- Switch on reset and delay to avoid transients
- Internal regulated supply
- Warning threshold externally adjustable
- Short and open circuit probe detection
- Separate ground pins for lamp drive and measurement circuit
- 600 mA flashing lamp current drive capability


## Connection Diagram

Dual-In-Line Package


Order Number LM903N
See NS Package N16E

## Absolute Maximum Ratings

Supply Voltage, V6	18 V	Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Start Input, V7	18 V	Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Probe Current Reference, V3	18 V	Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Pulse Voltage to Pins $3,6,7,9$ (Note 1)	$80 \mathrm{~V}-10 \mathrm{~ms}$	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics Supply $\mathrm{V} 6=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ unless stated otherwise.


Note 1: Test circuit for overvoltage capability pins $3,6,7,9^{*}$.

*In lamp on condition, lg must be limited to less than 2A.

## Block and Application Circuit



Memory capacitor on pin 15 is set
High - Lamp off
Low - Lamp on

## Circuit Timing Diagram



## Circuit Operation

A measurement is initiated when the supply is applied, provided the control input pin 7 is low. Once a measuremint ic commoncod, pin 7 is latrhed low and the ramp capacitor on pin 12 begins to charge. After 25 ms when switch-on transients have subsided, a constant current is applied to the thermo-resistive probe. The value of probe current, which is supplied by an external PNP transistor, is set by an external resistor across an internally generated 2 V reference. The lamp current is applied at the start of. probe current.
35 ms after switch-on, the voltage across the probe is sampled and held on external capacitor C1 (leakage current at pin 1 less than 1 nA ). After a further 1.5 seconds the difference between the present probe voltage and the initial probe voltage is measured, multiplied by 3 and compared with a reference voltage of 780 mV (externally adjustable via pin 16). If the amplified voltage difference is less than the reference voltage the lamp is switched off, otherwise the lamp commences flashing at 1 Hz to 2 Hz . 10 ms later the measurement latch operates to store the result and after a further 8 ms the probe current is switched off.
A second measurement can only be initiated by interrupting the supply. An external CR can be arranged on pin 7 to prevent a second measurement attempt for 1 minute. The measurement condition stored in the latch will control the lamp.

## PROBES

The circuit effectively measures the thermal resistance of the probe. This varies depending on the surrounding medium (Figure 1). It is necessary to be able to heat the probe with the current applied and, for there to be sufficient change in resistance with the temperature change, to provide the voltage to be measured.

Probes require resistance wire with a high resistivity and temperature coefficient. Nickel cobalt alloy resistance wires are available with resistivity of $50 \mu \Omega \mathrm{~cm}$ and temperature coefficient of 3300 ppm which can be made into suitable probes. Wires used in probes for use in liquids must be designed to drain freely to avoid clogging. A possible arrangement is shown in Figure 2.
The probe voltage has to be greater than 0.7 V to prevent short circuit probe detection less than 5 V to avoid open circuit detection. With a 200 mA probe current this gives a probe resistance range of $4 \Omega$ to $25 \Omega$. This low value makes it possible to use the probe in partially conducting fluids.

Using resistance wire of $50 \mu \Omega \mathrm{~cm}$ resistivity, 8 cm of 0.08 mm ( 40 AWG ) give approximately $8 \Omega$ at $25^{\circ} \mathrm{C}$. Such a probe will give about 500 mV change between first and second measurements in arr, ana lüú mí cilanye wiiii üi, hydraulic fluid, etc., in the application circuit. With an alarm threshold of 280 mV (typ) lack of fluid can readily be detected. As the probe current, measurement reference and measurement period are all externally adjustable, there is freedom to use different probes and fluids.

Another possibility is the use of high temperature coefficient resistors made for special applications and positive temperature coefficient thermistors. The encapsulation must have a sufficiently low thermal resistance so as not to mask the change due to the different surrounding mediums, and the thermal time constant must be quick enough to enable the temperature change to take place between the two measurements. The ramp timing could be adjusted to assist this. Probes in liquids must be able to drain freely.


FIGURE 1. Typical Thermo-Resistive Probe


FIGURE 2

Equivalent Schematic Diagram


## Application Hints

## INTERNAL COMBUSTION ENGINE OIL LEVEL

The basic system provides a single shot measurement when the supply is applied and has a primary application in automotive oil, hydraulic fluid and coolant monitoring. Particularly in the case of engine oil level, a valid measurement is only possible before the oil is disturbed. The application circuit shown is arranged such that the measurement is made when the ignition is switched on via switch A. Switch B is the oil pressure sensor and is closed before the engine starts, keeping pin 7 low and enabling the measurement.

## STALLING AND RESTART PROTECTION

The 4M7 resistor and $10 \mu \mathrm{~F}$ capacitor connected to pin 7 provide the restart protection. When oil pressure builds up, switch B opens and the $10 \mu \mathrm{~F}$ capacitor charges through the bulb. At switch-off, the capacitor discharges slowly and is capable of preventing a low state on pin 7 for 1 minute. Unless pin 7 is low, a new measurement can not be made and the previous measurement result stored in the memory capacitor on pin 15 is used to control the output.

## MEMORY

The pin 15 memory output goes high if a correct measurement is made (lamp off): If the power is removed, pin 15 leakage is less than $3 \mu \mathrm{~A}$ and the memory status is retained for some time. Provided pin 15 voltage does not fall
below 3 V , the memory capacitor will be refreshed on powering up again. There is no internal pull down on detecting an incorrect measurement. If it is required to use pin 15 as an output indicating the measurement result, an external pull down resistor and buffer will be required.'

## CONTINUOUS WARNING LAMP

The lamp can be arranged to light continuously by disabling the oscillator with a resistor of 150 k or less, connected between pins 10 and 11.

## REPETITIVE MEASUREMENTS

Measurements may be repeated by strobing the supply to pin 6. The probe current regulator transistor must have the same supply as pin 6 , but the warning lamp can be permanently powered. The lamp will light during each measurement and will flash in between measurements when incorrect conditions are detected.

## ALTERNATIVE APPLICATIONS

Gas flow detection: The cooling effect of gas flowing over a probe could be used to provide a warning signal from the LM903 in the event of gas failure.
Automatic top up: With the LM903 strobed continuously, the output may be stored, buffered, and used to drive solenoid valves to correct a fluid level as required.

## LM909 Remote Control Receiver

## General Description

The LM909 is a remote control receiver and decoder for frequencies up to 40 MHz . The circuit consists of an RF amplifier, AGC, detector, phase lock loop for tone decoding, level detection and switching to push-pull output stages suitable for driving small motors directly. The circuit can be optimized for use with various modulation schemes by adjusting external PLL and demodulation filter components. This device is especially suited to low cost model control applications.

## Features

- Good RF sensitivity
- PLL tone demodulator
- Large AGC range
- Outputs capable of 1 A surges and 0.6 A continuous operation
- Wide supply voltage range
- Internally stabilized supply
- Flip-flop defines reference on PLL
- Four functions-e.g., left/right, forward/reverse capability
- Thermal shutdown overload protection


## Typical Application Circuit



FIGURE 1

T1 Primary 10 T Secondary 4T
T2 Primary 12 T Secondary 2T
5 mm Former

* 10』-91 $\Omega$ for better stability and when using an IC socket, see Application Notes.

Absolute Maximum Ratings	
Supply Voltage(Pin 17)	14 V
RF Input Voltage(Pin 7)	$1 \mathrm{Vp}-\mathrm{p}$
Power Dissipation (Note 1)	2 W
Operating Temperature Range	$0^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$.
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $V_{S}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated.


Electrical Characteristics (Continued) $\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

	Parameter	Conditions	Min	Typ	Max	Units
OUTPUT STAGES						
V1	Threshold Voltage for V16 Low	V18<0.35V		0.35		V
V18	Threshold Voltage for V16 High	$\mathrm{V} 1<0.35 \mathrm{~V}$		0.35		V
V1, 18	Threshold Voltage for V13 Low			1.5		V
V1, 18	Threshold Voltage for V13 High			2.75		v
R13, 16	Output Resistance V13, V16 High	$\mathrm{I}_{13,16}=-500 \mathrm{~mA}$ (Sourcing)		2		$\Omega$
R13, 16	Output Resistance V13, V16 Low	$\mathrm{I}_{13,16}=500 \mathrm{~mA}$ (Sinking)		1		$\Omega$

Note 1: Above $25^{\circ} \mathrm{C}$ amblent, derate based on $T_{j}(\max )=150^{\circ} \mathrm{C}$ and a thermal resistance of $85^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The supply current is virtually constant over the $5 \mathrm{~V}-14 \mathrm{~V}$ supply range (no signal conditions).
Note 3: For $50 \mathrm{mVp}-\mathrm{p}$ recovered audio at pin 12 and RF input terminated in $50 \Omega$.

## Typical Performance Characteristics



FIGURE 2. Demodulated Output vs RF Input


FIGURE 3. PLL Transfer Characteristics


FIGURE 4. VCO Supply Sensitivity


FIGURE 5. Stabilized
Voltage vs Supply Voltage


FIGURE 6. Allowable Device Dissipation vs Ambient Temperature

## Schematic Diagram



## Application Notes

## TYPICAL SYSTEM

The receiver application circuit shown has values designed for use with the following transmitter specification:
f RF 27 MHz
f TONE $5.5 \mathrm{kHz}, 100 \%$ modulation-square wave
$\Delta f$ TONE $\pm 600 \mathrm{~Hz}$ FSK @ 160 Hz with possible $100 \%$, $60 \%$ or $30 \%$ duty cycles

A simple tone generator can readily be arranged using the LM556 (dual LM555) timer IC as shown in Figure 8. The frequency modulation of the tone controls one output function. The duty cycle of the tone keying controls the other function.

## PRINCIPLE OF OPERATION

The RF signal from the aerial is AC coupled via a tuned circuit to the single ended input at pin 7 . The signal is then processed in a gain stage with AGC whose output (at pin 8) can be fed to the RF input (pin 6) via a further tuned circuit.


There then follows a fixed gain block and detector, with the demodulated audio tone available at pin 12.

The FSK modulated 5.5 kHz signal is internally applied to a phase detector forming part of a PLL with the 11 kHz VCO. A reference signal for the phase detector is derived from the VCO via a bi-stable circuit. The FSK waveform is available at pin 2 across the loop filter capacitor. A positive deviation of greater than 0.3 V causes the integrating capacitor on pin 1 to be charged. A similar negative deviation causes the capacitor on pin 18 to be charged. The voltage levels at the integrating capacitors are decoded to determine the output states, as shown in Table I.

As illustrated in the Schematic Diagram, NPN transistors are used in the high current output stages, hence the output voltage excursion is limited to approximately 0.3 V above ground in one direction and 1V below the positive supply in the other. The supply may also be split unequally, e.g., 6 V and 3 V .

## National Semiconductor <br> LM1014/LM1014A Motor Speed Regulator

## General Description

The LM1014 is a monolithic integrated circuit specifically designed to provide a low cost motor speed regulator for low voltage DC motors.

## Features

- 5 V to 20 V operating voltage range
- Short circuit protection
- Externally selectable temperature coefficient
- Remote pause control
- Saturation voltage 0.1V
- Motor connected to ground for ease of RF suppression
- Motor torque compensation
- Low current consumption


## Functional Block Diagram and Typical Connection



## Absolute Maximum Ratings

Supply Voltage
Operating Temperature Range

$$
-20 \text { to }+70^{\circ} \mathrm{C}
$$

Storage Temperature Range

$$
-65 \text { to }+150^{\circ} \mathrm{C}
$$

Lead Temperature (Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 1)



Note 1: Unless otherwise specified, $5 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant 20 \mathrm{~V}$ and $-15^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 55^{\circ} \mathrm{C}$.
Note 2: The remote stop is activated by grounding pin 4. The motor restarts after disconnection of the ground connection.
Note 3: The current limit is set by resistor R1, i.e., $\cong=1.4 \mathrm{~V} / \mathrm{R} 1$. When the output current exceeds this limit, the drive to the output transistor is switched off by a latch circuit. The motor can only be restarted after interruption of the supply voltage.

## Schematic Diagram

## Typical Performance Characteristics/Application

1. The output voltage $\mathrm{V}_{\mathrm{M}}$ is given by:

$$
V_{M}=V_{\text {REF }}\left(1+\frac{R 3}{R 4}\right)+I_{M} \frac{R 1 R 3}{5 R 2}
$$

2. R1 R3/5R2 must be equal to dynamic motor winding resistance $R_{M}$ in order to keep the speed constant during load torque variations.
3. Four selectable temperature coefficients by grounding pin 2 and/or pin 3 for temperature compensation of motor characteristic.
4. Parameter of the motor used for the test results shown below:
$R_{M}=16.3 \Omega$ and back e.m.f. $=3.25 \mathrm{~V}$ () 2000 r.p.m.; torque constant $5.9 \mathrm{~mA} / \mathrm{mNm}$; External components: $R 1=1 \Omega \mathrm{Cu}, \mathrm{R} 2=200 \Omega$ and $\mathrm{R} 3=16 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{REF}}=1.13 \mathrm{~V}$ (pin 2 grounded); $\mathrm{C}_{\mathrm{BE}}=2.2 \mu \mathrm{~F}$ and $\mathrm{C} 3=0.47 \mu \mathrm{~F}$.

Parameter	Conditions	Max
Motor Speed Deviation	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ to 10 V	$\pm 0.5 \%$
(Voltage)	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ to 20 V	$\pm 1.0 \%$
Motor Speed Deviation	$\mathrm{I}_{\mathrm{M}}=25 \mathrm{~mA}$ to 125 mA	$\pm 1.0 \%$
(Load)		
Motor Speed Deviation	$\mathrm{T}=+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$1.0 \%$
(Temperature)	$\mathrm{T}=-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$3.0 \%$

## Connection Diagram

Dual-In-Line Package


TOP VIEW

Order Number LM1014N
or LM1014AN
See NS Package N10B

## LM1801 Smoke Detector

## General Description

The LM1801 is designed to provide the functions of an ionization type smoke detector as specified by UL217. Though primarily designed to operate from a 9 V alkaline battery, provision is made for operation at supplies up to 14 V and for line operation.

Low battery threshold, alarm threshold, hysteresis and stand-by current drain are externally programmed by resistors. The LM1801 includes a power transistor capable of directly driving a typical 85 dB horn. The ionization chamber requires an external FET buffer.

A parallel alarm output is provided to enable up to 8 similar detectors to be connectea in paraiiti. in tiiis mode, a fault on the line cannot prevent local operation. The low battery alarm signal is confined to the local unit.

A 6 V regulated output is provided for the chamber and FET supply and a second output with a different temperature coefficient is available for the alarm threshold potentiometer. This allows compensation of JFET drift.

## Features

- UL component recognized
- 9V to 14 V operation
- Direct drive to horn
- Clamp diodes on chip
- Internal zener for line operation
- JFET and MOSFET compatible
- Parallel alarm capability
- Low stand-by current drain


## Applications

- Domestic smoke detectors
- Line operated smoke detectors
- Gas detectors
- Intrusion alarms
- Battery operated detectors

Block and Connection Diagram


Order Number LM1801N
See NS Package N14A

## Absolute Maximum Ratings

Supply Voltage
Inout Voltage
Input Differential Voltage
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

14V
-0.3 V to 14 V
$\pm 14 \mathrm{~V}$
300 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Comparator					
Input Offset Voltage			3	15	mV
Input Bias Current			3	10	nA
Input Offset Current			0.5	3	nA
Pin 6 Output Low	ISINK $=100 \mu \mathrm{~A}$		1.5	2.0	V
Output Stage (Pin 8)					
Leakage Current			45	500	nA
Saturation Voltage	$\mathrm{I}_{8}=200 \mathrm{~mA}$		0.9	1.3	V
Saturation Voltage	$\mathrm{I}_{8}=500 \mathrm{~mA}$		1.8		V
Common Alarm Line (Pin 10)					
Drive Capabilities	$\mathrm{V} 4>\mathrm{V} 5$				
Output Voltage High		6.0	6.5		V
Output Current	$\mathrm{V} 10=0.0 \mathrm{~V}$	4.0	6.5		mA
Driver Requirements	$\mathrm{V} 5>\mathrm{V} 4$				
Input Voltage			3.6		V
Input Current	$\mathrm{V} 8=1.5 \mathrm{~V}, \mathrm{I}_{8}=200 \mathrm{~mA}$		0.4		mA
Regulator					
Pin 2 Reference Voltage	$\mathrm{I}_{2}=1 \mu \mathrm{~A}$	5.4	5.8	6.4	$v$
Temperature Coefficient			5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Pin 3 Reference Voltage	$I_{2}=I_{3}=1 \mu \mathrm{~A}$	4.8	5.3	5.8	$\checkmark$
Temperature Coefficient		-	7		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Battery Check Oscillator					
Threshold Voltage (Pin 12)		5.5	6.0	6.5	$\checkmark$
Period	$V_{C C}=7.5 \mathrm{~V}, \mathrm{C} 1=10 \mu \mathrm{~F}$	28	42	50	Sec
Beep Pulse Width	$V_{C C}=7.5 \mathrm{~V}, \mathrm{C} 1=10 \mu \mathrm{~F}$		30		ms
Supply Current (Note 3)			7	9	$\mu \mathrm{A}$
Zener Clamp Voltage, V9	$\mathrm{lg}=1 \mathrm{~mA}$	14	14.5	17	V

Note 1: For operating at elevated temperatures, the device must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: $\mathrm{R}_{\mathrm{SET}}=10 \mathrm{M} \Omega, \mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 1).
Note 3: Stand-by mode. JFET is biased for IDS $=1 \mu \mathrm{~A}$.

## Application Hints

The LM1801 is biased by a group of current sources which are controlled externally by a fixed resistor. In normal operation the stand-by current drain is nominally 6 times the set current at pin 1 . The voltage at pin 1 is 2 diode drops below the positive supply voltage. The total stand-by current drain of the smoke detector will include, in addition to the above, the current drawn by the external circuits connected at pins 2,3 and 12. These comprise the resistive dividers used to set the low battery threshold and alarm threshold plus the bias current in the ionization chamber and FET buffer.

The low battery threshold is set by R1 and R2 (Figure 1). Select these values so that the voltage at pin 12 is equal to the oscillator trip voltage when the battery voltage is
at the low limit at which the low battery alarm is to operate. The given values provide a warning at about 8.2 V .

Hysteresis can be provided by R5, giving an added degree of noise immunity in high noise environments.

Figure 2 is a suggested PC board layout for the circuit of Figure 1.

Parallel operation of 2 or more units is easily achieved with a pair of wires connecting pin 10 of each unit and ground. In this mode, every alarm will sound should any single unit detect smoke.


FIGURE 1. 9V Battery Operated Ionization Type Smoke Detector

## Application Hints (Continued)



FIGURE 2. Smoke Detector PC Board Layout (Not to Scale)


FIGURE 3. Line-Operated Photo-Electric Smoke Alarm Using Light Sensitive Resistor (Includes Detection of Open-Circuited LED)

National

## LM1812 Ultrasonic Transceiver

## General Description

The LM1812 is a general purpose ultrasonic transceiver designed for use in a variety of ranging, sensing, and communications applications. The chip contains a pulsemodulated class C transmitter, a high gain receiver, a pulse modulation detector, and noise rejection circuitry.

A single LC network defines the operating frequency for both the transmitter and receiver. The class C transmitter output drives up to 1A (12W) peak at frequencies up to 325 kHz . The externally programmed receiver gain provides a detection sensitivity of $200 \mu \mathrm{Vp}$-p. Detection circuitry included on-chip is capable of rejecting impulse noise with external programming. The detector output sinks unto 14

Applications include sonar systems, non-contact ranging, and acoustical data links, in both liquid and gas ambients.

## Features

- One or two-transducer operation
- Transducers interchangeable without realignment
- No external transistors
- Impulse noise rejection
- No heat sinking
- Protection circuitry included
- Detector output,drives 1A peak load
- Ranges in excess of 100 feet in water, 20 feet in air
- 12W peak transmit power


## Applications

■ Liauid level measurement

- Sonar
- Surface profiling
- Data links
- Hydroacoustic communications
- Non-contact sensing
- Industrial process control


## Typical Application $\left(\mathrm{V}^{+}=12 \mathrm{~V}\right)$



[^53]FIGURE 1. 200 kHz Depth Sounder, 5 Feet to 100 Feet

## Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}^{+}(\operatorname{Pin} 12)$
18 V
700 mW
1 A
50 mA
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Power Dissipation (Note1) 700 mW
Peak Current (Pins 6, 14)
Input Current (Pins 4, 8)
Operating Temperature
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

Electrical Characteristics $\left(V^{+}=12 V_{,} T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Parameter	Conditions	Min	Typ	Max	Units
Input Sensitivity	Figure 2		200	600.	$\mu \mathrm{Vp}$-p
Transmitter Output, $\mathrm{V}_{\text {SAT }}$	$\mathrm{I}_{6}=1 \mathrm{~A}$		1.3	3	V
Transmitter Output Leakage	$\begin{aligned} & V 6=36 \mathrm{~V} \\ & \mathrm{~V} 8=0 \mathrm{~V} \end{aligned}$		0.01	1	mA
Detector Output, $\mathrm{V}_{\text {SAT }}$	$\mathrm{l}_{14}=1 \mathrm{~A}$		1.5	3	V
Detector Output Leakage	$\mathrm{V} 14=36 \mathrm{~V}$		0.01	1	mA
Transmitter Key Threshold	$\mathrm{I}_{8}=1 \mathrm{~mA}$	0.55	0.7	0.9	V
Supply Current	$l_{1}+l_{12}$   Receive Mode	5	8.5	20	mA
V8 for Receive Mode				0.3	V
Maximum Operating Frequency	Transmit Mode	200	325		k'Hz

Note 1: For operating at high temperatures, the LM1812 must be derated based upon a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $120^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board and operating in a still air ambient. Due to the low duty cycle operation, only a small average power is dissipated in the package.

Test Circuit


FIGURE 2. Sensitivity Test Circuit

## Application Hints

EXTERNAL COMPONENT DESCRIPTIONS

Pin	Component	Typical Values	Pin Description	Component Function
1	L1, C1	$\begin{aligned} & 500 \mu \mathrm{H}-50 \mathrm{mH} \\ & 250 \mathrm{pF}-2.2 \mathrm{nF} \end{aligned}$	Second gain stage output/ transmitter oscillator	Set the operating frequency ( $\mathrm{f}_{\mathrm{O}}$ ) for the transmit oscillator and receiver
2	C2	$500 \mathrm{pF}-10 \mathrm{nF}$	Second gain stage input	Couples first and second gain stage
3	R3	$5.1 \mathrm{k} \Omega$	First gain stage output	Terminates emitter-follower output
4	C4	$100 \mathrm{pF}-10 \mathrm{nF}$	First gain stage input	Input coupling for the first gain stage
6	L6	$50 \mu \mathrm{H}-10 \mathrm{mH}$	Transmitter output	Matches LM1812 to the transducer
7	-	-	Transmitter driver	-
8	R8	$1 \mathrm{k} \Omega-10 \mathrm{k} \Omega$	Transmitter key	Current limiter for keying pulses up to 12V
9	C9	$100 \mathrm{nF}-10 \mu \mathrm{~F}$	Receiver second stage delay	Sets the receiver turn-on delay after transmit (Figure 10)
11	C11	$220 \mathrm{nF}-2.2 \mu \mathrm{~F}$	Detector output duty cycle limit	Limits the duty cycle of the detector output (short to ground to defeat)
13	C13	$100 \mu \mathrm{~F}-1000 \mu \mathrm{~F}$	Transmitter supply decoupling	Decouples the transmitter power supply
14	T14	$\begin{aligned} & \mathrm{L}_{P} \geq 50 \mathrm{mH} \\ & \mathrm{~N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{P}} \cong 10 \end{aligned}$	Detector output	Drives neon display lamp
16	-	-	Output driver	-
17	R17, C17	$\begin{aligned} & \text { 22k-Open } \\ & 10 \mathrm{nF}-10 \mu \mathrm{~F} \end{aligned}$	Pulse integrator	Controls integration time constant (Figure 13)
18	C18	$1 \mathrm{nF}-100 \mu \mathrm{~F}$	Pulse integrator reset	Controls integrator reset time constant (Figure 14)

## TRANSDUCERS

The most common transducer used with the LM1812 is the piezo-ceramic type which is electrically similar to a quartz crystal. Piezo-ceramic transducers are resistive at only two frequencies, termed the resonant and antiresonant ( $\mathrm{f}_{\mathrm{r}}$, $f_{a}$ ) frequencies. Elsewhere these transducers exhibit some reactance as shown in Figure 3.


FIGURE 3. Phase and Magnitude of Transducer Impedance

For transmitting (to maximize electrical to mechanical efficiency), the transducer should be operated at its resonant frequency. For receiving (to maximize mechanical to electrical efficiency), optimum operation is at antiresonance. In two-transducer systems the resonant frequency of the transmit transducer is matched to the antiresonant frequency of the receiver.

The LM1812 is primarily used with a single transducer performing both transmit and receive functions. In this mode, maximum echo sensitivity will occur at a frequency close to resonance.

Transducer ringing is a troublesome phenomenon of single transducer systems. After a transducer has been electrically driven in the transmit mode, some time is required for the mechanical vibrations to stop. Depending on the amount of damping, this ringing may last from 10 to 1000 cycles. This mechanical ring produces an electrical signal strong enough ( $>200 \mu \mathrm{Vp}-\mathrm{p}$ ) to hold the detector ON, thus masking any echo signals occurring during this time.

A solution to this ring problem is to vary the receiver gain from a minimum, just after transmit, to a maximum, when the ring signal has dropped below the full-gain detection threshold. Since near-range echo signals are much stronger than ring signals, close echoes will still be detected in spite of the reduced gain.

The gain is varied by attenuating the signal between pins 2 and 3 of the LM1812. Figure 4 shows such an arrangement.


FIGURE 4. Time Variable FET Attenuator

## Application Hints (Continued)

An externally generated 12 V pulse (Figure 17) keys the transmitter and activates the attenuator. This pulse charges C to a voltage set by P8, turning the FET OFF. C slowly discharges through $R$, decreasing the gate voltage, which in turn decreases the attenuation of the signal passing from pin 3 to pin 2 . $R$ and $C$ are selected so that the FET is not completely turned ON until all detectable ringing has stopped. The duration of the ring is rarely specified by the transducer manufacturer and must be experimentally determined.
When designing an ultrasonic ranging system, three transducer parameters are very important:

1) resonant impedance ( $R_{T}$ in Figure 3b)
2) maximum peak-to-peak voltage
3) resonant frequency, $f_{r}$

This data, used in conjunction with the curves given in Figure 6, results in a functional output stage design.

## TRANSMITTER

The transmitter (Figure 5) consists of an oscillator, a $1 \mu \mathrm{~S}$ one-shot, and a power amplifier.
When the transmitter is keyed ON at pin 8 the L1-C1 tank is switched to the oscillator mode. An on-chip $1 \mu \mathrm{~s}$ one-shot is triggered with each cycle of the oscillator and, in turn, drives a power amplifier. This one-shot has a reset time of $2 \mu \mathrm{~s}$, limiting the maximum operating frequency to about 325 kHz . A transformer couples the transducer to the output stage.
The oscillator frequency is set by L1-C1 and can be calculated from

$$
f_{O}=\frac{1}{2 \pi \sqrt{L 1 C 1}}
$$

The L1-C1 tank must have a minimum $R_{P}$ of $10 \mathrm{k} \Omega$ where

$$
R_{P}=2 \pi f_{0} Q L 1
$$

and $Q=$ unloaded $Q$ of L1-C1 tank.

The output transformer (L6) is designed with the aid of Figure 6. Curves are shown for two common frequencies: 40 kHz and 200 kHz . For a given load impedance ( $\mathrm{R}_{\mathrm{T}}$, Figure 3b), a turns ratio for L6 is determined. In order not to exceed the transducer's specifications, the peak-to-peak output voltage may need to be adjusted using the equation:

$$
\mathrm{Vp}-\mathrm{p}=2 \mathrm{~V}^{+}\left(\frac{\mathrm{N}_{\mathrm{S}}}{\mathrm{~N}_{\mathrm{P}}}\right)
$$

To ensure that the output stage is not overloaded, a current measurement must be made at pin 6. While the first few pulses of each transmit period may reach 2A or 3A, the steady-state current spikes must not exceed 1A. Current spikes are reduced by decreasing the turns ratio of L6.
The secondary of L6 tunes with C 6 at the operating frequency, fo.

## Application Hints (Continued)

Where additional power is desired, a pulse amplifier or a pulse stretcher can be used as shown in Figure 7. The pulse amplifier (Figure 7a) increases output current up to 5A. The pulse stretcher (Figure 7b) increases output current and pulse width. The wider pulse of Figure 7b is especially useful at lower frequencies where the relatively narrow $1 \mu$ s pulse creates a large peak current demand for a given power level. Pulse width as a function of $R$ is plotted in Figure 8.

Pin 8 performs the function of switching the LM1812 into either the transmit or receive mode. When pin 8 is held high, the chip is in the transmit mode. When held low, it is in the receive mode. The input current at pin 8 should be designed to operate within a $1 \mathrm{~mA}-10 \mathrm{~mA}$ range.

## RECEIVER

The receiver section (Figure 9) contains two separate gain stanes.

In some applications large voltages are applied across the transducer during transmit. Since the receiver input is
coupled to the transducer, some protection is necessary to limit the input current spikes to less than 50 mA . Where the voltage across the transducer is less than $200 \mathrm{Vp}-\mathrm{p}$, a C4 reactance of $5 \mathrm{k} \Omega$ at the operating frequency is adequate protection. Above $200 \mathrm{Vp}-\mathrm{p}$, a $5 \mathrm{k} \Omega$ resistor should be inserted in series with C4.

Since the L1-C1 tank circuit is shared with the oscillator, both the transmitter and receiver are always tuned to the same frequency. The second stage voltage gain is given by:

$$
A_{V}=\frac{Q}{70} \sqrt{\frac{L 1}{C 1}}
$$

where $\mathrm{Q}=$ unloaded Q of L1-C1 tank.
When the LM1812 is in the transmit mode, the second gain stage is turned OFF. When switching back to the receive mode, the gain stage does not turn ON immediately, but instead turns ON after a slight delay as programmed by C9. This delay blanks the receiver (and therefore the detector) momentarily, giving the transducer time to stop ringing.


FIGURE 7b. Pulse Stretcher ${ }^{\text { }}$


FIGURE 9. Receiver Section


FIGURE 8. Pulse Stretcher Resistance vs Pulse Width

## Application Hints (Continued)

Delay as a function of C9 is plotted in Figure 10. The second gain stage may be shut OFF independently of pin 8 by pulling pin 9 low.

Due to the high gain of the receiver, care must be taken to avoid oscillations. Oscillation problems are reduced by keeping the components associated with pins 1 and 4 well separated (Figure 11). The transducer must be connected to the circuit with shielded cable. This not only helps avoid oscillation, but also reduces electrical noise pick-up. As a last resort, receiver gain can be reduced with R3 as in Figure 1.

## PULSE DETECTOR

The pulse detector circuitry (Figure 12) consists of five distinct stages: 1) threshold detector, 2) pulse integrator reset, 3) pulse integrator, 4) output driver, 5) power output stage.

The detector (Q1, Q2) switches on all pin 1 signals that exceed 1.4 Vp -p. Since noise pulses are also detected, filtering is done by an integrator stage, C17 and R17, whose time constant is typically $10 \%$ to $50 \%$ of the transmit time. Integration starts when Q3 turns OFF, which occurs at the same moment Q1 and Q2 detect a signal. Pins 16 and 14 go low after the integration delay.


FIGURE 10. Receiver Delay vs C9


FIGURE 11. Component Side of Layout Showing Isolation of Receiver Input and Output


FIGURE 12. Simplified Circuit Diagram of Detector

## Application Hints (Continued)

When the voltage at pin 1 becomes too small to activate the detector ( $<1.4 \mathrm{Vp}-\mathrm{p}$ ), the integrator is reset by Q3 after a delay introduced by C18. A delay of 1 to 10 cycles of the transmitted frequency is typical. These integration and reset delays, as a function of the external component values, are shown in Figures 13 and 14.

Pin 16 provides a CMOS compatible logic output. For driving high-intensity displays, pin 14 will sink up to 1A. When driving a transformer such as T14 in Figure 1, it is possible for the primary current to integrate up to destructive levels under conditions of multiple echo reception. Pin 11 is employed to protect the power output (pin 14). C11 integrates an internal current source while pin 14 is low. When V11 reaches a 0.7 V threshold, the second gain stage is turned OFF. With the receiver OFF, no signal will be applied to the detector, and pin 14 will turn OFF. After another
delay C 11 is discharged and the receiver is then again activated. With $\mathrm{C} 11=680 \mathrm{nF}$ and a continuous echo return, the receiver will cycle ON and OFF every 6 ms . This function can be defeated by grounding pin 11.

## TYPICAL OPERATION

Figure 15 shows typical waveforms at pins 1 and 16 for 200 kHz operation, with pin 9 left open. The pin 1 oscillator signal ( 5 Vp -p) lasts for $200 \mu \mathrm{~s}$. The next $900 \mu \mathrm{~s}$ show a ring signal so strong that it is clipped by the receiver. The exponential nature of the decaying ring is seen for the next $500 \mu \mathrm{~s}$. An echo return appears at 3.9 ms . Note that the detector is held low during the transmit period and for the duration of the ring.


FIGURE 13. Integration Delay vs C17


FIGURE 14. Integrator Reset Delay vs C18


FIGURE 15. Typical Transmit/Receive Waveforms


L6 $=719$ VXA-A018YSU (Toko)
X $=$ R283E (Massa Products)

Application Hints (Continued)


L1 = CLN-2A900HM (Toko)
L6 $=719 \mathrm{VXA}-\mathrm{A} 017 \mathrm{AO}$ (Toko)
$X=$ EFR-OAB40K4 (available from Panasonic Company, 1 Panasonic Way, Secaucus, NJ 07094, Tel. (201) 348-5256)
FIGURE 17. $\mathbf{4 0}$ kHz Ultrasonic Ranging System Covering a Range of 3 Feet to 20 Feet

## LM1815 Adaptive Sense Amplifier

## General Description

The LM1815 is an adaptive sense amplifier and default gating circuit for motor control applications. The sense amplifier provides a one-shot pulse output whose leading edge coincides with the negative-going zero crossing of a ground referenced input signal such as from a variable reluctance magnetic pick-up coil.

In normal operation, this timing reference signal is processed (delayed) externally and returned to the LM1815. A logic input is then able to select either the timing reference or the processed signal for transmission to the output driver stage.

The adaptive sense amplifier operates with a positivegoing threshold which is derived by peak detecting the incoming signal and dividing this down. Thus the input hysteresis varies with input signal amplitude. This enables the circuit to sense in situations where the high speed noise is greater than the low speed signal amplitude. Minimum input signal is $100 \mathrm{mVp}-\mathrm{p}$.

## Features

- Adaptive hysteresis
- Single supply operation
- Ground referenced input
- True zero crossing timing reference
- Operates from 2 V to 12 V supply voltage
- Handles inputs from 100 mV to over lzuv witn external resistor
- CMOS compatible logic


## Applications

- Position sensing with notched wheels
- Zero crossing switch
- Motor speed control
- Tachometer
- Engine testing


## Connection Diagram



Order Number LM1815N
See NS Package N14A

## Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Junction Temperature (Note 2)
Input Current
12 V
230 mW
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$125^{\circ} \mathrm{C}$
$\pm 30 \mathrm{~mA}$

12V
230 mW
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$125^{\circ} \mathrm{C}$
$\pm 30 \mathrm{~mA}$
Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$, unless otherwise specified, see Figure 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage		2.5	10	12	V
Supply Current	$\mathrm{f}_{\mathrm{IN}}=500 \mathrm{~Hz}, \operatorname{Pin} 9=2 \mathrm{~V}, \operatorname{Pin} 11=0.8 \mathrm{~V}$		3.6		mA
Reference Pulse Width	$\mathrm{fiN}^{\prime}=1 \mathrm{~Hz}$ to 2 kHz	70	100	130	$\mu \mathrm{s}$
Input Bias Current	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$, (Pin 9 and Pin 11)			5	$\mu \mathrm{A}$
Input Bias Current	$V_{\text {IN }}=0 \mathrm{Vdc},(\operatorname{Pin} 3)$		200		$n \mathrm{~A}$
Input Impedance	$\mathrm{V}_{\text {IN }}=5 \mathrm{Vrms}$, (Note 3)	12	20	28	$k \Omega$
Zero Crossing Threshold	$V_{\text {IN }}=100 \mathrm{mVp} \cdot \mathrm{p},(\operatorname{Pin} 3)$		$\cdots$	25	mV
Logic Threshold	(Pin 9 and Pin 11)	0.8	1.1	2.0	V
Vout High	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, ( $\left.\operatorname{Pin} 10\right)$	7.5	8.6		$v$
VOUT Low	ISINK $=0.1 \mathrm{~mA},(\operatorname{Pin} 10)$		0.3	0.4	$v$
Input A ${ }^{\text {²m }}$, ${ }^{\text {aning Threshold }}$	Pin 5 Open, VIN $\leq 135 \mathrm{mVp}-\mathrm{p}$	45		60	mV
	Pin 5 Open, $\mathrm{V}_{1} \mathrm{~N} \geq 230 \mathrm{mVp}$-p	40	80	90	\% of $\mathrm{V}_{3} \mathrm{Pk}$
	Pin 5 to $\mathrm{V}^{+}$	250			mV
	Pin 5 to Gnd	-25		25	mV
Output Leakage Pin 12	$\mathrm{V}_{12}=11 \mathrm{~V}$		0.01	10	$\mu \mathrm{A}$
Saturation Voltage P12	$\mathrm{l}_{12}=2 \mathrm{~mA}$		0.2	0.4	V

Note 1: Derate at $5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $85^{\circ} \mathrm{C}$. This applies when the device is soldered into a printed circuit board, operating in still air ambient.
Note 2: Temporary excursions to $150^{\circ} \mathrm{C}$ can be tolerated.
Note 3: Measured at input to external $18 \mathrm{k} \Omega$ resistor. IC contains $1 \mathrm{k} \Omega$ in series with a diode to attenuate the input signal.


FIGURE 2. LM1815 Oscillograms

FIGURE 1. LM1815 Adaptive Sense Amplifier

## Schematic Diagram



## LM1830 Fluid Detector

## General Description

The LM1830 is a monolithic bipolar integrated circuit designed for use in fluid detection systems. The circuit is ideal for detecting the presence, absence, or level of water, or other polar liquids. An ac signal is passed through two probes within the fluid. A detector determines the presence or absence of the fluid by comparing the resistance of the fluid between the probes with the resistance internal to the integrated circuit. An ac signal is used to overcome plating problems incurred by using a dc source. A pin is available for connecting an external resistance in cases where the fluid impedance is of a different magnitude than that of the internal resistor. When the probe resistance increases above the preset value; the oscillator signal is coupled to the base of the open-collector output transistor. In a typical application, the output could be used to drive a LED, loud speaker or a low current relay.

## Features

- Low external. parts count
- Wide supply operating range
- One side of probe input can be grounded
- ac coupling to probe to prevent plating
- Internally regulated supply
- ac or dc output


## Applications

- Beverage dispensers
- Radiators
- Water softeners
- Washing machines
- Irrigation
- Reservoirs
- Sump pumps
- Boilers
- Aquaria


## Logic and Connection Diagrams

## Metal Can Package



## Absolute Maximum Ratings

Supply Voltage
Power Dissipation (Note 1)
Output Sink Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

28 V
300 mW
20 mA
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(\mathrm{V}^{+}=16 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current			5.5	10	mA
Oscillator Output Voltage   Low   High			1.1		V
Internal Reference Resistor		8	13	V	
Detector Threshold Voltage   Detector Threshold Resistance			680		V
Output Saturation Voltage	$\mathrm{IO}=10 \mathrm{~mA}$		10	15	mV
Output Leakage	$\mathrm{VPIN} 12=16 \mathrm{~V}$		0.5	2.0	$\mathrm{k} \Omega$
Oscillator Frequency	$\mathrm{C} 1=0.001 \mu \mathrm{~F}$	4	7	10	V

Note 1: The maximum junction temperature rating of the LM1830N is $150^{\circ} \mathrm{C}$. For operation at elevated temperatures, devices in the dual-in-line plastic package must be derated based on a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$.

## Schematic Diagram



Typical Performance Characteristics


Reference Resistor vs Ambient Temperature


Oscillator $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$
vs Ambient Temperature


Threshold Resistance vs Supply Voltage


Detector Threshold Voltage vs Temperature



Equivalent Resistance vs Concentration of Several Solutions


Power Supply Current vs Supply Voltage


Probe Threshold Resistance vs Temperature


Oscillator Frequency vs Ambient Temperature


## Application Hints

The LM1830 requires only an external capacitor to complete the oscillator circuit. The frequency of oscillation is inversely proportional to the external capacitor value. Using $0.001 \mu \mathrm{~F}$ capacitor, the output frequency is approximately 6 kHz . The output from the oscillator is available at pin 5 . In normal applications, the output is taken from pin 13 so that the internal 13 k resistor can be used to compare with the probe resistance. Pin 13 is coupled to the probe by a blocking capacitor so that there is no net dc on the probe.

Since the output amplitude from the oscillator is approximately $4 \mathrm{~V}_{\mathrm{BE}}$, the detector (which is an emitter base junction) will be turned "ON" when the probe resistance to ground is equal to the internal $13 \mathrm{k} \Omega$ resistor. An internal diode across the detector emitter base junction provides symmetrical limiting of the detector input signal so that the probe is excited with $\pm 2 V_{\mathrm{BE}}$ from a $13 \mathrm{k} \Omega$ source. In cases where the $13 \mathrm{k} \Omega$ resistor is uui iuninatiblc with the probe resistanno range, an external resistor may be added by coupling the probe to pin 5 through the external resistor as shown in Figure 2. The collector of the detecting transistor is brought out to pin 9 enabling a filter capacitor to be connected so that the output will switch "ON" or "OFF" depending on the probe resistance. If this capacitor is omitted, the output will be switched at approximately $50 \%$ duty cycle when the probe resistance exceeds the reference resistance. This can be useful when an audio output is required and the output transistor can be used to directly drive a loud speaker. In addition, LED indicators do not require dc excitation. Therefore, the cost of a capacitor for filtering can be saved.

In the case of inductive loads or incandescent lamp loads, it is recommended that a filter capacitor be employed.

In a typical application where the device is employed for sensing low water level in a tank, a simple steel probe may be inserted in the top of the tank with the tank grounded. Then when the water level drops below the tip of the probe, the resistance will rise between the probe and the tank and the alarm will be operated. This is illustrated in Figure 3. In situations where a nonconductive container is used, the probe may be designed in a number of ways. In some cases a simple phono plug can be employed. Other probe designs include conductive parallel strips on printed circuit boards.

It is possible to calculate the resistance of any aqueous solution of an electrolyte for different concentrations, provided the dimensions of the electrodes and their spacing is known.

The resistance of a simple parallel plate probe is given by:

$$
R=\frac{1000}{c . p} \cdot \frac{d}{A} \Omega
$$

where $A=$ area of plates $\left(\mathrm{cm}^{2}\right)$
$\mathrm{d}=$ separation of plates (cm)
$\mathrm{c}=$ concentration (gm. mol. equivalent/litre)
$p=$ equivalent conductance $\left(\Omega^{-1} \mathrm{~cm}^{2}\right.$ equiv. ${ }^{-1}$ )
(An equivalent is the number of moles of a substance that gives one mole of positive charge and one mole of negative chū̆̃. Co: examp!e, one molo of NaCl gives $\mathrm{Na}^{+}+$ $\mathrm{Cl}^{-}$so the equivalent is 1 . One mole of $\mathrm{CaCl}_{2}$ gives $\mathrm{Ca}^{++}+2 \mathrm{Cl}^{-}$so the equivalent is $1 / 2$.)

Usually the probe dimensions are not measured physically, but the ratio d/A is determined by measuring the resistance of a cell of known concentration $c$ and equivalent conductance of 1. A graph of common solutions and their equivalent conductances is shown for reference. The data was derived from D.A. Maclnnes, "The Principles of Electrochemistry," Reinhold Publishing Corp., New York., 1939.

In automotive and other applications where the power source is known to contain significant transient voltages, the internal regulator on the LM1830 allows protection to be provided by the simple means of using a series resistor in the power supply line as illustrated in Figure 4. If the output load is required to be returned directly to the power supply because of the high current required, it will be necessary to provide protection for the output transistor if the voltages are expected to exceed the data sheet limits.

Although the LM1830 is designed primarily for use in sensing conductive fluids, it can be used with any variable resistance device, such as light dependent resistor or thermistor or resistive position transducer.

The following table lists some common fluids which may and may not be detected by resistive probe techniques.

Conductive Fluids	Non-Conductive Fluids
City water	Pure water
Sea water	Gasoline
Copper sulphate solution	Oil
Weak acid	Brake fluid
Weak base	Alcohol
Household ammonia	Ethylene glycol
Water and glycol mixture	Paraffin
Wet soil	Dry soil
Coffee	Whiskey

## Application Hints (Continued)



FIGURE 1. Test Circuit


FIGURE 3. Basic Low Level Warning Device with LED Indication


Output is activated when $R_{p} \widetilde{>1 / 3} R_{R E F}$ FIGURE 4. Direct Coupled Applications


Low Level Warning with Audio Output


The output is suitable for driving a sump pump
or opening a drain valve, etc.

## LM1851 Ground Fault Interrupter

## General Description

The LM1851 is designed to provide ground fault protection for AC power outlets in consumer and industrial environments. Ground fault currents greater than a presettable threshold value will trigger an external SCRdriven circuit breaker to interrupt the AC line and remove the fault condition. In addition to detection of conventional hot wire to ground faults, the neutral fault condition is also detected.
Full advantage of the U.S. UL943 timing specification is taken to insure maximum immunity to false triggering due to line noise. Special features include circuitry that rapidly resets the timing capacitor in the event that noise pulses introduce unwanted charging currents and a memory circuit that allows firing of even a sluggish breaker on either half-cycle of the line voltage when external full-wave rectification is used.

## Features

- Internal power supply shunt regulator
- Externally programmable fault current threshold
- Externally programmable fault current integration time
- Direct interface to SCR
- Complies with U.S. UL943, yet adaptable to other standards
- Operates under line reversal; both load vs line and hot vs neutral
- Detects neutral line faults


## Block and Connection Diagram



Absolute Maximum Ratings	
Supply Current	19 mA
Power Dissipation (Note 1)	570 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## DC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{SS}}=5 \mathrm{~mA}$

Parameter	Conditions	Min	Typ	Max	Units
Power Supply Shunt Regulator Voltage	Pin 8, Average Value	22	26	30	V
Latch Trigger Voltage	Pin 7	15	17.5	20	V
Sensitivity Set Voltage	Pin 8 to Pin 6	6	7	8.2	V
Output Drive Current	Pin 1, With Fault	0.5	1	2.4	mA
Output Saturation Voltage	Pin 1, Without Fault		100	240	mV
Output Saturation Resistance	Pin 1, Without Fault		100		$\Omega$
	Pin 1, Mithout Fanlt,	2.0	5		mA
Sinking Capability	$\mathrm{V}_{\text {pin } 1}$ Held to 0.3V, Note 4				
Noise Integration	Pin 7, Ratio of Discharge	2.0	2.8	3.6	$\mu \mathrm{A} / \mu \mathrm{A}$
Sink Current Ratio	Currents Between No Fault and Fault Conditions				

## AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{SS}}=5 \mathrm{~mA}$

Parameter	Conditions	Min	Typ	Max	Units
Normal Fault Current	Figure 1, Note 3	3	5	7	mA
Sensitivity	Figure 2	3			
Grounded Neutral Fault					
Resistance Sensitivity	$500 \Omega$ Fault, Figure 3, Note 2		18		
Normal Fault Trip Time	$500 \Omega$ Normal Fault,		18	ms	
Normal Fault with	$2 \Omega$ Neutral, Figure 3			ms	
Grounded Neutral Fault	Note 2				
Trip Time					

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: Average of 10 trials.
Note 3: Required UL sensitivity tolerance is such that external trimming of LM1851 sensitivity will be necessary.
Note 4: This externally applied current is in addition to the internal "output drive current" source.


FIGURE 1. Normal Fault Sensitivity Test Circuit


FIGURE 2. Grounded Neutral Fault Sensitivity Test Circuit

## Internal Schematic Diagram



## Typical Performance Characteristics



Output Drive Current vs Output Voltage


## Circuit Description

(Refer to Block and Connection Diagram)

The LM1851 operates from 26 V as set by an internal shunt regulator, D3. In the absence of a fault ( $l_{f}=0$ ) the feedback path status signal $\left(V_{\mathrm{s}}\right)$ is correspondingly zero. Under these conditions the capacitor discharge current, $I_{1}$, sits quiescently at three times its threshold value, $I_{T H}$, so that noise induced charge on the timing capacitor will be rapidly removed. When a fault current, $l_{f}$, is induced in the secondary of the external sense transformer, the operational amplifier, A1, uses feedback to force a virtual ground at the input as it extracts $\mathrm{I}_{\mathrm{f}}$. The presence of $\mathrm{I}_{\mathrm{f}}$


Pin 1 Saturation Voltage vs External Load Current, $I_{L}$

during either half-cycle will cause $V_{S}$ to go high, which in turn changes $I_{1}$ from $3 I_{T H}$ to $I_{T H}$. Although $I_{T H}$ discharges the timing capacitor during both half-cycles of the line, $I_{f}$ only charges the capacitor during the half-cycle in which $I_{f}$ exits pin 2. Thus during one half-cycle $I_{f}-I_{T H}$ charges the timing capacitor, while during the other half-cycle $I_{T H}$ discharges it. When the capacitor voltage reaches 17.5 V , the latch engages and turns off Q3 permitting $\mathrm{I}_{2}$ to drive the gate of an SCR.

## Application Circuits

Typical ground fault interrupter circuits are shown in Figures 3 and 4. They were both designed to operate on 120 V AC line voltage with 5 mA normal fault sensitivity, and differ only in the technique used for grounded neutral detection. The "dormant oscillator" approach of Figure 3 will be used as a design example.

A full-wave rectifier bridge and a $15 \mathrm{k} / 2 \mathrm{~W}$ resistor are used to supply the DC power required by the IC. A $1 \mu \mathrm{~F}$ capacitor at pin 8 is used to filter the ripple of the supply voltage and supply peak currents. The rectified line voltage is also connected across the SCR cathode and anode to allow firing of the SCR on either half-cycle. When a fault causes the SCR to trigger, the anode is taken to ground potential and a large current can flow through the breaker coil to pull the contacts open. Once opened, the fault condition is removed and the discharge current $3 I_{T H}$ (see Circuit Description and Block Diagram) resets both the timing capacitor and the output latch causing the SCR to turn off. A 1000:1 sense transformer is used to detect the normal fault. The fault current, which is basically the difference current between the hot and neutral lines, is stepped down by 1000 and fed into the input pins of the operational amplifier through a $10 \mu \mathrm{~F}$ capacitor. The $0.0033 \mu \mathrm{~F}$ capacitor between pin 2 and pin 3 and the 200 pF between pins 3 and 4 are added to obtain better noise immunity. The normal fault sensitivity is determined by the timing capacitor discharging current, $I_{T H}$. $I_{T H}$ can be calculated by:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{TH}}=\frac{7 \mathrm{~V}}{\mathrm{R}_{\mathrm{SET}}} \div 2 \tag{1}
\end{equation*}
$$

At the decision point, the average fault current just equals the threshold current, $\mathrm{I}_{\mathrm{TH}}$.

$$
\begin{equation*}
I_{T H}=\frac{I_{f(r m s)}}{2} \times 0.91 \tag{2}
\end{equation*}
$$

where $I_{f(r m s)}$ is the rms input fault current to the operational amp and the factor of 2 is due to the fact that $I_{f}$ charges the timing capacitor only during one half-cycle, while $I_{T H}$ discharges the capacitor continuously. The factor 0.91 converts the rms value to an average value. Combining equations (1) and (2) we have

$$
\begin{equation*}
R_{S E T}=\frac{7 V}{I_{f(r m s)} \times 0.91} \tag{3}
\end{equation*}
$$

For example, to obtain $5 \mathrm{~mA}(\mathrm{rms})$ sensitivity for the circuit in Figure 3 we have:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{SET}}=\frac{7 \mathrm{~V}}{\left(\frac{5 \mathrm{~mA} \times 0.91}{1000}\right)}=1.5 \mathrm{M} \Omega \tag{4}
\end{equation*}
$$

The correct value for $\mathrm{R}_{\text {SET }}$ can also be determined from the characteristic curve that plots equation (3). Note that this is an approximate calculation, the exact value of $R_{\text {SET }}$ depends on the specific sense transformer used and LM1851 tolerances. Inasmuch as UL943 specifies a sensitivity "window" of $4 \mathrm{~mA}-6 \mathrm{~mA}$, provision should be made to adjust $\mathrm{R}_{\text {SET }}$ on a per-product basis.

Independent of setting sensitivity, the desired integration time can be obtained through proper selection of the timing capacitor, $\mathrm{C}_{\mathrm{t}}$. Due to the large number of variables involved, proper selection of $C_{t}$ is best done empirically. The following design example, then, should only be used as a guideline.

Assume the goal is to meet UL943 timing requirements. Also assume that worst case timing occurs during GFI start-up (S1 closure) with both a heavy normal fault and a $2 \Omega$ grounded neutral fault present. This situation is shown diagramatically below.


UL943 specifies $\leq 25 \mathrm{~ms}$ average trip time under these conditions. Calculation of $C_{t}$ based upon charging currents due to normal fault only is as follows:

## $\leq 25 \mathrm{~ms}$ Specification

-3 ms GFI turn-on time ( 15 k and $1 \mu \mathrm{~F}$ )
-8 ms Potential loss of one half-cycle due to fault current sense on half-cycles only
-4 ms Time required to open a sluggish circuit breaker $\leq 10 \mathrm{~ms}$ Maximum integration time that could be allowed
8 ms Value of integration time that accommodates component tolerances and other variables
$C_{t}=\frac{I \times T}{V}$
where $T=$ integration time
$V=$ threshold voltage
$I=$ average fault current into $C_{t}$
$I=\underbrace{\left(\frac{120 \mathrm{VAC}(r m s)}{R_{B}}\right)} \times \underbrace{\left(\frac{R_{N}}{R_{G}+R_{N}}\right)}$
heavy fault current generated (swamps $\mathrm{I}_{\mathrm{TH}}$ )
portion of fault current shunted around GFI

$$
\times \underbrace{\left.\frac{1 \text { turn }}{1000 \text { turns }}\right)}_{\begin{array}{c}
\text { current } \\
\text { division of } \\
\text { input sense } \\
\text { transformer }
\end{array}} \times \underbrace{\left(\frac{1}{2}\right)}_{\begin{array}{c}
C_{t} \text { charging } \\
\text { on half- } \\
\text { cycles only }
\end{array}} \times \underbrace{(0.91)}_{\begin{array}{c}
\text { rms to } \\
\text { average } \\
\text { conversion }
\end{array}}
$$

## Application Circuits (Continued)

therefore:
$C_{t}=\frac{\left[\left(\frac{120}{500}\right) \times\left(\frac{0.4}{1.6+0.4}\right) \times\left(\frac{1}{1000}\right) \times\left(\frac{1}{2}\right) \times(0.91)\right] \times 0.008}{17.5}$
$C_{t}=0.01 \mu \mathrm{~F}$

In practice, the actual value of $C_{t}$ will have to be modified to include the effects of the neutral loop oscillation upon the net charging current. The effect of neutral loop induced currents is difficult to quantize, but typically they sum with normal fault currents, thus allowing a larger value of $\mathrm{C}_{\mathrm{t}}$. For UL943 requirements, $0.015 \mu \mathrm{~F}$ has been found to be the best compromise between timing and noise.

For those GFI standards not requiring grounded neutral detection, a still larger value of capacitor c̣an be used and better noise immunity obtained. The larger capacitor can be accommodated because $R_{N}$ and $R_{G}$ are not present, allowing the full fault current, I , to enter the GFI.
The sense amplifier is capacitively coupled to a 200 -turn coil in order to detect the grounded neutral fault. Choice of proper coil polarities causes a positive feedback loop to close in the presence of a low resistance grounded neutral fault and results in oscillation of the input amplifier. The timing capacitor receives charging current due to rectification of the oscillatory feedback currents caused by Q1 (see Block Diagram) only conducting on one half-cycle of the line. Eventually the capacitor voltage reaches threshold and the SCR is triggered.

In Figure 4, grounded neutral detection is accomplished by feeding the neutral coil with 120 Hz energy continuously and allowing some of this energy to couple into the sense transformer during conditions of neutral fault.

## Typical Applications



* Adjust RSET for 5 mA sensitivity

FIGURE 3. Dormant Oscillator Approach

Typical Applications (Continued)


## Definition of Terms

Normal Fault: An unintentional electrical path, $\mathrm{R}_{\mathrm{B}}$, between the load terminal of the hot line and the ground, as shown by the dashed lines.


Grounded Neutral Fault: An unintentional electrical path between the load terminal of the neutral line and the ground, as shown by the dashed lines.


Normal Fault plus Grounded Neutral Fault: The combination of the normal fault and the grounded neutral fault, as shown by the dashed lines.


## LM1871 RC Encoder/Transmitter

## General Description

The LM1871 is a complete six-channel digital proportional encoder and RF transmitter intended for use as a low power, non-voice, unlicensed communication device at carrier frequencies of 27 MHz or 49 MHz with a field strangth of $10,000 \ldots \mathrm{~V} /$ meter at 3 meters. In addition to radio controlled hobby, toy and industrial applications, the encoder section can provide a serial input of six words for hard wired, infra-red or fiber optic communication links. Channel add logic is provided to control the number of encoded channels from three to six, allowing increased design flexibility. When used with the LM1872 RC receiver/decoder, a low cost RF linked encoder and decoder system provides two analog and two ON/OFF decoded channels.

## Features

- Low current 9 V battery operation
- On-chip RF oscillator/transmitter
- One timing capacitor for six proportional channels
- Programmable number of channels
- Regulated RF output power
- External modulator bandwidth control
- On-chip 4.6V regulator
- Up to 80 MHz carrier frequency operation


## Block and Connection Diagram



## Absolute Maximum Ratings

Supply Voltage
DC Current Out of Pin 4
DC Current Out of Pin 13
Package Dissipation (Note 1)
Pin 4 Externally Forced
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$+16 \mathrm{~V}$
10 mA
25 mA
1.0W

6 V
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+9 \mathrm{~V}$, see Test Circuit and Wavetorms

	Parameter	Conditions	Min	Typ	Max	Units
Encoder Section, Close S1, S2, S4 Open S3						
V14	Supply Voltage		4.5	9	15	V
$l_{14}$	Supply Current	Encoder Only	10	14	22	$m \mathrm{~A}$
V4	Reference Voltage		4.1	4.6	5.1	V
$\mathrm{t}_{\mathrm{f}}$	Frame Time	$t_{f}=R_{F} C_{F}+0.63 \mathrm{R}_{\text {MOD }} \mathrm{C}_{T}$	8	9.5	10.5	ms
$t_{m}$	Mod Time	$t_{m}=0.63 \mathrm{R}_{\text {MOD }} \mathrm{C}_{T}$	0.4	0.5	0.6	ms
$t_{\text {ch }}$	Channel Time	$t_{c h}=0.63 \mathrm{R}_{\mathrm{CH}} \mathrm{C}_{\mathrm{T}}$	0.4	0.5	0.6	ms
$t_{\text {s }}$	Sync Time, $T_{x}$ Channels 1-6	Close S1, Close S2		3.5		ms
$\mathrm{t}_{\text {s }}$	Sync Time, $T_{x}$ Channels $1-5$	Open S1, Close S2		4.5		ms
$t_{\text {s }}$	Sync Time, $T_{x}$ Channels 1-4	Close S1, Open S2		5.5		ms
$\mathrm{t}_{\mathrm{s}}$	Sync Time, $\mathrm{T}_{\mathrm{x}}$ Channels $1-3$	Open S1, Open S2		6.5		ms
$\Delta t_{n}$	Supply Rejection, $\mathrm{t}_{\mathrm{m}}+\mathrm{t}_{\mathrm{CH}}$	$\Delta V_{\text {CC }} 6 \mathrm{~V}$ to 12V		0.1		\%/V
$\Delta \mathrm{V} 13$	Encoder Output Swing			3.8		$V_{p-p}$
- V 12	Mod Filter Output Swing			3.8		$V_{p-p}$
$\mathrm{l}_{12}$	Mod Filter Source/Sink Current			0.5		$\pm \mathrm{mA}$
$\mathrm{R}_{\text {IN(8) }}$	Pulse Timer Input Resistance			27		$\mathrm{M} \Omega$
$I_{\text {TH(7) }}$	Frame Timer Threshold Current.			0.1		$\mu \mathrm{A}$
$\mathrm{I}_{\text {LEAK(15) }}$	Mod Timer Leakage Current	Pin 15 to OV		0.01	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SAT(15) }}$	Mod Timer Saturation Voltage	$\mathrm{I}_{15}=2 \mathrm{~mA},(\mathrm{~V} 4-\mathrm{V} 15)$		120	240	mV
$\mathrm{I}_{\text {LEAK (CH) }}$	Channel Timer Leakage Current	Pins 1, 2, 3, 16, 17, 18 to 4.6V		0.06	1	${ }_{\mu} \mathrm{A}$
$\mathrm{V}_{\text {SAT }(\mathrm{CH})}$	Channel Timer Saturation Voltage	$\mathrm{I}_{\mathrm{CH}}=2 \mathrm{~mA}$		120	240	mV
RF Oscillator Section, Collector Pin 11, Base Pin 10, Emitter Pin 9 Open S4						
$V_{\text {OUT }}$	RF Output Level	Use RF Voltmeter Close S3		. 400		$\mathrm{mV}_{\text {RMS }}$
$\mathrm{I}_{14}$	Supply Current	Open S3, S4		30		mA
$f_{t}$	Transistor	$\mathrm{V}_{\mathrm{CE}}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$		520		MHz
$\mathrm{V}_{\text {SAT(11) }}$	Transistor Saturation Voltage	$\mathrm{f}_{\mathrm{O}}=49 \mathrm{MHz}$		800		mV
$\mathrm{H}_{\text {fE }}$.	Transistor DC Beta	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}^{\text {d }}$	75	150	300	
$\mathrm{LV}_{\text {CEO }}$		$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$	16	20		V

[^54]Test Circuit and Switching Time Waveforms


Note: Test circuit has been configured for evaluation by oscilloscope. Use $1 \%$ timing components. $\mathrm{R}_{\mathrm{M}}, \mathrm{R}_{\mathrm{CH}}, \mathrm{R}_{\mathrm{F}}, \mathrm{C}_{\mathrm{T}}$


L1: Toko E523LN-7210019 type MC117 $71 / 2$ turns with tap $21 / 4$ turns from top Y1: 49.86 MHz crystal 3rd overtone
Encoder output (pin 13) close S1, S2, S4, $0.5 \mathrm{~ms} / \mathrm{div}$ sweep

## Typical Performance Characteristics



# Typical Performance Characteristics (Continued) 




RF Transistor Input Admittance vs Collector Current

RF Transistor Output Admittance vs Collector Current


## Applications Information

The LM1871 has been designed to encode and transmit 27 MHz or 49 MHz carriers for remote radio control (RC) of up to six independent analog functions. The encoder section converts a variable potentiometer setting to a variable pulse width. The variable pulse widths, each preceded by a fixed modulation pulse, are added together sequentially and then followed by a synchronization pulse. Figure 1 shows the digital proportional control format and how the channel pulse widths, sync time and frame time are defined.


FIGURE 1. (A) Encoder Output (Pin 13)
(B) Transmitted RF Carrier Envelope
(C) Typical Receiver Channel 1 Output
(D) Typical Receiver Channel 2 Output

Figure $1(A)$ shows the encoder output waveform. The modulation time $\left(t_{m}\right)$ is fixed while the channel time $\left(t_{c h}\right)$ is the variable pulse width. In Figure $1(\mathrm{C}, \mathrm{D})$ the recovered channel pulse $\left(t_{n}\right)$ is the sum of $t_{m}$ and $t_{c h}$ at a rep rate set by the frame time $\left(\mathrm{t}_{\mathrm{f}}\right)$. Because the frame time is fixed, the sync time ( $\mathrm{t}_{\mathrm{s}}$ ) will vary inversely to the variable channel times.

After detection by the $R C$ receiver, the channel pulse widths must now be converted back to the required analog functions, which might be a mechanical arm movement, motor speed control or simply an ON/OFF transistor switch. In the case of the mechanical arm movement, commercially available closed loop servo modules can be found in most hobby shops. The input requirements of these servos will determine the transmitted frame time and channel pulse
width range. Usually the pulse width for arm at center will be 1.5 ms ; for full left, 1.0 ms ; and for full right, 2.0 ms , at a rep rate of 20 ms . A motor speed control open loop servo can be designed for the same input pulse widths: 1.0 ms for maximum forward speed, 1.5 ms with some dead band for motor OFF and 2.0 ms for maximum reverse speed. In both servo systems the input pulse width being continuously variable allows full control of arm position, motor speed and direction. The ON/OFF function could also use the same input pulse width range ( $1 \mathrm{~ms} \mathrm{ON}, 2 \mathrm{~ms}$ OFF).
The 1.0 ms to 2.0 ms pulse width range required by most servo modules is a result of transmitted RF spectrum limitations required by the FCC. If the modulation time $\left(t_{m}\right)$ and the channe! time were made very short ( $\cong 10 \mu s$ each) many sidebands 5 kHz apart would be generated on each side of the center frequency. The amplitude and number of sidebands are determined by the depth and duration of the modulation pulse. FCC regulations require that all sidebands greater than 10 kHz from center frequency be less than $500 \mu \mathrm{~V} /$ meter at three meters. In the examplecited above, the $100 \%$ modulated carrier spectrum would not be acceptable if the field strength of the carrier was 10,000 $\mu \mathrm{V} /$ meter at three meters. If the modulation and channel times were made much longer ( $\cong 10 \mathrm{~ms}$ each) the transmitted spectrum would be acceptable but now the frame time would be longer than desirable for optimum servo designs. When the received channel pulse widths are between 1.0 ms and 2.0 ms at a frame rate of 20 ms the modulation time should be between $400 \mu \mathrm{~s}$ and $600 \mu$ s to insure an acceptable transmitted RF spectrum.

Figure 2 shows the block diagram and a typical application of the LM1871 utilizing two fully proportional (analog) channels and two uniquely encoded ON/OFF (digital) channels. The LM1872 Receiver/Decoder, a companion IC to the LM1871, has been designed to receive and decode two analog channels and two digital channels. The two digital channel output states are determined by the number of transmitted channels rather than by the width of a channel pulse. Table I shows the digital output format as a function of the number of transmitted channels.


## Applications Information (Continued)

## LM1871 ENCODER TIMING

Figure 3 shows the two timing circuits and waveforms used by the LM1871. The frame timer oscillator consists of a high gain comparator and a saturating NPN transistor switch. When the NPN transistor is turned OFF the timing capacitor ( $C_{F}$ ) will charge up to $2 / 3$ of the $V_{\text {REG }}$ voltage. The comparator will then turn ON the NPN transistor, discharging the capacitor back to ground ending the timing cycle. The pulse timing circuit is similar in operation except that the timing capacitor $\left(\mathrm{C}_{\mathrm{T}}\right)$ is charged and discharged between $1 / 3$ and $2 / 3$ of the $\mathrm{V}_{\text {REG }}$ voltage. The saturating PNP transistor switch pulls up the modulation timing resistor $\left(R_{M}\right)$ which charges $C_{T}$ to $2 / 3 V_{\text {REG }}$ and six independently switched NPN transistors provide the discharge path through the channel timing resistors ( $\mathrm{R}_{\mathrm{CH}}$ ). The time constant for both circuits can be found as follows:

$$
\frac{-t}{R C}=\ln \frac{V_{1}}{V_{2}}
$$

when $\mathrm{V} 1=$ Voltage across timing resistor at end of timing cycle.
$\mathrm{V} 2=$ Voltage across timing resistor at beginning of timing cycle.

In the frame timer circuit the NPN transistor is held on for a period determined by the modulation pulse $\left(\mathrm{t}_{\mathrm{m}}\right)$. This was done to insure that the timing capacitor was fully discharged. The frame ( $t_{t}$ ), modulation ( $t_{m}$ ) and channel time $\left(\mathrm{t}_{\mathrm{ch}}\right)$ can be calculated as follows:

$$
\begin{aligned}
& t_{f}=-\ln \frac{1.534}{4.6 \mathrm{~V}}\left(R_{F} C_{F}\right)+t_{m}=1.1 R_{F} C_{F}+t_{m} \\
& t_{m} \text { or } t_{c h}=-\ln \frac{1.534}{3.06 \mathrm{~V}} \\
& \begin{array}{l}
\left(R_{M \text { or } R_{C H}}\right) C_{T} \\
=0.69\left(R_{M} \text { or } R_{C H}\right) C_{T}
\end{array}
\end{aligned}
$$

The above calculated time constants will be modified by transistor saturation resistances and comparator switching voltages that are slightly different than the $1 / 3$ and $2 / 3$ $V_{\text {REG }}$ reference. One time constant should be used for the frame time $\left(t_{f}\right)$ and 0.63 time constant should be used for the modulation ( $\mathrm{t}_{\mathrm{m}}$ ) and channel ( $\mathrm{t}_{\mathrm{ch}}$ ) times. Because the switching voltages are a percentage of the $\mathrm{V}_{\text {REG }}$ voltage the timer accuracy will not be affected by a low battery condition $\left(V_{c c}<5.6 \mathrm{~V}\right)$. High and low temperature $\left(-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ ) operation also has little effect on timer accuracy.

(A) Voltage on $\mathrm{C}_{\mathrm{F}}$
(B) Voltage on $\mathrm{C}_{\mathrm{T}}$
(C) Encoder pulse train output

FIGURE 3. Simplified Encoder Timing Circuits and Waveforms

## Applications Information (Continued)

The accuracy and temperature characteristics of the external components will determine the total accuracy of the system. The capacitors should be NPO ceramics or other low-drift types.
As an example the following procedure can be used to determine the external timing components required for Figure 2.

Given: Frame time $\left(\mathrm{t}_{\mathrm{f}}\right)=20 \mathrm{~ms}$
Modulation time $\left(t_{m}\right)=500 \mu \mathrm{~s}$
Recovered pulse width ( $\mathrm{t}_{n}$ ) range $=1.0 \mathrm{~ms}$ to 2.0 ms with trim capability
Non variable channel pulse width $\left(\mathrm{t}_{n}\right)=1.0 \mathrm{~ms}$

1. Frame Timer Components

Choose $\mathrm{C}_{\mathrm{F}}=0.1 \mu \mathrm{~F} \pm 10 \%$
$R_{F}=\frac{t_{f}-t_{m}}{C_{T}}=\frac{20 \mathrm{~ms}-0.50 \mathrm{~ms}}{0.1 \mu \mathrm{~F}}=195 \mathrm{k} \Omega(200 \mathrm{k} \Omega)$
2. Modulation Time Components

Choose $\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F} \pm 10 \%$
$R_{M}=\frac{t_{m}}{0.63 C_{T}}=\frac{500 \times 10^{-6}}{(0.63)\left(1 \times 10^{-8}\right)}=79.36 \mathrm{k} \Omega(82 \mathrm{k} \Omega)$
3. Non-Variable Channel (3 through 6) Component
$\mathrm{t}_{\mathrm{ch}}=\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{m}}=1.0 \mathrm{~ms}-0.50 \mathrm{~ms}=500 \mu \mathrm{~s}$
$R_{C H}=\frac{t_{c h}}{0.63 C_{T}}=\frac{500 \times 10^{-6}}{(0.63)\left(1 \times 10^{-8}\right)}=79.36 \mathrm{k} \Omega(82 \mathrm{k})$
4. Variable Channel 1 ( t 1 ) and Channel 2 (t2) Components

When the $R_{p}$ wiper arm varies across the full potentiometer range, ( $\Delta R=0 \Omega$ to $R_{p}$ value) $R_{S}$ is found for $0 \Omega$ and minimum $t_{n}$ pulse width.
$R_{S}=\frac{t_{n}-t_{m}}{0.63 C_{T}}=\frac{1 \mathrm{~ms}-0.50 \mathrm{~ms}}{(0.63)\left(1 \times 10^{-8}\right)}=79.36 \mathrm{k} \Omega(82 \mathrm{k})$
$R_{P}(\Delta R)$ is found for maximum $t_{n}$ pulse width.

$$
R_{P}=\frac{t_{n}-t_{m}}{0.63 C_{T}}-R_{S}=\frac{2 \mathrm{~ms}-0.50 \mathrm{~ms}}{(0.63)\left(1 \times 10^{-8}\right)}-82 \mathrm{k} \Omega=156 \mathrm{k} \Omega
$$

The $R_{P}$ value could have been chosen first and a $C_{T}$ calculated. Usually the $270^{\circ}$ to $320^{\circ}$ angle of potentiometer rotation is inconvenient especially if it is desired to spring return the control to center, or if lever type knobs are required. A $500 \mathrm{k} \Omega$ potentiometer that has $300^{\circ}$ of end to end wiper arm rotation could be used if mechanical stops limit this range.

Required angle of rotation $=\frac{\left(300^{\circ}\right)(156 \mathrm{k} \Omega)}{500 \mathrm{k} \Omega}=93.6^{\circ}$
In most applications the resistor and capacitor tolerances prevent sufficient system accuracy without mechanical or electrical trimming of the analog channel pulse widths. If a 500 k potentiometer is used, two trim methods can be utilized. $R_{S}$ can also be included as part of the potentiometer resistance.


$$
\begin{aligned}
& \Delta R=156 \mathrm{k} \Omega, R_{S}=82 \mathrm{k} \Omega \\
& \text { If } t_{n}=1.5 \mathrm{~ms} \pm 30 \% \text { is required: } \\
& \pm R_{\text {TRIM }}=0.3 \frac{\Delta R}{2}+R_{S}=48 \mathrm{k} \Omega \\
& \text { Required Body Rotation }=\frac{\left(300^{\circ}\right)(48 \mathrm{k})}{500 \mathrm{k}}= \pm 28.8^{\circ}
\end{aligned}
$$

## Channel Add Logic

Table I shows the number of transmitted channels as a function of pin 5 and pin 6 conditions. The thresholdvoltage for both pins is $\cong 0.7 \mathrm{~V}$. When grounded, the pins are sourcing $\cong 300 \mu \mathrm{~A}$ from the internal pull up resistors. External voltages may be applied to these pins but should be below the $\mathrm{V}_{\text {REG }}$ voltage by at least one volt and not less than the pin 9 ground.

TABLE I. DIGITAL CHANNEL OUTPUT FORMAT AS A FUNCTTION OF TRANSMITTED CHANNELS

LM1871 Channel Add Logic   Pin Conditions		Number of Channels   Transmitted	LM1872 Receiver   Digital Outputs	
$n$	Pin 6 (B)		A	B
OPEN	OPEN	3	OFF	OFF
GND	OPEN	4	ON	OFF
OPEN	GND	5	OFF	ON
GND	GND	6	ON	ON

Applications Information (Continued)

## Modulator and Crystal Oscillator/Transmitter Circuit (Figure 4)

The modulator and oscillator consist of but two NPN transistors whose operation is quite straightforward. The base of the modulator transistor is driven by a bidirectional current source with the voltage range for the high condition limited by a saturating PNP collector to the pin $4 \mathrm{~V}_{\text {REG }}$ voltage and low condition limited by a saturating NPN collector in series with a diode to ground. A current source of $\pm 500 \mu \mathrm{~A}$ was chosen to provide a means for external modulator bandwidth control. When a capacitor is used at this node the transmitted RF carrier is made to slew ON and OFF at a time determined by:

Modulation slew time ( $\mathrm{t}_{\mathrm{ms}}$ )

$$
=\frac{(\Delta \mathrm{V} 12)\left(\mathrm{C}_{\mathrm{M}}\right)}{\mathrm{I}_{12}}=\frac{(3.8 \mathrm{~V})(0.01 \mu \mathrm{~F})}{500 \mu \mathrm{~A}}=76 \mu \mathrm{~s}
$$

when $\Delta \mathrm{V} 12=$ peak to peak voltage swing of pin $12=3.8 \mathrm{~V}$

$$
\begin{aligned}
& \pm I_{12}=\text { source/sink current from pin } 12=500 \mu \mathrm{~A} \\
& \mathrm{C}_{\mathrm{M}}=\text { capacitance at pin } 12=0.01 \mu \mathrm{~F}
\end{aligned}
$$

Figure 5 shows the advantage gained by this capacitor especially if adjacent channels are 10 kHz to 15 kHz away from the desired channel.

The crystal oscillator/transmitter transistor is configured to oscillate in a class C mode with the conduction angle being approximately $140^{\circ}$ to $160^{\circ}$. Resistor R10 provides the base bias current from the pin $4 \mathrm{~V}_{\text {REG }}$ voltage. This resistor value has been optimized for most RC applications. When the emitter of the modulation transistor is high $(\cong 3.8 \mathrm{~V}$ ) the collector and tank coil are pulled up into the active range of the oscillator transistor. RF feedback to the base is via the series mode crystal which determines the
oscillator frequency. Because third overtone crystals are used for 27 MHz or 49 MHz applications a tuned collector load must be used to guarantee operation at the correct frequency. Tuning the LC tank, while having little effect on oscillator frequency, will control the conduction angle and oscillator efficiency. Tuning the LC tank for minimum $\mathrm{V}_{\mathrm{CC}}$ supply current while observing the carrier envelope on an oscilloscope would be the best alignment method.

For most RC applications the carrier ON to OFF ratio must be as high as possible to ensure precise pulse width detection at the receiver. If we were to look at the base of the oscillator transistor we would see that the crystal is still oscillating during the time that the carrier is $\operatorname{OFF}\left(\mathrm{t}_{\mathrm{m}}\right)$. This is because of the high Q characteristic ( 10 k to 30 k ) of crystals in this application. We can roughly calculate the number of cycles required for a decay or rise in amplitude for one time constant ( $63 \%$ of final value) by:

$$
\text { Number of cycles }=\frac{Q}{0.63 \pi}
$$

At 49 MHz this will be 15 k cycles or $300 \mu \mathrm{~S}$ for a crystal Q of 30k. At 27 MHz this time will be $560 \mu$ s for the samecrystalQ. If long carrier OFF times were required the oscillator start up time would as a result also be quite long. The shorter carrier OFF times overcome one problem but do suggest that the crystal be isolated from the antenna circuit. During the carrier OFF time the base of the modulator transistor is held approximately 0.9 V above ground such that the emitter still supplies current to the now saturated collector of the oscillator transistor. Both ends of the LC tank circuit now "see" a low impedance to ground. Further isolation is provided by the split tuning capacitor.


FIGURE 5. Envelope of Transmitted Spectrum for Circuit in Figure 2

## Applications Information (Continued)

If the printed circuit board shown in Figure 6 is to be reproduced, it is recommended that the layout be followed as closely as possible. The positions of pin 13 decoupling capacitors and coil components tend to be critical in regard to undesired harmonic emissions. Short lead ceramic disc capacitors and short decoupled traces are recommended. A number of boards with this configuration have successfully met all requirements of the FCC as perceived only by National Semiconductor. Final approval of any unlicensed transmitter is granted only by the FCC via certified test measurements.

## Field Strength Measurements

As noted above the maximum radiated RF energy of an unlicensed transmitter operating in the 27 MHz or 49 MHz frequency band must not be greater than $10 \mathrm{k} \mu \mathrm{V}$ per meter at a distance of 3 meters from the transmitting antenna. In addition to the carrier amplitude requirement, all sidebands greater than 10 kHz from the carrier and all other emissions
 at a distance of 3 meters.

The term used for electrical field intensity (V/meter at 3 meters) refers to the open circuit voltage induced at theoutput of a resonant half-wave dipole antenna in a single dimensional one meter field, 3 meters distant from the transmitter under test. When making field intensity measurements, the antenna length must be adjusted for resonance at each frequency of interest and the induced voltage made proportional to the one meter reference length. The induced voltage value must not include losses caused by the insertion of a 1:1 balun transformer ( -6 dB ) or loading ( -6 dB ) and mismatch ( $72 \Omega$ to $50 \Omega,-1.7 \mathrm{~dB}$ ) of
the voltage measuring instrument. We can now relate the induced voltage $\left(\mathrm{V}_{\text {IN }}\right)$ to a measured voltage ( $\mathrm{V}_{\text {MEA }}$ ) by:

$$
V_{M E A}=\frac{V_{I N} L}{\text { Losses }} \text { or } V_{I N}=\frac{\left(V_{M E A}\right)(\text { Losses })}{L}
$$

$$
\text { where: } \begin{aligned}
V_{\text {MEA }}= & \text { Voltage measured by a spectrum analyzer } \\
& \text { or calibrated receiver. }
\end{aligned} \quad \begin{aligned}
V_{\text {IN }}= & \text { Field intensity (volts/meter). } \\
\mathrm{L} & =\text { Half-wave length of antenna in meters. } \\
\text { Losses }= & \text { All mismatch, loading and insertion } \\
& \text { losses. (In this case }=13.7 \mathrm{~dB}=4.87)
\end{aligned}
$$

The length of a half-wave dipole antenna is found by:

$$
\mathrm{L}=\frac{\mathrm{Ck}}{2 f} \text { meters }
$$

where: $C=$ Speed of light in a vacuum.
$\mathrm{k}=\mathrm{A}$ constant related to antenna length to width ratios, end effects and surface effects. Use $\mathrm{k}=0.96$ for practical antenna rods $5 / 16$ " in diameter.
$f=$ Frequency of interest.

Simplified: $L=\frac{144}{f \mathrm{MHz}}$ meters


FIGURE 6

## Applications Information (Continued)

Now that we have a way in interpreting the field strength measurements we must deal with the technique used in making these measurements. Usually all measurements are done outside on a flat area away from trees, buildings, buried pipes or whatever. The test transmitter is placed on a wooden stool or table approximately 3 feet high such that the vertical antenna is in a vertical position. The receiving dipole is adjusted for the frequency of interest and orientated to the same plane as the transmitter and placed 3 meters from the transmitter. The dipole may be mounted on a wooden pole or ladder such that the height of the antenna can easily be changed. The antenna length must always be symmetrical about the center tapping balun transformer. The operator and his test equipment must be "behind" the dipole by some 3 or more feet. If it is desired to have the operator at a much more distant location the transmission line must be characterized for additional losses. A number of measurements should be made at each frequency fordifferent heights and orientations of both the transmitting and receiving antennas. The highest reading should be considered the correct reading. In addition to fundamental, sidebands and harmonic emissions, the frequency spectrum from 25 to 1000 MHz should also be scanned for spurious emissions greater than $50 \mu \mathrm{~V} /$ meter at 3 meters.

## Additional Applications

Figure 2 shows a typical application of the LM1872 Receiver/Decoder. The LM1872 consists of a crystal controlled local oscillator, IF amplifier, AGC, detector, decoder logic and digital channel output drivers. The supply voltage range of 2.5 V min to 7 V max was chosen to allow battery operation by four " $C$ " or " $D$ " cells.

Figure 7 shows how the LM1871 encoder can be used to frequency shift a 200 kHz carrier that is transmitted over the 110 V AC line in a home or office. Figure 8 shows how ON/OFF carrier modulation is also possible. An LM1872 could be used as a receiver/decoder for the Figure 8 transmitter circuit. When using an LM1872 the carrier frequencies should be 50 kHz or greater to insure proper detector operation.

Figure 9 shows the LM1871 configured for six analog channels with a TTL compatibleoutput. The $V_{\text {REG }}$ Voltage at pin 4 has been shorted to $\mathrm{V}_{\mathrm{CC}}$. This allows a $\mathrm{V}_{\mathrm{CC}(\mathrm{MIN})}$ of 3 V and $\mathrm{V}_{\mathrm{CC}(\mathrm{MAX})}$ of 6 V . The encoder output could be used for a fiber optic transmitter/receiver link, infra-red, tone keying or transducer carrier modulation. If the encoderoutput is hard wired to the Figure 10 serial input we can recover the six analog channels. From Figure 11 we see that the data input
will appear during the sync time which is always longer than any channel time ( $\mathrm{t}_{\mathrm{n}}$ ). Inverter X1 will discharge C1 each time the input goes high. During the longer sync time C 1 will charge up to the $1 / 2 \mathrm{~V}_{\mathrm{CC}}$ threshold of X 2 and via X 3 provide the data input. The R and C components are calculated by:
$\mathrm{t}_{\text {data delay }}=0.565 \mathrm{R1C} 1$
If large values of $\mathrm{C} 1(>0.01 \mu \mathrm{~F})$ are required the diode D1 should be replaced by a PNP transistor with the base on X1 output, emitter to X2 input and collector to ground.

In applications requiring ON/OFF decoding of a channel pulse width the circuit shown below could be used.


If the recovered channel pulse width is short $\left(t_{(\text {min })}\right) R 2$ and C 2 are selected such that the input to inverter X 4 does not rise to the $1 / 2 \mathrm{~V}_{C C}$ threshold. The output of X 4 will be high and the output of $X 5$ will be low. A longer input pulse $\left(t_{(\text {max }}\right)$ will allow the output of $X 4$ to go low pulling the input of $X 5$ low. R3 and C3 are selected such that the input to $X 5$ will not rise past the $1 / 2 \mathrm{~V}_{\mathrm{CC}}$ threshold during the remainder of the frame time. The $R$ and $c$ values are found by:

$$
\begin{aligned}
& \text { Given: } \quad t_{(\text {min })}=1.0 \mathrm{~ms}, \mathrm{C} 2=0.01 \mu \mathrm{~F} \\
& t_{(\text {max })}=2.0 \mathrm{~ms}, \mathrm{C} 3=0.1 \mu \mathrm{~F} \\
& \mathrm{t}_{\text {frame }}=20 \mathrm{~ms} \\
& 0.565 \mathrm{R2C} 2=\mathrm{t}_{(\text {min })}+\frac{\mathrm{t}_{(\text {max })}-\mathrm{t}_{(\text {min })}}{2}=1.5 \mathrm{~ms} \\
& R 2=\frac{1.5 \mathrm{~ms}}{0.565 \mathrm{C} 2}=270 \mathrm{k} \Omega \\
& R 3=\frac{t_{\text {frame }}}{0.565 \mathrm{C} 3}=360 \mathrm{k} \Omega
\end{aligned}
$$



FIGURE 7. LM1871, LM566 200 kHz Line Carrier Transmitter with FSK Carrier Modulation


Capacitor values in pF
Resistor values in $\Omega$
tselect for carrier freq.

$\mathrm{f}_{\mathrm{c}}$	C 4	$\mathrm{C7}$
200 kHz	82	1000
100 kHz	160	3900



FIGURE 9. LM1871 Six Analog Channel Encoder with TTL Compatible Output
FIGURE 10. Six Analog Channel Detector


FIGURE 11. Six Analog Channel Detector Waveforms

LM1871 Component Selection Guide


Pin 4. 4.6V regulator decoupling capacitor.
Pin 13. Modulator output RF decoupling capacitor. Improves carrier ON to OFF ratio.
Pin 14. $\mathrm{V}_{\mathrm{Cc}}$ decoupling capacitor.
Pin 10. RF oscillator/transmitter bias resistor.
Note: See Figure 4 for RF components. All timing capacitors should be low-drift (NPO) types.


## Industrial Blocks

## LM1872 Radio Control Receiver/Decoder

## General Description

The LM1872 is a complete RF receiver/decoder for radio control applications. The device is well suited for use at either $27 \mathrm{MHz}, 49 \mathrm{MHz}$ or 72 MHz in controlling various toys or hobby craft such as cars, boats, tanks, trucks, robots, planes, and trains. The crystal controlled superhet design offers both good sensitivity and selectivity. When operated in conjuction with the companion transmitter, LM1871, it provides four independent information channels. Two of these channels are analog. pulse width modulated (PWM) types, while the other two are simple ON/OFF digital channels with 100 mA drive capability. Either channel type can be converted to the other form through simple external circuitry such that up to 4 analog or up to 4 digital channels could be created. Few external parts are required to complement the self-contained device which includes local oscillator, mixer, IF detector, AGC, sync output drivers, and all decoder logic on-chip.

## Features

- Four independent information channels; two analog and two digital
- Completely self-contained
- Minimum of external parts
- Operation from 50 kilohertz to 72 MHz
- Highly selective and sensitive superhet design
- Operates from four 1.5 V cells
- Excellent supply noise rejection
- 100 mA digital output drivers
- Crystal controlled
- Interfaces directly with standard hobby servos


## Applications

[^55]
## Circuit Biock and Connection Diagram

Dual-In-Line Package


## Absolute Maximum Ratings

Supply Voltage
Package Dissipation (Note2)
Voltage (1) Pin $7,8,9,10,11$ or 12
Operating Temperature Range
Storage Temperature Range
LeadTemperature(Soldering, 10 seconds)

$$
\begin{array}{r}
7 \mathrm{~V} \\
1000 \mathrm{~mW} \\
\mathrm{~V}+ \\
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{Cto}+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

## DC Electrical Characteristics

$\mathrm{V}^{+}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test Circuit of Figure 1, $\mathrm{f}_{\mathrm{L} 0}=49.890 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=455 \mathrm{kHz}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Supply Voltage	Functional for $\mathrm{V}_{\text {IN }}=100 \mu \mathrm{~V}$	2.5	6	7	V
Supply Current	CH A \& B Off $C H$ A \& B On	9	$\begin{aligned} & 13 \\ & 27 \end{aligned}$	18	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$V_{\text {BIAS }}$	(1)Pin 4	i. 05	2.4	2.35	$v$
Sync Timer Threshold	@ Pin 13, Going from Low to High Voltage	$v+12-0.4$	$v+12$	$v+12+0.3$	V
Digital Channels $A$ and $B$   Saturation Voltage Saturation Resistance Source Current	(10) Pins 7 \& $9, R_{L}=100 \Omega$   @ Pins $7 \& 9$   (a) Pins $8 \& 10, V_{\operatorname{Pin} 8 \& \operatorname{Pin} 10} \leqslant 1 \mathrm{~V}$	100	0.4 7	0.7	$\begin{gathered} V \\ \Omega \\ \mathrm{~mA} \end{gathered}$
Collector Pull-Up   Resistance   Emitter Pull-Down   Resistance	$\operatorname{Pin} 7 \& \operatorname{Pin} 9$ to $V+$   $\operatorname{Pin} 8 \& \operatorname{Pin} 10$ to GND	5 5	10 10	20 20	$\mathrm{k} \Omega$ $\mathrm{k} \Omega$
Analog Channels 1 and 2 Saturation Voltage Saturation Resistance Collector Pull-up Resistance	(a) Pins $11 \& 12, R_{L}=2 \mathrm{k} \Omega$   @ Pins 11 \& 12   Pin 11 \& Pin 12 to $V^{+}$	5	$\begin{gathered} 0.45 \\ 160 \\ 10 \end{gathered}$	0.7 20	$\begin{gathered} V \\ \Omega \\ \mathrm{k} \Omega \end{gathered}$

## AC Electrical Characteristics

Parameter	Conditions	Min	Typ	Max	Units
RF Sensitivity	For "Solid" Decoded Outputs (Note 1)		22	39	$\mu \mathrm{V}$
RF Sensitivity	Circuit of Figure $5 @ 49 \mathrm{MHz}$ with Antenna Simulation Network of Figure 6		12		$\mu \mathrm{V}$
Voltage Gain	Pin 5 to Pin 15		58		dB
PSRR of RF Sensitivity	$3 \mathrm{~V} \leqslant \mathrm{~V}+\leqslant 6 \mathrm{~V}$		-1		\% $\Delta / V$
BW	3 dB Down @ Pin 15		3.2		kHz
Noise	Referred to Input, Pin 5, $\mathrm{V}_{\mathrm{iN}}=0$ Referred to IF, Pin 15, $\mathrm{V}_{\mathrm{IN}}=0$		$\begin{aligned} & 0.35 \\ & 0.28 \end{aligned}$		$\mu \mathrm{Vrms}$ mVrms
AGC Threshold	Onset of AGC Relative to RF Input, $\mathrm{V}_{\text {IN }}$ @ Pin 5   Relative to IF Output @ Pin 15	$V^{+}+0.07$	$\begin{gathered} 88 \\ v++0.100 \end{gathered}$	$V^{+}+0.13$	$\stackrel{\mu \mathrm{V}}{\mathrm{~V}}$
Mixer Conversion Transconductance	From Pin 5 to Pin 18 @ 1 MHz .   @ 27 MHz   @ 49 MHz	2.9	$\begin{aligned} & 4.0 \\ & 3.7 \\ & 3.5 \end{aligned}$	6.9	mmhos mmhos mmhos
Mixer Input Impedance	Pin 5 to Pin 4 @ 49 MHz (See Curves)		$\begin{aligned} & 20 \mathrm{k} \Omega \\ & +5 \mathrm{pF} \end{aligned}$		

AC Electrical Characteristics (Continued).

Parameter	Conditions	Min	Typ	Max	Units
Mixer Output Impedance	Pin 18 to GND		250		k $\Omega$
IF Transconductance	Pin 17 to Pin 15 (AGC Off)@ 455 kHz	2.6	4.1	5.6	mmhos
IF Input Impedance	Pin 17 to GND		5500		$\Omega$
IF Output Impedance	Pin 15 to GND (AGC Off) (AGC On)		$\begin{gathered} 800 \\ 2 \end{gathered}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
IF Carrier Level	$\begin{aligned} & @ \operatorname{Pin} 15, V_{I N}=100 \mu \mathrm{~V} \\ & (\mathrm{AGC} \mathrm{On}) \end{aligned}$		70		mVrms
Detector Threshold	Relative to RF Input, $\mathrm{V}_{\mathrm{IN}}$,   @ Pin 5   Relative to IF Output @ Pin 15	$\mathrm{V}^{+}+0.015$	20 $v^{+}+0.025$	$\mathrm{V}^{+}+0.040$	$\mu \mathrm{V}$ V
Analog Pulse Width Accuracy	Ratio of Received Pulse Width (a) Pins 11 \& 12 to Transmitted Pulse Width @ Pin 5 for $\mathrm{V}_{1 \mathrm{~N}}=$ $100 \mu \mathrm{~V}$	0.95	1.0	1.05	$\mathrm{ms} / \mathrm{ms}$

Note 1: The criteria for the outputs to be considered "solid" are as follows:
DIGITAL: In order to check the decoding section, four RF frames are inputted in sequence with the proper codes to exerclse all four possible logical output combinations at pins 7 and 9 . For each frame the proper output logic state must exist.
ANALOG: Each analog pulse width (measured at pins $11 \& 12$ ) in any of the above four successive frames must not vary more than $\pm 5 \%$ from the pulse widths obtained for $V_{I N}=100 \mu \mathrm{~V}$.
Note 2: For operation In amblent temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a package thermal resistance of $120^{\circ} \mathrm{C} \mathrm{W}$, Junction to amblent.

## Typical Performance Characteristics



## Typical Performance Characteristics (Continued)



Equivalent Mixer Input Shunt Resistance and Capacitance vs Frequency


Recelver AM Rejection vs RF Input Level


## Tee: Circuit



L1 = Toko* 10k type (KEN-4028 DZ); 6T
T1 = Toko* 10 EZC type (RMC 202313 NO), Qu = 110 Pin 1-2, 131T; pin 2-3, 33 T Pin 1-3, 164T; pin 4-6, 5 T

T2 = Toko* 10 EZC type (RMC 402503 NO), $\mathrm{Qu}=110$
Pin 1-2, 98T; pin 2-3, 66T
Pin 1-3, 164T; pin 4-6, 8 T

## Circuit Description

The following discussion is best understood by referring to Figures 2, 3, 4, and 5.

## SYSTEM ENCODING AND DECODING SCHEME

For the transfer of analog information, the LM1871/ LM1872 system uses conventional pulse width modulation (PWM). In applying this technique, the RF carrier is interrupted for short fixed intervals ( $\mathrm{t}_{\mathrm{M}}$ in Figure 2) with each interval followed by variable width pulses ( $t_{\mathrm{CH}}$ ) so as to define multiple variable time spans ( $t_{M}+t_{C H}$ ) occurring in serial fashion. Synchronization is accomplished by allowing one of the transmitted variable pulse widths ( $t_{\text {SYNC }}$ ) to exceed the duration ( $\mathrm{t}_{\text {SYNC }}$ ) of a receiver-based timer, thus allowing the receiver to recognize this pulse for synchronization purposes. Taken in sequence, this collection of pulses constitutes a single frame period $\left(\mathrm{t}_{\mathrm{F}}\right)$.

The LM1871 transmitter is equipped to transmit up to six channels which the companion LM1872 receiver uses to derive 2 analog and 2 digital channels. The receiver decodes the demodulated RF waveform from the transmitter by negative edge triggering a cascade of three binary dividers called the A, B, and C toggle flipflops (Figure 4). By "examining" all three flip-flop outputs simultaneously, up to 6 unique channel time intervals could be identified and recovered. Only the first two channels are actually decoded however and outputted by the receiver, the rest being used for identification of two digital (ON/OFF) channels. In passing digital information, a pulse count modulation scheme is used whereby different quantities of channel pulses are transmitted by varying the number of fixed width channels following the two variable width analog channels 1 and 2 (see Figure 3).


FIGURE 2. RX Timing Waveforms


FIGURE 3. Digital Channel Encoding and Decoding via Puise Count Modulation

## Circuit Description (Continued)



FIGURE 4. Simplified Schematic Diagram

## Circuit Description (Continued)

Thus either $3,4,5$, or 6 channels are transmitted to represent the four possible codes that two digital channels represent. The receiver intrinsically counts channels with its decoder flip-flops by responding to the negative edges of the demodulated RF waveform of which there is always one more than the number of channels. The two LSBs of the binary count are read, latched, and fed to the output drivers which comprise digital channels A and B .

## RECEIVER SECTION

The receiver circult is a simple, single conversion design with AGC which mixes down to 455 kHz and provides

58 dB of gain using the suggested transformers in Figure 5. The active digital detector provides an additional 30 dB gain over a silicon diode resulting in an overall system gain of 88 dB . More or less gain can be obtained by using different transformers. The frequency range of operation extends from 50 kHz to 72 MHz encompassing a wide range of allocated frequency bands.

The short ( $1^{\prime}$ to $2^{\prime}$ ) vertical whip antenna that is typically used has a very low radiation resistance ( $0.5 \Omega$ to $4 \Omega$ ) and approximately 3 pF to 5 pF of capacitance. This antenna is coupled to the mixer through a high Qtank consisting of C3


## Circuit Description (Continued)

and T3. This tank effectively keeps strong out-of-band signals such as FM and TV broadcast from crossmodulating with the desired signal. When operating at 49 MHz or 72 MHz , CB interference is also effectively minimized. Image rejection is relatively low, however, being only $7 \mathrm{~dB} @ 49 \mathrm{MHz}$, but this does not present a problem due to the usual absence of strong interfering signals 910 kHz below the desired signal.

The antenna signal is stepped down and DC coupled to the mixer which consists of the emitter-coupled pair Q1 and Q2. Emitter-follower, Q1, feeds the common-base device, Q2, while effectively buffering the antenna from the LO energy delivered by Q4. Mixer transconductance is 4 mmhos at low frequency ( 1 MHz ) falling to 3.3 mmhos at the upper end ( 72 MHz ).
The local oscillator utilizes an emitter coupled pair, Q3 and Q4, for accurate control of mixer drive, $I_{1}$. QuiescentIv. Q3 and Q4 share $I_{1}$ set by 0.69V/R5, but healthy voltage swings at pin 2 due to oscillation of Q3 implement thorough switching of the differential pair. As a result, the full 1.8 mA of drive "tailgates" (switches) the mixer emitter coupled pair, Q1 and Q2. This current is well regulated from supply voltage changes by the $\mathrm{V}_{\text {BIAS }}$ circuitry. The TC of $\mathrm{V}_{\text {BIAS }}$ is positive by design in order to impress a positive TC on $I_{1}$ so as to compensate for the temperature dependence of bipolar transconductance in the mixer. Inasmuch as Q4 operates as an emitter-gated, common-base-connected device, excellent isolation between local oscillator and mixer is obtained. As long as pin 4 is properly bypassed, Q5 presents a low impedance to the base of Q4, resulting in low oscillator noise. The oscillator easily operates up to 72 MHz with overtone crystals operating parallel mode.
The mixer signal is stepped down from the high $Q$ mixer tank, T 1 , and DC coupled to the IF via a secondary winding. The IF stage consists of Q7, Q8 and Q10 and delivers a transconductance of $4 \mathrm{mmhos} @ 455 \mathrm{kHz}$. The quiescent current, $\mathrm{I}_{2}$, is set at $120 \mu \mathrm{~A}$ by $\mathrm{V}_{\text {BIAS }}$ and a 6.2 k resistor. Again, the positive TC of $\mathrm{V}_{\text {BIAS }}$ is used to compensate for the temperature dependence of transconductance. Theimpedance at the IF output, pin 15 , is very high $(\geqslant 800 \mathrm{k})$ permitting the IF transformer, T , to operate at near unloaded Q (110). The overall 3 dB bandwidth of the receiver section is 3.2 kHz (see characteristic curves); this is narrow enough to permit adjacent channel operation without interference yet wide enough to pass the $500 \mu \mathrm{~s}$ modulation pulses $\left(\mathrm{t}_{\mathrm{M}}\right.$ in Figure 2).

The IF signal is DC coupled to the digital detector which consists of a high gain precision comparator, a $30 \mu \mathrm{~s} \mathrm{in}$ tegrator, and a supply-referred 25 mV voltage reference. Whenever the peak IF signal exceeds 25 mV , the comparator drives Q11 to reset the digital envelope detector capacitor, C 12 . Since it takes $30 \mu \mathrm{~s}$ for the $1 \mu \mathrm{~A}$ current source to ramp C 12 to the $3 \mathrm{~V}\left(\mathrm{~V}^{+} / 2\right)$ necessary to fire the Schmitt trigger, the presence of 455 kHz carrier (period $=2.2 \mu \mathrm{~s}$ ) greater than 25 mVp will prevent C 12 from ever reaching this threshold. When the carrier drops out, the Schmitt trigger will respond $30 \mu$ s later. This delay (like that associated with the burst response of the 455 kHz IF tanks) is constant over the time interval of interest. Thus, it is of no consequence to timing accuracy because the LM1872 responds only to negative edges in the decoder.

AGC is provided only to the IF; the mixer having sufficient overload recovery for the magnitude of signals available from a properly operating (i.e. good carrier ON/OFF ratio) $10,000 \mu \mathrm{~V} / \mathrm{m}$ transmitter. The AGC differential amplifier regulates the peak carrier level to 100 mV by comparing it to an internal 100 mV supply-referred voltage reference. The resultant error signal is amplified and drives Q9 via rectifier diode, D1, to shunt current away from Q10. C8 provides compensation for the AGC loop which spans a 70 dB range. The 100 mV AGC reference is accurately ratioed to the 25 mV detector reference to permit a controlled amount of brief carrier loss before dropping below detector threshold. Once into AGC, typically $60 \%$ amplitude modulation of the PWM carrier is possible before the detector will recognize the interference (see characteristic curves). This kind of noise immunity is invaluable when the troublesome effects of other physically close toys or walkie-talkies on the same or adjacent frequencles are encountered.

## DECODER SECTION

The purpose of the decoder is to extract the time information from the carrier for the analog channels and the pulse count information for the digital channels. The core of the decoder is a three-stage binary counter chain comprising flip-flops A, B, and C. The demodulated output from the detector Schmitt-trigger drives both the counter chain and the sync timer (Q12, R2, C6, and another Schmitt trigger). When the RF carrier drops out for the first modulation pulse, $t_{M}$, the falling edge advances the counter (see Figure 2.) During the $t_{M}$ interval the sync timer capacitor is held low by Q12. When the carrier comes up again for the variable channel interval, $\mathrm{t}_{\mathrm{CH}}, \mathrm{C} 6$ begins to ramp towards threshold $\left(V^{+} / 2\right)$ but is unable to reach it in the short time that is available. At the end of the $t_{\mathrm{CH}}$ period the carrier drops out again, the counter advances one more, and the sequence is repeated for the second analog channel. To decode the two analog channels, 3-input NAND gates G1 and G2 examine the counter chain binary output so as to identify the time slots that represent those channels. Decoded in this manner, the output pulse width equals the sum of $t_{M}$, a fixed pulse, and $\mathrm{t}_{\mathrm{CH}}$, a variable width pulse. A Darlington output driver interfaces this repetitive pulse to standard hobby servos.

Following the transmission of the second analog channel, a variable quantity from one to four, of fixed width pulses ( $500 \mu \mathrm{~s}$ ) are transmitted that contain the digital channel information. Up until the end of the pulse group frame period, $t_{F}$, the decoder responds as if these fixed pulses were analog channels but delivers no outputs. At the conclusion of the frame the sync pulse, $t_{\text {SYNC }}$, is sent. Since $t_{\text {SYNC }}$ is always made longer than the sync timerperiod ( t 'SYNC $=3.5$ ms ), the sync timer will output a sync signal to the first of two cascaded $10 \mu \mathrm{~s}$ one-shots. The first one-shot enables AND gates $G 3 \rightarrow G 6$ to read the $A$ and $B$ flip-flops of the counter into a pair of RS latches. The state of flip-flop A, for example, is then stored and buffered to drive 100 mA sink or source at the channel A digital output. An identical parallel path allows the state of flip-flop B to appear at the channel B power output. Upon conclusion of the $10 \mu \mathrm{~s}$ read pulse, another $10 \mu$ s one-shot is triggered that resets the counter to be ready for the next frame.

## Application Hints

A typical application circuit for either 27 MHz or 49 MHz is shown in Figure 5. Using the recommended antenna input networks and driving the circuit through the antenna slmulation network of Figure 6, a solid decoded output occurs for $10 \mu \mathrm{~V}$ and $12 \mu \mathrm{~V}$ input signals at 27 MHz and 49 MHz respectively.


FIGURE 6. Antenna Simulation Network
This sensitivity has been determined empirically to be optimum for toy vehicle applications. Less gain will reduce range unacceptably and more gain will increase susceptibility to noise. However, should the application require greater range ( $>50 \mathrm{~m}$ for a land vehicle, for example), either the antenna could be lengthened beyond $2^{\prime}$ and/or receiver sensitivity could be improved. There are a number of ways to alter the sensitivity of the receiver. Decreasing the turns ratio of input transformer, T3, for example, will couple more signal into the mixer at the expense of lower tank $Q$ due to mixer loading. Moving the primary tap on mixer transformer, T1, further from the supply side and/or decreasing the primary to secondary turns ratio will also increase gain. For example, just changing T 1 from a $32: 1$ primary to secondary ratio to a 5:1 turns ratio (Toko \#RMC202202) will double 49 MHz sensitivity ( $6 \mu \mathrm{~V}$ vs $12 \mu \mathrm{~V}$ ). Mixer tank Q will be affected but overall 3 dB BW will remain largely unchanged. The primary tap on the IF transformer, T2, can also be adjusted (further from the supply side) for higher gain, but it

is possible to cause the AGC loop to oscillate with this - method.

Narrow overall bandwidth is important for good receiver operation. The 3.2 kHz 3 dB bandwidth of the circuit in Figure 5 is just wide enough to pass $500 \mu \mathrm{~s}$ carrier dropout pulses, $t_{M}$, yet narrow enough to hold down electrical noise and reject potentially interfering adjacent channels. In the 49 MHz band, the five frequencies available are only 15 kHz apart. Should only two frequencies be used simultaneously, these channels could be chosen 60 kHz apart. Should three frequencies be used, the spacing could be no more than 30 kHz . At four or five frequencies, 15 kHz spacings must be dealt with, making narrow bandwidth highly desirable. Even at 27 MHz , where allocated frequencies are 50 kHz apart, the proliferation of CB stations only 10 kHz away represents a formidable source of interference. The response of the circuit of Figure 5 Is 34 dB and 56 dB down at 15 kHz and 50 kHz away, respectively (see characteristic curves).

The sync timer should have a timeout, $\mathrm{t}_{\mathbf{S Y N C}}$, set longer than the longest channel pulse transmitted, but shorter than the shortest sync pulse, $\mathrm{t}_{\mathrm{SYNC}}$, transmitted. Using the component values in Figure $5, \mathrm{t}^{\prime}{ }_{\text {SYNC }},=3.5 \mathrm{~ms}$, which works well with a transmitted synce pulse, $\mathrm{t}_{\mathrm{SYNC}} \geqslant 5 \mathrm{~ms}$.
Numerous bypass capacitors appear in the circuit of Figure 5, not all of which may be necessary for good stability and performance. A low cost approach may eliminate one or more of the capacitors C1, C9, C10, and C11. The cleaner and tighter the PCB layout used, the more likely is the case that bypass capacitors can be eliminated. In the case of marginal board stability, increasing the size of capacitors C7, C9, and C10 to $0.1 \mu \mathrm{~F}$ may prove helpful. If the PCB layout and parts loading diagram shown in Figure 7 is used, the circuit will be quite stable up to 72 MHz .


FIGURE 7. PCB Layout, Stuffing Diagram and Complete RX Module for Typical Application Circuit of Figure 5

## Application Hints（Continued）

The digital channel output devices have significant drive capability；they can typically sink 100 mA and posses a $7 \Omega$ saturation resistance．Through their emitters they can source 100 mA up to 1 V above ground for driving ground－ ed NPNs and SCRs．Unfortunately，this kind of drive capability can cause thermally induced chip destruction unless total power dissipation is limited to less than 1000 mW ．It is good practice and highly recommended to allow the digital output devices to fully saturate at all times（sinking or sourcing）and to limit the current at saturation to no more than 100 mA ．For extra drive the two digital outputs can always be summed by connect－ ing pin 7 to pin 9.

The IF frequency is not constrained to be 455 kHz ．Opera－ tion is limited on the high end to about 1 MHz due to the frequency response limitations of the active detector． The low end is limited to about 50 kHz due to the


## Receiver Alignment

The receiver alignment procedure is relatively straightfor－ ward because of an absence of interaction between the adjustments．First，the oscillator is tuned by adjusting L1 while monitoring the LO signal at pin 2 with a low capaci－ ty（ $\cong 10 \mathrm{pF}$ ）probe．During tuning the amplitude will rise， peak，and then abruptly quit．Adjust the toil away from the quitting point and just below the amplitude peak．

In order to properly tune T1，T2，and T3，the RF signal must be provided through the receiver antenna by the specific transmitter which is to be used with that specific receiver．This is because the crystals which are common－ ly used with these systems may have tolerances as loose as $\pm 0.01 \%$ ．At 49 MHz the resultant $\pm 5 \mathrm{kHz}$ deviation could easily put the incoming signal out of the 3.2 kHz receiver IF bandpass．The signal should be coupled through the receiving antenna to ensure proper loading of the T3 input tank．

Alignment is easier with a defeated AGC，which is ac－ complished by merely grounding pin 16．The amplitude of the 455 kHz signal at pin 15 is used to guide alignment．Care should be exercised that the signal swing not exceed roughly 400 mVp or diode，D2，in Figure 4 will threshold and clamp the waveform．Also note that a standard 10 pF probe at pin 15 will shift the IF tank frequency an undesirable 2 kHz ．Unless a lower capacity probe is available，it is recommended that the signal be monitored at the unused secondary of T2．Although the signal amplitude would be down by a factor of 8.25 relative to pin 15 ，up to 50 pF probe capacitance could be tolerated with negligible frequency shift．

The incoming signal is obtained by removing the antenna from the transmitter and then locating the transmitter at a sufficient distance from the receiver to give a conven－ ient signal level（ $\leqslant 400 \mathrm{mVp}$ ）at pin 15．T3，T1，and T2 are then tuned for maximum signal．

## Applications

## Operation at $72 \mathbf{M H z}$

The licensed 72 MHz band is popular among hobby en－ thusiasts for controlling aircraft．The higher transmitted power levels that the FCC allows yield much greater operating range and the frequency band is uncluttered relative to 27 MHz ．Elevated frequencies such as 72 MHz are no problem with the LM1872．The part is stable and will provide good sensitivity and selectivity at that fre－ quency．The application circuit in Figure 8 will provide a set of solid decoded outputs for $<2 \mu \mathrm{~V}$ of signal at the antenna input，which is designed to match the $100 \Omega$ resistive impedance of the $1 / 4$ wavelength antenna．IF bandwidth is a respectable 3.2 kHz ．For good immunity to overload from a very closely（antennas touching） operating high power transmitter，the transmitter design should emphasize a high carrier ON／OFF ratio．Using the LM1871 as a low power exciter to drive one or more exter－ nal class $C$ power amplifier stages will result in a simple， ニこここかさab！と，！a！！enst transmittor at 72 MHz ．

Inasmuch as many hobby applications require more analog channels than the LM1872 normally provides，par－ ticular attention should be paid to Figures 10 and 12 which describe how to expand analog channel capacity up to 4 and 6 channels，respectively．

## Operation with an IR Carrier

An infra－red（or visible）light data link is a useful alterna－ tive to its RF counterpart．Should the application demand that the radiation not leave the room，or that it be direc－ tional，or not involve FCC certification then a light carrier should be given consideration．The principal drawbacks to this approach include short range（ $\$ 20 \mathrm{ft}$ ．）and high transmitter power consumption．There is little that can be done to dramatically improve range，but short burst－ type operation of the transmitter will still permit battery operation．

The information link（Figure 9a）consists of a light carrier amplitude modulated by a 455 kHz subcarrier．The sub－ carrier in turn is modulated by the normal Pulse Width／ Pulse Count Scheme produced be the LM1871 encoder．A husky，focused LED is used as the transmitter running Class A $100 \%$ modulated with an average current drain of 50 mA to 500 mA depending upon range requirements． The detector consists of a large area silicon PN or PIN photodiode for good sensitivity．The LM1872 will directly interface to such a diode and give very good perfor－ mance．Only a few nanoamps of photo current from D1 are required to threshold the detector．Ambient light re－ jection is excellent due to the very narrow bandwidth（ $\cong 3$ kHz ）that results from the use of three high Q 455 kHz transformers，T1，T2，and T3．Note that the LO has been defeated and the mixer runs as a conventional 455 kHz amplifier．Otherwise，circuit operation is the same as if an RF carrier were being received．

## Applications (Continued)



R1 - Motor decoupling
R2 - Sync timer; R2 $=\frac{\mathrm{t}^{\prime} \text { SYNC }}{0.7 \mathrm{C6}}, \mathrm{R} 2 \leq 470 \mathrm{k}$
R3 - Mixer decoupling
C1 - LO bypass; optlonal
C2 - LO tank; C2 = 22 pF @ 72 MHz
C3 - Ant. Input tank; C3 = 24 pF © 72 MHz
C4 - $V_{\text {BIAS }}$ bypass
C5 - Motor decoupling
C6 - Sync timer; C6 $=\frac{\text { t'SYNC }}{0.7 \mathrm{R} 2}, \mathrm{C} 6 \leq 0.5 \mu \mathrm{~F}$
C7 - Mixer decouple; $0.01 \mu \mathrm{~F} \leq \mathrm{C} 7 \leq 0.1 \mu \mathrm{~F}$
C8 - AGC
C9 - IF bypass; optional
$\mathrm{C} 10-\mathrm{V}^{+}$bypass; $0.01 \mu \mathrm{~F} \leq \mathrm{C} 10 \leq 0.1 \mu \mathrm{~F}$

C12-Ant. Input tank; C12 $=160 \mathrm{pF}$ (ब) 72 iviHz
L1 - LO coil
Toko* 10k type (KENC) 4T; $0.2 \mu \mathrm{H}$ @ 72 MHz
L1 could be made a flxed coil, if desired.
T1 - 455 kHz mixer transformer
Toko* 10 EZC type (RMC-502182), $Q u=110$
Pin 1-2, 82T; pin 2-3, 82T
Pin 1-3, 164 T; pin 4-6, 30T
T2 - 455 kHz . IF transformer
Toko* 10 EZC type (RMC-502503), $\mathrm{Qu}=110$
Pin 1-2, 82T; pin 2-3, 82 T
Pin 1-3, 164T; pin 4-6, 8 T
T3 - Ant. input transformer
Toko-10k type (KENC), 4T sec. \& 2T pri. of $0.2 \mu \mathrm{H}$ @ 72 MHz
X1 - 5th overtone crystal, parallel-mode, 72 MHz
D1 - Electrostatic discharge (ESD) protection

* Toko America, Inc.

5520 West Touhy Ave.
Skokle, III. 60077
(312)677.3640 TIx: 72-4372

FIGURE 8. 72 MHz Recelver Circult

In a practical. remote data link, the transmitter could be battery operated and set up to transmit for brief intervals only in order to save power. The brief transmission could be used to set or reset the digital output latches in the LM1872 and /or command new motor positions via the analog channels. After transmission, the commands would be stored electrically in the case of the digital
channels and the mechanically in the case of the analog channels.

As a final note, if the case of D1 is connected to the anode rather than the cathode, the circuit of Figure 9b should be used at the input to maintain electromagnetic shielding.


FIGURE 9a. IR Type Data Link
R1 - Load decoupling
R2 - Sync timer; R2 $=\frac{\mathrm{t}}{0.7 \mathrm{C} 6}, R 2 \leq 470 \mathrm{k}$
R3 - Preamp decoupling
R5 - Photodiode decoupling
C1 - Photodiode decoupling
C2 - V ${ }_{\text {BIAS }}$ bypass
C3 $-V^{+}$bypass
C4 - Load decoupling
C5 - IF bypass; optional
C6 - Sync timer; C6 $=\frac{\text { t'SYNC }^{\prime} \text { S }}{0.7 \mathrm{R} 2}, \mathrm{C} 6 \leq 0.5 \mu \mathrm{~F}$
C7 - Preamp decoupling
C8 - AGC
T1 - 455 kHz preamp transformer
Toko* 10 EZC type (RMC-502182), $\mathrm{Qu}=110$
Pin 1-2, 82T; pin 2-3, 82T
Pin 1-3, 164T; pin 4-6, 30T
T2 - 455 kHz IF transformer
Toko* 10 EZC type (RMC-402503), $Q u=110$
Pin 1-2, 98T; pin 2-3, 66T
Piǹ 1-3, 164T; pin 4-6, 8 T
T3 - 455 kHz input transformer

- Toko* 10 EZC type (RMC-202313), Qu=110

Pin 1-2, 131T; pin 2-3, 33T
Pin 1-3, 164T; pin 4-6, 5 T
D1 - PN or PIN Silicon Photodiode

* Toko America, Inc.

5520 West Touhy Ave.
Skokie, III. 60077
(312)677-3640 Tix: 72-4372


FIGURE 9b. Input Stage Where the Case of D1 is Connected to the Anode

## Applications

## Expansion to Four Analog Channels

For those applications that require more than the two analog channels that are normally provided, the LM1872 can easily be expanded to 4 channels with appropriate external circuitry. This is accomplished by creating a pseudo-sync pulse ( $\mathrm{t}_{\mathrm{ps}}$ ) among a six channel transmitted frame from the LM1871 (Figure 10). The pseudo-sync pulse deceives the decoder in the LM1872 causing premature recognition of end-of-frame, effectively splitting a single' frame into two. The idea is to transmit analog channels 1 and 2 in the first half of the normal frame period and analog channels 3 and 4 in the second half. External logic will then steer the four channels from the LM1872's only two analog output pins into four new analog outputs. Steering is accomplished with the help of one of the digital channels. Inasmuch as the digital channels respond only to the number of pulses received
between any two sync (or pseudo-sync!) pulses, the channels are capable of toggling in step with the alternating transmission of two and three channel pulse mini-groups occurring within each half frame. Figure 10a reveals that both digital channels $A$ and $B$ are high during the dual pulse half frame and low during its triple pulse counterpart. Figure 10b shows just how simple the external circuitry can be. Digital channel B drives the channel select pin of a quad 2 -input MUX that routes the LM1872 channels 1 and 2 outputs to the four new outputs labeled analog 1 through 4.

Although not the model of simplicity of Figure 10b, Figure 10 c is a lower cost alternative that works just as well. The diodes with the asterisk prevent a ground step from occurring that could false trip an excessively edge sensitive servo and can be eliminated in many cases.

a) Transmitter, Receiver, and Auxiliary Decoder Timing Diagram

FIGURE 10. Deriving Four Analog Channels Through the Use of an Auxiliary Decoder


c) Low-Cost Decoding of Four Analog Channels with DTL

FIGURE 10. Deriving Four Analog Channels Through the Use of an Auxillary Decoder

## Four Single Channel Recelvers Driven from a Single Transmitter

When it is desired to control more than two vehicles or remote stations with the analog information from a single transmitter, the LM1872 can be put to the task. By utilizing the frame splitting technique previously described in Figure 10, up to four independent single analog channel receivers can be made to operate from a
single transmitter (Figure 11). Toggling digital channel A, either directly or through an inversion, is used to suppress a given receiver's analog output when the undesired analog channels are transmitted. In this manner, only the desired analog channel is outputted at each receiver. The amount of external circuitry required to do this is minimal; two receivers require a single transistor apiece while the other two receivers need no extra parts at all.

Applications (Continued)

a) Transmitter, Receiver, and Separated Channels Timing Diagram

b) Simple Channal Saparatlon with Two Exiernal Transisiors

FIGURE 11. Obtaining Four Independent Single Analog Channel Receivers from a Single Common Transmitter

## Applications (Continued)

## Expansion to Six Analog Channels

Still greater analog capacity can be obtained with an outboard auxiliary decoder. The LM1872, a simple comparator, and an 8-bit parallel-out serial shift register comprise a six analog channel receiver/decoder (Figure 12). The one transistor comparator reconstructs the detector output of the LM1872 from the sync timer waveform and feeds it to the clock input of the shift register. The channel 1 output then loads a "one" into the register and the clock shifts the "one" down the line of analog channel outputs in accordance with the time information from the detector output. Note that the reconstructed detector waveform lags the channel 1 output very slightly ( $\cong 10 \mu \mathrm{~s}$ ) due to the finite slope of the sync capacitor discharge edge. This delay is very important as it insures that channel 1 is high when the clock strikes initially (thus loading a " 1 ") and low for each subsequent positive clock edge (thus preventing the loading of extraneous " 1 's").

## Converting an Analog Channel to a Digltal Channel

Either analog channel can be converted to a digital channel with the aid of a low cost CMOS hex inverter (Figure 13). The internal 10 k resistor and external capacitor, C1, set a time constant ( 1 ms ) that falls between a short ( 0.5 ms ) and a long ( 2 ms ) transmitted pulse option. For pulses longer than 1 ms , the first inverter will pull low momentarily once each frame. Repetitive discharges of C 2 prevent it from ever reaching threshold ( $\mathrm{V}^{+} / 2$ ) because the R1 C2 time constant is set longer ( 70 ms ) than the frame period. With the inverter input below threshold, Q1 will energize the load. For analog output pulses shorter than 1 ms , the first inverter will back bias D1 allowing C2 to ramp past threshold and Q1 to go off. For extra output drive, the remaining inverters in the package can be paralleled to drive Q1. Alternatively, for light loads Q1 can be eliminated altogether.

a) Six Channel Timing Diagram

b) Six Channel Auxillary Decoder

FIGURE 12. Deriving SIx Analog Channels

## Applications (Continued)

Where only one of the two available analog channels needs conversion to a digital format, the LM555 approach offers simplicity combined with up to 150 mA of output drive (Figure 14). The trailing edge of CH 1 's output pulse is used to reset the timer in preparation for comparing CH 2's pulse width to the time constant (1.1 ms ) set by the internal 10k resistor and C1. For CH 2 pulse widths greater than 1.1 ms C1 ramps to threshold,
setting an internal latch in the LM555 and causing the load to be energized. Due to the timing of the reset pulse, however, the LM555 output will go high again for 1.1 ms during the next pulse comparison cycle thus producing an ON state duty cycle of about $95 \%$. For most commonly encountered loads such as motors, solenoids, lamps, and horns, this is of little consequence. The OFF state duty cycle is $100 \%$.


FIGURE 13. Conversion of an Analog Channel to a Digital (On/Off) Channel


FIGURE 14. SImple Conversion of an Analog to a Digital Channel

## Applications (Continued)

## Bridge Driving a Motor

The two digital channels can be used to propel a car forward, off, and reverse without the need for a costly servo (Figure 16). The 100 mA digital output capability is used to drive a bridge of four transistors with Q5 added as a protection device. Should an erroneous command to power both sides of the bridge occur (as may happen due to noise with the car out of range) the large motor drive transistors would fight one another resulting in the thermal destruction of one or more of those devices. But Q5 will disable the left side of the bridge whenever the right side is powered preventing the problem from ever occurring. The motor noise suppression network shown has proven to be especially effective in reducing electrical noise and is therefore highly recommended.

## Noise Integration of a Digital Channel

Commonly available inexpensive DC motors are a formidable source of electromagnetic interference. Radia-
tion can come from the power feed leads and/or directly from the brushes. Usually proper lead dress and board orientation coupled with a good filter network (see Figure 16) will eliminate any problems. In particularly stubborn cases of motor interference, the digital channels may experience more objectionable interference than the analog channels. This is generally not because the digital channels are more susceptible, but rather because the type of load they typically drive (i.e. a horn) will make more of a nuisance of itself than a typical analog load (i.e. a steering servo) when subjected to interference.

Straightforward time integration of the digital channel outputs works very well with any type or degree of motor interference. The simple circuits of Figure 17 integrate over a period of about three frames ( 70 ms ) and have approximately equal delay either going off or coming on.


FIGURE 15. Interfacing Directly to Standard Hobby Servos


FIGURE 16. Digital Bridge Motor Drive


FIGURE 17. Integrating a Digital Channel Output to Achieve Noise Immunity

National

## Semiconductor

## LM2907, LM2917 Frequency to Voltage Converter

## General Description

The LM2907, LM2917 series are monolithic frequency to voltage converters with a high gain op amp/comparator designed to operate a relay, lamp, or other load when the input frequency reaches or exceeds a selected rate. The tachometer uses a charge pump technique, and offers frequency doubling for low ripple, full input protection in two versions (LM2907-8, LM2917-8) and its output swings to ground for a zero frequency input.

## Advantages

- Output swings to ground for zero frequency input
- Easy to use; $\mathrm{V}_{\text {OUT }}=\mathrm{f}_{\text {IN }} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{R} 1 \times \mathrm{C} 1$
- Only one RC network provides frequency doubling
- Zener regulator on chip allows accurate and stable frequency to voltage or current conversion. (LM2917)


## Features

- Ground referenced tachometer input interfaces directly with variable reluctance magnetic pickups
- Op amp/comparator has floating transistor output
- 50 mA sink or source to operate relays, solenoids, meters, or LEDs
- Frequency doubling for low ripple
- Tachometer has built-in hysteresis with either differential input or ground referenced input
- Built-in zener on LM2917
- $\pm 0.3 \%$ linearity typical
- Ground referenced tachometer is fully protected from damage due to swings above $\mathrm{V}_{\mathrm{cc}}$ and below ground


## Applications

- Over/under speed sensing
- Frequency to voltage conversion (tachometer)
- Speedometers
- Breaker point dwell meters
- Hand-held tachometer
- Speed governors
- Cruise control
- Automotive door lock control
- Clutch control
- Horn control
- Touch or sound switches

Block and Connection Diagrams Dual-In-Line Packages, Top Views


Order Number LM2907J
See NS Package J14A
Order Number LM2907N
See NS Package N14A


Order Number LM2917J
See NS Package J14A
Order Number LM2917N See NS Package N14A

Supply Voltage	28 V
Supply Current (Zener Options)	25 mA
Collector Voltage	28 V
Differential Input Voltage	
$\quad$ Tachometer	28 V
Op Amp/Comparator	28 V

Input Voltage Range
Tachometer LM2907-8, LM2917-8
LM2907, LM2917
Op Amp/Comparator
Power Dissipation
Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering, 10 seconds)
$\pm 28 \mathrm{~V}$
0.0 V to +28 V 0.0 V to +28 V 500 mW $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see test circuit

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
TACHOMETER					
Input Thresholds   Hysteresis   Offset Voltage   LM2907/LM2917   LM2907-8/LM2917-8   Input Bias Current   $\mathrm{V}_{\mathrm{OH}}$ Pin 2   $V_{\text {OL }}$   Output Current; $I_{2}, I_{3}$   Leakage Current; $I_{3}$   Gain Constant, K   Linearity	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=250 \mathrm{mVp}-\mathrm{p} @ 1 \mathrm{kHz}(\text { Note } 2) \\ & \mathrm{V}_{\mathrm{IN}}=250 \mathrm{mVp}-\mathrm{p} @ 1 \mathrm{kHz}(\text { Note } 2) \\ & \mathrm{V}_{\mathrm{IN}}=250 \mathrm{mVp}-\mathrm{p} @ 1 \mathrm{kHz}(\text { Note 2) } \end{aligned}$ $\begin{aligned} & V_{I N}= \pm 50 \mathrm{~m} V_{D C} \\ & V_{I N}=+125 \mathrm{~m} V_{D C}(\text { Note } 3) \\ & V_{I N}=-125 \mathrm{~m} V_{D C}(\text { Note 3) } \\ & V 2=V 3=6.0 V(\text { Note } 4) \\ & 12=0, V 3=0 \end{aligned}$   (Note 3)	$\pm 10$ $\begin{array}{r} 140 \\ 0.9 \\ -1.0 \end{array}$	$\begin{gathered} \pm 15 \\ 30 \\ \\ 3.5 \\ 5 \\ 0.1 \\ 8.3 \\ 2.3 \\ 180 \\ \\ 1.0 \\ 0.3 \end{gathered}$	$\begin{gathered} \pm 40 \\ \\ 10 \\ 15 \\ 1 \\ \\ 240 \\ 0.1 \\ \cdot 1.1 \\ +1.0 \end{gathered}$	$m V$   $m V$   $m V$   $m V$   $\mu A$   $V$
OP/AMP COMPARATOR					
$V_{\text {OS }}$   $I_{\text {BIAS }}$   Input Common-Mode Voltage   Voltage Gain   Output Sink Current   Output Source Current   Saturation Voltage	$\begin{aligned} & V_{I N}=6.0 \mathrm{~V} \\ & V_{i N}=6.0 \mathrm{~V} \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\mathrm{C}}=1.0 \\ & \mathrm{~V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}-2.0 \\ & \mathrm{I}_{\operatorname{SINK}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=50 \mathrm{~mA} \end{aligned}$	0 40	3   50   200   50   10   0.1   1.0	$\begin{gathered} 10 \\ 500 \\ \mathrm{~V}_{\mathrm{cc}}-1.5 \mathrm{~V} \\ \\ \\ \\ 0.5 \\ 1.0 \\ 1.5 \end{gathered}$	$m V$ $n A$ $V$ $V / m V$ $m A$ $m A$ $V$ $V$ $V$

## ZENER REGULATOR

Regulator Voltage	$\mathrm{R}_{\text {DROP }}=470 \Omega$		7.56		V
Series Resistance			10.5	15	$\Omega$
Temperature Stability			+1		$\mathrm{mV}{ }^{\circ} \mathrm{C}$
TOTAL SUPPLY CURRENT			3.8	6	mA

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for package 22 and 16 or a thermal resistance $187^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for package 20.
Note 2: Hysteresis is the sum $+\mathrm{V}_{\mathrm{TH}}{ }^{-}\left(-\mathrm{V}_{\mathrm{TH}}\right)$, offset voltage is their difference. See test circuit.
Note 3: $V_{\mathrm{OH}}$ is equal to $3 / 4 \times \mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{OL}}$ is equal to $1 / 4 \times \mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}_{\mathrm{BE}}$ therefore $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{CC}} / 2$. The difference, $\mathrm{V}_{\mathrm{OH}}-$ $V_{O L}$, and the mirror gain, $1_{2} / 1_{3}$, are the two factors that cause the tachometer gain constant to vary from 1.0 .
Note 4: Be sure when choosing the time constant R1 $\times$ C1 that R1 is such that the maximum anticipated output voltage at pin 3 can be reached with $I_{3} \times R 1$. The maximum value for R1 is limited by the output resistance of pin 3 which is greater than $10 \mathrm{M} \Omega$ typically.
Note 5: Nonlinearity is defined as the deviation of $V_{\text {out }}$ (@ pin 3) for $f_{\mathrm{IN}}=5 \mathrm{kHz}$ from a straight line defined by the $\mathrm{V}_{\text {OUT }} @ 1 \mathrm{kHz}$ and $\mathrm{V}_{\text {OUT }}$ @ $10 \mathrm{kHz} . \mathrm{C} 1=1000 \mathrm{pF}, \mathrm{R} 1=68 \mathrm{k}$ and $\mathrm{C} 2=0.22 \mathrm{mFd}$.


Tachometer Currents $\mathrm{I}_{2}$ and $\mathrm{I}_{3}$ vs Supply Voltage



Normalized Tachometer Output vs Temperature


Tachometer Currents $\mathrm{I}_{2}$ and $I_{3}$ vs Temperature


Typical Performance Characteristics (Continued)

Tachometer Linearity vs Temperature


Tachometer Linearity vs R1


Op Amp Output Transistor Characteristics


Tachometer Linearity vs Temperature


Tachometer Input Hysteresis vs Temperature


Op Amp Output Transistor Characteristics


## General Description <br> （Continued）

The op amp／comparator is fully compatible with the tachometer and has a floating transistor as its output． This feature allows either a ground or supply referred load of up to 50 mA ．The collector may be taken above $V_{C C}$ up to a maximum $V_{C E}$ of 28 V ．

The two basic configurations offered include an 8 －pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non－inverting input．This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications．

## Test Circuit and Waveform



## Applications Information

The LM2907 series of tachometer circuits is designed for minimum external part count applications and maximum versatility．In order to fully exploit its features and advantages let＇s examine its theory of operation．The first stage of operation is a differential amplifier driving a positive feedback flip－flop circuit． The input threshold voltage is the amount of differen－ tial input voltage at which the output of this stage changes state．Two options（LM2907－8，LM2917－8） have one input internally grounded so that an input signal must swing above and below ground and exceed the input thresholds to produce an output．This is offered specifically for magnetic variable reluctance pickups which typically provide a single－ended ac output．This single input is also fully protected against voltage swings to $\pm 28 \mathrm{~V}$ ，which are easily attained with these types of pickups．

The differential input options（LM2907，LM2917） give the user the option of setting his own input switching level and still have the hysteresis around that level for excellent noise rejection in any application． Of course in order to allow the inputs to attain common－ mode voltages above ground，input protection is removed

The more versatile configurations provide differential tachometer input and uncommitted op amp inputs． With this version the tachometer input may be floated and the op amp becomes suitable for active filter condi－ tioning of the tachometer output．

Both of these configurations are available with an active shunt regulator connected across the power leads．The regulator clamps the supply such that stable frequency to voltage and frequency to current operations are possible with any supply voltage and a suitable resistor．

I acnometer inpux Tirresisvici ivioasur üにだ：

and neither input should be taken outside the limits of the supply voltage being used．It is very important that an input not go below ground without some resis－ tance in its lead to limit the current that will then flow in the epi－substrate diode．

Following the input stage is the charge pump where the input frequency is converted to a dc voltage．To do this requires one timing capacitor，one output resistor，and an integrating or filter capacitor．When the input stage changes state（due to a suitable zero crossing or differ－ ential voltage on the input）the timing capacitor is either charged or discharged linearily between two voltages whose difference is $\mathrm{V}_{\mathrm{cc}} / 2$ ．Then in one half cycle of the input frequency or a time equal to $1 / 2 \mathrm{f}_{\mathrm{IN}}$ the change in charge on the timing capacitor is equal to $\mathrm{V}_{\mathrm{cc}} / 2 \times \mathrm{C} 1$ ．The average amount of current pumped into or out of the capacitor then is：

$$
\frac{\Delta Q}{T}=i_{c(A V G)}=C 1 \times \frac{V_{C C}}{2} \times\left(2 f_{I N}\right)=V_{C C} \times f_{I N} \times C 1
$$

The output circuit mirrors this current very accurately into the load resistor R1，connected to ground，such that if the pulses of current are integrated with a filter

Applications Information (Continued)
capacitor, then, $\mathrm{V}_{\mathrm{o}}=\mathrm{i}_{\mathrm{c}} \times \mathrm{R} 1$, and the total conversion equation becomes:
$V_{O}=V_{C C} \times f_{I N} \times C 1 \times R 1 \times K$
Where $K$ is the gain constant-typically 1.0 .
The size of C 2 is dependent only on the amount of ripple voltage allowable and the required response time.

## CHOOSING R1 AND C1

There are some limitations on the choice of R1 and C1 which should be considered for optimum performance. The timing capacitor also provides internal compensation for the charge pump and should be kept larger than 100 pF for very accurate operation. Smaller values can cause an error current on R1, especially at low temperatures. Several considerations must be met when choosing R1. The output current at pin 3 is internally fixed and therefore $V_{0} / R 1$ must be less than or equal to this value. If R1 is too large, it can become a significant fraction of the output impedance at pin 3 which degrades linearity. Also output ripple voltage must be considered and the size of C2 is affected by R1. An expression that describes the ripple content on pin 3 for a single R1C2 combination is:
$V_{\text {RIPPLE }}=\frac{V_{C C}}{2} \times \frac{C 1}{C 2} \times\left(1-\frac{V_{C C} \times f_{I N} \times C 1}{I_{2}}\right) p k-p k$
It appears R1 can be chosen independent of ripple,
however response time, or the time it takes $\mathrm{V}_{\text {Out }}$ to stabilize at a new voltage increases as the size of C2 increases so a compromise between ripple, response time, and linearity must be chosen carefully.

As a final consideration, the maximum attainable input frequency is determined by $\mathrm{V}_{\mathrm{cc}}, \mathrm{C} 1$ and $\mathrm{I}_{2}$ :
$f_{\text {MAX }}=\frac{I_{2}}{C 1 \times V_{C C}}$

## USING ZENER REGULATED OPTIONS (LM2917)

For those applications where an output voltage or current must be obtained independent of supply voltage variations, the LM2917 is offered. The most important consideration in choosing a dropping resistor from the unregulated supply to the device is that the tachometer and op amp circuitry alone require about 3 mA at the voltage level provided by the zener. At low supply voltages there must be some current flowing in the resistor above the 3 mA circuit current to operate the regulator. As an example, if the raw supply varies from 9 to 16 V , a resistance of $470 \Omega$ will minimize the zener voltage variation to 160 mV . If the resistance goes under $400 \Omega$ or over $600 \Omega$ the zener variation quickly rises above 200 mV for the same input variation.

## Typical Applications


"Speed Switch" Load is Energized When $\mathrm{f}_{\mathrm{I} N} \geq \frac{1}{2 R C}$


Zener Regulated Frequency to Voltage Converter


Typical Applications (Continued)

## Two Wire Femote Speed Switch



100 Cycle Delay Switch

for each complete input cycle (2 zero crossings)
Example:
If $\mathrm{C} 2=200 \mathrm{C} 1$ after 100 consecutive input cycles.

$$
V 3=1 / 2 V_{C C}
$$

## Variable Reluctance Magnetic Pickup Buffer Circuits



Typical Applications (Continued)


Frequency to Voltage Converter with


$$
{ }^{\mathrm{f} P O L E}=\frac{0.707}{2 \pi R C}
$$



Overspeed Latch


Typical Applications (Continued)
Some Frequency Switch Applications May Require Hysteresis in the Comparator
Function Which Can Be Implemented in Several Ways:




Typical Applications (Continued)



Changing Tachometer Gain Curve or Clamping the Minimum Output Voltage



## Anti-Skid Circuit Functions



## Equivalent Schematic Diagram



* Note: This connection made on LM2907-8 and LM2917-8 only.
* Note: This connection made on LM2917 and LM2917-8 only.

Industrial Blocks

## LM3080/LM3080A Operational Transconductance Amplifier

## General Description

The LM3080 is a programmable transconductance block intended to fulfill a wide variety of variable gain applications. The LM3080 has differential inputs and high impedance push-pull outputs. The device has high input impedance and its transconductance ( gm ) is directly proportional to the amplifier bias current ( $\left.\right|_{\mathrm{ABC}}$ ).

High slew rate together with programmable gain make the LM3080 an ideal choice for variable gain applications such as sample and hold, multiplexing, filtering, and multiplying.

The LM3080AH and LM3080AJ are guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the LM3080N, LM3080H, LM3080AN and LM3080J are guaranteed from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## Features

- Slew Rate (unity gain compensated): $50 \mathrm{~V} / \mu \mathrm{s}$
- Fully Adjustable Gain: 0 to gm $R_{L}$ limit
- Extended gm Linearity: 3 decades
- Flexible Supply Voltage Range: $\pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Adjustable Power Consumption


## Schematic and Connection Diagrams



Dual-In-Line Package


TOP VIEW
Order Number LM3080AJ or LM3080J See NS Package J08A
Order Number LM3080AN See NS Package N08B

## Absolute Maximum Ratings

Supply Voltage (Note 2)

LM3080	$\pm 18 \mathrm{~V}$
LM3080A	$\pm 22 \mathrm{~V}$
ower Dissipation	250 mW
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Amplifier Bias Current (I	
ABC $)$	2 mA
DC Input Voltage	$+\mathrm{V}_{\mathrm{S}}$ to $-\mathrm{V}_{\mathrm{S}}$
Output Short Circuit Duration	Indefinite

Operating Temperature Range LM3080N, LM3080H, LM3080AN or LM3080J
LM3080AH or LM3080AJ
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics (Note 1)


Note 1: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$, amplifier bias current ( ${ }_{A B C}$ ) $=500 \mu \mathrm{~A}$, unless otherwise specified.
Note 2: Selections to supply voltage above $\pm 22 \mathrm{~V}$, contact the factory.

## Typical Performance Characteristics














Typical Performance Characteristics '(Continued)


Leakage Current Test Circuit


Differential Input Current Test Circuit



Unity Gain Follower


National

## LM3909 LED Flasher/Oscillator

## General Description

The LM3909 is a monolithic oscillator specifically designed to flash Light Emitting Diodes. By using the timing capacitor for voltage boost, it delivers pulses of 2 or more volts to the LED while operating on a supply of 1.5 V or less. The circuit is inherently self-starting, and requires addition of only a battery and capacitor to function as a LED flasher.

Packaged in an 8 -lead plastic mini-DIP, the LM3909 will operate over the extended consumer temperature range of $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. It has been optimized for low power drain and operation from weak batteries so that continuous operation life exceeds that expected from battery rating.

Application is made simple by inclusion of internal timing resistors and an internal LED current limit resistor. As shown in the first two application circuits, the timing resistors supplied are optimized for nominal flashing rates and minimum power drain at 1.5 V and 3 V .

Timing capacitors will generally be of the electrolytic type, and a small 3 V rated part will be suitable for any LED flasher using a supply up to 6 V . However, when picking flash rates, it should be remembered that some electrolytics have very broad capacitance tolerances, for example $-20 \%$ to $+100 \%$.

## Features

- Operation over one year from one C size flashlight cell
- Bright, high current LED pulse
- Minimum external parts
- Low cost
- Low voltage operation, from just over 1 V to 5 V
- Low current drain, averages under 0.5 mA during battery life
- Powerful; as an oscillator directly drives an $8 \Omega$ speaker
- Wide temperature range


## Applications

- Finding flashlights in the dark, or locating boat mooring floats
- Sales and advertising gimmicks
- Emergency locators, for instance on fire extinguishers
- Toys and novelties
- Electronic applications such as trigger and sawtooth generators
- Siren for toy fire engine, (combined oscillator, speaker driver)
- Warning indicators powered by 1.4 to 200V


## Schematic Diagram

Typical 1.5V Flasher


Connection Diagram
Dual-In-Line Package


Order Number LM3909N See NS Package N08B

## Typical Application

(See applications notes on page $9-153$ )
Triac Trigger


Provides $\mathbf{4 0 \mathrm { mA }} .10 \mu \mathrm{~s}$ pulses at about 8 kHz . Triac gate may be pulse transformer isolated if

## Absolute Maximum Ratings

Power Dissipation
500 mW
6.4 V
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

## Electrical Characteristics

PARAMETER	CONDITIONS   (Applications Note 3)	MIN	TYP	MAX	UNITS
Supply Voltage	(In Oscillation)	1.15		6.0	V
Operating Current			0.55	0.75	mA
Flash Frequency	$300 \mu \mathrm{~F}, 5 \%$ Capacitor	0.65	1.0	1.3	Hz
High Flash Frequency	$0.30 \mu \mathrm{~F}, 5 \%$ Capacitor		1.1		kHz
Compatible LED Forward Drop	1 mA Forward Current	1.35		2.1	$\checkmark$
Peak LED Current	$350 \mu \mathrm{~F}$ Capacitor		45		mA
Pulse Width	$350 \mu \mathrm{~F}$ Capacitors at $1 / 2$ Ampiitude		6.0		ms

## Additional Typical Applications (See applications notes below.)


1.5V Flasher


Note. Nommal flash rate 1 Hz .


Estimated Battery Life (Continuous 1.5V Flasher Operation)

SIZE CELL	TYPE	
	STANDARD	ALKALINE
AA	3 months	6 months
C	7 months	15 months
D	1.3 years	2.6 years

Note: Estimates are made from our tests and manufacturers data. Conditions are fresh batteries and room temperature. Clad or "leakproof" batteries are recommended for any application of five months or more. Nickel Cadmium cells are not recommended.

## APPLICATIONS NOTES

Note 1: All capacitors shown are electrolytic unless marked otherwise.
Note 2: Flash rates and frequencies assume a $\pm 5 \%$ capacitor tolerance. Electrolytics may vary $-20 \%$ to $+100 \%$ of their stated value.
Note 3: Unless noted, measurements above are made with a 1.4 V .supply, a $25^{\circ} \mathrm{C}$ ambient temperature, and a LED with a forward drop of 1.5 V to 1.7 V at 1 mA forward current.

Note 4: Occasionally a flasher circuit will fail to oscillate due to a LED defect that may be missed because it only reduces light output $10 \%$ or so. Such LEDs can be identified by a large increase in conduction between 0.9 V and 1.2 V .

Typical Applications (Continued) (See applications notes on page 9.153 )


Note: LM3909, capacitor, and LED are installed in a white translucent cap on the flashlight's back end. Only one contact strip (in addition to the case connection) is needed for flasher power. Drawing current through the bulb simplifies wiring and causes neatigitie loss since iulib resistance cold is typically tess than 2!?.

## 4 Parallel LEDs



Note: Nominal flash rate: 1.3 Hz . Average $\mathrm{I}_{\text {DRAIN }}=\mathbf{2 m A}$.

High Efficiency Parallel Circuit


Note. Nominal flash rate: $\mathbf{1 . 5} \mathbf{H z}$. Average $I_{\text {DRAIN }}=1.5 \mathrm{~mA}$.

1 kHz Square Wave Oscillator



Note: Output voltage through a 10k load to ground.

Typical Applications (Continued) (See applications notes on page 9-153)
"Buzz Box" Continuity and Coil Checker


Ainte- nifferparpe hetwepn shorts. cotls. and a few ohms of resistance can be heard

Note: High efficiency, 4 mA drain.
Note: Continuous appearing light obtained by supplying short, high current, pulses ( 2 kHz ) to LEDs with higher than battery voltage available.


Variable Flasher


Note: Flash rate: $\mathbf{0}-\mathbf{2 0 ~ H z}$.

## Incandescent Bulb Flasher



Emergency Lantern/Flasher


## Industrial Blocks

## LM3911 Temperature Controller

## General Description

The LM3911 is a highly accurate temperature measurement and/or control system for use over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. Fabricated on a single monolithic chip, it includes a temperature sensor, a stable voltage reference and an operational amplifier.

The output voltage of the LM3911 is directly proportional to temperature in degrees Kelvin at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. Using the internal op amp with external resistors any temperature scale factor is easily obtained. By connecting the op amp as a comparator, the output will switch as the temperature transverses the set-point making the device useful as an on-off temperature controller.

An active shunt regulator is connected across' the power leads of the LM3911 to provide a stable 6.8 V voltage reference for the sensing system. This allows the use of any power supply voltage with suitable external resistors.

The input bias current is low and relatively constant with temperature, ensuring high accuracy when high source impedance is used. Further, the output collector can be returned to a voltage higher than 6.8 V allowing the LM3911 to drive lamps and relays up to a 35 V supply.

The LM3911 uses the difference in emitter-base voltage of transistors operating at different current densities as the basic temperature sensitive element. Since this output depends only on transistor matching the same reliability and stability as present op amps can be expected.

The LM3911 is available in two package styles, a metal can TO-46 and an 8 -lead epoxy mini-DIP. In the epoxy package all electrical connections are made on one side of the device allowing the other 4 leads to be used for attaching the LM3911 to the temperature source. The LM3911 is rated for operation over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

## Features

- Uncalibrated accuracy $\pm 10^{\circ} \mathrm{C}$
- Internal op amp with frequency compensation
- Linear output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}\left(10 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$
- Can be calibrated in degrees Kelvin, Celsius or Fahrenheit
- Output can drive loads up to 35 V
- Internal stable voltage reference
- Low cost


## Block Diagram



## Typical Applications

## Ground Referred

Centigrade Thermometer


Note 1: C 1 determines proportioning frequence $\mathrm{f} \approx \frac{1}{2 \mathrm{R4} \mathrm{C1}}$
$\mathrm{R}_{\mathrm{S}}=\left(\mathrm{V}^{+}-6 \mathrm{BV}\right) \mathrm{k}!$

Proportioning Temperature Controller $\mathrm{V}^{+}$

# Absolute Maximum Ratings 

Supply Current (Externally Set)	10 mA	Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Output Collector Voltage, $\mathrm{V}^{++}$	36 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Feedback Input Voltage Range	0 V to +7.0 V	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Output Short Circuit Duration	Indefinite		

## Electrical Characteristics

(Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SENSOR					
Output Voltage	$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$, (Note 2)	2.36	2.48	2.60	V
Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 2)	2.88	2.98	. 3.08	v
Output Voltage	$T_{A}=85^{\circ} \mathrm{C},($ Note 2)	3.46	3.58	3.70	$\checkmark$
Linearity	$\Delta T=100^{\circ} \mathrm{C}$		0.5	2	\%
Long-Term Stability			0.3		\%
Repeatability			0.3		\%
VOLTAGE REFERENCE					
Reverse Breakdown Voltage	$1 \mathrm{~mA} \leq \mathrm{I}_{2} \leq 5 \mathrm{~mA}$	6.55	6.85	7.25	V
Reverse Breakdown Voltage Change With Current	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{z}} \leq 5 \mathrm{~mA}$		10	35	in
Temperature Stability			20	85	mV
Dynamic Impedance	$\mathrm{I}_{2}=1 \mathrm{~mA}$		3.0		$\Omega$
RMS Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		30		$\mu \mathrm{V}$
Long Term Stability	$T_{A}=+85^{\circ} \mathrm{C}$	,	6.0		$m V$
OP AMP					
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		35	150	nA
Input Bias Current			45	250	nA
Voltage Gain	$\mathrm{R}_{\mathrm{L}}=36 \mathrm{k}, \mathrm{V}^{++}=36 \mathrm{~V}$	2500	15000		$v / V$
Output Leakage Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3).		0.2	2	$\mu \mathrm{A}$
Output Leakage Current	(Note 3)		1.0	8	$\mu \mathrm{A}$
Output Source Current	$\mathrm{V}_{\text {OUT }} \leq 3.70$	10		,	$\mu \mathrm{A}$
Output Sink Current	$1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 36 \mathrm{~V}$	2.0			mA

Note 1: These specifications apply for $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and $0.9 \mathrm{~mA} \leq$ ISUPPLY $\leq 1.1 \mathrm{~mA}$ unless otherwise specified; $\mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}$.
Note 2: The output voltage applies to the basic thermometer configuration with the output and input terminals shorted and a load resistance of $\geq 1.0 \mathrm{M} \Omega$. This is the feedback sense voltage and includes errors in both the sensor and op amp. This voltage is specified for the sensor in a rapidly stirred oil bath. The output is referred to $\mathrm{V}^{+}$.
Note 3: The output leakage current is specified with $\geq 100 \mathrm{mV}$ overdrive. Since this voltage changes with temperature, the voltage drive for turn-off changes and is defined as $V_{\text {OUT }}$ (with output and input shorted) -100 mV . This specification applies for $\mathrm{V}_{\text {OUT }}=36 \mathrm{~V}$.

## Application Hints

Although the LM3911 is designed to be totally troublefree, certain precautions should be taken to insure the best possible performance.

As with any temperature sensor, internal power dissipation will raise the sensor's temperature above ambient. Nominal suggested operating current for the shunt regulator is 1.0 mA and causes 7.0 mW of power dissipation. In free, still, air this raises the package temperature by about $1.2^{\circ} \mathrm{K}$. Although the regulator will operate at higher reverse currents and the output will drive loads up to 5.0 mA , these higher currents will raise the sensor temperature to about $19^{\circ} \mathrm{K}$ above ambient-degrading accuracy. Therefore, the sensor should be operated at the lowest possible power level.

With moving air, liquid or surface temperature sensing, self-heating is not as great a problem since the measured
media will conduct the heat from the sensor. Also, there are many small heat sinks designed for transistors which will improve heat transfer to the sensor from the surrounding medium. A small finned clip-on heat sink is quite effective in free-air. It should be mentioned that the LM3911 die is on the base of the package and therefore coupling to the base is preferrable.

The internal reference regulator provides a temperature stable voltage for offsetting the output or setting a comparison point in temperature controllers. However, since this reference is at the same temperature as the sensor temperature changes will also cause reference drift. For application where maximum accuracy is needed an external reference should be used. Of course, for fixed temperature controllers the internal reference is adequate.

Typical Performance Characteristics

Temperature Conversion
$T_{\text {Centigrade }}=T_{C}$
$T_{\text {FAHRENHEIT }}=T_{F}$
$T_{\text {KELVIN }}=T_{K}$
$T_{K}=T_{C}+273$
$T_{C}=\left(40+T_{F}\right) \frac{5}{9}-40$
$T_{F}=\left(40+T_{C}\right) \frac{9}{5}-40$




Op Amp Input Current


Thermal Time Constant in Stirred Oil Bath





Thermal Time Constant in Still Air



## Schematic Diagram



Typical Applications (Continued)

Basic Thermometer for Negative Supply

$\mathrm{R}_{\mathrm{s}}=\left(\mathrm{V}^{-}-6.8 \mathrm{~V}\right) \times 10^{3} \mathrm{~s}_{2}$

External Frequency Compensation for Greater Stability when Driving Capacitive Loads


Basic Thermometer
for Positive Supply


Operating With External Zener for Lower Power Dissipation and Ambient Reference


Increasing Gain and Output Drive


Temperature Controller With Hysteresis


Typical Applications (Continued)

Thermometer With Meter Output


Ground Referred Thermometer


Meter Thermometer With Trimmed Output

*Selected as for meter thermameter except $T_{0}$ should be $5^{\circ} \mathrm{K}$ more than desired and $\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$
${ }^{\dagger}$ Calibrates $\mathrm{T}_{0}$

Ground Referred Centigrade Thermometer


Two Terminal Temperature to Current Transducer*


$$
\begin{aligned}
& R 2(\Omega 2)=\frac{\left(V_{Z}-0.01 T_{L}\right)\left(I_{H}-\frac{0.01 T_{H}}{R 1}\right)+\left(V_{Z}-0.01 T_{H}\right)\left(\frac{0.01 T_{L}}{R 1}-I_{L}\right)^{* *}}{\frac{0.01}{R 1 R 3}\left\{T_{H}\left(V_{Z}-001 T_{L}\right)-T_{L}\left(V_{Z}-0.01 T_{H}\right) \mid\right.} \\
& R 3(\Omega) \geqq \frac{V_{Z}\left(\frac{T_{H}}{T_{L}}-1\right)}{I_{H}-\frac{I_{L} T_{H}}{T_{L}}} \\
& \frac{1}{R 4}=\frac{1}{\left(V_{Z}-0.01 T_{L}\right)(R 2)}\left[\frac{(R 2)\left(0.01 T_{L}\right)}{R 1}+\frac{\left(\frac{V_{Z}-0.01 T_{L}}{R 2}-I_{L}\right)}{\frac{1}{R 2}+\frac{1}{R 3}}\right]-\frac{1}{R 2}
\end{aligned}
$$

[^56]* Values shown for lout $=1 \mathrm{~mA}$ to 10 mA for $10^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$ ${ }^{\dagger}$ Set temperature
** The 0.01 in the above and following equatıons is in units of $\mathrm{V} / \mathrm{K}$ or $\mathrm{V} / \mathrm{C}$, and is a result of the basic $0.01 \mathrm{~V} / \mathrm{K}$ sensitivity of the transducer


Two-Wire Remote A.C. Electronic Thermostat (Gas or Oil Furnace Control)


* Solenoid or 6-15W heater
$\dagger$ Pot will provide about a 50 F to 90 F setung range. The trim resistor ( 100 k ) is selected to bring $70^{\circ} \mathrm{F}$ near the middle of the pot rotation.
SCR heating, by proper positioning, can preheat the sensor giving control anticipation as is presently used in many home thermostats.


Typical Applications (Continued)


Kelvin Thermometer With Ground Referred Output


$$
R_{S}=\frac{V_{s}^{+}-6.8 v \times 10^{3}!2}{2}
$$


** The 0.01 in the above equation is in units of $\mathrm{V} / \mathrm{K}$ or $\mathrm{V} / \mathrm{C}$, and is a result of the basic $0.01 \mathrm{~V} / \mathrm{K}$ sensitwity of the transtucer

## Connection Diagram



## Order Number LM3911N

 See NS Package N08BIndustrial Blocks

## General Description

The LM3914 is a monolithic integrated circuit that senses analog voltage levels and drives 10 LEDs, providing a linear analog display. A single pin changes the display from a moving dot to a bar graph. Current drive to the LEDs is regulated and programmable, eliminating the need for resistors. This feature is one that allows operation of the whole system from less than 3 V .

The circuit contains its own adjustable reference and accurate 10 -step voltage divider. The low-bias-current input buffer accepts signals down to ground, or $\mathrm{V}^{-}$, yet needs no protection against inputs of 35 V above or below ground. The buffer drives 10 individual comparators roferenced th the nrecision divider. Indication non-linearity can thus be held typically to $1 / 2 \%$, even over a wide temperature range.

Versatility was designed into the LM3914 so that controller, visual alarm, and expanded scale functions are easily added on to the display system. The circuit can drive LEDs of many colors, or low-current incandescent lamps. Many LM3914s can be "chained" to form displays of 20 to over 100 segments. Both ends of the voltage divider are externally available so that 2 drivers can be made into a zero-center meter.

The LM3914 is very easy to apply as an analog meter circuit. A 1.2 V full-scale meter requires only 1 resistor and a single 3 V to 15 V supply in addition to the 10 display LEDs. If the 1 resistor is a pot, it becomes the LED brightness control. The simplified block diagram illustrates this extremely simple external circuitry.

When in the dot mode, there is a small amount of overlap or "fade" (about 1 mV ) between segments. This assures that at no time will all LEDs be "OFF", and
thus any ambiguous display is avoided. Various novel displays are possible.

Much of the display flexibility derives from the fact that all outputs are individual, DC regulated currents. Various effects can be achieved by modulating these currents. The individual outputs can drive a transistor as well as a LED at the same time, so controller functions including "staging" control can be performed. The LM3914 can also act as a programmer, or sequencer.

## Features

- Drives LEDs, LCDs or vacuum fluorescents
a Bar or dot display mode externally selectable by user
- Expandable to displays of 100 steps
- Internal voltage reference from 1.2 V to 12 V
- Operates with single supply of less than 3 V
- Inputs operate down to ground
- Output current programmable from 2 to 30 mA
- No multiplex switching or interaction between outputs
- Input withstands $\pm 35 \mathrm{~V}$ without damage or false outputs
- LED driver outputs are current regulated, opencollectors
- Outputs can interface with TTL or CMOS logic
- The internal 10 -step divider is floating and can be referenced to a wide range of voltages
The LM3914 is rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The LM3914N is available in an 18 -lead molded ( $N$ ) package and the LM3914J comes in the 18 -lead ceramic DIP.

The following typical application illustrates adjusting of the reference to a desired value, and proper grounding for accurate operation, and avoiding oscillations.


## Absolute Maximum Ratings

Power Dissipation (Note 5)	
Ceramic DIP (J)	1 W
Molded DIP (N)	625 mW
Supply Voltage	25 V
Voltage on Output Drivers	25 V


Input Signal Overvoltage (Note 3)	$\pm 35 \mathrm{~V}$
Divider Voltage	-100 mV to $\mathrm{V}^{+}$
Reference Load Current	10 mA
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 1)

\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER \& CONDITIONS (Note 1) \& MIN \& TYP \& MAX \& UNITS \\
\hline \multicolumn{6}{|l|}{COMPARATOR} \\
\hline \begin{tabular}{l}
Offset Voltage, Buffer and First \\
Comparator \\
Offset Voltage, Buffer and Any Other \\
Comparator \\
Gain ( \(\Delta I_{\text {LED }} / \Delta V_{I N}\) ) \\
Input Bias Current (at Pin 5) \\
Input Signal Overvoltage
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& O V \leq V_{R L O}=V_{R H I} \leq 12 V, \\
\& I L E D=1 \mathrm{~mA} \\
\& O V \leq V_{R L O}=V_{R H I} \leq 12 \mathrm{~V}, \\
\& I_{L E D}=1 \mathrm{~mA} \\
\& I_{L}(R E F)=2 \mathrm{~mA}, I_{L E D}=10 \mathrm{~mA} \\
\& O V \leq V_{I N} \leq V^{+}-1.5 \mathrm{~V}
\end{aligned}
\] \\
No Change in Display
\end{tabular} \& 3
\[
-35
\] \& \begin{tabular}{l}
3 \\
3 \\
8 \\
10
\end{tabular} \& \begin{tabular}{l}
10 \\
15 \\
50 \\
35
\end{tabular} \& \[
\begin{array}{r}
m V \\
m V \\
m A / m V \\
\mathrm{nA} \\
V
\end{array}
\] \\
\hline \multicolumn{6}{|l|}{VOLTAGE-DIVIDER} \\
\hline \begin{tabular}{l}
Divider Resistance \\
Accuracy
\end{tabular} \& \begin{tabular}{l}
Total, Pin 6 to 4 \\
(Note 2)
\end{tabular} \& 6.5 \& \[
\begin{aligned}
\& 10 \\
\& 0.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 15 \\
\& 2
\end{aligned}
\] \& \[
\begin{array}{r}
k \Omega \\
\%
\end{array}
\] \\
\hline \multicolumn{6}{|l|}{VOLTAGE REFERENCE} \\
\hline \begin{tabular}{l}
Output Voltage \\
Line Regulation \\
Load Regulation \\
Output Voltage Change With \\
Temperature \\
Adjust Pin Current
\end{tabular} \& \[
\begin{aligned}
\& 0.1 \mathrm{~mA} \leq \mathrm{I}(\mathrm{REF}) \leq 4 \mathrm{~mA}, \\
\& \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{LED}}=5 \mathrm{~V} \\
\& 3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 18 \mathrm{~V} \\
\& 0.1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}}(\mathrm{REF}) \leq 4 \mathrm{~mA}, \\
\& \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{LED}}=5 \mathrm{~V} \\
\& 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}(R E F)}=1 \mathrm{~mA}, \\
\& \mathrm{~V}^{+}=5 \mathrm{~V}
\end{aligned}
\] \& 1.2 \& \begin{tabular}{l}
1.28 \\
0.01 \\
0.4 \\
1 \\
75
\end{tabular} \& \[
\begin{aligned}
\& 1.34 \\
\& 0.03 \\
\& 2 \\
\& 120
\end{aligned}
\] \& \[
\begin{array}{r}
\mathrm{V} \\
\% / \mathrm{V} \\
\% \\
\% \\
\mu \mathrm{~A}
\end{array}
\] \\
\hline \multicolumn{6}{|l|}{OUTPUT DRIVERS} \\
\hline \begin{tabular}{l}
LED Current \\
LED Current Difference (Between Laryest and Smaliest LED Currents) \\
LED Current Regulation \\
Dropout Voltage \\
Saturation Voltage \\
Output Leakage, Each Collector \\
Output Leakage \\
Pins 10-18 \\
Pin 1
\end{tabular} \&  \& 7

60 \& | 10 |
| :--- |
| 0.12 |
| 1.2 |
| 0.1 |
| 1 |
| 0.15 |
| 0.1 |
| 0.1 |
| 150 | \& \[

$$
\begin{aligned}
& 13 \\
& 0.4 \\
& 3 \\
& 0.25 \\
& 3 \\
& 1.5 \\
& \\
& 0.4 \\
& 10 \\
& 10 \\
& 450
\end{aligned}
$$

\] \& | mA |
| :--- |
| mA |
| mA |
| mA |
| mA |
| V |
| V |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ | <br>

\hline \multicolumn{6}{|l|}{SUPPLY CURRENT} <br>

\hline Standby Supply Current (All Outputs Off) \& $$
\begin{aligned}
& \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{I}(\text { REF })=0.2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=20 \mathrm{~V}, \mathrm{IL}(R E F)=1.0 \mathrm{~mA}
\end{aligned}
$$ \& \& \[

$$
\begin{gathered}
2.4 \\
6.1
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 4.2 \\
& 9.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
$$
\] <br>

\hline
\end{tabular}

Note 1: Unless otherwise stated, all specifications apply with the following conditions:

$$
\begin{aligned}
& 3 V_{D C} \leq \mathrm{V}^{+} \leq 20 \mathrm{~V}_{\mathrm{DC}} \\
& 3 \mathrm{~V}_{\mathrm{DC}} \leq \mathrm{V}_{\mathrm{LED}} \leq \mathrm{V}^{+} \\
& -0.015 \mathrm{~V} \leq \mathrm{V}_{R L O} \leq 12 \mathrm{~V}_{\mathrm{DC}} \\
& -0.015 \mathrm{~V} \leq \mathrm{V}_{\mathrm{RHI}} \leq 12 \mathrm{~V}_{\mathrm{DC}}
\end{aligned}
$$

$\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {RHI }}, \mathrm{V}_{\text {RLO }} \leq\left(\mathrm{V}^{+}-1.5 \mathrm{~V}\right)$
$O V \leq V_{I N} \leq V^{+}-1.5 V$
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}(\text { REF })}=0.2 \mathrm{~mA}, \mathrm{~V}_{\text {LED }}=3.0 \mathrm{~V}$, pin 9 connected to pin 3 (Bar Mode).
For higher power dissipations, pulse testing is used.
Note 2: Accuracy is measured referred to $+10.000 \mathrm{~V}_{\mathrm{DC}}$ at pin 6 , with $0.000 \mathrm{~V}_{\mathrm{DC}}$ at pin 4 . At lower full-scale voltages, buffer and comparator offset voltage may add significant error.
Note 3: Pin 5 input current must be limited to $\pm 3 \mathrm{~mA}$. The addition of a 39 k resistor in series with pin 5 allows $\pm 100 \mathrm{~V}$ signals without damage.
Note 4: Bar mode results when pin 9 is within 20 mV of $\mathrm{V}^{+}$. Dot mode results when pin 9 is pulled at least 200 mV below $\mathrm{V}^{+}$or left open circuit. LED No. 10 (pin 10 output current) is disabled if pin 9 is pulled 0.9 V or more below $V_{\text {LED }}$.
Note 5: The maximum junction temperature of the LM3914 is $100^{\circ} \mathrm{C}$. Devices must be derated for operation at elevated temperatures. Junction to ambient thermal resistance is $75^{\circ} \mathrm{C} / \mathrm{W}$ for the ceramic DIP (J package) and $120^{\circ} \mathrm{C} / \mathrm{W}$ for the molded DIP (N package).

## Definition of Terms

Accuracy: The difference between the observed threshold voltage and the ideal threshold voltage for each comparator. Specified and tested with 10 V across the internal voltage divider so that resistor ratio matching error predominates over comparator offset voltage.

Adjust Pin Current: Current flowing out of the reference adjust pin when the reference amplifier is in the linear region.

Comparator Gain: The ratio of the change in output current (ILED) to the change in input voltage (VIN) required to produce it for a comparator in the linear region.

Dropout Voltage: The voltage measured at the current source outputs required to make the output current fall by $10 \%$.

Input Bias Current: Current flowing out of the signal input when the input buffer is in the linear region.

LED Current Regulation: The change in output current over the specified range of LED supply voltage ( $\mathrm{V}_{\mathrm{LED}}$ ) as measured at the current source outputs. As the forward voltage of an LED does not change significantly with a small change in forward current, this is equivalent to changing the voltage at the LED anodes by the same amount.

Line Regulation: The average change in reference output voltage over the specified range of supply voltage $\left(\mathrm{V}^{+}\right)$.

Load Regulation: The change in reference output voltage (VREF) over the specified range of load current (IL(REF)).

Offset Voltage: The differential input voltage which must be applied to each comparator to bias the output in the linear region. Most significant error when the voltage across the internal voltage divider is small. Specified and tested with pin 6 voltage ( $\mathrm{V}_{\mathrm{RH}}$ ) equal to pin 4 voltage ( $\mathrm{V}_{\mathrm{RLO}}$ ).

## Typical Performance Characteristics



Reference Adjust Pin Current vs Temperature


Input Current Beyond Signal Range (Pin 5)


Total Divider Resistance
vs Temperature


Operating Input Bias Current vs Temperature


LED Current-Regulation Dropout


LED Current vs
Reference Loading


Common-Mode Limits


Reference Voltage vs Temperature


LED Driver Saturation Voltage


LED Driver Current Regulation


Output Characteristics


Block Diagram (Showing Simplest Application)


## Functional Description

(Continued)
REF ADJ (pin 8) terminals. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current $I_{1}$ then flows through the output set resistor R2 giving an output voltage of:

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R 2
$$



Since the $120 \mu \mathrm{~A}$ current (max) from the adjust terminal represents an error term, the reference was designed to minimize changes of this current with $\mathrm{V}^{+}$and load changes.

## Current Programming

A feature not completely illustrated by the block diagram is the LED brightness control. The current drawn out of the reference voltage pin (pin 7) determines LED current. Approximately 10 times this current will be drawn through each lighted LED, and this current will be relatively constant despite supply voltage and temperature changes. Current drawn by the internal 10 resistor divider, as well as by the external current and voltage-sctting divider should be included in calculating LED drive current. The ability to modulate LED brightness with time, or in proportion to input voltage and other signals can lead to a number of novel displays or ways of indicating input overvoltages, alarms, etc.

## Mode Pin Use

Pin 9, the Mode Select input controls chaining of multiple LM3914s, and controls bar or dot mode operation. The following tabulation shows the basic ways of using this input. Other more complex uses will be illustrated in the applications.

Bar Graph Display: Wire Mode Select (pin 9) direct/y to pin 3 ( $\mathrm{V}^{+} \mathrm{pin}$ ).

Dot Display, Single LM3914 Driver: Leave the Mode Select pin open circuit.

Dot Display, $\mathbf{2 0}$ or More LEDs: Connect pin 9 of the first driver in the series (i.e., the one with the lowest input voltage comparison points) to pin 1 of the next higher LM3914 driver. Continue connecting pin 9 of lower input drivers to pin 1 of higher input drivers for 30, 40, or more LED displays. The last LM3914 driver in the chain will have pin 9 wired to pin 11. All previous drivers should have a 20 k resistor in parallel with LED No. 9 (pin 11 to VLED).

This pin actually performs two functions. Refer to the simplified block diagram below.

## Block Diagram of Mode Pin Function



* High for bar


## Dot or Bar Mode Selection

The voltage at pin 9 is sensed by comparator C 1 , nominally referenced to ( $\mathrm{V}^{+}-100 \mathrm{mV}$ ). The chip is in bar mode when pin 9 is above this level; otherwise it's in dot mode. The comparator is designed so that pin 9 can be left open circuit for dot mode.

Taking into account comparator gain and variation in the 100 mV reference level, pin 9 should be no more than 20 mV below $\mathrm{V}^{+}$for bar mode and more than 200 mV below $\mathrm{V}^{+}$(or open circuit) for dot mode. In most applications, pin 9 is either open (dot mode) or tied to $\mathrm{V}^{+}$(bar mode). In bar mode, pin 9 should be connected directly to pin 3. Large currents drawn from the power supply (LED current, for example) should not share this path so that large IR drops are avoided.

## Dot Mode Carry

In order for the display to make sense when multiple LM3914s are cascaded in dot mode, special circuitry has been included to shut off LED No. 10 of the first device when LED No. 1 of the second device comes on. The connection for cascading in dot mode has already been described and is depicted on the following page.

As long as the input signal voltage is below the threshold of the second LM3914, LED No. 11 is off. Pin 9 of LM3914 No. 1 thus sees effectively an open circuit so the chip is in dot mode. As soon as the input voltage reaches the threshold of LED No. 11, pin 9 of LM3914 No. 1 is pulled an LED drop ( 1.5 V or more) below $\mathrm{V}_{\text {LED }}$. This condition is sensed by comparator C2, referenced 600 mV below $\mathrm{V}_{\text {LED }}$. This forces the output of C2 low, which shuts off output transistor O2, extinguishing LED No. 10.
$V_{\text {LED }}$ is sensed via the 20k resistor connected to pin 11. The very small current (less than $100 \mu \mathrm{~A}$ ) that is diverted from LED No. 9 does not noticeably affect its intensity.

An auxiliary current source at pin 1 keeps at least $100 \mu \mathrm{~A}$ flowing through LED No. 11 even if the input voltage rises high enough to extinguish the LED. This ensures that pin 9 of LM3914 No. 1 is held low enough to force LED No. 10 off when any higher LED is illuminated. While $100 \mu \mathrm{~A}$ does not normally produce significant LED illumination, it may be noticeable when using high-efficiency LEDs in a dark environment. If this is bothersome, the simple cure is to shunt LED No. 11 with a 10 k resistor. The 1 V IR drop is more than the 900 mV worst case required to hold off LED No. 10 yet small enough that LED No. 11 does not conduct significantly.

## Other Device Characteristics

The LM3914 is relatively low-powered itself, and since any number of LEDs can be powered from about 3 V , it is a very efficient display driver. Typical standby supply current (all LEDs OFF) is $1.6 \mathrm{~mA}(2.5 \mathrm{~mA}$ max). However, any reference loading adds 4 times that current drain to the $\mathrm{V}^{+}$(pin 3) supply input. For example, an LM3914 with a 1 mA reference pin load (1.3k), would supply almost 10 mA to every LED while drawing only

10 mA from its $\mathrm{V}^{+}$pin supply. At full-scale, the IC is typically drawing less than $10 \%$ of the current supplied to the display.

The display driver does not have built-in hysteresis so that the display does not jump instantly from one LED to the next. Under rapidly changing signal conditions, this cuts down high frequency noise and often an annoying flicker. An "overlap" is built in so that at no time between segments are all LEDs completely OFF in the dot mode. Generally 1 LED fades in while the other fades out over a mV or more of range (Note 2). The change may be much more rapid between LED No. 10 of one device and LED No. 1 of a second device "chained" to the first.

The LM3914 features individually current regulated LED driver transistors. Further internal circuitry detects when any driver transistor goes into saturation, and prevents other circuitry from drawing excess current. This results in the ability of the LM3914 to drive and regulate LEUs powered from a pulsating DC power source, i.e., largely unfiltered. (Due to possible oscillations at low voltages a nominal bypass capacitor consisting of a $2.2 \mu \mathrm{~F}$ solid tantalum connected from the pulsating LED supply to pin 2 of the LM3914 is recommended.) This ability to operate with low or fluctuating voltages also allows the display driver to interface with logic circuitry, optocoupled solid-state relays, and low-current incandescent lamps.

## Cascading LM3914s in Dot Mode



Typical Applications (Continued)


## Typical Applications (Continued)

Expanded Scale Meter, Dot or Bar
Calibration: With a precision meter between pins 4 and 6 adjust R1 for voltage $V_{D}$ of 1.20 V . Apply 4.94 V to pin 5 , and adjust R4 until LED No. 5 just lights. The adjustments are non-interacting.

HIGHEST NO.   LED ON	COLOR	V OUT(MIN) $^{\|c\|}$10 Red 5.54   9 Yed 5.42   8 Green 5.30   7 Green 5.18   6 Green 5.06        5 Green 4.94   4 Yellow 4.82   3 Red 4.58   2 Red 4.46   1

"Exclamation Point" Display


Indicator and Alarm, Full-Scale Changes Display From Dot to Bar


Bar Display with Alarm Flasher
 lights, and at any higher input signal.

Typical Applications (Continued)

Adding Hysteresis (Single Supply, Bar Mode Only)


Operating with a High Voltage Supply (Dot Mode Only)


## Typical Applications (Continued)

20-Segment Meter with Mode Switch
*The exact wiring arrangement of this schematic shows the need for Mode Select (pin 9) to sense the $\mathrm{V}^{+}$voltage exactly as it appears on pin 3.


## Application Hints

Three of the most commonly needed precautions for using the LM3914 are shown in the first typical application drawing (see page $9-108$ ) showing a $0 V-5 \mathrm{~V}$ bar graph meter. The most difficult problem occurs when large LED currents are being drawn, especially in bar graph mode. These currents flowing out of the ground pin cause voltage drops in external wiring, and thus errors and oscillations. Bringing the return wires from signal sources, reference ground and bottom of the resistor string (as illustrated) to a single point very near pin 2 is the best solution.

Long wires from $V_{\text {LED }}$ to LED anode common can cause oscillations. Depending on the severity of the problem $0.05 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$ decoupling capacitors from LED anode common to pin 2 will damp the circuit. If LED anode line wiring is inaccessible, often similar decoupling from pin 1 to pin 2 will be sufficient.

If LED turn ON seems slow (bar mode) or several LEDs light (dot mode), oscillation or excessive noise is usually the problem. In cases where proper wiring and bypassing fail to stop oscillations, $\mathrm{V}^{+}$voltage at pin 3 is usually below suggested limits (see Note 2, page 9-108). Expanded scale meter applications may have one or both ends of the internal voltage divider terminated at rela-
tively high value resistors. These high-impedance ends should be bypassed to pin 2 with at least a $0.001 \mu \mathrm{~F}$ capacitor, or up to $0.1 \mu \mathrm{~F}$ in noisy environments.

Power dissipation, especially in bar mode should be given consideration. For example, with a 5 V supply and all LEDs programmed to 20 mA the driver will dissipate over 600 mW . In this case a $7.5 \Omega$ resistor in series with the LED supply will cut device heating in half. The negative end of the resistor should be bypassed with a $2.2 \mu \mathrm{~F}$ solid tantalum capacitor to pin 2 of the LM3914.

Turning OFF of most of the internal current sources is accomplished by pulling positive on the reference with a current source or resistance supplying $100 \mu \mathrm{~A}$ or so. Alternately, the input signal can be gated OFF with a transistor switch.

Other special features and applications characteristics will be illustrated in the following applications schematics. Notes have been added in many cases, attempting to cover any special procedures or unusual characteristics of these applications. A special section called "Application Tips for the LM3914 Adjustable Reference" has been included with these schematics.

## Application Hints (Continued)

## APPLICATION TIPS FOR THE LM3914s ADJUSTABLE REFERENCE

## Greatly Expanded Scale (Bar Mode Only)

Placing the LM3914s internal resistor divider in parallel with a section ( $\simeq 230 \Omega$ ) of a stable, low resistance divider greatly reduces voltage changes due to IC resistor value changes with temperature. Voltage $\mathrm{V}_{1}$ should be trimmed to 1.1 V first by use of R 2 . Then the voltage $\mathrm{V}_{2}$ across the IC divider string can be adjusted to 200 mV , using R5 without affecting $\mathrm{V}_{1}$. LED current will be approximately 10 mA .

Non-Interacting Adjustments for Expanded Scale Meter (4.5V to 5V, Bar or Dot Mode)

This arrangement allows independent adjustment of LED brightness regardless of meter span and zero adjustments.

First, $\mathrm{V}_{1}$ is adjusted to 5 V , using R 2 . Then the span (voltage across R4) can be adjusted to exactly 0.5 V using R6 without affecting the previous adjustment.

R9 programs LED currents within a range of 2.2 mA to 20 mA after the above settings are made.

## Greatly Expanded Scale (Bar Mode Only)



## Adjusting Linearity of Several Stacked Dividers

Three internal voltage dividers are shown connected in series to provide a 30 -step display. If the resulting analog meter is to be accurate and linear the voltage on each divider must be adjusted, preferably without affecting any other adjustments. To do this, adjust R2 first, so that the voltage across R5 is exactly 1 V . Then the voltages across R3 and R4 can be independently adjusted by shunting each with selected resistors of $6 \mathrm{k} \Omega$ or higher resistance. This is possible because the reference of LM3914 No. 3 is acting as a constant current source.

The references associated with LM3914s No. 1 and No. 2 should have their Ref Adj pins (pin 8) wired to ground, and their Ref Outputs loaded by a $620 \Omega$ resistor to ground. This makes available similar 20 mA current outputs to all the LEDs in the system.

If an independent LED brightness control is desired (as in the previous application), a unity gain buffer, such as the LM310, should be placed between pin 7 and R1, similar to the previous application.

Non-Interacting Adjustments for Expanded Scale Meter (4.5V to 5V, Bar or Dot Mode)


Adjusting Linearity of Several Stacked Dividers


## Other Applications

- "Slow" - fade bar or dot display (doubles resolution)
- 20-step meter with single pot brightness control
- 10-step (or multiples) programmer
- Multi-step or "staging" controller
- Combined controller and process deviation meter
- Direction and rate indicator (to add to DVMs)
- Exclamation point display for power saving
- Graduations can be added to dot displays. Dimly light every other LED using a resistor to ground
- Electronic "meter-relay"-display could be circle or semi-circle
- Moving "hole" display-indicator LED is dark, rest of bar lit
- Drives vacuum-fluorescent and LCDs using added passive parts


## Connection Diagram



TOP VIEW
Order Number 3914J
See NS Package J18A
Order Number LM3914N
See NS Package N18A

## $\pi$ <br> National Semiconductor LM3915 Dot/Bar Display Driver

## Industrial Blocks

## General Description

The LM3915 is a monolithic integrated circuit that senses analog voltage levels and drives ten LEDs, LCDs or vacuum fluorescent displays, providing a logarithmic 3 dB/step analog display. One pin changes the display from a bar graph to a moving dot display. LED current drive is regulated and programmable, eliminating the need for current limiting resistors. The whole display system can operate from a single supply as low as 3 V or as high as 25 V .

The IC contains an adjustable voltage reference and an accurate ten-stop voltage divider The high-imnedance input buffer accepts signals down to ground and up to within 1.5 V of the positive supply. Further, it needs no protection against inputs of $\pm 35 \mathrm{~V}$. The input buffer drives 10 individual comparators referenced to the precision divider. Accuracy is typically better than 1 dB .

The LM3915's 3 dB /step display is suited for signals with wide dynamic range, such as audio level, power, light intensity or vibration. Audio applications include average or peak level indicators, power meters and RF signal strength meters. Replacing conventional meters with an LED bar graph results in a faster responding, more rugged display with high visibility that retains the ease of interpretation of an analog display.
The LM3915 is extremely easy to apply. A 1.2 V full-scale meter requires only one resistor in addition to the ten LEDs. One more resistor programs the full-scale anywhere from 1.2 V to 12 V independent of supply voltage. LED brightness is easily controlled with a single pot.

The LM3915 is very versatile. The outputs can drive LCDs, vacuum fluorescents and incandescent bulbs as well as LEDs of any color. Multiple devices can be cascaded for a dot or bar mode display with a range of 60 or 90 dB . LM3915s can also be cascaded with LM3914s for a linear/log display or with LM3916s for an extended-range VU meter.

## Features

■ $3 \mathrm{~dB} /$ step, 30 dB range

- Drives LEDs, LCDs, or vacuum fluorescents
- Bar or dot display mode externally selectable by user
- Expandable to displays of 90 dB
- Internal voltage reference from 1.2 V to 12 V
- Operates with single supply of 3 V to 25 V
- Inputs operate down to ground
- Output current programmable from 1 mA to 30 mA
- Input withstands $\pm 35 \mathrm{~V}$ without damage or false outputs
- Outputs are current regulated, open collectors
- Directly drives TTL or CMOS
- The internal 10 -step divider is floating and can be referenced to a wide range of voltages

The LM3915 is rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The LM3915N is available in an 18 -lead molded DIP package and the LM3915J comes in the 18-lead ceramic DIP.

## Typical Applications <br> OV to 10V Log Display



Absolute Maximum Ratings

Power Dissipation (Note 5)
1 W
625 mW
25 V
25 V

Input Signal Overvoltage (Note 3)
$\pm 35 \mathrm{~V}$
Ceramic DIP(J)
1W
Molded DIP(N)
25 V
Supply Voltage
25 V
-100 mV to $\mathrm{V}^{+}$
10 mA
Reference Load Current
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 1)

Parameter	Conditions (Note 1)	Min	Typ	Max	Units
Comparators					
Offset Voltage, Buffer and First Comparator	$\begin{aligned} & 0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{RLO}}=\mathrm{V}_{\mathrm{RHI}} \leqslant 12 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{LED}}=1 \mathrm{~mA} \end{aligned}$		3	10	mV
Offset Voltage, Buffer and Any Other Comparator	$\begin{aligned} & 0 V \leqslant V_{R L O}=V_{R H I} \leqslant 12 V, \\ & I_{L E D}=1 \mathrm{~mA} \end{aligned}$		3	15	mV
Gain ( $\Delta \mathrm{I}_{\text {LED }} / \Delta \mathrm{V}_{\mathrm{IN}}$ )	$\mathrm{I}_{\text {L(REF })}=2 \mathrm{~mA}, \mathrm{I}_{\text {LED }}=10 \mathrm{~mA}$	3	8		$\mathrm{mA} / \mathrm{mV}$
Input Bias Current (at Pin 5)	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{iN}} \leqslant\left(\mathrm{V}^{+}-1.5 \mathrm{~V}\right)$		10	50	nA
Input Signal Overvoltage	No Change in Display	-35		35	V
Voltage-Divider					
Divider Resistance	Total, Pin 6 to 4	15	22	30	k $\Omega$
Relative Accuracy (Input Change Between Any Two Threshold Points)	(Note 2)	2.0	3.0	4.0	dB
Absolute Accuracy at Each Threshold Point	(Note 2)	-			
	$V_{\text {IN }}=-3,-6 \mathrm{~dB}$	-0.5		+0.5	dB
	$V_{\text {IN }}=-9 \mathrm{~dB}$	-0.5		+0.65	dB
	$V_{\text {IN }}=-12,-15,-18 \mathrm{~dB}$	-0.5		+1.0	dB
	$V_{\text {IN }}=-21,-24,-27 \mathrm{~dB}$	-0.5		+1.5	dB
Voltage Reference					
Output Voltage	$\begin{aligned} & 0.1 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{L}(\mathrm{REF})} \leqslant 4 \mathrm{~mA}, \\ & \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{LE},}=5 \mathrm{~V} \end{aligned}$	1.2	1.28	1.34	V
Line Regulation	$3 \mathrm{~V} \leqslant \mathrm{~V}+\leqslant 18 \mathrm{~V}$		0.01	0.03	\%/V
Load Regulation	$\begin{aligned} & 0.1 \mathrm{~mA} \leqslant \mathrm{I}_{\mathrm{L}(\mathrm{REF})} \leqslant 4 \mathrm{~mA}, \\ & \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{LED}}=5 \mathrm{~V} \end{aligned}$		0,4	2	\%
Output Voltage Change with Temperature .	$\begin{aligned} & 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=1 \mathrm{~mA}, \\ & \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{LED}}=5 \mathrm{~V} \end{aligned}$		1		\%
Adjust Pin Current			75	120	$\mu \mathrm{A}$
Output Drivers					
LED Current	$\mathrm{V}^{+}=\mathrm{V}_{\text {LED }}=5 \mathrm{~V}, \mathrm{I}_{\text {L(REF })}=1 \mathrm{~mA}$	7	10	13	mA
LED Current Difference (Between Largest and Smallest LED Currents)	$\begin{aligned} & V_{\text {LED }}=5 \mathrm{~V}, \mathrm{I}_{\text {LED }}=2 \mathrm{~mA} \\ & \mathrm{~V}_{\text {LED }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{LED}}=20 \mathrm{~mA} \end{aligned}$		0.12 1.2	0.4 3	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
LED Current Regulation	$\begin{array}{ll} 2 \mathrm{~V} \leqslant \mathrm{~V}_{\text {LED }} \leqslant 17 \mathrm{~V} & \mathrm{I}_{\text {LED }}=2 \mathrm{~mA} \\ & \mathrm{I}_{\text {LED }}=20 \mathrm{~mA} \end{array}$		0.1 1	$\begin{gathered} 0.25 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Dropout Voltage	$\begin{aligned} & I_{\text {LED }(O N)}=2 Q \mathrm{~mA} @ V_{\mathrm{LED}}=5 \mathrm{~V}, \\ & \Delta I_{\mathrm{LED}}=2 \mathrm{~mA} \end{aligned}$			1.5	V
Saturation Voltage	$\mathrm{I}_{\text {LED }}=2.0 \mathrm{~mA}, \mathrm{I}_{\text {L(REF) }}=0.4 \mathrm{~mA}$		0.15	0.4	V
Output Leakage, Each Collector	Bar Mode (Note 4)		0.1	10	$\mu \mathrm{A}$
Output Leakage Pins 10-18	Dot Mode (Note 4)		0.1	10	$\mu \mathrm{A}$
Pin 1		60	150	450	$\mu \mathrm{A}$
Supply Current					
Standby Supply Current (All Outputs Off)	$\begin{aligned} & \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=0.2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=+20 \mathrm{~V}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=1.0 \mathrm{~mA} \end{aligned}$	-	$\begin{aligned} & 2.4 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 9.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

## Notes

Note 1: Unless otherwise stated, all specifications apply with the following conditions:

$3 V_{D C} \leqslant V^{+} \leqslant 20 V_{D C}$	$-0.015 V \leqslant V_{R L O} \leqslant 12 V_{D C}$	$T_{A}=25^{\circ} \mathrm{C}, I_{L(R E F)}=0.2 \mathrm{~mA}$, pin 9 connected to pin 3 (bar mode).
$3 V_{D C} \leqslant V_{L E D} \leqslant V^{+}$	$V_{R E F}, V_{R H I}, V_{R L O} \leqslant\left(V^{+}-1.5 V\right)$	For higher power dissipations, pulse testing is used.
$-0.015 V \leqslant V_{R H I} \leqslant 12 V_{D C}$	$0 V \leqslant V_{I N} \leqslant V^{+}-1.5 V$	

Note 2: Accuracy is measured referred to $0 \mathrm{~dB}=+10.000 \mathrm{~V} \mathrm{DC}$ at pin 5 , with $+10.000 \mathrm{~V}_{\mathrm{DC}}$ at pin 6 , and 0.000 V VC at pin 4 . At lower full scale voltages, buffer and comparator offset voltage may add significant error. See table for threshold voltages.
Note 3: Pin 5 input current must be limited to $\pm 3 \mathrm{~mA}$. The addition of a 39 k resistor in series with pin 5 allows $\pm 100 \mathrm{~V}$ signals without damage.
Note 4: Bar mode results when pin 9 is within 20 mV of $\mathrm{V}^{+}$. Dot mode results when pin 9 is pulled at least 200 mV below $\mathrm{V}^{+}$. LED \#10 (pin 10 output current) is disabled if pin 9 is pulled 0.9 V or more below $V_{\text {LED }}$.
Note 5: The maximum junction temperature of the LM3915 is $100^{\circ} \mathrm{C}$. Devices must be derated for operation at elevated temperatures. Junction to ambient thermal resistance is $75^{\circ} \mathrm{C} / \mathrm{W}$ for the ceramic DIP (J package) and $120^{\circ} \mathrm{C} / \mathrm{W}$ for the molded DIP ( N package).

THRESHOLD VOLTAGE (Note 2)

Output	dB	Min	Typ	Max	Output	dB	Min	Typ	Max
1	-27	0.422	0.447	0.531	6	-12	2.372	2.512	2.819
2	-24	0.596	0.631	0.750	7	-9	3.350	3.548	3.825
3	-21	0.841	0.891	1.059	8	-6	4.732	5.012	5.309
4	-18	1.189	1.259	1.413	9	-3	6.683	7.079	7.498
5	-15	1.679	1.778	1.995	10	0	9.985	10	10.015

## Typicài Feifumanco Characteristics



Reference Adjust Pin Current vs Temperature


Input Current Beyond Signal Range (Pin 5)


Operating Input Bias Current vs Temperature


LED Current-Regulation Dropout


LED Current vs Reference Loading


Reference Voltage vs Temperature


LED Driver Saturation Voltage


LED Driver Current Regulation


Typical Performance Characteristics (Continued)

## Total Divider Resistance

vs Temperature




Block Diagram (Showing Simplest Application)


## Functional Description

The simplified LM3915 block diagram is included to give the general idea of the circuit's operation. A high input impedance buffer operates with signals from ground to 12 V , and is protected against reverse and overvoltage signals. The signal is then applied to a series of 10 comparators; each of which is biased to a different comparison level by the resistor string.

In the example illustrated, the resistor string is connected to the internal 1.25 V reference voltage. In this case, for each 3 dB that the input signal increases, a comparator will switch on another indicating LED. This resistor divider can be connected between any 2 voltages, providing that they are at least 1.5 V below $\mathrm{V}^{+}$and no lower than $\mathrm{V}^{-}$.

## Internal Voltage Reference

The reference is designed to be adjustable and develops a nominal 1.25 V between the REF OUT ( pin 7 ) and REF ADJ (pin 8) terminals. The reference voltage is impressed across program resistor R1 and, since the voltage is constant. a constant current $l_{1}$ then flows through the output set resistor R2 giving an output voltage of:

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R 2
$$



Since the $120 \mu \mathrm{~A}$ current (max) from the adjust terminal represents an error term, the reference was designed to minimize changes of this current with $\mathrm{V}^{+}$and load changes. For correct operation, reference load current should be between $80 \mu \mathrm{~A}$ and 5 mA . Load capacitance should be less than $0.05 \mu \mathrm{~F}$.

## Current Programming

A feature not completely illustrated by the block diagram is the LED brightness control. The current drawn out of the reference voltage pin (pin 7) determines LED current. Approximately 10 times this current will be drawn through each lighted LED, and this current will be relatively constant despite supply voltage and temperature changes. Current drawn by the internal 10 -resistor divider, as well as by the external current and voltage-setting divider should be included in calculating LED drive current. The ability to modulate LED brightness with time, or in proportion to input voltage and other signals can lead to a number of novel displays or ways of indicating input overvoltages, alarms, etc.

The LM3915 outputs are current-limited NPN transistors as shown below. An internal feedback loop regulates the transistor drive. Output current is held at about 10 times the reference load current, independent of output voltage and processing variables, as long as the transistor is not saturated.


Outputs may be run in saturation with no adverse effects, making it possible to directly drive logic. The effective saturation resistance of the output transistors, equal to $R_{E}$ plus the transistors' collector resistance, is about $50 \Omega$. It's also possible to drive LEDs from rectified AC with no filtering. To avoid oscillations, the LED supply should be bypassed with a $2.2 \mu \mathrm{~F}$ tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic capacitor.

## Rinde Pin Use

Pin 9, the Mode Select input, permits chaining of multiple LM3915s, and controls bar or dot mode operation. The following tabulation shows the basic ways of using this input. Other more complex uses will be illustrated in the applications.

Bar Graph Display: Wire Mode Select (pin 9) directly to pin 3 ( $V^{+}$pin).

Dot Display, Single LM3915 Driver: Leave the Mode Select pin open circuit.

Dot Display, 20 or More LEDs: Connect pin 9 of the first driver in the series (i.e., the one with the lowest input voltage comparison points) to pin 1 of the next higher LM3915 driver. Continue connecting pin 9 of lower input drivers to pin 1 of higher input drivers for 30 or more LED displays. The last LM3915 driver in the chain will have pin 9 left open. All previous drivers should have a 20k resistor in parallel with LED \#9 (pin 11 to $\mathrm{V}_{\text {LED }}$ ).

## Mode Pin Functional Description

This pin actually performs two functions. Refer to the simplified block diagram below.


## Mode Pin Functional Description (Continued)

## Dot or Bar Mode Selection

The voltage at pin 9 is sensed by comparator C 1 , nominally referenced to ( $\mathrm{V}^{+}-100 \mathrm{mV}$ ). The chip is in bar mode when pin 9 is above this level; otherwise it's in dot mode. The comparator is designed so that pin 9 can be left open circuit for dot mode.

Taking into account comparator gain and variation in the 100 mV reference level, pin 9 should be no more than 20 mV below $\mathrm{V}^{+}$for bar mode and more than 200 mV below $\mathrm{V}^{+}$(or open circuit) for dot mode. In most applications, pin 9 is either open (dot mode) or tied to $\mathrm{V}^{+}$(bar mode). In bar mode, pin 9 should be connected directly to pin 3. Large currents drawn from the power supply (LED current, for example) should not share this path so that large IR drops are avoided.

## Dot Mode Carry

In order for the display to make sense when multiple LM3915s are cascaded in dot mode, special circuitry has been included to shut off LED \#10 of the first device when LED \#1 of the second device comes on. The connection for cascading in dot mode has already been described and is depicted below.

As long as the input signal voltage is below the threshold of the second LM3915, LED \#11 is off. Pin 9 of LM3915 \#1 thus sees effectively an open circuit so the chip is in dot mode. As soon as the input voltage reaches the threshold of LED \#11, pin 9 of LM3915 \#1 is pulled an LED drop (1.5V or more) below $\mathrm{V}_{\text {LED }}$. This condition is sensed by comparator C 2 , referenced 600 mV below $\mathrm{V}_{\mathrm{LED}}$. This forces the output of C2 low, which shuts off output transistor Q2, extinguishing LED \#10.
$\mathrm{V}_{\text {LED }}$ is sensed via the 20 k resistor connected to pin 11. The very small current (less than $100 \mu \mathrm{~A}$ ) that is diverted from LED \#9 does not noticeably affect its intensity.

An auxiliary current source at pin 1 keeps at least $100 \mu \mathrm{~A}$ flowing through LED \#11 even if the input voltage rises high enough to extinguish the LED. This ensures that pin 9 of LM3915 \#1 is held low enough to force LED \#10 off when any higher LED is illuminated. While $100 \mu \mathrm{~A}$ does not normally produce significant LED illumination, it may be noticeable when using high-efficiency LEDs in a dark environment. If this is bothersome, the simple cure is to shunt LED \#11 with a 10 k resistor. The 1 V IR drop is more than the 900 mV worst case required to hold off LED \#10 yet small enough. that LED \#11 does not conduct significantly.

## Other Device Characteristics

The LM3916 is relatively low-powered itself, and since any number of LEDs can be powered from about 3V, it is a very efficient display driver. Typical standby supply current (all LEDs OFF) is 1.6 mA . However, any reference loading adds 4 times that current drain to the $V^{+}$(pin 3) supply input. For example, an LM3916 with a 1 mA reference pin load (1.3k) would supply almost 10 mA to every LED while drawing only 10 mA from its $\mathrm{V}^{+}$pin supply. At full-scale, the IC is typically drawing less than $10 \%$ of the current supplied to the display.
The display driver does not have built-in hysteresis so that the display does not jump instantly from one LED to the next. Under rapidly changing signal conditions, this cuts down high frequency noise and often an annoying flicker. An "overlap" is built in so that at no time are all segments completely off in the dot mode. Generally 1 LED fades in while the other fades out over a mV or more of range. The change may be much more rapid between LED \#10 of one device and LED \#1 of a second device "chained" to the first.

## Application Hints

The most difficult problem occurs when large LED currents are being drawn, especially in bar graph mode. These currents flowing out of the ground pin cause voltage drops in external wiring, and thus errors and oscillations. Bringing the return wires from signal sources, reference ground and bottom of the resistor string to a single point very near pin 2 is the best solution.

Long wires from $V_{\text {LED }}$ to LED anode common can cause oscillations. Depending on the severity of the problem $0.05 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$ decoupling capacitors from LED anode common to pin 2 will damp the circuit. If LED anode line wiring is inaccessible, often similar decoupling from pin 1 to pin 2 will be sufficient.

If LED turn ON seems slow (bar mode) or several LEDs light (dot mode), oscillation or excessive noise is usually the problem. In cases where proper wiring and bypassing fail to stop oscillations, $\mathrm{V}^{+}$voltage at pin 3 is usually below suggested limits. Expanded scale meter applications may have one or both ends of the internal voltage divider terminated at relatively high value resistors. These . high-impedance ends should be bypassed to pin 2 with at lease a $0.001 \mu \mathrm{~F}$ capacitor, or up to $0.1 \mu \mathrm{~F}$ in noisy environments.

## Cascading LM3915s in Dot Mode



## Application Hints (Continued)

Power dissipation, especially in bar mode should be given consideration. For example, with a 5 V supply and all LEDs programmed to 20 mA the driver will dissipate over 600 mW . In this case a $7.5 \Omega$ resistor in series with the LED supply will cut device heating in half. The negative end of the resistor should be bypassed with a $2.2 \mu \mathrm{~F}$ solid tantalum capacitor to pin 2.

## Tips on Rectifier Circuits

The simplest way to display an AC signal using the LM3915 is to apply it right to pin 5 unrectified. Since the LED illuminated represents the instantaneous value of the AC waveform, one can readily discern both peak and average values of audio signals in this manner. The LM3915 will respond to positive half-cycles only but will not be damaged by signals up to $\pm 35 \mathrm{~V}$ (or up to $\pm 100 \mathrm{~V}$ if a 39 k resistor is in series with the input). It's recommended to use dot mode and to run the LEDs at 30 mA for high enough average intensity.

True average or peak deieciion requires ícutificãtion. if an: LM3915 is set up with 10 V full scale across its voltage divider, the turn-on point for the first LED is only 450 mV . A simple silicon diode rectifier won't work well at the low end due to the 600 mV diode threshold. The half-wave peak detector in Figure 1 uses a PNP emitter-follower in front of the diode. Now, the transistor's base-emitter voltage cancels out the diode offset, within about 100 mV . This approach is usually satisfactory when a single LM3915 is used for a 30 dB display.


FIGURE 1. Half-Wave Peak Detector


FIGURE 3. Precision Full-Wave Average Detector

Display circuits using two or more LM3915s for a dynamic range of 60 dB or greater require more accurate detection. In the precision half-wave rectifier of Figure 2 the effective diode offset is reduced by a factor equal to the open-loop gain of the op amp. Filter capacitor C 2 charges through R3 and discharges through R2 and R3, so that appropriate selection of these values results in either a peak or an average detector. The circuit has a gain equal to R2/R1.

It's best to capacitively couple the input. Audio sources frequently have a small DC offset that can cause significant error at the low end of the log display. Op amps that slew quickly, such as the LF351, LF353 or LF356, are needed to faithfully respond to sudden transients. It may be necessary to trim out the op amp DC offset voltage to accurately cover a 60 dB range. Best results are obtained if the circuit is adjusted for the correct output when a lowlevel AC signal ( 10 to 20 mV ) is applied, rather than adjusting for zero output with zero input.
For precision full-wave averaging use the circuit in Figure 3 Using $1 \%$ resistors for R1 through R4, gain for positive and negative signal differs by only 0.5 dB worst case. Substituting $5 \%$ resistors increases this to 2 dB worst case. (A 2 dB gain difference means that the display may have a $\pm 1 \mathrm{~dB}$ error when the input is a nonsymmetrical transient). The averaging time constant is R5-C2. A simple modification results in the precision full-wave detector of Figure 4. Since the filter capacitor is not buffered, this circuit can drive only high impedance loads such as the input of an LM3915.


FIGURE 2. Precision Half-Wave Rectifier


FIGURE 4. Precision Full-Wave Peak Detector

## Application Hints <br> (Continued)

## Cascading the LM3915

To display signals of 60 or 90 dB dynamic range, multiple LM3915s can be easily cascaded. Alternatively, it is possible to cascade an LM3915 with LM3914s for a log/linear display or with an LM3916 to get an extended range VU meter.
A simple, low cost approach to cascading two LM3915s is to set the reference voltages of the two chips 30 dB apart as in Figure 5. Potentiometer R1 is used to adjust the full scale voltage of LM3915 \#1 to 316 mV nominally while the second IC's reference is set at 10 V by R4. The drawback of this method is that the threshold of LED \#1 is only 14 mV and, since the LM3915 can have an offset voltage as high as 10 mV , large errors can occur. This technique is not recommended for 60 dB displays requiring good accuracy at the first few display thresholds.

A better approach shown in Figure 6 is to keep the reference at 10 V for both LM3915s and amplify the input
signal to the lower LM3915 by 30 dB . Since two $1 \%$ resistors can set the amplifier gain within $\pm 0.2 \mathrm{~dB}$, a gain trim is unnecessary. However, an op amp offset voltage of 5 mV will shift the first LED threshold as much as 4 dB , so that an offset trim may be required. Note that a single adjustment can null out offset in both the precision rectifier and the 30 dB gain stage. Alternatively, instead of amplifying, input signals of sufficient amplitude can be fed directly to the lower LM3915 and attenuated by 30 dB to drive the second LM3915.

To extend this approach to get a 90 dB display, another 30 dB of amplification must be placed in the signal path ahead of the lowest LM3915. Extreme care is required as the lowest LM3915 displays input signals down to 0.5 mV ! Several offset nulls may be required. High currents should not share the same path as the low level signal. Also power line wiring should be kept away from signal lines.


FIGURE 5. Low Cost Circuit for 60 dB Display


FIGURE 6. Improved Circuit for 60 dB Display

## Application Hints (Continued)

## TIPS ON REFERENCE VOLTAGE

 AND LED CURRENT PROGRAMMING
## Single LM3915

The equations in Figure 7 illustrate how to choose resistor values to set reference voltage for the simple case where no LED intensity adjustment is required. A LED current of 10 mA to 20 mA generally produces adequate illumination. Having 10V full-scale across the internal voltage divider gives best accuracy by keeping signal level high relative to the offset voltage of the internal comparators. However, this causes $450 \mu \mathrm{~A}$ to flow from pin 7 into the divider which means that the LED current will be at least 5 mA . R1 will typically be between $1 \mathrm{k} \Omega$ and $2 \mathrm{k} \Omega$. To trim the reference voltage, vary R2.

The circuit in Figure 8 shows how to add a LED intensity control which can vary LED current from 9 mA to 28 mA .

FIGURE 7. Design Equations for Fixed LED Intensity


FIGURE 9. Independent Adjustment of Reference Voltage and LED Intensity for Multiple LM3915s


## Application Hints (Continued)

The scheme in Figure 10 is useful when the reference and LED intensity must be adjusted independently over a wide range. The $R_{H I}$ voltage can be adjusted from 1.2 V to 10 V with no effect on LED current. Since the internal divider here does not load down the reference, minimum LED current is much lower. At the minimum recommended reference load of $80 \mu \mathrm{~A}$, LED current is about 0.8 mA . The resistor values shown give a LED current range from 1.5 mA to 20 mA .

At the low end of the intensity adjustment, the voltage drop across the $510 \Omega$ current-sharing resistors is so small that chip to chip variation in reference voltage may yield a visible variation in LED intensity. The optional approach shown of connecting the bottom end of the intensity control pot to a negative supply overcomes this problem by allowing a larger voltage drop across the (larger) currentsharing resistors.


FIGURE 10. Wide-Range Adjustment of Reference Voltage and LED Intensity for Multiple LM3915s


FIGURE 11. OV to 10V Log Display with Smooth Transitions

Typical Applications (Continued)
Extended Range VU Meter



Indicator and Alarm, Full-Scale Changes Display From Dot to Bar



Driving Vacuum Fluorescent Display


## Typical Applications (Continued)

Low Current Bar Mode Display


Driving Liguid Crystal Display


Bar Display with Alarm Flasher


Typical Applications (Continued)


Logarithmic response allows coarse and fine adjustments without changing scale. Resolution ranges from 10 mV at $\mathrm{V}_{1 \mathrm{~N}}=0$ to 500 mV at $\mathrm{V}_{\mathrm{IN}}= \pm 1.25 \mathrm{~V}$.

Operating with a High Voltage Supply (Dot Mode Only)


## Typical Applications (Continued)

Light Meter


Audio Power Meter


See Application Hints for optional Peak or Average Detector

Connection Diagram


Order Number LM3915J
See NS Package J18A
Order Number LM3915N
See NS Package N18A

## Definition of Terms

Absolute Accuracy: The difference between the observed threshold voltage and the ideal threshold voltage for each comparator. Specified and tested with 10V across the internal voltage divider so that resistor ratio matching error predominates over comparator offset voltage.

Adjust Pin Current: Current flowing out of the reference adjust pin when the reference amplifier is in the linear region.

Comparator Gain: The ratio of the change in output current ( $\mathrm{l}_{\text {LED }}$ ) to the change in input voltage ( $\mathrm{V}_{\text {IN }}$ ) required to produce it for a comparator in the linear region.

Dropout Voltage: The voltage measured at the current source outputs required to make the output current fall by $10 \%$.

Input Bias Current: Current flowing out/of the signal input when the input buffer is in the linear region.

LED Current Regulation: The change in output current over the specified range of LED supply voltage ( $\mathrm{V}_{\text {LED }}$ ) as measured at the current source outputs. As the forward
voltage of an LED does not change significantly with a small change in forward current, this is equivalent to changing the voltage at the LED anodes by the same amount.

Line Regulation: The average change in reference output voltage ( $\mathrm{V}_{\text {REF }}$ ) over the specified range of supply voltage $\left(V^{+}\right)$.

Load Regulation: The change in reference output voltage over the specified range of load current (l/REF).
Offset Voltage: The differential input voltage which must be applied to each comparator to bias the output in the linear region. Most significant error when the voltage across the internal voltage divider is small. Specified and tested with pin 6 voltage ( $\mathrm{V}_{\mathrm{RH}}$ ) equal to pin 4 voltage ( $\mathrm{V}_{\mathrm{RLO}}$ ).
Relative Accuracy: The difference between any two adjacent threshold points. Specified and tested with 10V across the internal voltage divider so that resistor ratio matching error predominates over comparator offset voltage.

## National Semiconductor LM3916 Dot/Bar Display Driver

## Industrial Blocks

## General Description

The LM3916 is a monolithic integrated circuit that senses analog voltage levels and drives ten LEDs, LCDs or vacuum fluorescent displays, providing an electronic version of the popular VU meter. One pin changes the display from a bar graph to a moving dot display. LED current drive is regulated and programmable, eliminating the need for current limiting resistors. The whole display system can operate from a single supply as low as 3 V or as high as 25 V .
The IC contains an adjustable voltage reference and an accurate ten-step voltage divider. The high-impedance invut buffer accepts signals down to ground and up to within 1.5 V of the positive supply. Further, it needs no protection against inputs of $\pm 35 \mathrm{~V}$. The input buffer drives 10 individual comparators referenced to the precision divider. Accuracy is typically better than 0.2 dB .
Audio applications include average or peak level indicators, and power meters. Replacing conventional meters with an LED bar graph results in a faster responding, more rugged display with high visibility that retains the ease of interpretation of an analog display.

The LM3916 is extremely easy to apply. A 1.2 V full-scale meter requires only one resistor in addition to the ten LEDs. One more resistor programs the full-scale anywhere from 1.2 V to 12 V independent of supply voltage. LED brightness is easily controlled with a single pot.
The LM3916 is very versatile. The outputs can drive LCDs, vacuum fluorescents and incandescent bulbs as well as

LEDs of any color. Multiple devices can be cascaded for a dot or bar mode display for increased range and/or resolution. Useful in other applications are the linear LM3914 and the logarithmic LM3915.

## Features

- Fast responding electronic VU meter
- Drives LEDs, LCDs, or vacuum fluorescents
- Bar or dot display mode externally selectable by user

- Internal voltage reference from 1.2 V to 12 V
- Operates with single supply of 3 V to 25 V
- Inputs operate down to ground
- Output current programmable from 1 mA to 30 mA
- Input withstands $\pm 35 \mathrm{~V}$ without damage or false outputs
- Outputs are current regulated, open collectors
- Directly drives TTL or CMOS
- The internal 10 -step divider is floating and can be referenced to a wide range of voltages

The LM3916 is rated for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The LM3916N is available in an 18 -lead molded DIP package and the LM3916J comes in the 18-lead ceramic DIP.

## Typical Applications

OV to 10 V VU Meter


## Absolute Maximum Ratings

Power Dissipation (Note 5)	1 W
Ceramic DIP(J)	625 mW
Molded DIP(N)	25 V
Supply Voltage	25 V
Voltage on Output Drivers	


Input Signal Overvoltage (Note 3)	$\pm 35 \mathrm{~V}$
Divider Voltage	-100 mV to $\mathrm{V}^{+}$
Reference Load Current	10 mA
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Conditions(Note 1) \& Min \& Typ \& Max \& Units \\
\hline \multicolumn{6}{|l|}{Comparators} \\
\hline \begin{tabular}{l}
Offset Voltage, Buffer and First Comparator \\
Offset Voltage, Buffer and Any Other Comparator \\
Gain ( \(\Delta I_{\text {LED }} / \Delta V_{I N}\) ) \\
Input Bias Current (at Pin 5) \\
Input Signal Overvoltage
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& O V \leq V_{R L O}=V_{R H I} \leq 12 \mathrm{~V}, \\
\& \mathrm{I}_{\mathrm{LED}}=1 \mathrm{~mA} \\
\& O V \leq \mathrm{V}_{\mathrm{RLO}}=\mathrm{V}_{\text {RHI }} \leq 12 \mathrm{~V}, \\
\& \mathrm{I}_{\mathrm{LED}}=1 \mathrm{~mA} \\
\& \mathrm{I}_{\mathrm{LREF})}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{LED}}=10 \mathrm{~mA} \\
\& O V \leq \mathrm{V}_{I N} \leq\left(\mathrm{V}^{+}-1.5 \mathrm{~V}\right)
\end{aligned}
\] \\
No Change in Display
\end{tabular} \& \[
-35
\] \& \begin{tabular}{l}
3 \\
3 \\
8 \\
10
\end{tabular} \& \begin{tabular}{l}
10 \\
15 \\
50 \\
35
\end{tabular} \& \begin{tabular}{l}
mV \\
mV \\
\(\mathrm{mA} / \mathrm{mV}\) \\
nA \\
V
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Voltage Divider} \\
\hline \begin{tabular}{l}
Divider Resistance \\
Relative Accuracy (Input Change Between Any Two Threshold Points) \\
Absolute Accuracy
\end{tabular} \& \begin{tabular}{l}
Total, Pin 6 to 4 \\
(Note 2)
\[
\begin{aligned}
\& -1 \mathrm{~dB} \leq \mathrm{V}_{\text {IN }} \leq 3 \mathrm{~dB} \\
\& -7 \mathrm{~dB} \leq \mathrm{V}_{\text {IN }} \leq-1 \mathrm{~dB} \\
\& -10 \mathrm{~dB} \leq \mathrm{V}_{\text {IN }} \leq-7 \mathrm{~dB}
\end{aligned}
\] \\
(Note 2)
\[
\begin{aligned}
\& \mathrm{V}_{\mathrm{IN}}=2,1,0,-1 \mathrm{~dB} \\
\& \mathrm{~V}_{\mathrm{IN}}=-3,-5 \mathrm{~dB} \\
\& \mathrm{~V}_{\mathrm{IN}}=-7,-10,-20 \mathrm{~dB}
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\hline 6.5 \\
\\
0.75 \\
1.5 \\
2.5 \\
\\
-0.25 \\
-0.5 \\
-1 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 10 \\
\& \\
\& 1.0 \\
\& 2.0 \\
\& 3.0
\end{aligned}
\] \& \[
\begin{gathered}
15 \\
\\
1.25 \\
2.5 \\
2.5 \\
\\
+0.25 \\
+0.5 \\
+1
\end{gathered}
\] \& \begin{tabular}{l}
\(\mathrm{k} \Omega\) \\
dB \\
dB \\
dB \\
dB \\
\(d B\) \\
dB
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Voltage Reference} \\
\hline \begin{tabular}{l}
Output Voltage \\
Line Regulation \\
Load Regulation \\
Output Voltage Change with Temperature \\
Adjust Pin Current
\end{tabular} \& \[
\begin{aligned}
\& 0.1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}(\mathrm{REF})} \leq 4 \mathrm{~mA}, \\
\& \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{LED}}=5 \mathrm{~V} \\
\& 3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 18 \mathrm{~V} \\
\& 0.1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}(\mathrm{REF})} \leq 4 \mathrm{~mA}, \\
\& \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{LED}}=5 \mathrm{~V} \\
\& 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=1 \mathrm{~mA}, \\
\& \mathrm{~V}^{+}=\mathrm{V}_{\mathrm{LED}}=5 \mathrm{~V}
\end{aligned}
\] \& 1.2 \& \[
\begin{gathered}
1.28 \\
0.01 \\
0.4 \\
1 \\
75
\end{gathered}
\] \& \[
\begin{gathered}
1.34 \\
0.03 \\
2 \\
\\
120
\end{gathered}
\] \& \begin{tabular}{l}
V \\
\%/V \\
\% \\
\% \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Output Drivers} \\
\hline \begin{tabular}{l}
LED Current \\
LED Current Difference (Between Largest and Smallest LED Currents) \\
LED Current Regulation \\
Dropout Voltage \\
Saturation Voltage \\
Output Leakage, Each Collector \\
Output Leakage \\
Pins 10-18 \\
Pin 1
\end{tabular} \&  \& 7

60 \& $$
\begin{gathered}
\hline 10 \\
0.12 \\
1.2 \\
0.1 \\
1 \\
\\
\\
0.15 \\
0.1 \\
\\
0.1 \\
150
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\hline 13 \\
0.4 \\
3 \\
0.25 \\
3 \\
1.5 \\
\\
0.4 \\
100 \\
\\
100 \\
450
\end{gathered}
$$

\] \& | mA |
| :--- |
| mA |
| mA |
| mA |
| mA |
| V |
| V |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ | <br>

\hline \multicolumn{6}{|l|}{Supply Current} <br>

\hline | Standby Supply Current |
| :--- |
| (All Outputs Off) | \& \[

$$
\begin{aligned}
& \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=0.2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=+20 \mathrm{~V}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=1.0 \mathrm{~mA}
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 2.4 \\
& 6.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.2 \\
& 9.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
$$
\] <br>

\hline
\end{tabular}

## Notes

Note 1: Unless otherwise stated, all specifications apply with the following conditions:
$3 V_{D C} \leq V^{+} \leq 20 V_{D C}$
$3 V_{D C} \leq V_{L E D} \leq V^{+}$
$-0.015 \mathrm{~V} \leq \mathrm{V}_{\text {RLO }} \leq 12 \mathrm{~V}_{\mathrm{DC}}$
$V_{\text {REF }}, V_{\text {RHI }}, V_{\text {RLO }} \leq\left(V^{+}-1.5 \mathrm{~V}\right)$
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=0.2 \mathrm{~mA}, \operatorname{pin} 9$ connected to pin 3 (bar mode).
$O V \leq V_{I N} \leq V^{+}-1.5 \mathrm{~V}$ For higher power dissipations, pulse testing is used.
$-0.015 \mathrm{~V} \leq \mathrm{V}_{\mathrm{RHI}} \leq 12 \mathrm{~V}_{\mathrm{DC}}$

Note 2: Accuracy is measured referred to $+3 \mathrm{~dB}=+10.000 \mathrm{~V}_{\mathrm{DC}}$ at pin 5 , with $+10.000 \mathrm{~V}_{\mathrm{DC}}$ at pin 6 , and $0.000 \mathrm{~V} C \mathrm{at} \mathrm{pin} 4$. At lower full-scale voltages, buffer and comparator offset voltage may add significant error. See table for threshold voltages.
Note 3: Pin 5 input current must be limited to $\pm 3 \mathrm{~mA}$. The addition of a 39 k resistor in series with pin 5 allows $\pm 100 \mathrm{~V}$ signals without damage.
Note 4: Bar mode results when pin 9 is within 20 mV of $\mathrm{V}^{+}$. Dot mode results when pin 9 is pulled at least 200 mV below $V^{+}$. LED \#10 (pin 10 output current) is disabled if pin 9 is pulled 0.9 V or more below $\mathrm{V}_{\text {LED }}$.
Note 5: The maximum junction temperature of the LM3916 is $100^{\circ} \mathrm{C}$. Devices must be derated for operation at elevated temperatures. Junction to ambient thermal resistance is $75^{\circ} \mathrm{C} / \mathrm{W}$ for the ceramic DIP (J package) and $120^{\circ} \mathrm{C} / \mathrm{W}$ for the molded DIP (N package).

LM3916 THRESHOLD VOLTAGE (Note 2)

	Volts				Volts		
	dB	Min	Typ	Max	$\mathbf{d B}$	Min	Typ
Max							
3	9.985	10.000	10.015	$-3 \pm 1 / 2$	4.732	5.012	5.309
$2 \pm 1 / 4$	8.660	8.913	9.173	$-5 \pm 1 / 2$	3.548	3.981	4.467
$1 \pm 1 / 4$	7.718	7.943	8.175	$-7 \pm 1$	2.818	.3 .162	3.548
$0 \pm 1 / 4$	6.879	7.079	7.286	$-10 \pm 1$	1.995	2.239	2.512
$-1 \pm 1 / 2$	5.957	6.310	6.683	$-20 \pm 1$	0.631	0.708	0.794

## Typical Performance Characteristics



Reference Adjust Pin Current vs Temperature


Input Current Beyond Signal Range (Pin 5)

( (4) LNJyynj inani

Operating Input Bias Current vs Temperature


LED Current-Regulation Dropout


LED Current vs Reference Loading

reference load current (mA)

Reference Voltage vs Temperature


LED Driver Saturation Voltage


LED Driver Current Regulation


## Typical Performance Characteristics (Continued)

## Total Divider Resistance

vs Temperature

Common-Mode Limits


Output Characteristics


Block Diagram (Showing Simplest Application)


## Functional Description

The simplified LM3916 block diagram is included to give the general idea of the circuit's operation. A high input impedance buffer operates with signals from ground to 12 V , and is protected against reverse and overvoltage signals. The signal is then applied to a series of 10 comparators; each of which is biased to a different comparison level by the resistor string.

In the example illustrated, the resistor string is connected to the internal 1.25 V reference voltage. As the input voltage varies from 0 to 1.25 , the comparator outputs are driven low one by one, switching on the LED indicators. The resistor divider can be connected between any 2 voltages, providing that they are at least 1.5 V below $\mathrm{V}^{+}$ and no lower than $V^{-}$.

## Internal Voltage Reference

The reference is designed to be adjustable and develops a nominal 1.25 V between the REF OUT (pin 7) and REF ADJ (pin 8) terminals. The reference voltage is impressed across program resistor R1 and, since the voltage is con-
 set resistor R2 giving an output voltage of:

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{REF}}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)+\mathrm{I}_{\mathrm{ADJ}} \mathrm{R} 2
$$



Since the $120 \mu \mathrm{~A}$ current (max) from the adjust terminal represents an error term, the reference was designed to minimize changes of this current with $\mathrm{V}^{+}$and load changes. For correct operation, reference load current should be between $80 \mu \mathrm{~A}$ and 5 mA . Load capacitance should be less than $0.05 \mu \mathrm{~F}$.

## Current Programming

A feature not completely illustrated by the block diagram is the LED brightness control. The current drawn out of the reference voltage pin (pin 7) determines LED current. Approximately 10 times this current will be drawn through each lighted LED, and this current will be relatively constant despite supply voltage and temperature changes. Current drawn by the internal 10 -resistor divider, as well as by the external current and voltage-setting divider should be included in calculating LED drive current. The ability to modulate LED brightness with time, or in proportion to input voltage and other signals can lead to a number of novel displays or ways of indicating input overvoltages, alarms, etc.

The LM3916 outputs are current-limited NPN transistors as shown below. An internal feedback loop regulates the transistor drive. Output current is held at about 10 times the reference load current, independent of output voltage and processing variables, as long as the transistor is not saturated.

LM3916 Output Circuit


Outputs may be run in saturation with no adverse effects, making it possible to directly drive logic. The effective saturation resistance of the output transistors, equal to $R_{E}$ plus the transistors' collector resistance, is about $50 \Omega$. It's also possible to drive LEDs from rectified AC with no filtering. To avoid oscillations, the LED supply should be bypassed with a $2.2 \mu \mathrm{~F}$ tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic capacitor.

## Mode Pin Use

Fin 0 , thะ ińod colcot input, parmite chaining ef multip!e devices, and controls bar or dot mode operation. The following tabulation shows the basic ways of using this input. Other more complex uses will be illustrated in the applications.

Bar Graph Display: Wire Mode Select (pin 9) directly to pin $3\left(V^{+}\right.$pin).

Dot Display, Single LM3916 Driver: Leave the Mode Select pin open circuit.

Dot Display, $\mathbf{2 0}$ or More LEDs: Connect pin 9 of the first driver in the series (i.e., the one with the lowest input voltage comparison points) to pin 1 of the next higher LM3916 driver. Continue connecting pin 9 of lower input drivers to pin 1 of higher input drivers for 30 or more LED displays. The last LM3916 driver in the chain will have pin 9 left open. All previous drivers should have a 20 k resistor in parallel with LED \#9 (pin 11 to $\mathrm{V}_{\text {LED }}$ ).

## Mode Pin Functional Description

This pin actually performs two functions. Refer to the simplified block diagram below.


## Mode Pin Functional Description (Continued)

## Dot or Bar Mode Selection

The voltage at pin 9 is sensed by comparator C1, nominally referenced to ( $\mathrm{V}^{+}-100 \mathrm{mV}$ ). The chip is in bar mode when pin 9 is above this level; otherwise it's in dot mode. The comparator is designed so that pin 9 can be left open circuit for dot mode.
Taking into account comparator gain and variation in the 100 mV reference level, pin 9 should be no more than 20 mV below $\mathrm{V}^{+}$for bar mode and more than 200 mV below $\mathrm{V}^{+}$(or open circuit) for dot mode. In most applications, pin 9 is either open (dot mode) or tied to $\mathrm{V}^{+}$(bar mode). In bar mode, pin 9 should be connected directly to pin 3. Large currents drawn from the power supply (LED current, for example) should not share this path so that large IR drops are avoided.

## Dot Mode Carry

In order for the display to make sense when multiple drivers are cascaded in dot mode, special circuitry has been included to shut off LED \#10 of the first device when LED \#1 of the second device comes on. The connection for cascading in dot mode has already been described and is depicted in Figure 1.
As long as the input signal voltage is below the threshold of the second driver, LED \#11 is off. Pin 9 of driver \#1 thus sees effectively an open circuit so the chip is in dot mode. As soon as the input voltage reaches the threshold of LED \#11, pin 9 of driver \#1 is pulled an LED drop (1.5V or more) below $\mathrm{V}_{\text {LED }}$. This condition is sensed by comparator C 2 ,
referenced 600 mV below $\mathrm{V}_{\text {LED }}$. This forces the output of C2 low, which shuts off output transistor Q2, extinguishing LED \#10.
$V_{\text {LED }}$ is sensed via the 20k resistor connected to pin 11. The very small current (less than $100 \mu \mathrm{~A}$ ) that is diverted from LED \#9 does not noticeably affect its intensity.

An auxiliary current source at pin 1 keeps at least $100 \mu \mathrm{~A}$ flowing through LED \#11 even if the input voltage rises high enough to extinguish the LED. This ensures that pin 9 of driver \#1 is held low enough to force LED \#10 off when any higher LED is illuminated. While $100 \mu \mathrm{~A}$ does not normally produce significant LED illumination, it may be noticeable when using high-efficiency LEDs in a dark environment. If this is bothersome, the simple cure is to shunt LED \#11 (and LED \#1) with a 10k resistor. The 1V IR drop is more than the 900 mV worst case required to hold off LED \#10 yet small enough that LED \#11 does not conduct significantly.

In some circuits a number of outputs on the higher device are not used. Examples include the high resolution VU meter and the expanded range VU meter circuits (see Typical Applications). To provide the proper carry sense voltage in dot mode, the LEDs of the higher driver IC are tied to $V_{\text {LED }}$ through two series-connected diodes as shown in Figure 2. Shunting the diodes with a 1 k resistor provides a path for driver leakage current.


FIGURE 1. Cascading LM3914/15/16 Series in Dot Mode


FIGURE 2. Cascading Drivers in Dot Mode with Pin 1 of Driver \#2 Unused

## Mode Pin Functional Description (Continued)

## Other Device Characteristics

The LM3915 is relatively low-powered itself, and since any number of LEDs can be powered from about 3 V , it is a very efficient display driver. Typical standby supply current (all LEDs OFF) is 1.6 mA . However, any reference loading adds 4 times that current drain to the $\mathrm{V}^{+}$(pin 3 ) supply input. For example, an LM3915 with a 1 mA reference pin load (1.3k) would supply almost 10 mA to every LED while drawing only 10 mA from its $\mathrm{V}^{+}$pin supply. At full-scale, the IC is typically drawing less than $10 \%$ of the current supplied to the display.
The display driver does not have built-in hysteresis so that the display does not jump instantly from one LED to the next. Under rapidly changing signal conditions, this cuts down high frequency noise and often an annoying flicker. An "overlap" is built in so that at no time are all segments completely off in the dot mode. Generally one LED fades in while the other fades out over a 1 mV to 3 mV range. The change may be much more rapid between LED \#10 of one


## Application Hints

The most difficult problem occurs when large LED currents are being drawn, especially in bar graph mode. These currents flowing out of the ground pin cause voltage drops in external wiring, and thus errors and oscillations. Bringing the return wires from signal sources, reference ground and bottom of the resistor string to a single point very near pin 2 is the best solution.
Long wires from $V_{\text {LED }}$ to LED anode common can cause oscillations. The usual cure is bypassing the LED anodes with a $2.2 \mu \mathrm{~F}$ tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic capacitor. If the LED anode line wiring is inaccessible, often a $0.1 \mu \mathrm{~F}$ capacitor from pin 1 to pin 2 will be sufficient.
If there is a large amount of LED overlap in the bar mode, oscillation or excessive noise is usually the problem. In cases where proper wiring and bypassing fail to stop oscillations, $\mathrm{V}^{+}$voltage at pin 3 is usually below suggested limits. When several LEDs are lit in dot mode, the problem is usually an AC component of the input signal which should be filtered out. Expanded scale meter applications may have one or both ends of the internal voltage divider terminated at relatively high value resistors. These high-impedance ends should be bypassed to pin 2 with $0.1 \mu \mathrm{~F}$.

Power dissipation, especially in bar mode should be given consideration. For example, with a 5 V supply and all LEDs programmed to 20 mA the driver will dissipate over 600 mW . In this case a $7.5 \Omega$ resistor in series with the LED supply will cut device heating in half. The negative end of the resistor should be bypassed with a $2.2 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic capacitor to pin 2.

## Tips on Rectifier Circuits

The simplest way to display an AC signal using the LM3916 is to apply it right to pin 5 unrectified. Since the LED illuminated represents the instantaneous value of the AC waveform, one can readily discern both peak and average values of audio signals in this manner. The LM3916 will respond to positive half-cycles only but will
not be damaged by signals up to $\pm 35 \mathrm{~V}$ (or up to $\pm 100 \mathrm{~V}$ if a 39 k resistor is in series with the input). A smear or bar type display results even though the LM3916 is connected for dot mode. The LEDs should be run at 20 mA to 30 mA for high enough average intensity.

True average or peak detection requires rectification. If an LM3916 is set up with 10 V full scale across its voltage divider, the turn-on point for the first LED is only 450 mV . A simple silicon diode rectifier won't work well at the low end due to the 600 mV diode threshold. The half-wave peak detector in Figure 3 uses a PNP emitter-follower in front of the diode. Now, the transistor's base-emitter voltage cancels out the diode offset, within about 100 mV . This approach is usually satisfactory when a single LM3916 is used for a 23 dB display.
Display circuits such as the extended range VU meter using two or more drivers for a dynamic range of 40 dB or greater require more accurate detection. In the precision half-wave rectifier of Figure 4 the effective diode offset is reduced by a factor equal to the open-loop gain of the op amp. Filter capacitor C2 charges through R3 and discharges through R2 and R3, so that appropriate selection of these values results in either a peak or an average detector. The circuit has a gain equal to R2/R1.
It's best to capacitively couple the input. Audio sources frequently have a small DC offset that can cause significant error at the low end of the log display. Op amps that slew quickly, such as the LF351, LF353 or LF356, are needed to faithfully respond to sudden transients. It may be necessary to trim out the op amp DC offset voltage to accurately cover a 60 dB range. Best results are obtained if the circuit is adjusted for the correct output when a lowlevel AC signal ( 10 to 20 mV ) is applied, rather than adjusting for zero output with zero input.


FIGURE 3. Half-Wave Peak Detector


FIGURE 4. Precision Half-Wave Rectifier

## Application Hints (Continued)

For precision full-wave averaging use the circuit in Figure 5. Using 1\% resistors for R1 through R4, gain for positive and negative signal differs by only 0.5 dB worst case. Substituting 5\% resistors increases this to 2 dB worst case. ( $\mathrm{A}^{\cdot} 2 \mathrm{~dB}$ gain difference means that the display may have a $\pm 1 \mathrm{~dB}$ error when the input is a nonsymmetrical transient). The averaging time constant is $\mathrm{R} 5 \cdot \mathrm{C} 2$. A simple modification results in the precision full-wave detector of Figure 6. Since the filter capacitor is not buffered, this circuit can drive only high impedance loads such as the input of an LM3916.

## AUDIO METER STANDARDS

## VU Meter

The audio level meter most frequently encountered is the VU meter. Its characteristics are defined in the ANSI
specification C165. The LM3916's outputs correspond to the meter indications specified with the omission of the -2 VU indication. The VU scale divisions differ slightly from a linear scale in order to obtain whole numbers in dB .

Some of the most important specifications for an AC meter are its dynamic characteristics. These define how the meter responds to transients and how fast the reading decays. The VU meter is a relatively slow fullwave averaging type, specified to reach $99 \%$ deflection in 300 ms and overshoot by 1 to $1.5 \%$. In engineering terms this means a slightly underdamped second order response with a resonant frequency of 2.1 Hz and a Q of 0.62 . Figure 7 depicts a simple rectifier/filter circuit that meets these criteria.


FIGURE 5. Precision Full-Wave Average Detector


FIGURE 6. Precision Full-Wave Peak Detector


Gain	R5	R6	C2	C3
1	100 k	43 k	2.0	$0.56 \mu \mathrm{~F}$
10	1 M	100 k	1.0	$0.056 \mu \mathrm{~F}$

Design Equations
$\frac{1}{\mathrm{R} 5 \cdot \mathrm{R} 6 \cdot \mathrm{C} 2 \cdot \mathrm{C} 3}=\omega_{0}{ }^{2}=177 \mathrm{sec}^{-2}$
$\frac{1}{\mathrm{C} 2}\left(\frac{1}{\mathrm{R} 3}+\frac{1}{\mathrm{R} 4}+\frac{1}{\mathrm{R} 5}+\frac{1}{\mathrm{R} 6}\right)=\frac{\omega_{0}}{\mathrm{Q}}=21.5 \mathrm{sec}^{-1}$
$\mathrm{R} 3=2 \mathrm{R} 4$
$\mathrm{R} 1=\mathrm{R} 2 \ll \mathrm{R} 4$
A1, A2: 1/2 LF353
D1, D2: 1N914 or 1N4148

* Reaches $99 \%$ level at 300 ms after applied tone burst and overshoots 1.2\%.

FIGURE 7. Full-Wave Average Detector to VU Meter Specifications*

## Application Hints (Continued)

## Peak Program Meter

The VU meter, originally intended for signals sent via telephone lines, has shortcomings when used in high fidelity systems. Due to its slow response time, a VU meter will not accurately display transients that can saturate a magnetic tape or drive an amplifier into clipping. The fastattack peak program meter (PPM) which does not have this problem is becoming increasingly popular.

While several European organizations have specifications for peak program meters, the German DIN specification 45406 is becoming a de facto standard. Rather than respond instantaneously to peak, however, PPM specifications require a finite "integration time" so that only peaks wide enough to be audible are displayed. DIN 45406 calls for a response of 1 dB down from steady-state for a 10 ms tone burst and 4 dB down for a 3 ms tone burst. These requirements are consistent with the other frequently encountered spec of 2 dB down for a 5 ms burst and are met by an attack time constant of 1.7 ms .
 ms decay time constant. The full-wave peak detector of Figure 6 satisfies both the attack and decay time criteria.

## Cascading the LM3916

The LM3916 by itself covers the 23 dB range of the conventional VU meter. To display signals of 40 dB or 70 dB
dynamic range, the LM3916 may be cascaded with the 3 dB/step LM3915s. Alternatively, two LM3916s may be cascaded for increased resolution over a 28 dB range. Refer to the Extended Range VU Meter and High Resolution VU Meter in the Typical Applications section for the complete circuits for both dot and bar mode displays.
To obtain a display that makes sense when an LM3915 and an LM3916 are cascaded, the -20 dB output from the LM3916 is dropped. The full-scale display for the LM3915 is set at 3 dB below the LM3916's -10 dB output and the rest of the thresholds continue the $3 \mathrm{~dB} /$ step spacing. A simple, low cost approach is to set the reference voltage of the two chips 16 dB apart as in Figure 5. The LM3915, with pin 8 grounded, runs at 1.25 V full-scale. R1 and R2 set the LM3916's reference 16 dB higher or 7.89 V . Variation in the two on-chip references and resistor tolerance may cause $a \pm 1 \mathrm{~dB}$ error in the -10 dB to -13 dB transition. If this is objectionable, R2 can be trimmed.
 threshold of LED \#1 on the LM3915 is only 56 mV . Since comparator offset voltage may be as high as 10 mV , large errors can occur at the first few thresholds. A better approach, as shown in Figure 9, is to keep the reference the same for both drivers ( 10 V in the example) and amplify the input signal by 16 dB ahead of the LM3915. Alternatively,


FIGURE 8. Low Cost Circuit for 40 dB Display


FIGURE 9. Improved Circuit for 40 dB Display

## Application Hints (Continued)

instead of amplifying, input signals of sufficient amplitude can be fed directly to the LM3916 and attenuated by 16 dB to drive the LM3915.
To extend this approach to get a 70 dB display, another 30 dB of amplification must be placed in the signal path ahead of the lowest LM3915. Extreme care is required as the lowest LM3915 displays input signals down to 2 mV ! Several offset nulls may be required. High currents should not share the same path as the low level signal. Also power line wiring should be kept away from signal lines.

## TIPS ON REFERENCE VOLTAGE AND LED CURRENT PROGRAMMING

## Single Driver

The equations in Figure 10 illustrate how to choose resistor values to set reference voltage for the simple case where no LED intensity adjustment is required. A LED current of 10 mA to 20 mA generally produces adequate illumination. Having 10V full-scale across the internal voltage divider gives best accuracy by keeping signal level high relative to the offset voltage of the internal com-


FIGURE 10. Design Equations for Fixed LED Intensity
parators. However, this causes 1 mA to flow from pin 7 into the divider which means that the LED current will be at least 10 mA . R1 will typically be between $1 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$. To trim the reference voltage, vary R2.
The circuit in Figure 11 shows how to add a LED intensity control which can vary LED current from 5 mA to 28 mA . Choosing $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$ lowers the current drawn by the ladder, increasing the intensity adjustment range. The reference adjustment has some effect on LED intensity but the reverse is not true.

## Multiple Drivers

Figure 12 shows how to obtain a common reference trim and intensity control for two drivers. The two ICs may be connected in cascade or may be handling separate channels for stereo. This technique can be extended for larger numbers of drivers by varying the values of R1, R2 and R3. Because the LM3915 has a greater ladder resistance, R5 was picked less than R7 in such a way as to provide equal reference load currents. The ICs' internal references track within 100 mV so that worst case error from chip to chip is only 0.2 dB for $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$.


FIGURE 11. Varying LED Intensity


FIGURE 12. Independent Adjustment of Reference Voltage and LED Intensity for Multiple Drivers

## Application Hints (Continued)

The scheme in Figure 13 is useful when the reference and LED intensity must be adjusted independently over a wide range. The $\mathrm{R}_{\mathrm{HI}}$ voltage can be adjusted from 1.2 V to 10V with no effect on LED current. Since the internal divider here does not load down the reference, minimum LED current is much lower. At the minimum recommended reference load of $80 \mu \mathrm{~A}$, LED current is about 0.8 mA . The resistor values shown give a LED current range from 1.5 mA to 25 mA .

At the low end of the intensity adjustment, the voltage drop across the $510 \Omega$ current-sharing resistors is so small that chip to chip variation in reference voltage may yield a visible variation in LED intensity. The optional approach
shown of connecting the bottom end of the intensity control pot to a negative supply overcomes this problem by allowing a larger voltage drop across the (larger) currentsharing resistors.

## Other Applications

For increased resolution, it's possible to obtain a display with a smooth transition between LEDs. This is accomplished by superimposing an AC waveform on top of the input level as shown in Figure 14. The signal can be a triangle, sawtooth or sine wave from 60 Hz to 1 kHz . The display can be run in either dot or bar mode.


FIGURE 13. Wide-Range Adjustment of Reference Voltage and LED Intensity for Multiple Drivers


FIGURE 14. OV to 10 V VU Meter with Smooth Transitions


Extended Range VU Meter (Dot Mode)


D1, D2: 1 N914 or 1N4148

* Optional shunts $100 \mu \mathrm{~A}$ auxiliary sink current away from LED \#1.
†See Application Hints for
optional peak or average detector

Typical Applications (Continued)

## Driving Vacuum Fluorescent Display



Indicator and Alarm, Full-Scale Changes Display From Dot to Bar


High Resolution VU Meter (Bar Mode)


* See Application Hints for optional peak or average detector.
$\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \cong 0.562=-5 \mathrm{~dB}$
or R1 $\cong 0.788 \cdot \mathrm{R} 2$


## High Resolution VU Meter (Dot Mode)




Operating with a High Voltage Supply (Dot Mode Only)


Typical Applications (Continued)
Low Current Bar Mode Display


Driving Liquid Crystal Display


Bar Display with Alarm Flasher


## Connection Diagram



## Definition of Terms

Absolute Accuracy: The difference between the observed threshold voltage and the ideal threshold voltage for each comparator. Specified and tested with 10 V across the internal voltage divider so that resistor ratio matching error predominates over comparator offset voltage.

Adjust Pin Current: Current flowing out of the reference adjust pin when the reference amplifier is in the linear region
Comparator Gain: The ratio of the change in output current ( $l_{\text {LED }}$ ) to the change in input voltage $\left(V_{I N}\right)$ required to produce it for a comparator in the linear region.

Dropout Voltage: The voltage measured at the current source outputs required to make the output current fall by 10\%.

Input Bias Current: Current flowing out of the signal input when the input buffer is in the linear region.

LED Current Regulation: The change in output current over the specified range of LED supply voltage ( $\mathrm{V}_{\text {LED }}$ ) as measured at the current source outputs. As the forward voltage of an LED does not change significantly with a
small change in forward current, this is equivalent to changing the voltage at the LED anodes by the same amount.

Line Regulation: The average change in reference output voltage ( $\mathrm{V}_{\text {REF }}$ ) over the specified range of supply voltage $\left(V^{+}\right)$.

Load Regulation: The change in reference output voltage over the specified range of load current (l(REF)).

Offset Voltage: The differential input voltage which must be applied to each comparator to bias the output in the linear region. Most significant error when the voltage across the internal voltage divider is small. Specified and tested with pin 6 voltage ( $\mathrm{V}_{\mathrm{RHI}}$ ) equal to pin 4 voltage ( $\mathrm{V}_{\mathrm{RLO}}$ ).

Relative Accuracy: The difference between any two adjacent threshold points. Specified and tested with 10 V across the internal voltage divider so that resistor ratio matching error predominates over comparator offset voltage.

National
Industrial Blocks
Semiconductor

## MF10 Universal Monolithic Dual Switched Capacitor Filter

## General Description

The MF10 consists of 2 independent and extremely easy to use, general purpose CMOS active filter building blocks. Each block, together with an external clock and 3 to 4 resistors, can produce various 2nd order functions. Each building block has 3 output pins. One of the outputs can be configured to perform either an allpass, highpass or a notch function; the remaining 2 output pins perform lowpass and bandpass functions. The center frequency of the lowpass and bandpass 2nd order functions can be either directly dependent on the clock frequency, or they can depend on both clock frequency and external resistor ratios. The center frequency of the notch and allpass functions is directly dependent on the clock frequency, while the highpass center frequency depends on both resistor ratio and clock. Up to 4th order functions can be performed by cascading the two 2nd order building blocks of the MF10; higher than 4th order functions can be obtained by cascading MF10 packages. Any of the classical filter configurations (such as Butterworth, Bessel, Cauer and Chebyshev) can be formed.

## Features

- Low cost
- 20-pin $0.3^{\prime \prime}$ wide package
- Easy to use
- Clock to center frequency ratio accuracy $=0.6 \%$
- Filter cutoff frequency stability directly dependent on external clock quality
- Low sensitivity to external component variation
- Separate highpass (or notch or allpass), bandpass, lowpass outputs
- $f_{0} \times Q$ range up to 200 kHz
- Operation up to 30 kHz


## System Block Diagram



Absolute Maximum Ratings	
Supply Voltage	7 V
Power Dissipation	500 mW
Operating Temperature	$0^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
Storage Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature(Șoldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Complete Filter) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Frequency Range	$\mathrm{f}_{\mathrm{o}} \times \mathrm{Q}<200 \mathrm{kHz}$	20	30		kHz
Clock to Center Frequency Ratio, $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$				.	
MF10BN	Pin 12 High, Q = 10		$49.94 \pm 0.2 \%$	$\pm 0.6 \%$	
MF10CN	$\mathrm{f}_{0} \times \mathrm{Q}<50 \mathrm{kHz}$, Mode 1		$49.94 \pm 0.2 \%$	$\pm 1.5 \%$	
MF10BN	Pin 12 at Mid Supplies		$99.35 \pm 0.2 \%$	$\pm 0.6 \%$	
MF10CN	$\mathrm{Q}=10, \mathrm{f}_{0} \times \mathrm{Q}<50 \mathrm{kHz}$, Mode 1		$99.35 \pm 0.2 \%$	$\pm 1.5 \%$	
Q Accuracy (Q Deviation from an Ideal Continuous Filter)					
MF10BN	Pin 12 High, Mode 1		$\pm 2 \%$	$\pm 4 \%$	
MF10CN	$\mathrm{f}_{0} \times \mathrm{Q}<100 \mathrm{kHz}, \mathrm{f}_{0}<5 \mathrm{kHz}$		$\pm 2 \%$	$\pm 6 \%$	
MF10BN	Pin 12 at Mid Supplies		$\pm 2 \%$	$\pm 3 \%$	
MF10CN	$\begin{aligned} & f_{0} \times Q<100 \mathrm{kHz} \\ & f_{0}<5 \mathrm{kHz} \text {, Mode } 1 \end{aligned}$		$\pm 2 \%$	$\pm 6 \%$	
$\mathrm{f}_{0}$ Temperature Coefficient	Pin 12 High ( $\sim 50: 1$ )   Pin 12 Mid Supplies ( $\sim 100: 1$ )   $\mathrm{f}_{\mathrm{o}} \times \mathrm{Q}<100 \mathrm{kHz}$, Mode 1   External Clock Temperature Independent		$\begin{gathered} \pm 10 \\ \pm 100 \end{gathered}$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$   $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Q Temperature Coefficient	$f_{0} \times Q<100 \mathrm{kHz}, Q$ Setting Resistors Temperature Independent		$\pm 500$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
DC Low Pass Gain Accuracy	Mode 1, R1 $=$ R2 $=10 \mathrm{k}$			$\pm 2$	\%
Crosstalk			50		dB
Clock Feedthrough			10		mV
Maximum Clock Frequency		1	1.5		MHz
Power Supply Current			8	10	mA

Electrical Characteristics (Internal $\mathrm{Op} \mathrm{Amps}^{\mathrm{T}} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Supply Voltage		$\pm 4$	$\pm 5$		V
Voltage Swing (Pins 1, 2, 9, 20)	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}$				
MF10BN		$\pm 3.8$	$\pm 4$	V	
MF10CN		$\pm 3.2$	$\pm 3.7$		V
Voltage Swing (Pins 3 and 18)	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3.5 \mathrm{k}$				
MF10BN		$\pm 3.8$	$\pm 4$		V
MF10CN	$\pm 3.2$	$\pm 3.7$	V		
Output Short Circuit Current	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$		3	mA	
Source			1.5		MHz
Sink		2.5	7	$\mathrm{~V} / \mu \mathrm{s}$	
Op Amp Gain BW Product					
Op Amp Slew Rate					

## Definition of Terms

$\mathbf{f}_{\text {CLK: }}$ the switched capacitor filter external clock frequency.
$f_{0}$ : center of frequency of the second order function complex pole pair. $f_{0}$ is measured at the bandpass output of each $1 / 2$ MF10, and it is the frequency of the bandpass peak occurrence (Figure 1).

Q: quality factor of the 2 nd order function complex pole pair. $Q$ is also measured at the bandpass output of each $1 / 2$ MF10 and it is the ratio of $f_{0}$ over the -3 dB bandwidth of the 2 nd order bandpass filter, Figure 1 . The value of $Q$ is not measured at the lowpass or highpass outputs of the filter, but its value relates to the possible amplitude peaking at the above outputs.
$H_{\text {OBP: }}$ the gain in (V/V) of the bandpass output at $f=f_{0}$.
$H_{\text {OLp: }}$ the gain in (V/V) of the lowpass output of each $1 / 2$ MF10 at $\mathfrak{f} \rightarrow 0 \mathrm{~Hz}$, Figure 2.


H $_{\text {OHP: }}$ the gain in (V/V) of the highpass output of each $1 / 2$ MF10 as $\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{CLK}} / 2$, Figure 3.
$\mathbf{Q}_{\mathbf{z}}$ : the quality factor of the 2nd order function complex zero pair, if any. ( $Q_{z}$ is a parameter used wheh an allpass output is sought and unlike $Q$ it cannot be directly measuréd).
$\mathrm{f}_{\mathbf{z}}$ : the center frequency of the 2 nd order function complex zero pair, if any. If $f_{z}$ is different from $f_{0}$, and if the $Q_{z}$ is quite high it can be observed as a notch frequency at the allpass output.
$f_{\text {notch }}$ : the notch frequency observed at the notch output(s) of the MF10.
$\mathrm{H}_{\mathrm{ON}_{1} \text { : }}$ the notch output gain as $\mathrm{f} \rightarrow \mathrm{OHz}$.
$\mathrm{H}_{\mathrm{ON}_{2}}$ : the notch output gain as $\mathrm{f}-\mathrm{f}_{\mathrm{CLK}} / 2$.

$$
\begin{aligned}
& Q=\frac{f_{0}}{f_{H}-f_{L}} ; f_{O}=\sqrt{f_{L} f_{H}} \\
& f_{L}=f_{0}\left(\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right) \\
& f_{H}=f_{0}\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)
\end{aligned}
$$

FIGURE 1

$f_{C}=f_{0} \times \sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}$
$f_{p}=f_{0} \sqrt{1-\frac{1}{2 Q^{2}}}$
$H_{O P}=H_{O L P} \times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}$

FIGURE 2

$f_{c}=f_{O} \times\left[\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}\right]^{-1}$
$f_{p}=f_{O} \times\left[\sqrt{1-\frac{1}{2 Q^{2}}}\right]^{-1}$
$H_{O P}=H_{O H P} \times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}$

FIGURE 3


## Pin Description

LP, BP, N/AP/HP

These are the lowpass, bandpass, notch or allpass or highpass outputs of each 2nd order section. The LP and BP outputs can sink typically 1 mA and source 3 mA . The N/AP/HP output can typically sink and source 1.5 mA and 3 mA , respectively.
INV This is the inverting input of the summing op amp of each filter. The pin has static discharge protection.
S1 S 1 is a signal input pin used in the allpass filter configurations (see modes of operation 4 and 5). The pin should be driven with a source impedance of less than $1 \mathrm{k} \Omega$.
It activates a switch connecting one of the inputs of the filter's 2nd summer either to analog ground ( $\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ low to $\mathrm{V}_{\mathrm{A}} \overline{\text { ) }}$ or to the lowpass output of the circuit ( $\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ high to $\mathrm{V}_{\mathrm{A}}^{+}$). This allows flexibility in the various modes of operation of the IC. $\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ is protected against static discharge.
$\mathrm{V}_{\mathrm{A}}^{+}, \mathrm{V}_{\mathrm{D}}^{+}$
Analog positive supply and digital positive supply. These pins are internally connected through the IC substrate and therefore $\mathrm{V}_{\mathrm{A}}^{+}$and $\mathrm{V}_{\mathrm{D}}^{+}$ should be derived from the same power supply source. They have been brought out separately so they can be bypassed by separate capacitors, if desired. They can be externally tied together and bypassed by a single capacitor.

Analog and digital negative supṕly respectively. The same comments as for $\mathrm{V}_{\mathrm{A}}^{+}$and $\mathrm{V}_{\mathrm{D}}^{+}$apply here. Level shift pin; it accommodates various clock levels with dual or single supply operation. With dual $\pm 5 \mathrm{~V}$ supplies, the MF10 can be driven with CMOS clock levels ( $\pm 5 \mathrm{~V}$ ) and the L Sh pin should be tied either to the system ground or to the negative supply pin. If the same supplies as above are used but $T^{2} \mathrm{~L}$ clock levels, derived from 0 V to 5 V supply, are only available, the L Sh pin should be tied to the system ground. For single supply operation ( 0 V and 10 V ) the $\mathrm{V}_{\mathrm{D}}^{-}, \mathrm{V}_{\mathrm{A}}^{-}$ pins should be connected to the svstem ground, the AGND pin should be biased at 5 V and the L Sh pin should also be tied to the system ground. This will accommodate both CMOS and $\mathrm{T}^{2}$ L clock levels.

Clock inputs for each switched capacitor filter building block. They should both be of the same level ( $T^{2}$ L or CMOS). The level shift (LSh) pin description discusses how to accommodate their levels. The duty cycle of the clock should preferably be close to $50 \%$ especially when clock frequencies above 200 kHz are used. This allows the maximum time for the op amps to settle which yields optimum filter operation.

50/100/CL By tying the pin high a 50:1 clock to filter center frequency operation is obtained. Tying the pin at mid supplies (i.e., analog ground with dual supplies) allows the filter to operate at a 100:1 clock to center frequency ratio. When the pin is tied low, a simple current limiting circuitry is triggered to limit the overall supply current down to about 2.5 mA . The filtering action is then aborted.

Analog ground pin; it should be connected to the system ground for dual supply operation or biased at mid supply for single supply operation. The positive inputs of the filter op amps are connected to the AGND pin so "clean" ground is mandatory. The AGND pin is protected against static discharge.

## Modes of Operation

The MF10 is a switched capacitor (sampled data) filter. To fully describe its transfer functions, a time domain approach will be appropriate. Since this may appear cumbersome and, since the MF10 closely approximates continuous filters, the following discussion is based on the well known frequency domain. The following illustrations refer to $1 / 2$ of the MF10; the other $1 / 2$ is identical. Each MF10 can produce a full 2nd order function, so up to 4th order functions can be performed by using cascading techniques.

MODE1: Notch 1, Bandpass, Lowpass Outputs: $f_{\text {notch }}=f_{0}$ (See Figure 4)
$\mathrm{f}_{0} \quad=$ center frequency of the complex pole pair

$$
=\frac{f_{\mathrm{CLK}}}{100} \text { or } \frac{f_{\mathrm{CLK}}}{50}
$$

$f_{\text {notch }}=$ center frequency of the imaginary zero pair $=f_{0}$.
$H_{\text {OLP }}=$ Lowpass gain $($ as $f \rightarrow 0)=-\frac{R 2}{R 1}$
$H_{\text {OBP }}=$ Bandpass gain $\left(\right.$ at $\left.f=f_{o}\right)=-\frac{R 3}{R 1}$
$H_{O N}=$ Notch output gain as $\left\{\begin{array}{l}f \rightarrow 0-\frac{R 2}{R 1} \\ f \rightarrow f_{C L K} / 2\end{array}\right.$
$Q=\frac{f_{o}}{B W}=\frac{R 3}{R 2}$
= quality factor of the complex pole pair.
BW $=$ the -3 dB bandwidth of the bandpass output.
Circuit dynamics:

$$
\begin{aligned}
& H_{\mathrm{OLP}}=\frac{H_{\mathrm{OBP}}}{Q} \text { or } H_{\mathrm{OBP}}=H_{\mathrm{OLP}} \times Q=H_{\mathrm{ON}} \times Q . \\
& H_{\mathrm{OLP} \text { (peak) }} \simeq Q \times H_{\mathrm{OLP}} \text { (for high } Q^{\prime} \text { s) }
\end{aligned}
$$

The above expressions are important. They determine the swing at each output as a function of the desired $Q$ of the 2nd order function.

MODE 1a: Non-Inverting BP, LP (See Figure 5)
$f_{0}=\frac{f_{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50}$
$\mathrm{Q}=\frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{\text {OLP }}=1 ; H_{\text {OLP (peak) }} \cong Q \times H_{\text {OLP }}$ (for high Q's)
$\mathrm{H}_{\mathrm{OPB}_{1}}=-\frac{\mathrm{R} 3}{\mathrm{R} 2}$
$\mathrm{H}_{\mathrm{OBP}_{2}}=1$ (non-inverting)
Circuit-dynamics: $\mathrm{H}_{\mathrm{OBP}}^{1} 10=\mathrm{Q}$


FIGURE 4. MODE 1


FIGURE 5. MODE 1a

## Modes of Operation (Continued)

MODE 2: Notch 2, Bandpass, Lowpass: $f_{\text {notch }}<f_{0}$ (See Figure 6)
$\mathrm{f}_{\mathrm{o}} \quad=$ center frequency
$=\frac{f_{C L K}}{100} \sqrt{\frac{R 2}{R 4}+1}$ or $\frac{f \text { CLK }}{50} \sqrt{\frac{R 2}{R 4}+1}$
$f_{\text {notch }}=\frac{f_{\text {CLK }}}{100}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50}$
Q = quality factor of the complex pole pair

$$
=\sqrt{\frac{\mathrm{R} 2 / \mathrm{R} 4+1}{\mathrm{R} 2 / \mathrm{R} 3}}
$$

$\mathrm{H}_{\text {OLP }}=$ Lowpass output gain (as $\mathrm{f} \rightarrow 0$ )

$$
=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}
$$

$H_{\text {OBP }}=$ Bandpass output gain (at $f=f_{0}$ ) $=-$ R3/R1
$\mathrm{H}_{\mathrm{ON}_{1}}=$ Notch output gain (as $\mathrm{f}-0$ )

$$
=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}
$$

$\mathrm{H}_{\mathrm{ON}_{2}}=$ Notch output gain $\left(\right.$ as $\left.\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)=-\mathrm{R} 2 / \mathrm{R} 1$
Filter dynamics: $H_{\mathrm{OBP}}=\mathrm{Q} \sqrt{\mathrm{H}_{\mathrm{OLP}} H_{\mathrm{ON}_{2}}}=\mathrm{Q} \sqrt{\mathrm{H}_{\mathrm{ON}_{1} \mathrm{H}_{\mathrm{ON}_{2}}}}$


FIGURE 6. MODE 2

*In Mode 3, the feedback loop is closed around the input summing amplifier; the finite GBW product of this op amp causes a slight $Q$ enhancement. If this is a problem, connect a small capacitor ( $10 \mathrm{pF}-100 \mathrm{pF}$ ) across R 4 to provide some phase lead.

FIGURE 7. MODE 3

## Modes of Operation (Continued)

MODE 3a: HP, BP, LP and Notch with External Op Amp (See Figure 8)
$\mathrm{f}_{0}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \times \sqrt{\frac{R 2}{\mathrm{R} 4}}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$
$Q=\sqrt{\frac{R 2}{R 4}} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{O H P}=-\frac{R 2}{R_{1}}$
$H_{\text {OBP }}=-\frac{R 3}{R 1}$
$H_{\text {OLP }}=-\frac{R 4}{R 1}$
$f_{n} \quad=$ notch frequency $=\frac{f_{C L K}}{100} \sqrt{\frac{R_{h}}{R_{1}}}$ or $\frac{f_{C L K}}{50} \sqrt{\frac{R_{h}}{R_{1}}}$
$H_{\text {on }}=$ gain of notch at $f=f_{o}=\left\|Q\left(\frac{R_{g}}{R_{l}} H_{O L P}-\frac{R_{g}}{R_{h}} H_{O H P}\right)\right\|$
$H_{n 1}=$ gain of notch (as $\left.f-0\right)=\frac{R_{g}}{R_{1}} \times H_{\text {OLP }}$
$H_{n 2}=$ gain of notch $\left(\right.$ as $\left.f-\frac{f_{\text {CLK }}}{2}\right)=-\frac{R_{g}}{R_{h}} \times H_{O H P}$

MODE 4: Allpass, Bandpass, Lowpass Outputs (See Figure 9)
$\mathrm{f}_{\mathrm{o}}=$ center frequency
$=\frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50}$;
$f_{z}^{*}=$ center frequency of the complex zero pair $\simeq f_{0}$
$Q=\frac{f_{0}}{B W}=\frac{R 3}{R 2}$;
$Q_{z}=$ quality factor of complex zero pair $=\frac{R 3}{R 1}$
For AP output make R1 = R2
$H_{\text {OAP }}=$ Allpass gain $\left(\right.$ at $\left.0<\mathrm{f}<\frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)=-\frac{\mathrm{R2}}{\mathrm{R1}}=-1$
$H_{\text {OLP }}=$ Lowpass gain (as $f \rightarrow 0$ )
$=-\left(\frac{R 2}{R 1}+1\right)=-2$
$H_{\text {OBP }}=$ Bandpass gain (at $f=f_{0}$ )
$=-\frac{\mathrm{R} 3}{\mathrm{R} 2}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)=-2\left(\frac{\mathrm{R} 3}{\mathrm{R} 2}\right)$
Circuit dynamics: $H_{O B P}=\left(H_{O L P}\right) \times Q=\left(H_{O A P}+1\right) Q$
*Due to the sampled data nature of the filter, a slight mismatch of $f_{z}$ and $f_{0}$ occurs causing a 0.4 dB peaking around $f_{0}$ of the allpass filter amplitude response (which theoretically should be a straight line). If this is unacceptable, Mode 5 is recommended.


FIGURE 8. MODE 3a


FIGURE 9. MODE 4

## Modes of Operation (Continued)

MODE 5: Numerator Complex Zeros, BP, LP (See Figure 10)
$f_{0}=\sqrt{1+\frac{R 2}{R 4}} \times \frac{f_{C L K}}{100}$ or $\sqrt{1+\frac{R 2}{R 4}} \times \frac{f_{C L K}}{50}$
$f_{z}=\sqrt{1-\frac{R 1}{R 4}} \times \frac{f_{C L K}}{100}$ or $\sqrt{1-\frac{R 1}{R 4}} \times \frac{f_{C L K}}{50}$
$\mathrm{Q}=\sqrt{1+\mathrm{R} 2 / \mathrm{R} 4} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$Q_{z}=\sqrt{1-R 1 / R 4} \times \frac{\mathrm{R} 3}{\mathrm{R} 1}$
$H_{0_{z 1}}=$ gain at $C . z$ output (as $\left.f \rightarrow 0 \mathrm{~Hz}\right)=\frac{R 2(R 4-R 1)}{R 1(R 2+R 4)}$
$H_{0_{z 2}}=$ gain at C.z output $\left(\right.$ as $\left.f-\frac{f_{C L K}}{2}\right)=\frac{R 2}{R 1}$
$H_{\text {OBP }}=\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+1\right) \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{\text {OLP }}=\left(\frac{R 2+R 1}{R 2+R 4}\right) \times \frac{R 4}{R 1}$


FIGURE 10. MODE 5


FIGURE 11. MODE 6a


FIGURE 12. MODE 6b

## Applications Information

## HOW TO USE THE $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ RATIO SPECIFICATION

The MF10 is a switched capacitor filter designed to approximate the response of a 2nd order state variable filter. When the sampling frequency is much larger than the frequency band of interest, the sampled data filter is a good approximation to its continuous time equivalent. In the case of the MF10, this ratio is about 50:1 or 100:1. Nevertheless the filter's response must be examined in the $z$-domain in order to obtain the actual response. It can be shown that the clock frequency to center frequency ratio, $f_{C L K} / f_{o}$ and the quality factor, $Q$, deviate from their ideal values determined in the continuous time domain. These deviations are shown graphically in Figures 13 and 14. The ratio, $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$, is a function of the ideal Q and the largest errors occur for the lowest values of Q .
The curve for the $f_{C L K} / f_{o}$ ratio versus the ideal $Q$ has been normalized for a $Q$ of 10 which is the $Q$ value used for the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ ratio testing of the MF10. At this point the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ ratio is 49.94 in the $50: 1$ mode and 99.35 in the 100:1 mode. These values are within a maximum tolerance of $\pm 0.6 \%$ (MF10B) and $\pm 1.5 \%$ (MF10C). The above tolerances hold for the entire range of Q's; in other words, at $50: 1$, an MF10B has a ratio of $49.94 \pm 0.6 \%(Q=10)$ and this ratio becomes ( $49.44 \pm 0.6 \%$ ) at $Q=2.1$. If these small errors cannot be tolerated, the clock frequency or the resistor's ratio, in Mode 3 and Mode 2, can be adjusted accordingly.


FIGURE 13


FIGURE 14

## A SIMPLE AND INFORMATIVE FILTER DESIGN USING THE MF10

Example 1: Design a 4th order 2 kHz lowpass maximally flat (Butterworth filter). The overall gain of the filter is desired to be equal to $1 \mathrm{~V} / \mathrm{V}$.

The 4th order filter can be built by cascading two 2nd order sections of ( $f_{0}, Q$ ) equal to: $Q=0.541, f_{0}=2 \mathrm{kHz}, Q=1.306$, $\mathrm{f}_{\mathrm{o}}=2 \mathrm{kHz}$.

Due to the low $Q$ values of the filter, the dynamics of the circuit are very good. Any of the modes of operation can be used but Mode 1a is the most simple:


FIGURE 15
Since for the first section the smallest resistor is R3, choose R3 $>5 \mathrm{k}$. Assume R3 $=10 \mathrm{k}$ then R2 $=18.48 \mathrm{k}$. For the second section choose R2 $=10 \mathrm{k}$ and then $\mathrm{R} 3=13.06 \mathrm{k}$. Both clock input pins $(10,11)$ can be tied together and then driven with a single external clock. If the approximate ratio $\mathrm{f}_{\mathrm{CLK}} / 100$ is chosen ( pin 12 is grounded), then with a 200 kHz clock, the cutoff frequency, $\mathrm{f}_{\mathrm{c}}$, will be at 2 kHz with a $1.5 \%$ maximum error.

The filter schematic is shown in Figure 16.


FIGURE 16. 4th Order, $\mathbf{2}$ kHz Lowpass Butterworth Filter

## Applications Information (Continued)

With a $\pm 5 \mathrm{~V}$ supply, each output node of the IC (pins $1,2,3$, $18,19,20$ ) will swing to $\pm 3.8 \mathrm{~V}$ (MF10B) or $\pm 3.2 \mathrm{~V}$ (MF10C). The maximum gain of 1.306 occurs at pin 19 at $f_{0} \simeq 2 \mathrm{kHz}$. The input voltage amplitude should be limited to less than 7.6 Vp-p/1.306 $=5.8 \mathrm{Vp}-\mathrm{p}$. If the Q of 1.306 section of the MF10 precedes the $Q$ of 0.541 section, the maximum gain is at pin 1 . This gain can be calculated from the expression for $\mathrm{H}_{\mathrm{OP}}$ given in Definition of Terms, and equals 1.41.

## Getting Optimum Cutoff Frequency, $f_{c}$, Accuracy (if needed):

In the previous example, an approximate 100:1 ratio was assumed. The true $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ ratio should be read from the curves, Figures 13 and 14. At 100:1 the normalized ratio to $Q=10$ is: $f_{C L K} / f_{0}=99.35$. For $Q$ 's of 0.541 and 1.306 this ratio becomes $99.35-0.75 \%=98.6$. For a $2 \mathrm{kHz} f_{c}$, the clock frequency should be $2 \mathrm{kHz} \times 98.6=197.2 \mathrm{kHz}$.
With an MF10B and a 197.2 kHz clock, the maximum error on the 2 kHz cutoff frequency is $\pm 0.6 \%$ as indicated in the specs.

If only a 200 kHz is available in Mode 1a, the true value of $f_{c}$ and its maximum error is: $200 \mathrm{kHz} /(98.6 \pm 0.6 \%)=$ $2028 \mp 0.6 \%$.

If only a 200 kHz is available and there is need for a tight tolerance cutoff frequency, then Mode 3 should be used instead of Mode 1a. The resistor ratios are:

1st Section, $Q=0.541$	2nd Section, $Q=1.306$
$R 2 / R 4=0.972$	$R 2 / R 4=0.972$
$R 3 / R 2=0.548$	$R 3 / R 2=1.324$
$R 4 / R 1=1$	$R 4 / R 1=1$

## MF10 OFFSETS

The switched capacitor integrators of the MF10 have higher equivalent input offset than the typical R,C integrator of a discrete active filter. These offsets are created by a parasitic charge injection from the switches into the integrating capacitors; they are temperature and clock frequency independent and their sign is shown to be consistent from part to part. The input offsets of the CMOS op amps also add to the overall offset, but their contribution is very small. Figure 17 shows an equivalent circuit from where output DC offsets can be calculated.
$V_{\text {OS1 }}=0 \mathrm{mV}$ to $\pm 10 \mathrm{mV}$
$V_{\text {OS2 }}=$ charge injected offset plus op amp offset $\simeq-120 \mathrm{mV}$ to -170 mV (at 50:1)
$V_{\text {OS3 }}=$ charge injected offset plus op amp offset $\simeq 100 \mathrm{mV}$ to 150 mV (at 50:1)

The $\mathrm{V}_{\mathrm{OS} 2}$ and $\mathrm{V}_{\mathrm{OS} 3}$ numbers approximately double at 100:1.

## Output Offsets

The DC offset at the BP output(s) of the MF10 is equal to
 tegrator, $\mathrm{V}_{\mathrm{OS} 3}$.
The DC offsets at the remaining outputs are roughly dependent upon the mode of operation and resistor ratios.
Mode 1 and Mode 4
$V_{\mathrm{OS}(\mathrm{N})}=V_{\mathrm{OS} 1}\left(\frac{1}{\mathrm{Q}}+1+\left\|H_{\mathrm{OLP}}\right\|\right)-\frac{V_{\mathrm{OS} 3}}{\mathrm{Q}}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})}=\mathrm{V}_{\mathrm{OS} 3}$
$V_{\mathrm{OS}(\mathrm{LP})}=\mathrm{V}_{\mathrm{OS}(\mathrm{N})}-\mathrm{V}_{\mathrm{OS} 2}$


FIGURE 17

## Applications Information (Continued)

Mode 2 and Mode 5
$V_{O S(N)}=\left(\frac{R 2}{R_{P}}+1\right) \quad V_{O S 1} \times \frac{1}{1+R_{2} / R 4}$

$$
+V_{\text {OS2 }} \frac{1}{1+R 4 / R 2}-\frac{V_{O S 3}}{Q \sqrt{1+R 2 / R 4}}:
$$

$$
R_{P}=R 1 / / R 2 / / R 4
$$

$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})}=\mathrm{V}_{\mathrm{OS} 3}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{LP})}=\mathrm{V}_{\mathrm{OS}(\mathrm{N})}-\mathrm{V}_{\mathrm{OS} 2}$
Mode 3
$\mathrm{V}_{\mathrm{OS}(\mathrm{HP})} \quad=\mathrm{V}_{\mathrm{OS} 2}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})} \quad=\mathrm{V}_{\mathrm{OS} 3}$
$V_{\mathrm{OS}(\mathrm{LP})} \quad=-\frac{\mathrm{R} 4}{\mathrm{R} 2}\left(\frac{\mathrm{R} 2}{\mathrm{R} 3} \mathrm{~V}_{\mathrm{OS} 3}+\mathrm{V}_{\mathrm{OS} 2}\right)+$

$$
\frac{R 4}{R 2}\left(1+\frac{R 2}{R_{P}}\right) V_{O S 1} ; R_{P}=R 1 / / R 3 / / R 4
$$

Mode 1a
$\mathrm{V}_{\mathrm{OS}}$ (N.INV.BP)
$=\left(1+\frac{1}{Q}\right) V_{O S 1}-\frac{V_{O S 3}}{Q}$
$V_{O S}(I N V . B P)$
$=V_{\mathrm{OS} 3}$
$\mathrm{V}_{\mathrm{OS}}(\mathrm{LP})$
$=\mathrm{V}_{\mathrm{OS}}($ N.INV.BP $)-\mathrm{V}_{\mathrm{OS} 2}$

Comments on output DC offsets: For most applications, the outputs are AC coupled and the DC offsets are not bothersome unless large input voltage signals are applied to the filter. For instance, if the BP output is used and it is $A C$ coupled, the remaining two outputs should not be allowed to saturate. If so, gain nonlinearities and $f_{0}, Q$ errors will occur. For Mode 3 of operation a word of caution is necessary: by allowing small R2/R4 ratios and high $Q$, the LP output will exhibit a couple of volts of DC offset and an offset adjustment should be made.

An extreme example: Design a 1.76 kHz BP filter with a $Q$ of 21 and a gain equal to unity. The MF10 will be driven with a 250 kHz clock, and it will be switched $50: 1$.

Resistor values: $\sqrt{\frac{R 2}{R 4}}=\frac{f_{0}}{f_{C L K}} \times 50=0.352 ; \frac{R 2}{R 4}=0.124$
$\frac{\mathrm{R} 3}{\mathrm{R} 2}=21 \times \frac{1}{0.352}=59.63 ; \quad \frac{\mathrm{R} 3}{\mathrm{R} 1}=1$
Since $R 3 / R 2$ is the highest resistor ratio, start with $R 2=10 \mathrm{k}$, then $\mathrm{R} 3 \simeq 600 \mathrm{k}, \mathrm{R} 1 \cong 600 \mathrm{k}, \mathrm{R} 4=80 \mathrm{k}$. Assuming $V_{\mathrm{OS} 1}=2 \mathrm{mV}, \mathrm{V}_{\mathrm{OS} 2}=-150 \mathrm{mV}, \mathrm{V}_{\mathrm{OS} 3}=150 \mathrm{mV}$, the DC offset at the LP output is $\mathrm{V}_{\mathrm{OS}(\mathrm{LP})}=+1.2 \mathrm{~V}$. The offset adjustment will be done by injecting a small amount of current into the inverting input of the first op amp, Figure 18. This will change the effective $V_{O S 1}$, but the output $D C$ offset of the $H P$ and $B P$ will remain unchanged.


FIGURE 18. $V_{\text {OS }}$ Adjust Scheme

## General Description

The TP5116A, TP5117A and TP5156A are monolithic PCM CODECs implemented with double-poly CMOS technology. The TP5116A and TP5117A are intended for $\mu$-law applications and the TP5156A is for A-law applications. The TP5117A has a D3 compatible format for line card compatibility with the TP5156A.

Each device contains separate D/A and A/D circuitry, all necessary sample and hold capacitors, and internal auto-zero circuits. Each device also contains a precision internal voltage reference, eliminating the need for an external reference. There are no internal connections to pins 15 or 16 , making them directly interchangeable with CODECs using external reference components.
All devices are intended to be used with the TP3040 monolithic PCM filter which provides the input antialiasing function for the encoder and smooths the output
of the decoder and corrects for the $\sin x / x$ distortion introduced by the decoder sample and hold output.

## Features

- Low operation power - 50 mW typical

E $\pm 5 \mathrm{~V}$ operation

- TTL compatible digital interface
- Internal precision reference on TP5116A, TP5117A and TP5156A
- Internal sample and hold capacitors
- Internal auto-zero circuit
- TP5116A - $\mu$-law coding (sign plus magnitude format)
- Trbi1/A- $\mu$-law, $\overline{\text { un }}$ compaiiuie iurllai
- TP5156A-A-law coding
- Synchronous or asynchronous operation


## Simplified Block Diagram



Connection Diagram


## Absolute Maximum Ratings

Operating Temperature	$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\mathrm{V}^{+}$with Respect to DIGITALGROUND	7 V
$\mathrm{~V}^{+}$with Respect to $\mathrm{V}^{-}$	14 V
$\mathrm{~V}^{-}$with Respect to DIGITAL GROUND	-.7 V
Voltage at Any Input or Output	$\mathrm{V}^{-}$

## DC Electrical Characteristics

Unless otherwise noted $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}^{-}=-5.0 \mathrm{~V} \pm 5 \%$. Typical characteristics are specified at $\mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All digital signals are referenced to DIGITAL GROUND. All analog signals are referenced to ANALOG GROUND.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
DIGITAL INTERFACE						
$1 /$	Input Current	$0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}^{+}$	-10		10	$\mu \mathrm{A}$
$V_{\text {IL }}$	Input Low Voltage				0.6	V
$V_{\text {IH }}$	Input High Voltage		2.2			V
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=6 \mathrm{~mA}$	2.4			V

ANALOG INTERFACE

$\mathrm{Z}_{1}$	Analog Input Impedance when Sampling	Resistance in Series with Approximately 70 pF	2			k $\Omega$
$\mathrm{Z}_{0}$	Output Impedance at Analog Output			10	20	$\Omega$
${ }_{1}$	Analog Input Bias Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.1		0.1	$\mu \mathrm{A}$
$\mathrm{R} 1 \times \mathrm{C} 1$	DC Blocking Time Constant		4.0			ms
C1	DC Blocking Capacitor		0.1			$\mu \mathrm{F}$
R1	Input Bias Resistor				50	k $\Omega$
POWER DISSIPATION						
${ }^{\text {c CC1 }}$	Operating Current, $\mathrm{V}_{\mathrm{CC}}$			3.5	7.0	mA
$\mathrm{I}_{\text {BB1 }}$	Operating Current, $\mathrm{V}_{\mathrm{BB}}$			3.5	7.0	mA

## AC Electrical Characteristics

Unless otherwise noted, the analog input is a $0 \mathrm{dBm} 0,1.02 \mathrm{kHz}$ sine wave. The DIGITAL INPUT is a PCM bit stream generated by passing a $0 \mathrm{dBm0} 0,1.02 \mathrm{kHz}$ sine wave through an ideal encoder. All output levels are $\sin \mathrm{x} / \mathrm{x}$ corrected.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
	Absolute Level	The nominal 0 dBm 0 levels for the TP5116A and TP5117A are 1.227 Vrms and 1.231 Vrms for the TP5156A. The resulting nominal overload level is 2.5 V peak for all devices. All gain measurements for the encode and decode portions of the devices are based on these nominal levels after the necessary $\sin \mathrm{x} / \mathrm{x}$ corrections are made.			-	.
$\mathrm{G}_{\text {RA }}$	Receive Gain, Absolute	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$	-0.1		0.1	dB
$\mathrm{G}_{\text {RAT }}$	Absolute Receive Gain   Variation with Temperature	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-0.05$		0.05	dB
$\mathrm{G}_{\mathrm{RAV}}$	Absolute Receive Gain Variation with Supply Voltage	$V^{+}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}^{-}=-5 \mathrm{~V} \pm 5 \%$	-0.07		0.07	dB

AC Electrical Characteristics (Continued)
Unless otherwise noted, the analog input is a $0 \mathrm{dBm0}, 1.02 \mathrm{kHz}$ sine wave. The DIGITAL INPUT is a PCM bit stream generated by passing a $0 \mathrm{dBm0} 0,1.02 \mathrm{kHz}$ sine wave through an ideal encoder. All output levels are $\sin \mathrm{x} / \mathrm{x}$ corrected.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{G}_{\text {XA }}$	Transmit Gain, Absolute	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$	-0.1		0.1	dB
$\mathrm{G}_{\text {XAT }}$	Absolute Transmit Gain Variation with Temperature	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	-0.05		0.05	dB
$\mathrm{G}_{\mathrm{XAV}}$	Absolute Transmit Gain Variation with Supply Voltage	$\mathrm{V}^{+}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}^{-}=-5 \mathrm{~V} \pm 5 \%$	-0.07		0.07	dB
$\mathrm{G}_{\text {RAL }}$	Absolute Receive Gain Variation with Level	CCITT Method 2 Relative to - 10 dBm 0   $0 \mathrm{dBm0}$ to $3 \mathrm{dBm0}$   $-40 \mathrm{dBm0}$ to $0 \mathrm{dBm0}$   $-50 \mathrm{dBm0}$ to $-40 \mathrm{dBm0}$   $-55 \mathrm{dBm0}$ to $-50 \mathrm{dBm0}$	$\begin{aligned} & -0.3 \\ & -0.2 \\ & -0.4 \\ & -1.0 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.2 \\ & 0.4 \\ & 1.0 \end{aligned}$	dB   dB   dB   dB
$\mathrm{G}_{\text {XAL }}$	Absolute Transmit Gain Variation with Level	CCITT Method 2 Relative to $-10 \mathrm{dBm0}$   $0 \mathrm{dBm0}$ to 3 dbmu $-40 \mathrm{dBm0}$ to $0 \mathrm{dBm0}$   $-50 \mathrm{dBm0}$ to $-40 \mathrm{dBm0}$   $-55 \mathrm{dBm0}$ to $-50 \mathrm{dBm0}$	$\begin{aligned} & -\hat{u} . \hat{u} \\ & -0.2 \\ & -0.4 \\ & -1.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.2 \\ & 0.4 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{S} / \mathrm{D}_{\mathrm{R}}$	Receive Signal to Distortion Ratio	Sinusoidal Test Method Input Level   $-30 \mathrm{dBm0}$ to 0 dBmo   $-40 \mathrm{dBm0}$   - $45 \mathrm{dBm0}$	$\begin{aligned} & 35 \\ & 29 \\ & 25 \end{aligned}$			dBc dBc dBc
S/D ${ }_{\text {x }}$	Transmit Signal to Distortion Ratio	Sinusoidal Test Method Input Level   $-30 \mathrm{dBm0}$ to $0 \mathrm{dBm0}$   - $40 \mathrm{dBm0}$   $-45 \mathrm{dBm0}$	$\begin{aligned} & 35 \\ & 29 \\ & 25 \end{aligned}$			dBc dBc dBc
$\mathrm{N}_{\mathrm{R}}$	Receive Idle Channel Noise	$\mathrm{D}_{\mathrm{R}}=$ Steady State PCM Code			0	dBrnc0
$\mathrm{N}_{\mathrm{X}}$	Transmit Idle Channel Noise	TP5116A, TP5117A, VF ${ }_{\mathrm{x}}=0 \mathrm{~V}$ (No Signaling) TP5156A, $V F_{x}=0 V$	$\cdots$		$\begin{array}{r} 13 \\ -67 \\ \hline \end{array}$	dBrnco   dBm0p
$\mathrm{HD}_{\mathrm{R}}$	Receive Harmonic Distortion	2nd or 3rd Harmonic			-47	dB
$\mathrm{HD}_{\mathrm{X}}$	Transmit Harmonic Distortion	2nd or 3rd Harmonic			-47	dB
$\mathrm{PPSR}_{\mathrm{X}}$	Positive Power Supply Rejection, Transmit	$\begin{aligned} & \text { Input Level }=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}_{\mathrm{DC}} \\ & +20 \mathrm{mVrms}, \mathrm{f}=1.02 \mathrm{kHz} \end{aligned}$	50			dB
$\mathrm{PPSR}_{\mathrm{R}}$	Positive Power Supply Rejection, Receive	$\begin{aligned} & D_{R}=\text { Steady PCM Code, } \\ & V_{C C}=5.0 V_{D C}+20 \mathrm{mVrms}, \\ & f=1.02 \mathrm{kHz} \end{aligned}$	40			dB
NPSR ${ }_{\text {x }}$	Negative Power Supply Rejection, Transmit	Input Level $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V} \mathrm{DC}$ $+20 \mathrm{mVrms}, \mathrm{f}=1.02 \mathrm{kHz}$	50			dB
NPSR ${ }_{\text {R }}$	Negative Power Supply Rejection, Receive	$\begin{aligned} & D_{R}=\text { Steady PCM Code, } \\ & V_{B B}=-5.0 \mathrm{~V}_{\mathrm{DC}}+20 \mathrm{mVrms}, \\ & \mathrm{f}=1.02 \mathrm{kHz} \end{aligned}$	45			dB
$\mathrm{CT}_{\mathrm{XR}}$	Transmit to Receive Crosstalk	$\mathrm{D}_{\mathrm{R}}=$ Steady PCM Code			-75	dB
$\mathrm{CT}_{\text {RX }}$	Receive to Transmit Crosstalk	Transmit Input Level $=0 \mathrm{~V}$			-70	dB

TP5116A, TP5117A, TP5156A

Timing Specifications Unless otherwise noted, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}^{+}-+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}^{-}=-5 \mathrm{~V} \pm 5 \%$. All digital signals are referenced to DIGITAL GROUND and are measured at $V_{I H}$ and $V_{I L}$ as indicated in the Timing Waveforms.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$F_{M}$	MASTER CLOCK Frequency		1.5	2.048	2.1	MHz
$F_{X}, F_{\text {R }}$	XMIT, RCV CLOCK Frequency		0.064	2.048	2.1	MHz
PW ${ }_{\text {CLK }}$	Clock Pulse Width	MASTER, XMIT, RCV CLOCKS	150			ns
$\mathrm{t}_{\mathrm{RC}}, \mathrm{t}_{\text {FC }}$	Clock Rise and Fall Time	MASTER, XMIT, RCV CLOCKS			50	ns
$t_{\text {RS }}, t_{\text {FS }}$	Sync Pulse Rise and Fall Time	RCV, XMIT SYNC			50	ns
$\mathrm{t}_{\mathrm{RCS}}, \mathrm{t}_{\text {XCS }}$	Clock to Sync Delay	RCV, XMIT	0			ns
$t_{\text {xSs }}$	XMIT SYNC Set-Up Time				150	ns
$t_{\text {XDD }}$	XMIT Data Delay	Load $=100 \mathrm{pF}+2$ LSTTL Loads			200	ns
$t_{\text {XDP }}$	XMIT Data Present	Load $=100 \mathrm{pF}+2$ LSTTL Loads			200	ns
${ }^{\text {X X }}$ T	XMIT Data TRI-STATE*				150	ns
$t_{\text {SRC }}$	RCV CLOCK to RCV SYNC Delay		0			ns
$\mathrm{t}_{\text {RDS }}$	RCV Data Set-Up Time		0			ns
$t_{\text {RSS }}$	RCV SYNC Set-Up Time				150	ns
$\mathrm{t}_{\text {RDH }}$	RCV Data Hold Time		100			ns
$\mathrm{t}_{\text {XSL }}$	XMIT SYNC Low Time	64 kHz Operation	300			ns
$\mathrm{t}_{\text {RSL }}$	RCV SYNC Low Time	64 kHz Operation	17			(Note 1)

Note 1: RCV SYNC must remain low for 17 cycles of MASTER CLOCK.
Timing Waveforms
72 kHz or Greater Operation


64 kHz Operation


TRI-STATE ${ }^{\text {© }}$ is a registered trademark of National Semiconductor Corp.

## Description of Pin Functions

6 XMIT SYNC Encoder frame sync pulse.

Pin No.
1 ANALOG INPUT
$2 \mathrm{~V}+$
$3 \mathrm{~V}^{-}$
4 NC
5 MASTER CLOCK

7 XMIT CLOCK

8 DIGITAL OUTPUT

ANALOG INPUT to the encoder. This signal will be sampled at the end of the encoder time slot and the resulting PCM code will be shifted out during the subsequent encode time slot.
$5 \mathrm{~V}( \pm 5 \%)$ input.
$-5 \mathrm{~V}( \pm 5 \%)$ input.
Unused.
MASTER CLOCK input used to operate the internal encode and decode sequencers. Should be $1.536 \mathrm{MHz}, 1.544 \mathrm{MHz}$ or 2.048 MHz . Normally occurring at an 8 kHz rate, this pulse is nominally eight XMIT CLOCK cycles wide.
Transmit bit clock input used to shift out the PCM data on DIGITAL OUTPUT. May operate from 64 kHz to 2.048 MHz . May be asynchronous with RCV CLOCK.
Serial PCM TRI-STATE ${ }^{\circledR}$ output from encoder. During the encoder time slot, the PCM code for the previous sample of ANALOG INPUT is shifted out, most significant bit first, on the rising edge of XMIT CLOCK.

Description of Pin Functions (Continued)

Pin No.	Name	Function
9	RCV SYNC	Decoder frame sync pulse. Normally occurring at an 8 kHz rate, this pulse is nominally eight RCV CLOCK cycles wide.
10	RCV CLOCK	Receive bit clock input used to shift in the PCM data on DIGITAL INPUT. May operate from 64 kHz to 2048 MHz . May be asynchronous with XMIT CLOCK.
11	DIGITAL GROUND	All digital levels referenced to the DIGITAL GROUND pin.
12	DIGITAL INPUT	Serial PCM data input to decoder time slot, PCM data is shifted into DIGITAL INPUT, most significant bit first, on the rising edge of RCV CLOCK.
13	ANALOG OUTPUT	ANALOG OUTPUT from the decoder. The decoder sample and hold amplifier is updated approximately $15 \mu \mathrm{~s}$ after the end of the decode time slot.
14	ANALOG GROUND	All analog signals are referenced to the ANALOG GROUND pin.
15	NC	Unused.
16	NC	Unused.

## Functional Description

Approximately $4 \mu$ s after the rising edge of the XMIT SYNC pulse, the voltage present on the ANALOG INPUT is sampled and the process of encoding that sample into a PCM code is begun. Simultaneously, the 8-bit PCM code corresponding to the previous sample is shifted out of the DIGITAL OUTPUT, MSB first, on the rising edge of the next eight cycles of the XMIT CLOCK. When XMIT SYNC (which is normally eight XMIT CLOCK cycles long) goes low, the TRI-STATE ${ }^{\oplus}$ DIGITAL OUTPUT is returned to the high impedance state. On the TP5116A, the PCM code is in a $\mu$-law sign plus magnitude format. The TP5117A PCM output is the standard $\mu$-law format wherein the magnitude bits are inverted. The TP5156A uses the standard A-law coding.

An 8-bit PCM code is shifted into DIGITAL INPUT on the rising edge of the first eight RCV CLOCK pulses after RCV SYNC goes high. RCV SYNC is nominally eight RCV CLOCK cycles wide. Approximately $15 \mu \mathrm{~s}$ after RCV

SYNC goes low, the ANALOG OUTPUT is updated to the voltage corresponding to the PCM input code.

All encoding and decoding operations are run off the MASTER CLOCK. MASTER CLOCK should be in the range of 1.536 MHz to 2.048 MHz and should be synchronous with XMIT CLOCK and RCV CLOCK. The XMIT and RCV CLOCK may vary from 64 kHz to 2.048 MHz .

## Encoding Delay

The encoding process begins immediately at the beginning of the encode time slot and is concluded no later than 18 time slots later. In normal applications, the PCM data is not shifted out until the next time slot $125 \mu$ s later, resulting in an encoding delay of $125 \mu \mathrm{~s}$. In some applications it is possible to operate the CODEC at a higher frame rate to reduce this delay. With a 2.048 MHz MASTER CLOCK, the FS rate could be increased to 15 kHz , reducing the delay from $125 \mu \mathrm{~s}$ to $67 \mu \mathrm{~s}$.

## Functional Description (Continued)

## Decoding Delay

The decoding process begins immediately after the end of the decoder time slot. The output of the decoder sample and hold amplifier is updated 28 MASTER CLOCK cycles later. The decoding delay is therefore approximately 28 clock cycles plus one half of a frame time or, $81 \mu \mathrm{~s}$ for a 1.544 MHz system with an 8 kHz frame rate or, $76 \mu \mathrm{~s}$ for a 2.048 MHz system with an 8 kHz frame rate. Again, for some applications the frame rate could be increased to reduce this delay.

## Typical Application

A typical application of these CODECs used in conjunction with the TP3040 PCM filter is shown below. The values
of resistor R1 and DC blocking capacitor C1, are noncritical. The capacitor value should exceed $0.1 \mu \mathrm{~F}$, R1 should be less than $50 \mathrm{k} \Omega$, and the product $\mathrm{R} 1 \times \mathrm{C} 1$ should exceed 4 ms .

$$
\begin{aligned}
& \text { XMIT GAIN }=20 \times \log \left(\frac{R 3+R 2}{R 2}\right)+3 \mathrm{~dB} \\
& \text { RCV GAIN }=20 \times \log \left(\frac{R 4}{R 4+R 5}\right)
\end{aligned}
$$

The power supply decoupling capacitors should be $0.1 \mu \mathrm{~F}$. In order to take advantage of the excellent noise performance of these CODECs, care must be taken in board layout to prevent coupling of digital noise into the sensitive analog lines. For card insertion into a hot connector, care should be taken to insure that GNDA and GNDD are contacted prior to $V_{C C}$ and $V_{B B}$.


## National Semiconductor <br> TP3020/TP3021 Monolithic CODECs

## General Description

The TP3020 and TP3021 are monolithic PCM CODECs implemented with double-poly CMOS technology. The TP3020 is intended for $\mu$-law applications and contains logic for $\mu$-law signaling insertion and extraction. The TP3021 is intended for A-law applications.

Each device contains separate D/A and A/D circuitry, all necessary sample and hold capacitors, a precision voltage reference and internal auto-zero circuit. A serial control port allows an external controller to individually assign the PCM input and output ports to one of up to 32 time sints or to nlace the CODEC into a Dower-down mode. Alternately, the TP3020/TP3021 may be operated in a fixed time slot mode. Both devices are intended to be used with the TP3040 monolithic PCM filter which provides the input anti-aliasing function for the encoder and smoothes the output of the decoder and corrects for the $\sin x / x$ distortion introduced by the decoder sample and hold output.

## Features

- Low operation power-45 mW typical

■ Low standby power-1 mW typical

- $\pm 5 \mathrm{~V}$ operation
- TTL compatible digital interface

■ Time slot assignment or alternate fixed time slot modes

- Internal precision reference
- Internal sample and hold capacitors
- Internal auto-zero circuit
- TP3020- $\mu$-law coding with signaling capabilities

四 TP3021-A-law coding

- Synchronous or asynchronous operation


## Simplified Block Diagram



## Absolute Maximum Ratings

Operating Temperature
Storage Temperature
$\mathrm{V}_{\mathrm{CC}}$ with Respect to GNDD
$\mathrm{V}_{\mathrm{CC}}$ with Respect to $\mathrm{V}_{\mathrm{BB}}$
$V_{B B}$ with Respect to GNDD
Voltage at Any Input or Output
Lead Temperature (Soldering, 10 seconds)
$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
\begin{array}{r}
7 V \\
14 \mathrm{~V}
\end{array}
$$

$$
-7 V
$$

$$
V_{B B}-0.3 V \text { to } V_{C C}+0.3 V
$$

$$
300^{\circ} \mathrm{C}
$$

DC Electrical Characteristics Unless otherwise noted $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{B B}=-5.0 \mathrm{~V} \pm 5 \%$. Typical characteristics are specified at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All digital signals are referenced to GNDD . All analog signals are referenced to GNDA.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
DIGITAL INTERFACE						
II   $V_{\text {IL }}$   $V_{I H}$   $V_{\mathrm{OL}}$   $\mathrm{V}_{\mathrm{OH}}$	Input Current Input Low Voltage Input High Voltage Output Low Voltage   Output High Voltage	$\begin{aligned} & 0<V_{I N}<V_{C C} \\ & \\ & \\ & D_{X}, I_{O L}=4.0 \mathrm{~mA} \\ & S_{\mathrm{R}}, I_{O L}=0.5 \mathrm{~mA} \\ & \mathrm{TS}_{X}, I_{O L}=3.2 \mathrm{~mA}, \text { Open Drain } \\ & P D N, I_{O L}=1.6 \mathrm{~mA} \\ & D_{X}, I_{O H}=6 \mathrm{~mA} \\ & S I G_{R}, I_{O H}=0.6 \mathrm{~mA} \end{aligned}$	$-10$   2.2   2.4   2.4		$\begin{aligned} & 10 \\ & 0.6 \\ & \\ & 0.4 \\ & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~V} \end{gathered}$
ANALOG INTERFACE						
$Z_{1}$   $Z_{0}$   $\mathrm{V}_{\mathrm{OS}}$   $I_{\text {IN }}$   $\mathrm{R} 1 \times \mathrm{C} 1$   C1   R1	VF $\mathrm{F}_{\mathrm{X}}$ Input Impedance when Sampling   Output Impedance at $\mathrm{VF}_{\mathrm{R}}$ Output Offset Voltage at $V F_{R}$   Analog Input Bias Current DC Blocking Time Constant DC Blocking Capacitor Input Bias Resistor	Resistance in Series with Approximately 70 pF $-3.1 \mathrm{~V}<\mathrm{VF}_{\mathrm{R}}<3.1 \mathrm{~V}$   $\mathrm{D}_{\mathrm{R}}=$ PCM Zero Code (TP3020) or Alternating $\pm 1$ Code (TP3021) $V_{I N}=0 \mathrm{~V}$	$\begin{array}{r} 2.0 \\ -25 \\ -0.1 \\ 4.0 \\ 0.1 \end{array}$	10	20   25   0.1   50	k $\Omega$   $\Omega$   mV   $\mu \mathrm{A}$   ms   $\mu \mathrm{F}$   $\mathrm{k} \Omega$
POWER DISSIPATION						
$\begin{aligned} & I_{\mathrm{CCO}} \\ & \mathrm{I}_{\mathrm{BBO}} \\ & \mathrm{I}_{\mathrm{CC} 1} \\ & \mathrm{I}_{\mathrm{BB}} \end{aligned}$	Standby Current, $\mathrm{V}_{\mathrm{CC}}$   Standby Current, $\mathrm{V}_{\mathrm{BB}}$   Operating Current, $\mathrm{V}_{\mathrm{CC}}$   Operating Current, $\mathrm{V}_{\mathrm{BB}}$			$\begin{gathered} 0.1 \\ 0.03 \\ 4.5 \\ 4.5 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.1 \\ & 8.0 \\ & 8.0 \end{aligned}$	mA   mA   mA   mA

AC Electrical Characteristics Unless otherwise noted, the analog input is a $0 \mathrm{dBm} 0,1.02 \mathrm{kHz}$ sine wave. The digital input is a PCM bit stream generated by passing a $0 \mathrm{dBm} 0,1.02 \mathrm{kHz}$ sine wave through an ideal encoder. All output levels are $\sin \mathrm{x} / \mathrm{x}$ corrected.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
-	Absolute Level	The nominal 0 dBm 0 levels for the TP3020 and TP3021 are 1.520 Vrms and 1.525 Vrms respectively . The resulting nominal overload level is 3.096 V peak for both devices. All gain measurements for the encode and decode portions of the TP3020/TP3021 are based on these nominal levels after the necessary $\sin \mathrm{x} / \mathrm{x}$ corrections are made.		.		
$\widehat{心}_{\text {RA }}$		$\begin{aligned} & T-25^{\circ}{ }^{\circ}, V_{C}=5 \mathrm{~V} \\ & V_{\mathrm{BB}}=-5 \mathrm{~V} \end{aligned}$	-0.1		0.1	dB
$\mathrm{G}_{\text {RAT }}$	Absolute Receive Gain Variation with Temperature	$\mathrm{T}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	-0.05		0.05	dB
$\mathrm{G}_{\text {RAV }}$	Absolute Receive Gain Variation with Supply Voltage	$\begin{aligned} & V_{C C}=5 V \pm 5 \% \\ & V_{B B}=-5 V \pm 5 \% \end{aligned}$	-0.07		0.07	dB
$\mathrm{G}_{\text {XA }}$	Transmit Gain, Absolute	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}$	-0.1		0.1	dB
$\mathrm{G}_{\text {XAT }}$	Absolute Transmit Gain Variation with Temperature	$\mathrm{T}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	-0.05		0.05	dB
$\mathrm{G}_{\text {XAV }}$	Absolute Transmit Gain Variation with Supply Voltage	$\begin{aligned} & V_{C C}=5 V \pm 5 \%, \\ & V_{B B}=-5 V \pm 5 \% \end{aligned}$	$-0.07$		0.07	dB
$\mathrm{G}_{\text {RAL }}$	Absolute Receive Gain Variation with Level	CCITT Method 2 Relative to $-10 \mathrm{dBm0}$   $0 \mathrm{dBm0}$ to $3 \mathrm{dBm0}$   -40 dBm 0 to 0 dBmo   $-50 \mathrm{dBm0}$ to $-40 \mathrm{dBm0}$   $-55 \mathrm{dBm0}$ to $-50 \mathrm{dBm0}$	$\begin{aligned} & -0.3 \\ & -0.2 \\ & -0.4 \\ & -1.0 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.2 \\ & 0.4 \\ & 1.0 \end{aligned}$	dB   dB   dB   dB
$\mathrm{G}_{\text {XAL }}$	Absolute Transmit Gain Variation with Level	CCITT Method 2 Relative to $-10 \mathrm{dBm0}$   0 dBm 0 to $3 \mathrm{dBm0}$   $-40 \mathrm{dBm0}$ to 0 dBmo   $-50 \mathrm{dBm0}$ to $-40 \mathrm{dBm0}$   $-55 \mathrm{dBm0}$ to $-50 \mathrm{dBm0}$	$\begin{aligned} & -0.3 \\ & -0.2 \\ & -0.4 \\ & -1.0 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.2 \\ & 0.4 \\ & 1.0 \end{aligned}$	dB   dB   dB   dB
$\mathrm{S} / \mathrm{D}_{\mathrm{R}}$	Receive Signal to Distortion Ratio	```Sinusoidal Test Method Input Level -30 dBm0 to 0 dBm0 -40 dBm0 -45 dBm0```	$\begin{aligned} & 35 \\ & 29 \\ & 25 \end{aligned}$			dBc dBc dBc
S/D $\mathrm{D}_{\mathrm{X}}$	Transmit Signal to Distortion Ratio	```Sinusoidal Test Method Input Level -30 dBm0 to 0 dBm0 -40 dBm0 -45 dBm0```	$\begin{aligned} & 35 \\ & 29 \\ & 25 \end{aligned}$			dBc dBc dBc
$\mathrm{N}_{\mathrm{R}}$	Receive Idle Channel Noise	$\mathrm{D}_{\mathrm{R}}=$ Steady State PCM Code			0	dBrnc0
$\mathrm{N}_{\mathrm{X}}$	Transmit Idle Channel Noise	$\begin{aligned} & \text { TP3020, } V F_{x}=0 \mathrm{~V} \text { (No Signaling) } \\ & \text { TP3021, } V F_{\mathrm{x}}=0 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 13 \\ -67 \\ \hline \end{array}$	dBrnc0 dBm0p
$H D_{\text {R }}$	Receive Harmonic Distortion	2nd or 3rd Harmonic			-47	dB
$H D_{x}$	Transmit Harmonic Distortion	2nd or 3rd Harmonic			-47	dB

AC Electrical Characteristics (Continued) Unless otherwise noted, the analog input is a 0 dBmo, 1.02 kHz sine wave. The digital input is a PCM bit stream generated by passing a $0 \mathrm{dBm} 0,1.02 \mathrm{kHz}$ sine wave through an ideal encoder. All output levels are $\sin \mathrm{x} / \mathrm{x}$ corrected.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{PPSR}_{\mathrm{X}}$	Positive Power Supply Rejection, Transmit	$\begin{aligned} & \text { Input Level }=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}_{\mathrm{DC}} \\ & +20 \mathrm{mVrms}, \mathrm{f}=1.02 \mathrm{kHz} \end{aligned}$	50			dB
$\mathrm{PPSR}_{\text {R }}$	Positive Power Supply Rejection, Receive	$\begin{aligned} & D_{R}=\text { Steady PCM Code, } \\ & V_{C C}=5.0 V_{D C}+20 \mathrm{mVrms} \\ & f=1.02 \mathrm{kHz} \end{aligned}$	40			dB
$\mathrm{NPSR}_{\mathrm{X}}$	Negative Power Supply Rejection, Transmit	$\begin{aligned} & \text { Input Level }=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V}_{\mathrm{DC}} \\ & +20 \mathrm{mVrms}, \mathrm{f}=1.02 \mathrm{kHz} \end{aligned}$	50			dB
NPSR ${ }_{\text {R }}$	Negative Power Supply Rejection, Receive	$\begin{aligned} & D_{R}=\text { Steady PCM Code, } \\ & V_{B B}=-5.0 V_{D C}+20 \mathrm{mVrms}, \\ & f=1.02 \mathrm{kHz} \end{aligned}$	45			dB
$\mathrm{CT}_{\text {XR }}$	Transmit to Receive Crosstalk	$\mathrm{D}_{\mathrm{R}}=$ Steady PCM Code			-75	dB
$\mathrm{CT}_{\mathrm{RX}}$	Receive to Transmit Crosstalk	Transmit Input Level = OV			-70	dB

Timing Specifications Unless otherwise noted, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5.0 \pm 5 \%$. All digital signals are referenced to GNDD and measured at $\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\mathrm{IH}}$ levels as indicated in the Timing Waveforms.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PC }}$	Period of Clock	$\mathrm{CLK}_{\mathrm{C}}, \mathrm{CLK}_{\mathrm{R}}, \mathrm{CLK}_{\mathrm{X}}$	488			ns
$\mathrm{t}_{\mathrm{RC}}, \mathrm{t}_{\mathrm{FC}}$	Rise and Fall Time of Clock	$\mathrm{CLK}_{\mathrm{C}}, \mathrm{CLK}_{\mathrm{R}}, \mathrm{CLK}_{\mathrm{X}}$			30	ns
$t_{\text {WCH }}$	Width of Clock High	CLK $_{\text {C }}$, CLK $_{\text {R }}$, CLK $_{\text {x }}$	- 165			ns
$\mathrm{t}_{\text {WCL }}$	Width of Clock Low	$\mathrm{CLK}_{\mathrm{C}}, \mathrm{CLK}_{\mathrm{R}}, \mathrm{CLK}_{\mathrm{X}}$	165			ns
$\mathrm{t}_{\mathrm{A} / \mathrm{D}}$	A/D Conversion Time	From End of Encoder Time Slot to Completion of Conversion			16	Time Slots
$t_{D / A}$	D/A Conversion Time	From End of Decoder Time Slot to Transition of $\mathrm{VF}_{\mathrm{R}}$			2	Time Slots
$t_{\text {SDC }}$	Set-Up Time, $\mathrm{D}_{\mathrm{C}}$ to $\mathrm{CLK}_{\mathrm{C}}$		100			ns
$t_{\text {HDC }}$	Hold Time, CLK ${ }_{\text {c }}$ to DC		100			ns
$\mathrm{t}_{\text {SFC }}$	Set-Up Time, FS ${ }_{x}$ or CLK $_{x}$		100			ns
$\mathrm{t}_{\mathrm{HFX}}$	Hold Time, CLK ${ }_{x}$ to $\mathrm{FS}_{x}$		100			ns
$\mathrm{t}_{\text {DZX }}$	Delay Time to Enable $D_{x}$ on TS Entry	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$			125	ns
$t_{\text {DDX }}$	Delay Time, CLK ${ }_{x}$ to $\mathrm{D}_{x}$	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$			125	ns
$t_{\text {DXZ }}$	Delay Time, $D_{x}$ to High Impedance State on TS Exit	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	50		165	ns
$t_{\text {DTSL }}$	Delay to $\overline{\mathrm{TS}}_{\mathrm{x}}$ Low	$0 \leq \mathrm{C}_{\mathrm{L}} \leq 150 \mathrm{pF}$	30		185	ns
$t_{\text {DTSH }}$	Delay to $\overline{\mathrm{TS}}_{x} \mathrm{Off}$	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	30		185	ns
$\mathrm{t}_{\text {SSX }}$	Set-Up Time, SIG ${ }_{x}$ to CLK $_{x}$		100	*		ns
$t_{\text {HSX }}$	Hold Time, CLK ${ }_{x}$ to SIGX		100			ns
$\mathrm{t}_{\text {SFR }}$	Set-Up Time, $\mathrm{FS}_{\mathrm{R}}$ to $\mathrm{CLK}_{\mathrm{R}}$		100			ns
$t_{\text {HFR }}$	Hold Time, $\mathrm{CLK}_{\mathrm{R}}$ to $\mathrm{FS}_{\mathrm{R}}$	.	100			ns
$t_{\text {SDR }}$	Set-Up Time, $\mathrm{D}_{\mathrm{R}}$ to CLK $_{\text {R }}$	,	40			ns
$t_{\text {HDR }}$	Hold Time, CLK $_{\text {R }}$ to $\mathrm{D}_{\mathrm{R}}$		30			ns
$t_{\text {DSR }}$	Delay Time, CLK $_{R}$ to SIG $_{R}$	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			300	ns

## Timing Waveforms





Dual-In-Line Package


Dual-In-Line Package


TP3020 (Continued)
Pin No. Name

Function
11 NC Unused

Digital ground. All digital levels are referenced to this pin.
$14 \mathrm{D}_{\mathrm{X}} \quad$ Serial PCM TRI-STATE ${ }^{\circledR}$ output from the encoder. During the encoder time slot, the PCM code for the previous sample of $V F_{X}$ is shifted out, most significant bit first, on the rising edge of CLK x .
$15 \quad \overline{\mathrm{TS}}_{\mathrm{X}} \quad$ Time slot output. This TTL compatible open-drain output pulses low during the encoder time slot. May be used to enable external TRI-STATE ${ }^{\circledR}$ bus drivers if highly capacitive loads must be driven. Can be wire ANDed with other $\overline{\mathrm{TS}}_{\mathrm{X}}$ outputs.
$16 \quad V_{C C} \quad 5 \mathrm{~V}( \pm 5 \%)$ input.
17 CLK $_{\mathrm{R}}$
Master decoder clock input used to shift in the PCM data on $D_{R}$ and to operate the decoder sequencer. May operate at $1.536 \mathrm{MHz}, 1.544 \mathrm{MHz}$ or 2048 MHz . May be asynchronous with $\mathrm{CLK}_{\mathrm{X}}$ or $\mathrm{CLK}_{\mathrm{C}}$.
$18 \quad \mathrm{FS}_{\mathrm{R}} \quad$ Decoder frame sync pulse. Normally occurring at an 8 kHz rate, this pulse is nominally one CLK $_{R}$ cycle wide. Extending the width of $\mathrm{FS}_{\mathrm{R}}$ to two or more cycles of CLK $_{R}$ signifies a receive signaling frame.

## Description of Pin Functions (Continued)

## TP3020 (Continued)

Pin No.	Name	Function
19	CLK $_{\text {X }}$	Master encoder clock input used to shift out the PCM data on $D_{X}$ and to operate the encoder sequencer. May operate at $1.536 \mathrm{MHz}, 1.544 \mathrm{MHz}$ or 2.048 MHz . May be asynchronous with $\mathrm{CLK}_{\mathrm{R}}$ or $\mathrm{CLK}_{\mathrm{C}}$.
20	$\mathrm{FS}_{\mathrm{X}}$	Encoder frame sync pulse. Normally occurring at an 8 kHz rate, this pulse is nominally one CLK $_{X}$ cycle wide. Extending the width of $\mathrm{FS}_{\mathrm{x}}$ to two or more cycles of CLK ${ }_{x}$ signifies a transmit signaling frame.
21	$\mathrm{SIG}_{\mathrm{X}}$	Transmit signaling input. During a transmit signaling frame, the signal at SIG ${ }_{x}$ is shifted out of $D_{x}$ in place of the  
22	$V_{B B}$	$-5 \mathrm{~V}( \pm 5 \%)$ input.
23	$\mathrm{D}_{\mathrm{C}}$	Serial control data input. Serial data on $\mathrm{D}_{\mathrm{C}}$ is shifted into the CODEC on the falling edge of $\mathrm{CLK}_{\mathrm{C}}$. In the fixed time slot mode, $\mathrm{D}_{\mathrm{C}}$ doubles as a powerdown input.
24	$\mathrm{CLK}_{\mathrm{C}}$	Control clock input used to shift serial control data into $\mathrm{D}_{\mathrm{C}}$. CLK $_{\mathrm{C}}$ must pulse 8 times during a period of time less than or equal to one frame time, although the 8 pulses may overlap a frame boundary. CLK $_{C}$ need not be synchronous with $\mathrm{CLK}_{\mathrm{X}}$ or $\mathrm{CLK}_{\mathrm{R}}$. Connecting CLK $_{C}$ continuously high places the TP3020/TP3021 into the fixed time slot mode.


Pin No.	Name	Function
1	NC	Unused
2	NC	Unused   3
VF		

TP3021 (Continued)
Pin No. Name
Analog output from the decoder. The decoder sample and hold amplifier is updated approximately $15 \mu$ s after the end of the decode time slot.
10 NC Unused
11. NC Unused

12 GNDD Digital ground. All digital levels are referenced to this pin.
$13 \mathrm{D}_{\mathrm{X}} \quad$ Serial PCM TRI-STATE ${ }^{\oplus}$ output from the encoder. During the encoder time slot, the PCM code for the previous sample of VF.x is shifted out, most significant bit first, on the rising edge of CLK $x$.
$14 \quad \overline{T S}_{X} \quad$ Time slot output. This TTL compatible oper-úail uniput puises low during the encoder time slot. May be used to enable external TRI-STATE ${ }^{\oplus}$ bus drivers if highly capacitive loads must be driven. Can be wire ANDed with other $\mathrm{TS}_{\mathrm{X}}$ outputs.
$15 \quad V_{C C} \quad 5 V( \pm 5 \%)$ input.
16 CLK $_{R}$ Master decoder clock input used to shift in the PCM data on $D_{R}$ and to operate the decoder sequencer. May operate at $1.536 \mathrm{MHz}, 1.544 \mathrm{MHz}$ or 2.048 MHz . May be asynchronous with CLK $_{\mathrm{X}}$ or CLK $_{\mathrm{C}}$.
$17 \quad \mathrm{FS}_{\mathrm{R}} \quad$ Decoder frame sync pulse. Normally occurring at an 8 kHz rate, this pulse is nominally one CLK $_{\mathrm{R}}$ cycle wide.
18 CLK ${ }_{X}$ Master encoder clock input used to shift out the PCM data on $D_{x}$ and to operate the encoder sequencer. May operate at 1.536 MHz 1.544 MHz , or 2.048 MHz . May be asynchronous with $\mathrm{CLK}_{\mathrm{R}}$ or $\mathrm{CLK}_{\mathrm{C}}$.
$19 \quad \mathrm{FS}_{\mathrm{X}} \quad$ Encoder frame sync pulse. Normally occurring at an 8 kHz rate, this pulse is nominally one CLK $\times$ cycle wide.
$-5 \mathrm{~V}( \pm 5 \%)$ input.
Serial control data input. Serial data on $\mathrm{D}_{\mathrm{C}}$ is shifted into the CODEC on the falling edge of $\mathrm{CLK}_{\mathrm{C}}$. In the fixed time slot mode, $\mathrm{D}_{\mathrm{C}}$ doubles as a powerdown input.
CLK $_{C} \quad$ Control clock input used to shift serial control data into $\mathrm{D}_{\mathrm{C}}$. $C L K_{\mathrm{C}}$ must pulse 8 times during a period of time less than or equal to one frame time, although the 8 pulses may overlap a frame boundary. CLK $_{C}$ need not be synchronous with CLK $_{X}$ or CLK $_{\mathrm{R}}$. Connecting CLK $_{C}$ continuously high places the TP3020/TP3021 into the fixed time slot mode.

## Functional Description

## Power-Up

Upon application of power, internal circuitry initializes the CODEC and places it into the power-down mode. No sequencing of 5 V or -5 V is required. In the power-down mode, all non-essential circuits are deactivated, the TRI-STATE ${ }^{\oplus}$ PCM data output $D_{X}$ is placed in the high impedance state and the receive signaling output of the TP3020, $\mathrm{SIG}_{\mathrm{R}}$, is reset to logical zero. Once in the powerdown mode, the method of activating the TP3020/TP3021 depends on the chosen mode of operation, time slot assignment or fixed time slot.

## Time Slot Assignment Mode

The time slot assignment mode of operation is selected by maintaining $\mathrm{CLK}_{\mathrm{C}}$ in a normally low state. The state of the CODEC is updated by pulsing CLK $_{C}$ eight times within a period of $125 \mu \mathrm{~s}$ or less. The falling edge of each clock pulse shifts the data on the $\mathrm{D}_{\mathrm{C}}$ input into the CODEC. The first two control bits determine if the subsequent control bits B3-B8 are to specify the time slot for the encoder ( $\mathrm{B} 1=0$ ), the decoder ( $\mathrm{B} 2=0$ ) or both ( B 1 and $\mathrm{B} 2=0$ ) or if the CODEC is to be placed into the powerdown mode ( B 1 and $\mathrm{B} 2=1$ ). The desired action will take place upon the occurrence of the second frame sync pulse following the first pulse of $\mathrm{CLK}_{\mathrm{c}}$. Assigning a time slot to either the encoder or decoder will automatically power-up the entire CODEC circuit. The $D_{X}$ output and $D_{R}$ input, however, will be inhibited for one additional frame to allow the analog circuitry time to stabilize. If separate time slots are to be assigned to the encoder and the decoder, the encoder time slot should be assigned first. This is necessary because up to four frames are required to assign both time slots separately, but only three frames are necessary to activate the $D_{X}$ output. If the encode time slot has not been updated the PCM data will be outputted during the previously assigned time slot which may now be assigned to another CODEC.

## Fixed Time Slot Mode

There are several ways in which the TP3020/TP3021 may operate in the fixed time slot mode. The first and easiest method is to leave CLK $_{C}$ disconnected or to connect $\mathrm{CLK}_{\mathrm{C}}$ to $\mathrm{V}_{\mathrm{CC}}$. In this situation, $\mathrm{D}_{\mathrm{C}}$ behaves as a powerdown input. When $\mathrm{D}_{\mathrm{C}}$ goes low, both encode and decode time slots are set to one on the second subsequent frame sync pulse. Time slot one corresponds to the eight CLK $X_{X}$ or CLK $_{\mathrm{R}}$ cycles starting one cycle from the nominal leading edge of $\mathrm{FS}_{\mathrm{X}}$ or $\mathrm{FS}_{\mathrm{R}}$ respectively. As in the time slot assignment mode, the $D_{X}$ output is inhibited for one additional frame after the circuit is powered up. A logical " 1 " on $D_{C}$ powers the CODEC down on the second subsequent $\mathrm{FS}_{\mathrm{x}}$ pulse.
A second fixed time slot method is to operate CLK $_{C}$ continuously. Placing a " 1 " on $\mathrm{D}_{\mathrm{C}}$ will then cause the serial control register to fill up with ones. With B1 and B2 equal to " 1 " the CODEC will power-down. Placing a " 0 " on $D_{C}$ will cause the serial control register to fill up with zeroes, assigning time slot one to both the encoder and decoder and powering up the device. One important restriction with this method of operation is that the rising transition of $\mathrm{D}_{\mathrm{C}}$ must occur at least 8 cycles of $\mathrm{CLK}_{\mathrm{c}}$ prior to $\mathrm{FS}_{x}$. If this restriction is not followed, it is possible that on
the frame prior to power-down, the encoder could be assigned to an incorrect time slot (e.g., 1, 3, 7, 15 or 31), resulting in a possible PCM bus conflict.

## Serial Control Port

When the TP3020/TP3021 is operated in the time slot assignment mode or the fixed time slot mode with continuous clock, the data on $\mathrm{D}_{\mathrm{C}}$ is shifted into the serial control register, bit 1 first. In the time slot assignment mode, depending on B 1 and B 2 , the data in the RCV or XMT time slot registers is updated at the second $\mathrm{FS}_{\mathrm{R}}$ or $\mathrm{FS}_{\mathrm{X}}$ pulse after the first $\mathrm{CLK}_{\mathrm{C}}$ pulse, or the CODEC is powered down. In the continuous clock fixed time slot mode, the CODEC is powered up or down at every second $\mathrm{FS}_{\mathrm{R}}$ or $\mathrm{FS}_{\mathrm{X}}$ puise. The control register data is interpreted as follows:

B1	B2	Action				
0	0	Assign time slot to encoder and decoder   Assign time slot to encoder   Assign time slot to decoder   Power-down CODEC				
0	1					
1	0					
1	1					
B3	B4	B5	B6	B7	B8	Time Slot
0	0	0	0	0	0	1
0	0	0	0	0	1	2
0	0	0	0	1	0	3
0	0	0	0	1	1	4
.	-	.	.	.	.	.
.	-	.	.	-	.	.
.	.	-	,	-	.	.
1	1	1	1	1	0	63
1	1	1	1	1	1	64

During the power-down command, bits 3 through 8 are ignored. Note that with 64 possible time slot assignments it is frequently possible to assign a time slot which does not exist. This can be useful to disable an encoder or decoder without powering down the CODEC.

## Signaling

The TP3020 $\mu$-law CODEC contains circuitry to insert and extract signaling information for the PCM data. The transmit signaling frame is signified by widening the $\mathrm{FS}_{\mathrm{X}}$ pulse from one cycle of CLK $K_{x}$ to two or more cycles.

When this occurs, the data present on the $\operatorname{SI} G_{x}$ input at the eighth clock pulse of the encode time slot is inserted into the last bit of the PCM data stream. A receive signaling frame is indicated in a similar fashion by widening the $\mathrm{FS}_{\mathrm{R}}$ pulse to two or more cycles of $\mathrm{CLK}_{\mathrm{R}}$.
During a receive signaling frame, the last PCM bit shifted in is latched into a flip-flop and appears at the SIG $_{R}$ output. This output will remain unchanged until the next signaling frame, until a power-down is executed or until power is removed from the device. Since the least significant bit of the PCM data is lost during a signaling frame, the decoder interprets the bit as a " $1 / 2$ " (i.e., half way between a " 0 " and a " 1 "). This minimizes the noise and distortion due to the signaling.

## Functional Description <br> (Continued)

## Encoding Delay

The encoding process begins immediately at the end of the encode time slot and is concluded no later than 17 time slots later. In normal applications, this PCM data is not shifted out until the next time slot $125 \mu$ s later, resulting in an encoding delay of $125 \mu \mathrm{~S}$. In some applications it is possible to operate the CODEC at a higher frame rate to reduce this delay. With a 2.048 MHz clock, the FS rate could be increased to 15 kHz reducing the delay from $125 \mu \mathrm{~S}$ to $67 \mu \mathrm{~S}$.

## Decoding Delay

The decoding process begins immediately after the end of the decoder time slot. The output of the decoder sample and hold amplifier is updated $28 \mathrm{CLK}_{\mathrm{R}}$ cycles
later. The decoding delay is therefore approximately 28 clock cycles plus one half of a frame time or $81 \mu$ s for a 1.544 MHz system with an 8 kHz frame rate or $76 \mu \mathrm{~s}$ for a 2.048 MHz system with an 8 kHz frame rate. Again, for some applications the frame rate could be increased to reduce this delay.

## Typical Application

A typical application of the TP3020/TP3021 used in conjunction with the TP3040 PCM filter is shown. The values of resistor R1 and DC blocking capacitor C 1 , are noncritical. The capacitor value should exceed $0.1 \mu \mathrm{~F}$, R1 should be less than $50 \mathrm{k} \Omega$, and the product $\mathrm{R} 1 \times \mathrm{C} 1$ should exceed 4 ms.

## Typical Application



The power supply decoupling capacitors should be $0.1 \mu \mathrm{~F}$. In order to take advantage of the excellent noise performance of the TP3020/TP3021/TP3040, care must be taken in board layout to prevent coupling of digital noise into the sensitive analog lines.

## General Description

The TP3040/TP3040A filter is a monolithic circuit containing both transmit and receive filters specifically designed for PCM CODEC filtering applications in 8 kHz sampled systems.
The filter is manufactured using double-poly silicon gate CMOS technology. Switched capacitor integrators are used to simulate classical LC ladder filters which exhibit low component sensitivity.

## TRANSMIT FILTER STAGE

The transmit filter is a fifth order elliptic low pass filter in series with a fourth order Chebyshev high pass filter. It provides a flat response in the passband and rejection of signals below 200 Hz and above 3.4 kHz .

## Features

- Exceeds all D3/D4 and CCITT specifications
- $+5 \mathrm{~V},-5 \mathrm{~V}$ power supplies
- Low power consumption:

45 mW ( $600 \Omega 0 \mathrm{dBm}$ load)
30 mW (power amps disabled)

- Power down mode: 0.5 mW
- 20 dB gain adjust range
- No external anti-aliasing components
- Sin $\mathrm{x} / \mathrm{x}$ correction in receive filter
- $50 / 60 \mathrm{~Hz}$ rejection in transmit filter
- TTL and CMOS compatible logic
- All inputs protected against static discharge due to handling


## RECEIVE FILTER STAGE

The receive filter is a fifth order elliptic low pass filter designed to reconstruct the voice signal from the decoded/demultiplexed signal which, as a result of the sampling process, is a stair-step signal having the inherent $\sin x / x$ frequency response. The receive filter approximates the function required to compensate for the degraded frequency response and restore the flat passband response.

Block and Connection Diagrams


FIGURE 1

## Absolute Maximum Ratings

Supply Voltages	$\pm 7 \mathrm{~V}$
Power Dissipation	1 W/Package
Input Voltage	$\pm 7 \mathrm{~V}$
Output Short-Circuit Duration	Continuous
Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## DC Electrical Characteristics

Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V} \pm 5 \%$, clock frequency is 2.048 MHz . Typical parameters are specified at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V}$. Digital interface voltages measured with respect to digital ground, GNDD. Analog voltages measured with respect to analog ground, GNDA.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
POWER DISSIPATION						
I CCo	$\mathrm{V}_{\text {CC }}$ Standby Current	PDN $=\mathrm{V}_{\text {DD }}$, Power Down Mode		50	100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{BBO}}$	$\mathrm{V}_{\mathrm{BB}}$ Standby Current	PDN $=V_{\text {DD }}$, Power Down Mode		50	100	${ }_{\mu} \mathrm{A}$
$\mathrm{I}_{\mathrm{CC} 1}$	$\mathrm{V}_{\mathrm{CC}}$ Operating Current	$\mathrm{PWRI}=\mathrm{V}_{\mathrm{BB}}$, Power Amp Inactive		3.0	4.0	mA
$\mathrm{I}_{\mathrm{BB} 1}$	$\mathrm{V}_{\mathrm{BB}}$ Operating Current	$\mathrm{PWRI}=\mathrm{V}_{\mathrm{BB}}$, Power Amp Inactive		3.0	4.0	mA
$\mathrm{I}_{\mathrm{CC} 2}$	$\mathrm{V}_{\mathrm{CC}}$ Operating Current	Note 1		4.6	6.4	mA
$\mathrm{I}_{\mathrm{BB} 2}$	$\mathrm{V}_{\text {BB }}$ Operating Current	Note 1		4.6	6.4	mA
DIGITAL INTERFACE						
I INC	Input Current, CLK	$\mathrm{V}_{\mathrm{BB}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-10		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {INP }}$	Input Current, PDN	$\mathrm{V}_{\mathrm{BB}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$	-100			$\mu \mathrm{A}$
$\mathrm{I}_{\text {INo }}$	Input Current, CLKO	$V_{B B} \leq V_{I N} \leq V_{C C}-2 V$	-10		-0.1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage, CLK, PDN		0	,	. 0.8	V
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage, CLK, PDN		2.2		$\mathrm{V}_{\mathrm{CC}}$	V
- $V_{\text {ILO }}$	Input Low Voltage, CLK0		$V_{B B}$		$\mathrm{V}_{\mathrm{BB}}+0.5$	V
$V_{110}$	Input Intermediate Voltage, CLKO		-0.8		0.8	V
$\mathrm{V}_{\mathrm{H} \mathrm{HO}}$	Input High Voltage, CLKO		$\mathrm{V}_{\mathrm{CC}}-0.5$		$\mathrm{V}_{\mathrm{CC}}$	V
TRANSMIT INPUT OP AMP						
$\left\|B_{x}\right\|$	Input Leakage Current, $\mathrm{VF}_{\mathrm{x}} \mathrm{I}$	$\mathrm{V}_{\mathrm{BB}} \leq \mathrm{VF}_{\mathrm{x}} \mathrm{I} \leq \mathrm{V}_{\mathrm{CC}}$	-100		100	nA
RII ${ }^{1}$	Input Resistance, $\mathrm{VF}_{\mathrm{x}} \mathrm{I}$	$V_{B B} \leq V^{\prime} I \leq V_{C C}$	10			$\mathrm{M} \Omega$
$\mathrm{VOS}_{x} 1$	Input Offset Voltage, $\mathrm{VF}_{\mathrm{x}} \mathrm{I}$	$-2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+2.5 \mathrm{~V}$	-20		20	mV
$\mathrm{V}_{\text {CM }}$	Common-Mode Range, $\mathrm{VF}_{\mathrm{x}} \mathrm{I}$		-2.5		2.5	V
CMRR	Common-Mode Rejection Ratio	$-2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 2.5 \mathrm{~V}$	60			dB
PSRR	Power Supply Rejection of $V_{C C}$ or $V_{B B}$		60		,	dB
$\mathrm{R}_{\text {OL }}$	Open Loop Output Resistance, GS ${ }_{x}$			1		k $\Omega$
$\mathrm{R}_{\mathrm{L}}$	Minimum Load Resistance, $\mathrm{GS}_{\mathrm{x}}$		10			k $\Omega$
$C_{L}$	Maximum Load Capacitance, $\mathrm{GS}_{\mathrm{x}}$		,		25	pF
VOx ${ }^{\text {I }}$	Output Voltage Swing, GS ${ }_{x}$	$R_{L} \geq 10 \mathrm{k}$	$\pm 2.5$			V
$A_{\text {Vol }}$	Open Loop Voltage Gain, GS ${ }_{\text {x }}$	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k}$	5,000			V/V
$F_{\text {c }}$	Open Loop Unity Gain Bandwidth, GS ${ }_{x}$			2		MHz

## AC Electrical Characteristics

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All parameters are specified for a signal level of 0 dBm 0 at 1 kHz . The 0 dBmO level is assumed to be 1.54 Vrms measured at the output of the transmit or receive filter.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
TRANSMIT FILTER (Transmit filter input op amp set to the non-inverting unity gain mode, with VF   wise noted. $=1.1$						


RL ${ }_{\text {x }}$	Minimum Load Resistance, $\mathrm{VF}_{\mathrm{x}} \mathrm{O}$		10			k $\Omega$
$\mathrm{CL}_{\mathrm{x}}$	Load Capacitance, VF $\mathrm{F}_{\mathrm{x}} \mathrm{O}$				25	pF
$\mathrm{RO}_{\mathrm{x}}$	Output Resistance, $\mathrm{VF}_{\mathrm{x}} \mathrm{O}$			1	3	$\Omega$
PSRR1	$\mathrm{V}_{\text {CC }}$ Power Supply Rejection, $\mathrm{VF}_{\mathrm{x}} \mathrm{O}$	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{VF}_{\mathrm{x}} \mathrm{I}+=0 \mathrm{Vrms}$	30			dB
PSRR2	$\mathrm{V}_{\mathrm{BB}}$ Power Supply Rejection, $\mathrm{VF}_{\mathrm{x}} \mathrm{O}$	Same as Above	35			dB
GA ${ }_{\text {x }}$	Absolute Gain	$\mathrm{f}=1 \mathrm{kHz}$ (TP3040A)	2.9	3.0	3.1	dB
		$\mathrm{f}=1 \mathrm{kHz}$ (TP3040)	2.875	3.0	3.125	dB
$\mathrm{GR}_{\mathrm{x}}$	Gain Relative to $\mathrm{GA}_{\mathrm{x}}$	Below 50 Hz			-35	dB
		50 Hz		-41	-35	dB
		60 Hz		-35	-30	dB
		200 Hz (TP3040A)	-1.5		0	dB
		200 Hz (TP3040)	-1.5		0.05	dB
		300 Hz to 3 kHz (TP3040A)	-0.125		0.125	dB
		300 Hz to 3 kHz (TP3040)	-0.15		0.15	dB
		3.3 kHz	-0.35		0.03	dB
		3.4 kHz	-0.70		-0.1	dB
		4.0 kHz		-15	-14	dB
		4.6 kHz and Above			-32	dB
$D A_{x}$	Absolute Delay at 1 kHz	:			230	$\mu \mathrm{S}$
$D D_{x}$	Differential Envelope Delay from 1 kHz to 2.6 kHz	.			60	$\mu \mathrm{S}$
DP ${ }_{x} 1$	Single Frequency Distortion Products				-48	dB
DP ${ }^{2}$	Distortion at Maximum Signal Level	0.16 Vrms, 1 kHz Signal Applied to $V F_{X} \mid+$, Gain $=20 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$			-45	dB
$N C_{x} 1$	Total C Message Noise at $\mathrm{VF}_{\mathrm{x}} \mathrm{O}$			2	5	dBrnc0
$N C_{x}{ }^{2}$	Total C Message Noise at $\mathrm{VF}_{\mathrm{x}} \mathrm{O}$	Gain Setting Op Amp at 20 dB , Non-Inverting, Note 3 $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}$		3	6	dBrnc0
$\mathrm{GA}^{\mathbf{x}}{ }^{\top}$	Temperature Coefficient of 1 kHz Gain			0.0004		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
$\mathrm{GA}_{\mathrm{x}} \mathrm{S}$	Supply Voltage Coefficient of 1 kHz Gain	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \pm 5 \% \\ & V_{B B}=-5.0 \mathrm{~V} \pm 5 \% \end{aligned}$		0.01		dB/V
$\mathrm{CT}_{\mathrm{RX}}$	Crosstalk, Receive to Transmit $20 \log \frac{V F_{x} \mathrm{O}}{\mathrm{VF} \mathrm{F}_{\mathrm{R}} \mathrm{O}}$	Receive Filter Output $=2.2 \mathrm{Vrms}$ $\mathrm{VF}_{\mathrm{x}} \mathrm{I}+=0 \mathrm{Vrms}, \mathrm{f}=0.2 \mathrm{kHz}$ to 3.4 kHz Measure $\mathrm{VF}_{\mathrm{x}} \mathrm{O}$			-70	dB
$\mathrm{GR}_{\mathrm{x}} \mathrm{L}$	Gaintracking Relative to $\mathrm{GA}_{\mathrm{x}}$	Output Level $=+3 \mathrm{dBm0}$				
	-	+2 dBmO to -40 dBmO   -40 dBmO to $-55 \mathrm{dBm0}$	$\begin{gathered} -0.05 \\ -0.1 \end{gathered}$		0.05 0.1	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

## AC Electrical Characteristics (Continued)

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All parameters are specified for a signal level of $0 \mathrm{dBm0}$ at 1 kHz . The 0 dBm 0 level is assumed to be 1.54 Vrms measured at the output of the transmit or receive filter.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
RECEIVE FILTER (Unless otherwise noted, the receive filter is preceded by a sin $\mathrm{x} / \mathrm{x}$ filter with an input signal level of 1.6 Vrms .)						
$1 B_{\text {R }}$	Input Leakage Current, $\mathrm{VF}_{\mathrm{R}}$ I	$-3.2 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3.2 \mathrm{~V}$	-100		100	nA
$\mathrm{RI}_{\mathrm{R}}$	Input Resistance, $\mathrm{VF}_{\mathrm{R}} \mathrm{I}$		10			$\mathrm{M} \Omega$
$\mathrm{RO}_{\mathrm{R}}$	Output Resistance, $\mathrm{VF}_{\mathrm{R}} \mathrm{O}$			1	3	$\Omega$
$\mathrm{CL}_{\mathrm{R}}$	Load Capacitance, $\mathrm{VF}_{\mathrm{R}} \mathrm{O}$				25	pF
$\mathrm{RL}_{\mathrm{R}}$	Load Resistance, $\mathrm{VF}_{\mathrm{R}} \mathrm{O}$		10			$\mathrm{k} \Omega$
PSRR3	Power Supply Rejection of $V_{C C}$ or $V_{B B}, V F_{R} O$	VF $\mathrm{R}_{\mathrm{R}}$ Connected to GNDA $\mathrm{f}=1 \mathrm{kHz}$	35			dB
$\mathrm{VOS}_{\mathrm{R}} \mathrm{O}$	Output DC Offset, $\mathrm{VF}_{\mathrm{R}} \mathrm{O}$	VF $\mathrm{F}_{\mathrm{R}}$ Connected to GNDA	-200		200	mV
$\mathrm{GA}_{\mathrm{R}}$	Absolute Gain	$\begin{aligned} & f=1 \mathrm{kHz}(\text { TP3040A }) \\ & \mathrm{f}=1 \mathrm{kHz}(\mathrm{TP} 3040) \end{aligned}$	$\begin{gathered} -0.1 \\ -0.125 \end{gathered}$	0 0	0.1 0.125	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{GR}_{\mathrm{R}}$	Gain Relative to Gain at 1 kHz	below sưũ riz			0.125	AR
		300 Hz to 3.0 kHz (TP3040A)	-0.125		0.125	dB
		300 Hz to 3.0 kHz (TP3040)	-0.15		0.15	dB
		3.3 kHz	-0.35		0.03	dB
		3.4 kHz	-0.7		-0.1	dB
		4.0 kHz			-14	dB
		4.6 kHz and Above			-32	dB
$D A_{R}$	Absolute Delay at 1 kHz				100	$\mu \mathrm{S}$
$D D_{R}$	Differential Envelope Delay 1 kHz to 2.6 kHz				100	$\mu \mathrm{S}$
$D P_{R} 1$	Single Frequency Distortion Products	$\mathrm{f}=1 \mathrm{kHz}$			-48	dB
$\mathrm{DP}_{\mathrm{R}} 2$	Distortion at Maximum Signal Level	2.2 Vrms Input to $\operatorname{Sin} \mathrm{x} / \mathrm{x}$ Filter, $f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$			-45	dB
$N C_{R}$	Total C-Message Noise at $\mathrm{VF}_{\mathrm{R}} \mathrm{O}$			3	5	dBrnc0
$\mathrm{GA}_{\mathrm{R}} \mathrm{T}^{\text {T }}$	Temperature Coefficient of 1 kHz Gain			0.0004		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
$G A_{R} S$	Supply Voltage Coefficient of 1 kHz Gain			0.01		$\mathrm{dB} / \mathrm{V}$
$C T_{X R}$	Crosstalk, Transmit to Receive $20 \log \frac{V F_{R} O}{V F_{x} O}$	Transmit Filter Output $=2.2 \mathrm{Vrms}$ $V F_{\mathrm{R}} \mathrm{I}=0 \mathrm{Vrms}, \mathrm{f}=0.3 \mathrm{kHz}$ to 3.4 kHz Measure $\mathrm{VF}_{\mathrm{R}} \mathrm{O}$			$-70$	dB
$\mathrm{GR}_{\mathrm{R}} \mathrm{L}$	Gaintracking Relative to $\mathrm{GA}_{\mathrm{R}}$	Output Level $=+3 \mathrm{dBm0}$ $+2 \mathrm{dBm0}$ to $-40 \mathrm{dBm0}$ $-40 \mathrm{dBm0}$ to $-55 \mathrm{dBm0}$ Note 5	$\begin{gathered} -0.1 \\ -0.05 \\ -0.1 \end{gathered}$		$\begin{gathered} 0.1 \\ 0.05 \\ 0.1 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$

## AC Electrical Characteristics (Continued)

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All parameters are specified for a signal level of $0 \mathrm{dBm0}$ at 1 kHz . The $0 \mathrm{dBm0}$ level is assumed to be 1.54 Vrms measured at the output of the transmit or receive filter.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
RECEIVE OUTPUT POWER AMPLIFIER						
IBP	Input Leakage Current, PWRI	$-3.2 \mathrm{~V} \leq \mathrm{V}_{1 N} \leq 3.2 \mathrm{~V}$	0.1		3	$\mu \mathrm{A}$
RIP	Input Resistance, PWRI		10			$\mathrm{M} \Omega$
ROP1	Output Resistance, PWRO +, PWRO -	Amplifiers Active		1		$\Omega$
CLP	Load Capacitance, PWRO +, PWRO -				500	pF
$\mathrm{GA}_{\mathrm{P}^{+}}$	Gain, PWRI to PWRO +	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ Connected Between		1		V/V
$\mathrm{GA}_{\mathrm{P}^{-}}$	Gain, PWRI to PWRO -	```PWRO + and PWRO - , Input Level=0 dBm0 (Note 4)```		-1		V/V
$\mathrm{GR}_{\mathrm{p}} \mathrm{L}$	Gaintracking Relative to $0 \mathrm{dBm0}$ Output Level	$\left.\begin{array}{l} \mathrm{V}=2.05 \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \mathrm{~V}=1.75 \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}=300 \Omega \end{array} \text { (Notes } 4,5\right)$	$\begin{aligned} & -0.1 \\ & -0.1 \end{aligned}$		0.1	dB   dB
S/Dp	Signal/Distortion	$\begin{aligned} & \mathrm{V}=2.05 \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{~V}=1.75 \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}=300 \Omega \end{aligned}(\text { Notes } 4,5)$			-45 -45	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
VOSP	Output DC Offset, PWRO +, PWRO -	PWRI Connected to GNDA	-50		50	mV
PSRR5	Power Supply Rejection of $\mathrm{V}_{\mathrm{CC}}$ or $V_{B B}$	PWRI Connected to GNDA	45			dB

Note 1: Maximum power consumption will depend on the load impedance connected to the power amplifier. The specification listed assumes 0 dBm is delivered to $600 \Omega$ connected from PWRO + to PWRO - .
Note 2: Voltage input to receive filter at OV, VF $\mathrm{RO}^{\circ}$ connected to PWRI, $600 \Omega$ from PWRO + to PWRO - . Output measured from PWRO + to PWRO - .
Note 3: The $0 \mathrm{dBm0}$ level for the filter is assumed to be 1.54 Vrms measured at the output of the XMT or RCV filter.
Note 4: The $0 \mathrm{dBm0}$ level for the power amplifiers is load dependent. For $R_{L}=600 \Omega$ to GNDA, the $0 \mathrm{dBm0}$ level is 1.43 Vrms measured at the amplifier output. For $R_{L}=300 \Omega$ the $0 \mathrm{dBm0}$ level is 1.22 Vrms .
Note 5: $V F_{R} O$ connected to $P W R I$, input signal applied to $V F_{R}$.

## Typical Application



Note 1: Transmit voltage gain $=\frac{R 1+R 2}{R 2} \times \sqrt{ } 2$ (The filter itself introduces a 3 dB gain), $(\mathrm{R} 1+\mathrm{R} 2 \geq 10 \mathrm{k})$
Note 2: Receive gain $=\frac{\mathrm{R} 4}{\mathrm{R} 3+\mathrm{R} 4}$

$$
\text { (R3 }+R 4 \geq 10 k)
$$

Note 3: In the configuration shown, the receive filter power amplifiers will drive a $600 \Omega \mathrm{~T}$ to R termination to a maximum signal level of 8.5 dBm . An alternative arrangement, using a transformer winding ratio equivalent to $1.414: 1$ and $300 \Omega$ resistor, $R_{S}$, will provide a maximum signal level of 10.1 dBm across a $600 \Omega$ termination impedance.

## Description of Pin Functions

Pin		
No.	Name	Function
1	VF $\mathrm{X}^{\prime}+$	The non-inverting input the transmit filter stage.
2	VF $\mathrm{x}_{\mathrm{x}} \mathrm{I}$	The inverting input to th transmit filter stage.
3	GS ${ }_{\text {x }}$	The output used for gai adjustments of the transm filter.
4	VF RO	The low power receive filter output. This pin can directly drive the receive port of a electronic hybrid.
5	PWRI	The input to the receive filte differential power amplifier
6	PWRO +	The non-inverting output the receive filter powe amplifier. This output ca directly interface conven tional transformer hybrids.
7	PWRO -	The inverting output of the receive filter power amplifie This output can be used with PWRO + to differentially drive a transformer hybrid.
8	$V_{B B}$	The negative power supp pin. Recommended input -5 V .
9	$\mathrm{V}_{C c}$	The positive power supply pin. The recommended input is 5 V .
10	$V F_{R} \mathrm{I}$	The input pin for the receiv filter stage.

## Pin

No.
Name
GNDD
CLK

PDN

CLKO

GNDA
$V F_{x} O$

## Function

Digital ground input pin. All digital signals are referenced to this pin.
Master input clock. Input frequency can be selected as $2.048 \mathrm{MHz}, 1.544 \mathrm{MHz}$ or 1.536 MHz .

The input pin used to power down the TP3040/TP3040A during idle periods. Logic 1 ( $V_{\mathrm{CC}}$ ) input voltage causes a power down condition. An internal pull-up is provided.
This input pin selects internal counters in accordance with the CLK input clock frequency:

CLK Connect CLKO to:
2048 kHz
1544 kHz
1536 kHz
An internal $\quad \mathrm{V}_{\mathrm{CC}}$
provB
provided.
Analog ground input pin. All
analog signals are refer-
enced to this pin. Not inter-
nally connected to GNDD.
The output of the transmit
filter stage.

## Typical Performance Characteristics



Receive Filter Stage


## Functional Description

The TP3040/TP3040A monolithic filter contains four main sections; Transmit Filter, Receive Filter, Receive Filter Power Amplifier, and Frequency Divider/Select Logic (Figure 1). A brief description of the circuit operation for each section is provided below.

## Transmit Filter

The input stage of the transmit filter is a CMOS operational amplifier which provides an input resistance of greater than $10 \mathrm{M} \Omega$, a voltage gain of greater than 10,000 , low power consumption (less than 3 mW ), high power supply rejection, and is capable of driving a $10 \mathrm{k} \Omega$ load in parallel with up to 25 pF . The inputs and output of the amplifier are accessible for added flexibility. Non-inverting mode, inverting mode, or differential amplifier mode operation can be implemented with external resistors. It can also be connected to provide a gain of up to 20 dB without degrading the overall filter performance.

The input stage is followed by a prefilter which is a twopole RC active low pass filter designed to attenuate high frequency noise before the input signal enters the switched-capacitor high pass and low pass filters.
A high pass filter is provided to reject 200 Hz or lower noise which may exist in the signal path. The low pass portion of the switched-capacitor filter provides stopband attenuation which exceeds the D3 and D4 specifications as well as the CCITT G712 recommendations.
The output stage of the transmit filter, the postfilter, is also a two-pole RC active low pass filter which attenuates clock frequency noise by at least 40 dB . The output of the transmit filter is capable of driving a $\pm 3.2 \mathrm{~V}$ peak to peak signal into a $10 \mathrm{k} \Omega$ load in parallel with up to 25 pF .

## Receive Filter

The input stage of the receive filter is a prefilter which is similar to the transmit prefilter. The prefilter attenuates high frequency noise that may be present on the receive input signal. A switched capacitor low pass filter follows the prefilter to provide the necessary passband flatness, stopband rejection and $\sin \mathrm{x} / \mathrm{x}$ gain correction. A postfilter which is similar to the transmit postfilter follows the low pass stage. It attenuates clock frequency noise and provides a low output impedance capable of directly driving an electronic subscriber-line-interface circuit.

## Receive Filter Power Amplifiers

Two power amplifiers are also provided to interface to transformer coupled line circuits. These two amplifiers are driven by the output of the receive postfilter through gain setting resistors, R3, R4 (Figure 2). The power amplifiers can be deactivated, when not required, by connecting the power amplifier input (pin 5) to the negative power supply $\mathrm{V}_{\mathrm{BB}}$. This reduces the total filter power consumption by approximately $10 \mathrm{~mW}-20 \mathrm{~mW}$ depending on output signal amplitude.

## Power Down Control

A power down mode is also provided. A logic 1 power down command applied on the PDN pin (pin 13) will reduce the total filter power consumption to less than 1 mW and clamp the power amplifier outputs to $V_{B B}$. Connect PDN to GNDD for normal operation.

## Frequency Divider and Select Logic Circult

This circuit divides the external clock frequency down to the switching frequency of the low pass and high pass switched capacitor filters. The divider also contains a TTL - CMOS interface circuit which converts the external TTL clock level to the CMOS logic level required for the divider logic. This interface circuit can also be directly driven by CMOS logic. A frequency select circuit is provided to allow the filter to operate with $2.048 \mathrm{MHz}, 1.544 \mathrm{MHz}$ or 1.536 MHz clock frequencies. By connecting the frequency select pin CLKO (pin 14) to $\mathrm{V}_{\mathrm{CC}}$, a 2.048 MHz clock input frequency is selected. Digital ground selects 1.544 MHz and $\mathrm{V}_{\mathrm{BB}}$ selects 1.536 MHz .

## Applications Information

## Gain Adjust

Figure 2 shows the signal path interconnections between the TP3040/TP3040A and the TP3020 single-channel CODEC. The transmit RC coupling components have been chosen both for minimum passband droop and to present the correct impedance to the CODEC during sampling.

Optimum noise and distortion performance wi!! be obtained from the TP3040/TP3040A filter when operated with system peak overload voltages of $\pm 2.5 \mathrm{~V}$ to $\pm 3.2 \mathrm{~V}$ at $\mathrm{V} F_{x} \mathrm{O}$ and $V F_{R} \mathrm{O}$. When interfacing to a PCM CODEC with a peak overload voltage outside this range, further gain or attenuation may be required.

For example, the TP3040/TP3040A filter can be used with the TP3000 series CODEC which has a 5.5 V peak overload voltage. A gain stage following the transmit filter output and an attenuation stage following the CODEC output are required.

## Board Layout

Care must be taken in PCB layout to minimize power supply and ground noise. Analog ground (GNDA) of each filter should be connected to digital ground (GNDD) at a single point, which should be bypassed to both power supplies. Further power supply decoupling adjacent to each filter and CODEC is recommended. Ground loops should be avoided, both between GNDA and GNDD and between the GNDA traces of adjacent filters and CODECs.

## TP3051, TP3056 Monolithic Parallel Interface CODEC/Filter Family

## General Description

The TP3051, TP3056 family consists of a $\mu$-law and A-law monolithic PCM CODEC/filter set utilizing a common A/D and D/A conversion architecture, as shown in Figure 1, and a unigue parallel I/O loaic interface.

The encode portion of each device consists of an input gain adjust amplifier, an active RC pre-filter which eliminates very high frequency noise prior to entering a switched-capacitor band-pass filter that rejects signals below 200 Hz or above 3400 Hz . Also included are autozero circuitry and a companding coder which samples the filtered signal and encodes it in the companded $\mu$-law or A-law PCM format. The decode portion of each device consists of an expanding decoder, which reconstructs the analog signal from the companded $\mu$-law or A-law code, a low-pass filter which corrects for the $\sin \mathrm{x} / \mathrm{x}$ response of the decoder output and rejects signals above 3400 Hz .

The TP3051 $\mu$-law and TP3056 A-law devices are pin compatible parallel interface CODEC/filters intended to be used in conjunction with the TP3100 family of Digital Line

Interface Controllers (DLIC) in switching system applications. All control, clock and signal information is communicated between the DLIC controller and up to 32 TP3051 or TP3056 devices via an eight bit I/O port and three control lines.

## Features

- Complete CODEC and filtering system including: -Transmit high-pass and low-pass filtering -Receive low-pass filter with $\sin x / x$ correction -Active RC noise filters
- $\mu$-law or A-law compatible COder and DECoder
-Internal precision voltage reference
-Parallel I/O and control interface
- Meets or exceeds all D3/D4 and CCITT specifications
- $\pm 5 \mathrm{~V}$ operation

■ Maximizes line interface card circuit density

- Low operating power-typically 50 mW

■ Power-down standby mode-typically 1 mW

## Connection Diagram



Block Diagram


FIGURE 1

## TP3052, TP3053, TP3054, TP3057 Monolithic Serial Interface CODEC/Filter Family

## General Description

The TP3052, TP3053, TP3054, TP3057 family consists of $\mu$-law and A-law monolithic PCM CODEC/filters utilizing the A/D and D/A conversion architecture, shown in Figure 1, and a serial PCM interface.

The encode portion of each device consists of an input gain adjust amplitier, an aciive $\overline{\mathrm{N}} \mathrm{C}$ pie-filitei wihizh. eliminates very high frequency noise prior to entering a switched-capacitor band-pass filter that rejects signals below 200 Hz or above 3400 Hz . Also included are autozero circuitry and a companding coder which samples the filtered signal and encodes it in the companded $\mu$-law or A-law PCM format. The decode portion of each device consists of an expanding decoder, which reconstructs the analog signal from the companded $\mu$-law or A-law code, a low-pass filter which corrects for the $\sin \mathrm{x} / \mathrm{x}$ response of the decoder output and rejects signals above 3400 Hz . The devices require two $1.536 / 1.544 \mathrm{MHz}$ or 2.048 MHz transmit and receive master clocks, which may be asynchronous, transmit and receive bit clocks, which are synchronous with the master clocks but may vary from 64 kHz to 2.048 MHz , and transmit and receive frame sync pulses. The timing of the frame sync pulses and PCM data is compatible with both industry standard formats.

## Features

- Complete CODEC and filtering system including: -Transmit high-pass and low-pass filtering -Receive low-pass filter with $\sin x / x$ correction -Active RC noise filters
- $\mu$-law or A-law compatible COder and DECoder
-Internal precision voltage reference
-Serial I/U interiace
불 $\mu$-law with signaling, TP3020 (2910) timing-TP3052
- $\mu$-law with signaling, TP5116A, TP5117A timing-TP3053
- $\mu$-law without signaling, 16-pin-TP3054
- A-law, 16-pin-TP3057

Meets or exceeds all D3/D4 and CCITT specifications

- $\pm 5 \mathrm{~V}$ operation
- Maximizes line interface card circuit density
- Low operating power-typically 50 mW
- Power-down standby mode-typically 1 mW


## Connection Diagrams

Dual-In-Line Package


Dual-In-Line Package


Dual-In-Line Package


Block Diagram


FIGURE 1

## TP3110, TP3120 Digital Line Interface Controllers (DLIC)

## General Description

The TP3110, TP3120 Digital Line Interface Controllers (DLIC) are general purpose switching components primarily intended to serve as controllers of subscriber line, service and trunk circuit cards of a digital switching system. They are also useful as general purpose data controllers for data switching and multiplexing applications.

The DLIC performs a three-way control function when used for digital switching applications. The block diagram (Figure 1) displays this tri-port arrangement. First, the DLIC controls the space and time switching function between subscriber line PCM CODECs and filters and the suitahing ejetem time division multinlox (TDM) hinhwavs. Second, the DLIC controls the flow of information between the per line circuit devices and the line card's local processor. Last, it performs all protocol control functions, using the HDLC protocol format, for information passing between the local line card processor and the main switching system processor (or any other system processor).

The DLIC is configured with a parallel interface for the per line and local processor circuits and with full duplex multiple port serial highways for the system interface. All system related communications with the DLIC controlled circuit card are handled via channel assignments on the serial TDM interface. In this way, all system data communications, subscriber PCM, data, signaling and system control information are transported and switched with a single network. This approach improves the overall flexibility and modularity of the total system design.

The DLIC contains a time-slot memory map for up to 128 duplex TDM channels, four high speed serial port transceivers, interface logic to allow the local processor to communicate with the per line circuit devices (combination CODEC/filter circuits and the SLIC), a complete HDLC protocol controller for system control messages, a vectored interrupt controller for the HDLC protocol, signaling and timing control and finally, a buffer memory for per line signaling data.

## Features

 of a digital switching system

- Performs all time division multiplex (TDM) channel assignments for the circuit card it controls
- Provides two (TP3110) or four (TP3120) full duplex serial TDM highways for the system interface
- Performs the first stage space and time switching function to minimize hardware requirements and switching delay
- Assignable addressing plus a "broadcast" address allows up to 255 controllers per subsystem control group without address field overlap
- System control uses the HDLC protocol with all zero insertion/deletion, checksum and flag control functions performed by the DLIC
- Single 5V power supply operation


## Block Diagram



FIGURE 1. DLIC Signal Flows

Connection Diagrams


## TP5087/TP5087A, TP5092/TP5092A, TP5094/TP5094A DTMF (TOUCH-TONE ${ }^{\text {}}$ ) Generators

## General Description

The TP5087, TP5092 and TP5094 are low threshold voltage, field-implanted, metal gate CMOS integrated circuits. The devices interface directly to a standard telephone keypad and generate all dual tone multi-frequency pairs required in tone-dialing systems. The tone synthesizers are locked to an on-chip reference oscillator using an inexpensive 3.579545 MHz crystal for high tone accuracy. The crystal and an output load resistor are the only external components required for tone generation. A MUTE OUT logic signal, which changes state when any key is depressed, is also provided.

## Features

- 2.5V-15V operation when generating tones (TP5087A, TP5092A, TP5094A)
- 2V operation of keyscan and MUTE logic
- Powered directly from telephone line
- Interfaces with standard single-contact or 2-of-8 telephone keypad
- Static sensing of key closures
- On-chip 3.579545 MHz crystal-controlled oscillator
- On-chip regulation of tone amplitudes
- High group and low group tones generated and mixed internally
- High group pre-emphasis
- Low harmonic distortion
- Open emitter-follower low-impedance output
- SINGLE TONE INHIBIT pin


## Block Diagram



FIGURE 1. TP5087 Family

[^57]
## Absolute Maximum Ratings

Supply Voltage ( $\left.V_{D D}-V_{S S}\right)$
Maximum Voltage at Any Pin
Operating Temperature
Storage Temperature
Maximum Power Dissipation

15 V
$V_{D D}+0.3 V$ to $V_{S S}-0.3 V$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW

Electrical Characteristics $T_{A}$ within operating temperature range, $2.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<10 \mathrm{~V}$ unless otherwise stated.

Parameter	Conditions	Min	Typ	Max	Units
TP5087, TP5092, TP5094					
Minimum Supply Voltage Swing, $\mathrm{V}_{\mathrm{DD} \text { (min) }}$	Generating Tones	3.5			V
Output Amplituros	$\mathrm{R}_{1}=240 \Omega$				
Low Group	$\mathrm{V}_{\mathrm{DD}}=3.8 \mathrm{~V}$		430		mVrms
	$V_{D D}=10 \mathrm{~V}$		480		mVrms
High Group	$V_{D D}=3.8 \mathrm{~V}$		580		mVrms
	$V_{D D}=10 \mathrm{~V}$		650		mVrms
Mean Output DC Offset	$V_{D}=3.8 \mathrm{~V}$		2		v
	$V_{D D}=10 \mathrm{~V}$		4.2		V
TP5087A, TP5092A, TP5094A					
Minimum Supply Voltage Swing, $\mathrm{V}_{\mathrm{DD} \text { (min) }}$	Generating Tones	2.5			V
Output Amplitudes	$\mathrm{R}_{\mathrm{L}}=100 \Omega$				
Low Group	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$		170		mVrms
	$V_{D D}=10 \mathrm{~V}$		190		mVrms
High Group	$\mathrm{V}_{D D}=2.5 \mathrm{~V}$		230		mVrms
	$V_{D D}=10 \mathrm{~V}$		255		mVrms
Mean Output DC Offset	$V_{D D}=2.5 \mathrm{~V}$		0.7		V
	$V_{D D}=10 \mathrm{~V}$		2.5		V
ALL PARTS					
Minimum Supply Voltage for Keyscan and MUTE Logic Functions		2			V
Operating Current					
Idle	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		20		${ }_{\mu} \mathrm{A}$
Generating Tones	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.		2		mA
Input Pull-Up Resistors					
COLUMN and ROW (Pull-Down)					
SINGLE TONE INHIBIT			50		$\mathrm{k} \Omega$
TONE DISABLE			50		k $\Omega$
MUTE OUT Sink Current (COLUMN and ROW Inactive)	$\begin{aligned} & V_{D D}=3 V \\ & V_{o}=0.5 \mathrm{~V} \end{aligned}$	0.5			mA
MUTE OUT Source Current (COLUMN and ROW Active)	$\begin{aligned} & V_{D D}=3 V \\ & V_{O}=2.5 \mathrm{~V} \end{aligned}$	0.5			mA
High Group Pre-Emphasis		2.4	2.7	3.0	dB
Dual Tone/Total Harmonic Distortion Ratio	1 MHz Bandwidth	22			dB
Start-Up Time (to 90\% Amplitude) .				5	ms

## Connection Diagram



## Pin Descriptions

$\mathbf{V}_{\mathrm{DD}}$ (Pin 1): This is positive voltage supply to the device, referenced to $\mathrm{V}_{\text {SS }}$. The collectors of the TONE OUT, and XMT SW transistors are also connected to this pin.
$\mathbf{V}_{\text {SS }}$ (Pin 6): This is the negative voltage supply.
OSCILLATOR (Pins 7 and 8): All tone generation timing is derived from the on-chip oscillator circuit. A low-cost 3.579545 MHz A-cut crystal (NTSC TV color-burst) is needed between pins 7 and 8. Load capacitors and a feedback resistor are included on-chip for good start-up and stability. The oscillator stops when both COLUMN inputs and ROW inputs are sensed sequentially with no valid input having been detected. The oscillator is also stopped when the TONE DISABLE input is pulled to logic low.

ROW and COLUMN Inputs (Pins 3, 4, 5, 9, 11, 12, 13, 14): When no key is pushed, pull-up resistors are active on COLUMN inputs and pull-down resistors are active on ROW inputs. Column latches are ON and ready to store column key closures. After a key is pushed, the row pulldown resistors cause a negative-true on COLUMN inputs which starts the oscillator and initiates tone generation. Negative-true logic signals simulating key closures can also be used.

TONE DISABLE Input (Pin 2): The TONE DISABLE input has an internal pull-up resistor. When this input is open or at logic high, the normal tone output mode will occur. When TONE DISABLE input is at logic low, the device will be in the inactive mode, tone output will be at an open circuit state. With mask option, TONE DISABLE input can either inhibit or not inhibit the MUTE function.

XMT SW Output (Pin 2 of TP5087/A only): With no key inputs, this output is pulled high by the open emitter of an NPN transistor. Any key entry turns off this transistor by pulling its base to $\mathrm{V}_{\text {ss }}$.

MUTE Output (Pin 10): The MUTE output is a conventional CMOS output that sinks current to $V_{S S}$ with no valid input and sources current from $V_{D D}$ when a valid key input is sensed. The MUTE output will switch regardless of the state of the SINGLE TONE INHIBIT input.

SINGLE TONE INHIBIT Input (Pin 15): The SINGLE TONE INHIBIT input is used to inhibit the generation of other than valid tone pairs due to multiple row-column closures. It has a pull-up resistor to $V_{D D}$, and when left open or tied to $V_{D D}$, single or dual tones may be generated in accordance with Table II. When forced to $\mathrm{V}_{\text {SS }}$, any input situation that would normally result in a single tone will now result in no tone, with all other chip functions operating normally.
TONE OUT (Pin 16): This output is the open emitter of an NPN transistor, the collector of which is connected to $V_{D D}$. When an external load resistor is connected from TONE OUT to $\mathrm{V}_{\mathrm{SS}}$, the output voltage on this pin is the sum of the high and low group sine-waves superimposed on a DC offset. When not generating tones, this output transistor is turned OFF to minimize the device idle current.

Adjustment of the emitter loaud resistor resuits in variation of the mean $D C$ current during tone generation, the sinewave signal current through the output transistor, and the output distortion. Increasing values of load resistance decrease both the signal current and distortion, while increasing the source impedance of the device as seen from its power supply terminals. Note that the DTMF generator is a current source which modulates its own supply terminals in a conventional telephone application.

## Functional Description

With no key inputs to the device the oscillator is inhibited, the output transistor is pulled OFF and device current consumption is reduced to a minimum. Key closures are sensed statically to ensure no modulation of the line when tones are not being generated. A valid key closure activates the MUTE output, starts the oscillator and sets the high group and low group programmable counters to the appropriate divide ratio. These counters sequence two ratioed-capacitor D/A converters through a series of 28 equal duration steps per sine-wave cycle. On-chip regulators ensure good stability of tone amplitudes with variations in supply voltage and temperature. The two tones are summed by a mixer amplifier, with pre-emphasis applied to the high group tone. The output is an NPN emitterfollower requiring the addition of an external load resistor to $\mathrm{V}_{\mathrm{SS}}$. This resistor facilitates adjustment of the signal current flowing from $V_{D D}$ through the output transistor.

TABLE I. OUTPUT FREQUENCY ACCURACY

.7 \begin{tabular}{|c|c|c|c|c|}

\hline | Tone |
| :---: |
| Group | \& | Valid |
| :---: |
| Input | \& | Standard |
| :---: |
| DTMF (Hz) | \& | Tone Output |
| :---: |
| Frequency | \& | \% Deviation |
| :---: |
| from Standard | <br>

\hline Low \& R1 \& 697 \& 694.8 \& -0.32 <br>
Group \& R2 \& 770 \& 770.1 \& +0.02 <br>
$\mathrm{f}_{\mathrm{L}}$ \& R3 \& 852 \& 852.4 \& +0.03 <br>
\& R4 \& 941 \& 940.0 \& -0.11 <br>
\hline High \& C 1 \& 1209 \& 1206.0 \& -0.24 <br>
Group \& C2 \& 1336 \& 1331.7 \& -0.32 <br>
$\mathrm{f}_{\mathrm{H}}$ \& C3 \& 1477 \& 1486.5 \& +0.64 <br>
\& C 4 \& 1633 \& 1639.0 \& +0.37 <br>
\hline
\end{tabular}

TABLE II. FUNCTIONAL TRUTH TABLE

SiivGiLE TVivi INHIBIT	$\frac{\text { IViVE }}{\text { DISABLE }}$	ROW	COLUMN	Tenos		MUIE
				Low	High	
X	0	X	X	OV	OV	0
X	X	O/C	O/C	OV	OV	0
X	1	One	One	$\mathrm{f}_{\mathrm{L}}$	$\mathrm{f}_{\mathrm{H}}$	1
1	1	2 or More	One	-	$\mathrm{f}_{\mathrm{H}}$	1
1	1	One	2 or More	$\mathrm{f}_{\mathrm{L}}$	-	1
1	1	2 or More	2 or More	$\mathrm{V}_{\text {OS }}$	$\mathrm{V}_{\text {OS }}$	1
0	1	2 or More	One	$\mathrm{V}_{\text {OS }}$	$\mathrm{V}_{\text {OS }}$	1
0	1	One	2 or More	$\mathrm{V}_{\text {OS }}$	$\mathrm{V}_{\text {OS }}$	1
0	1	2 or More	2 or More	$\mathrm{V}_{\text {OS }}$	$\mathrm{V}_{\text {OS }}$	1

Note 1: X is don't care state.
Note 2: $\mathrm{V}_{\text {OS }}$ is the output offset voltage.
Note 3: TONE DISABLE and SINGLE TONE INHIBIT have internal pull-up resistors.


* Adjust $R_{L}$ for desired tone amplitudes.

FIGURE 2. Amplitude and Distortion Measurements for Conventional Telephone Applications

## TP5088 DTMF Generator for Binary Input Data

## General Description

This CMOS device provides low cost tone-dialing capability in microprocessor-controlled telephone applications. Binary data is decoded directly, without the need for conversion to simulated keyboard inputs required by standard DTMF generators. With the TONE ENABLE input low, the oscillator is inhibited and the device is in a low power idle mode. On the low-to-high transition of TONE ENABLE, 4-bit binary data is latched into the device and the selected tone pair is generated. An open-drain N-channel transistor provides a MUTE output during tone generation.

## Features

- $2.5 \mathrm{~V}-15 \mathrm{~V}$ operation
- Direct microprocessor interface
- Binary input data with latches
- Generates 16 standard tone pairs
- On-chip 3.579545 MHz crystal-controlled oscillator
- High-group pre-emphasis
- MUTE output interfaces to speech network
- Low power idle mode


## Connection Diagram



National
PRELIMINARY

## TP9151, TP9152, TP9156, TP9158 Push Button Pulse Dialer Circuits with Redial

## General Description

This family of monolithic metal-gate CMOS integrated circuits provides all logic necessary to convert $4 \times 3$ matrix keypad inputs into a series of pulses simulating rotary telephone dialing. An on-chip memory capable of storing up to 22 digits allows keypad entries to be made at rates comparable to those of tone-dialing telephones, and provides one-key redial of the last number dialed. For PBX applications, pauses may be inserted in a redialed number sequence to ensure the user waits for dial tone following an access code. Two outputs are provided, requiring sımple interiace circuits io puise iite ieieplivine linie añ mute the receiver.

The low voltage and low current requirements of the TP9151 family allow direct telephone-line powered operation.

## Features

- 2.3 V and $150 \mu \mathrm{~A}$ operation
- $<1 \mu \mathrm{~A}$ on-hook current to store number
- Low power idle mode when not outpulsing
- Stabilized RC oscillator
- $\pm 5 \%$ frequency stability with voltage and temperature
- 22-digit redial memory
- Single contact or negative-common key interface
- BREAK/MAKE ratio pin selectable (TP9151 and TP9156)
- BREAK/MAKE ratio 60:40 (TP9152)
- BREAK/MAKE ratio 67:33 (TP9158)
- Inter-Digit Pause pin selectable
- Reset delayed for line breaks <200 ms
-     * key inserts pauses
- \# key releases redial and pauses
- Scratchpad (new number storage without dialing) option
- Two-phase drive to bistable MUTE relay (TP9152)


## Block Diagram



FIGURE 1. TP9151, TP9152, TP9156, TP9158 Pulse Dialer

## Absolute Maximum Ratings

DCSupply Voltage, $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$
Voltage on Any Pin
Operating Temperature Range
Storage Temperature Range

6 V
$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-50^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}$ within operating temperature range, $\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5 \mathrm{~V}$ except where otherwise stated.

Parameter	Conditions	Min	Typ	Max	Units
Supply Current					
IDD1	$V_{D D 1}=V_{D D 2}=5 \mathrm{~V}$.			1	$\mu \mathrm{A}$
IDD2 (Note 1)	$V_{D D 1}=V_{D D 2}=5 \mathrm{~V}$; Osc On			150	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$; Osc Off			2	$\mu \mathrm{A}$
Inputs					
IDP, B/M, HOOKSWITCH					
Logic 0				0.5	V
Logic 1		$V_{D D 2}-0.5$			V
Outputs					
PULSE Output	$\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3 \mathrm{~V}$				
Logic 0 Sink Current	$V_{0}=0.5 \mathrm{~V}$	2			mA
Logic 1 Leakage Current	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$			1	$\mu \mathrm{A}$
MUTE and MUTE Outputs	$\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3 \mathrm{~V}$				
Logic 0 Sink Current	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	2			mA
Logic 1 Source Current	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	2			mA
CLOCK, $\overline{\text { CLOCK }}$ Outputs	$\mathrm{V}_{\mathrm{DD} 2}=2.5 \mathrm{~V}$				
Logic 0 Sink Current		100			$\mu \mathrm{A}$
Logic 1 Source Current		100			$\mu \mathrm{A}$
CLOCK IN Leakage Current				20	nA
Row and Column Pull-Up Resistance		200			k $\Omega$
Keyboard Contact Resistance				1	k $\Omega$
Keyboard Capacitance				30	pF
Key Debounce Time, $\mathrm{t}_{\text {DB }}$	CLOCK $\operatorname{IN}=18 \mathrm{kHz}$	10		12	ms
Clock Frequency (Note 2)		- 17.3		19.1	kHz
	$V_{\text {DD2 }}=3 \mathrm{~V}$	17.8		18.9	kHz

Note 1. Measured after a digit is entered, with B/M, IDP and HOOKSWITCH inputs at $\mathrm{V}_{\mathrm{SS}}$, all keypad interfaces open-circuit.
Note 2: Including temperature, voltage and part-to-part variations, but not temperature coefficients of external oscillator components. See Figure 5 for component values.

## Connection Diagrams



FIGURE 2

## Pin Descriptions

$\mathbf{V}_{\mathrm{SS}}$ : This is the negative supply to the device and the voltages on all other pins are normally referenced to this.
$\mathbf{V}_{\mathrm{DD} 1}$ (common with $\mathrm{V}_{\mathrm{DD} 2}$ on TP9158): This is the positive supply to the redial memory. Maintaining power to this pin while on-hook will store the last number dialed. A lowvoltage detect circuit will reset the device and inhibit redial if the voltage on this pin falls too low for the memory cells to retain data.
$\mathbf{V}_{\mathrm{DD} 2}$ : This is the positive supply to all other functions of the device. It may be tied directly to $\mathrm{V}_{\mathrm{DD1}}$, or may be disconnected when on-hook in order to reduce on-hook leakage current.

CLOCK IN, CLOCK and CLOCK: The clock oscillator consists of two inverters and a comparator requiring two external capacitors and a resistor for oscillation. All timing is referenced to this oscillator running at 18 kHz , typically with $\mathrm{C} 1=\mathrm{C} 2=47 \mathrm{pF}$ and $\mathrm{R}=390 \mathrm{k} \Omega$. The comparator assures good frequency stability over the operating voltage and temperature ranges.

Keypad Inputs: A valid key entry is defined as either connecting a single row to a single column or connecting $\mathrm{V}_{\mathrm{SS}}$ simultanecusly to a single row and a single column. In the on-hook condition, the keypad interfaces are disabled and pulled low. On entering the off-hook condition, the keypad inputs go to a static sensing mode until a key closure is sensed. The oscillator is then enabled and rows and columns are alternately scanned (pulled high, then low) to verify that the input is valid. The key must then remain valid continuously for the specified debounce time before the circuit will accept and decode it and begin outpulsing.

HOOKSWITCH: This input controls the reset of internal counters and registers. Pulling this pin up to $\mathrm{V}_{\mathrm{DD1}}$ puts the device in the on-hook condition. The oscillator is stopped, all keypad pins are pulled low and all logic functions inhibited. Taking this pin to $\mathrm{V}_{\mathrm{SS}}$ resets the device and starts the oscillator to generate an 18 ms MUTE output pulse, then puts the device in standby mode with the oscillator turned off, ready to sense key closures. Returning this input to $V_{D D 1}$ at any time starts a 200 ms delayed reset counter. If $V_{S S}$ is restored before 200 ms (as would occur on a short line break) the counter is reset and operation continues. After 200 ms with HOOKSWITCH at $\mathrm{V}_{\mathrm{DD1}}$ the device returns to the on-hook condition.

A mask option of 300 ms reset delay is available.

The TP9158 bypasses the 200 ms delay reset counter, and provides instead two HOOKSWITCH connections enabling a Schmitt trigger circuit to be made with two external resistors (Figure 4). Reset can then be delayed during a line break by suitable design of the Schmitt trigger threshold.

PULSE Output: This is an open-drain N -channel transistor intended to drive a high-voltage interface circuit to pulse the telephone line with the correct BREAK/MAKE ratio and IDP timing. The output transistor sinks current only during pulse BREAK periods.

PULSE Output (TP9158 only): This is an open-drain P-channel transistor providing the logical inverse of the PULSE output.

## Pin Functions (Continued)

MUTE Output: This CMOS push-pull output is intended to drive a simple interface circuit to mute the telephone speech network during outpulsing. Figure 3 shows that this output is active-high for a pre-pulsing pause interval and throughout pulsing and inter-digit pauses. Other timing arrangements are available as options.

If a capacitively-coupled bistable relay is used for muting, the correct initial state is ensured by an 18 ms MUTE pulse generated each time the HOOKSWITCH input is pulled low.

MUTE Output (TP9152 only): This is a CMOS push-pull output which is the logical inverse of MUTE. The pair of antiphase outputs provide voltage boost to drive a capaci-tively-coupled bistable relay on low supply voltages.

IDPITEST SELECT: The function is selected by connecting this pin as follows:

Pin Input	TP9151, TP9152	TP9156	TP9158
$\mathrm{V}_{\text {DD2 }}$	IDP $=500$	900	
$\mathrm{~V}_{\text {SS }}$	IDP $=800$	800	800
CLOCK	IDP $=1000$	500	500
CLOCK			Fast
			Test Mode

Note: All IDP times in ms.
The fast test mode bypasses counter stages, increasing the outpulsing speed by a factor of 225, and the keyscan and debounce speed by a factor of 9 .

Note that this input is read and latched only during a HOOKSWITCH reset. Also, this input must not be allowed to "float" as no pull-up/pull-down resistor is provided.

BREAK/MAKE SELECT (not on TP9152 or TP9158): The BREAK/MAKE ratio on the TP9151 and TP9156 is selected by connecting this pin as follows:

Pin Input	B/M Ratio
$\mathrm{V}_{\text {DD2 }}$	$67: 33=2: 1$
CLOCK	$61.5: 38.5=1.6: 1$
$\mathrm{~V}_{\text {SS }}$	$60: 40=1.5: 1$

On the TP9152 the BREAK/MAKE ratio is internally fixed at 60:40. On the TP9158 the BREAK/MAKE ratio is internally fixed at $67: 33$. Note that this input is read and latched only during a HOOKSWITCH reset. Also, this input must not be allowed to "float" as no pull-up/pull-down resistor is provided.

## Functional Description

The time base for the TP9151 family is derived from an inverter/comparator circuit requiring two external capacitors and one resistor to set the oscillation frequency. The comparator greatly reduces the variation of oscillation frequency with supply voltage and temperature normally associated with CMOS RC oscillators. In the on-hook condition, the oscillator is stopped and the keypad scan disabled.

After going off-hook, the oscillator turns on to generate an 18 ms MUTE reset pulse, then turns off. The keypad inputs go to a static sensing mode. On sensing a single key closure, the oscillator starts, and row and column inputs are alternately scanned at a 250 Hz rate. When a valid key closure is sensed for the required debounce time, the key is written into memory and outpulsing begins for that key. Further valid keys are entered in sequence up to a maximum of 22. If no further key is entered, following the IDP, the oscillator will stop and the key inputs will return to the static sensing mode awaiting further keys or a return to the on-hook condition.

By maintaining power to the device while on-hook, the last number dialed is stored in memory. Upon going off-hook, the stored number can be automatically redialed by entering \# as the first key. Entry of any digit as the first key following off-hook clears the redial memory and enters digits, in sequence, starting at location 1. The on-hook reset of the device is delayed for 200 ms to protect a dialing sequence against short loop breaks. The device will also reset if $\mathrm{V}_{\mathrm{DD} 1}$ falls to a voltage too low for the memory cells to retain data.

The * key enables the user to enter and store a pause in a manually dialed number sequence. Both manual and automatic dialing will stop on reaching this pause. The \# key will release the pause and allow outpulsing to continue. Pauses may be stored in any memory location, but the number of pauses plus digits cannot exceed 22. Each pause requires a \# entry to release it.

As a mask option, the * key can be set up to provide entry to the Scratchpad feature, which allows the memory to be overwritten with a new telephone number without that number being outpulsed and without muting. Scratchpad mode can be entered directly after going off-hook or during a conversation by keying $* *$ foliowed by the nexi desired number. The new number can only be outpulsed by returning on-hook, then off-hook, followed by the \# key, which will redial the stored number as normal. Selecting the Scratchpad option still provides pause storage with a * entry, provided the next key is a digit.

Various timing options are available for PULSE and MUTE outputs. Popular BREAK/MAKE ratios and Inter-Digit Pause periods can be pin-selected.

## Application Notes

The TP9151 pulse dialer family may be set up to drive a pulsing loop either in series or in shunt with the speech network. A typical series dialer is shown in Figure 5. In this circuit, the dialer is fed from a current-limited source of a minimum of $200 \mu \mathrm{~A}$ to allow a safe margin for the device, plus the zener and HOOKSWITCH resistor currents.
To take maximum advantage of the low current consumption of the TP9151 family, particularly in the on-hook, last-number-stored mode, all other current paths must be minimized. These include leakage of the decoupling capacitor and reverse leakage of current through the current source to ground via the speech network. A zener diode with very low leakage current below the conduction "knee" should be specified. If on-hook current is drawn from the telephone line, reverse leakage of the two back-biased diodes in the rectifier bridge must also be considered.


8GL6d '9GL6d ' $2 G L 6 d \perp$ 'LGL6d

## General Description

This family of monolithic CMOS circuits provides all logic necessary to convert keyboard inputs into a series of pulses simulating rotary telephone dialing. An on-chip memory capable of storing up to 17 digits allows keyboard entries to be made at rates comparable to those of tonedialing telephones and provides one-key redial of the last number dialed. The keyboard inputs interface directly to a standard 2-of-7 keypad with positive-common or an inexpensive form A-type keyboard. Two outputs, one for pulsing the telephone line and one to mute the receiver, are provided along with pin selectable Break/Make ratios and an on-chip voltage regulator. The low voltage and low current requirements of these devices allow direct telephone line powered operation.

## Features

- TP50981/TP50981A, TP50985/TP50985A for pulsing loop in shunt with speech network
- TP50982/TP50982A for pulsing loop in series with speech network
- 1.7V, $150 \mu \mathrm{~A}$ operation TP50981A, TP50982A and TP50985A
- Single-contact or positive-common key inputs
- Break/Make ratio pin selectable
- On-chip voltage regulator
- On-chip oscillator using 480 kHz ceramic resonator
- Scratchpad (new number storage without dialing) on TP50985/TP50985A
- 10/20 pps option on TP50985/TP50985A


FIGURE 1
Connection Diagram (Dual-In-Line Package, Top View)


## Absolute Maximum Ratings

DCSupply Voltage (VD $\mathrm{V}_{\mathrm{DS}}$ )
Voltage on Any Pin
Operating Temperature
Storage Temperature
Maximum Power Dissipation ( $25^{\circ} \mathrm{C}$ )

$$
\begin{array}{r}
6.2 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { to } \mathrm{V} \text { SS }-0.3 \mathrm{~V} \\
-30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
500 \mathrm{~mW}
\end{array}
$$

DC Electrical Characteristics
$\mathrm{T}_{\mathrm{A}}$ within operating temperature range, $\mathrm{V}_{\mathrm{DD}} \min \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$, unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
$V_{D D}$ Min DC Supply Voltage TP50981, TP50982, TP50985  	Pin 1 Ref. Pin 6	$\begin{aligned} & 2.5 \\ & 1.7 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Memory Retention Current TP50981, TP50982, TP50985 TP50981A, TP50982A, TP50985A	$V_{D D}=2.5 \mathrm{~V}$, Notes 1 and 2 $V_{D D}=1.7 \mathrm{~V}$, Notes 1 and 2		0.7 0.5	2.4 1.0	${ }_{\mu}^{\mu} \mathrm{A}$
DC Operating Current	Off-Hook, Valid Key, $\mathrm{V}_{\text {REF }}$ Tied to $\mathrm{V}_{\text {SS }}$		100	150	$\mu \mathrm{A}$
$V_{\text {REF }}$ Sink Current	$V_{D D}=5.0 \mathrm{~V}$	1.0			mA
$\overline{\text { MUTE Sink Current }}$	$V_{D D}=V_{D D} \mathrm{Min}, \mathrm{V}_{0}=0.5 \mathrm{~V}$	0.5	2.0		mA
PULSE Sink Current	$V_{D D}=V_{D D} \mathrm{Min}, \mathrm{V}_{0}=0.5 \mathrm{~V}$	1.0	4.0		mA
$\overline{\text { MUTE and PULSE Leakage }}$	$\mathrm{V}_{\mathrm{DD}}=6.0 \mathrm{~V}, \mathrm{~V}_{0}=6.0 \mathrm{~V}$		0.001	1.0	$\mu \mathrm{A}$
Keyboard Contact Resistance				1.0	k $\Omega$
Keyboard Capacitance				30	pF
Logic '0' Level Input		$\mathrm{V}_{S S}$		$0.2 V_{D D}$	V
Logic '1' Level Input		$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	$v$
Keyboard Pull.Up Resistance			4.0		k $\Omega$
Keyboard Pull-Down Resistance			100		k $\Omega$
HOOKSWITCH Pull-Up Resistance			100		k $\Omega$

Note 1: On-hook mode, $\mathrm{V}_{\text {REF }}$ tied to $\mathrm{V}_{\mathrm{SS}}$, all outputs open.
Note 2: Power-on reset and low-voltage-detect circuits inhibit the redial function if the supply voltage falls below $\mathrm{V}_{\mathrm{DD}} \mathrm{Min}$.

## AC Electrical Characteristics

$T_{A}$ within operating temperature range, $\mathrm{V}_{\mathrm{DD}} \min \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$, unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Oscillator Frequency	Anti-Resonant Mode		480		kHz
Keyboard Debounce Time	OSC $\mathbb{N}=480 \mathrm{kHz}$	9		11	ms
Oscillator Start-Up Time	$V_{D D}=V_{D D}$ Min		5.0		ms
Pulse Rate			10.0		pps
Break Time	Pin $9 @ V_{D D}$		61.0		ms
Interdigit Pause	$\operatorname{Pin} 9 @ V_{S S}$		87.0		ms

## Functional Description

The time base for this family of puise dialers is derived from a 480 kHz ceramic resonator in anti-resonant mode. In the on-hook condition, the oscillator is stopped and all keyboard row and column inputs are forced to $V_{D D}$ which inhibits any key closures from effecting the circuit. After going off-hook the oscillator remains off and the keyboard inputs go to a static sensing mode. Upon sensing a single key closure, the oscillator starts, and the row and column inputs are alternately scanned at a 500 Hz rate. When the circuit senses a valid key closure for the required debounce time, the key is written into memory and outpulsing begins for that key. Further valid keys are entered in sequence, provided that no more than 17 digits remain to be outpulsed. If no further key is entered, following the IDP the oscillator will stop and the key inputs will return to the static sensing mode awaiting further keys or a return to the on-hook çondition. By maintaining power to the device while on-hook, the last number dialed (up to 17 digits) is stored in the memory. On going off-hook (HOOKSWITCH goes to $\mathrm{V}_{\mathrm{SS}}$ ) the stored number can be automatically redialed by entering either * or \# as the first key (TP50981/TP50981A and TP50982/TP50982A). Entry of any digit as the first key following off-hook clears the redial memory and enters digits in sequence, starting at location 1.

The * key on the TP50985/TP50985A is redefined to provide entry to the Scratchpad feature. This mode allows the outpulsing memory to be overwritten with a new telephone number without that number being outpulsed. Scratchpad mode can be entered directly after going off-hook or during a conversation by keying * followed by the next desired number. The new number can only be outpulsed by returning on-hook, then off-hook followed by the \# key, which will redial the last number as normal.

The TP50985/TP50985A also enables the user to select an output pulse rate of either 10 pps by connecting pin 2 to ground or 20 pps by connecting pin 2 to $V_{D D}$. On this version $V_{\text {REF }}$ is connected to $V_{S S}$ internally.

## Pin Descriptions

$V_{D D}$ (pin 1): This is the positive supply to the device and is referenced to $\mathrm{V}_{\mathrm{SS}}$ (pin 6). The voltage on this pin must be limited to less than 6 V either externally or by currentlimiting the supply to the on-chip voltage regulator. In the last-number-stored mode a minimum of $1 \mu \mathrm{~A}$ of supply current must be available to this pin while on-hook.
$\mathbf{V}_{\text {REF }}$ (pin 2): In normal applications, this pin is tied to $\mathrm{V}_{\mathrm{SS}}$ (pin 6) which enables the on-chip voltage regulator circuit. When $\mathrm{V}_{\text {REF }}$ is tied to $\mathrm{V}_{\mathrm{SS}}$, the voltage regulator will provide a current sink from $V_{D D}$ to $V_{S S}$ of a minimum of 1 mA with $V_{D D}$ equal to 5 V .

KEYBOARD INPUTS (pins $3,4,5,11,12,13$, and 14): A valid key entry is defined as either connecting a single row to a single column or connecting $V_{D D}$ simultaneously to a single row and a single column. This allows direct interface to an inexpensive single-contact (form A) keyboard, the standard 2-of-7 keyboard with positive-common, or logic-generated inputs.

In the on-hook condition [HOOKSWITCH/TEST (pin 15) connected to $V_{D D}$ ] the keyboard inputs are disabled and pulled high. Upon entering the off-hook condition the keyboard inputs go to a static sensing mode until a key closure is sensed. The oscillator is then enabled and the rows and columns are alternately scanned (pulled high, then low) to verify that the input is valid. The key must then remain valid continuously for the specified debounce time before the circuit will accept and decode it and begin outpulsing.
$\mathrm{V}_{\mathrm{SS}}$ (pin 6): This is the negative supply.
OSCILLATOR IN, OUT (pins 7, 8): The device contains an on-chip oscillator circuit designed to work with a 480 kHz ceramic resonator (anti-resonant mode) and 2 external capacitors, normally 100 pF . A $1 \mathrm{M} \Omega$ resistor is included onchip for good oscillator stability. The circuit may also be driven with an external 480 kHz source on OSCILLATORIN (pin 7).

BREAK/MAKE SELECT (pin 9): The Break/Make ratio is selected by connecting pin 9 to either $V_{D D}$ or $V_{S S}$. Table I indicates the available ratios.

TABLE I. BREAK/MAKE SELECT

Input to BREAK/MAKE(pin9)	PULSE OUTPUT	
	Make	
$\mathrm{V}_{\mathrm{DD}}$	$61 \%$	$39 \%$
$\mathrm{~V}_{\mathrm{SS}}$	$67 \%$	$33 \%$

$\overline{\text { MUTE (pin 10): This pin is the output of an open-drain }}$ N -channel transistor. It drives a simple interface circuit to mute the receiver during outpulsing. See the timing diagram and application notes for further information concerning this output.
HOOKSWITCH/TEST (pin 15): This input has a $100 \mathrm{k} \Omega$ internal pull-up resistor to $V_{D D}$. Allowing this pin to float, or connecting a $V_{D D}$ level puts the circuit in the on-hook idle mode.
With this pin connected to $V_{S S}$ the circuit is in the off-hook mode and will accept keyboard inputs, and outpulse them at the normal 10 pps rate. When the outpulsing is complete, the oscillator stops and waits for further key inputs. If, however, pin 15 is taken to $V_{D D}$ while the circuit is still outpulsing the remaining digits will be outpulsed at 100 times the normal rate (BREAK/MAKE becomes $50 \%$ ). This allows for rapid testing of the device and also provides a means for resetting the circuit if power to the device is maintained while on-hook. (Note: Taking the worst-case of 17 zeros remaining to be outpulsed, this operation could take 300 ms to complete. Therefore, to ensure that the circuit has been properly reset, pin 15 should remain at $V_{D D}$ for more than 300 ms before entering a new number.)
PULSE OUTPUT (pin 16): The pulse output consists of an open-drain N -channel transistor. It is intended to drive a transistor interface circuit to pulse the telephone line with the correct Break/Make ratio, IDP timing, and pulse rate. On the TP50981/TP50981A, TP50985/TP50985A this output is normailly low and pulses high. On the TP50982/TP50982A the output is normally high and pulses low. See Figure 2 for further details of the timing differences between the parts.

## Timing Diagram



FIGURE 2

## Applications Information

The TP50981/TP50981A, TP50985/TP50985A PULSE output is designed to drive a pulsing loop circuit in shunt with the speech network, as shown in Figure 3. During outpulsing the MUTE circuit is turned off to isolate the speech network from the line. VT2 and VT3 conduct during MAKE periods, R1 adjusts telephone pulsing resistance. VT2 and VT3 turn off during BREAK periods, loop current is then the sum of the device supply current, plus R2 and R3 currents. These currents should be designed to meet the system maximum BREAK current specification, where applicable. The on-chip voltage regulator enables the device to be fed from a current-limited supply of $150 \mu \mathrm{~A}$ minimum, as shown in Figure 3.
The TP50982/TP50982A PULSE output is designed for a series pulsing loop, as shown in Figure 4. In this case the MUTE circuit isolates only the receiver, so that current flows through the speech network while outpulsing MAKE periods. VT3 cuts off this current during BREAK periods.

To take maximum advantage of the low current consumption of the TP50981A, TP50982A, TP50985A in the on-hook,
last-number-stored mode, all other current paths must be minimized. These include leakage of the decoupling capacitor C1, and reverse leakage of current through the current source, which could flow to ground via the transistor interface circuits and speech network. If on-hook current is drawn from the telephone line, reverse leakage of the two back-biased diodes in the rectifier bridge must also be considered. Virtually the full station battery voltage may appear across these diodes in the on-hook condition of Figures 3 and 4, hence the diodes should be specified for minimum leakage current at 50 V reverse bias and maximum operating temperature.

Ceramic resonators for the oscillator circuit can be obtained from various companies including muRata, Toko, Vernitron and Radio Materials Corporation. The anti-resonant frequency, $f_{a}$, should be 480 kHz . Note that resonators are often referred to by their resonant frequency, $\mathrm{f}_{\mathrm{r}}$, which is typically $15 \mathrm{kHz}-25 \mathrm{kHz}$ lower than $\mathrm{f}_{\mathrm{a}}$. Consult manufacturers' data for specifications and tolerances.

## Applications Information (Continued)


*R1 typically $150 \Omega$.
$\dagger_{\mathrm{R} 2}=20 \mathrm{M}$ for TP50981, TP50985; R2 $=50 \mathrm{M}$ for TP50981A, TP50985A. \# indicates National Semiconductor Discrete process number.

COLUMN 1 (PIN 3)		
ROW 1 (PIN 14) - 1	2	3
ROW 2 (PIN 13) 4	5	6
ROW 3 (PIN 12) - 7	8	9
ROW 4 (PIN 11) -	0	

FIGURE 3. TP50981, TP50985 Shunt Dialer Application

Applications Information (Continued)


FIGURE 4. TP50982 Series Dialer Application

## 7 National Semiconductor TP5395, TP53125 DTMF (TOUCH TONE ${ }^{\oplus}$ ) Generators

## General Description

The TP5395 and TP53125 are low threshold voltage, ionimplanted, metal-gate CMOS integrated circuits that generate all dual tone multi-frequency (DTMF) pairs required in tone-dialing systems. The 8 audio output frequencies are generated from an on-chip 3.579545 MHz master oscillator. No external components other than the crystal are required for the oscillator. The TP5395 and TP53125 can be powered directly from telephone lines over wide range loop conditions. The TP53125 interfaces to an inexpensive single-contact calculator type keypad. The TP5395 interfaces to a standard telephone 2-of-8 keypad.

## Features

- Powered directly from telephone line
- Low voltage operation to 3.5 V
- Uses inexpensive 3.579545 MHz crystal
- Tone accuracy better than $\pm 1 \%$ without tuning
- Operation with either single-contact or 2-of-8 keypads
- Excellent thermal and voltage stability
- High band pre-emphasis
- Multi-key lockout with single tone capability
- Mute switch output
- BCD interface mode


## Block and Connection Diagrams



## Absolute Maximum Ratings

Voltage at Any Pin
Operating Temperature Range
Storage Temperature Range
$V_{D D}-V_{S S}$
Lead Temperature(Soldering, 10 seconds)

## Electrical Characteristics

$$
\begin{array}{r}
\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V} \text { DD }+0.3 \mathrm{~V} \\
-30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
6.5 \mathrm{~V} \\
300^{\circ} \mathrm{C}
\end{array}
$$

$T_{A}$ within operating temperature range, $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} \leq 6 \mathrm{~V}$, unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Input Pull-Up Resistor at Column Inputs	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	100		400	k $\Omega$
Input Pull-Down Resistor at XMIT	$V_{\text {IN }}=V_{\text {DD }}$	100		400	k $\Omega$
Internal Resistor at Row Inputs		100		400	k
$\text { To } \mathrm{V}_{\mathrm{SS}}(\mathrm{TP} 53125)$	$\begin{aligned} & V_{I N}=V_{S S} \\ & V_{I N}=V_{D D} \end{aligned}$	100		400	$\mathrm{k} \Omega$
				1	k $\Omega$
Input Voltage Levels Logical " 1 " Logical "0"		$\begin{gathered} V_{D D}-0.25 \\ V_{S S} \end{gathered}$		$\begin{gathered} V_{D D} \\ v_{S S}+0.25 \end{gathered}$	V
Output Voltage Swings at TONE OUTPUT	$\begin{aligned} & V_{D D}-V_{S S}=3.5 \mathrm{~V}, \\ & R_{L} \geq 500 \Omega \end{aligned}$				
Low Band Only High Band Only			$\begin{gathered} 820 \\ 1000 \end{gathered}$		$\begin{aligned} & m \vee p-p \\ & m \vee p-p \end{aligned}$
High Band Pre-Emphasis			2		dB
Harmonic Distortion	$R_{L} \geq 500 \Omega$   No External Filtering With 1000 pF at Filter		$\begin{aligned} & -19 \\ & -27 \end{aligned}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Tone Frequency Deviation				1.0	\%
Operating Frequency			3.579545		MHz
Key Debounce Time			2	4	ms
Power Dissipation	$\begin{aligned} & V_{D D}-V_{S S}=6 V \\ & R_{L}=500 \Omega \end{aligned}$			50	mW
Output Current Level at MUTE	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}=3.5 \mathrm{~V}$				
Logical "1" *	$V_{\text {OUT }}=\mathrm{V}_{\text {DD }}-0.2 \mathrm{~V}$	20			$\mu \mathrm{A}$
Logical "0"	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}+0.5 \mathrm{~V}$	2.0			mA

Functional Description (Continued)
meet all CEPT and BPO guidelines for unwanted frequency components at 10 kHz and above the output, additional external filtering is required as shown in Figure 8.

Figure 9 is a keypad interconnection diagram to indicate row and column connections for both types of keypads. Timing waveforms are shown in Figure 10.

Row	Column	Low Band	High Band
None	None	$D C$	$D C$
One	One	$f_{L}$	$f_{H}$
None	One	DC	$f_{H}$
One	None	$f_{L}$	$D C$
Two or more	None	DC	$D C$
Two or more	One	DC	$f_{H}$
None	Two or more	DC	$D C$
One	Two or more	$f_{L}$	$D C$
Two or more	Two or more	$D C$	$D C$

a. Functional Truth Table

Inputs	Desired   Frequencies		Actual   Frequency   $(H z)$	Percent   Deviation
	$f_{L}(\mathrm{~Hz})$	$f_{\mathrm{H}}(\mathbf{H z})$		
R1	697	-	699.1	0.306
R2	770	-	766.2	-0.497
R3	852	-	847.4	-0.536
R4	941	-	948.0	0.741
C1	-	1209	1215.9	0.569
C2	-	1336	1331.7	-0.324
C3	-	1477	1471.9	-0.35
C4	-	1633	1645.0	0.736

b. Output Frequencies

FIGURE 2. Keypad Interface Mode

KR CONTROL	XAnIT	Interface MAnde
0	Open	Keypad
1	0	Idle
1	1	Send tones

FIGURE 3. Interface Mode Control

XMIT	C1	C2	R1	R2	R3	R4	Freq	cies   ted
							$\mathrm{f}_{\mathrm{L}}(\mathrm{Hz})$	$\mathrm{f}_{\mathrm{H}}(\mathrm{Hz})$
0	X	X	X	X	X	X	DC	DC
1	Open	Open	0	0	0	0	941	1336
1	Open	Open	0	0	0	1	697	1209
1	Open	Open	0	0.	1	0	$697^{\circ}$	1336
1	Open	Open	0	0	1	1	697	1447
1	Open	Open	0	1	0	0	770	1209
1	Open	Open	0	1	0	1	770	1336
1	Open	Open	0	1	1	0	770	1477
1	Open	Open	0	1	1	1	852	1209
1	Open	Open	1	0	0	0	852	1336
1	$\begin{gathered} \text { Open } \\ 0 \end{gathered}$	Open Open	1	0	0	1	852	1477
1			Valid BCD Inputs				$\mathrm{f}_{\mathrm{L}}$	DC
1	Open	0					DC	$\mathrm{f}_{\mathrm{H}}$
1	0	0					DC	DC

FIGURE 4. Functional Truth Table for Signal Interface Mode

Functional Description (Continued)

Note 1: All S switches are common with hookswitch.
Note 2: All $K$ switches are common with KB.
Note 3: Switches shown in OFF hook and KB depressed positions.
FIGURE 5. TP5395 Typical Application


FIGURE 6. TP53125 Typical Application


FIGURE 7. Typical Tone Output vs Loop Current

Functional Description (Continued)


FIGURE 8. Tone Output Circuit for European Application


FIGURE 9. Keypad Interconnection Diagrams


## TP5393, TP5394, TP53143, TP53144 Pushbutton Pulse Dialer Circuits

## General Description

The TP5393, TP5394, TP53143 and TP53144 are low threshold voltage, ion-implanted, metal-gate CMOS integrated circuits that convert pushbutton inputs into a series of pulses to simulate a telephone rotary dial. Pushbutton inputs require the use of a simple, low cost single contact calculator type keypad. An inexpensive RC oscillator network is used as the frequency reference. Storage is provided for 21 digits. A redial feature via use of the \# key is included. An interdigit pause can be externally selected as either 420 ms or 840 ms . A mute output is provided to mute recei!er noise during nutnulsing. No muting occurs during the interdigit pause, thereby allowing the user to hear any busy or error condition arising during the call. The TP5393 and TP53143 provide a pacifier tone of 600 Hz every time a key is depressed. The TP5393 and TP5394 provide a 1.6:1
break/make ratio. The TP53143. and TP53144 provide a 2:1 break/make ratio.

## Features

- Direct line powered operation
- Low voltage operation to 2 V
- Low cost RC oscillator
- Single contact keypad
- 24-digit ctoraçe
- Selectable interdigital pause
- Redial of last number
. 600 Hz tone (available in TP5393 and TP53143)


## Block Diagram



FIGURE 1

## Absolute Maximum Ratings

Voltage at Any Pin
Operating Temperature Range
Storage Temperature Range
$V_{D D}-V_{S S}$
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \\
-30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
6.5 \mathrm{~V} \mathrm{Max} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}$ within operating temperature range, $\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, 2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$

Parameter	Conditions	Min	Typ	Max	Units
Input Voltage Levels at IDP Select, HK SW, K1-K4   Logical " 1 "   Logical "0"		$\begin{gathered} V_{D D}-0.25 \\ V_{S S} \end{gathered}$		$\begin{gathered} V_{D D} \\ V_{S S}+0.25 \end{gathered}$	V
Input Pull-Up Resistor Currents at K1-K4, Source	$V_{D D}=3 V, V_{I N}=V_{S S}$		1	3	$\mu \mathrm{A}$
Input Pull-Down Resistor Current at HK SW, Sink	$V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{1 N}=3 \mathrm{~V}$		1.5	3	$\mu \mathrm{A}$
Keypad Contact Resistance				1	k $\Omega$
Output Current Levels Dial Pulse					
Logical "1", Source	$V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}-0.5$	80			$\mu \mathrm{A}$
Logical "0", Sink	$\mathrm{V}_{\text {DD }}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}+0.5$	80			$\mu \mathrm{A}$
$\overline{\text { Mute }}$					
Logical "1", Source	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}-0.5$	80			${ }_{\mu} \mathrm{A}$
Logicai "0", Sink	$\mathrm{V}_{\text {DD }}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}+0.5$	80			$\mu \mathrm{A}$
Tone					
Logical ' 1 ", Source	$V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-0.5$	10			$\mu \mathrm{A}$
Logical "0", Sink	$\mathrm{V}_{\text {DD }}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}+0.5$	10			$\mu \mathrm{A}$
O1, O2, O3					
Logical "1", Source	$V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}-0.5$	15			$\mu \mathrm{A}$
Logical "0", Sink	$V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}+0.5$	100			$\mu \mathrm{A}$
Supply Current	$\begin{aligned} & V_{D D}=3.3 \mathrm{~V}, \text { Osc Freq }=20 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \text { ON Hook, Osc Stopped } \end{aligned}$			$\begin{gathered} 100 \\ 5 \end{gathered}$	${ }_{\mu}{ }^{\text {A }}$
Outpulsing Frequency	$\mathrm{Osc}=20 \mathrm{kHz}$	9		11	Hz

## Connection Diagrams



## Functional Description

A block diagram of the TP5393, TP5394, TP53143 and TP53144 integrated circuit is shown in Figure 1 and package connection diagrams for the 2 package options are shown in Figure 2.

Oscillator (Pins 6, 7, and 8): The time base for the pulse dialer integrated circuit is an RC-controlled oscillator like that shown in Figure 3, typically tuned to 20 kHz by the R1 and C1 combination. Stability of $\pm 10 \%$ of typical frequency can be maintained over the voltage range $3.0 \mathrm{~V}-5.5 \mathrm{~V}$ and temperature range $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. At fixed voltage and temperature, part to part variation is less than $5 \%$.

This clock is successively divided to derive the necessary timing for outpulsing and interdigit pause.

Keyboard (Pins 1-4 and 16-18 or 14-16): The TP5393, TP5394, TP53143 and TP53144 utilize an inexpensive single contact (Form A, Figure 7) keypad. A valid key closure is recorded when a single row ( $\mathrm{K}_{\mathrm{x}}$ input) is connected to a single column ( $\mathrm{O}_{\mathrm{y}}$ input). Key closures are protected from contact bounce for 5 ms .
Dial Pulse Output (Pin 9): The Dial Pulse output drives an external bipolar transistor that sequentially opens (breaks) the telephone loop a number of times equal to the input digit selected. For example, key 5 will generate 5 loop current breaks. The break/make ratio of the TP5393 and TP5394 is 1.6:1.0 (i.e., $61.5 \%: 38.5 \%$ ). The break/make ratio of the TP53143 and TP53144 is 2.0:1.0 (i.e., 67\%:33\%).

IDP Select (Pin 15 or 13): The IDP select input is used to select an interdigit separation of either 420 ms (logic " 0 " $=\mathrm{V}_{\text {SS }}$ ) or 840 ms (logic " 1 " $=\mathrm{V}_{\mathrm{DD}}$ ). An interdigit delay precedes the first digit outpulse sequence.
 ternal bipolar transistor that is used to mute the receiver during the outpulse period. System timing between key closure, mute and dial pulse is shown by the timing diagram in Figure 4.
Tone (Pin 14 TP5393 and TP53143 Only): The TP5393 and TP53143 provide a tone output to provide audio feedback to the user. The output is a 600 Hz tone that requires an external bipolar driver to activate the telephone receiver.

Hook Switch Input (Pin 5): The function of the hook switch input is to properly initialize the circuitry for proper
memory and redial operation. In the UN nook, logic "u" or $\mathrm{V}_{\mathrm{SS}}$ condition, the hook switch input
a. stops the 20 kHz oscillator
b. sets the memory pointer back to digit 1
c. clamps the dial pulse and mute ouputs to logic " 1 " or $V_{D D}$
d. resets all control logic

When the telephone is taken OFF hook, this input must be taken to logic " 1 " or $V_{D D}$ to release the oscillator and enable the memory and various outputs. For a non-redial application it is necessary to provide an RC delay of approximately $10 \mu$ s to the hook switch input in order to provide a proper power-on clear sequence.

Schematic diagrams for use of the TP5393, TP5394, TP53143 and TP53144 in typical applications are shown in Figures 5 and 6.

## REDIAL FEATURE

Pushbutton inputs are accepted at an asynchronous rate. If only 1 key is detected for 5 ms , the decoded key will be loaded into a first-in-first-out memory and outpulsing of the correct number of pulses will immediately begin. After the first digit has been completed, outpulsing will cease unless another key has been entered. This allows use in a PBX system to insure receipt of a dial tone after an access code has been entered and before entering the remainder of the number. If the call was not successful, it can be redialed at a later time by pressing the redial (\#) key. If an access code is required, as in a PBX system, it can be manually entered, the dial tone established, and then the redial key pushed to automatically dial the remainder of the number. Only 1 key can be entered before pushing the redial key.
An example of this operation is shown here:

	Key Inputs	Outpulses	Memory
First Try	9 P 4087375000	94087375000	94087375000
Second Try	$9 \mathrm{P} \#$	94087375000	94087375000
Third Try	$9 \mathrm{P} \#$	94087375000	94087375000

where $\mathbf{P}$ implies a user pause.

Functional Description (Continued)


FIGURE 3. Three Gate Oscillator and Waveforms


FIGURE 4. Output Timing Waveforms

Functional Description (Continued)


Note 1: No redial.
Note 2: Non-valued parts included in instrument.
Note 3: Letters refer to instrument terminals.
FIGURE 5. Typical Application of TP5394 in Type 500D Telephone


* Remainder of system is same as Figure 5.

FIGURE 6. Typical Application of TP5394 Using Redial Feature


FIGURE 7. Keypad Matrix

## TP53130 DTMF (TOUCH TONE ${ }^{\circledR}$ ) Generator

## General Description

The TP53130 is a low threshold voltage, ion-implanted, metal-gate CMOS integrated circuit that generates all dual tone multi-frequency (DTMF) pairs required in tonedialing systems. The 8 audio output frequencies are generated from an on-chip 3.579545 MHz master oscillator. No external components other than the crystal are required for the oscillator. The TP53130 can be powered directly from telephone lines over wide range loop conditions. The device can interface directly to an inexpensive single-contact calculator type keyboard or a standard telephone 2-of-8 keypad (Figure 4). The TP53130 is also capable of accepting binary code inputs for micro-processor-controlled systems applications.

## Features

- $3 \mathrm{~V}-15 \mathrm{~V}$ operating voltage
- On-chip 3.579545 MHz crystal-controlled oscillator
- Tone accuracy better than $\pm 1 \%$ without tuning
- Interface with standard 2-of-8 telephone keypad
- Interface with single-contact low cost keypad
- Input signals can be in binary code
. Multi-key lockout with/without single tone capability
On-chip high band and low band tone generators and mixer
- High band pre-emphasis
- Low harmonic distortion
- Open emitter-follower low impedance output
- Separate receiver mute and transmitter mute switch outputs
- Powered directly from the telephone line


## Block Diagram



FIGURE 1
TOUCH TONE ${ }^{*}$ is a registered trademark of Bell Telephone

## Absolute Maximum Ratings

Voltage at Any Pin Except XMTSW and MUTE $V_{S S}-0.3 V$ to $V_{D D}+0.3 V$

Voltage at XMT SW and MUTE Pins
Operating Temperature Range
Storage Temperature Range
$V_{D D}-V_{S S}$
$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to 15 V
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10 seconds)

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
15 \mathrm{~V}
$$

Electrical Characteristics $T_{A}$ within operating temperature range, $3 \mathrm{~V} \leq \mathrm{V}_{D D} \leq 8 \mathrm{~V}$, unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Input Pull-Up Resistor					
Column and Row Inputs		25	50	90	k $\Omega$
Kıyícn sclect		200	650	1000	k $\Omega$
Mode Select		200	650	1000	k $\Omega$
Tone Disable		200	650	1000	$k \Omega$
Input Pull-Down Resistor					
Column and Row Inputs	$V_{\text {DD }}=3 \mathrm{~V}$	650			$\Omega$
	$\mathrm{V}_{\mathrm{DD}}=8 \mathrm{~V}$	200			$\Omega$
Input Voltage Levels					
Logical " 1 "		$80 \%$ of $V_{D D}$		$V_{D D}$	V
Logical " 0 "		$\mathrm{V}_{\text {SS }}$		$20 \%$ of $V_{D D}$	V
Operating Frequency			3.579545		MHz
Output Voltage Swing at Tone				1	
Output					
Low Band Alone	$R_{L}>150 \Omega$		820		mVp-p
High Band Alone	$R_{L}>150 \Omega$		1000		$\mathrm{mVp}-\mathrm{p}$
Harmonic Distortion	$R_{L}>150 \Omega$			-20	dB
Tone Frequency Deviation				1.0	\%
Typical Application Output	$20<\mathrm{I}_{\mathrm{L}}<100 \mathrm{~mA}$				
Level $\mathrm{V}_{\mathrm{L}}$ (See Figure 5)					
Low Band Tone	$R_{L}=150 \Omega$		-7		dBV
High Band Tone	$\mathrm{R}_{\mathrm{L}}=150 \Omega$		-6		dBV
THD	$\mathrm{f} \leq 20 \mathrm{kHz}$		4		\%
Output Currents	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$				
XMT SWIMUTE	$V_{\text {OUT }}=2 \mathrm{~V}$	3			mA
Idle Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{DD}}=8.0 \mathrm{~V}$   (No Key Depressed)			1	mA
Operating Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}$			2	mA
Key Down to Tone Outputting Time (Debounce)			3	4	ms
DC Output	Tone Disable $=0$		TRI-STATE ${ }^{\text {® }}$		

TRI-STATE ${ }^{4}$ is a registered trademark of National Semiconductor Corp.

## Connection Diagram



Order Number TP53130N
See NS Package N18A

## Functional Description

A functional block diagram of the TP53130 is shown in Figure 1, and connection diagram is shown in Figure 2. The TP53130 can be operated in the Keyboard Interface Mode and can also be operated in the Binary Interface Mode depending on the logic level at the Key/BCD Select input. In either mode, the device will digitally synthesize the high and low band sine waves of DTMF signaling, when valid signals are applied to row and/or column inputs. The sum of the two sine waves is then provided at the Tone output.
Tone Disable: This input has an internal pull-up resistor. When this input is open or at logical high ( $V_{D D}$ ), the XiviT SW and MUTE outputs will deliver valid output signals in response to the proper input signals. When Tone Disable is at logical low ( $\mathrm{V}_{\mathrm{SS}}$ ), the device will be in the inactive mode. Tone output will go to an open circuit state, XMT SW and MUTE outputs will sink current through on-chip N -channel devices and the crystal oscillator will be disabled.
Key/Binary Select: When this input is open or at logical high ( $V_{D D}$ ), the device will interface a keyboard.(See Tablel.) When Key/Binary Select is low ( $\mathrm{V}_{\mathrm{SS}}$ ), the device will accept binary inputs on the row signal input lines. (See Table II.)

Oscillator: Tone generation and internal timing are dependent on the accurate operation of the crystal oscillator. The oscillator inverter/amplifier and all necessary bias networks are included on-chip. The only external component is a 3.579545 MHz crystal. It should be connected to the device as shown in the typical application diagram (Figure 5). The oscillator is not running unless a valid input signal is applied to the device. The oscillator is also disabled when Tone Disable is tied to logic low ( $\mathrm{V}_{\mathrm{SS}}$ ). This feature will prevent RF modulation on the telephone line.

Single Tone Capability: This is a desirable feature for initial testing. With the device operating in the Keypad Interface Mode, operation of multiple keys in different rows and columns will not generate output tones. However, operation of two or more keys in the same row or column will generate the proper tone for that row or col-
umn. During multiple key operation, the XMT SW and MUTE outputs will not change state more than once. With the device operating in the Binary Interface Mode, a logical low at the column 1 input will inhibit the high band tone output while a logical low at the column 2 input will inhibit the low band tone output. (See Table I.) Logical low inputs on both column inputs 1 and 2 will disable the device the same way as the Tone Disable input will when set to logical low.

Mode Select: This input has an internal pull-up resistor. When open or at logical high, single tone outputs are aliowed. When this input is at logical low, single tone outputs are prohibited. XMT SW and MUTE outputs will stay high during a multiple key depression input.

Tone Output: Dual-tone output frequencies are generated in response to valid input signals to the device. (See Table III.) Each frequency is synthesized with 32 steps of approximation for low harmonic distortion. The amplitudes of the low and high frequency tones are constant and independent of operating voltages. When tone outputs are present, the Tone output will be the composite of the AC signal superimposed on a DC offset. The DC offset is approximately $1 / 2 \mathrm{~V}_{D D}$. When no tones are present at the Tone output pin, the pin will be open circuit.
XMT SW (Transmitter Switch) and MUTE Outputs: In the idle state (no key depressed, no signal interface inputs and Tone Disable at a logical low) both the XMT SW and MUTE outputs will sink current to $\mathrm{V}_{\text {SS }}$ through on-chip transistors. In the active state, these outputs will source current from $V_{D D}$ whenever valid output tones are generated. The MUTE output activates before the XMT SW output as shown in Figure 3.
Signal Inputs (Row and Column Inputs): These inputs do not have a fixed pull-up or pull-down internal resistor, or a fixed logical level. Logic levels at the inputs are determined by internal states of the device. An input scan technique is used so that the device can directly interface either 2-of-8 keypads with common switch arrangements or the single contact $X-Y$ keypads. (See Figure 4.)

## Functional Description (Continued)



FIGURE 3. Timing Diagram of MUTE and XMT SW in Relation to Key Input and Tone Output

TABLE I. FUNCTIONAL TRUTH TABLE (WITH "MODE SELECT" OPEN)

Key/Binary Select	Tone Disable	Row	Column	Tone Output		XMT SW	MUTE
				Low Band	High Band		
X	0	X	X	0	0	0	0
1	1	One	One	$f_{L}$	$\mathrm{f}_{\mathrm{H}}$	1	1
1	1	One	Two or More	$\mathrm{f}_{\mathrm{L}}$	0	1	1
1	1	Two or More	One	0	$\mathrm{f}_{\mathrm{H}}$	1	1
1	1	Two or More	Two or More	0	0	0	0
0	1	Binary	Open	- $f_{L}$	$\mathrm{f}_{\mathrm{H}}$	1	1
0	1	Binary	$\mathrm{C} 1=0$	$f_{L}$	0	1	1
0	1	Binary	$\mathrm{C} 2=0$	0	$\mathrm{f}_{\mathrm{H}}$	1	1
0	1	X	C 1 and $\mathrm{C} 2=0$	0	0	0	0

TABLE II. FUNCTIONAL TRUTH TABLE FOR BINARY INTERFACE

Keyboard Inputs	Binary Inputs						Frequencies Generated	
	C1	C2	R1	R2	R3	R4	$\mathrm{f}_{\mathrm{L}}(\mathrm{Hz})$	$\mathrm{f}_{\mathrm{H}}(\mathrm{Hz})$
1	Open	Open	0	0	0	1	697	1209
2	Open	Open	0	0	1	0	697	1336
3	Open	Open	0	0	1	1	697	1477
4	Open	Open	0	1	0	0	770	1209
5	Open	Open	0	1	0	1	770	1336
6.	Open	Open	0	1	1	0	770	1477
7	Open	Open	0	1	1	1	852	1209
8	Open	Open	1	0	0	0	852	1336
9	Open	Open	1	0	0	1	852	1477
0	Open	Open	1	0	1	0	941	1336
*	Open	Opers	1	0	1	1	941	1209
\#	Open	Open	1	1	0	0	941	1477
A	Open	Open	1	1	0	1	697	1633
B	Open	Open	1	1	1	0	770	1633
C	Open	Open	1	1	1	1	852	1633
D	Open	Open	0	0	0	0	941	1633
	0	Open					$\mathrm{f}_{\mathrm{L}}$	-
	Open	0					-	$\mathrm{f}_{\mathrm{H}}$
	0	0					$1 / 2 V_{D D}$	$1 / 2 V_{D D}$

Functional Description (Continued)

TABLE III. OUTPUT FREQUENCIES

Inputs	Desired Freq. (Hz)		Actual   Frequency   $\mathbf{( H z )}$	Percent   Deviation
	$\mathbf{f}_{\mathrm{L}}$	$\mathbf{f}_{\mathbf{H}}$		
R1	697		699.1	0.306
R2	770		766.2	-0.497
R3	852		847.4	-0.536
R4	941		948.0	0.741
C1		1209	1215.9	0.569
C2		1336	1331.7	-0.324
C3		1477	1471.9	-0.35
C4		1633	1645.0	0.736



FIGURE 4a. Standard Dual Contact Telephone Key


FIGURE 4b. Single Contact Key

## Typical Application



FIGURE 5

National Semiconductor

## TP5600, TP5605, TP5610, TP5615 Ten-Number Repertory Pulse Dialers

## General Description

The TP5600, TP5605, TP5610, TP5615 are monolithic integrated circuits built using National's advanced $\mathrm{P}^{2}$ CMOS process (double poly-silicon gate CMOS). They provide all logic necessary to convert keypad inputs into a series of pulses simulating rotary telephone dialing. An on-chip memory provides storage for nine telephone numbers plus the last number dialed, each up to 16 digits in length. The simple control scheme needs only 2 key entries to store a number or initiate automatic dialing of a stored number. This control scheme is the same as that used on the TP5650 repertory DTMF generator so that no user re-education is necessary when converting from pulse to tone dialing. For PBX applications, the first 1 or 2 digits may be overwritten to obtain a second dial tone prior to automatic dialing. Two outputs are provided to control pulsing of the telephone line and muting of the receiver. The low voltage and low current requirements of this device allow direct telephone line powered operation for dialing. A small battery is recommended for on-hook memory retention.

## Features

- $2 \mathrm{~V}, 150 \mu \mathrm{~A}$ telephone-line powered operation
- $1 \mu \mathrm{~A}$ memory retention current
- Stores and auto-dials ten 16 -digit numbers
- Last-number-redial included
- Scratchpad (number storage without dialing)
- Control key scheme-same as TP5650 DTMF repertory dialer
- 2-digit overwrite for PBX access codes
- Voltage regulator on-chip
man nenillator with $\pm 3 \%$ frequency stability
- Single-contact or negative-common key inputs

E TP5600, TP5605 for pulsing loop in shunt with speech network
a TP5610, TP5615 for pulsing loop in series with speech network
. TP5605, TP5615 have IDP select and 10/20 pps select

## Block Diagram



FIGURE 1

## Absolute Maximum Ratings

DC Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ )
Voltage on Any Pin
Operating Temperature $\left(T_{A}\right)$
Storage Temperature
Maximum Power Dissipation $\left(25^{\circ} \mathrm{C}\right)$

$$
\begin{array}{r}
6 \mathrm{~V} \\
V_{D D}+0.3 \mathrm{~V} \text { to } \mathrm{V}_{S S}-0.3 \mathrm{~V} \\
-30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
500 \mathrm{~mW}
\end{array}
$$

DC Electrical Characteristics $T_{A}$ within operating temperature range, $2 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<5 \mathrm{~V}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
DC Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}(\text { Note } 1) \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1		150	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Memory Retention Current	On-Hook, $V_{D D}=2 \mathrm{~V}$			1	$\mu \mathrm{A}$
PULSE Sink Current	$\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$	50			$\mu \mathrm{A}$
PULSE Source Current	$\mathrm{V}_{\text {DD }}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}$	150			$\mu \mathrm{A}$
MUTE Sink Current	$\mathrm{V}_{\text {DD }}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$	50			$\mu \mathrm{A}$
MUTE Source Current	$\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}$	150			$\mu \mathrm{A}$
Logic '0' Level Input		$\mathrm{V}_{\mathrm{SS}}$		$0.2 V_{D D}$	
Logic '1' Level Input		$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	
Keyscan Pull-Up Resistance			100		k $\Omega$
Keyscan Pull-Down Resistance			4		k $\Omega$
Keypad Contact Resistance				1	k $\Omega$
Keypad Capacitance				30	pF
HOOKSWITCH Pull-Up Resistance			100		k $\Omega$

AC Electrical Characteristics $T_{A}$ within operating temperature range, $2 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<5 \mathrm{~V}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Oscillator Frequency			8		kHz
Oscillator Stability	Internal Regulator Connected,	-3		3	$\%$
Keypad Debounce Time	$150 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{DD}}<300 \mu \mathrm{~A}$				
Oscillator Start-Up Time	OSC $\mathrm{IN}=8 \mathrm{kHz}$	9		11	ms
Pulse Rate	$\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}$		5		ms
BREAK Time			10		pps
	BREAKIMAKE $=V_{D D}$		60		ms

Note 1: Off-hook, HOOKSWITCH pin connected to $\mathrm{V}_{\mathrm{SS}}$, all outputs open.

## Connection Diagrams



Pin Descriptions (Pin numbers refer to TP5600, TP5610)
$V_{D D}(p i n 1)$ : This is the positive supply to the device and is referenced to $\mathrm{V}_{\mathrm{SS}}$ (pin 5). An active zener regulator is connected on-chip between $V_{D D}$ and $V_{S S}$ (see pin 5), and the device is intended to be powered from a current-limited source. This regulator is turned off and effectively disconnected when the device is in the on-hook state in order to minimize current consumption. Power-on reset and lowvoltage detect circuits ensure correct operation following power-up or reduction of the on-hook supply voltage below that required to retain stored data.

Keypad Inputs (pins 3, 4, 5, 11, 12, 13 and 14): A valid key entry is defined as either connecting a single row to a single column or connecting $\mathrm{V}_{\text {SS }}$ simultaneously to a single row and a single column. This allows direct interface to an inexpensive single-contact (form A) keypad, the standard 2-of-7 keypad with negative-common, or logic-generated inputs.
$\mathbf{V}_{\text {SS }}$ (pin 6): This is the negative supply.
OSC IN, OSC OUT (pins 7, 8 on TP5600, TP5610 only): The device contains an on-chip oscillator circuit designed to work with a ceramic resonator at 480 kHz in anti-resonant mode. 2 external capacitors are required, typically 100 pF each. The circuit may also be driven with an external 480 kHz source on OSC IN.

OSC IN, OSC OUT, OSC OUT (pins 7, 8 and 9 on TP5605, TP5615 only): The device includes a stable on-chip oscillator circuit designed to work with the component values shown in Figure 3. The circuit may also be driven with an external 8 kHz source on OSC IN (pin 6).
On all devices, the oscillator runs only while the device is scanning the keypad and/or timing storage or outpulsing functions.

Dual-In-Line Package


BREAK/MAKE SELECT (pin 9): The BREAK/MAKE ratio is selected by connecting this pin as follows:

Input to BREAK/MAKE Pin	PULSE Output	
	BREAK	MAKE
$\mathrm{V}_{\mathrm{DD}}$	$60 \%$	$40 \%$
$\mathrm{~V}_{\mathrm{SS}}$	$66 \%$	$34 \%$

MUTE OUT (pin 10): This is a CMOS output designed to drive a simple interface circuit to mute the receiver during outpulsing. See the timing diagram for further details.
HOOKSWITCH (pin 15): This input has a $100 \mathrm{k} \Omega$ internal pull-up resistor to $V_{D D}$. Allowing this pin to float, or connecting a $V_{D D}$ level puts the circuit in the on-hook, low power idle mode. It also turns off the active zener regulator.
Connecting this pin to $\mathrm{V}_{\text {SS }}$ puts the circuit in the off-hook mode, ready to accept key inputs and generate outpulsing. It also turns on the zener regulator to limit the voltage across the device. See Applications Information for further information.
PULSE OUT (pin 16): This is a CMOS output designed to drive a simple interface circuit to pulse the telephone line with the correct BREAK/MAKE ratio, IDP timing and pulse rate.
IDP SELECT (TP5605, TP5615 only): The Inter-Digital Pause period is selected by connecting this pin as follows (no pull-up resistor is provided):

Input to IDP Pin	IDP Period
$\mathrm{V}_{\text {DD }}$	825 ms
$\mathrm{~V}_{\mathrm{SS}}$	525 ms

10/20 pps SELECT (pin 2): For normal 10 pps dialing, connect this pin to $V_{S S}$. Connecting this pin to $V_{D D}$ doubles the rate of all PULSE OUT and MUTE OUT timing.

Timing Diagram


Note 1: PPP is a pre-pulsing pause equal to 1 MAKE period.
Note 2: A mask option of MUTE continuously active low during the IDP is available as a mask option.

FIGURE 2

## Functional Description

The timebase for this family of repertory dialers is derived from a stable RC oscillator connected as shown in Figure 3. In the on-hook condition, the oscillator is stopped and all keypad inputs inhibited. After going offhook, the oscillator remains off and the keypad inputs go to a static sensing mode. Upon sensing a single key closure, the oscillator starts, and the row and column inputs are alternately scanned at a 500 Hz rate. When a key closure remains valid for the required debounce time, the key is interpreted in accordance with Table I. During manual dialing, valid digit keys are entered into the last-numberdialed register (register 0 ) in sequence and outpulsed at the nominal 10 pps rate. A manually dialed number may be entered rapidly and may exceed 16 digits without limit, provided no more than 15 digits remain to be outpulsed. Automatic dialing is inhibited, however, if an attempt is made to store more than 16 digits in any register. When no further digits remain to be outpulsed, the oscillator stops and key inputs return to the static sensing mode awaiting further keys or a return to the on-hook condition.

TABLE I. CONTROL SCHEME

Function	Control Sequence
Dial and store in register 0	$I D_{1} \ldots D_{x}$
No dial, store in register $N$ only	$1 * N D_{1} \ldots D_{x}$
Scratchpad	$\ldots . D_{x} * N D_{1} \ldots D_{y}$
Copy last number to register $N$	$\ldots D_{x}(\downarrow 1) * N \mid$
Auto-dial register $N$	$I \# N$
Last number redial	$1 \# 0$
PBX access	$1\left(D_{1}\right)\left(D_{2}\right) \# 0$ or $N$

Note 1: $N$ is a long-term storage register numbered from 1-9.
Note 2: $\dagger$ indicates on-hook to off-hook, $\downarrow$ indicates off-hook to on-hook.
Note 3: Entries in brackets may be omitted.

## NUMBER STORAGE

Telephone numbers are stored in 10 registers, numbered $0-9$. Register contents can only be modified while offhook. Register 0 always stores the last number which was manually dialed, and remains unchanged during automatic dialing. Numbers for long-term storage in registers $1-9$ are entered by $*$, then $N$ and then the telephone number, where $N$ is the register number. Other registers can be successively modified by entering a new $*$, $N$ followed by the telephone number. Once a * key is entered, no further outpulsing is possible until after an on-hook reset on the HOOKSWITCH pin. This facilitates the Scratchpad feature, whereby a number can be stored in a register without outpulsing during a conversation. The last number dialed manually is copied from register 0 to any of the long-term storage registers by entering $\star, \mathrm{N}$.
An attempt to store more than 16 digits in a register will set an overflow flag to inhibit automatic dialing from that register. The flag is reset following the next $*, N$ entry to reprogram that register.

## DIALING

Automatic dialing of the telephone number stored in any register is initiated by entering \#, then N . The keypad is then locked out until completion of outpulsing, after which further manual or automatic dialing is permitted.

For PBX applications, a 1 or 2-digit access code may be entered prior to a \#, $N$ code. These access digits overwrite the previously stored digits at the start of register 0 , the last-number-dialed register. The user then waits for a second dial-tone before automatically dialing the required number. Note that if a 2-digit access code is entered followed by \#, 0 , register 0 is automatically dialed from location 3 onwards. Either a 1 or 2-digit access code followed by \#, 0 , however, automatically dials register N from location 1 onwards. This allows the most flexible use of registers 1-9. Thus, it is not necessary to store access codes in registers 1-9, either manually or by copying the last number dialed.

## Applications Information

The TP5600 and TP5605 PULSE output is designed to drive a pulsing loop circuit in shunt with the speech network, as shown in Figure 3. During outpulsing, the MUTE circuit is turned off to isolate the speech network from the line. Q2 and Q3 conduct during MAKE periods, R1 adjusts telephone pulsing resistance. Q2 and Q3 turn off during BREAK periods, loop current is then only the supply current to the device. Q1 provides a current source of $200 \mu \mathrm{~A}$ minimum to ensure that the device will have an adequate supply voltage.

The TP5610 and TP5615 PULSE output is designed for a series pulsing loop, as shown in Figure 4. In this case, the MUTE circuit isolates only the receiver, so that current flows through the speech network while outpulsing MAKE periods. Q3 cuts off this current during BREAK periods.

The on-hook current required for the device to retain data is low enough to allow this current to be drawn from the telephone line in certain applications. In this case, it is advisable to add an external protection zener diode, specified for very low leakage, as the internal regulator is turned off when the HOOKSWITCH pin goes high. A low leakage decoupling capacitor should also be specified.

To protect stored data in the event of reduced line voltage (caused by an off-hook extension telephone, for example), a small back-up battery is recommended, as shown in Figures 3 and 4.

The off-hook current source formed by JFET Q1 and its source resistor must provide sufficient current to supply the repertory dialer plus the PULSE and MUTE loads when in their active states.

## Applications Information (Continued)



FIGURE 3. TP5600 Shunt Dialer Application


FIGURE 4. TP5615 Series Dialer Application

## TP5650, TP5660 Ten-Number Repertory DTMF Generators

## General Description

The TP5650 and TP5660 are monolithic integrated circuits built using National's advanced $\mathrm{P}^{2} \mathrm{CMOS}$ process (double poly-silicon gate CMOS). They interface directly to a telephone keypad and generate all 16 standard dual-tone multi-frequency pairs required in tone dialing systems. An on-chip memory provides storage for nine telephone numbers plus the last number dialed, each up to 16 digits in length. The simple control scheme needs only 2 key entries to store a number or initiate automatic dialing of a stored number. This control scheme is the same as that ucce sn the TPscno family nf renertory nillse dialers so that no user re-education is necessary when converting from pulse to tone dialing. The tone synthesizers are locked to an inexpensive 3.579545 MHz crystal for high accuracy. A MUTE OUT logic signal, which changes state when any key is depressed, is also provided. The low voltage and low current requirements of this device allow direct telephone line powered operation. A small battery is recommended for on-hook memory retention.

## Features

- $2.5 \mathrm{~V}-12 \mathrm{~V}$ operation when generating tones
- 2 V operation of keyscan and MUTE logic
- $1 \mu \mathrm{~A}$ memory retention current
- Stores and auto-dials ten 16 -digit numbers
- Last-number-redial included
- Scratchpad (number storage without dialing)
- TP5650 control key scheme same as TP5600 repertory pulse dialer
- TP5660 has 14 keys-separate Store and Redial

- 3.579545 MHz crystal-controlled oscillator
- Low harmonic distortion
- Single-contact or negative-common (2-of-8) key inputs

Block Diagram


## Absolute Maximum Ratings

Supply Voltages $\left(V_{D D}-V_{S S}\right)$ and $\left(V_{D D}-V_{M}\right)$
Maximum Voltage at Any Other Pin
Operating Temperature ( $T_{A}$ )
$\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$
$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage Temperature
Maximum Power Dissipation

$$
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

500 mW

Electrical Characteristics $2 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<10 \mathrm{~V}$, unless otherwise specified, $\mathrm{T}_{\mathrm{A}}$ within operating temperature range

Parameter	Conditions	Min	Typ	Max	Units
Minimum Supply Voltage Swing	Generating Tones	2.5			V
TONE OUT Amplitudes	$R_{L}=100 \Omega$				
Low Group	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$		175		mVrms
	$V_{D}=10 \mathrm{~V}$	,	190		mVrms
High Group	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$		225		mVrms
	$V_{D D}=10 \mathrm{~V}$		240		mVrms
High Group Pre-Emphasis			2		dB
Mean DC Offset	Generating Tones				
	$V_{D D}=2.5 \mathrm{~V}$		0.7		V
	$V_{D D}=10 \mathrm{~V}$		2.8		V
Dual Tone/Total Harmonic Distortion Ratio	1 MHz Bandwidth	20			dB
Start-Up Time (to 90\% Amplitude)				5	ms
Tones-On Duration	Automatic Dialing		72.3		ms
Tones-Off Duration	Automatic Dialing		72.3		ms
Supply Current, IDD Idle			20		
Generating Tones	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		2		mA
Battery Current, $\mathrm{I}_{\mathrm{M}}$	On-Hook, $\mathrm{V}_{\text {SS }}$ Open		2		$\mu \mathrm{A}$
MUTE OUT Sink Current	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	0.2			mA
MUTE OUT Source Current	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	0.2			mA
Column and Row Resistors			50		$\mathrm{k} \Omega$

## Connection Diagrams



Order Number TP5650N


Order Number TP5660N

FIGURE 2

## Pin Descriptions

$V_{D D}$ (pin 1): The positive supply to the device, referenced to $\mathrm{V}_{\mathrm{SS}}$. A power-on reset circuit ensures correct operation following initial power-up.
$\mathbf{V}_{\mathbf{M}}$ (pin 2): The negative terminal of the back-up battery for on-hook memory retention. A low-voltage detect circuit prevents misoperation of the circuit in the event of a reduction in the on-hook supply voltage below that required to retain stored data.
COLUMN and ROW Scans (pins 3, 4, 5, 9, 11, 12, 13, 14 plus pin 15 on TP5650 only): When no key is closed, pull-up resistors are active on COLUMN inputs and pull-down resistors are active on ROW inputs. After a key is closed the ROW pull-down resistors cause a negative-true on COLUMN inputs, which starts the oscillator and initiates tone generation.
$\mathbf{V}_{\text {SS }}$ (pin 6): The negative supply to the device in the offhook state. An open-circuit on this pin while back-up power is maintained on $V_{M}$ will reset the circuit.
OSC IN, OSC OUT (pins 7 and 8): All logic and tone generator timing is derived from the on-chip oscillator circuit. A low cost 3.579545 MHz A-cut crystal (NTSC TV color-burst) must be connected between pins 7 and 8. Load capacitors and a feedback resistor are included onchip for good start-up and stability. The oscillator stops when automatic tone generation is completed or there are no key closures.
MUTE OUT (pin 10): This is a CMOS output which sinks current to $\mathrm{V}_{\text {SS }}$ when no tones are being generated and sources current from $V_{D D}$ when tones are being generated. TONE OUT (pin 10): This output is the open emitter of an NPN transistor, the collector of which is connected to $V_{D D}$. When an external load resistor is connected from TONE OUT to $\mathrm{V}_{\mathrm{SS}}$, the output voltage on this pin is the sum of the high and low group sine-waves superimposed on a DC offset. When not generating tones, this output transistor is turned off to minimize the device idle current.

## Functional Description

In the on-hook state, with power maintained for memory retention, the oscillator is stopped, the output transistor is pulled off and all keypad inputs are inhibited. After going off-hook, the oscillator remains off and the key inputs go to a static sensing mode. A single key closure activates the MUTE OUTPUT and starts the oscillator and keyscan. A valid digit key sets the high group and low group programmable counters to the appropriate divide ratio. These counters sequence two sine-weighted-capacitor D/A converters through a series of 28 equal-duration steps per sine-wave cycle. An on-chip voltage reference ensures good stability of tone amplitudes with variations in supply voltage and temperature. The two tones are summed by a mixer amplifier, with pre-emphasis applied to the high group tone. The output is an NPN emitter-follower requiring the addition of an external load resistor to $\mathrm{V}_{\mathrm{SS}}$. This resistor facilitates adjustment of the signal current flowing from $V_{D D}$ through the output transistor.

Key inputs which are digits for manual dialing are not debounced prior to tone generation. Keys are debounced prior to being accepted as digits to be stored or as control keys (Table II). Upon completion of a manually or automatically dialed number, the oscillator stops and key inputs return to the static sensing mode awaiting further keys or a return to the on-hook state.

TABLE I. OUTPUT FREQUENCY ACCURACY

Tone   Group	Valid   Input	Standard   DTMF (Hz)	Tone Out   Frequency	\% Devlation   from Standard
LOW	ROW 1	697	694.8	-0.32
GROUP	ROW 2	770	770.1	+0.02
$\mathrm{f}_{\mathrm{L}}$	ROW 3	852	852.4	+0.03
	ROW 4	941	940.0	-0.11
HIGH	COL 1	1209	1206.0	-0.24
GROUP	COL 2	1336	1331.7	-0.32
$\mathrm{f}_{\mathrm{H}}$	COL 3	1477	1486.5	+0.64
	COL 4	1633	1639.0	+0.37

TABLE II. CONTROL SCHEME

Function	Control Sequence
Dial and Store in Register 0	$1 D_{1} \ldots D_{x}$
No Dial, Store in Register N Only	$1 S N D_{1} \ldots D_{x}$
Scratchpad	$1 D_{1} \ldots D_{x} S N D_{1} \ldots D_{y}$
Copy Last Number to Register N	$\ldots D_{x}(1 t) S N!$
Auto-Dial Register $N$	$1 R N$
Last Number Redial	$1 R 0$
PBX Access	$1\left(D_{1}\right)\left(D_{2}\right) R 0$ or $N$
* Tones	$*(T P 560)$
	** (TP5650) Note 1   \# Tones
	$\#(T P 5660)$
	$\# \#(T P 5650)$ Note 2

Note 1: * key is also STORE key S on TP5650
Note 2: \# key is also REDIAL key R on TP5650
Note 3: N is a long-term storage register numbered from 1-9
Note 4: $\uparrow$ indicates on-hook to off-hook, $\downarrow$ indicates off-hook to on-hook Note 5: Entries in brackets may be omitted

## NUMBER STORAGE

$S$ (for store) and $R$ (for redial) entries refer to TP5660 only. * is shown in brackets to replace $S$ and \# is shown in brackets to replace R on the TP5650 only.
Telephone numbers are stored in 10 registers, numbered $0-9$. Register 0 always stores the last number which was manually dialed, and remains unichanged during automatic dialing. Register contents can only be modified while off-hook.
Numbers are stored in long-term registers 1-9 by entering $S(*)$, then $N$ and then the telephone number, where $N$ is the register number. Other registers can be successively modified by entering a'new $S(*)$, $N$, followed by the telephone number. Once an $S(*)$ key is entered, no further digit tone outputs are possible until after an on-hook reset. This facilitates the Scratchpad feature, whereby a number can be stored in a register without tone outputs during a conversation. The last number dialed manually can be copied from register 0 to any of the long-term storage registers by entering $S(*), N$, then going on-hook.
An attempt to store more than 16 digits in a register will set an overflow flag to inhibit automatic dialing from that register. The flag is reset following the next $S(\star), N$ entry to re-program that register.

## DIALING

In the manual dialing mode (i.e., direct dialing from the keypad), tone pairs are generated for the duration of a valid key closure.
Automatic dialing of the number stored in register $N$ is initiated by entering $\mathrm{R}(\#)$ followed by N . The correct tone

## Functional Description (Continued)

pairs are generated in alternate bursts of tones-on, toniesoff until the end of the stored number. During this time, the keypad is locked out until completion of dialing, following which further manual or automatic dialing is permitted.

For PBX applications a 1 or 2-digit access code may be entered prior to the R(\#), $N$ code. These access digits overwrite the previously-stored digits at the start of register 0 , the last-number-dialed register. The user then waits for a second dial tone before entering $R(\#), N$ to automatically dial the stored number.

Note that if a 2-digit access code is entered followed by $R$ (\#), 0 , register 0 is automatically dialed from location 3 onwards. Entering either a 1 or 2-digit access code followed by R (\#), $N$, automatically dials register $N$ from location 1
onwards. This allows the most flexible use of registers 1-9. Note that access codes should not be entered into registers 1-9, either manually or by copying the last number dialed.

## Applications Information

Adjustment of the emitter load resistor results in variation of the mean DC current during tone generation; the sinewave signal current through the output transistor, and the output distortion. Increasing values of load resistance decrease both the signal current and distortion, while increasing the source impedance of the device as seen from its power supply terminal. Note that the DTMF generator is a current source which modulates its own supply terminals in a conventional telephone application.


FIGURE 3. Amplitude and Distortion Measurement Circuit


FIGURE 4b. Auto-Redial Timing

National
Industrial Blocks
Semiconductor

## LH0091 True RMS to DC Converter

## General Description

The LH0091, rms to dc converter, generates a dc output equal to the rms value of any input per the transfer function:

$$
E_{\text {OUT }}(D C)=\sqrt{\frac{1}{T} \int_{0}^{T} E_{I N^{2}(t) d t}}
$$

The device provides rms conversion to an accuracy of $0.1 \%$ of reading using the external trim procedure.
 $\pm 0.05 \%$ typ) for decade ranges i.e., $10 \mathrm{mV} \rightarrow 100 \mathrm{mV}$, $0.7 \mathrm{~V} \rightarrow 7 \mathrm{~V}$, etc.

Features

- Low cost
- True rms conversion
- $0.5 \%$ of reading accuracy untrimmed
- $0.05 \%$ of reading accuracy with external trim
- Minimum component count
- Input voltage to $\pm 15 \mathrm{~V}$ peak for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
- Uncommitted amplifier for filtering, gain, or high cresi íacior curníyuraiiun
- Military or commercial temperature range.

Block and Connection Diagrams


## Simplified Schematic



Note: Dotted lines denote external connections.

## Absolute Maximum Ratings

## Supply Voltage

Input Voltage
Output Short Circuit Duration
Operating Temperature Range
LH0091
LH0091C
Storage Temperature Range
LH0091
LH0091C
Lead Temperature (Soldering, 10 seconds)

$\pm 22 \mathrm{~V}$	
	$\pm 15 \mathrm{~V}$ peak
Continuous	
TMIN	$\mathrm{T}_{\text {MAX }}$
$-55^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
$300^{\circ} \mathrm{C}$	

Electrical Characteristics $V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise notes

Transfer Function $=E_{O(D C)}=\sqrt{\frac{1}{T} \int_{0}^{T} E_{I N^{2}}(t) d t}$


Op Amp Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise notes

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Vos	Input Offset Voltage	RS $\leq 10 \mathrm{k} \Omega$		1.0	10	mV
los	Input Offset Current			4.0	200	nA
$\mathrm{I}_{\mathrm{B}}$	Input Bias Current			30	500	nA
RIN	Input Resistance			2.5		$\mathrm{M} \Omega$
AOL	Large Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	15	160		$\mathrm{V} / \mathrm{mV}$
$\mathrm{v}_{0}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$		V
$V_{1}$	Input Voltage Range		$\pm 10$			V
CMRR	Common-Mode Rejection Ratio	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$		90		dB
PSRR	Supply Voltage Rejection Ratio	RS $\leq 10 \mathrm{k} \Omega$		96		dB
Isc	Output Short-Circuit Current			25		mA
$\mathrm{S}_{\mathrm{r}}$	Slew Rate (Unity Gain)			0.5		$\mathrm{V} / \mathrm{\mu s}$
BW	Small Signal Bandwidth			1.0		MHz

## Typical Performance Characteristics



Typical Applications (All applications require power supply by-pass capacitors.)

$C_{E X T} \geq 1 \mu \mathrm{~F} ;$ frequency $\geq 1 \mathrm{kHz}$
FIGURE 1. LH0091 Basic Connection (No Trim)

Typical Applications (Cont'd)


Note. The easy trim procedure is used for ac coupled input signals. It involves two trims and can achieve accuracies of $\mathbf{2 ~ m V}$ offset $\pm 0.1 \%$ reading.

## Procedure:

1. Apply 100 mV rms (sine wave) to input, adjust R3 until the output reads 100 mV DC.
2. Apply $5 \mathrm{~V}_{\text {rms }}$ (sine wave) to input, adjust R 4 until the output reads 5 VDC.
3. Repeat steps 1 and 2 until the desired initial accuracy is achieved.

FIGURE 2. LH0091 "Easy Trim" (For ac Inputs Only)


Note. This procedure will give accuracies of 0.5 mV offset $\pm 0.05 \%$ reading for inputs from 0.05 V peak to 10 V peak.

Procedure:

1. Apply $50 \mathrm{mV}_{\mathrm{DC}}$ to the input. Read and record the output.
2. Apply $-50 \mathrm{~m} V_{D C}$ to the input. Use $R 2$ to adjust for an output of the same magnitude as in step 1.
3. Apply 50 mV to the input. Use R3 to adjust the output for 50 mV .
4. Apply -50 mV to input. Use R2 to adjust the output for 50 mV .
5. Apply $\pm 10 \mathrm{~V}$ alternately to the input. Adjust R1 until the output readings for both polarities are equal (not necessary that they be exactiy 10 V ).
6. Apply 10 V to the input. Use R4 to adjust for 10 V at the output.
7. Repeat this procedure to obtain the desired accuracy.

FIGURE 3. LH0091 Standard dc Trim Procedure


Note. The additional op amp in the LH0091 may be used as a low pass filter as shown in Figure 4.


FIGURE 4. Output Filter Connection Using the Internal Op Amp

## Typical Applications (Cont'd)



Note. When converting signals with a crest factor $\geq 2$, the LH0091 should be connected as shown. Note that this circuit utilizes a 20k resistor to drop the input current by a factor of five. The frequency response will correspond to a voltage which is $1 / 5$ elN.

Note that the extra op amp in the LH0091 may be used to build a gain of 5 amplifier to restore the output voltage.


Response time of the dc output voltage is dominated by the RC time constant consisting of the total resistance between pins 9 and 10 and the external capacitor, CEX.

FIGURE 5. High Crest Factor Circuit

## Definition of Terms

True rms to dc Converter: A device which converts any signal (ac, dc, ac +dc ) to the dc equivalent of the rms value.

Error: is the amount by which the actual output differs from the theoretical value. Error is defined as a sum of a fixed term and a percent of reading term. The fixed term remains constant, regardless of input while the percent of reading term varies with the input.

Total Unadjusted Error: The total error of the device without any external adjustments.

Bandwidth: The frequency at which the output dc voltage drops to 0.707 of the dc value at low frequency.

Frequency for Specified Error: The error at low frequency is governed by the size of the external averaging capacitor. At high frequencies, error is dependent on the frequency response of the internal circuitry. The frequency for specified error is the maximum input frequency for which the output will be within the specified error band (i.e., frequency for $1 \%$ error means the input frequency must be less than 200 kHz to maintain an output with an error of less than $1 \%$ of the initial reading.

Crest Factor: is the peak value of a waveform divided by the rms value of the same waveform. For high crest factor signals, the performance of the LH0091 can be improved by using the high crest factor connection.

## LH0094 Multifunction Converter

## General Description

The LH0094 multifunction converter generates an output voltage per the transfer function:

$$
E_{o}=V_{y}\left(\frac{V_{z}}{V_{x}}\right)^{m}, 0.1 \leq m \leq 10, \underset{\text { adjustable }}{m} \text { continuously }
$$

m is set by 2 resistors.

## Features

- Low cost
- Versatile
- High accuracy-0.05\%
- Wide supply range $- \pm 5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Minimum component count
- Internal matched resistor pair for setting $m=2$ and $\mathrm{m}=0.5$


## Applications

- Precision divider, multiplier
- Square root
- Square
-. Trigonometric function generator
- Companding
- Linearization
- Control systems
- Log amp

Block and Connection Diagrams


Simplified Schematic


## Absolute Maximum Ratings

Supply Voltage	$\pm 22 \mathrm{~V}$
Input Voltage	$\pm 22 \mathrm{~V}$
Output Short-Circuit Duration	Continuous
Operating Temperature Range	
LH0094CD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH0094D	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LH0094D	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0094CD	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\quad V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. Transfer function: $\mathrm{E}_{\mathrm{O}}=\mathrm{V}_{\mathrm{y}} \frac{\mathrm{V}_{\mathrm{z}} \mathrm{m}}{\mathrm{V}_{\mathrm{x}}}$;
$0.1 \leqslant \mathrm{~m} \leqslant 10 ; 0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}, \mathrm{V}_{\mathrm{z}} \leqslant 10 \mathrm{~V}$

Parameter	Conditions	LH0094			LH0094C			Units
		Mİ.	Typ.	Max.	Min.	Typ.	Max.	
Accuracy								
viuiripiy   Untrimmed External Trim	$\bar{E}_{0}=V_{z} V_{v}\left(\hat{u} . \hat{u} \bar{u} \leqslant \ddot{v}_{y} \leqslant i \hat{u} \dot{v} ; \hat{u} . \hat{u} i \leqslant \ddot{v}_{z} \leqslant i \hat{u} \dot{v}\right)$   (Figure 2)   (Figure 3)   vs. Temperature		$\begin{gathered} 0.25 \\ 0.10 \\ 0.2 \end{gathered}$	0.45		$\begin{gathered} 0.45 \\ 0.1 \\ 0.2 \end{gathered}$	0.9	
Divide Untrimmed External Trim	$E_{0}=10 V_{z} / V_{x}$   (Figure 4) $0.5 \leqslant V_{x} \leqslant 10 ; 0.01 \leqslant V_{z} \leqslant 10$ )   (Figure 5 ), $\left(0.1 \leqslant V_{x} \leqslant 10 ; 0.01 \leqslant V_{z} \leqslant 10\right)$ vs. Temperature		$\begin{gathered} 0.25 \\ 0.10 \\ 0.2 \end{gathered}$	0.45		0.45 0.1 0.2	0.9	\% F.S. \% F.S. $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Square Root Untrimmed External Trim	$E_{O}=10 \sqrt{V_{z} / 10}$   (Figure 8 ), $\left(0.03 \leqslant \mathrm{~V}_{\mathrm{z}} \leqslant 10\right.$   (Figure 9$),\left(0.01 \leqslant \mathrm{~V}_{\mathrm{z}} \leqslant 10\right.$		$\begin{aligned} & 0.25 \\ & 0.15 \end{aligned}$	0.45		$\begin{aligned} & 0.45 \\ & 0.15 \end{aligned}$	0.9	$\begin{aligned} & \% ~ F . S . ~ \\ & \% \\ & \hline \end{aligned}$
Square Untrimmed External Trim	$E_{O}=10\left(V_{z} / 10\right)^{2}\left(0.1 \leqslant V_{z} \leqslant 10\right)$   (Figure 6)   (Figure 7)	$\begin{gathered} 0.5 \\ 0.15 \end{gathered}$	1.0		$\begin{gathered} 1.0 \\ 0.15 \end{gathered}$	2.0	$\left\lvert\, \begin{array}{ll} \% & \text { F.S. } \\ \% & \text { F.S. } \end{array}\right.$	
Low Level Square Root	$E_{O}=\sqrt{10 V_{z}} ; 5.0 \mathrm{mV} \leqslant \mathrm{V}_{\mathrm{z}} \leqslant 10 \mathrm{~V}$ (Figure 10)		0.05			0.05		\% F.S.
Exponential Circuits	$\begin{aligned} & m=0.2, E_{O}=10\left(V_{z} / 10\right)^{2} \text { (Figure 11), }\left(0.1 \leqslant V_{z} \leqslant 10\right) \\ & m=5.0, E_{O}=10\left(V_{z} / 10\right)^{5}(\text { Figure } 11),\left(1.0 \leqslant V_{z} \leqslant 10\right) \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$			0.08 0.08		$\% \text { F.S. }$

## Output Offset

	$\mathrm{V}_{\mathrm{x}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{y}}=\mathrm{V}_{\mathrm{z}}=0$	2.0	5.0	5.0	10	mV
AC Characteristics						
3dB Bandwidth	$\mathrm{m}=1.0, \mathrm{~V}_{\mathrm{x}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{y}}=0.1 \mathrm{~V}_{\text {rms }}$	10		10		kHz
Noise	$\begin{aligned} & 10 \mathrm{~Hz} \text { to } 1.0 \mathrm{kHz}, \mathrm{~m}=1.0, \mathrm{~V}_{\mathrm{y}}=\mathrm{V}_{\mathrm{z}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{x}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{x}}=0.1 \mathrm{~V} \end{aligned}$	100 300		100 300		$\mu \mathrm{V} / \mathrm{rms}$ $\mu \mathrm{V} / \mathrm{rms}$



## Input Characteristics

Input Voltage   Input Impedance	(For Rated Performance)   (All Inputs)	0		10	0		10	V

Output Characteristics

Output Swing	$\left(\mathrm{R}_{\mathrm{L}} \leqslant 10 \mathrm{k}\right)$	10	12		10	12		V
Output Impedance			1.0			1.0		$\Omega$
Supply Current	$\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)$, Noțe 1		3.0	5.0		3.0	5.0	mA

## Applications Information

## GENERAL INFORMATION

Power supply bypass capacitors ( $0.1 \mu \mathrm{~F}$ ) are recommended for all applications.

The LH0094 series is designed for positive input signals only. However, negative input up to the supply voltage will not damage the device.

A clamp diode (Figure 1) is recommended for those applications in which the inputs may be subjected to open circuit or negative input signals.

For basic applications (multiply, divide, square, square root) it is possible to use the device without any external adjustments or components. Two matched resistors are provided internally to set m for square or square root.

When using external resistors to set $m$, such resistors should be as close to the device as possible.

## SELECTION OF RESISTORS TO SET m

## Internal Matched Resistors

$R_{A}$ and $R_{B}$ are matched internal resistors. They are $100 \Omega \pm 10 \%$, but matched to $0.1 \%$.
(a) $m=2^{*}$

(b) $m=0.5^{*}$


* No external resistors required, strap as indicated


## External Resistors

The exponent is set by 2 external resistors or it may be continuously varied by a single trim pot. (R1 + $R 2 \leq 500 \Omega$.
(a) $m=1$

(b) $m<1$


$$
m=\frac{R 2}{R 1+R 2} \quad R 1+R 2 \approx 200 \Omega
$$

(c) $m>1$

$m=\frac{R 1+R 2}{R 2}$

## ACCURACY (ERROR)

The accuracy of the LH0094 is specified for both externally adjusted and unadjusted cases.

Although it is customary to specify the errors in percent of full-scale ( 10 V ), it is seen from the typical performance curves that the actual errors are in percent of reading. Thus, the specified errors are overly conservative for small input voltages. An example of this is the LH0094 used in the multiplication mode. The specified typical error is $0.25 \%$ of full-scale ( 25 mV ). As seen from the curve, the unadjusted error is $\approx 25 \mathrm{mV}$ at 10 V input, but the error is less than 10 mV for inputs up to 1 V . Note also that if either the multiplicand or the multiplier is at less than 10 V , ( 5 V for example) the unadjusted error is less. Thus, the errors specified are at full-scale-the worst case.

The LH0094 is designed such that the user is able to externally adjust the gain and offset of the devicethus trim out all of the errors of conversion. In most applications, the gain adjustment is the only external trim needed for super accuracy-except in division mode, where a denominator offset adjust is needed for small denominator voltages.

## EXPONENTS

The LH0094 is capable of performing roots to 0.1 and powers up to 10 . However, care should be taken when applying these exponents-otherwise, results may be misinterpreted. For example, consider the $1 / 10$ th power of a number: i.e., 0.001 raised to 0.1 power is $0.5011 ; 0.1$ raised to the 0.1 power is 0.7943 ; and 10 raised to the 0.1 power is 1.2589 . Thus, it is seen that while the input has changed 4 decades, the output has only changed a little more than a factor of 2. It is also seen that with as little as 1 mV of offset, the output will also be greater than zero with zero input.

## Applications Information <br> (Continued)

## 1. CLAMP DIODE CONNECTION


$E_{o}=v_{y}\left(\frac{V_{z}}{V_{x}}\right)^{m}$
$0.1 \leq m \leq 10$
Note. This clamp diode connection is recommended for those applications in which the inputs may be subject to open circuit or negative signals.

FIGURE 1. Clamp Diode Connection
2. MULTIPLY


FIGURE 2a. LH0094 Used to Multiply (No External Adjustment)


FIGURE 2b. Typical Performance of LH0094 in Multiply Mode Without External Adjustment


FIGURE 3. Precision Multiplier (0.02\% Typ) with 1 External Adjustment

## Applications Information (Continued)



FIGURE 4a. LH0094 Used to Divide (No External Adjustment)


FIGURE 4b. Typical Performance, Divide Mode, Without External Adjustments

## Trim Procedures

Apply 10 V to $\mathrm{V}_{\mathrm{y}}, 0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{x}}$ and $\mathrm{V}_{\mathrm{z}}$. Adjust R3 until $E_{0}=10.000 \mathrm{~V}$.
Apply 10.000 V to all inputs.
Adjust R2 until $E_{0}=10.000 \mathrm{~V}$
Repeat procedure.


FIGURE 5. Precision Divider (0.05\% Typ)


FIGURE 6a. Basic Connection of LH0094 $(\mathrm{m}=2)$ without External Adjustment Using Internal Resistors to Set m


FIGURE 6b. Squaring Mode without External Adjustment

## Applications Information

4. SQUARE (Continued)


$$
E_{0}=10\left(\frac{v_{z}}{10}\right)^{2}
$$

Trim Procedure
Apply 10 V to $\mathrm{V}_{\mathrm{z}}$
Adjust R2 for 10.000 V at output

FIGURE 7. Precision Squaring Circuit (0.15\% Typ)
5. SQUARE ROOT


FIGURE 8a. Basic Connection of LH0094 ( $m=0.5$ )
without External Adjustment Using Internal Resistor
FIGURE 8a. Basic Connection of LH0094 ( $\mathrm{m}=0.5$ )
without External Adjustment Using Internal Resistors to Set m


FIGURE 8b. Typical Performance Curve Square Root, No External Adjustment


FIGURE 9. Precision Square Rooter (0.15\% Typ)

## Applications Information (Continued)

6. LOW LEVEL SQUARE ROOT


FIGURE 10. 3-Decade Precision Square Root Circuit Using the LH0094 with $m=1$

## Typical Applications



Trim Procedure
Apply 10 V to all inputs
Adjust R2 for output of 10.000 V

For $m=0.2$

$m=\frac{R 2}{R 1+R 2} ; \begin{aligned} \text { Choose } R 1 & =200 \Omega \\ \therefore R 2 & =50 \Omega\end{aligned}$

For $m=5$


$$
\begin{aligned}
m=\frac{R 1+R 2}{R 2} ; & \text { Choose } R 2=50 \Omega \\
\therefore R 1 & =200 \Omega
\end{aligned}
$$

FIGURE 11. Precision Exponentiator ( $\mathrm{m}=0.2$ to 5)

Typical Applications (Continued)


Note. The LHOO94 may be used to generate a voltage equivalent to:

$$
\begin{aligned}
& V 0=\sqrt{V 1^{2}+V_{2}^{2}} \\
& V 0=V 2+\frac{V 1^{2}}{V 0+V 2} \\
& V 0^{2}+V 0 V 2=V 2 \quad V 0+V 2^{2}+V_{1} 2 \\
& V 0^{2}=V 1^{2}+V 2^{2} \\
& \therefore \quad V 0=\sqrt{V 1^{2}+V 2^{2}} \quad V 1, V 2 \quad 0 \rightarrow 10 V \\
& R \approx 10 k \\
& \text { National Semiconductor resistor array RA08-10k is recommended }
\end{aligned}
$$

FIGURE 12. Vector Magnitude Function


Note. The LH0094 may be used in direct measurement of gas flow.
Flow $=k \sqrt{\frac{P \Delta P}{T}}$
$E_{0}=10 \frac{V_{p}}{V_{T}} \times \frac{V_{\Delta p}}{E_{o}}$
$E_{0}^{2}=10 \frac{V_{p} V_{\Delta p}}{V_{T}}$
$E_{0}=\sqrt{10 \frac{V_{P} V_{\Delta P}}{V_{T}}}$
$P=$ Absolute pressure
$T=$ Absolute temperature $\Delta P=$ Pressure drop

FIGURE 13. Mass Gas Flow Circuit

Typical Applications (Continued)


Note. The LH0094 may also be used to generate the Log of a ratio of 2 voltages. The output is taken from pin 14 of the LH0094 for the Log application.

$$
\begin{aligned}
& E_{L O G}=K 1 \frac{K T}{q} \ln \frac{V_{z}}{V_{x}} \\
& \text { where } K 1=\frac{R 1+R 2}{R 2} \\
& \text { If } K 1=\frac{1}{K T / q \ln 10} \\
& \text { then } E_{L O G}=\log _{10} \frac{V_{z}}{V_{x}} \\
& R 1=15.9 R 2 \\
& R 2 \approx 400 \Omega
\end{aligned}
$$

R2 must be a thermistor with a tempço of $\approx 0.33 \% /{ }^{\circ} \mathrm{C}$ to be compensated over temperature.

FIGURE 14. Log Amp Application

## Section Contents

Audio/Radio Selection Guide ..... 10-4
Definition of Terms ..... $10-8$
LM377 Dual 2 Watt Audio Amplifier ..... 10-9
LM378 Dual 4 Watt Audio Amplifier ..... 10-14
LM379 Dual 6 Watt Audio Amplifier ..... 10-18
LM380 Audio Power Amplifier ..... 10-22
LM381/LM381A Low Noise Dual Preamplifier ..... 10-26
LM382 Low Noise Dual Preamplifier ..... 10-29
LM383/LM383A 7 Watt Audio Power Amplifier ..... 10-32
LM3845 Watt Audio Power Amplifier ..... $10-36$
LM386 Low Voltage Audio Power Amplifier ..... $10-40$
LM387/LM387A Low Noise Dual Preamplifier ..... $10-44$
LM388 1.5 Watt Audio Power Amplifier ..... $10-47$
LM389 Low Voltage Audio Power Amplifier with NPN Transistor Array ..... 10-52
LM390 1 Watt Battery Operated Audio Power Amplifier ..... 10-59
LM391 Audio Power Driver ..... 10-64
LM1035 Dual DC Operated Tone/Volume/Balance Circuit ..... $10-75$
LM1037 Dual Four-Channel Analog Switch ..... 10-80
LM1038 Dual Four-Channel Analog Switch ..... 10-85
LM1112A/LM1112B/LM1112C Dolby B-Type Noise Reduction Processor ..... 10-88
LM1121A/LM1121B/LM1121C Dolby B-Type Noise Reduction Processor with DC Switching ..... 10-94
LM1131A/LM1131B/LM1131C Dual Dolby B-Type Noise Reduction Processor ..... 10-97
LM1310 Phase-Locked Loop FM Stereo Demodulator ..... 10-102
LM1391 Phase-Locked Loop Block ..... 10-104
LM1596/LM1496 Balanced Modulator-Demodulator ..... 10-107
LM1800 Phase-Locked Loop FM Stereo Demodulator ..... 10-111
LM1818 Electronically Switched Audio Tape System ..... 10-113
LM1837 Low Noise Preamplifier for Autoreversing Tape Playback Systems ..... 10-122
LM1865/LM1965 Advanced FM IF System ..... 10-132
LM1866 Low Voltage AM/FM Receiver ..... 10-146
LM1868 AM/FM Radio System ..... 10-153
LM1870 Stereo Demodulator with Blend ..... 10-161
LM1877 Dual Power Audio Amplifier ..... 10-167
LM1894 Dynamic Noise Reduction System DNR ${ }^{\text {TM }}$ ..... 10-172
LM1895/LM2895 Audio Power Amplifier ..... 10-179
LM1896/LM2896 Dual Power Audio Amplifier ..... 10-184
LM1897 Low Noise Preamplifier for Tape Playback Systems ..... 10-191
LM2002/LM2002A 8 Watt Audio Power Amplifier ..... 10-200
LM2877 Dual 4-Watt Power Audio Amplifier ..... 10-204
LM2878 Dual 5-Watt Power Audio Amplifier ..... 10-210
LM3011 Wide Band Amplifier ..... 10-216
LM3075 FM Detector/Limiter and Audio Preamplifier ..... 10-218
LM3089 FM Receiver IF System ..... $10-220$

## Section Contents (Continued)

LM3189 FM IF System ..... 10-224
LM3820 AM Radio System ..... 10-231
LM4500A High Fidelity FM Stereo Demodulator with Blend ..... 10-235
LM13600/LM13600A/LM11600A Dual Operational Transconductance Amplifiers With Linearizing Diodes and Buffers ..... $10-242$
LM13700/LM13700A/LM11700A Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers ..... 10-258
TBA120S IF Amplifier and Detector ..... 10-274
TBA120U, TBA120T IF Amplifier and Detector ..... 10-277
TDA2003 Audio Power Amplifier ..... 10-281

## AM RFIIF/DETECTOR



Note: Availability of the LM1981 in production quantities is dependent upon FCC system selection.

## FM IFIDETECTOR

	Application			Package	Voltage Range	Input Sensitivity	Signal to Noise	THD	Mute Control	AGC Outputs	AFC	Meter Drive
	Portable	Home	Auto									
LM1865		-	-	N20	7V-16V	$6 \mu \mathrm{~V}$	84 dB	0.15\%	-	-	-	-
LM1866	-	-	-	N20	$3 \mathrm{~V}-15 \mathrm{~V}$	- $12 \mu \mathrm{~V}$	76 dB	0.5\%	-		-	-
LM1868	-	-		N20	$4.5 \mathrm{~V}-15 \mathrm{~V}$	$15 \mu \mathrm{~V}$	64 dB	1.1\%				
LM3011	-	$\bullet$		H10	$6 \mathrm{~V}-15 \mathrm{~V}$	$300 \mu \mathrm{~V}$						
LM3075	-	-	-	N14	$8.5 \mathrm{~V}-12.5 \mathrm{~V}$	$250 \mu \mathrm{~V}$		1.5\%				
LM3089		-	-	N16	8V-16V	$12 \mu \mathrm{~V}$	70 dB	0.5\%	$\bullet$	$\bullet$	-	-
LM3189		-	$\bullet$	N16	$8 \mathrm{~V}-16 \mathrm{~V}$	$12 \mu \mathrm{~V}$	80 dB	0.5\%	-	-	-	-
TBA120	-	-	-	N14	$6 \mathrm{~V}-18 \mathrm{~V}$.	$30 \mu \mathrm{~V}$		0.5\%				

FM STEREO DECODER

	Application			Package	Voltage Range	THD	Channel Separation	Blend	High Cut	Lamp Driver	Output Buffer	ARI Interface Rejection
	Portable	Home	Auto									
LM1310		-		ivi4	10V-18V	0.3\%	45 dB			-		
LM1800		-		N16	$10 \mathrm{~V}-18 \mathrm{~V}$	0.1\%	45 dB			-	-	
LM1870	-	-	-	N20	$7 \mathrm{~V}-15 \mathrm{~V}$	0.25\%	45 dB	-	-	$\bullet$	-	
LM4500A	-	$\bullet$	$\bullet$	N16	$8 \mathrm{~V}-16 \mathrm{~V}$	0.1\%	40 dB	$\bullet$		-	-	$\bullet$

PREAMPLIFIERS

	Application			Package	Voltage Range	Equivalent Input Noise	THD	PSR	Input Coupling	Notes
	Portable	Home	Auto							
LM381	-	-		N14	$9 \mathrm{~V}-40 \mathrm{~V}$	$0.5 \mu \mathrm{~V}$	0.1\%	120 dB	AC	Stereo
LM382	-	-	-	N14	$9 \mathrm{~V}-40 \mathrm{~V}$	$0.8 \mu \mathrm{~V}$	0.1\%	120 dB	AC	Stereo
LM387	-	$\bullet$	-	N08	$9 \mathrm{~V}-30 \mathrm{~V}$	$0.65 \mu \mathrm{~V}$	0.1\%	110 dB	AC	Stereo
LM1303		-		N14	$10 \mathrm{~V}-30 \mathrm{~V}$	$0.8 \mu \mathrm{~V}$			AC	Stereo
LM1818	$\bullet$	-	-	N20	$3.5 \mathrm{~V}-18 \mathrm{~V}$	$0.85 \mu \mathrm{~V}$	0.05\%	85 dB	AC	Tape system
LM1837	-	-	-	N18	$4 \mathrm{~V}-18 \mathrm{~V}$	$0.6 \mu \mathrm{~V} \dagger$	0.03\%	105 dB	DC	Autoreverse
LM1897	$\bullet$	$\bullet$	-	N16	4 V -18V	$0.6 \mu \mathrm{~V}{ }^{\dagger}$	0.03\%	105 dB	DC	Few externals

tCCIR/ARM in DIN circuit referred to gain at 1 kHz .
*Note that all values shown are typical. Please refer to data sheets for test conditions.

AUDIO CONTROLS

	Application			Package	Voltage   Range	Volume   Control Range	Signal to   Noise	THD	Separation	Notes
	Portable	Home	Auto							
LM1035	$\bullet$	$\bullet$	$\bullet$	N 20	$8 \mathrm{~V}-18 \mathrm{~V}$	80 dB	80 dB	$0.05 \%$	70 dB	Dual DC   tone/volume/balance
LM1037	$\bullet$	$\bullet$	$\bullet$	N 18	$5 \mathrm{~V}-30 \mathrm{~V}$		100 dB	$0.04 \%$	100 dB	DC audio switch
LM1038	$\bullet$	$\bullet$	$\bullet$	N 18	$5 \mathrm{~V}-30 \mathrm{~V}$		100 dB	$0.04 \%$	100 dB	BCD input
LM13600   LM13700	$\bullet$	$\bullet$	$\bullet$	N 16	$\pm 2 \mathrm{~V}- \pm 18 \mathrm{~V}$			$0.5 \%$	100 dB	Transconductance   amplifiers

NOISE REDUCTION

	Application			Package	Voltage Range	$\begin{gathered} \text { NR } \\ \text { Type } \end{gathered}$	$\begin{gathered} \text { NR } \\ \text { Effect } \end{gathered}$	Encoding Required	Singlel Dual	Decode S/N	Notes
	Portable	Home	Auto								
LM1111	-	-	-	N16	6V-18V ${ }^{\text {* }}$	Dolby	10 dB	Yes	Single	83 dB	Tightened spec
LM1121	$\bullet$	$\bullet$	-	N16	$6 \mathrm{~V}-18 \mathrm{~V}$	Dolby	10 dB	Yes	Single	82 dB	DC switched
LM1131	$\bullet$	$\bullet$	$\bullet$	N18	$6 \mathrm{~V}-18 \mathrm{~V}$	Dolby	10 dB	Yes	Dual	87 dB	DC switched
LM1894	-	-	-	iv 14		บivī	i2 un	ivu	Suāi	你动	
LM13700		$\bullet$		N16	$\pm 15 \mathrm{~V}$	C-X	20 dB	Yes	**		Phono
LF347		-		N14	$\pm 15 \mathrm{~V}$	C-x	20 dB	Yes	**		Phono
LF353		$\bullet$		N08	$\pm 15 \mathrm{~V}$	C-X	20 dB	Yes	**		Phono

**The C-X system requires one LM13700 and 8-10 op amps for stereo phono noise reduction.

## AUDIO POWER AMPLIFIERS

	Application			Package	Power				Bridgeable	THD	$\begin{array}{\|l\|} \hline \text { Input } \\ \text { Noise } \\ \hline \end{array}$	Single Dual	Notes
	Portable	Home	Auto		$8 \Omega$	$4 \Omega$	$2 \Omega$						
LM378		-		N14	5W			24 V	Yes	0.1\%	$3 \mu \mathrm{~V}$	Dual	See AN-125
LM379		$\bullet$		S14	6W			28 V	Yes	0.2\%	$3 \mu \mathrm{~V}$	Dual	See AN-125
LM380		-		N14/N08	2.5W			18 V		0.2\%		Single	See AN-69
LM383	$\bullet$		$\bullet$	TO-5		5.5W	8.6W	14.4 V	Yes	0.2\%	$2 \mu \mathrm{~V}$	Single	Protected
LM384		$\bullet$		N14	5.5W			22 V .		0.25\%		Single	Fixed gain
LM386	$\bullet$	$\bullet$		N08		0.33W		6 V	.	0.2\%		Single	4 V operation
LM388	$\bullet$			N14	2.2W			12 V	Yes	0.1\%		Single	Minimum externals
LM389	$\bullet$			N18		0.33W		6 V		0.2\%		Single	Includes Transistor array
LM390	$\bullet$			N14		1W		6 V	Yes	0.2\%		Single	Battery operation
LM391		-		N16				$60 \mathrm{~V}-100 \mathrm{~V}$		0.01\%	$3 \mu \mathrm{~V}$	Single	Power driver
LM1868	$\bullet$	$\bullet$		N20	0.7W			9 V		0.2\%		Single	With AM/FM
LM1877	$\bullet$	$\bullet$	$\bullet$	N14	2W			20 V		0.05\%	$25 \mu \mathrm{~V}$	Dual	$6 \mathrm{~V}-24 \mathrm{~V}$
LM2877	$\bullet$	$\bullet$	$\bullet$	P11	4.5W			20 V		0.1\%	$2.5 \mu \mathrm{~V}$	Dual	Single-in-line package
LM1895	$\bullet$	$\bullet$	$\bullet$	N08		1.1W		6 V		0.2\%	$14 \mu \mathrm{~V}$	Single	Low AM radiation
LM2895	$\bullet$	$\bullet$	$\bullet$	P11		4.3W		12 V		0.15\%	$1.4 \mu \mathrm{~V}$	Single	3V-15V
LM1896	$\bullet$	$\bullet$	$\bullet$	N14		1.1W		6 V	Yes	0.1\%	$1.4 \mu \mathrm{~V}$	Dual	Low AM radiation
LM2896	$\bullet$	-	$\bullet$	P11		2.5 W		9 V	Yes	0.1\%	$1.4 \mu \mathrm{~V}$	Dual	No pops
LM2002	-		$\bullet$	TO. 5		5.2 W	8W	14.4 V	Yes	0.1\%	$2 \mu \mathrm{~V}$	Single	Protected
LM2878		$\bullet$		P11	5.5W			22 V		0.15\%	$2.5 \mu \mathrm{~V}$	Dual	$6 \mathrm{~V}-32 \mathrm{~V}$

[^58]Clock Radio


Car Stereo


Home Music System


Portable Mono Cassette Radio


行
National Semiconductor

## Audio/Radio Circuits

## Definition of Terms

AGC dc Output Shift: The shift of the quiescent IC output voltage of the AGC section for a given change in AGC central voltage.

AGC Figure of Merit (AGC Range): The widest possible range of input signal level required to make the output drop by a specified amount from the specified maximum output level.

AGC Input Current: The current required to bias the central voltage input of the AGC section.

AM Rejection Ratio: The ratio of the recovered audio output produced by a desired FM signal of specified level and deviation to the recovered audio output produced by an unwanted AM signal of specified amplitude and modulating index.

Channel Separation: The level of output signal of an undriven amplifier with respect to the output level of an adjacent driven amplifier.

Detection Bandwidth: That frequency range about the free running frequency of the tone decoder/phase locked loop where a signal above a specified level will cause a detected signal condition at the output.

Detection Bandwidth Skew: The measure of how well the detection bandwidth is centered about the free running frequency. It is equal to the maximum detection bandwidth frequency plus the minimum detection bandwidth frequency minus twice the free running frequency.

Hold In Range: That range of frequencies about the free running frequency for which the phase locked loop will stay in lock if initially starting out in lock.

Input Bias Current: The average of the two input currents.

Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Input Sensitivity: The minimum level of input signal at a specified frequency required to produce a specified signal-to-noise ratio at the recovered audio output.

Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

Limiting Threshold: In FM the input signal level which causes the recovered audio output level to drop 3 dB from the output level with a specified large signal input.

Lock In Range: That range of frequencies about the free running frequency for which the phase locked loop will come into lock if initially starting out of lock.

Maximum Sweep Rate: The maximum rate that the VCO may be made to vary its oscillating frequency over its Sweep Range.

Output Resistance: The ratio of the change in output voltage to the change in output current with the output around zero.

Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.

Phase Detector Sensitivity: The change in the output voltage of the phase detector for a given change in phase between the two input signals to the phase detector.

Power Bandwidth: That frequency at which the voltage gain reduces to $1 / \sqrt{2}$ with respect to the flat band voltage gain specified for a given load and output power.

Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

Slew Rate: The internally limited rate of change in output voltage with a large amplitude step function applied to the input.

Supply Current: The current required from the power supply to operate the amplifier with no load and the output at zero.

Sweep Range: That ratio of maximum oscillating frequency to minimum operating frequency produced by varying the central voltage of the VCO from its maximum value to its minimum value with fixed values of timing resistance and capacitance.

VCO Sensitivity: The change in operating frequency for a given change in VCO central voltage.

## $\pi$ <br> National <br> LM377 Dual 2 Watt Audio Amplifier

## General Description

The LM377 is a monolithic dual power amplifier which offers high quality performance for stereo phonographs, tape players, recorders, and AM-FM stereo receivers, etc.

The LM377 will deliver $2 \mathrm{~W} /$ channel into 8 or $16 \Omega$ loads. The amplifier is designed to operate with a minimum of external components and contains an internal bias regulator to bias each amplifier. Device overload protection consists of both internal current limit and thermal shutdown. For more information, see AN-125. The LM377 is not recommended for new designs; see the LM1877 data sheet for an improved pin-for-pin replacement to the LM377 in audio applications.

## Feaiures

- Avo typical 90 dB
- 2W per channel
- 70 dB ripple rejection
- 75 dB channel separation
- Internal stabilization
- Self centered biasing
- $3 \mathrm{M} \Omega$ input impedance
- $10-26 \mathrm{~V}$ operation
- Internal current limiting
- Internal thermal protection


## Applications

- Multi-channel audio systems
- Tape recorders and players
- Movie projectors
- Automotive systems
- Stereo phonographs
- Bridge output stages
- AM-FM radio receivers
- Intercoms
- Servo amplifiers
- Instrument systems



## Absolute Maximum Ratings

Supply Voltage	26 V
Input Voltage	$0 \mathrm{~V}-\mathrm{V}_{\text {SUPPLY }}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## Electrical Characteristics

$V_{S}=20 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, R_{L}=8 \Omega, A_{V}=50(34 \mathrm{~dB})$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Total Supply Current	$\begin{aligned} & P_{\text {OUT }}=0 \mathrm{~W} \\ & P_{\text {OUT }}=1.5 \mathrm{~W} / \text { Channel } \end{aligned}$		$\begin{aligned} & 15 \\ & 430 \end{aligned}$	$\begin{aligned} & 50 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
DC Output Level			10		$\checkmark$
Supply Voltage		10		26	$v$
Output Power	T.H.D. $=<5 \%$	2	2.5		W
T.H.D.	$\mathrm{P}_{\text {OUT }}=0.05 \mathrm{~W} /$ Channel, $\mathrm{f}=1 \mathrm{kHz}$		0.25		\%
	$\mathrm{P}_{\text {OUt }}=1 \mathrm{~W} /$ Channel, $\mathrm{f}=1 \mathrm{kHz}$		0.07	1	\%
-	$\mathrm{P}_{\text {OUT }}=2 \mathrm{~W} /$ Channel, $\mathrm{f}=1 \mathrm{kHz}$,		0.10		\%
Offset Voltage			15		mV
Input Bias Current			100		nA
Input Impedance		3			$\mathrm{M} \Omega$
Open Loop Gain	$\mathrm{R}_{\mathrm{S}}=0 \Omega$	66	90		dB
Output Swing			$\mathrm{V}_{5}-6$	.	$V_{\text {P-P }}$
Channel Separation	$\mathrm{C}_{\mathrm{F}}=250 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}$	50	70	.	dB
Ripple Rejection	$f=120 \mathrm{~Hz}, C_{F}=250 \mu \mathrm{~F}$	60	70		dB
Current Limit			1.5		A
Slew Rate			1.4		$\mathrm{V} / \mathrm{\mu s}$
Equivalent Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=600 \Omega, 100 \mathrm{~Hz}-10 \mathrm{kHz}$		3		$\mu$ Vrms

Note 1: For operation at ambient temperatures greater than $25^{\circ} \mathrm{C}$ the LM377 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction température using a thermal resistance which depends upon device mounting techniques.
Note 2: Dissipation characteristics are shown for four mounting configurations.
a. Infinite sink $-13.4^{\circ} \mathrm{C} / \mathrm{W}$
b. P.C. board $+V_{7}$ sink $-21^{\circ} \mathrm{C} / \mathrm{W}$. P.C. board is $21 / 2$ square inches. Staver $V_{7}$ sink is 0.02 inch thick copper and has a radiating surface area of 10 square inches.
c. P.C. board only $-29^{\circ} \mathrm{C} / \mathrm{W}$. Device soldered to $21 / 2$ square inch P.C. board.
d. Free air $-58^{\circ} \mathrm{C} / \mathrm{W}$.

## Typical Performance Characteristics



DC Output Level vs Temperature


Distortion vs Gain




Power Dissipation vs Power Output


Supply Current vs POUT



## Typical Performance Characteristics '(Continued)



Typical Applications (Continued)

10W Per Channel Audio Amplifier


Simple Stereo Amplifier with Bass Boost


4W Bridge Amplifier


## Audio/Radio Circuits

## LM378 Dual 4 Watt Audio Amplifier

## General Description

The LM378 is a monolithic dual power amplifier which offers high quality performance for stereo phonographs, tape players, recorders, and AM-FM stereo receivers, etc.

The LM378 will deliver $4 W$ channel into 8 or $16 \Omega$ loads. The amplifier is designed to operate with a minimum of external components and contains an internal bias regulator to bias each amplifier. Device overload protection consists of both internal current limit and thermal shutdown. For more information see AN-125.

## Features

- Avo typical 90 dB
- 4 W per channel
- 70 dB ripple rejection
- 75 dB channel separation
- Internal stabilization
- Self centered biasing
- $3 \mathrm{M} \Omega$ input impedance
- Internal current limiting
- Internal thermal protection


## Applications

- Multi-channel audio systems
- Tape recorders and players
- Movie projectors
- Automotive systems
- Stereo phonographs
- Bridge output stages
- AM-FM radio receivers
- Intercoms
- Servo amplifiers
- Instrument systems


## Schematic Diagram



## Connection Diagram



Typical Applications


## Absolute Maximum Ratings

Supply Voltage
Input Voltage
Operating Temperature
Storage Temperature
Junction Temperature
Lead Temperature (Soldering, 10 seconds)

35 V
OV-V
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

## Electrical Characteristics

$V_{S}=24 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, R_{L}=8 \Omega, A_{V}=50(34 \mathrm{~dB})$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Total Supply Current	$\begin{aligned} & P_{\text {OUT }}=0 \mathrm{~W} \\ & \mathrm{P}_{\text {OUT }}=1.5 \mathrm{~W} / \text { Channel } \end{aligned}$		$\begin{aligned} & 15 \\ & 430 \end{aligned}$	$\begin{aligned} & 50 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
DC Output Level			12		$v$
Sunnly Voltane		10			V
Output Power	$\begin{aligned} & \text { T.H.D. }=<5 \%, R_{L}=8 \Omega \\ & \text { T.H.D. }=<5 \%, R_{L}=16 \Omega \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		W $\mathrm{w}^{*}$
T.H.D.	$\begin{aligned} & \text { P Out }=0.05 \mathrm{~W} / \text { Channel, } f=1 \mathrm{kHz} \\ & P_{\text {OUT }}=1 \mathrm{~W} / \text { Channel, } f=1 \mathrm{kHz} \\ & \text { P }_{\text {OUT }} 2 \mathrm{~W} / \text { Channel, } f=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.07 \\ & 0.10 \end{aligned}$	1	\% $\%$ $\%$
Offset Voltage			15		mV
Input Bias Current			100		$n \mathrm{~A}$
Input Impedance		3			$\mathrm{M} \Omega$
Open Loop Gain	$\mathrm{R}_{\mathrm{S}}=0 \Omega$	66	90		dB
Channel Separation	$\mathrm{C}_{\mathrm{F}}=250 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}$	50	70		dB
Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\mathrm{F}}=250 \mu \mathrm{~F}$	60	70		dB
Current Limit			1.5		A
Slew Rate			1.4		$\mathrm{V} / \mathrm{\mu s}$.
Equivalent Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=600 \Omega, 100 \mathrm{~Hz}-10 \mathrm{kHz}$		3		$\mu \mathrm{Vrms}$

Note 1: For operation at ambient temperatures greater than $25^{\circ} \mathrm{C}$ the LM378 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques.

Note 2: Dissipation characteristics are shown for four mounting configurations.
a. Infinite sink $-13.4^{\circ} \mathrm{C} / \mathrm{W}$
b. P.C. board $+V_{7} \operatorname{sink}-21^{\circ} \mathrm{C} / \mathrm{W}$. P.C. board is $21 / 2$ square inches. Staver $V_{7}$ sink is 0.02 inch thick copper and has a radiating surface area of 10 square inches.
c. P.C. board only $-29^{\circ} \mathrm{C} / \mathrm{W}$. Device soldered to $21 / 2$ square inch P.C. board.
d. Free air $-58^{\circ} \mathrm{C} / \mathrm{W}$.
*Tested at $\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}$.

## Typical Performance Characteristics





## Distortion vs Gain



Power Dissipation vs
Power Output


Power Dissipation vs Power Output


Distortion vs Frequency

Supply Rejection vs






Typical Applications (Continued)



15W Per Channel Audio Amplifier

8W Bridge Amplifier


Power Op Amp (Using Split Supplies)


Rear Speaker Ambience (4-Channel) Amplifier

## Audio/Radio Circuits

## LM379 Dual 6 Watt Audio Amplifier

## General Description

The LM379 is a monolithic dual power amplifier which offers high quality performance for stereo phonographs, tape players, recorders, and AM-FM stereo receivers, etc.

The LM379 will deliver 6W/channel to an $8 \Omega$ load. The amplifier is designed to operate with a minimum of external components and contains an internal bias regulator to bias each amplifier. Device overload protection consists of both internal current limit and thermal shutdown. For more information, see AN-125.

## Features

- Avo typical 90 dB
- 6W per channel
- 70 dB ripple rejection
- 75 dB channel separation
- Internal stabilization
- Self centered biasing
- $3 \mathrm{M} \Omega$ input impedance
- Internal current limiting
- Internal thermal protection


## Applications

- Multi-channel audio systems
- Tape recorders and players
- Movie projectors
- Automotive systems
- Stereo phonographs
- Bridge output stages
- AM-FM radio receivers
- Intercoms
- Servo amplifiers
- Instrument systems



## Connection Diagram



Order Number LM379S
See NS Package S14A

Typical Applications


## Absolute Maximum Ratings

Supply Voltage
Input Voltage
Operating Temperature Storage Temperature Junction Temperature
Lead Temperature (Soldering, 10 seconds)

35 V
$O V-V_{\text {SUPPLY }}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

## Electrical Characteristics

$V_{S}=28 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, R_{L}=8 \Omega, A_{V}=50(34 \mathrm{~dB})$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Total Supply Current	$\begin{aligned} & P_{\text {OUT }}=0 \mathrm{~W} \\ & P_{\text {OUT }}=1.5 \mathrm{~W} / \text { Channel } \end{aligned}$		$\begin{aligned} & 15 \\ & 430 \end{aligned}$	65	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
DC Output Level			14		V
Supply Voltage		10			$v$
Output Power	$\begin{aligned} & \text { T.H.D. }=5 \% \\ & \text { T.H.D. }=10 \% \end{aligned}$	6	6 7		w
T.H.D.	$\begin{aligned} & P_{\text {OUT }}=1 \mathrm{~W} / \text { Channel, } f=1 \mathrm{kHz} \\ & P_{\text {OUT }}=4 \mathrm{~W} / \text { Channel, } f=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 0.07 \\ & 0.2 \end{aligned}$	1	$\begin{aligned} & \% \\ & \% \end{aligned}$
Offset Voltage			15		mV
Input Bias Current			100		$n \mathrm{~A}$
Input Impedance		3			$\mathrm{M} \Omega$
Open Loop Gain	$\mathrm{R}_{\mathrm{S}}=0 \Omega$	66	90		dB
Channel Separation	$\mathrm{C}_{\mathrm{F}}=250 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}$	50	70		dB
Ripple Rejection	$f=120 \mathrm{~Hz}, C_{F}=250 \mu \mathrm{~F}$		70		dB
Current Limit			1.5		A
Slew Rate			1.4		$\mathrm{V} / \mu \mathrm{s}$
Equivalent Input Noise Voltage	$\mathrm{R}_{\text {S }}=600 \Omega, 100 \mathrm{~Hz}-10 \mathrm{kHz}$		3		$\mu \mathrm{Vrms}$

Note 1: For operation at ambient temperatures greater than $25^{\circ} \mathrm{C}$ the LM379 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques. In most applications it is advisable to heat sink to the chassis. See curves.

## Typical Performance Characteristics



Typical Performance Characteristics (Continued)


Typical Applications (Continued)

Two-Phase Motor Drive


12W Bridge Amplifier


## Typical Applications (Continued)

Simple Stereo Amplifier with Bass Boost


Power Op Amp (Using Split Supplies)


# LM380 Audio Power Amplifier General Description 

The LM380 is a power audio amplifier for consumer application. In order to hold system cost to a minimum, gain is internally fixed at 34 dB . A unique input stage allows inputs to be ground referenced. The output is automatically self centering to one half the supply voltage.
The output is short circuit proof with internal thermal limiting. The package outline is standard dual-in-line. A copper lead frame is used with the center three pins on either side comprising a heat sink. This makes the device easy to use in standard p-c layout.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV. sound systems, AMFM radio, small servo drivers, power converters,etc.

A selected part for more power on higher supply voltages is available as the LM384. For more information see AN-69.

## Features

- Wide supply voltage range
- Low quiescent power drain
- Voltage gain fixed at 50
- High peak current capability
- Input referenced to GND
- High input impedance
- Low distortion
- Quiescent output voltage is at one-half of the supply voltage
- Standard dual-in-line package

Connection Diagrams (Dual-In-Line Packages, Top View)


Block and Schematic Diagrams


## Absolute Maximum Ratings

Supply Voltage	22 V
Peak Current	1.3 A
Package Dissipation 14-Pin DIP (Notes 6 and 7)	10 W
Input Voltage	$\pm 0.5 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )	$+300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Power	Pout(RMS)	$\left(\right.$ Notes 3, 4) $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{THD}=3 \%$	2.5			W
Gain	$A_{1}$		40	50	60	V/V
Output Voltage Swing	Vout	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		14		$V_{p-p}$
Input Resistance	$\mathrm{Z}_{\text {IN }}$			150k		$\Omega$
Total Harmonic Distortion	THD	(Note 4, 5)		0.2		\%
Power Supply Rejection Ratio	PSRR	(Note 2)		38		dB
Supply Voltage	$V_{S}$	(Note 8)	10		22	V
Bandwidth	BW	$\mathrm{P}_{\text {OUT }}=2 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		100k		Hz
Quiescent Supply Current	$\mathrm{I}_{0}$			7	25	mA
Quiescent Output Voltage	V outa		8	9.0	10	V
Bias Current	$\mathrm{I}_{\text {BIAS }}$	Inputs Floating		100		nA
Short Circuit Current	$I_{\text {SC }}$	.		1.3		A

Note 1: $\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Note 2: Rejection ratio referred to the output with $\mathrm{C}_{\text {BYPASS }}=5 \mu \mathrm{~F}$.
Note 3: With device Pins $3,4,5,10,11,12$ soldered into a $1 / 16^{\prime \prime}$ epoxy glass board with 2 ounce copper foil with a minimum surface of 6 square inches.
Note 4: If oscillation exists under some load conditions, add $2.7 \Omega$ and $0.1 \mu \mathrm{fd}$ series network from Pin 8 to Gnd.
Note 5: $\mathrm{C}_{\text {BYPASS }}=0.47 \mu \mathrm{fd}$ on $\operatorname{Pin} 1$.
Note 6: The maximum junction temperature of the LM380 is $150^{\circ} \mathrm{C}$.
Note 7: The package is to be derated at $12^{\circ} \mathrm{C} / \mathrm{W}$ junction to heat sink pins.
Note 8: Can select for 8 V operation.

## Heat Sink Dimensions



## Typical Performance Characteristics












## Typical Applications

Phono Amplifier


Bridge Amplifier


Phase Shift Oscillator
 LM381/LM381A Low Noise Dual Preamplifier

## General Description

The LM381/LM381A is a dual preamplifier for the amplication of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with individual internal power supply decouplerregulator, providing 120 dB supply rejection and 60 dB channel separation. Other outstanding features include high gain ( 112 dB ), large output voltage swing ( $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$ ) p-p, and wide power bandwidth ( $75 \mathrm{kHz}, 20 \mathrm{~V}_{\text {P-P }}$ ). The LM381/LM381A operates from a single supply across the wide range of 9 to 40 V .

Either differential input or single ended input configurations may be selected. The amplifier is internally compensated with the provision for additional external compensation for narrow band
applications. For additional information see AN64, AN-104.

## Features

- Low Noise - . $5 \mu \mathrm{~V}$ total input noise
- High Gain - -112 dB open loop
- Single Supply Operation
- Wide supply range $9-40 \mathrm{~V}$
- Power supply rejection 120 dB
- Large output voltage swing $\left(\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}\right)_{\mathrm{p} \cdot \mathrm{p}}$
- Wide bandwidth 15 MHz unity gain
- Power bandwidth $75 \mathrm{kHz}, 20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
- ' Internally compensated
- Short circuit protected

Schematic and Connection Diagrams


## Typical Applications



Typical Tape Playback Amplifier


Two-Pole Fast Turn-On NAB Tape Preamp

Dual-In-Line Package


Order Number LM381N or LM381AN See NS Package N14A


Typical Magnetic Phono Preamp


Audio Mixer

## Absolute Maximum Ratings

Supply Voltage
$+40 \mathrm{~V}$
715 mW
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range $300^{\circ} \mathrm{C}$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$, unless otherwise stated.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Voltage Gain	Open Loop (Differential Input), $\mathrm{f}=100 \mathrm{~Hz}$		160,000		V/V
	Open Loop (Single Ended), $f=100 \mathrm{~Hz}$		320,000		V/V
Supply Current	$V_{C C} 9$ to $40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		10		mA
Input Resistance					
(Positive Input)			100		$k \Omega$
(Negative Input)			200		$k \Omega$
Input Current					
(Negative Input)			0.5		$\mu \mathrm{A}$
Output Resistance	Open Loop		150		$\Omega$
Output Current	Source		8		mA
	Sink		2		$m A$
Output Voltage Swing	Peak-to-Peak	.	$\mathrm{V}_{\mathrm{cc}}-2$	.	$V$
Unity Gain Bandwidth			15		MHz
Power Bandwidth	$20 \mathrm{~V}_{\mathrm{p-p}}\left(\mathrm{~V}_{\mathrm{cc}}=24 \mathrm{~V}\right)$		75		kHz
Maximum Input Voltage	Linear Operation			300	mVrms
Supply Rejection Ratio	$\mathrm{f}=1 \mathrm{kHz}$		- 120		dB
Channel Separation	$\mathrm{f}=1 \mathrm{kHz}$		60		dB
Total Harmonic Distortion	60 dB Gain, $f=1 \mathrm{kHz}$		0.1		\%
Total Equivalent Input					.
Noise .	$\mathrm{R}_{\mathrm{S}}=600 \Omega, 10-10,000 \mathrm{~Hz}$ (Single Ended Input,				
LM381A	Flat Gain Circuit, $A_{V}=1000$		0.5	0.7	$\mu \mathrm{Vrms}$
LM381		,	0.5	1.0	$\mu \mathrm{Vrms}$

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Typical Applications (Continued)


Ultra-Low Distortion Amplifier
( $A_{V}=10, \mathrm{THD}<0.05 \%, V_{\text {OUT }}=3 \mathrm{~V}_{\text {RMS }}$ )

Typical Performance Characteristics









Noise Current vs Frequency



## Audio/Radio Circuits

## LM382 Low Noise Dual Preamplifier

## General Description

The LM382 is a dual preamplifier for the amplication of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with individual internal power supply decoupler-regulator, providing 120 dB supply rejection and 60 dB channel separation. Other outstanding features include high gain ( 100 dB ), and wide power bandwidth $(75 \mathrm{kHz}, 20 \mathrm{Vp}-\mathrm{p})$. The LM382 operates from a single supply across the wide range of 9 to 40 V .
$\hat{n}$ にふistor matrix : : provided on the shin to allow the user to select a variety of closed loop gain options and frequency response characteristics such as flat-band, NAB or RIAA equalization. The
circuit is supplied in the 14 lead dual-in-line package.

## Features

- Low noise $-0.8 \mu \mathrm{~V}$ total equivalent input noise
- High gain - 100 dB open loop
- Single supply operation
- Wide supply range 9 to 40 V
- Power supply rejection - 120 dB
- Large output voltage swing
- Wide bandwidth -15 MHz unity gain
- Power bandwidth $-75 \mathrm{kHz}, 20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
- Internally compensated
- Short circuit protected.

Schematic and Connection Diagrams



Order Number LM382N
See NS Package N14A

## Typical Applications



Tape Preamp (NAB Equalization)
Phono Preamp (RIAA Equalization)
Flat Response - Fixed Gain Configuration

## Absolute Maximum Ratings

Supply Voltage
$+40 \mathrm{~V}$
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec )

715 mW
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$, unless otherwise stated.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Voltage Gain	Open Loop, $f=100 \mathrm{~Hz}$		100,000		$\mathrm{V} / \mathrm{V}$
Supply Current	$V_{C C} 9$ to $40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		10	16	mA
Output DC Voltage			6		V
Input Resistance					
(Positive Input)			100		$k \Omega$
(Negative Input)	!		200		$k \Omega$
Input Current					
(Negative Input)			0.5		$\mu \mathrm{A}$
Output Resistance	Open Loop		150		$\Omega$
Output Current	Source		8		mA
	Sink		2		mA
Output Voltage Swing	Peak-to-Peak, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		12		$\checkmark$
Unity Gain Bandwidth			15		MHz
Power Bandwidth	$20 \mathrm{Vp} \cdot \mathrm{p}\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}\right)$		75		kHz
Maximum Input Voltage	Linear Operation			300	mVrms
Supply Rejection Ratio	$f=1 \mathrm{kHz}$		120		dB
Channel Separation	$f=1 \mathrm{kHz}$	40	60		dB
Total Harmonic Distortion	60 dB Gain, $\mathrm{f}=1 \mathrm{kHz}$		0.1	0.3	\%
Total Equivalent Input Noise	$\mathrm{RS}_{\mathrm{S}}=600 \Omega, 100-10,000 \mathrm{~Hz}$   (Flat Response Circuit)		0.8	1.2	$\mu \mathrm{Vrms}$

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Typical Performance Characteristics






Noise Voltage vs Frequency

$f\left(\mathrm{H}_{\mathrm{z}}\right)$

Noise Current vs Frequency



## LM383/LM383A 7 Watt Audio Power Amplifier

## General Description

The LM383 is a cost effective, high power amplifier suited for automotive applications. High current capability (3.5A) enables the device to drive low impedance loads with low distortion. The LM383 is current limited and thermally protected. High voltage protection is available (LM383A) which enables the amplifier to withstand 40V transients on its supply. The LM383 comes in a 5-pin TO-220 package.

## Features

High peak current capability (3.5A)

- Large output voltage swing
- Externally programmable gain
- Wide supply voltage range ( $5 \mathrm{~V}-20 \mathrm{~V}$ )
- Few external parts required
- Low distortion
- High input impedance
- No turn-on transients
- High voltage protection available (LM383A)
- Low noise
- AC short circuit protected

Equivalent Schematic


Connection Diagram

Plastic Package


Order Number LM383T or LM383AT
See NS Package T05B

Typical Applications


Absolute Maximum Ratings	
Peak Supply Voltage ( 50 ms )	
LM383A(Note2)	40 V
LM383	25 V
OperatingSupply Voltage	20 V
Output Current	
Repetitive	3.5 A
Non-repetitive	4.5 A
Input Voltage	$\pm 0.5 \mathrm{~V}$
PowerDissipation(Note3)	15 W
Operating Temperature	$0^{\circ} \mathrm{Cto}+\mathbf{7 0}^{\circ} \mathrm{C}$
StorageTemperature	$-60^{\circ} \mathrm{Cto}+150^{\circ} \mathrm{C}$
LeadTemperature(Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $V_{S}=14.4 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, A_{V}=100(40 \mathrm{~dB}), \mathrm{R}_{\mathrm{L}}=4 \Omega$, unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
DC Output Level	Excludes Current in Feedback Resistors	6.4	7.2	80	$\because$
Quiescent Supply Current			45		mA
Supply Voltage Range		5		20	V
Input Resistance			150		k ${ }^{\text {a }}$
Bandwidth	Gain $=40 \mathrm{~dB}$		30		kHz
Output Power	$\mathrm{V}_{\mathrm{S}}=13.2 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$				
	$\mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{THD}=10 \%$		4.7		W
	$R_{L}=2 \Omega, T H D=10 \%$		7.2		W
	$\begin{aligned} & V_{S}=13.8 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ & R_{\mathrm{L}}=4 \Omega, \mathrm{THD}=10 \% \end{aligned}$		5.1		W
	$R_{L}=2 \Omega, T H D=10 \%$		7.8		w
	$\mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$				
	$R_{L}=4 \Omega, \mathrm{THD}=10 \%$	4.87	5.5		W
	$R_{L}=2 \Omega, \mathrm{THD}=10 \%$		8.6		W
	$R_{L}=1.6 \Omega, T H D=10 \%$		9.3		W
	$\mathrm{V}_{\mathrm{S}}=16 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$				
	$\mathrm{R}_{\mathrm{L}}=4 \mathrm{n}, \mathrm{THD}=10 \%$		7		W
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{n}, \mathrm{THD}=10 \%$		10.5		W
	$R_{L}=1.6 \Omega, \mathrm{THD}=10 \%$		11.		W
THD	$\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=4 \Omega, f=1 \mathrm{kHz}$		0.2		\%
	$\mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~S}, \mathrm{f}=1 \mathrm{kHz}$		0.2		\%
Ripple Rejection	$R_{S}=50 \mathrm{n}, \mathrm{f}=100 \mathrm{~Hz}$	30	40		dB
	$\mathrm{R}_{\mathrm{S}}=50 \mathrm{n}, \mathrm{f}=1 \mathrm{kHz}$		44		dB
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=0,15 \mathrm{kHz}$ Bandwidth		2		$\mu \mathrm{V}$
Input Noise Current	$\mathrm{R}_{\mathrm{S}}=100 \mathrm{~kg}, 15 \mathrm{kHz}$ Bandwidth		40		pA

Note 1: A $0.2 \mu \mathrm{~F}$ capacitor should be placed as close as possible to pins 3 and 4 for stability.
Note 2: The LM383 shuts down above 25 V .
Note 3: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.


Typical Applications (Continued)


## Component Layout



National

## Audio/Radio Circuits

 Semiconductor
## LM384 5 Watt Audio Power Amplifier

## General Description

The LM384 is a power audio amplifier for consumer application. In order to hold system cost to a minimum, gain is internally fixed at 34 dB . A unique input stage allows inputs to be ground referenced. The output is automatically self-centering to one half the supply voltage.

The output is short-circuit proof with internal thermal limiting. The package outline is standard dual-in-line. A copper lead frame is used with the center three pins on either side comprising a heat sink. This makes the device easy to use in standard p-c layout.

Uses include simple phonograph amplifiers, intercoms, line drivers, teaching machine outputs, alarms, ultrasonic drivers, TV sound systems, AM-FM radio, sound projector systems, etc. See AN-69 for circuit details.

## Features

- Wide supply voltage range
- Low quiescent power drain
- Voltage gain fixed at 50
- High peak current capability
- Input referenced to GND
- High input impedance
- Low distortion
- Quiescent output voltage is at one half of the supply voltage
- Standard dual-in-line package


## Block and Connection Diagrams



Order Number LM384N See NS Package N14A

## Schematic Diagram



## Absolute Maximum Ratings

Supply Voltage
28 V
Peak Current
Power Dissipation
Input Voltage
Storage Temperature
Operating Temperature
Lead Temperature (Soldering, 10 seconds)
1.3A
(See Notes 3 and 4) $\pm 0.5 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Resistance ( $\mathrm{Z}_{\text {IN }}$ )			150		$k \Omega$
Bias Current ( $\mathrm{I}_{\text {BIAS }}$ )	illuts Fivaiing		10 n		nA
Gain ( $\mathrm{A}_{V}$ )		40	50	60	V/V
Output Power ( $\mathrm{P}_{\text {Out }}$ )	THD $=10 \%, \mathrm{R}_{\mathrm{L}}=8 \Omega$	5	5.5		W
Quiescent Supply Current ( $1_{\mathrm{Q}}$ )			8.5	25	mA
Quiescent Output Voltage ( $\mathrm{V}_{\text {OUt Q }}$ )			11		V
Bandwidth (BW)	$\mathrm{P}_{\text {OUT }}=2 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		450		kHz
Supply Voltage ( $\mathrm{V}^{+}$)		12		26	$V$
Short Circuit Current ( $\mathrm{I}_{\text {sc }}$ )			1.3		A
Power Supply Rejection Ratio (PSRR RTO $^{\text {) (Note 2) }}$			31		dB
Total Harmonic Distortion (THD)	$P_{\text {OUT }}=4 W, R_{L}=8 \Omega$		0.25	1.0	\%

Note 1: $\mathrm{V}^{+}=22 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ operating with a Staver V 7 heat sink for 30 seconds.
Note 2: Rejection ratio referred to the output with $C_{B Y P A S S}=5 \mu \mathrm{~F}$, freq $=120 \mathrm{~Hz}$.
Note 3: The maximum junction temperature of the LM384 is $150^{\circ} \mathrm{C}$.
Note 4: The package is to be derated at $12^{\circ} \mathrm{C} / \mathrm{W}$ junction to heat sink pins.
Note 5: Output is fully protected against a shorted speaker condition at all voltages up to 22 V .

## Heat Sink Dimensions

Staver "V7" Heat Sink


## Typical Performance Characteristics




## LM386 Low Voltage Audio Power Amplifier

## General Description

The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value up to 200.
The inputs are ground referenced while the output is automatically biased to one half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a 6 volt supply, making the LM386 ideal for battery operation.

## Features

- Battery operation
- Minimum external parts
- Wide supply voltage range
$4 \mathrm{~V}-12 \mathrm{~V}$ or $5 \mathrm{~V}-18 \mathrm{~V}$
- Low quiescent current drain
- Voltage gains from 20 to 200
- Ground referenced input
- Self-centering output quiescent voltage
- Low distortion
- Eight pin dual-in-line package


## Applications

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters


## Equivalent Schematic and Connection Diagrams



Dual-In-Line Package


Order Number LM386N-1, LM386N-3 or LM386N-4
See NS Package N08B

## Typical Applications

Amplifier with Gain $=20$ Minimum Parts


Amplifier with Gain $=\mathbf{2 0 0}$


## Absolute Maximum Ratings

Supply Voltage (LM386N)	15 V
Supply Voltage (LM386N-4)	22 V
Package Dissipation (Note 1) (LM386N-4)	1.25 W
Package Dissipation (Note 2) (LM386)	660 mW
Input Voltage	$\pm 0.4 \mathrm{~V}$

Storage Temperature
Operating Temperature
Junction Temperature Lead Temperature (Soldering, 10 seconds)

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage ( $\mathrm{V}_{\mathrm{S}}$ )   LM386   LM386N-4		$\begin{aligned} & 4 \\ & 5 \end{aligned}$		$\begin{aligned} & 12 \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Quiescent Current ( $\mathrm{I}_{\mathrm{Q}}$ )	$V_{S}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$			8	mA
Output Power ( $\mathrm{P}_{\text {OUT }}$ )					
LM386N-1	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{THD}=10 \%$	250	325		mW
LM386N-3	$\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega . \mathrm{THD}=10 \%$	500	700		mW
LM386N-4	$\mathrm{V}_{\mathrm{S}}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{THD}=10 \%$	700	1000		mW
Voltage Gain ( $A_{V}$ )	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{t}=1 \mathrm{kHz}$		20		as̄
-	$10 \mu \mathrm{~F}$ from Pin 1 to 8		46		dB
Bandwidth (BW)	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$, Pins 1 and 8 Open		300		kHz
Total Harmonic Distortion (THD)	$\begin{aligned} & V_{S}=6 \mathrm{~V}, R_{L}=8 \Omega, P_{\text {OUT }}=125 \mathrm{~mW} \\ & f=1 \mathrm{kHz} \text {, Pins } 1 \text { and } 8 \text { Open } \end{aligned}$		0:2		\%
Power Supply Rejection Ratio (PSRR)	$V_{S}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, C_{\mathrm{BYPASS}}=10 \mu \mathrm{~F}$ Pins 1 and 8 Open, Referred to Output		50		dB
Input Resistance ( $\mathrm{R}_{\text {IN }}$ )			50		$k \Omega$
Input Bias Current (IBIAS	$V_{S}=6 \mathrm{~V}$, Pins 2 and 3 Open		250		nA

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $187^{\circ} \mathrm{C}$ junction to ambient.

## Application Hints

## GAIN CONTROL

To make the LM386 a more versatile amplifier, two pins (1 and 8) are provided for gain control. With pins 1 and 8 open the $1.35 \mathrm{k} \Omega$ resistor sets the gain at $20(26 \mathrm{~dB})$. If a capacitor is put from pin 1 to 8 , bypassing the $1.35 \mathrm{k} \Omega$ resistor, the gain will go up to 200 ( 46 dB ). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200 . Gain control can also be done by capacitively coupling a resistor (or FET) from pin 1 to ground.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 5 (paralleling the internal $15 \mathrm{k} \Omega$ resistor). For 6 dB effective bass boost: $R \cong 15 \mathrm{k} \Omega$, the lowest value for good stable operation is $R=10 \mathrm{k} \Omega$ if pin 8 is open. If pins 1 and 8 are bypassed then R as low as $2 \mathrm{k} \Omega$ can be used. This restriction is because the amplifier is only compensated for closed-loop gains greater than 9.

## INPUT BIASING

The schematic shows that both inputs are biased to ground with a $50 \mathrm{k} \Omega$ resistor. The base current of the input transistors is about 250 nA , so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM386 is higher than $250 \mathrm{k} \Omega$ it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than $10 \mathrm{k} \Omega$, then shorting the unused input to ground will keep the offset low labout 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM386 with higher gains (bypassing the $1.35 \mathrm{k} \Omega$ resistor between pins 1 and 8 ) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a $0.1 \mu \mathrm{~F}$ capacitor or a short to ground depending on the dc source resistance on the driven input.

Typical Performance Characteristics



Device Dissipation vs Output


Power Supply Rejection Ratio (Referred to the Output) vs Frequency


Distortion vs Frequency


Device Dissipation vs Output Power- $8 \Omega$ Load


Peak-to-Peak Output Voltage Swing vs Supply Voltage


Distortion vs Output Power


Device Dissipation vs Output Power-16 $\Omega$ Load


Typical Applications (Continued)


Note 1: Twist supply lead and supply ground very tightly.
Note 2: Twist speaker lead and ground very tightly.
Note 3: Ferrite bead is Ferroxcube K5-001-001/3B with 3 turns of wire.

Note 4: R1C1 band limits input signals.
Note 5: All components must be spaced very close to IC.

## LM387/LM387A Low Noise Dual Preamplifier

## General Description

The LM387 is a dual preamplifier for the amplification of low level signals in applications requiring optimum noise performance. Each of the two amplifiers is completely independent, with an internal power supply decoupler-regulator, providing 110 dB supply rejection and 60 dB channel separation. Other outstanding features include high gain ( 104 dB ), large output voltage swing ( $\mathrm{V}_{\mathrm{cc}}$-2V)p-p, and wide power bandwidth $(75 \mathrm{kHz}$, $20 \mathrm{Vp}-\mathrm{p}$ ). The LM387A is a selected version of the LM387 that has lower noise in a NAB tape circuit, and can operate on a larger supply voltage. The LM387 operates from a single supply across the wide range of 9 V to 30 V , the LM387A operates on a supply of 9 V to 40 V .

The amplifiers are internally compensated for gains greater than 10. The LM387, LM387A is available in an 8 -lead dual-in-line package. The LM387, LM387A is biased like the LM381. See AN-64 and AN-104.

## Features

- Low noise
$1.0 \mu \mathrm{~V}$ total input noise
- High gain

104 dB open loop

- Single supply operation
- Wide supply range LM387 9 to 30 V
- Power supply rejection 110 dB
- Large output voltage swing $\left(V_{c c}-2 V\right) p-p$
- Wide bandwidth 15 MHz unity gain
- Power bandwidth $75 \mathrm{kHz}, 20 \mathrm{Vp}-\mathrm{p}$
- Internally compensated
- Short circuit protected
- Performance similar to LM381


## Schematic and Connection Diagrams



Order Number LM387N
or LM387AN
See NS Package N08B

## Typical Applications



FIGURE 1. Flat Gain Circuit $\left(A_{V}=1000\right)$


FIGURE 2. NAB Tape Circuit

## Absolute Maximum Ratings

Supply Voltage	+30 V
LM387	+40 V
LM387A	660 mW

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$, unless otherwise stated.


Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

## Typical Applications (Continued)

Two-Pole Fast Turn-ON NAB Tape Preamplifier


Frequency Response of NAB Circuit of Figure 2


## Typical Performance Characteristics



PSRR vs Frequency (Input Referred)




Large Signal Frequency




Typical Applications (Continued)

Inverting Amplifier Ultra-Low Distortion


Typical Magnetic Phono Preamplifier


National

## LM388 1.5 Watt Audio Power Amplifier

## General Description

The LM388 is an audio amplifier designed for use in medium power consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 2 and 6 will increase the gain to any value up to 200 .

The inputs are ground referenced while the output is automatically biased to one half the supply voltage.

## Features

- n!inim:um axterne! parte
- Wide supply voltage range
- Excellent supply rejection
- Ground referenced input
- Self-centering output quiescent voltage
- Variable voltage gain
- Low distortion
- Fourteen pin dual-in-line package
- Low voltage operation, 4 V


## Applications

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Izmp drinore
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters

Equivalent Schematic and Connection Diagram


Dual-In-Line Package


Order Number LM388N-1,
LM388N-2 or LM388N-3
See NS Package N14A

## Typical Applications



FIGURE 1. Load Returned to Ground
(Amplifier with Gain =20)


FIGURE 2. Load Returned to $V_{S}$ (Amplifier with Gain = 20)

Absolute Maximum Ratings

Supply Voltage	15 V
Supply Voltage (LM388N-3 Only)	22 V
Package Dissipation 14-Pin DIP (Note 1)	8.3 W
Input Voltage'	$\pm 0.4 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage ( $\mathrm{V}_{\mathrm{S}}$ )					
LM388		4		12	V
LM388N-3		5		18	V
Quiescent Current ( $\mathrm{I}_{\mathrm{Q}}$ )	$V_{\text {IN }}=0$				
LM388	$V_{S}=12 \mathrm{~V}$		16	23	mA
LM388N-3	$\mathrm{V}_{\mathrm{S}}=16 \mathrm{~V}$		20	35	mA
Output Power (POUT), (Note 2)	$\mathrm{R} 1=\mathrm{R} 2=180 \Omega, \mathrm{THD}=10 \%$				
LM388N-1	$V_{S}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	1.5	2.2		W
	$V_{S}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$,	0.6	0.8		W
LM388N-2		0.8	0.9		w
LM388N-3	$V_{S}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	2.5	3.8		W
Voltage Gain ( $\mathrm{A}_{\mathrm{V}}$ )	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$	23	26	30	dB
	$10 \mu \mathrm{~F}$ From Pin 2 to 6 .		46		dB
Bandwidth (BW)	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$, Pins 2 and 6 Open		300		kHz
Total Harmonic Distortion (THD)	$\begin{aligned} & V_{S}=12 \mathrm{~V}, R_{L}=8 \Omega, P_{\text {OUT }}=500 \mathrm{~mW} \\ & f=1 \mathrm{kHz}, \text { Pins } 2 \text { and } 6 \text { Open } \end{aligned}$		0.1	1	\%
Power Supply Rejection Ratio (PSRR), (Note 3)	$V_{S}=12 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{C}_{\mathrm{BYPASS}}=10 \mu \mathrm{~F},$   Pins 2 and 6 Open, Referred to Output	:	50		dB
Input Resistance ( $\mathrm{R}_{1 \mathrm{~N}}$ )		10	50		$k \Omega$
Input Bias Current ( $\mathrm{I}_{\text {BIAS }}$ )	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$, Pins 7 and 8 Open		250		nA

Note 1: Pins 3, 4, 5, 10, 11, 12 at $25^{\circ} \mathrm{C}$. Derate at $15^{\circ} \mathrm{C} / \mathrm{W}$ above $25^{\circ} \mathrm{C}$ case.
Note 2: The amplifier should be in high gain for full swing on higher supplies due to input voltage limitations.
Note 3: If load and bypass capacitor are returned to $\mathrm{V}_{\mathrm{S}}$ (Figure 2), rather than ground (Figure 1), PSRR is typically 30 dB .

## Typical Performance Characteristics




Power Supply Rejection Ratio (Referred to the Output) vs Frequency


## Typical Performance Characteristics (Continued)



## Application Hints (Continued)

$15 \mathrm{k} \Omega$, the lowest value for good stable operation is $R=10 \mathrm{k} \Omega$ if pin 2 is open. If pins 2 and 6 are bypassed then $R$ as low as $2 \mathrm{k} \Omega$ can be used. This restriction is because the amplifier is only compensated for closedloop gains greater than $9 \mathrm{~V} / \mathrm{V}$.

## Input Biasing

The schematic shows that both inputs are biased to ground with a $50 \mathrm{k} \Omega$ resistor. The base current of the input transistors is about 250 nA , so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM388 is higher than $250 \mathrm{k} \Omega$ it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than $10 \mathrm{k} \Omega$, then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM388 with higher gains (bypassing the $1.35 \mathrm{k} \Omega$ resistor between pins 2 and 6 ) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a $0.1 \mu \mathrm{~F}$ capacitor or a short to ground depending on the dc source resistance on the driven input.

## Bootstrapping

The base of the output transistor of the LM388 is brought out to pin 9 for Bootstrapping. The output stage of the amplifier during positive swing is shown in Figure 3 with its external circuitry.

R1 + R2 set the amount of base current available to the output transistor. The maximum output current divided by Beta is the value required for the current in R1 and R2:

## Typical Applications (Continued)



FIGURE 3.

$$
(R 1+R 2)=\beta_{O} \frac{\left(V_{S} / 2\right)-V_{B E}}{I_{O M A X}}
$$

Good design values are $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and $\beta_{\mathrm{O}}=100$.

Example: $1_{\text {WATT }}$ into $8 \Omega$ load with $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$.

$$
\begin{aligned}
& I_{O M A X}=\sqrt{\frac{2 P_{O}}{R_{L}}}=500 \mathrm{~mA} \\
& (R 1+R 2)=100\left(\frac{(1 \cdot 2 / 2)-0.7}{0.5}\right)=1060 \Omega
\end{aligned}
$$

To keep the current in R2 constant during positive swing capacitor $C_{B}$ is added. As the output swings positive $C_{B}$ lifts R1 and R2 above the supply, maintaining a constant voltage across R2. To minimize the value of $C_{B}, R 1=R 2$. The pole due to $C_{B}$ and $R 1$ and R2 is usually set equal to the pole due to the output coupling capacitor and the load. This gives:

$$
C_{B} \simeq \frac{4 C_{c}}{\beta_{0}} \simeq \frac{C_{c}}{25}
$$

Example: for 100 Hz pole and $\mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{C}_{\mathrm{c}}=200 \mu \mathrm{~F}$ and $C_{B}=8 \mu \mathrm{~F}$, if R1 is made a diode and R2 increased to give the same current, $\mathrm{C}_{\mathrm{B}}$ can be decreased by about a factor of 4, as in Figure 4.

For reduced component count the load can replace R1. The value of ( $\mathrm{R} 1+\mathrm{R} 2$ ) is the same, so $R 2$ is increased. Now $\mathrm{C}_{\mathrm{B}}$ is both the coupling and the bootstrapping capacitor (see Figure 2).


FIGURE 4. Amplifier with $\mathbf{G a i n}=\mathbf{2 0 0}$ and Minimum $C_{B}$

## Typical Applications (Conntinued)




FIGURE 6a. Amplifier with Bass Boost

frequency ( Hz )
FIGURE 6b. Frequency Response with Bass Boost


FIGURE 7. Intercom


FIGURE 8. AM Radio Power Amplifier

Note 1: Twist supply lead and supply ground very tightly.
Note 2: Twist speaker lead and ground very tightly.
Note 3: Ferrite bead is Ferroxcube K5-001-001/3B with 3

Note 4: R1C1 band limits input signals.
Note 5: All components must be spaced very close to IC.

## General Description

The LM389 is an array of three NPN transistors on the same substrate with an audio power amplifier similar to the LM386.

The amplifier inputs are ground referenced while the output is automatically biased to one half the supply voltage. The gain is internally set at 20 to minimize external parts, but the addition of an external resistor and capacitor between pins 4 and 12 will increase the gain to any value up to 200.

The three transistors have high gain and excellent matching characteristics. They are well suited to a wide variety of applications in dc through VHF systems.

## Features

Amplifier

- Battery operation
- Minimum external parts
- Wide supply voltage range
- Low quiescent current drain
- Voltage gains from 20 to 200
- Ground referenced input
- Self-centering output quiescent voltage
- Low distortion

Transistors

- Operation from $1 \mu \mathrm{~A}$ to 25 mA
- Frequency range from dc to 100 MHz
- Excellent matching


## Applications

- AM-FM radios
- Portable tape recorders
- Intercoms
- Toys and games
- Walkie-talkies
- Portable phonographs
- Power converters

Equivalent Schematic and Connection Diagrams


## Absolute Maximum Ratings

Supply Voltage	15 V
Package Dissipation (Note 1)	715 mW
Input Voltage	$\pm 0.4 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$


Collector to Emitter Voltage, $V_{\text {CEO }}$	12 V
Collector to Base Voltage, $V_{\text {CBO }}$	15 V
Collector to Substrate Voltage, $\mathrm{V}_{\mathrm{CIO}}$ (Note 2 )	15 V
Collector Current, IC	25 mA
Emitter Current, IE	25 mA
Base Current, IB	5 mA
Power Dissipation (Each Transistor) $\mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	150 mW

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}$


Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: The collector of each transistor is isolated from the substrate by an integral diode. Therefore, the collector voltage should remain positive with respect to pin 17 at all times.
Note 3: If oscillation exists under some load conditions, add $2.7 \Omega$ and $0.05 \mu \mathrm{~F}$ series network from pin 1 to ground.

## Typical Amplifier Performance Characteristics





Power Supply Rejection Ratio (Referred to the Output) vs Frequency


Distortion vs Frequency


Device Dissipation vs Output
Power - $8 \Omega$ Load
 OUTPUT POWER (WATTS)

Peak-to-Peak Output Voltage Swing vs Supply Voltage



Device Dissipation vs Output Power - 16 $\Omega$ Load


## Typical Transistor Performance Characteristics




Open Circuit Output Admittance vs Collector Current


## Typical Transistor Performance Characteristics (Continued)



$\mathrm{g}_{\mathrm{oe}}$ and $\mathrm{C}_{\mathrm{oe}}$ vs Collector Current



High Frequency Current Gain vs Collector Current
 Ic - COLLECTOR CURRENT (mA)

Contours of Constant Noise Figure


## Application Hints

## Gain Control

To make the LM389 a more versatile amplifier, two pins (4 and 12) are provided for gain control. With pins 4 and 12 open, the $1.35 \mathrm{k} \Omega$ resistor sets the gain at 20 ( 26 dB ). If a capacitor is put from pin 4 to 12 , bypassing the $1.35 \mathrm{k} \Omega$ resistor, the gain will go up to 200 ( 46 dB ). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. A low frequency pole in the gain response is caused by the capacitor working against the external resistor in series with the $150 \Omega$ internal resistor. If the capacitor is eliminated and a resistor connects pin 4 to 12 , then the output dc level may shift due to the additional dc gain. Gain control can also be done by capacitively coupling a resistor (or FET) from pin 12 to ground.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 12 (paralleling the internal $15 \mathrm{k} \Omega$ resistor). For 6 dB effective bass boost: $R \cong 15 \mathrm{k} \Omega$, the lowest value for good stable operation is $R=10 \mathrm{k} \Omega$ if pin 4 is open. If pins 4 and 12 are bypassed then $R$ as low as $2 \mathrm{k} \Omega$ can be used. This restriction is because the amplifier is only compensated for closedloop gains greater than 9V/V.

## Input Biasing

The schematic shows that both inputs are biased to ground with a $50 \mathrm{k} \Omega$ resistor. The base current of the input transistors is about 250 nA , so the inputs are at about 12.5 mV when left open. If the dc source resis-
tance driving the LM389 is higher than $250 \mathrm{k} \Omega$ it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than $10 \mathrm{k} \Omega$, then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM389 with higher gains (bypassing the $1.35 \mathrm{k} \Omega$ resistor between pins 4 and 12) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a $0.1 \mu \mathrm{~F}$ capacitor or a short to ground depending on the dc source resistance of the driven input.

## Supplies and Grounds

The LM389 has excellent supply rejection and does not require a well regulated supply. However, to eliminate possible high frequency stability problems, the supply should be decoupled to ground with a $0.1 \mu \mathrm{~F}$ capacitor. The high current ground of the output transistor, pin 18, is brought out separately from small signal ground, pin 17. If the two ground leads are returned separately to supply then the parasitic resistance in the power ground lead will not cause stability problems. The parasitic resistance in the signal ground can cause stability problems and it should be minimized. Care should also be taken to insure that the power dissipation does not

## Application Hints

(Continued)
exceed the maximum dissipation of the package for a given temperature. There are two ways to mute the LM389 amplifier. Shorting pin 3 to the supply voltage, or shorting pin 12 to ground will turn the amplifier off without affecting the input signal.

## Transistors

The three transistors on the LM389 are general purpose devices that can be used the same as other small signal transistors. As long as the currents and voltages are kept within the absolute maximum limitations, and the collectors are never at a negative potential with respect to pin 17, there is no limit on the way they can be used.

For example, the emitter-base breakdown voltage of 7.1V can be used as a zener diode at currents from $1 \mu \mathrm{~A}$ to 5 mA . These transistors make good LED driver devices, $\mathrm{V}_{\mathrm{SAT}}$ is only 150 mV when sinking 10 mA .

In the linear region, these transistors have been used in AM and FM radios, tape recorders, phonographs, and many other applications. Using the characteristic curves on noise voltage and noise current, the level of the collector current can be set to optimize noise performance for a given source impedance. Some of the circuits that have been built are shown in Figures 1-7. This is by no means a complete list of applications, since that is limited only by the designers imagination.


FIGURE 1. AM Radio


FIGURE 2. Tape Recorder



FIGURE 4. FM Scanner Noise Squelch Circuit


FIGURE 5. Siren


FIGURE 6. Voltage-Controlled Amplifier or Tremolo Circuit


FIGURE 7. Noise Generator Using Zener Diode

## LM390 1. Watt Battery Operated Audio Power Amplifier

## General Description

The LM390 Power Audio Amplifier is optimized for $6 \mathrm{~V}, 7.5 \mathrm{~V}, 9 \mathrm{~V}$ operation into low impedance loads. The gain is internally set at 20 to keep the external part court low, but the addition of an external resistor and capacitor between pins 2 and 6 will increase the gain to any value up to 200 . The inputs are ground referenced while the output is automatically biased to one half the supply voltage.

## Features

- Battery operation
- 1W outdut Dower
- Minimum external parts
- Excellent supply rejection
- Ground referenced input
- Self-centering output quiescent voltage
- Variable voltage gain
- Low distortion
- Fourteen pin dual-in-line package


## Applications

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Lamp drivers
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters


## Equivalent Schematic and Connection Diagrams




Order Number LM390N
See NS Package N14A

## Typical Applications




FIGURE 2. Load Returned to Supply
(Amplifier with Gain = 20)

## Absolutumaximum Ratings (Note 1 )

Supply Voltage	10 V
Package Dissipgation	14 -Pin DIP
Input Voltage	8.3 W
Storage Temperature	$\pm 0.4 \mathrm{~V}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$150^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

Electricat Characteristics $T_{A}=25^{\circ} \mathrm{C}$, (Figure 1)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{v}_{\mathrm{s}}$	Operating Supply Voltage		4		9	$v$
10	Quiesceent Current	$V_{S}=6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$		10	20	mA
Pout	Outrout Power	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{THD}=10 \%$, (Note 2)	0.8	1.0		W
$A_{V}$	Voltage Gain	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$	23	26	30	dB
		$10 \mu \mathrm{~F}$ from Pin 2 to 6		46		dB
BW	Bandwidth	$V_{S}=6 \mathrm{~V}$, Pins 2 and 6 Open		300		kHz
THD	Total Harmonic Distortion	$\begin{aligned} & V_{S}=6 \mathrm{~V}, R_{L}=4 \Omega, P_{\text {Out }}=500 \mathrm{~mW} \\ & f=1 \mathrm{kHz}, \text { Pins } 2 \text { and } 6 \text { Open } \end{aligned}$		0.2	1	\%
PSRR	Power Supply Rejection Ratio	$V_{S}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{C}_{\text {BYPASS }}=10 \mu \mathrm{~F} .$   Pins 2 and 6 Open, Referred to Output   (Note 3)		50		dB
$\mathrm{R}_{\text {IN }}$	Input Resistance		10	50		$k \Omega$
$\mathrm{I}_{\text {BIAS }}$	Input Bias Current	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$, Pins 7 and 8 Open		250		$n A$

Note 1: Pins 3, 4, 5, $40,11,12$ at $25^{\circ} \mathrm{C}$. Derate at $15^{\circ} \mathrm{C} / \mathrm{W}$ above $25^{\circ} \mathrm{C}$ case.
Note 2: If oscillation exists under some load conditions, add $2.7 \Omega$ and $0.05 \mu \mathrm{~F}$ series network from pin 13 to ground.
Note 3: If load and bypass capacitor are returned to $\mathrm{V}_{\mathrm{S}}$ (Figure 2), rather than ground (Figure 1), PSRR is typically 30 dB .

## Typical




Quiescent Supply Current vs Supply Voltage



Power Supply Rejection Ratio (Referred to the Output) vs Frequency



## Typical Performance Characteristics (Continued)



## Application Hints

## Gain Control

To make the LM390 a more versatile amplifier, two pins (2 and 6) are provided for gain control. With pins 2 and 6 open, the $1.35 \mathrm{k} \Omega$ resistor sets the gain at $20(26 \mathrm{~dB})$. If a capacitor is put from pin 2 to 6 , bypassing the $1.35 \mathrm{k} \Omega$ resistor, the gain will go up to 200 ( 46 dB ). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. A low frequency pole in the gain response is caused by the capacitor working against the external resistor in series with the $150 \Omega$ internal resistor. If the capacitor is eliminated and a resistor connects pin 2 to 6 then the output dc level may shift due to the additional dc gain. Gain control can also be done by capacitively coupling a resistor (or FET) from pin 6 to ground, as in Figure 7.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 6 to 13 (paralleling the internal $15 \mathrm{k} \Omega$ resistor). For 6 dB effective bass boost: $\mathrm{R} \cong$ $15 \mathrm{k} \Omega$, the lowest value for good stable operation is $R=10 \mathrm{k} \Omega$ if pin 2 is open. If pins 2 and 6 are bypassed then $R$ as low as $2 \mathrm{k} \Omega$ can be used. This restriction is because the amplifier is only compensated for closedloop gains greater than $9 \mathrm{~V} / \mathrm{V}$.

## Input Biasing

The schematic shows that both inputs are biased to ground with a $50 \mathrm{k} \Omega$ resistor. The base current of the input transistors is about 250 nA , so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM390 is higher than $250 \mathrm{k} \Omega$ it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than $10 \mathrm{k} \Omega$, then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM390 with higher gains (bypassing the $1.35 \mathrm{k} \Omega$ resistor between pins 2 and 6 ) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a $0.1 \mu \mathrm{~F}$ capacitor or a short to ground depending on the dc source resistance on the driven input.

## Bootstrapping

The base of the output transistor of the LM390 is brought out to pin 9 for Bootstrapping. The output stage of the amplifier during positive swing is shown in Figure 3 with its external circuitry.


FIGURE 3.

## Application Hints (Continued)

R1 + R2 set the amount of base current available to the output transistor. The maximum output current divided by Beta is the value required for the current in R1 and R2:

$$
(R 1+R 2)=\beta_{O} \frac{\left(V_{S} / 2\right)-V_{B E}}{I_{O M A X}}
$$

Good design values are $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and $\beta_{\mathrm{O}}=100$.
Example $0.8_{\mathrm{WATT}}$ into $4 \Omega$ load with $\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$.

$$
\begin{aligned}
& I_{O M A X}=\sqrt{\frac{2 P_{O}}{R_{L}}}=632 \mathrm{~mA} \\
& (R 1+R 2)=100\left(\frac{(6 / 2)-0.7}{0.632}\right)=364 \Omega
\end{aligned}
$$

To keep the current in R2 constant during positive swing capacitor $C_{B}$ is added. As the output swings positive $C_{B}$ lifts R1 and R2 above the supply, maintaining a constant voltage across $R 2$. To minimize the value of $C_{B}, R 1=R 2$. The pole due to $C_{B}$ and $R 1$ and R2 is usually set equal to the pole due to the output coupling capacitor and the load. This gives:

$$
C_{B} \simeq \frac{4 C_{c}}{\beta_{O}} \simeq \frac{C_{c}}{25}
$$

Example: for 100 Hz pole and $\mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{C}_{\mathrm{c}}=400 \mu \mathrm{~F}$ and $C_{B}=16 \mu \mathrm{~F}$, if R1 is made a diode and R2 increased to give the same current, $\mathrm{C}_{\mathrm{B}}$ can be decreased by about a factor of 4, as in Figure 4.

For reduced component count the load can replace R1. The value of ( $R 1+R 2$ ) is the same, so $R 2$ is increased. Now $C_{B}$ is both the coupling and the bootstrapping capacitor (see Figure 2).

## Typical Applications (Continued).



FIGURE 4. Amplifier with $\mathbf{G a i n}=200$ and Minimum $C_{B}$


FIGURE 5. 2.5W Bridge Amplifier

Typical Applications (Continued)


FIGURE 6(a). Amplifier with Bass Boost


FIGURE 6(b). Frequency Response with Bass Boost


FIGURE 7. Intercom

figure 8. AM Radio Power Amplifier

Note 1: Twist supply lead and supply ground very tightly.
Note 2: Twist speaker lead and ground very tightly.
Note 3: Ferrite bead is Ferroxcube K5-001-001/3B with 3 turns of wire.

Note 4: R1C1 band limits input signals.
Note 5: All components must be spaced very close to IC.

## LM391 Audio Power Driver

## General Description

The LM391 audio power driver is designed to drive external power transistors in 10 to 100 watt power amplifier designs. High power supply voltage operation and true high fidelity performance distinguish this IC. The LM391 is internally protected for output faults and thermal overloads; circuitry providing output transistor protection is user programmable.

## Features

- High Supply Voltage $\pm 30, \pm 40$, or $\pm 50 \mathrm{~V}$ max
- Low Distortion . . 0.01\%
- Low Input Noise $3 \mu \mathrm{~V}$
- High Supply Rejection 90 dB
- Gain and Bandwidth Selectable
- Dual Slope SOA Protection
- Shutdown Pin

Equivalent Schematic and Connection Diagram


Dual-In-Line Package


Order Number LM391N-60, LM391N-80, or LM391N-100 See NS Package N16A

## Absolute Maximum Ratings

Supply Voltage
LM391N - 60
LM391N -80
LM391N - 100
Input Voltage
$\pm 30 \mathrm{~V}$ or +60 V
$\pm 40 \mathrm{~V}$ or +80 V $\pm 50 \mathrm{~V}$ or +100 V
Supply Voltage less 5 V

Shutdown Current (Pin 14)
1 mA
Package Dissipation (Note 1)
1.39 W

Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds),

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}$ (The following are for $\mathrm{V}^{+}=90 \% \mathrm{~V}_{\mathrm{M}}^{+} \mathrm{AX}$ and $\mathrm{V}^{-}=90 \% \mathrm{~V}_{\mathrm{M}} \mathrm{MX}$.)

Parameter	Conditions	Min	Typ	Max	Units	
Quiescent Current	current in pin 15					
LM391N - 60	$V_{\text {IN }}=0$		3	10	mA	
LM391N - 80			4	8	mA	
LM391N - 100			5	6	mA	
Output Swing	positive	$\mathrm{V}^{+}-7$	$\mathrm{v}^{+}-5$		V	
	negative	$\mathrm{V}^{-}+7$	$\mathrm{V}^{-}+5$		$v$	
Drive Current	source (pin 8)				mA	
	sink (pin 5)	5			$m A$	
Noise ( $20-20 \mathrm{kHz}$ )	input referred		3		$\mu \mathrm{V}$	
Supply Rejection	input referred	70	90		dB	
Total Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}$		0.01		\%	
	$f=20 \mathrm{kHz}$		0.10	0.25	\%	
Intermodulation Distortion	$60 \mathrm{~Hz}, 7 \mathrm{kHz}, 4: 1$		0.01		\%	
Open Loop Gain	$\mathrm{f}=1 \mathrm{kHz}$	1000	5500		V/V	
Input Bias Current			0.1	1.0	$\mu \mathrm{A}$	
Input Offset Voltage			5	20	$m \mathrm{~m}$	
Positive Current Limit $V_{B E}$	pin 10-9		650		mV	
Negative Current Limit VBE	pin 9-13		650		mV	
Positive Current Limit Bias Current	pin 10		10	100	$\mu \mathrm{A}$	
Negative Current Limit Bias Current	pin 13		10	100	$\mu \mathrm{A}$	

Pin 14 Current Comments
Minimum pin 14 current required for shutdown is 0.5 mA , and must not exceed 1 mA .
Maximum pin 14 current for amplifier not shut down is 0.05 mA .
The typical shutdown switch point current is 0.2 mA .
Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

## Typical Applications



Figure 1. LM391 with External Components - Protection Circuitry Not Shown

## Typical Performance Characteristics



## Pin Descriptions



## External Components (figure 1)

Component	Typical Value	Comments	
$\mathrm{CIN}^{\text {IN }}$	$1 \mu \mathrm{~F}$	Input coupling capacitor sets a low frequency pole with $\mathrm{R}_{\mathrm{IN}}$. $f_{L}=\frac{1}{2 \pi R_{I N} C_{I N}}$	
RIN	100k	Sets input impedance and DC bias to input.	
$\mathrm{R}_{\mathrm{f} 2}$	100k	Feedback resistor; for minimum offset voltage at the output this should be equal to RIN.	
$\mathrm{R}_{\mathrm{f} 1}$	5.1k	Feedback resistor that works with $\mathrm{R}_{\mathrm{f} 2}$ to set the voltage gain. $A V=1+\frac{R_{f 2}}{R_{f 1}}$	
$\mathrm{C}_{f}$	$10 \mu \mathrm{~F}$	Feedback capacitor. This reduces the gain to unity at $D C$ for minimum offset voltage at the output. Also sets a low frequency pole with $\mathrm{R}_{\mathrm{f} 1}$. $f_{L}=\frac{1}{2 \pi R_{f} C_{f}}$	
$\mathrm{C}_{C}$	5 pF	Compensation capacitor. Sets gain bandwidth product and a high frequency pole. $G B W=\frac{1}{2 \pi 5000 C_{C}}, f_{h}=\frac{G B W}{A V}$   Max $f_{h}$ for stable design $\approx 500 \mathrm{kHz}$.	
$\mathrm{R}_{\mathrm{A}}$	3.9k	$A B$ bias resistor.	
$\mathrm{R}_{\mathrm{B}}$	10k	AB bias potentiometer. Adjust to set bias current in the output stage.	
$\mathrm{CAB}^{\text {A }}$	$0.1 \mu \mathrm{~F}$	Bypass capacitor for bias. This improves high frequency distortion and transient response.	
$C_{R}$	5 pF	Ripple capacitor. This improves negative supply rejection at midband and high frequencies. $\mathrm{C}_{\mathrm{R}}$, if used, must equal $\mathrm{C}_{\mathrm{C}}$.	
$\mathrm{R}_{\text {eb }}$	$100 \Omega$	Bleed resistor. This removes stored charge in output transistors.	
Ro	$2.7 \Omega$	Output compensation resistor. This resistor and $\mathrm{C}_{\mathrm{O}}$ compensate the output stage. This value will vary slightly for different output devices.	
Co	$0.1 \mu \mathrm{~F}$	Output compensation capacitor. This works with $\mathrm{R}_{\mathrm{O}}$ to form a zero that cancels $f_{\beta}$ of the output power transistors.	
RE	$0.3 \Omega$	Emitter degeneration resistor. This resistor gives thermal stability to the output stage quiescent current. IRC PW5 type.	
$\mathrm{R}_{\text {TH }}$	39k	Shutdown resistor. Sets the amount of current pulled out of pin 14 during shutdown.	
$\mathrm{C}_{2}, \mathrm{C}_{2}$	1000 pF	Compensation capacitors for protection circuitry.	
$X_{L}$	$10 \Omega \\| 5 \mu \mathrm{H}$	Used to isolate capacitive loads, usually 20 turns of wire wrapped around a $10 \Omega$, 2 W resistor.	

## Application Hints

## GENERALIZED AUDIO POWER AMP DESIGN

Givens: Power Output
Load Impedance
Input Sensitivity
Input Impedance
Bandwidth
The power output and load impedance determine the power supply requirements. Output signal swing and current are found from:

$$
\begin{align*}
& V_{\text {Opeak }}=\sqrt{2 R_{L} P_{O}}  \tag{1}\\
& I_{\text {Opeak }}=\sqrt{\frac{2 P_{O}}{R_{L}}} \tag{2}
\end{align*}
$$

Add 5 volts to the peak output swing ( $\mathrm{V}_{\mathrm{OP}}$ ) for transistor voltage to get the supplies, i.e., $\pm(\mathrm{V} O P+5 \mathrm{~V})$ at a current of I peak. The regulation of the supply determines the unloaded voltage, usually about $15 \%$ higher. Supply voltage will also rise $10 \%$ during high line conditions.
max supplies $\approx \pm\left(V_{\text {Opeak }}+5\right)(1+$ regulation $)(1.1)$
The input sensitivity and output power specs determine the required gain.

$$
\begin{equation*}
A_{V} \geqslant \frac{\sqrt{P_{O} R_{L}}}{V_{\text {IN }}}=\frac{V_{\text {ORMS }}}{V_{\text {INRMS }}} \tag{4}
\end{equation*}
$$

Normally the gain is set between 20 and 200; for a 25 watt, 8 ohm amplifier this results in a sensitivity of 710 mV and 71 mV , respectively. The higher the gain, the higher the THD, as can be seen from the characteristics curves. Higher gain also results in more hum and noise at the output.

The desired input impedance is set by RIN. Very high values can cause board layout problems and DC offsets at the output. The bandwidth requirements determine the size of $\mathrm{C}_{\mathrm{f}}$ and $\mathrm{C}_{\mathrm{C}}$ as indicated in the external component listing.

The output transistors and drivers must have a breakdown voltage greater than the voltage determined by equation (3). The current gain of the driver and output device must be high enough to supply IOpeak with 5 mA of drive from the LM391. The power transistors must be able to dissipate approximately $40 \%$ of the maximum output power; the drivers must dissipate this amount divided by the current gain of the outputs. See the output transistor selection guide, table $A$.

To prevent thermal runaway of the $A B$ bias current the following equation must be valid:

$$
\begin{equation*}
\theta_{J A} \leqslant \frac{R_{E}\left(\beta_{M I N}+1\right)}{V_{C E Q M A X}(K)} \tag{5}
\end{equation*}
$$

where:
$\theta \mathrm{JA}$ is the thermal resistance of the driver transistor, junction to ambient, in ${ }^{\circ} \mathrm{C} / \mathrm{W}$.
$R_{E}$ is the emitter degeneration resistance in ohms.
$\beta_{\min }$ is that of the output transistor.
VCEQMAX is the highest possible value of one supply from equation (3).
$K$ is the temperature coefficient of the driver baseemitter voltage, typically $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Often the value of $R_{E}$ is to be determined and equation (5) is rearranged to be:

$$
\begin{equation*}
R_{E} \geqslant \frac{\theta_{J A}\left(V_{\text {CEQMAX }}\right) K}{\beta \text { MIN }+1} \tag{6}
\end{equation*}
$$

The maximum average power dissipation in each output transistor is:

$$
\begin{equation*}
\overline{\mathrm{P}}_{\mathrm{DAXX}}=0.4 \mathrm{P}_{\mathrm{OMAX}} \tag{7}
\end{equation*}
$$

The power dissipation in the driver transistor is:

$$
\begin{equation*}
\bar{P}_{\text {DRIVER }}(\mathrm{MAX})=\frac{{\overline{P_{D}}}_{\text {MAX }}}{\beta_{\text {MIN }}} \tag{8}
\end{equation*}
$$

Heat sink requirements are found using the following formulas:

$$
\begin{align*}
& \theta_{\mathrm{JA}} \leqslant \frac{\mathrm{~T}_{\mathrm{JMAX}}-T_{\mathrm{AMAX}}}{\mathrm{P}_{\mathrm{D}}}  \tag{9}\\
& \theta_{\mathrm{SA}} \leqslant \theta_{\mathrm{JA}}-\theta_{\mathrm{JC}}-\theta_{\mathrm{CS}} \tag{10}
\end{align*}
$$

where:
$\mathrm{T}_{\text {jMAX }}$ is maximum transistor junction temperature.
TAMAX is maximum ambient temperature.
$\theta J A$ is thermal resistance junction to ambient.
$\theta$ SA is thermal resistance sink to ambient.
$\theta \mathrm{JC}$ is thermal resistance junction to case.
$\theta \mathrm{CS}$ is thermal resistance case to sink, typically $1^{\circ} \mathrm{C} / \mathrm{W}$ for most mountings.

The protection circuits of the LM391 are very flexible and should be tailored to the output transistor's safe operating area. The protection V-I characteristics, circuitry, and resistor formulas are described below. The diodes from the output to each supply prevent the output voltage from exceeding the supplies and harming the output transistors. The output will do this if the protection circuitry is activated while driving an inductive load.

## TURN-ON DELAY

It is often desirable to delay the turn-ON of the power amplifier so turn-ON pops in the preamplifier do not go to the speakers.

This is easily implemented by putting a resistor in series with a capacitor from pin 14 to ground. The value of
the resistor is set to limit the current to less than 1 mA (the absolute maximum). This resistor with the capacitor gives a time constant of RC. The turn-ON delay is approximately 2 time constants.

## Example:

Amplifier with maximum supply of 30 V , like the $20 \mathrm{~W}, 8 \Omega$ example in the data sheet, requiring a delay of 1 second.

Time delay $=2 \mathrm{RC}$
$R=\frac{M a x V^{+}}{1 \mathrm{~mA}}$
So:
$R=30 k$. Solving for $C$ gives $16.7 \mu \mathrm{~F}$. Use $\mathrm{C}=20 \mu \mathrm{~F}$ with a 30 V rating.


Protection Circuitry with External Components


Protection Characteristics

$$
\text { Protection Circuit Resistor Formulas }\left(\mathrm{V}_{\mathrm{B}}=\mathrm{V}^{+}\right)
$$

Type of Protection	$\mathbf{R}_{\mathrm{E}}, \mathrm{R}_{\mathbf{E}}$	$\mathrm{R}_{1}, \mathrm{R}_{1}$	$\mathrm{R}_{2}, \mathrm{R}_{2}$	$\mathrm{R}_{3}, \mathrm{R}_{3}$
Current Limit	$R_{E}=\frac{\phi}{I_{L}}$	Not Required	Short	Not Required
Single Slope SOA Protection	$R_{E}=\frac{\phi}{I_{L}}$	$\mathrm{R}_{1}=\mathrm{R}_{2}\left(\frac{\mathrm{~V}_{\mathrm{M}}-\phi}{\phi}\right)$	$1 \mathrm{k} \Omega$	Not Required
Dual Slope SOA   Protection $\left(V_{B}=V^{+}\right)$	$R_{E}=\frac{\phi_{1}}{I_{L}}$	$\mathrm{R}_{1}=\mathrm{R}_{2}\left(\frac{\mathrm{~V}_{M}-\phi}{\phi}\right)$	$1 \mathrm{k} \Omega$	$R_{3}=R_{2}\left[\frac{V^{+}}{1 L R_{E-\phi}}-1\right]$

Note: $\phi$ is the current limit $V_{B E}$ voltage, 650 mV . Assumptions: $\mathrm{V}^{+} \gg \phi, \mathrm{V}_{\mathrm{M}} \gg \phi . \mathrm{V}^{+}$is the load supply voltage. $\mathrm{V}_{\mathrm{M}}$ is the maximum rated $V_{C E}$ of the output transistors.

## Application Hints (Continued)

## TRANSIENT INTERMODULATION DISTORTION

There has been a lot of interest in recent years about transient intermodulation distortion. Matti Otala of University of Oulu, Oulu, Finland has published several papers on the subject. The results of these investigations show that the open loop pole of the power amplifier should be above 20 kHz .

To do this with the LM391 is easy. Put a $1 \mathrm{M} \Omega$ resistor from pin 3 to the output and the open loop gain is reduced to about 46 dB . Now the open loop pole is at 30 kHz . The current in this resistor causes an offset in the input stage that can be cancelled with a resistor from pin 4 to ground. The resistor from pin 4 to ground should be $910 \mathrm{k} \Omega$ rather than $1 \mathrm{M} \Omega$ to insure that the shutdown circuitry will operate correctly. The slight difference in resistors results in about 15 mV of offset. The $40 \mathrm{~W}, 8 \Omega$ amplifier schematic shows the hookup of these two resistors.

## BRIDGE AMPLIFIER

A switch can be added to convert a stereo amplifier to a single bridge amplifier. The diagram below shows where the switch and one resistor are added. When operating in the bridge mode the output load is connected between the two outputs, the input is VIN \#1, and VIN \#2 is disconnected.

## OSCILLATIONS \& GROUNDING

Most power amplifiers work the first time they are turned on. They also tend to oscillate and have excess THD. Most oscillation problems are due to inadequate supply bypassing and/or ground loops. A $10 \mu \mathrm{~F}, 50 \mathrm{~V}$ electrolytic on each power supply will stop supplyrelated oscillations. However, if the signal ground is used for these bypass caps the THD is usually excessive. The signal ground must return to the power supply alone, as must the output load ground. All other grounds bypass, output R-C, protection, etc., can tie together and then return to supply. This ground is called high frequency ground. On the 40 W amplifier schematic all the grounds are labeled.

Capacitive loads can cause instabilities, so they are isolated from the amplifier with an inductor and resistor in the output lead.

## AB BIAS CURRENT.

To reduce distortion in the output stage, all the transistors are biased $O N$ slightly. This results in class $A B$ operation and reduces the crossover (notch) distortion of the class B stage to a low level, (see the curve on page 10-70). The potentiometer, $\mathrm{R}_{\mathrm{B}}$, from pins 6-7 is adjusted to give about 25 mA of current in the output stage. This current is usually monitored at the supply or by measuring the voltage across RE .

Typical Applications (Continued)


Bridge Circuit Diagram

## Output Transistors Selection Guide

Table A.

Output Power	Driver Transistor		Output Transistor	
	PNP	NPN	PNP	NPN
$\begin{aligned} & 20 \mathrm{~W} @ 8 \Omega \\ & 30 \mathrm{~W} @ 4 \Omega \end{aligned}$	BD344	BD345	BD346	BD347
$\begin{aligned} & 40 \mathrm{~W} @ 8 \Omega \\ & 60 \mathrm{~W} @ 4 \Omega \end{aligned}$	BD348	BD349	BD350	BD351

## Application Hints (Continued)

A $20 \mathrm{~W}, 8 \Omega ; 30 \mathrm{~W}, 4 \Omega$ AMPLIFIER
Givens:

Power output	20 W into $8 \Omega$
	30 W into $4 \Omega$
Input Sensitivity	1 V max
Input Impedance	100 k
Bandwidth	$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 0.25 \mathrm{~dB}$

Equations (1) and (2) give:

$$
\begin{array}{lll}
20 \mathrm{~W} / 8 \Omega & \mathrm{~V}_{\mathrm{OP}}=17.9 \mathrm{~V} & \mathrm{I}_{\mathrm{OP}}=2.24 \mathrm{~A} \\
30 \mathrm{~W} / 4 \Omega & \mathrm{~V}_{\mathrm{OP}}=15.5 \mathrm{~V} & \mathrm{I}_{\mathrm{OP}}=3.87 \mathrm{~A}
\end{array}
$$

Therefore the supply required is:
$\pm 23 \mathrm{~V} @ 2.24 \mathrm{~A}$, reducing to . . .

```
\pm21 V @ 3.87 A
```

With $15 \%$ regulation and high line we get $\pm 29 \mathrm{~V}$ from equation (3).

Sensitivity and equation (4) set minimum gain:

$$
A V \geqslant \frac{\sqrt{20 \times 8}}{1}=12.65
$$

We will use a gain of 20 with resulting sensitivity of 632 mV .

Letting $R_{I N}$ equal 100 k gives the required input impedance. For low DC offsets at the output we let $\mathrm{R}_{\mathrm{f} 2}=$ 100k. Solving for $R_{f 1}$ gives:

$$
\begin{aligned}
& R_{f 2}=100 \mathrm{k} \\
& R_{f_{1}}=\frac{100 \mathrm{k}}{20-1}=5.26 \mathrm{k} ; \text { use } 5.1 \mathrm{k}
\end{aligned}
$$

The bandwidth requirement must be stated as a pole, i.e., the 3 dB frequency. Five times away from a pole gives 0.17 dB down, which is better than the required 0.25 dB . Therefore:

$$
\begin{aligned}
& f_{L}=\frac{20}{5}=4 \mathrm{~Hz} \\
& f_{h}=20 \mathrm{k} \times 5=100 \mathrm{kHz}
\end{aligned}
$$

Solving for $\mathrm{C}_{\mathrm{f}}$ :

$$
C_{f} \geqslant \frac{1}{2 \pi R_{f 1} f_{L}}=7.8 \mu \mathrm{~F} ; \text { use } 10 \mu \mathrm{~F}
$$

The recommended value for $\mathrm{C}_{\mathrm{C}}$ is 5 pF for gains of 20 or larger. This gives a gain-bandwidth product of 6.4 MHz and a resulting bandwidth of 320 kHz , better than required.

The breakdown voltage requirement is set by the maximum supply; we need a minimum of 58 V and will use 60 V . We must now select a 60 V power transistor with reasonable beta at IOpeak, 3.87 A. The National BD346, BD347 complementary pair are $60 \mathrm{~V}, 60 \mathrm{~W}$ transistors with a minimum beta of 30 at 4 A . The driver transistor must supply the base drive given 5 mA drive from the LM391. The National BD344, BD345 complementary driver transistors are 60 V devices with a minimum beta of 40 at 200 mA . The driver transistors should be much faster (higher $\mathrm{f}_{\mathrm{T}}$ ) than the output transistors to insure that the R.r. nn the nutnut will prevent instability.

To find the heat sink required for each output transistor we use equations (7), (9), and (10):

$$
\begin{equation*}
\overline{P_{D}}=0.4(30)=12 \mathrm{~W} \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
\theta \mathrm{JA} \leqslant \frac{150^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}}{12}=7.9^{\circ} \mathrm{C} / \mathrm{W} \text { for } \mathrm{T}_{\mathrm{AMAX}}=55^{\circ} \mathrm{C} \\
\theta \mathrm{SA} \leqslant 7.9-2.1-1.0=4.8^{\circ} \mathrm{C} / \mathrm{W} \tag{10}
\end{gather*}
$$

If both transistors are mounted on one heat sink the thermal resistance should be halved to $2.4^{\circ} \mathrm{C} / \mathrm{W}$.
The maximum average power dissipation in each driver is found using equation (8):

$$
\overline{\operatorname{PDRIVER}(M A X)}=\frac{12}{30}=400 \mathrm{~mW}
$$

Using equation (9):

$$
\theta J A \leqslant \frac{155-55}{0.4}=237^{\circ} \mathrm{C} / \mathrm{W}
$$

## Application Hints (Continued)

Since the free air thermal resistance of the National BD344, BD345 is $100^{\circ} \mathrm{C} / \mathrm{W}$, no heat sink is required. Using this information and equation (6) we can find the minimum value of $R_{E}$ required to prevent thermal runaway.

$$
\begin{equation*}
R_{E} \geqslant \frac{100(30)(0.002)}{30+1}=0.19 \Omega \tag{6}
\end{equation*}
$$

We must now use the SOA data on the National BD346, BD347 transistors to set up the protection circuit. Below is the SOA curve with the $4 \Omega$ and $8 \Omega$ load lines. Also shown are the desired protection lines. Note the value of $V_{B}$ is equal to the supply voltage, so we use the formulas in the table.


Figure Y .

The data points from the curve are:

$$
V_{M}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=23 \mathrm{~V}, I_{L}=3 \mathrm{~A}, \mathrm{I}_{\mathrm{L}}=7 \mathrm{~A}
$$

Using the dual slope protection formulas:

$$
\begin{aligned}
& R_{E}=\frac{0.65}{3}=0.22 \Omega \\
& R_{2}=1 \mathrm{k} \\
& R_{1}=1 \mathrm{k}\left(\frac{60-0.65}{0.65}\right) \approx 91 \mathrm{k} \\
& R_{3}=1 \mathrm{k}\left(\frac{23}{7(0.22)-0.65}-1\right) \approx 24 \mathrm{k}
\end{aligned}
$$

Note that an $R_{E}$ of $0.22 \Omega$ satisfies equation (6). The final schematic of this amplifier is below. If the output is shorted the current will be 1.8 A and $\mathrm{V}_{\mathrm{CE}}$ is 23 V . Since - the input is $A C$, the average power is:

$$
\text { short } \overline{P_{D}}=1 / 2(1.8)(23) \approx 21 \mathrm{~W}
$$

This power is greater than was used in the heat sink calculations, so the transistors will overheat for longduration shorts unless a larger heat sink is used.

## Typical Âpplications (Continued)



20 W-8 $\Omega$, 30W-4 $\Omega$ Amplifier with 1 Second Turn-ON Delay

## Application Hints (Continued)

A $40 \mathrm{~W} / 8 \Omega, 60 \mathrm{~W} / 4 \Omega$ AMPLIFIER
Given:

Power Output	$40 \mathrm{~W} / 8 \Omega$
	$60 \mathrm{~W} / 4 \Omega$
Input Sensitivity	1 V max
Input Impedance	100 k
Bandwidth	$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 0.25 \mathrm{~dB}$

Equations (1) and (2) give:

$$
\begin{array}{lll}
40 \mathrm{~W} / 8 \Omega & V_{\text {Opeak }}=25.3 \mathrm{~V} & I_{\text {Opeak }}=3.16 \mathrm{~A} \\
60 \mathrm{~W} / 4 \Omega & V_{\text {Opeak }}=21.9 \mathrm{~V} & I_{\text {Opeak }}=5.48 \mathrm{~A}
\end{array}
$$

Therefore the supply required is:

```
\(\pm 30.3 \mathrm{~V}\) @ 3.16 A , reducing to . . .
```

$\pm 2 \varepsilon .9$ ! @ 5.48 ^
With $15 \%$ regulation and high line we get $\pm 38.3 \mathrm{~V}$ using equation (3).
The minimum gain from equation (4) is:

$$
A V \geqslant 18
$$

We select a gain of 20 ; resulting sensitivity is 900 mV .
The input impedance and bandwidth are the same as the 20 watt amplifier so the components are the same.

$$
\begin{array}{ll}
R_{f 1}=5.1 \mathrm{k} & R_{I N}=100 k \\
R_{f 2}=100 k & C_{f}=10 \mu \mathrm{~F}
\end{array}
$$

The maximum supplies dictate using 80 V devices. The National BD350, BD351 pair are $80 \mathrm{~V}, 160 \mathrm{~W}$ transistors with a minimum beta of 40 at 2 A and 20 at 6 A . This corresponds to a minimum beta of 22.5 at 5.5 A (I Opeak). The National BD348, BD349 driver pair are 80 V transistors with a minimum beta, of 50 at 250 mA . This output combination guarantees IOpeak with 5 mA from the LM391.
Output transistor heat sink requirements are found using equations (7), (9), and (10):

$$
\begin{align*}
& \overline{P_{D}}=0.4(60)=24 \mathrm{~W}  \tag{7}\\
& \theta_{J A} \leqslant \frac{200-55}{24}=6.0^{\circ} \mathrm{C} / \mathrm{W} \text { for } T_{A M A X}=55^{\circ} \mathrm{C}  \tag{9}\\
& \theta_{S A} \leqslant 6.0-1.1-1.0=3.9^{\circ} \mathrm{C} / \mathrm{W} \tag{10}
\end{align*}
$$

For both output transistors on one heat sink the thermal resistance should be $1.9^{\circ} \mathrm{C} / \mathrm{W}$.

Now using equation (8) we find the power dissipation in the driver:

$$
\begin{align*}
& \overline{P_{\text {DRIVER }}}=\frac{24}{20}=1.2 \mathrm{~W}  \tag{8}\\
& \theta_{\mathrm{JA}} \leqslant \frac{150-55}{1.2}=79^{\circ} \mathrm{C} / \mathrm{W} \tag{9}
\end{align*}
$$

Since a heat sink is required on the driver, we should investigate the output stage thermal stability at the same time to optimize the design. If we find a value of $\mathrm{R}_{\mathrm{E}}$ that is good for the protection circuitry, we can then use equation (5) to find the heat sink required for the drivers.

The SOA characteristics of the National BD350, BD351 transistors are shown in the following curve along with a desired protection line.


The desired data points are:

$$
V_{M}=80 \mathrm{~V} \quad V_{B}=47 \mathrm{~V} \quad I_{L}=3 \mathrm{~A} \quad I_{L}^{\prime}=11 \mathrm{~A}
$$

Since the break voltage is not equal to the supply, we will use two resistors to replace $\mathrm{R}_{3}$ and move $\mathrm{V}_{\mathrm{B}}$.


## Circuit Used




$$
V_{T H}=V-\left[\frac{R_{3}^{A}}{R_{3}^{A}+R_{3}^{B}}\right]
$$

## Thevenin Equivalent

Application Hints (Continued)
The formulas for $R_{E}, R_{1}$, and $R_{2}$ do not change:

$$
\begin{aligned}
& R_{E}=\frac{0.65}{3 A}=0.22 \Omega \\
& R_{2}=1 \mathrm{k} \quad R_{1}=1 \mathrm{k} \frac{80-0.65}{0.65}=120 \mathrm{k}
\end{aligned}
$$

The formula for $\mathrm{R}_{3}$ now gives $\mathrm{R}_{T H}$ when the $\mathrm{V}^{+}$in the formula becomes $\mathrm{V}_{\mathrm{B}}$.

$$
\begin{aligned}
R_{T H} & =R_{2}\left[\frac{V_{B}}{L_{E}-\phi}-1\right] \\
& =1 \mathrm{k}\left[\frac{47}{11(0.22)-0.65}-1\right]=25.55 \mathrm{k}
\end{aligned}
$$

$V_{T H}$ is the additional voltage added to the supply voltage to get $V_{B}$.

$$
V_{T H}=-\left(V_{B}-V^{+}\right)=-(47-30)=-17 V
$$

Now we must find $R_{3}^{A}$ and $R_{3}^{B}$ using the Thevinen formulas. Putting $\vee_{T H}, \mathrm{~V}^{-}$, and $\mathrm{R}_{\mathrm{TH}}$ into the appropriate formulas reduces to:

$$
R_{3}^{B}=0.76 R_{3}^{A} \quad \text { and } \quad 25.55 k=R_{3}^{A} \| R_{3}^{B}
$$

The easiest way to solve these equations is to iterate with' standard values. If we guess $R_{3}^{A}=62 k$, then $R_{3}^{B}=$ 47.12 k ; use 47 k . The Thevin impedance comes out 26.7 k, which is close enough to 25.55 k.

Now we will use equation (5) to determine the heat sinking requirements of the drivers to insure thermal stability:

$$
\begin{equation*}
\theta_{\mathrm{JA}} \leqslant \frac{0.22(20+1)}{40(0.002)} \approx 57^{\circ} \mathrm{C} / \mathrm{W} \tag{5}
\end{equation*}
$$

This value is lower than we got with equation (9), so we will use it in equation (10):

$$
\begin{equation*}
\theta \mathrm{SA} \leqslant 57-6-1=50^{\circ} \mathrm{C} / \mathrm{W} \tag{10}
\end{equation*}
$$

This is the required heat sink for each driver. For low TIM we add the $1 \mathrm{M} \Omega$ resistor from pin 3 to the output and a 910 k resistor from pin 4 to ground. The complete schematic is on page 11.

If the output is shorted, the transistor voltage is about 28 V and the current is 5 A . Therefore the average power is:

$$
\text { short } \overline{P_{D}}=1 / 2(28) 5=70 \mathrm{~W}
$$

This is much larger than the power used to calculate the heat sinks and the output transistors will overheat if the output is shorted too long.

Typical Applications (Continued)


40 W-8 $\Omega, 60 \mathrm{~W}-4 \Omega$ Amplifier

## LM1035 Dual DC Operated Tone/Volume/Balance Circuit

## General Description

The LM1035 is a DC controlled tone (bass/treble), volume and balance circuit for stereo applications in car radio, TV and audio systems. An additional control input allows loudness compensation to be simply effected.

Four control inputs provide control of the bass, treble, balance and volume functions through application of DC voltages from a remote control system or, alternatively, from four potentiometers which may be biased from a zener requlated supply provided on the circuit.

Each tone response is defined by a single capacitor chosen to give the desired characteristic.

## Features

- Wide supply voltage range, 8 V to 18 V
- Large volume control range, 80 dB typical
- Tone control, $\pm 15 \mathrm{~dB}$ typical
- Channel separation, 75 dB typical
- Low distortion, $0.05 \%$ typical for an input level of 1 Vrms
- High signal to noise, 80 dB typical for an input level of 1 Vrms
- Few external components required


## Block and Connection Diagram

## Dual-In-Line Package



## Absolute Maximum Ratings

Supply Voltage
Control Pin Voltage (Pins 4, 7, 9, 12, 14)
20 V

Operating Temperature Range
$V_{C C}$

Storage Temperature Range
Lead Temperature(Soldering, 10 seconds)
20 V
$\mathrm{~V}_{\mathrm{CC}}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise stated)


Note 1: The maximum permissible input level is dependent on tone and volume settings. See Application Notes.
Note 2: The tone control range is defined by capacitors $C_{b}$ and $C_{t}$. See Application Notes.
Note 3: Measured with a CCIR filter with a 0 dB level at 2 kHz and an average responding meter.

## Typical Performance Characteristics



## Application Notes

## TONE RESPONSE

The maximum boost and cut can be optimized for individual applications by selection of the appropriate values of $C_{t}$ (treble) and $C_{b}$ (bass).

The tone responses are defined by the relationships:

$$
\begin{aligned}
& \text { Bass Response }=\frac{1+\frac{0.00065\left(1-a_{b}\right)}{j \omega C_{b}}}{1+\frac{0.00065 a_{b}}{j \omega C_{b}}} \\
& \text { Treble Response }=\frac{1+j \omega 5500\left(1-a_{t}\right) C_{t}}{1+j \omega 5500 a_{t} C_{t}}
\end{aligned}
$$

Where $a_{b}=a_{t}=0$ for maximum bass and treble boost respectively and $a_{b}=a_{t}=1$ for maximum cut.
For the values of $\mathrm{C}_{\mathrm{b}}$ and $\mathrm{C}_{\mathrm{t}}$ of $0.39 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ as shown in the Application Circuit, 15 dB of boost or cut is obtained at 40 Hz and 16 kHz .

## ZENER VOLTAGE

A zener voltage ( $\mathrm{pin} 17=5.4 \mathrm{~V}$ ) is provided which may be used to bias the control potentiometers. Setting a DC level of one half of the zener voltage on the control inputs, pins 4, 9, and 14, results in the balanced gain and flat response condition. Typical spread on the zener voltage is $\pm 100 \mathrm{mV}$ and this must be taken into account if control signals are used which are not referenced to the zener voltage. If this is the case, then they will need to be derived with similar accuracy.

## LOUDNESS COMPENSATION

A simple loudness compensation may be effected by applying a DC control voltage to pin 7 . This operates on the tone control stages to produce an additional boost limited by the maximum boost defined by $\mathrm{C}_{\mathrm{b}}$ and $\mathrm{C}_{t}$. There is no loudness compensation when pin 7 is connected to pin 17. Pin 7 can be connected to pin 12 to give the loudness compensated volume characteristic as illustrated without the addition of further external components. (Tone settings for flat response. $\mathrm{C}_{\mathrm{b}}$ and $\mathrm{C}_{\mathrm{t}}$ as given in Application Circuit.) Modification to the loudness characteristic is possible by changing the capacitors $C_{b}$ and $C_{t}$ for a different basic response or, by a resistor network between pins 7 and 12 for a different threshold and slope.

## SIGNAL HANDLING

The volume control function of the LM1035 is carried out in two stages, controlled by the DC voltage on pin 12, to improve signal handling capability and provide a reduction of output noise level at reduced gain. The first stage is before the tone control processing and provides an initial 15 dB of gain reduction so ensuring that the tone sections are not overdriven by large input levels when operating with a low volume setting. Any combination of tone and volume settings may be used provided the output level does not exceed $2 \mathrm{Vrms}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\left(1 \mathrm{Vrms}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}\right)$. At reduced gain ( $<-15 \mathrm{~dB}$ ) the input stage will overload if the input level exceeds $2 \mathrm{Vrms}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ (1 Vrms, $\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ ). As there is volume control on the input stages, the inputs may be operated with a lower overload margin than would otherwise be acceptable, allowing a possible improvement in signal to noise ratio.

## Application Circuit




Simplified Schematic Diagram (One Channel)

* Connections reversed


## LM1037 Dual Four-Channel Analog Switch

## General Description

The LM1037 is a dual, electronically controlled, fourchannel analog switch with an internal muting facility.
Its features make it ideal for stereo source selection in audio equipment and for use in a wide range of industrial, automotive, multiplexing or sampling applications.
An additional pin is included to allow parallel connection of two or more integrated circuits.

Features<br>- Wide supply voltage range<br>- Low distortion, $0.04 \%$ typical<br>■ Low noise, typically $5 \mu \mathrm{~V}$<br>- High input impedance<br>- Low output impedance<br>- TTL compatible<br>- Very low control current<br>- Maximum control voltage independent of supply (up to 50V)

## Block Diagram



## Absolute Maximum Ratings

Supply Voltage
Operating Temperature Range
Storage Temperature Range
Lead Temperature(Soldering, 10 seconds)

32 V
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Supply Voltage Range	-	5		28	V
Supply Current	$V_{\text {SUPPLY }}=12 \mathrm{~V}$		6.4	8.5	mA
	$V_{\text {SUPPLY }}=30 \mathrm{~V}$		10	12	mA
Voltage Gain		-0.5	0	0.5	dB
Signal Handling (Note 1)	$V_{\text {SUPPLY }}=12 \mathrm{~V}$	2.8	2.9	3.0	Vrms
Distortion THD	$\mathrm{V}_{\text {SIGNAL }}=1 \mathrm{Vrms} \mathrm{@} 1 \mathrm{kHz}$		0.04	0.1	\%
Noise Voltage at Output	CCIRIARM $\mathrm{R}_{\text {S }}=2 \mathrm{k}$		5	15	$\mu \mathrm{V}$
Channel Separation (Note 2)	$\mathrm{V}_{\text {SIGNAL }}=1 \mathrm{Vrms}$ @ 1 kHz		-95		dB
Relative Output in Muted State	$\mathrm{V}_{\text {SIGNAL }}=1 \mathrm{Vrms} @ 1 \mathrm{kHz}$		-90		dB

Note 1: The instantaneous maximum voltage difference between any two input pins of one channel is 9.6 V . Voltages in excess of this level may cause increased distortion and degraded channel separation.

## Typical Performance Characteristics

## Supply Current vs Supply Voltage



Signal-to-Noise vs Source Impedance (Note 2)


Supply Current vs Temperature


Channel Separation vs Frequency (Note 3)


Signal-to-Noise vs Temperature (Note 2)


Attenuation of Unselected Inputs vs Frequency


## Typical Performance Characteristics (Continued)

Total Harmonic Distortion vs Frequency


Signal Handling vs Frequency (Note 5)


Typical Application

Total Harmonic Distortion vs Frequency


Total Harmonic Distortion vs Frequency


Note 2: Signal-to-noise measurement referred to a 1 Vrms input signal bandwidth to CCIRIARM specifications.
Note 3: The level of output signal of a selected undriven amplifier with respect to the output level of a selected driven amplifier. For test purposes, signal is applied to only one input and all other inputs are decoupled to eliminate stray pick-up through external components. Channel separation is then defined as the ratio of signal levels of the two output pins.
Note 4: For test purposes, signals are connected to three unselected input pins of one channel group and all other inputs are decoupled to eliminate stray pick-up through external components.
Note 5: Supply voltage 12 V ; signal handling defined at $1 \%$ distortion.


## Truth Tables

LM1037

Channel selection is achieved by the application of DC voltages to the control pins.

	Inputs Switched to Output Pins								
I/P Channel	1A	2A	1 B	2B	1C	2C	1D	2D	Mute Control
Pin No.	2	4	6	8	11	13	17	15	12
1	$V_{L}$	$V_{L}$	$\mathrm{V}_{\mathrm{L}}$	$V_{L}$	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{H}}$	$V_{L}$	$\mathrm{V}_{\mathrm{L}}$	$V_{L}$
DCControl 3	$V_{L}$	$V_{L}$	$V_{L}$	$V_{L}$	$V_{L}$	$V_{L}$	$V_{H}$	$V_{\text {L }}$	$V_{L}$
$\begin{array}{ll} \text { Condaltions } & 16 \\ \text { (Pins) } \end{array}$	$\mathrm{V}_{\mathrm{H}}$	$V_{H}$	$V_{L}{ }^{\text { }}$	$V_{\text {L }}$	$V_{L}$	$V_{L}$	$V_{L}$	$V_{L}$	$V_{L}$
18	$V_{L}$	$V_{L}$	$V_{H}$	$V_{H}$	$V_{L}$	$V_{L}$	$V_{L}$	$V_{L}$	$V_{L}$
Output Pin	10	9	10	9	10	9	10	9	9 and 10
Output	O/P1	O/P2	O/P1	O/P2	O/P1	O/P2	O/P1	O/P2	

Low switchina level $\left(V_{1}\right)<0.8 \mathrm{~V}$
High switching level $\left(\mathrm{V}_{\mathrm{H}}\right)>2.0 \mathrm{~V}$ and up to 50 V


## 2 DEVICES CONNECTED IN PARALLEL

To increase the channel switching capacity, two or more devices can be connected together by the direct coupling of the mute inhibit pin 7 and the output pins 9 and 10 . Only one output capacitor is required for each common output.

	Inputs Switched to Output Pins								
I/P Channel	1A 2A	1 B 2B	1 C 2 C	1D 2D	1A 2A	1B 2B	1C 2C	1D 2D	Mute
Pin No.	24	68	$11 \quad 13$	$17 \quad 15$	24	68	$11 \quad 13$	$17 \quad 15$	$12 \quad 12$
1	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$V_{L}$
3	$V_{L}$	$V_{L}$	$V_{L}$	$\mathrm{V}_{\mathrm{H}}$	$V_{L}$	$V_{L}$	$\mathrm{V}_{\mathrm{L}}$	$V_{L}$	$V_{L}$
DCControl 16	$\mathrm{V}_{\mathrm{H}}$	$V_{L}$							
DC Control 18	$V_{L}$	$\mathrm{V}_{\mathrm{H}}$	$V_{L}$						
	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$V_{L^{\prime}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$
(Pins) 3	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$V_{L}$	$V_{L}$	$V_{L}$	$\mathrm{V}_{\mathrm{L}}$	$V_{H}$	$V_{L}$
16	$V_{L}$	$V_{L}$	$V_{L}$	$V_{L}$	$V_{\text {H }}$	$V_{L}$	$V_{L}$	$V_{L}$	$V_{L}$
18	$V_{L}$	$V_{L}$	$V_{L}$	$V_{L}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{L}}$	$V_{L}$	$V_{L}$
Output Pins	$10 \quad 9$	$10 \quad 9$	109	109	$10 \quad 9$	109	109	$10 \quad 9$	$10 \quad 9$

LM1037

Circuit Schematic


## Audio/Radio Circuits PRELIMINARY

## LM1038 Dual Four-Channel Analog Switch

## General Description

The LM1038 is a dual, electronically controlled, fourchannel analog switch with an internal muting facility.
Its features make it ideal for stereo source selection in audio equipment and for use in a wide range of industrial, automotive, multiplexing or sampling applications.

An additional pin is included to allow parallel connection of two or more integrated circuits. Channel selection is achieved via two logic data pins with clock enabled latches.

## Features

- Wide supply voltage range
- Low distortion, $0.04 \%$ typical
- High input impedance
- Low output impedance
- TTL compatible
- Very low control current
- Maximum control voltage independent of supply (up to 50V)
- 2 control pins accept BCD input pulses
- Clock enable input may be strobed from a bus

Block Diagram


## Absolute Maximum Ratings

Supply Voltage	32 V
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{v}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Conditions	Min	Typ	Max	Units
Supply Voltage Range		5		28	V
Supply Current	$V_{\text {SUPPLY }}=12 \mathrm{~V}$		14		mA
	$V_{\text {SUPPLY }}=30 \mathrm{~V}$		20		mA
Voltage Gain		-0.5	0	0.5	dB
Signal Handling (Note 1)	$V_{\text {SUPPLY }}=12 \mathrm{~V}$	2.8	2.9	3.0	Vrms
Distortion THD	$\mathrm{V}_{\text {SIGNAL }}=\mathbf{4} \mathrm{Vrms} @ 1 \mathrm{kHz}$	$\cdots$	0.04	0.1	\%
Noise Voltage	CCIR Filter, $\mathrm{R}_{\mathrm{S}}=2 \mathrm{k}$		5	15	$\mu \mathrm{V}$
Channel Separation	$\mathrm{V}_{\text {SIGNAL }}=1 \mathrm{Vrms}$ @ 1 kHz		-95		dB
Relative Output in Muted State	$\mathrm{V}_{\text {SIGNAL }}=1 \mathrm{Vrms}$ @ 1 kHz		-90		dB

Note 1: The instantaneous maximum voltage difference between any two input pins of one channel is 9.6 V . Voltages in excess of this level may cause increased distortion and degraded channel separation.

## Truth Tables

Logic Inputs		Mute	Stereo Channel Selected	
Pin 3	Pin 16	Pin 1	$9($ Pin)	$\mathbf{1 0}($ Pin)
$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$2 \mathrm{D}(15)$	$1 \mathrm{D}(17)$
$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{L}}$	$2 \mathrm{~A}(4)$	$1 \mathrm{~A}(2)$
$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{L}}$	$2 \mathrm{~B}(8)$	$1 \mathrm{~B}(6)$
$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{L}}$	$2 \mathrm{C}(13)$	$1 \mathrm{C}(11)$
	X	1	Mute - DC Output Bias Only	

Logic level, $\mathrm{V}_{\mathrm{L}}<0.8 \mathrm{~V}$
Logic level, $\mathrm{V}_{\mathrm{H}}>2.0 \mathrm{~V}$ and up to 50 V

## 2 DEVICES CONNECTED IN PARALLEL

To increase the channel switching capacity, two ormore devices may be connected together by the direct coupling of the mute inhibit pin 7 and the output pins 9 and 10 . Only one output capacitor is required for each common output.

Logic Inputs				Mute		Channels Selected	
Device 1		Device 2		$\begin{gathered} \hline \text { Device 1 } \\ \hline \text { Pin 1 } \end{gathered}$	$\begin{gathered} \hline \text { Device } 2 \\ \hline \text { Pin 1 } \\ \hline \end{gathered}$		
Pin 3	Pin 6	Pin 3	Pin 16			Pin 9	Pin 10
$\begin{aligned} & \mathrm{V}_{\mathrm{L}} \\ & \mathrm{~V}_{\mathrm{L}} \\ & \mathrm{~V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{H}} \end{aligned}$	$V_{L}$$V_{H}$$V_{L}$$V_{H}$	X	$x$	$\mathrm{V}_{\mathrm{L}}$	$V_{H}$	Device 1	
						2D (15)	1D (17)
		X	X	$V_{L}$	$V_{H}$	2A (4)	1A (2)
		X	X	$V_{L}$	$V_{\text {H }}$	2B (8)	1B (6)
		X	X	$V_{L}$	$\mathrm{V}_{\mathrm{H}}$	2C (13)	1C (11)
						Device 2	
X	X	$V_{L}$	$V_{L}$	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{L}}$	2D (15)	1D (17)
X	X	$V_{L}$	$\mathrm{V}_{\mathrm{H}}$	$V_{H}$	$V_{L}$	2A (4)	$1 \mathrm{~A}(2)$$1 \mathrm{~B}(6)$
X	X	$V_{\text {H }}$	$V_{\text {L }}$	$\mathrm{V}_{\mathrm{H}}$	$V_{L}$	2B (8)	
X	X	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{H}}$	$V_{L}$	2C (13)	1C (11)
X	X	X	X	$\mathrm{V}_{\mathrm{H}}$	$\mathrm{V}_{\mathrm{H}}$	Mute Bi	Output nly

## Typical Application


$R=100 \mathrm{k} \Omega 1 / 4$ watt
$\mathrm{C} 1=10 \mu \mathrm{~F}$ electrolytic
$\mathrm{C} 2=1 \mu \mathrm{~F}$ electrolytic
$C 3=100 \mu \mathrm{~F}$ electrolytic

## Audio/Radio Circuits

## LM1112A/LM1112B/LM1112C Dolby B-Type Noise Reduction Processor

## General Description

The LM1112 is a monolithic integrated circuit specifically designed to realize the Dolby B-type noise reduction system.

It is a replacement for the LM1111 and the Signetics NE-645/648 but with improved performance figures.

## Features

- Very high signal/noise ratio, 74 dB encode (CCIR/ARM)
- Wide supply voltage range, 6 V to 20 V
- Very close matching to standard Dolby characteristics
- Audible switch-on transients greatly reduced
- Improved temperature performance
- Reduced number of precision external components
- Improved transient stability
- Input protection diodes

[^59]
## Schematic Diagram



## Absolute Maximum Ratings

Supply Voltage
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. N.B. 0 dB refers to Dolby level which is 580 mVrms at pin 3 .

Parameter	Conditions	LM1112A			LM1112B			LM1112C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Supply Voltage Range		6		20	6		20	6		20	V
Supply Current			15	20		15	20		15	20	mA
Voltage Gain (Pin 5-3)	1 kHz Pins 6 and 2 Connectod	24.5	25.5	26.5	24.5	25.5	26.5	24	25.5	27	dB
(Pin 5-6)	1 kHz Pin 6 Open		14.7			14.7			14.7		dB
(Pin 3-7)	1 kHz (Noise Reduction Out)	-0.5	0	0.5	-0.5	0	0.5	-1	0	1	dB
Distortion	$1 \mathrm{kHz}, 0 \mathrm{~dB}$		0.03	0.1		0.03	0.1		0.03	0.1	\%
	$10 \mathrm{kHz},+10 \mathrm{~dB}$		0.2	0.3		0.2	0.3		0.2	0.3	\%
Signal Handling	$1 \mathrm{kHz}, 0.3 \%$ Distortion $V_{S}=6 \mathrm{~V}$		8.5			8.5			8.5		dB
	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$	13	15.5		13	15.5		13	15.5		dB
	$V_{S}=18 \mathrm{~V}$		19			19			19		dB
Signal/Noise Ratio at Pin 7	Pins 6 and 2 Connected										
Encode Mode (CCIR/ARM)											
	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k}$	71.5	74		71	74		70	74		dB
	$\mathrm{R}_{\mathrm{S}}=1 \mathrm{k}$		77			77			77		dB
NR Out	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k}$		83			83			83		dB
Decode Mode (CCIR/ARM)	$R_{S}=10 \mathrm{k}$		83			83			83		dB
Encode Characteristics	Input to Pin 5										
	$10 \mathrm{kHz}, 0 \mathrm{~dB}$	0	0.5	1.0	-0.2	0.5	1.2	-0.5	0.5	1.5	dB
	$1.3 \mathrm{kHz},-20 \mathrm{~dB}$	-16.2	-15.7	-15.2	-16.7	-15.7	-14.7	-17.2	-15.7	-14.2	dB
	$5 \mathrm{kHz},-20 \mathrm{~dB}$	-17.3	-16.8	-16.3	-17.8	-16.8	-15.8	-18.3	-16.8	-15.3	dB
	$3 \mathrm{kHz},-30 \mathrm{~dB}$	-21.7	- -21.2	-20.7	-22.2	-21.2	-20.2	-22.7	-21.2	-19.7	dB
	$5 \mathrm{kHz},-30 \mathrm{~dB}$	-22.3	-21.8	-21.3	-22.8	-21.8	-20.8	-23.3	-21.8	-20.3	dB
	$10 \mathrm{kHz},-30 \mathrm{~dB}$	-24.0	-23.5	-23.0	-24.5	-23.5	-22.5	-25.0	-23.5	-22.0	dB
	$10 \mathrm{kHz},-40 \mathrm{~dB}$	-30.1	-29.6	-29.1	-30.3	-29.6	-28.9	-30.6	-29.6	-28.6	dB
Input Resistance	Pin 5	50	65	80	50	65	80	50	65	80	k $\Omega$
	Pin 2	4.3	5.6	6.9	4.3	5.6	6.9	4.3	5.6	6.9	$k \Omega$
Output Resistance	Pin 6	1.8	2.4	3.0	1.8	2.4	3.0	1.8	2.4	3.0	k $\Omega$
	Pin 3		30	45		30	45		30	45	$\Omega$
	Pin 7		30	45		30	45		30	45	, $\Omega$
PSRR	$\mathrm{f}=120 \mathrm{~Hz}$		40			40			40		dB
Load Impedance		;									
Pin 3		5			5			5			k $\Omega$
$\operatorname{Pin} 7$		5			5			5			k $\Omega$

## Typical Performance Characteristics

Signal/Noise Ratio vs Source Impedance Encode Mode (CCIR/ARM)


Total Harmonic Distortion-0 dB Level


Back to Back Response Error vs Frequency and Supply Voltage (Standard Dolby Encoder)


Gain vs Frequency (NR OFF)


Total Harmonic Distortion- +10 dB Level


Back to Back Response vs Frequency and Temperature (Encoder Temperature $\mathbf{2 5}^{\circ} \mathrm{C}$ )


Typical Performance Characteristics (Continued)


Supply Current vs Supply Voltage


TRANSIENT RESPONSE TO ABRUPT LEVEL CHANGE (Measured at P7)


TRANSIENT RESPONSE TO ABRUPT FREQUENCY CHANGE (Measured at P7)


## ELECTRICAL NOISE REDUCTION SWITCH

In place of the normal mechanical noise reduction on/off switch, the circuit below is often used to permit electrical NR control. When using this circuit, the following points should be noted:

1. Signal boost is reduced by increasing DC voltage on Pin 14 (see curve). A voltage of approximately 3 V is adequate to achieve NR OFF.
2. Supply current may be significantly increased by high pin 14 forced voltages. Values for $V$ and $R$ should thus be chosen such that pin 14 voltage is $3 \mathrm{~V}-4 \mathrm{~V}$.
3. When electrical NR switching is used, signal level is slightly affected by the minimum value of the internal variable impedance. (At $10 \mathrm{kHz}-10 \mathrm{~dB}$, a residual boost of approximately 0.4 dB remains.) This is not the case for mechanical NR switching.


Note 1: Where not otherwise specified, component tolerances are $\pm 10 \%$.

Signal Boost vs Pin 14 Control Voltage (Encode, 10 kHz )


Supply Current vs Pin 14 Control Voltage
( $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$ ) (Encode, 10 kHz )


## Test Circuit (Encode)



Note 1: 1 nF capacitors from pin 3 and pin 7 to ground may be required on older devices.
Note 2: Where not otherwise specified, component tolerances are $\pm 10 \%$.
Note 3: For LM1112AN use $2 \%$ components for C304, R303, R305. ( $5 \%$ components may cause errors up to $\pm 0.3 \mathrm{~dB}$.)

## Connection Diagram



## LM1121A/LM1121B/LM1121C Dolby B-Type Noise Reduction Processor with DC Switching

## General Description

The LM1121 is a monolithic integrated circuit designed to realize the Dolby B-type noise reduction system. It features two separate inputs and outputs for encode and decode signal paths. Both the mode selection and noise reduction switches are internal and controlled by external DC voltage levels.

## Features

- DC switching of both encode/decode and noise reduction ON/OFF
- Separate inputs and outputs for encode and decode
- Full-wave detector circuit
- Very close matching to standard Dolby characteristics, $\pm 0.5 \mathrm{~dB}$
- Very low signal/noise ratio - 74 dB encode (CCIR/ARM), 82 dB decode
- Very high signal handling capability, $>20 \mathrm{~dB}\left(\mathrm{~V}_{\mathrm{S}}=20 \mathrm{~V}\right)$ for operation with metal tape


## Connection Diagram



## Switching Truth Tables

Pin 10	Mode
High	Encode
Open	Decode
Low	Decode


Pin 7	Noise Reduction
High	Off
Open	On
Low	On

Switching level $=1.6 \mathrm{~V}$ (wrt negative supply)

[^60]
## Absolute Maximum Ratings

Supply Voltage
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

24 V
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

## Electrical Characteristics

$\left(V_{S}=12 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) N.B. 0 dB refers to Dolby level and is 580 mVrms measured at TP1.

Parameter	Conditions	LM1121A			LM1121B			LM1121C			Units
		Min	Tyn	Max	Min	Tvo	Max	Min	Tyd	Max	
Supply Voltage Range		5		20	5		20	5		20	V
Supply Current			14			14		14			mA
Voltage Gain Pins 9-14 and 11-15	1 kHz, Noise Reduction OFF	25.2	25.7	26.2	24.7	25.7	26.7	24.2	25.7	27.2	dB
Voltage Gain Pin 9 or 11-12	1 kHz , Pin 12 Open		19.7			19.7			19.7		dB
Signal/Noise Ratio Encode	Pin 14, $\mathrm{R}_{\mathrm{S}}=10 \mathrm{k}$	71.5	74		71	74		69	74		dB
		71.5	77		7	77		69	77		dB
Decode	Pin 15, $\mathrm{R}_{\mathrm{S}}=10 \mathrm{k}$		83			83			83		dB
NR OFF	Pins 14 and 15										
	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k}$		83			83			83		dB
	$\mathrm{R}_{\mathrm{S}}=1 \mathrm{k}$		85			85			85		dB
Encode	$10 \mathrm{kHz}, 0 \mathrm{~dB}$	0	0.5	1.0	-0.2	0.5	1.2	-0.5	0.5	1.5	dB
Characteristics	$1.3 \mathrm{kHz},-20 \mathrm{~dB}$	-16.2	-15.7	-15.2	-16.7	-15.7	-14.7	-17.2	-15.7	-14.2	dB
	$5 \mathrm{kHz},-20 \mathrm{~dB}$	-17.3	-16.8	-16.3	-17.8	-16.8	-15.8	-18.3	-16.8	-15.3	dB
	$3 \mathrm{kHz},-30 \mathrm{~dB}$	-21.7	-21.2	-20.7	-22.2	-21.2	-20.2	-22.7	-21.2	-19.7	dB
	$5 \mathrm{kHz},-30 \mathrm{~dB}$	-22.3	-21.8	-21.3	-22.8	-21.8	-20.8	-23.3	-21.8	-20.3	dB
	$10 \mathrm{kHz},-30 \mathrm{~dB}$	-24.0	-23.5	-23.0	-24.5	-23.5	-22.5	-25.0	-23.5	-22.0	dB
	$10 \mathrm{kHz},-40 \mathrm{~dB}$	$-30.1$	-29.6	-29.1	-30.3	-29.6	-28.9	-30.6	-29.6	-28.6	dB
Variation in Encode	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$		$< \pm 0.5$			$< \pm 0.5$			$< \pm 0.5$		dB
Characteristics with Temperature											
Distortion	$1 \mathrm{kHz}, 0 \mathrm{~dB}$		0.03	0.1		0.03	0.1		0.03	0.2	\%
	$10 \mathrm{kHz}, 10 \mathrm{~dB}$		0.2	0.3		0.2	0.5		0.2	0.7	\%
Signal Handling	1 kHz , Dist $=0.3 \%$										
	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$		6.5			6.5			6.5		
	$V_{S}=7 \mathrm{~V}$		10.5			10.5			10.5		dB
	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$	14.0	16.0		14.0	16.0		14.0	16.0		dB
	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}$		21.0			21.0			21.0		dB
Switching Transients Measured at Pin 14 or 15 Encode/ Decode/Encode											
			20			20			20		mV
NR OFF/ON/OFF			20			20			20		mV
Input Resistance	Pins 9 and 11	50	65	80	50	65	80	50	65	80	$\mathrm{k} \Omega$
	Pin 13	4.3	5.6	6.9	4.3	5.6	6.9	4.3	5.6	6.9	$k \Omega$
Output Resistance	Pin 12	1.8	2.4	3.0	1.8	2.4	3.0	1.8	2.4	3.0	$\mathrm{k} \Omega$
	Pins 14 and 15		30	55		30	55		30	55	$\Omega$

## Schematic Diagram



## Audio/Radio Circuits PRELIMINARY DO

## LM1131A/LM1131B/LM1131C Dual Dolby B-Type Noise Reduction Processor

## General Description

The LM1131 is a monolithic integrated circuit specifically designed to realize the Dolby B-type noise reduction system.

The circuit includes two completely separate noise reduction processors and will operate in both encode and decode modes. It is ideal tor stereo applications in compact equipment or for mono applications in 3-head equipment where two processors with very closely matched internal gains are required.

## Features

- Stereo Dolby noise reduction with one IC
- Wide supply voltage range, 5V-20V

■ Very high signal/noise ratio, 79 dB encode, 90 dB decode (CCIR/ARM)
图 Very close gain matching for 3-head recorders

- Close matching to standard Dolby characteristics

图 Very low temperature drift of Dolby characteristics

- High signal handling capability, $>+20 \mathrm{~dB}\left(\mathrm{~V}_{\mathrm{S}}=20 \mathrm{~V}\right)$
- Full-wave rectifier in both channels
- Operates with both single and split supply voltages
- Excellent transient response characteristics
- Minimal input switch-on transients

Reduced number of external components per channel

- Improved input protection

Available to licensees of Dolby Laboratories Licensing Corporation, San Francisco, from whom licensing and application information must be obtained.
Dolby and the double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.

Schematic Diagram (1 channel shown only)


## Absolute Maximum Ratings

Supply Voltage

$$
\begin{array}{r}
24 \mathrm{~V} \\
-20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
\text { to } 300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. $\mathrm{N} . \mathrm{B} .0 \mathrm{~dB}$ refers to Dolby level and is 580 mV , measured at TP1 and TP2.


## Typical Performance Characteristics

Supply Current vs Supply Voltage
( $1 \mathrm{kHz}, 0 \mathrm{~dB}$; NR ON)


Signal to Noise Ratio vs Source Impedance Encode Mode (CCIRIARM)


Back to Back Response Error vs Frequency and Supply Voltage (Standard Dolby Encoder)


Signal Handling vs Supply Voltage


Gain vs Frequency (NR OFF)


Back to Back Response Error vs Frequency and Temperature (Encode Temperature $+\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )


## Application Notes

## SUPPLY VOLTAGE

LM1131 may operate with either single or split supply voltages.

## Single Supply Voltage

Pin 1 is connected to ground, pin 20 to $V_{S}$.
Pins 8 and 13 are internally generated reference voltages set to approximately half-supply. They should be connected together externally.
A $220 \mu \mathrm{~F}$ capacitor must be connected between pins 8 and 13 and ground. Device turn-on time is delayed by the rise time of pins 8 and 13.

## Split Supply Voltages

Pin 1 is connected to the negative supply, pin 20 to the positive supply. Pins 8 and 13 are connected to 0 V and no capacitor is required. Device turn-on time is delayed only be the rise times of the supply voltages.

## SIGNAL GAIN AND FILTERING

It should be noted that LM1131 has only one internal preamplifier, $A B$, with no provision for interconnection of a low pass filter to remove bias or multiplex tones. In addition, main chain gain has been reduced by 6 dB in comparison with LM1112/LM1011.

If a low pass filter is required it should be connected at the input of the LM1131. Pre-adjustment of Dolby input level may then be performed, at the input of LM1131 if required.

## NOISE REDUCTION SWITCH

Noise reduction OFF is normally effected by means of a mechanical switch which open-circuits the sidechain input.

An alternative method which permits the control of NR OFF by means of a DC voltage is shown in Figure 1. The DC control voltage forces the internal impedance to a minimum value and heavily attenuates the sidechain input. When using this circuit the following points should be noted:
a) Signal boost in encode mode (signal cut in decode) is reduced by increasing DC voltages on pins 3 and 18. A voltage of approximately 3 V above signal ground is adequate to achieve NR OFF.
b) Supply current may be increased significantly by high pin $3 / 18$ forcing voltages. Thus, values for V3 and R3 should ideally be chosen such that pin $3 / 18$ forced voltage is only $3 \mathrm{~V}-5 \mathrm{~V}$ greater than signal ground. Maximum permissible voltage on pin $3 / 18$ is equal to supply voltage.
c) When electrical NR switching is used in this way, NR OFF signal level is slightly affected by the restriction that the internal variable impedance cannot achieve zero impedance. Thus, at $10 \mathrm{kHz}-10 \mathrm{~dB}$, a residual boost in encode (or cut in decode) of approximately 0.4 dB remains. At low frequencies this value reduces to insignificant levels.

This is not the case for mechanioal NR switching.


FIGURE 1. LM1131 Decode Processor with Electrical NR Switch (1 Channel Shown)

Test Circuit Encode Mode (components shown for channel 1 only)


## Connection Diagram

Dual-In-Line Package


Order Number LM1131AN, LM1131BN
or LM1131CN See NS Package N20A

National

## LM1310 Phase-Locked Loop FM Stereo Demodulator

## General Description

The LM1310 is an integrated FM stereo demodulator using phase locked loop techniques to regenerate the 38 kHz subcarrier. A second version also available is the LM1800 (see separate data sheet) which adds superb power supply rejection and buffered (emitter follower) outputs to the basic phase locked decoder circuit. The features available in these integrated circuits make possible a system delivering high fidelity sound within the cost restraints of inexpensive stereo receivers.

## Features

- Automatic stereo/monaural switching
- No coils, all tuning performed with single potentiometer
- Wide supply operating voltage range
- Excellent channel separation


## Connection Diagram



Order Number LM1310N
See NS Package N14A

Typical Application


Typical Performance Characteristics


## Absolute Maximum Ratings

Supply Voltage	18 V
Power Dissipation (Note 2)	715 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$


Operating Supply Voltage Range	10 V to 18 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Lamp "OFF"		18		mA
Lamp Driver Saturation	100 mA Lamp Current		1.3		V
Lamp Driver Leakage			1.0		nA
Pilot Level for Lamp 'ON"	Pin 11 Adjusted to 19.00 kHz		15	20	mVrms
Pilot Level for Lamp "OFF"	Pin 11 Adjusted to 19.00 kHz	3.0	7.0		mVrms
Composite Input	Maxımum for THD $<0.5 \%$	2.8			Vp-p
Monaural Input	Maximum for THD $<1.0 \%$	2.8			Vp.p
Stereo Channel Separation		30	40		dB
	2.0Vp-p Composite with 10\% Pilot		45		dB
Monaural Channel Unbalance	Pilot "OFF'		0.3	1.5	dB
Recovered Audio			485		mVrms
Total Harmonic Distortion			0.3	,	\%
Total Harmonic Distortion	2.0 Vp-p Composite with 10\% Pilot		0.15		\%
Capture Range	50 mVrms of Pilot		$\pm 3.5$		$\%$ of $\mathrm{f}_{\text {}}$
Ultrasonic Frequency Rejection	19 kHz		35		$d B$
	38 kHz		45		dB
Dynamic Input Resistance		20	50		$k \Omega$
SCA Rejection	$f=67 \mathrm{kHz}$; Measure 9 kHz Beat Note with 1 kHz Modulation "OFF"		75		dB

Note 1: Unless otherwise noted: $\mathrm{V}_{C C}=+12 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$. The input signal is a $2.8 \mathrm{Vp}-\mathrm{p}$ standard multiplex composite signal using $10 \%$ Pilot and with $L$ or R-channel only modulated at 1.0 kHz .
Note 2: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a themal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 3: The VCO can be defeated (sometimes desirable when using an AM-FM receiver in the AM mode) by returning pin 14 to ground through a $2.2 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics (Continued)


## LM1391 Phase-Locked Loop Block

## General Description

The LM1391 integrated circuit has been designed primarily for use in the horizontal section of TV receivers, but may find use in other low frequency signal processing applications. It includes a stable VCO, linear pulse phase detector, and variable duty cycle output driver.

## Features

- Internal active regulator for improved supply rejection
- Uncommitted collector of output transistor
- Output transistor with low saturation and high voltage swing
- APC of the oscillator with a synchronizing signal
- DC controlled output duty cycle
- $\pm 300 \mathrm{~Hz}$ typical pull-in
- Linear balanced phase detector
- Low thermal frequency drift
- Small static phase error
- Adjustable dc loop gain


## Schematic and Connection Diagrams




## Absolute Maximum Ratings

Supply Current
Output Voltage
Output Current
Sync Input Voltage (Pin 3)
Flyback Input Voltage (Pin 4 )

40 mADC
40 VDC
30 mADC $5.0 \mathrm{Vp} \cdot \mathrm{p}$ $5.0 \mathrm{Vp}-\mathrm{p}$

Power Dissipation (Package Limitation) Plastic Package (Note 1) Operating Temperature Range (Ambient) Storage Temperature Range

1250 mW
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see test circuit, all switches in position 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Regulated Voltage (Pin 6)	$\mathrm{I}_{6}=22 \mathrm{mADC}$	8.0	8.6	9.2	$V_{\text {DC }}$
Supply Current (Pin 6)			20		mADC
Collector-Emitter Saturation Voltage of Output Transistor (Pin 1).	$\mathrm{IC}^{\prime}=20 \mathrm{~mA}$		0.30	0.40	$V_{\text {DC }}$
Pin 4 Voltage			2.0		$V_{\text {DC }}$
Oscillator Pull-in Range	Adjust RH		$\pm 300$		Hz
Oscillator Hold-in Range	Adjust RH		$\pm 900$		Hz
Static Phase Error	$\Delta f=300 \mathrm{~Hz}$		0.5		$\mu \mathrm{s}$
Free-running Frequency Supply Dependance	S1 in position 2		$\pm 3.0$		$\mathrm{Hz} / \mathrm{V}_{\text {DC }}$
Phase Detector Leakage (Pin 5)	All switches in position 2			$\pm 1.0$	$\mu \mathrm{A}$
Sync Input Voltage (Pin 3)	.	2.0		5.0	$V p-p$
Sawtooth Input Voltage (Pin 4)		1.0		3.0	$\vee \mathrm{p}$-p
Maximum Oscillator Frequency			500		kHz

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

## Typical Performance Characteristics



## Application Information

The following equations may be considered when using the LM1391 in a particular application.


Output Duty Cycle vs $\mathbf{V}_{\mathbf{M}}$ Voltage

$R 201=R 301=\frac{V_{C C}-8.6}{0.02} \Omega$
$\mathrm{f}_{\mathrm{O}} \cong \frac{1}{0.6 \mathrm{R}_{\mathrm{o}} \mathrm{C}_{\mathrm{O}}} \quad \mathrm{Hz} \quad 1.5 \mathrm{k} \leq \mathrm{R}_{\mathrm{O}}<51 \mathrm{k}$
$R 204 \cong 10 R_{0}$
$\mathrm{C} 203=\mathrm{C} 204 \cong \frac{1}{600 \mathrm{f}_{\mathrm{o}}(\mathrm{Hz})} \cdot \mathrm{F}$

DC Loop Gain $\quad \mu \beta \cong 3.2 \times 10^{-5} \mathrm{R}_{0} f_{o} \quad \mathrm{~Hz} / \mathrm{rad}$
Noise Bandwidth

$$
f_{n n} \cong \frac{1+2 \pi \frac{R X^{2}}{R Y} C_{c} \mu \beta}{4 R_{X} C_{c}} \mathrm{~Hz}
$$

Damping Factor

$$
\mathrm{K} \cong \frac{\pi}{2} \frac{\mathrm{RX}^{2}}{\mathrm{RY}_{\mathrm{Y}}} \mathrm{C}_{\mathrm{c}} \mu \beta
$$

## Test Circuit



## Typical Applications



FIGURE 1. TV Hörizontal Processor


FIGURE 2. General Purpose Phase-Lock Loop (See Applications Information)


FIGURE 3. Variable Duty Cycle Oscillator
(See Applications Information)

Audio/Radio Circuits

LM1596/LM1496 Balanced Modulator-Demodulator

## General Description

The LM1596/LM1496 are double balanced modu-lator-demodulators which produce an output voltage proportional to the product of an input (signal) voltage and a switching (carrier) signal. Typical applications include suppressed carrier modulation, amplitude modulation, synchronous detection, FM or PM detection, broadband frequency doubling and chopping.

The LM1596 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM1496 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+7 \underline{0}^{\circ} \underline{O}$ tomnerature range

## Features

- Excellent carrier suppression

65 dB typical at 0.5 MHz 50 dB typical at 10 MHz

- Adjustable gain and signal handling
- Fully balanced inputs and outputs
- Low offset and drift
- Wide frequency response up to 100 MHz


## Schematic and Connection Diagrams



Note: Pin 10 is connected electrically to the case through the device substrate.
Order Number LM1496H or LM1596H See NS Package HOBC


Order Number LM1496N See NS Package N14A

Typical Application and Test Circuit


## Absolute Maximum Ratings

Internal Power Dissipation (Note 1)	500 mW
Applied Voltage (Note 2)	30 V
Differential Input Signal $\left(V_{7}-V_{8}\right)$	$\pm 5.0 \mathrm{~V}$
Differential Input Signal $\left(V_{4}-V_{1}\right)$	$\pm\left(5+I_{5} R_{e}\right) \mathrm{V}$
Input Signal $\left(V_{2}-V_{1}, V_{3}-V_{4}\right)$	5.0 V
Bias Current ( $I_{5}$ )	12 mA
Operating Temperature Range LM1596	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
SM1496	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified, see test circuit)

- PARAMETER	CONDITIONS	LM1596			LM1496			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Carrier Feedthrough	$\begin{aligned} \mathrm{V}_{\mathrm{C}} & =60 \mathrm{mVrms} \text { sine wave } \\ \mathrm{f}_{\mathrm{C}} & =1.0 \mathrm{kHz} \text {, offset adjusted } \end{aligned}$		40			40		$\mu \mathrm{Vrms}$
	$\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV} \mathrm{mms}$ sine wave $\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}$, offset adjusted		140			140		$\mu \mathrm{V}$ rms
	$\begin{aligned} & V_{C}=300 \mathrm{mV} \\ & \mathrm{f}_{\mathrm{Cp}}=1.0 \mathrm{kquare} \text { wave } \\ & \mathrm{f}^{2} \text { offset adjusted } \end{aligned}$		0.04	0.2		0.04	0.2	mV rms
	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=300 \mathrm{mV} \\ & \mathrm{f}_{\mathrm{Cp}}=1.0 \mathrm{kHz} \text { square wave } \\ & \text { of fiet not adjusted } \end{aligned}$		20	100		20	150	mVrms
Carrier Suppression	$\begin{aligned} & \mathrm{f}_{\mathrm{S}}=10 \mathrm{kHz}, 300 \mathrm{mV} \mathrm{rms} \\ & \mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}, 60 \mathrm{mV} \mathrm{~ms} \text { sine wave } \\ & \text { offset adjusted } \end{aligned}$	50	65		50	65		dB
'	$\begin{aligned} & \mathrm{f}_{\mathrm{S}}=10 \mathrm{kHz}, 300 \mathrm{mVrms} \\ & \mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}, 60 \mathrm{mV} \mathrm{rms} \text { sine wave } \\ & \text { offset adjusted } \end{aligned}$		50			50		dB
Transadmittance Bandwidth	$R_{L}=50 \Omega$   Carrier Input Port, $\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV}$ rms sine wave $f_{S}=1.0 \mathrm{kHz}, 300 \mathrm{mV}$ rms sine wave		300.			300		MHz
	Signal Input Port, $\mathrm{V}_{\mathrm{S}}=300 \mathrm{mVrms}$ sine wave $\mathrm{V}_{7}-\mathrm{V}_{8}=0.5 \mathrm{Vdc}$		80			80		MHz
Voltage Gain, Signal Channel	$\begin{aligned} & V_{S}=100 \mathrm{mV} \mathrm{rms}, \mathrm{f}=1.0 \mathrm{kHz} \\ & V_{7}-V_{8}=0.5 \mathrm{dc} \end{aligned}$	2.5	3.5		2.5	3.5		V/V
Input Resistance, Signal Port	$\begin{aligned} & f=5.0 \mathrm{MHz} \\ & V_{7}-V_{8}=0.5 \mathrm{Vdc} \end{aligned}$		200			200		$k \Omega$
Input Capacitance, Signal Port	$\begin{aligned} & f=5.0 \mathrm{MHz} \\ & V_{7}-V_{8}=0.5 \mathrm{Vdc} \end{aligned}$		2.0			2.0	$\cdot$	pF
Singie Ended Output Resistance	$f=10 \mathrm{MHz}$		40			40		$k \Omega$
Single Ended Output Capacitance	$f=10 \mathrm{MHz}$		5.0			5.0		pF
Input Bias Current .	$\left(I_{1}+I_{4}\right) / 2$		12	25		12	30	$\mu \mathrm{A}$
Input Bias Current	$\left(I_{7}+I_{8}\right) / 2$		12	25		12	30	$\mu \mathrm{A}$
Input Offset Current	$\left(1_{1}-\left.\right\|_{4}\right)$		0.7	5.0		0.7	5.0	$\mu \mathrm{A}$
Input Offset Current	$\left(1_{7}-1_{8}\right)$		0.7	5.0		5.0	5.0	$\mu \mathrm{A}$
Average Temperature   Coefficient of Input Offset Current	$\begin{aligned} & \left(-55^{\circ} \mathrm{C}<\mathrm{T}_{A}<+125^{\circ} \mathrm{C}\right) \\ & \left(0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C}\right. \end{aligned}$		2.0			2.0		$\begin{aligned} & n \mathrm{nA} /^{\circ} \mathrm{C} \\ & n \mathrm{n} /{ }^{\circ} \mathrm{C} \end{aligned}$
Output Offset Current	$\left(I_{6}-I_{9}\right)$		14	50		14	60	$\mu \mathrm{A}$
Average Temperature Coefficient of Output Offset Current	$\begin{aligned} & \left(-55^{\circ} \mathrm{C}<\mathrm{T}_{A}<+125^{\circ} \mathrm{C}\right) \\ & \left(0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C}\right) \end{aligned}$		90			90		$n A{ }^{\circ} \mathrm{C}$   $n A /{ }^{\circ} \mathrm{C}$
Signal Port Common Mode Input Voltage Range	$\mathrm{f}_{\mathrm{S}}=1.0 \mathrm{kHz}$		5.0			5.0		$V_{p-p}$
Signal Port Common Mode Rejection Ratio	$V_{7}-V_{8}=0.5 \mathrm{Vdc}$		-85	t		-85		dB
Common Mode Quiescent Output Voltage			8.0		-	8.0		Vdc
Differential Output Swing Capability			8.0			8.0		$V_{p-p}$
Positive Supply Current	$\left(I_{6}+19\right)$		2.0	3.0		2.0	3.0	mA
Negative Supply Current	$\left(1_{10}\right)$		3.0	4.0		3.0	4.0	mA
Power Dissipation -			33			33		mW

Note 1: LM1596 rating applies to case temperatures to $+125^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperature above $75^{\circ} \mathrm{C}$. LM1496 rating applies to case temperatures to $+70^{\circ} \mathrm{C}$.

Note 2: Voltage applıed between pins 6-7, 8-1, 9-7, 9-8, 7-4, 7-1, 8-4, 6-8, 2-5, 3-5.

## Typical Performance Characteristics



Typical Applications (Continued)


SSB Product Detector
This figure shows the LM1596 used as a single sideband (SSB) suppressed carrier demodulator (product detector). The carrier signal is applied to the carrier input port with sufficient amplitude for switching operation. A carrier input level of 300 mV rms is optimum. The composite SSB signal is applied to the signal input port with an amplitude of 5.0 to 500 mVrms . All output signal components except the desired demodulated audio are filtered out, so that an offset adjustment is not required. This circuit may also be used as an AM detector by applying composite and carrier signals in the same manner as described for product detector operation.

Typical Applications (Continued)


Broadband Frequency Doubler

The frequency doubler circuit shown will double low-level signals with low distortion. The value of $C$ should be chosen for low reactance at the operating frequency.
Signal level at the carrier input must be less than 25 mV peak to maintain operation in the linear region of the switching differential amplifier. Levels to 50 mV peak may be used with some distortion of the output waveform. If a larger input signal is available a resistive divider may be used at the carrier input, with full signal applied to the signal input.

National

## LM1800 Phase-Locked Loop FM Stereo Demodulator

## General Description

The LM1800 is a second generation integrated FM stereo demodulator using phase locked loop techniques to regenerate the 38 kHz subcarrier. The numerous features integrated on the die make possible a system delivering high fidelity sound while still meeting the cost requirements of inexpensive stereo receivers. More information available in AN-81

## Features

- Automatic stereo/monaural switching
- 45 dB power supply rejection
- No coils, all tuning performed with single potentiometer
- Wide operating supply voltage range
- Excellent channel separation
a Emitter follower output buffers


## Connection Diagram



See NS Package N16A

## Typical Application



## Typical Performance Characteristics

Supply Ripple Rejection



## Absolute Maximum Ratings

Supply Voltage	18 V
Power Dissipation (Note 3)	715 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Supply Voltage Range	+10 V to +18 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	Lamp "off"		21	30	mA
Lamp Driver Saturation	100 mA Lamp Current		1.3	1.8	$\checkmark$
Lamp Driver Leakage			1.0		$n \mathrm{~A}$
Pilot Level for Lamp "ON"	PII! 11 Adjusted to 19.00 kHz		15	20	mVrms
Pilot Level for Lamp "OFF'	Pin 11 Adjusted to 19.00 kHz	3.0	7.0		mVrms
Stereo Lamp Hysteresis		3.0	6.0		dB
Stereo Channel Separation	100 Hz (Note 2)		40		dB
	1000 Hz (Note 2)	30	45		dB
	10000 Hz (Note 2)		45		dB
Monaural Channel Unbalance	200 mV ŕms, 1000 Hz Input		0.3	1.5	dB
Monaural Voltage Gain	200 mV rms, 400 Hz Input	140	200	260	mVrms
Total Harmonic Distortion	500 mV rms, 1000 Hz Input		0.4	1.0	\%
Total Harmonic Distortion	$500 \mathrm{mVrms}, 1000 \mathrm{~Hz}$ Input, 1800A Only		0.1	0.3	\%
Capture Range	25 mVrms of Pilot	$\pm 2.0$		$\pm 6.0$	\% of $\mathrm{f}_{\mathrm{o}}$
Supply Ripple Rejection	200 mVrms of 200 Hz Ripple	35	45		dB
Dynamic Input Resistance		20	45		$k \Omega$
Dynamic Output Resistance		900	1300	2000	$\Omega$
SCA Rejection	(Note 4)		70		dB
Ultrasonic Freq. Rejection	Combined 19 and 38 kHz , Ref. to Output		33		dB

Note 1: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}^{+}=12 \mathrm{~V}$ unless otherwise specified.
Note 2: The stereo input signal is made by summing 123 mVrms LEFT or RIGHT modulated signal with 25 mVrms of 19 kHz pilot tone, measuring all voltages with an average responding meter calibrated in rms. The resulting waveform is about 800 mVp -p.
Note 3: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 4: Measured with a stereo composite signal consistency of $80 \%$ stereo, $10 \%$ pilot and $10 \%$ SCA as defined in the FCC Rules on Broadcasting.
Note 5: VCO "OFF" curve represents the distortion attainable using good 19 kHz and 38 kHz filters.

## Typical Performance Characteristics

(Continued)


## LM1818 Electronically Switched Audio Tape System

## General Description

The LM1818 is a linear integrated circuit containing all of the active electronics necessary for building a tape recorder deck (excluding the bias oscillator). The electronic functions on the chip include: a microphone and playback preamplifier, record and playback amplifiers, a meter driving circuit, and an automatic input level control circuit. The IC features complete internal electronic switching between the record and playback modes of operation. The multipole switch used in previous systems to switch between record and playback modes is replaced by a single pole switch, thereby allowing for more flexibility and reliability in the recorder design.*
*Monaural oderation. Fiaure 9

## Features

- Electronic record/play switching
- 85 dB power supply rejection
- Motional peak level meter circuitry
- Low noise preamplifier circuitry
- 3.5 V to 18 V supply operation
- Provision for external low noise input transistor

Order Number LM1818N
See NS Package N20A

## Typical Applications



## Absolute Maximum Ratings

Supply Voltage
18 V
Package Dissipation, (Note 1)
Storage Temperature
Operating Temperature
Junction Temperature
Minimum Voltage on Any Pin
Maximum Voltage on Pins 2 and 5
Maximum Current Out of Pin 14
Lead Temperature (Soldering, 10 seconds)

715 mW
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$-0.1 \mathrm{VDC}$
0.1 VDC

5 mADC
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, See Test Circuits (Figures 2and 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage Range		3.5		18	$V_{D C}$
Supply Current	Test Circuit (Figure 2)		5	12	mA
Turn-ON Time	Externally Programmable	50	400		ms
Playback Signal to Noise	DIN Eq. ( 3180 and $120 \mu \mathrm{~s}$ ), $20-20 \mathrm{kHz}$, $R_{S}=0$, Unweighted, $V_{\text {REF }}=1 \mathrm{mV}$ at 400 Hz		74		dB
Record Signal to Noise	Flat Gain, $20-20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0$, ALC OFF, $V_{\text {REF }}=1 \mathrm{mV}$ at 1 kHz , Unweighted		69		dB
Fast Turn-ON Charging Current	Pins 16 and 17		200		$\mu \mathrm{A}$
Record and Playback Preamplifier Open Loop Voltage Gain	$f=100 \mathrm{~Hz}$		100		dB
Preamplifiers' Input Impedance			50		$k \Omega$
Preamplifiers' Input Referred PSRR	1 kHz -Flat Gain		85	,	dB
Bias Voltage on Pin 18 in Play Mode or Pin 15 in Record iviode			0.5		V
Monitor Amplifier Input Bias	Pins 11 and 12		0.5		$\mu \mathrm{A}$
Current					
Monitor Amplifier Open Loop Voltage Gain	Record or Playback, $\mathrm{f}=100 \mathrm{~Hz}$		80		dB
Monitor Outputs Current Capability	Pins 9 and 10, Source Current Available	400	750	:	$\mu A^{*}$
Monitor Amplifier's Output Swing	$R_{L}=10 \mathrm{k}, ~ A C$ Load	1.2	1.65		Vrms
THD, All Amplifiers	At $1 \mathrm{kHz}, 40 \mathrm{~dB}$ Closed Loop Gain		0.05		\%
Record-Playback Swltching Time	As in Test Circuit		50		ms
Input ALC Range	$\Delta V_{\text {IN }}$ for $\Delta V_{\text {OUT }}=8 \mathrm{~dB}$		40		dB
Input Voltage on ALC Pin for			25		mVrms
Start of ALC Action					
ALC Input Impedance			2		$k \Omega$
ALC Attack Time	$\mathrm{C} 13=10 \mu \mathrm{~F}$		7		ms
ALC Decay Time	$\mathrm{R} 17=\infty, \mathrm{C} 13$.		30		sec
Meter Output Gain	100 mV rms at 1 kHz into Pin 4		800		$m V_{\text {DC }}$
Meter Output Current Capability		2			mADC

[^61]
## Test Circuits



FIGURE 2. General Test Circuit


FIGURE 3. Noise Test Circuit


## Typical Performance Characteristics






## Application Hints

## Preamplifiers (Figure 5)

There are 2 identical preamplifiers with 1 common output pin on the IC. One amplifies low level inputs such as a microphone in the record mode and another amplifies the signal from the playback head in the playback mode. The amplifiers use a common capacitor, C6, to set the low frequency pole of the closed loop responses. On the playback amplifier, the collector of the input device is made available so that an external low noise device can be connected in critical applications. When using an external low noise transistor, pins 17 and 18 of the IC are shorted together to ensure that the internal input transistor is turned OFF and the external transistor's collector is tied to pin 19. The input and feedback connections are now made to the external input transistor. The amplifiers are stable for all gains above 5 and have a typical open loop gain of 100 dB . R8 and R9 enable C6 to be quickly charged and set the DC gain. Internal biasing provides a DC voltage independent of temperature at pin 17 se that the preamplifict DC output will remain relatively constant with temperature. Supply decoupling is provided by an internal regulator. Additional decoupling can be added for the input stages by increasing the size of the capacitor on pin 20 of the IC. A fast charging circuit is connected to the preamplifiers' input capacitors (pins 16 and 17) to decrease the turn-ON time. Larger input capacitors decrease the noise by reducing the source impedance at lower frequencies where $1 / \mathrm{f}$ noise current praduces an input noise voltage. The input resistance of the preamplifiers is typically $50 \mathrm{k} \Omega$.

## Monitor and Record Amplifiers (Figure 6)

The monitor and record amplifiers share common input and feedback connections but have separate outputs. During playback, the input signal is amplified and appears only at the playback monitor output. Because
the outputs are separate, different feedback components can be used and, as a result, totally different responses can be set. The amplifiers are stable for all closed loop gains above 3 and have an open loop gain of typically 80 dB . The outputs are capable of supplying a minimum of $400 \mu \mathrm{~A}$ into a load and swing within 500 mV of either $V_{C C}$ or ground. If more than $400 \mu \mathrm{~A}$ is needed to drive a load, an external pull-up resistor on the output of these amplifiers can increase the load driving capability.

## Automatic Level Control - ALC (Figure 7)

The automatic level control provides a constant output level for a wide range of record source input levels. The ALC works on the varying impedance characteristic of a saturated transistor. The impedance of the saturated transistor forms a voltage divider with the source impedance of a series resistor (R1 in Fiaure 9). The input signal is decreased as the ALC transistor is increasingly forward biased. The ALC transistor will be forward biased when the preamplifier's AC output (pin 14), coupled to the combination ALC-meter drive input (pin 4) reaches 40 mV peak ( 25 mVrms ). The gain of the ALC loop is such that a preamp input signal increase of 10 dB will result in a 2 dB increase on the AC output of the preamplifier. If greater than 25 mVrms is desired at the output of the preamp, a series resistor can be added between the preamp output coupling capacitor and the ALC input (pin 4). The input impedance of the ALC circuit is $2 \mathrm{k} \Omega$; therefore, if a $2 \mathrm{k} \Omega$ series resistor is added, ALC action will begin at 50 mVrms .

The ALC memory capacitor connected to pin 6 has the additional function of amplifier anti-pop control; for this reason, it is necessary that a capacitor be connected to pin 6 even if ALC is not used.


Quiescent DC Output Voltage

where $R_{E}=\frac{R 8 R 9}{R 8+R 9}$

AC Voltage Gain



FIGURE 5. Preamplifier

## Application Hints <br> (Continued)

Meter Driving-Motional Peak Level Response (Figure 7)

The meter drive output (pin 8) is capable of supplying $1-2 \mathrm{~mA}$ at a filtered $D C$ voltage that is typically equal to 10 times the RMS value of the signal applied to the ALC-meter drive input pin (pin 4). The RC network connected to pin 7 of the IC determines the memory constant of the meter circuit. It is therefore possible to store the peak input signal by giving this RC network a long time constant, or read the instantaneous signal level by giving this RC network a very short time constant (i.e., no capacitor). This memory capacitor is discharged within the integrated circuit at a discharge rate related to the DC level on the meter output pin. When the meter output pin is between $0 V_{D C}$ and $0.7 V_{D C}$ there is a $50 \mu \mathrm{~A}$ discharge current; when the
pin is between 0.7 V and 1.1 V there is no internal discharge current; and when the voltage on pin 8 is greater than 1.1 V there is a discharge equivalent to a 3.3k resistor across the memory capacitor. These different discharge rates allow the meter circuit to display fast, accurate responses on the lower portion of the meter display, slow responses in the higher portion of the meter display, and rapid discharge when the voltage is above the maximum reading the meter can display. The resistor in series with the meter can be adjusted such that the previously mentioned responses coincide with the proper points ( 0 VU and +3 VU ) on the meter scale.


FIGURE 6. Monitor Amplifier


FIGURE 7. Auto Level-Meter Circuit

## Anti-Pop Circuitry (Figure 8)

The capacitor on pin 3 is used in a time delay system in conjunction with C13, the ALC capacitor, to suppress pops when switching between record and playback. Figure 8 illustrates how this is done. The output amplifier, either record or playback, is shut off prior to switching and carefully rebiased after switching takes place. It is therefore required that a proper ratio is selected between the ALC capacitor and the logic input RC time constant. The ALC capacitor must be discharged to 0.7 V within the time it takes the logic input capacitor to: 1) charge from $V_{C C} / 2$ to $0.7 \mathrm{~V}_{\mathrm{CC}}$ when switching from record to playback, or 2) discharge from $\mathrm{V}_{\mathrm{CC}} / 2$ to $0.3 \mathrm{~V}_{\mathrm{CC}}$ when switching from playback to record. These times would normally be similar; however, the ALC capacitor can be charged to a different initial value depending upon the input to the ALC circuit. The maximum value to which the ALC memory capacitor will normally charge is 3.2 V , therefore, the maximum time aiiuved iur uisuliarying CiO is given by :

$$
\begin{aligned}
\mathrm{t} 1 & =\frac{(\mathrm{C} 13 \times \Delta \mathrm{V})}{\mathrm{I}_{1}}=\mathrm{C} 13 \frac{(3.2 \mathrm{~V}-0.7 \mathrm{~V})}{350 \mu \mathrm{~A}} \\
& =\mathrm{C} 13 \times 7.2 \times 10^{4} \\
\text { If } \mathrm{C} 13 & =10 \mu \mathrm{~F}, \mathrm{t} 1=72 \mathrm{~ms}
\end{aligned}
$$

It it now necessary to determine the minimum value for the R/P logic capacitor. This is done by computing the time between the 2 voltage switching points using the exponential equations for a single RC network.

$$
\begin{aligned}
& \mathrm{t} 2=\mathrm{R} 13 \mathrm{C} 11 \ln \left[\frac{V_{C C}}{0.3 V_{C C}}\right]- \\
& \mathrm{R} 13 \mathrm{C} 11 \ln \left[\frac{V_{\mathrm{CC}}}{0.5 V_{C C}}\right]=0.51 \mathrm{R} 13 \mathrm{C} 11
\end{aligned}
$$

To be sure that C 13 is completely discharged, let $\mathrm{t} 2>\mathrm{t} 1$.
$R 13 \mathrm{C} 11>\frac{\mathrm{t} 1}{0.51}=\frac{(72 \mathrm{~ms})}{0.15}=141 \mathrm{~ms}$
If C11 $=10 \mu \mathrm{~F}, \mathrm{R} 13=15 \mathrm{k} \Omega$

R13 should be kept to a value less than $50 \mathrm{k} \Omega$ to insure that bias current existing from pin 3 does not cause an offset voltage above 200 mV . Typically this bias current is less than $3 \mu \mathrm{~A}$.

## Record Playback Switch

When the voltage on pin 3 of the IC is greater than $0.5 \mathrm{~V}_{\mathrm{CC}}$, the internal record-playback switch switches into the playback mode. During playback the record preamplifier remains partially biased but the input signal to this preamp does not appear at the preamplifier output. In addition, during the playback mode, the record monitor output (pin 9) is disabled and the ALC circuit operates to minimize the signal into the record preamp input. The meter circuit is operational in the playback as well as the record mode. Similarly, during the record mode, the playback preamp input is ignored and the nlayback monitor output is disabled. In addition, a pin is available to hold one side of the record head at ground potential while sinking up to $500 \mu \mathrm{~A}$ of AC bias and record current.


FIGURE 8A. Anti-Pop Circuit


FIGURE 8B. Waveform for Anti-Pop Circuit

## External Components

(Refer to Figure 9, Monaural Application Circuit)

COMPONENT	EXTERNAL COMPONENT FUNCTION	NORMAL RANGE of VALUE
R1	Used in conjunction with varying impedance of pin 5, forming a resistor divider network to reduce input level in automatic level control circuit	$500 \Omega-20 \mathrm{k} \Omega$
C2	Forms a noise reduction system by varying bandwidth as a function of the changing impedance on pin 5 . With a small input signal, the bandwidth is reduced by R1 and C2. As the input level increases, so does the bandwidth.	$0.01 \mu \mathrm{~F}-0.5 \mu \mathrm{~F}$
C1, C3	Coupling capacitors. Because these are part of the source impedance, it is important to use the larger values to keep low frequency source impedance at a minimum.	$0.5 \mu \mathrm{~F}-10 \mu \mathrm{~F}$
C4	Radio frequency interference roll-off capacitor	$100 \mathrm{pF}-300 \mathrm{pF}$
$\begin{aligned} & \text { R2 } \\ & \text { R3 } \\ & \text { R4 } \\ & \text { C5 } \end{aligned}$	Playback response equalization. C5 and R3 form a pole in the amplifier response at 50 Hz . C5 and R 4 form a zero in the response at 1.3 kHz for $120 \mu \mathrm{~s}$ equalization and 2.3 kHz for $70 \mu \mathrm{~s}$ equalization.	$\begin{aligned} & 50 \Omega-200 \Omega \\ & 47 \mathrm{k} \Omega-3.3 \mathrm{M} \Omega \\ & 2 \mathrm{k} \Omega-200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { R5 } \\ & \text { R6 } \\ & \hline \end{aligned}$	Microphone preamplifier gain equalization	$\begin{aligned} & 50 \Omega-200 \Omega \\ & 5 \mathrm{k} \Omega-200 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { R7 } \\ & \text { R8 } \\ & \text { R9 } \\ & \text { C6 } \\ & \text { C7 } \\ & \hline \end{aligned}$	DC feedback path. Provides a low impedance path to the negative input in order to sink the $50 \mu \mathrm{~A}$ negative input amplifier current. C6, R9, R7 and C7 provide isolation from the output so that adequate gain can be obtained at 20 Hz . This 2-pole technique also provides fast turn-ON settling time.	$\begin{aligned} & 0-2 \mathrm{k} \Omega \\ & 200 \Omega-5 \mathrm{k} \Omega \\ & 1 \mathrm{k} \Omega--30 \mathrm{k} \Omega \\ & 200 \mu \mathrm{~F}-1000 \mu \mathrm{~F} \\ & 0-100 \mu \mathrm{~F} \end{aligned}$
C8	Preamplifier output to monitor amplifier input coupling	$0.05 \mu \mathrm{~F}-1 \mu \mathrm{~F}$
C9	ALC coupling capacitor. Note that ALC input impedance is $2 \mathrm{k} \Omega$	-0.1 $\mu \mathrm{F}-5 \mu \mathrm{~F}$
$\begin{aligned} & \text { R10 } \\ & \text { R11 } \\ & \text { R12 } \\ & \text { C10 } \\ & \hline \end{aligned}$	These components bias the monitor amplifier output to half supply since the amplifier is unity gain at DC. This allows for maximum output swing on a varying supply.	$\begin{aligned} & 10 \mathrm{k} \Omega-100 \mathrm{k} \Omega \\ & 10 \mathrm{k} \Omega-100 \mathrm{k} \Omega \\ & 10 \mathrm{k} \Omega-100 \mathrm{k} \Omega \\ & 1 \mu \mathrm{~F}-100 \mu \mathrm{~F} \end{aligned}$
$\begin{aligned} & \text { C11 } \\ & \text { R13 } \\ & \hline \end{aligned}$	Exponentially falling or rising signal on pin 3 determines sequencing, time delay, and operational mode of the record/play anti-pop circuitry. See anti-pop diagram.	$\begin{aligned} & 0-10 \mu \mathrm{~F} \\ & 0-50 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \text { R14 } \\ & \text { R15 } \\ & \text { R16 } \\ & \text { C12 } \\ & \hline \end{aligned}$	R16, R14 and C12 determine monitor amplifier response in the play mode. R15, R14 and C12 determine monitor amplifier response in the record mode.	$\begin{aligned} & 1 \mathrm{k}-100 \mathrm{k} \\ & 30 \mathrm{k} \Omega-3 \mathrm{M} \Omega \\ & 30 \mathrm{k} \Omega-3 \mathrm{M} \Omega \\ & 0.1 \mu \mathrm{~F}-20 \mu \mathrm{~F} \\ & \hline \end{aligned}$
$\begin{array}{r} \mathrm{C} 13 \\ \text { R17 } \\ \hline \end{array}$	Determines decay response on ALC characteristic and reduces amplifier pop	$\begin{aligned} & 5 \mu \mathrm{~F}-20 \mu \mathrm{~F} \\ & 100 \mathrm{k}-\infty \end{aligned}$
$\begin{aligned} & \text { C14 } \\ & \text { R18 } \end{aligned}$	Determines time constant of meter driving circuitry	$\begin{aligned} & 0.1 \mu \mathrm{~F}-10 \mu \mathrm{~F} \\ & 100 \mathrm{k}-\infty \end{aligned}$
R19	Meter sensitivity adjust	$10 \mathrm{k} \Omega-100 \mathrm{k} \Omega$
C15	Record output DC blocking capacitor	$1 \mu \mathrm{~F}-10 \mu \mathrm{~F}$
C16	Play output DC blocking capacitor	$0.1 \mu \mathrm{~F}-10 \mu \mathrm{~F}$
$\begin{aligned} & \mathrm{C} 17 \\ & \text { R21 } \\ & \text { R22 } \\ & \hline \end{aligned}$	Changes record output response to approximate a constant current output in conjunction with record head impedance resulting in proper recording equalization	$\begin{aligned} & 500 \mathrm{pF}-0.1 \mu \mathrm{~F} \\ & 5 \mathrm{k} \Omega-100 \mathrm{k} \Omega \\ & 5 \mathrm{k} \Omega-100 \mathrm{k} \Omega \\ & \hline \end{aligned}$
C18	Preamplifier supply decoupling capacitor. Note that large value capacitor will increase turn-ON time	$0.1 \mu \mathrm{~F}-500 \mu \mathrm{~F}$
C19	Supply decoupling capacitor	$100 \mu \mathrm{~F}-1000 \mu \mathrm{~F}$
C20	Decouples bias oscillator supply	$10 \mu \mathrm{~F}-500 \mu \mathrm{~F}$
R23	Allows bias level adjustment	$0-1 \mathrm{k} \Omega$
R24	Adjusts DC erase current in DC erase machines (for AC erase, "Stereo Application Hook-up")	
$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{C} 21 \\ & \hline \end{aligned}$	Optional bias trap	$\begin{aligned} & 1 \mathrm{mH}-30 \mathrm{mH} \\ & 100 \mathrm{pF}-2000 \mathrm{pF} \end{aligned}$
C22	Bias Roll-Off	$0.001 \mu \mathrm{~F}-0.01 \mu \mathrm{~F}$
H1	Record/play head ${ }^{\prime}$	$\begin{aligned} & 100 \Omega-500 \Omega ; 70 \mathrm{mH}- \\ & 300 \mathrm{mH} \end{aligned}$
H2	Erase head (DC type, AC optional)	$10 \Omega-300$ S

Typical Applications (Continued)


FIGURE 9A. Monaural Application Circuit


FIGURE 9B. Level Diagram for Monaural Application Circuit
$\pi$
National Semiconductor

## LM1837 Low Noise Preamplifier for Autoreversing Tape Playback Systems

## General Description

The LM1837 is a dual autoreversing high gain tape preamplifier for applications requiring optimum noise performance. It has forward (left, right) and reverse (left, right) inputs which are selectable through a high impedance logic pin. It is an ideal choice for a tape playback amplifier when a combination of low noise, autoreversing, good power supply rejection, and no power-up transients are desired. The application also provides transient-free muting with a single pole grounding switch.

## Features

- Programmable turn-on delay
- Transient-free power-up - no pops
- Transient-free muting

■ Low noise - $0.6 \mu \mathrm{~V}$ CCIR/ARM in a DIN circuit referenced to gain at 1 kHz

- Low voltage battery operation - 4V
- Wide gain bandwidth due to broadband two amplifier approach - $76 \mathrm{~dB} @ 20 \mathrm{kHz}$
- High power supply rejection - 95 dB
- Low distortion-0.03\%
- Fast slew rate $-6 \mathrm{~V} / \mu \mathrm{s}$
- Short circuit protection
- Internal diodes for diode switching applications
- Low cost external parts

■ Excellent low frequency response

- Prevents "click" from being recorded onto the tape during power supply cycling in tape playback applications
- High impedance logic pin for forward/reverse switching


FIGURE 1. Autoreversing Tape Playback Application

## Absolute Maximum Ratings

Supply Voltage	18 V	Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Voltage on Pins 1 and 18	18 V	Minimum Voltage on Any Pin	-0.1 V CC
Package Dissipation (Note 1)	1390 mW	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		

## Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right.$, see Test Circuit, Figure 2)

Parameter	Conditions	Min	Typ	Max	Units
Operating Supply Voltage Range	R5 Removed from Circuit for Low Voltage Operation	4		18	V
Supply Current	$V_{C C}=12 \mathrm{~V}$		9	15	mA
Total Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=0.3 \mathrm{mV}$, Pins 2 and 17, Figure 2		0.03		\%
THD + Noise (Note 2)	$f=1 \mathrm{kHz}, \mathrm{V}_{\text {Out }}=1 \mathrm{~V}$, Pins 2 and 17, Figure 2		0.10	0.25	\%
Power Supply Rejection	Input Ref. $f=1 \mathrm{kHz}, 1 \mathrm{Vrms}$	80	95		dB
Channel Separation (Note 3)	$\mathrm{f}=1 \mathrm{kHz}$, Output $=1 \mathrm{Vrms}$, Output to Output				dB
Left to Right		40	60		dB
Forward to Reverse		40	60		dB
Signal-to-Noise (Note 4)			58		dB
	CCIRIARM (Note 5)		62		dB
	A. Weighted		64		dB
	CCIR, Peak (Note 6)		52		dB
Noise	Output Voltage CCIR/ARM (Note 5)		120	200	$\mu \mathrm{V}$
Input Amplifiers					
Input Bias Current			0.5	2.0	$\mu \mathrm{A}$
Input Impedance	$\mathrm{f}=1 \mathrm{kHz}$	150			k $\Omega$
AC Gain		27	28	29	dB
AC Gain İmbalance			$\pm 0.15$	$\pm 0.5$	dB
DC Output Voltage		2.1	2.5	2.9	V
DC Output Voltage Mismatch	Pins 5 and 14	-200	$\pm 30$	200	mV
Output Source Current	Pins 5 and 14	2	10		mA
Output Sink Current	Pins 5 and 14	300	600		$\mu \mathrm{A}$
Logic Level					
Forward				0.5	V
Reverse		2.2			V
Logic Pin Current			2	6	$\mu \mathrm{A}$
DC Voltage Change at Pins 5 and 14	Change Logic State	-100	$\pm 20$	100	mV
Output Amplifiers					
Closed Loop Gain	Stable Operation	5			VIV
Open Loop Voltage Gain	DC		100		dB
Gain Bandwidth Product			5		MHz
Slew Rate			6		$\mathrm{V} / \mu \mathrm{s}$
Input Offset Voltage			2	5	mV
Input Offset Current			20	100	nA
Input Bias Current			250	500	nA
Output Source Current	Pin 2 or 17	2	10		mA
Output Sink Current	Pin 2 or 17	400	900		$\mu \mathrm{A}$
Output Voltage Swing	Pin 2 or 17		11		Vp-p
Output Diode Leakage	Voltage on Pins 1 and $18=18 \mathrm{~V}$		0	10	$\mu \mathrm{A}$

[^62]Typical Performance Characteristics

Input Amplifier THD vs Input Level


Spot Noise Voltage vs Frequency


Turn-On Delay vs
Component Values and Gain


Input Amplifier Gain and Phase vs Frequency


Spot Noise Current vs Frequency


Output Amplifier Open Loop
Gain and Phase vs Frequency


Total Harmonic Distortion vs Frequency




Forward to Reverse
Channel Separation vs
Frequency


Right to Left Channel Separation vs Frequency


## Connection Diagram

## Dual-In-Line Package



## External Components (Figure 1)

## Component <br> R1, C2

R2, R3

## Normal Range of Value and Function

$2 \mathrm{k} \Omega-40 \mathrm{k} \Omega, 0.1 \mu \mathrm{~F}-10 \mu \mathrm{~F}$ (low leakage) Set turn-on delay and second amplifier's low frequency pole. Leakage current in C 2 results in DC offset between the amplifier's inputs and therefore this current should be kept low. R1 is set equal to R2 such that any input offset voltage due to bias current is effectively cancelled. An input offset voltage is generated by the input offset current multiplied by the value of these resistors.
$2 \mathrm{k} \Omega-40 \mathrm{k} \Omega, 500 \mathrm{k} \Omega-10 \mathrm{M} \Omega$
Sets the DC and low frequency gain of the output amplifier. The total input offset voltage will also be multiplied by the DC gain of this amplifier. It is therefore essential to keep the input offset voltage specification in mind when employing high $D C$ gain in the output amplifier; i.e., $5 \mathrm{mV} \times 400=2 \mathrm{~V}$ offset at the output.
R4, C1 $10 \mathrm{k} \Omega$-200 k $\Omega, 0.00047 \mu \mathrm{~F}-0.01 \mu \mathrm{~F}$ Set tape playback equalization characteristics in conjunction with R3 (calculations for the component values are included in the Application Hints section).

## Component

## Normal Range of Value and Function

$2 \mathrm{k} \Omega-47 \mathrm{k} \Omega$
Biases the output diode when it is used in DC switching applications. This resistor can be excluded if diode switching is not desired.
$100 \mathrm{pF}-1000 \mathrm{pF}$
Often used to resonate with tape head in order to compensate for tape playback losses including tape head gap and eddy current. For a typical cassette tape head, the resonant frequency selected is usually between 13 kHz and 17 kHz .
$100 \mathrm{k} \Omega-10 \mathrm{M} \Omega$
Increases the output DC bias voltage from the nominal 2.5 V value (see Application Hints).

Optionally used for tape muting. The use of this resistor can also provide "no-pop" turn-off if desired (see Application Hints).

## Simplified Schematic



## Application Hints



FIGURE 2. General Test Circuit


FIGURE 3. Frequency Response of Test Circuit


FIGURE 4. Simple $32 \mathrm{~Hz}-12740 \mathrm{~Hz}$ Filter and Meter

## Application Hints (Continued)

## DISTORTION MEASUREMENT METHOD

In order to clearly interpret and compare specifications and measurements for low noise preamplifiers, it is necessary to understand several basic concepts of noise. An obvious example is the measurement of total harmonic distortion at very low input signal levels. Distortion analyzers provide outputs which allow viewing of the distortion products on an oscilloscope. The oscilloscope often reveals that the "distortion" being measured contains 1) distortion, 2) noise, and 3) 50 or 60 cycle $A C$ line hum.

Line hum can be detected by using the "line sync" on the oscilloscope (horizontal sync selector). The triggering of a constant waveform indicates that AC line pick-up is present. This is usually the result of electro-magnetic coupling into the preamplifiers input or improper test equipment grounding, which simply must be eliminated before making further measurements!
Input coupling problems can usually be corrected by any one of the following solutions: 1) shielding the source of the magnetic field (using mu metal or steel), 2) magnetically shielding the preamplifier, 3) physically moving the preamplifier far enough away from the magnetic field, or 4) using a high pass filter ( $\mathrm{f}_{\mathrm{O}}=200 \mathrm{~Hz}-1 \mathrm{kHz}$ ) at the output of the preamplifier to prevent any line signal from entering the distortion analyzer. Ground loop problems can be solved by rearranging ground connections of the circuit and test equipment.

Separating noise from distortion products is necessary when it is desired to find the actual distortion and not the signal-to-noise ratio of an amplifier. The distortion produced by the LM1837 is predominantly a second harmonic. It is for this reason that the third and higher order harmonics can be filtered without resulting in any appreciable error in the measurement. The filter also reduces the amount of noise in the measured data. Another more tedious technique for measuring THD is to use a wave analyzer. Each harmonic is measured and then summed in an rms calculation. A typical curve is plotted for distortion vs frequency using this method. A typical curve is also included using a 20 Hz to 20 kHz 4th order filter.
To specify the distortion of the LM1837 accurately and also not require unusual or tedious measurements the following method is used. The output level is set to 1 Vrms at 1 kHz (approximately 5 mV at the input). The output is filtered with the circuit of Figure 4 to limit the bandwidth of the noise and measured with a standard distortion analyzer. The analyzer has a filter that is switched in to remove line hum and ground loop pick-up as well as unrelated low frequency noise. The resulting measurement is fast and accurate.

## SIGNAL-TO-NOISE RATIO

In the measurement of the signal-to-noise ratio, misinterpretations of the numbers actually measured are common. One amplifier may sound much quieter than another, but due to improper testing techniques, they appear equal in measurements. This is often the case when comparing integrated circuit to discrete preamplifier designs. Discrete transistor preamps often "run out of gain" at high frequencies and therefore have small bandwidths to noise as indicated in Figure 5.


FIGURE 5
Integrated circuits have additional open loop gain allowing additional feedback loop gain in order to lower harmonic distortion and improve frequency response. It is this additional bandwidth that can lead to erroneous signal-to-noise measurements if not considered during the measurement process. In the typical example above, the difference in bandwidth appears small on a log scale but the factor of 10 in bandwidth ( 200 kHz to 2 MHz ) can result in a 10 dB theoretical difference in the signal-tonoise ratio (white noise is proportional to the square root of the bandwidth in a system).

In comparing audio amplifiers it is necessary to measure tha magnitude of noise in the audible bandwidth by using a "weighting" filter. ${ }^{1}$ A "weighting" filter alters the frequency response in order to compensate for the average human ear's sensitivity to certain undesirable frequency spectra. The weighting filters at the same time provide the bandwidth limiting as discussed in the previous paragraph.

The 32 Hz to 12740 Hz filter shown in Figure 4 is a simple two pole, one zero filter, approximately equivalent to a "brick wall" filter of 20 Hz to 20 kHz . This approximation is absolutely valid if the noise has a flat energy spectrum over the frequencies involved. In other words a measurement of a noise source with constant spectral density

## Application Hints (Continued)

through either of the two filters would result in the same reading. The output frequency response of the two filters is shown in Figure 6.


Typical signal-to-noise figures are listed for several weighting filters which are commonly used in the measurement of noise. The shape of all weighting filters is similar with the peak of the curve usually occurring in the $3 \mathrm{kHz}-7 \mathrm{kHz}$ region as shown in Figure 7.


In addition to noise filtering, differing meter types give different noise readings. Meter responses include: 1) rms reading, 2) average responding, 3) peak reading, and 4) quasi peak reading. Although theoretical noise analysis is derived using true rms (root mean square) based calculations, most actual measurement is taken with ARM (Average Responding Meter) test equipment.

Unless otherwise noted an average responding meter is used for all AC measurements in this data sheet.

## BASIC CIRCUIT APPROACH

The LM1837 IC incorporates a two stage broadband design which minimizes noise, attains overall DC stability and prevents audible transients during turn-on.
The first stage consists of four direct coupled preamplifiers with internal gain of $25 \mathrm{~V} / \mathrm{V}(28 \mathrm{~dB})$. Direct coupling to the tape head reduces input source impedance and external component cost by removing the input coupling capacitor. A typical input coupling capacitor of $1 \mu \mathrm{~F}$ has a reactance of $1.5 \mathrm{k} \Omega$ at 100 Hz . The resulting noise due to the amplifier's input noise current can dominate the noise voltage at the output of the playback system. The inputs of the amplifiers are biased from a common reference voltage that is temperature compensated to produce a quiescent DC voltage of 2.5 V at the output of the first stage. The input stage bias current that flows through the tape head is kept below $2 \mu \mathrm{~A}$ in order to prevent any erasure of tape moving past the head. An added advantage of DC biasing is the prevention of large current transients during the charging of coupling capacitors at turn-on aniu iuni-vif. The outputs of the forward and reverse preamplifier are fed to the common output op amp through a logic controlled switch.
The second stage provides additional gain and proper equalization while preventing audible turn-on transients or "pops". The output (pin 2) is kept low until C2 charges through R1. When the voltage on C 2 gets close to the DC voltage on pin 5, the output rises exponentially to its final DC value. The result is a transient-free turn-on characteristic.

Internal diodes are provided to facilitate electronic diode switching popular in automotive applications.

The General Test Circuit illustrates the topography of the system. The components determining the overall frequency response are external due to the extreme sensitivity when matching a DIN equalization curve.

## MUTE CIRCUIT AND LOGIC

The LM1837 can be muted with the addition of two resistors and a grounding switch, as shown in Figure 1. When the circuit is not muted the additional resistors have no effect on the AC performance. They do have an effect on the DC Q point however.

The difference in the DC output voltages of the input amplifiers is applied across the mute resistors (R7) and the positive input resistors (R1). This results in an additional offset at the input of the output amplifiers. To keep this offset to a minimum R7 should be as large as possible to achieve effective muting. Unmute voltage is the peak signal the preamplifier can swing without turning on the output amplifier under mute conditions:

Unmute voltage $=$
$V_{\text {PIN } 5,14}\left[\frac{R 5 / / R 3}{R 2+R 5 / / R 3}-\frac{R 7}{R 1+R 7}\right]$

## Application Hints (Continued)

For example: The circuit in Figure 1 has 2.5 V DC at pins 5 . and 14, so:
Unmute voltage $=$

$$
2.5 \mathrm{~V}\left[\frac{1.2 \mathrm{M} / / 1.5 \mathrm{M}}{10 \mathrm{k}+1.2 \mathrm{M} / 11.5 \mathrm{M}}-\frac{270 \mathrm{k}}{10 \mathrm{k}+270 \mathrm{k}}\right]=52.3 \mathrm{mV}
$$

It may be necessary to slow the transition of the logic pin if the mute circuit is not used. The forward and reverse preamplifier output DC voltages can differ by $\pm 100 \mathrm{mV}$. This rapid DC charge is gained up by the output amplifier and appears as a pop. The circuit of Figure 8 will slow the DC transition.


FIGURE 8. Circuit to Slow Logic

## DESIGN EQUATIONS

The overall gain of the circuit is given by:

$$
\begin{equation*}
A_{v}=25\left[\frac{-R 4 R 3}{R 2(R 3+R 4)}\right] \frac{\left(s+\frac{1}{R 4 C 1}\right)}{\left(s+\frac{1}{(R 3+R 4) C 1}\right)} \tag{1}
\end{equation*}
$$

Standard cassette tapes require equalization of $3180 \mu \mathrm{~S}$ ( 50 Hz ) and $120 \mu \mathrm{~s}(1.3 \mathrm{kHz})$. These time constants result in an $A \subset$ gain at 1 kHz given by:

$$
A_{v}(1 \mathrm{kHz})=25\left(\frac{-\mathrm{R} 4 \mathrm{R} 3}{\mathrm{R} 2(\mathrm{R} 3+\mathrm{R} 4)}\right) 1 \cdot 663\left\{\begin{array}{c}
3180 \mu \mathrm{~s} \text { or } 50 \mathrm{~Hz} \\
\text { and } \\
120 \mu \mathrm{~s} \text { or } 1326 \mathrm{~Hz}
\end{array}\right\} \text { (2) }
$$

Using the pole and zero locations of the transfer function, the two other equations needed to solve for the component values are:

$$
\begin{align*}
& \mathrm{R} 4=\frac{1}{2 \pi \mathrm{C} 1(1326 \mathrm{~Hz})}  \tag{3}\\
& \mathrm{R} 3=\frac{1}{2 \pi \mathrm{C} 1(50 \mathrm{~Hz})}-\frac{1}{2 \pi \mathrm{C} 1(1326 \mathrm{~Hz})}=\frac{1}{2 \pi \mathrm{C} 1(51.96)} \tag{4}
\end{align*}
$$

We can now solve for C 1 as a function of R2, or:

$$
\begin{align*}
& \mathrm{A}_{v}(1 \mathrm{kHz})=-25\left\{\frac{\left[\frac{1}{2 \pi \mathrm{C} 1(1326)}\right]\left[\frac{1}{2 \pi \mathrm{C} 1(51.96)}\right]}{\left[\mathrm{R} 2 \frac{1}{2 \pi \mathrm{C} 1(50)}\right]}\right\}(1.663)  \tag{5}\\
& \mathrm{C} 1=\frac{-4.80 \times 10^{-3}}{\mathrm{R} 2\left[\mathrm{~A}_{v}(1 \mathrm{kHz})\right]} \tag{6}
\end{align*}
$$

When chromium dioxide tape is used, the defined time constants are $3180 \mu \mathrm{~s}$ and $70 \mu \mathrm{~s}$. This changes equation (3) to:

$$
\begin{equation*}
\mathrm{R} 4=\frac{1}{2 \pi \mathrm{C} 1(2274 \mathrm{~Hz})} \tag{7}
\end{equation*}
$$

The value of R3 is normally not changed. This results in an error of less than 0.2 dB in the low frequency response.
The output voltage of the LM1837 is set by the input amplifier DC voltage at pin 5 or 14, and by R3 and R5.

$$
\begin{equation*}
\operatorname{Nominal} \mathrm{V}_{\text {OUT }}(\operatorname{pin} 2 \text { or } 17)=2.5\left(1+\frac{\mathrm{R} 3}{\mathrm{R} 5}\right) \tag{8}
\end{equation*}
$$

Pins 1 and 18 are biased 0.7 V less than $V_{\text {Out }}$ (pin 2 or 17 ). When these diodes are used the output (pin 2 or 17) should be biased at one half the minimum operating supply voltage. Equation (8) can be rewritten to solve for R5.

$$
\begin{equation*}
R 5=\frac{2.5 R 3}{V_{O}-2.5} \tag{9}
\end{equation*}
$$

The output voltage of the LM1837 will vary from that given in equation (8) due to variations in the input amplifier DC voltage as well as the output amplifier input bias current, input offset current and input offset voltage. The following equation gives the worst-case variation in the output voltage in either forward or reverse state.

$$
\begin{align*}
& \Delta V_{\mathrm{OUT}}= \pm\left[\Delta \mathrm{V}_{\mathrm{PIN} 3}\left(1+\frac{\mathrm{R} 3}{\mathrm{R} 5}\right)+\frac{\mathrm{R} 3}{\mathrm{R} 2}\left(\Delta \mathrm{I}_{\mathrm{BIAS}}(\mathrm{R} 1-\mathrm{R} 2)+\right.\right. \\
& \left.\left.\frac{\mathrm{I}_{\mathrm{OS}}}{2}(\mathrm{R} 1+\mathrm{R} 2)+\mathrm{V}_{\mathrm{OS}}\right)\right] \tag{10}
\end{align*}
$$

Using the worst-case values in the electrical characteristics reduces this to

$$
\begin{align*}
& \Delta V_{\text {OUT }}= \pm\left[0.4\left(i+\frac{R 3}{R 5}\right)+\frac{R 3}{R 2}(200 \mathrm{nA}(R 1-R 2)+\right. \\
& 50 \mathrm{nA}(\mathrm{R} 1+\mathrm{R} 2)+5 \mathrm{mV})] \tag{11}
\end{align*}
$$

Equation 10 does not incorporate the effect of mute resistors on the output voltage. The presence of mute resistors causes an additional offset

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {OUT }}(\text { mute })= \pm \frac{\Delta \mathrm{V}(\text { pins } 5-14)}{2(\mathrm{R} 1+\mathrm{R} 7)} \times \mathrm{R} 1 \tag{12}
\end{equation*}
$$

For the circuit in Figure 1 worst-case:

$$
\Delta \mathrm{V}_{\text {OUT }}(\text { mute })=\frac{400 \mathrm{mV}}{2(20 \mathrm{k}+270 \mathrm{k})} \times 1.5 \mathrm{M}=1 \mathrm{~V}
$$

This means that the output pins 2 and 17 would differ by 1 V . The trade off here is the amount of unmute voltage versus the DC accuracy of pins 2 and 17.
The turn-on delay is set by R1 and C2; delay can be approximated by:

$$
\begin{equation*}
\text { Delay time } t=\mathrm{R} 1 \mathrm{C} 2 \ln \left(\frac{2.5}{\mathrm{~V}_{\mathrm{ODC}}}\right)\left(\frac{\mathrm{R} 3}{\mathrm{R} 2}\right) \tag{13}
\end{equation*}
$$

## Application Hints (Continued)

## EXAMPLE

If we desire a tape preamp with 100 mV output signal from a tape head with a nominal output of 0.5 mV at 1 kHz for standard ferric cassette tape, the external components are determined as follows. The value of R2 is arbitrarily set to $10 \mathrm{k} \Omega$.

$$
\mathrm{R} 1=\mathrm{R} 2=10 \mathrm{k}
$$

This minimizes errors due to the output amplifier bias currents.

$$
\mathrm{C} 1=\frac{-4.80 \times 10^{-3}}{10 \mathrm{k} \Omega\left[\frac{-100 \mathrm{mV}}{0.5 \mathrm{mV}}\right]}=2400 \mathrm{pF} \rightarrow 0.0022 \mu \mathrm{~F}
$$

Use $0.0022 \mu \mathrm{~F}$ and determine:

$$
\begin{aligned}
& \mathrm{R} 4=\frac{1}{2 \pi \mathrm{C} 1(1326)}=54.6 \mathrm{k} \Omega \rightarrow 54.9 \mathrm{k} \Omega 1 \% \\
& \mathrm{R} 3=\frac{1}{2 \pi \mathrm{C} 1(51 \mathrm{an})}=1.39 \mathrm{M} \Omega \rightarrow 1.4 \mathrm{M} \Omega 1 \%
\end{aligned}
$$

To bias the output amplifier output voltage at 6 V (half supply):

$$
R 5=\frac{2.5(1.4 \mathrm{M} \Omega)}{6-2.5}=1 \mathrm{M} \Omega
$$

The maximum variation in the output voltage is found using equation (11):

$$
\Delta \mathrm{V}_{\text {OUT }}= \pm 1.9 \mathrm{~V}
$$

The low frequency response and turn-on delay determine the value of C 2 . For $\mathrm{R} 1=10 \mathrm{k}$ and $\mathrm{C} 2=10 \mu \mathrm{~F}$ the low frequency 3 dB point is 1.6 Hz and the turn-on delay is 0.4 seconds, from equation (12).

The complete circuit is shown in Figure 2. A circuit with $5 \%$ components and biased for a minimum supply of 10 V is shown in Figure 1. If additional gain is needed R1 and R2 can be reduced without changing the frequency response of the circuit.

## DIODE SWITCHING

The LM1837 has a diode in series with each output for source switching applications. The outputs of several functional blocks can be diode OR-connected as shown in Figure 9.
By removing the power supply from the FM demodulator, its output diode will be cut off by the LM1837 output DC voltage. R6 is used to bias ON the diode of the LM1837 when power is applied to it. When the output is taken from pin 1 or pin 18, the THD will be higher because of the current modulation in the diode.


FIGURE 9

## CROSSTALK AND CHANNEL SEPARATION

When two signal sources share a common reference point which is separated from ground by a resistance, there will always be some amount of interchannel crosstalk (the reciprocal of channel separation) induced. The coupling method of Figure 1 is examined to determine whether the induced crosstalk is acceptably low.

Figure 10 is the equivalent AC circuit for the connection scheme of Figure 1. $\mathrm{R}_{\mathrm{B}}$ is the Thevenin resistance of the common bias point, $R_{I N}$ is the preamplifier input resistance, $Z_{S}$ is the impedance of the playback head, and $\mathrm{V}_{\mathrm{S} 7}, \mathrm{~V}_{\mathrm{S8}}, \mathrm{~V}_{\mathrm{S} 11}$, and $\mathrm{V}_{\mathrm{S} 12}$ are the open-circuit output voltages of the sources. If we set $\mathrm{V}_{\mathrm{S} 8}, \mathrm{~V}_{\mathrm{S} 11}$, and $\mathrm{V}_{\mathrm{S} 12}$ equal to zero, we can define crosstalk for this circuit as V12/V7, where V 7 and V 12 are the AC signal voltages appearing at the two preamplifier inputs, assuming $R_{B} \ll R_{I N} / 3$.

The crosstalk can be shown to be:

$$
\frac{V 12}{V 7}=\frac{R_{B}}{R_{B}+Z_{S}+R_{I N} / 3}
$$

Since $Z_{S}$ is dependent on the measurement frequency and the particular head used, we choose the worst-case condition and set $Z_{S}=0$. The minimum value of $R_{I N}$ is $150 \mathrm{k} \Omega$, and $R_{B} \simeq 100 \Omega$. This yields a crosstalk figure of:

$$
\frac{\mathrm{V} 12}{\mathrm{~V} 7}=\frac{100}{50100}=-54 \mathrm{~dB}
$$

This is 14 dB better than the minimum guaranteed channel separation, so the connection method of Figure 1 will provide acceptable crosstalk levels.

Reference 1: CCIR/ARM: A Practical Noise Measurement Method; by Ray Dolby, David Robinson and Kenneth Gundry, AES Preprint No. 1353 (F-3).


FIGURE 10. AC Equivalent of Figure 1

## Audio/Radio Circuits PRELIMINARY

## LM1865/LM1965 Advanced FM IF System

## General Description

Reduced external component cost, improved performance, and additional functions are key features to the LM1865/LM1965 FM IF system. The LM1865 is designed for use in electronically tuned radio applications. This version contains both deviation and signal level stop circuitry in addition to an open-collector stop output. The LM1965 is designed for use in manually tuned radios and provides a deviation and signal level mute function in addition to a pin that disables the mute function when grounded.

## Features

- On-chip buffer to provide gain and terminate two ceramic filters
- Low distortion $0.1 \%$ typical with a single tuned quadrature coil
- Broad off frequency distortion characteristic
- Low THD at minimum AFT offset
- Meter output proportional to signal level
- Mute function with mute disable and soft deviation mute for LM1965
- Stop detector with open-collector output for LM1865
- Adjustable signal level mute/stop threshold, controlled either by ultrasonic noise in the recovered audio or by the meter output
- Adjustable deviation mute/stop threshold
- Separate time constants for signal level and deviation mute/stop
- Dual threshold AGC eliminates need for local/distance switch and offers improved immunity from third order intermodulation products due to tuner overload
- User control of both AGC thresholds
- Excellent signal to noise ratio, AM rejection and system limiting sensitivity


## Block Diagram



FIGURE 1

## Absolute Maximum Ratings

Supply Voltage, Pin 17	16 V
Package Dissipation (Note 1)	1.7 W
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Max Voltage on Pin 16 (Stop Output) for LM 1865	16 V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=12 \mathrm{~V} ; \mathrm{S} 1$ in position $2 ; \mathrm{S} 2$ in position 1 ; and S 3 in position 2 unless indicated otherwise

Parameter	Conditions	Min	Typ	Max	Units
STATIC CHARACTERISTICS					
Supply Current			43		mA
Pin 9, Regulator Voltage			5.7		V
Operating Voltage Range	(See Note 2)	7.3		16	V
Pin 18, Output Leakage Current	Pin 20 Open, $\mathrm{V}_{\text {IF }}=0$, S3 in Position 1		0.1		$\mu \mathrm{A}$
Pin 16, Stop Low Output Voltage (LM1865 Only)	S1 in Position 1, S2 in Position 3		0.3		V
Pin 16, Stop High Output Leakage Current (LM1865 Only)	S2 in Position 2, V14 = V9		0.1		$\mu \mathrm{A}$
Pin 15, Audio Output Resistance			4.7		k $\Omega$
Pin 1, Buffer Input Resistance	Measured at DC		350		$\Omega$
Pin 3, Buffer Output Resistance	Measured at DC		350		$\Omega$
Pin 20, Wide Band Input Resistance	Measured at DC		2		k $\Omega$
Pin 8, Meter Output Resistance			760		$\Omega$

DYNAMIC CHARACTERISTICS $f_{\text {MOD }}=400 \mathrm{~Hz}, \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz}$, DEVIATION $= \pm 75 \mathrm{kHz}$
-3 dB Limiting Sensitivity
Buffer Voltage Gain
Recovered Audio
Signal-to-Noise
AM Rejection

Minimum Total Harmonic Distortion
THD at Frequency where V14 = V9
(Zero AFT Offset)
THD $\pm 10 \mathrm{kHz}$ from Frequency where $\mathrm{V} 14=\mathrm{V} 9$

AFT Offset Frequency for Deviation Mute (LM1965 Only)

AFT Offset Frequency for Low Stop Output at Pin 16 (LM186̣5 Only)

Ultrasonic Mute/Stop Level Threshold


Electrical Characteristics (Continued) Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=12 \mathrm{~V}$; S 1 in position 2 ; S 2 in position 1 ; and S 3 in position 2 unless indicated otherwise

Parameter	Conditions	Min	Typ	Max	Units
DYNAMIC CHARACTERISTICS (Continued) $\mathrm{f}_{\text {MOD }}=400 \mathrm{~Hz}, \mathrm{f}_{0}=10.7 \mathrm{MHz}$, DEVIATION $= \pm 75 \mathrm{kHz}$	$\mathrm{f}_{\text {MOD }}=400 \mathrm{~Hz}, \mathrm{f}_{0}=10.7 \mathrm{MHz}$, DEVIATION $= \pm 75 \mathrm{kHz}$				
Pin 13 Mute/Stop Threshold Voltage	V14 $=$ V9, S1 in Position 4 S2 in Position 4 (LM1965) S2 in Position 3 (LM1865) V13 where Audio Mutes (LM1965) V13 where V16 $\rightarrow$ 12V (LM1865)		220		mV
Amount of Muting (LM1965 Only)	S2 in Position 4, S1 in Position 1, VIF $=10 \mathrm{mV}$		66		dB
Amount of Muting with Pin 13 and Pin 16 Grounded	S1 in Position 1 $\mathrm{V} 14=\mathrm{V} 9, \mathrm{~V}_{\mathrm{IF}}=10 \mathrm{mV}$		0	0	dB
Narrow Band AGC Threshold	Increase IF Input until $\mathrm{I}_{\mathrm{AGC}}=0.1 \mathrm{~mA}$ Pin $20=30 \mathrm{mVrms}$		200		$\mu \mathrm{Vrms}$
Wide Band AGC Threshold	$V_{\text {IF }}=100 \mathrm{mVrms}$ Increase Signal to Pin 20 until $\mathrm{I}_{\mathrm{AGC}}=0.1 \mathrm{~mA}$		9		mVrms
Pin 18, Low Output Voltage	$\mathrm{V}_{\text {IN }} \operatorname{Pin} 20=100 \mathrm{mV}, \mathrm{V}_{\text {IF }}=100 \mathrm{mVrms}$		0.3		V
Pin 8, Meter Output Voltage	$V_{\text {IF }}=10 \mu \mathrm{~V}$		0.1		V
	$V_{\text {IF }}=300 \mu \mathrm{~V}$		1.1		V
	$V_{\text {IF }}=3 \mathrm{mV}$		2.6		V

Note 1: Above $T_{A}=25^{\circ} \mathrm{C}$ derate based on $\mathrm{T}_{J(\max )}=150^{\circ} \mathrm{C}$ and $\theta_{\mathrm{JA}}=75^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: All data sheet specifications are for $\mathrm{V}^{+}=12 \mathrm{~V}$ and may change slightly with supply.
Note 3: When the IF is preceded by 26 dB gain in the buffer, excellent system sensitivity is achieved.
Note 4: Measured with a notch at 60 Hz and 20 Hz to 100 kHz bandwidth.
Note 5: FM modulate RF source with an 80 kHz audio signal and find what modulation level, expressed as kHz deviation, results in audio mute for the LM1965 or V16-12V for the LM1865.

## Test Circuit



FIGURE 2

## Typical Performance Characteristics (from Test Circuit)

FM Limiting Characteristics and AM Rejection

\% THD vs OFF Tuning (Single Tuned Quadrature Coil)


Pin 8, Meter Output Voltage vs IF Input Level


Deviation Mute/Stop
Threshold as a Function of AFT Load Resistor


Pin 14, AFT Current vs Tuning


FM Limiting Characteristics +THD


Supply Current vs Supply Voltage



FIGURE 3

## IC External Components (see Application Circuit)

## Component



## Comments

$A C$ coupling for wide band AGC input
Buffer and AGC supply decoupling
IF decoupling capacitors
Meter decoupling capacitor
AC coupling for IF output
Regulator decoupling capacitor, affects S/N floor
Level mute/stop time constant
AFT decoupling, affects stop time
Disables noise mute/stop
AC coupling for noise mute/stop threshold adjust
Supply decoupling
AGC output decoupling capacitor
Wide band AGC threshold adjust
Gain set and bias for IF; R2 + R3 $=330 \Omega$ to terminate ceramic filter Sets full-scale on meter
Deviation mute/stop window adjustment
Mute/stop filter, affects stop time
Level mute/stop threshold adjustment
Level mute/stop threshold adjustment
Noise mute/stop threshold adjustment, decrease resistor for lower S/N at threshold
Load for open-collector stop output
AGC output load resistor for open-collector output
Sets Q of quadrature coil affecting THD, S/N and recovered audio
Sets signal swing across quadrature coil
10.7 MHz quadrature coil; $Q_{u L}>70$
10.7 MHz ceramic resonators provide selectivity; good group delay characteristics important for low THD of system

## Typical Application

## LAYOUT CONSIDERATIONS

Although the pinout of the LM1865/LM1965 has been chosen to minimize layout problems, some care is required to insure stability. The ground terminal on CF1 should return to both the input signal ground and the
buffer ground, pin 19: The ground terminal on CF2 should return to the ground side of C 4 . The quadrature coil $\mathrm{T} \cdot 1$ and inductor L1 should be separated from the input circuitry as far as possible.

## PC Layout (Component Side)



## PERFORMANCE CHARACTERISTICS OF TYPICAL APPLICATION WITH TUNER

The following data was taken using the typical application circuit in conjunction with an FM tuner with 43 dB of gain, a 5.5 dB noise figure, and 30 dB of AGC range. The tuner
was driven from a $50 \Omega$ source. $75 \mu \mathrm{~s}$ of de-emphasis was used on the audio output, pin 15 . The 0 dB reference is for $\pm 75 \mathrm{kHz}$ deviation at 400 Hz modulation.

Meter Output and Signal-to-Noise vs Tuner Input


[^63]30 dB quieting $=1.4 \mu \mathrm{~V}$
Level stop/mute threshold $=1.4 \mu \mathrm{~V}$
Deviation mute window $(-3 \mathrm{~dB})= \pm 45 \mathrm{kHz}$

Total Harmonic Distortion vs Tuner Input


AM Rejection vs Tuner Input


## Application Notes

## ADJUSTABLE MUTE/STOP THRESHOLD

The threshold adjustments for the mute and stop functions are controlled by the same pins. Thus, the term mute/stop will be used to designate either function.

The adjustable mute/stop threshold in the LM1865/LM1965 allows for user programming of the signal level at which muting or stop indication takes place. The adjustment can be made in two mutually exclusive ways. The first way is to take a voltage divider from the meter output (pin 8) to the off channel mute input (pin 13). When the voltage at pin 13 falls below 0.22 V , an internal comparator is tripped causing muting or causing the stop output to go low. Adjustment of the voltage divider ratio changes the signal level at which this happens.
The second method of mute/stop detection as a function of signal level is to use the presence of ultrasonic noise in the recovered audio to trip the internal comparator. As the signal level at the antenna of the radio drops, the amount of noise in the recovered audio, both audible and ultrasonic, increases.

The recovered audio is internally coupled through a high pass filter to pin 13 which is internally biased above the comparator trip point. Large negative-going noise spikes will drive pin 13 below the comparator trip point and cause mute/stop action. A simplified circuit is shown in Figure 4.

Since the input to the comparator is noise, the output of the comparator is noise. Consequently, a mute/stop filter on pin 12 is required to convert output noise spikes to an average $D C$ value. This filter is not necessary if pin 13 is driven from the meter.

Adjustment of the mute/stop threshold in the noise mode is accomplished by adjusting the pole of the high pass filter coupled to the comparator input. This is done with a series capacitor/resistor combination, R9 C11, from pin 13 to ground. As the pole is moved higher in frequency (i.e., R9
gets smaller) more ultrasonic noise is required in the recovered audio in order to initiate mute/stop action. This corresponds to a weaker signal at the antenna of the radio. In choosing the correct value for R 9 it is important to make sure that recovered audio below 75 kHz is not sufficient to cause mute/stop action. This is because stereo and SCA information are contained in the audio signal up to 75 kHz . Also note that the ultrasonic mute/stop circuit will not operate properly unless a tuner is connected to the IF. This is because, at low signal levels, the noise at the tuner output dominates any noise sources in the IC. Consequently, driving the IC directly with a $50 \Omega$ generator is much less noisy than driving the IC with a tuner and therefore not realistic. The RC filter on pin 12 not only filters out noise from the comparator output but controls the "feel" when manually tuning. For example, a very long time constant will cause the mute to remain active if you rapidly tune through valid strong stations and will only release the mute if you slowly tune to a valid station. Conversely, a short time constant will allow the mute to kick in and out as one tunes rapidly through valid stations.

The advantage in using the noise mute/stop approach versus the meter driven approach is that the point at which mute/stop action occurs is directly related to the signal-to-noise ratio in the recovered audio. Furthermore, the mute/stop threshold is not subject to production variations in the meter output voltage at low signal levels, and thus might be able to be set without a production adjustment of the radio. However, the noise mute/stop approach can not be used if it is desired to set the mute/stop threshold for strong signal levels. This is because for strong signal levels the $\mathrm{S} / \mathrm{N}$ level is too large to allow for the activation of the noise mute/stop circuit without moving the pole of the high pass filter so low that the noise mute/stop circuit becomes sensitive to recovered audio below 75 kHz . Thus, for setting the mute/stop threshold for strong signal levels, the meter driven approach is best.


FIGURE 4. Simplified Level Mute/Stop Circuit

## DEVIATION MUTEISTOP

As with the LM3189, the resistor connected between $\mathrm{V}_{\text {REG }}$ (pin 9) and the AFT (pin 14) sets the deviation mute/stop window (see Typical Performance Characteristics). The LM1965 was designed with a soft deviation mute. This means that the audio is gradually muted as you off tune from center frequency. Gradually muting avoids the problem of an audio pop which would otherwise occur due to the unavoidable DC voltage shift at the audio output that accompanies the muting action. Capacitor C9 on the AFT pin sets the time constant for the deviation mute/stop independent of the level mute/stop time constant. C9 should be large enough to remove the audio from the AFT. The AFT pulls high at low signal levels if the IF is driven directly from a $50 \Omega$ generator and not a tuner. This is a result of a loss of signal across the quad coil and a resulting phase shift in the quadrature detector. This phase shift offsets the AFT. With a tuner and sufficient IF gain, at low signal levels there will be enough noise across the quad
 taken when adjusting the IF gain (which is done by adjusting the ratio of R3 to R2) to minimize the AFT shift. Grounding pin 16 on the LM1965 will disable the mute function.

## STOP TIME

An electronically tuned radio (ETR) pauses at fixed intervals across the FM band and awaits the stop indication from the LM1865. If, within a predetermined period of time, no stop indication is forthcoming, the controller circuit concludes that there is no valid station at that frequency and will tune to the next interval. There are several time constants that can affect the amount of time it takes the LM1865 to output a valid stop indication on pin 16. In this section each time constant will be discussed.

## Deviation Stop Time Constant

An offset voltage is generated by the AFT if the LM1865 is tuned to either side of a station. Since deviation stop detection in the LM1865 is detected by the voltage at pin 14, it is important that this voltage move fast enough to make the deviation stop decision within the time allowed by the controller. The speed at which the voltage at pin 14 moves is governed by the RC time constant, R5 C9. This time constant must be chosen long enough to remove recovered audio from pin 14 and short enough to allow for reasonable stop detection time.

## Signal Level Stop Using Ultrasonic Noise Detection

As previously mentioned, the R6 C8 time constant on pin 12 is necessary to filter the noise spikes on the output of the internal comparator in the LM1865/LM1965. This time constant also determines the level stop time. When the voltage at pin 12 is above a threshold voltage of about 0.6 V , the stop output is low. The maximum voltage at pin 12 is about 0.8 V . The level stop time is dominated by the amount of time it takes the voltage at pin 12 to fall from 0.8 V to 0.6 V . The voltage at pin 12 follows an exponential decay with RC
time constant given by R6 C8. For example if R6 $=25 k$ and $\mathrm{C} 8=2.2 \mu \mathrm{~F}$ the stop time is given by

$$
\mathrm{t}=-(24 \mathrm{k})(2.2 \mu \mathrm{~F}) \ln \left(\frac{0.6}{0.8}\right)
$$

which yields $t=15 \mathrm{~ms}$. It should be noted that the 0.6 V threshold at pin 12 has a high temperature dependence and can move as much as 100 mV in either direction.

## Signal Level Stop Using the Meter Output, Pin 8

As mentioned previously, R6 C8 is not necessary when the meter output is used to drive pin 13. Consequently, this time constant is not a factor in determining the stop time. However, the speed at which the meter voltage can move may become important in this regard. This speed is a function of the resistive load on pin 8 and filter capacitance, C5.

## AGC Time Constant

In tunina from a strona station to a weaker station above the level stop threshold, the AGC voltage will move in order to try to maintain a constant tuner output. The AGC voltage must move sufficiently fast so that the tuner is gain increased to the point that the level stop indicates a valid station. This time constant is controlled by R11 and C13.

## DISTORTION COMPENSATION CIRCUIT

The quadrature detector of the LM1865/LM1965 has been designed with a special circuit that compensates for distortion generated by the non-linear phase characteristic of the quadrature coil. This circuit not only has the effect of reducing distortion, but also desensitizes the distortion as a function of tuning characteristic. As a result, low distortion is achieved with a single tuned quad coil without the need for a double tuned coil which is costly and difficult to adjust on a production basis. The lower distortion has been achieved without any degradation of the noise floor of the audio output. Furthermore, the compensation circuit first-order cancels the effect of quadrature coil $Q$ on distortion.
When measuring the total harmonic distortion (THD) of the LM1865/LM1965, it is imperative that a low distortion RF generator be used. In the past it has been possible to cancel out distortion in the generator by adjustment of the quadrature coil. This is because centering the quadrature coil at other than the point of inflection on the S-curve introduces 2nd harmonic distortion which can cancel 2nd harmonic distortion in the generator. Thus low THD numbers may have been obiained wrongly. Large AFT offsets, asymmetrical off tuning characteristic, and less than minimum THD will be observed if alignment of the quadrature coil is done with a high distortion RF generator.
Care must also be taken in choosing ceramic filters for the LM1865/LM1965. It is important to use filters with good group delay characteristics and wide enough bandwidth to pass enough FM sidebands to achieve low distortion.

## Application Notes (Continued)

The LM1865/LM1965 has been carefully designed to insure low AFT offset current at the point of minimum THD. AFT offset currrent will cause a non-symmetric deviation mute/stop window about the point of minimum THD. No external AFT offset adjustment should be necessary with the LM1865/LM1965.

## DUAL THRESHOLD AGC

## (AUTOMATIC LOCALIDISTANCE SWITCH)

There is a well recognized need in the field for gain reducing (AGCing) the front end (tuner) of an FM receiver. This gain reduction is important in preventing overload of the front end which might occur for large signal inputs. Overloading the front end with two out-of-band signals, one channel spacing apart and one channel spacing from center frequency, or, two channel spacings apart and two channel spacings from center frequency, will produce a third order intermodulation product $\left(\mathrm{IM}_{3}\right)$ which falls inband. This $I M_{3}$ product can completely block out a weaker desired station. The AGC in the LM1865/LM1965 has been specially designed to deal with the problem of $\mathrm{IM}_{3}$.

With the LM1865/LM1965 system, a low AGC threshold is achieved whenever there are strong out-of-band signals that might generate an interfering $\mathrm{IM}_{3}$ product, and a high

AGC threshold is achieved if there are no strong out-ofband signals. The high AGC threshold allows the receiver to obtain its best signal-to-noise performance when there is no possibility of an $\mathrm{IM}_{3}$ product. The low AGC threshold allows for weaker desired stations to be received without gain-reducing the tuner. It should be noted that when the AGC threshold is set low, there will be a signal-to-noise compromise, but is assumed that it is more desirable to listen to a slightly noisy station than to listen to an undesired $\mathbb{M}_{3}$ product. The simplified circuit diagram (Figure 5) of the AGC system shows how the dual AGC thresholds are achieved.
$\mathrm{V}_{\mathrm{m}}=1 \mathrm{~V}$ corresponds to a fixed in-band signal level(defined as $\mathrm{V}_{\mathrm{NB}}$ ) at the tuner output. $\mathrm{V}_{\mathrm{NB}}$ will be referred to as the "narrow band threshold". VWB also corresponds to a fixed tuner output which can either be an in-band or out-of-band signal. This fixed tuner output will be called the "wide band threshold". Always $\mathrm{V}_{\text {WB }}>\mathrm{V}_{\text {NB }}$. R11 and C13 define the AGC time constant. A reverse AGC system is shown. This means that $V_{A G C}$ decreases to gain-reduce the tuner. The LM1865/LM1965 AGC output is an open-collector current source capable of sinking at least 1 mA . The AGC voltage can move over the full range of the $\mathrm{V}^{+}$supply.


FIGURE 5. Dual Threshold AGC

## Applications Information (Continued)

First examine what happens with a single in-band signal as we vary the strength of this signal. Figures 6 and 7 illustrate what happens at the tuner and AGC outputs.


FIGURE 7

In Figure 7 there is no AGC output until the tuner output equals the wide band threshold. At this point the AGC holds the tuner output in Figure 6 relatively constant.

Another simple case to examine is that of the single out-of-band signal. Here there is no AGC output even if the signal exceeds $\mathrm{V}_{\text {WB }}$. There is no output because the ceramic filters prevent the out-of-band signal from getting to the input of the IF. With no signal at the IF input there is no meter output and thus $I_{1}=0$, which means $I_{A G C}=0$.
Figures 8 and 9 illustrate what happens at the tuner and AGC outputs when the strength of an in-band signal is varied in the presence of a strong out-of-band signal (i.e., greater than $\mathrm{V}_{\mathrm{WB}}$ ) which is held constant at the tuner input. For this example, the in-band signal at the tuner output will be referred to as $\mathrm{V}_{\mathrm{D}}$ (desired signal), and the out-ofband signal as $\mathrm{V}_{\mathrm{UD}}$ (undesired signal).

In Figure 9, we see that there is no AGC output until the tuner output exceeds the narrow band threshold, $\mathrm{V}_{\text {NB }}$. At this point $\mathrm{V}_{\mathrm{m}}>1 \mathrm{~V}$ and current $\mathrm{I}_{1}>0$. Further increase of the desired signal at the tuner input results in an AGC curierit that tities to hold the desirod signal at tho tuncroutput constant. This gain reduction of the tuner forces the undesired signal at the tuner output to fall. At the point that $\mathrm{V}_{U D}$ reaches the wide band threshold, no further gain reduction can occur as $V_{0}$. would fall below $V_{\text {WB }}$ (refer to Figure 5). At this point, control of the AGC shifts from the meter output (narrow band loop) to the out-of-band signal (wide band loop). Here $V_{U D}$ is held constant along with the


## Applications Information (Continued)

AGC voltage, while $V_{D}$ is allowed to increase. $V_{D}$ will increase until it reaches the level of the wide band threshold at the tuner output. When this occurs $V_{U D}$ is no longer needed to keep $V_{0}>V_{\text {WB }}$ as $V_{D}$ takes over the job. Thus $V_{U D}$ will drop as the amount of AGC increases, while $V_{D}$ is held constant by the AGC.
When compared to the simple case of a single in-band signal, we see that because of the presence of a strong out-of-band signal, AGC action has occurred earlier. For the simple case, $A G C$ started when $V_{D} \geq V_{W B}$. For the two signal case above, AGC started when $V_{D} \geq V_{N B}$. Thus, the LM1865/LM1965 achieves an early AGC when there are strong adjacent channels that might cause $1 \mathrm{M}_{3}$, and a later AGC when these signals aren't present.

For the range of signal levels that the tuner was gainreduced and $\mathrm{V}_{\mathrm{D}}<\mathrm{V}_{\mathrm{WB}}$ there was loss in signal-to-noise in the recovered audio as compared to the case where there was no gain reduction in this interval. Note, however, that the tuner is not desensitized by the AGC to weak desired stations below the narrow band threshold.

## NARROW BAND AGC THRESHOLD ADJUSTMENT

Both the narrow band and wide band AGC thresholds are user adjustable. This allows the user to optimize the AGC response to a given tuner. Referring to Figure 5, when the meter output exceeds 1 V a comparator within the $\mathrm{Gm}_{1}$ block allows current $I_{1}$ to flow. A simplified circuit diagram of this comparator is shown in Figure 10.

The $760 \Omega$ resistor in series with pin 8 allows for an upward adjustment of the narrow band threshold. This is accomplished by externally loading pin 8 with a resistor. Figure 11 illustrates how this adjustment takes place.

From Figure 11 it is apparent that loading the meter output not only moves the narrow band threshold, but also decreases the meter output for a given input.

In general one chooses the narrow band threshold based on what signal-to-noise compromise is considered acceptable.


FIGURE 10. Nariow Band Threshold Circuit


FIGURE 11. Affect of Meter Load on Narrow Band Threshold

## Applications Information (Continued)

## WIDE BAND AGC THRESHOLD ADJUSTMENT

There are a number of criteria that determine where the wide band threshold should be set. If the threshold is set too high, protection against $\mathrm{M}_{3}$ will be lost. If the threshold is set too low, the front end, under certain input conditions, may be needlessly gain-reduced, sacrificing signal-to-noise performance. Ideally, the wide band threshold should be set to a level that will insure AGC operation whenever there are out-of-band signals strong enough to generate an $\mathrm{IM}_{3}$ product of sufficient magnitude to exceed the narrow band threshold. Ideally, this level should be high enough to allow for a single inband desired station to AGC the tuner, only after the maximum signal-to-noise has been achieved.

In order to insure that the wide band loop is activated whenever the $\mathrm{IM}_{3}$ exceeds the narrow band threshold, $\mathrm{V}_{\mathrm{NB}}$, determine the minimum signal levels for two out-of-band signals necessary to produce an $\mathrm{IM}_{3}$ equal to $\mathrm{V}_{\mathrm{NB}}$. Then, arrange for the wide band loon to he activated whenever the tuner output exceeds the rms sum of these signals. There are many combinations of two out-of-band signals that will produce an $\mathrm{IM}_{3}$ of a given level. However, there is only one combination whose rms sum is a minimum at the tuner output. $\mathrm{IM}_{3}$ at the tuner output is given according to the equation:

$$
\begin{equation*}
I M_{3}=a V_{U D}^{2} V_{U D 2} \quad \text { (assuming no gain reduction) } \tag{1}
\end{equation*}
$$

where $\mathrm{a}=$ constant dependent on the tuner;
$\mathrm{V}_{\mathrm{UD1}}=$ out-of-band signal 400 kHz from center frequency, applied to tuner input;
$\mathrm{V}_{\mathrm{UD} 2}=$ out-of-band signal 800 kHz from center frequency and 400 kHz away from $\mathrm{V}_{\text {UD1 }}$, applied to tuner input.

In general, due to tuned circuits within the tuner, the tuner gain is not constant with frequency. Thus, if the tuner is kept fixed at one frequency while the input frequency is changed, the output level will not remain constant. Figure 12 illustrates this.
It can be shown that for a given $\mathrm{IM}_{3}$, the combination of $\mathrm{V}_{\mathrm{UD1}}$ and $\mathrm{V}_{\mathrm{UD} 2}$ that produces the smallest rms sum at the tuner output is given by the equations:

$$
\begin{align*}
& V_{U D 1}=1.12\left(\frac{A 2}{A 1} \frac{I M_{3}}{a}\right)^{1 / 3}  \tag{2}\\
& V_{U D 2}=0.794\left(\frac{A 1^{2}}{A 2^{2}} \frac{M_{3}}{a}\right)^{1 / 3} \tag{3}
\end{align*}
$$

Therefore, in order to guarantee that the AGC will be keyed for an $I M_{3}=V_{N B}$ we need only satisfy the condition:


The right hand term of equation (4) defines an upper limit for $\mathrm{V}_{\text {wB }}$ called $\mathrm{V}_{\text {wbul. }} \mathrm{V}_{\text {wbul }}$ is the rms sum of all the signals at the tuner output for two out-of-band signals, $\mathrm{V}_{\mathrm{UD1}}$ and $\mathrm{V}_{\mathrm{UD2}}$ [as expressed in equations (2) and (3)], applied to the tuner input.


Define $A=$ tuner gain at center frequency
$\mathrm{A} 1=$ tuner gain at $f_{\mathrm{O}}+400 \mathrm{kHz}$
$\mathrm{A} 2=$ tuner gain at $f_{0}+800 \mathrm{kHz}$

FIGURE 12

## Applications Information.(Continued)

In order to make the calculation in equation (4), the constants a, A1, A2 must first be determined. This is done by the following procedure:

1. Connect together two RF generators and apply them to the tuner input. Since the generators will terminate each other, remove the $50 \Omega$ termination at the tuner input.
2. Connect a spectrum analyzer to the tuner output. Most spectrum analyzers have $50 \Omega$ input impedances. To make sure that this impedance does not load the tuner output use a FET probe connected to the spectrum analyzer. The tuner output should be terminated with a ceramic filter.
3. Disconnect the AGC line to the tuner. Make sure that the tuner is not gain-reduced.
4. Adjust the two RF generators for about 1 mV input and to frequencies 400 kHz and 800 kHz away from center frequency (Figure 13).
5. Note the three output levels in volts.
6. Knowing the tuner input levels for $V_{U D 1}$ and $V_{U D 2}$ and the resulting $\mathrm{IM}_{3}$ just measured, " $a$ " is calculated from the formula:

$$
\begin{equation*}
a=\frac{I M_{3}}{V_{U D 1}^{2} V_{U D 2}} \tag{5}
\end{equation*}
$$

where all levels are in volts rms. A typical value for "a" might be $2 \times 10^{6}$.
7. A1 and A2 are calculated according to the following formulas:

$$
\begin{align*}
& \mathrm{A} 1=\frac{\mathrm{V} 1}{\left.\mathrm{~V}_{\mathrm{IN}}\right|_{f_{0}+400 \mathrm{kHz}}}  \tag{6}\\
& \mathrm{~A} 2=\frac{\mathrm{V} 2}{\left.\mathrm{~V}_{\mathrm{IN}}\right|_{f_{\mathrm{O}}+800 \mathrm{kHz}}} \tag{7}
\end{align*}
$$



FIGURE 13. Spectrum Analyzer Display of Tuner Output

If the wide band threshold was set to $\mathrm{V}_{\text {WBUL }}$, then when a single in-band station reached the level $\mathrm{V}_{\text {WBUL }}$ at the tuner output, AGC action would start to take place. For this reason it is hoped that $V_{\text {WBUL }}$ is above the level that will allow for maximum signal-to-noise. If, however, this is not the case, consideration might be given to improving the intermodulation performance of the tuner.
The lower limit for $\mathrm{V}_{\mathrm{WB}}$ is the minimum tuner output that achieves the best possible signal-to-noise ratio in the recovered audio. In general, it is desirable to set $\mathrm{V}_{\text {WB }}$ closer to the upper limit rather than the lower limit. This is done to prevent AGC action within the narrow band loop except when there is a possibility of an $I M_{3}$ greater than $V_{N B}$.
The wide band threshold at the pin 20 input to the LM1865/ LM1965 is fixed at 9 mVrms . Generally speaking, if pin 20 were driven directly from the tuner output, $\mathrm{V}_{\mathrm{WB}}$ would be too low. Therefore, in general, pin 20 is not connected directly to the tuner output. Instead the tuner output is attenuated and then applied to pin 20 . Increasing attenuation increases the wide band threshold, $\mathrm{V}_{\text {WB }}$.

Pin 20 has an input impedance at 10.7 MHz that can be modeled as a $500 \Omega$ resistor in series with a 19 pF capacitor, giving a total impedance of $940 \Omega \angle-58^{\circ}$. Thus an easy way to attenuate the input to pin 20 is with the arrangement shown in Figure 14.

Notice that pin 20 must be AC coupled to the tuner output and that C1 is a bypass capacitor. R1 adjusts the amount of attenuation to pin 20. The wide band threshold will roughly increase by a factor of ( $\mathrm{R} 1+940 \Omega$ )/940 .

## AGC CIRCUIT USED AS A CONVENTIONAL AGC

If for some reason the dual AGC thresholds are not desired, it is easy to use the LM1865/LM1965 as a more conventional LM3189 type of AGC. This is accomplished by AC coupling the pin 20 input after the ceramic filters rather than before the filters. Thus, as with the LM3189, only in-band signals will be able to activate the AGC.


FIGURE 14. Wide Band Threshold Adjustment

## Simplified Diagram



7 National Semiconductor

## LM1866 Low Voltage AM/FM Receiver

## General Description

The LM1866 has been designed for high quality battery powered medium wave AM and FM receiver applications requiring operation down to 3 V . The AM section contains a fully balanced, wide dynamic range, gain controlled mixer stage buffered from a single pin local oscillator. A two pin compound IF amplifier and internal detector provide a low distortion high level audio output. An AM/FM signal strength meter voltage is provided to a single output pin. The FM section contains'a six stage limiting IF amplifier, quadrature detector, AFC output, deviation audio muting and noise operated audio muting. While designed for the high ripple, high battery impedance conditions found at the end of life for four "C" or "D" cells, the LM1866 will operate equally well at supply voltages up to 15 V .

## Features

- Operation from 3 V to 15 V
- Excellent power supply ripple rejection
- Fully balanced, wide dynamic range, AM mixer stage
- Internal AM detector for minimum tweet interference
- Single pole DC AM/FM mode switching
- Six stage FM IF limiting amplifier for excellent AM rejection
- "Soft" FM deviation and noise operated audio muting
- FM quadrature detector
- Single pin AM/FM meter output
- Single pin matched level AM/FM audio output


## Block Diagram and Test Circuit



Coil Data:
T2, Toko 159GC-A3785
T1, Toko KAC K2318HM
CF1, Toko CFU-90D

## Absolute Maximum Ratings

Supply Voltage (Pin 14 15 V
1.7 W
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

Parameter	Conditions	Min	Typ	Max	Units
STATIC DC CHARACTERISTICS: $\mathrm{e}_{\mathrm{IN}}=0, \mathrm{R}_{\text {MUTE }}=0 \Omega, \mathrm{~V}_{\text {CC }}=6 \mathrm{~V}$					
Operating Supply Range, V14		3	6	15	V
Supply Current, $1_{14}$	AM Mode		15		mA
Supply Current, $\mathrm{l}_{14}$	FM Mode		17		mA
Regulator Output Voltage, V11			2.9		V
Meter Output Voltage, V18	Aivi ivioae		0	0.2	$\because$
Meter Output Voltage, V18	FM Mode		0	0.2	V
AFC Output Voltage, V17	FM Mode		2.9		V
AM/FM Audio Output Resistance, $\mathrm{R}_{0} 15$			3		k $\Omega$

AM DYNAMIC CHARACTERISTICS: $f_{A M}=1 \mathrm{MHz}, \mathrm{f}_{\mathrm{MOD}}=1 \mathrm{kHz}, \mathrm{m}=0.3, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}$

Maximum Sensitivity	$e_{\mathrm{AM}}$ for $\mathrm{e}_{\mathrm{O}}=6 \mathrm{mV}$		9		$\mu \mathrm{~V}$
20 dB Quieting Sensitivity	$\mathrm{e}_{\mathrm{AM}}$ for $\mathrm{e}_{\mathrm{O}}=20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$		25		$\mu \mathrm{~V}$
Signal to Noise Ratio	$\mathrm{e}_{\mathrm{AM}}=10 \mathrm{mV}$	40	50		dB
Total Harmonic Distortion	$\mathrm{e}_{\mathrm{AM}}=10 \mathrm{mV}$		0.3	1	$\%$
Total Harmonic Distortion	$\mathrm{e}_{\mathrm{AM}}=10 \mathrm{mV}, \mathrm{m}=0.8$		1	2	$\%$
Audio Output Level	$\mathrm{e}_{\mathrm{AM}}=10 \mathrm{mV}$	80	120	160	mV
Overload Distortion	$e_{\mathrm{AM}}=50 \mathrm{mV}, \mathrm{m}=0.8$		2	10	$\%$
Meter Output Voltage	$e_{\mathrm{AM}}=1 \mathrm{mV}$		1.2	V	
Meter Output Voltage	$\mathrm{e}_{\mathrm{AM}}=50 \mathrm{mV}$	2.5	V		

FM DYNAMIC CHARACTERISTICS: $f_{F M}=10.7 \mathrm{MHz}, f_{M O D}=400 \mathrm{~Hz}, \Delta f= \pm 75 \mathrm{kHz}, \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$

- 3 dB Limiting Sensitivity	$\mathrm{e}_{\mathrm{FM}}$ for -3 dB Limiting Sensitivity		12	25	$\mu \mathrm{~V}$
Signal to Noise Ratio	$\mathrm{e}_{\mathrm{FM}}=10 \mathrm{mV}$	60	76		dB
AM Rejection	$\mathrm{e}_{\mathrm{FM}}=10 \mathrm{mV}, 30 \%$ AM Mod	40	55		dB
Total Harmonic Distortion	$\mathrm{e}_{\mathrm{FM}}=10 \mathrm{mV}$		0.5	1	$\%$
Audio Output Level	$\mathrm{e}_{\mathrm{FM}}=10 \mathrm{mV}, 30 \%$ FM Mod	80	120	160	mV
Meter Output Level	$\mathrm{e}_{\mathrm{FM}}=1 \mathrm{mV}$		0.8		V
Meter Output Level	$\mathrm{e}_{\mathrm{FM}}=50 \mathrm{mV}$		1.8		V
$\pm$ Deviation Mute (Notes 2, 4)	$\mathrm{e}_{\mathrm{FM}}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{AFC}}=10 \mathrm{k}$		40		kHz
RMUTE for Noise Mute (Notes 3, 4)	Set $\mathrm{e}_{\mathrm{FM}}$ for -3 dB Limiting Sensitivity	2	5	10	$\mathrm{k} \Omega$
Max Audio Mute Attenuation		60	75		dB

Note 1: Above $T_{A}=25^{\circ} \mathrm{C}$, derate based on $T_{J(\max )}=150^{\circ} \mathrm{C}$ and $\theta_{J A}=75^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: $R_{\text {MUTE }}=2 \mathrm{k} \Omega$, eFM $=10 \mathrm{mV}$, adjust center frequency for $V_{\text {AFC }}=V_{\text {REG }}$, record $f_{F M}$, adjust $\pm f_{F M}$ for $>50 \mathrm{~dB}$ audio mute attenuation.
Note 3: Adjust RMUTE from $2 k$ to 10 k for $>50 \mathrm{~dB}$ audio mute attenuation. Set eFM $=10 \mathrm{mV}$ and check for mute off.
Note 4: When $R_{\text {MUTE }}=0 \Omega$, the deviation and noise operated mute functions are disabled. When $R_{M U T E}=2 \mathrm{k} \Omega$, only the noise mute function is disabled. The deviation mute bandwidth is set by the RAFC resistor. The noise mute threshold is set by the RMUTE resistor. Test circuit noise bandwidth characteristics prevent noise mute operation for IF input levels below the -3 dB limiting threshold. When the FM IF is used with a tuner full noise mute capability is accessible (See Applications Information).

## Typical Performance Characteristics (Test Circuit)



Recovered Audio vs Supply


Quiescent Supply Current vs Supply Voltage


## Applications Information

## (See Typical Applications and LM1866 Schematic Diagram)

## VOLTAGE REGULATOR SECTION

Because of the wide supply voltage range and high ripple conditions expected in battery or low cost transformer supplies, the LM1866 uses a band gap referenced active voltage regulator which is externally compensated at pin 19. This capacitor, when made large enough, improves the supply rejection and decreases the noise bandwidth to a level well below the AM reception frequencies. A $0.1 \mu \mathrm{~F}$ capacitor will compensate the regulator for low noise operation while $50 \mu \mathrm{~F}$ (max) will improve supply rejection and the maximum FM audio mute attenuation characteristics. During power turn on, the pin 19 capacitor is quickcharged to its normal operating voltage so that the AM or FM sections are in operation before the audio amplifier turn on delay has timed out. See LM1895/LM2895 and LM1896/LM2896 data sheets for additional audio amplifier information.

## AM SECTION

The AM section contains a fully balanced mixer stage with the RF input applied to a differential, diode degenerated, transistor pair at pins 5 and 6. DC feedback is provided by
the loopstick secondary winding. The mixer output $1^{\text {st }}$ IF transformer at pin 7 should be returned to $\mathrm{V}_{\mathrm{CC}}$ at pin 14 to allow maximum undistorted output swing when tuning between stations. RF and AGC decoupling at pin 6 removes noise and lowers audio distortion.

The mixer upper pairs are switched differentially by a buffer amplifier from the pin 8 local oscillator. DC feedback is provided by the oscillator coil secondary winding to the pin 11 regulator voltage.
The oscillator frequency is given by:

$$
\mathrm{f}_{\mathrm{O}}=\frac{0.159}{\sqrt{L C}}
$$

and the peak swing is given by: $V_{P}=I Z(I=700 \mu A, Z=$ tank impedance at resonance). $V_{P}$ should be between 0.3 V and 0.5 V to maintain an undistorted output at low supplies.

The two stage AM IF amplifier at pins 12 and 13 requires output to input DC feedback and external decoupling. The IF gain is given by:

$$
A_{V}=\frac{Z_{L}}{12}
$$

## Applications Information (Continued)

where $Z_{L}$ equals resonant unloaded tank impedance in parallel with $R_{E X T}$. In most applications $Z_{L}=10 \mathrm{k}$ and

$$
Q_{L}=\frac{Z_{L}}{X_{C}}=5
$$

where $\mathrm{R}_{\mathrm{EXT}}=$ an external IF gain setting resistor and $X_{C}=$ impedance of tank tuning capacitor. A rule of thumb for setting the IF gain would be to adjust $R_{\text {EXT }}$ for 20 dB audio $\mathrm{S} / \mathrm{N}$ when the audio has dropped 10 dB below the level found at the AGC threshold. (Because of the low $Q_{\mathrm{L}}, a$ non-tuned coil is acceptable.)

The output of the IF amplifier drives an internal detector which is operating at low currents. This results in very low $2^{\text {nd }}$ and $3^{\text {rd }}$ IF harmonic radiation for minimal tweet interference.

## FM SECTION

The FM section contains a six stage limiting amplifier, quadrature detector, AFC output, deviation mute detector and a high frequency noise mute detector. (See Figure 1 for the Simplified Mute Circuit Schematic.) The output of the quadrature detector is split into three current source pairs. The $\pm$ audio current and internal load resistor R84
provide the audio output voltage via Q56 to pin 15. The $\pm$ AFC current, external load resistor ( $\mathrm{R}_{\text {AFC }}$ ) and the $10 \mu \mathrm{~F}$ capacitor provide an audio decoupled AFC voltage to pin 17. The $\pm$ noise current and internal load resistor R114 provide a wideband detector output that is limited in frequency by $\mathrm{C}_{\text {StRay }}$. With the addition of internal C4 and R120 a band pass filter ( $f_{0} \cong 1 \mathrm{MHz}$ ) is realized at the input of the peak to peak detector. The output current, flowing in resistor $\mathrm{R}_{\text {MUTE }}$ and filtered by a capacitor, provides a mute voltage at pin 16. When the mute voltage rises to approximately one $\mathrm{V}_{\mathrm{BE}}$, transistor Q139 will start to shunt the $\pm$ audio current away from R84, muting the audio output. The value of the $R_{\text {MUTE }}$ resistor will determine the minimum audio signal to noise ratio at which one wishes to mute. The deviation mute detector will output a current only when the AFC voltage is offset above or below the $V_{\text {REG }}$ voltage. Load resistor R121 and transistor Q154 will convert this current to a mute voltage at pin 16. This is done to prevent interaction between the two detector output currents. The external $\mathrm{R}_{\text {AFC }}$ resistor is used to set the deviation mute bandwiath so that the pin 10 mute voitage is one $\mathrm{V}_{\mathrm{BE}}$ at the desired frequency band edge. When disabling the mute functions, pin 16 is shorted to ground, preventing Q139 from becoming active.


FIGURE 1. Simplified Mute Circuit Schematic

## Component

C1A, B, C, D R1, C2, C3

C4
R5, C5
R6
C6
C7, C8
R4 ( $\mathrm{R}_{\mathrm{EXT}}$ )
R7, C15, C14
R3, C10

$\mathrm{R}_{\text {MUTE }}, \mathrm{C} 11$	0 to $10 \mathrm{k}, 10 \mu \mathrm{~F}$
$\mathrm{R}_{\text {AFC }}, \mathrm{C} 12$	$10 \mathrm{k}, 10 \mu \mathrm{~F}$
C 13	$10 \mu \mathrm{~F}$

Purpose
AM/FM tuning capacitor
FM IF decoupling, filter match and DC feedback
AM RF/AGC decoupling
Sets AM AGC time constant
Optional: decreases AM audio output but improves AM meter threshold
Regulator output decoupling
AM IF/audio decoupling
Sets AM IF gain
Supply decoupling
Sets FM de-emphasis/AM smoothing
Audio post filter pole is given by: $f=\frac{0.159}{R_{T} C 10}$, when $R_{T}=R 3+R_{0} 15=R 3+3 \mathrm{k} \Omega$
Sets noise mute threshold, filter. $0 \Omega$ will turn off mute function.
Sets deviation mute bandwidth, audio decoupling
Regulator decoupling and supply rejection filter


See Table I for coil and numbered component data See LM1895/LM2895 data sheet for audio amp info

FM Performance ( $88 \mathrm{MHz}-108 \mathrm{MHz}$ )

- 30 dB quieting sensitivity: $3.5 \mu \mathrm{~V}$
-     - 3dB limiting sensitivity: $7 \mu \mathrm{~V}$

AM Performance ( $525 \mathrm{kHz}-1650 \mathrm{kHz}$ )

- Maximum sensitivity: $100 \mu \mathrm{~V} / \mathrm{m}$
- 20 dB quieting sensitivity: $250 \mu^{\prime} / \mathrm{m}$
- Tweet* worst case: $5 \%$

$$
100 \mathrm{mV} / \mathrm{m}: 1.5 \%
$$

Tweet is an audio tone produced by the 2nd and 3rd harmonic of the IF beal ing against the received signal. It is measured as an equivalent modulation le rel: amplitude at the detector as a desired signal vith $30 \%$ modulation.

Equivalent Schematic Diagram


# National Semiconductor 

## LM1868 AM/FM Radio System

## General Description

The combination of the LM1868 and an FM tuner will provide all the necessary functions for a 0.5 watt AM/FM radio. Included in the LM1868 are the audio power amplifier, FM IF and detector, and the AM converter, IF, and detector. The device is suitable for both line operated and 9 V battery applications.

## Features

- DC selection of AM/FM mode
- Regulated supply
- Audio amplifier bandwidth decreased in AM mode, reducing amplifier noise in the AM band
- AM converter AGC for excellent overload characteristics
- Low current internal AM detector for low tweet radiation

Block Diagram


Absolute Maximum Ratings

Supply Voltage (Pin 19)	15 V	Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to ${ }^{\circ}+150^{\circ} \mathrm{C}$
Package Dissipation	1.6 W	Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Above $T_{A}=25^{\circ} \mathrm{C}$, Derate Based on $\mathrm{T}_{J(M A X)}=150^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	
and $\theta_{J A}=75^{\circ} \mathrm{CW}$			

Electrical Characteristics Test Circuit, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$ unless otherwise noted

Parameter	Conditions	Min	Typ	Max	Units
STATIC CHARACTERISTICS: $\mathrm{e}_{\text {AM }}=0, \mathrm{e}_{\mathrm{FM}}=0$					
Supply Current	AM Mode, S1 in Position 1		22	30	mA
Regulator Output Voltage (Pin 16)		3.5	3.9	4.5	V
Operating Voltage Range		4.5		15	
DYNAMIC CHARACTERISTICS - AM MODE: $\mathrm{f}_{\text {AM }}=1 \mathrm{MHz}, \mathrm{f}_{\text {mod }}=1 \mathrm{kHz}, 30 \%$ Modulation, S 1 in Position $1, \mathrm{P}_{\mathrm{O}}=$ 50 mW unless noted					
Maximum Sensitivity	Measure $e_{A M}$ for $P_{\mathrm{O}}=50 \mathrm{~mW}$, Maximum Volume	8		16	${ }^{\prime} \mathrm{V}$
Signal-to-Noise	$e_{\text {AM }}=10 \mathrm{mV}$	40	50		dB
Detector Output	$\mathrm{e}_{\mathrm{AM}}=1 \mathrm{mV}$   Measure at Top of Volume Control	40	60	85	mV
Overload Distortion	$e_{\text {AM }}=50 \mathrm{mV}, 80 \%$ Modulation		2	10	\%
Total Harmonic Distortion (THD)	$e_{\text {AM }}=10 \mathrm{mV}$		1.1	2	\%

DYNAMIC CHARACTERISTICS - FM MODE: $f_{\text {FM }}=10.7 \mathrm{MHz}, f_{\text {mod }}=400 \mathrm{~Hz}, \Delta f= \pm 75 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}, \mathrm{~S} 1$ in Position 1

-3 dB Limiting Sensitivity			15	45	$\mu \mathrm{~V}$
Signal-to-Noise Ratio	$e_{F M}=10 \mathrm{mV}$	50	64		dB
Detector Output	$e_{F M}=10 \mathrm{mV}, \Delta f= \pm 22.5 \mathrm{kHz}$	40	60	85	mV
	Measure at Top of Volume Control				
AM Rejection	$e_{\text {FM }}=10 \mathrm{mV}, 30 \%$ AM Modulation	40	50		dB
Total Harmonic Distortion (THD)	$e_{\text {FM }}=10 \mathrm{mV}$		1.1	2	$\%$

DYAARAIC CHARACTERISTICS - AUUDIO AAMPLIFIER ONLY: $\mathrm{f}=1 \mathrm{kHz}, \mathrm{e}_{\mathrm{AM}}=0, \mathrm{e}_{\mathrm{FM}}=0, \mathrm{~S} 1$ in Position 2

Power Output

Bandwidth

Total Harmonic Distortion (THD) Voltage Gain

THD $=10 \%, R_{L}=8 \Omega$
$V_{S}=6 \mathrm{~V}$
$V_{S}=9 \mathrm{~V}$
AM Mode, $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$
FM Mode, $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$
$\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$, FM Mode

Typical Performance Characteristics (Test Circuit) All curves are measured at audio output




Typical Performance Characteristics (Continued) (Test Cirruit) All curves are measured at audio output


Test Circuit



## PC Board Layout



COMPONENT SIDE
Typical Performance Characteristics Typical Application
All curves are measured at audio output


IC External Components (Application Circuit)

Component

Typical

R8	16k	AM detector bias resistor
R9	240k	Set AGC time constant
C19	$1 \mu \mathrm{~F}$	
C7	$10 \mu \mathrm{~F}$	IF decoupling
C8	$0.1 \mu \mathrm{~F}$	IF decoupling
$\begin{aligned} & \text { C20 } \\ & \text { R10 } \end{aligned}$	$\left.\begin{array}{l} 0.1 \mu \mathrm{~F} \\ 5 \Omega \end{array}\right\}$	High frequency load for audio amplifier, required to stabilize audio amplifier
C21	$250 \mu \mathrm{~F}$	Output coupling capacitor
R1	6k2	Sets Q of quadrature coil, determining FM THD and recovered audio
R2	12k	IF amplifier bias R
R3	5 k 6	Sets gain of AM IF and Q of AM IF output tank
R4	10k	Detector load resistor
R6	50k	Volume control
C18	$0.02 \mu \mathrm{~F}$	Power supply decoupling
R11, R12	150n	Terminates the ceramic filter, biases FM IF input stage
D1	1N4148	Optional. Quickens the AGC response during turn on

## Coil and Tuning Capacitor Specifications

C1	AM ANT $140 \mathrm{pF} \max 5.0 \mathrm{pF}$ min AM OSC 82 pF max 5.0 pF min Trimmers 5 pF	FM 20 pF max 4.5 pF min TOKO CY2-22124PT
L1	$\begin{aligned} & 640 \mu \mathrm{H}, \mathrm{Q}_{\mathrm{u}}=200 \\ & \mathrm{R}_{\mathrm{P}}=3 \mathrm{k} 5 @ \mathrm{~F}=796 \mathrm{kHz} \\ & \text { (At secondary) } \end{aligned}$	AM antenna   $1 \mathrm{mV} /$ meter induces   approximately $100 \mu \mathrm{~V}$   open circuit at the secondary
LO, L2	$360 \mu \mathrm{H}, \mathrm{Q}_{\mathrm{u}}>80 @ \mathrm{~F}=796 \mathrm{kHz}$	TOKO RWO-6A5105 or equivalent
L4	SWG \#20, $N=31 / 2 T$, inner diameter $=5 \mathrm{~mm}$	
L5	SWG \#20, $N=31 / 2 T$, inner diameter $=5 \mathrm{~mm}$	
L6	$\mathrm{L}=0.44 \mu \mathrm{H}, \mathrm{N}=4 \mathrm{l} / 2 \mathrm{~T}, \mathrm{Qu}=70$	
L7	SWG \#20, $N=21 / 2 T$, inner diameter $=5 \mathrm{~mm}$	
CF2	10.7 MHz ceramic filter MURATA SFE 10.7 mA or equivalent	

## Layout Considerations

## AM Section

Most problems in an AM radio design are associated with radiation of undesired signals to the loopstick. Depending on the source, this radiation can cause a variety of problems including tweet, poor signal-to-noise, and low frequency oscillation (motor boating). Although the level of radiation from the LM1868 is low, the overall radio performance can be degraded by improper PCB layout. Listed below are layout considerations associated with common problems.

1. Tweet: Locate the loopstick as far as possible from detector components C6, C9, R4, and R5. Orient C6, C9, R4, and R5 parallel to the axis of the loopstick. Return R8, C6, C9, and C19 to a separate ground run (see Typical Application PCB).
2. Poor Signal-to-Noise/Low Frequency Oscillation: Twist speaker leads. Orient R10 and C20 parallel to the axis of the loopstick. Locate C11 away from the loopstick.



In general, radiation results from current flowing in a loop. In case 1 this current loop results from decoupling detector harmonics at pin 17; while in case 2, the current loop results from decoupling noise at the output of the audio amplifier and the output of the regulator. The level of radiation picked up by the loopstick is approximately proportional to: 1) $1 / r^{3}$; where $r$ is the distance from the center of the loopstick to the center of the current loop; 2) $\operatorname{SIN} \theta$, where $\theta$ is the angle between the plane of the current loop and the axis of the loopstick; 3) I, the current flowing in the loop; and 4) A, the cross-sectional area of the current loop.
Pickup is kept low by short leads (low A), proper orientation ( $\theta \cong 0 \operatorname{soSIN} \theta \cong 0$ ), maximizing distance from sources to loopstick, and keeping current levels low.

## FM Section

The pinout of the LM1868 has been chosen to minimize layout problems, however some care in layout is required to insure stability. The input source ground should return to C4 ground.Capacitors C13 and C18 form the return path for signal currents flowing in the quadrature coil. They should connect directly to the proper pins with short PC traces (see Typical Application PCB). The quadrature coil and input circuitry should be separated from each other as far as possible.

## Audio Amplifier

The standard layout considerations for audio amplifiers apply to the LM1868, that is: positive and negative inputs should be returned to the same ground point, and leads to the high frequency load should be kept short. In the case of the LM1868 this means returning the volume control ground (R6) to the same ground point as C17, and keeping the leads to C20 and R10 short.


## Circuit Description (See Equivalent Schematic) <br> AM Section

The AM section consists of a mixer stage, a separate local oscillator, an IF gain block, an envelope detector, AGC circuits for controlling the IF and mixer gains, and a switching circuit which disables the AM section in the FM mode.

Signals from the antenna are AC-coupled into pin 7, the mixer input. This stage consists of a common-emitter amplifier driving a differential amp which is switched by the local oscillator. With no mixer AGC, the current in the mixer is $330 \mu \mathrm{~A}$; as the AGC is applied, the mixer current drops, decreasing the gain, and also the input impedance drops, reducing the signal at the input. The differential amp connected to pin 8 forms the local oscillator. Bias resistors are arranged to present a negative impedance at pin 8 . The frequency of oscillation is determined by the tank circuit, the peak-to-peak amplitude is approximately $300 \mu \mathrm{~A}$ times the impedance at pin 8 in parallel with 8 k 2 .

After passing through the ceramic filter, the IF signals are applied to the IF input. Signals at pin 11 are amplified by two AGC controlled common-emitter stages and then applied to the PNP output stage connected to pin 13. Biasing is arranged so that the current in the first two stages is set by the difference between a $250 \mu \mathrm{~A}$ current source and the Darlington device connected to pin 12:

When the AGC threshold is exceeded, the Darlington device turns ON, steering current away from the IF into ground, reducing the IF gain. Current in the IF is monitored by the mixer AGC circuit. When the current in the IF has dropped to $30 \mu \mathrm{~A}$, corresponding to 30 dB gain reduc-
tion in the IF, the mixer AGC line begins to draw current. This causes the mixer current and input impedance to drop, as previously described.

The IF output is level shifted and then peak detected at detector cap C1. By loading C1 with only the base current of the following device, detector currents are kept low. Drive from the AGC is taken at pin 14, while the AM detector output is summed with the FM detector output at pin 17.

## FM Section

The FM section is composed of a 6 -stage limiting IF driving a quadrature detector. The IF stages are identical with the exceptions of the input stage, which is run at higher current to reduce noise, and the last stage, which is switched OFF in the AM mode. The quadrature detector collectors drive a level shift arrangement which allows the detector output load to be connected to the regulated supply.

## Audio Amplifier

The audio amplifier has an internally set voltage gain of 120. The bandwidth of the audio amplifier is reduced in the AM mode so as to reduce the output noise falling in the AM band. The bandwidth reduction is accomplished by reducing the current in the input stage.

## Regulator

A series pass regulator provides biasing for the AM and FM sections. Use of a PNP pass device allows the supply to drop to within a few hundred millivolts of the regulator output and still be in regulation.

## 7 National Semiconductor

## General Description

The LM1870 is a phase locked loop FM stereo demodulator with a DC control pin for reducing noise by decreasing separation during weak signal conditions.

## Features

- Blend control
- Large input overload
- Low beat note distortion

Low THD diode switching outputs

- VCO stop function

Wide supply range, 7 V to 15 V

- Mono override pin

Applications

- Hi Fi receivers and tuners
- High performance portable radios


## Typical Application and Test Circuit



Pin Functions

## Absolute Maximum Ratings

Supply Voltage, Pin 3 15 V
Lamp Driver Voltage, Pin 11 18 V
Output Voltage, Pin 12, 13, Supply Off
Quick Mono Input (Pin 1)
Blend Input (Pin 20)
Operating Temperature Range
Power Dissipation (Note 1)
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
15 V
18 V
7 V
$\mathrm{~V}+(\operatorname{Pin} 3)$
15 V
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
1 W
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=8 \mathrm{~V}$, Figure 1

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Conditions \& Min \& Typ \& Max \& Units \\
\hline \multicolumn{6}{|l|}{DC . \({ }^{\text {a }}\).} \\
\hline \begin{tabular}{l}
Operating Supply Voltage \\
Supply Current \\
Input DC Voltage \\
Input DC Voltage \\
Supply Rejection \\
Lamp Leakage Current \\
Lamp Saturation Voltage \\
VCO Stop Voltage \\
VCO Stop Current \\
Blend Input Bias Current \\
Quick Mono Switch Voltage \\
Quick Mono Bias Current \\
Output Leakage
\end{tabular} \& \begin{tabular}{l}
Pin 19 \\
Pin 2 \\
Lamp Off, Pin \(11=16 \mathrm{~V}\) \\
Lamp On, Pin 11@75mA \\
Voltage at Pin 4 to Stop VCO \\
\(\operatorname{Pin} 4=0.2 \mathrm{~V}\) \\
\(\operatorname{Pin} 20=0 \mathrm{~V}\) \\
Pin \(1=8 \mathrm{~V}\) \\
Pin 12 or \(13=6.5 \mathrm{~V}, \operatorname{Pin} 3=0 \mathrm{~V}\)
\end{tabular} \& 7

15

0.2 \& $$
-2
$$

\[
4

\] \& | 15 |
| :--- |
| 45 |
| 100 |
| 2.0 |
| $-100$ |
| $-20$ |
| 20 | \& \[

$$
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA} \\
\mathrm{~V} \\
\mathrm{~V} \\
\mathrm{~dB} \\
\mu \mathrm{~A} \\
\mathrm{~V} \\
\mathrm{~V} \\
\mu \mathrm{~A} \\
\mu \mathrm{~A} \\
\mathrm{~V} \\
\mu \mathrm{~A} \\
\mu \mathrm{~A}
\end{gathered}
$$
\] <br>

\hline \multicolumn{6}{|l|}{Audio} <br>

\hline | Mono Gain |
| :--- |
| Mono THD |
| Channel Balance |
| Gain Shift |
| Channel Separation |
| Output DC Shift |
| Input Resistance |
| Output Resistance |
| Ultrasonic Rejection |
| SCA Rejection |
| Signal To Noise | \& | 1 kHz |
| :--- |
| 1 kHz@200 mVrms |
| Mono to Stereo |
| Pin $20 \geq 1.1 \mathrm{~V}$ |
| Mono to Stereo |
| Pin 19 |
| Pin 12, 13 |
| $19 \mathrm{kHz}+38 \mathrm{kHz}$ |
| (Note 2) • |
| $1 \mathrm{kHz} @ 200 \mathrm{mVrms}$ Mono | \& -4

30

20 \& $$
\begin{array}{r}
-1 \\
0.05 \\
\pm 0.4 \\
\pm 0.1 \\
45 \\
\pm 15 \\
40 \\
65 \\
30 \\
70 \\
68
\end{array}
$$ \& \[

$$
\begin{gathered}
+2 \\
0.25 \\
\pm 1.5 \\
\pm 1.0 \\
\pm 100 \\
\\
200
\end{gathered}
$$

\] \& | dB |
| :--- |
| \% |
| dB |
| $d B$ |
| dB |
| mV |
| $\mathrm{k} \Omega$ |
| $\Omega$ |
| dB |
| $d B$ |
| dB | <br>

\hline \multicolumn{6}{|l|}{PLL} <br>

\hline Lamp On Voltage Lamp Off Voltage Lamp Hysteresis Capture Range Hold In Range Input Resistance \& | 19 kHz on $\operatorname{Pin} 2$ |
| :--- |
| 19 kHz on $\operatorname{Pin} 2$ |
| 25 mVrms on $\operatorname{Pin} 2$ |
| 25 mVrms on Pin 2 |
| Pin 2 | \& | 2.5 $\pm 2$ |
| :--- |
| 8 | \& \[

$$
\begin{gathered}
15 \\
5 \\
10 \\
\pm 4 \\
\pm 12 \\
14
\end{gathered}
$$

\] \& \[

20
\]

$$
\pm 6
$$ \& \[

$$
\begin{gathered}
\mathrm{mV} \\
\mathrm{mV} \\
\mathrm{~dB} \\
\% \\
\% \\
\mathrm{k} \Omega
\end{gathered}
$$
\] <br>

\hline Blend \& Pin 20 from 1.1V to 0.2V \& \& \& \& <br>

\hline | Stereo Gain Change Mono Gain Change |
| :--- |
| Output DC Shift | \& \[

$$
\begin{aligned}
& 1 \mathrm{kHzL}=-\mathrm{R} \text { Input } \\
& 1 \mathrm{kHzL}=\mathrm{R} \text { Input } \\
& 10 \mathrm{kHzL}=\mathrm{R} \text { Input }
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
-25 \\
-1.5 \\
-8
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& -35 \\
& -0.5 \\
& -14 \\
& \pm 40
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.5 \\
-20 \\
\pm 100
\end{array}
$$

\] \& | dB |
| :--- |
| dB |
| dB |
| mV | <br>

\hline
\end{tabular}

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $125^{\circ} \mathrm{O} / \mathrm{W}$ junction to ambient.
Note 2: Input is $10 \%$ SCA $(74.5 \mathrm{kHz}), 9 \%$ pilot and 1 kHz left or right. Rejection is ratio of 1 kHz output to 1.5 kHz output.

## External Components

Part \#	Recommended Value	Purpose	Affect		Remarks
			Smaller	Larger	
R1	100k	Pull Up for Quick Mono	OK	Errors Due to Pin 1 Bias Current	Pin 1 Can Be Shorted to Supply if Quick Mono is Not Used
C2	$2 \mu \mathrm{~F}$	PLL Input Coupling	Loading of Source varies with Frequency		For Source of Less Than 100』, Can Use $0.1 \mu \mathrm{~F}$
C3	$0.1 \mu \mathrm{~F}$	Supply Bypass			
C4	$0.22 \mu \mathrm{~F}$	Lamp Filter	Shorter Time to Switch Mono to Stereo	Longer Time to Switch Mono to Stereo	High Dielectric Resistance
$\begin{aligned} & \mathrm{R} 6 \\ & \mathrm{C} 6 \\ & \mathrm{C} 7 \end{aligned}$	$\begin{aligned} & 3 \mathrm{k} \\ & 0.047 \mu \mathrm{~F} \\ & 0.33 \mu \mathrm{~F} \\ & \hline \end{aligned}$	Loop Filter	High Stereo Distortion	Narrower Capture Range	
R8	$\begin{aligned} & 33 \mathrm{k} \\ & 0.0047 \mu \mathrm{~F} \end{aligned}$	Loop Filter	High Stereo Distortion	Loop not Lock   Narrower Capture Range	
$\begin{aligned} & \text { C9 } \\ & \text { R9 } \\ & \text { R10 } \end{aligned}$	1000 pF 8.2k   5k	Set VCO Free Running Frequency	High VCO Jitter	Narrower Capture Range	NPO 5\%
			VCO Not Adjustable with C9		Metalfilm
R11	180,	Sets Lamp Current	Excess IC Dissipation	Dim Lamp	
$\begin{aligned} & \text { R14 } \\ & \text { R15 } \end{aligned}$	$\begin{aligned} & 7.5 \mathrm{k} \\ & 7.5 \mathrm{k} \end{aligned}$	Load Resistors	Low Output Voltage	Output Clip Earlier	
$\begin{aligned} & \mathrm{C} 14 \\ & \mathrm{C} 15 \end{aligned}$	$\begin{aligned} & 0.01 \mu F \\ & 0.01 \mu F \end{aligned}$	Deemphasis			
R16	3k	Sets Blend Characteristic $\quad$ See Curves			
$\begin{aligned} & \mathrm{C} 17 \\ & \mathrm{C} 18 \end{aligned}$	$\begin{aligned} & 0.0047 \mu \mathrm{~F} \\ & 0.0047 \mu \mathrm{~F} \end{aligned}$	Filter for Blend	Insufficient Blend	Reduced Blend Bandwidth	
C19	$2 \mu \mathrm{~F}$	Audio Input Coupling	Poor Low Frequency Response and Separation	Turn On Delay	
R19	15k	Allows VCO Monitoring	Excess IC Dissipation	Reduces 19 kHz Output Voltage	Only Need During Set Up

Typical Performance Characteristics Blend off unless otherwise stated



Typical Performance Characteristics Blend off unless otherwise stated


Typical Performance Characteristics Blend off unless otherwise stated


## Application Hints

## Blend-What \& Why?

The signal to noise of a weak FM stereo signal is worse than that of an equally weak FM monosignal. Forthis reason FM mono radios often pertorm detter tnan Fivi siereu rauius, unless the latter is forced into mono.
The typical quieting curves of an FM stereo radio look like this:


If an acceptable signal to noise is 40 dB , then 20 dB more signal is required in stereo compared to mono, $30 \mu \mathrm{~V}$ vs $3 \mu \mathrm{~V}$. The degradation in noise is due to the L-R or difference channel. If the gain of the L-R is reduced, then the noise associated with it will be reduced. However, there will also be a reduction in separation.
To maintain a 40 dB signal to noise in the above example, the gain of the L-R signal should be reduced from 0 dB gain@ 030 V downward to -20 dB at $3 \mu \mathrm{~V}$. If this is done properly the dashed line will result. Below is a plot of L-R gain and resulting separation.


The LM1870 reduces the gain of the L-R channel before it is demodulated. This is done by a voltage controlled shelving filter. The Bode plot of this filter is shown below:

## Blend Filter Response



The full blend response is a two pole roll-off with each pole set by an internal 6.8 k resistor and the capacitance from pins 17 and 18 to ground. The standard value for both capacitors is 4.7 nF resulting in two 5 kHz poles. The blend input ( $\operatorname{pin} 20$ ) is derived from the meter drive output of the FM IF chip (LM3089 or LM3189 pin 13). To adjust for variations in RF gain and other IC parameters, it is recommended that an adjustment be made on each radio.

## Mono-Stereo Switching

The LM1870 automatically switches from mono to stereo when the level of pilot at pin 2 is about 15 mV or more. This value can be increased by putting a resistor between pins 4 and 5 , as shown graphically in the Typical Performance curves.

If it is desired to switch to mono without turning off the lamp driver, pin1 should be taken below 4 V . This is ahigh impedance input that can be electronically switched by a transistor with a pull up resistor to the IC supply.

## Outputs

The LM1870 has emitter-follower outputs resulting in a low output impedance. The output wll sink or source one mA, therefore it will drive AC coupled loads greater than $2 \mathrm{k} \Omega$.

In AM-FM radios the switching can be cumbersome at best. To ease the problem the outputs of the LM1870 (pins 12 and 13 ) are open circuit when the supply (pin 3) is open or grounded. This reduces the numbered switch poles required since the outputs can remain connected at all times. This technique is commonly called diode switching but the method used in the LM1870 results in substantially lower distortion than obtained with discrete diodes.

## Application Hints (Continued)

## VCO

The stereo performance of the LM1870 is very constant for small ( $<2 \%$ ) changes in the free running frequency of the VCO. To insure that the frequency stays within $2 \%$, low temperature coefficient components should be used for the tuning capacitor ( 1000 pF ) and resistor ( 8.2 k ). The internal oscillator has a temperature coefficient of about 50 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (see curve). With an NPO capacitor and a metalfilm resistor the total variation in the free running frequency will be less than $1 \%$ over the full temperature range. Tuning the VCO is done by adjusting the $5 \mathrm{k} \Omega$ potentiometer to get 19 $\mathrm{kHz} \pm 50 \mathrm{~Hz}$ with no input on pin 2 .

The VCO frequency is monitored at pin 16 when current is supplied to the pin. During normal operation the 19 kHz square wave is not available and the resistor from pin 16 to ground programs the blend characteristics (see curves).
The VCO of the LM1870 can be stopped by taking pin 4 low. In addition to being useful for turning off the stereo indicator and forcing mono FM reception, this also allows other mono sources, such as AM, to be fed into the decoder and come out both channels. The signal will not be inadvertently decoded with the VCO off and it will have the same gain and balance characteristics as the FM. The deemphasis capacitors may need to be removed for proper frequency response. The voltage on pin 20 will also affect the frequency response.

It should be noted that a stopped VCO cannot radiate into the rest of the radio and cause interference. Pin 4 can be taken low with a mechanical switch or an NPN transistor. If a transistor is used it must have low leakage, less than 100 nA at 3 volts $\mathrm{V}_{\mathrm{CE}}$, and low saturation, less than 200 mV at $100 \mu \mathrm{~A}$ collector current.

## PLL

To properly demodulate the L-R signal the decoder must generate a 38 kHz signal that is locked in phase with the 19 kHz pilot signal at the input. This is done with a phase locked loop consisting of a phase detector, a loop filter (pins 6 and 7) and a VCO (pins 8 and 9).

The loop filter is similar to other standard decoders however the VCO incorporates an additional low pass filter ( 4.7 nF and $33 \mathrm{k} \Omega$ ) to reduce beat note distortion an additional 20 dB .

## Input Interface

There are two inputs to the LM1870, one for the PLL (pin 2) and the normal audio input (pin 19). The input impedance of the audio input is about $40 \mathrm{k} \Omega$. The input coupling capacitor works with this input resistance and sets the low frequency response and separation.
The PLL input (pin2) locks onto the 19 kHz pilot and rejects the rest of the composite signal. For this reason it is only necessary to use a coupling capacitor large enough to insure there is no phase shift at 19 kHz . The input resistance of the PLL is $14 \mathrm{k} \Omega$ so a capacitor between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ would be fine. However, the source driving this input must not be affected by this load. This is true only when the source is low impedance (less than 100 ).

Typical FM IF circuits have detector output impedance of 5 $\mathrm{k} \Omega$ or more. This will cause very poor low frequency response and separation unless the loading is made constant over frequency. For this reason the typical input coupling capacitor is $2 \mu \mathrm{~F}$.

## IF Correction

The separation in most radios is limited by the response of the IF. The input lead network below can often be used to improve radio separation.

IF Correction Lead Network


## Power Supply

The LM1870 is designed to work on supplies from 7 V to 15 V . For automotive applications a regulator is recommended to protect against transients; the LM2930-8V is the ideal choice.

## LM1877 Dual Power Audio Amplifier General Description

The LM1877 is a monolithic dual power amplifier designed to deliver $2 \mathrm{~W} /$ channel continuous into $8 \Omega$ loads. The LM1877 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders and AM-FM stereo receivers, etc. Each power amplifier is biased from a common internal regulator to provide high power supply rejection, and output Q point centering. The LM1877 is internally compensated for all gains greater than 10.

## Features

- 2W/channel
- -65 dB ripple rejection, output referred
- -65 dB channel separation, output referred
- Wide supply range, 6-24V
- Very low cross-over distortion
- Low audio band noise
- AC short circuit protected
- Internal thermal shutdown


## Applications

- Multi-channel audio systems
- Stereo phonographs
- Tape recorders and plavers
- AM-FM radio receivers
- Servo amplifiers
- Intercom systems
- Automotive products


## Connection Diagram



Order Number LM1877N
See NS Package N14A

## Equivalent Schematic Diagram



## Absolute Maximum Ratings

Supply Voltage	26 V	
Input Voltage	$\ddots$	$\pm 0.7 \mathrm{~V}$
Operating Temperature	$\ddots$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Junction Temperature	$150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, $\mathbf{1 0}$ seconds)	$300^{\circ} \mathrm{C}$	

Electrical Characteristics $V_{S}=20 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~A}_{\mathrm{V}}=50(34 \mathrm{~dB})$ unless otherwise specified

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Total Supply Current	$\mathrm{PO}_{\mathrm{O}}=0 \mathrm{~W}$		25	50	mA
Output Power	THD $=10 \%$				
LM1877N	$V_{S}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	2.0			W
Total Harmonic Distortion					
LM1877	$f=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}$				
	$\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW} /$ Channel		0.075	-	\%
	$\mathrm{P}_{\mathrm{O}}=500 \mathrm{~mW} /$ Channel	.	0.045		\%
	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} /$ Channel		0.055	-	\%
Output Swing	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		$v_{S}-6$		Vp-p
Channel Separation	$C_{F}=50 \mu \mathrm{~F}, \mathrm{C}_{I N}=0.1 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz},$   Output Referred				
	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4 \mathrm{Vrms}$	-50	-70		dB
	$\mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{Vrms}$		-60		dB
PSRR Power Supply	$\mathrm{C}_{\mathrm{F}}=50 \mu \mathrm{~F}, \mathrm{C}_{\text {IN }}=0.1 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz}$,				
Rejection Ratio	Output Referred				
	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{~V}_{\text {RIPPLE }}=1 \mathrm{Vrms}$	$-50$	-65		dB
	$\mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}, \mathrm{~V}_{\text {RIPPLE }}=0.5 \mathrm{Vrms}$		-40		dB
iNoise	Equivalent Input Noise				
	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\text {IN }}=0.1 \mu \mathrm{~F}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$		2.5		$\mu \mathrm{V}$
	Output Noise Wideband		-		
	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\text {IN }}=0.1 \mu \mathrm{~F}, \mathrm{AV}=200$		0.80		mV
Open Loop Gain	$R_{S}=0, f=100 \mathrm{kHz}, R_{L}=8 \Omega$		70		dB
Input Offset Voltage			15.		mV
Input Bias Current			50		$n \mathrm{~A}$
Input Impedance	Open Loop		4		$\mathrm{M} \Omega$
DC Output Level	$V_{S}=20 \mathrm{~V}$	9	10	11	V
Slew Rate			2.0		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth			65		kHz
Current Limit	-		1.0		A

Note 1: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM 1877 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques.

## Typical Performance Characteristics





Channel Separation (Referred


## Typical Applications




## LM1894 Dynamic Noise Reduction System DNR ${ }^{\text {TM }}$

## General Description

The LM1894 is a stereo noise reduction circuit for use with audio playback systems. The DNR ${ }^{\text {TM }}$ system is noncomplementary, meaning it does not require encoded source material. The system is compatible with virtually all prerecorded tapes and FM broadcasts. Psychoacoustic masking, and an adaptive bandwidth scheme allow the $D^{T M}$ to achieve 10 dB of noise reduction. $\mathrm{DNR}^{\text {TM }}$ can save circuit board space and cost because of the few additional components required.

## Features

- Non-complementary noise reduction, "single ended"
- Low cost external components, no critical matching
- Compatible with all prerecorded tapes and FM
- 10 dB effective tapenoise reductionCCIRIARM weighted
- Wide supply range, 4.5 V to 18 V
- 1 Vrms input overload
- No license requirements


## Applications

- Automotive radio/tape players
- Compact portable tape players
- Quality HI-FI tape systems
- VCR playback noise reduction
- Video disc playback noise reduction


## Typical Application



FIGURE 1. Component Hook-Up for Stereo DNR ${ }^{\text {TM }}$ System

[^64]
## Absolute Maximum Ratings

Supply Voltage
20V
Input Voltage Range, $\mathrm{V}_{\mathrm{pk}}$
$\mathrm{V}_{\mathrm{S}} / 2$
Operating Temperature (Note 1)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

## Electrical Characteristics

$V_{S}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=300 \mathrm{mV}$ at 1 kHz , circuit shown in Figure 1 unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Operating Supply Range Supply Current	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$	4.5	$\begin{gathered} 8 \\ 17 \end{gathered}$	$\begin{aligned} & 18 \\ & 25 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$
MAIN SIGNAL PATH	-				
Voltage Gain DC Output Voltage Channel Balance	DC Ground Pin 9, Note 2   DC Ground Pin 9	-0.9 3.7 -1.0	-1 4.0	-1.1 4.3 1.0	$\begin{gathered} V / V \\ V \\ d B \end{gathered}$
Minimum Bandwidth	AC Ground Pin 9 with $0.1 \mu \mathrm{~F}$ Capacitor, Note 2	675	965	1400	Hz
Maximum Bandwidth	DC Ground Pin 9, Note 2	27	34	46	kHz
Effective Noise Reduction	CCIRIARM Weighted, Note 3		-10	-14	dB
Total Harmonic Distortion	DC Ground Pin 9		0.05	0.1	\%
Input Headroom	Maximum $V_{I N}$ for $3 \%$ THD AC Ground Pin 9		1.0		Vrms
Output Headroom	Maximum $V_{\text {OUT }}$ for $3 \%$ THD DC Ground Pin 9		$V_{S}-1.5$		Vp-p
Signal to Noise	$\mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz} \text {, re } 300 \mathrm{mV}$   AC Ground Pin 9   DC Ground Pin 9   CCIR/ARM Weighted re 300 mV , Note 4		$\begin{aligned} & 79 \\ & 77 \end{aligned}$	$\cdot$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	AC Ground Pin 9	$82$	$88$		$\mathrm{dB}$
	DC Ground Pin 9 CCIR Peak, re 300 mV , Note 5   AC Ground Pin 9   DC Ground Pin 9	70	$\begin{gathered} 76 \\ 77 \\ 64 \end{gathered}$		dB   dB   dB
Input Impedance	Pin 2 and Pin 13	14	20	26	$\mathrm{k} \Omega$
Channel Separation	DC Ground Pin 9	-50	$-70$		dB
Power Supply Rejection	$\begin{aligned} & \mathrm{C} 14=100 \mu \mathrm{~F}, \mathrm{~V}_{\text {RIPPLE }}=500 \\ & \mathrm{mVrms}, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	-40	-56		dB
Output DC Shift	Reference DVM to Pin 14 and Measure Output DC Shift from Minimum to Maximum Bandwidth, Note 6.		4.0	20	mV
CONTROL SIGNAL PATH					
Summing Amplifier Voltage Gain	Both Channels Driven	0.9	1	1.1	VIV
Gain Amplifier Input Impedance	Pin 6	24	30	39	$\mathrm{k} \Omega$
Voltage Gain	Pin 6 to Pin 8	21.5	24	26.5	V V
Peak Detector Input Impedance	Pin 9	560	700	840	$\Omega$
Voltage Gain	Pin 9 to Pin 10	30	33	36	V/V
Attack Time	Measured to $90 \%$ of Final Value with 10 kHz Tone Burst	300	500	700	$\mu \mathrm{S}$
Decay Time	Measured to $90 \%$ of Final Valuewith 10 kHz Tone Burst	45	60	75	ms
DC Voltage Range	Minimum Bandwidth to Maximum Bandwidth	1.1		3.8	V

## Notes

Note 1: For operation in ambient temperature above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: To force the DNR ${ }^{\text {TM }}$ system into maximum bandwidth, DC ground the input to the peak detector, pin 9 . A negative temperature coefficient of $-0.5 \% /{ }^{\circ} \mathrm{C}$ on the bandwidth, reduces the maximum bandwidth at increased ambient temperature or higher package dissipation. AC ground pin 9 or pin 6 to select minimum bandwidth. To change minimum and maximum bandwidth, see Application Hints.
Note 3: The maximum noise reduction CCIR/ARM weighted is about 14 dB . This is accomplished by changing the bandwidth from maximum to minimum. In actual operation, minimum bandwidth is not selected, a nominal minimum bandwidth of about 2 kHz gives -10 dB of noise reduction. See Application Hints.
Note 4: The CCIR/ARM weighted noise is measured with a 40 dB gain amplifier between the $\mathrm{DNR}^{T M}$ system and the CCIR weighting filter; it is then input referred.
Note 5: Measured using the Rhode-Schwartz psophometer.
Note 6: Pin 10 is DC forced half way between the maximum bandwidth DC level and minimum bandwidth DC level. An AC 1 kHz signal is then applied to pin 10. Its peak-to-peak amplitude is $V_{D C}(\max B W)-V_{D C}(\min B W)$.

## Typical Performance Characteristics



THD vs Frequency

frequency ( $\mathrm{Hz}^{2}$
Main Signal Path Bandwidth vs Control Voltage


Channel Separation
(Referred to the Output) vs Frequency

-3 dB Bandwidth vs Frequency and Control Signal


Peak Detector Response


Power Supply Rejection Ratio (Referred to the Output) vs Frequency


Gain of Control Path vs Frequency (with 19 kHz FM Pilot Filter)


Output Response


TIME: $20 \mathrm{~ms} / \mathrm{DIV}$

## External Component Guide (Figure 1)

Compone	nt Value	Purpose
C1	$0.1 \mu \mathrm{~F}-100 \mu \mathrm{~F}$	May be part of power supply, or may be added to suppress power supply oscillation.
C2, C13	$1 \mu \mathrm{~F}$	Blocks DC, pin 2 and pin 13 are at DC potential of $\mathrm{V}_{\mathrm{S}} / 2$. C 2 , C13 form a low frequency pole with $20 \mathrm{k} \mathrm{R}_{\mathrm{IN}}$. $f_{L}=\frac{1}{2 \pi C 2 R_{I N}}$
C14	$25 \mu \mathrm{~F}-100 \mu \mathrm{~F}$	Improves power supply rejection.
C3, C12	$0.0039 \mu \mathrm{~F}$	Forms integrator with internal gm block and op amp. Sets bandwidth conversion gain of $27 \mathrm{~Hz} / \mu \mathrm{A}$ of gm current.
C4, C11	$1 \mu \mathrm{~F}$	Output coupling capacitor. Output is at DC potential of $\mathrm{V}_{\mathrm{S}} / 2$.
C5	$0.1 \mu \mathrm{~F}$	Works with R1 and R2 to atienuaie iuw irequerlicy ilansients which could disturb control path operation.

C6 $\quad 0.001 \mu \mathrm{~F} \quad$ Works with input resistance of pin 6 to form part of control path frequency weighting.

$$
f_{6}=\frac{1}{2 \pi \mathrm{C} 6 \mathrm{R}_{\mathrm{PIN} 6}}=5.3 \mathrm{kHz}
$$

C8 $\quad 0.1 \mu \mathrm{~F} \quad$ Combined with L 8 and $\mathrm{C}_{\mathrm{L}}$ forms 19 kHz filter for FM pilot. This is only required in FM applications (Note 1).
L8, $\mathrm{C}_{\mathrm{L}} \quad 4.7 \mathrm{mH}$, Forms 19 kHz filter for FM pilot. L8 is Toko coil CAN-1A185HM * (Note 1).
C9 $\quad 0.047 \mu \mathrm{~F} \quad$ Works with input resistance of pin 9 to form part of control path frequency weighting.

$$
\mathrm{f}_{9}=\frac{1}{2 \pi \mathrm{C} 9 \mathrm{R}_{\mathrm{PIN} 9}}=4.8 \mathrm{kHz}
$$

C10 $\quad 1 \mu \mathrm{~F} \quad$ Sets attack and decay time of

$$
\mathrm{R} 1, \mathrm{R} 2 \quad 1 \mathrm{k} \Omega
$$

R8 $100 \Omega$
Sets attack and decay time of peak detector.
Sensitivity resistors set the noise threshold. Reducing attenuation causes larger signals to be peak detected and larger bandwidth in main signal path. Total value of $R 1+R 2$ should equal $1 \mathrm{k} \Omega$.
Forms RC roll-off with C8. This is only required in FM applications.

* Toko America Inc., 5520 W. Touhy Avenue, Skokie, Illinois 60077

Note 1: When FM applications are not required, $\operatorname{pin} 8$ and $\operatorname{pin} 9$ hook-up as follows:


## Circuit Operation

The LM1894 has two signal paths, a main signal path and a bandwidth control path. The main path is an audio low pass filter comprised of a gm block with a variable current, and an op amp configured as an integrator. As seen in Figure 2, DC feedback constrains the low frequency gain to $A_{V}=-1$. Above the cutoff frequency of the filter, the output decreases at $-6 \mathrm{~dB} /$ oct due to the action of the $0.0039 \mu \mathrm{~F}$ capacitor.

The purpose of the control path is to generate a bandwidth control signal which replicates the ear's sensitivity to noise in the presence of a tone. A single control path is used for both channels to keep the stereo image from wandering. This is done by adding the right and left channels together in the summing amplifier of Figure 2. The R1, R2 resistor divider adjusts the incoming noise level to open slightly the bandwidth of the low pass filter. Control path gain is about 60 dB and is set by the gain amplifier and peak detector gain. This large gain is needed to ensure the low pass filter bandwidth can be opened by very low noise floors. The capacitors between the summing
 the frequency weighting as shown in the typical performance curves. The $1 \mu \mathrm{~F}$ capacitor at pin 10 , in conjunction with internal resistors, sets the attack and decay times. The voltage is converted into a proportional current which is fed into the gm blocks. The bandwidth sensitivity to gm current is $27 \mathrm{~Hz} / \mu \mathrm{A}$. In FM stereo applications a 19 kHz pilot filter is inserted between pin 8 and pin 9 as shown in Figure 1.

Figure 3 is an interesting curve and deserves some discussion. Although the output of the $\mathrm{DNR}^{\text {TM }}$ system is a linear function of input signal, the -3 dB bandwidth is not. This is due to the non-linear nature of the control path. The DNR ${ }^{\text {TM }}$ system has a uniform frequency response, but looking at the -3 dB bandwidth on a steady state basis with a single frequency input can be misleading. It must be remembered that a single input frequency can only give a single -3 dB bandwidth and the roll-off from this point must be a smooth $-6 \mathrm{~dB} /$ oct.

A more accurate evaluation of the frequency response can be seen in Figure 4. In this case the main signal path is frequency swept, while the control path has a constant frequency applied. It can be seen that different control path frequencies each give a distinctive gain roll-off.

## Psychoacoustic Basics

The dynamic noise reduction system is a low pass filter that has a variable bandwidth of 1 kHz to 30 kHz , dependent on music spectrum. The DNR ${ }^{\text {TM }}$ system operates on three principles of psychoacoustics.

1. White noise can mask pure tones. The total noise energy required to mask a pure tone must equal the energy of the tone itself. Within certain limits, the wider the band of masking noise about the tone, the lower the noise amplitude need be. As long as the total energy of the noise is equal to or greater than the energy of the tone, the tone will be inaudible. This principle may be turned around; when music is present, it is capable of masking noise in the same bandwidth.
2. The ear cannot detect distortion for less than 1 ms . On a transient basis, if distortion occurs in less than 1 ms , the ear acts as an integrator and is unable to detect it. Because of this, signals of sufficient energy to mask noise open the bandwidth to $90 \%$ of the maximum value in less
than 1 ms . Reducing the bandwidth to within $10 \%$ of its minimum value is done in about 60 ms : long enough to allow the ambience of the music to pass through, but not so long as to allow the noise floor to become audible.

## Block Diagram



FIGURE 2


FIGURE 3. Output vs Frequency


FIGURE 4. - 3 dB Bandwidth vs Frequency and Control Signal
3. Reducing the audio bandwidth reduces the audibility of noise. Audibility of noise is dependent on noise spectrum, or how the noise energy is distributed with frequency. Depending on the tape and the recorder equalization, tape noise spectrum may be slightly rolled off with frequency on a per octave basis. The ear sensitivity on the other hand greatly increases between 2 kHz and 10 kHz . Noise in this region is extremely audible. The DNR ${ }^{\text {TM }}$ system low pass filters this noise. Low frequency music will not appreciably open the DNR $^{T M}$ bandwidth, thus 2 kHz to 20 kHz noise is not heard.

## Application Hints

The DNR ${ }^{\text {TM }}$ system should always be placed before tone and volume controls as shown in Figure 1. This is because any adjustment of these controls would alter the noise floor seen by the DNR ${ }^{\text {TM }}$ control path. The sensitivity resistors R1 and R2 may need to be switched with the input selector, depending on the noise floors of different sources, i.e., tape, FM, phono. To determine the value of R1 and R2 in a tape system for instance; apply tape noise (no program material) and adjust the ratio of R1 and R2 to open slıgntly the dandwidtin oi iut mair siynai páiti. Thin can easily be done by viewing the capacitor voltage of pin 10 with an oscilloscope, or by using the circuit of Figure 5. This circuit gives an LED display of the voltage on the peak detector capacitor. Adjust the values of R1 and R2 (their sum is always $1 \mathrm{k} \Omega$ ) to light the LEDs of pin 1 and pin 18. The LED bar graph does not indicate signal level, but rather instantaneous bandwidth of the two filters; it should not be used as a signal-level indicator. For greater flexibility in setting the bandwidth sensitivity, R1 and R2 could be replaced by a $1 \mathrm{k} \Omega$ potentiometer.
To change the minimum and maximum value of bandwidth, the integrating capacitors, C3 and C12, can be scaled up or down. Since the bandwidth is inversely proportional to the capacitance, changing this $0.0039 \mu \mathrm{~F}$ capacitor to $0.0033 \mu \mathrm{~F}$ will change the typical bandwidth from $965 \mathrm{~Hz}-34 \mathrm{kHz}$ to $1.1 \mathrm{kHz}-40 \mathrm{kHz}$. With C3 and C12 set at $0.0039 \mu \mathrm{~F}$, the maximum bandwidth is typically 34 kHz . A double pole double throw switch can be used to completely bypass DNR.

The capacitor on pin 10 in conjunction with internal resistors sets the attack and decay times. The attack time can be altered by changing the size of C10. Decay times can be decreased by paralleling a resistor with C10, and increased by increasing the value of C10.
When measuring the amount of noise reduction of the DNR ${ }^{\text {TM }}$ system, the frequency response of the cassette should be flat to 10 kHz . The CCIR weighting network has substantial gain to 8 kHz and any additional roll-off in the cassette player will reduce the benefits of $D N R^{T M}$ noise reduction. A typical signal-to-noise measurement circuit is shown in Figure 6. The DNR ${ }^{\text {TM }}$ system should be switched from maximum bandwidth to nominal bandwidth with tape noise as a signal source. The reduction in measured noise is the signal-to-noise ratio improvement.

## FOR FURTHER READING

## Tape Noise Levels

1. "A Wide Range Dynamic Noise Reduction System", Blackmer, ' $d B$ ' Magazine, August-September 1972, そa!ume
2. "Dolby B-Type Noise Reduction System", Berkowitz and Gundry, Sert Journal, May-June 1974, Volume 8.
3. "Cassette vs Elcaset vs Open Reel", Toole, Audioscene Canada, April 1978.
4. "CCIR/ARM: A Practical Noise Measurement Method", Dolby, Robinson, Gundry, JAES, 1978.

## Noise Masking

1. "Masking and Discrimination", Bos and De Boer, JAES, Volume 39, \#4, 1966.
2. "The Masking of Pure Tones and Speech by White Noise", Hawkins and Stevens, JAES, Volume 22, \#1, 1950.
3. "Sound System Engineering", Davis, Howard W. Sams and Co.
4. "High Quality Sound Reproduction", Moir, Chapman Hall, 1960.
5. "Speech and Hearing in Communication", Fletcher, Van Nostrand, 1953.


FIGURE 5. Bar Graph Display of Peak Detector Voltage

## Application Hints (Continued)



FIGURE 6. Technique for Measuring S/N Improvement of the DNR ${ }^{\text {TM }}$ System

## Printed Circuit Layout




#### Abstract

General Description The LM1895 is a 6 V audio power amplifier designed to deliver $1 W$ into $4 \Omega$. Utilizing a unique patented compensation scheme, the LM1895 is ideal for sensitive AM radio applications. This new circuit technique exhibits lower noise, lower distortion, and less AM radiation than conventional designs. The amplifier's supply range ( $3 \mathrm{~V}-9 \mathrm{~V}$ ) is ideal for battery operation. The LM1895 is packaged in an 8 -pin miniDIP for minimum PC board space. For higher supplies ( $\mathrm{V}_{\mathrm{S}}>9 \mathrm{~V}$ ) the LM2895 is available in an 11-lead sinale-in-line package. The 11-lead package has been redesigned, resulting in a slightly degraded thermal characteristic shown in the figure Device Dissipation vs Ambient Temperature.


## Features

- Guaranteed low crossover distortion
- Low AM radiation

L Low noise

- $3 \mathrm{~V}, 4 \Omega, \mathrm{P}_{\mathrm{O}}=250 \mathrm{~mW}$
- Wide supply operation 3V-15V (LM2895)
- Low distortion
- No turn on "pop"
- Smooth waveform clipping
- 8-pin miniDIP (LM1895)
- $12 \mathrm{~V}, 4 \Omega, \mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}$ (LM2895)
- Tested for !num ernsonver distortion


## Applications

- Compact AM-FM radios
- Battery operated tape player amplifiers
- Line driver


## Typical Applications



FIGURE 1. LM1895 with $A_{V}=500, B W=5 \mathrm{kHz}, \mathrm{AM}$ Radio Application ( $\mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{mV}$ for Full Power Output)

Order Number LM1895N
See NS Package N08A
Order Number LM2895P
See NS Package P11A

## Absolute Maximum Ratings

Supply Voltage

## LM1895 <br> LM2895

Operating Temperature (Note 1)

$$
V_{S}=12 V
$$

$V_{S}=18 \mathrm{~V}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature
$150^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$
Electrical Characteristics Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{A}_{V}=200(46 \mathrm{~dB})$. For the $\mathrm{LM} 1895, \mathrm{~V}_{S}=6 \mathrm{~V}$ and $R_{L}=4 \Omega$. For the $L M 2895, T_{T A B}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}=12 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=4 \Omega$. Test circuit shown in Figure 2.


Note 1: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM1895/LM2895 must be derated based on a maximum junction temperature using a thermal resistance which depends upon mounting techniques.

## Typical Performance Characteristics



Typical Performance Characteristics (Continued)


Power Dissipation vs Output Power, $\mathrm{R}_{\mathrm{L}}=4 \Omega$


Equivalent Schematic


Pin 7 no connection on LM1895
Pins 4, 7, 10, 11 no connection on LM2895
( ) indicates pin number for LM2895

Typical Applications (Continued)


FIGURE 2. Amplifier with $\mathrm{A}_{\mathrm{V}}=\mathbf{2 0 0}, \mathrm{BW}=\mathbf{3 0} \mathbf{k H z}$

External Components (Figure 2)
7. C1 Compensation capacitor. This stabilizes the amplifier and adjusts

Components

1. R1, R5
2. R2
3. $\mathrm{R}_{\mathrm{O}}$
4. C4
5. C5
6. C2
7. C3
8. $C_{c}$
9. $\mathrm{C}_{\mathrm{O}}$
10. $\mathrm{C}_{\mathrm{s}}$

## Comments

Sets voltage gain, $A_{V}=1+R 1 / R 5$
Bootstrap resistor sets drive current for output stage and allows pin 2 to go above $V_{S}$
Works with $\mathrm{C}_{\mathrm{O}}$ to stabilize output stage
Input coupling capacitor. Pin 4 is at a DC potential of $\mathrm{V}_{\mathrm{S}} / 2$. Low frequency pole set by:

$$
f_{L}=\frac{1}{2 \pi R_{I N} C 4}
$$

Feedback capacitor. Ensure unity gain at DC. Also a low frequency pole at:

$$
f_{L}=\frac{1}{2 \pi R 5 C 5}
$$

Bootstrap capacitor, used to increase drive to output stage. A low frequency pole is set by:

$$
f_{L}=\frac{1}{2 \pi R 2 C 2}
$$ the bandwidth. See curve of bandwidth vs allowable gain

Improves power supply rejection. (See Typical PerformanceCurves). Increasing C3 increases turn-on delay
Output coupling capacitor. Isolates pin 1 from the load. Low frequency pole set by:

$$
f_{L}=\frac{1}{2 \pi C_{c} R_{L}}
$$

Works with $\mathrm{R}_{\mathrm{O}}$ to stabilize output stage
Provides power supply filtering

Connection Diagrams


## Application Hints

## AM Radios

The LM1895/LM2895 have been designed to fill a wide range of audio power applications. A common problem with IC audio power amplifiers has been poor signal-to-noise performance when used in AM radio applications. In a typical radio application, the loopstick antenna is in close proximity to the audio amplifier. Current flowing in the speaker and power supply leads can cause electromagnetic coupling to the loopstick, resulting in system oscillation. In addition, most audio power amplifiers are not optimized for lowest noise because of compensation requirements. If noise from the audio amplifier radiates into the AM section, the sensitivity and signal-to-noise ratio will be degraded.

The LM1895 exhibits extremely low wideband noise due in part to an external capacitor C 1 which is used to tailor the bandwidth. The circuit shown in Figure 2 is capable of a signal-to-noise ratio in excess of 60 dB referred to 50 mW . Capacitor C1 not only limits the closed loop bandwidth, it also provides overall loop compensation. Neglecting C5 in Figure 2, the gain is:

Single-In-Line Package


$$
A_{V}(S)=\frac{S+A_{V} \omega_{0}}{S+\omega_{0}}
$$



A curve of -3 dB BW $\left(\omega_{0}\right)$ vs $A_{V}$ is shown in the Typical Performance Curves.

Figure 3 shows a plot of recovered audio as a function of field strength in $\mu \mathrm{V} / \mathrm{M}$. The receiver section in this example is an LM3820. The power amplifier is located about two inches from the loopstick antenna. Speaker leads run parallel to the loopstick and are $1 / 8$ inch from it. Referenced to a 20 dB S/N ratio, the improvement in noise performance over conventional designs is about 10 dB . This corresponds to an increase in usable sensitivity of about 8.5 dB .


FIGURE 3. Improved AM Sensitivity Over Conventional Design



National

## LM1896/LM2896 Dual Power Audio Amplifier

## General Description

The LM1896 is a high performance 6 V stereo power amplifier designed to deliver 1 watt/channel into $4 \Omega$ or 2 watts bridged monaural into $8 \Omega$. Utilizing a unique patented compensation scheme, the LM1896 is ideal for sensitive AM radio applications. This new circuit technique exhibits lower wideband noise, lower distortion, and less AM radiation than conventional designs. The amplifier's wide supply range ( $3 \mathrm{~V}-9 \mathrm{~V}$ ) is ideal for battery operation. For higher supplies ( $\mathrm{V}_{\mathrm{S}}>9 \mathrm{~V}$ ) the LM2896 is available in an 11-lead single-in-line package. The LM2896 package has been redesigned, resulting in the slightly degraded thermal characteristics shown in the figure Device Dissipation vs Ambient Temperature.

## Features

- Low AM radiation
- Low noise
- $3 \mathrm{~V}, 4 \Omega$, stereo $P_{0}=250 \mathrm{~mW}$
- Wide supply operation 3 V -15V (LM2896)
- Low distortion
- No turn on "pop"
- Adjustable voltage gain and bandwidth
- Smooth waveform clipping
$\mathrm{P}_{\mathrm{o}}=9 \mathrm{~W}$ bridged, LM2896


## Applications

Compact AM-FM radios
Stereo tape recorders and players
High power portable stereos

Typical Applications


FIGURE 1. LM2896 in Bridge Configuration ( $A_{V}=400$, $B W=20 \mathbf{k H z}$ )

Order Number LM1896N
See NS Package N14A

Order Number LM2896P
See NS Package P11A

## Absolute Maximum Ratings

Supply Voltage

LM1896
LM2896
Operating Temperature(Note1)
Storage Temperature
Junction Temperature
Lead Temperature(Soldering, 10seconds)

$$
V_{S}=12 \mathrm{~V}
$$

$$
V_{S}=18 \mathrm{~V}
$$

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{A}_{V}=200(46 \mathrm{~dB})$. For the LM1896;
$V_{S}=6 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=4 \Omega$. For $\mathrm{LM} 2896, \mathrm{~T}_{T A B}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=8 \Omega$. Test circuit shown in Figure 2.

Parameter	Conditions	LM1896			LM2896			Units
		Min	Tup	Max	Min	Tvo	Max	
Supply Current	$\mathrm{P}_{\mathrm{o}}=0 \mathrm{~W}$, Dual Mode		15	$\begin{aligned} & 25 \\ & 10 \end{aligned}$		25	40	mA
Operating Supply Voltage		3			3		15	v
Output Power LM1896N-1 LM1896N-2	$\left.\begin{array}{l} \text { THD }=10 \%, f=1 \mathrm{kHz} \\ V_{S}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega \text { Dual Mode } \\ \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega \text { Bridge Mode } \\ \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega \text { Dual Mode } \end{array}\right\} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
		0.9	1.1					w
		1.8	2.1					W
			1.3					W
LM2896P-1	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$ Dual Mode				2.0	2.5		W
LM2896P-2	$\mathrm{V}_{S}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$ Bridge Mode $\mathrm{T}_{\text {TAB }}=25^{\circ} \mathrm{C}$				7.2	9.0		w
	$\mathrm{V}_{S}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$ Bridge Mode ${ }^{\text {T }}$ TAB $=25^{\circ} \mathrm{C}$					7.8		W
	$\mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$ Dual Mode					2.5		W
Distortion	$\begin{aligned} & f=1 \mathrm{kHz} \\ & \mathrm{P}_{\mathrm{o}}=50 \mathrm{~mW} \\ & \mathrm{P}_{\mathrm{o}}=0.5 \mathrm{~W} \\ & \mathrm{P}_{\mathrm{o}}=1 \mathrm{~W} \end{aligned}$		0.09			0.09		
			0.11			0.11		\%
						0.14		\%
Power Supply Rejection Ratio (PSRR)	$\begin{aligned} & C_{B Y}=100 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F} \\ & \text { Output Referred, } \mathrm{V}_{\text {RIPPLE }}=250 \mathrm{mV} \end{aligned}$	-40	-54		-40	-54		dB
Channel Separation	$C_{B Y}=100 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$ Output Referred	-50	-64		-50	-64		dB
Noise	Equivalent Input Noise $\mathrm{R}_{\mathrm{S}}=0$,							
	$\mathrm{C}_{\mathbb{N}}=0.1 \mu \mathrm{~F}, \mathrm{BW}=20-20 \mathrm{kHz}$ CCIRIARM		1.4 1.4			1.4 1.4		$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Wideband		2.0			2.0		${ }_{\mu} \mathrm{V}$
DC Output Level		2.8	3	3.2	5.6	6	6.4	V
Input Impedance		50	100	350	50	100	350	k $\Omega$
Input Offset Voltage			5			5		mV
Voltage Difference Between Outputs	LM1896N-2, LM2896P-2		10	20		10	20	mV
Input Bias Current			120			120		nA

Note 1: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM1896/LM2896 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon mounting techniques.

Typical Performance Curves
LM2896 Device Dissipation vs Ambient Temperature


THD and Gain vs Frequency $A_{V}=54 \mathrm{~dB}, \mathrm{BW}=30 \mathrm{kHz}$


THD and Gain vs Frequency $A_{V}=40 \mathrm{~dB}, B W=20 \mathrm{kHz}$


Power Supply Rejection Ratio (Referred to the Output) vs Frequency


LM1896 Maximum Device Dissipation vs Ambient Temperature


THD and Gain vs Frequency $A_{V}=54 \mathrm{~dB}, \mathrm{BW}=5 \mathrm{kHz}$


THD and Gain vs Frequency $A_{V}=34 \mathrm{~dB}, B W=50 \mathrm{kHz}$


Channel Separation (Referred to the Output) vs Frequency


- 3 dB Bandwidth vs Voltage Gain for Stable Operation


THD and Gain vs Frequency $A_{V}=46 \mathrm{~dB}, \mathrm{BW}=50 \mathrm{kHz}$


AM Recovered Audio and Noise vs Field Strength for Different Speaker Lead Placement


Power Output vs Supply Voltage


Typical Performance Curves

## (Continued)



Equivalent Schematic


6, 9 No connection on LM1896
() Indicates pin number for LM2896

## Connection Diagrams

Dual-In-Line Package


Power Dissipation vs Power Output $\mathrm{R}_{\mathrm{L}}=4 \Omega$


Power Dissipation vs Power Output $\mathrm{R}_{\mathrm{L}}=8 \Omega$


## Typical Applications (Continued)



6, 9 No connection on LM1896
() Indicates pin number for LM2896

FIGURE 2. Stereo Amplifier with $\mathbf{A}_{\mathbf{V}}=\mathbf{2 0 0}, \mathbf{B W}=\mathbf{3 0} \mathbf{~ k H z}$

## External Components (Figure 2)

## Components

1. R2, R5, R10, R13
2. R3, R12
3. $R_{0}$
4. C1, C14
5. $\mathrm{C} 2, \mathrm{C} 13$
6. $\mathrm{C} 3, \mathrm{C} 12$
7. $\mathrm{C}, \mathrm{C} 10$
8. C 7
9. $C_{C}$
10. $\mathrm{C}_{0}$
11. $\mathrm{C}_{\mathrm{s}}$

## Comments

Sets voltage gain, $A_{V}=1+R 5 / R 2$ for one channel and $A_{V}=1+R 10 / R 13$ for the other channel.

Bootstrap resistor sets drive current for output stage and allows pins 3 and 12 to go above $\mathrm{V}_{\mathrm{S}}$.
Works with $\mathrm{C}_{0}$ to stabilize output stage.
Input coupling capacitor. Pins 1 and 14 are at a DC potential of $\mathrm{V}_{\mathrm{S}} / 2$. Low frequency pole set by:

$$
f_{L}=\frac{1}{2 \pi R_{I N} C 1}
$$

Feedback capacitors. Ensure unity gain at DC. Also a low frequency pole at:

$$
f_{L}=\frac{1}{2 \pi R 2 C 2}
$$

Bootstrap capacitors, used to increase drive to output stage. A low frequency pole is set by:

$$
f_{L}=\frac{1}{2 \pi R 3 C 3}
$$

Compensation capacitor. These stabilize the amplifiers and adjust their bandwidth. See curve of bandwidth vs allowable gain.
Improves power supply rejection (See Typical Performance Curves). Increasing C 7 increases turn-on delay.
Output coupling capacitor. Isolates pins 5 and 10 from the load. Low frequency pole set by:

$$
f_{L}=\frac{1}{2 \pi C_{c} R_{L}}
$$

Works with $\mathrm{R}_{0}$ to stabilize output stage.
Provides power supply filtering.

## Application Hints

## AM Radios

The LM1896/LM2896 have been designed to fill a wide range of audio power applications. A common problem with IC audio power amplifiers has been poor signal-to-noise performance when used in AM radio applications. In a typical radio application, the loopstick antenna is in close proximity to the audio amplifier. Current flowing in the speaker and power supply leads can cause electromagnetic coupling to the loopstick, resulting in system oscillation. In addition, most audio power amplifiers are not optimized for lowest noise because of compensation requirements. If noise from the audio amplifier radiates into the AM section, the sensitivity and signal-to-noise ratio will be degraded.

The LM1896 exhibits extremely low wideband noise due in part to an external capacitor C 5 which is used to tailor the bandwidth. The circuit shown in Figure 2 is capable of a signal-to-noise ratio in excess of 60 dB referred to 50 mW . Capacitor C5 not only limits the closed loop bandwidth, it also provides overall loop compensation. Neglecting C2 in cisure 2, the gain is:

$$
\begin{gathered}
A_{V}(S)=\frac{S+A_{V} \omega_{0}}{S+\omega_{0}} \\
\text { where } \quad A_{V}=\frac{R 2+R 5}{R 2}, \quad \omega_{0}=\frac{1}{R 5 C 5}
\end{gathered}
$$

A curve of -3 dB BW $\left(\omega_{0}\right)$ vs $A_{V}$ is shown in the Typical Performance Curves.

Figure 3 shows a plot of recovered audio as a function of field strength in $\mu \mathrm{V} / \mathrm{M}$. The receiver section in this example is an LM3820. The power amplifier is located about two inches from the loopstick antenna. Speaker leads run parallel to the loopstick and are $1 / 8$ inch fromit. Referenced to a $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio, the improvement in noise performance over conventional designs is about 10 dB . This corresponds to an increase in usable sensitivity of about 8.5 dB .

## Bridge Amplifiers

The LM1896/LM2896 can be used in the bridge mode as a monaural power amplifier. In addition to much higher power output, the bridge configuration does not require output coupling capacitors. The load is connected directly between the amplifier outputs as shown in Figure 4.

Amp 1 has a voltage gain set by $1+\mathrm{R} 5 / \mathrm{R} 2$. The output of amp 1 drives amp 2 which is configured as an inverting amplifier with unity gain. Because of this phase inversion in amp 2, there is a 6 dB increase in voltage gain referenced to $V_{i}$. The voltage gain in bridge is:

$$
\frac{V_{0}}{V_{i}}=2\left(1+\frac{R 5}{R 2}\right)
$$

$C_{B}$ is used to prevent DC voltage on the output of amp1 from causing offset in amp 2. Low frequency response is influenced by:

$$
f_{L}=\frac{1}{2 \pi R_{B} C_{B}}
$$

Several precautions should be observed when using the LM1896/LM2896 in bridge configuration. Because the amplifiers are driving the load out of phase, an $8 \Omega$ speaker will appear as a $4 \Omega$ load, and a $4 \Omega$ speakerwill appear as a $2 \Omega$ load. Power dissipation is twice as severe in this situation. For example, if $\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=8 \Omega$ bridged, then the maximum dissipation is:

$$
\begin{aligned}
& P_{D}=\frac{V_{S}^{2}}{20 R_{L}} \times 2=\frac{6^{2}}{20 \times 4} \times 2 \\
& P_{D}=0.9 \text { Watts }
\end{aligned}
$$

This amount of dissipation is equivalent to driving two $4 \Omega$ loads in the stereo configuration.

When adjusting the frequency response in the bridge configuration, R5C5 and R10C10 form a 2 pole cascade and the -3 dB bandwidth is actually shifted to a lower frequency:

$$
\mathrm{BW}=\frac{0.707}{2 \pi \mathrm{RC}}
$$

where $R=$ feedback resistor
$\mathrm{C}=$ feedback capacitor
To measure the output voltage, a floating or differential meter should be used because a prolonged output short will over dissipate the package. Figure 1 shows the complete bridge amplifier.


FIGURE 3. Improved AM Sensitivity Over Conventional Design


FIGURE 4. Bridge Amplifier Connection

## Printed Circuit Layout

## Printed Circuit Board Layout

Figure 5 and Figure 6 show printed circuit board layouts for the LM1896 and LM2896. The circuits are wired as stereo amplifiers. The signal source ground should return to the input ground shown on the boards. Returning the loads to power supply ground through a separate wire will keep the THD at its lowest value. The inputs should be terminated in less than $50 \mathrm{k} \Omega$ to prevent an input-output oscillation. This


FIGURE 5. Printed Circuit Board Layout for the LM1896
oscillation is dependent on the gain and the proximity of the bridge elements $\mathrm{R}_{\mathrm{B}}$ and $\mathrm{C}_{\mathrm{B}}$ to the ( + ) input. If the bridge mode is not used, do not insert $R_{B}, C_{B}$ into the $P C B$.

To wire the amplifier into the bridgeconfiguration, short the capacitor on pin 7 (pin 1 of the LM1896) to ground. Connect together the nodes labeled BRIDGE and drive the capacitor connected to pin 5 (pin 14 of the LM1896).


FIGURE 6. Printed Circuit Board Layout for the LM2896

Audio/Radio Circuits

## LM1897 Low Noise Preamplifier for Tape Playback Systems

## General Description

The LM1897 is a dual high gain preamplifier for applications requiring optimum noise performance. It is an ideal choice for a tape playback amplifier when a combination of low noise, high gain, good power supply rejection, and no power up transients are desired. The application also provides transient-free muting with a single pole grounding switch.

## Features

- Programmable turn-on delay
- Transient-free power up - no pops
- Transient-free muting

■ Low noise - $0.6 \mu \mathrm{~V}$ CCIRIARM in a DIN circuit referenced to gain at 1 kHz

- Low Voltage Battery Operation 4V
- Wide gain bandwidth due to broadband two amplifier approach $\quad 76 \mathrm{~dB}$ @ 20 kHz
■ High power supply rejection 105 dB
- Low distortion 0.03\%
- Fast slew rate $6 \mathrm{~V} / \mu \mathrm{s}$
- Short circuit protection
- Internal diodes for diode switching applications
- Low cost external parts
- Excellent low frequency response
- Prevents "click" from being recorded onto the tape during power supply cycling in tape playback applications


Figure 1. Typical Tape Playback Preamplifier Application

Absolute Maximum Ratings
Supply Voltage
Voltage on Pins 8 and 9
Package Dissipation (Note 1)
Storage Temperature
Operating Temperature
Minimum Voltage On Any Pin
Lead Temperature (soldering, 10 seconds)

$$
\begin{array}{r}
18 \mathrm{~V} \\
18 \mathrm{~V} \\
715 \mathrm{~mW} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-0.1 \mathrm{~V}_{\mathrm{DC}} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\right.$, See Test Circuit - Figure 2)

Parameter	Conditions	Min	Typ	Max	Units
Operating Supply Voltage Range	$\mathrm{R}_{5}$ removed from circuit	4		18	V
Supply Current	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$		6	12	mA
Total Harmonic Distortion	$f=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=0.3 \mathrm{mV}$, Pins $7 \& 10$, Figure 2		0.03		\%
THD + Noise (Note 2)	$f=1 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$, Pins $7 \& 10$, Figure 2		0.10	0.25	\%
Power Supply Rejection	Input Ref. $f=1 \mathrm{kHz}, 1 \mathrm{~V}_{\text {RMS }}$	85	105		dB
Channel Separation	$f=1 \mathrm{kHz}$, Output $=1 \mathrm{~V}$ RMS , Output to Output	40	60		dB
Signal to Noise (Note 3)	Unweighted $32 \mathrm{~Hz}-12.74 \mathrm{kHz}$ (Note 2) CCIR/ARM (Note 4)   A Weighted CCIR, Peak (Note 5)		58 62 64 52		dB   dB   dB   dB
Noise	Output Voltage CCIR/ARM (Note 4)		120	200	$\mu \mathrm{V}$
Input Amplifiers Input Bias Current			0.5	2.0	$\mu \mathrm{A}$
Input Impedance	$\mathrm{f}=1 \mathrm{kHz}$	50			k $\Omega$
A.C. Gain		27	28	29	dB
A.C. Gain Imbalance			$\pm 0.15$	$\pm 0.5$	dB
D.C. Output Voltage		1.8	2.2	2.6	V
D.C. Output Voltage Mismatch	Pins 3 and 14	-200	$\pm 30$	+200	mV
Output Source Current	Pins 3 and 14	2	10		mA
Output Sink Current	Pins 3 and 14	300	600		$\mu \mathrm{A}$
Output Amplifiers					
Closed Loop Gain	Stable Operation	5			VIV
Open Loop Voltage Gain	D.C.		110		dB
Gain Bandwidth Product			5		MHz
Slew Rate			6		V/usec
Input Offset Voltage			2	5	mV
Input Offset Current			20	100	nA
Input Bias Current			250	500	nA
Output Source Current	Pin 7 or 10	2	10		mA
Output Sink Current	Pin 7 or 10	400	900		$\mu \mathrm{A}$
Output Voltage Swing	Pin 7 or 10		11		$V_{P P}$
Output Diode Leakage	Voltage on Pins 8 and $9=18 \mathrm{~V}$		0	10	$\mu \mathrm{A}$

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} /$ Watt junction to ambient.
Note 2: Measured with an average responding voltmeter using the filter circuit in Figure 4. This simple filter is approximately equivalent to a "brick wall" filter with a passband of 20 Hz to 20 kHz (see "Application Hints" section). For 1 kHz THD the 400 Hz high pass filter on the distortion analyzer is used.
Note 3: The numbers are referred to an output level of 160 mV at Pins 7 and 10 using the circuit of Figure 2. This corresponds to an input level of 0.3 mV RMS at 333 Hz .
Note 4: Measured with an average responding voltmeter using the Dolby lab's standard CCIR filter having a unity gain reference at 2 kHz .
Note 5: Measured using the Rhode-Schwarz psophometer, model UPGR.


Figure 2. General Test Circuit


Figure 3. Frequency Response of Test Circuit


Figure 4. Simple $32 \cdot 12740 \mathrm{~Hz}$ Filter and Meter


Figure 5. Schematic Diagram

External Component
$\mathrm{R}_{1}$, $\mathrm{C}_{2}$ urn-on delay and second amplifier's low frequency pole. Leakage current in $\mathrm{C}_{2}$ results in DC offset between the amplifier's inputs and therefore this current should be kept low. $\mathrm{R}_{1}$ is set equal to $R_{2}$ such that any input offset voltage due to bias current is effectively cancelled. An input offset voltage is generated by the input offset current multiplied by the value of these resistors.
$R_{2} \quad$ Set the DC and low frequency gain of the output amplifier. The total input offset voltage will also be multiplied by the DC gain of this amplifier. It is therefore essential to keep the input offset voltage specification in mind when employing high DC gain in the output amplifier; i.e. $5 \mathrm{mV} \times$ $400=2 \mathrm{~V}$ offset at the output.
$R_{4} \quad$ Set tape playback equalization $\mathrm{C}_{1} \quad$ characteristics in conjunction with $R_{3}$ (calculations for the component values are included in the Applications Hints section).
$R_{6} \quad$ Biases the output diode when it is used in DC switching applications. This resistor can be excluded if diode switching is not desired.


## Distortion Measurement Method

In order to clearly interpret and compare specifications and measurements for low noise preamplifiers, it is necessary to understand several basic concepts of noise. An obvious example is the measurement of total harmonic distortion at very low input signal levels. Distortion analyzers provide outputs which allow viewing of the distortion products on an oscilloscope. The oscilloscope often reveals that the "distortion" being measured contains 1) distortion, 2) noise, and 3) 50 or 60 cycle AC line hum.

Line hum can be detected by using the "line sync" on the oscilloscope (horizontal sync selector). The triggering of a constant waveform indicates that AC liné pickup is present. This is usually the result of electro-magnetic coupling into the preamplifier's input or improper test equipment grounding, which simply must be eliminated before making further measurements!

Input coupling problems can usually be corrected by any one of the following solutions: 1) shielding the source of the magnetic field (using mu metal or steel), 2) magnetically shielding the preamplifier, 3) physically moving the preamplifier far enough away from the magnetic field, or 4) using a high pass filter ( $f_{0}=200 \mathrm{~Hz}$ 1 kHz ) at the output of the preamplifier to prevent any line signal from entering the distortion analyzer. Ground loop problems can be solved by rearranging ground connections of the circuit and test equipment.
Separating noise from distortion products is necessary when it is desired to find the actual distortion and not the signal-to-noise ratio of an amplifier. The distortion produced by the LM1897 is predominately a second harmonic. It is for this reason that the third and higher order harmonics can be filtered without resulting in any appreciable error in the measurement. The filter also reduces the amount of noise in the measured data. Another more tedious technique for measuring THD is to use a wave analyzer. Each harmonic is measured and then summed in an RMS calculation. A typical curve is plotted for distortion vs. frequency using this method. A
 order filter.
To specify the distortion of the LM1897 accurately and also not require unusual or tedious measurements the following method is used. The output level is set to one volt RMS at 1 kHz (approximately 5 millivolts at the input). The output is filtered with the circuit of Figure 4 to limit the bandwidth of the noise and measured with a standard distortion analyzer. The analyzer has a filter that is switched in to remove line hum and ground loop pick-up as well as unrelated low frequency noise. The resulting measurement is fast and accurate.

## Signal-To-Noise Ratio

In the measurement of the signal-to-noise ratio, misinterpretations of the numbers actually measured are common. One amplifier may sound much quieter than another, but due to improper testing techniques, they appear equal in measurements. This is often the case when comparing integrated circuit to discrete preamplifier designs. Discrete transistor preamps often "run out of gain" at high frequencies and therefore have small bandwidths to noise as indicated below.


Figure 6.

Integrated circuits have additional open loop gain allowing additional feedback loop gain in order to lower harmonic distortion and improve frequency response. It is this additional bandwidth that can lead to erroneous signal to noise measurements if not considered during the measurement process. In the typical example above, the difference in bandwidth appears small on a
log scale but the factor of 10 in bandwidth, $(200 \mathrm{kHz}$ to 2 MHz ) can result in a 10 dB theoretical difference in the signal-to-noise ratio (white noise is proportional to the square root of the bandwidth in a system).

In comparing audio amplifiers it is necessary to measure the magnitude of noise in the audible bandwidth by using a "weighting" filter. ${ }^{1}$ A "weighting" filter alters the frequency response in order to compensate for the average human ear's sensitivity to certain undesirable frequency spectra. The weighting filters at the same time provide the bandwidth limiting as discussed in the previous paragraph.

The 32 Hz to 12740 Hz filter shown in Figure 4 is a simple two pole, one zero filter, approximately equivalent to a "brick wall" filter of 20 Hz to 20 kHz . This approximation is absolutely valid if the noise has a flat energy spectrum over the frequencies involved. In other words a measurement of a noise source with constant spectral density through either of the two filters would result in the same reading. The output frequency response of the two filters is shown in Figure 7.



Figure 7.
Typical signal-to-noise figures are listed for several weighting filters which are commonly used in the measurement of noise. The shape of all weighting filters is similar, with the peak of the curve usually occuring in the $3-7 \mathrm{kHz}$ region as shown below.


Figure 8.

In addition to noise filtering, differing meter types give different noise readings. Meter responses include: 1) RMS reading, 2) average responding, 3) peak reading, and 4) quasi peak reading. Although theoretical noise analysis is derived using true RMS (root mean square) based calculations, most actual measurement is taken with ARM (Average Responding Meter) test equipment.

Unless otherwise noted an average responding meter is used for all AC measurements in this data sheet.

## Basic Circuit Approach

The LM1897 IC incorporates a two stage broadband design which minimizes noise, attains overall DC stability and prevents audible transients during turn-on.

The first stage is a direct coupled amplifier with an internal gain of $25 \mathrm{~V} / \mathrm{V}(28 \mathrm{~dB})$. Direct coupling to the tape head reduces input source impedance and external component cost by removing the input coupling capacitor. A typical input coupling capacitor of $1 \mu \mathrm{~F}$ has a reactance of $1.5 \mathrm{k} \Omega$ at 100 Hz . The resulting noise due to the amplifier's input noise current can dominate the noise voltage at the output of the playback system. The input of the amplifier is biased from a reference voltage that is temperature compensated to produce a quiescent DC voltage of 2.2 V at the output of the first stage. The input stage bias current that flows through the tape head is kept below $2 \mu \mathrm{~A}$ in order to prevent any erasure of tape moving past the head. An added advantage of DC biasing is the prevention of large current transients during the charging of coupling capacitors at turn-on and turn-off.

The second stage provides additional gain and proper equalization while preventing audible turn-on transients or "pops". The output (Pin 10) is kept low until C2 charges through R1. When the voltage on C2 gets close to the DC voltage on Pin 14, the output rises exponentially to its final DC value. The result is a transient-free turn-on characteristic.

Internal diodes are provided to facilitate electronic diode switching popular in automotive applications.

The general test circuit illustrates the topography of the system. The components determining the overall frequency response are external due to the extreme sensitivity when matching a DIN equalization curve.

## Mute Circuit

The LM1897 can be muted with the addition of two resistors and a grounding switch, as shown in Figure 1. When the circuit is not muted the additional resistors have no effect on the AC performance. They do have an effect on the DC Q point however.

The difference in the DC output voltages of the input amplifiers is applied across the mute resistors (R7) and the positive input resistors (R1). This results in an additional offset at the input of the output amplifiers. To keep this offset to a minimum R7 should be as large as possible to achieve effective muting. In all cases R7 should be at least ten times R1. A typical value of R7 is 25 to 50 times R1.

## Capacitor-Coupled Input

The LM1897 is intended to be coupled directly to the signal source. Direct coupling permits faster turn-on and less low-frequency noise than would be possible with a capacitor-coupled input. However, there are some applications which require that the signal source be referred to ground and coupled to the input through a capacitor. Figure 9 is an example of an LM1897 with a capacitorcoupled input. As shown, the circuit has a flat frequency response and is suitable for use as a microphone preamp.
$R_{8}$ provides a $D C$ path for input bias current. The value of $R_{8}$ should be as low as possible without loading the source. A very large value of $R_{8}$ can cause excessive DC offset at the amplifier output. In order to avoid turn-on pops, the inverting input of the second amplifier must be at a higher voltage than the non-inverting input when $V_{C C}$ is applied. $R_{10}, R_{11}, R_{12}$, and $D_{1}$ ensure that this condition will be met. If later stages in the playback system employ turn-on muting circuitry, these extra components may not be needed. The value of $R_{10}$ depends on $\mathrm{V}_{\mathrm{CC}}$ as defined by the following relationship:
$R_{10}=\left(V_{C C}-1\right) \times 1 k$


Figure 9. Microphone Preamplifier with Capacitor Coupled Input

## Design Equations

The overall gain of the circuit is given by:
$A_{V}=25\left[\frac{-R_{4} R_{3}}{R_{2}\left(R_{3}+R_{4}\right)}\right] \frac{\left(s+\frac{1}{R_{4} C_{1}}\right)}{\left(s+\frac{1}{\left(R_{3}+R_{4}\right) C_{1}}\right)}$
Standard cassette tapes require equalization of $3180 \mu \mathrm{sec}(50 \mathrm{~Hz})$ and $120 \mu \mathrm{sec}(1.3 \mathrm{kHz})$. These time constants result in an AC gain at 1 kHz given by:
$A_{V}(1 \mathrm{kHz})=25\left(\frac{-R_{4} R_{3}}{R_{2}\left(R_{3}+R_{4}\right)}\right) 1.663\left\{\begin{array}{c}3180 \mu \mathrm{~s} \text { or } 50 \mathrm{~Hz} \\ \text { and } \\ 120 \mu \mathrm{~s} \text { or } 1326 \mathrm{~Hz}\end{array}\right\}$ (2)
Using the pole and zero locations of the transfer function, the two other equations needed to solve for the component values are:
$\mathrm{R}_{4}=\frac{1}{2 \pi \mathrm{C}_{1}(1326 \mathrm{~Hz})}$
$R_{3}=\frac{1}{2 \pi \mathrm{C}_{1}(50 \mathrm{~Hz})}-\frac{1}{2 \pi \mathrm{C}_{1}(1326 \mathrm{~Hz})}=\frac{1}{2 \pi \mathrm{C}_{1}(51.96)}$
We can now solve for $C_{1}$ as a function of $R_{2}$, or:


When chromium dioxide tape is used, the defined time constants are $3180 \mu \mathrm{sec}$ and $70 \mu \mathrm{sec}$. This changes equation (3) to:
$R_{4}=\frac{1}{2 \pi \mathrm{C}_{1}(2274 \mathrm{~Hz})}$
The value of $R_{3}$ is normally not changed. This results in an error of less than 0.2 dB in the low frequency response.
The output voltage of the LM1897 is set by the input amplifier DC voltage at pin 3 or 14 , and by $R_{3}$ and $R_{5}$.

$$
\begin{equation*}
\text { Nominal } V_{\text {OUT }}(\text { pin } 7 \text { or } 10)=2.2\left(1+\frac{R_{3}}{R_{5}}\right) \tag{8}
\end{equation*}
$$

Pins 8 and 9 are biased 0.7 volts less than $\mathrm{V}_{\text {OUT }}$ (pin 7 or 10). When these diodes are used the output (pin 7 or 10) should be biased at one half the minimum operating supply voltage. Equation (8) can be rewritten to solve for $R_{5}$.

$$
\begin{equation*}
R_{5}=\frac{2.2 R_{3}}{V_{O}-2.2} \tag{9}
\end{equation*}
$$

The output voltage of the LM1897 will vary from that given in equation (8) due to variations in the input amplifier DC voltage as well as the output amplifier input bias current, input offset current and input offset voltage. The following equation gives the worst case variation in the output voltage.
$\Delta V_{\text {OUT }}= \pm\left[\Delta V_{\text {PIN }}\left(1+\frac{R_{3}}{R_{5}}\right)+\frac{R_{3}}{R_{2}}\left(\Delta \mathrm{I}_{\text {BIAS }}\left(R_{1}-R_{2}\right)+\frac{\mathrm{loS}_{\mathrm{OS}}}{2}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)+\mathrm{V}_{\mathrm{OS}}\right)\right]$

Using the worst case values in the electrical characteristics reduces this to
$\Delta V_{\text {OUT }}= \pm\left[0.4\left(1+\frac{R_{3}}{R_{5}}\right)+\frac{R_{3}}{R_{2}}\left(200 n A\left(R_{1}-R_{2}\right)+50 n A\left(R_{1}+R_{2}\right)+5 m V\right)\right]$

The turn-on delay is set by $\mathrm{R}_{1}$ and $\mathrm{C}_{2}$; delay can be approximated by:

$$
\begin{equation*}
\text { Delay Time } t=R_{1} C_{2} \ln \left(\frac{2.2}{V_{O D C}}\right)\left(\frac{R_{3}}{R_{2}}\right) \tag{12}
\end{equation*}
$$

## Example

If we desire a tape preamp with 100 mV output signal from a tape head with a nominal output of 0.5 mV at 1 kHz for standard ferric cassette tape, the external components are determined as follows. The value of $\mathrm{R}_{2}$ is arbitrarily set to $10 \mathrm{k} \Omega$.

$$
\mathrm{R}_{1}=\mathrm{R}_{2}=10 \mathrm{k}
$$

This minimizes errors due to the output amplifier bias currents.
$C_{1}=\frac{-4.80 \times 10^{-3}}{10 \mathrm{k} \Omega\left[\frac{-100 \mathrm{mV}}{0.5 \mathrm{mV}}\right]}=2400 \mathrm{pF} \rightarrow 0.0022 \mu \mathrm{~F}$
Use $0.0022 \mu \mathrm{~F}$ and determine:
$\mathrm{R}_{4}=\frac{1}{2 \pi \mathrm{C}_{1}(1326)}=54.6 \mathrm{k} \Omega \rightarrow 54.9 \mathrm{k} \Omega 1 \%$
$R_{3}=\frac{1}{2 \pi C_{4}(51.96)}=1.39 \mathrm{M} \Omega \rightarrow 1.4 \mathrm{M} \Omega 1 \%$
To bias the output amplifier output voltage at 6 volts (half supply):

$$
\mathrm{R}_{5}=\frac{2.2(1.4 \mathrm{M} \Omega)}{6-2.2}=811 \mathrm{k} \Omega \rightarrow 820 \mathrm{k} \Omega
$$

The maximum variation in the output voltage is found using equation (11):

$$
\Delta \mathrm{V}_{\text {OUT }}= \pm 1.9 \text { volts }
$$

The low frequency response and turn-on delay determine the value of $\mathrm{C}_{2}$. For $\mathrm{R}_{1}=10 \mathrm{k}$ and $\mathrm{C}_{2}=10 \mu \mathrm{~F}$ the low frequency 3 dB point is 1.6 Hz and the turn-on delay is 0.4 seconds, from equation (12).

The complete circuit is shown in Figure 2. A circuit with $5 \%$ components and biased for a minimum supply of 10 volts is shown in Figure 1. If additional gain is needed $R_{1}$ and $R_{2}$ can be reduced without changing the frequency response of the circuit.

Reference 1: CCIR/ARM: A Practical Noise Measurement Method; by Ray Dolby, David Robinson and Kenneth Gundry, AES Preprint No. 1353 (F-3).

Total Harmonic Distortion vs.
Frequency

frequency

Turn On Delay vs.
Component Values and Gain



FREQUENCY (Hz)

## Channel Separation vs.

 FrequencyPSRR vs. VCC


ICC vs. Supply Voltage



FREQUENCY (Hz)


Output Amplifier Open Loop
Gain and Phase vs.
Frequency


Spot Noise Current vs. Frequency


Input Amplifier Gain and
Phase vs. Frequency


Spot Noise Voltage vs. Frequency


Input Amplifier
DC Output Voltage vs. Temperature (Pins 3, 14)


## Audio/Radio Circuits

## General Description

The LM2002 is a cost effective, high power amplifier suited for automotive applications. High current capability ( 3.5 A ) enables the device to drive low impedance loads with low distortion. The LM2002 is current limited and thermally protected. High voltage protection is available (LM2002A) which enables the amplifier to withstand 40 V transients on its supply. The LM2002 comes in a 5-pin TO-220 package.

## Features

High peak current capability (3.5A)

- Large output voltage swing
- Externally programmable gain

Wide supply voltage range ( $5 \mathrm{~V}-20 \mathrm{~V}$ )

- Few external parts required
- Low distortion
- High input impedance
- No turn-on transients
- High voltage protection available (LM2002A)

■ Low noise

- AC short circuit protected
- Pin for pin compatible with TDA2002


## Equivalent Schematic



Connection Diagram

Plastic Package


Order Number LM2002T or LM2002AT See NS Package T05A

Typical Applications


## Absolute Maximum Ratings

Peak Supply Voltage ( 50 ms )	
LM2002A(Note2)	40 V
LM2002	25 V
OperatingSupply Voltage	20 V
Output Current	
Repetitive	
Non-repetitive	3.5 A
Input Voltage	4.5 A
PowerDissipation(Note3)	$\pm 0.5 \mathrm{~V}$
Operating Temperature	15 W
Storage Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 seconds)	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

Electrical Characteristics $V_{S}=14.4 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, A_{V}=100(40 \mathrm{~dB}), R_{L}=4 \Omega$, unless otherwise specified


Note 1: A 1.0 resistor and $0.1 \mu \mathrm{~F}$ capacitor should be placed as close as possible to pins 3 and 4 for stability
Note 2: The LM2002 shuts down above 25V.
Note 3: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.

## Typical Performance Characteristics

Device Dissipation vs Ambient Temperature


Open Loop Gain vs Frequency


Output Power vs
Supply Voltage


Power Dissipation vs Output Power


Supply Ripple Rejection vs Frequency



Power Dissipation vs Output Power


Supply Current vs Supply Voltage


Distortion vs Frequency


Distortion vs Frequency


Output Swing vs
Supply Voltage


Typical Applications (Continued)


Component Layout


* Staver V-5


## LM2877 Dual 4-Watt Power Audio Amplifier

## General Description

The LM2877 is a monolithic dual power amplifier designed to deliver $4 \mathrm{~W} /$ channel continuous into $8 \Omega$ loads. The LM2877 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders and AM-FM stereo receivers, etc. Each power amplifier is biased from a common internal regulator to provide high power supply rejection and output Q point centering. The LM2877 is internally compensated for all gains greater than 10, and comes in an 11-lead single-inline package. The package has been redesigned, resulting in a slightly degraded thermal characteristic shown in the figure Device Dissipation vs Ambient Temperature.

## Features

- 4W/channel
- -68 dB ripple rejection, output referred
- -70 dB channel separation, output referred
- Wide supply range, 6-24V
- Very low cross-over distortion
- Low audio band noise
- AC short circuit protected
- Internal thermal shutdown


## Applications

- Multi-channel audio systems
- Stereo phonographs
- Tape recorders and players
- AM-FM radio receivers
- Servo amplifiers
- Intercom systems
- Automotive products


## Connection Diagram

(Single-In-Line Package, Top View)


Equivalent Schematic Diagram


## Absolute Maximum Ratings

Supply Voltage
Input Voltage
Operating Temperature
Storage Temperature
Junction Temperature
Lead Temperature (Soldering, 10 seconds)
26 V
$\pm 0.7 \mathrm{~V}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $V_{S}=20 \mathrm{~V}, T_{T A B}=25^{\circ} \mathrm{C}, R_{L}=8 \Omega, A_{V}=50(34 \mathrm{~dB})$ unless otherwise specified

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Total Supply Current	$\mathrm{P}_{\mathrm{O}}=0 \mathrm{~W}$		25	50	mA
Operating Supply Voltage		6		24	V
Output Power/Channel	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=10 \%, \mathrm{~T}_{\text {TAB }}=25^{\circ} \mathrm{C}$				
	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}$	4.0	4.5		W
	$\because S-19!$		3.6		W
	$\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$	1.5	1.9		W
Distortion, THD	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{S}=20 \mathrm{~V}$				
	$\mathrm{PO}=50 \mathrm{~mW} /$ Channel		0.1		\%
	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} /$ Channel		0.07		\%
	$\begin{aligned} & \mathrm{PO}=2 \mathrm{~W} / \text { Channel } \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$		0.07	1	\%
	$\mathrm{PO}_{\mathrm{O}}=50 \mathrm{~mW} /$ Channel		0.25		\%
	$\mathrm{P}_{\mathrm{O}}=500 \mathrm{~mW} /$ Channel		0.20		\%
	$\mathrm{PO}=1 \mathrm{~W} /$ Channel		0.15	1	\%
Output Swing	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		$\mathrm{V}_{\mathrm{S}}-4$		Vp-p
Channel Separation	$\mathrm{C}_{\mathrm{F}}=50 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz},$   Output Referred				
	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4 \mathrm{Vrms}$	-50	-70		dB
	$\mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{Vrms}$		-60		dB
PSRR Power Supply	$\mathrm{C}_{\mathrm{F}}=50 \mu \mathrm{~F}, \mathrm{C}_{\text {IN }}=0.1 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz}$,				
Rejection Ratio	Output Referred				
	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \mathrm{~V}_{\text {RIPPLE }}=1 \mathrm{Vrms}$	-50	-68		dB
	$\mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}, \mathrm{~V}_{\text {RIPPLE }}=0.5 \mathrm{Vrms}$		-40		dB
Noise	Equivalent Input Noise				
	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$   Output Noise Wideband		2.5		$\mu \mathrm{V}$
	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\text {IN }}=0.1 \mu \mathrm{~F}, \mathrm{AV}^{2}=200$		0.80		mV
Open Loop Gain	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		70		dB
Input Offset Voltage			15		mV
Input Bias Current			50		$n \mathrm{~A}$
Input Impedance	Open Loop		4		$\mathrm{M} \Omega$
DC Output Level	$V_{S}=20 \mathrm{~V}$	9	. 10	11	V
Slew Rate			2.0		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth			65		kHz
Current Limit			1.0		A

Note 1: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM2877 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques.

Typical Performance Characteristics


## Typical Applications

Stereo Phonograph Amplifier with Bass Tone Control


Frequency Response of Bass
Tone Control


Typical Applications (Continued)
Stereo Amplifier with $A V=200$


Non-Inverting Amplifier Using Split Supply


## Typical Applications (Continued)

Window Comparator Driving High, Low Lamps

TRUTH TABLE
TRUTH TABLE

$\mathrm{V}_{\text {IN }}$	High	Low
$<1 / 4 \mathrm{~V}^{+}$	Off	On
$1 / 4 \mathrm{~V}^{+}$to $3 / 4 \mathrm{~V}^{+}$	Off	Off
$>3 / 4 \mathrm{~V}^{+}$	On	Off

## Application Hints

The LM2877 is an improved LM377 in typical audio applications. In the LM2877, the internal voltage regulator for the input stage is generated from the voltage on pin 1. Normally the inputs cannot common-mode more than 0.7 V above this pin 1 voltage. Nevertheless the commonmode range can be increased by externally forcing the voltage on pin 1 . One way to do this is to short pin 1 to the positive supply, pin 11.

The only special care required with the LM2877 is to limit the maximum input differential voltage to $\pm 7 \mathrm{~V}$. If this differential voltage is exceeded, the input characteristics may alter.
Figure 1 shows a power op amp application with $\mathrm{AV}=1$. The 100 k and 10 k resistors set a noise gain of 10 and are dictated by amplifier stability. The 10 k resistor is bootstrapped by the feedback so the input resistance is dominated by the $1 \mathrm{M} \Omega$ resistor.


## LM2878 Dual 5 Watt Power Audio Amplifier

## General Description

The LM2878 is a high voltage stereo power amplifier designed to deliver $5 \mathrm{~W} /$ channel continuous into $8 \Omega$ loads. The amplifier is ideal for use with low regulation power supplies due to the absolute maximum rating of 35 V and its superior power supply rejection. The LM2878 is designed to operate with a low number of external components, and still provide flexibility for use in stereo phonographs, tape recorders, and AM-FM stereo receivers. The flexibility of the LM2878 allows it to be used as a power operational amplifier, power comparator or servo amplifier. The LM2878 is internally compensated for all gains greater than 10, and comes in an 11-lead single-in-line package (SIP). The package has been redesigned, resulting in the slightly degraded thermal characteristics shown in the figure Device Dissipation vs Ambient Temperature.

## Features

- Wide operating range $6 \mathrm{~V}-32 \mathrm{~V}$
- 5 W/channel output
- 60 dB ripple rejection, output referred
- 70 dB channel separation, output referred
- Low crossover distortion
- AC short circuit protected
- Internal thermal shutdown


## Applications

- Stereo phonographs
- AM-FM radio receivers
- Power op amp, power comparator
- Servo amplifiers

Typical Applications


Frequency Response of Bass Tone Control


FIGURE 1. Stereo Phonograph Amplifier with Bass Tone Control

## Absolute Maximum Ratings

Supply Voltage	35 V
Input Voltage(Note 1)	$\pm 0.7 \mathrm{~V}$
Operating Temperature(Note2)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V}_{\mathrm{S}}=22 \mathrm{~V}, \mathrm{~T}_{\mathrm{TAB}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~A}_{\mathrm{V}}=50(34 \mathrm{~dB})$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Total Supply Current	$\mathrm{P}_{\mathrm{O}}=0 \mathrm{~W}$		10	50	mA
Operating Supply Voltage		6		32	V
Uutput rower/Cinanneı	$\bar{i}=1 \mathrm{kHz}, \mathrm{T} R \bar{U}=1 \bar{U}^{\prime} \%, \bar{T}_{T A B}=25^{\circ} \mathrm{C}$	$\bigcirc$	5.5		iov
Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$				
	$\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$		0.20		\%
	$\mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		0.15		\%
	$\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$		0.14		\%
Output Swing	$\mathrm{R}_{\mathrm{L}}=8 \Omega$		$\mathrm{V}_{\mathrm{S}}-6 \mathrm{~V}$		Vp-p
Channel Separation	$\mathrm{C}_{\text {BYPASS }}=50 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}_{\mathrm{N}}}=0.1 \mu \mathrm{~F}$ $\mathrm{f}=1 \mathrm{kHz}$, Output Referred $V_{0}=4 \mathrm{Vrms}$	-50	-70		dB
PSRR Power Supply Rejection Ratio	$\mathrm{C}_{\text {BYPASS }}=50 \mu \mathrm{~F}, \mathrm{C}_{\text {IN }}=0.1 \mu \mathrm{~F}$ $f=120 \mathrm{~Hz}$, Output Referred $V_{\text {ripple }}=1 \mathrm{Vrms}$	-50	-60		dB
PSRR Negative Supply	Measured at DC, Input Referred		-60		dB
Common-Mode Range	Split Supplies $\pm 15 \mathrm{~V}$, Pin 1 Tied to Pin 11		$\pm 13.5$		V
Input Offset Voltage			10		mV
Noise	Equivalent Input Noise $\mathrm{R}_{\mathrm{S}}=0, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$				
	$\mathrm{BW}=20-20 \mathrm{kHz}$ CCIR		2.5 3.0		${ }_{\mu}^{\mu} \mathrm{V}$
	Output Noise Wideband $R_{S}=0, C_{I N}=0.1 \mu F, A_{V}=200$		0.8		mV
Open Loop Gain	$R_{S}=51 \Omega, f=1 \mathrm{kHz}, R_{L}=8 \Omega$		70		dB
Input Bias Current			100		nA
Input Impedance	Open Loop		4		$\mathrm{M} \Omega$
DC Output Voltage	$\mathrm{V}_{\mathrm{S}}=22 \mathrm{~V}$	10	11	12	V
Slew Rate			2		$\mathrm{V} / \mu \mathrm{S}$
Power Bandwidth	3 dB Bandwidth at 2.5 W		65		kHz
Current Limit			1.5		A

Note 1: $\pm 0.7 \mathrm{~V}$ applies to audio applications; for extended range, see Application Hints.
Note 2: For operation at ambient temperature greater than $25^{\circ} \mathrm{C}$, the LM2878 must be derated based on a maximum $150^{\circ} \mathrm{C}$ junction temperature using a thermal resistance which depends upon device mounting techniques.

## Typical Performance Characteristics



Power Output/Channel vs Supply Voltage


Power Dissipation vs
Power Out


## Equivalent Schematic Diagram



## Connection Diagram

Single-In-Line Package


## Application Hints

The LM2878 is an improved LM378 in typical audio applications. In the LM2878, the internal voltage regulator for the input stage is generated from the voltage on pin 1 . Normally the inputs cannot common-mode more than 0.7 V above this pin 1 voltage. Nevertheless the common-mode range can be increased by externally forcing the voltage on pin 1 . One way to do this is to short pin 1 to the positive supply, pin 11.
The only special care required with the LM2878 is to limit the maximum input differential voltage to $\pm 7 \mathrm{~V}$. If this differential voltage is exceeded, the input characteristics may alter.

Figure 2 shows a power op amp application with $A_{V}=1$. The 100k and 10 k resistors set a noise gain of 10 and are dictated by amplifier stability. The 10k resistor is bootstrapped by the feedback so the input resistance is dominated by the $1 \mathrm{M} \Omega$ resistor.


FIGURE 2. Operational Power Amplifier, $\mathbf{A}_{\mathbf{V}}=1$

## External Components (Figure 3)

1. $R 2, R 5, R 7, R 10$ Sets voltage gain $A_{V}=1+R 2 / R 5$ for one channel and $A_{V}=1+R 10 / R 7$ for the other channel.
2. R4, R8
3. $\mathrm{R}_{\mathrm{O}}$
4. C1
5. C11

Resistors set input impedance and supply bias current for the positive input.
$\mathrm{R}_{\mathrm{O}} \quad$ Works with $\mathrm{C}_{\mathrm{O}}$ to stabilize output stage.

Improves power supply rejection (see Typical Performance Characteristics).

Stabilizes amplifier, may need to be larger depending on power supply filtering.
6. C4,C8
7. $\mathrm{C}, \mathrm{C} 7$
8. $C_{o}$
9. $\mathrm{C} 2, \mathrm{C} 10$

Input coupling capacitor. Pins 4 and 8 are at a $D C$ potential of $V_{S} / 2$. Low frequency pole set by:

$$
f_{L}=\frac{1}{2 \pi R 4 C 4}
$$

Feedback capacitors. Ensure unity gain at DC. Also low frequency pole at:

$$
f_{L}=\frac{1}{2 \pi R 5 C 5}
$$

Works with $\mathrm{R}_{\mathrm{O}}$ to stabilize output stage.
Output coupling capacitor. Low frequency pole given by:

$$
f_{L}=\frac{1}{2 \pi R L C 2}
$$

Typical Applications (Continued)


FIGURE 4. LM2878 Servo Amplifier in Bridge Configuration

Typical Applications (Continued)

TRUTH TABLE

$\mathrm{V}_{\text {IN }}$	High	Low
$<1 / 4 \mathrm{~V}+$	Off	On
$1 / 4 \mathrm{~V}+$ to $3 / 4 \mathrm{~V}+$	Off	Off
$>3 / 4 \mathrm{~V}+$	On	Off



## Audio/Radio Circuits

## LM3011 Wide Band Amplifier

## General Description

The LM3011 is a monolithic wide band amplifier circuit that requires a minimum of external components for operation. It includes three stages of limiting.

## Features

- A direct replacement for CA3011
- High amplifier gain
- Excellent limiting characteristics
- Wide frequency capability

Schematic Diagram


Block Diagram


Connection Diagram


Order Number LM3011H See NS Package H10C

## Absolute Maximum Ratings

Supply Voltage	15 V
Input Signal (Pin 1)	$\pm 3 \mathrm{~V}$
Power Dissipation (Note 1)	715 mW


Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
STATIC CHARACTERISTICS					
Total Device Dissipation ( $\mathrm{P}_{T}$ )	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$ (Figure 1)	60	90	133	mW
Total Device Dissipation ( $\mathrm{P}_{\mathrm{T}}$ )	$\mathrm{V}_{C C}=7.5 \mathrm{~V}$ (Figure 1)	95	120	187	mW
DYNAMIC CHARACTERISTICS $V_{C C}=7.5 \mathrm{~V}, F=4.5 \mathrm{MHz}$, unless otherwise noted					
Voltage Gain (A)	$\mathrm{V}_{\mathrm{cc}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ (Figure 2)	60	66	,	dB
Voltage Gain (A)	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ (Figure 2)	65	70		dB
Voltage Gain (A)	$\mathrm{V}_{\mathrm{cc}}=7.5 \mathrm{~V}, \mathrm{f}=10.7 \mathrm{MHz}$ (Figure 2)	55	61		dB
Parallel Input Resistance ( $\mathrm{R}_{\text {IN }}$ )			3		$k \Omega$
Parallel Input Capacitance ( $\mathrm{C}_{\text {in }}$ )			7		pF
Parallel Output Resistance ( $\mathrm{ROUT}_{\text {O }}$ )			31.5		L?
Parallel Output Capacitance ( $\mathrm{C}_{\text {Out }}$ )			4.2		pF
Noise Figure (NF)			8.7		dB
Input Limiting Voltage ( $\mathrm{V}_{\text {IN(LUM) }}$ )	$(-3 \mathrm{~dB})$ (Figure 2)		300	400	$\mu \mathrm{V}$

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

## Test Circuits



## Audio/Radio Circuits

## LM3075 FM Detector/Limiter and Audio Preamplifier

## General Description

The LM3075 is a monolithic integrated circuit FM detector/limiter and audio preamplifier that requires a minimum of external components for operation. It includes three stages of IF limiting and a differential-peak-detection circuit.

Features

- A direct replacement for the CA3075
- Simple detector alignment: one coil
- Sensitivity: 3 dB limiting voltage $250 \mu \mathrm{~V}$ typical at 10.7 MHz
- Low harmonic distortion
- Excellent AM rejection 55 dB typ. at 10.7 MHz
- Internal audio preamplifier

Schematic Diagram


Block Diagram


Typical Application



Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Test Circuits


TEST CIRCUIT 1


TEST CIRCUIT 2

## LM3089 FM Receiver IF System

## General Description

The LM3089 has been designed to provide all the major functions required for modern FM IF designs of automotive, high-fidelity and communications receivers.

## Features

- Three stage IF amplifier/limiter provides $12 \mu \mathrm{~V}$ (typ) -3 dB limiting sensitivity
- Balanced product detector and audio amplifier provide 400 mV (typ) of recovered audio with distortion as low as $0.1 \%$ with proper external coil designs
- Four internal carrier level detectors provide delayed AGC signal to tuner, IF level meter drive current and interchannel mute control
- AFC amplifier provides AFC current for tuner and/or center tuning meters
- Improved operating and temperature performance, especially when using high $Q$ quadrature coils in narrow band FM communications receivers
- No mute circuit latchup problems
- A direct replacement for CA3089E

Block and Connection Diagram


Order Number LM3089N See NS Package N16E

## Absolute Maximum Ratings

Power Dissipation (Note 2) Operatıng Temperature Range

## Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}\right.$, see Test Circuit)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

DC CHARACTERISTICS (VIN $=0$, NOT MUTED)

111	Supply Current		16	23	30	mA
V1, 2, 3	IF Input and Bias		1.2	1.9	2.4	V
V6	Audio Output		5.0	5.6	6.0	V
V7	AFC Output		5.0	5.6	6.0	V
V10	Reference Bias		5.0	5.6	6.0	V
V12	Mute Control		5.0	5.4	6.0	V
ソ13	! P Love!			$\bigcirc$	ก 5	$v$
V15	Delayed AGC		4.2	4.7	5.3	V

DYNAMIC CHARACTERISTICS $\mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 75 \mathrm{kHz} @ 400 \mathrm{~Hz}$

VIN (LIM)	Input Limiting-3 dB			12	25	$\mu \mathrm{V}$
AMR	AM Rejection	$V_{I N}=100 \mathrm{mV}, \mathrm{AM}: 30 \%$	45	55		-dB
$V_{O}(A F)$	Recovered Audio	$V_{\text {IN }}=10 \mathrm{mV}$	300	400	500	mVrms
THD	Total Harmonic Distortion					
	Single Tuned (Note 1)	$V_{I N}=100 \mathrm{mV}$		0.5	1.0	\%
	Double Tuned (Note 1)	$V_{\text {IN }}=100 \mathrm{mV}$		0.1	0.3	\%
$\mathrm{S}+\mathrm{N} / \mathrm{N}$	Signal to Noise Ratio	$V_{\text {IN }}=100 \mathrm{mV}$	60	70		dB
V12	Mute Control	$V_{\text {IN }}=100 \mathrm{mV}$		0	0.5	V
V13	IF Level	$V_{\text {IN }}=100 \mathrm{mV}$	4.0	5.0	6.0	V
V13	IF Level	$V_{\text {IN }}=500 \mu \mathrm{~V}$	1.0	1.5	2.0	V
V15	Delayed AGC	$V_{\text {IN }}=100 \mathrm{mV}$		0.1	0.5	V
V15	Delayed AGC	$V_{\text {IN }}=30 \mathrm{mV}$		2.5		V
$\mathrm{V}_{\mathrm{O}}(\mathrm{AF})$	Audio Muted	$V_{1 N}=100 \mathrm{mV}, \mathrm{V} 5=+2.5 \mathrm{~V}$		60		-dB

Note 1: Distortion is a function of quadrature coil used.
Note 2: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

## Typical Performance Characteristics

LM3089


## Typical Performance Characteristics (Continued)




Mute Control Output (Pin 12) vs IF Input Signal


## AC/DC Test Circuit


*For single tuned detector coil:
Lo tunes with 100 pF at 10.7 MHz
$Q_{U L}$ (unloaded) $\cong 75$
$Q_{L}($ loaded $) \cong 13$ for $\mathrm{V} 9 \cong 150 \mathrm{mVrms}$
**For double tuned detector coil:
$Q_{\text {ULPRI }}=$ QULSEC $\cong 75$
$k Q \cong 0.7$ for $V 9 \cong 150 \mathrm{mVrms}$

## Note:

The recovered audio output voltage will be approximately 0.5 dB less when using the double tuned detector coil.
For proper operation of the mute circuit, the RF voltage at pin 9 should be $150 \mathrm{mVrms} \pm 30 \mathrm{mV}$.

# 7 National Semiconductor 

## Audio/Radio Circuits

## LM3189 FM IF System

## General Description

The LM3189N is a monolithic integrated circuit that provides all the functions of a comprehensive FM IF system. The block diagram of the LM3189N includes a three stage FM IF amplifier/limiter configuration with level detectors for each stage, a doubly balanced quadrature FM detector and an audio amplifier that features the optional use of a muting (squelch) circuit.

The advanced circuit design of the IF system includes desirable deluxe features such as programmable delayed AGC for the RF tuner, an AFC drive circuit, and an output signal to drive a tuning meter and/or provide stereo switching logic. In addition, internal power supply regulators maintain a nearly constant current drain over the voltage supply range of +8.5 V to +16 V .
The LM3189N is ideal for high fidelity operation. Distortion in an LM3189N FM IF system is primarily a function of the phase linearity characteristic of the outboard detector coil.

The LM3189N has all the features of the LM3039N plus additions.

The LM3189N utilizes the 16 -lead dual-in-line plastic package and can operate over the ambient temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

## Features

- Exceptional limiting sensitivity: $12 \mu \mathrm{~V}$ typ at -3 dB point
- Low distortion: $0.1 \%$ typ (with double-tuned coil)
- Single-coil tuning capability
- Improved $(\mathrm{S}+\mathrm{N}) / \mathrm{N}$ ratio
- Externally programmable recovered audio level
- Provides specific signal for control of inter-channel muting (squelch)
- Provides specific signal for direct drive of a tuning meter
- On channel step for search control
- Provides programmable AGC voltage for RF amplifier
- Provides a specific circuit for flexible audio output
- Internal supply voltage regulators
- Externally programmable ON channel step width, and deviation at which muting occurs


Absolute Maximum Ratings	
Supply Voltage Between Pin 11 and Pins 4,14	16 V
DCCurrent Out of Pin 12	5 mA
DCCurrentOut of Pin 13	5 mA
DCCurrentOut of Pin 15	2 mA
PowerDissipation(Note2)	1390 mW
Operating TemperatureRange	$-40^{\circ} \mathrm{Cto}+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{Cto}+150^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}^{+}=12 \mathrm{~V}$

Symbol	Parameter	Conditions (see single-tuned test circuit)		Min	Typ	Max	Units
STATIC (DC) CHARACTERISTICS							
$\mathrm{I}_{11}$	Quiescent Circuit Current	No Signal Input, Non Muted		20	31	44	mA
V1	DC Voltages:   Terminal 1 (IF Input)			1.2	2.0	2.4	V
V2	Terminal 2 (AC Return to Input)			1.2	2.0	2.4	V
V3	Terminal 3 (DC Bias to Input)			1.2	2.0	2.4	V
V15	Terminal 15 (RF AGC)			7.5	9.5	11	V
V10	Terminal 10 (DC Reference)			5	5.75	6	V
DYNAMIC CHARACTERISTICS							
$V_{1}$ (lim)	Input Limiting Voltage ( -3 dB Point)	$\begin{aligned} & V_{I N}=0.1 \mathrm{~V} \\ & \text { AM Mod. }=30 \% \end{aligned}$	$\begin{aligned} & f_{\mathrm{o}}=10.7 \mathrm{MHz}, \\ & \mathrm{f}_{\text {mod }}=400 \mathrm{~Hz}, \\ & \text { Deviation } \pm 75 \mathrm{kHz} \end{aligned}$		12	25	$\mu \mathrm{V}$
AMR	AM Rejection (Term. 6)			45	55		dB
$\mathrm{V}_{0}(\mathrm{AF})$	Recovered AF Voltage (Term. 6)			325	500	650	mV
THD	Total Harmonic Distortion (Note 1) Single Tuned (Term. 6) Double Tuned (Term. 6)	$\mathrm{V}_{\text {IN }}=0.1 \mathrm{~V}$			$\begin{aligned} & 0.5 \\ & 0.1 \end{aligned}$	1	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$
$\mathrm{S}+\mathrm{N} / \mathrm{N}$	Signal plus Noise to Noise Ratio (Term. 6)			65	80		dB
$\mathrm{f}_{\text {DEV }}$	Deviation Mute Frequency		$\mathrm{f}_{\text {mod }}=0$		$\pm 40$		kHz
V16	RF AGC Threshold				1.25		V
V12	On Channel Step	$\mathrm{V}_{\text {IN }}=0.1 \mathrm{~V}$	$\begin{aligned} & f_{\mathrm{DEV}}< \pm 40 \mathrm{kHz} \\ & f_{\mathrm{DEV}}> \pm 40 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 0 \\ 5.6 \end{gathered}$		V

Note 1: THD characteristics are essentially a function of the phase characteristics of the network connected between terminais 8,9 , and 10.
Note 2: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

## Connection Diagram

## Dual-In-Line Package



Order Number LM3189N
See NS Package N16E

## Test Circuits

Test Circuit for LM3189N Using a Single-Tuned Detector Coil
All resistance values are in ohms
*L tunes with $100 \mathrm{pF}(\mathrm{C})$ at $10.7 \mathrm{MHz}, \mathrm{Q}_{\mathrm{o}}$ (unloaded) $\cong 75$ (Toko No. KACS K586HM or equivalent)
** $\mathrm{C}=0.01 \mu \mathrm{~F}$ for $50 \mu \mathrm{~s}$ de-emphasis (Europe)
$=0.015 \mu \mathrm{~F}$ for $75 \mu \mathrm{~S}$ de-emphasis (USA)


Test Circuit for LM3189N Using a Double-Tuned Detector Coil
All resistance values are in ohms

* $\mathrm{T}:$ PRI- $\mathrm{Q}_{\mathrm{o}}$ (unloaded) $\cong 75$ (tunes with 100 pF (C1)) 20t of 34 e on 7/32" dia form
SEC- $Q_{0}$ (unloaded) $\cong 75$ (tunes with 100 pF (C2)) $20 t$ of 34 e on $7 / 32$ " dia form
$k Q$ (percent of critical coupling) $\cong 70 \%$ (adjusted for coil voltage $\mathrm{V}_{\mathrm{C}}$ ) $=150 \mathrm{mV}$
Above values permit proper operation of mute (squelch) circuit " $E$ " type slugs, spacing 4 mm
*     * $\mathrm{C}=0.01 \mu \mathrm{~F}$ for $50 \mu \mathrm{~s}$ de-emphasis (Europe)
$=0.015 \mu \mathrm{~F}$ for $75 \mu \mathrm{~s}$ de-emphasis (USA)


Complete FM IF System for High Quality Tuners
The circuit provides a complete FM IF system for a high quality receiver. Either one or two stages of amplification and bandpass filtering may be desired, depending on the
receiver requirements. See graph for Typical Limiting and Noise Characteristics for each circuit configuration which can be compared to the LM3189N alone.

Complete FM IF System for High Quality Receivers


Printed Circuit Board and Component Layout


## Typical Performance Characteristics

AM Rejection (30\% Mod) vs IF Input Signal


Mute Control Output (Pin 12) vs IF Input Signal


Typical Audio Attenuation (Pin 6) vs Mute Input Voltage (Pin 5)


Muting Action, Tuner AGC, and Tuning Meter Output as a Function of Input Signal Voltage


Deviation Mute Threshold as a Function of Load Resistance (Between Term 7 and Term 10)


AFC Characteristics (Current at Term 7 as a Function of Change in Frequency)


Typical Limiting and Noise Characteristics


## Schematic Diagram



Schematic Diagram (Continued)


## LM3820 AM Radio System

## General Description

The LM3820 is a 3-stage AM radio IC consisting of an RF amplifier, oscillator, mixer, IF amplifier, AGC detector, and zener regulator.
The device was originally designed for use in slug-tuned auto radio applications, but is also suitable for capacitortuned portable radios.
The LM3820 is an improved replacement for the LM1820.

Features<br>- Input protection diodes<br>- Good control on sensitivity<br>- Improved $\mathrm{S} / \mathrm{N}$ and tweet<br>- Versatile building-block approach<br>- Gain-controlled RF stage<br>- Cascode IF amplifier<br>- Regulated supply<br>m Pin comnatible with LM1820

## Connection Diagram



Order Number LM3820N See NS Package N14A

## Circuit Schematic



## Absolute Maximum Ratings

Power Dissipation (Note 1)

Current into Supply Terminal (Pin 3) 35 mA

Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Figure $1, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$ unless noted)

Parameter	Conditions	Min	Typ	Max	Units
Supply Current ( $\mathrm{I}_{\text {S }}$ )	No RF Input	12	18	24	mA
Internal Zener Voltage ( $\mathrm{V}_{\mathrm{z}}$ )		7.0	7.5	8.0	$v$
Input Sensitivity	$\mathrm{f}=1 \mathrm{MHz}, 30 \% \operatorname{Mod} 400 \mathrm{~Hz}$ Measure RF Input Level for 10 mV Audio Output with Tuning Peaked	15	35	70	$\mu \mathrm{V}$
Signal to Noise Ratio	$\mathrm{f}=1 \mathrm{MHz}, 30 \% \operatorname{Mod} 1 \mathrm{kHz}$ $(\mathrm{S}+\mathrm{N}) / \mathrm{N}$ at Audio Output with $100 \mu \mathrm{~V}$ RF Input	22	28	-	dB
Overload Distortion	$\mathrm{f}=1 \mathrm{MHz} ; 90 \% \operatorname{Mod} 1 \mathrm{kHz}$   THD at Audio Output with 30 mV RF Input	-	6	10	\%

Note 1: Above $T_{A}=25^{\circ} \mathrm{C}$, derate based on $T_{J(M A X)}=150^{\circ} \mathrm{C}$ and $\theta_{J A}=180^{\circ} \mathrm{C} / \mathrm{W}$
Typical Applications


* $100 \mu \mathrm{~V}$ RF INPUT is equivalent to approx. $1 \mathrm{mV} /$ meter field strength
: See Applications Information for coil specifications


## Applications Information

The circuit shown in Figure 1 is recommended as a starting point for portable radio designs. Loopstick antenna L1 is used in place of L0, and the RF amplifier is used with a resistor load to drive the mixer. A double tuned circuit at the output of the mixer provides selectivity, while the remainder of the gain is provided by the IF section, which is matched to the diode through a unity turns ratio transformer. $\mathrm{R}_{\mathrm{AGC}}$ may be used in place of $\mathrm{C}_{\mathrm{AGC}}$ to bypass the internal AGC detector and provide more recovered audio.

An AM automobile radio design is shown in Figure 2. Tuning of both the input and the output of the RF amplifier and the mixer is accomplished with variable inductors. Better selectivity is obtained through the use of double tuned interstage transformers. Input circuits are inductively tuned to prevent microphonics and provide a linear tuning motion to facilitate push-button operation.

Coil specifications for Figure 1 are as follows:

vc	AM PVC	L1	AM ANT	L0, L2	AM OSC
			525 kHz-1650 kHz		$980 \mathrm{kHz}-2105 \mathrm{kHz}$
$\begin{aligned} & C_{A}=140 \mathrm{pF} \\ & C_{B}=60 \mathrm{pF} \end{aligned}$					
T1	AM 1st IF	T2	AM 2nd IF	T3	AM 3rd IF
	455 kHz		455 kHz		455 kHz



PCB Layout for Figure 1 Circuit

Typical Applications (Continued)


FIGURE 2. Slug-Tuned Auto Radio

## LM4500A High Fidelity FM Stereo Demodulator with Blend

## General Description

The LM4500A is an improved stereo demodulator IC offering very low audio distortion. A new demodulator technique minimizes adjacent station interference caused by subcarrier harmonics and prevents lock-up problems from pilot carrier frequency harmonics. The IC features a blend circuit which optimizes the signal-to-noise ratio under weak signal conditions by gradually combining left and right channel information.

## Features

- Low distortion-0.1\% typ
- High subcarrier harmonic rejection
- Large input dynamic range-2.5 Vp-p
- Voltage controlled blend
- High separation-fixed or adjustable
- Adjustable gain
- Reduced stereo-mono DC shift-5 mV typ
- 55 dB supply ripple rejection

ㅡㅡㄴ cutrut impodance

- Requires no external inductors
- Wide supply range $8 \mathrm{~V}-16 \mathrm{~V}$

■ Excellent rejection of 57 kHz ARI subcarrier

## Typical Application



FIGURE 1

Absolute Maximum Ratings. $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted

Power Supply Voltage	16 V
Power Dissipation(Package Limitation)	1800 mW
Derateabove $T_{A}=+25^{\circ} \mathrm{C}$	$15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range(Ambient)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{Cto}+150^{\circ} \mathrm{C}$
Lamp Drive Voltage	-
Max VoltageatPin 7 with Lamp"Off"	30 V
LampCurrent	100 mA
BlendControl Input Voltage(Pin11)	10 V

Electrical Characteristics Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}_{\mathrm{DC}}, T_{A}=25^{\circ} \mathrm{C}$, $\mathrm{Vp}-\mathrm{p}$ standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with $10 \%$ pilot level, using circuit of Figure 1

Parameter	Conditions	Min	Typ	Max	Units
Stereo Channel Separation	Unadjusted Optimized on Other Channel (Note 1)	$\begin{aligned} & 30 \\ & 40 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Measured Voltage Gain (Note 1)		0.8	1	1.2	
THD	2.5 Vp-p Composite Input Signal 1.5 Vp-p Composite Input Signal		0.15 0.08	0.3	$\begin{aligned} & \% \\ & \% \end{aligned}$
Signal-to-Noise Ratio	DIN45405 Quasi Peak Reading rms $20 \mathrm{~Hz}-15 \mathrm{kHz}$		83 88		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Ultrasonic Frequency Rejection	19 kHz   38 kHz		31 45		$\mathrm{dB}$ $\mathrm{dB}$
Stereo Switch Level Hysteresis	19 kHz Input Level for Lamp "On"	12	$\begin{gathered} 16 \\ 8 \end{gathered}$	20	mVrms dB
Output Voltage Change	With MonolStereo Switching (Note 3)		3	20	$m V_{D C}$
Stereo Blend Control Voltage (Pin 11) (See Figure 8)	3 dB Separation 30 dB Separation		$\begin{aligned} & 0.7 \\ & 1.7 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$
Minimum Separation	Pin 11 at 0V			1	dB
Monaural Channel Imbalance	Pilot Tone Off		0.03	0.3	dB
ARI 57 kHz Pilot Tone Influence on THD	Note 2			0.5	\%
Sub-Carrier Harmonic Rejection	76 kHz		80		dB
	114 kHz		70		dB
	152 kHz		83		dB
Supply Ripple Rejection	$\mathrm{f}=1 \mathrm{kHz}$		57		dB
Input Impedance			50		k $\Omega$
Output Impedance			100		$\Omega$
Blend Control Current (Note 1)			-100	$-300$	$\mu \mathrm{A}$
Capture Range	-		$\pm 4$		\%
Operating Supply Voltage		8		16	V
Current Drain	Lamp Disconnected		35	.	mA

Note 1: See Applications Information and Circuit Description.
Note 2: ARI Test-input signal: 1.5 Vp -p standard composite signal, 1 kHz modulation added to a CW 50 mVrms signal at 57.3 kHz .
Note 3: This test is done with the stereo indicator lamp disconnected in order to remove DC shift due to thermal changes. These shifts have long time constants ( 100 ms ) and therefore do not produce audible transients.

## Typical Performance Characteristics



Channel Separation vs Supply Voltage


Stereo Separation vs Temperature


Power Supply Rejection vs Supply Voltage


Total Harmonic Distortion vs Composite Input Level


VCO Free Running
Frequency Drift vs
Temperature


Stereo Switch Threshold vs Temperature


VCO Free Running
Frequency vs Supply Voltage


Lamp Pin Saturation Voltage vs Current


Input Impedance vs Temperature


Lamp Pin Saturation
Voltage vs Temperature



Typical Performance Characteristics (Continued)


## Block Diagram



FIGURE 2

## Circuit Description

## Introduction

The LM4500A is a phase-lock-loop stereo decoder which incorporates a variable separation control, and in which sensitivity to the third harmonics of both the pilot and subcarrier frequencies has been eliminated by the use of appropriate, digitally generated, waveforms in the phase-lock-loop and decoder sections.
The variable separation control may be operated manually, or by a receiver's AGC or S meter signals, to provide smooth transitions between monaural and stereo reception. It operates only during stereo reception: the circuit switches automatically to monaural if the 19 kHz pilot tone is absent.

The elimination of sensitivity to the third harmonic of the sub-carrier ( 114 kHz ) excludes interference from the sidebands of adjacent transmitters, while the elimination of sensitivity to the third harmonic of the pilot tone $(57 \mathrm{kHz})$ excludes interference from the ARI* system which employs this frequency.

## Circuit Operation

The block diagram of the circuit, shown in Figure 2, consists of three sections, the phase-lock-loop, including the digital waveform generator, the stereo switch, and the decoder, in which the composite stereo signal is demodulated and matrixed to separate L and R channels.

In the phase-lock-loop the internal RC oscillator, operating at 228 kHz , feeds a 3 -stage Johnson counter, via a binary divider, to generate a series of 19 kHz square waves. By the use of suitably connected NAND and EXCLUSIVE OR gates, the waveforms shown in Figure 3, which are used to drive the various modulators in the circuit, are developed.
*Auto Radio Information - used in Europe

The use of such drive waveforms produces the modulating functions also shown in Figure 3. The usual square waveforms have been replaced in the PLL and decoder sections by 3 -level forms which contain no third harmonic (actually no harmonics which are multiples of 2 or 3 are present). This eliminates the frequency translation of interference from these bands into the low frequency region. Such translation may produce audible components in the decoder section from the sidebands of adjacent channel FM signals, and may produce phase jitter, and consequent intermodulation distortion, in the PLL, from the modulated 57 kHz tones of the ARI system. The LM4500A is inherently free from these effects.

The stereo switch section is of conventional form (e.g. LM1310).

The decoder section consists of a modulator (driven by the waveforms shown in Figure 3) whose outputs are the inverted and non-inverted channel difference signals. These signals pass to the output amplitiers via the variable blend circuit in which they are partially combined, and hence mutually attenuated, according to the control voltage applied.

Matrixing occurs at the inputs of the output amplifiers, where the unmodified composite signal is added to the blended channel difference signals. The stereo separation may be progressively reduced frommaximum to zero; dependent on the blending. The control law has been made non-linear, as the major redistribution of sound energy occurs at very low separation levels. For monaural, or very weak stereo signals, the modulator in the decoder section is deactivated by the stereo switch circuit. The variable separation control is thus, also, automatically disabled.


FIGURE 3. Digital Waveforms

## Applications Information

## Gain and De-Emphasis

The gain and de-emphasis characteristics of the circuit are defined by shunt feedback via the external RC networks (R3, C6, R4, C7 of Figure 1) around the output amplifiers. The gain is unity when resistors of $5.1 \mathrm{k} \Omega$ are used. Higher gains may be obtained by using networks of the form shown in Figure 4.


FIGURE 4. Output Amplifier Feedback Networks

The resistors R6, R7 are added to correct the output quiescent voltage levels which are optimised for $\mathrm{R} 3, \mathrm{R} 4=5.1 \mathrm{k} \Omega$ and which would, if uncorrected, become too low with higher value resistors. Suitable network values are as follows:

Gain (dB)	R3, R4	$\mathbf{C 6}, \mathbf{C 7}$		$\mathbf{R} \mathbf{R}, \mathbf{R 7}$
		$50 \mu \mathbf{s}$	$\mathbf{7 5} \mu \mathbf{s}$	
0	$5.1 \mathrm{k} \Omega$	10 nF	15 nF	
3	$6.8 \mathrm{k} \Omega$	6.8 nF	10 nF	$47 \mathrm{k} \pm 10 \%$
6	10 k	4.7 nF	6.8 nF	$27 \mathrm{k} \pm 10 \%$

The maximum output level is 1 Vrms ; consequently the max input is limited to 1.4 Vp -p if the gain is set to 6 dB .

## Separation Adjustment

A separation adjustment may be added, as shown in Figure 5, to compensate for the receiver's IF characteristics.

This network reduces the amplification of the channel sum signal in the decoder, to compensate the attenuation of the channel difference signal in the receiver's IF section. The network shown will compensate for up to 2 dB attenuation at 38 kHz . The decoder gain is, obviously, reduced by an amount equal to the compensation required. When used as described, the adjustment also corrects the inherent separation of the decoder, which may be optimised on one channel. Optimization of both channels is possible if separate potentiometers are used to feed each output amplifier.


FIGURE 5. Network Providing Adjustable Separation

## Variable Separation (Blend) Control and 19 kHz Output

To retain the 16-pin package the blend control has been combined with the 19 kHz output on pin 11. The internal circuit providing this combination is shown in Figure 6.

If pin 11 is left open-circuit the 19 kHz signal appears at a mean DC level of 4 V . The blend circuit is inoperative at this level and the decoder provides full separation. The 19 kHz signal can be used to tune the internal oscillator.

To reduce the separation the voltage on pin 11 is reduced. At 3.2 V T2 ceases conduction and the 19 kHz signal disappears.

At 2.0V the blend circuit comes into operation and the separation decreases according to the curve shown in Figure 8.


FIGURE 6. Blend Control Input Circuit


FIGURE 7. Oscillator Network for Direct Frequency Measurement


FIGURE 8

## Oscillator Tuning

If the variable separation facility is not required pin 11 is left open-circuit and the 19 kHz signal which then appears may be used to indicate the oscillator frequency. If the variable separation is used, and the drive circuit prevents access to the 19 kHz signal, then the oscillator frequency must be measured directly. A test point should be obtained by modifying the oscillator RC network as in Figure 7.

The output is a pulse train of approximately 1.5 V amplitude. Connecting frequency counters of up to 300 pF input capacitance produces less than $0.3 \%$ change of the oscillator frequency, which should be set to 228 kHz .

## High Loop Gain Components

For applications demanding operation under low pilot level (e.g. car radio) the following component changes to Figure 1 are recommended.

$$
\begin{array}{ll}
\mathrm{R} 1=12 \mathrm{k} & \mathrm{C} 3=150 \mathrm{pF} \\
\mathrm{R} 2=1.5 \mathrm{k} & \mathrm{C} 4=330 \mathrm{nF} \\
\mathrm{R} 8=330 & \mathrm{C} 5=150 \mathrm{nF} \\
\mathrm{P} 1=10 \mathrm{k} &
\end{array}
$$

## External Mono-Stereo Switching and Oscillator Killing

If required the LM4500A can be forced into mono mode simply by grounding pin 9 (see Figure 1). The 228 kHz oscillator will be automatically stopped.

The conditions governing mono/stereo switching on pin 9 are the following:

Quiescent voltage: $+2.3 \mathrm{~V}_{\mathrm{DC}}$
Current required to ensure mono operation (with 100 mVrms pilot level): $10 \mu \mathrm{~A}$ (from pin 9 to ground)
Hysteresis: $0.7 \mu \mathrm{~A}$
Stereo/mono switching \& oscillator killing: less than $+500 \mathrm{mV}$
Maximum stray capacitance between pin 9 and ground: 100 pF

## External Component Functions

P1 19 kHz frequency adjustment
P2 Channel separation adjustment and compensation for IF roll-off.
R3, R6Gain fixing resistors. The values shown in the schematic are for unity gain.
$\mathrm{C} 6, \mathrm{C} 7$ De-emphasis capacitors. Value to give: $\mathrm{RC}=50 \mu \mathrm{~s}$.

## LM13600/LM13600A/LM11600A Dual Operational Transconductance Amplifiers With Linearizing Diodes and Buffers

## General Description

The LM13600 series consists of two current controlled transconductance amplifiers each with differential inputs and a push pull output. The two amplifiers share common supplies but otherwise operate independently. Linearizing diodes are provided at the inputs to reduce distortion and allow higher input levels. The results is a 10 dB signal-to-noise improvement referenced to 0.5 percent THD. Controlled impedance buffers are provided which are especially designed to complement the dynamic range of the amplifiers.

## Features

- gm adjustable over 6 decades
- Excellent gm linearity
- Excellent matching between amplifiers
- Linearizing diodes
- Controlled impedance buffers
- High output signal to noise ratio
- Wide supply range $\pm 2 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$.


## Applications

- Current controlled amplifiers
- Current controlled impedances
- Current controlled filters
- Current controlled oscillators
- Multiplexers
- Timers
- Sample and hold circuits


## Schematic and Connection Diagrams



Order Number LM13600J or LM11600AJ
See NS Package J16A
Order Number LM13600N or LM13600AN See NS Package N16A

## Absolute Maximum Ratings

Supply Voltage (Note 1)

LM13600 LM13600A, LM11600A

$36 V_{D C}$ or $\pm 18 \mathrm{~V}$
44 VDC or $\pm 22 \mathrm{~V}$
Power Dissipation (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
LM13600N, LM13600AN
LM13600J, LM11600AJ
570 mW
600 mW
$\pm 5 \mathrm{~V}$
2 mA
2 mA
Indefinite
20 mA

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$.55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$+\mathrm{V}_{\mathrm{S}}$ to -V S
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

Parameters	Conditions	Livitsoun						Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (VOS)	Over Specified Temperature Range$\text { IABC } 5 \mu \mathrm{~A}$		0.4	4		0.4	1	mV
							2	mV
			0.3	4		0.3	1	mV
VOS Including Diodes	Diode Bias Current (ID) $=500 \mu \mathrm{~A}$		0.5	5		0.5	2	mV
Input Offset Change	$5 \mu \mathrm{~A} \leq 1 \mathrm{ABC} \leq 500 \mu \mathrm{~A}$		0.1	3		0.1	1.	mV
Input Offset Current			0.1	0.6		0.1	0.6	$\mu \mathrm{A}$
Input Bias Current			0.4	5		0.4	5	$\mu \mathrm{A}$
	Over Specified Temperature Range		1	8		1	7	$\mu \mathrm{A}$
Forward   Transconductance(gm)								
		6700	9600	13000	7700	9600	12000	$\mu \mathrm{mho}$
	Over specified Temp Range	5400			4000			$\mu \mathrm{mho}$
gm Tracking			0.3			0.3		dB
Peak Output Current	$R L=0, \ A B C=5 \mu \mathrm{~A}$		5		3	5	7	$\mu \mathrm{A}$
	$R L=0,1 A B C=500 \mu \mathrm{~A}$	350	500	650	350	500	650	$\mu \mathrm{A}$
	$\mathrm{RL}=0$, Over Specified Temp Range	300			300			$\mu \mathrm{A}$
Peak Output Voltage								
Positive	$\mathrm{RL}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{IABC} \leq 500 \mu \mathrm{~A}$	$+12$	+ 14.2		$+12$	+ 14.2		V
Negative	$\mathrm{RL}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A}$	-12	- 14.4		-12	- 14.4		V
Supply Current	$\mathrm{I} A B C=500 \mu \mathrm{~A}$, Both Channels		2.6			2.6		mA
VOS Sensitivity								
Positive	$\therefore V_{\text {OS }} / 2 . V+$		20	150		20	150	$\mu \mathrm{V} / \mathrm{V}$
Negative	$\triangle V_{\text {OS }}<1 . V_{-}$		20	150		20	150	$\mu \mathrm{V} / \mathrm{V}$
CMRR	.	80	110		80	110		dB
Common Mode Range		$\pm 12$	$\pm 13.5$		$\pm 12$	$\pm 13.5$		V
Crosstalk	Referred to Input (Note 5) $20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{KHz}$		100			100		dB
Diff.Input Current	IABC $=0$, Input $= \pm 4 \mathrm{~V}$		0.02	100		0.02	10	$n A$
Leakage Current	IABC $=0$ (Refer To Test Circuit)		0.2	100		0.2	5	$n \mathrm{~A}$
Input Resistance		10	26		10	26		$\mathrm{K} \Omega$
Open Loop Bandwith			2			2		MHz
Slew Rate	Unity Gain Compensated		50			50		$\mathrm{V} / \mu \mathrm{Sec}$
Buff. Input Current	(Note 5, Except $\mathrm{I}_{\text {ABC }}=0 \mu \mathrm{~A}$ )		0.2	0.4		0.2	0.4	$\mu \mathrm{A}$
Peak Buffer Output Voltage	(Note 5)	10			10			V

Note 1. For selections to a supply voltage above $\pm 22 \mathrm{~V}$, contact factory.
Note 2. For operating at high temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in still air.
Note 3. Buffer output current should be limited so as to not exceed package dissipation.
Note 4. These specifıcations|apply for $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, amplifier bias current $\left(\mathrm{I}_{\mathrm{ABC}}\right)=500 \mu \mathrm{~A}$, pins 2 and 15 open unless otherwise specified. The inputs to the buffers are grounded and outputs are open.
Note 5. These specifications apply for $V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A}$, ROUT $=5 \mathrm{~K} \Omega$ connected from the buffer output to $-\mathrm{V}_{\mathrm{S}}$ and the input of the buffer is connected to the transconductance amplifier output.

## Typical Performance Characteristics



## Typical Performance Characteristics (Cont'd)



## Circuit Description

The differential transistor pair $Q_{4}$ and $Q_{5}$ form a transconductance stage in that the ratio of their collector currents is defined by the differential input voltage according to the transfer function:

$$
\begin{equation*}
V_{I N}=\frac{K T}{q} \ln \frac{I_{5}}{I_{4}} \tag{1}
\end{equation*}
$$

where VIN is the differential input voltage, KT/q is approximately 26 mV at $25^{\circ} \mathrm{C}$ and $\mathrm{I}_{5}$ and $\mathrm{I}_{4}$ are the collector currents of transistors $Q_{5}$ and $Q_{4}$ respectively. With the exception of $Q_{3}$ and Q13, all transistors and diodes are identical in size. Transiștors $Q_{1}$ and $Q_{2}$ with Diode $D_{1}$ form a current mirror which forces the sum of currents $I_{4}$ and $I_{5}$ to equal $I_{A B C}$;

$$
\begin{equation*}
I_{4}+I_{5}=I_{A B C} \tag{2}
\end{equation*}
$$

where $I_{A B C}$ is the amplifier bias current applied to the gain pin.

For small differential input voltages the ratio of $I_{4}$ and $I_{5}$ approaches unity and the Taylor series of the In function can be approximated as:

$$
\begin{align*}
& \frac{K T}{q} \ln \frac{I_{5}}{I_{4}} \approx \frac{K T}{q} \frac{I_{5}-I_{4}}{I_{4}}  \tag{3}\\
& I_{4} \approx I_{5} \approx \frac{I_{A B C}}{2} \\
& V_{I N}\left[\frac{I_{A B C} q}{2 K T}\right]=I_{5}-i_{4} \tag{4}
\end{align*}
$$

Collector currents $I_{4}$ and $I_{5}$ are not very useful by themselves and it is necessary to subtract one current from the other. The remaining transistors and diodes form three current mirrors that produce an output current equal to 15 minus 14 thus:

$$
\begin{equation*}
V_{\text {IN }}\left[\frac{I_{A B C} q}{2 K T}\right]=I_{O U T} \tag{5}
\end{equation*}
$$

The term in brackets is then the transconductance of the amplifier and is proportional to IABC.

## Linearizing Diodes

For differential voltages greater than a few millivolts, Equation 3 becomes less valid and the transconductance becomes increasingly nonlinear. Figure 1 demonstrates how the internal diodes can linearize the transfer function of the amplifier. For convenience assume the diodes are biased with current sources and the input signal is in the form of current Is. Since


Figure 1. Linearizing Diodes
the sum of $I_{4}$ and $I_{5}$ is $I_{A B C}$ and the difference is IOUT, currents $I_{4}$ and $I_{5}$ can be written as follows:

$$
I_{4}=\frac{I_{A B C}}{2}-\frac{I_{O U T}}{2}, I_{5}=\frac{I_{A B C}}{2}+\frac{I_{O U T}}{2}
$$

Since the diodes and the input transistors have identical geometries and are subject to similar voltages and temperatures, the following is true:

$$
\begin{align*}
& \frac{K T}{q} \ln \frac{\frac{I_{D}}{2}+I_{S}}{\frac{I_{D}}{2}-I_{S}}=\frac{K T}{q} \ln \frac{\frac{I_{A B C}}{2}+\frac{I_{\text {out }}}{2}}{\frac{I_{A B C}}{2}-\frac{I_{\text {out }}}{2}} \\
\therefore & I_{\text {out }}=I_{S}\left(\frac{2 I_{A B C}}{I_{D}}\right) \text { for }\left|I_{S}\right|<\frac{I_{D}}{2} \tag{6}
\end{align*}
$$

Notice that in deriving Equation 6 no approximations have been made and there are no temperature dependent terms. The limitations are that the signal current not exceed ID/2 and that the diodes be biased with currents. In practice, replacing the current sources with resistors will generate insignificant errors.

## Controlled Impedance Buffers

The upper limit of transconductance is defined by the maximum value of $I_{A B C}(2 \mathrm{~mA})$. The lowest value of IABC for which the amplifier will function therefore determines the overall dynamic range. At very low values of IABC, a buffer which has very low input bias current is desirable. A FET follower satisfies the low input current requirement, but is somewhat nonlinear for large voltage swing. The controlled impedance buffer is a Darlington which modifies its input bias current to suit the need. For low values of IABC, the buffer's input current is minimal. At higher levels of IABC, transistor $Q_{3}$ biases up $Q_{12}$ with a current proportional to IABC for fast slew rate.

## Applications/Voltage Controlled Amplifiers

Figure 2 shows how the linearizing diodes can be used in a voltage controlled amplifier. To understand the input biasing, it is best to consider the $13 \mathrm{~K} \Omega$ resistor as a current source and use a Thevenin equivalent circuit as shown in Figure 3. This circuit is similar to Figure 1 and operates the same. The potentiometer in Figure 2 is adjusted to minimize the effects of the control signal at the output.

For optimum signal-to-noise performance, IABC should be as large as possible as shown by the Output Voltage vs. Amplifier Bias Current graph. Larger amplitudes of input signal also improve the $\mathrm{S} / \mathrm{N}$ ratio. The linearizing diodes
help here by allowing larger input signals for the same output distortion as shown by the Distortion vs. Differential Input Voltage graph. S/N may be optimized by adjusting the magnitude of the input signal via RiN (Figure 2) until the output distortion is below some desired level. The output voltage swing can then be set at any level by selecting $R_{L}$.

Although the noise contribution of the linearizing diodes is negligible relative to the contribution of the amplifier's internal transistors, ID should be as large as possible. This minimizes the dynamic junction resistance of the diodes ( $r_{e}$ ) and maximizes their linearizing action when balanced against RIN. A value of 1 mA is recommended for ID unless the specific application demands otherwise.

Figure. 2 Voltage Controlled Amplifier


Figure 3. Equivalent VCA Input Circuit

## Stereo Volume Control

The circuit of Figure 4 uses the excellent matching of the two LM13600 amplifiers to provide a Stereo Volume Control with a typical channel-to-channel gain tracking of 0.3 dB . Rp is provided to minimize the output offset voltage and may be replaced with two $510 \Omega$ resistors in AC-coupled applications. For the component values given, amplifier gain is derived from Figure 2 as being:

$$
\frac{V_{\mathrm{O}}}{V_{I N}}=940 \times I_{\mathrm{ABC}}
$$

If $V_{C}$ is derived from a second signal source then the circuit becomes an amplitude modulator or two-quadrant multiplier as shown in Figure 5, where:

$$
I_{O}=\frac{-2 I_{S}}{I_{D}}\left(I_{A B C}\right)=\frac{-2 I_{S}}{I_{D}} \frac{V_{I N 2}}{R_{C}}-\frac{2 I_{S}}{I_{D}} \frac{\left(V^{-}+1.4 \mathrm{~V}\right)}{R_{C}}
$$

The constant term in the above equation may be cancelled by feeding Is $\times \mathrm{I}_{\mathrm{DR}} / 2\left(\mathrm{~V}^{-}+1.4 \mathrm{~V}\right)$ into lo.The circuit of Figure 6 adds R $_{M}$ to provide


Figure 4. Stereo Volume Control


Figure 5. Amplitude Modulator


Figure 6. Four-Quadrant Multiplier
this current, resulting in a four-quadrant multiplier where Rc is trimmed such that $V_{O}=O V$ for $V_{1 N 2}=O V$. RM also serves as the load resistor for lo.

Noting that the gain of the LM13600 amplifier of Figure 3 may be controlled by varying the linearizing diode current ID as well as by varying IABC, Figure 7 shows an AGC Amplifier using this approach. As $V_{O}$ reaches a high enough amplitude ( $3 \mathrm{~V}_{\mathrm{BE}}$ ) to turn on the Darlington transistors and the linearizing diodes, the increase in ID reduces the amplifier gain so as to hold $\mathrm{V}_{\mathrm{O}}$ at that level.

## Voltage Controlled Resistors

An Operational Transconductance Amplifier (OTA) may be used to implement a Voltage Controlled Resistor as shown in Figure 8. A signal
voltage applied at $\mathrm{RX}_{\mathrm{X}}$ generates a VIN to the LM13600 which is then multiplied by the gm of the amplifier to produce an output current, thus:

$$
R_{X}=\frac{R+R_{A}}{g m R_{A}}
$$

where $\mathrm{gm}=19.21 \mathrm{ABC}$ at $25^{\circ} \mathrm{C}$. Note that the attenuation of $\mathrm{V}_{\mathrm{O}}$ by R and $\mathrm{R}_{\mathrm{A}}$ is necessary to maintain $V_{I N}$ within the linear range of the LM13600 input.

Figure 9 shows a similar VCR where the linearizing diodes are added, essentially improving the noise performance of the resistor. A floating VCR


Figure 8. Voltage Controlied Resistor, Single-Ended


Figure 9. Voltage Controlled Resistor With Linearizing Diodes
is shown in Figure 10, where each "end" of the "resistor" may be at any voltage within the output voltage range of the LM13600.

## Voltage Controlled Filters

OTA's are extremely useful for implementing voltage controlled filters, with the LM13600
having the advantage that the required buffers are included on the I.C. The VC Lo-Pass Filter of Figure 11 performs as a unity-gain buffer amplifier at frequencies below cut-off, with the cut-off frequency being the point at which $\mathrm{X}_{\mathrm{C}} /$ gm equals the closed-loop gain of (R/RA). At frequencies above cut-off the circuit provides a single RC rolloff ( 6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation,


Figure 10. Floating Voltage Controlled Resistor


Figure 11. Voltage Controlled Low-Pass Filter
where gm is again $19.2 \times \mathrm{IABC}$ at room temperature. Figure 12 shows a VC High-Pass Filter which operates in much the same manner, providing a single RC roll-off below the defined cutoff frequency.

Additional amplifiers may be used to implement
"higher order filters as demonstrated by the twopole Butterworth Lo-Pass Filter of Figure 13 and the state variable filter of Figure 14. Due to the excellent gm tracking of the two amplifiers and the varied bias of the buffer Darlingtons, these filters perform well over several decades of frequency.


Figure 12. Voltage Controlled Hi-Pass Filter


Figure 13. Voltage Controlled 2-pole Butterworth Lo-Pass Filter


Figure 14. Voltage Controlled State Variable Filter

## Voltage Controlled Oscillators

The classic Triangular/Square Wave VCO of Figure 15 is one of a variety of Voltage Controlled Oscillators which may be built utilizing the LM13600. With the component values shown, this oscillator provides signals from 200 kHz to below 2 Hz as IC is varied from 1 mA to 10 nA . The output amplitudes are set by IA $\times$ RA. Note that $^{\text {. Nat }}$ the peak differential input voltage must be less than 5 volts to prevent zenering the inputs.

A few modifications to this circuit produce the ramp/pulse VCO of Figure 16. When VO2 is high,

IF is added to IC to increase amplifier A1's bias current and thus to increase the charging rate of capacitor C. When $\mathrm{VO}_{2}$ is low, IF goes to zero and the capacitor discharge current is set by IC.

The VC Lo-Pass Filter of Figure 11 may be used to produce a high-quality sinusoidal VCO. The circuit of Figure 16 employs two LM13600 packages, with three of the amplifiers configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the loop phase-shift is $360^{\circ}$ or $180^{\circ}$ for the inverter and $60^{\circ}$ per filter stage. This VCO operates from 5 Hz to 50 kHz with less than $1 \%$ THD.


Figure 15. Triangular/Square-Wave VCO


Figure 16. Ramp/Pulse VCO


Figure 17. Sinusoidal VCO


Figure 18. Single Amplifier VCO
Figure 18 shows how to build a VCO using one amplifier when the other amplifier is needed for another function.

## Additiona! Applications

Figure 19 presents an interesting one-shot which draws no power supply current until it is triggered. A positive-going trigger pulse of at least 2 V amplitude turns on the amplifier through RB and pulls the non-inverting input high. The amplifier regenerates and latches its output high until capacitor $C$ charges to the voltage level on the non-inverting input. The output then switches low, turning off the amplifier and discharging the capacitor. The capacitor discharge rate is speeded up by shorting the diode bias pin to the inverting input so that an additional discharge current flows through $D_{1}$ when the amplifier output switches low. A special feature of this timer is that the other amplifier, when biased from $\mathrm{V}_{\mathrm{O}}$, can perform another function and draw zero stand-by power as well.
The operation of the multiplexer of Figure 20 is very straightforward. When A1 is turned on it holds $V_{0}$ equal to $\mathrm{V}_{1 N 1}$ and when A2 is supplied with bias current then it controls $\mathrm{V}_{\mathrm{O}}$. $\mathrm{C}_{\mathrm{C}}$ and $\mathrm{R}_{\mathrm{C}}$ serve to stabilize the unity-gain


Figure 19. Zero Stand-by Power Timer

configuration of amplifiers A1 and A2. The maximum clock rate is limited to about 200 KHz by the LM13600 slew rate into 150 pF when the ( $V_{\text {IN1 }}$-VIN2) differential is at its maximum allowable value of 5 volts.
The Phase-Locked Loop of Figure 21 uses the four-quadrant multiplier of Figure 6 and the VCO of Figure 18 to produce a PLL with a $\pm 5 \%$ hold-in range and an input sensitivity of about 300 mV .


Figure 21. Phase Lock Loop

The Schmitt Trigger of Figure 22 uses the amplifier output current into $R$ to set the hysteresis of the comparator; thus $\mathrm{V}_{\mathrm{H}}=2 \times \mathrm{Rx}$


Figure 22. Schmitt Trigger
$I_{B}$. Varying IB will produce a Schmitt Trigger with variable hysteresis.
Figure 23 shows a Tachometer or Frequency-toVoltage converter. Whenever A1 is toggled by a positive-going input, an amount of charge equal to $\left(\mathrm{V}_{\mathrm{H}} \cdot \mathrm{V}_{\mathrm{L}}\right) \mathrm{C}_{\mathrm{t}}$ is sourced into $\mathrm{C}_{\mathrm{f}}$ and $\mathrm{R}_{\mathrm{t}}$. This once per cycle charge is then balanced by the current of $\mathrm{V}_{\mathrm{O}} / \mathrm{R}_{\mathrm{t}}$. The maximum $\mathrm{FIN}_{\text {IN }}$ is limited by the amount of time required to charge $C_{t}$ from $V_{L}$ to $V_{H}$ with a current of $I_{B}$, where $V_{L}$ and $V_{H}$ represent the maximum low and maximum high output voltage swing of the LM13600. D1 is added to provide a discharge path for $C_{t}$ when $A 1$ switches low.
The Peak Detector of Figure 24 uses A2 to turn on A1 whenever VIN becomes more positive than $\mathrm{V}_{\mathrm{O}}$. A1 then charges storage capacitor C to hold Vo equal to VINPK. One precaution to observe when using this circuit: the Darlington transistor used must be on the same side of the package as A2 since the A1 Darlington will be turned on and off with A1. Pulling the output of A2 low through D1 serves to turn off A1 so that Vo remains constant.


Figure 23. Tachometer


Figure 24. Peak Detector and Hold Circuit

The Sample-Hold circuit of Figure 25 also requires that the Darlington buffer used be from the other (A2) half of the package and that the corresponding amplifier be biased on continuously.

riguie $2 \overline{0}$. Sampie-riviu Oincuit

The Ramp-and-Hold of Figure 26 sources $I_{B}$ into capacitor C whenever the input to A1 is brought high, giving a ramp-rate of about IV/ms for the component values shown.
The true RMS converter of Figure 27 is essentially an automatic gain control amplifier which adjusts its gain such that the AC power at the output of amplifier A1 is constant. The output power of amplifier A1 is monitored by squaring amplifier A2 and the average compared to a reference voltage with amplifier A3. The output of A3 provides bias current to the diodes of A1 to attenuate the input signal. Because the output power of A1 is held constant, the RMS value is constant and the attentuation is directly proportional to the RMS value of the input voltage. The attenuation is also proportional to the diode bias current. Amplifier A4 adjusts the ratio of currents through the diodes to be equal and therefore the voltage at the output of A4 is proportional to the RMS value of the input voltage. The calibration notentinmeter is set such that $V_{O}$ reads directly in RMS volts.


Figure 26. Ramp and Hold


Figure 27. True RMS Converter

The circuit of Figure 28 is a voltage reference of variable Temperature Coefficient. The $100 \mathrm{~K} \Omega$ potentiometer adjusts the output voltage which has a positive TC above 1.2 volts, zero TC at about 1.2 volts and negative TC below 1.2 volts. This is accomplished by balancing the TC of the A2 transfer function against the complementary TC of D1.
The log amplifier of Figure 29 responds to the ratio of current through buffer transistors Q3 and Q4. Zero temperature dependence for VOUT is ensured in that the TC of the A2 transfer function is equal and opposite to the TC of the logging transistors Q3 and Q4.
The wide dynamic range of the LM13600 allows easy control of the output pulse width in the Pulse Width Modulator of Figúre 30.
For generating IABC over a range of 4 to 6 decades of current, the system of Figure 31 provides a logarithmic current out for a linear voltage in.
Since the closed-loop configuration ensures that the input to A 2 is held equal to OV , the output current of $A 1$ is equal to $I_{3}=-V_{C} / R_{C}$.

The differential voltage between Q1 and Q2 is attenuated by the R1, R2 network so that A1 may be assumed to be operating within its linear range. From equation (5), the input voltage to A 1 is:

$$
V_{1 N 1}=\frac{-2 K T I_{3}}{q_{2}}=\frac{2 K T V_{C}}{q_{2} I_{2} R_{C}}
$$

The voltage on the base of Q 1 is then

$$
v_{B 1}=\frac{\left(R_{1}+R_{2}\right) V_{1 N 1}}{R_{1}}
$$

The ratio of the Q1 to Q2 collector currents is defined by:

$$
V_{B 1}=\frac{K T}{q} \ln \frac{I_{C 2}}{I_{C 1}} \approx \frac{K T}{q} \ln \frac{I_{A B C}}{I_{1}}
$$

Combining and solving for $I_{A B C}$ yields:

$$
I_{A B C}=I_{1} e^{\frac{2\left(R_{1}+R_{2}\right) V_{C}}{\left.R_{1}\right|_{2} R_{C}}}
$$

This logarithmic current can be used to bias the circuit of Figure 4 to provide temperature independent stereo attenuation characteristic.



Figure 29. Log Amplifier


Figure 30. Pulse Width Modulator


Figure 31. Logarithmic Current Source

Audio/Radio Circuits

## LM13700/LM13700A/LM11700A Dual Operational Transconductance Amplifiers With Linearizing Diodes and Buffers

## General Description

The LM13700 series consists of two current controlled transconductance amplifiers each with differential inputs and a push pull output. The two amplifiers share common supplies but otherwise operate independently. Linearizing diodes are provided at the inputs to reduce distortion and allow higher input levels. The results is a 10 dB signal-to-noise improvement referenced to 0.5 percent THD. High impedance buffers are provided which are especially designed to complement the dynamic range of the amplifiers.

## Features

- gm adjustable over 6 decades
- Excellent gm linearity
- Excellent matching between amplifiers
- Linearizing diodes
- High impedance buffers
- High output signal to noise ratio
- Wide supply range $\pm 2 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$.


## Applications

- Current controlled amplifiers
- Current controlled impedances
- Current controlled filters
- Current controlled oscillators
- Multiplexers
- Timers
- Sample and hold circuits

Schematic and Connection Diagrams

dual in line package top view


## Absolute Maximum Ratings

Supply Voltage (Note 1)

LM13700<br>LM13700A, LM11700A

$36 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 18 \mathrm{~V}$
44 VDC or $\pm 22 \mathrm{~V}$
pation (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
LM13700N, LM13700AN
570 mW
LM13700J, LM11700AJ 600 mW
Differential Input Voltage $\pm 5 \mathrm{~V}$
2 mA
2 mA
Amplifier Bias Current (IABC)
Output Short Circuit Duration
Indefinite 20 mA
Bufrer Output Current (Note 3)
Operating Temperature Range
LM13700N, LM13700AN
LM13700J, LM11700AJ
DC Input Voltage
Storage Temperature Range
Lead Temperature (Soldering, 10 Seconds)
Electrical Characteristics (Note 4)

Parameters	Conditions	LM13700			LM13700A LM11700A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (VOS)			0.4	4		0.4	1	mV
	Over Specified Temperature Range						2	$m V$
	IABC $5 \mu \mathrm{~A}$		0.3	4		0.3	1	mV
VOS Including Diodes	Diode Bias Current (ID) $=500 \mu \mathrm{~A}$		0.5	5		0.5	2	mV
Input Offset Change	$5 \mu \mathrm{~A} \leq 1 \mathrm{ABC} \leq 500 \mu \mathrm{~A}$		0.1	3		0.1	1	mV
Input Offset Current			0.1	0.6		0.1	0.6	$\mu \mathrm{A}$
Input Bias Current			0.4	5		0.4	5	$\mu \mathrm{A}$
	Over Specified Temperature Range		1	8		1	7	$\mu \mathrm{A}$
Forward								
Transconductance(gm)		6700	9600	13000	7700	9600	12000	$\mu \mathrm{mho}$
	Over specified Temp Range	5400			4000			$\mu \mathrm{mho}$
gm Tracking			0.3			0.3		dB
Peak Output Current	$\mathrm{RL}=0, \mathrm{IABC}=5 \mu \mathrm{~A}$		5		3	5	7	$\mu \mathrm{A}$
	$\mathrm{RL}=0, \mathrm{IABC}=500 \mu \mathrm{~A}$	350	500	650	350	500	650	$\mu \mathrm{A}$
	$\mathrm{RL}=0$, Over Specified Temp Range	300			300			$\mu \mathrm{A}$
Peak Output Voltage								
Positive	$\mathrm{RL}=\infty, 5 \mu \mathrm{~A} \leq 1 \mathrm{ABC} \leq 500 \mu \mathrm{~A}$	+ 12	+ 14.2		+ 12	+ 14.2		v
Negative	$\mathrm{RL}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A}$	-12	-14.4		-12	- 14.4		v
Supply Current	$1 \mathrm{ABC}=500 \mu \mathrm{~A}, \mathrm{Both}$ Channels		2.6			2.6		mA
VOS Sensitivity								
- Positive	. Vosl. $\mathrm{V}+$		20	150		20	150	${ }_{\mu} \mathrm{V} / \mathrm{V}$
Negative	. Vosl 2 V -		20	150		20	150	${ }^{\mu} \mathrm{V} / \mathrm{V}$
CMRR		80	110		80	110		dB
Common Mode Range		$\pm 12$	$\pm 13.5$		$\pm 12$	$\pm 13.5$		V
Crosstalk	Referred to Input (Note 5) $20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{KHz}$		100			100		dB
Diff.Input Current	$1 \mathrm{ABC}=0$, Input $= \pm 4 \mathrm{~V}$		0.02	100		0.02	10	nA
Leakage Current	IABC $=0$ (Refer To Test Circuit)		0.2	100		0.2	5	nA
Input Resistance		10	26		10	26		K $\Omega$
Open Loop Bandwith			2			2		MHz
Slew Rate	Unity Gain Compensated.		50			50		$\mathrm{V} / \mu \mathrm{Sec}$
Buff. Input Current	(Note 5)		0.5	2		0.5	2	${ }_{\mu} \mathrm{A}$
Peak Buffer Output Voltage	(Note 5)	10			10			V

Note 1. For selections to a supply voltage above $\pm 22 \mathrm{~V}$, contact factory.
Note 2. For operating at high temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in still air.
Note 3. Buffer output current should be limited so as to not exceed package dissipation.
Note 4. These specifications|apply for $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, amplifier bias current $\left(\mathrm{I}_{\mathrm{ABC}}\right)=500 \mu \mathrm{~A}$, pins 2 and 15 open unless otherwise specified. The inputs to the buffers are grounded and outputs are open.
Note 5. These specifications apply for $V_{S}= \pm 15 \mathrm{~V}, I_{A B C}=500 \mu \mathrm{~A}$, ROUT $=5 \mathrm{~K} \Omega$ connected from the buffer output to $-V_{S}$ and the input of the buffer is connected to the transconductance amplifier output.

## Typical Performance Characteristics



## Typical Performance Characteristics (Cont'd)




Leakage current test circuit

differential input current test circuit

## Circuit Description

The differential transistor pair $Q_{4}$ and $Q_{5}$ form a transconductance stage in that the ratio of their collector currents is defined by the differential input voltage according to the transfer function:

$$
\begin{equation*}
V_{I N}=\frac{K T}{q} \ln \frac{I_{5}}{I_{4}} \tag{1}
\end{equation*}
$$

where VIN is the differential input voltage, $\mathrm{KT} / \mathrm{q}$ is approximately 26 mV at $25^{\circ} \mathrm{C}$ and $\mathrm{I}_{5}$ and $\mathrm{I}_{4}$ are the collector currents of transistors $Q_{5}$ and $Q_{4}$ respectively. With the exception of $Q_{3}$ and Q13, all transistors and diodes are identical in size. Transistors $Q_{1}$ and $Q_{2}$ with Diode $D_{1}$ form a current mirror which forces the sum of currents $I_{4}$ and $I_{5}$ to equal $I_{A B C}$;

$$
\begin{equation*}
I_{4}+I_{5}=I_{A B C} \tag{2}
\end{equation*}
$$

where IABC is the amplifier bias current applied to the gain pin.

For small differential input voltages the ratio of $I_{4}$ and $I_{5}$ approaches unity and the Taylor series of the In function can be approximated as:

$$
\begin{align*}
& \frac{K T}{q} \ln \frac{I_{5}}{I_{4}} \approx \frac{K T}{q} \frac{I_{5}-I_{4}}{I_{4}}  \tag{3}\\
& I_{4} \approx I_{5} \approx \frac{I_{A B C}}{2} \\
& V_{I N}\left[\frac{I_{A B C} q}{2 K T}\right]=I_{5}-I_{4} \tag{4}
\end{align*}
$$

Collector currents $I_{4}$ and $I_{5}$ are not very useful by themselves and it is necessary to subtract one current from the other. The remaining transistors and diodes form three current mirrors that produce an output current equal to 15 minus I 4 thus:

$$
\begin{equation*}
V_{I N}\left[\frac{I_{A B C} q}{2 K T}\right]=I_{O U T} \tag{5}
\end{equation*}
$$

The term in brackets is then the transconductance of the amplifier and is proportional to IABC.

## Linearizing Diodes

For differential voltages greater than a few millivolts, Equation 3 becomes less valid and the transconductance becomes increasingly
nonlinear. Figure 1 demonstrates how the internal diodes can linearize the transfer function of the amplifier. For convenience assume the diodes are biased with current sources and the input signal is in the form of current Is. Since


Figure 1. Linearizing Diodes
the sum of $I_{4}$ and $I_{5}$ is $I_{A B C}$ and the difference is IOUT, currents $I_{4}$ and $I_{5}$ can be written as follows:

$$
I_{4}=\frac{I_{A B C}}{2}-\frac{I_{O U T}}{2}, \quad I_{5}=\frac{I_{A B C}}{2}+\frac{I_{O U T}}{2}
$$

Since the diodes and the input transistors have identical geometries and are subject to similar voltages and temperatures, the following is true:

$$
\begin{align*}
& \quad \frac{K T}{q} \ln \frac{\frac{I_{D}}{2}+I_{S}}{\frac{I_{D}-I_{S}}{2}}=\frac{K T}{q} \ln \frac{\frac{I_{A B C}}{2}+\frac{I_{\text {out }}}{2}}{\frac{I_{A B C}}{2}-\frac{I_{\text {out }}}{2}} \\
& \therefore I_{\text {out }}=I_{S}\left(\frac{{ }^{2 I_{A B C}}}{I_{D}}\right) \text { for }\left|I_{S}\right|<\frac{I_{D}}{2} \tag{6}
\end{align*}
$$

Notice that in deriving Equation 6 no approximations have been made and there are no temperature dependent terms. The limitations are that the signal current not exceed ID/2 and that the diodes be biased with currents. In practice, replacing the current sources with resistors will generate insignificant errors.

## Applications/Voltage Controlled Amplifiers

Figure 2 shows how the linearizing diodes can be used in a voltage controlled amplifier. To understand the input biasing, it is best to consider the $13 \mathrm{~K} \Omega$ resistor as a current source and use a Thevenin equivalent circuit as shown in Figure 3. This circuit is similar to Figure 1 and operates the same. The potentiometer in Figure 2 is adjusted to minimize the effects of the control signal at the output.

For optimum signal-to-noise performance, IABC should be as large as possible as shown by the Output Voltage vs. Amplifier Bias Current graph. Larger amplitudes of input signal also improve the $\mathrm{S} / \mathrm{N}$ ratio. The linearizing diodes
help here by allowing larger input signals for the same output distortion as shown by the Distortion vs. Differential Input Voltage graph. S/N may be optimized by adjusting the magnitude of the input signal via RIN (Figure 2) until the output distortion is below some desired level. The output voltage swing can then be set at any level by selecting $R_{L}$.

Although the noise contribution of the linearizing diodes is negligible relative to the contribution of the amplifier's internal transistors, ID should be as large as possible. This minimizes the dynamic junction resistance of the diodes ( $r_{e}$ ) and maximizes their linearizing action when balanced against RIN. A value of 1 mA is recommended for ID unless the specific application demands otherwise.

Figure. 2 Voltage Controlled Amplifier


Figure 3. Equivalent VCA Input Circuit

## Stereo Volume Control

The circuit of Figure 4 uses the excellent matching of the two LM13700 amplifiers to provide a Stereo Volume Control with a typical channel-to-channel gain tracking of 0.3 dB . Rp is provided to minimize the output offset voltage and may be replaced with two $510 \Omega$ resistors in AC-coupled applications. For the component values given, amplifier gain is derived from Figure 2 as being:

$$
\frac{v_{0}}{v_{I N}}=940 \times I_{A B C}
$$

If $\mathrm{V}_{\mathrm{C}}$ is derived from a second signal source then the circuit becomes an amplitude modulator or two-quadrant multiplier as shown in Figure 5, where:
$I_{O}=\frac{-2 I_{S}}{I_{D}}\left(I_{A B C}\right)=\frac{-2 I_{S}}{I_{D}} \frac{V_{1 N 2}}{R_{C}}-\frac{2 I_{S}}{I_{D}} \frac{\left(V^{-}+1.4 V\right)}{R_{C}}$

The constant term in the above equation may be cancelled by feeding IS $\times \operatorname{lDR} / 2\left(V^{-}+1.4 \mathrm{~V}\right)$ into IO.The circuit of Figure 6 adds RM to provide


Figure 4. Stereo Volume Control


Figure 5. Amplitude Modulator


Figure 6. Four-Quadrant Multiplier
this current, resulting in a four-quadrant multiplier where $R_{C}$ is trimmed such that $V_{O}=O V$ for $V_{\text {IN2 }}=O V$. RM also serves as the load resistor forlo.

Noting that the gain of the LM13700 amplifier of Figure 3 may be controlled by varying the linearizing diode current ID as well as by varying IABC, Figure 7 shows an AGC Amplifier using this approach. As $V_{O}$ reaches a high enough amplitude ( $3 \mathrm{~V}_{\mathrm{BE}}$ ) to turn on the Darlington transistors and the linearizing diodes, the increase in ID reduces the amplifier gain so as to hold $\mathrm{V}_{\mathrm{O}}$ at that level.

## Voltage Controlled Resistors

An Operational Transconductance Amplifier (OTA) may be used to implement a Voltage Controlled Resistor as shown in Figure 8. A signal
voltage applied at $\mathrm{RX}_{X}$ generates a $\mathrm{V}_{\text {IN }}$ to the LM13700 which is then multiplied by the gm of the amplifier to produce an output current, thus:

$$
R_{X}=\frac{R+R_{A}}{g m R_{A}}
$$

where $g m=19.21 \mathrm{ABC}$ at $25^{\circ} \mathrm{C}$. Note that the attenuation of $V_{O}$ by $R$ and $R_{A}$ is necessary to maintain VIN within the linear range of the LM13700 input.

Figure 9 shows a similar VCR where the linearizing diodes are added, essentially improving the noise performance of the resistor. A floating VCR


Figure 8. Voltage Controlled Resistor, Single-Ended


Figure 9. Voltage Controlled Resistor With Linearizing Diodes
is shown in Figure 10, where each "end"' of the "resistor" may be at any voltage within the output voltage range of the LM13700.

## Voltage Controlled Filters

OTA's are extremely useful for implementing voltage controlled filters, with the LM13700
having the advantage that the required buffers are included on the I.C. The VC Lo-Pass Filter of Figure 11 performs as a unity-gain buffer amplifier at frequencies below cut-off, with the cut-off frequency being the point at which $\mathrm{Xc}_{\mathrm{c}} / \mathrm{gm}$ equals the closed-loop gain of (R/RA). At frequencies above cut-off the circuit provides a single RC rolloff ( 6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation,


Figure 10. Floating Voltage Controlled Resistor


Figure 11. Voltage Controlled Low-Pass Filter
where gm is again $19.2 \times 1 \mathrm{ABC}$ at room temperature. Figure 12 shows a VC High-Pass Filter which operates in much the same manner, providing a single RC roll-off below the defined cutoff frequency.

Additional amplifiers may be used to implement higher order filters as demonstrated by the twopole Butterworth Lo-Pass Filter of Figure 13 and the state variable filter of Figure 14. Due to the excellent gm tracking of the two amplifiers, these filters perform well over several decades of frequency.

Figure 12. Voltage Controlled Hi-Pass Filter


Figure 13. Voltage Controlled 2-pole Butterworth Lo-Pass Filter


Figure 14. Voltage Controlled State Variable Filter

## Voltage Controlled Oscillators

The classic Triangular/Square Wave VCO of Figure 15 is one of a variety of Voltage Controlled Oscillators which may be built utilizing the LM13700. With the component values shown, this oscillator provides signals from 200 kHz to below 2 Hz as $\mathrm{I}_{\mathrm{C}}$ is varied from 1 mA to 10 nA . The output amplitudes are set by $I_{A} \times R_{A}$. Note that the peak differential input voltage must be less than 5 volts to prevent zenering the inputs.

A few modifications to this circuit produce the ramp/pulse VCO of Figure 16. When $\mathrm{V}_{\mathrm{O} 2}$ is high,

IF is added to IC to increase amplifier A1's bias current and thus to increase the charging rate of capacitor C. When $\mathrm{VO}_{\mathrm{O}}$ is low, IF goes to zero and the capacitor discharge current is set by IC.

The VC Lo-Pass Filter of Figure 11 may be used to produce a high-quality sinusoidal VCO. The circuit of Figure 16 employs two LM13700 packages, with three of the amplifiers configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the loop phase-shift is $360^{\circ}$ or $180^{\circ}$ for the inverter and $60^{\circ}$ per filter stage. This VCO operates from 5 Hz to 50 kHz with less than $1 \%$ THD.


Figure 15. Triangular/Square-Wave VCO


Figure 16. Ramp/Puise VCO


Figure 17. Sinusoidal VCO


Figure 18. Single Amplifier VCO
Figure 18 shows how to build a VCO using one amplifier when the other amplifier is needed for another function.

## Additional Applications

Figure 19 presents an interesting one-shot which draws no power supply current until it is triggered. A positive-going trigger pulse of at least 2 V amplitude turns on the amplifier through $\mathrm{RB}_{\mathrm{B}}$ and pulls the non-inverting input high. The amplifier regenerates and latches its output high until capacitor $C$ charges to the voltage level on the non-inverting input. The output then switches low, turning off the amplifier and discharging the capacitor. The capacitor discharge rate is speeded up by shorting the diode bias pin to the inverting input so that an additional discharge current flows through $D_{1}$ when the amplifier output switches low. A special feature of this timer is that the other amplifier, when biased from Vo, can perform another function and draw zero stand-by power as well.
The operation of the multiplexer of Figure 20 is very straightforward. When A1 is turned on it holds $V_{0}$ equal to VIN1 2 and when A2 is supplied with bias current then it controls $\mathrm{VO}_{\mathrm{O}}$. $\mathrm{C}_{\mathrm{C}}$ and $\mathrm{R}_{\mathrm{C}}$ serve to stabilize the unity-gain


Figure 19. Zero Stand-by Power Timer

configuration of amplifiers A1 and A2. The maximum clock rate is limited to about 200 KHz by the LM13700 slew rate into 150 pF when the ( $V_{\text {IN }} 1-V_{\text {IN2 }}$ ) differential is at its maximum allowable value of 5 volts.
The Phase-Locked Loop of Figure 21 uses the four-quadrant multiplier of Figure 6 and the VCO of Figure 18 to produce a PLL with a $\pm 5 \%$ hold-in range and an input sensitivity of about 300 mV .


Figure 21. Phase Lock Loop

The Schmitt Trigger of Figure 22 uses the amplifier output current into $R$ to set the hysteresis of the comparator; thus $\mathrm{V}_{\mathrm{H}}=2 \times \mathrm{Rx}$


Figure 22. Schmitt Trigger
$I_{B}$. Varying $I_{B}$ will produce a Schmitt Trigger with variable hysteresis.

Figure 23 shows a Tachometer or Frequency-toVoltage converter. Whenever A1 is toggled by a positive-going input, an amount of charge equal to $\left(V_{H}-V_{L}\right) C_{t}$ is sourced into $C_{f}$ and $R_{t}$. This once per cycle charge is then balanced by the current of $\mathrm{VO}_{\mathrm{O}} / \mathrm{R}_{\mathrm{t}}$. The maximum FIN is limited by the amount of time required to charge $\mathrm{C}_{\mathrm{t}}$ from $V_{L}$ to $V_{H}$ with a current of $I_{B}$, where $V_{L}$ and $\mathrm{V}_{H}$ represent the maximum low and maximum high output voltage swing of the LM13700. D1 is added to provide a discharge path for $\mathrm{C}_{t}$ when A 1 switches low.

The Peak Detector of Figure 24 uses A2 to turn on A1 whenever VIN becomes more positive than $V_{O}$. A1 then charges storage capacitor $C$ to hold Vo equal to VIN PK. Pulling the output of A2 low through D1 serves to turn off A1 so that $\mathrm{V}_{\mathrm{O}}$ remains constant.


Figure 23. Tachometer


Figure 24. Peak Detector and Hold Circuit

The Ramp-and-Hold of Figure 26 sources IB into capacitor $C$ whenever the input to $A 1$ is brought high, giving a ramp-rate of about IV/ms for the component values shown.

The true RMS converter of Figure 27 is essentially an automatic gain control amplifier which adjusts its gain such that the AC power at the output of amplifier A1 is constant. The output power of amplifier A1 is monitored by squaring amplifier A2 and the average compared to a reference voltage with amplifier A3. The output
of A3 provides bias current to the diodes of A1 to attenuate the input signal. Because the output power of A1 is held constant, the RMS value is constant and the attentuation is directly proportional to the RMS value of the input voltage. The attenuation is also proportional to the diode bias current. Amplifier A4 adjusts the ratio of currents through the diodes to be equal and therefore the voltage at the output of A4 is proportional to the RMS value of the input voltage. The calibration potentiometer is set such that $\mathrm{V}_{\mathrm{O}}$ reads directly in RMS volts.


Figure 25. Sample-Hold Circuit


Figure 26. Ramp and Hold


Figure 27. True RMS Converter

The circuit of Figure 28 is a voltage reference of variable Temperature Coefficient. The $100 \mathrm{~K} \Omega$ potentiometer adjusts the output voltage which has a positive TC above 1.2 volts, zero TC at about 1.2 volts and negative TC below 1.2 volts. This is accomplished by balancing the TC of. the A2 transfer function against the complementary TC of D1.
The wide dynamic range of the LM13700 allows easy control of the output pulse width in the Pulse Width Modulator of Figure 29.
For generating IABC over a range of 4 to 6 decades of current, the system of Figure 30 provides a logarithmic current out for a linear voltage in.
Since the closed-loop configuration ensures that the input to A 2 is held equal to OV , the output current of $A 1$ is equal to $I_{3}=-V_{C} / R C$.
The differential voltage between Q1 and Q2 is attenuated by the R1,R2 network so that A1 may
be assumed to be operating within its linear range. From equation (5), the input voltage to A1 is:

$$
V_{1 N 1}=\frac{-2 K T I_{3}}{q I_{2}}=\frac{2 K T V_{C}}{q_{2} R_{C}}
$$

The voltage on the base of Q 1 is then

$$
V_{B 1}=\frac{\left(R_{1}+R_{2}\right) V_{1 N 1}}{R_{1}}
$$

The ratio of the Q1 to Q2 collector currents is defined by:

$$
V_{B 1}=\frac{K T}{q} \ln \frac{I_{C 2}}{I_{C 1}} \approx \frac{K T}{q} \ln \frac{I_{A B C}}{I_{1}}
$$

Combining and solving for $I_{A B C}$ yields:

$$
I_{A B C}=\left.\right|_{1} e^{\frac{2\left(R_{1}+R_{2}\right) V_{C}}{R_{1} / 1_{2} R_{C}}}
$$

This logarithmic current can be used to bias the circuit of Figure 4 to provide temperature independent stereo attenuation characteristic.


Figure 28. Delta VBE Reference


Figure 29. Pulse Width Modulator


Figure 30. Logarithmic Current Source

## Audio/Radio Circuits

## TBA120S IF Amplifier and Detector

## General Description

The TBA120S is a monolithic integrated circuit specifically designed for audio detection in TV and FM radio receivers. It incorporates an 8 -stage limiting IF amplifier and balanced detector plus a dc operated volume control.

## Features

- Electronic attenuator: replaces conventional ac volume control
- Volume reduction range 85 dB typ
- Sensitivity: 3 dB limiting voltage $30 \mu \mathrm{~V}$ typ
- Excellent AM rejection 68 dB typ at 10 mV
- Audio output voltage

1V typ

- Wide supply voltage range ( $6-18 \mathrm{~V}$ )
- Internal zener diode regulator
- Very low external component requirement
- Simple detector alignment: one coil

The TBA120S is supplied in four groups depending on the resistance required between pin 5 and ground to attenuate the audio output by 30 dB . The group number as defined below is marked on the package.

GROUP	II	III	IV	V	
R5-Gnd	$1.9-2.2$	$2.1-2.5$	$2.4-2.9$	$2.8-3.3$	$\mathrm{k} \Omega$

Pins 3 and 4 are connected to the collector and base of a transistor which may be used as an AF-preamplifier or as a switch.

At pin 12 a zener-diode is accessible which can be used to stabilize the supply voltage of this integrated circuit or the voltage of other circuit elements in the set.

## Connection Diagram



Order Number TBA120S II, TBA120S III, TBA120S IV or TBA120S V See NS Package N14A

Order Number TBA $120 S Q$ II, TBA120SQ III, TBA120SQ IV, TBA120SQ V See NS Package N14C

Typical Application ( 5.5 mHz )


Test Circuit (5.5 MHz)


## Absolute Maximum Ratings

Supply Voltage, V11
Volume Control Voltage, V5
Zener Current, I 12
Transistor Collector Current, $\mathrm{I}_{3}$
18 V
4 V
20 mA
5 mA

Transistor Base Current, $\mathrm{I}_{4}$
2 mA
Bias Resistance (Max), R13-14
$1 \mathrm{k} \Omega$
Operating Temperature Range
Storage Temperature Range
$-15^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics ( $\left.\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ICC	Supply Current	$\begin{aligned} & R 5=\infty \\ & \text { R5 }=0 \\ & f=5.5 \mathrm{MHz} \end{aligned}$		14	$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{array}{r} \mathrm{mA} \\ \mathrm{~mA} \end{array}$
			$11$		$20$	
GV	IF Voltage Gain	$f=5.5 \mathrm{MHz}$		68		dB
$\mathrm{V}_{0}$	IF Output Voltage, Each		170	250		$m \vee p-p$
	Output, at Limiting					
Vaf	AF Output Voltage	$\begin{aligned} & f=5.5 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz} \\ & f_{M O D}=1 \mathrm{kHz}, V_{1}=10 \mathrm{mV} \\ & Q=45 \end{aligned}$	0.7	1.0		V
	Distortion ( 5.5 MHz )	$\begin{aligned} & f=5.5 \mathrm{MHz}, \Delta f=25 \mathrm{kHz}, \\ & f_{M O D}=1 \mathrm{kHz}, V_{1}=10 \mathrm{mV}, \\ & Q=45 \end{aligned}$		1.5		\%
	Distortion ( 10.7 MHz )	$\begin{aligned} & f=10.7 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}, \\ & \mathrm{f}_{\mathrm{MOD}}=1 \mathrm{kHz}, V_{1}=10 \mathrm{mV}, \\ & \mathrm{Q}=20 \end{aligned}$		0.2		\%
V LIM	Input Voltage Before Limiting	$\begin{aligned} & f=5.5 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}, \\ & f_{M O D}=1 \mathrm{kHz}, Q=45 \end{aligned}$		30	60	$\mu \mathrm{V}$
$\mathrm{Z}_{1}$	Input Impedance	$\mathrm{f}=5.5 \mathrm{MHz}$	15/6	40/4.5		$k \Omega / \mathrm{pF}$
Ro	Output Resistance		1.9	2.6	3.3	$k \Omega$
Vaf max	Volume Control Range		70	85		dB
Vaf min						
V8	DC Component of the Output Signal	$V_{1}=0$	6.2	7.3	8.4	V
aAM	AM Rejection	$\begin{aligned} & f=5.5 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}, \\ & f_{M O D}=1 \mathrm{kHz}, V_{1}=500 \mu \mathrm{~V}, \\ & m=30 \% \\ & f=5.5 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}, \\ & f_{\mathrm{MOD}}=1 \mathrm{kHz}, V_{1}=10 \mathrm{mV}, \\ & m=30 \% \end{aligned}$	50	60		dB
${ }^{\text {a } A M}$	AM Rejection			68		dB
R5	Potentiometer Resistance	1 dB Attenuation		3.7	4.7	$k \Omega$
V5	Voltage	1 dB Attenuation		2.2	2.5	$\checkmark$
R5	Potentiometer Resistance	70 dB Attenuation	1.0	1.4		$k \Omega$
V5	Voltage	70 dB Attenuation		1.2		V
	Noise Voltage at Output	$V_{1}=10 \mathrm{mV}$		30		$\mu \mathrm{V}$
V12	Zener Voltage	$\mathrm{I}_{12}=5 \mathrm{~mA}$	11.2	12	13.4 /	$v$
Rz	Zener Slope Resistance			30	50	$\Omega$
$\mathrm{V}_{\text {cbo }}$	Breakdown Voltage		45	65		V
$V_{\text {ceo }}$	Breakdown Voltage	$I_{3}=500 \mu \mathrm{~A}$	18	24		V
$\mathrm{hfe}^{\text {fe }}$	Current Gain	$\mathrm{I}_{3}=1 \mathrm{~mA}$	50	100	500	



National

## General Description

The TBA120U, TBA120T is a monolithic integrated circuit specifically designed for audio detection in TV and FM radio receivers. It incorporates an 8 stage limiting IF amplifier and balanced detector plus a DC operated volume control. The circuit also provides connection facilities for a video tape recorder. The TBA120T is designed primarily for use with ceramic filters while the TBA120U is optimized for inductive tuning.

## Features

- Electronic attenuator: replaces conventional AC volume control
- Volume reduction range: 85 dB typ
- Sensitivity: 3 dB limiting voltage $30 \mu \mathrm{~V}$ typ
- Excellent AM rejection 68 dB typ $500 \mu \mathrm{~V}$
- Wide supply voltage range ( 6 to 18 V )
- Easy video recorder connection
- Very low external component requirement
- Simple detector alignment: one coil


## Block and Connection Diagrams



## Absolute Maximum Ratings

Supply Voltage, V11
Operating Temperature Range, $\mathrm{T}_{\mathrm{u}}$
Storage Temperature Range, $\mathrm{T}_{\mathrm{s}}$ Voltage Pin 5, V5

18 V
$-15^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Current Pin 4, $\mathrm{I}_{4}$
5 mA
Operating Frequency Range, f
Power Dissipation, $\mathrm{P}_{\text {tot }}$
Resistor Parallel to Pins 13 and 14

0 to 12 MHz 400 mW $1 \mathrm{k} \Omega$

Electrical Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ICC	Supply Current		9.5	13.5	17.5	mA
GV	IF Voltage Gain	$\mathrm{f}=5.5 \mathrm{MHz}$		68		dB
$\mathrm{V}_{0}$	IF Output Voltage (Each Output Limiting)			250		$m \vee p-p$
R8	Output Impedance			1.1		$k \Omega$
R12				1.1		$k \Omega$
R3	Input Impedance			2		$k \Omega$
R4	Regulator Impedance			12		$\Omega$
V8	DC Output Level	$V_{i}=0$		4		V
V12		$\mathrm{V}_{\mathrm{i}}=0$		5.6		V
V4	Regulator Voltage		4.2	4.8	5.3	V
Vaf max	Volume Control		70	85		dB
Vaf8						
Vaf3	Video Recorder Output Ratio			7.5		
V LIM	Sensitivity	Vaf - $3 \mathrm{~dB}, \mathrm{f}=5.5 \mathrm{MHz}$		30	60	$\mu \mathrm{V}$
$\frac{\mathrm{V} 8}{\mathrm{~V} 11}$	Supply Rejection			35		dB
V12				30		dB
V11						
R4-R5	Impedance		1		10	$k \Omega$
$\underline{\text { Vaf max }}$	Output Ratio	$\mathrm{R} 4-\mathrm{R} 5=5 \mathrm{k} \Omega$	20	28	36	dB
Vaf8	O	$\mathrm{R} 5-\mathrm{R} 1=13 \mathrm{k} \Omega$				
TBA120T Only						
$\begin{aligned} & \mathrm{z}_{\mathrm{i}} \\ & \mathrm{aAM} \end{aligned}$	Input Impedance	$\begin{aligned} & f=5.5 \mathrm{MHz} \\ & \mathrm{f}=5.5 \mathrm{MHz} \\ & \mathrm{~m}=30 \% \\ & \Delta \mathrm{f}= \pm 50 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{i}}=500 \mu \mathrm{~V} \\ & \mathrm{f} M O \mathrm{D}=1 \mathrm{kHz} \\ & \mathrm{f}=5.5 \mathrm{MHz} \\ & \mathrm{f} M O D=1 \mathrm{kHz} \\ & \Delta \mathrm{f}= \pm 50 \mathrm{kHz} \end{aligned}$	50	$\begin{aligned} & 800 / 5 \\ & 60 \end{aligned}$		$\Omega / \mathrm{pF}$ dB
aAM	AM Rejection					
Vaf8	A.F. Output Voltage			900		mV
Vaf12				650		mV
TBA120U Only						
$\mathrm{Z}_{\mathrm{i}}$	Input Impedance	$\mathrm{f}=5.5 \mathrm{MHz}$	15/6	40/4.5		k $\Omega / \mathrm{pF}$
	AM Rejection	$f=5.5 \mathrm{MHz}$	50			dB
.		$\mathrm{V}_{\mathrm{i}}=500 \mu \mathrm{~V}$				
		$\mathrm{f}_{\mathrm{MOD}}=1 \mathrm{kHz}$				
		$\begin{aligned} & \Delta \mathrm{f}= \pm 50 \mathrm{kHz} \\ & \mathrm{~m}=30 \% \end{aligned}$				

Electrical Characteristics (Continued) ( $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
TBA120U Only (Continued)						
Vaf8	A.F. Output Voltage	$\begin{aligned} & f=5.5 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{MOD}}=1 \mathrm{kHz} \\ & \Delta \mathrm{f}= \pm 50 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{i}}=10 \mathrm{mV} \\ & \mathrm{Q}_{\mathrm{B}}=45 \end{aligned}$		1.3		V
Vaf12	A.F. Output Voltage			1.0		V
k	Distortion	$\begin{aligned} & f=5.5 \mathrm{MHz} \\ & \Delta f= \pm 50 \mathrm{kHz} \\ & f_{M O D}=1 \mathrm{kHz} \\ & Q_{B}=45 \\ & V_{i}=10 \mathrm{mV} \end{aligned}$		1		\%

Typinal Application ( 5.5 MHz )


## Circuit for Direct Connection to Video Recorders




## TDA2003 Audio Power Amplifier

## General Description

The TDA2003 is an audio power amplifier designed primarily for automotive applications. Its hiah current capability and low saturation resistance of the output drivers enables the device to deliver large power outputs into low impedance loads where supply voltage is a limiting factor.

## Features

- Short circuit protection
-     - Sunnly nver-vnitage nrotection

国 Thermal shutdown protection

- Low distortion
- Low noise
- Externally programmable gain


## Typical Application



FIGURE 1

## Absolute Maximum Ratings

Peak Supply Voltage 50 ms (Load Dump, see Test Circuit) 50 V
DC Supply Voltage (Continuous) 30V
Operating Supply Voltage 20V
Output Peak Current (Repetitive) 3.5A
Output Peak Current(Non-Repetitive) 4.5A
Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V}$ (unless stated otherwise)

Parameter	Conditions	Min	Typ	Max	Units
Supply Voltage		6		20	V
Quiescent Current (Pin 5)		50		100	mA
Quiescent Voltage (Pin 4)		6.1	6.9	7.7	V
Output Power $R_{L}=4 \Omega$		5.5	6		W
	$\mathrm{A}_{\mathrm{v}}=40 \mathrm{~dB}$	5.5	6		W
$\mathrm{R}_{\mathrm{L}}=2 \Omega$	$\begin{aligned} & \text { THD }=10 \%, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{~A}_{\mathrm{v}}=40 \mathrm{~dB} \end{aligned}$	9.5	10		w
Distortion (THD)					
$\mathrm{R}_{\mathrm{L}}=4 \Omega$	$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=0.05 \mathrm{~W}-4.5 \mathrm{~W} \\ & \mathrm{~A}_{\mathrm{v}}=40 \mathrm{~dB}, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.12		\%
$\mathrm{R}_{\mathrm{L}}=2 \Omega$	$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=0.05 \mathrm{~W}-7.5 \mathrm{~W} \\ & \mathrm{~A}_{\mathrm{v}}=40 \mathrm{~dB}, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		0.18		\%
Open Loop Voltage Gain			80		dB
Closed Loop Voltage Gain			40		dB
Input Noise Voltage			1	5	$\mu \mathrm{V}$
Input Resistance	$f=1 \mathrm{kHz}$	70	150		k $\Omega$

## Application Circuit



Voltage and current swings for a bridge amplifier are twice that of a single-ended amplifier; i.e., with the same $R_{L}$, the bridge configuration can deliver an out put power that is four times the output power of a single-ended amplifier. Care must be taken when selecting $V_{S}$ and $R_{L}$ in order to avoid an output peak current above the maximum rating,
i.e., $R_{L} \min =\frac{V_{S}-2 V_{C E} \text { sat }}{l_{0} \max }$

FIGURE 2. 20W Bridge Amplifier

BRIDGE AMPLIFIER DESIGN FORMULAE

	Single-Ended	Bridge
Max output voltage swing (1/2 wave before clipping)	$1 / 2$ ( $\left.\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}_{\text {CE }} \mathrm{sat}\right)$	$\mathrm{V}_{s}-2 \mathrm{~V}_{\text {CE }}$ sat
Max output current swing (1/2 wave before clipping)	( $\left.\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}_{\mathrm{CE}} \mathrm{sat}\right)$	$\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}_{\text {CE }}$ sat
	$2 \mathrm{R}_{\mathrm{L}}$	$\mathrm{R}_{\mathrm{L}}$
Max output power (before clipping)	$\left(\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}_{\mathrm{CE}}\right.$ sat) ${ }^{2}$	$\left(\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}_{\text {CE }} \text { sat }\right)^{2}$
	$8 \mathrm{R}_{\mathrm{L}}$	$2 \mathrm{R}_{\mathrm{L}}$

## Test Circuits



FIGURE 3. IC Audio Amplifier


FIGURE 4. Load Dump

Section 11
TV Circuits

TV Circuits

## Section Contents

LM1017 4-Bit Binary 7-Segment Decoder/Driver ..... $11-3$
LM1019N Digital Tuning Station Detector ..... 11-7
LM1821S Video IF PLL Synchronous Detector ..... 11-10
LM1828, LM1848 Color Television Chroma Demodulator ..... 11-13
LM1880 No-Holds Vertical/Horizontal ..... 11-16
LM1886 TV Video Matrix D to A ..... 11-23
LM1889 TV Video Modulator ..... 11-28
LM2808 Monolithic TV Sound System ..... 11-37
LM3064 Television Automatic Fine Tuning ..... 11-41
TBA440C Monolithic Video IF Amplifier ..... $11-43$
TBA510 Chrominance Combination ..... $11-45$
TBA530 RGB Matrix Preamplifier ..... 11-49
TBA540 Reference Combination ..... 11-52
TBA560C Luminance and Chrominance Control Combination ..... $11-56$
TBA920/TBA920S Line Oscillator Combination ..... $11-60$
TBA950-2 Television Signal Processing Circuit ..... $11-63$
TBA970 Television Video Amplifier ..... 11-67
TBA990 Color Demodulator ..... $11-70$
TDA440 Video IF Amplifier ..... 11-72
TDA2522/TDA2523 Color Demodulation Combination ..... $11-76$
TDA2530 R-G-B Matrix Preamplifiers with Clamps ..... $11-78$
TDA2540 Video IF Amplifier and Demodulator ..... $11-81$
TDA2541 Video IF Amplifier and Demodulator ..... $11-84$
TDA2560 Luminance and Chrominance Control Combination ..... 11-87
TDA2591/TDA2593 Line Oscillator Combination ..... 11-90
TDA3500 Chroma Processor + RGB Drive Combination ..... 11-96
TDA3501 Chroma Processor + RGB Drive Combination ..... 11-102

TV Circuits

## LM1017 4-Bit Binary 7-Segment Decoder/Driver

## General Description

The LM1017 is a monolithic IC which decodes 4-bit "binary plus one" coded input signals and supplies $11 / 2$-digit TV channel display information. The outputs are designed to drive a 7 -segment common cathode LED display with up to 25 mA depending on thermal dissipation requirements. Improvements in circuit design enable the device to operate from 5 V to 12 V supply. A brightness control facility is included.

## Features

- A direct replacement for SN29764 but with 12 V supply capability
- TTL compatible inputs with high input voltage immunity
a Channel displays are from 1 to 16
- Current-driven output stages for LEDs protect against excess thermal dissipation
- Continuously variable brightness control
- Low stand-by quiescent current supply consumption
- Suitable for NSN583 0.5 inch LED display
- Inputs are suitable for direct drive from MOS outputs

Connection Diagram



Order Number LM1017N See NS Package N16A
$V_{\text {SUPPLY }}=5 \mathrm{~V}$
For 12 V supply, external resistors must be used between the output pin and segment to limit device dissipation.

Absolute Maximum Ratings

Supply Voltage, Pin 16	13.5 V	Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input Voltage, Pins 2-5	30 V	Junction Temperature	$150^{\circ} \mathrm{C}$
Input Voltage, Pin 1	13.5 V	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		

Electrical Characteristics $\mathrm{V}_{16}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Current per Segment Quieseent Current, Pin 16.	$\operatorname{Pin} 1=2 \mathrm{~V}$		12	20	mA
	$\operatorname{Pin} 1=5 \mathrm{~V}$		4		mA
Input Logic Voltage	Pins 2-5				
H Signal		2			V
L Signal				0.8	V
Input Current, Pins 2-5	$\mathrm{V} 2-5=2.4 \mathrm{~V}$			1	$\mu \mathrm{A}$
	$\mathrm{V} 2-5=0 \mathrm{~V}$			-5	$\mu \mathrm{A}$
Input Current, Pin 1	17-15 $=-15 \mathrm{~mA}$		-350		$\mu \mathrm{A}$
Output Current, Pins 7-15	$\mathrm{VI}=0 \mathrm{~V}$	-16	-22		mA
O.	$\mathrm{V} 1=2 \mathrm{~V}$		-12		mA
	$V 1=V 16$			-20	$\mu \mathrm{A}$
Minimum Saturation Between Output Terminals 7-15 and 16	IOUT $=-20 \mathrm{~mA}$		1.4		V
Package Thermal Resistance, $\theta_{J A}$				100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note. To limit device temperature at supply voltages $>5 \mathrm{~V}$, the following condition must be maintained: 8 (VSUPPLY $-V_{\text {OUT }}$ ) $I_{\text {OUT }}<\frac{150-T_{A}}{\theta_{\text {JA }}}$. Eg. For 12 V supply and 20 mA IOUT into 2 V LED, $T_{A}=25^{\circ} \mathrm{C}: 8\left(12-\mathrm{V}_{\mathrm{O}}\right) 0.02<\frac{125}{100}$
i.e., $\mathrm{V}_{\mathrm{O}}>4.2 \mathrm{~V}$ : series output resistance $=\frac{2.2 \mathrm{~V}}{20 \mathrm{~mA}}=110 \Omega$.

See application notes for use of common series resistance between LED cathodes and ground.

## Truth Table

CHANNEL	INPUT					OUTPUT								
	D	c	B	A	BR	a	$b$	c	d	e	f	$g$	h	i
1	L	L	L	L	L		ON	ON						
2	L	L	L	H	L	ON	ON		ON	ON		ON		
3	L	L	H	L	L	ON	ON	ON	ON			ON		
4	L	L	H	H	L		ON	ON			ON	ON		
5	L	H	L	L	L	ON		ON	ON		ON	ON		
6	L	H	L	H	L	ON		ON	ON	ON	ON	ON		
7	L	H	H	L	L	ON	ON	ON						
8	L	H	H	H	L	ON	ON	ON	ON	ON	ON	ON		
9	H	L	L	L	L	ON	ON	ON	ON		ON	ON		
10	H	L	L	H	L	ON	ON	ON	ON	ON	ON		ON	ON
11	H	L	H	L	L		ON	ON					ON	ON
12	H	L	H	H	$L$	ON	ON		ON	ON		ON	ON	ON
13	H	H	L	L	L	ON	ON	ON	ON			ON	ON	ON
14	H	H	L	H	L		ON	ON			ON	ON	ON	ON
15	H	H	H	L	L	ON		ON	ON		ON	ON	ON	ON
16	H	H	H	H	L	ON		ON	ON	ON	ON	ON	ON	ON
OFF	X	X	X	X	H									

Circuit Schematic (One Circuit Shown)


## Output Characteristics








## Typical Applications

When operating with a 12 V supply line, it is necessary to limit the power dissipation in the IC by means of external resistance in series with the LED segments. (Max package dissipation at $70^{\circ} \mathrm{C}=800 \mathrm{~mW}$.)

A minimum voltage of 2.5 V should be allowed across the output driver pins between supply and outputs. Allowing 1.4 V for the LED segments, a simple economical solution using only 1 resistor can be proposed as follows:

## SEGMENTS



Maximum no of ON segments $=8$

For $20 \mathrm{~mA} /$ segment, maximum voltage allowed across $R_{L}$ will be:

$$
\begin{aligned}
& 12-2.5-1.4 \cong 8 \mathrm{~V} \\
& \therefore R_{L} \max =8 / 8 \times 0.02 \bumpeq 47 \Omega
\end{aligned}
$$

For $15 \mathrm{~mA} /$ segment $(\max ), \mathrm{R}_{\mathrm{L}} \max =56 \Omega$.

## Alternative methods of limiting $\mathrm{PD}_{\mathrm{D}}$ at 12 V supply.

With a series resistance between each output and segment, the recommended resistance per segment at 20 mA maximum will be:

$$
(12-2.5-1.4) / 0.02 \cong 390 \Omega
$$

If a zener is used, maximum zener voltage $=8 \mathrm{~V}$. (The zener can be common between LED display cathode and ground.)


## LM1019N Digital Tuning Station Detector

## General Description

The LM1019N is a monolithic integrated circuit for identifying a valid picture when digitally tuned television receivers are used in the "search" mode.

## Features

- Noise gated sync separator
- Coincidence detector between sync and flyback
- Comparator to set AFC voltage at which output triggers



## Absolute Maximum Ratings

V1-16	20 V
V3-16	14 V
l11	10 mA
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V} 1-16=18 \mathrm{~V}, \mathrm{~V} 3-16=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$


## Typical Applications

The LM1019 provides a "stop" signal to the tuning system when a picture is received but because of the delay in the system when operating in the fast ramp mode, the tuner will normally have passed the optimum tuning point. The "stop" signal therefore ceases and the tuning system reverses direction at a reduced rate. When the.AFC reaches its correct level a further "stop" signal is given which ends the search routine.

Figure 1 shows the block schematic of the LM1019 with the required external components for a typical application.

Video with positive-going sync pulses is fed through a low pass filter to prevent noise being mistaken as sync pulses. It is then fed to a sync separator which gives a positive signal output at pin 7 during the sync period.

A noise gate is also provided such that when the voltage on pin a oveoods $\cap 7 \backslash$ the sunc sebarator is inhibited. This can be utilized by coupling video through a high pass filter into pin 9 . However, the system works well even without this, and if not required, pin 9 can either be grounded or left open.

The processed sync pulses are AC coupled to the coincidence detector on pin 6 because in the event of there being no video input, pin 7 rises to the high state. Flyback pulses of greater than 1 V in amplitude are applied to pin 5 and when this is coincident with the video sync pulse, a current pulse is provided by pin 10.

After a predetermined number of coincident pulses (set by the delay capacitor on pin 10), the Schmitt trigger operates, grounding pin 11. This brings down the voltage applied to the final comparator input from 12 V to the required AFC trigger level set by R1 and R2. Typically this will be in the range of $6-10 \mathrm{~V}$.

The AFC control voltage is applied to pin 13. This is always less than 12 V so that until the sync pulses and the flyback are synchronized, the main output on pin 14 is always low. However, once synchronization is achieved and pin 12 is at a lower reference level, the AFC voltage will rise above this reference and then below it as the tuner passes through the AFC detector range.

Pin 14 thus rises to 18 V and then returns to a low level. As the tuner then reverses slowly, pin 14 again goes high when the AFC voltage equals the reference on pin12. This terminates the search routine.

Positive feedback can be provided to give a clean transition and to prevent multiple pulses being sent to the tuning circuits.

This is merely one possible configuration of the circuit. The output amplifier can be used in the inverting mode if the AFC S curve is inverted. A compensation point is also provided for application involving negative feedback where the amplifier may need stabilizing.

## LM1821S Video IF PLL Synchronous Detector

## General Description

The LM1821S is a monolithic integrated circuit specifically designed to perform video detection in a color television receiver or cable TV decoder. The device employs a phaselocked loop (PLL) for true synchronous detection, and includes post video amplification with noise inversion and buffered outputs. An automatic fine tuning (AFT) detector with a defeat pin is also provided.

## Features

- Wide range PLL oscillator
- Detector very linear at low levels
- Adjustable zero-carrier level
- White-spot noise inversion
- Second video output for sound carrier
- Automatic fine tuning detector
- Ease of detector alignment
( Usable to 70 MHz


## Typical Application



Absolute Maximum Ratings	
Power Supply Voltage	15 V
Power Supply Current	100 mA
Input Signal Voltage	1 Vrms
Device Dissipation	1.5 W
Thermal Resistance, $\theta_{J A}$	$55^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature(Soldering, 10 seconds)	$265^{\circ} \mathrm{C}$

DC Electrical Characteristics (Reference Test Circuit, all SW position 1 unless noted)

Parameter	Conditions	Min	Typ	Max	Units
Supply Current, $18+110$ :		35	55	75	mA
	Sun	7.9	8.5	9.n	v
0 Carrier Output Voltage, V9	SW 1 Position 2	6.8	8.5	10.2	V
0 Carrier Bias Difference, V11-V9	SW 1 Position 2		0	$\pm 1.3$	V
0 Carrier Output Voltage, V10	Adjust V11 for V9 $=7.0 \mathrm{~V}$	6.0	6.3	6.5	V
AFT Output Reference, V12		2.5	3.0	3.5	V

AC Electrical Characteristics (sw 2 position $2, \mathrm{~V}_{\mathbb{N}}=100 \mathrm{mVrms}$, see Set-Up Procedure)

Parameter	Conditions	Min	Typ	Max	Units
Detector Gain, V10		2.3	3.6	4.4	V
Output Capability, V10	$\mathrm{V}_{\mathrm{IN}}=500 \mathrm{mVrms}$		1	2	V
AFT Maximum Output, V12	SW 4 Position $2, \mathrm{f}_{\mathrm{IN}}=44.5 \mathrm{MHz}$	9	10		V
AFT Minimum Output, V12	SW 4 Position $2, \mathrm{f}_{\mathrm{IN}}=45.5 \mathrm{MHz}$		0.4	1	V
APT Pull-In Range	Difference Between Upper and Lower	1	3		MHz
Noise Inversion Defeat Voltage	Lock Frequencies				
SW 3 Position 2, Adjust V5 for Beat		0.3	$\pm 0.6$	V	
	Frequency at Pin 10, Measure   Difference in $(-)$ Peaks				

## Set-Up Procedure

$\mathrm{f}_{\mathrm{IN}}=45.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mVrms}, \mathrm{CW}$.
a) Monitor pin 10 and adjust VCO tank for DC output, indicating lock. Continue to adjust for $\mathrm{V} 5=5.2 \mathrm{~V}$.
b) Adjust limiter tank for minimum pin 10 voltage.
c) With SW 4 in position 2, adjust AFT tank for 3 V on pin 12.

## Test Circuit



## Connection Diagram

Order Number LM1821S See NS Package S16A

Dual-In-Line Package


TV Circuits

The LM1828, LM1848 are monolithic silicon integrated circuits which demodulate the chroma sub-carrier information contained in a color television video signal and provide color-difference signals at the outputs.

The low dc voltage drift of the outputs insures excellent performance in direct-coupled chrominance output circuitry.

Features

- Low output voltage drift with temperature
- Doubly balanced demodulation
- $10 \mathrm{Vp}-\mathrm{p} \mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{Y}}$ output
- Built-in ripple filter capacitors
- Standard matrix in LM1828
- Revised matrix in LM1848
- Pin compatibie with LM746, CA3072


## Schematic Diagram



Connection Diagram


## Absolute Maximum Ratings

Power Dissipation (Note 2)
Operating Temperature Range
Storage Temperature Range
Supply Voltage
Reference Input
Chroma Input

> 715 mW
> $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
> $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
> 30 V
> $5 \mathrm{Vp}-\mathrm{p}$
> $5 \mathrm{Vp}-\mathrm{p}$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k}$, Note 1

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
STATIC						
$I_{s}$	Supply Current	$\begin{array}{ll}e_{c}=0 & R_{L}=1 \mathrm{M} \\ R_{L}=3.3 \mathrm{k}\end{array}$	$\begin{aligned} & 5.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 22 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 25.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$P_{\text {D }}$	Power Dissipation	$e_{c}=0$		340	430	mW
V9, V11, V13	dc Output Voltage	$e_{c}=0, R_{L}=3.3 \mathrm{k}$	13	14.5	16	$v$
$\left\|\Delta \mathrm{V}_{0}\right\|$	Output Differential	$e_{c}=0, R_{L}=3.3 \mathrm{k}$		100	600	$m V$
	Output Tempco	$e_{\text {c }}=0$		3		$\mathrm{mV} / /^{\circ} \mathrm{C}$
V6, V7	Reference Input dc			6.2		$v$
V3, V4	Chroma Input dc			3.4		V
DYNAMIC						
$\mathrm{e}_{\mathrm{c}}$	Chroma Input Sensitivity	$\mathrm{B}-\mathrm{Y}=5 \mathrm{Vp-p}$		0.4	0.7	Vp-p
V13	Max B-Y Output	$\mathrm{e}_{\mathrm{c}}=1.5 \mathrm{Vp}-\mathrm{p}$	8	10		Vp-p
	ac Unbalance	$e_{c}=0$		0.1	0.8	Vp-p
V9, V11, V13	Residual Carrier	$B \cdot Y=5 \mathrm{Vp}-\mathrm{p}$			1.5	Vp-p
	R-Y Output	$B-Y=5 \mathrm{Vp}-\mathrm{p}$				
	LM1828		3.5	3.8	4.2	Vp-p
	LM1848		4.2	4.75	5.25	Vp-p
	G-Y Output					
	LM1828		0.75	1.0	1.25	Vp-p
	LM1848		1.3	1.75	2.2	Vp-p

Note 1: Values measured in test circuit.
Note 2: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

## Typical Vector Output Diagrams



## Typical Application



Test Circuit


LM1880 No-Holds Vertical/Horizontal

## General Description

The LM1880 uses compatible Linear/I ${ }^{2}$ L technology to produce the first T.V. horizontal and vertical processing system which completely eliminates the hold controls. The heart of the system is a precision 32 times horizontal frequency VCO which is designed to use a low-cost ceramic resonator as a tuning element.

The VCO signal is divided down in the horizontal section to produce a pre-driver output which is locked to negative sync by means of an on-chip phase detector. The vertical output ramp is injection-locked by vertical sync subject to a sync window derived from the vertical countdown section. A gate pulse centered on the chroma burst is also provided.

## Features

- No frequency set-up required for horizontal or vertical
- Ceramic resonator frequency reference
- Accurate horizontal pre-driver duty cycle
- Vertical sync window referenced to horizontal
- Precise interlaced vertical output
- APC loop parameters completely adjustable
- Vertical retrace time adjustable
- Chroma burst gate output
- Internal voltage regulator
- Improved vertical lock time


## Block Diagram



Test Circuit


## Absolute Maximum Ratings

Supply Current (Pin 9)	40 mA	Sawtooth Input Voltage (Pin 1)	$5 \mathrm{Vp-p}$
Output Voltage (Pins 8, 12, 13)	12 V	Package Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.83 W
Output Current		Above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Derate Based on	
Pin 8	50 mA	$\mathrm{TJ}(\mathrm{MAX})=150^{\circ} \mathrm{C}$ and $\theta \mathrm{JA}=150^{\circ} \mathrm{C} / \mathrm{W}$	
Pin 12	15 mA	Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Pin 13	10 mA	Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Sync. Input Voltage (Pins 10, 14)	$5 \mathrm{Vp-p}$	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Test circuit, all SW normally pos. $1, T_{A}=25^{\circ} \mathrm{C}$ )

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Regulated Voltage (Pin 9)		8.2	8.7	9.2	V
Supply Current (Pin 9)	SW 7 Pos. 2	12	18	24	mA
VCO Reference Voltage (Pin 3)			5.1		$v$
VCO Control Current (Pin 2)	$V 2=5 \mathrm{~V}$		0.25	1.0	$\mu \mathrm{A}$
Horizontal Phase Detector Sink Current (Pin 2)	$\begin{aligned} & \text { SW 1, SW } 4 \text { Pos. } 2, \mathrm{~V} 1=3.9 \mathrm{~V}, \\ & \because \mathrm{v} 2-5 \mathrm{v} \end{aligned}$	0.3	05		mA
Horizontal Phase Detector Source Current (Pin 2)	SW 1, SW 4 Pos. 2, V1 = 1.9V, $V 2=5 \mathrm{~V}$	0.3	0.5		mA
Horizontal Output Leakage (Pin 8, OFF Condition)	Change SW 3 to Pos. 2 with Pin 8 High			150	$\mu \mathrm{A}$
Horizontal Output Saturation Voltage (Pin 8, ON Condition)	Change SW 3 to Pos. 2 with Pin 8 Low		0.15	0.4	V
Vertical Output Saturation Voltage (Pin 12)	SW 3, SW 5 Pos. 2		0.25	0.5	v
Burst Gate Saturation Voltage (Pin 13)	SW 1, SW 4 Pos. 2, V1 $=1.9 \mathrm{~V}$		0.15	0.4	V
Horizontal Oscillator Free-Running Frequency (Pin 8), (Note 1)	SW 2 Pos. 2	15,550	15,750	15,950	Hz
Horizontal Oscillator Maximum Frequency (Pin 8)	$V 2=7 \mathrm{~V}$	16,300			Hz
Horizontal Oscillator Minimum Frequency (Pin 8)	$\mathrm{V} 2=3 \mathrm{~V}$			15,150	Hz
Vertical Minimum Lock Frequency (Pin 12)	$\mathrm{f}_{\mathrm{H}}=15,734 \mathrm{~Hz}$			55.0	Hz
Vertical Maximum Lock Frequency (Pin 12)	SW 6 Pos. 2, $\mathrm{fH}=15,734 \mathrm{~Hz}$	61.7			Hz

Note 1: Assumes ceramic resonator $\mathrm{f}_{\mathrm{R}}=503.48 \mathrm{kHz}$.
Design Parameters (Application Circuit)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Horizontal Pull-In Range			$\pm 600$	Hz	
Horizontal Static Phase Error (S.P.E.)	$\Delta f \mathrm{H}= \pm 600 \mathrm{~Hz}$		$\pm 0.5$	$\mu \mathrm{~s}$	
Horizontal Output Duty Cycle		50	$\%$		
Horizontal Oscillator Supply Sensitivity		-1	$\mathrm{~Hz} / \mathrm{V}$		
Vertical Output Retrace Time			$\mu \mathrm{s}$		
Burst Gate Width	Flyback Width $=12 \mu \mathrm{~s}$	5 s			

Typical Performance Characteristics

Horizontal Free-Running Frequency vs Temperature


Typical Application

*MuRata Corporation of America, Part No. FX-1028, Vernitron Corp. VTFA3-01-503.5
Printed Circuit Layout
(COMPONENT SIDE)


External Components (Application Circuit)

Component	Typical   Value	Comments
$\mathrm{R}_{\mathrm{g} 1}$	30k	Burst Gate series resistor.
$\mathrm{R}_{\mathrm{g} 2}$	1.5k	Burst Gate shunt resistor, works with $\mathrm{R}_{\mathrm{g} 1}$ to divide flyback pulse and set Burst Gate amplitude.
		$V_{B . G . p k}=\frac{R_{g 2}}{R_{g} 1+R_{g 2}} \quad V_{F L Y B A C K}$
$\mathrm{R}_{\mathrm{f}}$	3.9 k	Flyback Sawtooth integrator resistor, works with $\mathrm{C}_{\mathrm{f}}$ to integrate flyback pulse to $1 \mathrm{Vp}-\mathrm{p}$ $\min$ sawtooth. For $\mathrm{C}_{f}=$ $0.1 \mu \mathrm{~F}$,
		$V_{\text {SAW }} \simeq \underline{85 \mathrm{~V}_{\text {FLYBACK }}}$
		SAW p-p $\mathrm{R}_{\mathrm{f}}$
$\mathrm{C}_{f}$	$0.1 \mu \mathrm{~F}$	Flyback Sawtooth integrator vañāitivi.
C1	$0.1 \mu \mathrm{~F}$	Sawtooth input coupling capacitor.
$\mathrm{R}_{\mathrm{h}}$	7.5k	Horizontal Sync input coupling resistor.
		$\mathrm{R}_{\mathrm{h}}=0.4 \times V_{\text {SYNC }} \mathrm{p}$-p $\mathrm{k} \Omega$
$C_{h}$	510 pF	Horizontal Sync input coupling capacitor, blocks vertical sync components.
$\mathrm{R}_{V}$	16k	Vertical sync input integrator resistor.
$\mathrm{C}_{\text {v }}$	$0.05 \mu \mathrm{~F}$	Vertical sync input integrator capacitor, works with $R_{V}$ to integrate composite sync to $-2 \mathrm{Vp}-\mathrm{p}$ min pulse. For N.T.S.C. sync, Vert. sync $\simeq$ $1.4 \times 10^{-4}$
		$\mathrm{R}_{\mathrm{V}} \mathrm{C}_{\mathrm{v}}$ (Comp. sync)
C10	$0.1 \mu \mathrm{~F}$	Vertical sync coupling capacitor.
$\mathrm{R}_{\mathrm{t}}$	16k	Vertical Retrace timing resistor.


Component	Typical Value	Comments
$C_{t}$	$0.05 \mu \mathrm{~F}$	Vertical Retrace timing capacitor, works with $R_{t}$ to determine ON time of vertical ramp switch at pin 12. tV. RETRACE $\simeq 0.75 R_{t} C_{t} \mathrm{sec}$.
$\mathrm{R}_{0}$	2k	Oscillator phase shift resistor.
$\mathrm{C}_{0}$	130 pF	Works with $\mathrm{R}_{\mathrm{O}}$ to produce $45^{\circ}$ lag required by VCO phas酪hifter.
$\mathrm{R}_{\text {S }}$	$510 \Omega$	Defines Q of ceramic resonator tuned network, which affects УCO control curve.
$C_{L}$	1000 pF	Completes VCO loop with phase lag, required to sustain oscillation and suppress resonator overtones.
$\mathrm{Rr}_{r}$	$510 \Omega$	Series resistor to device supply pin $\bar{y}$. iviust suppiy suïīcieni current to activate internal shunt regulator.
		$\mathrm{R}_{\mathrm{r}}=\frac{\mathrm{V}_{(\text {unreg })}-9 \mathrm{~V}}{0.03} \Omega$
C9	$0.1 \mu \mathrm{~F}$	Device supply decoupling capacitor.
$\mathrm{R}_{\mathrm{d}}$	1.2k	Horizontal pre-driver output resistor, supplies base current to Horizontal driver transistor when pin 8 is OFF.
C2	$0.01 \mu \mathrm{~F}$	Horizontal APC loop filter high frequency roll-off. C2 also prevents signal on loop filter from saturating phase detector output.
$\mathrm{R}_{\mathrm{X}}$	3.3k	$\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}$ and $\mathrm{C}_{\mathrm{c}}$ form the
$\mathrm{R}_{\mathrm{y}}$	100k	Horizontal APC loop filter.
$\mathrm{C}_{\mathrm{c}}$	$1 \mu \mathrm{~F}$	See Applications Information to modify loop parameters.

## Applications Information

## I. VERTICAL COUNTER

The vertical counter in the LM1880 replaces the conventional vertical oscillator in a television reciever. The vertical lock-in range is governed by the width of the vertical sync window, which opens from count 510 to count 542 following a vertical reset. The vertical lock frequencies are referenced to twice horizontal frequency to insure interlaced vertical and horizontal outputs. For fHORIZ $=15,734 \mathrm{~Hz}$, the vertical lock frequencies are calculated as follows:

$$
\begin{aligned}
& \text { fV. HIGH }=\frac{2(15,734)}{510}=61.7 \mathrm{~Hz} \\
& \text { fV. LOW }=\frac{2(15,734)}{542}=58 \mathrm{~Hz}
\end{aligned}
$$

In virtually all standard and non-standard sync signals the vertical sync is also derived from the horizontal, so that as long as the horizontal sync frequency is within the pull-in range of the LM1880 (approximately $\pm 600 \mathrm{~Hz}$ ), the vertical lock window will remain centered on the vertical sync. Thus, the effective vertical lock range is increased by the horizontal APC:

$$
\begin{aligned}
& \text { fV. HIGH }(E F F)=\frac{2(15,734+600)}{510}=64 \mathrm{~Hz} \\
& \text { fV. LOW }(E F F)=\frac{2(15,734-600)}{542}=55.8 \mathrm{~Hz} .
\end{aligned}
$$

The time required for the vertical to "roll-thru" and lock is a function of the difference frequency and relative phase of fV. LOW and the vertical sync:

$$
{ }^{\text {t ROLL-THRU (AVG) }}=\frac{1}{2} \frac{1}{60-58 \mathrm{~Hz}}=250 \mathrm{~ms}
$$

## II. HORIZONTAL APC LOOP PARAMETERS

The following information is given to provide a basis for modifying the filter to achieve the desired loop performance. Although the VCO is actually running at 503.5 kHz , for convenience all parameters are referenced to the actual horizontal output frequency at pin 8.

## DC Loop Gain

The DC loop gain is the product of the phase detector conversion gain $(\mu)$ and the VCO sensitivity ( $\beta$ ). For the typical application circuit,

$$
\begin{aligned}
& \mu=1.6 \times 10^{-4} \mathrm{R}_{\mathrm{y}} \mathrm{~V} / \mathrm{Rad} \\
& \text { and } \\
& \beta=800 \mathrm{~Hz} / \mathrm{V} \\
& \mu \beta=0.13 \mathrm{R}_{\mathrm{y}} \mathrm{~Hz} / \mathrm{Rad}^{2} \\
& \text { for } \mathrm{R}_{\mathrm{y}}=100 \mathrm{k} \Omega, \mu \beta=13,000 \mathrm{~Hz} / \mathrm{Rad}
\end{aligned}
$$

In order to determine static phase error (S.P.E.), the loop gain may be expressed in $\mathrm{Hz} / \mu \mathrm{s}$ :

$$
\mu \beta=\frac{13,000 \times 2 \pi}{63.5 \mu \mathrm{~s}}=1,286 \mathrm{~Hz} / \mu \mathrm{s}
$$

For comparison, this value is nearly double the loop gain of the LM1391. The increased loop gain (reduced phase error) guarantees accurate centering of the burst gate pulse on pin 13 of the LM1880.

The following equations cover $A C$ loop parameters of interest:

## Noise Bandwidth

$$
f_{N N} \cong \frac{1+2 \pi\left(R_{x}^{2} / R_{y}\right) C_{c} \mu \beta}{4 R_{x} C_{c}} H z
$$

## Damping Factor

$$
\mathrm{K} \cong \frac{\pi}{2} \frac{\mathrm{R}_{\mathrm{x}}^{2}}{\mathrm{R}_{\mathrm{y}}} \mathrm{C}_{\mathrm{c}} \mu \beta
$$

## Pull-In Range

The pull-in and hold-in range of the LM1880 horizontal APC loop are directly determined by the VCO control range. Thus the loop would be capable of pulling the VCO further than $\pm 600 \mathrm{~Hz}$, but it has well defined frequency limits which prevent it from doing so. As a result of these built-in "stops", the loop parameters may be varied over a large range without affecting pull-in performance.

The VCO control range, and hence pull-in, can be modified to some extent by varying the Q of the ceramic resonator with resistor $\mathrm{R}_{\mathrm{s}}$ :

```
Incr. R}\mp@subsup{\textrm{R}}{\textrm{S}}{}->\mathrm{ Incr. Pull-in
Reduce }\mp@subsup{\textrm{R}}{\textrm{S}}{}->\mathrm{ Reduce Pull-in
```

However, because of the non-linearity of the resonator, $R_{S}$ has a much greater effect on the negative side pull-in than the positive side.

## III. LAYOUT NOTES

Since the LM1880 uses a counter to derive the horizontal frequency, care must be taken to prevent extraneous signals from the horizontal driver and output stages from feeding back to the VCO where they could cause false counts and consequent severe phase jitter. The following guidelines will prevent this problem from occurring:
A. Keep the VCO feedback capacitor, $C_{L}$, as close as possible to device pins 6 and 7.
B. Limit the lead length on the horizontal output pin 8 . If a long line is required to the driver base, isolate it with a small series resistor (200-300 ) next to pin 8.

Schematic Diagram


## Circuit Description

(See Schematic Diagram)

The LM1880 uses a phase-shift type voltage-controlled oscillator (VCO). The gain for the oscillator loop is derived from differential amplifiers Q30, Q31 and Q22, Q23. The collector current in Q23 is phase-shifted $45^{\circ}$ at pin 5 and summed with a portion of the current in Q22, controlled by differential amplifier Q20, Q21. The resulting output phase at pin 4 coupled through the ceramic resonator to pin 6 defines the oscillation frequency. Differential amplifier Q16, Q17, controlled by the pin 2 voltage, determines the current split in $\mathbf{Q} 20$ and Q21 and, consequently, the pin 4 phase and oscillation frequency. The multiple-emitter degeneration in Q17 compensates the resonator phase characteristic to produce a nearly linear VCO control curve.

The 503.5 kHz output of the VCO is taken from squaring amplifier Q32, Q33 through Q34 and Q35 to the $1^{2}$ L $\div 16$ pre-scaler $\mathrm{TO}-\mathrm{T} 3$. The 2 fH output is then divided again in T4 to produce the desired horizontal frequency at gate G8. The horizontal pre-driver section consists of Q3, Q4 and Q5, which produce an open-collector output square-wave at pin 8.

The $2 \mathrm{f}_{\mathrm{H}}$ pre-scaler output also drives a data flip-flop which resets the vertical counter F1-F9. The data input of the reset flip-flop is controlled by the vertical sync from pin 10 subject to gates G3 and G5. After $5102 \mathrm{f}_{\mathrm{H}}$ cycles following reset, vertical sync from Q1 and G4 is enabled by G3. A sync pulse received after this time initiates reset on the next 2 fH cycle. If no pulse is received after 542 cycles, G5 will initiate the reset process. A reset pulse from the counter is taken via G9 to the retrace timing section. SCR O8, O9 is normally

ON, holding a capacitor on pin 11 near ground. During this time Q11 and Q12 are OFF, allowing the vertical ramp to form on pin 12. When the reset pulse is received, Q7 turns Q8, Q9 OFF and Q11, Q12 ON, discharging the vertical ramp for the duration of the retrace time. Retrace is completed when the pin 11 capacitor charges to the $\mathbf{Q 8}$ threshold, and the SCR again latches.

The remaining sections of the device are the horizontal phase detector and burst gate former. The balanced phase detector consists of comparator Q43, Q44 and current source Q39 gated by differential amplifier Q41, Q42. Negative horizontal sync pulses on pin 14 enable the comparator, and the flyback sawtooth on pin 1 switches the current from Q43 to Q44 based on the relative phase between the sync and sawtooth. 044 takes a $(-)$ current pulse from pin 2, while the pulse in Q43 is turned around in the current mirror Q45, Q46 and Q 47 to produce a $(+$ ) current pulse at pin 2 . These currents are then integrated by the external loop filter to control the VCO.

The flyback sawtooth also switches differential amplifier Q49, 050, which activates the burst gate. During the first half of the flyback pulse 049 will be ON, which turns Q51 and O52 ON and clamps pin 13 near ground. The sawtooth switches Q49, O51 and O52 OFF at the peak of the flyback, releasing pin 13. In this manner, the second half of a flyback pulse fed to pin 13 can be used as a burst gate.

Q53, Q54 and Q55 form the active shunt regulator which holds the supply pin 9 at 8.7 V typ.

National
TV Circuits
Semiconductor

## LM1886 TV Video Matrix D to A

## General Description

The LM1886 is a TV video matrix D to A converter which encodes luminance and color difference signals from 3-bit red, green and blue inputs. The luminance output is encoded from the NTSC equation $Y=0.3 R+$ $0.59 \mathrm{G}+0.11 \mathrm{~B}$ and the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ outputs are weighted to prevent over-modulation. A built-in R-Y and burst gate polarity switch allow European PAL compatible signals to be encoded. All output levels including an RF O Carrier Bias Voltage have been referenced to 5 V for direct connection to the LM1889 TV video modu-
 a suitable sync generator, 3-bit $R, G$ and $B$ information may be encoded to both composite video and RF channel carrier.

## Features

- Complete digital to RF encoding with LM1889
- 1-pin PAL/NTSC mode select
- True NTSC matrix
- 8 levels of grey scale
- Allows wide range of colorimetry
- Low power TTL inputs
- Wideband luminance output
- Weighted R-Y, B-Y outputs


## Connection Diagram



FIGURE 1
Order Number LM1886N
See NS Package N20A

## Test Circuits



FIGURE 2a. 6-Color Input Connection


FIGURE 2b. 8-Level Grey Scale Input Connection

## Absolute Maximum Ratings

Supply Voltage

Pin 5
Pin 20
Input Voltage (Pins 1, 8, 9, 11-19)
Pin 2 Voltage Relative to $\operatorname{Pin} 20$
Output Current
Power Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 seconds)

15 V
6 V
$-0.5 \mathrm{~V},+12 \mathrm{~V}$
0.8 V

5 mA
1.67 W
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 2, Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
5 V Supply Current (Pin 20)	$\overline{\text { BLANK }}=0.8 \mathrm{~V}$	7	11	16	mA
12V Supply Current (Pin 5)	$\overline{\text { BLANK }}=0.8 \mathrm{~V}$	9	13	17	mA
Logic " 1 " Input Current (Pins 1, 2, 8, 9, 11-19)	Input Voltage $=5.0 \mathrm{~V}$		0	10	$\mu \mathrm{A}$
Logic "0" Input Current (Pins 1, 2, 8, 9, 11-19)	Input Voltage $=0.3 \mathrm{~V}$		-0.01	-0.18	mA
Output Offsets	$\mathrm{R}, \mathrm{G}, \mathrm{B}=0.8 \mathrm{~V}$				
$\Delta V Y$			0	$\pm 50$	mV
$\Delta V_{R-Y}$			0	$\pm 50$	mV
$\Delta V_{\text {B }} \cdot \mathrm{Y}$			0	$\pm 50$	mV
R-Y Full Scale, ( $\Delta V_{\text {R }} \cdot Y$ ) FS	$R=2 \mathrm{~V} ; \mathrm{G}, \mathrm{B}=0.8 \mathrm{~V}$	1.0	1.23	1.4	V
B-Y Full Scale, $\left(\Delta V_{B} \cdot Y\right)$ FS	$B=2 \mathrm{~V} ; \mathrm{R}, \mathrm{G}=0.8 \mathrm{~V}$	0.7	0.87	1.0	V
Green Full Scale	$\mathrm{G}=2 \mathrm{~V}: \mathrm{R}, \mathrm{B}=0.8 \mathrm{~V}$				
$\Delta V_{R-Y}$		-0.85	-1.03	-1.2	V
$\Delta V_{B-Y}$		-0.45	-0.58	-0.7	V
Y Full Scale	$R, G, B=2 V$				
$(\Delta V Y) F S$		1.6	1.75	1.9	$v$
$\Delta V_{R-Y}$			0	$\pm 100$	$m \mathrm{~V}$
$\Delta V_{\text {B-Y }}$			0	$\pm 75$	$m \mathrm{~V}$
O Carrier Reference, $\Delta \mathrm{V}_{\mathrm{O}}$		2.0	2.2	2.5	$\checkmark$
Blanking Level, $\Delta V_{Y}$	$\overline{\text { BLANK }}=0.8 \mathrm{~V}$		0	$\pm 50$	mV
Sync Level, $\Delta V_{Y}$	$\overline{\text { BLANK } ; ~ \overline{S Y N C ~}}=0.8 \mathrm{~V}$	-0.67	-0.77	-0.87	V
NTSC Burst, $\Delta V_{B \cdot Y}$	$\overline{\text { BLANK, }} \overline{\text { BURST GATE }}=0.8 \mathrm{~V}$	-0.26	-0.35	-0.46	V
PAL Burst					
$\Delta V_{R}-Y$	SW in PAL Position;	-0.2	-0.25	-0.32	V
$\Delta V_{B-Y}$	BLANK, BURST GATE, $\mathrm{H} / 2=0.8 \mathrm{~V}$	-0.2	-0.25	-0.32	V
PAL Inversion Ratio $\left(\Delta V_{R \cdot Y} \cdot Y\right) P A L /\left(\Delta V_{R \cdot} \cdot Y\right) F S$	$R=2 V ; G, B, H / 2=0.8 V$   SW to PAL Position	-0.9	-1.0	$-1.1$	
Y Linearity Error	Figure $2 b$ Input Connection		$\pm 1$	$\pm 6$	'\%FS
Y Switching Times	15 kHz Square Wave Switching R, G, B in Parallel				
Rise Time, $\mathrm{t}_{\mathrm{R}}$			35		ns
Fall Time, $\mathrm{t} F$		-	30		ns
Settling Time $\pm 1$ LSB			50		ns

[^65]Note 2: Unless otherwise noted, $\overline{B L A N K}, \overline{S Y N C}, \overline{B U R S T} \overline{G A T E}=2 V$ and $S W$ is in NTSC position. All outputs are referenced to the $+5 V$ supply as shown in Figure 2a.

Typical Input and Output Waveforms


## Application Notes (Refer to Figure 3)

$\overline{\text { SYNC, }} \overline{\mathrm{BLANK}}$, and $\overline{\mathrm{BURST} G A T E}$ may be obtained from a sync generator IC similar to MM5320 or MM5321. For PAL operation, the $\mathrm{H} / 2$ square wave may be obtained by a $\div 2$ from horizontal sync.

All inputs are low-power TTL compatible. Because of the very low typical input currents, the color inputs may be paralleled in various combinations. For simple color requirements, the Figure 2a input connection may be used to produce the 6 primary and complementary colors listed in Table I, along with black and white. To add complex colors such as those at the bottom of Table I, all 9 input bits may be required separately. When choosing input codes for other colors, always check the new color against both light and dark backgrourids.

All outputs are referenced to the +5 V supply for direct connection to the LM1889. The resistor on the luminance output pin 6 is used to sum the chroma subcarrier from the LM1889 and must be wired as tightly as possible to preserve the video bandwidth. For the addition of sound or a second RF channel, refer to the LM1889 data sheet.

TABLE I. INPUT CODE EXAMPLES FOR COMMON COLORS

	INPUT CODE		
	RED	GREEN	BLUE
COLOR	M L	M L	M L
Black	000	000	000
Dark Grey	010	010	010
Light Grey	101	101	101
White	111	111	111
$\geq$ Red	$\begin{array}{lll}1 & 1 & 1\end{array}$	000	000
. $\{$ Green	000	$\begin{array}{lll}1 & 1 & 1\end{array}$	000
a. Blue	000	000	111
d $\geq$ Cyan	000	111	111
$\stackrel{\circ}{E} \stackrel{\stackrel{\rightharpoonup}{c}}{\stackrel{\sim}{0}}$ Magenta	$\begin{array}{llll}1 & 1 & 1\end{array}$	000	111
$\bigcirc$ © (Yellow	$\begin{array}{lll}1 & 1\end{array}$	111	000
Brown	$\begin{array}{llll}0 & 1 & 1\end{array}$	011	000
Orange	$\begin{array}{llll}1 & 1\end{array}$	100	000
Flesh tone	111	110	101
Pink	111	110	110
Sky Blue	101	101	111

## Typical Application



## Circuit Description (Refer to Figure 4)

The 3 -bit red, green, and blue inputs go to identical 3 -bit current-mode digital-to-analog converters (DACs). Each DAC consists of three binary-weighted current sources controlled by diff-amp current switches. The DAC output currents are arbitrarily given a weighting factor of 0.59 , which is the green coefficient in the luminance equation. Portions of the red and blue currents are split off, so that the remaining currents combined with the green current form the luminance current $I_{Y}=0.3 I_{R}+0.59 I_{G}+0.11 I_{B} . I_{Y}$ develops the luminance voltage $\mathrm{V}_{\mathrm{Y}}$ across $\mathrm{R}_{\mathrm{O}}$ in a summing amplifier referenced to the +5 V supply. A current switch operated by pin 8 adds ( - ) sync pulses to the $Y$ output at pin 6.

The portions of red and blue currents previously split off flow through resistors $\mathrm{R}_{\mathrm{O}} / 0.29$ and $\mathrm{R}_{\mathrm{O}} / 0.48$, which are weighted to form the red and blue voltages respectively. Since the opposite ends of the 2 resistors are connected to $\mathrm{V}_{\mathrm{Y}}$, the red and blue voltages across the resistors subtract from $V_{Y}$ to develop the color difference voltages $\mathrm{V}_{\mathrm{Y}-\mathrm{R}}$ and $\mathrm{V}_{\mathrm{Y}-\mathrm{B}} \mathrm{V}_{\mathrm{Y}-\mathrm{B}}$ is coupled through a $X .56$ gain, $5 V$-referenced inverting amplifier to the B-Y output at pin 4 . VY-R feeds parallel inverting and non-inverting unity gain amplifiers which allow either polarity to be coupled to the R-Y output pin 3. Switching between the 2 amplifiers is controlled by a current switch activated by the $\mathrm{H} / 2$ pin 2. A $(-)$ burst gate pulse on pin 1 controls current switches which add the burst pulse components to the B-Y and R-Y outputs.

The requirements for PAL and NTSC encoding differ in the areas of burst gate operation and R-Y polarity, both of which are controlled via pin 2 as follows:

PAL, pin 2 fed by a half-line frequency TTL square wave-in this mode a PNP switch between pin 2 and +5 V is held off continuously, which results in equal burst pulse components on the B-Y and R-Y outputs. In addition, the $H / 2$ square wave causes the R-Y output polarity to reverse every line. (When fed to the LM1889 chroma modulator this causes the phase of the R-Y subcarrier to change $180^{\circ}$ as required in PAL.)

NTSC, pin 2 tied through an external resistor to +12 V -this turns on the PNP switch continuously, which eliminates the burst pulse on the R-Y output and increases the amplitude of the B-Y pulse. Since pin 2 is being held high, the R-Y output is locked in the positive polarity.

Blanking is activated by a low on pin 9, which de-biases the left side of the DAC diff-amps, so that $I_{R}=I_{G}=$ $I_{B}=0$ independent of the input states. When blanked, the $\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and R-Y outputs all go to +5 V . An additional amplifier produces a $\mathbf{O}$ carrier reference voltage at pin 7 which is $25 \%$ above the peak white voltage on the Y output, relative to +5 V .


## LM1889 TV Video Modulator

## General Description

The LM1889 is designed to interface audio, color difference, and luminance signals to the antenna terminals of a TV receiver. It consists of a sound subcarrier oscillator, chroma subcarrier oscillator, quadrature chroma modulators, and RF oscillators and modulators for two low-VHF channels.

The LM1889 allows video information from VTR's, games, test equipment, or similar sources to be displayed on black and white or color TV receivers. When used with the MM57100 and MM53104, a complete TV game is formed.

## Features

- dc channel switching
- 12 V to 18 V supply operation
- Excellent oscillator stability
- Low intermodulation products
- 5 Vp-p chroma reference signal
- May be used to encode composite video


## Block Diagram

Dual-In-Line Package


Order Number LM1889N
See NS Package N18A

## DC Test Circuit



## Absolute Maximum Ratings

Supply Voltage V14, V16 max
Power Dissipation Package (Note 1)
Operating Temperature Range
Storage Temperature Range
Chroma Osc Current I 17 max
(V16-V15) max
19 V dc
1390 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$10 \mathrm{~mA}_{\mathrm{dc}}$
$\pm 5 \mathrm{~V} \mathrm{dc}$
7 V
7 V
$300^{\circ} \mathrm{C}$
(V14-V10) max
(V14-V11) max
$300^{\circ} \mathrm{C}$
DC Electrical Characteristics (dc Test Circuit, All SW Normally Pos. $1, \mathrm{~V}_{\mathrm{A}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}$ )

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current, IS		20	35	45	mA
Sound Oscillator, Current Change, $\Delta \mathrm{I}_{15}$	Change $V_{A}$ From 12.5 V to 17.5V	0.3	0.6	0.9	mA
Chroma Oscillator Balance, V17		9.5	11.0	12.5	V
Chroma Modulator Balance, V13		7.0	7.4	7.8	V
R-Y Modulator Output Level, $\Delta \mathrm{V} 13$	SW 3, Pos. 2, Change SW 1 From Pos. 1 to Pos. 2	0.6	0.9	1.2	V
B-Y Modulator Output Level, 4 V 13	SW 3, Pos. 2, Change SW 2 From Pos. 1 to Pos. 2	0.6	0.9	1.2	V
Chroma Modulator Conversion Ratio, $\Delta \mathrm{V} 13 / \Delta \mathrm{V} 3$	SW 3, Pos. 2, Change SW 0   From Pos. 1 to Pos. 2. Divide $\Delta \mathrm{V} 13$ by $\Delta \mathrm{V} 3$	0.45	0.70	0.95	V/V
Ch. A Oscillator "OFF', Voltage, V8, V9	SW 4, Pos. 2	0.5	1.5	3.0	V
Ch. A Oscillator Current Level, Ig	$V_{B}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=13 \mathrm{~V}$	2.5	3.5	5	mA
Ch. B Oscillator "OFF" Voltage, V6, V7		0.5	1.5	3.0	$v$
Ch. B Oscillator Current Level, I6	$\begin{aligned} & \text { SW 4, Pos. } 2, V_{B}=12 \mathrm{~V}, \\ & V_{C}=13 \mathrm{~V} \end{aligned}$	2.5	3.5	5	mA
Ch. A Modulator Conversion Ratio, $\Delta V 11 /(V 13-V 12)$	SW 1, SW 2, SW 3, Pos. 2, $V_{B}=12 \mathrm{~V}$, Change $V_{C}$ From 13 V to 11 V For $\Delta \mathrm{V} 11$ Divide By V13-V12	0.35	0.55	0.75	V/V
Ch. B Modulator Conversion Ratio, $\Delta \mathrm{V} 10 /(\mathrm{V} 13-\mathrm{V} 12)$	All SW, Pos. 2, $\mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}$,   Change $V_{C}$ From 13 V to 11 V   Divide as Above	0.35	0.55	0.75	V/V

AC Electrical Characteristics (ac Test Circuit, $\mathrm{V}=15 \mathrm{~V}$ )

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Chroma Oscillator Output Level, V17	CLOAD $\leq 20 \mathrm{pF}$	4	5		Vp-p
Sound Carrier Oscillator Level, V15	Loaded by RC Coupling   Network   Ch. 3 RF Oscillator Level, V8, V9   Ch. Sw. Pos. 3, f $=61.25 \mathrm{MHz}$,   Use FET Probe   Ch. Sw. Pos. 4, f $=67.25 \mathrm{MHz}$,   Use FET Probe	200	350	4	Vp-p

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Design Characteristics (ac Test Circuit, $\mathrm{V}=15 \mathrm{~V}$ )

PARAMETER	TYP	UNITS	PARAMETER	TYP	UNITS
Oscillator Supply Dependence			RF Modulator		
Chroma, $\mathrm{f}_{\mathrm{O}}=3.579545 \mathrm{MHz}$		$\mathrm{Hz} / \mathrm{V}$	Conversion Gain, $\mathrm{f}=61.25 \mathrm{MHz}$,		
Sound Carrier; RF	See Curves		VOUT/(V13-V12)	10	$\mathrm{mVrms} / \mathrm{V}$
Oscillator Temperature Dependence (IC Only)			3.58 MHz Differential Gain	5	\%
Chroma	0.05	ppm/ ${ }^{\circ} \mathrm{C}$	Differential Phase	3	degrees
Sound Carrier	-15	ppm/ ${ }^{\circ} \mathrm{C}$	2.5 Vp-p Video, 87.5\% mod.		
RF	-50	ppm/ ${ }^{\circ} \mathrm{C}$	Output Harmonics Below Carrier		
Chroma Oscillator Output, Pin 17			2nd, 3rd	-12	dB
tRISE, 10-90\%	20	ns	4th and above .	-20	dB
tFALL, 90-10\%	30	ns	Input Impedances .		
Duty Cycle ( + ) Half Cycle	51	\%	Chroma Modulator, Pins 2, 4	500k//2 pF	
$(-)$ Half Cycle	49	\%	RF Modulator, Pin 12	1M//2 pF	
RF Oscillator Maximum Operating Frequency (Temperature Stability Degraded)	100	MHz	Pin 13	250k//3.5 pF	
Chroma Modulator ( $\mathrm{f}=3.58 \mathrm{MHz}$ )					
B-Y Conversion Gain V13/(V4-V3)	0.6	Vp-p/V			
R-Y Conversion Gain V13/(V2-V3)	0.6	Vp-p/V			
Gain Balance	$\pm 0.5$	dB			
Bandwidth	See Curve				

## AC Test Circuit



## Typical Performance Characteristics




## Circuit Description (Refer to Circuit Diagram)

The sound carrier oscillator is formed by differential amplifier Q3, Q4 operated with positive feedback from the pin 15 tank to the base of $Q 4$.

The chroma oscillator consists of the inverting amplifier Q16, Q17 and Darlington emitter follower Q11, Q12. An external RC and crystal network from pin 17 to pin 18 provides an additional 180 degrees phase lag back to the base of Q17 to produce oscillation at the crystal resonance frequency. (See ac test circuit).

The feedback signal from the crystal is split in a lead-lag network to pins 1 and 18, respectively, to generate the subcarrier reference signals for the chroma modulators. The R-Y modulator consists of multiplier devices Q29, Q30 and Q21-Q24, while the B-Y modulator consists of Q31, Q32 and Q25-Q28. The multiplier outputs are coupled through a balanced summing amplifier Q37, Q38 to the input of the RF modulators at pin 13. With 0 offset at the lower pairs of the multipliers, no chroma output is produced. However, when either pin 2 or pin 4 is offset relative to pin 3 a subcarrier output current of the appropriate phase is produced at pin 13.

The channel B oscillator consists of devices Q56 and Q57 cross-coupled through level-shift zener diodes Q54 and Q55. A current regulator consisting of devices Q39-Q43 is used to achieve good RF frequency stability over supply and temperature. The channel B modulator consists of multiplier devices Q58, O59 and Q50-Q53. The top quad is coupled to the channel B tank through isolating devices Q48 and Q49. A dc offset between pins 12 and 13 offsets the lower pair to produce an output RF carrier at pin 10. That carrier is then modulated by both the chroma signal at pin 13 and the video and sound carrier signals at pin 12. The channel A modulator shares pin 12 and 13 buffers Q45 and Q44 with channel $B$ and operates in an identical manner.

The current flowing through channel B oscillator diodes Q54, Q55 is turned around in Q60, Q61 and Q62 to source current for the channel B RF modulator. In the same manner, the channel A oscillator $071-074$ uses turn around $077, \mathrm{Q} 78$ and Q 79 to source the channel A modulator. One oscillator at a time may be activated by connecting its tank to supply (see ac test circuit). The corresponding modulator is then activated by its current turn-around, and the other oscillator/modulator combination remains "OFF".

## Circuit Diagram




## Applications Information

## Subcarrier Oscillator

The oscillator is a crystal-controlled design to ensure the accuracy and stability required of the subcarrier frequency for use with television receivers. Lag-lead networks (R2C2 and C1R1) define a quadrature phase relationship between pins 1 and 18 at the subcarrier frequency of 3.579545 MHz . Other frequencies can be used and where high stability is not a requirement, the crystal can be replaced with a parallel resonant L-C tank circuit-to provide a 2 MHz clock, for example. Note that since one of the chrominance modulators is internally connected to the feedback path of the oscillator, operation of the oscillator at other than the correct subcarrier frequency precludes chrominance modulation.

When an external subcarrier source is available or preferred, this can be used instead. For proper modulator operation, a subcarrier amplitude of $500 \mathrm{mVp}-\mathrm{p}$ is required at pins 1 and 18 . If the quadrature phase shift networks shown in the application circuit are retained, about 1 Vp -p subcarrier injected at the junction of C 1 and R2 is sufficient. The crystal, C4 and R3 are eliminated and pin 17 provides a 5 Vp -p signal shifted $+125^{\circ}$ from the external reference.

## Chrominance Modulation

The simplest method of chroma encoding is to define the quadrature phases provided at pins 1 and 18 as the color difference axes R-Y and B-Y. A signal at pin 2 ( $R-Y$ ) will give a chrominance subcarrier output from the modulator with a relative phase of $90^{\circ}$ compared to the subcarrier output produced by a signal at pin 4 ( $B-Y$ ). The zero signal dc level of the $R-Y$ and $B-Y$ ir,puts will determine the bias level required at pin 3 . For example, a pin 2 signal that is 1 V positive with respect to pin 3 will give 0.6 Vp -p subcarrier at a relative phase of $90^{\circ}$. If pin 2 is 1 V negative with respect to pin 3, the output is again 0.6 Vp -p, but with a relative phase of $270^{\circ}$. When a simultaneous signal exists at pin 4 , the subcarrier output level and phase will be the vector sum of the quadrature components produced by pin 2 and 4 inputs. Clearly, with the modulation axes defined as above, a negative pulse on pin 4 during the burst gate period will produce the chrominance synchronizing "burst" with a phase of $180^{\circ}$. Both color difference signals must be dc coupled to the modulators and the zero signal dc level of both must be the same and within the common-mode range of the modulators.

The $0.6 \mathrm{Vp}-\mathrm{p} / \mathrm{V}_{\mathrm{dc}}$ conversion gain of the chrominance modulators is obtained with a $2 \mathrm{k} \Omega$ resistor connected at pin 13. Larger resistor values can be used to increase the gain, but capacitance at pin 13 will reduce the bandwidth. Notice that equi-bandwidth encoding of the color difference signals is implied as both modulator outputs are internally connected and summed into the same load resistor.

## Sound Oscillator

Frequency modulation is achieved by using a 4.5 MHz
tank circuit and deviating the center frequency via a capacitor or a varactor diode. Switching a 5 pF capacitor to ground at an audio frequency rate will cause a 50 kHz deviation from 4.5 MHz . A 1 N 5447 diode biassed -4 V from pin 16 will give $\pm 20 \mathrm{kHz}$ deviation with a $1 \mathrm{Vp}-\mathrm{p}$ audio signal. The coupling network to the video modulator input and the varactor diode bias must be included when the tank circuit is tuned to center frequency.

A good level for the RF sound carrier is between $2 \%$ and $20 \%$ of the picture carrier level. For example, if the peak video signal offset of pin 12 with respect to pin 13 is 3 V , this corresponds to a 30 mVrms picture RF carrier. The source impedance at pin 12 is defined by the external $2 \mathrm{k} \Omega$ resistor and so a series network of $15 \mathrm{k} \Omega$ and 24 pF will give a sound carrier level at -32 dB to the picture carrier.

## RF Modulation

Two RF channels are available, with carrier frequencies up to 100 MHz being determined by L-C tank circuits at pins 6, 7, 8 and 9. The signal inputs (pins 12, 13) to both modulators are common, but removing the power supply from an RF oscillator tank circuit will also disable that modulator.

As with the chrominance modulators, it is the offset between the two signal input pins that determines the level of RF carrier output. Since one signal input (pin 13) is also internally connected to the chrominance modulators, the $2 \mathrm{k} \Omega$ load resistor at this point should be connected to a bias source within the common-mode input range of the video modulators. However, this bias source is independent of the chrominance modulator bias and where chrominance modulation is not used, the $2 \mathrm{k} \Omega$ resistor is eliminated and the bias source connected directly to pin 13.

To preserve the dc content of the video signal, amplitude modulation of the RF carrier is done in one direction only, with increasing video (toward peak white) decreasing the carrier level. This means the active composite video signal at pin 12 must be offset with respect to pin 13 and the sync pulse should produce the largest offset (i.e., the offset voltage of pin 12 with respect to pin 13 should have the same polarity as the sync pulses).

The largest video signal (peak white) should not be able to suppress the carrier completely, particularly if sound transmission is needed. For example, a signal with 1 V sync amplitude and 2.5 V peak white ( 3.5 Vp -p negative polarity sync) and a black level at $5 \mathrm{~V}_{\mathrm{dc}}$ will require a dc bias of 8 V on pin 13 for correct modulation. A simple way of obtaining the required offset is to bias pin 13 at $4 \times$ (sync amplitude) from the sync tip level at pin 12.

## Applications Information (Continued)

## Split Power Supplies

The LM1889 is designed to operate over a wide range of supply voltages so that much of the time it can utilize the signal source power supplies. An example of this is shown in Figure 2 where the composite video signal from a character generator is modulated onto an RF carrier for display on a conventional home TV receiver. The LM1889 is biased between the -12 V and +5 V supplies and pin 13 is put at ground. A $9.1 \mathrm{k} \Omega$ resistor from pin 12 to -12 V dc offsets the video input signal (which has sync tips at ground) to establish the proper modulation depth $-\mathrm{R} 1 / \mathrm{R} 2=\mathrm{V}_{\mathrm{IN}} / 12 \times 0.875$. This design is for monochrome transmission and features an extremely low external parts count.

## DC Clamped Inputs

Utilizing a DC clamp will make matching the LM1889 to available signal generator outputs a simple process. Figure 3 shows the LM1889 configured to accept the composite video patterns available from a Tektronix Type 144 generator that has black level at ground and negative polarity syncs. In this application, the chroma oscillator amplifier is used to provide a gain of two. The 100k pot adjusts the overall DC level of the amplified signal which determines the modulation depth of the RF output. Clamping the input requires a minimum of DC correction to obtain the correct DC output level. This allows the adjustment to be a high impedance that will have minimum effect on the amplifier closed loop gain.

## Applications Information (Continued)



FIGURE 2. Low-Cost Monochrome Modulator for Character Generator Display


FIGURE 3. DC Clamped Modulator for NTSC Pattern Generators

TV Circuits

## LM2808 Monolithic TV Sound System

## General Description

The LM2808 2 W sound IF circuit is designed for television and related applications. The circuit is comprised of 2 independent functions: a sound IF and an audio power amplifier. An improved volume control circuit is included, however, so that recovered audio is a linear function of the resistance of the control potentiometer. Audio power amplification is accomplished with circuitry similar to the popular LM380 audio power amplifier, featuring both short circuit and thermal protection.

## Features

- Minimum undistorted output LM2808-0.5W
- Linear volume control - 75 dB range
- Fixed voltage gain in audio amplifier
- Short circuit and thermal protection
$=$ Standaid dual in!ino pac! !oge

Schematic Diagrams (For power amplifier section of schematic, see next page)


## Absolute Maximum Ratings

Supply Voltage, VCC (Pin 2)	
$\quad$ LM2808	20 V
Input Current, IMAX (Pin 6)	50 mA
Input Signal Voltage (Between Pins 12 and 13)	$3 \mathrm{Vp-p}$


Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## Electrical Characteristics (See test circuit)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{P}_{\mathrm{O}}$ @ 10\% THD					
LM2808	$V_{C C}=16 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		2.6		w
	$V_{C C}=14 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		1.9		w
	$V_{C C}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		1.3		W
Feedthrough Signal (Pin 1)	$\mathrm{R} \operatorname{Pin} 7=0 \Omega$			15	mVrms
Current into Pin 6	$V \operatorname{Pin} 6=10 \mathrm{~V}$	7	10.8	15	mA
AM Rejection	$\begin{aligned} & \mathrm{V} I \mathrm{~N}=10 \mathrm{mVrms}, \\ & \Delta \mathrm{f}=25 \mathrm{kHz}, A M=30 \% \end{aligned}$	40			dB
Recovered Audio (Pin 8)		350	500		mVrms
Input Limiting Voltage at 4.5 MHz			200	400	$\mu \mathrm{V}$
Audio Power Amp Voltage Gain (Pin 16 to Pin 1)		40		60	$\mathrm{v} / \mathrm{V}$
Output Noise, Input Signal Removed (Pin 1)	R Pin $7=0 \Omega$		70	150	mVrms
Distortion (Pin 8)	$\Delta \mathrm{F}=25 \mathrm{kHz}, \mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz}$		1.2	2	\%
Distortion (Pin 1)					
LM2808	$\mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		1.2	2	\%
Input Impedance (Pin 16)		50	200		$k \Omega$
Current into Pin 2 (Zero Audio Output at Pin 1)	$V 2=24 V$	2	5	20	mA

## Schematic Diagrams (Continued)



## Typical Application and Test Circuit



Television Sound System

Connection Diagram


## Typical Performance Characteristics

Volume Control Characteristic


Allowable Device Dissipation vs Ambient Temperature


AM Rejection vs Input Signal Level


## LM3064 Television Automatic Fine Tuning General Description <br> Features

The LM3064 is a monolithic integrated circuit designed primarily for AFT (automatic fine tuning) applications. It includes a zener regulated power supply, IF amp, differential peak detector, and an AGC circuit.

The LM3064 is supplied in both the formed and straight lead 14 -lead dual-in-line package.

- Primarily intended for AFT applications
- High gain input amp ( 18 mV for rated output)
- Differential output correction voltage
- Wide operating temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Formed leads available for easy PC board design




Order Number LM3064N See NS Package N14A

Order Number LM3064N-01 See NS Package N14C

## Test Circuits



Test Circuit 1 Correction Voltage Test Circuit


DC parameter test circuit tests
Total device dissipation.
*Zener regulating voltage.

- Quiescent operating current.
*Quiescent current into pin 2

Test Circuit 2 DC Parameter Test Circuit

# Absolute Maximum Ratings <br> Power Dissipation (Note 1) 

Operating Temperature Range 715 mW
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range Power Supply Current
Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right)$


Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

## Correction Control Voltage



## Coil Winding Data

COIL DATA FOR DISCRIMINATOR WINDINGS
$\mathbf{L}_{\mathbf{1}}$ - Discriminator Primary: 3-1/6 turns; No. 20 Enamel-covered wire-close-wound, at bottom of coil form. Inductance of $\mathrm{L}_{\mathbf{1}}=0.165 \mu \mathrm{H} ; \mathrm{Q}_{\mathrm{o}}=120$ at $f_{0}=45.75 \mathrm{MHz}$.
Start winding at Terminal No. 6; finish at Terminal No. 1. See Notes below.
$\mathbf{L}_{\mathbf{2}}$ - Tertiary Windings: 2-1/6 turns; No. 20 Enamel-covered wire-close-wound over bottom end of $L_{1}$. Start winding at Terminal No. 3; finish at Terminal No. 4. See Notes below.
$\mathbf{L}_{\mathbf{3}}$ - Discriminator Secondary: 3-1/2 turns; center-tapped, space wound at bottom of coil form. Inductance of $\mathrm{L}_{3}=0.180 \mu \mathrm{H} ; \mathrm{Q}_{\mathrm{o}}=150$ at $\mathrm{f}_{\mathrm{o}}=$ 45.75 MHz .

Start winding at Terminal No. 2; finish at Terminal No. 5, connect center tap to Terminal No. 7. See Notes.


Note 1: Coil Forms; Cylindrical; $-0.30^{\prime \prime}$ dia. max.
Note 2: Tuning Core: $0.250^{\prime \prime}$ dia. $\times 0.37^{\prime \prime}$ length. Material: Carbinal J or equivalent.
Note 3: Coil Form Base: See drawing below.
Note 4: End of coil nearest terminal board to be designated the winding start end.


## TBA440C Monolithic Video IF Amplifier

## General Description

The TBA440C is a monolithic video IF amplifier for color and monochrome television receivers.

The circuit includes three IF amplifier stages, a balanced videc ! 5 detecter and a gated $\Delta$ Se soctinn for the IF amplifier and PNP tuner.

## Features

- High gain-high stability
- Minimal noise increase, incurred by use of AGC
- Minimum RF breakthrough to video outputs
- Fast AGC action-gating largely independent of pulse shape and amplitude
- Very low intermodulation products
- Positive and negative video signals are available from low impedance outputs
- Integrated temperature compensating circuit


## Connection Diagram

Dual-In-Line Package


Order Number TBA440C See NS Package N16A

Order Number TBA440CQ See NS Package N16C

## Test Circuit



## Absolute Maximum Ratings

Supply Voltage
15 V
Current Into Pin 14
Power Dissipation
Maximum Resistance Between Pins 8 and 9
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
15 V
50 mA
700 mW
$20 \Omega$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

50 mA
0 mW
$20 \Omega$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=13 \mathrm{~V}, 1_{14}=40 \mathrm{~mA}\right.$, unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
113	Current Consumption	$\mathrm{V} 13=15 \mathrm{~V}$	14.5	17.5	20.5	mA
V14	Internal Supply Voltage	$\mathrm{I}_{14}=40 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=0$	5.5	6.0	6.8	V
V11	DC Voltage at Output	$V_{\text {IN }}=0$	5.5	7	8.5	V
V12	DC Voltage at Output		1.7	3	4.3	V
$\mathrm{I}_{5}$	Control Current for Tuner AGC	( 10 dB After Beginning of the Tuner $\mathrm{AGC}, \mathrm{V} 5 \geq 2 \mathrm{~V}$ )	3			mA
V4	IF Control Voltage for GMAX		0		0.5	V
V4	IF Control Voltage for GMIN		2.5			V
V7	Voltage for AGC Gating Input		-5		-2	$V$
R10-11	Resistance for Output Voltage	$\mathrm{V} 11=3 \mathrm{Vp} \cdot \mathrm{p}$	3	4	10	k $\Omega$
$111 . l_{12}$	Available Output Current to Ground				5	mA
111.112	Available Output Current to V $\mathrm{CC}+$		-1			mA
Z1-16	Input Impedance at GMAX			1.8/2		$\mathrm{k} \Omega / \mathrm{pF}$
Z1-16	Input Impedance at GMIN			1.9/0		$\mathrm{k} \Omega / \mathrm{pF}$
VIN	Input Voltage	$\mathrm{V} 11=2 \mathrm{Vp-p},($ Note 1$)$		100		$\mu \mathrm{V}$
VIN	Input Voltage	$\mathrm{V} 11=3 \mathrm{Vp-p},($ Note 1)		150		$\mu \mathrm{V}$
BVIDEO	Video Bandwidth			9		MHz
GV	AGC Range		50	55		dB
	Sound/Chroma Intermodulation Products	(Note 2)	-40			dB

Note 1: RMS of sync tip voltage, see test circuit.
Note 2: Sound subcarrier-24 dB Color subcarrier-2 dB

## TBA510 Chrominance Combination

## General Description

The TBA510 is an integrated chrominance amplifier circuit for color TV receivers incorporating a variable gain ACC circuit, a dc control for chroma saturation
which can be ganged to the receiver contrast control, chroma blanking and burst gating functions, a burst output stage, a color killer and a PAL delay line driver.

## Connection Diagram



Dual-In-Line Package, Order Number TBA510 See NS Package N16A

Quad-In-Line Package, Order Number TBA5100 See NS Package N16C

## Typical Application



Absolute Maximum Ratings

Power Dissipation, $\left(T_{A}=60^{\circ} \mathrm{C}\right)$
550 mW
V1-16
13.2 V

V13-16
$-5 \mathrm{~V}$
V14-16 -5V
V8-16 . +20V
V11-16
$+20 \mathrm{~V}$
$I_{8}=-I_{9}$
20 mA
$I_{11}=-I_{12}$
Operating Temperature Range 20 mA

Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
550 mW
13.2 V
-5 V
-5 V
+20 V
+20 V
20 mA
20 mA
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics ( $\mathrm{V} 1-16=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS


CHROMINANCE SIGNAL (FED IN VIA 1 nF )
\begin{tabular}{ll\|l
\hline
\end{tabular}
V4-16
Input Voltage Range
Z4-16 i
Input Impedance

BURST SIGNAL OUTPUT

V12-16	DC Voltage			7.7		V
V12-16	Output Signal					
I11			1		Vp-p	
			4		mA	

## CHROMINANCE SIGNAL OUTPUT (BURST BLANKED INTERNALLY)



Electrical Characteristics (Continued) $\left(\mathrm{V} 1-16=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
BURST GATE PULSE						
V13-16 Switching Level   \|Z13-16	Input Impedance			$\begin{gathered} -2.2 \\ 4 \end{gathered}$		$\begin{gathered} v \\ k \Omega \end{gathered}$
COLOR KILLER						
V5-16 Input Voltage For:   Color "ON"   Color "OFF"   Signal Suppression at Color "OFF"   \|Z5-16	Input Impedance		$2.3$   50	50	1.9	$V$ $V$ $d B$ $k \Omega$

Note 1: The phase difference between the chroma and burst outputs at nominal saturation is less than $5^{\circ}$.
Note 2: Phase shift of chroma output signal over saturation control range +6 to -10 dB is less than $5^{\circ}$.

## Pin Function Description

## 1. Positive 12 V supply.

2. ACC control potential input. The potential required at pin 2 for maximum gain is about 2.5 V ; gain reduction occurs when this potential is reduced, $\mathrm{Z}_{\mathrm{IN}}>50 \mathrm{k} \Omega$.
3. ACC gain adjustment point. The internal ACC circuit consists of a long-tailed pair system. The "cold" side of the pair is internally established at a dc potential of 2.5 V and is brought out on pin 3. This enables a decoupling capacitor to be connected. A very high loop gain in the ACC system is possible but as this is not necessarily desirable, because of stability and ripple considerations, a resistor of a suitable value can be connected between pins 2 and 3 to reduce the control sensitivity to any desired level.
4. Chroma input signal. The input voltage range is 15 to $300 \mathrm{mVp}-\mathrm{p}(26 \mathrm{~dB})$ with a color bar signal.
5. Color killer switching input. The input impedance is greater than $50 \mathrm{k} \Omega$. Color "ON" 2.3 V ; color "OFF" 1.9 V . The chroma signal suppression when killed is greater than 50 dB .
6. Emitter decoupling network. The series network decouples an emitter of an amplifier stage. The value of resistance influences the gain of both the chroma channel and the burst channel.
7. Screen. This pin must be connected to pin 10 and taken via a direct path to earth. The function of this is to minimize crosstalk between burst and chroma channels.
8. Delay line driver (collector). Supplies the chroma signal drive to the delay line driver transformer, the cold end of which is connected to +12 V . The maximum permitted voltage excursion at this pin is to 20 V peak. Maximum ac signal current swing, 12 mAp -p.
9. Delay line driver (emitter). Supplies the chroma to the network which provides the non-delayed signal to the delay line output transformer. The emitter is established internally at a potential of $6.8 \pm 1 \mathrm{~V}$ and the external
network, which must incorporate a resistive dc path to earth, must not demand more than 20 mA peak current.

## 10. Screen. Connect to pin 7 and then to earth.

11. Color burst output (collector). If a low impedance color burst is required (from the emitter of the color burst output, pin 12) pin 11 will be connected to the +12 V supply. The maximum voltage and current excursions permitted on pin 11 are 20 V peak and 20 mA peak.
12. Color burst output (emitter). An external load resistor of $2 \mathrm{k} \Omega$ is required, connected to earth, and a dc potential of 7.7 V is established on pin 11 due to the internal circuitry. The burst output voltage is $1 \mathrm{Vp}-\mathrm{p}$ $\pm 1 \mathrm{~dB}$ over the chroma input signal range of amplitudes.
13. Burst gate gating pulse. A pulse derived from the horizontal flyback pulse can be used as a source of gating waveform. A negative-going pulse of not greater than 5 V amplitude is necessary, the input impedance is $4 \mathrm{k} \Omega$ and the switching is about -2.2 V .
14. Chroma blanking pulse input. A negative-going horizontal flyback pulse can be used here. Its amplitude should not exceed 5 V . The input impedance at this pin is $2 \mathrm{k} \Omega$ and the switching level is about -1.0 V . This pulse is used to blank the burst output from the chroma channel.
15. Chroma saturation control. The dc control voltage range required is from $1.5-4.5 \mathrm{~V}$ (highest gain at -4.5 V ). The input impedance is greater than 50 k and a control range of from +6 to -30 dB is given.

## 16. Negative supply or earth.

## PERFORMANCE COMMENTS

(a) The phase difference between the chroma and burst outputs at nominal saturation is less than $5^{\circ}$.
(b) Phase shift of chroma output signal over saturation control range +6 to -10 dB is less than $5^{\circ}$.

Schematic Diagram


## TBA530 RGB Matrix Preamplifier

## General Description

The TBA530 is an integrated circuit for color TV receivers incorporating a matrix preamplifier for R-G-B cathode or grid drive of the picture tube without clamping circuits.

It has been designed to be driven from the TBA990 or TBA520 synchronous demodulator circuits and exhibits excellent channel matching and stability.

## Connection Diagram



## Typical Application



Note 1: DC output voltages R, G and B are typically 140 V in this circuit.
Note 2: The voltage gain between pins 2, 3, 4 and collectors (BF336) is typically 100.
Note 3: The normal bias voltage on pins 1, 11, 14 is 8 V .
Note 4: Pin 7 requires a 4.7 nF decoupling capacitor.
Note 5: DC bias level shift, provided by internal zeners between pins 1-16, 14-13 and 11-10, requires 10 nF bypass capacitors for H.F.

## Absolute Maximum Ratings

V8-6
13.2 V
10 mA
50 mA
400 mW
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
13.2 V
$I_{1}, I_{11}, I_{14}$
$I_{10}, I_{13}, I_{16}$
Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$ )
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

10 mA
50 mA
400 mW
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

## Electrical Characteristics

Measuring Conditions: Black Level: $\mathrm{V}_{\mathrm{R}-\mathrm{Y}}=\mathrm{V}_{\mathrm{G}-\mathrm{Y}}=\mathrm{V}_{\mathrm{B}-\mathrm{Y}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=1.5 \mathrm{~V}, \mathrm{~V} 8-6=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Ratio of Gain of Luminance   Amplifier to Color Amplifiers	As Measured in Application Circuit	0.9		1.1	
R2-6	Input Resistance of Color	1 kHz		60		$\mathrm{k} \Omega$
R3-6	Difference Amplifiers			60		$\mathrm{k} \Omega$
R4:6				60		$\mathrm{k} \Omega$
C2-6	Input Capacitance of Color	1 MHz		3		pF
C3-6	Difference Amplifiers			3		pF
C4-6				3		pF
R5-6	Input Resistance of Luminance Amplifier	1 kHz		20		$k \Omega$
C5-6	Input Capacitance of Luminance Amplifier	1 MHz		10		pF
B	Bandwidth of all Channels	3 dB		6		MHz
18	Total Current Drain			30		mA
17	Bias Current			2.5		mA

## Schematic Diagram



## Pin Function Description

The function is quoted against the corresponding pin number.

1. Output load resistor, blue signal. (Also pins 11 and 14 for red and green signals respectively.) Resistors $(47 \mathrm{k} \Omega, 1 \mathrm{~W}$ ) connected to +200 V provide the high value loads for the internal amplifying stages. The nominal operating potential on these pins is defined by the IC and dc feedback and is approximately +8 V . The maximum current which can be allowed at each of these pins is 10 mA .
2. -(B-Y) input signal. This signal is fed via a low-pass filter from the TBA520 demodulator IC (pin 7) having a dc level of about +7.5 V . The input resistance for this pin is typically $60 \mathrm{k} \Omega$ with an input capacitance of less than 5 pF (similarly for pins 3 and 4).
3. $-(\mathrm{G}-\mathrm{Y})$ input signal. The dc black level of this signal is about +7.5 V . (See pin 2.)
4. $-(R-Y)$ input signal. The dc black level of this signal is about +7.5 V . (See pin 2.)
5. Luminance signal input. The dc level on this pin for picture black is +1.6 V . The required signal amplitude is 1 V black-to-white with negative-going syncs (or blanking) for cathode drive as shown. The input resistance at this pin is $20 \mathrm{k} \Omega$ approximately with a capacitance of less than 15 pF .

## 6. Negative supply (earth).

7. Current feed point. A current of approximately 2.5 mA is required at this pin, fed via a $3.9 \mathrm{k} \Omega$ resistor from +12 V , to bias the internal differential amplifiers. A decoupling capacitor of 4.7 nF is necessary.
8. Positive 12 V supply. Maximum supply voltage permitted, 13.2 V . Current consumption approximately 30 mA .
9. Red channel feedback (green channel, pin 12; blue channel, pin 15). The dc working points and gains of both the output stages and the IC amplifier stages are stabilized by the feedback circuits. The black level potentials at the collectors of the output stages (tube cut-of $f$ ) are adjusted by setting correctly the dc levels of the color difference signals produced by the TBA520 demodulator IC. The gains of the R-G-B output stages are adjusted to give the correct white points setting on the picture tube by adjusting the potentiometers in the feedback paths (VR1, VR2). (See notes on setting up decoder.)
10. Red signal output (green and blue signal outputs on 13 and 16). These pins are internally connected with pins 11, 14 and 1 respectively via zener type junctions to give a dc level shift appropriate for driving the output transistor bases directly. To bypass the zener junctions at h.f. three 10 nF capacitors are required.
11. Output load resistor, red channel (see pin 1).
12. Green channel feedback (see pin 9).
13. Green signal output (see pin 10).
14. Output load resistors, green channel (see pin 1).
15. Blue channel feedback (see pin 9).
16. Blue signal output (see pin 10).

Note 1: Careful attention to earth paths should be given, avoiding common impedances between the input (decoder) side and the output stages. Also, to enable matched performance to be achieved, a symmetrical board and component layout should be adopted for the three output stages. To compensate for the effect upon h.f. response of inevitable differences the compensating capacitors C1 and C2 and C3 may be appropriately selected for any given board layout.

Note 2: The signal black level at the collectors of the R-G-B output stages depends upon the +12 V supply, the dc level of the color difference signals from the TBA520 demodulator IC and the black level potential of the luminance signal applied to the TBA530 matrix IC. The dc levels of the signals produced and handled by the IC's are designed to have approximately proportional tracking with the 12 V supply potential,

$$
\text { i.e., } \frac{\Delta V_{(\text {dc level, signal) }}}{\Delta V_{12 \mathrm{~V}}} \bumpeq \frac{\mathrm{~V}_{\text {nom }}(\text { dc level, signal) }}{12}
$$

To ensure that changes in picture black level due to variations on the 12 V supply to the IC's occur in a predictable way, all the IC's should be operated from a common supply line. This is specially important for the TBA520 and TBA530. Furthermore, to limit the changes in picture black level during receiver operation, the 12 V supply should have a stability of not worse than $\pm 3 \%$ due to operational variations.

Note 3: To reduce the possibility of patterning on the picture due to radiation of the harmonics of the products of the demodulation process, the leads carrying the drive signals to the picture tube should be as short as the receiver layout will allow. Resistors (typically $1 \mathrm{k} 5 \Omega$ ) connected in series with the leads and mounted close to the collectors of the output transistors provide useful additional filtering of harmonics.

National

## TBA540 Reference Combination

## General Description

The TBA540 is an integrated 'color reference' oscillator circuit for PAL TV receivers. The oscillator employs a quartz crystal and incorporates automatic phase and amplitude control. A synchronous demodulator is used to compare the phase and amplitude of the swinging
burst ripple with the PAL flip-flop waveform and generates appropriate ACC color killer and identification signals. A high standard of noise immunity has been obtained by using synchronous demodulation.

## Connection Diagram



Dual-In-Line Package, Order Number TBA540 See NS Package N16A

Quad-In-Line Package, Order Number TBA5400 See NS Package N16C

## Typical Application



## Absolute Maximum Ratings

V3-16
Power Dissipation ( $T_{A}=60^{\circ} \mathrm{C}$ )
Operating Temperature Range

Electrical Characteristics (V3 $-16=12 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ as measured in typical application circuit)


## Application Notes

A dc connection between pins 4 and 6 is necessary via the bifilar coupling inductor. The function of this inductor is to produce, on pin 6, a signal of equal amplitude and opposite phase ( $B-Y$ ) to that on pin 4. A center tap on the inductor, connected to earth via a dc blocking capacitor, is therefore necessary.

## DC Control Points in Reference Control Loop

Pins 13 and 14 are connected to opposite sides of a differential amplifier circuit and are brought out for the purpose of dc balancing of the reactance stage and the connection of the bandwidth-determining filter network. Two $2 \%$ tolerance 10 k resistors with the addition of a $270 \Omega$ resistor at pin 13 are used in place of the previous
balancing network. The $270 \Omega$ resistor may be modified according to the nature of the noise that appears at pin 5.

## Initial Adjustment

(a) Remove burst signal.
(b) Short-circuit pins 13-14. Adjust oscillator to correct frequency by C 1 .
(c) Set the ACC level adjustment RV1, to give +4 V on pin 9. Remove short circuit.
(d) Apply burst signal.
(e) Adjust ACC gain, RV2, to give a burst amplitude of 1.5 Vp -p on pin 5.

## Pin Function Description

1. Oscillator feedback output. The crystal receives its energy from this pin. The output impedance is approximately $2 \mathrm{k} \Omega$ in parallel with 5 pF .
2. Reactance control stage feedback. This pin is fed internally with a sinewave derived from the reference output (pin 4) and controlled in amplitude by the internal reactance control circuit. The phase of the feedback from pin 2 to the crystal via C1 is such that the value of C1 is effectively increased. Pin 2 is held internally at a very low impedance, therefore the tuning of the crystal is controlled automatically by the amplitude of the feedback waveform and its influence on the effective value of C1.
3. Positive 12V supply. The maximum voltage must not exceed 13.2 V .
4. Reference waveform output. This pin is driven internally by the regenerated subcarrier waveform in $\mathrm{B}-\mathrm{Y}$ phase. (The output is in B-Y rather than R-Y phase as the burst phase network produces a lag of $90^{\circ}$ of the burst applied to pin 5). An output amplitude of nominally $1.4 \mathrm{Vp}-\mathrm{p}$ is produced at low impedance. No dc load to earth is required. A dc connection between pins 4 and 6 is, however, necessary via the bifilar coupling inductor. The function of this inductor is to produce, on pin 6, a signal of equal amplitude and opposite phase ( $-(\mathrm{B}-\mathrm{Y})$ ) to that on pin 4. A center tap on the inductor, connected to earth via a dc blocking capacitor, is therefore necessary.
5. Burst waveform input. A burst waveform amplitude of $1.5 \mathrm{Vp}-\mathrm{p}$ is required to be ac-coupled to this pin. The amplitude of the burst will normally be controlled by the adjustment and operation of the ACC circuit. The input impedance at this pin is approximately $1 \mathrm{k} \Omega$ and a threshold level of 0.7 V must be exceeded before the burst signal becomes effective. A dc bias of 400 mV is internally derived for pin 5 .

The absolute level of the tip of the burst at pin 5 will normally reach 1.5 V ( $1.5 \mathrm{Vp}-\mathrm{p}$ burst amplitude).
6. Reference waveform input. This pin requires a reference waveform in the - $(B-Y)$ phase, derived from pin 4 via a bifilar transformer (see pin 4), to drive the internal balanced reactance control stage. A dc connection between pins 4 and 6 must be made via the transformer.
7. Color killer output: This pin is driven from the collector of an internal switching transistor and requires an external load resistor (typically $10 \mathrm{k} \Omega$ ) connected to +12 V . The unkilled and killed voltages on this pin are then
+12 V and $<250 \mathrm{mV}$ respectively. (The voltage range on pin 9 over which switching of the color killed output on pin 7 occurs is nominally +2.5 V .)
8. PAL flip-flop square wave input. A 2.5 Vp -p square wave derived from the PAL flip-flop (in the TBA520 or TBA990 demodulator IC) is required at this pin, accoupled via a capacitor. The input impedance is about $3.3 \mathrm{k} \Omega$.
9. ACC output. An emitter follower provides a low impedance output potential which is negative-going with a rising burst input amplitude. With zero burst input signal the dc potential produced at pin 9 is set to be +4 V (RV1). The appearance of a burst signal on pin 5 will cause the potential on pin 9 to go in a negative direction in the event that the PAL flip-flop is identified to be in the correct phase. The range of potential over which full ACC control is exercised at pin 9 is determined by the control characteristic of the ACC amplifier, i.e., for the TBA560 from 0.8 to 1 V . The potential on pin 9 will fall to a value within this range as the burst input signal is stabilized to an amplitude of $1.5 \mathrm{Vp}-\mathrm{p}$. The latter condition is achieved by correct adjustment of RV2. If, however, the PAL flip-flop phase is wrong the potential on pin 9 will move positively. The potential divider R5, R6 will then operate a PAL switch cut-off function in the TBA520 demodulator IC.
10. ACC level setting. The network connected between pins 10 and 12 balances the ACC circuit and RV1 is adjusted to give +4 V on pin 9 with no burst input signal to pin 5. C5 provides filtering.
11. ACC gain control. RV2 is adjusted to give the correct amplitude of burst signal on pin 5 ( $1.5 \mathrm{Vp}-\mathrm{p}$ ) under ACC control.
12. See pin 10.

## 13. See pin 14.

14. DC control points in reference control loop. Pins 13 and 14 are connected to opposite sides of a differential amplifier circuit and are brought out for the purpose of dc balancing of the reactance stage and the connection of the bandwidth-determining filter network. Two 2\% tolerance 10 k resistors with the addition of a $270 \Omega$ resistor at pin 13 are used in place of the previous balancing network. The $270 \Omega$ resistor may be modified according to the nature of the noise that appears at pin 5 .

The filter network consists of R2, C2, C3 and C4. The dc potentials on these pins are nominally +6 V .

## Schematic Diagram



## TBA560C Luminance and Chrominance Control Combination

## General Description

The TBA560C is an integrated circuit for processing and controlling luminance and chrominance signals in PAL TV receivers.
The luminance amplifier comprises:

- DC contrast control
- Brightness control
- Black level clamping
- Blanking of flyback

The chrominance amplifier comprises:

- Gain-controlled amplifier
- DC chroma gain control tracked with contrast control
- Separate dc saturation control
- PAL delay line driver
- Burst gate
- Input matched to the luminance delay line
- Color killer
- Chroma signal flyback blanking


## Connection Diagram



Dual-In-Line Package, Order Number TBA560C See NS Package N16A

Quad-In-Line Package, Order Number TBA560CQ See NS Package N16C


## Absolute Maximum Ratings (Note 1)

V11-16	13.2 V	IQ	-10 mA
V8-16 Min.	-5 V	Continuous Total Power Dissipation	550 mW
V10-16 Min.	-5 V	Operating Free Air Temperature Range	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
V12-16	-5 V to +6 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
V13-16	-3 V to +6.5 V	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
V14-16 Min.	-5 V		

Electrical Characteristics with $\mathrm{V} 11-16=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (as measured in typical application circuit)

	PARAMETFR	CONDITIONS	MIN	TYP	MAX	UNITS
V1.15	Chrominance Input Signal Range (Value of Color Bars With 75\% Saturation)		4		80	$m \vee p \cdot p$
13	Luminance Input Current   Black to White			0.5	1.5	mAp-p
V2-16	Contrast Control Characteristic	Full Gain   6 dB Attenuation   20 dB Attenuation   (Note 2)		5.6		V
				3.7		V
				2.0		V
V6-16	Brightness Control Voltage for Black Level of 1.5 V at Pin 5	(Note 3)		1.3		V
V8-16	Flyback Blanking Pulses					
V8-16	For OV Blanking Level at Pin 5		0	-0.5	-1	Vp-p
	For 1.5V Blanking Level at Pin 5		-2	-2.5	-3	Vp-p
V13-16	Saturation Control Characteristic	Full Gain		6.2		V
		6 dB Attenuation		4.4		V
		20 dB Attenuation (Note 2)		2.7		V
110	Burst Gating Pulse		0.05		1	$m A p-p$
V13-16	Color Killer		0.5		1	$\checkmark$
	Automatic Chrominance Control					
V14-16	Voltage for Maximum Gain			1.2		V
	Voltage for Minimum Gain			0.5		$V$
	Gain Reduction			26		dB
	Input Resistance		50			$\mathrm{k} \Omega$
V5-16	Luminance Output Voltage (BlackWhite) at Nominal Contrast and Input Current as above	(Note 2)		1	3	Vp-p
	Black Level Shift Due to Changes of Contrast and Video Content at Constant Brightness Setting				100	mV
$\begin{aligned} & \text { V7-16 } \\ & \text { V9-16 } \end{aligned}$	Burst Output			1		Vp-p
	Chrominance Output at Nominal Contrast and Saturation	(Note 2)		1		Vp-p
	3 dB Bandwidth of Chrominance and Luminance Amplifier			5		MHz
	Matching of Luminance to Chrominance Ratio at 10 dB Contrast Control				2	dB

Note 1: V2-16 and V13-16 must always be lower than V11-16.
Note 2: Typical or nominal contrast or saturation = maximum value -6 dB . Thus the control is +6 to -14 dB on the nominal.
Note 3: When V6-16 is increased above 1.7V the black level of the output signal remains at 2.7 V .

## Pin Function Description

1. Balanced chroma signal input (in conjunction with pin 15). This is derived from the chroma signal bandpass filter, designed to provide a push-pull input. An input signal amplitude of at least $4 \mathrm{mVp}-\mathrm{p}$ is required between pins 1 and 15 . Both pins require a dc potential of approximately +3.0 V . This is derived as a common mode signal from a network connected to pin 7 (burst output). In this way dc feedback is provided over the burst channel to stabilize its operation. All figures for the chrominance signal are based on a color bar signal with $75 \%$ saturation; i.e., burst-to-chroma ratio of input signal is 1:2.
2. DC contrast control. With +3.7 V on this pin, the gain in the luminance channel is such that a 0.5 mA black-towhite input signal to pin 3 gives a luminance output signal amplitude on pin 5 of 1 V black-to-white. A variation of voltage on pin 2 between +5.6 V and +2 V gives a corresponding gain variation of +6 to $>-14 \mathrm{~dB}$. A similar variation in gain in the chroma channel occurs in order to provide the correct tracking between the two signals. Beam current limiting can be applied via the contrast control network as shown in the peripheral circuit, when a separate overwind is available on the line output transformer.
3. Luminance signal input. This terminal has a very low• input impedance and acts as a current sink. The luminance signal from the delay line is fed via a series terminating resistor and a dc blocking capacitor and requires to be about $0.5 \mathrm{mAp}-\mathrm{p}$ amplitude. A dc bias current is required via a $12 \mathrm{k} \Omega$ resistor to the +12 V line.
4. Charge storage capacitor for black level clamp.
5. Luminance signal output. An emitter follower provides a low impedance output signal of 1 V black-to-white amplitude at nominal contrast setting having a nominal black level in the range 0 to +2.7 V . An external emitter load resistor is required, not less than $1 \mathrm{k} \Omega$. If a greater luminance output is required than 1 V , with normal control settings, the input current swing at pin 3 should be increased in proportion.
6. Brightness control. Over the range of potential +0.9 to +1.7 V the black level of the luminance output signal (pin 5) is increased from 0 to +2.7 V . The output signal black level remains at +2.7 V when the potential on pin 6 is increased above +1.7 V .
7. Burst output. A 1 Vp -p burst (controlled by the ACC system) is produced here. Also, to achieve good dc stability by negative feedback in the burst channel the dc potential at this pin is fed back to pins 1 and 15 via the chroma input transformer.
8. Flyback blanking input waveform. Negative-going horizontal and vertical blanking pulses may be applied here. If rectangular blanking pulses of not greater than -1V negative excursion, or dc coupled pulses of similar amplitude whose negative excursion is at zero volts $d c$ are applied, the signal level at the luminance output (pin 5) during blanking will be OV. However, if the blanking pulses applied to pin 8 have an amplitude of -2 to -3 V the signal level at the luminance output during blanking will be +1.5 V . The negative pulse amplitude should not exceed -5 V .
9. Chroma signal output. With a 1 Vp -p burst output signal (pin 7) and at nominal contrast and saturation setting (pins 2 and 13) the chroma signal output amplitude is $1 \mathrm{Vp-p}$. An external network is required which provides dc negative feedback in the chroma channel via pin 12.
10. Burst gating and clamping pulse input. A positive pulse of not less than $50 \mu \mathrm{~A}$ is required on this pin to provide gating in the burst channel and luminance channel black-level clamp circuit. The timing and width of this current pulse should be such that no appreciable encroachment occurs into the sync pulse or picture line periods during normal operation of the receiver.
11. +12V LT supply. Correct operation occurs within the range 10.8 to 13.2 V . All signal and control levels have a linear dependency on supply voltage but, in any given receiver design this range may be restricted due to considerations of tracking between the power supply variations and picture contrast and chroma levels. The power dissipation must not exceed 550 mW at $60^{\circ} \mathrm{C}$ ambient temperature.

## 12. DC feedback for chroma channel (see pin 9).

13. Chroma saturation control. A control range of +6 to $>-14 \mathrm{~dB}$ is provided over a range of dc potential on pin 13 from 6.2 to 2.7 V . Color killing is also achieved at this terminal by reducing the dc potential to less than +1 V , e.g., from the TBA540 color killer output terminal. The minimum "kill factor" is 40 dB .
14. ACC input. A negative-going potential gives an ACC range of about 26 dB starting at +1.2 V . From 1 V to 800 mV the steepest part of the characteristic occurs, but a small amount of gain reduction also occurs from 800 mV to 500 mV . The input resistance is at least $50 \mathrm{k} \Omega$.
15. Chroma signal input (see pin 1).
16. Negative supply, OV (Earth).


National

## TBA920/TBA920S Line Oscillator Combination

## General Description

The TBA920 is a monolithic integrated circuit intended for TV receivers with transistor-thyristor- or valve equipped output stages.

It combines the following functions:

- Noise gated sync separator
- Phase comparison between sync pulse and oscillator
- Line oscillator
- Loop gain and time constant switching (also for video recorder applications)
- Phase comparison between line-flyback pulse and oscillator
- Output stage for driving a variety of line output stages


## Connection Diagram



## Typical Application



## Absolute Maximum Ratings

V1-16	13.2 V
$\mathrm{I}_{2}$ (Mean)	20 mA
$\mathrm{I}_{2}$ (Peak)	200 mA
$\mathrm{I}_{5}, \mathrm{I}, \mathrm{I} 9$	10 mA


Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$ )	600 mW

Electrical Characteristics at $\mathrm{V} 1-16=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ as measured in application circuit


## Electrical Characteristics (Continued)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Loop Gain of APC System.					
$\frac{\Delta f}{\Delta t}$	Time Coincidence Between Sync Pulse and Flyback Pulse or V10-16>4.5V			1		$\mathrm{kHz} / \mu \mathrm{s}$
$\frac{\Delta f}{\Delta t}$	No Time Coincidence or V10-16<2V			3		$\mathrm{kHz} / \mu \mathrm{s}$
$\Delta f$	Catching and Holding Range	(Note 2)		$\pm 1$		kHz
t	Pull-in Time	$\Delta f / f_{0}= \pm 3 \%(\Delta f=470 \mathrm{~Hz})$		20		ms
t	Switch-over From Large Control Sensitivity to Small Control Sensitivity After Catching			20		ms
	Control Loop II (Between Flyback Pulse and Oscillator)					
${ }^{t} d$ tot	Permissible Delay Between Leading Edge of Output Pulse (Pin 2) and Leading Edge of Flyback Pulse		0		15	$\mu \mathrm{s}$
$\frac{\Delta t}{\Delta t_{d}}$	Static Control Error	(Note 3)			0.5	\%
	Overall Phase Relation		,			
t	Phase Relation Between Leading Edge of Sync Pulse and Middle of Flyback Pulse	(Note 4)		4.9		$\mu \mathrm{s}$
$\|\Delta t\|$	Tolerance of Phase Relation	(Note 5)			1	$\mu \mathrm{s}$
$\frac{\Delta f}{f_{0}}$	Spread of Frequency at Nominal Values of Peripheral Components					
	TBA920				$\pm 5$	\%
	TBA920S				$\pm 2$	\%
V3-16	Voltage	$\mathrm{t}_{2}=12 \mu \mathrm{~s}$		6		V
V3-16		$\mathrm{t}_{1}=32 \mu \mathrm{~s}$		8		V
13	Input Current				2	$\mu \mathrm{A}$
	Time Constant Switch Voltage on Pin 10					
V10-16		For Internal R11 $=150 \Omega$	4.5			V
V10-16		For Internal R11 $=2 \mathrm{k} \Omega$			2	V

Note 1: The oscillator frequency can be changed for other TV standards by an appropriate value of C14-16.
Note 2: Adjustable with R12-15.
Note 3: The control error is the remaining error in reference to the nominal phase position between leading edge of the sync pulse and the middle of the flyback pulse caused by a variation in delay of the line output stage.
Note 4: This phase relation assumes a luminance delay line with a delay of 500 ns between the input of the sync separator and the drive to the picture tube. If the sync separator is inserted after the luminance delay line or if there is no delay line at all (black-and-white sets), then the phase relation is achieved by C5-16 $=560 \mathrm{pF}$.
Note 5: The adjustment of the overall phase relation and consequently the leading edge of the output pulse at pin 2 occurs automatically by the control loop II or by applying a dc voltage to pin 3.

## TBA950-2 Television Signal Processing Circuit

## General Description

The TBA950-2 is a monolithic integrated circuit for pulse separation and line synchronization in TV receivers with transistor output stages.

The TBA950 comprises the sync separator with noise suppression, the frame pulse integrator, the phase comparator, a switching stage for automatic changeover of
noise immunity, the line oscillator with frequency range limiter, a phase control circuit and the output stage.

It delivers prepared frame sync pulses for triggering the frame oscillator. The phase comparator may be switched for video recording operation. Due to the large scale of integration, few external components are needed.

## Connection and Block Diagrams



Absolute Maximum Ratings
All voltages are referred to pin 1

I $_{3}$, Supply Current (Figure 6)	45 mA
I $_{5}$, Input Current	2 mA
V5, Input Voltage	-6 V
I $_{2}$, Output Current	22 mA
V2, Output Voltage	12 V
I $_{8}$, Switch-Over Current for Video Recording	5 mA
I $_{10}$, Flyback Peak Pulse Current	5 mA
V11, Phase Correction Voltage	0 to V 3
TA, Ambient Temperature	$60^{\circ} \mathrm{C}$

Recommended Operating Conditions
(For operating circuits Figures 4 and 5)

$\mathrm{I}_{5}$, Input Current During Sync Pulse	$>5 \mu \mathrm{~A}$
$V_{\text {IN }}$ p-p, Composite Video Input Signal	$3(1$ to 6$) \mathrm{V}$
1 10 , Input Current During Line Flyback Pulse	0.2 to 2 mA
${ }^{1} 8$, Switch-Over Current	$>2 \mathrm{~mA}$
$t_{d}$, Time Difference Between the Output Pulse at Pin 2 and the Line Flyback Pulse at 10	$<20 \mu \mathrm{~s}$
$1_{3}$, Current Consumption (Figure 6)	$\leq 45 \mathrm{~mA}$
$\mathrm{T}_{\mathrm{A}}$, Ambient Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{O}}=15,625 \mathrm{~Hz}$ in the test circuit Figure 2 (Note 1)

SYMBOL	CHARACTERISTIC	CONDITIONS	MIN	TYP	MAX	UNITS
V7	Amplitude of the Frame Pulse			$>8$		V
t7	Frame Pulse Durations		.	$>150$		$\mu \mathrm{s}$
ROUT 7	Output Resistance at Pin 7 (High State)		7.5	10	13	$k \Omega$
t2	Output Pulse Duration	Typical Ranges	25		28	$\mu \mathrm{s}$
$V 2$ Res	Residual Output Voltage	$\mathrm{I}_{2}=20 \mathrm{~mA}$		$<0.55$		v
$\mathrm{f}_{0}$	Oscillator Frequency	$\mathrm{C} 13 / 1=10 \mathrm{nF}, \mathrm{R14/1}=10.5 \mathrm{k} \Omega$	14063	15625	17187	Hz
$\pm \Delta f_{F}$	Frequency Pull-In Range		400		1000	Hz
$\pm \Delta \mathrm{f}_{\mathrm{H}}$	Frequency Holding Range	Typical Ranges	400		1000	Hz
$\mathrm{df}_{\mathrm{o}} / \mathrm{dt}_{\mathrm{d}}$	Slope of Phase Comparator Control Loop			2		kHz/ $/ \mathrm{s}$
$\mathrm{dt}_{\mathrm{d}} / \mathrm{dt} \mathrm{p}$	Gain of Phase Control			20		
$t \mathrm{p}$	Phase Shift Between Leading   Edge of Composite Video   Signal and Line Flyback Pulse   (Note 2) Adjustable by V11	Typical Range	0		3.5	$\mu \mathrm{s}$

Note 1: By modification of the frequency-determining network at pins 13 and 14, these ICs can also be used for other line frequencies.
Note 2: The limited flyback pulse should overlap the video signal sync pulse on both edges.

## Functional Description

The sync separator separates the synchronizing pulses from the composite video signal. The noise inverter circuit, which needs no external components, in connection with an integrating and differentiating network frees the synchronizing signal from distortion and noise.

The frame sync pulse is obtained by multiple integration and limitation of the synchronizing signal, and is available at pin 7. The $R C$ network, hitherto required between sync separator and frame oscillator is no longer needed. Since the frame sync pulse duration at pin 7 is subject to production spreads, it is recommended to use the leading edge of this pulse for triggering.

The frequency of the line oscillator is determined by a 10 nF polystyrene capacitor at pin 13 which is charged and discharged:periodically by 2 internal current sources. The external resistor at pin 14 defines the charging current and consequently in conjunction with the oscillator capacitor the line frequency.

The phase comparator compares the sawtooth voltage of the oscillator with the line sync pulses. Simultaneously, an AFC voltage is generated which influences the oscillator frequency. A frequency range limiter restricts the frequency holding range.

The oscillator sawtooth voltage, which is in a fixed ratio to the line sync pulses, is compared with the flyback pulse in the phase control circuit, in this way compensating all drift of delay times in driver and line output stage. The correct phase position and hence the horizontal position of the picture can be adjusted by the $10 \mathrm{k} \Omega$ potentiometer connected to pin 11 . Within the adjustable range the output pulse duration (pin 2) is constant. Any larger displacements of the picture, e.g., due to non-symmetrical picture tube, should not be corrected by the phase potentiometer, since in all cases the flyback pulse must overlap the sync pulse on both edges (Figure 3).

## Functional Description (Continued)

The switching stage has an auxiliary function. When the 2 signals supplied by the sync separator and the phase control circuit, respectively, are in synchronism, a saturated transistor is in parallel with the integrated $2 \mathrm{k} \Omega$ resistor at pin 9 . Thus the time constant of the filter network at pin 4 increases and consequently reduces the pull-in range of the phase comparator circuit for the synchronized state to approximately 50 Hz . This arrangement ensures disturbance-free operation.

For video recording operation, this automatic switchover can be blocked by a positive current fed into pin 8, e.g., via a resistor connected to pin 3 . It may also be useful to connect a resistor of about $680 \Omega$ or $1 \mathrm{k} \Omega$ between pin 9 and earth. The capacitor at pin 4 may be lowered, e.g., to $0.1 \mu \mathrm{~F}$. These alterations do not significantly
influence the normal operation of the IC and thus do not need to be switched.

The output stage delivers at pin 2 output pulses of duration and polarity suitable for driving the line driver stage. If the supply voltage goes down (e.g., by switching off the mains) a built-in protection circuit ensures defined line frequency pulses down to $\mathrm{V} 3=4 \mathrm{~V}$ and shuts off when V 3 falls below 4 V , thus preventing pulses of undefined duration and frequency. Conversely, if the supply voltage rises, pulses defined in duration and frequency will appear at the output pin as soon as V3 reaches 4.5 V . In the range between $\mathrm{V} 3=4.5 \mathrm{~V}$ and full supply the shape and frequency of the output pulses are practically constant.


FIGURE 3. Phase Relationships

*Input circuitry must be optimized
FIGURE 4. Operating Circuit (Thyristor Output Stage)

Functional Description (Continued)

*Input circuitry must be optimized

FIGURE 5. Another Possibility for Line
Frequency Adjustment (Transistor Output Stage)


FIGURE 6. Graph for Determining the Supply Series Resistor, R

## TBA970 Television Video Amplifier

## General Description

The TBA970 is a monolithic video amplifier for television receivers. The circuitry includes a video preamplifier, DC contrast control utilizing a linear potentiometer which can be ganged to the chroma gain control, beam current limiting via contrast. Beam current limiting could be obtained with either positive or negative control voltage. Black level control is achieved by a clamped feedback circuit combined with the brightness control. Emitter follower output could be used to directly drive the video output stage. A separate NPN transistor (Q40) is provided on the chip.

## Features

- DC contrast control
- DC brightness control
- Black level clamping
- Beam current limiting
- Low impedance output


## Connection Diagram



TOP VIEW

## Block Diagram



## Absolute Maximum Ratings

Supply Voltage	15.5 V
Internal Power Dissipation	750 mW
Collector Current Q40	10 mA
Power Dissipation Q40	20 mW
VCEO O40	13.2 V

$\mathrm{V}_{\text {CES }} \mathbf{Q 4 0}$
15.5 V
$-20^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V}$, See Test Circuit, unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
12	Supply Current	(Note 1)		27	36	mA
V3 p-p	Peak-to-Peak Input Voltage	(Note 2)			1.6	Vp-p
R3	Input Resistance			12		$k \Omega$
	Voltage Gain			2.4		
	3.0 dB Bandwidth			6.0		MHz
	6.0 dB Bandwidth			9.0		MHz
	Linearity of Black-to-White Video Output Signal		0.9			
V15	Low Black Level Voltage				0.2	V
V15	High Black Level Voltage		3.0			V
	Contrast Control Range	$1.5 \mathrm{~V} \leq \mathrm{V} 7 \leq 4.5 \mathrm{~V}$	36			dB
R12	Input Resistance for Brightness Control			200		$k \Omega$
$\Delta \mathrm{V} 15$	Change of Black Level	(Note 3)			20	mV
V8, V9	DC Voltage for Beam Current Limiting Inputs	(Note 4)		2.0		V
	Separate Transistor 040 Gain	$I_{C}=I_{4}=1.0 \mathrm{~mA}$	40			

Note 1: No input signal and at minimum brightness.
Note 2: With negative-going synchronizing pulse.
Note 3: With constant brightness setting, due to change of picture content, contrast control setting and change in ambient temperature ( $\Delta T_{A}=$ $20^{\circ} \mathrm{C}$ ) ; black level clamping with $\mathrm{t}_{\mathrm{c}}=1 \mu \mathrm{~s}, \mathrm{I}_{10} \geq 0.25 \mathrm{~mA}, \mathrm{~V} 11 \leq 0.3 \mathrm{~V}$.
Note 4: Beam current limiting occurs at $\mathrm{V} 8 \geq \mathrm{V} 9$.

## Test Circuit




National

## TBA990 Color Demodulator

## General Description

The TBA990 is an integrated color demodulator circuit for color television receivers incorporating two active synchronous demodulators for the R-Y and B-Y chrominance signals, a matrix (producing the G-Y color difference signal), PAL phase switch and flip-flop. It is
suitable for dc coupled drive to the picture tube when associated with the matrix integrated circuit (TBA530) and R-G-B output stages. Special attention has been given in the design to minimizing dc level drift with temperature.

## Connection Diagram



Dual-In-Line Package, Order Number TBA990 See NS Package N16A

Quad-In-Line Package, Order Number TBA990Q
See NS Package N16C

## Typical Application



## Pin Function Description

1. Identification bias. The PAL flip-flop is stopped, for identification purposes, when the voltage on pin 1 increases above 6 V . This threshold is internally generated and has a porportional behavior with the 12 V supply voltage. The threshold level of 6 V is chosen to match the output characteristic of the TBA540 and has a sufficiently high safety margin above the zero chroma signal level of 4 V to eliminate spurious identifying.
2. R-Y subcarrier reference input. A $1 \mathrm{Vp}-\mathrm{p}$ signal is required via a dc blocking capacitor. Under no circumstances should this signal be less than $0.5 \mathrm{Vp}-\mathrm{p}$. The input resistance at this pin is typically $5 \mathrm{k} \Omega$.
3. PAL square wave output. The amplitude is $3 \mathrm{Vp}-\mathrm{p}$ from an emitter follower. No external load resistor is required.
4. $R-Y$ signal output ( $G-Y$ at pin 5 and $B-Y$ at pin 7). These outputs require no external dc loads except that direct connection must be made via the low pass filters to the appropriate pins on the R-G-B matrix TBA530. In a complete circuit using the TBA530 and video output stages the dc levels of these outputs will be adjusted to give the correct setting of the picture tube drive black levels. The changes in dc level with supply voltage are proportional and track together.

The unwanted products of demodulation occurring in the color difference outputs are chiefly 8.86 MHz and harmonics together with a small amount of 4.43 MHz due to possible unbalance in the demodulators. To avoid possible troubles in the receiver because of radiation of these demodulation products from the R-G-B drive circuits, low-pass filters must be employed in each of the color difference outputs. The filters shown have a -3 dB bandwidth of 1 MHz , adequate attenuation of the 8.8 MHz component, and sufficient attenuation of the 4.4 MHz component to give less than $4 \mathrm{Vp}-\mathrm{p}$ amplitude at the picture tube cathodes.

## 5. G-Y signal output (see pin 4).

6. Positive supply. The maximum allowable voltage on this pin is 13.2 V .
7. B-Y signal output (see pin 4)
8. B-Y subcarrier reference input. The requirements here are identical with those for pin 2.
9. DC level setting for $B-Y$ output signal. This is a "common adjustment" which controls all three output dc levels together.
10. Chrominance $B-Y$ input signal. An input signal of approximately $360 \mathrm{mVp}-\mathrm{p}$ (color bars) is required at this pin. The input resistance is greater than $800 \Omega$ and the input capacitance is less than 10 pF . The spread in gain of the internal circuitry in the chrominance channel is $\pm 10 \%$ maximum.
11. DC level setting for $G-Y$ output signal. This adjusts the $\mathrm{G}-\mathrm{Y}$ output dc level relative to the $\mathrm{B}-\mathrm{Y}$ dc level.
12. DC level setting for R-Y output signal. This adjusts the $\mathrm{R}-\mathrm{Y}$ output dc level relative to the $\mathrm{B}-\mathrm{Y}$ dc level.
13. Chrominance $R-Y$ input signal. An input signal of approximately $500 \mathrm{mVp}-\mathrm{p}$ (color bars) is required at this pin. The input impedance and spread in gain is the same as for pin 9.
14. Line pulse input (flip-flop synchronizing). A waveform derived from the line timebase can be used for synchronizing providing that its amplitude lies between 2 V and 5 Vp -p. The trigger point occurs where the negative-going edge crosses approximately +0.6 V . Prior to this sufficient current must be supplied to pin 14 to turn the input transistor fully on.
15. N.C. This pin should not be used for external connections.
16. Negative supply (earth).

## National Semiconductor TDA440 Video IF Amplifier <br> General Description

The integrated circuit has the following functions incorporated: 3 symmetrical IF (broad band) amplifier with first and second regulated stages, controlled color carrier demodulator; video post-amplifier with low pass response and output independent of supply fluctuations; gated AGC section for the IF amplifier; delayed regulated output voltage for the tuner pre-stage.

## Features

- High gain - high stability
- Constant input impedance indepedent of AGC
- Poor noise increase due to AGC action
- Negative video signal hardly affected by supply voltage variations
- Minimum RF breakthrough to video outputs
- Fast AGC action - gating largely independent of pulse shape and amplitude
- Very low intermodulation products
- Minimum differential error
- Positive as well as negative video signal available from low impedance outputs
- Integrated temperature compensating circuit
- DC output component adjustable (peak white)


## Applications

- Video IF amplifier for color and monochrome television receivers


## Connection and Block Diagrams



Dual-In-Line Package, Order Number TDA440 See NS Package N16A

Quad-In-Line Package, Order Number TDA4400 See NS Package N16C


Absolute Maximum Ratings				
VS, Supply Voltage Range (Pin 13)	10 to 15 V	VEXT, External Voltage (Pin 4)		3.2 V
IS, Supply Current of Low Voltage Stabilizer (Pin 14)	50 mA	Power Dissipation		
$\mathrm{V}_{\mathrm{Q}}$. Open Loop Voltage (Pin 5)	15 V	Ртот, $\mathrm{T}_{\text {A }} \leq 55^{\circ} \mathrm{C}$		700 mW
Video DC Output Current		TJ. Junction Temperature		$125^{\circ} \mathrm{C}$
10, Positive (Pin 12)	5 mA	$\mathrm{T}_{\text {A }}$, Ambient Temperature Range		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
1 Q , Positive (Pin 12)	30 mA	tstG. Storage Temperature Range		$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
1 C . Negative (Pin 11)	5 mA			
10. Negative (Pin 11)	30 mA	Thermal Resistance		
$\mathrm{V}_{\mathrm{W}}$. White Level Control ( $\mathrm{R}_{\mathrm{W}}$ ) (Pin 10)	-1 to +3 V	$\mathrm{R}_{\text {thJA }}$, Junction Ambient		$100^{\circ} \mathrm{C} / \mathrm{W}$ Max

Electrical Characteristics $V_{S}=12 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, Reference point pin 3 unless otherwise specified

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VS	Supply Voltage	Pin 13	10	12	15	$\checkmark$
Is	Supply Current	Pin 13	15	19	25	mA
$\mathrm{V}_{\mathrm{S}}$	Supply Voltage	Pin 14, $\mathrm{IS}=40 \mathrm{~mA}$	5.5	5.8	6.4	$v$
$\mathrm{V}_{\mathrm{Q}}$	Negative Video DC Output	Pin 11		5.5		v
	Voltage					
$\mathrm{V}_{\mathrm{Q}}$	With White Level Adjustable	Pins 10 and 11, $\mathrm{R}_{\mathrm{W}}=\infty$			4.8	V
		$\mathrm{R}_{\mathrm{W}}=0$	6.5			V
$V_{Q}$	Peak Black Clamping Level for Negative Video DC Output Voltage	Pin 11	i.75	1.0	2.15	$V$
10	Output DC Current					
	Reference Point	Pins 11 and 13		3.2		mA
Vo	Positive Video DC Output Voltage	Pin 12		5.6		V
10	Available Tuner Control Current 10 dB after Onset of Tuner Control Action (Note 1)	Pin 5	3	4.5		mA
$v_{i}$	Negative Gating Pulse	Pin 7	1.5	3	5	$\mathrm{V}_{\text {SS }}$
${ }^{-v_{q}}$	Composite Video Output Level	Pin 11				
		$\mathrm{V}_{\mathrm{Q}}=5.5 \mathrm{~V}$		3.3		$\mathrm{V}_{\text {SS }}$
		$\mathrm{V}_{\mathrm{Q}}=6.4 \mathrm{~V}$		4.2		$\mathrm{V}_{\text {SS }}$
$\Delta \mathrm{A}$ (IF)	AGC Range		50	56		dB
Bvideo	Video Bandwidth	$\triangle$ VIIDEO $=-3 \mathrm{~dB}$	8	10		MHz
QvVIDEO	Video Frequency Response Change	$\Delta \mathrm{A}($ IF $)=50 \mathrm{~dB}, \mathrm{BVIDEO}=0-5 \mathrm{MHz}$		1.0	2.0	dB
$v_{i}$	Symmetrical Input Voltage	Pins 1-16, $-\mathrm{V}_{\mathrm{q}}=3.3 \mathrm{~V}_{\mathrm{SS}}($ Pin 11)	100	150	220	$\mu \mathrm{V}$
	Maximum IF Voltage Level	Pins 11 and 12				
	Present at Video Outputs Over	$f=38.9 \mathrm{MHz}$			30	mV
	the Full AGC Range	$f=77.8 \mathrm{MHz}$ (2. Harm)			50	mV
	Sound IF Voltage Level Present at Video Outputs with Selective Circuit	Pin 12, $\mathrm{f}=5.5 \mathrm{MHz}, \mathrm{B}_{\mathrm{T}} / \mathrm{T}_{\mathrm{T}}=30 \mathrm{~dB}$	30		.	$m \vee$
d	Differential Gain of Negative Comp. Video Output Signal, for Full Black to White Swing				15	\%
alm	Suppression of Sound Carrier/   Color Subcarrier IP (1.07 MHz) with Respect to Color Subcarrier Level	-	40	.		dB
	Picture Carrier			0		dB
	IF Color Subcarrier Level			-6		dB
	IF Sound Carrier Level Input Impedance			. -24		dB
	Reference Point	Pin 16				
$\mathrm{R}_{\mathrm{i}}$	A(IF) Max	Pin 1Pin 1		1.4		$k \Omega$
$\mathrm{C}_{i}$				2		pF
$\mathrm{R}_{\mathrm{i}}$	A(IF) Min			1.4		$\mathrm{k} \Omega$
$\mathrm{C}_{i}$				1.9		pF

Note 1: On request $\geq 7 \mathrm{~mA}$

Application Note for Reference Circuit to Improve
Audio Interference and Cross Color Characteristics


Schematic Diagram

## Test Circuit



Note. Supply voltage must be disconnected before inserting the integrated circuit in the socket.

## Typical Application

Improved Tank Circuit to Reduce Audio Interference and Chroma Beat


$$
\begin{aligned}
C= & \text { Parasitic capacitance at pins } \\
& 8 \text { and } 9 \text { should be kept minimum }
\end{aligned}
$$

$R_{S}=1.8-3.3 \mathrm{k} \Omega$ - series resonance damping determine the tuning characteristics
i.e., $R_{S}=2.4 \mathrm{k} \Omega$ tuning range, $f=3 \mathrm{MHz}$

National
TV Circuits Semiconductor

## TDA2522/TDA2523 Color Demodulation Combinations

## General Description

The TDA2522/TDA2523 are integrated synchronous demodulator combinations for colour television receivers incorporating the following features.

## Features

- 8.8 MHz oscillator followed by a divider giving two 4.4 MHz signals used as reference signals
- Keyed burst phase comparison for optimum noise behavior
- ACC detector and amplifier
- A color killer
- Two synchronous demodulators for the (B.Y) and ( $R \cdot Y$ ) signals
- Temperature compensated emitter follower outputs
- PAL switch and PAL flip-flop with internal identification
- Integrated capacitors in the symmetrical demodulators reduce unwanted carrier-signals at the outputs


## Connection Diagram


Duat-In-Line Packsge, Order Number TDA2522
See NS Package N16A
Ouad-In-Line Package, Order Number TDA25220
See NS Package N16C
Dual-In-Line Package, Order Number TDA2523
See NS Package N16A
Quad-In-Line Package, Order Number TDA2523Q
See NS Package N16C

## Block Diagram



NOTE: The outputs of the TDA2522 are $-(B-Y),-(R-Y)$ and $-(G-Y)$.
The outputs of the TDA2523 are (B-Y). (R-Y) and (G-Y).

## Absolute Maximum Ratings

V11-4, Supply Voltage
PTOT. Total Power Dissipation (Note 3)
TSTG, Storage Temperature
TA. Operating Ambient Temperature

$$
\begin{array}{r}
14 \mathrm{~V} \\
600 \mathrm{~mW} \\
-20^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}
\end{array}
$$

## Electrical Characteristics $\mathrm{V} 11-4=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$



Note 1: The demodulators are driven by a chrominance signal of equal amplitude for the ( $R \cdot-Y$ ) and the (B.Y) components. The phase of the (R.Y) chrominance signal equals the phase of the $(R-Y)$ reference signal. The same holds for the $(B \cdot Y)$ signals.

Note 2: As under note 1, but the phase of the ( $R \cdot Y$ ) reference signal reversed.
Note 3: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

## TDA2530 R-G-B Matrix Preamplifier With Clamps

## General Description

The TDA2530 is an integrated R-G-B matrix preamplifier for color television receivers, incorporating a matrix preamplifier for R-G-B cathode drive of the picture tube with clamping circuits. The TDA2530 has a base driver amplifier. Also, each channel follows an identical layout to ensure equal frequency behavior of the 3 channels.

This integrated circuit has been designed to be driven from the TDA2522 synchronous demodulator and oscillator integrated circuit.
The device is also available in a zig-zag quad-in-line package, this version being denoted by the suffix Q , i.e., TDA2530Q.

## Connection Diagram



Dual-In-Line Package, Order Number TDA2530
See NS Package N16A
Quad-In-Line Package, Order Number TDA2530Q
See NS Package N16C

## Reference Data

Supply Voltage (Nominal)	12 V
Operating Ambient Temperature Range	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Gain of Luminance and Color-Difference	100
Channels (Typical)	

# Absolute Maximum Ratings 

Supply Voltage (V8-6 Maximum)
Storage Temperature, TSTG
Operating Ambient Temperature, $\mathrm{T}_{\mathrm{A}}$
13.2 V
$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{v} 8-6=12 \mathrm{~V}, \mathrm{~V} 1-16=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Gain of Color Channels (B-Y; G-Y; R-Y)	G2-16		100		
at $f=0.5 \mathrm{MHz}$ (Note 1)	G4-16		100		
	G6-16		100		
Ratin of Gain of Luminance Amplifier to		0.9		1.1	
Color Amplifiers					
Input Resistance of Color Difference	R2-6				
Amplifiers at $f=1 \mathrm{kHz}$	R3-6	100		$\mathrm{k} \Omega$	
	R5-6			$\mathrm{k} \Omega$	
Input Resistance of Luminance Amplifier		100		$\mathrm{k} \Omega$	
at $f=1 \mathrm{kHz}$	100				

Note 1: $G$ is defined as the voltage ratio between the input signals at the pins 2,4 and 6 and the output signals at the collectors of the output transistors.

## Pin Function Description

1. Luminance signal input. A 1 V black to white posi-tive-going luminance input signal is required. Blanking level should-be at 1.5 V and black level at 1.7 V .
2. -(R-Y) input signal. The input signal is required to be AC coupled from a low impedance source such as the TDA2522. The coupling capacitor also acts as a clamp capacitor for the TDA2530 red output. As the color difference input impedance is at least $100 \mathrm{k} \Omega$, low value coupling capacitors may be used.
3. Red drive adjustment. A gain variation of the red channel of at least $\pm 3 \mathrm{~dB}$ about the typical, is obtained as the DC potential at this pin is varied by $\pm 5 \mathrm{~V}$ about the typical of 5 V . If no connection is made to a gain controlling pin the channel concerned assumes the typical gain.
4. $-(\mathrm{G}-\mathrm{Y})$ input signal (see pin 2).
5. Green drive adjustment (see pin 3).
6. -(B-Y) input signal (see pin 2).
7. Blue drive adjustment (see pin 3).
8. Clamp pulse input. A positive-going line pulse input is required and the pulse should exceed a threshold DC level set by the TDA2530 of 7V. An input current of about 1 mA is required.

## 9. Positive 12 V supply.

10. Blue signal output. The TDA2530 blue signal output has polarity appropriate for base drive of typical video output stages.
11. Blue signal feedback. The signal gain of both the video output stages and IC amplifier are stabilized by the feedback circuits. DC clamping is achieved by sampling of the feedback level during blanking. The black level potentials at the collectors of the video output stages may be varied independently by adjustable DC current sources applied to the feedback input pins. The DC levels at these pins are such that the feedback resistor and a resistor network between the 12 V supply and earth provide a potential of 6 V during blanking.
12. Green signal output (see pin 10).
13. Green signal feedback (see pin 11).
14. Red signal output (see pin 10).
15. Red signal feedback (see pin 11).
16. Negative supply (earth).

## Application Information (Peripheral Circuitry)



Note 1: Attention should be given to earth paths, avoiding common impedances betwen the input (decoder) side and the output stages.
Note 2: Printed track area connected to the feedback pins should be kept to a minimum.
Note 3: To ensure a matched performance of the video output stages, a symmetrical layout of the 3 stages should be employed.

## TDA2540 Video I.F. Amplifier and Demodulator

## General Description

The TDA 2540 is an i.f. amplifier and demodulator integrated circuit for colour and black and white television receivers using n-p-n tuners.

## Features

[ Wide-hand gain-controlled i.f. amolifier.
Synchronous demodulator.
Video preamplifier with white spot and noise inverters.
Noise gated a.g.c.
a.f.c. circuit switched on/off by a dc level.

- a.g.c. output for n-p-n- tuners.
- V.C.R. switch allows insertion of VCR playback signal.


## Connection Diagram



Duat-In-Line Package, Order Number TDA2540 See NS Package N16A

Quad-In-Line Package, Order Number TDA2540Q See NS Package N16C

## Block Diagram



## Absolute Maximum Ratings

V11-13 Supply Voltage	14V
$\mathrm{P}_{\text {TOT }}{ }^{\text {Power Dissipation }}$	900 mW
${ }^{\text {S STG }}$ Storage Temperature	-55 to $+125^{\circ} \mathrm{C}$
Tamb Operating Ambient Temperature	-25 to $+60^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V} 11-13=12 \mathrm{~V}$ Tamb $=25^{\circ} \mathrm{C}$



OちGZ甘O1

TDA2541 Video I.F. Amplifier and Demodulator

## General Description

The TDA2541 is an i.f. amplifier and demodulator integrated circuit for colour and black and white television receivers using $\mathrm{p}-\mathrm{n}-\mathrm{p}$ tuners.

## Features

Wide-band gain-controlled i.f. amplifier.

- Synchronous demodulator.
$\square$ Video preamplifier with white spot and noise inverters.
Noise gated a.g.c.
- a.f.c. circuit switched on/off by a dc level.
a.g.c. output for p-n-p tuners.
V.C.R. switch allows insertion of VCR playback signal.

Connection Diagram


Duat-In-Line Package, Order Number TDA2541 See NS Package N16A

Quad-In-Line Package, Order Number TDA25410 See NS Package N16C

## Block Diagram



Absolute Maximum Ratings

```
V11-13 Supply Voltage
P
TSTG Storage Temperature - -55 to +125
Tamb Oparating Ambient Temperature -25 to+60
```

Electrical Characteristics $\mathrm{V} 11-13=12 \mathrm{~V}$ Tamb $=25^{\circ} \mathrm{C}$


## General Description

The TDA2560 is a monolithic integrated circuit for use in decoding systems of color television receivers. The circuit consists of a luminance and chrominance amplifier. The luminance amplifier has a low input impedance so that matching of the luminance delay line is very easv.

## Features

- DC contrast control
- Brightness control
- Black level clamp
- Blanking
- Additional video output with positive-going sync

The chrominance amplifier comprises:

- Gain controlled amplifier
- Chrominance gain control tracked with contrast control
- Separate DC saturation control
- Combined chroma and burst output, burst signal amplitude not affected by contrast and saturation control
- The delay line can directly be driven by the IC


## Connection Diagram



## Absolute Maximum Ratings

V8-5, Supply Voltage

14 V
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$T_{A}$, Operating Ambient Temperature

## Electrical Characteristics



Note 1: The gain of the luminance amplifier can be adjusted, by setting the gain of the contrast control circuit by selection of discrete resistor $R_{G}$ (see also circuits on pages $x x$ and $x x$ ). This circuit configuration has been chosen to reduce the spread of the gain to a minimum (main cause of spread is now the spread of the ratio of the delay line matching resistors and the resistor $\left.\mathrm{R}_{\mathrm{G}}\right)$. At $\mathrm{R}_{\mathrm{G}}=2.7 \mathrm{k} \Omega$ the output voltage at nominal contrast (maximum -3 dB ) is 3 V black to white.
Note 2: This pin (7) is used for burst gate and black level clamping. The latter function is actuated at a 6 V level. The input pulse must have such an amplitude that the clamping circuit is active only during the back porch of the blanking interval. The burst gate, which switches the gain of the chroma amplifier to maximum during the flyback time, is actuated at a 1.5 V level.
Note 3: This pin (9) is used for blanking the luminance amplifier. When the input pulse exceeds the 2 V level the output signal is blanked to a level of about 0 V . When the input exceeds a 5 V level, a fixed level of about 1.5 V is available at the output. This level can be used for clamping purposes.
Note 4: The chrominance and burst signal are both available on this pin (6). The burst signal is not affected by the contrast and saturation control and is kept constant by the ACC circuit of the TDA2522. The output signal amplitude is, therefore, determined by the losses in the delay line. At nominal contrast and saturation setting, the burst to chrominance ratio at the output is typically identical to the ratio at the input.
Note 5: Nominal contrast is specified as maximum contrast -3 dB . Nominal saturation is specified as maximum saturation -6 dB .
Note 6: A negative-going control voltage gives a decrease in gain.

## Block Diagram



## Application Information



TV Circuits

## TDA2591/TDA2593 Line Oscillator Combination

## General Description

The TDA2591 and TDA2593 are integrated line oscillator circuits for color television receivers using thyristor or transistor line deflection output stages.

## Features

- Line oscillator based on the threshold switching principle
- Phase comparison between sync puise and oscillator voltage
- Phase comparison between line flyback pulse and oscillator voltage
- Switch for changing the filter characteristic and the gate circuit (when used for VCR)
- Coincidence detector
- Sync separator
- Noise separator
- Vertical sync separator
- Color burst keying and line flyback blanking pulse generator
- Phase shifter for the output pulse
- Output pulse duration switching
- Output stage for direct drive of thyristor deflection circuits
- TDA2591 for use in combination with TDA2522 \& TDA2560 PAL decoder.
- TDA2593 for use in combination with TDA3500 PAL decoder.
Reference Data

PARAMETERS		MIN	TVP	MAX	UNITS
V1-16	Supply Voltage		12		$\checkmark$
11	Supply Current		30		mA
	Input Signals				
V9-16 (p-p)	Sync Separator Input Voltage (Peak-to-Peak Value)		3		$v$
V10-16 (p-p)	Noise Separator Input Voltage (Peak-to-Peak Value)		3		$v$
	Pulse Duration Switch Input Voltage				
V4-16	$t=7 \mu \mathrm{~s}$	8.2		13.2	v
V4-16	$t=14 \mu s+t_{d}$	0		4.0	V
V11-16	Voltage for Switching on VCR	9		12	$v$
		0		1.5	$v$
	Output Signals				
V8-16 (p-p)	Vertical Sync Output Pulse (Peak-to-Peak Value)		11		$v$
V7-16 (p-p)	Burst Gating Output Pulse (Peak-to-Peak Value)		11		$v$
V3-16 (p-p)	Line Trigger Pulse (Peak-to-Peak Value)		10.5		v

## Absolute Maximum Ratings

## Voltages

V $1-16$. Supply Voltage at Pin 1 (When Supplied	13.2 V
by the IC)	
V2-16, Supply Voltage at Pin 2	18 V
V4-16. Pin 4 Voltage	0 to 13.2 V
V9-16. Pin 9 Voltage	-6 to +6 V
V10-16. Pin 10 Voltage	-6 to +6 V
V $11-16$. Pin 11 Voltage	0 to 13.2 V
Currents	
I2M. Pin 2 Current (Peak Value)	650 mA
I3M. Pin 3 Current (Peak Value)	650 mA


14. Pin 4 Current	1 mA
$\pm 1_{6}$, Pin 6 Current	10 mA
17. Pin 7 Current	10 mA
1 11. Pin 11 Current	2 mA
Power Dissipation	
${ }^{\text {PTOT. Total Power Dissipatiorr (Note 6) }}$ Temperatures	800 mW
TSTG, Storage Temperature	$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TA. Operating Ambient Temperature	$-20^{\circ}$ to $+60^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{V} 1-16=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	MIN	TYP	MAX	UNITS
REQUIRED INPUT SIGNALS					
	Sync Separator				
v9-16.	Input Switching Voltage		0.8		V
19	Input Switching Current	5		100	$\mu \mathrm{A}$
19	Input Blocking Current at V9-16 $=-5 \mathrm{~V}$		$<1$		$\mu \mathrm{A}$
	Noise Separator				
V10-16	Input Keying Voltage		1.0		V
V10-16	Input Switching Voltage		1.4		$v$
110	Input Keying Current	5		100	$\mu \mathrm{A}$
110	Input Switching Current		150		$\mu \mathrm{A}$
110	Input Blocking Current at V10-16=-5V		$<1$		$\mu \mathrm{A}$
	Line Flyback Pulse				
16	Input Current		$>10$		$\mu \mathrm{A}$
V6-16	Input Switching Voltage		0.8		$v$
V6-16	Input Limiting Voltage	-0.7		1.4	V
R6-16	Input Resistance		0.4		$k \Omega$
	Pulse Duration Switch				
	For $\mathrm{t}=7 \mu \mathrm{~s}$				
V4-16	Input Voltage	8.2		13.2	$V$
14	Input Current		>200		$\mu \mathrm{A}$
	For $t=14 \mu s+t_{d}$				
V4-16	Input Voltage	0		4.0	$v$
$-14$	Input Current		>200		$\mu \mathrm{A}$
	For $\mathrm{t}=0 ; \mathrm{V} 4-16=0$				
V4-16	Input Voltage, (Note 1)		6.0		$v$
14	Input Current (Input Open)		0		$\mu \mathrm{A}$
	Switching on VCR				
V11-16	Input Voltage, (Note 2)	0		1.5	V
V11-16		9		13.2	$v$
$-111$	Input Current, ( Note 2)		$>200$		$\mu \mathrm{A}$
111		1		2	$m A$
DELIVERED OUTPUT SIGNALS					
	Vertical Sync Pulse (Positive-Going)	.			
V8-16 (p-p)	Output Voltage (Peak-to-Peak Value)	10	11		V
R8	Outhut Resistance		2		k $\Omega$
	Burst Gating Pulse (Positive-Going)				
V7-16	Output Voltage (Peak-to-Peak Value)	10	11		V
R7	Output Resistance		70		$\Omega$

Electrical Characteristics (Continued)

	PARAMETER	MIN	TYP	MAX	UNITS
DELIVERED OUTPUT SIGNALS (CONTINUED)					
V7-16 (p-p)	Blanking Pulse				
	Output Voliage (Peak-to-Peak Value) TDA 2591		3.0		$v$
	TDA2593		4.5		$V$
$R 7$	Output Resistance		70		$\Omega$
	Line Trigger Pulse (Positive-Going)				
V3-16 (p-p)	Output Voltage (Peak-to-Peak Value)		10.5		$v$
$13(A V)$	Output Current (Average Value), (Note 3)		100		mA
R3-16	Output Resistance for Leading Edge of Line Puise		2.5		$\Omega$
R3-16	Output Resistance for Trailing Edge of Line Pulse		20		$\Omega$
	Oscillator				
V14-16	Threshold Voltage Low Level		4.4		V
V14-16	Threshold Voltage High Level		7.6		$V$
$\pm 114$	Discharge Current		0.47		mA
V15-16	Current Source Supply Voltage		6.0		$V$
$-115$	Current Source Supply Current		0.5		mA
	Phase Comparison ( $\phi 1$; Sync Pulse-Oscillator)				
V13-16	Control Voltage Range	3.8		8.2	$v$
$\pm 113 \mathrm{M}$	Control Current (Peak Value)	1.9	2.1	2.3	mA
113	Output Blocking Current				
	At V13-16 $=4-8 \mathrm{~V}$		'	1	$\mu \mathrm{A}$
	Output Resistance				
	At V13-16=4-8V, High Ohmic (Note 4)				
	At V13-16<3.8V or $>8.2 \mathrm{~V}$, Low Ohmic, (Note 5)		,		
	Time Constant Switch				
V12-16	Output Voltage		6		$V$
$\pm 112$	Output Current			1	$m A$
	Output Resistance	.			
R12-16	At $\mathrm{V} 11-16=2.5$ to 7V .		0.1		$k \Omega$
R12-16	At $\mathrm{V} 11-16<1.5 \mathrm{~V}$ or $>9 \mathrm{~V}$		60		$k \Omega$
	Coincidence Detector ( $¢ 3$ )				
V11-16	Output Voltage	0.5		6	$v$
	Output Current (Peak Value)				
$\begin{aligned} & \operatorname{l1M} \\ & -111 M \end{aligned}$	Without Coincidence		0.1		mA
	With Coincidence		0.5		$m A$
	Phase Comparison ( 2 2; Oscillator-Line				
	Flyback Pulse)				
$\begin{aligned} & \text { V5-16 } \\ & \pm 15 \end{aligned}$	Control Voltage Range	5.4		7.6	$v$
	Control Current (Peak Value)		1		mA
	Output (Input) Resistance				
	At V5-16 $=5.4$ to 7.6 V . High Ohmic, (Note 4)			.	
R5-16	At V5-16<5.4V or $>7.6 \mathrm{~V}$		8		$k \Omega$
	Input Current at Blocked Phase' Detector				
15	$\mathrm{V} 5-16=6.5 \mathrm{~V}$			5	$\mu \mathrm{A}$

Note 1: Can also be not connected.
Note 2: When supplied by the IC.
Note 3: Higher values are allowed when reducing $P_{\text {tot }}$.
Note 4: Current source.
Note 5: Emitter follower.
Note 6: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Applications	formation				
PARAMETER		MIN	TYP	MAX	UNITS
$\begin{aligned} & v 9-16(p \cdot p) \\ & \text { l9 } \end{aligned}$	Sync Separator   Input Voltage (Without Video; Peak-to-Peak Value)   Input Keying Control   Noise Signal Keying	1	3	$\begin{aligned} & 7 \\ & 100 \end{aligned}$	$V$ $\mu A$
$\begin{aligned} & V 10-16(p \cdot p) \\ & l_{10} \\ & V_{n(p \cdot p)} \end{aligned}$	Input Voltage (Without Video; Peak-to-Peak Value)	1	3	7	$V$
	Input Keying Current			100	$\mu \mathrm{A}$
	Superimposed Noise Voltage (Peak-to-Peak Value)			7	V
	Vertical Sync Pulse Separator				
ton	Delay Between Leading Edge of Input and Output Signal		12		$\mu \mathrm{s}$
IOFF	Signal	iviv			$\cdots$
V8-16 (p-p)	Output Voltage (Peak-to-Peak Value)	10	11		$\checkmark$
R8-16	Output Resistance		2		$k \Omega$
$f 0$	Oscillator				
	Frequency; Free Running (C14-16 = 4.7 nF , $R 15-16=12 \mathrm{k} \Omega)$		15.625		kHz
$\Delta f_{0} / f_{0}$	Spread of Frequency, (Note 7)		$< \pm 5$		\%
$\Delta f_{0} / \Delta l_{15}$	Frequency Control Sensitivity		31		$\mathrm{Hz}_{2} / \mu \mathrm{A}$
$\Delta t_{0} / f_{0}$	Adjustment Range of Network in Figure 1		$\pm 10$		\%
$\frac{\Delta f_{0} / f_{0}}{\Delta V / V_{T Y P}}$	Influence of Supply Voltage on Frequency at V1-16 $=12 \mathrm{~V}$, (Note 7 )			5	\%
	Change of Frequency when V1-16 Drops to 4V			10	\%
	Phase Comparison ( $\dagger 1$; Sync Pulse-Oscillator)				
	Control Sensitivity		2		kHz/ $/ \mathrm{s}$
	Spread of Control Sensitivity, (Note 7)		$\pm 10$		\%
$\Delta t$	Catching and Holding Range ( $82 \mathrm{k} \Omega$ )		$\pm 780$		Hz
$\Delta f / f$	Spread of Catching and Holding Range, (Note 7)		$\pm 10$	,	\%
	Phase Comparison ( $¢ 2$; Oscillator-Line Flyback Pulse)				
${ }^{\text {d }}$	Permissible Delay Between Leading Edge of Output Pulse and Leading Edge of Flyback Pulse			15	$\mu \mathrm{s}$
$\Delta t / \Delta t_{d}$	Static Control Error		$<0.2$		\%
	Overall Phase Relation				
	Phase Relation Between Middle of Sync Pulse and the Middle of the Flyback Pulse		2.6		$\mu s$
$\|\Delta t\|$	Tolerance of Phase Relation			0.7	$\mu \mathrm{s}$
	Adjustment Sonsitivity, Ceused By: (Note B)				
$\begin{aligned} & \Delta V 5-16 / \Delta t \\ & \Delta l_{5} / \Delta t \end{aligned}$	Adjustment Voltage		0.1		V/us
	Adjustment Current		30		$\mu \mathrm{A} / \mu \mathrm{s}$
	Spread of Adjustment Current, (Note 7)		<10		\%
$t$	Burst Gating Pulse				
	Phase Relation Between Middle of Sync Pulse at the Input and the Leading Edge of the Burst Gating Pulse; V7-16 $=7 \mathrm{~V}$	2.15	2.65	3.15	$\mu \mathrm{s}$
17	Burst Gating Pulse Duration		4.0		$\mu s$

## Applications Information (Continued)



Note 7: Exclusive external components tolerances.
Note 8: The adjustment of the overall phase relation and consequently the leading edge of the output pulse occurs automatically by phase control $\Phi 2$. The values beyond this point count if additional adjustment is required.

figure 1

## Block Diagram



## TDA3500 Chroma Processor + RGB Drive Combination

## General Description

The TDA3500 is a video processor designed for full feature color television applications. Luminance and color difference inputs are provided to be driven from the TV decoder circuitry, with linear RGB inputs available for the display of text or other on-screen information. The black levels of the two input modes are clamped to the same level and the required input mode may be selected by a fast switching control pin which can enable text to be inlaid on to the received TV picture. Brightness and contrast controls are provided and operate in both signal input modes. Three electronic gain controls are provided for adjustment of RGB signals for correct white.

The output stages produce signals suitable for driving the bases of the video output transistors. The feedback inputs are suitable for collector feedback from these transistors. Most common video output stage types can be used.

## Features

- AC coupled inputs for ( $R-Y$ ), ( $B-Y$ ) and $Y$ signals
- Linear saturation control in the color difference stages
- G-Y and RGB matrix
- Linear inputs for direct RGB signals-use for teletext, inset picture, program status, tuning indicators, etc.
- Fast switching input to select between RGB inputs and normal TV signal. Can be used to inlay text into normal picture
- Linear contrast and brightness controls operating on both RGB inputs and matrixed luminance and color difference inputs
- Equally clamped black levels for RGB inputs and matrixed signals
- Three identical signal channels for R, G, B
- Horizontal and vertical blanking (black level or blacker than black) and black level clamping by means of a three-level sandcastle pulse
- Three electronic gain controls for adjustment of white drive levels
- Differential amplifiers with feedback inputs for feedback from the RGB output stages
- Gated feedback paths for stabilization of the DC levels at the picture tube


## Connection Diagram



## Absolute Maximum Ratings

	Min		Max		Min		Max
Supply Voltage, $\mathrm{V}_{\mathrm{S}}$ (Pin 6)			13.2 V	V10	OV		$\mathrm{V}_{\text {S }}$
Operating Temperature Range, $T_{U}$	$-20^{\circ} \mathrm{C}$		$+60^{\circ} \mathrm{C}$	V11	$-0.5 \mathrm{~V}$		3 V
Storage Temperature Range, $\mathrm{T}_{\mathbf{S}}$	$-65^{\circ} \mathrm{C}$		$+150^{\circ} \mathrm{C}$	V12, 13, 14		Note 1	
Power Dissipation, $\mathrm{P}_{\text {TOT }}$	-		1.7 W	$\begin{aligned} & \mathrm{V} 16,19,20 \\ & \mathrm{~V} 15,17,18 \end{aligned}$	OV	Note 1	$\mathrm{V}_{\mathrm{S}} / 2$
Voltages				V21, 22, 23	OV		$\mathrm{V}_{\text {S }}$
V1, 4, 26	$\mathrm{V}_{\mathrm{S}} / 2$		$\mathrm{V}_{\mathrm{S}}+1 \mathrm{~V}$	Current			
$V 2,5,27$ $V 3,25,28$	OV	Note 1	$\mathrm{V}_{\mathrm{S}}$	$\mathrm{I}_{20}$			5 mA
V7, 8, 9		Note 1					

Electrical Characteristics $\mathrm{v}_{\mathrm{S}}=12 \mathrm{v}$ (Note 2), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$


Electrical Characteristics (Continued) $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$ (Note 2), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$


Note 1: No externally applied voltages.
Note 2: Supply voltage range (pin 6 ), $\mathrm{V}_{\mathrm{S}}=10.8 \mathrm{~V}-13.2 \mathrm{~V}$.
Note 3: During the clamp pulse period, the RGB inputs should be at black level as they are clamped to be equal to the matrixed luminance and color difference signal black levels. The output impedance of the drive to the RGB inputs should be less than $200 \Omega$ for correct clamp operation.
Note 4: With no external connection, pins 21, 22, 23 are internally biased to 6 V .
Note 5: Blanking level $=-20 \%$.
Note 6: Blanking level $=0 \%=$ clamp level.
Note 7: Minimum pulse width $=3.5 \mu \mathrm{~s}$. The clamps are permanently activated if pin 10 is open.

## Pin Function Description

## Pin

## Function

B-Y signal input (see pin 17). Contrast control input. Brightness control input. Blue drive adjustment.
A gain variation of typ $\pm 40 \%$ about the nominal is obtained as the voltage of this pin is varied $\pm 6 \mathrm{~V}$ about the nominal value of 6 V . If no connection is made, nominal gain is obtained. Green drive adjustment (see pin 21).
Red drive adjustment (see pin 21).
Negative supply, OV (earth).
Clamp capacitor for red output stage.
Red output signal.
Red signal feedback (see pin 2). Clamp capacitor for green output stage.

## Appiícation Hints

To use the TDA 3500 as a VDU driver with RGB input only, the $Y$ input (pin 15) may be left open. The B-Y and $R-Y$ input capacitors, pins 17 and 18, should be connected to ground to act as clamp capacitors.
If operation without RGB inputs is required, pins 12,13 and 14 may be left unconnected. Pin 11 may be unconnected or grounded.
The input coupling capacitor to pin 15 is not used as a clamp capacitor and may be omitted if AC coupling has been carried out in an earlier stage, or if the signal amplitude is so well defined as to remain within the window of the IC when DC coupled. A nominal bias of 2.7 V at black level should be provided.
The nominal control ranges for brightness, contrast and saturation given in the data may be changed with suitable potential dividers. The application circuit shows control ranges arranged for $0 \mathrm{~V}-12 \mathrm{~V}$ operation.
When the TDA3500 is not driving video output stages but providing low level outputs, low gain inverting amplifier stages are still required to provide feedback for the IC output stages.
Class $A B$ video output stages are shown in the application circuit. Though using more components than class $A$ types, they offer reduced power dissipation and better transient response. For good frequency response and stability, care is required with the stray capacitances on the printed circuit board. In a compact board layout this applies particularly to the capacitance between the video output and the feedback pins. The feedback resistor should be a low capacitance type.

Note 1: Attention should be given to earth paths, avoiding common impedances between the input (decoder) side and the output stages.
Note 2: Printed track area connected to the feedback pins should be kept to a minimum.
Note 3: To ensure a matched performance of the video output stages, a symmetrical layout of three stages should be employed.

## Block Diagram



Typical Application and Test Circuit


* Input termination $200 \Omega$ max

National Semiconductor

## TDA3501 Chroma Processor + RGB Drive Combination

## General Description

The TDA3501 is the same basic video processor as the TDA3500 with the addition of a gated peak beam current limiter circuit. Pin 23 is used as the beam current control input and the red channel gain is biased internally to the nominal value. Drive setting is achieved using the green and blue gain adjustments only.

## Application Hints

The TDA3501 is intended to be used for peak beam current limiting. Referring to the application circuit, the changing beam current waveform is developed across the resistor in series with the CRT aquadag ground return. This waveform is AC coupled to pin 23 of the TDA3501 where it is DC
restored to supply. When the negative-going peaks during the scan period pass the beam current input threshold, the contrast starts to be reduced. This action is gated off during the flyback period, blanking out flyback transients. The contrast control voltage is pulled down via an internal sink to pin 19, and the decoupling capacitor on this pin integrates the current pulses. Under extremes of beam current, the brightness will be pulled down via the internal diode connected between pins 19 and 20.

Pin 23 may also be used as an alternative blanking input, for example, for frame blanking instead of using a threelevel sandcastle pulse. Negative-going blanking pulses are required and the decoupling on pin 19 should be isolated via a series resistor for reasonable rise and fall times.

## Connection Diagram

Dual-In-Line Package


Order Number TDA3501N
See NS Package N28A

Electrical Characteristics $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. The TDA 3500 data applies except for the following parameters.

	Parameter	Conditions	Min	Typ	Max	Units
CONTRAST CONTROL (Pin 19)						
$\mathrm{l}_{19}$	Contrast Control Input Current				10	$\mu \mathrm{A}$
$\mathrm{l}_{19}$	Current Sinking	$\begin{aligned} & \mathrm{V} 23=5.8 \mathrm{~V} \\ & \mathrm{~V} 23=5.7 \mathrm{~V} \\ & \mathrm{~V} 23=5.6 \mathrm{~V} \end{aligned}$		0.7 10 16		mA   mA   mA
BEAM CURRENT CONTROL (Pin 23)						
V23	Internal Bias Voltage (Pin 23)			6		V
R23	Input Impedance			10	-	k $\Omega$

## Blocin Diaỹanii




* Input termination 200』 max

Section 12
Transistor/
Diode Arrays

## Section Contents

Transistor/Diode Arrays Selection Guide ..... 12-3
LM194/LM394 Supermatch Pair. ..... 12-4
LM195/LM295/LM395 Ultra Reliable Power Transistors ..... 12-10
LM3045, LM3046, LM3086 Transistor Arrays ..... 12-18
LM3146 High Voltage Transistor Array ..... 12-23

## Transistor/Diode Arrays

Selection Guide


LM195/LM295/LM395
(Current Limit, Thermal Limit, Safe Area Protection)




LM3045
LM3046
LM3086
LM3146

## LM194/LM394 Supermatch Pair

## General Description

The LM194 and LM394 are junction isolated ultra well-matched monolithic NPN transistor pairs with an order of magnitude improvement in matching over conventional transistor pairs. This was accomplished by advanced linear processing and a unique new device structure.

Electrical characteristics of these devices such as drift versus initial offset voltage, noise, and the exponential relationship of base-emitter voltage to collector current closely approach those of a theoretical transistor. Extrinsic emitter and base resistances are much lower than presently available pairs, either monolithic or discrete, giving extremely low noise and theoretical operation over a wide current range. Most parameters are guaranteed over a current range of $1 \mu \mathrm{~A}$ to 1 mA and 0 V up to 40 V collector-base voltage, ensuring superior performance in nearly all applications.

To guarantee long term stability of matching parameters, internal clamp diodes have been added across the emitterbase junction of each transistor. These prevent degradation due to reverse biased emitter current-the most common cause of field failures in matched devices. The parasitic isolation junction formed by the diodes also clamps the substrate region to the most negative emitter to ensure complete isolation between devices.

The LM194 and LM394 will provide a considerable improvement in performance in most applications requiring a closely matched transistor pair. In many cases, trimming can be eliminated entirely, improving reliability and decreasing costs. Additionally, the low noise and high gain make this device attractive even where matching is not critical.

The LM194 and LM394/LM394B/LM394C are available in an isolated header 6-lead TO-5 metal can package. The LM194 is identical to the LM394 except for tighter electrical specifications and wider temperature range.

## Features

- Emitter-base voltage matched to $50 \mu \mathrm{~V}$
- Offset voltage drift less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Current gain ( $\mathrm{h}_{\mathrm{FE}}$ ) matched to $2 \%$
- Common-mode rejection ratio greater than 120 dB
- Parameters guaranteed over $1 \mu \mathrm{~A}$ to 1 mA collector current
- Extremely low noise
- Superior logging characteristics compared to conventional pairs
- Plug-in replacement for presently available devices


## Typical Applications

Low Cost Accurate Square Root Circuit
IOUT $=10^{-5} \cdot \sqrt{10 V_{\text {IN }}}$


Low Cost Accurate Squaring Circuit $I_{O U T}=10^{-6}\left(V_{I N}\right)^{2}$

*Trim for full scale accuracy

## Absolute Maximum Ratings

Collector Current	20 mA
Collector-Emitter Voltage	VMAX
Callector-Emitter Voltage	40 V
LM394C	20 V
Collector-Base Voltage	40 V
LM394C	20 V
Collector-Substrate Voltage	40 V
LM394C	20 V


Collector-Collector Voltage	40 V
LM394C	20 V
Base-Emitter Current	$\pm 10 \mathrm{~mA}$
Power Dissipation	500 mW
Junction Temperature	
LM194	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM394/LM394B/LM394C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(T_{J}=25^{\circ} \mathrm{C}\right)$


Not̨e 1: Collector-base voltage is swept from 0 to $V_{M A X}$ at a collector current of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, and 1 mA .
Note 2: Offset voltage drift with $V_{O S}=0$ at $T_{A}=25^{\circ} \mathrm{C}$ is valıd only when the ratio of $\mathrm{I}_{\mathrm{C} 1}{ }^{\text {to }} \mathrm{I}_{\mathrm{C}}$ is adjusted to give the initial zero offset. This ratio must be held to within $0.003 \%$ over the entire temperature range. Measurements taken at $+25^{\circ} \mathrm{C}$ and temperature extremes.
Note 3: Logging conformity is measured by computing the best fit to a true exponential and expressing the error as a base-emitter voltage deviation.

## Typical Applications (Continued)

Fast. Accurate Logging Amplifier, $V_{I N}=10 \mathrm{~V}$ to 0.1 mV or $\mathrm{I}_{\mathrm{IN}}=1 \mathrm{~mA}$ to 10 nA


Typical Applications (Continued)
Voltage Controlled Variable Gain Amplifier


## Typical Applications (Continued)

High Accuracy One Quadrant Multiplier/Divider


High Performance Instrumentation Amplifier


Typical Performance Characteristics


Offset Voltage Drift vs Initial Offset Voltage





Base-Emitter On Voltage vs Collector Current


Collector-Emitter Saturation Voltage vs Collector Current



Unity Gain Frequency ( $f_{t}$ ) vs Collector Current


Small Signal
Input Resistance ( $h_{\text {ie }}$ ) vs Collector Current



## Typical Performance Characteristics (Continued)



Connection Diagram

Emitter-Base Capacitance vs Reverse Bias.Voltage


Collector to Collector Leakage vs Temperature


Low Frequency Noise of Differential Pair*


TIME (SEE GRAPH)
*Unit must be in still air environment so that differential lead temperature is held to less than $0.0003^{\circ} \mathrm{C}$.


TOP VIEW

Collector-Base Capacitance vs Reverse Bias Voltage



## LM195/LM295/LM395 Ultra Reliable Power Transistors

## General Description

The LM195/LM295/LM395 are fast, monolithic power transistors with complete overload protection. These devices, which act as high gain power transistors, have included on the chip, current limiting, power limiting, and thermal overload protection making them virtually impossible to destroy from any type of overload. In the standard TO-3 transistor power package, the LM195 will deliver load currents in excess of 1.0A and can switch 40 V in 500 ns .

The inclusion of thermal limiting, a feature not easily available in discrete designs, provides virtually absolute protection against overload. Excessive power dissipation or inadequate heat sinking causes the thermal limiting circuitry to turn off the device preventing excessive heating.

## Features

- Internal thermal limiting
- Greater than 1.0A output current
- $3.0 \mu \mathrm{~A}$ typical base current
- 500 ns switching time
- 2.0V saturation
m Base can be driven up to 40 V without damage
- Directly interfaces with CMOS or TTL
- $100 \%$ electrical burn-in

The LM195 offers a significant increase in reliability as well as simplifying power circuitry. In some applications, where protection is unusually difficult, such as switching regulators, lamp or solenoid drivers where normal power dissipation is low, the LM195 is especially advantageous.

The LM195 is easy to use and only a few precautions need be observed. Excessive collector to emitter voltage can destroy the LM195 as with any power transistor. When the device is used as an emitter follower with low source impedance, it is necessary to insert a 5.0 k resistor in series with the base lead to prevent possible emitter follower oscillations. Although the device is usually stable as an emitter follower, the resistor eliminates the possibility of trouble without degrading performance. Finally, since it has good high frequency response, supply by passing is recommended.

The LM195/LM295/LM395 are available in standard TO-3 power packages and solid Kovar TO-5. The LM195 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the LM295 from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM395 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

## Simplified Circuit and Connection Diagrams



## Absolute Maximum Ratings

Collector to Emitter Voltage	
LM195, LM295	42 V
LM395	36 V
Collector to Base Voltage	42 V
LM195, LM295	36 V
LM395	
Base to Emitter Voltage (Forward)	42 V
LM195, LM295	36 V
LM395	20 V
Base to Emitter Voltage (Reverse)	Internally Limited
Collector Current	Internally Limited
Power Dissipation	
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM195	$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM295	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM395	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storaqe Temperature Range	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	

## Preconditioning

100\% Burn-In In Thermal Limit

## Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LM195, LM295			LM395			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Collector-Emitter Operating Voltage (Note 3)	$\mathrm{I}_{0} \leq \mathrm{I}_{\mathrm{C}} \leq \mathrm{I}_{\text {MAX }}$			42			36	v
Base to Emitter Breakdown Voltage	$0 \leq \mathrm{V}_{\text {CE }} \leq \mathrm{V}_{\text {CEMAX }}$	42			36	60		v
Collector Current TO-3, TO. 220	$\mathrm{V}_{\text {CE }} \leq 15 \mathrm{~V}$	1.2	2.2		1.0	2.2		A
TO-5, TO-202	$\mathrm{V}_{\text {CE }} \leq 7.0 \mathrm{~V}$	1.2	1.8		1.0	1.8		A
Saturation Voltage	$\mathrm{I}_{\mathrm{C}} \leq 1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.8	2.0		1.8	2.2	V
Base Current	$\begin{aligned} & 0 \leq I_{C} \leq I_{\text {MAX }} \\ & 0 \leq V_{C E} \leq V_{\text {CEMAX }} \end{aligned}$		3.0	5.0		3.0	10	$\mu \mathrm{A}$
Quiescent Current ( ${ }_{0}$ )	$\begin{aligned} & \mathrm{V}_{\mathrm{be}}=0 \\ & 0 \leq \mathrm{V}_{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{CEMAX}} \end{aligned}$		2.0	5.0		2.0	10	mA
Base to Emitter Voltage	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.9			0.9		V
Switching Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=36 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=36 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		500			500		ns
Thermal Resistance Junction to	TO-3 Package		2.3	3.0		2.3	3.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Case (Note 2)	TO. 5 Package		12	15		12	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 195,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq+150^{\circ} \mathrm{C}$ for the LM295 and $0^{\circ} \mathrm{C} \leq+125^{\circ} \mathrm{C}$ for the LM395.
Note 2: Without a heat sink, the thermal resistance of the TO-5 package is about $+150^{\circ} \mathrm{C} / \mathrm{W}$, while that of the TO-3 package is $+35^{\circ} \mathrm{C} / \mathrm{W}$.
Note 3: Selected devices with higher breakdown available.

## Typical Performance Characteristics









Typical Performance Characteristics (Continued)


Schematic Diagram


Typical Applications

1.0 Ainp Voltage Follower


Power PNP

1.0 MHz Oscillator


Time Delay

1.0 Amp Lamp Flasher

Typical Applications (Continued)

1.0 Amp Negative Regulator

1.0 Amp Positive Voltage Regulator


Fast Optically Isolated Switch


Optically Isolated Power Transistor


CMOS or TTL Lamp Interface


Two Terminal Current Limiter


40V Switch

## Typical Applications (Continued)


6.0V Shunt Regulator with Crowbar


Low Level Power Switch


- NEED FOR STABILITY

Emitter Follower


Two Terminal 100 mA Current Regulator


Power One-Shot


High Input Impedance AC Emitter Follower


Fast Follower

Typical Applications (Continued)


6.0 Amp Variable Output Switching Regulator

## Transistor/Diode Arrays

## LM3045, LM3046, LM3086 Transistor Arrays

## General Description

The LM3045, LM3046, and LM3086 each consist of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differ-entially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the DC through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3045 is supplied in a 14 -lead cavity dual-in-line package rated for operation over the full military temperature range. The LM3046 and LM3086 are electrically identical to the LM3045 but are supplied in a 14 -lead molded dual-in-line package for applications requiring only a limited temperature range.

## Features

- Two matched pairs of transistors
$V_{B E}$ matched $\pm 5 \mathrm{mV}$
Input offset current $2 \mu \mathrm{~A}$ max at $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
- Five general purpose monolithic transistors
- Operation from DC to 120 MHz
- Wide operating current range
- Low noise figure $\quad 3.2 \mathrm{~dB}$ typ at 1 kHz
- Full military temperature range (LM3045) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$


## Applications

- General use in all types of signal processing systems operating anywhere in the frequency range from DC to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers


## Schematic and Connection Diagram

Dual-In-Line Package


TOP VIEW
Order Number LM3045J
See NS Package J14A
Order Number LM3046N
or LM3086N
See NS Package N14A

Absolute Maximum Ratings ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )					
	LM3045		LM3046/LM3086		Units
	Each Transistor	Total   Package	Each Transistor	Total   Package	
Power Dissipation:					
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	300	750	300	750	mW
$T_{A}=25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$			$300$	750	mW
$\mathrm{T}_{\mathrm{A}}>55^{\circ} \mathrm{C}$			Derate		$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	300	750			mW
$\mathrm{T}_{\mathrm{A}}>75^{\circ} \mathrm{C}$	Derat				$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Collector to Emitter Voltage, $\mathrm{V}_{\text {CEO }}$	15		15		V
Collector to Base Voltage, $\mathrm{V}_{\text {cbo }}$	20		20		V
Collector to Substrate Voltage, $\mathrm{V}_{\text {cıo }}$ (Note 1)	20		20		V
Emitter to Base Voltage, $\mathrm{V}_{\text {EBO }}$	5		5		V
Collector Current, $\mathrm{I}_{\mathrm{C}}$	50		50		mA
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to	$125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to	+85 ${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to	$150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to	$+85^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 sec )	300		300		${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	CONDITIONS	LIMITS			LIMITS			UNITS
		LM3045, LM3046			LM3086			
		MIN	TYP	MAX	MIN	TYP	MAX	
Collector to Base Breakdown Voltage ( $\mathrm{V}_{\text {(BR) }}$ (bo)	$I_{C}=10 \mu A, I_{E}=0$	20	60		20	60		V
Collector to Emitter Breakdown Voltage ( $\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$ )	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	15	24		15	24		$\checkmark$
Collector to Substrate Breakdown Voltage ( $\mathrm{V}_{\text {(BR)CIO }}$ )	$I_{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	20	60		20	60		V
Emitter to Base Breakdown Voltage ( $\mathrm{V}_{\text {(BR)EBO }}$ )	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	5	7		5	7		V
Collector Cutoff Current ( CBO )	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		. 002	40		. 002	100	nA
Collector Cutoff Current ( $\mathrm{I}_{\text {CEO }}$ )	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$			. 5			5	$\mu \mathrm{A}$
Static Forward Current Transfer Ratio (Static			100			100		
Static Forward Current Transfer Ratio (Static   Beta) ( $\mathrm{h}_{\mathrm{FE}}$ )	$V_{C E}=3 V\left\{\begin{array}{l} I_{C}=1 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \end{array}\right.$	40	$\begin{array}{r} 100 \\ 54 \end{array}$		40	$\begin{array}{r} 100 \\ 54 \end{array}$		
Input Offset Current for Matched Pair $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ $\left.\right\|_{\mathrm{OO}_{1}}$ - $\mathrm{I}_{102} \mid$	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		. 3	2				$\mu \mathrm{A}$.
Base to Emitter Voltage ( $\mathrm{V}_{\mathrm{BE}}$ )	$V_{C E}=3 V\left\{\begin{array}{l} l_{E}=1 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA} \end{array}\right.$		.715 .800			.715 .800		V
Magnitude of Input Offset Voltage for Differential Pair $\left\|V_{B E 1}-V_{B E 2}\right\|$	$\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		.45	5				mV
Magnitude of Input Offset Voltage for Isolated Transistors $\left\|V_{B E 3}-V_{B E 4}\right\|,\left\|V_{B E 4}-V_{B E 5}\right\|$, $\left\|V_{B E 5}-V_{B E 3}\right\|$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		. 45	5				mV
Temperature Coeffıcient of Base to Emitter Voltage $\left(\frac{\Delta V_{B E}}{\Delta T}\right)$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		-1.9			-1.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Collector to Emitter Saturation Voltage ( $\mathrm{V}_{\text {CE (SAT) }}$ )	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{C}=10 \mathrm{~mA}$		. 23			. 23		V
Temperature Coefficient of Input Offset Voltage $\left(\frac{\Delta V_{10}}{\Delta T}\right)$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		1.1					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Note 1: The collector of each transistor of the LM3045, LM3046, and LM3086 is isolated from the substrate by an integral diode. The substrate (terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

Electrical Characteristics (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Low Frequency Noise Figure (NF)	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$		3.25		dB
Low Frequency, Small Signal Equivalent Circuit Ch   Forward Current Transfer Ratio ( $\mathrm{h}_{\mathrm{fe}}$ )   Short Circuit Input Impedance ( $\mathrm{h}_{\mathrm{ie}}$ )   Open Circuit Output Impedance ( $\mathrm{h}_{\mathrm{oe}}$ )   Open Circuit Reverse Voltage Transfer Ratio ( $\mathrm{h}_{\mathrm{re}}$ )	aracteristics: $f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		110 (LM3045, LM3046)   (LM3086) $\begin{gathered} 3.5 \\ 15.6 \\ 1.8 \times 10^{-4} \end{gathered}$		$k \Omega$ $\mu \mathrm{mho}$
Admittance Characteristics:   Forward Transfer Admittance ( $\mathrm{Y}_{\mathrm{fe}}$ )   Input Admittance ( $\mathrm{Y}_{\mathrm{ie}}$ )   Output Admittance ( $\mathrm{Y}_{\mathrm{oe}}$ )   Reverse Transfer Admittance ( $\mathrm{Y}_{\mathrm{re}}$ )   Gain Bandwidth Product ( $f_{T}$ )   Emitter to Base Capacitance ( $\mathrm{C}_{\mathrm{EB}}$ )   Collector to Base Capacitance ( $\mathrm{C}_{\mathrm{CB}}$ )   Collector to Substrate Capacitance ( $\mathrm{C}_{\mathrm{C}}$ )	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{EB}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0 \\ & \mathrm{~V}_{\mathrm{CS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0 \end{aligned}$	300	$\begin{gathered} 31-\mathrm{j} 1.5 \\ 0.3+\mathrm{j} 0.04 \\ 0.001+\mathrm{j} 0.03 \\ \text { See curve } \\ 550 \\ .6 \\ .58 \\ 2.8 \end{gathered}$		pF   pF   pF

Typical Performance Characteristics



Typical Static Base To Emitter Voltage Characteristic and Input
Offset Voltage for Differential
Pair and Paired Isolated
Transistors vs Emitter Current


## Typical Performance Characteristics (Continued)





Typical Output Admittance vs Frequency


Typical Performance Characteristics (Continued)


## LM3146 High Voltage Transistor Array

## Generai $\overline{\text { Uescription }}$

The LM3146 consists of five high voltage general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally con-nected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the dc through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3146 is supplied in a 14 -lead molded dual-inline package for applications requiring only a limited temperature range.

## Features

- High voltage matched pairs of transistors, $\mathrm{V}_{\mathrm{BE}}$ matched $\pm 5 \mathrm{mV}$, input offset current $2 \mu \mathrm{~A}$ max at $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
- Five general purpose monolithic transistors
- Operation from dc to 120 MHz
- Wide operating current range
- Low noise figure
3.2 dB typ at 1 kHz


## Applications

- General use in all types of signal processing systems operating anywhere in the frequency range from dc to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers


## Connection Diagram

## Dual-In-Line Package



## Absolute Maximum Ratings

Power Dissipation: Each Transistor

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	300	mW
$\mathrm{~T}_{\mathrm{A}}>55^{\circ} \mathrm{C}$	Derate at 6.67	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ower Dissipation: Total Package		
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	500	mW
$\mathrm{~T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$	Derate at 6.67	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Collector to Emitter Voltage, $\mathrm{V}_{\text {CEO }}$
Collector to Base Voltage, $\mathrm{V}_{\text {CBO }}$
Collector to Substrate Voltage, $\mathrm{V}_{\mathrm{CIO}}$ (Note 1)
Emitter to Base Voltage, $\mathrm{V}_{\mathrm{EBO}}$ (Note 2)
Collector Current, IC
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

LM3146
UNITS

40	V
40	V
5	V
50	mA
-40 to +85	${ }^{\circ} \mathrm{C}$
-65 to +150	${ }^{\circ} \mathrm{C}$
300	${ }^{\circ} \mathrm{C}$

## DC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
	Collector to Base Breakdown Voltage ( $\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$ )	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	40	72		V
	Collector to Emitter Breakdown Voltage ( $\mathrm{V}_{\text {(BR)CEO}}$ )	$I_{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	30	56		V
	Collector to Substrate Breakdown Voltage ( $\mathrm{V}_{(\mathrm{BR}) \mathrm{CIO}}$ )	$\begin{aligned} & I_{C I}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \\ & I_{\mathrm{E}}=0 \end{aligned}$	40	72		V
	Emitter to Base Breakdown Voltage ( $\mathrm{V}_{\text {(BR)EBO }}$ ) (Note 2)	$I_{C}=0, I_{E}=10 \mu \mathrm{~A}$	5	7		V
	Collector Cutoff Current ( $\mathrm{I}_{\text {CBO }}$ )	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		0.002	100	nA
	Collector Cutoff Current ( $\mathrm{I}_{\text {ceo }}$ )	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$		(Note 3)	5	$\mu \mathrm{A}$
	Static Forward Current Transfer Ratio (Static Beta) ( $h_{\text {FE }}$ )	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	30	$\begin{aligned} & 85 \\ & 100 \\ & 90 \end{aligned}$		
1	Input Offset Current for Matched Pair Q1 and Q2 $\left\|I_{B 1}-I_{B 2}\right\|$	$\begin{aligned} & I_{C 1}=I_{C 2}=1 \mathrm{~mA}, \\ & V_{C E}=5 V \end{aligned}$		0.3	2	$\mu \mathrm{A}$
	Base to Emitter Voltage ( $\mathrm{V}_{\mathrm{BE}}$ )	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}$	0.63	0.73	0.83	V
	Magnitude of Input Offset Voltage for Differential Pair $\left\|V_{B E 1}-V_{B E 2}\right\|$	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$		0.48	5	$m V$
	Temperature Coefficient of Base to Emitter Voltage ( $\Delta \mathrm{V}_{\mathrm{BE}} / \Delta \mathrm{T}$ )	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$		-1.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
	Collector to Emitter Saturation Voltage ( $\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})}$ )	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$		0.33		V
	Temperature Coefficient of Input Offset Voltage ( $\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$ )	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$		1.1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Note 1: The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transitors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal should be maintained at either dc or signal (ac) ground. A suitable bypass capacitor can be used to establish a signal ground.
Note 2: If the transistors are forced into zener breakdown ( $\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$ ), degradation of forward transfer current ratio (hFE) can occur.
Note 3: See curve.

## AC Electrical Characteristics

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Low Frequency Noise Figure (NF)	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$		3.25		dB
Gain Bandwidth Product ( $\mathrm{f}_{\mathrm{T}}$ )	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$	300	500		MHz
Emitter to Base Capacitance ( $\mathrm{C}_{\mathrm{EB}}$ )	$V_{E B}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		0.70		pF
Collector to Base Capacitance ( $\mathrm{C}_{\mathrm{CB}}$ )	$V_{C B}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		0.37		pF
Collector to Substrate Capacitance ( $\mathrm{C}_{\mathrm{c}}$ )	$\mathrm{V}_{\mathrm{Cl}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		2.2		pF
LOW FREQUENCY, SMALL SIGNAL EQUIVALENT CIRCUIT CHARACTERISTICS					
Forward Current Transfer Ratio ( $\mathrm{hfe}_{\text {fe }}$ )	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$		100		
Short Cirrnit Innut Imnetance ( $\mathrm{h}_{\text {i }}$ !	$\begin{aligned} & \mathrm{f}=1 \mathrm{kH} . \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V} . \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$		3.5		$k \Omega$
Open Circuit Output Impedance ( $\mathrm{hae}_{\text {o }}$ )	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$		15.6		$\mu \mathrm{mho}$
Open Circuit Reverse Voltage Transfer Ratio ( $\mathrm{h}_{\mathrm{re}}$ )	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 1.8 x \\ & 10^{-4} \end{aligned}$		
ADMITTANCE CHARACTERISTICS					
Forward Transfer Admittance ( $\mathrm{Y}_{\mathrm{fe}}$ )	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 31- \\ & \text { j } 1.5 \end{aligned}$		mmho
Input Admittance ( $\mathrm{Y}_{\mathrm{ie}}$ )	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.3+ \\ & \mathrm{j} 0.04 \end{aligned}$		mmho
Output Admittance ( $Y_{\text {oe }}$ )	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.001+ \\ & \text { j } 0.03 \end{aligned}$		mmho
Reverse Transfer Admittance ( $\mathrm{Y}_{\mathrm{re}}$ )	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} . \end{aligned}$		(Note 3)		mmho

Note 1: The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transitors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal should be maintained at either dc or signal (ac) ground. A suitable bypass capacitor can be used to establish a signal ground.
Note 2: If the transistors are forced into zener breakdown ( $V(B R) E B O$ ), degradation of forward transfer current ratio ( $h_{F E}$ ) can occur.
Note 3: See curve.

## Typical Performance Characteristics





$V_{C E}$ (SAT) vs IC for
Any Transistor

$V_{B E}$ and $V_{I O}$ vs ${ }^{\prime} \mathrm{E}$ for $\mathbf{Q 1}$ and $\mathbf{Q 2}$




Typical Performance Characteristics ,(Continued)


## DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis

## Section Contents

BLX-281 Speech Synthesis Expansion Module ..... 13-3
DT1000 DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis Evaluation Board ..... 13.7
DT1050/DT1053 DIGITALKER ${ }^{\text {TM }}$ Standard Vocabulary Kit ..... 13-14
DT1051/DT1054 DIGITALKER ${ }^{\text {TM }}$ Speech Evaluation Kit ..... 13-22
DT1052/DT1055 DIGITALKER ${ }^{\text {TM }}$ Basic Numbers Kit . ..... 13-24
DT1056/DT1057 DIGITALKER ${ }^{\text {TM }}$ Standard Vocabulary Kit ..... 13-26
MM54104 DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis System ..... 13-34
LB-54 Circuit for Evaluation of Custom Vocabulary EPROM Prototype Set . ..... 13-41
AN-252 Speech Synthesis ..... 13-43

# BLX-281 Speech Synthesis Expansion Module 



- BLX bus-compatible I/O expansion
- Speech synthesis based on DIGITALKER ${ }^{\text {™ }}$
- Large vocabulary adequate for most applications
- On-board filter and half-watt amplifier


## © Simple operation for user

 - I/O write with word/sound address - Interrupt asserted when complete준 BLX bus on-board expansion elimates Multibus ${ }^{\text {TM }}$ system bus latency and increases system throughput

## Product Overview

The BLX-281 Speech Synthesis Expansion Module is a member of the new line of BLX bus-compatible expansion module products from National Semiconductor Corporation. The BLX-281 plugs directly into any BLX bus-compatible host board offering low cost incremental on-board expansion. As a result, any BLX bus-compatible host board may be given the ability to "speak". By merely adding a speaker to a system containing the BLX-281, many users can do away with CRTs, printers, rows of LEDs, or similar communications devices. This lowers the cost of most systems, and has the added benefit of removing messages which are potentially ambiguous and hard-to-understand for untrained users. The BLX-281 contains 144 words, sounds, tones, and durations of silence, each of which has a unique address. A table of addresses (desired words/sounds) is built, and passed to the BLX-281. An on-board filter and amplifier provide the actual speech signal to a standard miniature phone jack. The BLX module is closely coupled to the host board through the BLX bus, and as such, offers maximum on-board performance, and frees Multibus system traffic for other system resources. Incremental power dissipation is minimal, requiring only 3.7 watts.
DIGITALKER is a trademark of National Semiconductor Corp.

## Functional Description

The BLX-281 Speech Synthesis Expansion Module uses the MM54104 Speech Processor Chip from National Semiconductor Corporation. The digitized and compressed speech data are contained in an MM52164 Maxi-ROM. The system software communicates with the BLX- 281 across the BLX bus using I/O read/write commands.

## Vocabulary

The standard vocabulary set offered on the BLX-281 is shown in Table I, along with the assigned addresses for each item. By combining the appropriate words, sounds, tones, and silence durations, speech can be generated to satisfy many applications.
Words required, but not found in the table, can frequently be built. Examples of this are: combine "RE" with "SET" for "RESET", or combine "DEGREE" with "SS" for "DEGREES'.
In normal human speech, the brain puts durations of silence between the words to make the sentence flow smoothly. This is provided for in the BLX-281 (see Table I). A suggestion for improved phrase quality is to insert 80 milliseconds of silence prior
Multibus is a trademark of Intel Corp.
to words beginning with the letters $K, T, P, B, D$, and $G$, and to add 40 milliseconds of silence after words ending in those same letters.
The "voice" output of the BLX-281 is a highly intelligible, male voice. If another voice is required, or the application is non-English, or involves unusual terminology, any voice can be processed for use on the BLX-281 by the factory.

## Host Interface

The BLX bus-compatible host board merely passes the address of the desired word/sound to the BLX-281 Speech Synthesis Expansion Module via an I/O write. When the operation is complete, an interrupt is generated. This informs the host of the end of the speech
sequence, and allows for cascading of addresses for true, human-quality sentences.

## Interrupt Requests

There is one interrupt line from the Speech Processor Chip that generates an interrupt request to the host CPU. It is active on completion of each speech sequence. It is cleared by an I/O read to the BLX-281.

## Installation

The BLX-281 module plugs directly into either of the female BLX connectors on the host board. The module is then secured at one additional point with nylon hardware to insure the mechanical security of the assembly (see Figures 1 and 2).


Figure 1. Installation of the BLX-281 Module on a Host Board

Table I. Master Word List

Word	8-Bit Binary Address	Word	8-Bit Binary Address	Word	8-Bit Binary Address
	Bit 7 Bit 0		Bit 7 Bit 0		Bit $7 \quad$ Blt 0
THIS IS DIGITALKER	00000000	Q	00110000	IS	01100000
ONE	00000001	R	00110001	IT	01100001
TWO	00000010	S	00110010	KILO	01100010
THREE	00000011	T	00110011	LEFT	01100011
FOUR	00000100	U	00110100	LESS	01100100
FIVE	00000101	V	00110101	LESSER	01100101
SIX	00000110	W	00110110	LIMIT	01100110
SEVEN	00000111	X	00110111	LOW	01100111
EIGHT	00001000	Y	00111000	LOWER	01101000
NINE	00001001	Z	00111001	MARK	01101001
TEN	00001010	AGAIN	00111010	METER	01101010
ELEVEN	00001011	AMPERE	00111011	MILE	01101011
TWELVE	00001100	AND	00111100	MILLI	01101100
TH! ${ }^{\text {PTEEN }}$	00001101	AT	00111101	MINUS	01101101
FOURTEEN	00001110	CANCEL	00111110	MINUTE	
FIFTEEN	00001111	CASE	00111111	NEAR	01101111
SIXTEEN	00010000	CENT	01000000	NUMBER	01110000
SEVENTEEN	00010001	400 Hz TONE	01000001	OF	01110001
EIGHTEEN	00010010	80 Hz TONE	01000010	OFF	01110010
NINETEEN	00010011	20 ms SILENCE	01000011	ON	01110011
TWENTY	00010100	40 ms SILENCE	01000100	OUT	01110100
THIRTY	00010101	80 ms SILENCE	01000101	OVER	01110101
FORTY	00010110	160 ms SILENCE	01000110	PARENTHESIS	01110110
FIFTY	00010111	320 ms SILENCE	01000111	PERCENT	01110111
SIXTY	00011000	CENTI	01001000	PLEASE	01111000
SEVENTY	00011001	CHECK	01001001	PLUS	01111001
EIGHTY	00011010	COMMA	01001010	POINT	01111010
NINETY	00011011	CONTROL	01001011	POUND	01111011
HUNDRED	00011100	DANGER	01001100	PULSES	01111100
THOUSAND	00011101	DEGREE	01001101	RATE	01111101
MILLION	00011110	DOLLAR	01001110	RE	01111110
ZERO	00011111	DOWN	01001111	READY	01111111
A	00100000	EQUAL	01010000	RIGHT	10000000
B	00100001	ERROR	01010001	SS	10000001
C	00100010	FEET	01010010	SECOND	10000010
D	00100011	FLOW	01010011	SET	10000011
E	00100100	FUEL	01010100	SPACE	10000100
F	00100101	GALLON	01010101	SPEED	10000101
G	00100110	GO	01010110	STAR	10000110
H	00100111	GRAM	01010111	START	10000111
1	00101000	GREAT	01011000	STOP	10001000
$J$	00101001	GREATER	01011001	THAN	10001001
K	00101010	HAVE	01011010	THE	10001010
L	00101011	HIGH	01011011	TIME	10001011
M	00101100	HIGHER	01011100	TRY	10001100
N	00101101	HOUR	01011101	UP	10001101
0	00101110	IN	01011110	VOLT	10001110
P	00101111	INCHES	01011111	WEIGHT	10001111

[^66] invalid speech data.


Figure 2. BLX-281 Expansion Module Mounting Clearances (inches)

## Specifications

Word Size
Data -
8 bits
I/O Addressing

Function	Type of   Operation	BLX Connector   Port Address
Data Transfer	Write	XO-XF
Interrupt Clear	Read	X0-XF

Note: The port addresses are determined on the host BLC microcomputer. Refer to the Hardware Reference Manual for your host BLC microcomputer to determine the first digit $(\mathrm{X}$ ) of the connector port address.

## Vocabulary - See Table I <br> Interrupts - One interrupt request at end of speech sequence <br> Interfaces - <br> BLX Bus - All signals TTL compatible Speaker Port $-1 / 2 W$ audio signal into $4-8 \Omega$

## Speaker Port

Connector - Standard miniature phone-jack

Physical	Height: 2.85 in. ( 7.24 cm )   Width: 3.70 in. $(9.40 \mathrm{~cm})$   Depth   BLX-281 Module $0.80 \mathrm{in} .(2.04 \mathrm{~cm})$   BLX-281 Module + Host Board $1.13 \mathrm{in} .(2.86 \mathrm{~cm})$   Weight: 1.7 oz . 48 gm )
Electrical	$\begin{aligned} & +5 \mathrm{VDC} \pm 5 \% @ 385 \mathrm{~mA} \\ & +12 \mathrm{VDC} \pm 5 \% @ 150 \mathrm{~mA} \end{aligned}$
Environmental	Operating Temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Relative Humidity: 0\% to $90 \%$, non-condensing

Ordering Information
BLX-281 Speech Synthesis Expansion Module

## Documentation

420306414-001 BLX-281 Speech Synthesis Expansion Module User's Manual

[^67]
## DT1000 DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis Evaluation Board

## General Description

The DIGITALKER ${ }^{\text {TM }}$ (DT1000) speech synthesis evaluation board is an extremely easy to use device for understanding the operation and application of the DIGITALKER chip set in an end product.

The DT1000 contains all components required to output
 MAXI-ROMs ${ }^{\oplus}$ containing 138 individual words, linear filter, audio amplifier, keyboard, and a COPS ${ }^{T M}$ microcontroller complete with stored data programmed to provide the various functions on the board. The only external hardware required for complete operation are a single 7V-11V power supply, a speaker of your choice for size and quality, and this instruction sheet.

The 2 speech MAXI-ROMs employed on the board contain a brief introductory phrase, 138 separate and individual words consisting of numbers and letters of the alphabet, assorted useful nouns, verbs and tones; and 5 different individual silence durations. (In constructing a phrase, different silence durations between different "words significantly affect the overall quality of the phrase.)

A COPS program is provided which permits the user to: 1) sequentially output each word automatically; 2) repeat any desired word; 3) build and store several short phrases for outputting when desired; 4) output a "canned" phrase which permits insertions and changing of a word in the phrase; 5) play a simple game which requires some interaction between the keyboard and the user; and 6) out-


## Features

- Only a single $7 \mathrm{~V}-11 \mathrm{~V}$ power supply and inexpensive loudspeaker required for total operation
- 138 individually addressable words, applicable to many products
- Programmed COPS processor permits 6 individual program modes
- Demonstrates the extreme flexibility and ease of application of the DIGITALKER chip set
- $1 / 2$ watt audio amplifier on-board
- Edge connector facilitates tying in to external processor system (3M Company connector part number \#3415)


## DT1000 Conceptual Drawing

 under U.S. Patent Application 432,859 and any patent or patents issuing thereon to use such products, to assemble or otherwise incorporate them into further prod. ucts which may be covered by said patent application, or any patent or patents issuing thereon, and to use, sell, or otherwise dispose of such products":
MAXI-ROM ${ }^{\text {® }}$ is a registered trademark of National Semiconductor Corp. DIGITALKER ${ }^{\text {TM }}$ and COPS ${ }^{\text {TM }}$ are trademarks of National Semiconductor Corp.

# Absolute Maximum Ratings 

Operating Temperature Range<br>$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$<br>$V_{D D}$ Supply Voltage<br>12 V

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{D D^{*}}$	Supply Voltage	$V_{S S}=0 \mathrm{~V}$	7.0		11.0	V
$I_{D D}$	Supply Current	$V_{D D}=11 \mathrm{~V}$			0.6	A
	Amplifier Output	$V_{D D}=11 \mathrm{~V}, 8 \Omega$	0.55		W	
		$V_{D D}=9 \mathrm{~V}, 8 \Omega$	0.50		W	

* Important! $\mathrm{V}_{\mathrm{DD}}$ must be regulated!

All pin connections, except for speaker out, and power supply, are TTL compatible.

## Functional Description

## INSTRUCTIONS FOR USE

In any case, plus 7V to 11 V direct current and ground must be brought to the respective pins on the edge connector of the DT1000 board. See Figure 1.

## BASIC MODE OPERATIONS

1. Power Up Mode. At power up, the DT1000 will say "This is DIGITALKER". You can make it repeat this phrase by depressing $A$. Further depressions of $A$ will repeat the same phrase until a new word address is entered. From the DT1000 master word list (Table I) select the 3-digit address of the next word desired. The new word can be outputted simply by keying in its 3-digit address and ending with an $[\bar{A}$ key depression. For example, the word "pound" will be spoken as a result of key sequence $1,2,3, \Delta$. Additional depressions of A will repeat the word "pound". To output a new word, repeat the above sequence.
If a mistake is made in the address entry of the desired word, simply continue to key in the correct address. The DT1000 only remembers the last 3 address digits keyed prior to depression of the key. For example, if the desired word is "pound" and keys 1, 2, 2, were depressed, simply rekey the proper address followed by the $\triangle$ key as shown $1,2,3, \square$.
In this Power Up Mode the $B$ key will advance to the next sequential word in the DT1000 master word list, one word per depression, starting with the next sequential word after the word selected by the entry sequence shown above. Continued depressions of $B$ will manually sequence through the complete word list, wrapping around from address 143 to address 000 and ending up at the first word in the sequence. Depres-' sions of the A key will take the DT1000 back to the starting word and address inputted via the entry sequence shown above. Additional depressions of the $B$ key would then sequence from that address again. Should a different start word be desired, you must enter the respective address of that word as is shown in the above sequence.

The DT1000 has 144 legal address locations, these are shown in the Master Word List as being addresses 000 through 143. If an address of 144 through 199 is inadvertently keyed in, a response of "Please Try Again" will be outputted. Addresses 200 and up will put the DT1000 into various operating modes as explained in paragraphs 2 through 7.
2. Auto Repeat/Auto Cycle Mode. The Auto Repeat/Cycle Mode is entered by depressing 2 00 and either the $A$ or $B$ key. An additional depression of $A$ will start an automatic repeating cycle of some word and address, until the A key is depressed and held momentarily. Depression of the B key will start the automatic sequential cycling through the complete word list, beginning with the last word that was outputted in either the Auto Repeat or Auto Cycle Mode. The sequential cycling will automatically continue through the entire word list, wrapping around from address 143 to address 000 each time until the A or [B key is depressed and held momentarily. When in this mode you can choose a new starting word by entering its respective address and keying either the © or B keys.
3. Decimal to Hex Conversion Mode. Key sequence (3) 0 0 A (or B ) will put the DT1000 into a mode where it will automatically convert a decimal address into its hexadecimal equivalent. Once in this mode, key in the decimal address desired from the master word list, and depress the $\triangle$ key twice. The respective word will be spoken on the first depression of $A$, a further depression of $A$ will cause its hexadecimal equivalent address to be spoken.

A B key activation stand alone will set the DT1000 into the Power Up Manual Control Mode.

## Functiona! Description (Continued)

4. Phrase Construct Mode. In this mode, it is possible to string respective word addresses together to create up to 3 phrases or short sentences and play them back upon demand. The phrase modes are 400 , (5) 0] , and 60 . The 400 mode will store up to twelve word addresses, the 500 and 600 modes will store up to six addresses each. Initial phrase construction should begin with key sequence $4000 B$ where the $B$ depression clears out any addresses previously stored. (In either the 400 , [50 0 , 600 sequence, the 0 key will "clear" out any previous addresses stored in those respective modes.) You are then ready to string addresses together to construct a phrase. To construct the phrase, simply enter each address of the words desired in the phrase and in the sequence in which the words are to be outputted. Each word address keyed in must be followed by two depressions of the B key. The first depression of the $B$ key will speak the word at that respective address to give you a chance to "hear" the word betore its address is "Ioaded" into the DT1000 RAM. A second depression of the Bey will store that address into the DT1000 RAM and that word is then in position in the desired phrase. If upon the first depression of the $B$ key the word outputted is not the desired word, simply key in the correct address and depress the Bey again, and again finally to store into the RAM. In the construction of a phrase a "beep" will occur during the addressing of the last possible address that will fit into that particular phrase mode. (If additional addresses are still keyed in, they will replace the first addresses loaded in that same phrase.)

An example of constructing a phrase is as follows for the desired word sequence "To start the time set the meter and go", key sequence: 4 0 , 0 B /


 output this same phrase, depress the A key. The above phrase should automatically be spoken from the DT1000. Additional keyings of A will output the same phrase until it is cleared out by a 400 B sequence.

Registers 500 and 600 can be loaded in exactly the same way as shown above, except that the [5] 0 B and/or the 600 B keys must be addressed to load those respective registers. Remember that registers 500 and 600 are each only 6 addresses long.

If you chose to construct the exact phrase as shown above, you may have noticed that the spoken output was rather a mechanical output. This is primarily due to the fact that the words were butted against each other. In normal human speech, the brain puts durations of silence between the words to make the sentence flow smoothly. Since several durations of silence are provided in the Master Word List, the actual quality of the same phrase can be significantly improved by adding durations of silence (also assigned addresses) between the words. As one thinks about how the phrase is actually spoken, one might assume the approximate duration of silence between each word, and insert the closest duration of silence from the word list. It is found that some experimentation in this area can significantly enhance the quality of the desired phrase. A hint in
this area would be that for words beginning with the letters K, T, P, B, D, and G insert 80 milliseconds silence prior to the words, and for words ending in the same letters as above, 40 milliseconds silence following the word is recommended. It is also possible in this mode to make any singular word plural by the addition of "SS" (Address 129) to the word. In this case no silence should be inserted between the word and the "SS".

4A. Phrase Output Mode. As stated in (4) any phrase can be outputted by being in the 400,500 or 600 modes and depressing the $\bar{A}$ key. It is also possible to output all 3 phrases in any sequence. To "string" these phrases together, simply key in the phrase sequence desired concluded with two depressions of the A key. Key sequence 4 5 5 ( A ( $A$ would output phrases at $400-500$ and 600 respectively. (This would indicate that a sentence 24 addresses long might be constructed.) Any phrase sequence might actually be chosen, 546, 645 , etc. For an interesting effect the same phrase could be outputted twice or even three times such as 455. 444. 664. etc.
5. Canned Phrase Mode. Key sequence 7 ] 0 , (or B) will output a fixed phrase "The time is $\qquad$ P.M.". This gives you the ability to insert the desired word(s) in the blank location. In this case "twelve OH one" might be appropriate. While in the 7 0 0 A mode simply key in the respective addresses of the words desired, inserting silences if required, exactly the same as constructing a phrase in the 400-500 or 600 modes. To output the completed phrase, simply depress the $\triangle$ key. To insert a new word sequence into the blank, key $70 \square 0$ to erase the original contents. Then enter the new word addresses as required.
This mode demonstrates how a talking clock or a trip computer might work. Changing data can be inserted at the required time as a part of a fixed message.
6. Reaction Timer Game. Key sequence 8000 A (or B ) enters you into a simple game which could conceptually be a real product. In this mode, the DT1000 speaks ten random numbers from zero to nine, with a pause between each number output. The game is to hit the respective key as fast as possible after the number has been called out. After the tenth and last number has been depressed, a tone is outputted and the total reaction time is spoken as "seven point three two five seconds". Obviously, the game is to have the lowest possible total reaction time. Note that it is necessary to eventually hit the correct key for the number called out. If the wrong key is depressed, the DT1000 will not output another number until the correct key is depressedmeanwhile, time is accruing. It should also be noted that the random pauses between word outputs is not part of total elapsed time.
To continue playing the game, keying the $\triangle$ key will output a new set of numbers. To exit the game mode, depress the key.
7. Back to Power Up Mode. Key sequence $900 \square$ (or $B_{\text {B }}$ ) will put the DT1000 back into the Power Up Mode. Refer to mode (1.) explained in the earlier section of this data sheet for all operations covered by this mode.

## Functional Description (Continued)

## GENERAL COMMENTS

1. The DT1000 is always in one of the modes. To exit a mode, simply key in the control code of the next desired mode.
2. "SS" (located at address 129) can make singular words plural.
3. "Centi", "milli", "re" are prefixes to make words like "centimeter",""reset", etc. Some prefixes do not blend well directly with some words such as "milli ampere". In these cases, insert an appropriate amount of silence between the words.
4. High output volume can be obtained by supplying 11V to power supply input (pin 50).

## SPEECH QUALITY

The actual speech quality of the DT1000 is affected by many factors. Certainly the quality is affected most significantly by the actual speaker and baffle chosen to output the final speech data. Although the DT1000 will drive most any size of "common" PM speakers, care ought to be made in the actual selection of the speaker, AND its respective baffle or enclosure. An unbaffled speaker will not give a true response, small speakers typically do not reproduce low frequencies. Truly, the most desirable com-
bination for best quality would be a medium size speaker 6 inches to 12 inches in diameter, and housed in a solid wood enclosed baffle.
One can actually "experiment" with the quality by trying various speaker and baffle combinations.

## APPLICATION WITH EXTERNAL PROCESSOR

The DT1000 is designed so that it is possible to access only the DIGITALKER portion of the board. Important: it is necessary to remove the COP402 from the DT1000 in this mode. The DIGITALKER portion is defined as the speech processor chip (SPC) and the speech ROM(s) which contain the actual vocabulary (see Table I). The inputs required to connect the DIGITALKER (and the vocabulary of the DT1000 board) to an external processor have been made available on the pin edge connector (refer to Figure3).

The following describes the function of all speech processor chip (SPC) inputs and outputs, and all other inputs and outputs required for operation in this external processor mode. Note: in the following descriptions and Table I , a low represents a logic zero ( 0.4 V nominal) and a high represents a logic one ( 2.4 V nominal).

## CONNECTION REQUIREMENTS FOR EXTERNAL PROCESSOR APPLICATIONS

Edge Connector Pin Number	Function	Edge Connector Pin Number	Function
8	Chip Select ( $\overline{\mathrm{CS}}$ ). The SPC is selected when $\overline{\mathrm{CS}}$ is low. It is only necessary to have $\overline{\mathrm{CS}}$ low during a command to the SPC. It is not necessary to hold CS low for the duration of the speech data.	37	Write Strobe ( $\overline{W R}$ ). This line latches the starting address (A0-A7) into a register. On the rising edge of the $\overline{W R}$, the SPC starts execution of the command specified by CMS. The command sequence is shown in the timing waveform section. If a command to start a new speech sequence is issued during a speech sequence, the new speech sequence will be started immediately.
3 43	Data Bus (SW1-SW8).   SW1 (LSB) This is an 8-bit parallel SW2 binary data bus which SW3 accepts the binary adSW4 dress of the desired SW5 word. The binary adSW6 dresses are available SW7 from Table I and are   SW8 (MSB) the same as the decimal address from the word list. Unused inputs must be connected to ground when used with external logic.		
45		50	Power Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}$ ). Plus 7V
13			to 11V maximum, direct current, to
9			SPC, filter and amplifier sections..
16			Important! $\mathrm{V}_{\mathrm{DD}}$ must be regulated!
11		47	Ground ( $\mathrm{V}_{\mathrm{SS}}$ ).
		7	Interrupt Output (INTR). This signal goes high at the completion of any speech sequence. It is reset by the next valid command. It is also reset at power up.
34	Command Select (CMS). This line is used to specify the two commands to the SPC.	10	Speaker Output. $4 \Omega-8 \Omega 1 / 2 \mathrm{~W}$ at $\mathrm{V}_{\mathrm{DD}}$, 11.0V
	CMS   Command   0 Function    Reset interrupt   and start speech   sequence		
	$1 \quad \begin{aligned} & \text { Reset interrupt } \\ & \text { only }\end{aligned}$		


Functional Description (Continued)								
TABLE 1. DT1000 MASTER WORD LIST								
Word	Keyboard   Address	8-Bit Binary Address SW 8 SW1	Word	Keyboard Address	8-Bit Binary Address SW 8 SW1	Word	Keyboard   Address	8-Bit Binary Address SW 8 SW1
	Address	SW8 SW1		Address	$\begin{array}{ll} \text { SW } 8 & \text { SW } 1 \\ & \end{array}$			$\begin{array}{ll} \text { SW } 8 & \text { SW } 1 \\ \square & \end{array}$
THIS IS DIGITALKER	000	00000000	W	054	00110110	MILLI	108	01101100
ONE	001	00000001	$X$	055	00110111	MINUS	109	01101101
TWO	002	00000010	Y	056	00111000	MINUTE	110	01101110
THREE	003	00000011	Z	057	00111001	NEAR	111	01101111
FOUR	004	00000100	AGAIN	058	00111010	NUMBER	112	01110000
FIVE	005	00000101	AMPERE	059	00111011	OF	113	01110001
SIX	006	00000110	AND	060	00111100	OFF	114	01110010
SEVEN	007	00000111	AT	061	00111101	ON	115	01110011
EIGHT	008	00001000	CANCEL	062	00111110	OUT	116	01110100
NINE	009	00001001	CASE	063	00111111	OVER	117	. 01110101
TEN	010	00001010	CENT	064	01000000	PARENTHESIS	118	01110110
ELEVEN	011	00001011	400HERTZ TONE	065	01000001	PERCENT	119	01110111
TWELVE	012	00001100	80HERTZ TONE	066	01000010	PLEASE	120	01111000
THIRTEEN	013	00001101	20MS SILENCE	067	01000011	PLUS	121	01111001
ruunieeiv	U14	úsúaico	¢Givis Silenioe	へ®๐	こ ¢000100	POINT	122	01111010
FIFTEEN	015	00001111	80MS SILENCE	069	01000101	POUND	123	01111011
SIXTEEN	016	00010000	160MS SILENCE	070	01000110	PULSES	124	01111100
SEVENTEEN	017	00010001	320MS SILENCE	071	01000111	RATE	125	01111101
EIGHTEEN	018	00010010	CENTI	072	01001000	RE	126	01111110
NINETEEN	019	00010011	CHECK	073	01001001	READY	127	01111111
TWENTY	020	00010100	COMMA	074	01001010	RIGHT	128	10000000
THIRTY	021	00010101	CONTROL	075	01001011	SS (Note 1)	129	10000001
FORTY	022	00010110	DANGER	076	01001100	SECOND	130	10000010
FIFTY	023	00010111	DEGREE	077	01001101	SET	131	10000011
SIXTY	024	00011000	DOLLAR	078	01001110	SPACE	132	10000100
SEVENTY	025	00011001	DOWN	079	01001111	SPEED	133	10000101
EIGHTY	026	00011010	EQUAL	080	01010000	STAR	134	10000110
NINETY	027	00011011	ERROR	081	01010001	START	135	$10000111$
HUNDRED	028	00011100	FEET	082	01010010	STOP	136 137	$10001000$
THOUSAND	029	00011101	FLOW	083	01010011	THAN THE	137 138	10001001 10001010
MILLION	030	00011110	FUEL	084	01010100	THE	138	10001010
ZERO	031	00011111	GALLON	085	01010101	TIME	139	10001011
A	032	00100000	GO	086	01010110		140	
B	033	00100001	GRAM	087	01010111	VOLT	142	$10001110$
C	034	00100010	GREAT	088	01011000	WEIGHT (Note 2)	143	10001111
D	035	00100011	GREATER	089	01011001	WEIGHT (Note 2)	143	+000111
E	036	00100100	HAVE	090	01011010			
F	037	00100101	HIGH	091	01011011			
G	038	00100110	HIGHER	092	01011100			
H	039	00100111	HOUR	093	01011101			
I	040	00101000	IN	094	01011110			
$J$	041	00101001	INCHES	095	01011111			
K	042	00101010	IS	096	01100000			
L	043	00101011	IT	097	01100001			
M	044	00101100	KILO	098	01100010			
N	045	00101101	LEFT	099	01100011		.	
0	046	00101110	LESS	100	01100100			
P	047	00101111	LESSER	101	01100101			
Q	048	00110000	LIMIT	102	01100110			,
R	049	00110001	LOW	103	01100111			
S	050	00110010	LOWER	104	01101000			
T	051	00110011	MARK	105	01101001			
U	052	00110100	METER	106	01101010			
V	053	00110101	MILE	107	01101011			

Note 1: "SS" makes any singular word plural.
Note 2: Address 143 is the last legal address in this particular word list. Exceeding address 143 in an external processor application will produce pieces of unintelligible invalid speech data.


FIGURE 1. DT1000 DIGITALKER ${ }^{\text {TM }}$ Evaluation Board Circuit Diagram

## AC Electrical Characteristics

(For Use in External Processor Application) $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=7 \mathrm{~V}-11 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Min	Max	Units
$t_{\text {aw }}$	CMS Valid to Write Strobe	350	ns	
$\mathrm{t}_{\mathrm{csw}}$	Chip Select ON to Write Strobe	310	ns	
$\mathrm{t}_{\mathrm{dw}}$	Data Bus Valid to Write Strobe	50	ns	
$\mathrm{t}_{\mathrm{wa}}$	CMS Hold Time after Write Strobe	50	ns	
$\mathrm{t}_{\mathrm{wd}}$	Data Bus Hold Time after Write Strobe	100	ns	
$\mathrm{t}_{\mathrm{ww}}$	Write Strobe Width (50\% Point)	430	ns	
$\mathrm{t}_{\text {wss }}$	Write Strobe to Speech Output Delay		410	$\mu \mathrm{~s}$

Note: Rise and fall times ( $10 \%$ to $90 \%$ ) of MICROBUSTM signals should be 50 ns maximum.
Timing Waveforms (Required in external processor applications)


FIGURE 2. Command Sequence

## Typical Application



Note: COP402 must be removed from DT1000 in this configuration. FIGURE 3. DIGITALKER ${ }^{\text {TM }}$ Connections to External MICROBUS ${ }^{\text {TM }}$ Processor DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis DT1050/DT1053 DIGITALKER ${ }^{\text {TM }}$ Standard Vocabulary Kit General Description

The DIGITALKER ${ }^{\text {TM }}$ is a speech synthesis system consisting of several N -channel MOS integrated circuits. It contains a speech processor chip (SPC) and speech ROM and when used with external filter, amplifier, and speaker, produces a system which generates high quality speech including the natural inflection and emphasis of the original speech. Male, female, and children's voices can be synthesized.

The SPC communicates with the speech ROM, which contains the compressed speech data as well as the frequency and amplitude data required for speech output. Up to 128 k bits of speech data can be directly accessed.

With the addition of an external resistor, on-chip debounce is provided for use with a switch interface.

An interrupt is generated at the end of each speech sequence so that several sequences or words can be cascaded to form different speech expressions.

The DT1050 is a standard DIGITALKER kit encoded with 137 separate and useful words, 2 tones, and 5 different silence durations. (See the Master Word List Table I). The words and tones have been assigned discrete addresses, making it possible to output single words or words concatenated into phrases or even sentences.

The "voice" output of the DT1050 is a highly intelligible male voice. The vocabulary is chosen so that it is applicable to many products and markets.

## Features

- COPS ${ }^{T M}$ and MICROBUS ${ }^{T M}$ compatible
- Designed to be easily interfaced to other popular microprocessors
- 144 addressable expressions, including numbers
- Natural inflection and emphasis of original speech
- Addresses 128 k of ROM directly
- TTL compatible
- On-chip switch debounce for interfacing to manual switches independent of a microprocessor
- Interrupt capability for cascading words or phrases
- Crystal controlled or externally driven oscillator
- Available in complete kit (DT1050) or speech ROM only (DT1053)


## Applications

Telecommunications	Consumer products
Appliance	Clocks
Automotive	Language translation
Teaching aids	annunciators

## Typical Applications



DIGITALKER ${ }^{\text {TM }}$, MICROBUS ${ }^{\text {TM }}$ and COPS ${ }^{\text {TM }}$ are trademarks of National Semiconductor Corp.

## Absolute Maximum Ratings*

Storage Temperature Range
Operating Temperature Range
$V_{D D}-V_{S S}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ 12 V

Voltage at Any Pin
12V
Operating Voltage Range, $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S} \quad 7 \mathrm{~V}$ to 11 V
Lead Temperature (Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics ${ }^{*} T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=7 \mathrm{~V}-11 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{\text {IL }}$	Input Low Voltage		-0.3		0.8	V
$V_{\text {IH }}$	Input High Voltage		2.0		$V_{D D}$	v
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.4		5.0	V
$V_{\text {ILX }}$	Clock Input Low Voltage		$-0.3$		1.2	V
$\mathrm{V}_{\text {IHX }}$	Clock Input High Voltage		5.5		$V_{D D}$	V
$I_{\text {D }}$	Power Supply Current				45	mA
$1 / 12$	Input Leakage				$\pm$ ū	$\mu \dot{\sim}$
IILX	Clock Input Leakage				$\pm 10$	$\mu \mathrm{A}$
$V_{S}$	Silence Voltage			0.45 V DD		V
$V_{\text {OUT }}$	Peak to Peak Speech Output	$V_{D D}=11 \mathrm{~V}$		2.0		V
$\mathrm{R}_{\text {EXT }}$	External Load on Speech Output	$\mathrm{R}_{\text {EXT }}$ Connected Between Speech Output and $\mathrm{V}_{\mathrm{SS}}$	50			k $\Omega$

AC Electrical Characteristics ${ }^{*} T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=7 \mathrm{~V}-11 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Min	Max	Units
$t_{\text {aw }}$	CMS Valid to Write Strobe	350		ns
$\mathrm{t}_{\text {csw }}$	Chip Select ON to Write Strobe	310		ns
$t_{\text {dw }}$	Data Bus Valid to Write Strobe	50		ns
$t_{\text {wa }}$	CMS Hold Time after Write Strobe	50		ns
$t_{\text {wd }}$	Data Bus Hold Time after Write Strobe	100		ns
$t_{\text {ww }}$	Write Strobe Width (50\% Point)	430		ns
$t_{\text {red }}$	ROMEN ON to Valid ROM Data		2	$\mu \mathrm{S}$
$\mathrm{t}_{\text {wss }}$	Write Strobe to Speech Output Delay		410	$\mu \mathrm{S}$
$\mathrm{f}_{\mathrm{t}}$	External Clock Frequency	3.92	4.08	MHz

Note: Rise and fall times ( $10 \%$ to $90 \%$ ) of MICROBUS signals should be 50 ns maximum.
*SPC characteristics only. ROM characteristics covered by separate data sheet for MM52164.
Timing Waveforms


## Timing Waveforms (Continued)



Note 1: ROM Data 1-8 can go valid any time after ADR 0-13 changes, however it must be valid within the $t_{\text {red }}$ spec and remain valid until $\overline{R O M E N}$ goes high.

## Functional Description

The following describes the function of all SPC input and output pins.

Note: In the following descriptions, a low represents a logic $0(0.4 \mathrm{~V}$ nominal), and a high represents a logic $1(2.4 \mathrm{~V}$ nominal).

## INPUT SIGNALS

Chip Select ( $\overline{\mathrm{CS}}$ ): The SPC is selected when $\overline{\mathrm{CS}}$ is low. It is only necessary to have $\overline{\mathrm{CS}}$ low during a command to the SPC. It is not necessary to hold CS low for the duration of the speech data.
Data Bus (SW 1-8): This is an 8-bit parallel data bus which contains the starting address of the speech data.
Data bus inputs SW 1-SW 8 accept an 8-bit binary address which is the address of the word which is to be "spoken" from the DIGITALKER output. See the Master Word List (Table I) for the complete listing of words and their respective addresses. If the entire word list is not used, unused inputs must be connected to $\mathrm{V}_{\mathrm{SS}}$.
Command Select (CMS): This line specifies the two commands to the SPC.

CMS	Function
0	Reset interrupt and start speech sequence
1	Reset interrupt only

Write Strobe ( $\overline{W R}$ ): This line latches the starting address (SW 1-SW 8) into a register. On the rising edge of the WR, the SPC starts execution of the command specified by CMS. The command sequence is shown in the timing waveform section. If a command to start a new speech sequence is issued during a speech sequence, the new speech sequence will be started immediately. When connecting WR to a switch, it must be a single pole 2 position switch as shown on page 1.
ROM Data (RDATA 1-8): This is an 8-bit parallel data bus which contains the speech data from the speech ROM.

## OUTPUT SIGNALS

Interrupt (INTR): This signal goes high at the completion of any speech sequence. It is reset by the next valid command. It is also reset at power up.

ROM Address (ADR 0-ADR 13): This is a 14-bit parallel bus that supplies the address of the speech data to the speech ROM.

ROM Enable ( $\overline{\text { ROMEN }})$ : For low power applications, this line can be used to drive a transistor that switches the supply for static speech ROMs. See ROM data timing.

Speech Output (Speech Out): This is the analog output that represents the speech data. See frequency response section.

## INPUTIOUTPUTSIGNALS

Clock Input/Output (OSC IN, OSC OUT): These two pins connect the main timing reference (crystal) to the SPC.

## PHRASE QUALITY

In normal human speech, the brain puts durations of silence between the words to make the sentence flow smoothly. Since several durations of silence are provided in the Master Word List, the actual quality of any phrase can be significantly improved by adding durations of silence (also assigned addresses) between the words. As one thinks about how the phrase is actually spoken, one might assume the approximate duration of silence between each word, and insert the closest duration of silence from the word list. A hint in this area would be that for words beginning with the letters, K, T, P, B, D, and G insert 80 milliseconds silence prior to the words, and for words ending in the same letters as above, 40 milliseconds silence following the word is recommended.

Functional Description (Continued)
TABLE I. DT1050 MASTER WORD LIST*

Word	8-Bit Binary Address		8-Bit Binary Address		8-Bit Binary Address
	$\text { SW } 8 \text { SW } 1$		$\text { SW } 8 \quad \text { SW } 1$		$\text { SW } 8 \text { SW } 1$
THIS IS DIGITALKER	00000000	Q	00110000	IS	01100000
ONE	00000001	R	00110001	IT	01100001
TWO	00000010	S	00110010	KILO	01100010
THREE	00000011	T	00110011	LEFT	01100011
FOUR	00000100	U	00110100	LESS	01100100
FIVE	00000101	$v$	00110101	LESSER	01100101
SIX	00000110	W	00110110	LIMIT	01100110
SEVEN	00000111	X	00110111	LOW	01100111
EIGHT	00001000	Y	00111000	LOWER	01101000
NINE	00001001	Z	00111001	MARK	01101001
TEN	00001010	AGAIN	00111010	METER	01101010
ELEVEN	00001011	AMPERE	00111011	MILE	01101011
Tvuelve	uuvuliue	ANU	UU111100	iviiili	úl וŨi iúù
THIRTEEN	00001101	AT	00111101	MINUS	01101101
FOURTEEN	00001110	CANCEL	00111110	MINUTE	01101110
FIFTEEN	00001111	CASE	00111111	NEAR	01101111
SIXTEEN	00010000	CENT	01000000	NUMBER	01110000
SEVENTEEN	00010001	400HERTZ TONE	01000001	OF	01110001
EIGHTEEN	00010010	80HERTZ TONE	01000010	OFF	01110010
NINETEEN	00010011	20MS SILENCE	01000011	ON	01110011
TWENTY	00010100	40MS SILENCE	01000100	OUT	01110100
THIRTY	00010101	80MS SILENCE	01000101	OVER	01110101
FORTY	00010110	160MS SILENCE	01000110	PARENTHESIS	01110110
FIFTY	00010111	320MS SILENCE	01000111	PERCENT	01110111
SIXTY	00011000	CENTI	01001000	PLEASE	01111000
SEVENTY	00011001	CHECK	01001001	PLUS	01111001
EIGHTY	00011010	COMMA	01001010	POINT	01111010
NINETY	00011011	CONTROL	01001011	POUND	01111011
HUNDRED	00011100	DANGER	01001100	PULSES	01111100
THOUSAND	00011101	DEGREE	01001101	Rate	01111101
MILLION	00011110	DOLLAR	01001110	RE	01111110
ZERO	00011111	DOWN	01001111	READY	01111111
A	00100000	EQUAL	01010000	RIGHT	10000000
B	00100001	ERROR	01010001	SS (Note. 1)	10000001
C	00100010	FEET	01010010	SECOND	10000010
D	00100011	FLOW	01010011	SET	10000011
E	00100100	FUEL	01010100	SPACE	10000100
F	00100101	GALLON	01010101	SPEED	10000101
G	00100110	GO	01010110	STAR	10000110
H	00100111	GRAM	01010111	START	10000111
1	00101000	GREAT	01011000	STOP	10001000
$J$	00101001	GREATER	01011001	THAN	10001001
K	00101010	HAVE	01011010	THE	10001010
L	00101011	HIGH	01011011	TIME	10001011
M	00101100	HIGHER	01011100	TRY	10001100
N	00101101	HOUR	01011101	UP	10001101
0	00101110	IN	01011110	VOLT	10001110
P	00101111	INCHES	01011111	WEIGHT (Note 2)	10001111

* DT1050 is a complete kit including MM54104 SPC; DT1053 is SSR1 and SSR2 speech ROMs only.

Note 1: "SS" makes any singular word plural
Note 2: Address 143 is the last legal address in this particular word list. Exceeding address 143 will produce pieces of unintelligible invalid speech data.

## Crystal Circuit Information



External Clock Input (4.0 MHz)


Timing	Min	
Units		
${ }^{\text {XXH }^{\prime}}$	100	ns
${ }^{\text {t }} \mathrm{XL}$	100	ns

## SPC Block and Connection Diagrams



Dual-In-Line Package


Dual-In-Line Package


* For specific ROM device information, see MM52164 data sheet.


ESOLID/OSOL-10

## Applications Information



Note 1: This curve is the desired response of the entire audio system including speaker. Minimum response is a low pass filter with a cutoff frequency of 200 Hz . For an audio system with a natural cutoff frequency around 200 Hz , this filter can be eliminated. This cutoff frequency may be tuned for the particular voice being synthesized. For a low pitched male voice it may be 100 Hz , while for a high pitched female or child's voice it might be 300 Hz .
Note 2: This is optional filtering that can be eliminated by proper selection of the speaker. If this 2 pole response is electronically produced, it should be adjusted as described in Note 1. Note 3: This is optional filtering that can be eliminated for simpler systems. The acceptable range for this cutoff frequency is $6000 \mathrm{~Hz}-8000 \mathrm{~Hz}$.
Typical Applications (Continued)
DIGITALKER System Using COP420 Interface


## Typical Applications (Continued)

Filter Circuit to Produce Maximum Frequency Response


*LM346 or equivalent

DIGITALKER Svstem Utilizing MICROBUS ${ }^{\text {TM }}$ Interface
 DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis DT1051/DT1054 DIGITALKER ${ }^{\text {TM }}$ Speech Evaluation Kit

## General Description

The DIGITALKER ${ }^{\text {TM }}$ is a speech synthesis system consisting of several N -channel MOS integrated circuits. It contains a speech processor chip (SPC) and speech ROM and when used with external filter, amplifier, and speaker, produces a system which generates high quality speech including the natural inflection and emphasis of the original speech. Male, female, and children's voices can be synthesized.
The SPC communicates with the speech ROM, which contains the compressed speech data as well as the frequency and amplitude data required for speech output. Up to 128 k bits of speech data can be directly accessed.
With the addition of an external resistor, on-chip debounce is provided for use with a switch interface.
An interrupt is generated at the end of each speech sequence so that several sequences or words can be cascaded to form different speech expressions.
The DT1051 is a standard DIGITALKER kit encoded with 18 separate and addressable phrases. The phrases lend themselves to a variety of products, but are primarily for demonstration purposes, portraying DIGITALKER's unique ability to produce high quality male, female, or child's voices.
The DT1051 demonstrates the effects of digitizing complete phrases as opposed to individual words at single
addresses. Complete phrases produce very natural and highest quality speech, much like a tape recording of a phrase or sentence.

## Features

- COPS ${ }^{T M}$ and MICROBUS ${ }^{T M}$ compatible
- Designed to be easily interfaced to other popular microprocessors
- 18 addressable high quality phrases
- Natural inflection and emphasis of original speech
- Addresses 128k of ROM directly
- TTL compatible

■ On-chip switch debounce for interfacing to manual switches independent of a microprocessor

- Interrupt capability for cascading words or phrases
- Crystal controlled or externally driven oscillator
- Available in complete kit (DT1051) or speech ROMs only (DT1054)


## Applications

- Telecommunications	- Consumer products
- Appliance	- Clocks
- Automotive	- Language translation
- Teaching aids	- Annunciators

## DT1051 Vocabulary*

Byte Address SW 8 SW 1	Message	Voice	Byte Address SW $8 \quad$ SW 1	Message	Voice
00000000	BASSON MUSIC	N/A	00001001	CHECK OIL LEVEL	MALE
00000001	THIS IS NS DIGITALKER	FEMALE	00001010	CHECK COOLANT LEVEL	MALE
00000010	THE TIME IS 8:43 PM	FEMALE	00001011	CHECK FUEL LEVEL	MALE
00000011	EMERGENCY, CALL 911	FEMALE	00001100	DOOR OPEN	MALE
00000100	SELECT TEMPERATURE	FEMALE	00001101	DEFROST	MALE
00000101	SELECT COOKING TIME	FEMALE	00001110	GOING UP	MALE
00000110	THE NUMBER YOU REACHED HAS BEEN CHANGED, PLEASE CALL 408 737-5000	MALE	$\begin{aligned} & 0000111111 \\ & 000110000 \\ & 00010001 \end{aligned}$	FIRST FLOOR PLEASE CALL YOUR OFFICE I'M CUTE, AREN'T I?	MALE MALE CHILD
00000111	WARNING THE BRAKE FLUID IS LOW	MALE		END OF VOCABULARY	
00001000	PLEASE FASTEN YOUR SEATBELT	MALE			

*DT1051 is a complete kit including MM54104 SPC; DT1054 is SSR3 and SSR4 speech ROMs only.

[^68][^69]

Refer to MM54104 data sheet for complete specifications on electrical and iiming characteristics. DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis

## DT1052/DT1055 DIGITALKER ${ }^{\text {TM }}$ Basic Numbers Kit

## General Description

The DIGITALKER ${ }^{\text {TM }}$ is a speech synthesis system consisting of several N -channel MOS integrated circuits. It contains a speech processor chip (SPC) and speech ROM and when used with external filter, amplifier, and speaker, produces a system which generates high quality speech including the natural inflection and emphasis of the original speech. Male, female, and children's voices can be synthesized.
The SPC communicates with the speech ROM, which contains the compressed speech data as well as the frequency and amplitude data required for speech output. Up to 128 k bits of speech data can be directly accessed.

With the addition of an external resistor, on-chip debounce is provided for use with a switch interface.

An interrupt is generated at the end of each speech sequence so that several sequences or words can be cascaded to form different speech expressions.

The DT1052 is a useful, low cost standard DIGITALKER kit, encoded with the numbers 0 through 9 , the word point, and several silence durations, located at individual addresses.
These numerical outputs can be applicable to many consumer and industrial products where numbers are frequently displayed.

## Features

- COPS ${ }^{T M}$ and MICROBUS ${ }^{T M}$ compatible
- Designed to be easily interfaced to other popular microprocessors
- 15 addressable expressions, including silences
- Natural inflection and emphasis of original speech
- Addresses 16 k of ROM directly
- TTL compatible
- On-chip switch debounce for interfacing to manual switches independent of a microprocessor
- Interrupt capability for cascading words or phrases
- Crystal controlled or externally driven oscillator
- Available in complete kit (DT1052) or speech ROM only (DT1055)*


## Applications

- Telecommunications
- Appliance
- Automotive
- Counters
- Consumer products
- Instrumentation


## DT1052 Vocabulary

Byte Address   SW 8 SW 1	essage	Byte Address SW 8 SW 1	Message
00000000	ZERO	00001000	EIGHT
00000001	ONE	00001001	NINE
00000010	TWO	00001010	POINT
00000011	THREE	00001011	20 ms SILENCE
00000100	FOUR	00001100	40 ms SILENCE
00000101	FIVE	00001101	80 ms SILENCE
00000110	SIX	00001110	160 ms SILENCE
00000111	SEVEN	00001111	320 ms SILENCE

"The reciplent of these products automatically receives a non-exclusive license under U.S. Patent Application 432,859 and any patent or patents issuing thereon to use such products, to assemble or otherwise incorporate them into further products which may be covered by said patent application, or any patent or patents issuing thereon, and to use, sell, or otherwise dispose of such products'. Protected by U.S. Pat. No. 4124125, F.M. Mozer licenses available.

* DT1052 is a complete kit including MM54104 SPC; DT1055 is MM52116SHRL speech ROM only.

DIGITALKER ${ }^{\text {TM }}$, MICROBUS ${ }^{T M}$ and COPS ${ }^{T M}$ are trademarks of National Semiconductor Corp.

Recommended Schematic Diagram


# 7 National Semiconductor DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis <br> DT1056/DT1057 DIGITALKER ${ }^{\text {TM }}$ Standard Vocabulary Kit 

## General Description

The DIGITALKER ${ }^{\text {TM }}$ is a speech synthesis system consisting of several N -channel MOS integrated circuits. It contains a speech processor chip (SPC) and speech ROM and when used with external filter, amplifier, and speaker, produces a system which generates high quality speech including the natural inflection and emphasis of the original speech. Male, female, and children's voices can be synthesized.

The SPC communicates with the speech ROM, which contains the compressed speech data as well as the frequency and amplitude data required for speech output. Up to 128 k bits of speech data can be directly accessed.

With the addition of an external resistor, on-chip debounce is provided for use with a switch interface.

An interrupt is generated at the end of each speech sequence so that several sequences or words can be cascaded to form different speech expressions.

The DT1056/DT1057 is a standard DIGITALKER kit encoded with 131 separate and useful words (see the Master Word List Table I) and when used with the DT1050 Standard Vocabulary Kit, provides a library of 274 useful words. The words have been assigned discrete addresses, making it possible to output single words or words concatenated into phrases or even sentences.

The "voice" output of the DT1056/DT1057 is a highly intelligible male voice. The vocabulary is chosen so that it is applicable to many products and markets.

## Features

- Easily adaptable to DT1050 Standard Vocabulary Kit
- 131 useful words
- COPS ${ }^{\text {TM }}$ and MICROBUS ${ }^{\text {TM }}$ compatible
- Designed to be easily interfaced to other popular microprocessors
- Natural inflection and emphasis of original speech
- Addresses 128 k bits of ROM directly
- TTL compatible
- On-chip switch debounce for interfacing to manual switches independent of a microprocessor
- Interrupt capability for cascading words or phrases
- Crystal controlled or externally driven oscillator
- Available in complete kit (DT1056) or speech ROMs only (DT1057)


## Applications

- Telecommunications	Consumer products
appliance	Clocks
■ Automotive	Language translation
■ Teaching aids	■ Annunciators

## Typical Applications

## Minimum Configuration Using Switch Interface



[^70]
## Absolute Maximum Ratings*

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Voltage at Any Pin	12 V
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Operating Voltage Range, $\mathrm{V}_{D D}-V_{S S}$	7 V to 11 V
$V_{D D}-V_{S S}$	12 V	Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics ${ }^{\star} T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=7 \mathrm{~V}-11 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{\text {IL }}$	Input Low Voltage		-0.3		0.8	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0		$V_{D D}$	V
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.4		5.0	V
$V_{\text {ILX }}$	Clock Input Low Voltage		-0.3		1.2	V
$\mathrm{V}_{\text {IHX }}$	Clock Input High Voltage		5.5		$\mathrm{V}_{\mathrm{DD}}$	V
$I_{\text {D }}$	Power Supply Current				45	mA
IIL	Input Leakage				$\pm 10$	$\mu \mathrm{A}$
ILX	Clock Input Leakage				$\pm 10$	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{S}}$	Silence Voltage			0.45 $\mathrm{V}_{\mathrm{DD}}$		V
$V_{\text {OUT }}$	Peak to Peak Speech Output	$V_{D D}=11 \mathrm{~V}$		2.0		$\checkmark$
$\mathrm{R}_{\text {EXT }}$	External Load on Speech Output	$\mathrm{R}_{\text {EXT }}$ Connected Between Speech Output and $V_{S S}$	50			k $\Omega$

AC Electrical Characteristics ${ }^{*} T_{A}=0^{\circ} \mathrm{C}$, to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=7 \mathrm{~V}-11 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Min	Max	Units
$\mathrm{t}_{\mathrm{aw}}$	CMS Valid to Write Strobe	350		ns
$\mathrm{t}_{\text {csw }}$	Chip Select ON to Write Strobe	310		ns
$t_{d w}$	Data Bus Valid to Write Strobe	50		ns
$t_{\text {wa }}$	CMS. Hold Time after Write Strobe	50		ns
$t_{\text {wd }}$	Data Bus Hold Time after Write Strobe	100		ns
$t_{\text {ww }}$	Write Strobe Width (50\% Point)	430		ns
$\mathrm{t}_{\text {red }}$	ROMEN ON to Valid ROM Data		2	$\mu \mathrm{S}$
$t_{\text {wss }}$	Write Strobe to Speech Output Delay		410	$\mu \mathrm{S}$
$\mathrm{f}_{\mathrm{t}}$	External Clock Frequency	3.92	4.08	MHz

Note: Rise and fall times ( $10 \%$ to $90 \%$ ) of MICROBUS signals should be 50 ns maximum.
*SPC characteristics only. ROM characteristics covered by separate data sheet for MM52164.
Timing Waveforms
Command Sequence


## Timing Waveforms (Continued)



Note 1: ROM Data 1-8 can go valid any time after ADR0-13 changes, however it must be valid within the $t_{\text {red }}$ spec and remain valid untll $\overline{\text { ROMEN }}$ goes high.

## Functional Description

The following describes the function of all SPC input and output pins.

Note: In the following descriptions, a low represents a logic $0(0.4 \mathrm{~V}$ nominal), and a high represents a logic $1(2.4 \mathrm{~V}$ nominal).

## INPUT SIGNALS

Chip Select ( $\overline{C S}$ ): The SPC is selected when $\overline{C S}$ is low. It is only necessary to have $\overline{\mathrm{CS}}$ low during a command to the SPC. It is not necessary to hold $\overline{\mathrm{CS}}$ low for the duration of the speech data.
Data Bus (SW 1-8): This is an 8-bit parallel data bus which contains the starting address of the speech data.
Data bus inputs SW 1-SW 8 accept an 8-bit binary address which is the address of the word which is to be "spoken" from the DIGITALKER output. See the Master Word List (Table I) for the complete listing of words and their respective addresses. If the entire word list is not used, unused inputs must be connected to $\mathrm{V}_{\mathrm{SS}}$.
Command Select (CMS): This line specifies the two commands to the SPC.

CMS	Function
0	Reset interrupt and start speech sequence
1	Reset interrupt only

Write Strobe ( $\overline{W R}$ ): This line latches the starting address (SW 1-SW 8) into a register. On the rising edge of the $\overline{W R}$, the SPC starts execution of the command specified by CMS. The command sequence is shown in the timing waveform section. If a command to start a new speech sequence is issued during a speech sequence, the new speech sequence will be started immediately. When connecting $\overline{W R}$ to a switch, it must be a single pole 2 position switch as shown on page 1.
ROM Data (RDATA 1-8): This is an 8-bit parallel data bus which contains the speech data from the speech ROM.

## OUTPUT SIGNALS

Interrupt (INTR): This signal goes high at the completion of any speech sequence. It is reset by the next valid command. It is also reset at power up.

ROM Address (ADR 0-ADR 13): This is a 14-bit parallel bus that supplies the address of the speech data to the speech ROM.

ROM Enable ( $\overline{\text { ROMEN }}$ ): For low power applications, this line can be used to drive a transistor that switches the supply for static speech ROMs. See ROM Data Timing.

Speech Output (Speech Out): This is the analog output that represents the speech data. See frequency response section.

## INPUT/OUTPUTSIGNALS

Clock Input/Output (OSC IN, OSC OUT): These two pins connect the main timing reference (crystal) to the SPC.

## PHRASE QUALITY

In normal human speech, the brain puts durations of silence between the words to make the sentence flow smoothly. Since several durations of silence are provided in the Master Word List, the actual quality of any phrase can be significantly improved by adding durations of silence (also assigned addresses) between the words. As one thinks about how the phrase is actually spoken, one might assume the approximate duration of silence between each word, and insert the closest duration of silence from the word list. A hint in this area would be that for words beginning with the letters, $K, T, P, B, D$, and $G$ insert 80 milliseconds silence prior to the words, and for words ending in the same letters as above, 40 milliseconds silence following the word is recommended.

Functional Description (Continued)

TABLE I. DT1056/DT1057* MASTER WORD LIST

Word	8-Bit Binary Address	Word	8-Bit Binary Address	Word	8-Bit Binary   Address
	SW8 SW1		SW 8 SW 1		SW8 SW1
	[0000000	FARAD	00101100		01011000
ADD	00000001	FAST	00101101	PICO	01011001
ADJUST	00000010	FASTER	00101110	PLACE	01011010
ALARM	00000011	FIFTH	00101111	PRESS	01011011
ALERT	00000100	FIRE	00110000	PRESSURE	01011100
ALL	00000101	FIRST	00110001	QUARTER	01011101
ASK	00000110	FLOOR	00110010	RANGE	01011110
ASSISTANCE	00000111	FORWARD	00110011	REACH	01011111
ATTENTION	00001000	FROM	00.110100	RECEIVE	01100000
BRAKE	00001001	GAS	00110101	RECORD	01100001
BUTTON	00001010	GET	00110110	REPLACE	01100010
BUY	ưữúiúa i	Gúiiva	00:101!	REVERSE	01100011
CALL	00001100	HALF	00111000	ROOM	01100100
CAUTION	00001101	HELLO	00111001	SAFE	01100101
CHANGE	00001110	HELP	00111010	SECURE	01100110
CIRCUIT	00001111	HERTZ	00111011	SELECT	01100111
CLEAR	00010000	HOLD	00111100	SEND	01101000
CLOSE	00010001	INCORRECT	00111101	SERVICE	01101001
COMPLETE	00010010	INCREASE	00111110	SIDE	01101010
CONNECT	00010011	INTRUDER	00111111	SLOW	01101011
CONTINUE	00010100	JUST	01000000	SLOWER	01101100
COPY	00010101	KEY	01000001	SMOKE	01101101
CORRECT	00010110	LEVEL	01000010	SOUTH	01101110
DATE	00010111	LOAD	01000011	STATION	01101111
DAY	00011000	LOCK	01000100	SWITCH	01110000
DECREASE	00011001	MEG	01000101	SYSTEM	01110001
DEPOSIT	00011010	MEGA	01000110	TEST	01110010
DIAL	00011011	MICRO	01000111	TH (NOTE 2)	01110011
DIVIDE	00011100	MORE	01001000	THANK	01110100
DOOR	00011101	MOVE	01001001	THIRD	01110101
EAST	00011110	NANO	01001010	THIS	01110110
ED (NOTE 1)	00011111	NEED	01001011	TOTAL	01110111
ED (NOTE 1)	00100000	NEXT	01001100	TURN	01111000
ED (NOTE 1)	00100001	NO	01001101	USE	01111001
ED (NOTE 1)	00100010	NORMAL	01001110	UTH (NOTE 3)	01111010
EMERGENCY	00100011	NORTH	01001111	WAITING	01111011
END	00100100	NOT	01010000	WARNING	01111100
ENTER	00100101	NOTICE	01010001	WATER	01111101
ENTRY	00100110	OHMS	01010010	WEST	01111110
ER	00100111	ONWARD	01010011	SWITCH	01.111111
EVACUATE	00101000	OPEN	01010100	WINDOW	10000000
EXIT	00101001	OPERATOR	01010101	YES	10000001
FAIL	00101010	OR	01010110	ZONE	10000010
FAILURE	00101011	PASS	01010111		

*DT1056 is a complete kit including MM54104 SPC; DT1057 is SSR5 and SSR6 speech ROMs only.
Note 1: "ED" is a suffix that can be used to make any present tense word become a past tense word. The way we say "ED," however, does vary from one word to the next. For that reason, we have offered 4 different "ED" sounds. It is suggested that each "ED" be tested with the desired word for best quality results. Address 31 " $E D$ " or 32 " $E D$ " should be used with words ending in " T " or " D ," such as exit or load. Address 34 " $E D$ " should be used with words ending with soft sounds such as ask. Address 33 " $E D$ " should be used with all other words.
Note 2: "TH" is a suffix that can be added to words like six, seven, eight to form adjective words like sixth, seventh, eighth.
Note 3: "UTH" is a suffix that can be added to words like twenty, thirty, forty to form adjective words like thirtieth, fortieth, etc.
Note 4: Address 130 is the last legal address in this particular word list. Exceeding address 130 will produce pieces of unintelligible invalid speech data.,

Crystal Circuit Information
Typical Crystal Oscillator Network

( 4.0 MHz crystal manufactured by Electro Dynamics Corp. P/N HC18-20 pF)

## SPC Block and Connection Diagrams

External Clock Input (4.0 MHz)


Timing Min Units $\begin{array}{lll}{ }^{t} \mathrm{XH} & 100 & \text { ns } \\ { }^{\mathrm{t}} \mathrm{XL} & 100 & \text { ns }\end{array}$



LGOLIO/9GOLIO

Typical Applications (Continued)
Integration of DT1057 ROMs and DT1050 Kit


DIGITALKER System Using COP420 Interface


Typical Applications (Continued)
Minimum Filter Circuit


Low Power Configuration Using Static ROM
 DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis MM54104 DIGITALKER ${ }^{\text {TM }}$ Speech Synthesis System

## General Description

The DIGITALKER is a speech synthesis system consisting of multiple N -channel MOS integrated circuits. It contains an MM54104 speech processor chip (SPC) and speech ROM and when used with external filter, amplifier, and speaker, produces a system which generates high quality speech including the natural inflection and emphasis of the original speech. Male, female, and children's voices can be synthesized.
The SPC communicates with the speech ROM, which contains the compressed speech data as well as the frequency and amplitude data required for speech output. Up to 128 k bits of speech data can be directly accessed. This can be expanded with minimal external logic.
With the addition of an external resistor, on-chip debounce is provided for use with a switch interface.
An interrupt is generated at the end of each speech sequence so that several sequences or words can be cascaded to form different speech expressions.
Encoding (digitizing) of custom word or phrase lists must be done by National Semiconductor. Customers submit to the factory high quality recorded magnetic reel to reel tapes containing the words or phrases to be encoded. National Semiconductor will sell kits consisting of the SPC and ROM(s) containing the digitized word or phrases.

## Features

- Designed to be easily interfaced to most popular microprocessors
- 256 possible addressable expressiońs
- Male, female, and children's voices
- Any language
- Natural inflection and emphasis of original speech
- Addresses 128 k of ROM directly
- TTL compatible
- MICROBUS ${ }^{\top M}$ and COPS ${ }^{\top M}$ compatible
- On-chip switch debounce for interfacing to manual switches independent of a microprocessor
- Easily expandable to greater than 128k ROM
- Interrupt capability for cascading words or phrases
- Crystal controlled or externally driven oscillator
- Ability to store silence durations for timing sequences
- Standard vocabulary sets available


## Applications

$\square$ Telecommunications	$\square$ Consumer products
appliance	Clocks
■ Automotive	$\square$ Language translation
$\square$ Teaching aids	$\square$ Annunciators



"The recipient of these products automatically receives a non-exclusive license under U.S. Patent Application 432,859 and any patent or patents issuing thereon to use such products, to assemble or otherwise incorporate them into further products which may be covered by said patent application, or any patent or patents issuing thereon, and to use, sell, or otherwise dispose of such products". Protected by U.S. Pat. No. 4124125, F.M. Mozer licenses available.

* Single pole 2 position momentary switch
*     * 4.0 MHz crystal Electro Dynamics Corp. 20 pF HC18
DIGITALKER ${ }^{\text {TM }}$, MICROBUS $^{\text {TM }}$ and COPS ${ }^{\text {TM }}$ are trademarks of National Semiconductor Corp.


## Absolute Maximum Ratings

Storage Temperature Range
Operating Temperature Range
$V_{D D}-V_{S S}$

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}
\end{array}
$$

$$
12 \mathrm{~V}
$$

Voltage at Any Pin
12 V
7 V to 11 V
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=7 \mathrm{~V}-11 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{\text {IL }}$	Input Low Voltage		'-0.3		0.8	V
$V_{\text {IL }}$	Input Low Voltage	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-0.3		0.6	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.0		$V_{D D}$	V
$V_{\text {IH }}$	Input High Voltage	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	2.2		$V_{D D}$	V
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.4		5.0	V
$V_{\text {ILX }}$	Clock Input Low Voltage		-0.3		1.2	V
$V_{\text {IHX }}$	Clock Input High Voltage		5.5		$V_{D D}$	V
$V_{\text {OLX }}$	Clock Output Low Voltage	Typical Crystal Configuration and 10M Load on Pin 2			1.2	V
$\mathrm{V}_{\mathrm{OHX}}$	Clock Output High Voltage	Typical Crystal Configuration and 10M Load on Pin 2	5.5		$V_{D D}$	V
$\mathrm{I}_{\mathrm{DD}}$	Power Supply Current Power Supply Current	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			45 50	$\mathrm{mA}$
DD	Power Supply Current	$T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			50	mA
IIL	Input Leakage				$\pm 10$	$\mu \mathrm{A}$
IILX	Clock Input Leakage				$\pm 10$	$\mu \mathrm{A}$
$\mathrm{V}_{\text {S }}$	Silence Voltage			$0.45 \mathrm{~V}_{\mathrm{DD}}$		V
$V_{\text {OUT }}$	Peak to Peak Speech Output	$V_{D D}=11 \mathrm{~V}$		2.0		V
$\mathrm{R}_{\text {EXT }}$	External Load on Speech Output	$\mathrm{R}_{\mathrm{EXT}}$ Connected Between Speech Output and $V_{S S}$	50			k $\Omega$

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{D D}=7 \mathrm{~V}-11 \mathrm{~V}, \mathrm{~V}_{S S}=\mathrm{OV}$, unless otherwise specified.

Symbol	Parameter	Min	Max	Units
$t_{\text {aw }}$	CMS Valid to Write Strobe	350		ns
$t_{\text {csw }}$	Chip Select ON to Write Strobe	310		ns
$t_{d w}$	Data Bus Valid to Write Strobe	50		ns
$t_{\text {wa }}$	CMS Hold Time after Write Strobe	50		ns
$t_{\text {wd }}$	Data Bus Hold Time after Write Strobe	100		ns
$t_{\text {ww }}$	Write Strobe Width ( $50 \%$ Point)	430		ns
$t_{\text {red }}$	ROMEN ON to Valid ROM Data		2	$\mu \mathrm{S}$
$\mathrm{t}_{\text {wss }}$	Write Strobe to Speech Output Delay		410	$\mu \mathrm{S}$
$f_{t}$	External Clock Frequency	3.92	4.08	MHz

Note: Rise and fall times ( $10 \%$ to $90 \%$ ) of MICROBUS signals should be 50 ns maximum.

## Timing Waveforms

Command Sequence


Note 1: ROM data 1-8 can go valid any time after ADR 0-13 changes, however it must be valid within the tred specifications and remain valid until $\overline{\text { ROMEN }}$ goes high.

## Crystal Circuit Information

Typical Crystal Oscillator Network


External Clock Input (4.0 MHz)


Block and Connection Diagrams


Dual-In-Line Package

top view

## Connection Diagrams ${ }_{\text {(Continued) }}\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}-5.25 \mathrm{~V}\right)$



## Functional Description

The following describes the function of all SPC input and output pins.
Note: In the following descriptions, a low represents a logic $0(0.4 \mathrm{~V}$ nominal), and a high represents a logic $1(2.4 \mathrm{~V}$ nominal).

## INPUT SIGNALS

Chip Select ( $\overline{\mathrm{CS}}$ ): The SPC is selected when $\overline{\mathrm{CS}}$ is low. It is only necessary to have $\overline{\mathrm{CS}}$ low during a command to the SPC. It is not necessary to hold $\overline{C S}$ low for the duration of the speech data.

Data Bus (SW 1-8): This is an 8-bit parallel data bus which contains the starting address of the speech data. Unused inputs must be tied to $V_{\text {SS }}$.

Command Select (CMS): This line specifies the two commands to the SPC.

## CMS <br> 0 Reset interrupt and start speech sequence <br> 1 Reset interrupt only

Write Strobe ( $\overline{\mathrm{WR}}$ ): This line latches the starting address (SW1-SW8) into a register. On the rising edge of the $\overline{W R}$, the SPC starts execution of the command specified by CMS. The command sequence is shown in the timing waveform section. If a command to start a new speech se-
quence is issued during a speech sequence, the new speech sequence will be started immediately. When connecting $\overline{W R}$ to a switch is must be a single pole 2 position switch as shown on page 1.

ROM Data (RDATA 1-8): This is an 8-bit parallel data bus which contains the speech data from the speech ROM.

## OUTPUT SIGNALS

Interrupt (INTR): This signal goes high at the completion of any speech sequence. It is reset by the next valid command. It is also reset at power up.
ROM Address (ADR 0-ADR 13): This is a 14-bit parallel bus that supplies the address of the speech data to the speech ROM.
ROM Enable ( $\overline{\text { ROMEN }}$ ): For low power applications, this line can be used to drive a transistor that switches the supply for static speech ROMs. See ROM data timing.

Speech Output (Speech Out): This is the analog output that represents the speech data. See frequency response section.

## INPUTIOUTPUTSIGNALS

Clock Input/Output (OSC IN, OSC OUT): These two pins connect the main timing reference (crystal) to the SPC.

## Applications Information

Frequency Response of Combined Amplifier and Speaker


Note 1: This curve is the desired response of the entire audio system including speaker. Minimum response is a low pass filter with a cutoff frequency of 200 Hz . For an audio system with a natural cutoff frequency around 200 Hz , this filter can be eliminated. This cutoff frequency may be tuned for the particular voice being synthesized. For a low pitched male voice it may be 100 Hz , while for a high pitched female or child's voice it might be 300 Hz .
Note 2: This is optional filtering that can be eliminated by proper selection of the speaker. If this 2 pole response is electronically produced, it should be adjusted as described in Note 1.
Note 3: This is optional filtering that can be eliminated for simpler systems. The acceptable range for this cutoff frequency is $6000 \mathrm{~Hz}-8000 \mathrm{~Hz}$.

Typical Applications (Continued)

## Minimum Filter Circuit



Filter Circuit to Produce Maximum Frequency Response


DIGITALKER ${ }^{\text {TM }}$ System Utilizing MICROBUS ${ }^{\text {TM }}$ Interface
Low Power Configuration Using Static ROM


Typical Applications (Continued)

DIGITALKER ${ }^{\text {TM }}$ System Using COP420 Interface


Speech ROM Expansion for Requirements Greater Than 128k Bits


## Circuit for Evaluation of Custom Vocabulary EPROM Prototype Set

## EPROM PROTOTYPE

In the process of developing a product with a "custom" generated vocabulary, it may be necessary to develop special circuitry for listening to and evaluating your prototype synthesized vocabulary prior to committing to read only memory (ROM) production.
The prototype set will normally be supplied by National Semiconductor in the form of 2716 EPROM (Intel pinout) sets. The SPC (speech processor chip, part number MM54104) communication with EPROM sets does require some external hardware considerations which may not be necessary in the final ROM application, especially in multiple EPROM-equivalent ROM situations. (For example, four 16k-bit 2716 EPROMs equal one 64 k -bit ROM.)
Shown on next page is a recommended circuit which shows proper interface between 2716 EPROMs and the SPC. The circuit covers vocabularies from the minimum system of one 2716 ( 16 k bits) to larger vocabularies of eight 2716 s ( 128 k bits). It is also true, that in an application requiring only one 2716, the MM74LS138 decoder device can be eliminated by connecting pin 20 of the 2716 to $V_{\text {SS }}$ (ground). The remaining unused pins 36,37 and 38 of the SPC can be left unconnected in this case.

## UNUSED SPC INPUTS

In any DIGITALKER ${ }^{\text {TM }}$ design, an applications suggestion is in the area of unused input pins of the SPC. It should be understood that the number of different expressions and coincident addresses, as designated by the custom vocabulary, determines how many of the SW word address pins (pins 8-15) on the SPC are utilized. Vocabularies of less than 128 addresses will not use SW 8 ; vocabularies of less than 64 addresses will not use SW 7 or SW 8, and etc. These unused SW pins must be tied to $\mathrm{V}_{\text {SS }}$ (ground) to simplify the application. In fact, any unused input to the SPC must be tied to $V_{S S}$.

## FILTERING

Use of the DIGITALKER is quite straightforward, however, a point on application that must be covered in this brief concerns the frequency response of the output speech. The ultimate quality of the DIGITALKER will strongly depend upon the filter, amplifier and speaker choices made
by the user. For that reason, it is important to understand the output characteristics of the device.

Because the synthesized speech data is derived from a differentiated and sampled input signal, it is necessary to pass the output waveform of the MM54104 through a lowpass filter with a cutoff frequency of approximately 200 Hz and an attonuation charartoristir of 20 dR/decade. This compensates for the high frequency pre-emphasis used in the synthesis technique. If the system of interest has a natural rolloff near 200 Hz , this low-pass filter can be eliminated. The important item is that the entire audio system should have a cutoff frequency of approximately 200 Hz . The placement of the cutoff frequency may be adjusted for the particular type of voice being synthesized. A low pitched man's voice might sound better with a 100 Hz cutoff point while women's and children's voices may show improvements with a 300 Hz cutoff.
As an example of how the overall frequency response of a particular application can minimize the need for extra filtering, consider the DIGITALKER as a voice announcement circuit in a telephone system.

In this case, the telephone network provides a natural attenuation to high frequencies that balances the SPC high frequency pre-emphasis. As a result, the low-pass filter previously mentioned can be eliminated. However, because signal frequencies above 3 kHz must be attenuated before they are allowed to pass into the telephone network, a cutoff filter of 3400 Hz may be required in place of the previously mentioned 200 Hz low-pass filter. A good filter for this application is the National Semiconductor AF133 active filter.
In addition to the 200 Hz to 3400 Hz low-pass filter, an extra stage of low-pass filtering can be used for frequencies above 7 kHz . This filter is optional and is normally only used to further reduce sampling noise. Most systems can omit this filter, especially if the overall system bandwidth is not very wide. A second optional filter can be included to limit the overall low frequency response of the system. This high-pass filter would normally cutoff below 200 Hz (adjusted to match the 200 Hz low-pass if provided). This high-pass filter limits low frequency noise, and can usually be omitted if system characteristics do not require this function.

[^71]LB-54 Circuit for Evaluation of Custom Vocabulary EPROM Prototype Set
Recommended Circuit for Evaluating up to 8 Custom Encoded EPROMs (2716)


# Speech Synthesis 

## INTRODUCTION

Electronic speech circuits offer a new dimension of sophistication to many modern machines. As annunciators in trains, elevators, office buildings, autos, airplanes, terminals, toys and games, etc., electronic speech circuits provide a more direct and natural announcement than bells, buzzers or lights. With electronic voice signals, complex directions can be clearly given in any language and with a minimum of effort.

In the past, electronic announcement systems required elaborate tape mechanisms. These systems were expensive and troublesome, so their use was limited to the small number of applications that required speech announcements (e.g., telephone announcement systems). The tirst all-electronic systems used analog to digital conversion techniques to convert actual voice into digital signals. These digital speech signals were then stored as PCM or delta modulation signals in semiconductor memories. The major problem with this arrangement was the massive memory required for a moderate amount of announcement time. One second of digital speech, in this configuration, required from 16 k to 100 k bits of memory.

The latest solution to electronic speech is known as speech synthesis. This technique provides a dramatic reduction in the memory required for one second of speech. Memory requirements range from 400 bits to 2000 bits per second depending on the desired speech attributes and overall quality. The synthesizer technique takes advantage of the fact that speech signals are highly redundant and predictable. By coding only the slowly varing coefficients of speech or by dramatic compression of digitized speech, significant bandwidth reductions in the digitized signal can be realized. These techniques, coupled with LSI semiconductor technology, make true voice synthesis practical.
The National Semiconductor speech processor chip (SPC) provides the complete speech synthesis reproduction circuitry needed to generate high quality and natural speech (male, female or a child's voice), electronic tones or music. A complete chip set is called the DIGITALKER ${ }^{\text {TM }}$. It consists of the speech processor chip and a speech ROM. The applications for this chip set are endless, but to name a few:

> Voice interactive computer terminals
> Automotive, nautical and aeronautical instrumentation annunciators
> Voice-back units for banking, weather and time announcements, answering machines, etc.
> Elevators, trains, subway systems, etc.
> Consumer appliances, toys and games
> Warning systems for fire and police emergency

All of these applications benefit from the lower overall cost, high reliability, excellent performance and fast control response afforded by the National Semiconductor DIGITALKER ${ }^{\text {TM }}$ system. The remainder of this note will be

DIGITALKER ${ }^{\text {TM }}$ is a trademark of National Semiconductor Corp.

National Semiconductor
Application Note 252
Jim Smith
Dave Weinrich
devoted to a description of the MM54104 SPC, the technique used to synthesize speech and finally a review of the major DIGITALKER ${ }^{\text {TM }}$ applications.

## SPEECH SYNTHESIS

The basic phonological element of speech is the phoneme. The phoneme represents a simple sound that by itself cannot distinguish different words. Phonemes, together with speaker inflection, volume, emphasis, etc. are the fundamental building blocks of speech. The overall quality of any speech synthesizer, therefore, is directly controlled by its ability to faithfully reproduce all of the nこcccoary spacoh attributac and nct juct phoncma reproduction.

The common American English language consists of approximately 38 to 40 phonemes - 14-16 vowel sounds and 24 consonant sounds. Each phoneme is generated with either a voiced sound, as in "eye", or an unvoiced sound like the sh in "shy". This difference between a voiced and unvoiced sound is very important because the unvoiced sounds are generally fewer in number and less dependent upon the physiological characteristics of the speaker. A speech synthesizer, it turns out, can exploit this important difference. Finally, normal speech rates are approximately 10 to 15 phonemes per second (including silence intervals). Since $38-40$ phonemes can be coded using 6 bits, the normal bit rate for phoneme reproduction is approximately 60 to 90 bits per second. This bit rate, however, contains only phoneme information which is only one of the many important speech attributes.

Since phoneme reproduction is a basic element in any speech synthesizer, an understanding of phoneme construction would be useful. Speech synthesis models use two driving functions, an impulse source for voiced sounds and a noise source (hiss noise) for unvoiced sounds. Each of these driving signals are filtered into specific frequency bands or formants by time-varying filters. The net result, for any particular set of valid filter coefficients, is a formant sound. In the human vocal tract system, the driving function consists of the lungs as the energy source, and the vocal cords for generating a voiced sound. The driving function for an unvoiced sound relies on the noise generated as air rushes through the vocal chambers and not on vocal cord vibrations. The formants are then generated by the resonant chambers of the throat, mouth and nasal cavities. By controlling the physical nature of these chambers with mouth position, tongue position and throat orifice size, a speaker can control the formants to generate a phoneme. It should be noted, however, that formants are identified by distinctive frequency bands. The unvoiced sounds do not generate these distinctive bands and therefore do not necessarily require the "normal" formants for a faithful reproduction. These sounds are characterized by a noise or hiss with very little resonance. This unvoiced resonance is normally identified as a fricative formant (e.g., the "sh" sound) and is characterized by an unusually large content of high frequencies.

A formant-based speech synthesizer, as described previously, would normally use at least three formant filters for voiced sounds and one formant filter for fricative sounds. An additional resonance, called nasal resonance, may be included but no dynamic formant function is usually associated with the nasal resonator. For the synthesis of a normal English vowel using a male voice, the three basic formants would fall into the approximate frequency bands of 200 Hz to $800 \mathrm{~Hz}, 900 \mathrm{~Hz}$ to 2300 Hz and 2400 Hz to 3000 Hz . The fricative formant is typically a pulse of high frequency noise in the band from approximately 2500 Hz to 8000 Hz , with the higher frequency fricatives like "th" usually much lower in relative amplitude when compared to the "sh" fricative sound.

The basic formant synthesizer requires formant filter coefficient data, amplitude control data and driving function control data. This minimum system could synthesize speech, but would not control inflection or emphasis. Its quality, therefore, can be very disappointing. Normal memory requirements for a minimal system are approximately 400 bits for one second of speech.

A second approach to speech synthesis does not automatically break speech into its minimum phonological elements. Instead, the speech waveform is sampled, digitized and compressed by the elimination of symmetrical redundancy and silent intervals, the use of adaptive delta modulation, and the adjustment of phase information in the digitized speech. In this way, speech elements can be synthesized as phonemes, phoneme groups, words or even whole phrases. Also, the attributes of the original speaker can be maintained if the synthesized elements are not broken down incorrectly (i.e., inflection can modify the sound of a phoneme if it occurs at the end of a word or phrase rather than at the beginning).

In a speech compression system, unvoiced sounds can be standardized. During the compression algorithm, the voiced and unvoiced sounds are separated and the voiced sounds are compressed. Unvoiced sounds, however, are compared to the available sounds and synthesized by substitution. This approach is successful because unvoiced sounds have very few speaker defined characteristics. As a result, a relatively small set of unvoiced sounds can be used repeatedly.
This speech compression technique offers excellent quality at a low data rate. The synthesis of a male voice, using English, will usually require an average of 1000 bits per word. Because the technique can be applied to any voice frequency signal, it is also capable of synthesizing women's and children's voices, music and tones. This flexibility, plus the realistic quality of the synthesized speech, make this technique very attractive.

## THE NSC SPEECH PROCESSOR CHIP (SPC)

The National Semiconductor speech synthesis system consists of the SPC device plus the speech memory (ROM) required to assemble a complete DIGITALKER ${ }^{\text {TM }}$ kit. To this kit a customer must add a clock input signal or the necessary oscillator components, an audio filter and amplifier and the control circuit function. This would represent the minimum configuration shown in Figure 1. The maximum amount of directly addressable speech memory accessible by the SPC is 128 k bits, but external page addressing by the control circuit function can increase this ROM field as required.
The SPC utilizes the speech compression synthesis technique. As mentioned earlier, this technique reduces the amount of memory needed to store electronic speech by removing the excess or redundant data from the


FIGURE 1. DIGITALKER ${ }^{\text {TM }}$ Minimum Configuration
speech signal. The four main techniques to perform that task are:

1. Elimination of redundant pitch periods
2. Adaptive delta modulation coding to minimize bandwidth and memory requirements
3. Phase angle adjustments to create mirror image symmetry
4. Replacing the low level portion of a pitch period with silence (half-period zeroing)
National Semiconductor uses an elaborate computer program to analyze a high fidelity tape recording and generate a ROM pattern that will faithfully synthesize the original voice message.

Figure 2 contains a block diagram of the MM54104 SPC: The eight-bit start address bus allows up to 256 separately defined sounds or expressions to be stored in the speech ROM. The control interface to the start address port can take the form of decoding logic, a MICROBUS ${ }^{\text {TM }}$ port or mechanical switches.
 into the control word address register. The SPC uses this control address to fetch the control word from ROM for the first block of speech data. The control word contains waveform information, repeat information and the address of the speech data. This address is loaded into the phoneme address register and is used to fetch the speech data used to recreate the speech waveform. Before the synthesis takes place, the waveform data must be decoded to provide information such as male or female, voiced or unvoiced, half-period zeroed or not half-period zeroed and silence.
The unsynthesized waveform for a typical voiced pitch period might look like the signal shown in Figure 3a. In the process of converting this signal to a synthetic form, several operations are performed. First, the phase delay of the signal can be adjusted to create a symmetrical waveform about the center of the pitch period as shown in Figure 3b. The next step will replace the low level beginning and ending quarters of the waveform with silence (Figure 3c). The result is a compression factor of 4 to 1 on
the original voice data. Now, delta modulation is applied and the results are shown in Figure 3c. Synthesis of the waveform starts with a period of silence (no speech data required), a quarter period of adaptive delta modulationgenerated speech followed by the same speech data

(a) Original Speech Waveform
(b) Phase Angle Adjusted to Create Mirror Symmetry
(c) Half-Period Zeroed and Delta Modulated

FIGURE 3. SPC Waveforms (After Mozer [2])


FIGURE 2. MM54104 Block Diagram
MICROBUS ${ }^{T M}$ is a trademark of National Semiconductor Corp. .
fetched in reverse. Finally, the SPC will finish the last quarter cycle of the speech block period with silence. This phase modified speech data sounds the same as the original speech.
At the end of a waveform or speech block, the SPC makes a decision about repeating the sequence. Each waveform of a typical voiced signal may be repeated an average of 3 to 4 times. The typical unvoiced waveform may be repeated approximately 7 to 8 times. Once the proper number of repeats has been generated, the SPC will begin a new speech block sequence. This operation continues until the SPC has executed all control words associated with the original eight-bit start address code.
SPC speech signals are stored as adaptive delta modulation data. This encoding technique exploits the relatively predictible and slowly changing characteristic of voiced speech. Because of the small differential between successive speech samples, a delta value rather than an absolute value can be used to determine the actual speech signal. Addition of the delta value to previously accumulated values will result in a new output waveform signal level. An adaptive technique is used so that the delta step size can change in response to slope variations. This technique uses multiple delta modulation step sizes to obtain a more accurate resolution and yet, the required amount of stored data remains lower than the information required for a more conventional encoding scheme.
The internal SPC clock is derived from a programmable frequency generator. Variations in the frequency of this clock, through the control word, allow the SPC to add a rising and falling pitch to speech sounds and syllables. This derived pitch variation adds a natural inflection to the synthetic speech.
Just as pitch variations are used to increase realism, so must the SPC use gain variations. Both techniques are controlled by data stored at the beginning of a speech block and the programmable oscillator and output amplifier circuit blocks of the SPC.
Use of the DIGITALKER ${ }^{\text {TM }}$ is quite straightforward and will be outlined in the next section. However, a point on application that must be covered in this note concerns the frequency response of the output speech. The ultimate quality of the DIGITALKER ${ }^{\text {TM }}$ will strongly depend upon the filter, amplifier and speaker choices made by the user. For that reason, it is important to understand the output characteristics of the device.
Because the synthesized speech data is derived from a differentiated and sampled input signal, it is necessary to pass the output waveform of the MM54104 through a lowpass filter with a cutoff frequency of approximately 200 Hz and an attenuation characteristic of $20 \mathrm{~dB} / \mathrm{decade}$. This compensates for the high frequency pre-emphasis used in the synthesis technique. If the system of interest has a natural rolloff near 200 Hz , this low-pass filter can be eliminated. The important item is that the entire audio system should have a cutoff frequency of approximately 200 Hz . The placement of the cutoff frequency may be adjusted for the particular type of voice being synthesized. A low pitched man's voice might sound better with a 100 Hz cutoff point while women's and children's voices may show improvements with a 300 Hz cutoff. Figure 4a shows a filter and amplifier circuit for this minimum frequency response characteristic.
As an example of how the overall frequency response of a particular application can minimize the need for extra
filtering, consider the DIGITALKER ${ }^{\text {TM }}$ as a voice announcement circuit in a telephone system.
In this case, the telephone network provides a natural attenuation to high frequencies that balances the SPC high frequency pre-emphasis. As a result, the low-pass filter previously mentioned can be eliminated. However, because signal frequencies above 3 kHz must be attenuated before they are allowed to pass into the telephone network, a cutoff filter of 3400 Hz may be required in place of the previously mentioned 200 Hz low-pass filter. A good filter for this application is the National Semiconductor AF133 active filter.
In addition to the 200 Hz to 3400 Hz low-pass filter, an extra stage of filtering can be used for frequencies above 7 kHz . This filter is optional and is normally only used to further reduce sampling noise. Most systems can omit this filter, especially if the overall system bandwidth is not very wide. A second optional filter can be included to limit the overall low frequency response of the system. This high-pass filter would normally cutoff below 200 Hz (adjusted to match the 200 Hz low-pass if provided). This high-pass filter limits low frequency noise, and can usually be omitted if system characteristics do not require this function. A circuit having the full frequency response characteristic is shown in Figure 4b. Figure 5 shows the recommended overall speech synthesis system frequency response.

## APPLICATIONS

While the variety of synthetic speech applications are numerous, the actual implementation in any single application is usually limited to one of the following three techniques:
(a) Single channel, hardware control logic
(b) Single channel, software control logic
(c) Multichannel, hardware or software control logic

Each of these circuit approaches for the SPC will be discussed in this section. Particular emphasis will be placed on items (b) and (c), however, because of the broad application possibilities for these two techniques.
Certain applications require a relatively small number of sentences or announcements with very little similarity between the different sentences. An example of this application might be a talking elevator controller where the messages are brief and non-redundant (e.g., "going up, first floor, second floor", etc.). In this application, certain words are used repeatedly but the number of messages is limited and the length of each message is short. This application and others just like it, do not require the assembly of short phrases into complete sentences, nor do they require a dynamic message structure as would be required with an automatic bank teller (e.g., "your change is ten dollars") where a monetary amount may change from message to message. This fixed message application, therefore, may only require the minimum control circuit as shown in Figure 6.
In Figure 6, the SPC receives a separate coded input for each complete sentence or message that is synthesized. This input code is received by the SPC through the SW 1-8 port.
The circuit shown in Figure 6 uses a mechanical switch group to interface the SPC while the Figure 7 circuit uses a hardware logic controller to input the coded message control data.

(a) Minimum Low-Pass Filter/Amplifier

(b) Maximum Filter Response Configuration

FIGURE 4. SPC Filter and Amplifier


FIGURE 5. Recommended Frequency Response of Entire Audio System for MM54104 SPC


FIGURE 6. DIGITALKER ${ }^{\text {TM }}$ with Switch Interface


FIGURE 7. DIGITALKER ${ }^{\text {TM }}$ with Logic Control Interface

After the proper message address is established on the SW 1-8 port, a momentary pulse must be applied to the $\overline{W R}$ line. If this slgnal is applied with a momentary action switch, as shown in Figure 6, then an external pull-up resistor should be used to pull the WR line up to logic high and complete the on-chip switch debounce circuitry. The suggested value of this resistance is one megohm. The $\bar{W}$ input signal will latch the coded message address into the SPC on the rising edge of WR and initiate the synthetic speech message. Since each complete message uses a unique address code of the SW 1-8 port, no further control action is required after this point. The SPC will synthesize the requested message and return to the idle state. If a new input command signal is received, either during or after a message is synthesized, the SPC will immediately abort the current message and begin the new one. The circuit in Figure 7 shows a lock-out circuit to prevent the aborting of a current message so that messages must be completed before a new message can be initiated.

In Figure 7, a message is initiated whenever a valid code word is applied to the eight-bit SW 1-8 port of the SPC. The
 and timed to insure all transitions have died. Once the valid code is timed, an S-R latch is set and a $\overline{W R}$ rising
edge is generated to start the SPC. This latch circuit also prevents retriggering of the SPC until after the present speech message is completed. Once the synthesized message has ended, the SPC will set the INTR line to the logic one state and a reset pulse will be generated to reset the lock-out latch. A new speech message can now be started by momentarily applying an idle address code followed by a valid code on the SW 1-8 input port.

The SPC will directly address up to 128 k bits of speech memory. Figure 8a shows a typical speech ROM configuration of 128 k using two 64 k ROMs. The types of ROMs used have mask programmable chip selects, therefore, no extra decode logic is required for memory requirements of less than 128 k . Although this memory size is usually sufficient for most applications, certain systems may require added speech ROM addressing. The circuit in Figure $8 b$ shows how the speech ROM of an SPC kit can be expanded in 128 k bit pages or modules. Each page is arranged to contain a complete portion of the entire speech library for a particular system. Each single speech data block, as
 contained within one ROM page. No page boundaries can be crossed during the synthesis of a speech expression.


FIGURE 8b. Speech ROM Expansion Configuration

While the simple control schemes discussed so far can be used in many applications, a far more important group of applications will take advantage of the SPC's ability to construct sentences from a group of words, sounds and phrases. This type of application uses an intelligent controller or a microprocessor to string together a group of synthesized phrases to form a complete sentence. The electronic bank teller, previously mentioned, is a good example of this application. The microprocessor controls the stringing of SPC code addresses and applies them, one at a time, to the SW 1-8 port of the SPC. Handshake timing between the microprocessor and the SPC is provided with the INTR line. This microprocessor interface arrangement is known as MICROBUS ${ }^{\text {TM }}$ and the configuration is shown in Figure 9.

The use of a microprocessor controller expands the versatility of the SPC tremendously. Messages that are composed of numerical responses or fixed phrases in random sequence can be easily constructed from a library speech memory. In addition, various tones or warnings can be synthesized and added before, during, or after an announcement to identify the urgency of each message. For example, an automobile message may state that "oil pressure is low". Alone, that message may only mean that pressure has dropped but no immediate hazard exists. If, however, pressure has dropped below a critical value, the message
could be compounded to say "warning, oil pressure is low, pull over and stop the engine". In this latter case, phrases of high urgency are added to the initial message to increase its level of importance. Of course, the second message is not completely separate from the first but is, instead, an expansion of the first. This technique allows fewer input address codes to initiate a larger number of messages without assigning a separate address code for each message and for each of its derivatives. This would be particularly important to an electronic bank teller since a large number of monetary amounts must be synthesized for a relatively small number of finished sentences.
When preparing a speech ROM for an SPC that will synthesize whole sentences from groups of phrases, it is important to note the desired inflections. The SPC has the ability to synthesize all of the important speech attributes including pitch and gain variations, emphasis, inflection, etc. This leads to very high quality life-like synthetic speech if the stringing of phrases does not result in an artificial emphasis or inflection. It is important to choose phrases carefully and to record them with the attribute required for a realistic sentence string. The stringing of phonemes should be avoided whenever possible because the natural inflection is usually lost in such an arrangement.


FIGURE 9. DIGITALKER ${ }^{\text {TM }}$ with Microprocessor (MICROBUS ${ }^{\text {TM }}$ ) Interface

A low cost intelligent controller for the SPC is one of the COP400 series of microcontrollers. Figure 10 shows one possible arrangement of an SPC system and a COP420. The COP provides all of the advantages associated with a MICROBUS ${ }^{\text {TM }}$ interface at a relatively low cost. Because of its limited I/O structure, the COP's serial I/O port is expanded as required to obtain the desired number of input lines.
The final application technique to be covered is the multichannel configuration. The previous arrangements used an SPC and a dedicated set of speech ROMs to provide a single channel of synthetic speech. Appliances, autos, toys and games, terminals, etc. would probably use
a single channel SPC arrangement. But an entirely different group of products could take advantage of a multiple channel approach to reduce the ROM requirements. This group of products includes multiple elevator controllers, electronic bank tellers, multiple pupil learning centers, voice response telephone answering equipment, telephone switching system call announcement centers, etc. In this application, each channel would use a separate SPC and amplifier circuit, but several channels would share a common controller and speech library ROM. A typical configuration is shown in Figure 11.
The library ROM of Figure 11 is shared over eight SPC channels. Each SPC channel is scanned once in $16 \mu \mathrm{~S}$ as


FIGURE 10. DIGITALKER ${ }^{\text {TM }}$ with COP420/COP421 Interface


FIGURE 11. Multichannel Speech Synthesizer
shown in Figure 12. During each channel period of $2 \mu \mathrm{~s}$, an SPC output address is presented to the ROM address input port via a pair of octal TRI-STATE ${ }^{\oplus}$ bus drivers. After one $\mu \mathrm{s}$, the data from the ROM is clocked into the channel's octal data latch, the output of which is connected to the SPC ROM data input port. The remaining $1 \mu \mathrm{~s}$ of each channel cycle is provided for bus settling time.

When the speech library ROM is shared over many channels, the actual number of shared channels is controlled by the MM54104 SPC memory cycle timing. Because the channel scanning is asynchronous to the SPC cycle timing, it is necessary for each channel to be scanned at least once during the high interval of the ROMEN signal. As shown in Figure 13, this signal is high for at least $20 \mu \mathrm{~s}$ of each memory fetch cycle. Thus, a scanning rate of one channel every $16 \mu \mathrm{~s}$ will insure that each channel is scanned at least once while the $\overline{R O M E N}$ signal is high.

One final note is necessary about the configuration in Figure 11. Simple modifications to the counter and decoder circuitry would allow this circuit to handle sixteen channels. A four-line to sixteen-line decoder would replace the three to eight decoder and the clock would directly enable the decoder during the logic low clock period. All sixteen channels would be scanned every $16 \mu \mathrm{~S}$ and the scan interval for each channel would be one $\mu \mathrm{S}$ -
one-half $\mu \mathrm{S}$ of memory access time and one-half $\mu \mathrm{S}$ of bus guard time.
The last multichannel circuit is shown in Figure 14. This scheme reduces the number of wires needed between the speech ROM and each SPC channel. By multiplexing address and data over the same parallel bus, fewer wires are needed. This approach is particularly attractive when each SPC channel is located on an individual circult card. A telephone central office or PABX announcement system is a typical example of a channel per card arrangement. Figure 14 represents that type of system.
As shown in Figure 15, each channel of the unified bus approach is scanned for one $\mu \mathrm{s}$. As many as sixteen channels, therefore, can be scanned during the ROMEN high cycle of any SPC. During each channel scan, the bus is gated to transmit the ROM address to latches on the ROM circuit board. The address is sent in two bytes. After a brief delay of one-half $\mu \mathrm{s}$, the bus is gated to return the requested ROM data to the same SPC channel. This data is then latched on the SPC channel card. This scheme is very straightforward. It exchanges reduced interconnect wiring for additional logic circuits.
To minimize interconnect wiring when using a unified bus structure, the SPC control logic would probably be configured on a per channel basis. The COP microcontroller,


* Note: Selected 81LS95 output enabled during this interval. Output is current ROM address code from SPC.

FIGURE 12. Multichannel Timing Dlagram


TRI-STATE ${ }^{\text {® }}$ is a registered trademark of
National Semiconductor Corp.
FIGURE 13. MM54104 SPC Speech Memory Cycle Timing
once again, is a logical choice for this function. The COP controller initiates and assembles a group of fixed messages. Because of general similarities between the various messages, phrase strings are used to construct each finished message. Also, the circuit in Figure 14 allows one message to contain a non-fixed message-a telephone number. The COP controller reads a group of program switches or receives a down-loaded number from the switching system's central processor. It then inserts this number into the appropriate place during the syn-
thesis of the following typical message-"The number you are calling has been changed. The new number is 555-3434". The ROM library in this case contains the phrases required for message construction and the data needed to synthesize the name of each decimal digit. The library could also contain the names of the teen digit pairs, and the words "hundred" and "thousand". These would be used to synthesize the words "thirteen hundred" or "two thousand', etc.


FIGURE 15. Multichannel (Unified Bus) Timing Diagram

## SUMMARY

This application note describes some of the versatility and flexibility of the National Semiconductor DIGITALKER ${ }^{\text {TM }}$ System. This system provides low cost speech and tone synthesis for products ranging from consumer items to computers. It provides a reliable alternative to mechanical systems (l.e., tape decks) without sacrificing voice quality. Also described in this note are a few of the most popular circuit arrangements possible with the DIGITALKER ${ }^{\text {TM }}$. Of particular interest are the methods outlined to assemble whole messages from phrase groups and the schemes used for multichannel synthesizer systems. This latter application is particularly interesting because of the memory savings for the multichannel user.

## REFERENCES

1. Morris, Dennis E. and Weinrich, David W., A New Speech Synthesis Chip Set, IEEE International Conference on Acoustics, Speech and Signal Processing, 1980.
2. Mozer, Forrest, Method and Apparatus for Speech Synthesizing, Pending US Patent.
3. Weinrich, David W., A Speech Synthesis Chip Set Using Compression Techniques, Electronics, April 10, 1980.
[^72]Section 14 Appendices/ Physical Dimensions


## Appendices/Physical Dimensions

## Section Contents

National A+ and B + Extended Quality and ReliabilityPrograms for Linear Circuits14-3MIL-STD-883/MIL-M-38510 ..... 14-8
Linear Cross Reference Guide ..... 14-9
Industry Package Cross Reference Guide ..... 14-13
Physical Dimensions ..... 14-15

For additional information on Linear Products, see National Semiconductor's Linear Applications Handbook.

## I. RELIABILITY vs. QUALITY

The words "reliability" and "quality" are often used interchangeably, as though they connoted identical facets of a product's merit. But reliability and quality are different, and IC users must understand the essential difference between the two concepts in order to properly evaluate which of National's extended screening programs, $\mathrm{A}+$ or $\mathrm{B}+$ will offer the most cost effective product improvement for his application.

## QUALITY

The concept of QUALITY gives us information about the population of faulty IC devices among good devices, and generally relates to the number of faulty devices that arrive at a user's plant. Looked at in another way, quality then relates to the number of faulty IC's that escape detection at the IC vendor's plant.
At National, it is the ehartor of the Duality Control (OC) Operation to continually monitor and reduce the number of faulty IC's that escape detection. QC does this by testing the outgoing parts on an Acceptance Quality Level (AQL) basis. ${ }^{1}$ The tighter the AQL testing, the more difficult it becomes for a defective part to escape detection, thus the quality of the shipped product increases.

## RELIABILITY

The concept of RELIABILITY, on the other hand, refers to how well a part that is initially good will withstand its environment. Reliability cannot be tested into a device. Reliability is principally a function of device design, die size, power dissipation, assembly methods and material, etc. Still there are tests and procedures that an IC vendor can implement which will subject the IC to stress in excess of what it will endure in actúal use, which will eliminate marginal, short-life parts.
On this basis, it is easily seen that it is possible that high quality IC's may, in fact, have low reliability, while low quality IC's may have high reliability. The object of extended screening programs is: (1) to enhance the quality by reducing the population of faulty devices among good devices and by so doing, eliminate the costly requirement of incoming tests by the user, and (2) provide maximum long term reliability minimizing equipment down-time, costly repairs and maintenance.

## II. QUALITY SAVES YOU MONEY

When an IC vendor specifies $100 \%$ final testing of his parts then, in theory, every shipped part should be a good part. However, in any population of massproduced items there does exist a small percentage of defective parts.
One of the best ways to reduce the number of such faulty parts is, simply, to retest the parts prior to shipment. Thus, if there is a one percent chance that a bad part will escape detection initially, retesting the parts reduces that probability to only 0.01 percent. This is exactly what tightening of the outgoing AQL level achieves

## WHAT IS AQL?

A good example of savings which can be achieved by taking advantage of tighter $A Q L^{(1)}$ inspection levels is illustrated as follows:

Assume a system uses 100 devices of a certain type which are procurred to a $1 \%$ AQL level, and no incoming inspection/testing is done by the user. Statistically it can be shown that the number of systems that will require rework will be $80 \%$ of all systems manufactured! If enough devices are purchased to manufacture 100 systems ( 10,000 devices) and the cost to trouble shoot and repair each system is $\$ 30.00$, the total cost of repair will be $\$ 2,400$ ( $80 \%$ of 100 systems at $\$ 30.00$ each).
Thus, the need for some preliminary component screening prior to system assembly becomes obvious.
However, if the same devices are procurred to a $0.14 \%$ AQL level, which is seven times tighter than originally assumed, it can be shown that the number of systems requrıng rework is reduced iy a iaciur ui ívui, writitiviat the need for incoming inspection.
Thus, on a 100 system basis, 20 systems will require repair at $\$ 30.00$ per system, or a total of $\$ 600.00$. A savings of $\$ 1,800$ is realized, and the user need not invest in expensive capital equipment, procedures, and paper work.
On a "savings per device" basis, this is a savings of 18 " per device. Indeed, Quality saves you money!
This is the value added by the $\mathrm{A}+$ and $\mathrm{B}+$ Linear programs.

## III. RELIABILITY SAVES YOU MONEY

With the increased population of integrated circuits in modern electronics systems has come an increased concern with IC failures. And rightly so, for at least two major reasons. First, the effect of component reliability on system reliability can be quite dramatic. For example, suppose that you, as a system manufacturer, were to choose an IC that is $99 \%$ reliable. You would find that if your system used only 70 such IC's the overall reliablility of the system's IC portion would be only $50 \%$.
In other words, one out of every two systems in the field would fail. The result? A system that is very costly to produce, costly to maintain, and probably very difficult to sell.

Second, whether the system is large or small you cannot afford unnecessary maintenance costs. Not only have labor, repair and rework costs risen - and promise to continue to rise - but also, field replacement may be prohibitively expensive or impossible. If you ship a system that contains a marginally performing IC, and that IC later fails in the field, the cost of repair and replacement may be literally hundreds of times more than the cost of the failed IC itself.
(1) AQL testing is not to be confused with "in process" or electrical parameter testing in the normal product flow. All National products are $100 \%$ tested for electrical data sheet parameters.

## IV. IMPROVING THE RELIABILITY OF SHIPPED PARTS

As was previously mentioned, reliability, in the true sense cannot be tested into a product. The most important factors that affect reliability are design, construction, materials and the assembly method. However, many of these can be examined and monitored by testing. As a matter of routine, National frequently performs 1000 hour burn-in life test and accelerated life tests to continually guarantee the quality and reliability of the linear product which is being shipped to customers. For example, the quality of the die attach for voltage regulators can be monitored by observing the thermal characteristics associated with "pulse loading" the regulator. This is a technique which National Linear pioneered over 10 years ago and still performs on a $100 \%$ basis on three terminal regulators at no additional cost to the user. Many such tests, including destructive and non-destructive wire bond pull tests are a matter of routine with National.
Further, in any test of reliability, the weaker parts will fail first. Stress tests will accelerate, or shorten the time of failure of the weak parts. Because the stress test causes weak parts to fail prior to shipment, the population of shipped parts will in fact demonstrate a higher reliability.
One of, if not the most effective screening procedures in the Semiconductor industry, is the use of a burn-in to stress and accelerate the failure of weak parts.
Thus, burn-in screen plus the tightened AQL outgoing testing, is the key to the A+ Linear Program.

## QUALITY AND RELIABILITY PROGRAMS FOR MOLDED LINEAR PRODUCTS

One concern, with regard to quality and reliability in molded plastic products, is the problem of thermal intermittents. This problem first came to light in 1970 and plagued all semiconductor manufacturers. Since that time considerable efforts have been focused on improving lead bonding and lead frames to make them stronger and more reliable as well as improvements in the package molding material itself.
To better understand the problems a brief discussion of thermal intermittents is in order.

Because wires and bonds are completely imbedded in plastic, molded integrated circuits are extremely rugged devices. They can survive mechanical shock and vibration conditions which would literally tear the bonds and wires to pieces in a cavity type package. However, the non-cavity construction does present a unique problem. Sould a bond fracture or a wire break for some reason, the broken bond will remain in contact as long as the surrounding encapsulant continues to exert a compressive force on the bond. However, as the temperature increases, the compressive forces tend to relax due to the thermal mismatches between the lead frame, die, wires and the plastic.
Ultimately, if a high enough temperature is reached, the broken bond will separate, causing an electrical discontinuity. The phenomenon is frequently
reversible, that is, as temperature decreases, electrical continuity is restored. This type of discontinuity is commonly referred to as a THERMAL INTERMITTENT OPEN. If electrical continuity does not return when the package temperature returns to ambient, then a permanent open has occurred.
If such defects occur during the manufacturing cycle of the device, and are not screened out by the manufacturer's testing sequence or by some screening test imposed by the user, they will show up as infant mortality failures in the user's equipment. If they occur during the user's equipment manufacturing cycle (due to solder heat exposure, for example) they will also show up as infant mortality failure.
The best way to screen for this phenomenon is to perform temperature cycling and "Hot Rail" testing after the device has been manufactured. The temperature cycling will stress the package mechanically to force the intermittent to occur if such a failure exists. The "Hot Rail" testing is performed to determine the functionality of the device at $100^{\circ} \mathrm{C}$ to ensure there are no open bonds at the worst case condition.

## NATIONAL'S B+ LINEAR PROGRAM GETS IT ALL TOGETHER

We have stated that the $B+$ program improves both the quality and reliability of National's molded integrated circuits, and pointed out the difference between those two concepts. Now, how do we bring them together? The answer is in the $B+$ program processing, which is a continuum of stress and double testing. With the exception of the final QC inspection, which is a tightened sample program, all steps of the $B+$ process are performed on $100 \%$ of the parts. The following flow chart shows how we do it, step by step.


## EPOXY B PROCESSING FOR ALL MOLDED PARTS -

At National, all molded semiconductors, including IC's have been built by this process for some time. All processing steps, inspections and QC monitoring are designed to provide highly reliable products. (Reliability reports are available that give, in detail, the background of Epoxy B, the reason for its selection at National and reliability data that proves its success.)

## SIX HOUR, $150^{\circ} \mathrm{C}$ BAKE -

This stress places the die bond and all wire bonds into a combined tensile and shear stress mode, and helps eliminate marginal bonds and electrical connections.

## FIVE TEMPERATURE CYCLES

( $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ )
Exercising the circuits over a $100^{\circ} \mathrm{C}$ temperature range further stresses the bonds and eliminates marginal bonds missed during the bake.

## ELECTRICAL TESTING

These room-temperature functional and parametric tests are the normal final tests through which all National products pass.


HIGH TEMPERATURE ( $100^{\circ} \mathrm{C}$ ) FUNCTIONAL ELECTRICAL TEST -
A high temperature test such as this with voltages applied places the die under the most severe stress possible. The test is actually performed at $100^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$ higher than the commercial ambient limit. All devices are thoroughly exercised at the $100^{\circ} \mathrm{C}$ ambient. (Even though Epoxy B processing has virtually eliminated thermal intermittents, we perform this test to ensure against even the remote possibility of such a problem.)
$100 \%$ DC FUNCTIONAL AND PARAMETRIC TESTS -
This is the second time that room-temperature functional and parametric tests are performed to National data sheet electrical limits.
TIGHTER-THAN-NORMAL QC INSPECTION PLANS -
Most vendors sample inspect outgoing parts to a $0.55 \%$ (ご you specify the B+ program, however, not only do we sample your parts to a $0.28 \%$ AQL for all data sheet dc parameters, but they receive a $0.14 \%$ AQL for functionality as well. (Functional failures - not parameter shifts cause most system failures.) Thus, the five to seven-times tightening of the AQL procedure gives a substantially higher quality to your $B+$ parts. And you can rely on the integrity of your received IC's without incoming tests at your facility.

SHIP PARTS
Here are the QC Procedures used in our B+ test program:

TEST	TEMPERATURE	AQL
Electrical Functionality	$25^{\circ} \mathrm{C}$	$0.14 \%$
Parametric, dc	$25^{\circ} \mathrm{C}$	$0.28 \%$
Major Mechanical	$25^{\circ} \mathrm{C}$	$0.25 \%$
Minor Mechanical	$25^{\circ} \mathrm{C}$	$1 \%$

## NATIONAL'S A + LINEAR PROGRAM THE ULTIMATE IN QUALITY AND RELIABILITY

National has combined the successful B+ program with the Military/Aerospace processing specifications and . provides the A+ program as the best cost-effective approach to maximum quality and reliability on molded devices. The following flow chart shows how we do it step by step. The major difference between $B+$ and the $A+$ is the burn-in associated with the $A+$ program.

## SEM -

Randomly selected wafers are taken from production regularly and subjected to SEM analysis.

## EPOXY B SEAL -

At National, all molded semiconductors, including IC's have been built by this process for some time. All processing steps, inspections and QC monitoring are designed to provide highly reliable products.

SIX HOUR, $150^{\circ} \mathrm{C}$ BAKE -
This stress places the die bond and all wire bonds into a combined tensile and shear stress mode, and helps eliminate marginal bonds and electrical connections.
FIVE TEMPERATURE CYCLES $\left(0^{\circ} \mathrm{C}\right.$ to $100^{\circ} \mathrm{C}$ ) -
Exercising the circuits over $100^{\circ} \mathrm{C}$ temperature range further stresses the bonds and eliminates any marginal bonds missed during the bake.

## ELECTRICAL TESTING -

These room-temperature functional and parametric tests are the normal final tests through which all National products pass.

## BURN-IN TEST -

Devices are stressed at maximum operating conditions to eliminate marginal devices. Test is performed per MIL-STD-883A, Method 1015.1.

HIGH TEMPERATURE ( $100^{\circ} \mathrm{C}$ ) FUNCTIONAL ELECTRICAL TEST -
A high temperature test with voltages applied places the die under the most severe stress possible. The test is actually performed at $100^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$ higher than the commercial ambient limit. All devices are thoroughly exercised at the $100^{\circ} \mathrm{C}$ ambient.
$100 \%$ DC FUNCTIONAL AND PARAMETRIC TESTS -
This is the second time that room-temperature functional and parametric tests are performed to National data sheet electrical limits.
TIGHTER-THAN-NORMAL QC INSPECTION PLANS -
Most vendors sample inspect outgoing parts to a $0.65 \%$ (or in some cases a $1 \%$ ) AQL. When you specify the A+ program, however, not only do we sample your parts to a $0.28 \%$ AQL for all data sheet dc parameters, but they receive $0.14 \%$ AQL for functionality as well. (Functional failures - not parameter shifts beyond spec cause most system failures.) Thus, the five- to seven-times tightening of the sampling AQL procedure gives a substantially higher quality to your A+ parts. And you can rely on the integrity of your received IC's without incoming tests at your facility.

## SHIP PARTS

Here is the QC procedure used in our A+ test program:

TEST
Electrical Functionality
Parametric, dc
Major Mechanical
Minor Mechanical $\quad 25^{\circ} \mathrm{C} \quad 1 \%$

* Note: New AQL's will be in effect June '82. Consult your local Sales Office.


## QUALITY AND RELIABILITY PROGRAM FOR HERMETIC PACKAGED LINEAR PRODUCT

An improved quality and reliability program, similar to that which is available for molded products, is also available for commercial temperature range hermetic packages.

There is one major difference between the molded $\mathrm{A}+$ program and the hermetic package $A+$ program. Since there is no material in contact with the wire bonds in a hermetic package, the need for "Hot Rail" functional testing at $100^{\circ} \mathrm{C}$ is of no benefit and therefore not included. The devices are electrically tested ( $100 \%$ ), then burned-in and then $100 \%$ electrically tested again. If a bond failure were to occur during burn-in, there is no material in contact with the bond (such as plastic in the case of molded products) that would tend to restore the bond when the device cooled. The result is that a weak bonding wire, once broken causing an "open" will remain open and be caught at the second $100 \%$ electrical screening.
The A+ hermetic package program flow chart is shown below.

## NATIONAL'S A+ PROGRAM FLOW CHART FOR HERMETIC PACKAGES

National has extended the successful $B+$ and $A+$ molded product programs to hermetic packages. We believe this to be the best practical approach to maximum quality and reliability for commercial devices. The following flow chart explains this program step by step.


## SEM -

Randomly selected wafers are taken from production regularly and subjected to SEM analysis.
ASSEMBLY AND SEAL -
All processing steps, inspections, and QC monitoring are designed to provide highly reliable products. MIL-STD-883 is the guideline by which all linear products are manufactured.
SIX HOUR, $150^{\circ} \mathrm{C}$ BAKE -
This stress places the die bond and all wire bonds into a combined tensile and shear stress mode, and helps eliminate marginal bonds and electrical connections.

## FIVE TEMPERATURE CYCLES

( $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ ) -
Exercising the circuits over $100^{\circ} \mathrm{C}$ temperature range further stresses the bonds and eliminates any marginal bonds missed during the bake.

## ELECTRICAL TESTING -

Every device will be $100 \%$ tested at $25^{\circ} \mathrm{C}$ for functional and dc parameters.
BURN-IN -
Devices are stressed at maximum operating conditions to eliminate marginal devices. Test is performed per MIL-STD-883A method 1015.1.

## DC FUNCTIONAL AND PARAMETRIC TESTS -

These room temperature functional and parametric tests are the normal, final tests through which all National products pass. This is the second time $100 \%$ electrical testing is performed.

## TIGHTER-THAN-NORMAL QC INSPECTION PLANS -

Most vendors sample inspect outgoing parts to a $0.65 \%$ (or in some cases a $1 \%$ ) AQL. When you specify the A+ program, however, not only do we sample your parts to a $0.28 \%$ AQL for all data sheet dc parameters, but they receive $0.14 \%$ AQL for functionality as well. (Functional failures - not parameter shifts beyond spec cause most system failures.) Thus, the five- to seven-times tightening of the sampling procedure gives the highest quality to your A+ parts. And you can rely on the integrity of your received IC's without incoming tests at your facility.

## SHIP PARTS

Here are the QC Sampling plans used in our A+ test program:

TEST	TEMPERATURE	AQL*
Electrical Functionality	$25^{\circ} \mathrm{C}$	$0.14 \%$
Parametric, dc	$25^{\circ} \mathrm{C}$	$0.28 \%$
Major Mechanical	$25^{\circ} \mathrm{C}$	$0.25 \%$
Minor Mechanical	$25^{\circ} \mathrm{C}$	$1 \%$

* Note: New AQL's will be in effect June '82. Consult your local Sales Office.

PROCESS FLOW	MOLDED   N PACKAGE	HERMETIC   H AND J   PACKAGE
DESCRIPTION	$\mathrm{A}+$	$\mathrm{B}+$
A+   $100 \%$ High Temperature Storage -6 Hours $@ 150^{\circ} \mathrm{C}$   $100 \%$ Temperature Cycling, 5 Cycles $-0^{\circ}$ to $100^{\circ} \mathrm{C}$   $100 \%$ Burn-in per MIL-STD-883A, Method 1015.1 X	X	X
$100 \%$ High Temperature Test for Functionality at $100 \%$	X	X
$100 \%$ DC Functional parametric Tests at Room Temperature	X	X
Tightened QC Inspection Plan	X	X

Q.C. SAMPLE PLAN

TEST	TEMPERATURE	AQL
Electrical Functionality	$25^{\circ} \mathrm{C}$	$0.14 \%$
Parametric, dc	$25^{\circ} \mathrm{C}$	$0.28 \%$
Major Mechanical	$25^{\circ} \mathrm{C}$	$0.25 \%$
Minor Mechanical	$25^{\circ} \mathrm{C}$	$1 \%$

A synopsis of the $A+$ and $B+$ programs is shown on the preceding page. Also shown below is a listing of some of the most popular devices which are processed to this program and are readily available.
For more information about this, or other National Linear programs, please contact your local representative.

LF13331	LM1458	LM307	LM324	LM3900	LM723C
LF13741	LM1496	LM308	LM3301	LM393	LM725C
LF347	LM2900	LM3080	LM3302	LM4250C	LM733
LF351	LM2901	LM310	LM339	LM555C	LM741C
LF353	LM2902	LM311	LM3401	LM556	LM747C
LF355	LM2903	LM318	LM346	LM566	LM748C
LF356	LM2904	LM319	LM348	LM567	
LF357	LM301A		LM358	LM709C	
			LM360		
			LM361		

## SUMMARY

The B+ program, although offering improved Reliability attendent with additional stress testing, is primarily aimed at enhancing the quality of incoming devices and thus eliminating the need for incoming testing by the user. This program offers significant cost savings to the user and eliminates the need for the investment in expensive capital equipment to perform this testing. For all general, but relatively non-critical circuits, the $B+$ program is the most cost-effective.

The $A+$ program incorporates not only the quality inherent with $\mathrm{B}+$ program, but also adds burn-in for the ultimate in Reliability testing. The $A+$ program is recommended as the most cost-effective program for components which the user deems to be the most critical in his system.
Both programs, $A+$ and $B+$, incorporate high temperature stress, double testing, and very tight out-going AQL QC proceedures.

## ORDER INFORMATION

Any of the devices listed molded or hermetic package, may be ordered to the A+ program simply by adding the term $A+$ behind the device number, with a slash (/) in between.

Examples:
LM348N/A+
LF356H/A +
LM1458J/A +
Likewise, any molded ( N раскаge) producı may ie ordered to the $\mathrm{B}+$ program by adding the term $\mathrm{B}+$ behind the device number.

## Examples:

LF351N/B+
LM741CN/B+
For devices not listed, contact your local National Semiconductor Sales office for information on availability and ordering information.

## 7 National Semiconductor

## MIL-STD-883

Mil-Standard-883 is a Test Methods and Procedures Document for Microelectronic Circuits. It was derived from MIL-S-19500, MIL-STD-750, and MIL-STD-202C for transistors and diodes at about the time that National Semiconductor Corporation was entering the military microelectronics market. As a result, our standard quality control operations are written around MIL-STD-883. The bonding control, visual inspections, and post seal screening requirements set forth by 883 (as well as added control procedures beyond the requirements of 883) have been part of National's quality control procedures almost from the start. Our Quality Assurance Procedures Manual is available upon request.
We offer a complete line of linear/883 (Class B) products as standard, off-the-shelf items. Special Linear/883 data sheets have been prepared to reflect this capability. They show process flow, electrical parameters, end of test criteria, and test circuits. We save you the problem of specifying test and inspection procedures, and offer significant cost savings by having an off-the-shelf, "to the letter" 883 program. In addition, we will test any of our integrated circuits to any class of MIL-STD-883.

## MIL-M-38510

MIL-M-38510 specifies the general requirements for supplying microcircuits. These are; product assurance, which includes screening and quality conformance inspection; design and construction; marking; and workmanship. The screening and quality conformance inspection are conducted in accordance with MIL-STD-883.

## Screening

All microcircuits delivered in accordance with MIL-M-38510 must have been subjected to, and passed all the screening tests detailed in Method 5004 of MIL-STD-883 for the type of microcircuit and product assurance level.
The device electrical and package requirements of MIL-M-38510 are detailed by a device specification referred to as a slash sheet. Each slash sheet defines the microcircuit electrical performance and mechanical requirements. Each device listed on a slash sheet is referred to as a slash number and the group of the microcircuits contained on a slash sheet is defined as a family of devices. The device may be Class B or C as defined by MIL-STD-883, Method 5004 and 5005. Three lead finishes are allowed by the slash sheet, pot solder dip, bright tin plate, and gold plate.
The MIL-M- 38510 specs for standard linear devices require $100 \% \mathrm{DC}$ testing at $25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$. AC testing is performed at $+25^{\circ} \mathrm{C}$. The electrical parameters specified are tighter than the normal data sheet guaranteed limits. Additionally, MIL-M-38510 requires device traceability, extensive documentation and closely matched maintenance.

## Quality Conformance

Quality conformance inspection is conducted in accordance with the applicable requirements of Group A, (electrical test), Group B and C, (environmental test) of Method 5005, MIL-STD-883. These tests are conducted on a sample basis with Group A performed on each sublot, Group B on each lot, and Group C as specified (usually every three months).

To supply devices to MIL-M-38510, the IC manufacturer must qualify the devices he plans to supply to the detail specifications. Qualification consists of notifying the qualifying activity of one's.intent to qualify to MIL-M-38510. After passing comprehensive audits of facilities and documentation systems, the IC manufacturer will subject the device to and demonstrate that they satisfy all of the Group A, B, and C requirements of Method 5005 of MIL-STD-883 for the specified classes and types of IC. The qualification tests shall be monitored by the qualifying agency. Finally the IC manufacturer shall prepare and submit qualification test data to the qualifying agency. Groups A, $B$, and $C$ inspections then shall be performed at intervals no greater than three months.

The purpose of qualification testing is to assure that the device and lot quality conform to certain standard limits. In effect, lot qualification tests tend to ensure that once a particular device type is demonstrated to be acceptable, it's production, including materials, processing, and testing will continue to be acceptable. These limits are specified in MIL-STD-883 in terms of LTPD's (Lot Tolerance Percent Defective) for the various qualification test sub-groups. Qualification testing is performed on a sample of devices which are chosen at random from a lot of devices that has satisfactorily completed the screening of Method 5004 must be performed on each device, i.e. on a $100 \%$ basis as opposed to qualification testing (Method 5005) which occurs on a random sample basis.

In summary, the entire purpose of MIL-M-38510 and MIL-STD-883 is to provide the military, through its contractors with standard devices.

We at National Semiconductor have supplied and are supplying devices to the MIL-M- 38510 specifications. To order a MIL-M-38510 microcircuit, specify the following:

For example; to specify an LM741 in a DIP processed to the requirements of MIL-M-38510, Class B, with gold plated leads, specify M-38510/ 10101BCC.
MM38510/

Device No．	Function	National Direct Replacement	Device No．	Function	$\begin{gathered} \text { National } \\ \text { Direct } \\ \text { Replacement } \end{gathered}$
FAIRCHILD			FAIRCHILD（	ontinued）	
$\mu \mathrm{A} 101 \mathrm{AHM}$	General Purpose Óp Amp	LM101AH	$\mu \mathrm{A} 2901 \mathrm{PC}$	Dual Internally Compensated Op Amp	LM2901N
$\mu \mathrm{A} 102 \mathrm{HM}$	Voltage Follower	LM102H	${ }^{\mu} \mathrm{A} 3046 \mathrm{CC}$	Transistor Array	LM3046N
$\mu \mathrm{A} 107 \mathrm{HM}$	General Purpose Op Amp	LM107H	$\mu \mathrm{A} 3064 \mathrm{PC}$	TV Automatic Fine－Tuning Circuit	LM3064N
$\mu \mathrm{A} 108 \mathrm{AHM}$	Super Beta Op Amp	LM108AH	$\mu \mathrm{A} 3075 \mathrm{PC}$	FM IF Limiter／Detector／Audio Preamplifier	LM3075N
${ }^{\mu} \mathrm{A} 108 \mathrm{HM}$	Super Beta Op Amp	LM108H	$\mu \mathrm{A} 3086 \mathrm{PC}$	Transıstor Array	LM3086N
${ }^{4} \mathrm{~A} 110 \mathrm{HM}$	Voltage Comparator	LM110H	$\mu \mathrm{A} 3301 \mathrm{P}$	Quad Single Supply Amplifier	LM3301N
$\mu \mathrm{A} 111 \mathrm{HM}$	Voltage Comparator	LM111H	${ }_{\mu}{ }^{\text {A } 3302 P}$	Quad Comparator	LM3302N
$\mu \mathrm{Al11RM}$	Voltage Comparator	LM111J．8	${ }_{\mu}{ }^{\text {A 3401P }}$	Quad Single Supply Amplifier	LM3401N
$\mu \mathrm{A} 201 \mathrm{AHM}$	General Purpose Op Amp	LM201AH	$\mu \mathrm{AF} 111 \mathrm{HM}$	Voltage Comparator	LF111H
$\mu \mathrm{A} 201 \mathrm{AT}$	General Purpose Op Amp	LM201AN	$\mu \mathrm{AF211HM}$	Voltage Comparator	LF211H
$\mu$ A207HM	General Purpose Op Amp	LM207H	$\mu \mathrm{AF311HC}$	Voltage Comparator	LF311H
$\mu \mathrm{A} 208 \mathrm{AHM}$	Super Beta Op Amp	LM208AH			
$\mu \mathrm{A} 208 \mathrm{HM}$	Super Beta Op Amp	LM208H	MOTOROLA		
${ }_{\mu} \mathrm{A} 301 \mathrm{AHC}$	General Purpose Op Amp	LM301AH		Monolithic JFET Op Amp	LF155AH
$\mu \mathrm{A} 301 \mathrm{ATC}$	General Purpose Op Amp	LM301AN	LFI5SAH $\text { LF } 155 \mathrm{H}$	Monolithic JFET Op Amp	LF155H
${ }_{\mu \text { A302HC }}{ }^{\text {A } 307 \mathrm{HC}}$	Voltage Follower	LM302H	LF156AH	Monolithic JFET Op Amp	LF156AH
${ }_{\mu}$ A307TC	General Purpose Op Amp	LM307N	LF156H	Monolithic JFET Op Amp	LF156H
${ }_{\mu} \mathrm{A} 308 \mathrm{AHC}$	Super Beta Op Amp	LM308AH	LF157AH	Monolithic JFET Op Amp	LF157AH
${ }_{\mu} \mathrm{A} 308 \mathrm{HC}$	Super Beta Op Amp	LM308H	LF157H	Monolithic JFET Op Amp	LF157H
${ }_{\mu} \mathrm{A} 309 \mathrm{KC}$	5 Volt Regulator	LM309KC	L－こここni：	Anvinulthio UTET Op minur	L－̇ご5n：
${ }_{\mu} \mathrm{A} 310 \mathrm{HC}$	Voltage Follower	LM310H	LF355H	Monolithic JFET Op Amp	LF355H
${ }_{\mu} \mathrm{A} 311 \mathrm{HC}$	Voltage Comparator	LM311H	LF355N	Monolithic JFET Op Amp Monolithic JFET Op Amp	LF355N
$\mu \mathrm{A} 311 \mathrm{R}$	Voltage Comparator	LM311J．8	LF356H	Monolithic JFET Op Amp	$\begin{aligned} & \text { LF } 356 \text { AH } \\ & \text { LF356H } \end{aligned}$
${ }_{\mu \text { A }}{ }_{\text {A } 324 \mathrm{P} \text { PC }}$	Voltage Comparator	LM311N	$\begin{aligned} & \text { LF356H } \\ & \text { LF356N } \end{aligned}$	Monolithic JFET Op Amp	LF356N
${ }_{\mu \text { A }}^{\mu 399}{ }^{\text {APPC }}$	Quad Comparator	LM339AN	LM117H	3－Terminal Adj．Positive Regulator	LM117H
${ }_{\mu}{ }^{\text {A } 33989}$	Quad Comparator	LM339N	LM117K	3－Terminal Adj．Positive Regulator	LM117K
	Voltage Regulator	LM376N	LM123K	Positive Voltage Regulator	LM123K
${ }_{\mu}$ A555HC	Single Timing Circuit	LM555CH	LM317H	3－Terminal Adj．Positive Regulator	LM317H
${ }_{\mu}$ A555HM	Single Timing Circuit	LM555 ${ }^{\text {H }}$	LM317K	3－Terminal Adj．Positive Regulator	LM317K
${ }_{\mu}$ A555TC	Single Timing Circuit	LM555CN	LM317T	3－Terminal Adj．Positive Regulator	LM317T
$\mu \mathrm{A} 556 \mathrm{PC}$	Dual Timıng Circuit	LM556CN	MC1303P	Dual Stereo Preamplifier	LM1303N
$\mu \mathrm{A} 009 \mathrm{AHM}$	High Performance Op Amp	LM709AH	MC1310P	FM Stereo Demodulator	LM1310N
${ }_{\mu} \mathrm{A} 709 \mathrm{HC}$	High Performance Op Amp	LM709CH	MC1408L6	8－Bit Multiplying D／A Converter	LM1408J． 6
$\mu \mathrm{A} 709 \mathrm{HM}$	High Performance Op Amp	LM709H	MC1408L7	8 －Bit Multiplying D／A Converter	LM1408J． 7
$\mu \mathrm{A} 709 \mathrm{PC}$	High Performance Op Amp	LM709CN	MC1408L8	8－Bit Multıplying D／A Converter	LM1408J．8
${ }_{\mu}$ A709TC	High Performance Op Amp	LM709CN－8	MC1408P6	8 －Bit Multiplying D／A Converter	LM1408N－6
${ }_{\mu} \mathrm{A} 710 \mathrm{HC}$	High Speed Differential Comparator	LM710CH	MC1408P7	8 －Bit Multiplying DIA Converter	LM1408N－7
$\mu \mathrm{A} 710 \mathrm{HM}$	High Speed Differential Comparator	LM710H	MC1408P8	8 －Bit Multiplying D／A Converter	LM1408N－8
$\mu \mathrm{A} 710 \mathrm{PC}$	High Speed Differential Comparator	LM710CN	MC1414L	Dual Differential Comparator	LM1414J
${ }_{\mu} \mathrm{A} 711 \mathrm{HC}$	Dual Comparator	LM711CH	MC1414P	Dual Differential Comparator	LM1414N
$\mu \mathrm{A} 711 \mathrm{HM}$	Dual Comparator	LM711H	MC1496G	Balanced Modulator－Demodulator	LM1496H
${ }^{\text {A A 7 11PC }}$	Dual Comparator	LM711CN	MC1496P	Balanced Modulator－Demodulator	LM1496N
$\mu$ A723DC	Precision Voltage Regulator	LM723CJ	MC1508L8	8 －Bit Multiplying D／A Converter	LM1508D－8
${ }_{\mu}$ A723DM	Precision Voltage Regulator	LM723J	MC1514L	Dual Differential Comparator	LM1514J
${ }_{\mu} \mathrm{A} 723 \mathrm{HC}$	Precision Voltage Regulator	LM723CH	MC1596G	Blanced Modulator－Demodulator	LM1596H
$\mu \mathrm{A} 723 \mathrm{HM}$	Precision Voltage Regulator	LM723H	MC1710AG	Differential Comparator	LM710AH
${ }^{4} \mathrm{~A} 723 \mathrm{PC}$	Precision Voltage Regulator	LM723CN	MC1710CG	Differential Comparator	LM710CH
$\mu$ A725AHM	Instrumentation Op Amp	LM725AH	MC1710CP	Differential Comparator	LM710CN
${ }_{\mu}$ A725HC	Instrumentation Op Amp	LM725CH	MC1710G	Differential Comparator	LM710H
$\mu \mathrm{A} 725 \mathrm{HM}$	Instrumentation Op Amp	LM725H	MC1711CG	Dual Differential Comparator	LM711CH
${ }_{\mu} \mathrm{A} 733 \mathrm{HC}$	Differential Video	LM733CH	MC1711CP	Dual Differential Comparator	LM711CN
$\mu \mathrm{A} 733 \mathrm{HM}$	Differential Video	LM733H	MC1711G	Dual Differential Comparator	LM711H
${ }_{\mu}$ A741AHM	Frequency Compensated Op Amp	LM741AH	MC1723CL	Adj．Positive or Negative Volt．Regulator	LM723CJ
$\mu \mathrm{A} 741 \mathrm{DC}$	Frequency Compensated Op Amp	LM741CJ－14	MC1723CP	Adj．Positive or Negative Volt．Regulator	LM723CN
$\mu \mathrm{A} 741 \mathrm{EHC}$	Frequency Compensated Op Amp	LM741EH	MC1723L	Adj．Positive or Negative Volt．Regulator	LM723J
${ }_{\mu} \mathrm{A} 741 \mathrm{HC}$	Frequency Compensated Op Amp	LM741CH	MC1733CG，	Differential Video Amp	LM733CH
$\mu \mathrm{A} 741 \mathrm{HM}$	Frequency Compensated Op Amp	LM741H	MC1733CP	Differential Video Amp	LM733CN
${ }_{\mu \text { A } 741 P C}$	Frequency Compensated Op Amp	LM741CN－14	MC1733G	Differential Video Amp	LM733H
${ }_{\mu A 741 R C}$	Frequency Compensated Op Amp	LM741CJ	MC1741CG	General Purpose Op Amp	LM741CH
${ }_{\mu}$ A741TC	Frequency Compensated Op Amp	LM741CN	MC1741CL	General Purpose Op Amp	LM741CJ－14
${ }_{\mu}$ A746PC	Chroma Demodulator	LM746N	MC1741CP1	General Purpose Op Amp	LM741CN
${ }_{\mu}$ A747AHM	Dual Frequency Compensated Op Amp	LM747AH	MC1741CP2	Generla Purpose Op Amp	LM741CN－14
$\mu$ A747EHC	Dual Frequency Compensated Op Amp	LM747EH	MC1741G	General Purpose Op Amp	LM741H．
$\mu \mathrm{A} 747 \mathrm{HC}$	Dual Frequency Compensated Op Amp	LM747CH	MC1741L	General Purpose Op Amp	LM741J－14
$\mu \mathrm{A} 747 \mathrm{HM}$	Dual Frequency Compensated Op Amp	LM747H	MC1741U	General Purpose Op Amp	LM741J
${ }_{\mu}$ A747PC	Dual Frequency Compensated Op Amp	LM747CN	MC1747CG	Dual MC1741 Op Amp	LM747CH
$\mu \mathrm{A} 748 \mathrm{HC}$	Op Amp	LM748CH	MC1747CL	Dual MC1741 Op Amp	LM747C
$\mu \mathrm{A} 748 \mathrm{HM}$	Op Amp	LM748H	MC1747CP2	Dual MC1741 Op Amp	LM747CN
${ }_{\mu}$ A748TC	Op Amp	LM748CN	MC1747G	Dual MC1741 Op Amp	LM747H
${ }_{\mu A} 760 \mathrm{HC}$	High Speed Differential Comparator	LM760CH	MC1747L	Dual MC1741 Op Amp	LM747J
${ }_{\mu A} \mathbf{7 9 6 H C}$	3－Terminal．Positive Voltage Regulator	LM 1496H	MC1748CG	General Purpose Op Amp	LM748CH
${ }_{\mu \text { A }}$ 796PC	3－Terminal Positive Voltage Regulator	LM1496M	MC1748CP1	General Purpose Op Amp	LM748CN
$\mu \mathrm{A} 798 \mathrm{HM}$	Dual Op Amp	LM358H	MC1748CU	General Purpose Op Amp	LM748CJ
$\mu \mathrm{A} 1558 \mathrm{HM}$	Dual Internally Compensated Op Amp	LM 1558H	MC1748G	General Purpose Op Amp	LM748H


Device No.	Function	National Direct Replacement	Device No.	Function	National Direct Replacement
MOTOROLA (Continued)			MOTOROLA (Continued)		
MC1748U	General Purpose Op Amp	LM748J	MLM339AL	Quad Comparator	LM339AJ
MC2901P	Quad Comparator	LM2901N	MLM339AP	Quad Comparator	LM339AN
MC2902P	Quad Op Amp	LM2902N	MLM339L	Quad Comparator	LM339J
MC3301P	Quad Op Amp	LM3301N	MLM339P	Quad Comparator	LM339N
MC3302P	Quad Comparator	LM3302N	MLM358G	Dual Op Amp	LM358H
MC3401P	Quad Op Amp	LM3401N	MLM358PI	Dual Op Amp	LM358N
MC34001AP		LF411CN	MLM565CP	Phase Locked Loop	LM565CN
MC34022BP		LF412ACN			
MC78XXCK	Positive Voltage Regulator	LM78XXCK	PMI		
MC78XXCT	Positive Voltage Regulator	LM78XXCT	OP-15FG		LF411ACH
MC78LXXACG	Positive Voltage Regulator	LM78LXXACH	OP-15GP		LF411CN
MC78LXXACP	Positive Voltage Regulator	LM78LXXACZ	OP-15FP		LF411ACN
MC78LXXCG	Positive Voltage Regulator	LM78LXXCH	OP-15CH		LF411CH
MC78LXXCP	Positive Voltage Regulator	LM78LXXCZ	PM108AJ	Operational Amplifier	LM 108 AH
MC79XXCK	Negative Voltage Regulator	LM79XXCK	PM 108J	Operational Amplifier	LM108H
MC79XXCT	Negative Voltage Regulator	LM79XXCT	PM155AJ	JFET Input Op Amp	LF155AH
MC79LXXACP	Negative Voltage Regulator	LM79KXXACZ	PM155J	JFET Input Op Amp	LF155H
MC79LXXCP	Negative Voltage Regulator	LM79LXXCZ	PM156AJ	JFET Input Op Amp	LF156AH
MLM101AG	Gen. Purpose Adj. Op Amp	LM 101AH	PM156J	JFET Input Op Amp	LF156H
MLM101AU	Gen. Purpose Adj. Op Amp	LM101AJ	PM157AJ	JFET Input Op Amp	LF157AH
MLM107G	General Purpose Op Amp	LM107H	PM157J	JFET Input Op Amp	LF157H
MLM107U	General Purpose Op Amp	LM107J	PM208AJ	Operational Amplifier	LM208AH
MLM108AG	Precision Op Amp	LM108AH	PM208J	Operational Amplifier	LM208H
MLM108AU	Precision Op Amp	LM108AJ	PM255J	JFET Input Op Amp	LF255H
MLM109G	Positive Voltage Regulator	LM109H	PM256J	JFET Input Op Amp	LF256H
MLM110G	Unity Gain Op Amp	LM110H	PM257J	JFET Input Op Amp	LF257H
MLM110U	Unity Gain Op Amp	LM110J-8	PM308AJ	Operational Amplifier	LM308AH
MLM111G	Voltage Comparator	LM111H	PM308J	Operational Amplifier	LM308H
MLM111L	Voltage Comparator	LM111J	PM355AJ	JFET Input Op Amp	LF355AH
MLM111U	Voltage Comparator	LM111J-8	PM355J	JFET Input Op Amp	LF355H
MLM124L	Quad Op Amp	LM124J	PM356AJ	JFET Input Op Amp	LF356AH
MLM124P	Quad Op Amp	LM124N	PM356J	JFET Input Op Amp	LF356H
MLM139AL	Quad Comparator	LM139AJ	PM357AJ	JFET Input Op Amp	LF357AH
MLM 139L	Quad Comparator	LM139J	PM357J	JFET Input Op Amp	LF357H
MLM158G	Dual Op Amp	LM158H	PM725CJ	Operational Amplifier	LM725CH
MLM201AG	General Purpose Op Amp	LM201AH	PM725J	Operational Amplifier	LM725H
MLM201API	General Purpose Op Amp	LM201AN	PM741CJ	Compensated Op Amp	LM741CH
MLM207G	General Purpose Op Amp	LM207H	PM741J	Compensated Op Amp	LM741H
MLM207U	General Purpose Op Amp	LM207J	PM747CJ	Dual Compensated Op Amp	LM747CH
MLM208AG	Precision Op Amp	LM208AH	PM747J	Dual Compensated Op Amp	LM747H
MLM208AL	Precision Op Amp	LM208AJ	PM1558J	Dual Compensated Op Amp	LM1558H
MLM208AU	Precision Op Amp	LM208AJ-8			
MLM208G	Precision Op Amp	LM208H	SIGNETICS		
MLM208L	Precision Op Amp	LM208J	$\mu$ A709AT	Operational Amplifier	LM709AH
MLM208U	Precision Op Amp	LM208J-8	$\mu \mathrm{A} 709 \mathrm{CN}$	Operational Amplifier	LM709CN-8
MLM209G	Positive Voltage Regulator	LM209H	$\mu \mathrm{A} 709 \mathrm{CN}-14$	Operational Amplifier	LM709CN
MLM211G	Voltage Comparator	LM211H	$\mu \mathrm{A} 709 \mathrm{CT}$	Operational Amplifier	LM709CH
MLM211L	Voltage Comparator	LM211J	$\mu$ A709T	Operational Amplifier	LM709H
MLM211U	Voltage Comparator	LM211J-8	$\mu \mathrm{A} 710 \mathrm{CN}$-14	Differential Voltage Comparator	LM710CN
MLM224L	Quad Op Amp	LM224J	$\mu \mathrm{A} 710 \mathrm{CT}$	Differential Voltage Comparator	LM710CH
MLM239AL	Quad Comparator	LM239AJ	$\mu$ A710T	Differential Voltage Comparator	LM710H
MLM239L	. Quad Comparator	LM239J	$\mu \mathrm{A} 711 \mathrm{CN}$	Dual Voltage Comparator	LM711CN
MLM258G	Dual Op Amp	LM258H	$\mu \mathrm{A} 711 \mathrm{CT}$	Dual Voltage Comparator	LM711CH
MLM301AG	General Purpose Op Amp	LM301AH	$\mu \mathrm{A} 711 \mathrm{~K}$	Dual Voltage Comparator	LM711H
MLM301API	General Purpose Op Amp	LM301AN	$\mu \mathrm{A} 23 \mathrm{CF}$,	Precision Voltage Regulator	LM723CJ
MLM307G	General Purpose Op Amp	LM307H	$\mu \mathrm{A} 723 \mathrm{CL}$	Precision Voltage Regulator	LM723CH
MLM307PI	General Purpose Op Amp	LM307N	$\mu \mathrm{A} 723 \mathrm{CN}$	Precision Voltage Regulator	LN723CN
MLM307U	General Purpose Op Amp	LM307J	$\mu \mathrm{A} 723 \mathrm{~F}$	Precision Voltage Regulator	LM723J
MLM308AG	Precision Op Amp	LM308AH	$\mu \mathrm{A} 723 \mathrm{~L}$	Precision Voltage Regulator	LM723H
MLM308AL	Precision Op Amp	LM308AJ	$\mu \mathrm{A} 733 \mathrm{CN}$	Differential Video Amp	LM733CN
MLM308API	Precision Op Amp	LM308AN	$\mu \mathrm{A} 733 \mathrm{CT}$	Differential Video Amp	LM733CH .
MLM308AU	Precision Op Amp	LM308AJ-8	$\mu \mathrm{A} 733 \mathrm{~F}$	Differential Video Amp	LM733H
MLM308G	Precision Op Amp	LM308H	$\mu \mathrm{A} 41 \mathrm{CF}$	General Purpose Op Amp	LM741CJ. 14
MLM308L	Precision Op Amp	LM308J	$\mu \mathrm{A} 441 \mathrm{CN}$	General Purpose Op Amp	LM741CN
MLM308PI	Precision Op Amp	LM308N	$\mu \mathrm{A} 741 \mathrm{CN}$-14	General Purpose Op Amp	LM741CN-14
MLM308U	Precision Op Amp	LM308J-8	$\mu \mathrm{A} 411 \mathrm{CT}$	General Purpose Op Amp	LM741CH
MLM309G	Positive Voltage Regulator	LM309H	$\mu \mathrm{A} 741 \mathrm{~F}$	General Purpose Op Amp	LM741J. 14
MLM M 090 K	Positive Voltage Regulator	LM309K	$\mu$ A741T	General Purpose Op Amp	LM741H
MLM310G	Unity Gain Op Amp	LM310H	$\mu \mathrm{A} 747 \mathrm{CN}$	Dual Op Amp	LM747CN
MLM310PI	Unity Gain Op Amp	LM310N	$\mu \mathrm{A} 488 \mathrm{CF}$	General Purpose Op Amp	LM748CJ
MLM310U	Unity Gain Op Amp	LM310J-8	$\mu \mathrm{A} 488 \mathrm{CN}$	General Purpose Op Amp	LM748CN
MLM311G	Voltage Comparator	LM311H	$\mu \mathrm{A} 448 \mathrm{CT}$	General Purpose Op Amp	LM748CH
MLM311L	Voltage Comparator	LM311J	$\mu \mathrm{A} 748 \mathrm{~F}$	General Purpose Op Amp	LM748J. 14
MLM311PI	Voltage Comparator	LM311N	$\mu \mathrm{A} 748 \mathrm{~T}$	General Purpose Op Amp	LM748H
MLM311U	Voltage Comparator	LM311J.8	78xXCU	3 -Terminal Positive Voltage Regulator	LM78XXCT
MLM324L	Quad Op Amp	LM324J	78XXDA	3-Terminal Positive Voltage Regulator	LM78XXCK
MLM324P	Quad Op Amp	LM324N	78LXXACS	3-Terminal Positive Voltage Regulator	LM78XXACZ


Device No.	Function	National Direct Replacement	Device No .	Function	National Direct Replacement	$\frac{3}{10}$
Signetics	(Continued)		Signetics	ontinued)		
78LXXADB	3.Terminal Positive Votlage Regulator	LM78LXXACH	LM311T	Voltage Comparator	LM311H	
78LXXCDB	3-Terminal Positive Voltage Regulator	LM78LXXCH	LM319F	Dual Voltage Comparator	LM319J	
78LXXCS	3-Terminal Positive Votlage Regulator	LM78LXXCZ	LM319K	Dual Voltage Comparator	LM319H	
79XXCU	3-Terminal Negative Voltage Regulator	LM79XXCT	LM319N	Dual Voltage Comparator	LM319N	$\boldsymbol{0}$
79XXDA	3-Terminal Negative Voltage Regulator	LM79XXCK	LM324AF	Gen Purpose Single Supply Op Amp	LM324AJ	$\boldsymbol{O}$
LF155AT	Hi Performance JFET Input Op Amp	LF155AH	LM324AN	Gen Purpose Single Supply Op Amp	LM324AN	
LF155T	Hi Performance JFET Input Op Amp	LF 155 H	LM324F	Gen Purpose Single Supply Op Amp	LM324J	
LF156AT	Hi Performance JFET Input Op Amp	LF156AH	LM324N	Gen Purpose Single Supply Op Amp	LM324N	(1)
LF156T	Hi Performance JFET Input Op Amp	LF156H	LM339AF	Quad Voltage Comparator	LM339AJ	$\cdots$
LF157AT	Hi Performance JFET Input Op Amp	LF157AH	LM339AN	Quad Voltage Comparator	LM339AN	(1)
LF157T	Hi Performance JFET Input Op Amp	LF157H	LM339F	Quad Voltage Comparator	LM339J	T
LF255T	Hi Performance JFET Input Op Amp	LF255H	LM339N	Quad Voltage Comparator	LM339N	(1)
LF256T	Hi Performance JFET Input Op Amp	LF256H	LM340XXDA	3-Terminal Positive Voltage Regulator	LM340KXX	
LF257T	Hi Performance JFET Input Op Amp	LF257H	LM340XXLL	3-Terminal Positive Voltage Regulator	LM340TXX	
LF355AT	Hi Performance JFET ! nput Op Amp	LF355AH	LM381AN	Dual Low Noise Preamplifier	LM381AN	(1)
LF355T	Hi Performance JFET input Op Amp	LF355H	LM381N	Dual Low Noise Preamplifier	LM381N	
LF356AT	Hi Performance JFET input Op Amp	LF356AH	LM382N	Dual Low Noise Preamplifier	LM382N	
LF356T	Hi Performance JFET input Op Amp	LF356H	LM387N	Dual Low Noise Preamplifier	LM387N	
LF357AT	Hi Performance JFET Input Op Amp	LF357AH	LM393AN	Low Power Dual Voltage Comparator	LM393AN	
LF357T	HI Performance JFET input Op Amp	LF357H	LM393AT	Low Power Dual Voltage Comparator	LM393AH	
LM101AF	High Performance Amplifier	LM101AJ-14	LM393N	Low Power Dual Voltage Comparator	LM393N	(1)
L-A10...T	Lish Peiformance Ampltior	! Matnish	1 M 302 T	I nw Power Dual Voltage Comoarator	LM393H	
LM107F	General Purpose Op Amp	LM107J. 14	LM2901F	Quad Voltage Comparator	LM2901J	
LM107T	General Purpose Op Amp	LM107H	LM2901N	Quad Voltage Comparator	LM2901N	
LM108AF	Precision Op Amp	LM108AJ	LM2903N	Low Power Dual Voltage Comparator	LM2903N	
LM108AT	Precision Op Amp	LM108AH	MC1408-7F	8 -Bit Multiplying D/A Converter	LM1407J-7	
LM108F	Precision Op Amp	LM108J	MC1408.8F	8 -Bit Multiplying D/A Converter	LM1408J-8	
LM108T	Precision Op Amp	LM108H	MC1408.7N	8-Bit Multiplying D/A Converter	LM1408N-7	
LM109DB	5 Volt Regulator.	LM109H	MC1408.8N	8 -Bit Multiplying D/A Converter	LM1408N-8	
LM111F	Voltage Comparator	LM111J	MC1496K	Balanced Modulator Demodulator	LM1496H	
LM111T	Voltage Comparator	LM111H	MC1496N	Balanced Modulator Demodulator	LM1496N	
LM119F	Dual Voltage Comparator	LM119J	MC1596K	Balanced Modulator Demodulator	LM1596H	
LM119K	Dual Voltage Comparator	LM119H	MC3302N	Quad Voltage Comparator	LM3302N	
LM124AF	Gen Purpose Single Supply Op Amp	LM124AJ	NE555T	Timer	LM555CH	
LM124F	Gen Purpose Single Supply Op Amp	LM124J	NE555N	Timer	LM555CN	
LM124N	Gen Purpose Single Supply Op Amp	LM124N	NE556N	Dual Timer	LM556CN	
LM139AF	Quad Voltage Comparator	LM139AJ	NE556F	Dual Timer	LM556J	
LM139F	Quad Voltage Comparator	LM139J	NE565K	Phase Locked Loop	LM565CH	
LM193AT	Low Power Dual Voltage Comparator	LM193AH	NE565N	Phase Locked Loop	LM565CN	
LM193T	Low Power Dual Voltage Comparator	LM193H	NE566N	Function Generator	LM566CN	
LM201AF	High Performance Amplifier	LM201AJ-14	NE567T	Tone Decoder/Phase Locked Loop	LM567CH	
LM201AN	High Performance Amplifier	LM201AN	NE567N	Tone Decoder/Phase Locked Loop	LM567CN	
LM207F	General Purpose Op Amp	LM207J-14	SE555T	Timer	LM555H	
LM207T	General Purpose Op Amp	LM207H	SE565K	Phase Locked Loop	LM565H	
LM208AF	General Purpose Op Amp	LM208AJ	SE567T	Tone Decoder/Phase Locked Loop	LM567H	
LM208AT	Precision Operational Amp	LM208AH	TBA120N	FM IF Amp \& Demodulator	TBA120T	
LM208F	Precision Operational Amp	LM208J	TBA120S-2	8-Stage Amp w/Balanced Demodulator	TBA120S II	
LM208T	Precision Operational Amp	LM208H	TBA120S-3	8-Stage Amp w/Balanced Demodulator	TBA120S III	
LM209DB	5 Volt Regulator	LM209H	TBA120S-4	8-Stage Amp w/Balanced Demodulator	TBA120S IV	
LM211F	Voltage Comparator	LM211J	TBA120S-5	8-Stage Amp w/Balanced Demodulator	TBA120S V	
LM211T	Voltage Comparator	LM211H	TBA120SN	8 -Stage w/Balanced Demodulator	TBA120SQ	
LM219F	Dual Voltage Comparator	LM219J	TBA120S-2N	8 -Stage w/Balanced Demodulator	TBA120SQ II	
LM219K	Dual Voltage Comparator	LM219H	TBA120S-3N	8-Stage w/Balanced Demodulator	TBA120SQ III	
LM224AF	Gen Purpose Single Supply Op Amp	LM224AJ	TBA120S-4N	8 -Stage w/Balanced Demodulator	TBA120SQ IV	
LM224AN	Gen Purpose Single Supply Op Amp	LM224AN	TBA120S-5N	8-Stage w/Balanced Demodulator	TBA120SQ V	
LM224F	Gen Purpose Single Supply Op Amp	LM224J	TBA120U	FM IF Amp \& Demodulator	TBA120U	
LM239AF	Quad Voltage Comparator	LM239AJ	TBA120UN	FM IF Amp \& Demodulator	TBA120UQ	
LM239F	Quad Voltage Comparator	LM239J				
LM258T	Gen Purpose Single Supply Op Amp	LM258H				
LM293T	Low Power Dual Voltage Comparator	LM293H	TEXAS INSTR	MENTS		
LM301AF	High Performance Amplifier	LM301AJ-14	$\mu \mathrm{A} 709 \mathrm{CN}$	Op Amp	LM709CN	
LM301AN	High Performance Amplifier	LM301AN	$\mu \mathrm{A} 709 \mathrm{CP}$	Op Amp	LM709CN-8	
LM301AT	High Performance Amplifier	LM301H	$\mu \mathrm{A} 711 \mathrm{CN}$	Dual Comparator	LM711CN	
LM307F	General Purpose Op Amp	LM307J-14	$\mu \mathrm{A} 723 \mathrm{CJ}$	Voltage Regulator	LM723CJ	
LM307N	General Purpose Op Amp	LM307N	$\mu \mathrm{A} 723 \mathrm{CN}$	Voltage Regulator	LM723CN	
LM307T	General Purpose Op Amp	LM307H	$\mu \mathrm{A} 723 \mathrm{MJ}$	Voltage Regulator	LM723J	
LM308AF	Precision Op Amp	LM308AJ	$\mu \mathrm{A} 733 \mathrm{CN}$	Video Amp	LM733CN	
LM308AN	Precision Op Amp	LM308AN	$\mu \mathrm{A} 41 \mathrm{CJ}$	Compensated Op Amp	LM741CJ-14	
LM308AT	Precision Op Amp	LM308AH	$\mu \mathrm{A} 41 \mathrm{CJ}$	Compensated Op Amp	LM741CN-14	
LM308F	Precision Op Amp	LM308J	$\mu \mathrm{A} 441 \mathrm{CJG}$	Compensated Op Amp	LM741CJ	
LM308N	Precision Op Amp	LM308N	$\mu \mathrm{A} 741 \mathrm{CP}$	Compensated Op Amp	LM741CN	
LM308T	Precision Op Amp	LM308H	$\mu \mathrm{A} 741 \mathrm{MJ}$	Compensated Op Amp	LM741J-14	
LM309DA	5 Volt Regulator	LM309K	$\mu \mathrm{A} 441 \mathrm{MJG}$	Compensated Op Amp	LM741J	
LM309DB	5 Volt Regulator	LM309H	${ }^{\prime} \mathrm{A} 748 \mathrm{CJG}$	Op Amp	LM748CJ	
LM311F	Voltage Comparator	LM311J	$\mu \mathrm{A} 748 \mathrm{CN}$	Op Amp	LM748CN	
LM311N	Voltage Comparator	LM311N	$\mu \mathrm{A} 748 \mathrm{MJ}$	Op Amp	LM748J-14	
LM311N-14	Voltage Comparator	LM311N-14	$\mu \mathrm{A} 748 \mathrm{MJG}$	Op Amp	LM748J	


Device No.	Function	National Direct Replacement	Device No.	Function	National Direct Replacement
texas instruments (Continued)			texas instruments (Continued)		
$\mu \mathrm{A} 78 \times \mathrm{XCKC}$	Positive Voltage Regulator	LM78xXCT	LM307Jg	Compensated Op Amp	LM307J
$\mu \mathrm{A} 78 \mathrm{LXXACL}$	Positive Voltage Regulator	LM78LXXACZ	LM307N	Compensated Op Amp	LM307N
$\mu \mathrm{A} 78 \mathrm{LXXCLP}$	Positive Voltage Regulator	LM78LXXCZ	LM311J	Voltage Comparator	LM311J
$\mu$ A78MXXCKD	Positive Voltage Regulator	LM78MXXCP	LM311JG	Voltage Comparator	LM311J.8
$\mu \mathrm{A} 79 \mathrm{XXCKC}$	Negative Voltage Regulator	LM79XXCT	LM311N	Voltage Comparator	LM311N-14
$\mu \mathrm{A} 9 \mathrm{MXXXCKD}$	Negative Voltage Regulator	LM79MXXCP	LM311P	Voltage Comparator	LM311N
LF356P	JFET Input Op Amp	LF356N	LM317KC	3 -Terminal Adjustable Regulator	LM317T
LM101AJ	Improved Op Amp	LM101AJ-14	LM318JG	High Slew Rate Op Amp	LM318J.8
LM101AJg	Improved Op Amp	LM101AJ	LM318P	High Slew Rate Op Ámp	LM318N
LM 107J	Compensated Op Amp	LM107J 14	LM324J	Quad Op Amp	LM324J
LM107JG	Compensated Op Amp	LM107J	LM324N	Quad Op Amp	LM324N
LM111J	Voltage Comparator	LM111J	LM339J	Quad Comparator	LM339J
LM111JG	Voltage Comparator	LM111J.8	LM339n	Quad Comparator	LM339N
LM118Jg	High Slew Rate Op Amp	LM118J	LM358P	Dual Op Amp	LM358N
LM124J	Quad Op Amp	LM124J	LM376P	Positive Voltage Regulator	LM376N
LM124N	Quad Op Amp	LM1\$24N	LM393P	Dual Comparator	LM393N
LM139J	Quad Comparator	LM139J	LM2901N	Quad Comparator	LM2901N
LM201AJ	Improved Op Amp	LM201AJ-14	LM2902J	Quad Op Amp	LM2902J
Lm201AJg	Improved Op Amp	Lm201AJ	LM2902N	Quad Op Amp	LM2902N
LM201AN	Improved Op Amp	LM201AN	LM2903P	Dual Comparator	LM2903N
LM207J	Compensated Op Amp	LM207J-14	LM2904P	Dual Op Amp	LM2904N
LM207JG	Compensated Op Amp	LM207J	MC1558Jg	Dual Compensated Op Amp	LM 1558 J
Lm218Jg	High Slew Rate Op Amp	LM218J.8	NE555CJG	Timer	LM555CJ
LM224J	Quad Op Amp	LM224J	SE555jg	Timer	LM555J
LM239J	Quad Comparator	LM239,	TLO81ACN	Single Low Cost Bi-Fet Op Amp	LF351AN
Lm301AJ	Improved Op Amp	LM301AJ-14	TL081CN	Single Low Cost Bi-Fet Op Amp	LF351N
LM301AJg	Improved Op Amp	LM301AJ	TL087CP		LF411ACN
LM301AN	Improved Op Amp	LM301AN	TL287CP		LF412CN
LM307J	Compensated Op Amp	LM307J-14	TL710CN	Comparator	LM710CN


*With dual-in-line formed leads.
**With radially formed leads.


NS Package D14E 14-Lead Cavity DIP (D) (Side Brazed)


NS Package D14F 14-Lead Metal DIP (D)


NS Package D16A
16-Lead Cavity DIP (D)


NS Package D16D 16-Lead Metal DIP (D)



NS Package D24A 24-Lead Cavity DIP (D)


NS Package D24C
24-Lead Cavity DIP (D)






NS Package H10C 10-Lead TO-5 Metal Can Package (H)


NS Package H10D 10-Lead TO-5 Metal Can Package (H)


NS Package J08A
8-Lead Cavity DIP (J)




NS Package K02A
2-Lead TO-3 Metal Can Package (K) (Steel)


NS Package K02B
2-Lead TO-3 Metal Can Package (K)


NS Package KC02A
2-Lead TO-3 Metal Can Package (KC)
(Aluminum)


NS Package N10B
10-Lead Molded DIP (N)


NS Package N14A
14-Lead Molded DIP (N)

NS Package N14C
14-Lead Molded DIP (N-01)
(Staggered Leads)

NS Package N16A
16-Lead Molded DIP (N)
.

NS Package N16C
16-Lead Molded DIP (N-01)
(Staggered Leads)


NS Package N16E 16-Lead Molded DIP (N)


NS Package N18A
18-Lead Molded DIP (N)


NS Package N20A
20-Lead Molded DIP (N)


NS Package N28A 28-Lead Molded DIP (N)



NS Package P11A
11-Lead Single-In-Line Package (P)


NS Package S14A
14-Lead "SGS" Type Power DIP (S)


NS Package S16A
16-Lead Power DIP (S)


NS Package T03B
3-Lead TO-220 Power Package (T)


NS Package T05A
5-Lead TO-220 Power Package (T)


NS Package W16A 16-Lead Flat Package (W)


NS Package Z03D 3-Lead TO-92 Plastic Package (Z)

National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara. California 95051
Tel: (408) 737.5000
TWX: (910) 339-9240

## Electronica NSC de Mexico SA

Hegel No. 153-204
Mexico 5 D.F. Mexico
Tel: (905) 531-1689, 531-0569
Telex: 017-73559
National Semiconductores Do Brasil Ltda.
Avda Brigadeiro Faria Lima 830 8 ANDAR
01452 Sao Paulo, Brasil
Tel: 212.1181
Telex: 1131931 NSBR

National Semiconductor GmbH
Furstenriederstrasse Nr. 5
8 Munchen 21
West Germany
Tel: (089) 583081
Telex: 522772
National Semiconductor (UK) Ltd.
301 Harpur Centre
Horne Lane
Bedford MK40 1TR
United Kingdom
Tel: 0234-47147
Telex: 826209
National Semiconductor Benelux
Ave. Charles Quint 545
1080 Brussels
Belgium
Tel: (02) 4661807
Telex: 61007
National Semiconductor (UK) Lid.
1, Bianco Lunos Alle
DK-1868 Copenhaigen V
Denmark
Tel: (01) 213211
Telex: 15179
National Semiconductor
Expansion 10000
28. Rue dela Redoute
92. 260 Fontenay-aux-Roses

France
Tél: (01) 660-8140
Telex: 250956
National Semiconductor S.p.A.
Via Solferino 19
2012 Y Milano
Ital'
Tel: (02) 345-2046/7/8/9
Telex 332835
National Semiconductor AB
Box 2016
12702 \$kaerholmen
Swede
Tel: (08), 970190
Tetex: 00731
National Semiconductor
Calle Nunez Morgado 9
Esc. Dcha. 1-A
Madrid 16
Spain
Tel: (01) 733-2954/733-2958
---Télex: 46133
National Semiconductor Switzerland
Alte Winterhurerstrasse 53
Postfach 567
CH-8304 Wallisellen-Zurich .
Tel: (01) 830-2727
Telex: 59000
National Semiconductor
Pasilanraitio 6C 00240 . Helsinki 24 Finland Tel: (Q) 140344 Telex: 124854

NS Japan K.K.
POB 4152 Shinjuku Center Building 1-25-1 Nishishinjuku, Shinjuku-ku.
Tokyo 160, Japan
Tel: (03) 349-0814
Telex: 232-2015 NSCJ.J
Nationàl Semic̀onductor (Hong Kong) L'd.d.
1st Floor
Cheung Kong Electronic Bldg.
4 Hing Yip Street
Kwun Tong
Kowloon, Hong Kong
Tel: 3-899235
Telex: 43866 NSEHK HX
Cable: NATSEMI HX
NS Electronics Pty. Ltd.
Cnr. Stud Rd. \& Mtn. Highway
Bayswater, Victoria 3153
Australia
Tel: 03-729.6333
Telex: 32096
National Semiconductor (PTE) Ltd.
10th Floor
Pub Building, Devonshire Wing
Somerset Road
Singapore 0923
Tel: 652700047
Telex: NAT SEMI RS 21402
National Semiconductor (Far East) Ltd.
P.O. Box 68-332 Taipei

3rd Fir. Apollo Bldg. No. 281-7
Chung HSIAO E. Rd., Sec: 4
Taipei, Taiwan R.O.C.
Tel: 7310393-4, 7310465:6
Telex: 22837 NSTW
Cable: NSTW TAIPE
National Semiconductor (Hong Kong) Ltd.
Korea Liaisón Office
,
6th Floor, Kunwon Bldg.
2.1 GA Mookjung-Dong

Choong-Ku, Seoul
C.P.O. Box 7941 Seoul

Tel: 267.9473
Telex: K24942


[^0]:    ${ }^{\dagger}$ For more information see National Semiconductor's Voltage Regulator Handbook.

[^1]:    -Refers to Hybrid Products Databook, 1982 edition

[^2]:    *Determines output current. If wirewound resistor is used, bypass with $0.1 \mu \mathrm{~F}$.

[^3]:    *To obtain output noise, multiply by $\mathrm{V}_{\text {OuT }} / 1.25$ if adjustment pin is not bypassed.

[^4]:    R1-R4 from thin-film network,
    Beckman 694-3-R2K-D or similar

[^5]:    Note 1: Unless otherwise specified: $\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C} 1=0.1 \mu \mathrm{~F}, \mathrm{C} 2=10 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection are measured using pulse techniques ( $t_{w} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

[^6]:    * Mounted to Staver Heatsink No. V5-1.

    Q1 = BD344
    $\mathrm{O} 2=2 \mathrm{~N} 5023$
    $L 1=>40$ turns No. 22 wire on Ferroxcube No. K300502 Torroid core.

[^7]:    Note 1: Thermal resistance without a heat sink for junction to case temperature is $4^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{TO}-220)$ and $55^{\circ} \mathrm{C} / \mathrm{W}$ (TO-92). Thermal resistance for TO-220 case to

[^8]:    * Does not affect temperature coefficient

[^9]:    Typical supply current $50 \mu \mathrm{~A}$

[^10]:    Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.
    Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
    Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+70^{\circ} \mathrm{C}$. $V_{O S}, I_{B}$ and IOS are measured at $V_{C M}=0$.
    Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $T_{j}$. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\Theta_{j A} P_{D}$ where $\Theta_{\mathrm{j} A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
    Note 5.: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

[^11]:    BI-FET $\|^{T M}$ is a trademark of National Semiconductor Corp.

[^12]:    BI.FET II ${ }^{\text {TM }}$ is a trademark of National Semiconductor Corp.

[^13]:    Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.
    Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
    Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} . V_{O S}, I_{B}$, and $I_{O S}$ are measured at $V_{C M}=0$.
    Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $\mathrm{T}_{\mathrm{j}}$. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\Theta_{j A} P_{D}$ where $\Theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
    Note 5: Supply Voltage Rejection Ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

[^14]:    * solid tantalum
    $\dagger$ mylar
    $\ddagger$ close thermal coupling between sensor and oven shell is recommended.

[^15]:    **Pin connections shown are for metal can.

[^16]:    **Pin connections shown are for metal can.

[^17]:    **Pin connections shown are for metal can.

[^18]:    *Pin connections shown on schematic diagram are for $\mathbf{T O} \mathbf{0} 5$ package. ** Unused pin (no internal connection) to allow for input anti-leakage guard tung on printed errcuit board layout.

[^19]:    - Low input bias current 8.0 nA
    - Low input offset current 1.0 nA
    - High slew rate-essentially independent of temperature and supply voltage
    $2.5 \mathrm{~V} / \mu_{\mathrm{s}}$
    - High voltage gain-virtually independent of resistive loading, temperature, and supply voltage

    100k min

    - Internally compensated for unity gain
    - Output short circuit protection
    - Pin compatible with general purpose op amps

[^20]:    $\ddagger$ The 38 V supplies allow for a $5 \%$ voltage tolerance. All resistors are $1 / 2$ watt, except as noted.

[^21]:    Order Number LM144H or LM344H
    See NS Package H08C

[^22]:    Note 1: See Maximum Power Dissipation graph.
    Note 1: See Maximum Power Dissipation graph.
    Note 2: Mirror gain is the current gain of the current mirror which is used as the non-inverting input. $\left(A_{I}=\frac{\operatorname{liN}^{\prime}(-)}{I_{\mathbb{N}}(+)}\right) \Delta M i r r o r$
    Gain is the $\%$ change in $A_{1}$ for two different mirror currents at any given temperature.

[^23]:    A larger value may be used and a $0.01 \mu \mathrm{~F}$ ceramic capacitor in parallel with $C_{i}$ will maintain high frequency gain accuracy.

[^24]:    *Previously called NH0003/NH0003C

[^25]:    *Previously called NH0004/NHOOO4C

[^26]:    *For additional offset null circuit techniques see National Linear Applications Handbook.

[^27]:    *Naise Voltage Includes Contribution from Scurce Resistance

[^28]:    * $1 \times$ scale calibrate

[^29]:    * solid tantalum
    $\dagger$ mylar
    $\ddagger$ close thermal coupling between sensor and oven shell is recommended.

[^30]:    * Polystyrene or Teflon
    $\dagger$ required if protectedgate switch is used

[^31]:    - Note 1: The maximum junction temperature of the LH2108A/LH2108 is $150^{\circ} \mathrm{C}$, while that of the LH2208A/LH2208 is $100^{\circ} \mathrm{C}$ and that of the LH2308A/LH2308 is $85^{\circ} \mathrm{C}$ For operating devices in the flat package at elevated temperatures, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
    Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
    Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
    Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leqslant V_{S} \leqslant \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LH2208A/LH2208, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 85^{\circ} \mathrm{C}$ and with the LH2308A/LH2308 for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V} \leqslant 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$.

[^32]:    ${ }^{*} R_{O N} \max @ T_{A}=25^{\circ} \mathrm{C}$

[^33]:    † For additional information, see National Semiconductor's Data Conversion/Acquisition Handbook.

[^34]:    - Resolution

    8 bits

    - Total error $\pm 1 / 4$ LSB, $\pm 1 / 2$ LSB and $\pm 1$ LSB
    - Conversion time $100 \mu \mathrm{~s}$

[^35]:    *V Display Output $=$ VMS Group + VLS Group

[^36]:    COPS $^{\text {TM }}$ and MICROWIRE ${ }^{\text {TM }}$ are trademarks of National Semiconductor Corp.

[^37]:    - Resolution

    10 bits

    - Linearity error
    $\pm 1 / 2$ LSB and $\pm 1$ LSB
    - Conversion time
    $200 \mu \mathrm{~s}$

[^38]:    TRI-STATE ${ }^{\oplus}$ is a registered trademark of National Semiconductor Corp.

[^39]:    *Note. Devices may be ordered by using either order number.

[^40]:    FIGURE 18. Basic Unipolar Negative Operation

[^41]:    *Note. Devices may be ordered by using either order number.

[^42]:    Unless otherwise specified: R14 $=$ $R 15=1 \mathrm{k} \Omega, \mathrm{C}=15 \mathrm{pF}$, pin 16 to $\mathrm{V}_{\mathrm{EE}}$; $R_{L}=50 \Omega$, pin 4 to ground.
    Curve A: Large Signal Bandwidth
    Method of Figure 7, VREF $=2 \mathrm{Vp}-\mathrm{p}$ offset 1 V above ground
    Curve B: Small Signal Bandwidth Method of Figure 7, $R_{L}=250 \Omega$, $V_{\text {REF }}=50 \mathrm{mVp}-\mathrm{p}$ offset 200 mV above ground.
    Curve C: Large and Small Signal Bandwidth Method of Figure 9 (no op amp, $\left.R_{L}=50 \Omega\right), R_{S}=50 \Omega$, $V_{\text {REF }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=100 \mathrm{mVp}-\mathrm{p}$ centered at 0 V .

[^43]:    - $\mathrm{C}_{2}$ is used to improve settling time of op amp.

[^44]:    *For a connection diagram of this operating mode use Figure 18 for the Logic and Figure 20 for the Data Input connections.

[^45]:    Note. Devices may be ordered by either part number

[^46]:    *Registered trademark of DuPont

[^47]:    *Registered trademark of DuPont

[^48]:    H

[^49]:    *Use minimum value required to ensure stability of protected

[^50]:    Note 1: Accuracy measurements are made in a well-stirred oil bath. For other conditions, self heating must be considered.

[^51]:    COEFFICIENT $52.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $42.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $40.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
    $6.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

[^52]:    $\mathrm{f}_{1}=100 \mathrm{kHz}+5 \mathrm{~V}$
    "Note: Adjust for $\mathrm{f}_{\mathrm{o}}=100 \mathrm{kHz}$

[^53]:    tNote: Echo returns are displayed by a neon lamp on a motor driven disc. Connections to the neon are made through brushes and slip rings. Rotating with and counterbalancing the neon lamp is a permanent magnet whose field induces a pulse in a stationary coil (L8) as it passes by. This pulse keys the LM1812's transmitter.
    *Available from Toko America, Inc., 5520 West Touhy Avenue, Skokie, Illinois 60077 Tel. (312) 677-3640
    **Available from Massa Products Corporation, 280 Lincoln Street, Hingham, Massachusetts 02043 Tel. (617) 749-4800

[^54]:    Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a package thermal resistance of $120^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

[^55]:    - Toys and hobby craft
    - Energy saving, remotely switched lighting systems
    - Burglar alarms
    - Industrial and consumer remote data links
    - IR data links
    - Remote slide projector control

[^56]:    $T_{L}=$ Temperature for $I_{L}(K)$
    $T_{H}=$ Temperature for $I_{H}(K)$
    $V_{Z}=$ Zener voltage ( $V$ )
    $I_{L}=$ Low temperatare output current $(A)$
    $I_{H}=$ High temperature output current $(A)$

[^57]:    TOUCH-TONE ${ }^{*}$ is a registered trademark of Bell Telephone.

[^58]:    *Note that all values shown are typical. Please refer to data sheets for test conditions.

[^59]:    Available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, from whom licensing and application information must be obtained.
    Dolby and the double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.

[^60]:    Available to licensees of Dolby Laboratories Licensing Corporation, San Francisco, CA, from whom licensing and applications information must be obtained.
    Dolby and the double-D symbol are trademarks of Dolby Laboratories Inc.

[^61]:    Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

[^62]:    Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
    Note 2: Measured with an average responding voltmeter using the filter circuit in Figure 4. This simple filter is approximately equivalent to a "brick wall" filter with a passband of 20 Hz to 20 kHz (see Application Hints). For 1 kHz THD the 400 Hz high pass filter on the distortion analyzer is used.
    Note 3: Channel separation can be measured by applying the input signal through transformers to simulate a floating source (see Application Hints). Care must be taken to shield the coils from extraneous signals. Actual production test techniques at National simulate this floating source with a more complex op amp circuit.
    Note 4: The numbers are referred to an output level of 160 mV at pins 2 and 17 using the circuit of Figure 2. This corresponds to an input level of 0.3 mVrms at 333 Hz . Note 5: Measured with an average responding voltmeter using the Dolby lab's standard CCIR filter having a unity gain reference at 2 kHz .
    Note 6: Measured using the Rhode-Schwarz psophometer, model UPGR.

[^63]:    -3 dB limiting $=0.9 \mu \mathrm{~V}$

[^64]:    DNR ${ }^{\text {TM }}$ is a trademark of National Semiconductor Corp.
    The DNA ${ }^{\top M}$ system is licensed to National Semiconductor Corp. under U.S. patent $3,678,416$ and $3,753,159$.
    Contact National Semiconductor for use of DNR ${ }^{\text {TM }}$ logo.

[^65]:    Note 1: Above $T_{A}=25^{\circ} \mathrm{C}$, derate based on $T_{J}(M A X)=150^{\circ} \mathrm{C}$ and $\theta_{J A}=75^{\circ} \mathrm{C} / \mathrm{W}$.

[^66]:    Note: Address $8 \mathrm{~F}_{\mathrm{H}}$ is the last legal address in this word list. Exceeding address $8 \mathrm{~F}_{\mathrm{H}}$ will produce pieces of unintelligible,

[^67]:    "The recipient of these products automatically receives a non-exclusive license under U.S. Patent Application 432,859 and any patent or patents issuing thereon to use such products, to assemble or otherwise incorporate them into further products which may be covered by said patent application, or any patent or patents issuing thereon, and to use, sell, or otherwise dispose of such products':
    Protected by U.S. Pat. No. 4124125, F.M. Mozer licenses available.

[^68]:    "The recipient of these products' automatically receives a non-exclusive license under U.S. Patent Application 432,859 and any patent or patents issuing thereon to use such products, to assemble or otherwise incorporate them into further products which may be covered by said patent application, or any patent or patents issuing thereon, and to use, sell, or otherwise dispose of such products": Protected by U.S. Pat. No. 4124125, F.M. Mozer licenses available.

[^69]:    DIGITALKER ${ }^{\text {TM }}$, MICROBUS ${ }^{\text {TM }}$ and COPS ${ }^{\text {TM }}$ are trademarks of National Semiconductor Corp.

[^70]:    DIGITALKER ${ }^{\text {TM }}$, MICROBUS ${ }^{\text {TM }}$ and COPS ${ }^{\text {TM }}$ are trademarks of National Semiconductor Corp

[^71]:    The recipient of these products automatically receives a non-exclusive license under U.S. Patent Application 432,859 and any patent or patents issuing thereon to use such products, to assemble or otherwise incorporate them into further products which may be covered by said patent application, or any patent or patents issuing thereon, and to use, sell, or otherwise dispose of such products': Protected by U.S. Pat. No. 4124125, F.M. Mozer licenses available.

[^72]:    "The recipient of these products automatically receives a non-exclusive license under U.S. Patent Application 432,859 and any patent or patents issuing thereon to use such products, to assemble or otherwise incorporate them into further products which may be covered by said patent application, or any patent or patents issuing thereon, and to use, sell, or otherwise dispose of such products".
    Protected by U.S. Pat. No. 4124125, F.M. Mozer licenses available.

