CMOS
 DATABOOK

NATIONAL SEMICONDUCTOR

CMOS INTEGRATED CIRCUITS

Introduction

74 C is a CMOS pin for pin, function for function, equivalent to the 7400 TTLP family. This new concept in CMOS was designed with the engineer in mind. Strict design rules were adhered to in the input and output characteristics, such as making all outputs capable of sinking $360 \mu \mathrm{~A}$ (two LPT ${ }^{2} \mathrm{~L}$ loads) and specifying all AC parameters at 50 pF loads. These consistent design rules will simplify system design by giving the engineer realistic and workable parameters. The engineer can take full advantage of his knowledge of the 7400 line and utilize the design tricks he has learned.

For those designs that require 400 Series, National manufactures these circuits.
\qquadIntroduction. 1
CMOS Guide 7
Specs for "B" Series. 11
54C/74C Power Consumption Characteristics Guide 12
CMOS Cross Reference Guide 13
74C DATA SHEETS IN NUMERICAL ORDER MM54C00/MM74C00 Quad 2-Input NAND Gate. 1-3
MM54C02/MM74C02 Quad 2-Input NOR Gate $1-3$
MM54C04/MM74C04 Hex Inverter. $1 \cdot 3$
MM54C08/MM74C08 Quad 2-Input AND Gate $1-7$
MM54C10/MM74C10 Triple 3-Input NAND Gate $1-3$
MM54C14/MM74C14 Hex Schmitt Trigger. 1-10
MM54C20/MM74C20 Dual 4-Input NAND Gate $1-3$
MM54C30/MM74C30 8-Input NAND Gate 1-13
MM54C32/MM74C32 Quad 1-Input OR Gate 1-16
MM54C42/MM74C42 BCD-to-Decimal Decoder 1-18
MM54C48/MM74C48 BCD-to-7 Segment Decoder $1-20$
MM54C73/MM74C73 Dual J-K Flip-Flops with Clear $1-24$
MM54C74/MM74C74 Dual D Flip-Flop $1-27$
MM54C76/MM74C76 Dual J-K Flip-Flops with Clear and Preset 1-24
MM54C83/MM74C83 4-Bit Binary Full Adder 1-30
MM54C85/MM74C85 4-Bit Magnitude Comparator $1-34$
MM54C86/MM74C86 Quad 2-Input EXCLUSIVE-OR Gate $1-7$
MM54C89/MM74C89 64-Bit TRI-STATE® Random Access Read/Write Memory $1-37$
MM54C90/MM74C90 4-Bit Decade Counter. $1-42$
MM54C93/MM74C93 4-Bit Binary Counter $1-42$
MM54C95/MM74C95 4-Bit Right-Shift/Left-Shift Register 1.46
MM54C107/MM74C107 Dual J-K Flip-Flops with Clear 1.24
MM54C150/MM74C150 16-Line to 1-Line Multiplexer 1-48
MM54C151/MM74C151 8-Channel Digital Multiplexer 1-53
MM54C154/MM74C154 4-Line to 16-Line Decoder/Demultiplexer. 1.56
MM54C157/MM74C157 Quad 2-Input Multiplexer 1-59
MM54C160/MM74C160 Decade Counter with Asynchronous Clear 1-61
MM54C161/MM74C161 Binary Counter with Asynchronous Clear 1.61
MM54C162/MM74C162 Decade Counter with Synchronous Clear 1.61
MM54C163/MM74C163 Binary Counter with Synchronous Clear 1-61
MM54C164/MM74C164 8-Bit Parallel-Out Serial Shift Register 1.65
MM54C165/MM74C165 Parallel-Load 8-Bit Shift Register 1-68
MM54C173/MM74C173 TRI-STATE® Quad D Flip-Flop 1.72
MM54C174/MM74C174 Hex D Flip-Flop 1.75
MM54C175/MM74C175 Quad D Flip-Flop. 1-78
MM54C192/MM74C192 Synchronous 4•Bit Up/Down Decade Counter 1.81
MM54C193/MM74C193 Synchronous 4-Bit Up/Down Binary Counter $.1-81$
MM54C195/MM74C195 4-Bit Register 1 .84
MM54C200/MM74C200 256-Bit TRI-STATE® Random Access Read/Write Memory 1.87
MM54C221/MM74C221 Dual Monostable Multivibrator 1 .92
MM54C373/MM74C373 Octal Latch 1-95
MM54C374/MM74C374 Octal D-Type Flip-Flop 1.95
MM54C901/MM74C901 Hex Inverting TTL Buffer 1.97
MM54C902/MM74C902 Hex Non-Inverting TTL Buffer 1-97
MM54C903/MM74C903 Hex Inverting CMOS Buffer 1-97
74C DATA SHEETS IN NUMERICAL ORDER (cont.)MM54C904/MM74C904 Hex Non-Inverting CMOS Buffer.1-97
MM54C905/MM74C905 12-Bit Successive Approximation Register 1-101
MM54C906/MM74C906 Hex Open Drain N-Channel Buffer 1-106
MM54C907/MM74C907 Hex Open Drain P-Channel Buffer 1-106
MM74C908 Dual CMOS 30 Volt Driver 1-109
MM54C909/MM74C909 Quad Comparator 1-113
MM54C910/MM74C910 256-Bit TRI-STATE ${ }^{\circledR}$ Random Access Read/Write Memory. 1-118
MM74C911 Display Controller. 1-122
MM74C912 Display Controller 1-122
MM74C913 Display Controller. $1-122$
MM54C914/MM74C914 Hex Schmitt Trigger with Extended Input Voltage 1-125
MM54C915/MM74C915 7-Segment-to-BCD Converter 1-128
MM74C918 Dual CMOS 30 Volt Driver 1-109
MM54C920/MM74C920 1024-Bit Static Silicon Gate CMOS RAM 1-132
MM54C921/MM74C921 1024-Bit Static Silicon Gate CMOS RAM 1-132
MM54C922/MM74C922 16-Key Encoder. 1-136
MM54C923/MM74C923 20-Key Encoder. 1-136
MM74C925 4-Digit Counter with Multiplexed 7-Segment Output Driver 1-141
MM74C926 4-Digit Counter with Multiplexed 7-Segment Output Driver 1-141
MM74C927 4-Digit Counter with Multiplexed 7-Segment Output Driver 1-141
MM74C928 4-Digit Counter with Multiplexed 7-Segment Output Driver 1-141
MM54C929/MM74C929 1024-Bit Static Silicon Gate CMOS RAM 1-145
MM54C930/MM74C930 1024-Bit Static Silicon Gate CMOS RAM 1-145
MM74C935/MM74C935-1 (ADD3500/ADD3501) 3½-Digit DVM with Multiplexed 7-Segment Output $1-149$
MM74C936 33/-Digit DVM with Multiplexed 7-Segment Output. 1-158
MM74C937 3½-Digit DVM with Multiplexed BCD Output 1-158
MM74C938 3 3 $3 / 4$-Digit DVM with Multiplexed BCD Output 1-158
MM74C948 CMOS 8-Bit A/D Converter with 16-Channel Analog Multiplexer 1-159
MM74C949 CMOS 8-Bit A/D Converter with 8-Channel Analog Multiplexer. 1-159
MM74C950 CMOS 8-Bit A/D Converter with 8-Channel Analog Multiplexer and Sample and Hold 1-159
MM70C95/MM80C95 TRI-STATE ${ }^{\circledR}$ Hex Buffers 1-162
MM70C96/MM80C96 TRI-STATE ${ }^{\circledR}$ Hex Inverters 1-162
MM70C97/MM80C97 TRI-STATE ${ }^{\circledR}$ Hex Buffers 1-162
MM70C98/MM80C98 TRI-STATE® Hex Inverters 1-162
MM72C19/MM82C19 TRI-STATE® 16 -Line to 1 -Line Multiplexer. 1-48
MM78C29/MM88C29 Quad Single-Ended Line Driver 1-167
MM78C30/MM88C30 Dual Differential Line Driver 1-167
CD4000 DATA SHEETS IN NUMERICAL ORDER
CD4000M/CD4000C Dual 3-Input NOR Gate Plus Inverter 2-3
CD4001M/CD4001C Quadruple 2-Input NOR Gate 2-6
CD4001MB/CD4001BC Quad 2-Input NOR Buffered B Series Gate 2.9
CD4002M/CD4002C Dual 4-Input NOR Gate 2-14
CD4006M/CD4006C 18-Stage Static Shift Register $2 \cdot 16$
CD4007M/CD4007C Dual Complementary Pair Plus Inverter. 2-19
CD4008BM/CD4008BC 4-Bit Full Adder. 2-22
CD4009M/CD4009C Hex Buffer (Inverting) 2-25
CD4010M/CD4010C Hex Buffer (Non-Inverting) 2-25
CD4011M/CD4011C Quad 2-Input NAND Buffered B Series Gate 2-27
CD4011BM/CD4011BC Quad 2-Input NAND Buffered B Series Gate 2-9
CD4012M/CD4012C Dual 4-Input NAND Gate. 2-27
CD4013BM/CD4013BC Dual D Flip-Flop 2-29
CD4014M/CD4014C 8-Stage Static Shift Register 2-34
CD4015M/CD4015C Dual 4-Bit Static Register 2-37
CD4016M/CD4016C Quad Bilateral Switch 2.41

Numerical Index and Table of Contents

CD4000 DATA SHEETS IN NUMERICAL ORDER (cont.)
CD4017BM/CD4017BC Decade Counter/Divider with 10 Decoded Outputs 2-45
CD4018BM/CD4018BC Presettable Divide-by-N Counter 2-50
CD4019BM/CD4019BC Quad AND-OR Select Gate. 2.54
CD4020BM/CD4020BC 14-Stage Ripple-Carry Binary Counter/Divider 2-57
CD4021M/CD4021C 8-Stage Static Shift Register 2-62
CD4022BM/CD4022BC Divide-by-8 Counter/Divider with 8 Decoded Outputs 2.45
CD4023M/CD4023C Triple 3.Input NAND Gate. 2.27
CD4023BM/CD4023BC Triple 3-Input NAND Gate 2-65
CD4024BM/CD4024BC 7-Stage Ripple-Carry Binary Counter/Divider 2-69
CD4025M/CD4025C Triple 3.Input NOR Gate $2 \cdot 72$
CD4025BM/CD4025BC Triple 3-Input NOR Gate 2.65
CD4027BM/CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset 2-75
CD4028BM/CD4028BC BCD-to-Decimal Decoder 2.79
CD4029BM/CD4029BC Presettable Binary/Decade Up/Down Counter 2-82
CD4030M/CD4030C Quad EXCLUSIVE-OR Gate. 2-88
CD4031BM/CD4031BC 64-Stage Static Shift Register 2-91
CD4034BM/CD4034BC 8-Stage TRI-STATE ${ }^{\circledR}$ Bidirectional Parallel/Serial Input/Output Bus Register $2 \cdot 95$
CD4035BM/CD4035BC 4-Bit Parallel-In/Parallel-Out Shift Register 2.103
CD4040BM/CD4040BC 14-Stage Ripple Carry Binary Counters 2-57
CD4041M/CD4041C Quad True Complement Buffer 2-107
CD4042BM/CD4042BC Quad Clocked D Latch 2-11
CD4043M/CD4043C Quad TRI-STATE ${ }^{\circledR}$ NOR R/S Latches 2-115
CD4044M/CD4044C Quad TRI-STATE® NAND R/S Latches 2-115
CD4046BM/CD4046BC Micropower Phase-Locked Loop 2:119
CD4047BM/CD4047BC Low Power Monostable/Astable Multivibrator 2.126
CD4048BM/CD4048BC TRI-STATE ${ }^{\circledR}$ Expandable 8-Function 8-Input Gate 2-131
CD4049BM/CD4049BC Hex Inverting Buffer 2.137
CD4050BM/CD4050BC Hex Non-Inverting Buffer. 2-137
CD4051BM/CD4051BC Analog Multiplexers/Demultiplexers. 2-142
CD4052BM/CD4052BC Analog Multiplexers/Demultiplexers 2.142
CD4053BM/CD4053BC Analog Multiplexers/Demultiplexers. $2 \cdot 142$
CD4060BM/CD4060BC 12-Stage Ripple Carry Binary Counters 2-57
CD4066BM/CD4066BC Quad Bilateral Switch 2-150
CD4069M/CD4069C Inverter Circuits 2-156
CD4070BM/CD4070BC Quad 2-Input EXCLUSIVE-OR Gate 2.160
CD4071BM/CD4071BC Quad 2-Input OR Buffered B Series Gate 2-164
CD4073BM/CD4073BC Double Buffered Triple 3-Input NAND Gate 2.169
CD4075BM/CD4075BC Double Buffered Triple 3-Input NOR Gate 2-169
CD4076BM/CD4076BC TRI-STATE® Quad D Flip-Flop 2-173
CD4081BM/CD4081BC Quad 2-Input AND Buffered B Series Gate 2-164
CD4089BM/CD4089BC Binary Rate Multiplier 2-177
CD4093BM/CD4093BC Quad 2-Input NAND Schmitt Trigger 1-184
CD4099BM/CD4099BC 8-Bit Addressable Latches 2-227
CD40106BM/CD40106BC Hex Schmitt Trigger 2-189
CD40160BM/CD40160BC Decade Counter with Asynchronous Clear 2-193
CD40161BM/CD40161BC Binary Counter with Asynchronous Clear 2.193
CD40162BM/CD40162BC Decade Counter with Synchronous Clear 2.193
CD40163BM/CD40163BC Binary Counter with Synchronous Clear 2-193
CD40174BM/CD40174BC Hex D Flip-Flop 2-198
CD40175BM/CD40175BC Ouad D Flip-Flop 2-198
CD40192BM/CD40192BC Synchronous 4-Bit Up/Down Decade Counter 2-201
CD40193BM/CD40192BC Synchronous 4-Bit Up/Down Binary Counter 2-201
CD4510BM/CD4510BC BCD Up/Down Counter. 2-206
CD4511BM/CD4511BC BCD-to-7 Segment Latch Decoder/Driver 2.213
CD4516BM/CD4516BC Binary Up/Down Counter 2.206
CD4518BM/CD4518BC Dual Synchronous Up Counter 2.218

Numerical Index and Table of Contents

CD4000 DATA SHEETS IN NUMERICAL ORDER (cont.) CD4519BM/CD4519BC 4-Bit AND/OR Selector 2-223
CD4520BM/CD4520BC Dual Synchronous Up Counter 2-218
CD4527BM/CD4527BC BCD Rate Multiplier 2-177
CD4723BM/CD4723BC Dual 4-Bit Addressable Latch 2-227
CD4724BM/CD4724BC 8-Bit Addressable Latch 2-227
CMOS COMPATIBLE BIPOLAR INTERFACE CIRCUITS
DS1630/DS3630 Hex CMOS Compatible Buffer 3-3
DS1631/DS3631 Dual Peripheral Driver 3-6
DS1632/DS3632 Dual Peripheral Driver 3-6
DS1633/DS3633 Dual Peripheral Driver 3.6
DS1634/DS3634 Dual Peripheral Driver 3-6
DS1686/DS3686 Positive Voltage Relay Driver. 3-12
DS1687/DS3687 Negative Voltage Relay Driver 3-14
DS78C20/DS88C20 Dual Compatible Differential Line Receiver 3-16
ADC0800P (MM4357B/MM5357B) 8-Bit A/D Converter 3-19
LM146/LM246/LM346 Programmable Quad Operational Amplifier 3-25
LM195/LM295/LM395 Ultra Reliable Power Transistors 3-27
CMOS CONSUMER PRODUCTS
MM5369 Programmable Oscillator Divider 4-3
MM5393 Push Button Telephone Dialer 4-6
MM5395 Touch Tone ${ }^{\circledR}$ Generator 4.9
MM53100 Programmable TV Timer 4-14
MM53104 TV Game Clock Generator 4-19
MM53105 Programmable TV Timer 4-14
MM55104 Phase Lock Loop Frequency Synthesizer. 4-22
MM55106 Phase Lock Loop Frequency Synthesizer. 4-22
MM55114 Phase Lock Loop Frequency Synthesizer. 4-22
MM55116 Phase Lock Loop Frequency Synthesizer. 4-22
MM5840 TV Channel and Time Circuit 4-26
MM5841 TV Channel and Time Circuit 4.31
MM58106 Digital Clock and TV Display Circuit $.4-35$
High Reliability CMOS 4-39
A+ Program 4-42
B+ Program 4-44
APPLICATION NOTES/BRIEFS
AN-77, CMOS, The Ideal Logic Family 5-3
AN-88, CMOS Linear Applications 5-11
AN-90, 54C/74C Family Characteristics. 5-14
AN-118, CMOS Oscillators 5-20
AN-138, Using the CMOS Dual Monostable Multivibrator 5-24
AN-140, CMOS Schmitt Trigger - A Uniquely Versatile Design Component 5-30
AN-165, Dual Polarity 3½-Digit DVM Realized with Simple CMOS Interface 5-36
AN-177, Designing with MM74C908/MM74C918 Dual High Voltage CMOS Drivers 5-38
DB-5, Keyboard Programmable Divide-by-N Counter with Symmetrical Output 5-50
MB-18, MM54C/MM74C Voltage Translation/Buffering 5-50
ORDERING INFORMATION \& PHYSICAL DIMENSIONS
Ordering Information. 6.3
CMOS Packages. 6.4

CMOS Guide

GATES

MM54C00/MM74C00 Quad 2.Input NAND Gate MM54C02/MM74C02 Quad 2-Input NOR Gate MM54C04/MM74C04 Hex Inverter MM54C08/MM74C08 Quad 2-Input AND Gate MM54C10/MM74C10 Triple 3•Input NAND Gate MM54C20/MM74C20 Dual 4-Input NAND Gate MM54C30/MM74C30 8-Input NAND Gate MM54C32/MM74C32 Quad 2-Input OR Gate

MM54C86/MM74C86 Quad 2-Input EXCLUSIVE-OR Gate

CD4000M/CD4000C Dual 3-Input NOR Gate Plus Inverter

CD4001M/CD4001C Quadruple 2-Input NOR Gate
CD4001BM/CD4001BC Quad 2•Input NOR Buffered B Series Gate

CD4002M/CD4002C Dual 4-Input NOR Gate CD4007M/CD4007C Dual Complementary Pair Plus Inverter

CD4011M/CD4011C Quad 2-Input NAND Buffered B Series Gate

CD4011BM/CD4011BC Quad 2-Input NAND Buffered B Series Gate

CD4012M/CD4012C Dual 4-Input NAND Gate CD4019BM/CD4019BC Quad AND.OR Select Gate CD4023M/CD4023C Triple 3-Input NAND Gate CD4023BM/CD4023BC Triple 3-Input NAND Gate CD4025M/CD4025C Triple 3-Input NOR Gate CD4025BM/CD4025BC Triple 3-Input NOR Gate CD4030M/CD4030C Quad EXCLUSIVE-OR Gate CD4048BM/CD4048BC TRI-STATE ${ }^{\circledR}$ Expandable 8 -Function 8 -Input Gate

CD4069M/CD4069C Inverter Circuits
CD4070BM/CD4070BC Quad 2-Input EXCLUSIVE-OR Gate

CD4071BM/CD4071BC Quad 2-Input OR Buffered B Series Gate

CD4073BM/CD4073BC Double Buffered Triple 3-Input NAND Gate

GATES (cont.)

CD4075BM/CD4075BC Double Buffered Triple 3-Input NOR Gate

CD4081BM/CD4081BC Quad 2.Input AND Buffered B Series Gate

CD4519BM/CD4519BC 4-Bit AND/OR Selector

BUFFERS

MM54C901/MM74C901 Hex Inverting TTL Buffer MM54C902/MM74C902 Hex Non-Inverting TTL Buffer MM54C903/MM74C903 Hex Inverting PMOS Buffer MM54C904/MM74C904 Hex Non-Inverting PMOS Buffer

MM54C906/MM74C906 Hex Open Drain N-Channel Buffer

MM54C907/MM74C907 Hex Open Drain P-Channel Buffer

MM74C908 Dual CMOS 30 Volt Driver MM74C918 Dual CMOS 30 Volt Driver MM70C95/MM80C95 TRI-STATE ${ }^{\circledR}$ Hex Buffers MM70C96/MM80C96 TRI-STATE ${ }^{\circledR}$ Hex Inverters MM70C97/MM80C97 TRI-STATE ${ }^{\circledR}$ Hex Buffers MM70C98/MM80C98 TRI-STATE ${ }^{\circledR}$ Hex Inverters MM78C29/MM88C29 Quad Single-Ended Line Driver MM78C30/MM88C30 Dual Differential Line Driver CD4009M/CD4009C Hex Buffer (Inverting) CD4010M/CD4010C Hex Buffer (Non-Inverting) CD4041M/CD4041C Quad True/Complement Buffer CD4049BM/CD4049BC Hex Inverting Buffer CD4050BM/CD4050BC Hex Non-Inverting Buffer DS1630/DS3630 Hex CMOS Compatible Buffer DS78C20/DS88C20 Dual Compatible Differential Line Receiver

LM195/LM295/LM395 Ultra Reliable Power Transistors

FLIP-FLOPS
MM54C73/MM74C73 Dual J-K Flip-Flops with Clear MM54C74/MM74C74 Dual D Flip-Flop

CMOS Guide

FLIP-FLOPS (cont.)

MM54C76/MM74C76 Dual J-K Flip-Flops with Clear and Preset

MM54C107/MM74C107 Dual J-K Flip-Flops with Clear MM54C173/MM74C173 TRI-STATE ${ }^{\circledR}$ Quad D Flip-Flop MM54C174/MM74C174 Hex D Flip-Flop

MM54C175/MM74C175 Quad D Flip-Flop
MM54C373/MM74C373 Octal Latch
MM54C374/MM74C374 Octal D-Type Flíp-Flop
CD4013BM/CD4013BC Dual D Flip-Flop
CD4027BM/CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

CD4042BM/CD4042BC Quad Clocked D Latch
CD4043M/CD4043C Quad TRI-STATE ${ }^{\circledR}$ NOR R/S Latches

CD4044M/CD4044C Quad TRI-STATE ${ }^{\circledR}$ NAND R/S Latches

CD4076BM/CD4076BC TRI-STATE ${ }^{\circledR}$ Quad D Flip-Flop CD4099BM/CD4099BC 8-Bit Addressable Latches CD40174BM/CD40174BC Hex D Flip-Flop CD40175BM/CD40175BC Quad D Flip-Flop CD4723BM/CD4723BC Dual 4-Bit Addressable Latch CD4724BM/CD4724BC 8-Bit Addressable Latches

COUNTERS

MM54C90/MM74C90 4-Bit Decade Counter MM54C93/MM74C93 4-Bit Binary Counter MM54C160/MM74C160 Decade Counter with Asynchronous Clear

MM54C161/MM74C161 Binary Counter with Asynchronous Clear

MM54C162/MM74C162 Decade Counter with Synchronous Clear

MM54C163/MM74C163 Binary Counter with Synchronous Clear

MM54C192/MM74C192 Synchronous 4-Bit Up/Down Decade Counter

COUNTERS (cont.)

MM54C193/MM74C193 Synchronous 4-Bit Up/Down Binary Counter

MM74C925 4-Digit Counter with Multiplexed 7-Segment Output Driver

MM74C926 4-Digit Counter with Multiplexed 7-Segment Output Driver

MM74C927 4-Digit Counter with Multiplexed 7-Segment Output Driver

MM74C928 4-Digit Counter with Multiplexed 7-Segment Output Driver

CD4017BM/CD4017BC Decade Counter/Divider with 10 Decoded Outputs

CD4018BM/CD4018BC Presettable Divide-by-N Counter
CD4020BM/CD4020BC 14-Stage Ripple-Carry Binary Counter/Divider

CD4022BM/CD4022BC Divide-by-8 Counter/Divider with 8 Decoded Outputs

CD4024BM/CD4024BC 7-Stage Ripple-Carry Binary Counter/Divider

CD4029BM/CD4029BC Presettable Binary/Decade Up/Down Counter

CD4040BM/CD4040BC 14-Stage Ripple Carry Binary Counters

CD4060BM/CD4060BC 12-Stage Ripple Carry Binary Counters

CD40160BM/CD40160BC Decade Counter with Asynchronous Clear

CD40161BM/CD40161BC Binary Counter with Asynchronous Clear

CD40162BM/CD40162BC Decade Counter with Synchronous Clear

CD40163BM/CD40163BC Binary Counter with Synchronous Clear

CD40192BM/CD40192BC Synchronous 4-Bit Up/Down Decade Counter

CD40193BM/CD40193BC Synchronous 4-Bit Up/Down Binary Counter

CD4510BM/CD4510BC BCD Up/Down Counter CD4516BM/CD4516BC Binary Up/Down Counter CD4518BM/CD4518BC Dual Synchronous Up Counter

CMOS Guide

COUNTERS (cont.)

CD4520BM/CD4520BC Dual Synchronous Up Counter
MM5369 Programmable Oscillator Divider

SHIFT REGISTERS

MM54C95/MM74C95 4-Bit Right Shift Left Shift Register MM54C164/MM74C164 8-Bit Parallel-Out Serial Shift Register

MM54C165/MM74C165 Parallel-Load 8-Bit Shift Register

CD4006M/CD4006C 18-Stage Static Shift Register CD4014M/CD4014C 8-Stage Static Shift Register CD4015M/CD4015C Dual 4-Bit Static Register CD4021M/CD4021C 8-Stage Static Shift Register CD4031BM/CD4031BC 64-Stage Static Shift Register CD4034BM/CD4034BC 8-Stage TRI-STATE ${ }^{\circledR}$ Bidirectional Parallel/Serial Input/Output Bus Register

CD4035BM/CD4035BC 4-Bit Parallel-In/Parallel-Out Shift Register

DECODERS/MULTIPLEXERS

MM54C42/MM74C42 BCD-to-Decimal Decoder MM54C48/MM74C48 BCD-to-7 Segment Decoder MM54C150/MM74C150 16-Line to 1-Line Multiplexer MM54C151/MM74C151 8-Channel Digital Multiplexer

MM54C154/MM74C154 4-Line to 16-Line Decoder/ Demultiplexer

MM54C157/MM74C157 Quad 2-Input Multiplexer MM54C922/MM74C922 16-Key Encoder MM54C923/MM74C923 20-Key Encoder MM74C19/MM82C19 TRI-STATE ${ }^{\circledR} 16$-Line to 1 -Line Multiplexer

CD4016M/CD4016C Quad Bilateral Switch CD4028BM/CD4028BC BCD-to-Decimal Decoder CD4051BM/CD4051BC Analog Multiplexers/ Demultiplexers

DECODERS/MULTIPLEXERS (cont.) CD4052BM/CD4052BC Analog Multiplexers/ Demultiplexers

CD4053BM/CD4053BC Analog Multiplexers/ Demultiplexers

CD4066BM/CD4066BC Quad Bilateral Switch CD4511BM/CD4511BC BCD-to-7 Segment Latch Decoder/Driver

MEMORIES

MM54C89/MM74C89 64-Bit TRI-STATE ${ }^{\circledR}$ Random Access Read/Write Memory

MM54C200/MM74C200 256-Bit TRI-STATE ${ }^{\circledR}$ Random Access Read/Write Memory

MM54C010/MM74C910 256.Bit TRI.STATE ${ }^{(1)}$ (Random Access Read/Write Memory

MM54C920/MM74C920 1024-Bit Static Silicon Gate CMOS RAM

MM54C921/MM74C921 1024-Bit Static Silicon Gate CMOS RAM

MM54C929/MM74C929 1024-Bit Static Silicon Gate CMOS RAM

MM54C930/MM74C930 1024-Bit Static Silicon Gate CMOS RAM

ARITHMETIC FUNCTIONS

MM54C83/MM74C83 4-Bit Binary Full Adder MM54C85/MM74C85 4-Bit Magnitude Comparator CD4008BM/CD4008BC 4-Bit Full Adder

SPECIAL FUNCTIONS

MM54C14/MM74C14 Hex Schmitt Trigger MM54C221/MM74C221 Dual Monostable Multivibrator MM54C909/MM74C909 Quad Comparator

MM74C911 Display Controller
MM74C912 Display Controller
MM74C913 Display Controller
MM54C914/MM74C914 Hex Schmitt Trigger with Extended Input Voltage

CMOS Guide

SPECIAL FUNCTIONS (cont.)

MM54C915/MM74C915 7-Segment-to-BCD Converter
MM74C935/MM74C935-1 (ADD3500/ADḊ3501)
3122-Digit DVM with Multiplexed 7-Segment Output
MM74C936 33/4-Digit DVM with Multiplexed 7-Segment Output

MM74C937 3½-Digit DVM with Multiplexed BCD Output

MM74C938 33/4-Digit DVM with Multiplexed BCD Output

CD4046BM/CD4046BC Micropower Phase-Locked Loop
CD4047BM/CD4047BC Low Power Monostable/Astable Multivibrator

CD4089BM/CD4089BC Binary Rate Multiplier
CD4093BM/CD4093BC Quad 2-Input NAND Schmitt Trigger

CD40106BM/CD40106BC Hex Schmitt Trigger
CD4527BM/CD4527BC BCD Rate Multiplier DS1631/DS3631 Dual Peripheral Driver DS1632/DS3632 Dual Peripheral Driver DS1633/DS3633 Dual Peripheral Driver DS1634/DS3634 Dual Peripheral Driver DS1686/DS3686 Positive Voltage Relay Driver DS1687/DS3687 Negative Voltage Relay Driver

SPECIAL FUNCTIONS (cont.)

LM146/LM246/LM346 Programmable Quad Operational Amplifier

MM5393 Push Button Telephone Dialer
MM5395 Touch Tone ${ }^{\circledR}$ Generator
MM53100 Programmable TV Timer
MM53104 TV Game Clock Generator
MM53105 Programmable TV Timer
MM55104 Phase Lock Loop Frequency Synthesizer MM55106 Phase Lock Loop Frequency Synthesizer MM55114 Phase Lock Loop Frequency Synthesizer MM55116 Phase Lock Loop Frequency Synthesizer MM5840 TV Channel and Time Circuit

MM5841 TV Channel and Time Circuit MM58106 Digital Clock and TV Display Circuit

A-TO-D CONVERTERS

MM74C948 CMOS 8-Bit A/D Converter with 16-Channel Analog Multiplexer

MM74C949 CMOS 8-Bit A/D Converter with 8-Channel Analog Multiplexer

MM74C950 CMOS 8-Bit A/D Converter with 8-Channel Analog Multiplexer and Sample and Hold

ADC0800P (MM4357B/MM5357B) 8-Bit A/D Converter

National Semiconductor complies with the CMOS＂B＂Series specification as called out in JEDEC Standard No．13A．All parts called out as＂B＂ are double buffered and will meet as a minimum the electrical parameters listed in table A．As agreed upon in the JEDEC Spec，products called out as UB are not double buffered but meet table A specifications with the exception of $V_{I L}$ and $V_{I H}$ ，which will be 20% and 80% ，respectively， of $V_{D D}$ ．The $54 \mathrm{C} / 74 \mathrm{C}$ family meets or exceeds the＂B＂／＂＇UB＂specifications as given in table A but are not marked＂B＂／＂UB．＂

Parameter		Temp Range	VDD （Vdc）	Conditions	Limits							Units			
		TLOW＊			$+25^{\circ} \mathrm{C}$			THIGH＊							
		Min			Max	Min	Typ	Max	Min	Max					
IDD	Quiescent Device Current GATES		Mil	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$V_{1}=V_{S S} \text { or } V_{D D}$		$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 7.5 \\ & 15 \\ & 30 \end{aligned}$	$\mu \mathrm{Adc}$		
			Comm	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	All valid input combinations		$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	＊	7.5 15 30	μ Adc		
	BUFFERS， FLIP－FLOPS MSI	Mil	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$V_{1}=V_{\underline{S S}}$ or $V_{D D}$		$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 30 \\ & 60 \\ & 120 \end{aligned}$	μ Adc			
		Comm	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	All valid input combinations		$\begin{aligned} & 4.0 \\ & 8.0 \\ & 16.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \\ & 8.0 \\ & 16.0 \end{aligned}$		$\begin{aligned} & 30 \\ & 60 \\ & 120 \end{aligned}$	μ Adc			
		Mil Comm	$\begin{array}{r} 5 \\ 10 \\ 15 \\ 5 \\ 10 \\ 15 \end{array}$	$V_{1}=V_{S S} \text { or } V_{D D}$ All valid input combinations		$\begin{aligned} & 5 \\ & 10 \\ & 20 \\ & 20 \\ & 40 \\ & 80 \end{aligned}$			$\begin{aligned} & 5 \\ & 10 \\ & 20 \\ & 20 \\ & 40 \\ & 80 \end{aligned}$		150 300 600 150 300 600	＂Adc HAdc			
VOL	Low－Level Output Voltage	All	$\begin{array}{r} 5 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & V_{1}=V_{S S} \text { or } V_{D D} \\ & \\|_{O}<1 \mu A \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{array}{r} 0.05 \\ 0.05 \\ 0.05 \\ \hline \end{array}$	Vdc			
VOH	High－Level Output Voltage	All	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & V_{1}=V_{S S} \text { or } V_{D D} \\ & \\|_{0} \mid<1 \mu A \end{aligned}$	$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$		$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \\ & \hline \end{aligned}$		－	$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$		Vdc			
$V_{\text {IL }}$	Input Low Voltage	All	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V}, \quad\left\|\\|_{O}\right\|<1 \mu \mathrm{~A} \\ & V_{O}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V}, \quad \\|_{O} \mid<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V}, \quad \\|_{\mathrm{O}} \mid<1 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	．		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	．	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc			
$\mathrm{V}_{\text {IH }}$	Input High Voltage	All	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V}, \quad \\|_{\mathrm{O}} l<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V}, \quad \\|_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V}, \\|_{\mathrm{O}} l<1 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$	．	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$		\cdots	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$		Vdc			
IOL	Output Low （Sink）Current	Mil Comm	$\begin{array}{r} 5 \\ 10 \\ 15 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & V_{O}=0.4 \mathrm{~V}, V_{1}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & V_{O}=0.5 \mathrm{~V}, V_{1}=0 \mathrm{~V} \text { or } 10 \mathrm{~V} \\ & V_{O}=1.5 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V} \text { or } 15 \mathrm{~V} \\ & V_{O}=0.4 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & V_{O}=0.5 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V} \text { or } 10 \mathrm{~V} \\ & V_{O}=1.5 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V} \text { or } 15 \mathrm{~V} \end{aligned}$	1.64 1.6 4.2 0.52 1.3 3.6		$\begin{array}{\|l\|} \hline 0.51 \\ 1.3 \\ 3.4 \\ 0.44 \\ 1.1 \\ 3.0 \\ \hline \end{array}$		：	$\begin{aligned} & 0.36 \\ & 0.9 \\ & 2.4 \\ & 0.36 \\ & 0.9 \\ & 2.4 \\ & \hline \end{aligned}$	－．	mAdc mAdc			
${ }^{\mathrm{I} O H}$	Output High （Source）Current	Mil Comm	$\begin{array}{r} 5 \\ 10 \\ 15 \\ 5 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & V_{O}=4.6 \mathrm{~V}, \mathrm{~V}_{1}-0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & V_{O}=9.5 \mathrm{~V}, V_{1}=0 \mathrm{~V} \text { or } 10 \mathrm{~V} \\ & V_{O}=13.5 \mathrm{~V}, V_{1}-0 \mathrm{~V} \text { or } 15 \mathrm{~V} \\ & V_{O}=4.6 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & V_{O}=9.5 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V} \text { or } 10 \mathrm{~V} \\ & V_{O}=13.5 \mathrm{~V}, \mathrm{~V}_{1}-0 \mathrm{~V} \text { or } 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.25 \\ & -0.62 \\ & -1.8 \\ & -0.2 \\ & -0.5 \\ & -1.4 \\ & \hline \end{aligned}$	＊	$\begin{aligned} & -0.2 \\ & -0.5 \\ & -1.5 \\ & -0.16 \\ & -0.4 \\ & -1.2 \\ & \hline \end{aligned}$			$\begin{aligned} & -0.14 \\ & -0.35 \\ & -1.1 \\ & -0.12 \\ & -0.3 \\ & -1.0 \\ & \hline \end{aligned}$		mAdc mAdc			
11	Input Current	Mil Comm	$\begin{array}{r} 15 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & V_{1}=0 \mathrm{~V} \text { or } 15 \mathrm{~V} \\ & V_{1}=0 \mathrm{~V} \text { or } 15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 0.1 \\ & \pm 0.3 \end{aligned}$			$\begin{aligned} & \pm 0.1 \\ & \pm 0.3 \end{aligned}$		$\begin{array}{r} \pm 1.0 \\ \pm 1.0 \end{array}$	μ Adc μ Adc			
C_{1}	Input Capacitance per Unit Load	All	－－	Any Input					7.5	\cdots		pF			

Note：For current flow the convention is positive for current flowing into the device and negative flowing out of the device．
＊TLOW $=-55^{\circ} \mathrm{C}$ for Military Temp Range device，$-40^{\prime} \mathrm{C}$ Ior Commercial Temp Range device．
＊THIGH $=+125^{\circ} \mathrm{C}$ for Military Temp Rango dovicu， 185 ＂ C for Commercial Temp Range device．

54C/74C Power Consumption Characteristics Guide

Typical characteristics $T_{A}=25^{\circ} \mathrm{C}$.

DEVICE TYPE/PRODUCT DESCRIPTION	CPD (pF) (Note 3)	$\begin{gathered} t_{\mathrm{pd}}(\mathrm{~ns}) \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{gathered}$	$\Delta t_{\mathrm{pd}} / \mathrm{pF}$ CURVE	LTTL (TTL)* FAN OUT
MM54C00/MM74C00 Quad 2-Input NAND Gate	12	50	A	2
MM54C02/MM74C02 Quad 2-Input NOR Gate	12	50	A	2
MM54C04/MM74C04 Hex Inverter	12	50	A	2
MM54C08/MM74C08 Quad 2.Input AND Gate	14	80	A	2
MM54C10/MM74C10 Triple 3-Input NAND Gate	18	60	A	2
MM54C14/MM74C14 Hex Schmitt Trigger .	20	220	A	2
MM54C20/MM74C20 Dual 4-Input NAND Gate	30	70	A	2
MM54C30/MM74C30 8-Input NAND Gate	26	125	A	2
MM54C32/MM74C32 Quad 2 -Input OR Gate	15	80	A	2
MM54C42/MM74C42 BCD-io-Decimal Decoder	50	200	- A	2
MM54C48/MM74C48 BCD.to-7 Segment Decoder	NA	450 (1)	NA	2
MM54C73/MM74C73 Dual J.K Flip-Flop	40	180	A	2
MM54C74/MM74C74 Dual D Flip-Flop	40	180	A	2
MM54C76/MM74C76 Dual J.K Flip-Flop	40	180	A	2
MM54C83/MM74C83 4-Bit Binary Full Adder .	120	300	A	2
MM54C85/MM74C85 4-Bit Magnitude Comparator	45	220 (1)	A	2
MM54C86/MM74C86 Quad 2-Input EXCLUSIVE-OR Gate	20	110	A	2
MM54C89/MM74C89 64-bit.TR1-STATE(0) Random Access Memory	230	270	A	2
MM54C90/MM74C904-Bit Decade Counter	45	400	A	2
MM54C93/MM74C93 4-Bit Binary Counter	45	400	A	2
MM54C95/MM74C95 4-Bit R-S/L-S Register .	100	200	A	2
MM54C107/MM74C107 Dual J-K Flip.Flop	40	180	A	2
MM54C150/MM74C150 16:1 Multiplexer	100	250	A	1*
MM154C151/MM74C151 8-Channel Digital Multiplexer	50	200 (1)	A	2
MM54C154/MM74C154 4:16 Decoder/Demultiplexer	60	275 (1)	A	2
MM54C157/MM740157 Quad 2-Input Multiplexer	20	150 (1)	A	2
MM54C160/MM74C160 Sync Decade Counter	95	250 (2)	A	2
MM54C161/MM74C161 Sync 4-Bit Binary Counter	95	250 (2)	A	2
MM54C162/MM74C162 Sync Decatie Counter	95	250 (2)	A	2
MM54C163/MM74C163 Sync 4-Bit Binary Counter	95	250 (2)	A	2
MM54C164/MM74C164 8-Bit SI/PO S/R	140	230 (2)	A	2
MM54C165/MM74C165 8-Bit PI/SO S/R	55	- 210 (2)	A	2
MM54C173/MM74C173 TRI-STATE® Quad D Flip-Flop	100	220 (2)	A	2
MM54C174/MM74C174 Hex D Flip-Flop	95	150 (2)	A	2
MM54C175/MM74C175 Quad D Flip-Flop	130	190 (2)	A	2
MM54C192/MM74C192 Sync Up/Down Decade Counter	100	250 (2)	A	2
MM54C193/MM74C193 Sync Up/Down Binary Counter	100	250 (2)	A	2
MM54C195/MM74C195 4-Bit Parallel S/R	130	200 (2)	A	2
MM54C221/MM74C221 Dual Monostable Multivibrators	NA	250 (2)	A	2
MM54C901/MM74C901 Hex Inverting TTL Buffer	30	38	B	$2 *$
MM54C902/MM74C902 Hex Non-Inverting TTL Buffer	50.	57	B	$2 *$
MM54C903/MM74C903 Hex Inverting TTL Buffer	30	38	B	2**
MM54C904/MM74C904 Hex Non-Inverting TTL Buffer	50	57	B	2*
MM54C905/MM74C905 12-Bit Successive Approximation Register	100	200	A	2
MM54C906/MM74C906 Hex Open Drain N-Channel Buffers.	30	NA	NA	2*
MM54C907/MM74C907 Hex Open Drain P-Channel Buffers	30	NA	NA	2*
MM54C908/MM74C908 Dual High Vottage CMOS Driver	NA	150 (1)	NA	NA
MM54C91 8/MM74C918 Dual High Voltage CMOS Driver	NA	150 (1)	NA	NA
MM70C95/MM80C95 TRI-STATE® Hex Non-Inverting Buffer	60	60	B	1*
MM70C96/MM80C96 TRI-STATE® Hex Inverting Buffer.	60	70	B	1**
MM70C97/MM80C97 TRI-STATE® Hex Non-Inverting Buffer	60	60	B	1**
MM70C98/MM80C98 TRI-STATE(1) Hex Inverting Buffer	60	70	B	1**
MM72C19/MM82C19 TRI-STATE(1) 16:1 Multiplexer	100	250	A	1*
MM74C914 Hex Schmitt Trigger	20	220	A	2
MM78C29/MM88C29 Quad Single Ended Line Driver	150	200	NA	5*
MM78C30/MM88C30 Dual Differential Line Driver	200	350	NA	5*

Note 1: ${ }^{t} p d$ shown is from data input to output. For more detailed specifications see individual data sheet.
Note 2: $t_{\text {pd }}$ shown is from clock to output. For more detailed specifications see individual data sheet.
Note 3: CPD numbers shown are for independent identical functions within a package. For instance the total CPD for a MM74C157 is $4 \times 20 \mathrm{pF}=80 \mathrm{pF}$ while the total CPD for the MM74C173 is 100 pF because all flip-flops have a common clock.

For complete explanation on use of curves see application note AN-90,54C/74C Family Characteristics.

CMOS DATABOOK

absolute maximum ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range
54C 74C
Storage Temperature Range
Operating $V_{C C}$ Range
Maximum $V_{\text {cc }}$ Voltage
Package Dissipation
Lead Temperature (Soldering, 10 seconds)
-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 3.0 V to 15 V

18 V
500 mW $300^{\circ} \mathrm{C}$

dc electrical characteristics

Min /max limits apply across the guaranteed temperature range unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
Logical "1" Input Voltage ($\mathrm{V}_{\text {IN }}(1)$) Logical " 0 " Input Voltage ($\mathrm{V}_{\mathrm{N}(0)}$) Logical "1" Output Voltage (Vour(1)) Logical " 0 " Output Voltage ($\mathrm{V}_{\text {Out }}$ (0) Logical "1" Input Current ($1_{\text {IN(1) }}$) Logical " 0 " Input Current ($\mathrm{I}_{\mathrm{IN}(0)}$) Supply Current (${ }^{\mathrm{cc}}$)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \\ & V_{c c}=10 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \\ & V_{C C}=5.0 \mathrm{~V}, I_{0}=+10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{0}=+10 \mu \mathrm{~A} \\ & V_{C C}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$ 4.5 9.0 -1.0	$\begin{gathered} 0.005 \\ -0.005 \\ 0.01 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$ 0.5 1.0 1.0 15	$\begin{gathered} V \\ \mu A \\ \mu A \\ \mu A \end{gathered}$
LOW POWER TO CMOS					
Logical "1" Input Voltage ($\mathrm{V}_{\text {IN(1) }}$) Logical " 0 " Input Voltage ($V_{\text {IN (} 0 \text {) }}$) Logical "1" Output Voltage ($\mathrm{V}_{\text {out(1) }}$) Logical " 0 " Output Vottage ($\mathrm{V}_{\text {out }(0)}$)	54C, $V_{c c}=4.5 \mathrm{~V}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$ 54C, $V_{c c}=4.5 \mathrm{~V}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$ $54 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, 1_{\mathrm{O}}=-10 \mu \mathrm{~A}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{0}=-10 \mu \mathrm{~A}$ $54 \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A}$	$\begin{aligned} & V_{c c}-1.5 \\ & V_{c c}-1.5 \end{aligned}$ 4.4 4.4		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$ 0.4 0.4	$\begin{aligned} & v \\ & v \end{aligned}$
CMOS TO LOW POWER					
Logical " 1 " Input Voitage ($V_{\text {IN (1) }}$) Logical " 0 " Input Voltage ($V_{\text {IN }}(0)$) Logical " 1 " Output Voltage ($\mathrm{V}_{\text {OUT(1) }}$) Logical " 0 " Output Voltage ($\mathrm{V}_{\text {OUT(0) }}$)	54C, $V_{\mathrm{Cc}}=4.5 \mathrm{~V}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$ $54 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ $54 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$ $54 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}$	4.0 4.0 2.4 2.4	.	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)					
Output Source Current (1source) Output Source Current (ISOURCE) Output Sink Current (I ${ }_{\text {SINK }}$) Output Sink Current (I $\mathrm{I}_{\text {SINK }}$)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{(N(0)}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V}, V_{(N(0)}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=0 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V}, V_{(N(1)}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=V_{C C} \\ & V_{C C}=10 \mathrm{~V}, V_{I N(1)}=10 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=V_{C C} \end{aligned}$	-1.75 -8.0 1.75 8.0			mA mA mA mA

ac electrical characteristics

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
MM54C00/MM74C00, MM54C02/MM74C02, MM54C04/MM74C04					
Propagation Delay Time to Logical " 1 " or " 0 " ($\left.t_{p a}\right)$ Input Capacitance ($\mathrm{C}_{\text {IN }}$) Power Dissipation Capacitance ($\mathrm{C}_{\text {PD }}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=.10 \mathrm{~V} \end{aligned}$ (Note 2) (Note 3) Per Gate or Inverter		$\begin{aligned} & 50 \\ & 30 \\ & 6.0 \\ & 12 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	ns ns pF pF
MM54C10/MM74C10					
Propagation Delay Time to Logical " 1 " or " 0 " ($t_{p a}$) Input Capacitance ($\mathrm{C}_{1 \mathrm{~N}}$) Power Dissipation Capacitance ($\mathrm{C}_{\text {PD }}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$ (Note 2) (Note 3) Per Gate		$\begin{aligned} & 60 \\ & 35 \\ & 7.0 \\ & 18 \end{aligned}$	$\begin{aligned} & 100 \\ & 70 \end{aligned}$	ns ns pF pF
MM54C20/MM74C20					
Propagation Delay Time to Logical " 1 " or " 0 " ($t_{\text {pd }}$) Input Capacitance ($\mathrm{C}_{\mathrm{IN}^{\prime}}$) Power Dissipation Capacitance (C_{PO})	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$ (Note 2) (Note 3) Per Gate		$\begin{array}{r} 70 \\ 40 \\ 9 \\ 30 \end{array}$	$\begin{aligned} & 115 \\ & 80 \end{aligned}$	ns ns pF pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C
Family Characteristics application note - AN-90

typical performance characteristics

typical performance characteristics (con't)

Propagation Delay Time vs Load Capacitance MM54C 10/MM74C10

C_{L} - LOAD CAPACITANCE (pF)


```
switching time waveforms and ac test circuits
```


NOTE: DELAYS MEASURED WITH INPUT $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{t}} \leq \mathbf{2 0} \mathrm{ns}$.

MM54C08/MM74C08 quad 2-input AND gate MM54C86/MM74C86 quad 2-input EXCLUSIVE-OR gate

general description

Employing complementary MOS (CMOS) transistors to achieve wide power supply operating range, low power consumption and high noise margin these gates provide basic functions used in the implementation of digital integrated circuit systems. The N and P-channel enchancement mode transistors provide a symmetrical circuit with output swing essentially equal to the supply voltage. No dc power other than that caused by leakage current is consumed during static condition. All inputs are protected from damage due to static discharge by diode clamps to V_{Cc} and GND.

features

- Wide supply voltage range 3.0 V to 15 V
- Guaranteed noise margin 1.0 V
- High noise immunity $\quad 0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
- Low power fan out of 2 TTL compatibility driving 74L
- Low power consumption $10 \mathrm{nW} /$ package typ
- The MM54C86/MM74C86 follows the MM54L86 /MM74L86 pinout

connection diagrams

MM54C08/MM74C08

truth tables

MM54C08/MM74C08

MM54C08/MM74C08		
INPUTS	OUTPUT	
A	B	Y
L	L	L
L	H	L
H	L	L
H	H	H

$H=$ High Level $L=$ Low Level

MM54C86/MM74C86

absolute maximum ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range
MM54C08, MM54C86
MM74C08, MM74C86
Storage Temperature Range
Package Dissipation
Operating V_{Cc} Range
Absolute Maximum V_{cc}
Lead Temperature (Soldering, 10 seconds)
$-0,3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
3.0 V to 15 V

18 V $300^{\circ} \mathrm{C}$

dc electrical characteristics

$\mathrm{Min} / \mathrm{max}$ limits apply across temperature range, unless otherwise noted.

CMOS/LPTTL INTERFACE

ac electrical characteristics

（MM54C08／MM74C08） $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ ，unless otherwise specified．

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time to Logical	$\mathrm{V}_{\text {cc }}=5.0 \mathrm{~V}$		80	140	ns
＂1＂or＂0＂（tpd）	$V_{c c}=10 \mathrm{~V}$		40	70	ns
Input Capacitance（ $\mathrm{C}_{\mathrm{IN}^{\prime}}$ ）	Note 2		5.0		pF
Power Dissipation Capacitance（ C_{pd} ）	Note 3 Per Gate		14		pF

ac electrical characteristics

（MM54C86／MM74C86）$T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ ，unless otherwise specified

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time to Logical ＂ 1 ＂or＂ 0 ＂（ $t_{p a}$ ）	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	，	$\begin{aligned} & 110 \\ & 50 \end{aligned}$	$\begin{aligned} & 185 \\ & 90 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Input Capacitance（ $\mathrm{C}_{\text {IN }}$ ）	Note 2		5.0		pF
Power Dissipation Capacitance（ C_{pd} ）	Note 3 Per Gate		20		pF

Note 1：＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed． Except for＂Operating Range＂they are not meant to imply that the devices should be operated at these limits．The table of＂Electrical Characteristics＂provides conditions for actual device operation．
Note 2：Capacitance is guaranteed by periodic testing．
Note 3：$C_{P D}$ determines the no load ac power consumption of any CMOS device．For complete explanation see $54 \mathrm{C} / 74 \mathrm{C}$ Family Characteristics application note，AN－90．

typical performance characteristics

ac test circuit

NOTE：DELAYS MEASURED WITH INPUT $t_{1}, t_{1}=20 \mathrm{~ns}$

Propagation Delay Time vs Load Capacitance MM54C86／MM74C86
 switching time waveforms

MM54C14/MM74C14 hex schmitt trigger

general description

The MM54C14/MM74C14 Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P-channel enhancement transistors. The positive and negative going threshold voltages, $\mathrm{V}_{\mathrm{T}+}$ and $\mathrm{V}_{\mathrm{T}_{-}, \text {, show low variation with respect }}$ to temperature (typ $0.0005 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$), and hysteresis, $V_{T+}-V_{T-} \geq 0.2 V_{C C}$ is guaranteed.

All inputs are protected from damage due to static discharge by diode clamps to V_{Cc} and GND.

features

- Wide supply voltage range 3.0 V to 15 V
- High noise immunity $\quad 0.70 \mathrm{~V}_{\mathrm{cc}}$ typ
- Low power fan out of 2

TTL compatibility driving 74L

- Hysteresis,
$0.4 V_{c c}$ typ
$0.2 \mathrm{~V}_{\text {cc }}$ guaranteed

connection diagram

absolute maximum ratings

Voltage at Any Pin
Operating Temperature Range MM54C14
MM74C14
Storage Temperature Range

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
$$

Package Dissipation	500 mW
Operating $V_{c c}$ Range	3.0 V to 15 V
Absolute Maximum $V_{c c}$	18 V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

dc electrical characteristics Min/max limits apply across temperature range, unless otherwise noted.

ac electrical characteristics

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay from Input • to Output（ $t_{\text {pdo }}$ or $t_{p d} 1$ ） Input Capacitance Power Dissipation Capacitance （ C_{PD} ）	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \end{aligned}$ Any Input（Note 2） （Note 3）Per Gate		$\begin{aligned} & 220 \\ & 80 \\ & 5.0 \\ & 20 \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	ns ns pF pF

Note 1：＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．Except for＂Operating Temperature Range＂they are not meant to imply that the devices should be operated at these limits．The table of＂Electrical Characteristics＂ provides conditions for actual device operation．
Note 2：Capacitance is guaranteed by periodic testing．
Note 3：CPD determines the no load ac power consumption of any CMOS device．For complete explanation see 54C／74C Family Characteristics application note，AN－90．
Note 4：Only one of the six inputs is at $1 / 2 V_{C C}$ ，the others are either at $V_{C C}$ or GND．

typical application

Low Power Oscillator

$t_{t}=\operatorname{RCin} \frac{V_{T^{+}}}{V_{T}}$
$\mathrm{t}_{\mathbf{2}} \approx \mathrm{RC} \mathrm{En}^{\frac{V_{c C}-V_{T-}}{V_{c C}-V_{T+}}}$
$f=\frac{1}{R C \ln \frac{V_{T+}\left(V_{C C}-V_{T}\right)}{V_{T}\left(V_{C C}-V_{T+}\right)}} \approx \frac{1}{1.7 \mathrm{RC}}$
Note：The equations assume $t_{1}+t_{2} \gg i_{p d 0}+t_{p d 1}$

typical performance characteristics

Note：For more information on output drive characteristics，power dissipation，and propagation delays，see AN－90．

MM54C30／MM74C30 8 －input NAND gate

general description

The logic gate employs complementary MOS （CMOS）to achieve wide power supply operating range，low power consumption and high noise immunity．Function and pin out compatibility with series $54 / 74$ devices minimizes design time for those designers familiar with the standard 54／74 logic family．

All inputs are protected from damage due to static discharge by diode clamps to $V_{C C}$ and GND．

features

－Wide supply voltage range
3.0 V to 15 V
－Guaranteed noise margin 1.0 V
－High noise immunity
$0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
－Low power TTL compatibility

logic and connection diagrams

TOP VIEW

absolute maximum ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range
MM54C30
MM74C30
Storage Temperature Range
Package Dissipation
Operating $V_{c c}$ Range
Absolute Maximum $V_{c c}$
Lead Temperature (Soldering, 10 seconds)
-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
3.0 V to 15 V

18 V
$300^{\circ} \mathrm{C}$

dc electrical characteristics

$\mathrm{Min} / \mathrm{max}$ limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
Logical "1" Input Voltage ($\mathrm{V}_{\text {IN }(1)}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			v
Logical " 0 " Input Voltage ($\mathrm{V}_{\text {IN }}(0)$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			1.5 2.0	v
Logical "1" Output Voltage ($\mathrm{V}_{\text {OUT }}(1)$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \\ & V_{c c}=10 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			v
Logical " 0 " Output Voltage ($\mathrm{V}_{\text {OUt }}(0)$)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \quad I_{0}=+10 \mu \mathrm{~A} \\ & V_{c c}=10 \mathrm{~V}, \quad I_{0}=+10 \mu \mathrm{~A} \end{aligned}$,		0.5 1.0	v
Logical "1" Input Current (${ }_{\text {IN }}(1)$	$V_{\text {cc }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical "0" Input Current ($1_{\text {IN }(0)}$)	$V_{C C}=15 \mathrm{~V}, \quad V_{\text {IN }}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
Supply Current (I_{cc})	$V_{C C}=15 \mathrm{~V}$		0.01	15	$\mu \mathrm{A}$
CMOS/LPTTL INTERFACE					
Logical "1" Input Voltage ($\mathrm{V}_{\text {IN }}(1)$)	$\begin{aligned} & 54 \mathrm{C}, \quad V_{c c}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, \\ & V C c=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{c c}-1.5 \\ & V_{c c^{-1}}-1.5 \end{aligned}$			v
Logical " 0 " Input Voltage ($\mathrm{V}_{\text {IN }}(0)$)	$\begin{aligned} & 54 \mathrm{C}, \quad V_{c c}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, V_{c c}=4.75 \mathrm{~V} \end{aligned}$			0.8 0.8	v
Logical "1" Output Voltage ($\mathrm{V}_{\text {OUT(1) }}$)	$54 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, 1_{0}=-360 \mu \mathrm{~A}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			v
Logical " 0 " Output Voltage ($\mathrm{V}_{\text {Out(0) }}$)	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}, I_{0}=360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}, I_{\mathrm{O}}=360 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	v
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)					
Output Source Current (isource) (P.Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \quad \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-1.75	-3.3		mA
```Output Source Current (Isource) (P-Channel)```	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, \quad V_{\text {OUT }}=0 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-8.0	-15		mA
Output Sink Current ( $\left.\right\|_{\text {SINK }}$ )   ( $N$-Channel)	$\begin{aligned} & V_{c C}=5.0 \mathrm{~V}, V_{\text {OUT }}=V_{C C}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6		mA
Output Sink Current ( $\mathrm{I}_{\text {sink }}$ )   (N.Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} . \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	8.0	. 16		mA

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time to Logical "1"	$V_{C C}=5.0 \mathrm{~V}$		125	180	ns
or " 0 " $\left(t_{\text {pd }}\right)$	$V_{C C}=10 \mathrm{~V}$	55	90	ns	
Input Capacitance (CIN $)$	(Note 2)		4.0	pF	
Power Dissipation Capacitance $\left(C_{p d}\right)$	(Note 3) Per Gate	26	pF		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

## typical performance characteristics

Propagation Delay Time vs Load Capacitance


## switching time waveforms



NOTE: DELAYS MEASURED WITH INPUT $t_{r}, t_{f}=20$ ns.
ac test circuit


## MM54C32/MM74C32 quad 2-input OR gate

## general description

Employing complementary MOS (CMOS) transistors to achieve low power and high noise margin, these gates provide the basic functions used in the implementation of digital integrated circuit systems. The N and P -channel enhancement mode transistors provide a symmetrical circuit with output swings essentially equal to the supply voltage. This results in high noise immunity over a wide supply voltage range. No dc power other than that caused by leakage current is consumed during static conditions. All inputs are protected against static discharge damage.

## features

- Wide supply voltage range 3.0 V to 15 V
- Guaranteed noise margin 1.0V
- High noise immunity $\quad 0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
- Low power TTL fan out of 2 compatibility driving 74L


## connection diagram



## absolute maximum ratings (Note 1)

Voltage at Any Pin	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MM54C32	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MM74C32	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$


Package Dissipation	500 mW
Operating $V_{\text {cc }}$ Range	3.0 V to 15 V
Absolute Maximum $\mathrm{V}_{\mathrm{cc}}$	18 V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

dc electrical characteristics $\operatorname{Min} / \max$ limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
Logical "1" Input Voltage ( $\mathrm{V}_{\text {iN(1) }}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical '0' Input Voltage ( $\mathrm{V}_{\text {IN(0) }}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		-	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Logical "1" Output Voltage ( $\mathrm{V}_{\text {Out }}$ (1) )	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical "0" Output Voltage ( $\mathrm{V}_{\text {Out(0) }}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, 1_{0}=10 \mu \mathrm{~A} \\ & V_{c c}=10 \mathrm{~V}, I_{0}=10 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Logical "1" Input Current ( $1_{\text {iN(1) }}$ )	$V_{\text {cc }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical " 0 " Input Current ( $I_{\text {IN(0) }}$ )	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
Supply Current ( $\mathbf{I c c}_{\text {c }}$ )	$V_{C C}=15 \mathrm{~V}$		0.05	. 15	$\mu \mathrm{A}$

## CMOS/LPTTL INTERFACE



OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)

Output Source Current ( $1_{\text {SOURCE }}$ ) (P.Channel)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-1.75	-3.3		mA
Output Source Current (ISOURCE) (P-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-8.0	-15		$m A$
Output Sink Current (ISINK) (N.Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6	,	mA
Output Sink Current ( $I_{\text {SINK }}$ ) ( N -Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{O U T}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	8.0	16		mA

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Prodagation Delay Time to Logical "1"	$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$		80	150	ns
( $\mathrm{t}_{\mathrm{pa1}}$ ) or " 0 " ( $\mathrm{t}_{\mathrm{pa0}}$ )	$V_{C C}=10 \mathrm{~V}$		35	70	ns
Input Capacitance ( $\mathrm{C}_{1 \mathrm{~N}}$ )	Any Input (Note 2)		5		pF
Power Dissipation Capacitance ( $\mathrm{C}_{\mathrm{pat}}$ )	Per Gate (Note 3)		15		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

## MM54C42/MM74C42 BCD to decimal decoder

## general description

The MM54C42/MM74C42 one-of-ten decoder is a monolithic complementary MOS (CMOS) integrated circuit constructed with N - and P-channel enhancement transistors. This decoder produces a logical " 0 " at the output corresponding to a four bit binary input from zero to nine, and a logical " 1 " at the other outputs. For binary inputs from ten to fifteen all outputs are logical " 1 ".

## features

- Supply voltage range

3 V to 15 V

- Tenth power TTL drive 2 LPTTL loads compatible
- High noise immunity
- Low power
- Medium speed operation


## applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems
- Industrial electronics
- Remote metering
- Computers


## schematic diagram

## connection diagram


truth table

50 nW (typ.) 10 MHz (typ.) with $10 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$


## absolute maximum ratings

Voltage at Any Pin (Note 1)
Operating Temperature MM54C42
MM 74 C42

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to } \mathrm{VCC}+0.3 \mathrm{~V} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{array}
$$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Package Dissipation 500 mW MM74C42 Operating $V_{C C}$ Range 3 V to 15 V 18 V Lead Temperature (Soldering, 10 sec ) $300^{\circ} \mathrm{C}$

electrical characteristics Min/Max limits apply across temperature range unless otherwise specified


Note 1: This device should not be connected to circuits with the power on because high transient voltages may cause permanent damage.

## MM54C48/MM74C48 BCD-to-7 segment decoder

## general description

The MM54C48/MM74C48 BCD-to-7 segment decoder is a monolithic complementary MOS (CMOS) integrated circuit constructed with N - and P-channel enhancement transistors. Seven NAND gates and one driver are connected in pairs to make binary-coded decimal (BCD) data and its complement available to the seven decoding AND-OR-INVERT gates. The remaining NAND gate and three input buffers provide test blanking input/rippleblanking output, and ripple-blanking inputs.

## features

- Wide supply voltage range
3.0 V to 15 V
- Guaranteed noise margin 1.0 V
- High noise immunity
$0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
- Low power fan out of 2 TTL compatibility driving 74L
- High current sourcing output (up to 50 mA )
- Ripple blanking for leading or trailing zeros (optional)
- Lamp test provision


## connection diagram



TOP VIEW


## absolute maximum ratings（Note 1）

Voltage at Any Pin
Operating Temperature Range
MM54C48
MM74C48
Storage Temperature Range
Package Dissipation
Operating $V_{c c}$ Range
-0.3 V to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
3.0 V to 15 V

Absolute Maximum $\mathrm{V}_{\mathrm{cc}}$ 18 V
Lead Temperature（Soldering， 10 seconds） $300^{\circ} \mathrm{C}$

## dc electrical characteristics

Min／max limits apply across temperature range，unless otherwise noted．

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS					
Logical＂1＂Input Voltage（ $\mathrm{V}_{\text {IN（1）}}$ ）	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			v
Logical＂0＂Input Voltage（ $\mathrm{V}_{\text {IN（0）}}$ ）	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			1.5 2.0	$v$
Logical＂ 1 ＂Output Voltage（ $\mathrm{V}_{\text {Out（1）}}$ ）   （RB Output Only）	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \\ & V_{c C}=10 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			$v$
Logical＂0＂Output Voltage（Vout（o）${ }^{\text {）}}$	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A} \\ & V_{c \mathrm{cc}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A} \end{aligned}$			0.5 1.0	$\begin{aligned} & v \\ & v \end{aligned}$
Logical＂1＂Input Current（ $\mathrm{I}_{\text {iN（1）}}$ ）	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical＂ 0 ＂Input Current（ $\mathrm{I}_{\text {（NO）}}$ ）	$V_{\text {cc }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	－1．0	－0．005		$\mu \mathrm{A}$
Supply Current（lcc）	$\mathrm{V}_{\mathrm{Cc}}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
CMOS／LPTTL INTERFACE					
Logical＂1＂Input Voltage（ $\mathrm{V}_{\text {IN（1）}}$ ）	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, \mathrm{~V}_{c \mathrm{c}}=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}-1.5 \\ & \mathrm{~V}_{\mathrm{cc}}-1.5 \end{aligned}$			v
Logical＂0＂Input Voltage（ $\mathrm{V}_{\text {INio }}$ ）	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, \mathrm{~V}_{c \mathrm{c}}=4.75 \mathrm{~V} \end{aligned}$		－	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	v
Logical＂ 1 ＂Output Voltage（ $V_{\text {out（1）}}$ ）   （RB Output Only）	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{c \mathrm{C}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{0}=-50 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{c \mathrm{C}}=4.75 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			$v$
Logical＂0＂Output Voltage（ $\mathrm{V}_{\text {OUT }}(0)$ ）	$\begin{array}{ll} 54 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & I_{0}=360 \mu \mathrm{~A} \\ 74 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}, & I_{0}=360 \mu \mathrm{~A} \end{array}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$

OUTPUT DRIVE（See 54C／74C Family Characteristics Data Sheet）

Output Source Current（ISOURCE） （P－Channel）（RB Output Only）	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, V_{\text {OUT }}=0.4 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V}, \quad V_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & -0.80 \\ & -4.0 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$
Output Sink Current（I $\mathrm{I}_{\text {SINK }}$ ）   （N．Channel）	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \quad V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6		mA
Output Sink Current（ $I_{\text {SINK }}$ ）   （N．Channel）	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, \quad V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	8.0	16		mA
Output Source Current （NPN Bipolar）	$\mathrm{V}_{\text {cc }}=5.0 \mathrm{~V}, \quad \mathrm{~V}_{\text {OUT }}=3.4$	－20	－50		mA
	$\mathrm{V}_{\text {cc }}=5.0 \mathrm{~V}, \quad \mathrm{~V}_{\text {OUT }}=3.0$		－65		mA
	$V_{\text {cc }}=10 \mathrm{~V}, \quad V_{\text {OUt }}=8.4$	－20	－50		mA
	$V_{\text {CC }}=10 \mathrm{~V}, \quad \mathrm{~V}_{\text {OUT }}=8.0$		－65		mA

Note 1；＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．Except for＂Operating Temperature Range＂they are not meant to imply that the devices should be operated at these limits．The table of＂Electrical Characteristics＂ provides conditions for actual device operation．
Note 2：Capacitance is guaranteed by periodic testing．
Note 3：CPD determines the no load ac power consumption of any CMOS device．For complete explanation see 54C／74C Family Characteristics application note，AN－90．
ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay to a " 1 " or "0" on	$V_{C C}=5.0 \mathrm{~V}$		450	1500	ns
Segment Outputs from Data Inputs	$V_{c c}=10 \mathrm{~V}$		160	500	ns
Propagation Delay to a " 0 " on	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		500	1600	ns
Segment Outputs from RB Input	$V_{c c}=10 \mathrm{~V}$		180	550	ns
Propagation Delay to a " 0 " on	$V_{C C}=5.0 \mathrm{~V}$		350	1200	ns
Segment Outputs from Blanking Input	$V_{C C}=10 \mathrm{~V}$		140	450	ns
Propagation Delay to a "1" on	$V_{C C}=5.0 \mathrm{~V}$		450	1500	ns
Segment Outputs from Lamp Test	$V_{c c}=10 \mathrm{~V}$		160	500	ns
Propagation Delay to a " 1 " on RB	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$		-600	2000	ns
Output from RB Input	$V_{C C}=10 \mathrm{~V}$		250	. 800	ns
Propagation Delay to a " 0 " on RB	$V_{\text {cc }}=5.0 \mathrm{~V}$		140	450	ns
Output from RB Input	$V_{C C}=10 \mathrm{~V}$		50	150	ns

## typical applications

Typical Connection Utilizing the Ripple-Blanking Feature

(First three stages will blank leading zeros, the fourth stage will not blank zeras)

Blanking Input Connection Diagram

(When RBO/BI is forted low, all segment outputs are off regardless of the state of any other input condition)

Light Emitting Diode (LED) Readout


## typical applications (con't)

## Incandescent Readout



Gas Discharge Readout


Fluorescent Readout


Liquid Crystal (LC) Readout


Direct de drive of LC's not recommended for life of LC readouts.

## truth table

$\begin{aligned} & \text { DECIMAL } \\ & \text { OR } \\ & \text { FUNCTION } \end{aligned}$	INPUTS						BI/RBO ${ }^{+}$	OUTPUTS							NOTE
	LT	RBI	D	C	B	A		9	b	c	d	-	1.	9	
0	H	H	L	$L$	L	$L$	H	H	H	H	H	H	H	$L$	1
1	H	$\times$	L	- 1	L	H	H	L	H	H	L	L	L	$L$	1
2	H	$x$	1	$L$	H	L	H	H	H	L	H	H	$L$	H	
3	H	$x$	L	$L$	H	H	H	H	H	H	H	L	L	H	
4	H	$x$	L	H	L	$L$	H	L	H	H	L	L	H	H	
5	H	$x$	L	H	L	H	H	H	L	H	H	L	H	H	
6	H	X	L	H	H	L	H	L	L	H	H	H	H	H	
7	H	$x$	L.	H	H	H	H	H	H	H	L	L	L	1	
8	H	$x$	H	$L$	L	L	H	H	H	H	H	H	H	H	
9	H	$x$	H	$L$	1	H	H	H	H	H	L	L	H	H	
10	H	X	H	L	H	L	H	L	L	L	H	H	L	H	
11	H	$x$	H	L	H	H	H	L	L	H	H	L	L	H	
12	H	$x$	H	H	L	L	H	L	H	L	L	L	H	H	
13	H	$x$	H	H	L	H	H	H	L	L.	H	L	H	H	
14	H	$x$	H	H	H	L	H	L	$L$	$L$	H	H	H	H	
15	H	X	H	H	H	H	H		L	1	L	L	L	1	
- BI	X	X	X	X	X	X	L	L	1	$L$	L	L.	L	2	2
RBI	H	L	1.	$L$	L	1.	L	L	L	L	L	L	L	1	3
LT	L	$\times$		X		$\times$	H		H	H	H	H		H	4

$H=$ high level, $L=$ low level, $X=$ irrelevant
Note 1: The blanking input ( BI ) must be open when output functions $0-15$ are desired. The ripple-blanking input (RBI) must be high, if blanking of a decimal zero is not desired.
Note 2: When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input. Note 3: When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp-test input high, all segment outputs go low and the ripple-blanking output (RBO) goes to a low level (response condition).
Note 4: When the blanking input/ripple-blanking output ( $B I / R B O$ ) is open and a low is applied to the lamp-test input, all segment outputs are high. $t$ One $B I / R B O$ is wire-AND logic serving as blanking input ( BI ) and/or ripple-blanking output (RBO).

## MM54C73/MM74C73 dual J-K flip-flops with clear MM54C76/MM74C76 dual J-K flip-flops with clear and preset <br> MM54C107/MM74C107 dual J-K flip-flops with clear general description

These dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits constructed with N - and P-channel enhancement transistors. Each flip-flop has independent J, K, clock and clear inputs and Q and $\overline{\mathrm{Q}}$ outputs. The MM54C76/MM74C76 flip flops also include preset inputs and are supplied in 16 pin packages. These flip flops are edge sensitive to the clock input and change state on the negative going transition of the clock pulses. Clear or preset is independent of the clock and is accomplished by a low level on the respective input.

## features

- Supply voltage range
- Tenth power TTL compatible

- High noise immunity	0.45 V cc (typ)
Low power	50 nW (typ)
- Medium speed operation	10 MHz (typ)
	with 10 V supply

## applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems
- Industrial electronics
- Remote metering
- Computers


## logic and connection diagrams



MM54C73/MM74C73 and MM54C107/MM74C107



Note: A logic " 0 " on clear sets $\mathbf{Q}$ to logic " 0 ."
MM54C73/MM74C73


Note: A logic " 0 " on clear sets $\mathbf{Q}$ to logic " 0 ."


Note 1: A logic " 0 " on clear sets $\mathbf{Q}$ to a logic " 0 . "
 MM54C76/MM74C76

Voltage at any pin (Note 1)
Operating Temperature MM54CXX
MM74CXX
Storage Temperature
Maximum $V_{\text {cc }}$ Voltage
Package Dissipation
Lead Temperature (Soldering, 10 sec )
Operating $\mathrm{V}_{\mathrm{cc}}$ Range

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to } \mathrm{V} \text { cc }+0.3 \mathrm{~V} \\
-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
18 \mathrm{~V} \\
500 \mathrm{~mW} \\
300^{\circ} \mathrm{C} \\
+3 \mathrm{~V} \text { to } 15 \mathrm{~V}
\end{array}
$$

electrical characteristics


Note 1: This device should not be connected to circuits with the power on because high transient voltages may cause permanent damage.
ac test circuit


## truth table

$t_{n}$		$\mathbf{t}_{n+1}$
$J$	$K$	$\mathbf{Q}$
0	0	$Q_{n}$
0	1	0
1	0	1
1	1	$\bar{Q}_{n}$

$t_{n}=$ bit time before clock pulse.
$t_{n+1}=$ bit time after clock pulse.

Preset	Clear	$\mathbf{Q}_{\mathrm{n}}$	$\overline{\mathrm{Q}}_{\mathrm{n}}$
0	0	0	0
0	1	1	0
1	0	0	1
1	1	${ }^{*} \mathrm{O}_{\mathrm{n}}$	${ }^{*} \overline{\mathrm{O}}_{\mathrm{n}}$

*No change in output from previous state.

## typical applications


switching time waveforms


## MM54C74／MM74C74 dual D flip－flop

 general descriptionThe MM54C74／MM74C74 dual D flip flop is a monolithic complementary MOS（CMOS） integrated circuit constructed with N －and P－channel enhancement transistors．Each flip flop has independent data，preset，clear and clock inputs and Q and $\overline{\mathrm{O}}$ outputs．The logic level present at the data input is transferred to the output during the positive going transition of the clock pulse．Preset or clear is independent of the clock and accomplished by a low level at the preset or clear input．

## features

n Supply voltage range
－Tenth power TTL compatible
－High noise immunity
－Low power
－Medium speed operation
$0.45 \mathrm{~V}_{\mathrm{cc}}$（typ）
50 nW （typ） 10 MHz （typ） with 10 V supply

## logic and connection diagrams



## truth table

Preset	Clear	$\mathrm{O}_{\mathrm{n}}$	$\overline{\mathrm{O}}_{\mathrm{n}}$
0	0	0	0
0	1	1	0
1	0	0	1
1	1	${ }^{*} \mathrm{O}_{\mathrm{n}}$	${ }^{*} \mathrm{O}_{\mathrm{n}}$

[^0]

Note：A logic＂ 0 ＂on clear sets $Q$ to logic＂ 0. ＂ A logic＂ 0 ＂on preset sets $\mathbf{Q}$ to logic＂ 1. ＂

## absolute maximum ratings

Voltage at any pin (Note 1)
Operating temperature MM54C74
MM74C74
Storage temperature
Maximum $V_{c c}$ Voltage
Package dissipation
Lead temperature (Soldering, 10 sec )
Operating $\mathrm{V}_{\mathrm{cc}}$ range
-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

18 V
500 mW
$300^{\circ} \mathrm{C}$
+3 V to +15 V

## electrical characteristics

Min/Max limits apply across temperature range unless otherwise specified.


Note 1: These devices should not be connected under power on conditions.

## switching time waveforms

CMOS to CMOS


## ac test circuit



## typical applications



74C Compatibility


MM54C83/MM74C83 4-bit binary full adder general description
The MM54C83/MM74C83 4-bit binary full adder performs the addition of two 4 -bit binary numbers. A carry input ( $C_{0}$ ) is included and the sum ( $\Sigma$ ) outputs are provided for each bit and the resultant carry $\left(\mathrm{C}_{4}\right)$ is obtained from the fourth bit. Since the carry-ripple-time is the limiting delay in the addition of a long word length, carry look-ahead circuitry has been included in the design to minimize this delay. Also, the logic levels of the input and output, including the carry, are in their true form. Thus the end-around carry is accomplished without the need for level inversion.

## features

- Wide supply voltage range 3 V to 15 V
- Guaranteed noise margin 1V
- High noise immunity $0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
- Low power
fan out of 2 TTL compatibility driving 74L
- Fast carry ripple ( $\mathrm{C}_{0}$ to $\left.\mathrm{C}_{4}\right) \cdot 50 \mathrm{~ns}$ typ $@ V_{\mathrm{Cc}}=10 \mathrm{~V}$ and $C_{L}=50 \mathrm{pF}$
- Fast summing ( $\Sigma_{\text {IN }}$ to $\left.\Sigma_{\text {OUT }}\right) 125 \mathrm{~ns}$ typ @ $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ and $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$


## logic diagram



## absolute maximum ratings（Note 1）

Voltage at Any Pin
Operating Temperature Range
MM54C83
MM74C83
Storage Temperature Range
Package Dissipation
Operating $V_{c c}$ Range
Absolute Maximum $V_{c c}$
Lead Temperature（Soldering， 10 seconds）
－-0.3 V to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
3 V to 15 V
18 V
$300^{\circ} \mathrm{C}$

## dc electrical characteristics

$\mathrm{Min} / \mathrm{max}$ limits apply across temperature range，unless otherwise noted．

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS to cmos					
Logical＂1＂Input Voltage（ $\mathrm{V}_{\text {IN（1）}}$ ）	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			v
Logical＂ 0 ＂Input Voltage（ $\mathrm{V}_{\text {IN（0）}}$ ）	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & v_{c c}=10 \mathrm{~V} \end{aligned}$			1.5 2.0	v
Logical＂1＂Output Voltage（Vout（1）	$\begin{aligned} & V_{c C}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & V_{c \mathrm{cc}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			v
Logical＂0＂Output Voltage（Vout ${ }^{\text {O }}$ ）${ }^{\text {l }}$	$\begin{aligned} & V_{c C}=5.0 \mathrm{~V}, I_{\mathrm{O}}=+10 \mu \mathrm{~A} \\ & V_{c C}=10 \mathrm{~V}, I_{O}=+10 \mu \mathrm{~A} \end{aligned}$		－	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Logical＂ 1 ＂Input Current（ $\left.\right\|_{\text {IN（1）}}$ ）	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical＂0＂Input Current（ $\mathrm{I}_{\text {IN（0）}}$ ）	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	－1．0	－0．005		$\mu \mathrm{A}$
Supply Current（ $\mathrm{Icc}^{\text {c }}$ ）	$V_{c c}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
CMOS／LPTTL INTERFACE					
Logical＂1＂Input Voltage（ $\mathrm{V}_{\text {IN（1）}}$ ）	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, V_{c c}=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{c c}-1.5 \\ & V_{c c}-1.5 \end{aligned}$			v
Logical＂0＂Input Voltage（ $\mathrm{V}_{\text {IN（0）}}$ ）	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V} \end{aligned}$			0.8 0.8	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Logical＂1＂Output Voltage（Vout（1）	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}, \quad I_{0}=-360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{c \mathrm{C}}=4.75 \mathrm{~V}, I_{0}=-360 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Logical＂0＂Output Voltage（Voutio）	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
OUTPUT DRIVE（See 54C／74C Family Characteristics Data Sheet）					
Output Source Current（ISOURCE） （P．Channel）	$\begin{aligned} & V_{c C}=5.0 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	－1．75	－3．3		mA
Output Source Current（1）${ }_{\text {SOURCE }}$ ） （P－Channel）	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	－8．0	－15		mA
Output Sink Current（ $\mathrm{I}_{\text {sink }}$ ） （ N －Channel）	$\begin{aligned} & V_{c C}=5.0 \mathrm{~V}, V_{O U T}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6		mA
Output Sink Current（ ISINK ） （N．Channel）	$\begin{aligned} & V_{c C}=10 \mathrm{~V}, V_{O U T}=V_{c C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	8.0	16		mA

Note 1：＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cañnot be guaranteed．Except for＂Operating Temperature Range＂they are not meant to imply that the devices should be operated at these limits．The table of＂Electrical Characteristics＂ provides conditions for actual device operation．
Note 2：Capacitance is guaranteed by periodic testing．
Note 3：CPD determines the no load ac power consumption of any CMOS device．For complete explanation see 54C／74C Family Characteristics application note，AN－90．
ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay from $\mathrm{C}_{0}$ to $\mathrm{C}_{4}\left(\mathrm{t}_{\text {PDO }}\right.$ or $\left.\mathrm{t}_{\text {PD1 }}\right)$	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 120 \\ & 50 \end{aligned}$	$\begin{aligned} & 200 \\ & 80 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ins } \end{aligned}$
Propagation Delay from Sum Inputs to $\mathrm{C}_{\mathbf{4}}$ (tpoo or $\mathrm{t}_{\text {PD } 1}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		250 90	450 150	ns
Propagation Delay from $\mathrm{C}_{0}$ to Sum Outputs (tpDo or $t_{\text {PD } 1}$ )	$\begin{aligned} & V_{\mathrm{Cc}}=5.0 \mathrm{~V} \\ & V_{\mathrm{Cc}}=10 \mathrm{~V} \end{aligned}$	.	350 1.25	550 200	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Propagation Delay from Sum Inputs to Sum Outputs ( $t_{P D O}$ or $t_{P D 1}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 300 \\ & 110 \end{aligned}$	$\begin{aligned} & 550 \\ & 180 \end{aligned}$	ns
Input Capacitance	Any Input (Note 2)		5.0		pF
Power Dissipation Capacitance ( $\mathrm{CPD}^{\text {) }}$	Per Package (Note 3)		120		pF

## connection diagram

## switching time waveforms



Inputs must be tied to appropriate logic level.

## truth table

(
$H=$ high level, $L=$ low level ${ }^{\text {l }}$
Note: Input conditions at A3, A2, B2 and CO are used to determine outputs $\Sigma 1$ and $\Sigma 2$ and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs $\Sigma 3, \Sigma 4$, and C4.

## typical applications



## APPLICATION

Connect the MM54C83/MM74C83 in the following manner to implement a dual single bit full adder.

## MM54C85/MM74C85 4-bit magnitude comparator

## general description

The MM54C85/MM74C85 is a four-bit magnitude comparator which will perform comparison of straight binary or $B C D$ codes. The circuit consists of eight comparing inputs (A0, A1, A2, A3, B0, $B 1, B 2, B 3$ ), three cascading inputs ( $A>B, A<B$ and $A=B)$, and three outputs $(A>B, A<B$ and $A=B)$. This device compares two four-bit words ( $A$ and $B$ ) and determines whether they are "greater than," "less than," or "equal to". each other by a high level on the appropriate output. For words greater than four-bits, units can be cascaded by connecting the outputs ( $A>B, A<B$, and $A=B$ ) of the least-significant stage to the cascade inputs ( $A>B, A<B$ and $A=B$ ) of the next-significant stage. In addition the least significant stage must
have a high level voltage ( $\mathrm{V}_{\mathrm{IN}(1)}$ ) applied to the $\mathrm{A}=\mathrm{B}$ input and low level voltages ( $\mathrm{V}_{\mathrm{IN}(0)}$ ) applied to $A>B$ and $A<B$ inputs.

## features

- Wide supply voltage range 3.0 V to 15 V
- Guaranteed noise margin 1.0 V
- High noise immunity $0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
- Low power fan out of 2 TTL compatibility driving 74L
- Expandable to ' N ' stages
- Applicable to binary or BCD
- The MM54C85/MM74C85 follows the MM54L85/MM74L85 Pinout.


## logic diagram



## absolute maximum ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range
MM54C85
MM74C85
Storage Temperature Range
Package Dissipation
Operating $V_{C C}$ Range
$V_{c c}$
Lead Temperature (Soldering, 10 seconds)

## dc electrical characteristics

$\mathrm{Min} /$ max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
Logical " 1 " Input Voltage ( $V_{\text {IN }}$ (1) $)$   Logical " 0 " Input Voltage ( $V_{\text {INiO }}$ )   Logical "1" Output Voltage (Vour(1))   Logical "0" Output Voltage ( $V_{\text {Out }}$ (0) $)$   Logical " 1 " Input Current ( $1_{\text {in (1) }}$ )   Logical " 0 " Input Current (I ${ }_{\text {intol }}$ )   Supply Current ( ${ }^{c c}$ )	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V}, \quad I_{O}=10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, \quad I_{O}=10 \mu \mathrm{~A} \\ & V_{C C}=5.0 \mathrm{~V}, \quad I_{0}=10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, \quad I_{O}=10 \mu \mathrm{~A} \\ & V_{C C}=15 \mathrm{~V}, \quad V_{I N}=15 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V}, \quad V_{I N}=0 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$	3.5   8.0   4.5   9.0   1.0	$\begin{aligned} & 0.005 \\ & 0.005 \\ & 0.05 \end{aligned}$	1.5   2.0   0.5   1.0   1.0   300	$V$ $V$ $V$ $V$ $V$ $V$ $V$ $V$ $V$ $\mu A$ $\mu A$ $\mu$
CMOS/LPTTL INTERFACE					
Logical "1" Input Voltage ( $V_{\text {IN(1) }}$ )   Logical " 0 " Input Voltage ( $\mathrm{V}_{\text {IN (0) }}$ )   Logical "1" Output Voltage (Vourti)   Logical "0" Output Voltage (V Out(0)	54C. $V_{C C}=4.5 \mathrm{~V}$   74C. $V_{C C}=4.75 \mathrm{~V}$   54C, $V_{C C}-4.5 \mathrm{~V}$   $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$   $54 \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V} . \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$   $74 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}={ }^{\wedge} 360 \mu \mathrm{~A}$   $54 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} . \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}$   $74 \mathrm{C}, V_{C C}=4.75 \mathrm{~V}, I_{0}=360 \mu \mathrm{~A}$	$\begin{array}{ll} v_{c c} & 1.5 \\ v_{c c} & 1.5 \end{array}$ $\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$		0.8 0.8   0.4   0.4	$V$ $V$ $V$ $V$ $V$ $V$ $V$ $v$ $v$
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)					
Output Source Current (ISOURCE   (P.Channel)   Output Source Current (ISOURCE)   (P.Channel)   Output Sink Current (I $\mathrm{I}_{\text {SINK }}$ ) (N.Channel)   Output Sink Current (I sink) (N.Channel)	$\begin{array}{ll} V_{C C}=5.0 \mathrm{~V}, & V_{\text {OUT }}=0 \mathrm{~V} \\ T_{A}=25^{\circ} \mathrm{C} & \\ V_{C C}=10 \mathrm{~V}, & V_{\text {OUT }}=0 \mathrm{~V} \\ T_{A}=25^{\prime \prime} \mathrm{C} & \\ V_{C C}=5.0 \mathrm{~V}, & V_{O U T}=V_{C C} \\ T_{A}=25^{\circ} \mathrm{C} & \\ V_{C C}=10 \mathrm{~V}, & V_{\text {OUT }}=V_{C C} \\ T_{A}=25^{\prime \prime} \mathrm{C} & \end{array}$	$\begin{aligned} & -1.75 \\ & -8.0 \\ & 1.75 \\ & 8.0 \end{aligned}$	$-3.3$   $-15$   3.6   16		mA   mA   mA   $m A$

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time from any A or	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		250	$600^{\circ}$	ns
B Data Input to any Data Output ( $t_{\text {pao }}$ or $t_{p d 1}$ )	$V_{c c}=10 \mathrm{~V}$		100	300	ns
Propagation Delay Time from any Cascade	$V_{C C}=5.0 \mathrm{~V}$		200	500	ns
Input to any Output ( $t_{\text {pdo }}$ or $t_{p d 1}$ )	$V_{c c}=10 \mathrm{~V}$		100	250	ns
Input Capacitance	Any Input		5.0		pF
Power Dissipation Capacitance ( $\mathrm{C}_{\mathrm{pd}}$ )	(Note 3). Per Package		45		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except
for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Characteristics" provides conditions for actual device op
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $\mathrm{C}_{\text {pd }}$ determines the no load ac power consumption of any CMOS device. For complete explanation see $54 \mathrm{C} / 74 \mathrm{C}$ Family Characteristics application note, AN-90.
typical application
Four Digit Comparator

connection diagram


## switching time waveform



Unused inputs must be tied to an appropriate logic tevel.

## truth table

COMPARING INPUTS				CASCADING INPUTS			outputs		
A3, 83	A2, B2	A1, B1	AO, BO	$A>B$	$A<B$	$A=B$	$A>B$	$A<B$	$A=B$
$A 3>B 3$	$x$	$x$	$x$	$x$	X	$x$	H	L	L
$A 3<83$	$\times$	x	$x$	$x$	x	x	L	H	L
$A 3=B 3$	A2 $>82$	x	x	$\times$	X	$x$	H	L	L
$A 3=B 3$	A2 $<\mathrm{B} 2$	$\times$	x	x	x	x	L	H	L
$A 3=B 3$	$A 2=B 2$	A1>B1	x	x	x	x	H	L	L
$A 3=B 3$	$A 2=B 2$	A1 < B 1	$\times$	$x$	x	X	L	H	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0>B 0$	$x$	$x$	x	H	L	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0<B O$	x	x	x	L	H	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	H	L	L	H	L	L
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	L	H	L	1.	H	L
$A 3=B 3$	$A 2=B 2$	A1 B1	$A 0=B 0$	L	L	H	L	L	H
$A^{\prime} 3=B 3$	$A 2=82$	A1. $=B_{1}$	$A 0=B 0$	L	H	H	L	H	H
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	H	L	H	H	L	H
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A O-B 0$	H	H	H	H	H	H
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	H	H	L	H	H	L
A3 $=$ B3	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	L	L	L	L	L	L

$H=$ high level,$L=$ low level,$X \div$ irrelevant

## MM54C89/MM74C89 64-bit TRI-STATE ${ }^{\circledR}$ random access read/write memory

## general description

The MM54C89/MM74C89 is a 16 -word by 4 -bit random access read/write memory. Inputs to the memory consist of four address lines, four data input lines, a write enable line and a memory enable line. The four binary address inputs are decoded internally to select each of the 16 possible word locations. An internal address register, latches the address information on the positive to negative transition of the memory enable input. The four TRI-STATE® data output lines working in conjunction with the memory enable input provides for easy memory expansion.

Address Operation: Address inputs must be stable $t_{\text {SA }}$ prior to the positive to negative transition of memory enable. It is thus not necessary to hold address information stable for more than $t_{H A}$ after the memory is enabled (positive to negative transition of memory enable).

Note: The timing is different than the DM7489 in
that a positive to negative transition of the memory enable must occur for the memory to be selected.

Write Operation: Information present at the data inputs is written into the memory at the selected
address by bringing write $\overline{\text { enable and } \overline{\text { memory }} \text {. }}$ enable low.

Read Operation: The complement of the information which was written into the memory is nondestructively read out at the four outputs. This is accomplished by selecting the desired address and bringing memory enable low and write enable high.

When the device is writing or disabled the output assumes a TRI-STATE (Hi-z) condition.

## features

- Wide supply voltage range 3.0 V to 15 V
- Guaranteed noise margin
1.0 V
- High noise immunity
$0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
- Low power TTL compatibility
fan out of 2 driving 74L
- Input address register
- Low power consumption $100 \mathrm{nW} /$ package typ $@ V_{c c}=5 \mathrm{~V}$
- Fast access time $\quad 130$ ns typ at $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$
- TRI-STATE output


## logic and connection diagrams



Order Number MM54C89D or MM74C89D See Package 3
Order Number MM74C89N See Package 15

## absolute maximum ratings

Voltage at Any Pin
-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Operating Temperature Range MM54C89 MM74C89
Storage Temperature Range
Package Dissipation
Operating $V_{c c}$ Range
Absolute Maximum $V_{C C}$
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
500 \mathrm{~mW} \\
3.0 \mathrm{~V} \text { to } 15 \mathrm{~V} \\
18 \mathrm{~V} \\
300^{\circ} \mathrm{C}
\end{array}
$$

## dc electrical characteristics

$\mathrm{Min} / \mathrm{max}$ limits apply across temperature range, unless otherwise noted.

-. PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS					
Logical " 1 " Input Voltage ( $V_{\text {IN(1) }}$ )   Logical " 0 " Input Voltage ( $V_{\text {IN }}(0)$ )   Logical "1" Output Voltage (Vout(b))   Logical " 0 " Output Voltage ( $\mathrm{V}_{\text {out (0) }}$ )   Logical " 1 " Input Current ( $I_{\text {IN (1) }}$ )   Logical " 0 " Input Current ( $I_{\mathrm{IN}(0)}$ )   Output Current in High Impedance   State   Supply Current ( ${ }_{c c}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \\ & V_{c c}=10 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \\ & V_{C c}=5.0 \mathrm{~V}, I_{O}=+10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{O}=+10 \mu \mathrm{~A} \\ & V_{C C}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V}, V_{O}=15 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V}, V_{O}=0 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$   4.5 $9.0$   $-1.0$   $-1.0$	$\begin{array}{r} 0.005 \\ -0.005 \\ 0.005 \\ -0.005 \\ 0.05 \end{array}$	1.5 2.0   0.5   1.0   1.0   1.0   300	$\begin{gathered} V \\ \mu \mathrm{~A} \end{gathered}$
CMOS/LPTTL INTERFACE -					
Logical " 1 " input Voltage ( $\mathrm{V}_{\mathrm{N}(1)}$ )   Logical " 0 " Input Voltage ( $\mathrm{V}_{\text {IN(0) }}$ )   Logical "1" Output Voltage (Voulin)   Logical " 0 " Output Voltage (Vout(0))		$\begin{aligned} & v_{c c}-1.5 \\ & v_{c c}-1.5 \end{aligned}$ $2.4$ $2.4$		$\begin{aligned} & 0.8 \\ & 0.8 \\ & \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)					
Output Source Current (ISOURCE   (P-Channel)   Output Source Current (ISOURCE)   ( P -Channel)   Output Sink Current ( $1_{\text {SINK }}$ )   ( N -Channēl)   Output Sink Current (I ${ }_{\text {SINK }}$ )   ( N -Channe!)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=5.0 \mathrm{~V}, V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$-1.75$   $-8.0$   1.75   8.0	$-3.3$   $-15$   3.6   16		mA   mA   mA   mA

ac electrical characteristics ( $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TVP	MAX	UNITS
Propagation Delay from $\overline{\text { Memory Enable }}$ ( $t_{p a}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 270 \\ & 100 \end{aligned}$	$\begin{aligned} & 500 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Access Time from Address Input ( $\mathrm{t}_{\text {sce }}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 350 \\ & 130 \end{aligned}$	$\begin{aligned} & 650 \\ & 280 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Address Input Setup Time ( $\mathrm{t}_{\text {SA }}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 150 \\ & 60 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Address Input Hold Time ( $\mathrm{t}_{\mathrm{HA}}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 250 \\ & 90 \end{aligned}$		$\begin{aligned} & \text { :ns } \\ & \text { ns } \end{aligned}$
	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & 200 \\ & 70 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

ac electrical characteristics (cont.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Write Enable Setup Time for a Read ( $\mathrm{t}_{\mathrm{SR}}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Write Enable Setup Time for a Write ( $\mathrm{t}_{\mathrm{ws}}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & t_{M E} \\ & t_{M F} \end{aligned}$	ns
Write Enable Pulse Width (twe)	$\begin{aligned} & v_{c c}=5.0 \mathrm{~V}, t_{\mathrm{ws}}=0 \\ & v_{c c}=10 \mathrm{~V}, \mathrm{t}_{\mathrm{ws}}=0 \end{aligned}$	$\begin{aligned} & 300 \\ & 100 \end{aligned}$	$\begin{aligned} & 160 \\ & 60 \end{aligned}$		ns
Data Input Hold Time ( $\mathrm{t}_{\text {HO }}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$		.	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Data Input Setup (tso)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Propagation Delay from a Logical " 1 " or Logical " 0 " to the High Impedance State from Memory Enable ( $t_{1 \mathrm{H}}, t_{\mathrm{OH}}$ )	$\begin{aligned} & V_{C c}=5.0 \mathrm{~V}, C_{L}=5.0 \mathrm{pF}, R_{\mathrm{L}}=10 \mathrm{k} \\ & V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}, R_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$		$\begin{aligned} & 180 \\ & 85 \end{aligned}$	$\begin{aligned} & 300 \\ & 120 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Propagation Delay from a Logical " 1 " or Logical " 0 " to the High Impedance State from Write Enable ( $\mathrm{t}_{\mathrm{IH}}, \mathrm{t}_{\mathrm{OH}}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, C_{L}=5.0 \mathrm{pF}, R_{L}=10 \mathrm{k} \\ & V_{C C}=10 \mathrm{~V}, C_{L}=5.0 \mathrm{pF}, R_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$		$\begin{aligned} & 180 \\ & 85 \end{aligned}$	$\begin{aligned} & 300 \\ & 120 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Input Capacity ( $\mathrm{C}_{1 \mathrm{~N}}$ )	Any Input (Note 2)		5.0		pF
Output Capacity ( $\mathrm{C}_{\text {Our }}$ )	Any Output (Note 2)		6.5		pF
Power Dissipation Capacity ( $\mathrm{C}_{\mathrm{pd}}$ )	(Note 3)	,	230		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these timits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
ac electrical characteristics (con't)
(Guaranteed across the specified temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ )


## truth table

ME	WE	OPERATION	CONDITION OF OUTPUTS
L	L	Write	TRI-STATE
L	H	Read	Complement of Selected Word
H	L	Inhibit, Storage	TRI-STATE
H	H	Inhibit, Storage	TRI-STATE

ac test circuits


## switching time waveforms


switching time waveforms (con't)



## MM54C90/MM74C90 4-bit decade counter MM54C93/MM74C93 4-bit binary counter

## general description

The MM54C90/MM74C90 decade counter and the MM54C93/MM74C93 binary counter are complementary MOS (CMOS) integrated circuits constructed with N and P-channel enhancement mode transistors. The 4 -bit decade counter can be reset to zero or preset to nine by applying appropriate logic level on the $\mathrm{R}_{01}, \mathrm{R}_{02}, \mathrm{R}_{\mathbf{9 1}}$ and $\mathrm{R}_{92}$ inputs, also a separate flip-flop on the A-bit enables the user to operate it as a divide-by-2, 5 or 10 frequency counter. The 4 -bit binary counter can be reset to zero by applying high logic level on inputs $R_{01}$ and $\mathrm{R}_{02}$, also a separate flip-flop on the A -bit enables the user to operate it as a divide-by- $2,-8$, or -16 divider. Counting occurs on the negative-going edge of the input pulse.

All inputs are protected against static discharge damage.

## features

- Wide supply voltage range

3 V to 15 V

- Guaranteed noise margin 1 V
- High noise immunity
- Low power TTL compatibility $0.45 \mathrm{~V}_{\mathrm{cc}}$ (typ) fan out of 2 driving 74L
- The MM54C93/MM74C93 follows the MM54L93/ MM74L93 Pinout


## logic and connection diagrams



MM54C93/MM74C93


TOP VIEW

## absolute maximum ratings (Note 1)

Voltage at Any Pin	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MM54C90, MM54C93	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MM74C90, MM74C93	500 mW


Operating $V_{C C}$ Range	$3 V$ to 15 V
Absolute Maximum $V_{C C}$	18 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

dc electrical characteristics Min/max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
Logical "1" Input Voltage ( $\mathrm{V}_{\text {IN(I) }}$ )	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$3.5$			V
Logical "0" input Voltage ( $\mathrm{V}_{\text {IN }}(0)$ )	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2 \end{aligned}$	v
Logical "1" Output Voltage (Vout (1)	$\begin{aligned} & V_{c c}=5 \mathrm{~V}, \quad I_{O}=-10 \mu \mathrm{~A} \\ & V_{c c}=10 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9 \end{aligned}$			$v$
Logical "0" Output Voltage (Vout (0)	$\begin{aligned} & V_{c c}=5 \mathrm{~V}, \quad I_{0}=+10 \mu \mathrm{~A} \\ & V_{c c}=10 \mathrm{~V}, I_{0}=+10 \mu \mathrm{~A} \end{aligned}$			$0.5$	$v$
Logical " 1 " Input Current ( $1_{1 \times(1)}$ )	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.005	1	$\mu \mathrm{A}$
Logical " 0 " Input Current ( 1 in (0)	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-1	-0.005		$\mu \mathrm{A}$
Supply Current ( ${ }_{\text {cce }}$ )	$V_{c c}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
CMOS/LPTTL INTERFACE					
Logical " 1 " Input Volage ( $\mathrm{V}_{\text {IN }}(1)$ ) MM54C90. MM54C93   MM74C90, MM74C93	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V} \\ & V_{c c}=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & v_{c c^{-1}} \\ & v_{c c^{-1}} 1.5 \end{aligned}$			v
Logical " 0 " Input Voltage ( $\mathrm{V}_{\text {IN (0) }}$ ) MM54C90, MM54C93 MM74C90, MM74C93	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V} \\ & V_{c c}=4.75 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	v
Logical " 1 " Output Voltage ( $V_{\text {Out (1) }}$ ) MM54C90, MM54C93 MM74C90, MM74C93	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V}, I_{O}=-360 \mu \mathrm{~A} \\ & V_{C C}=4.75 \mathrm{~V}, I_{O}=-360 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			v
Logical " 0 " Output Voltage ( $\mathrm{V}_{\text {OUt }}$ (0) ) MM54C90, MM54C93 MM74C90, MM74C93	$\begin{aligned} & V_{c C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	v
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)					
Output Source Current (Isource)   (P-Channel)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad V_{\text {OUT }}=0 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-1.75	-3.3		mA
Output Source Current (Isource)   (P-Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-8	-15		mA
Output Sink Current ( $\mathrm{ISINK}^{\text {) }}$ (N.Channel)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad V_{\text {OUT }}=V_{C C} . \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6		mA
Output Sink Current ( $\mathrm{I}_{\text {SINK }}$ ) ( N -Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{\text {OUT }}=V_{C C}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	8	16		mA

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time From $A_{I N}$ to $Q_{A}\left(t_{\text {pd } 0}\right.$ or $\left.t_{\text {pd }}\right)$	$\begin{aligned} & V_{c C}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 200 \\ & 80 \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay Time From $A_{1 N}$ to $\mathrm{O}_{\mathrm{B}}$ ( $\mathrm{t}_{\mathrm{pco}}$ or $\mathrm{t}_{\mathrm{pd}}$ ) (MM54C93/MM74C93)	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		450 160	850 300	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay Time From $A_{I N}$ to $\mathrm{O}_{\mathrm{B}}$ ( $\mathrm{t}_{\mathrm{pa0}}$ or $\mathrm{t}_{\mathrm{pd} 1}$ ) (MM54C90/MM74C90)	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 450 \\ & 160 \end{aligned}$	$\begin{aligned} & 800 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{nis} \\ & \text { ns } \end{aligned}$
Propagation Delay Time From $A_{\text {IN }}$ to $\mathrm{Q}_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{pdo}}\right.$ or $\left.\mathrm{t}_{\mathrm{pd} 1}\right)$ (MM54C93/MM74C93)	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 500 \\ & 200 \end{aligned}$	1050 400	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Propagation Delay Time From $\mathrm{A}_{\text {IN }}$ to $\mathrm{O}_{\mathrm{C}}\left(\mathrm{t}_{\mathrm{pa0}}\right.$ or $\left.\mathrm{t}_{\mathrm{pd} 1}\right)$ (MM54C90/MM74C90)	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 500 \\ & 200 \end{aligned}$	$\begin{aligned} & 1000 \\ & 400 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay Time From $A_{I N}$ to $\mathrm{Q}_{\mathrm{D}}\left(\mathrm{t}_{\mathrm{pd} 0}\right.$ or $\mathrm{t}_{\mathrm{pd} 1}$ ) (MM54C93/MM74C93)	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 600 \\ & 250 \end{aligned}$	$\begin{aligned} & 1200 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay Time From $A_{I N}$ to $\mathrm{Q}_{\mathrm{D}}\left(\mathrm{t}_{\mathrm{paO}}\right.$ or $\left.\mathrm{t}_{\mathrm{pa} 1}\right)$ (MM54C90/MM74C90)	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 450 \\ & 160 \end{aligned}$	$\begin{aligned} & 800 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

## ac electrical characteristics (con't)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time From $\mathrm{R}_{01}$ or $\mathrm{R}_{02}$ to $\alpha_{A}, Q_{B}, Q_{C}$ or $Q_{D}\left(t_{p d 0}\right.$ or $\left.t_{p d 1}\right)$ (MM54C93/MM74C93)	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 150 \\ & 75 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay Time From $\mathrm{R}_{01}$ or $\mathrm{R}_{02}$ to $Q_{A}, Q_{B}, Q_{C}$ or $Q_{D}\left(t_{p d 0}\right.$ or $\left.t_{p d 1}\right)$ (MM54C90/MM74C90)	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{\mathrm{cc}}=10 \mathrm{~V} \end{aligned}$		200 75	400 150	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Propagation Delay Time From $\mathrm{R}_{\mathbf{9 1}}$ or $\mathrm{R}_{\mathbf{9 2}}$ to $Q_{A}$ or $Q_{D}\left(t_{p d o}\right.$ or $\left.t_{p d 1}\right)$ (MM54C90/MM74C90)	$\begin{aligned} & V_{c \mathrm{cc}}=5 \mathrm{~V} \\ & V_{c \mathrm{cc}}=10 \mathrm{~V} \end{aligned}$		250 100	$\begin{aligned} & 500 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Min $\mathrm{R}_{01}$ or $\mathrm{R}_{02}$ Pulse Width (MM54C93/MM74C93)	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \end{aligned}$	250 125		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Min $\mathrm{R}_{01}$ or $\mathrm{R}_{02}$ Pulse Width (MM54C90/MM74C90)	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \end{aligned}$	$\begin{aligned} & 250 \\ & 125 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Min $\mathbf{R}_{91}$ or $\mathrm{R}_{\mathbf{9 2}}$ Pulse Width (MM54C90/MM74C90)	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 500 \\ & 250 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Maximum Clock Rise and Fall Time	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 15 \\ & 5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Minimum Clock Pulse Width ( $\mathrm{t}_{\text {w }}$ )	$\begin{aligned} & V_{c c}=5 V \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$		, ns
Maximum Clock Frequency	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 2 \\ 5 \end{array}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHZ} \end{aligned}$
Input Capacitance	Any Input (Note 2)		5		pF
Power Dissipation Capacitance ( $\mathrm{CPD}_{\text {P }}$ )	Per Package (Note 3)		45		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $C_{P D}$ determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application ņote, AN-90.

## switching time waveforms and ac test circuits



## truth tables

MM54C90/MM74C90 4-Bit Decade Counter BCD Count Sequence

COUNT	OUTPUT			
	$\mathrm{Q}_{\mathrm{D}}$	$\mathrm{Q}_{\mathrm{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathrm{O}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

Output $Q_{A}$ is connected to input $B$ for BCD count.
$H=$ High level
$L=$ Low level
$X=$ Irrelevant

Reset/Count Function Table

RESET INPUTS				OUTPUT			
$\mathrm{R}_{01}$	$\mathrm{R}_{02}$	$\mathrm{R}_{91}$	$\mathrm{R}_{92}$	$\mathrm{O}_{\mathrm{D}}$	$\mathrm{O}_{\mathrm{C}}$	$\mathrm{O}_{\mathbf{B}}$	$\mathrm{O}_{\mathrm{A}}$
H	H	L	X	$L$	L	L	L
H	H	X	L	L	$L$	L	L
X	X	H	H	H	$L$	L	H
X	L	X	L				
L	x	L	$x$				
L	X	X	L				
X	$L$	L	X				

MM54C93/MM74C93 4-Bit Binary Counter
Binary Count Sequence

COUNT	OUTPUT			
	$\mathrm{O}_{\mathrm{D}}$	$\mathrm{O}_{\mathrm{c}}$	$\mathrm{O}_{\mathrm{B}}$	$\mathrm{O}_{\mathrm{A}}$
0	L	L	L	L
1	L.	L	L	H
2	L	L	H	L
3	L.	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	$L$
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	- L	H
14	H	H	H	L
15	H	H	H	H

Output $Q_{A}$ is connected to input $B$ for binary count sequence.
$H=$ High level
$L$. Low level
$x=$ Irrelevant
Reset/Count Function Table

RESET INPUTS		OUTPUT			
$R_{01}$	$R_{02}$	$\mathbf{o}_{\mathbf{D}}$	$\mathrm{O}_{\mathbf{C}}$	$\mathrm{Q}_{\mathbf{B}}$	$\mathrm{a}_{\mathbf{A}}$
H	H	L	L	L	L
L	X		COUNT		
$\times$	L		COUNT		

## MM54C95/MM74C95 4-bit right-shift left-shift register

## general description

This 4-bit shift register is a monolithic complementary MOS (CMOS) integrated circuit composed of four D flip flops. This register will perform rightshift or left-shift operations dependent upon the logical input level to the mode control. A number of these registers may be connected in series to form an N -bit right shift or left shift register.

When a logical " 0 " level is applied to the mode control input, the output of each flip flop is coupled to the $D$ input of the succeeding flip flop. Right-shift operation is performed by clocking at the clock 1 input, and serial data entered at the serial input, clock 2 and parallel inputs $A$ through D are inhibited. With a logical " 1 " level applied to the mode control, outputs to succeeding stages are decoupled and parallel loading is possible, or with external interconnection, shift-left operation can be accomplished by connecting the output of each flip flop to the parallel input of the previous flip flop and serial data is entered at input $D$.

## features

- Medium speed operation 10 MHz typ $V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
a High noise immunity
$0.45 \mathrm{~V}_{\text {cc }}$ typ
- Low power

100 nW typ

- Tenth power TTL

Drive 2 LTTL loads

- Wide supply voltage range 3 V to $\uparrow 5 \mathrm{~V}$
- Synchronous parallel load
- Parallel inputs and outputs from each flip flop
- Negative edge triggered clocking
- The MM54C95/MM74C95 follows the MM54L95/MM74L95 Pinout.


## applications

- Data terminals
- Instrumentation
- Automotive
- Medical electronics
- Alarm systems
- Remote metering
- Industrial electronics
- Computers
block and connection diagrams

absolute maximum ratings

Voltage at Any Pin (Note 11 Operating Temperature MM54C95 MM74C95

Storage Temperature

Maximum $V_{c c}$ Voltage
18 V Package Dissipation Operating $\mathrm{V}_{\mathrm{Cc}}$ Range Lead Temperature (Soldering, 10 sec )
electrical characteristics
$\mathrm{Max} / \mathrm{min}$ limits apply across temperature range unless otherwise specified.


Note 1: These devices should not be connected under 'Power On' conditions.

## function table

INPUTS								OUTPUTS			
mODE CONTROL	CLOCKS		SERIAL	PARALLEL				$0_{\text {A }}$	$\mathrm{a}_{\mathrm{B}}$	$\mathrm{a}_{\mathrm{c}}$	$0_{0}$
	2 (L)	1 (R)		A	8	c	D				
H	H	$x$	x	x	x	x	x	$\mathrm{O}_{\text {AO }}$	$\mathrm{O}_{80}$	$\mathrm{a}_{\mathrm{co}}$	$\mathrm{Q}_{0}$
H	$\downarrow$	X	X	${ }^{\text {a }}$	$b$	c	d	-	$b$	c	d
H	1	$\times$	$x$	$\mathrm{a}_{8}{ }^{\text { }}$	$\mathrm{O}_{\mathrm{c}}{ }^{\text { }}$	$\mathrm{O}_{0}{ }^{\dagger}$	d	$\mathrm{o}_{8 \mathrm{n}}$	$0_{\text {cn }}$	$\mathrm{O}_{\mathrm{Dm}}$	d
1	L	H	x	$\times$	$x$	$x$	x	$0_{\text {AO }}$	$Q_{B 0}$	$\mathrm{a}_{\text {co }}$	$Q_{\text {Do }}$
1	$x$	$\downarrow$	H	x	x	X	x	H	$\mathrm{Q}_{\text {An }}$	$\mathrm{O}_{\mathrm{Bn}}$	$\mathrm{a}_{\mathrm{Cn}}$
L	X	1	L	$x$	X	x	X	1	$\mathrm{O}_{\text {An }}$	$\mathrm{O}_{\mathrm{an}}$	$\mathrm{a}_{\mathrm{cn}}$
$\dagger$	L	L	x	X	X	X	x	$\mathrm{Q}_{A O}$	$\mathrm{O}_{60}$	$\mathrm{a}_{60}$	$0_{00}$
1	L	L	X	$x$	x	$x$	x	$Q_{A O}$	$\mathrm{O}_{80}$	$\mathrm{O}_{60}$	$0_{00}$
$\downarrow$	L	H	x	X	x	x	x	$\mathrm{O}_{\text {AO }}$	$\mathrm{O}_{80}$	$\mathrm{O}_{\mathrm{co}}$	$0_{00}$
$\dagger$	H	1	$x$	x	x	X	$x$	$\mathrm{O}_{\text {AO }}$	$\mathrm{O}_{80}$	$\mathrm{a}_{\mathrm{co}}$	$0_{00}$
$\uparrow$	H	H	x	$x$	$x$	$x$	$x$	$Q_{A O}$	$\mathrm{O}_{80}$	$\mathrm{O}_{\mathrm{co}}$	$0_{00}$
$\dagger$	L	- H	x	$x$	$x$	x	x	Unde			
+	H	L	X	X	x	X	X	Opera	9 Con	ions	

[^1]MM54C150/MM74C150 16 -line to 1 -line multiplexer MM72C19/MM82C19 TRI-STATE ${ }^{\circledR}$ 16-line to 1 -line multiplexer

## general description

The MM54C150/MM74C150 and MM72C19/MM82C19 multiplex 16 digital lines to 1 output. A 4 -bit address code determines the particular 1 -of- 16 inputs which is routed to the output. The data is inverted from input to output.

A strobe override places the output of MM54C150/ MM74C150 in the logical " 1 " state and the output of MM72C19/MM82C19 in the high-impedance state.

All inputs are protected from damage due to static discharge by diode clamps to $\mathrm{V}_{\mathrm{CC}}$ and GND.

## features

- Wide supply voltage range	3.0 V to 15 V
- Guaranteed noise margin	1.0 V
- High noise immunity	0.45 V CC typ
- TTL compatibility	Drive 1 TTL Load

## connection diagram



## absolute maximum ratings

Voltage at Any Pin
Operating Temperature Range
MM54C150, MM72C19
MM74C150, MM82C19
Storage Temperature Range
Package Dissipation
Operating VCC Range
$V_{C C}$
-0.3 V to $\mathrm{V} \mathrm{CC}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
3.0 V to 15 V

18 V
Lead Temperature (Soldering, 10 seconds)
dc electrical characteristics $\mathrm{Min} /$ max limits apply across temperature range, unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS						
VIN(1)	Logical "1" Input Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$V$ $V$
$V_{\text {IN }}(0)$	Logical "0" Input Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 1.5 \\ 2.0 \end{array}$	$V$ $V$
VOUT(1)	Logical "1" Output Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			$V$ $V$
VOUT(0)	Logical "0' Output Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, I_{O}=+10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{O}=+10 \mu \mathrm{~A} \end{aligned}$			0.5 1.0	$V$ $V$
IIN(t)	Logical "1" Input Current	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
$\operatorname{IIN}(0)$	Logical "0" Input Current	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	$-1.0$	$-0.005$		$\mu \mathrm{A}$
${ }^{\prime} \mathrm{OZ}$	Output Current in High Impedance State					
	MM72C19/MM82C19	$V_{C C}=15 \mathrm{~V}, V_{O}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
		$V_{C C}=15 \mathrm{~V}, V_{O}=0 \mathrm{~V}$	$-1.0$	-0.005		$\mu \mathrm{A}$
ICC	Supply Current	$V_{C C}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$

TTL INTERFACE


## OUTPUT DRIVE

ISOURCE	Output Source Current (P-Channel)	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	-4.35	-8	mA
ISOURCE	Output Source Current (P-Channel)	$V_{C C}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	-20	-40	mA
ISINK	Output Sink Current ( N -Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	4.35	8	mA
ISINK	Output Sink Current ( N -Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{O U T}=V_{C C}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	20	40	mA

ac electrical characteristics $\dot{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified

	PARAMETER	.CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{Cin}^{\text {I }}$	Input Capacitance	Any input, (Note 2)		5.0		pF
COUT	Output Capacitance MM72C19/MM82C19	(Note 2)		11.0		pF
$\mathrm{C}_{\text {pd }}$	Power Dissipation Capacitance	(Note 3)		100		pF
${ }^{\text {ppd }} 0 . t_{\text {pd }} 1$	Propagation Delay Time to	$V_{C C}=5.0 \mathrm{~V}$		250	600	ns
	a Logical " 0 " or Logical " 1 "	$V_{C C}=10 \mathrm{~V}$		110	300	ns
	from Data Inputs to Output	$V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		290	650	ns
		$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		120	330	ns
${ }^{\text {tpdo }}$, $\mathrm{t}_{\mathrm{pd}} 1$.	Propagation Delay Time to	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		290	650	ns
	a Logical " 0 " or Logical " 1 " from Data Select Inputs to Output	$V_{C C}=10 \mathrm{~V}$		120	330	ns
$\mathrm{t}_{\mathrm{pd}} 0, \mathrm{t}_{\mathrm{pd}} 1$	Propagation Delay Time to a Logical " 0 " or Logical " 1 " from Strobe to Output					
	MM54C150/MM74C150	$V_{C C}=5.0 \mathrm{~V}$		120	300	ns
		$V_{C C}=10 \mathrm{~V}$		55	150	ns
$\mathrm{t}_{1} \mathrm{H}, \mathrm{t}_{\mathrm{OH}}$	Delay from Strobe to High Impedance State					
	MM72C19/MM82C19	$V_{C C}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		80	200	ns
		$V_{C C}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		60	150	ns
$\mathrm{tH}_{1}, \mathrm{t}_{0}$	Delay from Strobe to Logical "1" Level or to Logical " 0 "					
	Level (from High Impedance					
	MM72C19/MM82C19	$V_{C C}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		80	250	ns
		$V_{C C}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		30	120	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Charactersitcs" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
truth table
MM54C150／MM74C150

D	InPuts																				$\frac{\text { OUTPUT }}{w}$
	c	B	A	Strobe	EO	$E 1$	E2	E3	E4	E5	E6	E7	E8	$E 9$	E10	E11	E12	E13	E14	E15	
x	$\times$	$\times$	x	1	$\times$	$\times$	$\times$	$\times$	$x$	$x$	$x$	$x$	$\times$	$x$	$x$	$\times$	$x$	$x$	$x$	$x$	1＊
0	0	0	0	0	0	$x$	1														
0	0	0	0	0	1	$\times$	$\times$	$x$	x	$x$	0										
0	0	0	1	0	$x$	0	$x$	x	$x$	$x$	$x$	$x$	1								
0	0	0	1	0	$x$	1	$\times$	$x$	$x$	$x$	$x$	$\times$	x	$\times$	x	$x$	$x$	$x$	$x$	$x$	0
0	0	1	0	0	$\times$	$x$	0	$\times$	$x$	$\times$	$x$	$\times$	$x$	$\times$	$x^{\prime}$	$x$	$x$	$x$	$\times$	$x$	1
0	0	1	0	0	$x$	$x$	1	$\times$	$x$	0											
0	0	1	1	0	$x$	$x$	x	0	$x$	$x$	$x$	$x$	$x$	$\times$	$x$	$x$	$x$	$x$	$x$	$\times$	1
0	0	1	1	0	$x$	$x$	$x$	1	$x$	$\times$	x	$x$	$x$	x	$x$	$x$	$x$	$x$	$x$	$x$	0
0	1	0	0	0	$x$	$x$	$x$	$x$	0	x	$x$	$x$	x	$x$	1						
0	1	0	0	0	$x$	$x$	$x$	$x$	1	$\times$	$x$	$x$	$x$	$x$	$x$	$x$	x	$x$	$x$	$x$	0
0	1	0	1	0	$x$	$x$	x	$x$	$x$	0	x	$x$	$x$	$x$	$x$	$x$	x	$x$	$x$	$x$	1
0	1	0	1	0	x	$x$	$x$	$x$	$x$	1	x	$x$	$x$	$x$	x	$x$	$x$	$x$	$x$	$x$	0
0	1	1	0	0	x	$x$	x	$x$	$x$	$\times$	0	$x$	x	$x$	1						
0	1	1	0	0	x	$x$	x	$\times$	$\times$	$\times$	1	$\times$	$x$	x	$x$	$x$	$x$	$x$	$x$	$x$	0
0	1	1	1	0	$x$	0	x	x	$x$	$x$	$x$	$x$	$x$	$x$	1						
0	1	1	1	0	$x$	X	x	$x$	$x$	$x$	$x$	1	x	$x$	x	x	$x$	$x$	$x$	$x$	0
1	0	0	0	0	$x$	$x$	x	$x$	x	$x$	x	$x$	0	$x$	x	x	$x$ ．	$x$	$x$	$x$	1
1	0	0	0	0	$x$	$x$	x	$x$	x	$\times$	$x$	$x$	1	x	$x$	$\times$	$x$	$x$	$x$	$x$	0
1	0	0	1	0	$x$	$x$	$x$	X	$x$	$x$	$x$	$x$	X	0	X	$x$	$x$	$x$	$x$	$x$	1
1	0	0	1	0	x	$x$	$x$	$x$	$x$	$x$	$x$	$\times$	$x$	1	x	$x$	$x$	x	$x$	$x$	0
1	0	1	0	0	$x$	x	x	$\times$	x	x	$x$	x	x	x	0	$x$	x	$x$	$\times$	x	1
1	0	1	0	0	$x$	$x$	x	$x$	$x$	$x$	$x$	$x$	$x$	x	1	$x$	$x$	$x$	$x$	$x$	0
1	0	1	1	0	$x$	x	x	$\times$	x	x	x	$\times$	x	x	$x$	0	x	$x$	x	$x$	1
1	0	1	1	0	X	$x$	$x$	$x$	$x$	X	$x$	$x$	x	X	$x$	1	$x$	$x$	x	$x$	0
1	1	0	0	0	$x$	$x$	$x$	x	x	x	x	$\times$	$x$	x	$x$	$x$	0	$x$	X	$x$	1
1	1	0	0	0	$x$	X	x	$x$	$x$	x	x	X	$x$	x	x	$x$	1	$\times$	$x$	$x$	0
1	1	0	1	0	x	$x$	$x$	$x$	$x$	x	x	x	$x$	$x$	x	$x$	$x$	0	$x$	x	$\dagger$
1	1	0	1	0	$x$	$x$	x	$x$	$x$	$x$	x	$x$	$x$	$x$	x	x	$x$	1	$\times$	$x$	0
1	1	1	0	0	$x$	x	x	$x$	x	x	$x$	X	$x$	$x$	$x$	$x$	$x$	$x$	0	$x$	1
1	1	1	0	0	$x$	$x$	x	$x$	$x$	$x$	x	$x$	x	$x$	$x$	x	$x$	$x$	1	x	0
1	1	1	1	0	$x$	$x$	$x$	$x$	$x$	$x$	x	$\times$	x	$x$	x	$x$	x	x	$x$	0	1
1	1	1	1	0	$x$	$\times$	$\times$	x	x	x	x	$\times$	X	x	$\times$	x	x	$\times$	$\times$	1	0

＊For MM72C19／MM82C19 this would be Hi－Z，everything else is the same．
switching time waveforms


logic diagrams


MM72C19/MM82C19


## MM54C151/MM74C151 8 channel digital multiplexer general description

The MM54C151/MM74C151 multiplexer is a monolithic complementary MOS (CMOS) integrated circuit constructed with N - and P-channel enhancement transistors.

This data selector/multiplexer contains on-chip binary decoding. Two outputs provide true (output Y ) and complement (output W) data. A logical " 1 " on the strobe input forces $W$ to a logical " 1 " and $Y$ to a logical " 0 ."

All inputs are protected against electrostatic effects.

## features

- Supply voltage range


## logic and connection diagrams


MM54C151/MM74C151
absolute maximum ratings

Voltage at Any Pin (Note 1)
Operating Temperature MM54C151 MM74C151
Storage Temperature
Maximum $V_{c c}$ Voltage
Package Dissipation
Operating $\mathrm{V}_{\mathrm{cc}}$ Range
Lead Temperature (Soldering, 10 sec )

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to } \mathrm{V} \mathrm{CC}+0.3 \mathrm{~V} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
18 \mathrm{~V} \\
500 \mathrm{~mW} \\
3 \mathrm{~V} \text { to } 15 \mathrm{~V} \\
300^{\circ} \mathrm{C}
\end{array}
$$

electrical characteristics
Min/Max limits apply across temperature range across otherwise specified


Note 1: This device should not be connected under power on conditions.

## switching time waveforms


ac test circuit


## truth table

InPuTS												OUTPUTS	
c	B	A	STROBE	$\mathrm{D}_{0}$	$\mathrm{D}_{1}$	$\mathrm{D}_{2}$	$\mathrm{D}_{3}$	$\mathrm{D}_{4}$	$\mathrm{O}_{5}$	$\mathrm{D}_{6}$	D7	Y	w
$\times$	x	x	1	$\times$	x	$\times$	x	$\times$	$\times$	x	x	0	1
0	0	0	0	0	$x$	$x$	$x$	$x$	x	$x$	$x$	0	1
0	0	0	0	1	x	$x$	x	$x$	x	x	x	1	0
0	0	1	0	$x$	0	$x$	$x$	$x$	x	$x$	x	0	1
0	0	1	0	$\times$	1	$\times$	$x$	$\times$	$x$	x	$x$	1	0
0	1	0	0	x	x	0	x	$x$	$x$	x	x	0	1
0	1	0	0	x	$x$	1	$x$	$x$	$x$	$x$	$x$	1	0
0	1	1	0	x	$x$	x	0	$x$	$x$	$x$	$x$	0	1
0	1	1	0	x	x	x	1	$\times$	$x$	$x$	$x$	1	0
1	0	0	0	$x$	x	x	$x$	0	$x$	$x$	$x$	0	1
1	0	0	0	$x$	$x$	$x$	$x$	1	x	$x$	x	1	0
1	0	1	0	$x$	x	$x$	x	$x$	0	$x$	$x$	0	1
1	0	1	0	$x$	x	$x$	x	$x$	1	x	x	1	0
1	1	0	0	$x$	x	x	$x$	$x$	$x$	0	x	0	1
1	1	0	0	x	x	$x$	x	$x$	$x$	1	x	1	0
1	1	1	0	$x$	x	$x$	x	$\times$	$x$	x	0	0	1
1	1	1	0	$\times$	x	x	x	$\times$	x	x	1	1	0

## MM54C154/MM74C154 4-line to $\mathbf{1 6 - l i n e}$ decoder/demultiplexer

## general description

The MM54C154/MM74C154 one of sixteen decoder is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P -channel enhancement transistors. The device is provided with two strobe inputs, both of which must be in the logical " 0 " state for normal operation. If either strobe input is in the logical " 1 " state, all 16 outputs will go to the logical " 1 " state.

To use the product as a demultiplexer, one of the strobe inputs serves as a data input terminal, while the other strobe input must be maintained in the logical " 0 " state. The information will then be transmitted to the selected output as determined by the 4 -line input address.

## features

- Supply voltage range

3 V to 15 V

-Tenth power TTL   compatible	drive 2 LPTTL   loads
- High noise margin	1 V guaranteed
- High noise immunity	$0.45 \mathrm{~V}_{\mathrm{cc}}$ typ

## applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems
- Industrial electronics
- Remote metering
- Computers


## logic and connection diagrams



## absolute maximum ratings

Voltage at Any Pin（Note 1）	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Operating Temperature Range	
MM54C154	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MM74C154	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum $V_{\text {cc }}$ Voltage	18 V
Package Dissipation	500 mW
Operating Range，$V_{\text {cc }}$	+3 V to +15 V
Lead Temperature（Soldering， 10 sec ）	$300^{\circ} \mathrm{C}$

## electrical characteristics

（Min／max limits apply across temperature range unless otherwise specified．）

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
Logical＂ 1 ＂Input Voltage（ $\mathrm{V}_{\text {（N }(1)}$ ）	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical＂0＂Input Voltage（ $\mathrm{V}_{\text {IN（0）}}$ ）	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Logical＂1＂Output Voltage（ $\left.\mathrm{V}_{\text {OUT（1）}}\right)$	$\begin{aligned} & V_{c c}=5 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \\ & V_{c c}=10 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical＂0＂Output Voltage（ $\mathrm{V}_{\text {outio）}}$ ）	$\begin{aligned} & V_{c c}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A} \\ & V_{c c}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 1 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Logical＂1＂Input Current（ $\mathrm{I}_{\mathbf{N}(1)}$ ）	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1	$\mu \mathrm{A}$
Logical＂ 0 ＂Input Current（ $\mathrm{I}_{\text {IN }(1)}$ ）	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	－1	－0．005		$\mu \mathrm{A}$
Supply Current（ ${ }_{\text {cc }}$ ）	$V_{c c}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
Input Capacitance	Any Input		5		pF
Propagation Delay to a Logical＂0＂From Any Input to Any Output（ $\mathrm{t}_{\mathrm{pa0}}$ ）	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, C_{L}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		275 100	400 200	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay to a Logical＂0＂From G1 or G2 to Any Output（ $t_{\text {pao }}$ ）	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad C_{L}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		275 100	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay to a Logical＂1＂From Any Input to Any Output（ $t_{\text {pal }}$ ）	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, C_{L}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		265	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay to a Logical＂ 1 ＂From G1 or G2 to Any Output（ $\mathrm{t}_{\text {pd }}$ ）	$V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$ $V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{array}{r} 265 \\ 100 \\ \hline \end{array}$	400 200	ns
LOW POWER TTL／CMOS INTERFACE					
Logical＂1＂Input Voltage（ $\mathrm{V}_{\text {IN（1）}}$ ）	$\begin{array}{ll} 54 \mathrm{C} & \mathrm{~V}_{\mathrm{cc}}=4.5 \\ 74 \mathrm{C} & \mathrm{~V}_{\mathrm{cc}}=4.75 \end{array}$	$v_{c c}^{\prime}-1.5$			v
Logical＂ 0 ＂Input Voltage（ $\mathrm{V}_{\text {IN（0）}}$ ）	$\begin{array}{ll} 54 \mathrm{C} & V_{c c}=4.5 \\ 74 \mathrm{C} & V_{c c}=4.75 \end{array}$			0.8	V
Logical＂1＂Output Voltage（Vout（1）	$\begin{array}{ll} 54 \mathrm{C} & V_{c C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} \\ 74 \mathrm{C} & V_{c c}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} \end{array}$	2.4			V
Logical＂0＂Output Voltage（ $V_{\text {OUT }}(0)$ ）	$\begin{array}{ll} 54 \mathrm{C} & V_{c c}=4.5 \mathrm{~V}, I_{0}=360 \mu \mathrm{~A} \\ 74 \mathrm{C} & V_{c c}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \end{array}$			0.4	V
OUTPUT DRIVE（See 54C／74C Family Characteristics Data Sheet）					
Output Source Current（ ${ }_{\text {source }}$ ）	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {IN (O) }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	－1．75			mA
Output Source Current（ ${ }_{\text {source }}$ ）	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{(N(0)}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	－8．0			mA
Output Sink Current（ $\mathrm{I}_{\text {SINK }}$ ）	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {IN(1) }}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=V_{C C} \end{aligned}$	1.75			mA
Output Sink Current（ $\mathrm{I}_{\text {SINK }}$ ）	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{\text {IN(1) }}=10 \mathrm{~V} \\ & Y_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=V_{C C} \end{aligned}$	8.0			mA

Note 1：This device should not be connected to circuits with the power on because high transient voltages may cause permanent damage．

## switching time waveforms


$t_{t}=t_{f}=20 \mathrm{~ns}$

## Guaranteed Noise Margin as a

Function of $V_{C C}$


## truth table

INPUTS					OUTPUTS															
G1 G2	D	C	B	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L L.	L	L	$L$	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L L	L	H	$L$	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L L	L	H	L	. H	H	H	H	H	H	L	H	H	H	H	H.	H	H	M	H	H
L. L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L. L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L
L H	X	X	$x$	x	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H L	X	X	$x$	$x$	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H H	x	x	X	$\times$	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H

X = "Don't Care" Condition

## MM54C157/MM74C157 quad 2-input multiplexers

## general description

These multiplexers are monolithic complementary MOS (CMOS) integrated circuits constructed with $N$ and $P$ channel enhancement transistors. They consist of four 2 -input multiplexers with a common select and enable inputs. When the enable input is at logical " 0 " the four outputs assume the values as selected from the inputs. When the enable input is at logical " 1 " the outputs assume logical " 0. ." Select decoding is done internally resulting in a single select input only.

## features

- Supply voltage range
3 V to 15 V
- High noise immunity
$0.45 \mathrm{~V}_{\text {cc }}$ typ


## schematic and connection diagrams



## truth table

ENABLE	SELECT	A	B	OUtPut Y
1	$\times$	$\times$	$\times$	0
0	0	0	X	0
0	0	1	x	1
0	1	x	0	0
0	1	x	1	1



74L Compatibility

Guaranteed Noise Margin as a Function of $V_{\mathbf{C C}}$



Note 1: This device should not be connected to circuits with the power on because high transient voltage may cause permanent damage.

## MM54C160/MM74C160 decade counter

 with asynchronous clear MM54C161/MM74C161 binary counter with asynchronous clear MM54C162/MM74C162 decade counter with synchronous clear MM54C163/MM74C163 binary counter with synchronous clear
## general description

These (synchronous presettable up) counters are monolithic complementary MOS (CMOS) integrated circuits constructed with $N$ and $P$ channel enhancement mode transistors. They feature an internal carry lookahead for fast counting schemes and for cascading packages without additional gating.

A low level at the load input disables counting and causes the outputs to agree with the data input after the next positive clock edge. The clear function for the C162 and C163 is synchronous and a low level at the clear input sets all four outputs low after the next positive clock edge. The clear function for the C160 and C161 is asynchronous and a low level at the clear input sets all four outputs low regardless of the state of the clock.

Counting is enabled when both count enable inputs are high. Input $T$ is fed forward to also enable the carry out. The carry output is a positive pulse with a duration approximately equal to the positive portion of $Q_{A}$ and can be used to enable successive cascaded stages. Logic transitions at the enable $P$ or $T$ inputs can occur when the clock is high or low.

## features

- High noise margin
- High noise immunity
- Tenth power TTL compatible
- Wide supply voltage range
drives $0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
drives 2 LPTTL loads
- Internal $3 V$ to 15 V
- Carry output for $N$-bit cascading
- Load control line
- Synchronously programmable


## connection diagram



## logic waveforms



## absolute maximum ratings

## Voltage At Any Pin (Note 1) $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$ <br> Operating Temperature MM54C160/1/2/3 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ <br> MM74C160/1/2/3 $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Maximum $V_{\text {Cc }}$ Voltage
18 V
Package Dissipation
500 mW
Operating $V_{C C}$ Range +3 V to +15 V
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
$300^{\circ} \mathrm{C}$

## electrical characteristics

Min/Max limits apply across temperature range unless otherwise specified.
Min/Max limits apply across temperature range unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS to CMOS Logical "1" Input Voltage $\mathrm{V}_{\text {IN(1) }}$	$V_{c c}=5 \mathrm{~V}$				

Logical " 0 " Input Voltage $V_{1 N(0)}$
Logical "1" Output Voltage $V_{\text {OUT(1) }}$
Logical "0" Output Voltage $V_{\text {Out(0) }}$
Logical "1" Input Current $I_{\text {IN(1) }}$
Logical " 0 " Input Current $\mathrm{l}_{\text {IN( }}$ (
Supply Current Icc
Input Capacitance
Propagation Delay Time from Clock to
$\mathrm{Q}_{\mathrm{t}_{\mathrm{pdo}}}$ or $\mathrm{t}_{\mathrm{pd} 1}$
Propagation Delay Time from Clock to
Carry Out $t_{p d o}$ or $t_{p d 1}$
Propagation Delay Time from $T$ Enable to Carry Out $t_{p a o}$ or $t_{p d 1}$
Propagation Time from Clear to $\mathrm{Q} \mathrm{t}_{\text {pdo }}$ (C160 and C161 only)
Time Prior to Clock that Data or Load Must be Present $t_{\text {SETUP }}$
Time Prior to Clock that Enable P or T Must be Present $\mathrm{t}_{\text {SETUP }}$
Time Prior to Clock that Clear Must be Present $\mathrm{t}_{\text {SETUP }}$ (162, 163 only) Minimum Clock Pulses Width
$t_{\text {WL }}$ or $t_{W H}$
Maximum Clock Rise or Fall Time
Maximum Clock Frequency
CMOS/LPTTL INTERFACE
Logical "1" Input Voltage 54C
74C
Logical " 0 " Input Voltage 54C
74C
Logical "1" Output Voltage 54C 74C
Logical " 0 " Output Voltage 54 C
74 C

$V_{c c}=10$
$V_{c c}=5$
$V_{c c}=10$
$V_{C C}=10 V$
$V_{C C}=5 \mathrm{~V}, \quad I_{O}=-10 \mu \mathrm{~A}$
$V_{C C}=10 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A}$
$V_{C C}=5 \mathrm{~V}, I_{O}=+10 \mu \mathrm{~A}$
$V_{c c}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$
$V_{C C}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$
$V_{C C}=15 \mathrm{~V}$
Any Input
$\mathrm{CC}^{\prime}=5 \mathrm{~V}, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=5 \mathrm{~V}, C_{L}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$
$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$
$V_{C C}=5 \mathrm{~V}, \quad C_{L}=50 \mathrm{pF}, T_{A}=25^{\circ} \mathrm{C}$
$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=5 \mathrm{~V}, \quad C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$
$V_{C C}=5 \mathrm{~V}, C_{L}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$
$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=5 \mathrm{~V}, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=5 \mathrm{~V}, \quad C_{L}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$
$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$
$V_{C C}=5 \mathrm{~V}, C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=5 \mathrm{~V}, \quad C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=10 \mathrm{~V}, C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C c}=4.5 \mathrm{~V}$
$V_{c c}=4.75 \mathrm{~V}$
$V_{c c}=4.5 \mathrm{~V}$
$V_{c c}=4.75 \mathrm{~V}$
$V_{c c}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$
$V_{C C}=4.75 V_{V_{O}}=-360 \mu \mathrm{~A}$
$V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+360 \mu \mathrm{~A}$
$V_{C C}=4.75 \mathrm{~V}, I_{0}=+360 \mu \mathrm{~A}$
$v$
1.5
2.0

v
$v$
$v$
$V$
$v$
$v$
-
V
0.05
5
250
100
290
ns
$\square$
ns

$\square |$| 190 |
| :--- |
| 80 |
| 120 |

ns

$\therefore \quad |$| 120 |
| :--- |
| 170 |
| 70 |

ns

$\square |$| 170 |
| :--- |
| 120 |
| 50 |
| 90 |

ns

$\square$| 90 |
| :--- |
| 35 |

$\mu \mathrm{s}$

## MHz

 MHz|  |  |
| :--- | :--- |
| 5.0 | 8.0 |
|  | 8.5 |
|  |  |

$V_{c c^{-1}}-5$
$v_{c c}-1.5$

	$V$
0.8	$V$
0.8	$V$
	$V$
	$V$
0.4	$V$
0.4	$V$

OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)


Note 1: This device should not be connected during power on conditions.

## logic diagrams

MM74C160, MM74C162; Clear is Synchronous for the MM74C162


MM74C161, MM74C163; Clear is Synchronous for the MM74C163


## switching time waveforms



Note 1: All input pulses are from generators having the following characteristics: $t_{r}=t_{f}=$ 20 ns PRR $\leq 1 \mathrm{MHz}$ duty cycle $\leq 50 \%, Z_{\text {our }} \approx 50 \Omega$.
Note 2: All times are measured from $50 \%$ to $50 \%$.
cascading packages


MM54C164/MM74C164
8-bit parallel-out serial shift register

## general description

The MM54C164/MM74C164 shift registers are a monolithic complementary MOS (CMOS) integrated circuit constructed with N - and P -channel enhancement transistors. These 8 -bit shift registers have gated serial inputs and clear. Each register bit is a D-type master/slave flip flop. A high-level input enables the other input which will then determine the state of the flip flop.

Data is serially shifted in and out of the 8-bit register during the positive going transition of clock pulse. Clear is independent of the clock and accomplished by a low level at the clear input. All inputs are protected against electrostatic effects.

## features

- Supply voltage range 3 V to 15 V
- Tenth power TTL compatible drive 2 LPTTL . loads
- High noise immunity
$0.45 \mathrm{~V}_{\mathrm{Cc}}$ typ
- Low power 50 nW typ
- Medium speed operation
8.0 MHz typ with 10 V supply


## applications

- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems
- Industrial electronics
- Remote metering
- Computers
block diagram



## connection diagram


truth table

Serial Inputs A and B

INPUTS   $t_{n}$		OUTPUT   $t_{n+1}$
$A$	$B$	$Q_{A}$
1	1	1
0	1	0
1	0	0
0	0	0

## absolute maximum ratings

Voltage at Any Pin (Note 1) $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
Operating Temperature MM54C164 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ MM74C164 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature

Maximum $V_{c C}$ Voltage	18 V
Package Dissipation	500 mW
Operating $V_{c C}$ Range	+3 V to +15 V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## electrical characteristics

$\mathrm{Min} / \mathrm{max}$ limits apply across temperature range unless otherwise specified.


CMOS TO TENTH POWER INTERFACE
Logical "1" Input Voltage $V_{\text {IN(1) }}$
Logical " 0 " Input Voltage $V_{\text {IN }}(0)$

Logical "1" Output Voltage $V_{\text {Out(1) }}$

Logical "0" Output Voltage $V_{\text {Out }}$ (0)
$54 \mathrm{C}: V_{C C}=4.5 \mathrm{~V}$
$74 \mathrm{C}: V_{C C}=4.75 \mathrm{~V}$
$54 \mathrm{C}: V_{C C}=4.5 \mathrm{~V}$
$74 \mathrm{C}: V_{C C}=4.75 \mathrm{~V}$
$54 \mathrm{C}: V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$
$74 \mathrm{C}: V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$
$54 \mathrm{C}: V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}$
$74 \mathrm{C}: V_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}$

			$V$
2.4		0.8	$V$
			$V$

OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)
Output Source Current ( $I_{\text {SOURCE }}$ )
Output Source Current (ISOURCE)

Output Sink Current ( $I_{\text {SINK }}$ )

Output Sink Current ( $\mathrm{I}_{\text {SINK }}$ )

-1.75		
-8.0		mA
1.75		
8.0		mA
		mA
		mA

Note 1: These devices should not be connected under power on conditions.
ac test circuit

switching time waveforms


## typical applications

Guaranteed Noise Margin as a Function of $\mathbf{V}_{\mathbf{C C}}$


## MM54C165/MM74C165 parallel-load 8-bit shift register

## general description

The MM54C165/MM74C165 is an 8-bit serial shift register which shifts data from $Q_{A}$ to $Q_{H}$ when clocked. Parallel inputs to each stage are enabled by a low level at the shift/load input. Also included is a gated clock input and a complementary output from the eighth-bit.

Clocking is accomplished through a 2 -input NORgate permitting one input to be used as a clockinhibit function. Holding either of the clock inputs high inhibits clocking, and holding either clock input low with the shift/load input high enables the other clock input. Data transfer occurs on the positive edge of the clock. The clock inhibit input should be changed to a high level only while the clock input is high. Parallel loading is inhibited as
long as the shift/load input is high. When taken low, data at the parallel inputs is loaded directly into the register independent of the state of the clock.

## features

- Wide supply voltage range 3.0 V to 15 V
- Guaranteed noise margin 1.0 V
- High noise immunity $0: 45 \mathrm{~V}_{\mathrm{Cc}}$ typ
- Low power fan out of 2 TTL compatibility driving 74L
- Direct overriding load
- Gated clock inputs
- Fully static operation


## connection diagram



## block diagram


absolute maximum ratings (Note 1)

Voltage at Any Pin	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Operating Temperature Range	
$\quad$ MM54C165	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MM74C165	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation	500 mW
Operating $V_{c c}$ Range	3.0 V to 15 V
Absolute Maximum $V_{c c}$	18 V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## dc electrical characteristics

$\mathrm{Min} / \mathrm{max}$ limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
CMOS TO CMOS						
Logical "1" Input Voltage ( $V_{\text {IN(1) }}$ )   Logical " 0 " Input Voltage ( $V_{\text {IN }}(0)$ )   Logical " 1 " Output Voltage $\left(V_{\text {OUT(1) }}\right)$   Logical " 0 " Output Voltage ( $V_{\text {OUT (0) }}$ )   Logical " 1 "' Input Current $\left\{I_{\operatorname{IN}(1)}\right)$   Logical " 0 " Input Current ( $\\|_{\text {IN }(0)}$ )   Supply Current (Icc)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, \quad I_{0}=-10 \mu \mathrm{~A} \\ & V_{C C}=5.0 \mathrm{~V}, I_{0}=+10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, \quad I_{0}=+10 \mu \mathrm{~A} \\ & V_{C C}=15 \mathrm{~V}, \quad V_{I N}=15 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V}, \quad V_{I N}=0 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 3.5 \\ 8.0 \\ \\ 4.5 \\ 9.0 \\ \\ \hline \end{array}$	$\begin{gathered} 0.005 \\ -0.005 \\ 0.05 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \\ & 0.5 \\ & 1.0 \\ & 1.0 \\ & \\ & 300 \end{aligned}$	$\begin{gathered} V \\ \mu A \\ \mu A \\ \mu A \end{gathered}$	
CMOS/LPTTL INTERFACE						
Logical "1" Input Voltage ( $\left.\mathrm{V}_{1 \mathrm{~N}(1)}\right)$   Logical " 0 " Input Voltage ( $V_{\text {IN(0) }}$ )   Logical " 1 " Output Voltage $\left(V_{\text {OUT(1) }}\right)$   Logical " 0 " Output Voltage ( $\mathrm{V}_{\text {OUT(0) }}$ )	$54 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$   $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$   $54 \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$   $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$   $54 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{0}=-360 \mu \mathrm{~A}$   $74 \mathrm{C}, V_{c C}=4.75 \mathrm{~V}, I_{0}=-360 \mu \mathrm{~A}$   $54 \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}$   $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, 1_{0}=360 \mu \mathrm{~A}$	$\begin{aligned} & V_{c c^{-1}} .5 \\ & V_{c c^{-1}}-1.5 \end{aligned}$ $\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \\ & \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$	
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)						
Output Source Current (I Source)   (P-Channel)   Output Source Current (I Source)   (P-Channel)   Output Sink Current ( $1_{\text {SINK }}$ )   (N-Channel)   Output Sink Current (ISINK)   (N-Channel)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \quad V_{O U T}=0 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, \quad V_{O U T}=0 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=5.0 \mathrm{~V}, \quad V_{O U T}=V_{C C}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, \quad V_{O U T}=V_{C C} . \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} -1.75 \\ -8.0 \\ 1.75 \\ 8.0 \end{array}$	$-3.3$   $-15$   3.6   16	$\bullet$.	mA   mA   mA   mA	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $\mathrm{C}_{\mathrm{pd}}$ determines the no Joad ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

## switching time waveforms



## truth table

INPUTS					INTERNAL OUTPUTS		$\begin{gathered} \text { OUTPUT } \\ \mathbf{Q}_{\mathrm{H}} \end{gathered}$
$\begin{aligned} & \text { SHIFT/ } \\ & \text { LOAD } \end{aligned}$	CLOCK INHIBIT	CLOCK	SERIAL	PARALLEL			
				A... H	$\mathrm{a}_{\mathrm{A}}$	$\mathrm{O}_{\mathrm{B}}$	
L	$x$	x	x	a . . h	a	b	h
H	$L$	L	X	x	$\mathrm{O}_{\mathrm{AO}}$	$\mathrm{O}_{80}$	$\mathrm{a}_{\mathrm{HO}}$
H	$L$	$\dagger$	H	$\times$	H	$Q^{A_{n}}$	$\mathrm{a}_{\mathrm{Gn}}$
H	L	$\dagger$	L	$x$	1	$\mathrm{a}_{\text {An }}$	$0_{0}$
H	H	$\uparrow$	x	x	$\mathrm{Q}_{\text {AO }}$	$\mathrm{Q}_{\mathrm{BO}}$	$\mathrm{O}_{\mathrm{HO}}$

$H=V_{I N}(1) . L=V_{\text {IN }}(0)$
$X=$ irrelevant
$1=$ transition from $V_{I N(0)}$ to $V_{\text {IN(1) }}$
a $\ldots$. $h=$ the level at data inputs $A$ thru $H$
$a_{A O}, a_{B O}, a_{H O}=$ the level of $a_{A}, a_{B}$ or $a_{H}$, before the indicated input conditions were established $\alpha_{A n}, a_{6 n}=$ the level of $\alpha_{A}$ or $\alpha_{6}$ before the most recent $t$ transition of the clock

## logic waveforms



MM54C173/MM74C173 TRI-STATE ${ }^{\text {® }}$ quad $D$ flip-flop general description

The MM54C173/MM74C173 TRI-STATE quad D flip flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and $P$-channel enhancement transistors. The four D type flip flops operate synchronously from a common clock. The TRI-STATE output allows the device to be used in bus organized systems. The outputs are placed in the TRI-STATE mode when either of the two output disable pins are in the logic " 1 " level. The input disable allows the flip flop to remain in their present states without disrupting the clock. If either of the two input disables are taken to a logic " 1 " level, the 0 outputs are fed back to the inputs and in this manner the flip flops do not change state.

Clearing is enabled by taking the input to a logic " 1 " level. Clocking occurs on the positive going transition.

## features

- Supply voltage range

3 V to 15 V

- Tenth power TTL compatible

Drive 2 LPTTL loads

- High noise immunity $0.45 \mathrm{~V}_{\mathrm{Cc}}$ typ
- Low power
- Medium speed operation
- High impedance TRI-STATE
- Input disabled without gating the clock


## applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems
- Industrial electronics
- Remote metering
- Computers


## logic and connection diagrams



## absolute maximum ratings

Voltage at Any Pin (Note 1)	-0.3 to $\mathrm{V}_{\text {cc }}+0.3 \mathrm{~V}$
Operating Temperature	MM54C173
	MM74C173
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum $V_{\text {cc }}$ Voltage	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Dissipation	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating $V_{\text {cc }}$ Range	18 V
Lead Temperature (Soldering, 10 sec )	500 mW
	+3 V to +15 V
	$300^{\circ} \mathrm{C}$

electrical characteristics
$\mathrm{Min} / \mathrm{max}$ limits apply across temperature range unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS					
Logical "1" Input Voltage $\mathrm{V}_{\text {IN(1) }}$	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical "0' Input Voltage Vin(0)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$			1.5 2	$\begin{aligned} & v \\ & v \end{aligned}$
Logical "1" Output Voltage $V_{\text {Out }}$ (1)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9 \end{aligned}$			$\begin{aligned} & V \\ & v \end{aligned}$
Logical '0' Output Voltage $\mathrm{V}_{\text {Out }}$ (0)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$			0.5 1	$\begin{aligned} & v \\ & v \end{aligned}$
Logical "1" Input Current $\mathrm{I}_{\text {IN(1) }}$	$V_{c c}=15.0 \mathrm{~V}$		0.005	1	$\mu \mathrm{A}$
Logical ' 0 ' Input Current $\mathrm{I}_{\text {IN(0) }}$		-1	$-0.005$		$\mu \mathrm{A}$
Output Current in High Impedance State	$V_{c c}=15 \mathrm{~V}, V_{0}=15 \mathrm{~V}$		$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Current Icc	$V_{C C}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
Input Capacitance	Any Input		5		pF
Propagation Delay Time to a Logical " 0 " ( $\mathrm{t}_{\mathrm{pdo}}$ ) or Logical " 1 " $\left(t_{p a 1}\right)$ From Clock to Output	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		220 80	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Input Data Setup Time, $\mathrm{t}_{\text {s data }}$	$\begin{aligned} & V_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{Cc}}=10.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		40 15	$\begin{aligned} & 80 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Input Data Hold Time, $\mathrm{t}_{\mathrm{H}}$ data	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0 0	0	ns
Input Disable Setup Time, ts diss	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		100 35	200 70	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Input Disable Hold Time, $\mathrm{t}_{\mathrm{H}}$ diss	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{C C}=10.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Delay From Output Disable to High Impedance State (From Logical "1" or Logical "0" Level), $t_{\mathrm{IH}}, \mathrm{t}_{\mathrm{OH}}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}}=10 \mathrm{k} \\ & V_{C C}=10.0 \mathrm{~V}, C_{L}=5 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & R_{\mathrm{L}}=10 \mathrm{k} \end{aligned}$		170 70	$\begin{aligned} & 340 \\ & 140 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
- Delay From Output Disable to Logical "1" Level, $\mathrm{t}_{\mathrm{H}}$ (From High Impedance State)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50^{\circ} \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		170 70	$\begin{aligned} & 340 \\ & 140 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Delay From Output Disable to Logical ' 0 " Level, $\mathrm{t}_{\text {HO }}$ (From High Impedance State)	$V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$ $V_{C C}=10.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$		170 70	340 140	ns
Propagation Delay From Clear to Output $\mathrm{t}_{\text {pdR }}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} 240 \\ 90 \end{array}$	$\begin{aligned} & 490 \\ & 180 \end{aligned}$	ns
Maximum Clock Frequency	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 7 \end{aligned}$	$\begin{gathered} 4.0 \\ 12 \end{gathered}$		MHz
Minimum Clear Pulse Width	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} 150 \\ 70 \end{array}$		ns
Maximum Clock Rise and Fall Time	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, C_{L}=50 \mathrm{pF} \\ & V_{C C}=10.0 \mathrm{~V}, C_{L}=50 \mathrm{pF} \end{aligned}$	$\begin{array}{r} 10 \\ 5 \end{array}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$

Note 1: These devices should' not be connected under "Power On" conditions.
electrical characteristics (con't)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LOW POWER TTL/CMOS INTERFACE					
Logical "1" Input Voltage V ${ }_{\text {IN(1) }}$	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{c c}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}{ }^{-1.5}$			V
Logical ' 0 ', Input Voltage $\mathrm{V}_{\text {IN }}(0)$	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, V_{c c}=4.75 \mathrm{~V} \end{aligned}$			. 8	V
Logical "1" Output Voltage $\mathrm{V}_{\text {Out(1) }}$	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, V_{c c}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \end{aligned}$	2.4			V
Logical "0" Output Voltage Vout(0)	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \end{aligned}$			. 4	V
Propagation Delay Time to a Logical " 0 ", $\mathrm{t}_{\mathrm{pdo}}$ or Logical "1" $t_{\text {pdi }}$ From Clock	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	500		ns

OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)
Output Source Current (ISOURCE $)$
Output Source Current (ISOURCE

Output Sink Current ( ${ }_{\text {SINK }}$ )

Output Sink Current ( $I_{\text {SINK }}$ )

$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {IN(O) }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} . \end{aligned}$	-1.75		mA
$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{\text {iN(0) }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	-8.0		mA
$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {IN(1) }}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }}=V_{C C} \end{aligned}$	1.75		mA
$\begin{aligned} & V_{\text {cC }}=10 \mathrm{~V}, V_{\text {IN(1) }}=10 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=V_{C C} \end{aligned}$	8.0		mA

## truth table

Truth Table (Both Output Disables Low)

$t_{n}$		$t_{n+1}$
DATA INPUT DISABLE	DATA   INPUT	OUTPUT
Logic " " 1 " on One or Both Inputs	$\times$	$Q_{n}$
Logic " 0 " on Both Inputs	1	1
Logic " 0 " on Both Inputs	0	0

## switching time waveforms



MM54C174/MM74C174 hex D flip-flop

## general description

The MM54C174/MM74C174 hex D flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N - and P -channel enhancement transistors. All have a direct clear input. Information at the $D$ inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clear is independent of clock and accomplished by a low level at the clear input. All inputs are protected by diodes to $\mathrm{V}_{\mathrm{Cc}}$ and GND.

## features

- Wide supply voltage range 3.0 V to 15 V
- Guaranteed noise margin 1.0 V
- High noise immunity
$0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
- Low power
fan out of 2
TTL compatibility


## logic diagram




## connection diagram


truth table

INPUTS			OUTPUT
CLEAR	CLOCK	D	o
L	X	X	L
H	$\uparrow$	H	H
H	$\uparrow$	L	L
H	L	X	O

## absolute maximum ratings (Note 1)

Voltage at Any Pin Operating Temperature Range MM54C174 MM74C174
Storage Temperature Range
Package Dissipation
Operating $V_{c c}$ Range
Absolute Maximum $\mathrm{V}_{\mathrm{cc}}$
Lead Temperature (Soldering, 10 seconds)
-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
3.0 V to 15 V

18 V
$300^{\circ} \mathrm{C}$

## dc electrical characteristics

$\mathrm{Min} / \mathrm{max}$ limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
Logical " 1 " Input Voltage $\left(\mathrm{V}_{\mathrm{IN}(1)}\right)$   Logical " 0 " Iriput Voltage ( $\mathrm{V}_{\text {IN }(0)}$ )   Logical "1" Output Voltage ( $\stackrel{V}{\text { OUT }}$ (1) )   Logical " 0 " Output Voltage $\left(V_{\text {OUT }}(0)\right.$ )   Logical "1" Input Current $\left(I_{(N(1)}\right)$   Logical " 0 " Input Current ( $I_{\text {IN (0) }}$ )   Supply Current (ICC)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=5.0 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \\ & V_{C C}=5.0 \mathrm{~V}, I_{0}=+10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, \quad I_{0}=+10 \mu \mathrm{~A} \\ & V_{\mathrm{CC}}=15 \mathrm{~V}, \quad V_{I N}=15 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V}, \quad V_{I N}=0 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$	3.5   8.0   4.5   9.0   $-1.0$	$\begin{gathered} 0.005 \\ -0.005 \\ 0.05 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$   0.5   1.0   1.0   300	V V   $\mu \mathrm{A}$   $\mu A$   $\mu \mathrm{A}$
CMOS/LPTTL INTERFACE					
Logical " 1 " Input Voltage ( $\mathrm{V}_{\mathrm{IN}(1)}$ )   Logical " 0 " Input Voltage ( $\mathrm{V}_{\operatorname{IN}(0)}$ )   Logical "1" Output Voltage (Vout(1)   Logical " 0 " Output Voltage ( $V_{\text {OUT }}(0)$ )	54C, $V_{c c}=4.5 \mathrm{~V}$   $74 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$   $54 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$   $74 \mathrm{C}, V_{C C}=4.75 \mathrm{~V}$   54C, $V_{c c}=4.5 \mathrm{~V}, I_{O}=-360 \mu \mathrm{~A}$   $74 \mathrm{C}, V_{C C}=4.75 \mathrm{~V}, I_{O}=-360 \mu \mathrm{~A}$   $54 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}$   $74 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A}$	$\begin{aligned} & V_{\mathrm{cc}^{-1}}{ }^{-1.5} \\ & \mathrm{ccc}^{-1.5} \end{aligned}$ $\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \\ & \\ & \\ & 0.4 \\ & 0.4 \end{aligned}$	$V$ $V$ $V$ $V$ $V$ $V$ $V$ $V$
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)					
Output Source Current ( $1_{\text {source }}$ )   (P.Channel)   Output Source Current (Isource $)$   (P-Channel)   Output Sink Current (ISINK)   (N-Channel)   Output Sink Current (ISINK)   ( N -Channel)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} . \\ & T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=5.0 \mathrm{~V}, V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, V_{\text {OUT }}=V_{C C} . \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$-1.75$   -8.0   1.75   8.0	$-3.3$   $-15$   3.6   16		mA   mA   mA   mA

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time to a Logical	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		150	300	ns
" 0 " ( $t_{\text {pap }}$ ) or Logical " 1 " $\left(t_{\text {pd } 1}\right)$ from Clock to Q	$V_{C C}=10 \mathrm{~V}$		70	110	ns
Propagation Delay Time to a Logical	$V_{c c}=5.0 \mathrm{~V}$		110	300	ns
" 0 " from Clear	$V_{C c}=10 \mathrm{~V}$		50	110	ns
Time Prior to Clock Pulse that Data	$V_{c c}=5.0 \mathrm{~V}$	75			ns
Must be Present ( $\mathrm{t}_{\text {SETUP }}$ )	$V_{C c}=10 \mathrm{~V}$	25			ns
Time After Clock Pulse that Data	$V_{\text {cc }}=5.0 \mathrm{~V}$	75	-10	0	ns
Must be Held (t HOLD)	$V_{C C}=10 \mathrm{~V}$	25	-5	0	ns
Minimum Clock Pulse Width	$V_{c c}=5.0 \mathrm{~V}$		50	250	ns
	$V_{c c}=10 \mathrm{~V}$		35	100	ns
Minimum Clear Pulse Width			65	140	ns
	$V_{c c}=10 \mathrm{~V}$		35	70	ns
Maximum Clock Rise and Fall Time	$V_{c c}=5.0 \mathrm{~V}$	15	$>1200$		$\mu s$
	$V_{c c}=10 \mathrm{~V}$	5.0	$>1200$		$\mu s$
Maximum Clock Frequency		2.0	6.5		MHz
	$V_{c c}=10 \mathrm{~V}$	5.0	12		MHz
Input Capacitance ( $\mathrm{C}_{1 \mathrm{~N}}$ )	Clear Input (Note 2)		11		pF
	Any Other Input		5.0		pF
Power Dissipation Capacitance ( $\mathrm{C}_{\mathrm{pd}}$ )	Per Package (Note 3)		95		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $\mathrm{C}_{\mathrm{pd}}$ determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

## switching time waveforms

CMOS to CMOS

ac test circuit


## MM54C175/MM74C175 quad D flip-flop

## general description

The MM54C175/MM74C175 consists of four positive-edge-triggered D-type flip-flops implemented with monolithic CMOS technology. Both true and complemented outputs from each flip-flop are externally available. All four flip-flops are controlled by a common clock and a common clear. Information at the $D$ inputs meeting the set-up time requirements is transferred to the Q outputs on the positive going edge of the clock pulse. The clearing operation, enabled by a negative pulse at Clear input, clears all four Q outputs to logical " 0 " and $\overline{\mathrm{O}}$ 's to' logical "1."

All inputs are protected from static discharge by diode clamps to $\mathrm{V}_{\mathrm{Cc}}$ and GND.

## features

- Wide supply voltage range 3.0 V to 15 V
- Guaranteed noise margin 1.0 V
- High noise immunity $0.45 \mathrm{~V}_{\text {cc }}$ typ
- Low power fan out of 2
TTL compatibility
driving 74L


## connection diagram and truth table



Each Flip-Flop

INPUTS			OUTPUTS	
CLEAR	CLOCK	D	Q	$\overline{\mathbf{Q}}$
L	X	X	L	H
H	$\uparrow$	H	H	L
H	$\uparrow$	L	L	H
H	H	X	NC	NC
H	L	X	NC	NC

$H=$ High level
$L=$ Low level
$X=$ Irretevant
$\uparrow=$ Transition from low to high level NC $=$ No change

## logic diagrams



## absolute maximum ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range
MM54C175
MM74C175
Storage Temperature Range
Package Dissipation
Operating $V_{C c}$ Range
Absolute Maximum $V_{c c}$
Lead Temperature (Soldering, 10 seconds)
-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
3.0 V to 15 V

18 V
$300^{\circ} \mathrm{C}$
dc electrical characteristics Min/max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
. CMOS TO CMOS					
Logical " 1 " Input Voltage ( $\mathrm{V}_{\text {IN(1) }}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			V
Logical " 0 " Input Voltage ( $\mathrm{V}_{\text {IN }(0)}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	V
Logical " 1 " Output Voltage ( $\mathrm{V}_{\text {OUT }}(1)$ )	$\begin{aligned} & V_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{cc}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			V
Logical "0" Output Voltage ( $\mathrm{V}_{\text {Out }(0)}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \\ & V_{c \mathrm{cc}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
Logical " 1 " Input Current ( $I_{\text {IN(1) }}$ )	$V_{\text {CC }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical " 0 " Input Current ( $1_{\text {IN(0) }}$ )	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
Supply Current ( ${ }_{\text {cc }}$ )	$V_{C C}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
CMOS/LPTTL INTERFACE					
Logical "1" input Voltage ( $\mathrm{V}_{\mathrm{IN}(1)}$ )   MM54C175   MM74C175	$\begin{aligned} V_{c c} & =4.5 \mathrm{~V} \\ V_{c c} & =4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{c c^{-1}} .5 \\ & V_{c c^{-1}} \end{aligned}$			V
```Logical " 0" Input Voltage (VIN(0) MM54C175 MM74C175```	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V} \\ & V_{c c}=4.75 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V
```Logical "1" Output Voltage (V OUT(1) MM54C175 MM74C175```	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{r} 2.4 \\ 2.4 \end{array}$			V
```Logical "0'' Output Voltage (VOut(0) MM54C175 MM74C175```	$\begin{aligned} & V_{c C}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	V

OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)

Output Source Current (ISOURCE (P-Channel)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} ; \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-1.75	-3.3	mA
Output Source Current (ISOURCE) (P-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-8.0	-15	mA
Output Sink Current ($I_{\text {SINK }}$) (N-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6	mA
Output Sink Current ($1_{\text {SINK }}$) (N-Channel)	$\begin{aligned} & V_{\mathrm{CC}}=10 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	8.0	16	mA

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
switching time waveforms

MM54C192/MM74C192 synchronous 4-bit up/down decade counter MM54C193/MM74C193 synchronous

4-bit up/down binary counter

general description

These up/down counters are monolithic complementary MOS (CMOS) integrated circuits. The MM54C192 and MM74C192 are BCD counters. While the MM54C193 and MM74C193 are binary counters.

Counting up and counting down is performed by two count inputs, one being held high while the other is clocked. The outputs change on the positive going transition of this clock.

These counters feature preset inputs that are set when load is a logical " 0 " and a clear which forces all outputs to " 0 " when it is at logical " 1. ." The
counters also have carry and borrow outputs so that they can be cascaded using no external circuitry.

features

- High noise margin	1 V guaranteed
- Tenth power	drive 2 LPTTL
TTL compatible	loads
- Wide supply range	3 V to 15 V
- Carry and borrow outputs for N -bit cascading	
- Asynchronous clear	
- High noise immunity	$0.45 \mathrm{~V}_{\mathrm{Cc}}$ typ

connection diagram

cascading packages

absolute maximum ratings
Voltage at Any Pin (Note 1) $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$

Operating Temperature Range
MM54C192, MM54C193
MM74C192, MM74C193
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\prime \prime} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Maximum V_{cc} Voltage
18 V
Package Dissipation
500 mW
Operating V_{cc} Range
+3 V to +15 V Lead Temperature (Soldering, 10 sec)
$300^{\circ} \mathrm{C}$
electrical characteristics (Min/max limits apply across temperature range unless otherwise specified.)

CMOS TO TENTH POWER INTERFACE

Logical "1" Input Voltage ($\mathrm{V}_{\text {IN(1) }}$)	$\begin{array}{ll} 54 \mathrm{C} & V_{c c}=4.5 \mathrm{~V} \\ 74 \mathrm{C} & V_{c C}=4.75 \mathrm{~V} \end{array}$	$\begin{aligned} & v_{\mathrm{cc}^{-1}} .5 \\ & \mathrm{~V}_{\mathrm{cc}}-1.5 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$
Logical " 0 ' Input Voltage ($\mathrm{V}_{\text {IN(0) }}$)	$\begin{aligned} & 54 \mathrm{C} \quad V_{c c}=4.5 \mathrm{~V} \\ & 74 \mathrm{C} \quad V_{c c}=4.75 \mathrm{~V} \end{aligned}$		0.8 0.8	v
Logical "1"Output Voltage (VOUT(1)	$\begin{aligned} & 54 \mathrm{C} \quad V_{c C}=4.5 \mathrm{~V}, \quad I_{0}=-360 \mu \mathrm{~A} \\ & 74 \mathrm{C} \quad V_{C C}=4.75 \mathrm{~V}, I_{0}=-360 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$		v
Logical "0' Output Voltage (Vourio)	$\begin{array}{ll} 54 \mathrm{C} & V_{C C}=4.5 \mathrm{~V}, \quad I_{0}=360 \mu \mathrm{~A} \\ 74 \mathrm{C} & V_{C C}=4.75 \mathrm{~V}, \quad I_{0}=360 \mu \mathrm{~A} \end{array}$		0.4 0.4	v
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)				
Output Source Current (Isource)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {IN(O) }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=0 \mathrm{~V} \end{aligned}$	-1.75		mA
Output Source Current (${ }_{\text {source }}$)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{\text {IN(O) }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	-8.0		mA
Output Sink Current ($\mathrm{I}_{\text {SINK }}$)	$\begin{aligned} & V_{C c}=5.0 \mathrm{~V}, V_{(N(1)}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=V_{C C} \end{aligned}$	1.75		mA
Output Sink Current ($\mathrm{I}_{\text {SINK }}$)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{\text {N(11 }}=10 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=V_{C C} \end{aligned}$	8.0		mA

Note 1: This device should not be connected to circuits with the power on because high transient voltage may cause permanent damage.

schematic diagrams

Note 1: Clear outpouts io zero.
Note 2: Load (presert) to BCD severi.
Note 3: Count up w o sight, nine, carry, zero, one, and two.

Note 1: Cleas outputs to zero.
Note 2: Load (presert) to binary thitten.
Nota 3: Count up to tourtesn, fiftenn, arry, zero, ans, and two.
Nott 4: Count down to one, zroo, borrow, fifteen, fourtem, and thirteen.

MM54C192/MM74C192

MM54C195/MM74C195 4-bit registers

general description

The MM54C195/MM74C195 CMOS 4-bit registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/load control input and a direct overriding clear. The following two modes of operation are possible.

Parailel Load
Shift in direction Q_{A} towards Q_{D}
Parallel loading is accomplished by applying the four bits' of data and taking the shift/load control input low. The data is loaded into the associated flip-flops and appears at the outputs after the positive transition of the clock input. During parallel loading, serial data flow is inhibited.

Serial shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the $\mathrm{J} \cdot \overline{\mathrm{K}}$ inputs. These inputs allow the first stage to perform as a J-K, D or T-type flip flop as shown in the truth table.

features

- Medium speed operation 8.5 MHz (typ) with 10 V supply and 50 pF load
- High noise immunity $\quad 0.45 \mathrm{~V}_{\mathrm{cc}}$ (typ)
- Low power

100 nW (typ)

- Tenth power TTL compatible drive 2 LPTTL loads
- Supply voltage range 3 V to 15 V
- Synchronous parallel load
- Parallel inputs and outputs from each flip-flop
- Direct overriding clear
- J and $\overline{\mathrm{K}}$ inputs to first stage
- Complementary outputs from last stage
- Positive edge triggered clocking
- Diode clamped inputs to protect against static charge

applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm systems
- Remote metering
- Industrial electronics
- Computers

schematic and connection diagrams

absolute maximum ratings

Voltage at Any Pin (Note 1)
Operating Temperature \quad MM54C195

Storage Temperature
MM74C195
Maximum $V_{c c}$ Voltage
Package Dissipation
Lead Temperature (Soldering, 10 sec)
Operating $V_{c c}$ Range
$-0.3 V \cdot$ to $V_{c c}+0.3 V$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
18 V
500 mW
$300^{\circ} \mathrm{C}$
+3 V to +15 V
electrical characteristics Max/Min limits apply across temperature range unless otherwise specified.

PARAMETER	1	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos						
, Logical " 1 " Input Voltage $\mathrm{V}_{1 \mathrm{~N}(1)}$	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical " 0 " Input Voltage $\mathrm{V}_{\text {(N }}(0)$	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Logical "1" Output Voltage $\mathrm{V}_{\text {out(1) }}$	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical "0" Output Voltage $\mathrm{V}_{\text {Outiol }}$	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	v
Logical "1" Input Current $\mathrm{I}_{\text {IN(1) }}$	$V_{c c}=15.0 \mathrm{~V}$			0.005	1.0	$\mu \mathrm{A}$
Logical "0" Input Current $\mathrm{I}_{\text {IN(0) }}$	$V_{c c}=15.0 \mathrm{~V}$		-1.0	-0.005		$\mu \mathrm{A}$
Supply Current Icc	$V_{C C}=15.0 \mathrm{~V}$			0.050	300	$\mu \mathrm{A}$
Input Capacitance	Any Input			5.0		pF
Propagation Delay Time to a Logical " 0 " $t_{\text {pad }}$ or Logical " 1 " $t_{\text {pd1 }}$ from Clock to Q or Q	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$	$C_{L}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$ $C_{L}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$		150 75	$\begin{aligned} & 300 \\ & 130 \end{aligned}$	ns
Propagation Delay Time to a Logical " 0 " or Logical " 1 " From Clear to Q or $\overline{\mathrm{Q}}$	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		150 50	$\begin{aligned} & 300 \\ & 130 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Time Prior to Clock Pulse That Data Must be Present tsetup	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		80 35	200 70	ns
Time Prior to Clock Puise That Shift/Load Must be Present tsetup	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$	$C_{L}=50 \mathrm{pF}, T_{A}=25^{\circ} \mathrm{C}$ $\mathrm{C}_{L}=50 \mathrm{pF}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$		110 60	150 90	ns
Time After Clock Pulse That Data Must be Held	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} -10 \\ -5 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Minimum Clock Pulse Width ($\mathrm{twL}=\mathrm{t}_{\mathrm{WH}}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} 100 \\ 50 \end{array}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	ns ns
Minimum Clear Pulse Width .	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, T_{A}=25^{\circ} \mathrm{C} \\ & C_{L}=50 \mathrm{pF}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 90 \\ & 40 \end{aligned}$	$\begin{array}{r} 130 \\ 60 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$
Maximum Clock Rise and Fall Time	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & C_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 2.0 \end{aligned}$			$\begin{aligned} & \mu_{\mathrm{s}} \\ & \mu_{\mathrm{s}} \end{aligned}$
Maximum Input Clock Frequency	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 8.5 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
LOW POWER TTL/CMOS INTERFACE						
Logical "1" input Voltage $\mathrm{V}_{\text {IN(1) }}$	$\begin{aligned} & 54 \mathrm{C} \\ & 74 \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V} \\ & V_{c c}=4.75 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}-1.5$			V
Logical " 0 " Input Voltage VIN(0)	$\begin{aligned} & 54 \mathrm{C} \\ & 74 \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V} \\ & V_{c c}=4.75 \mathrm{~V} \end{aligned}$			0.8	V
Logical "1" Output Voltage $\mathrm{V}_{\text {OUT(1) }}$	$\begin{aligned} & 54 C \\ & 74 C \end{aligned}$	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V}, I_{D}=-360 \mu \mathrm{~A} \\ & V_{c C}=4.75 \mathrm{~V}, I_{D}=-360 \mu \mathrm{~A} \end{aligned}$	2.4			v
Logical "0" Output Voltage Voutio)	$\begin{aligned} & 54 \mathrm{C} \\ & 74 \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{c C}=4.5 \mathrm{~V}, I_{\mathrm{D}}=360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}, I_{\mathrm{D}}=360 \mu \mathrm{~A} \end{aligned}$			0.4	V

OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)

Note: These devices should not be connected under power on condition.

switching time waveforms

CMOS to CMOS

TTL to CMOS

truth table

INPUTS AT t_{n}		OUTPUTS AT $\mathrm{t}_{\mathrm{n}+1}$				
J	$\overline{\mathrm{K}}$	$\mathrm{a}_{\text {A }}$	o_{3}	O_{C}	Q_{D}	$\overline{0}_{\text {D }}$
1	ب	$n_{4,}$	$\square_{4 n}$	2	$a_{\text {cn }}$.	$\overline{\bar{c}}_{6}$
L	L	L	$\mathrm{a}_{\text {An }}$	$\mathrm{Q}_{8 \mathrm{n}}$	a_{cn}	$\overline{\mathrm{o}}_{\text {cn }}$
H	H	H	$\mathrm{a}_{A_{1}}$	O_{Bn}	$Q_{\text {cn }}$	$\overline{\mathrm{o}}_{\text {c }}$
H	L	$\overline{\mathrm{a}}_{\bar{A}}$	$Q_{A n}$	$\mathrm{O}_{\text {bn }}$	O_{Cn}	$\overline{\mathrm{a}}_{\mathrm{cn}}$

Note: H = HIGH LEVEL. L = LOW LEVEL
$t_{n}=$ bit time before clock pulse
$n+1=$ bit time after clock puls
$\alpha_{A n}=$ State of α_{A} at t_{n}

MM54C200／MM74C200 256－bit TRI－STATE ${ }^{\circledR}$ random access read／write memory

general description

The MM54C200／MM74C200 is a 256 －bit random access read／write memory．Inputs consist of eight address lines，a data input line，a write $\overline{\text { enable }}$ line，and three chip enables．The eight binary address inputs are decoded internally to select each of the 256 locations．An internal address register，latches and address information on the positive to negative edge of $\overline{\mathrm{CE}}_{3}$ ．The TRI－ STATE data output line working in conjunction with $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{CE}}_{2}$ inputs provides for easy memory expansion．

Address Operation：Address inputs must be stable $t_{S A}$ prior to the positive to negative transition of CE_{3} ．It is thus not necessary to hold address information stable for more than $t_{H A}$ after the memory is enabled（positive to negative transition）．

Note：The timing is different than the DM74200 in that a positive to negative transition of the memory enable must occur for the memory to be selected．

Read Operation：The data is read out by selecting the proper address and bringing $\overline{C E}_{3}$ low and write enable high．Holding $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{CE}}_{2}$ or $\overline{\mathrm{CE}}_{3}$ at a high level forces the output into TRI－STATE． When used in bus organized systems，$\overline{\mathrm{CE}}_{1}$ ，or $\overline{\mathrm{CE}}_{2}$ ， a TRI－STATE control，provides for fast access times by not totally disabling the chip．

Write Operation：Data is written into the memory with $\overline{\mathrm{CE}}_{3}$ low and write enable low．The state of $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{CE}}_{2}$ has no effect on the write cycle．The output assumes TRI－STATE with write enable low．

features

－Wide supply voltage range 3.0 V to 15 V
－Guaranteed noise margin 1.0 V
－High noise immunity
$0.45 \mathrm{~V}_{\text {cc }}$ typ
－TTL compatibility fan out of 1 driving standard TTL
－Low，power 500 nW typ
－Internal address register

logic and connection diagrams

Order Number MM54C200D or MM74C200D
See Package 3
Order Number MM74C200N
See Package 15

absolute maximum ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range
MM54C200
MM74C200
Storage Temperature Range
Package Dissipation
Operating V_{Cc} Range
Absolute Maximum V_{cc}
Lead Temperature (Soldering, 10 seconds)
$-0.3 V$ to $V_{c c}+0.3 V$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

500 mW
3.0 V to 15 V

18 V
$300^{\circ} \mathrm{C}$

dc electrical characteristics

$\mathrm{Min} / \mathrm{max}$ limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
Logical " 1 " Input Voltage ($V_{\text {IN(1) }}$) Logical " 0 " Input Voltage ($\mathrm{V}_{\text {IN }}$ (o)) Logical " 1 " Output Vottage (VOUT(1) Logical " 0 " Output Voltage (Vout (o) Logical " 1 " Input Current (In (1)) Logical " 0 " Input Current (IIN (0) Supply Current (${ }^{\text {cc }}$)		3.5 8.0 4.5 9.0. -1.0	$\begin{gathered} 0.005 \\ -0.005 \\ 0.10 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \\ & 0.5 \\ & 1.0 \\ & 1.0 \\ & 600 \end{aligned}$	V v v v v v v v $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
CMOS/TTLINTERFACE					
Logical " 1 " Input Voltage (ViN(1) Logical " 0 " Input Voltage ($V_{\text {intol }}$) Logical "1" Output Voltage (Vout(1)) Logical "0" Output Voltage (VOUT(0)	54C. $V_{c c}=4.5 \mathrm{~V}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$ $54 \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$ 54C, $V_{c C}=4.5 \mathrm{~V}, 1_{0}=-1.6 \mathrm{~mA}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-1.6 \mathrm{~mA}$ $54 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$ $74 \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=1.6 \mathrm{~mA}$	$\begin{aligned} & v_{c c}-1.5 \\ & v_{c c}-1.5 \end{aligned}$ 2.4 2.4		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$ 0.4 0.4	$\begin{aligned} & v \\ & v \end{aligned}$

OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)

	Output Source Current (Isource) (P.Channel)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} . \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {OUT }}=O V$	$\begin{aligned} & -4.0 \\ & -1.8 \end{aligned}$	-6.0		mA	
-	Output Source Current (ISOURCE $)$ (P-Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {OUT }}=O V$	$\begin{aligned} & -16.0 \\ & -1.50 \end{aligned}$	-25		$m A$	
.	Output Sink Current ($I_{\text {SINK }}$) (N-Channel)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {OUT }}=V_{\text {cc }}$	5.0	8.0	-	$m A$.
	Output Sink Current (Sink $^{\text {S }}$) $\mathrm{N} \cdot$ Channel $)$	$\begin{aligned} & V_{c c}=10 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {OUT }}=V_{\text {CC }}$	20.0	30	-	mA	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

ac electrical characteristics (con't)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	$\begin{aligned} & 160 \\ & 70 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\overline{\mathrm{CE}}_{3}$ Pulse Widths (${ }_{\text {ce }}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 400 \\ & 160 \end{aligned}$	$\begin{aligned} & 200 \\ & 80 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Input Capacity ($\mathrm{C}_{\text {IN }}$)	Any Input (Note 2)		5.0		pF
Output Capacity in TRI-STATE (Cout)	(Note 2)		9.0	.	pF
Power Dissipation Capacity ($C_{p d}$)	(Note 3)		400		pF

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical - Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $\mathrm{C}_{\text {pd }}$ determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
switching time waveforms

MM54C221/MM74C221 dual monostable multivibrator

general description

The MM54C221/MM74C221 dual monostable multivibrator is monolithic complementary MOS integrated circuit. Each multivibrator features a negative-transitiontriggered input and a positive-transition-triggered input either of which can be used as an inhibit input, and a clear input.

Once fired, the output pulses are independent of further transitions of the A and B inputs and are a function of the external timing components $\mathrm{C}_{E X T}$ and $\mathrm{R}_{\mathrm{EXT}}$. The pulse width is stable over a wide range of temperature and $V_{\text {cc }}$. Pulse stability will be limited by the accuracy
of external timing components. The pulse width is approximately defined by the relationship $\mathrm{t}_{\mathrm{W} \text { (OUT })} \approx$ $C_{E \times T} R_{E X t}$. For further information and applications, see AN-138.

features

- Wide supply voltage range 4.5 V to 15 V
- Guaranteed noise margin 1.0 V
- High noise immunity $0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
- Low power
fan out of 2 driving 74L

connection diagrams

Timing Component

truth table

INPUTS			OUTPUTS	
CLEAR	A	B	0	$\overline{\mathbf{0}}$
L	X	x	L	H
X	H	\times	L	H
X	X	L	L	H
H	L	\uparrow	Ω	Ч
H	\downarrow	H	Ω	-

[^2]
absolute maximum ratings (Note 1)

Voltage at Any Pin	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$	Package Dissipation	500 mW
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Operating $V_{c c}$ Range	Absolute Maximum $V_{c c}$
MM54C221	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$R_{E X T} \geq 80 V_{c c}(\Omega)$	4.5 V to 15 V
MM74C221	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 10 seconds)	18 V
Storage Temperature Range		$300^{\circ} \mathrm{C}$	

dc electrical characteristics $\mathrm{Min} /$ max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
Logical " 1 " Input Voltage ($\mathrm{V}_{\text {IN }}(1)$)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical " 0 " Input Voltage ($\mathrm{V}_{\text {IN(0) }}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			1.5 2.0	v
Logical "1" Output Voltage (Vout(1)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Logical ' 0 " Output Voltage ($\mathrm{V}_{\text {Out(0) }}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{cc}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \end{aligned}$			0.5 1.0	$\begin{aligned} & v \\ & v \end{aligned}$
Logical "1" Input Current ($\mathrm{I}_{\operatorname{IN}(1)}$)	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical " 0 " Input Current ($I_{\text {IN(0) }}$)	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
Supply Current (1 cc) (Standiby)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=\infty, \\ & \mathrm{Q} 1, \mathrm{Q} 2=\text { Logic } 0 \text { (Note 3) } \end{aligned}$		0.05	300	$\mu \mathrm{A}$
Supply Current (I_{cc}) (During Output Pulse)	$\begin{aligned} & V_{\mathrm{Cc}}=15 \mathrm{~V}, \mathrm{Q} 1=\text { Logic } 1, \\ & \mathrm{Q} 2=\text { Logic } 0(\text { Figure } 4) \end{aligned}$		15		mA
	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{Q} 1=\text { Logic } 1, \\ & \mathrm{Q} 2=\text { Logic } 0(\text { Figure } 4) \end{aligned}$		2		mA
Leakage Current at $\mathrm{R} / \mathrm{C}_{\text {EXT }}$ Pin	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {CEXT }}=5.0 \mathrm{~V}$		0.01	3	$\mu \mathrm{A}$
CMOS/LPTTL INTERFACE					
```Logical "1" Input Voltage (V IN(1) MM54C221 MM74C221```	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V} \\ & V_{c c}=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{-1} .5} \\ & \mathrm{~V}_{\mathrm{cc}^{-1 .}} \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical " 0 " Input Voltage ( $\mathrm{V}_{\text {IN(0) }}$ ) MM54C221   MM74C221	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V} \\ & V_{c c}=4.75 \mathrm{~V} \end{aligned}$			0.8 0.8	v
```Logical "1" Output Voltage (V Out(1) MM54C221 MM74C221```	$\begin{aligned} & V_{c c}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			V
Logical " 0 " Output Voltage ($V_{\text {out }}(0)$ MM54C221 MM74C221	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \end{aligned}$			0.4 0.4	V

OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)

Output Source Current (I ${ }_{\text {source }}$)
(P-Channel)
Output Source Current (Isource)
(P-Channel)
Output Sink Current (ISINK)
(N -Channel)
Oufput Sink Current ($I_{\text {SINK }}$)
(N-Channel)
$V_{C C}=5.0 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V}$,
$T_{A}=25^{\circ} \mathrm{C}$
$V_{\text {cc }}=10 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V}$,
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=5.0 \mathrm{~V}, V_{\text {OUT }}=V_{C C}$,
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C C}=10 \mathrm{~V}, V_{\text {OUT }}=V_{C C}$,
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$|$| -1.75 | -3.3 |
| :---: | :---: |
| -8.0 | -15 |
| 1.75 | 3.6 |
| 8.0 | 16 |

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay from Trigger Input (A, B) to Output $\mathrm{Q}, \overline{\mathrm{C}}\left(\mathrm{t}_{\text {PD }} A, B\right)$	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		250 120	$\begin{aligned} & 500 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay from Clear Input (CL) to Output $\mathrm{Q}, \overline{\mathrm{Q}}$ (tpDCL)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		250 120	500 250	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Time Prior to Trigger Input (A, B) that Clear must be set ($\mathrm{t}_{\text {SET }}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 150 \\ & 60 \end{aligned}$	50 20		ns
Trigger Input (A, B) Pulse Width ($\mathrm{t}_{\mathrm{W}(\mathrm{A}, \mathrm{B})}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 150 \\ & 70 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns}, \\ & \mathrm{~ns} \end{aligned}$
Clear Input (CL) Pulse Width (tw(CL)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	150 70	$\begin{aligned} & 50 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Q or $\overline{\mathrm{Q}}$ Output Pulse Width ($\mathrm{t}_{\text {wour }}$)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, R_{E X T}=10 \mathrm{k}, \\ & C_{E X T}=0 \mathrm{pF} \end{aligned}$		900		ns
	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, R_{E X T}=10 \mathrm{k}, \\ & C_{E X T}=0 \mathrm{pF} \\ & V_{C C}=15 \mathrm{~V}, R_{E X T}=10 \mathrm{k}, \\ & C_{E X T}=0 \mathrm{pF} \end{aligned}$		350 320		ns ns
	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, R_{E X T}=10 \mathrm{k}, \\ & C_{E X T}=1000 \mathrm{pF} \quad \text { (Figure 1) } \end{aligned}$	9	10.6	12.2	${ }^{\mu}$
	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, R_{E X T}=10 \mathrm{k}, \\ & C_{E X T}=1000 \mathrm{pF} \quad \text { (Figure 1) } \end{aligned}$	9	10	11	$\mu \mathrm{s}$
	$\begin{aligned} & V_{C C}=15 \mathrm{~V}, R_{E \times T}=10 \mathrm{k}, \\ & C_{E X T}=1000 \mathrm{pF} \text { (Figure 1) } \end{aligned}$	8.9	9.8	10.8	$\mu \mathrm{s}$
	$\begin{aligned} & V_{C C}=5.0 V, R_{E X T}=10 \mathrm{k}, \\ & C_{E X T}=0.1 \mu \mathrm{~F} . \quad \text { (Figure 2) } \end{aligned}$	900	1020	1200	$\mu \mathrm{s}$
	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k}, \\ & C_{E X T}=0.1 \mu \mathrm{~F} \quad \text { (Figure 2) } \end{aligned}$	900	1000	1100	$\mu \mathrm{s}$
	$\begin{aligned} & V_{C C}=15 \mathrm{~V}, R_{E X T}=10 \mathrm{k}, \\ & C_{E X T}=0.1 \mu \mathrm{~F} \quad \text { (Figure 2) } \end{aligned}$	900	990	1100	$\mu_{\text {S }}$
ON Resistance of Transistor Between	$V_{C C}=5.0 \mathrm{~V}$ (Note 4)		50	150	Ω
$R / \mathrm{C}_{E \times T}$ to $\mathrm{C}_{\text {EXT }}\left(\mathrm{R}_{\text {ON }}\right)$	$V_{C C}=10 \mathrm{~V}$ (Note 4)		25	65	Ω
	$V_{C C}=15 \mathrm{~V}$ (Note 4)		16.7	45	Ω
Output Duty Cycle	$\begin{aligned} & R=10 \mathrm{k}, \mathrm{C}=1000 \mathrm{pF} \\ & R=10 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F} \text { (Note 5) } \end{aligned}$		($\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Input Capacitance ($\mathrm{C}_{\text {IN }}$)	R/C $\mathrm{CXT}_{\text {I }}$ Input (Note 2) Any Other Input (Note 2)		15	25	pF pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: In Standby $(Q=$ Logic 0$)$ the power dissipated equals the leakage current plus $V_{C C} / R_{E X T}$.
Note 4: See An-138 for detailed explanation of RON.
Note 5: Maximum output duty cycle $=\frac{R_{\text {EXT }}}{R_{\text {EXT }}+1000}$
typical performance characteristics

Figure 1
Typical Distribution of Units for Output Pulse Width

Figure 3
Typical Variation in Output Pulse Width vs Temperature

switching time waveforms

MM74C373 octal latch MM74C374 octal D-type flip-flop

general description

The MM74C373 and MM74C374 are integrated, complementary MOS (CMOS), 8-bit storage elements with TRI-STATE ${ }^{\circledR}$ outputs. These outputs have been specially designed to drive highly capacitive loads, such as one might find when driving a bus, and to have a fan-out of 1 when driving standard TTL. When a high logic level is applied to the OUTPUT DISABLE input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.
The MM74C373 is an 8-bit latch. When $\overline{\text { LATCH }} \overline{\text { ENABLE }}$ is high the Q outputs will follow the D inputs. When $\overline{\text { LATCH ENABLE }}$ goes low, data at the D inputs, which meets the setup and hold time requirements, will be retained at the outputs until LATCH ENABLE returns high again.

The MM74C374 is an 8-bit, D-type, positive-edge triggered flip-flop. Data at the D inputs, meeting the setup and hold time requirements, is transferred to the Q outputs on positive-going transitions of the CLOCK input.

Both the MM74C373 and the MM74C374 are being assembled in the new 20 -pin dual-in-line package with $0.300^{\prime \prime}$ pin centers.

features

- Wide supply voltage range 3.0 V to 15 V
- High noise immunity
$0.45 \mathrm{~V}_{\mathrm{CC}}$ typ
- Low power consumption
- TTL compatibility
fan-out of 1 driving
- Bus driving capability
- TRI-STATE ${ }^{\circledR}$ outputs
- Eight storage elements in one package
- Single CLOCK/LATCH ENABLE and OUTPUT DISABLE control inputs
- 20-pin dual-in-line package with $0.300^{\prime \prime}$ centers takes half the board space of a 24 -pin package

connection diagrams

MM74C373
TOP VIEW

MM74C374

truth tables

MM74C373

OUTPUT DISABLE	LATCH ENABLE	D	Q
L	H	H	H
L	H	L	L
L	L	X	Q
H	X	X	$\mathrm{Hi}-\mathrm{Z}$

MM74C374

OUTPUT DISABLE	CLOCK	\mathbf{D}	\mathbf{Q}
L	-	H	H
L	-	L	L
L	L	X	Q
H	X	X	$\mathrm{Hi} \cdot \mathrm{Z}$

$$
\begin{aligned}
\mathrm{L} & =\text { low logic level } \\
\mathrm{H} & =\text { high logic level } \\
\mathrm{X} & =\text { irrelevant } \\
- & =\text { low to high logic level transition } \\
\mathrm{Q} & =\text { preexisting output level } \\
\mathrm{Hi}-\mathrm{Z} & =\text { high impedance output state }
\end{aligned}
$$

logic diagrams

MM54C901/MM74C901 hex inverting TTL buffer MM54C902/MM74C902 hex non-inverting TTL buffer MM54C903/MM74C903 hex inverting PMOS buffer MM54C904/MM74C904 hex non-inverting PMOS buffer

general description

These hex buffers employ complementary MOS to achieve wide supply operating range, low power consumption, high noise immunity. These buffers provide direct interface from PMOS into CMOS or TTL and direct interface from CMOS to TTL or CMOS operating at a reduced $V_{\text {cc }}$ supply. For specific applications see MOS Brief 18 in the back of this catalog.

connection and logic diagrams

MM54C901/MM74C901 MM54C903/MM74C903

MM54C901/MM74C901 CMOS to TTL Inverting Buffer

MM54C902/MM74C902 MM54C904/MM74C904

MM54C903/MM74C903
PMOS to TTL or CMOS Inverting Buffer

MM54C904/MM74C904 PMOS to TTL or CMOS Buffer

absolute maximum ratings (Note 1)

Voltage at Any Output Pin Voltage at Any Input Pin MM54C901/MM74C901 MM54C902/MM74C902 MM54C903/MM74C903 MM54C904/MM74C904
$-0.3 V$ to $V_{c c}+0.3 V$
$-0.3 V$ to $+15 V$
-0.3 V to +15 V
$V_{c c}-17 V$ to $V_{c c}+0.3 V$ $V_{c c}-17 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$

Operating Temperature Range
MM54C901, MM54C902, MM54C903, MM54C904-55 ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ MM74C901, MM74C902, MM74C903, MM74C904 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Package Dissipation 500 mW
Operating $V_{c c}$ Range $\quad 3.0 \mathrm{~V}$ to 15 V
Absolute Maximum $V_{c c}$ $300^{\circ} \mathrm{C}$
dc electrical characteristics
$\mathrm{Min} /$ max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS					
Logical "1" Input Voltage ($\mathrm{V}_{\text {IN(1) }}$) .	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	3.5 8.0			$\begin{aligned} & v \\ & v \end{aligned}$
Logicat " 0 " Input Voltage ($\mathrm{V}_{\text {IN }(0)}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
Logical "1" Output Voltage ($V_{\text {Out }}(1)$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & V_{c \mathrm{cc}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical "0" Output Voltage ($\mathrm{V}_{\text {OUT }}(0)$)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, I_{O}=+10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{0}=+10 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Logical "1" input Current ($1_{\text {IN }(1)}$)	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical " 0 " Input Current ($1_{\text {in }}^{\text {(0) }}$) $)$	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$.	-1.0	-0.005		$\mu \mathrm{A}$
Supply Current ($\mathrm{lcc}_{\text {c }}$)	$V_{C C}=15 \mathrm{~V}$		0.05	15	$\mu \mathrm{A}$

TTL TO cmos
Logical " 1 " Input Voltage ($\mathrm{V}_{\mathrm{IN}(1)}$)

CMOS TO TTL
Logical "1" Input Voltage ($\mathrm{V}_{\text {IN(1) }}$) MM54C901, MM54C903 . MM54C902, MM54C904 MM74C901, MM74C903 MM74C902, MM74C904

Logical " 0 " Input Voltage ($\mathrm{V}_{\text {IN }(0)}$) MM54C901, MM54C903 MM54C902, MM54C904 MM74C901, MM74C903 MM74C902, MM74C904

Logical " 1 " Output Voltage ($\mathrm{V}_{\text {OUT(1) }}$)
Logical " 0 " Output Voltage ($\mathrm{V}_{\text {OUT(0) }}$) MM54C901, MM54C903 MM54C902, MM54C904 MM74C901, MM74C903 MM74C902, MM74C904

OUTPUT DRIVE (MM54C901/MM74C901, MM54C903/MM74C903) (See 54C/74C Family Characteristics Data Sheet)
Output Source Current (Isource)
(P-Channel) (P-Channel)
Output Source Current (Isource $)$ (P-Channel)
Output Sink Current (ISINK) (N-Channel)

Output Sink Current (ISINK) (N-Channel)

$V_{C C}=5.0 \mathrm{~V}, V_{O U T}=O V$	-5.0		mA
$T_{A}=25^{\circ} \mathrm{C}, V_{I N}=0 \mathrm{~V}$			mA
$V_{C C}=10 \mathrm{~V}, V_{O U T}=0 \mathrm{~V}$	-20		mA
$T_{A}=25^{\circ} \mathrm{C}, V_{I N}=0 \mathrm{~V}$			
$V_{C C}=5.0 \mathrm{~V}, V_{O U T}=V_{C C}$	9		mA
$T_{A}=25^{\circ} \mathrm{C}, V_{I N}=V_{C C}$			
$V_{C C}=5.0 \mathrm{~V}, V_{O U T}=0.4 \mathrm{~V}$	3.8		
$T_{A}=25^{\circ} \mathrm{C}, V_{I N}=V_{C C}$			

typical performance characteristics

general description

The MM54C905/MM74C905 CMOS 12-bit successive approximation register contains all the digit control and storage necessary for successive approximation analog-to-digital conversion. Because of the unique capability of CMOS to switch to each supply rail without any offset voltage, it can also be used in digital systems as the control and storage element in repetitive routines.

features

- Wide supply voltage range
3.0 V to 15 V
- Guaranteed noise margin
- High noise immunity
- Low power TTL compatibility $0.45 \mathrm{~V}_{\text {cc }}$ typ fan out of 2 driving 74L
- Provision for register extension or truncation
- Operates in START/STOP or continuous conversion mode
- Drive ladder switches directly. For 10 bits or less with 50k/100k R/2R ladder network

connection diagram

truth table

TIME	INPUTS			OUTPUTS													
t_{n}	D	$\overline{\mathrm{S}}$	$\overline{\mathrm{E}}$	D0	Q11	Q10	Q9	08	07	Q6	05	04	Q3	Q2	01	00	$\overline{\mathrm{CC}}$
0	x	L	L	x	\times	X	X	X	\times	X	X	X	X	X	\times	X	X
1	D11	H	L	x	L	H	H	H	$\mathrm{H}^{\text {® }}$	H	H	H	H	H	H	H	H
2	D10	H	L	D11	D11	L	H	H	H	H	H	H	H	H	H	H	H
3	D9	H	L	D10	D11	D10	L	H	H	H	H	H	H	H	H	H	H
4	D8	H	L	D9	D11	D10	D9	L	H	H	H	H	H	H	H	H	H
5	D7	H	L	D8	D11	D10	D9	D8	L	H	H	H	H	H	H	H	H
6	D6	H	L.	D7	D11	D10	D9	D8	D7	L	H	H	H	H	H	H	H
7	D5	H	L	D6	D11	D10	D9	D8	D7	D6	L	H	H	H	H	H	H
8	D4	H	L	D5	D11	D10	D9	D8	D7	D6	D5	L	H	H	H	H	H
9	D3	H	L	D4	D11	D10	D9	D8	D7	D6	D5	D4	L	H	H	H	H
10	D2	H	L	D3	D11	D10	D9	D8	D7	D6	D5	D4	D3	L	H	H	H
11	D1	H	L	02	D11	D10	D9	D8	D7	06	D5	D4	D3	D2	L	H	H
12	D0	H	L	D1	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	L	H
13	x	H	L	D0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	L
14	x	x	L.	x	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	L
	X	X	H	\times	H	NC											

[^3]$N C=$ No change

absolute maximum ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range MM54C905 MM74C905
Storage Temperature Range
Package Dissipation
Operating $V_{c c}$ Range
Absolute Maximum $V_{c c}$
Lead Temperature (Soldering, 10 seconds)
-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
3.0 V to 15 V

18 V
$300^{\circ} \mathrm{C}$
dc electrical characteristics Min/max limits apply across temperature range, unless otherwise noted.

CMOS/LPTTL INTERFACE

OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)

	Output Source Current (ISOURCE (P.Channei)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-1.75	-3.3		mA
	Output Source Current (ISOURCE (P.Channel)	$\begin{aligned} & \therefore V_{\mathrm{CC}}=10 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-8.0	-15		mA
	Output Sink Current (ISINK) (N.Channel)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6		mA
:	Output Sink Current (ISink) (N -Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	8.0	16		mA
	Q11-00 Outputs Rource	$\begin{aligned} & V_{C C}=10 \mathrm{~V} \pm 5 \% \\ & V_{\text {OUT }}=V_{c C}-0.3 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	150		. 350	Ω
	$\mathrm{R}_{\text {SINK }}$	$\begin{aligned} & V_{C C}=10 \mathrm{~V} \pm 5 \% \\ & V_{\text {OUT }}=0.3 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	80		230	Ω

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time From Clock	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		200	350	ns
Input To Outputs ($00-\mathrm{Q11)}$ ($\mathrm{t}_{\text {pd(0) }}$)	$V_{c c}=10 \mathrm{~V}$		80	150	ns
Propagation Delay Time From Clock	$\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$		180	325	ns
Input To $\mathrm{D}_{0}\left(\mathrm{t}_{\mathrm{po}}\left(\mathrm{D}_{\mathrm{o}}\right)\right.$)	$V_{c c}=10 \mathrm{~V}$		70	125	ns
Propagation Delay Time From Register	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		190	350	ns
Enable (\bar{E}) To Output (Q11) ($\mathrm{t}_{\text {pa(}}$ ($)^{\text {) }}$)	$V_{c c}=10 \mathrm{~V}$		75	150	ns
Propagation Delay Time From Clock	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		190	350	ns
To $\overline{\mathrm{CC}}\left(\mathrm{t}_{\mathrm{pa}(\overline{\mathrm{CC}})}\right)$.	$\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$		75	0.50	ns
Data Input Set-Up Time (tos)	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	80			ns
	$V_{c c}=10 \mathrm{~V}$	30			ns
Start Input Set-Up Time ($\mathrm{t}_{\text {S }}$)	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	80	-		ns
	$V_{c c}=10 \mathrm{~V}$	30			ns
Minimum Clock Pulse Width ($\mathrm{t}_{\text {PWL }}, \mathrm{t}_{\text {PWH }}$)	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	250	125		ns
	$V_{c c}=10 \mathrm{~V}$	100	50		ns
Maximum Clock Rise and Fall Time ($\mathrm{r}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$			15	$\mu \mathrm{s}$
	$V_{c c}=10 \mathrm{~V}$			5	$\mu \mathrm{s}$
Maximum Clock Frequency ($\mathrm{f}_{\text {MAX }}$)	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	2	4		MHz
	$V_{c c}=10 \mathrm{~V}$	5	10		MHz
Clock Input Capacitance ($\mathrm{C}_{\text {clk }}$)	Clock Input (Note 2)		10		pF
Input Capacitance ($\mathrm{C}_{1 \mathrm{~N}}$)	Any Other Input (Note 2)		5		pF
Power Dissipation Capacitance ($\mathrm{CPD}^{\text {) }}$)	(Note 3)		100		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $C_{P D}$ determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

typical performance characteristics

T_{A} - AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

r_{A} - ambient temperature ("C)

- These points are guaranteed by automatic testing.
- These points are guaranteed by automatic testing.

timing diagram

:лплarararararar

switching time waveforms

USER NOTES FOR A／D CONVERSION

The register can be used with either current switches that require a low voltage level to turn the switch ON or current switches that require a high voltage level to turn the switch ON．If current switches are used which turn ON with a low logic level，the resulting digit output from the register is active low．That is，a logic＂ 1 ＂is represented as a low voltage level．If current switches are used which turn $O N$ with a high logic level，the resulting digit output is active high．A logic＂ 1 ＂is represented as a high voltage level．

For a maximum error of $\pm 1 / 2$ LSB，the comparator must be biased．If current switches that require a high voltage level to turn ON are used，the comparator should be biased $+1 / 2$ LSB and if the current switches require a low logic level to turn ON，then the comparator must be biased－1／2 LSB．

The register can be used to perform 2＇s complement conversion by offsetting the comparator one half full
range $+1 / 2$ LSB and using the complement of the MSB Q11 as the sign bit．

If the register is truncated and operated in the contin－ uous conversion mode，a lock－up condition may occur on power－ON．This situation can be overcome by making the START input the＂OR＂function of $\overline{C C}$ and the appropriate register output．

The register，by suitable selection of register ladder network，can be used to perform either binary or BCD conversion．

The register outputs can drive the 10 bits or less with $50 \mathrm{k} / 100 \mathrm{k}$ R／2R ladder network directly for $\mathrm{V}_{\mathrm{Cc}}=10 \mathrm{~V}$ or higher．In order to drive the 12 －bit $50 \mathrm{k} / 100 \mathrm{k}$ ladder network and have the $\pm 1 / 2$ LSB resolution，the MM54C902／MM74C902 or MM54C904／MM74C904 is used as buffers，three buffers for MSB（Q11），two buffers for Q10，and one buffer for Q9．

typical applications

12－Bit Successive Approximation A－to－D Converter，Operating in Continuous Mode，Drives the 50k／100k Ladder Network Directly

12－Bit Successive Approximation A－to－D Converter Operating in Continuous 8－Bit Truncated Mode

definition of terms

CP：Register clock input．
$\overline{\mathbf{C C}}$ ：Conversion complete－this output remains at $\mathrm{V}_{\text {OUT（1）}}$ during a conversion and goes to $\mathrm{V}_{\text {OUT（0）}}$ when conversion is complete．
D：Serial data input－connected to comparator output in A－to－D applications．
$\overline{\mathrm{E}}$ ：Register enable－this input is used to expand the length of the register．When \bar{E} is at $V_{I N(1)} 011$ is forced to $V_{\text {OUT（1）}}$ and inhibits conversion．When not used for expansion \bar{E} must be connected to $\mathrm{V}_{\mathrm{IN}(0)}$（GND）．
Q11：True register MSB output．
$\overline{\mathbf{Q}} 11$ ：Complement of register MSB output．
Qi（ $\mathrm{i}=0$ to 11）：Register outputs．
$\overline{\mathbf{S}}$ ：Start input－holding start input at $\mathrm{V}_{\mathrm{IN}(0)}$ for at least one clock period will initiate a conversion by setting MSB（ Q 11 ）at $\mathrm{V}_{\text {OUt }}(0)$ and all other output（ $\mathrm{Q} 10-\mathrm{OO}$ ） at $\mathrm{V}_{\text {OUT（1）}}$ ．If set－up time requirements are met，a con－ version may be initiated by holding start input at $\mathrm{V}_{\text {IN（ }}$ ） for less than one clock period．
DO：Serial data output－D input delayed by one clock period．

MM54C906/MM74C906 hex open drain N-channel buffers MM54C907/MM74C907 hex open drain P-channel buffers

general description

These buffers employ monolithic CMOS technology in achieving open drain outputs. The MM54C906/ MM74C906 consists of six inverters driving six N -channel devices; and the MM54C907/MM74C907 consists of six inverters driving six P-channel devices. The open drain feature of these buffers makes level shifting or wire AND and wire OR functions by just the addition of pull-up or pull-down resistors. All inputs are protected from static discharge by diode clamps to V_{Cc} and to ground.

features

- Wide supply voltage range 3.0 V to 15 V
- Guaranteed noise margin 1.0V
- High noise immunity $\quad 0.45 \mathrm{~V}_{\mathrm{Cc}}$ typ
- High current sourcing and sinking open drain outputs

connection diagram

logic diagrams

Voltage at Any Input Pin	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Voltage at Any Output Pin	
MM54C906/MM74C906	-0.3 V to +18 V
MM54C907/MM74C907	$V_{c c}-18 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Operating Temperature Range	
MM54C906/MM54C907	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MM74C906/MM74C907	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation	500 mW
Operating $V_{c c}$ Range	3.0 V to 15 V
Absolute Maximum $\mathrm{V}_{c c}$	18 V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

dc electrical characteristics Min/max limits apply across temperature range, unless otherwise noted.

PARAMETER :	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS					
Logical "1" Input Voltage ($\mathrm{V}_{1 \mathrm{~N}(1)}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & V \\ & v \end{aligned}$
Logical " 0 " Input Voltage ($\mathrm{V}_{\text {IN }(0)}$)	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			1.5 2.0	$\begin{aligned} & V \\ & V \end{aligned}$
Logical "1" Input Current ($\mathrm{I}_{\text {IN(1) }}$)	$V_{\text {CC }}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical " 0 " Input Current ($\mathrm{I}_{\text {IN(0) }}$)	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
Supply Current ($\mathrm{I}_{\text {cc }}$)	$V_{C C}=15 \mathrm{~V}$, Output Open		0.05	15	$\mu \mathrm{A}$
Output Leakage					
MM54C906	$\begin{aligned} & V_{\mathrm{cC}}=4.5 \mathrm{~V}, \quad V_{\text {IN }}=V_{\mathrm{CC}}-1.5 \\ & V_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad V_{\text {OUT }}=18 \mathrm{~V} \end{aligned}$		0.005	5	$\mu \mathrm{A}$
MM74C906	$\begin{aligned} & V_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}-1.5 \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=18 \mathrm{~V} \end{aligned}$		0.005	5	$\mu \mathrm{A}$
. MM54C907	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad V_{\text {IN }}=1.0 \mathrm{~V}+0.1 \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}-18 \mathrm{~V} \end{aligned}$		0.005	5	μA
MM74C907	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, V_{\text {IN }}=1.0 \mathrm{~V}+0.1 \mathrm{~V} \mathrm{CC} \\ & V_{C C}=4.75 \mathrm{~V}, V_{\text {OUT }}=V_{C C}-18 \mathrm{~V} \end{aligned}$		0.005	5	$\mu \mathrm{A}$
CMOS/LPTTL INTERFACE					
Logical "1" Input Voltage ($V_{\text {IN(1) }}$)	$\begin{aligned} & 54 \mathrm{C}, V_{c c}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, V_{\mathrm{Cc}}=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{C c^{-1}} 1.5 \\ & v_{c c^{-1}} \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Logical ' 0 ' Input Voltage $\left\langle\mathrm{V}_{1 \mathrm{~N}(0)}\right.$)	$\begin{aligned} & 54 \mathrm{C}, V_{c c}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, V_{c c}=4.75 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
OUTPUT DRIVE CURRENT					
MM54C906	$\begin{array}{ll} V_{\mathrm{CC}}=4.5 \mathrm{~V}, & V_{\text {IN }}=1.0 \mathrm{~V}+0.1 \mathrm{~V}_{\mathrm{CC}} \\ V_{\mathrm{CC}}=4.5 \mathrm{~V}, & V_{\text {OUT }}=0.5 \mathrm{~V} \\ V_{\mathrm{CC}}=4.5 \mathrm{~V}, & V_{\text {OUT }}=1.0 \mathrm{~V} \end{array}$	$\begin{aligned} & 2.1 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 8 \\ & 12 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
MM74C906	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, V_{\text {IN }}=1.0 \mathrm{~V}+0.1 \mathrm{~V}_{\mathrm{CC}} \\ & V_{\mathrm{CC}}=4.75 \mathrm{~V}, V_{\text {OUT }}=0.5 \mathrm{~V} \\ & V_{\mathrm{CC}}=4.75 \mathrm{~V}, V_{\text {OUT }}=1.0 \mathrm{~V} \end{aligned}$	2.1 4.2	8 12		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
MM54C907	$\begin{array}{ll} V_{C C}=4.5 \mathrm{~V}, & V_{\mathrm{IN}}=V_{C C}-1.5 \\ V_{C C}=4.5 \mathrm{~V}, & V_{\text {OUT }}=V_{C C}-0.5 \mathrm{~V} \\ V_{C C}=4.5 \mathrm{~V}, & V_{\text {OUT }}=V_{C C}-1.0 \mathrm{~V} \end{array}$	$\begin{aligned} & -1.05 \\ & -2.1 \end{aligned}$	-1.5 -3.0		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
MM74C907	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, V_{\text {IN }}=V_{C C}-1.5 \\ & V_{C C}=4.75 \mathrm{~V}, V_{\text {OUT }}=V_{C C}-0.5 \mathrm{~V} \\ & V_{C C}=4.75 \mathrm{~V}, V_{\text {OUT }}=V_{C C}-1.0 \mathrm{~V} \end{aligned}$	-1.05 -2.1	$\begin{aligned} & -1.5 \\ & -3.0 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
MM54C906/MM74C906	$\begin{array}{ll} V_{C C}=10 \mathrm{~V}, & V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{C C}=10 \mathrm{~V}, & V_{\text {OUT }}=0.5 \mathrm{~V} \\ V_{C C}=10 \mathrm{~V}, & V_{\text {OUT }}=1.0 \mathrm{~V} \end{array}$	$\begin{aligned} & 4.2 \\ & 8.4 \end{aligned}$	-20 -30	-	$\begin{aligned} & m A \\ & m A \end{aligned}$
MM54C907/MM74C907	$\begin{array}{ll} V_{C C}=10 \mathrm{~V}, & V_{\text {IN }}=8.0 \mathrm{~V} \\ V_{\text {cC }}=10 \mathrm{~V}, & V_{\text {OUT }}=9.5 \mathrm{~V} \\ V_{\text {CC }}=10 \mathrm{~V}, & V_{\text {OUT }}=9.0 \mathrm{~V} \end{array}$	$\begin{aligned} & -2.1 \\ & -4.2 \end{aligned}$	$\begin{aligned} & -4.0 \\ & -8.0 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay to a Logical " 0 " ($\mathrm{t}_{\text {pao }}$)	-				
MM54C906/MM74C906	$\begin{array}{ll} V_{C C}=5 V & R=10 \mathrm{k} \\ V_{C C}=10 \mathrm{~V}, & R=10 \mathrm{k} \end{array}$			$\begin{aligned} & 150 \\ & 75 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
MM54C907/MM74C907	$\begin{array}{ll} V_{C c}=5 \mathrm{~V}, & (\text { Note 4) } \\ V_{c c}=10 \mathrm{~V}, & (\text { Note 4) } \end{array}$			$\begin{aligned} & 150+0.7 R C \\ & 75+0.7 R C \end{aligned}$	ns ns
Propagation Delay to a Logical " 1 " $\left(t_{p d 1}\right)$.					
MM54C906/MM74C906	$\begin{array}{ll} V_{c c}=5 \mathrm{~V}, & (\text { Note 4) } \\ V_{c c}=10 \mathrm{~V} & (\text { Note 4) } \end{array}$;		$\begin{aligned} & 150+0.7 R C \\ & 75+0.7 R C \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
MM54C907/MM74C907	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & R=10 \mathrm{k} \\ V_{C C}=10 \mathrm{~V}, & R=10 \mathrm{k} \end{array}$			$\begin{aligned} & 150 \\ & 75 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Input Capacity ($\mathrm{C}_{\text {IN }}$)	(Note 2)		5		pF
Output Capacity ($\mathrm{C}_{\text {OUT }}$)	(Note 2)		20		pF
Power Dissipation Capacity (C_{pd})	(Note 3) Per Buffer		30		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guranteed by periodic testing.
Note 3: $C_{P D}$ determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90. (Assumes outputs are open.)
Note 4: "C" used in calculating propagation includes output load capacity (C_{L}) plus device outpur capacity ($\mathrm{C}_{\text {OUT }}$).

typical applications

Wire OR Gate

Note: Can be extended to more than 2 inputs.

Wire AND Gate

Note: Can be extended to more than $\mathbf{2}$ inputs.

CMOS or TTL to CMOS at a Higher VCC

MM74C908/MM74C918 dual CMOS 30 volt driver

general description

The MM74C908 and MM74C918 are general purpose dual high voltage drivers, each capable of sourcing a minimum of 250 mA at $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}-3 \mathrm{~V}$, and $T_{j}=+65^{\circ} \mathrm{C}$.

The MM74C908 and MM74C918 consist of two CMOS NAND gates driving an emitter follower darlington output to achieve high current drive and high voltage capabilities. In the "OFF" state the outputs can withstand a maximum of -30 V across the device. These

CMOS drivers are useful in interfacing normal CMOS voltage levels to driving relays, regulators, lamps, etc.

features

- Wide suipply voltage range
- High noise immunity
- Low output "ON" resistance $0.45 \mathrm{~V}_{\mathrm{cc}}$ (typ) 8Ω (typ)
- High voltage
- High current

250 mA

connection diagrams

MM74C918

absolute maximum ratings (Note 1)
Voltage at Any Input Pin
-0.3 V to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
Voltage at Any Output Pin
Operating Temperature Range
MM74C908/MM74C918
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating $V_{C C}$ Range
Absolute Maximum V_{Cc}
Isource
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
Package Dissipation Refer to Maximum Power Dissipation vs
Ambient Temperature Graph
dc electrical characteristics Min/max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS					
Logical " 1 " Input Voltage ($\mathrm{V}_{1 \mathrm{~N}(1)}$)	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8 \end{aligned}$			\checkmark
Logical " 0 " Input Voltage ($\mathrm{V}_{\text {IN }}(0)$)	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2 \end{aligned}$	V
Logical "1" Input Current ($\mathrm{I}_{\text {IN(1) }}$)	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1	$\mu \mathrm{A}$
Logical " 0 " Input Current ($1_{\text {IN (0) }}$)	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$	-1	-0.005		$\mu \mathrm{A}$
Supply Current ($\mathrm{I}_{\text {cc }}$)	$V_{c c}=15 \mathrm{~V}$, Outputs Open Circuit		0.05	15	$\mu \mathrm{A}$
Output "OFF" Voltage	$V_{\text {IN }}=V_{\text {CC }}, l_{\text {OUT }}=-200 \mu \mathrm{~A}$			30	V
CMOS/LPTTL INTERFACE					
Logical "1" Input Voltage ($\mathrm{V}_{\text {IN (1) }}$) MM74C908/MM74C918	$V_{\text {cc }}=4.75 \mathrm{~V}$	$V_{C C}{ }^{-1.5}$			V
Logical " 0 " Input Voltage ($\mathrm{V}_{\text {IN (0) }}$) MM74C908/MM74C918	$V_{C c}=4.75 \mathrm{~V}$			0.8	V
OUTPUT DRIVE					
Output Voltage ($\mathrm{V}_{\text {OUT }}$)	$\begin{aligned} & \text { IOUT }=-300 \mathrm{~mA}, V_{C C} \geq 5 \mathrm{~V}, T_{j}=25^{\circ} \mathrm{C} \\ & \text { IOUT }=-250 \mathrm{~mA}, V_{C C} \geq 5 \mathrm{~V}, T_{j}=65^{\circ} \mathrm{C} \\ & \text { IOUT }^{\circ}=-175 \mathrm{~mA}, V_{\text {CC }} \geq 5 \mathrm{~V}, T_{j}=.150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{\mathrm{cc}^{-2.7}} \\ & V_{\mathrm{Cc}^{-3.0}} \\ & V_{\mathrm{Cc}^{-3.15}} \end{aligned}$	$\begin{aligned} & V_{C c^{-1}}{ }^{1.8} \\ & V_{c c^{-1}} \\ & V_{C c^{-2.0}} \end{aligned}$	-	V V V
Output Resistance (R_{ON})	$\begin{aligned} & \text { I OUT }=-300 \mathrm{~mA}, V_{\text {CC }} \geq 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C} \\ & \text { IOUT }^{\text {OU }}=-250 \mathrm{~mA}, V_{\text {CC }} \geq 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{i}}=65^{\circ} \mathrm{C} \\ & \text { IOUT }=-175 \mathrm{~mA}, V_{\text {CC }} \geq 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{i}}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 6 \\ & 7.5 \\ & 10 \end{aligned}$	$\begin{aligned} & 9 \\ & 12 \\ & 18 \end{aligned}$	Ω Ω Ω
Output Resistance Temperature Coefficient			0.55	0.80	$\%{ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Thermal Resistance }\left(\theta_{\mathrm{jA}}\right) \\ & \text { MM74C908 } \\ & \text { MM74C918 } \end{aligned}$	(Note 3) (Note 3)		$\begin{aligned} & 100 \\ & 45 \end{aligned}$	$\begin{aligned} & 110 \\ & 55 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / W \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

ac electrical characteristics

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay to a Logic " 1 " ($t_{p d 1}$)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 150 \\ & 65 \end{aligned}$	$\begin{aligned} & 300 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay to a Logic " 0 " ($t_{\text {pal }}$) Input Capacitance ($\mathrm{C}_{\mathrm{IN}^{\prime}}$)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{C C}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ (Note 2)		$\begin{aligned} & 2 \\ & 4 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~s} \end{aligned}$ pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: θ_{jA} measured in free air with device soldered into printed circuit board.

typical performance characteristics

Maximum Power Dissipation vs Ambient Temperature

Typical IOUT vs Typical VOUT

Typical IOUT vs Typical VOUT

ac test circuit

switching time waveforms

Calculating Output "ON" Resistance ($\mathrm{R}_{\mathrm{L}}>18 \Omega$)
The output "ON" resistance, R_{ON}, is a function of the junction temperature, T_{j}, and is given by:

$$
\begin{equation*}
R_{O N}=9\left(T_{1}-25\right)(0.008)+9 \tag{1}
\end{equation*}
$$

and T_{j} is given by:

$$
\begin{equation*}
T_{j}=T_{A}+P_{D A V} \theta_{j A}, \tag{2}
\end{equation*}
$$

where $T_{A}=$ ambient temperature, $\theta_{j A}=$ thermal resistance, and $P_{\text {DAV }}$ is the average power dissipated within the device. PDAV consists of normal CMOS power terms (due to leakage currents, internal capacitance, switching, etc.) which are insignificant when compared to the power dissipated in the outputs. Thus, the output power term defines the allowable limits of operation and includes both outputs, A and B. P_{D} is given by:

$$
\begin{equation*}
P_{D}=I_{O A}{ }^{2} R_{O N}+I_{O B}{ }^{2} R_{O N} \text {. } \tag{3}
\end{equation*}
$$

where I_{0} is the output current, given by:

$$
\begin{equation*}
I_{O}=\frac{V_{C C}-V_{L}}{R_{O N}+R_{L}} \tag{4}
\end{equation*}
$$

V_{L} is the load voltage.
The average power dissipation, $P_{D A V}$, is a function of the duty cycle:

$$
\begin{align*}
P_{\text {DAV }} \cong & I_{O A}^{2} R_{O N}\left(\text { Duty } \text { Cycle }_{A}\right)+ \tag{5}\\
& I_{O B}{ }^{2} R_{O N}(\text { Duty Cycle } B)
\end{align*}
$$

where the duty cycle is the \% time in the current source state. Substituting equations (1) and (5) into (2) yields:

$$
\begin{equation*}
T_{1}=T_{A}+\theta_{\mathrm{jA}}\left[9\left(\mathrm{~T}_{\mathrm{j}}-25\right)(0.008)+9\right] \tag{6a}
\end{equation*}
$$

$\left[I_{O A}^{2}\right.$ (Duty Cycle ${ }_{A}$) $+I_{O B}{ }^{2}$ (Duty Cycle ${ }_{B}$) $]$
simplifying:
$T_{j}=\frac{T_{A}+7.2 \theta_{\mathrm{jA}}\left[\mathrm{I}_{\mathrm{OA}}{ }^{2}\left(\text { Duty } \mathrm{Cycle}_{A}\right)+\mathrm{I}_{\mathrm{OB}}{ }^{2} \text { (Duty Cycle }{ }_{B} \text {) }\right]}{1-0.072 \theta_{\mathrm{jA}}\left[\mathrm{I}_{\mathrm{OA}}{ }^{2}\left(\text { Duty } \mathrm{Cycle}_{A}\right)+\mathrm{I}_{\mathrm{OB}}{ }^{2} \text { (Duty Cycle }{ }_{B} \text {)] }\right.}$
Equations (1), (4), and (6b) can be used in an iterative method to determine the output current, output resistance and junction temperature.

For example, let $V_{C C}=15 \mathrm{~V}, R_{L A}=100 \Omega, R_{L B}=100 \Omega$, $V_{L}=O V, T_{A}=25^{\circ} \mathrm{C}, \theta_{\mathrm{jA}}=110^{\circ} \mathrm{C} / \mathrm{W}$, Duty Cycle $_{\mathrm{A}}=$ 50%, Duty Cycle $_{\mathrm{B}}=75 \%$.
Assuming $R_{O N}=11 \Omega$, then:
$I_{O A}=\frac{V_{C C}-V_{L}}{R_{O N}+R_{L A}}=\frac{15}{11+100}=135.1 \mathrm{~mA}$,
$I_{O B}=\frac{V_{C C}-V_{L}}{R_{O N}+R_{L B}}=135.1 \mathrm{~mA}$
and
$T_{i}=\frac{\left.T_{A}+7.20_{\mathrm{IA}}\left[\mathrm{I}_{\mathrm{OA}^{2}}{ }^{2} \text { (Duty } \mathrm{Cycle}_{A}\right)+\mathrm{I}_{\mathrm{OB}}{ }^{2} \text { (Duty Cycle }{ }_{B} \text {) }\right]}{1-0.072 \theta_{\mathrm{jA}}\left[\mathrm{IOAA}^{2}{ }^{2}\left(\text { Duty Cycle }_{A}\right)+\mathrm{I}_{\mathrm{OB}}{ }^{2} \text { (Duty Cycle }{ }_{B} \text {) }\right]}$
$T_{j}=\frac{25+(7.2)(110)\left[(0.1351)^{2}(0.5)+(0.1351)^{2}(0.75)\right]}{1-(0.072)(110)\left[(0.1351)^{2}(0.5)+(0.1351)^{2}(0.75)\right]}$
$\mathrm{T}_{\mathrm{j}}=52.6^{\circ} \mathrm{C}$
and $R_{O N}=9\left(T_{j}-25\right)(0.008)+9=$
$9(52.6-25)(0.008)+9=11 \Omega$

applications

(See AN-177 for applications.)

MM54C909/MM74C909 quad comparator

general description

The MM54C909/MM74C909 contains four independent voltage comparators designed to operate from standard 54C/74C power supplies. The output allows current sinking only thus the wire OR function is possible using a common resistor pull up.

Not only does the MM54C909/MM74C909 function as a comparator for analog inputs but also has many applications as a voltage translator and buffer when interfacing the 54C/74C family to other logic systems.

features

- Wide supply voltage range
3.0 V to 15 V
- TTL compatibility
fan out of 1 driving 74
$I_{c c}=800 \mu \mathrm{~A}$ typ at $V_{C C}=5.0 \mathrm{~V}_{\mathrm{DC}}$

250 nA max
$\pm 50 \mathrm{nA}$ max
$\pm 5.0 \mathrm{mV}$ max
$O V$ to $V_{c c}-1.5 \mathrm{~V}$
$V_{c c}$

connection diagram

typical applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

CMOS/TTL to MOS Logic Converter
Ground Referenced Thermocouple in Single Supply System

absolute maximum ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range
MM54C909
MM74C909
Storage Temperature Range
Package Dissipation (Notes 2 and 3)
Operating V_{Cc} Range
Absolute Maximum V_{Cc}
Input Current ($\mathrm{V}_{\text {IN }}<-0.3 \mathrm{~V}$) (Note 4)
Lead Temperature (Soldering, 10 seconds)

$$
-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}
$$

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
500 \mathrm{~mW}
$$

$$
3.0 \mathrm{~V} \text { to } 15 \mathrm{~V}
$$

$300^{\circ} \mathrm{C}$

dc electrical characteristics

$\mathrm{Min} / \mathrm{max}$ limits apply across temperature range, unless otherwise noted. ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}_{\mathrm{DC}}$)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 9)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 9 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Input Bias Current $\left(I_{\operatorname{IN}(+)}\right.$ or $\left.I_{\operatorname{IN}(-)}\right)$ (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, With Output in Linear Range		25	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	nA
Input Offset Current $\left(1_{\mathbb{N}(+)}-I_{\operatorname{IN}(-)}\right)$	$T_{A}=25^{\circ} \mathrm{C}$,	± 5	$\begin{aligned} & \pm 150 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Common Mode Voltage (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & V_{\mathrm{cc}^{-2}} \\ & \mathrm{~V}_{\mathrm{cc}}-1.5 \end{aligned}$	V V
Supply Current (1cc)	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty$ On All Outputs	.	800	2000	$\mu \mathrm{A}^{\prime}$
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega$		200		V / mV
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)					
```Output Sink Current (ISINK) MM54C909 MM74C909```	$\begin{aligned} & V_{C C}=4.50 \mathrm{~V} \\ & V_{C C}=4.75 \mathrm{~V}, V_{\text {OUT }}=0.4 \mathrm{~V} \\ & V_{\text {IN(-) }} \geq 1.0 \mathrm{~V}_{D C} \\ & V_{I N(+)}=0 \mathrm{~V} \end{aligned}$	1.6	3.2		mA
Output Leakage Current	$\begin{aligned} & V_{I N(t)} \geq 1.0 \mathrm{~V}_{D C}, V_{I N(-)}=0 \mathrm{~V}_{D C} . \\ & V_{O U T}=15 \mathrm{~V}_{D C} \\ & V_{I N(+)} \geq 1.0 \mathrm{~V}_{D C}, V_{(N(-)}=0 \mathrm{~V}_{D C} . \\ & V_{O U T}=5 \mathrm{~V}_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.1	1	$\mu \mathrm{A}$   nA
Differential Input Voltage (Note 8)	All $V_{\text {IN }}{ }^{\prime} \geq 0 V_{\text {DC }}$			15	$\checkmark$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: For operating at high temperatures, the MM74C909 must be derated based on $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+175^{\circ} \mathrm{C} / \mathrm{W}$ which applies to the device soldered in a printed circuit board, operating in a still air ambient. The MM54C909 must be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature. The low bias dissipation and the ON-OFF characteristic of the outputs keeps the chip dissipation very small ( $\mathrm{Pd} \leq \mathbf{1 0 0} \mathrm{mW}$ ), provided the output sink current is within specified limits.
Note 3: Short circuits from the output to $\mathrm{V}^{+}$can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of $\mathrm{V}^{+}$.
Note 4: This input current will only exist when the voltage at any of the input leads is driven negative. There is a lateral NPN parasitic transistor action on the IC chip. The transistor action can cause the output voltages of the comparators to go to the $\mathrm{V}^{+}$. voltage level (or to ground for alarge overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will reestablish when the input voltage, which was negative, again returns to a value greater than -0.3 V .
Note 5: The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to +15 V without damage.
Note 7: The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.
Note 8: The positive excursions of the input can equal $V_{C C}$ supply voltage level, and if the other input voltage remains within the common-mode voltage range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V .
Note 9: At output switch point, $V_{O}=1.4 V_{D C}, R_{S}=0 \Omega$ with $V^{+}$from $5 V_{D C}$ to $30 V_{D C}$ and over the full input common mode range ( $O V_{D C}$ ) to $\left.\mathrm{V}^{+} \pm 1.5 \mathrm{~V}_{\mathrm{DC}}\right)$.
ac electrical characteristics $R_{L}=5.1 \mathrm{k} \Omega, V_{R L}=5.0 \mathrm{~V}_{\mathrm{DC}}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX
Large Signal Response Time	$V_{I N}=T T L$ Swing		300	.
Response Time	$V_{\text {REF }}=1.4 \mathrm{~V}_{\mathrm{DC}}$			

## typical performance characteristics



## application hints

The MM54C909/MM74C909 is a high gain, wide bandwidth device; which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray inputoutput coupling. Reducing the input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount ( 1 to 10 mV ) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the I/C and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.
The bias network of the MM54C909/MM74C909 establishes an $I_{c c}$ current which is independent of the magnitude of the power supply voltage over the range of from 3.0 V to 15 V .


It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than $\mathrm{V}^{+}$ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$ ). An input clamp diode and input resistor can be used as shown in the applications section.

Many outputs can be tied together to provide an output OR'ing function. An output "pull-up" resistor can be connected to any available power supply voltage with in the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the $\mathrm{V}^{+}$.terminal of the MM54C909/MM74C909 package. The output can also be used as a simple SPST switch to ground (when a "pull-up" resistor is not used). The amount of current which the output device can sink is limited by the drive available ( which is independent of $\mathrm{V}^{+}$) and the gain of the output device. When the maximum current limit is reached (approximately 16 mA ), the output transistor will come out of saturation and the output voltage will rise very rapidly.

## typical applications (con't) $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$



Basic Comparator


Driving CMOS


Non-Inverting Comparator with Hysteresis
typical applications (con't) $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{D C}\right)$


Visible Voltage Indicator


Note: For non-inverting buffer reverse input connection.
Hi Voltage Inverting PMOS to CMOS or TTL
typical applications (con't) $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$


Squarewave Oscillator


Crystal Controlled Oscillator


Two-Decade High-Frequency VCO


## MM54C910/MM74C910 256 -bit TRI-STATE ${ }^{\circledR}$ random access read/write memory

## general description

The MM54C910/MM74C910 is a 64 word by 4 bit random access memory. Inputs consist of six address lines, four data input lines, a write enable, and a memory enable line. The six address lines are internally decoded to select one of 64 word locations. An internal address register, latches the address information on the positive to negative transition of memory enable. The TRI-STATE outputs allow for easy memory expansion.

Address Operation: Address inputs must be stable ( $\mathrm{t}_{\text {SA }}$ ) prior to the positive to negative transition of memory enable, and ( $\mathrm{t}_{\mathrm{HA}}$ ) after the positive to negative transition of memory enable. The address register holds the information and stable address inputs are not needed at any other time.

Write Operation: Data is written into memory at the selected address if write enable goes low while memory enable is low. Write enable must be held low for $t_{\overline{W E}}$ and data must remain stable $t_{H D}$ after write enable returns high.

Read Operation: Data is nondestructively read from a memory location by an address operation with write enable held high.

Outputs are in the TRI-STATE ( $\mathrm{Hi}-\mathrm{Z}$ ) condition when the device is writing or disabled.

## features

- Supply voltage range

3 V to 5.5 V

- High noise immunity
- TTL compatible fan out
$0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
1 TTL load
- Input address register
- Low power consumption
$250 \mathrm{nW} /$ package typ (chip enabled or disabled)

250 ns typ at 5 V

- Fast access time
- TRI-STATE outputs
- High voltage inputs


## logic and connection diagrams




Dual-In-Line Package


Voltage At Any Output Pin
Voltage At Any Input Pin
Package Dissipation
Operating $V_{C C}$ Range
Standby $V_{C C}$ Range
Absolute Maximum $V_{C C}$
Lead Temperature (Soldering, 10 seconds)
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
-0.3 V to +15 V
500 mW
3.0 V to 5.5 V
1.5 V to 5.5 V
6.0 V
$300^{\circ} \mathrm{C}$
Supply Voltage $\left(V_{C C}\right)$
MM54C910
MM74C910
Temperature $\left(T_{A}\right)$
MM54C910
MM74C910

MIN	MAX	UNITS
4.5	5.5	$V$
4.75	5.25	$V$
-55	+125	${ }^{\circ} \mathrm{C}$
-40	+85	${ }^{\circ} \mathrm{C}$

dc electrical characteristics $\mathrm{MM} 54 \mathrm{C} 910 / \mathrm{MM} 74 \mathrm{C} 910$
(Min/max limits apply across the temperature and power supply range indicated).

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{\text {IN(1) }}$	Logical " 1 " Input Voltage	Full Range	$V_{c c}{ }^{-1.5}$			$\checkmark$
$V_{\text {IN }(0)}$	Logical ' 0 ' Input Voltage	Full Range			0.8	$\checkmark$
$I_{\text {IN(1) }}$	Logical "1" Input Current	$V_{\text {IN }}=15 \mathrm{~V}$		0.005	2	$\mu \mathrm{A}$
		$V_{\text {IN }}=5 \mathrm{~V}$		0.005	1	$\mu \mathrm{A}$
$I_{\text {IN (0) }}$	Logical " 0 ' Input Current	$V_{\text {IN }}=0 \mathrm{~V}$	-1	-0.005		$\mu \mathrm{A}$
$V_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\mathrm{I}_{\mathrm{O}}=-150 \mu \mathrm{~A}$	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}-0.5 \\ 2.4 \end{gathered}$			V
		$\mathrm{I}_{\mathrm{O}}=-400 \mu \mathrm{~A}$				V
V out ${ }_{\text {(0) }}$	Logical ' $0^{\prime \prime}$ Output Voltage	$\mathrm{l}_{0}=1.6 \mathrm{~mA}$			0.4	$V$
	Output Current in High	$V_{0}=5 \mathrm{~V}$	-1	0.005	1	$\mu \mathrm{A}$
	Impedence State	$V_{0}=0 \mathrm{~V}$		-0.005		$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{cc}}$	Supply Current	$V_{c c}=5 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$

ac electrical characteristics MM54C910/MM74C910
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

	PARAMETER	MIN	TYP	MAX	UNITS
$t_{\text {ACC }}$	Access Time from Address		250	500	ns
$t_{\text {PD }}$	Propagation Delay from $\overline{\mathrm{ME}}$		180	360	ns
$t_{\text {SA }}$	Address Input Set-Up Time	140	70		ns
$t_{\text {HA }}$	Address Input Hold Time	20	10		ns
$t_{\text {ME }}$	$\overline{\text { Memory Enable Pulse Width }}$	200	100		ns
$t \overline{M E}$	$\overline{\text { Memory Enable Pulse Width }}$	400	200		ns
${ }_{\text {t }}$ D	Data Input Set-Up Time	0			ns
$t_{\text {HD }}$	Data Input Hold Time	30	15		ns
twe	$\overline{\text { Write Enable Pulse Width }}$	140	70		ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$	Delay to TRI-STATE (Note 4)		100	200	ns
CAPACITANCE					
$C_{1 N}$	Input Capacity Any Input (Note 2)		5		pF
Cout	Output Capacity   Any Output (Note 2)		9		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacity (Note 3)		350		pF

# ac electrical characteristics (con't) <br> $C_{L}=50 \mathrm{pF}$ 

	PARAMETER	$\begin{gathered} \text { MM54C910 } \\ T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{gathered}$		MM74C910$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{aligned}$		UNITS
		MIN	MAX	MIN	MAX	
- $t_{\text {Acc }}$	Access Time from Address	"	860		700	ns
$t_{\text {PD1 }}, t_{\text {PDO }}$	Propagation Delay from $\overline{\mathrm{ME}}$		660		540	ns
$t_{\text {SA }}$	Address Input Set-Up Time	200		160		ns
$t_{\text {HA }}$	Address input Hold Time	20		20		ns
- $\mathbf{t}_{\text {ME }}$	$\overline{\text { Memory Enable Pulse Width }}$	280		260		ns
$\mathrm{t}_{\overline{\mathrm{ME}}}$	$\overline{\text { Memory Enable Pulse Width }}$	750		600		ns
${ }^{\text {t }}$ So	Data Input Set-Up Time	0				ns
$\mathrm{t}_{\mathrm{HD}}$	Data Input Hold Time	50		50		ns
$\mathrm{t}_{\mathrm{WE}}$	$\overline{\text { Write Enable Pulse Width }}$	200		180		ns
$t_{1 H}, t_{0 H}$	Delay to TRI-STATE (Note 4)		200		200	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $C_{p d}$ determines the no load ac power consumption for any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
Note 4: See ac test circuit for $\mathrm{t}_{1} \mathrm{H}, \mathrm{t}_{\mathrm{OH}}$.

## typical performance characteristics

Typical Access Time vs Ambient Temperature


## ac test circuits

truth table

$\overline{\text { ME }}$	$\overline{\text { WE }}$	OPERATION	OUTPUTS
L	L	Write	TRI-STATE
L	H	Read	Data
$H$	L	Inhibit, Store	TRI-STATE
$H$	H	Inhibit, Store	TRI-STATE

${ }^{\mathbf{t}} \mathbf{O H}$

tin


All Other AC Tests

switching time waveforms


## general information

The display controller serves as an interface element between the bare machine and the controlled display. The display controller normally receives input data and digit address information and then controls a sevensegment display, providing direct segment drive and internal multiplexing of all digits. The display controller provides a random access to the master portion of an internal register selected by an address operation. Normally an internal oscillator will sequentially address the slave portion of the internal registers; however, it is also possible for the user to randomly address the slave portion of the internal registers via the digit lines by use of the digit I/O control pin. The display controller will be capable of both segment and digit expansion, extending its use to alphanumeric 16 -segment displays or 12 digit calculator stick displays.

## models

- 6-digit version: $7 \times 16$ ROM controlfed by 4 data bits
- 2 -digit version: 8 -segment outputs controlled by 8 data inputs


## features

- Direct segment drive ( 40 mA min ) Tri-Statable
- Random access to master portion of internal register by address lines (internally decoded)
- Sequential access to slave portion of internal registers by an internal oscillator
- Random access to slave portion of internal registers by digit lines and digit I/O control pin
- Addressed like a 2102
- Sufficient digit dead time to multiplex gas discharge displays (varies with model)


## applications

- Electronic pinball machine
- Microprocessor display buffer
- Clock system for large institution
- Airport arrival and departure display system
- Silent hospital paging system
- Personalized message receiver
- Microprocessor latch element with ROM
- Microprocessor latch element


## circuit description

The display controller will be a CMOS circuit constructed on the buffed guard band process, limiting it to fivevolt operation. The segment outputs will have an NPN source transistor and an N -channel sink transistor. The segment outputs can be tri-stated by use of the output enable ( $\overline{\mathrm{OE}}$ ) pin. The digit I/O port is controlled by the digit I/O pin (DIO). Used as an output the digit lines are sequentially strobed by the internal oscillator and the data multiplex to the segment outputs. Used as an input only one digit line at a time can be high. Data information from the selected digit appears at the segment output. The internal oscillator is inhibited. The register being addressed by the input address and input data is completely independent of the register being addressed by the digit input and segment output information. The digit output drive will be a standard $B$ series specification.

Three versions of the Display Controller will exist. The MM74C911 will multiplex four digits with 8 bits of input information and comes in a 28 -pin package. The MM74C912 will multiplex six digits with ROM information with the ROM addressed by 4 data bits. The
decimal point input does not address the ROM and goes directly to the output. The MM74C912 is capable of digit expansion. The MM74C911 is capable of both digit and segment expansion. A third version, the MM74C913, will be identical to the MM74C912 except that the decimal point input and output and the digit and segment tri-state controls will be omitted. The MM74C912 will be housed in a 24 -pin package and is intended for the electronic pinball market.
Two input protection diodes will be present at all inputs. The diode to $V_{\text {cc }}$ may be omitted via a simple metal option.

Data is written into the internal registers by first bringing chip enable ( $\overline{\mathrm{CE}}$ ) low. Address information is not latched by $\overline{\mathrm{CE}}$, so address information can change before or after $\overline{\mathrm{CE}}$ is low. Address information must be stable $t_{S A}$ nanoseconds before write enable goes low. Data is written into the addressed register when both $\overline{C E}$ and $\overline{W E}$ are low. Data should be stable $t_{\text {sD }}$ nanoseconds before the rising edge of $\overline{W E}$. Chip enable and $\overline{W E}$ may simultaneously return high.

## electrical characteristics

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\mathrm{cc}}$	Supply Voltage		4.5		5.5	V
	Standby Voltage		3.0		5.5	V
$V_{\text {IN(1) }}$			$\mathrm{V}_{\text {cc }}-2.0$			V
$V_{\text {IN }(0)}$					0.8	$v$
los	Segment Output Current	$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.4 \mathrm{~V}, \mathrm{~T}_{1}=150^{\circ} \mathrm{C}$	40	80		mA
$I_{\text {Source }}$	E Digit	$\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	-1	-2		$m \mathrm{~A}$
$\mathrm{I}_{\text {SINK }}$	,	All Outputs $=2 \mathrm{LPTTL}$				
$t_{\text {SA }}$	Address Setup Time		200			ns
$t_{\text {SD }}$	Data Setup Time		400			ns
$t_{\text {wc }}$	Write CYCle ( $\mathrm{t}_{\text {SA }}+\mathrm{t}_{\text {SD }}$		600			ns
$\mathrm{t}_{\mathrm{DO}}$	Digit On Time		400			$\mu \mathrm{s}$
$\mathrm{t}_{1 \mathrm{D}}$	Interdigit Blanking		50			$\mu \mathrm{s}$

## waveforms



WAVEFORMS MM74C911/MM74C912/MM74C913
block diagram


MM74C911


MM74C912/MM74C913 BLOCK DIAGRAMS

MM54C914／MM74C914 hex schmitt trigger with extended input voltage

## general description

The MM54C914／MM74C914 is a monolithic CMOS Hex Schmitt trigger with special input protection scheme． This scheme allows the input voltage levels to exceed $\mathrm{V}_{\mathrm{cc}}$ or ground by at least $10 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{cc}}-25 \mathrm{~V}\right.$ to $\mathrm{GND}+$ 25 V ），and is valuable for applications involving voltage level shifting or mismatched power supplies．

The positive and negative－going threshold voltages， $\mathrm{V}_{\mathrm{T}+}$ and $\mathrm{V}_{\mathrm{T}-}$ ，show low variation with respect to temperature （typ $0.0005 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$ ）．And the hysteresis， $\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-} \geq 0.2 \mathrm{~V}_{\mathrm{Cc}}$ is guaranteed．

## features

－Hysteresis	$0.4 \mathrm{~V}_{\mathrm{cc}}$ typ
－Special input protection	$0.2 \mathrm{~V}_{\mathrm{cc}}$ guaranteed
－Wide supply voltage range	Extended Input   Voltage Range
－High noise immúnity	3.0 V to 15 V
－	$0.70 \mathrm{~V}_{\mathrm{cc}}$ typ

－Low power TTL fan out of 2 compatibility

## connection diagram



Specia！Input Protection


## absolute maximum ratings

Voltage at Any Input Pin
Voltage at Any Other Pin
$\mathrm{V}_{\mathrm{Cc}}-25 \mathrm{~V}$ to $\mathrm{GND}+25 \mathrm{~V}$
-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation
Operating $V_{C C}$ Range
Absolute Maximum $V_{c c}$
Lead Temperature (Soldering, 10 seconds)

500 mW
3.0 V to 15 V

18V $300^{\circ} \mathrm{C}$
dc electrical characteristics Min/max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos					
$\mathrm{V}_{\mathrm{T}+}$ Positive Going Threshold Voltage	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	3.0	3.6	4.3	V
	$V_{c c}=10 \mathrm{~V}$	6.0	6.8	8.6	V
	$V_{C C}=15 \mathrm{~V}$	9.0	10.0	12.9	
$\mathrm{V}_{\mathrm{T} \text { - Negative Going Threshold }}$ Voltage	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	0.7	1.4	2.0	V
	$V_{C c}=10 \mathrm{~V}$	1.4	3.2	4.0	V
	$V_{c c}=15 \mathrm{~V}$	2.1	5.0	6.0	
Hysteresis ( $\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$ )	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	1.0	2.2	3.6	v
	$V_{c c}=10 \mathrm{~V}$	2.0	3.6	7.2	V
	$V_{c c}=15 \mathrm{~V}$	3.0	5.0	10.8	V
Logical "1" Output Voltage ( $\mathrm{V}_{\text {out (1) }}$ )	$\begin{aligned} & V_{c C}=5 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, I_{0}=-10 \mu \mathrm{~A} \end{aligned}$	4.5 9.0			v
Logical " 0 " Output Voltage ( $\mathrm{V}_{\text {out (0) }}$ )	$V_{C C}{ }^{\prime}=5 \mathrm{~V}, \quad \mathrm{I}_{0}=+10 \mu \mathrm{~A}$			0.5	v
	$V_{C C}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A}$			1.0	V
Logical " 1 " Input Current ( $1_{\text {IN (1) }}$ )	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=25 \mathrm{~V}$	.	0.005	5.0	$\mu \mathrm{A}$
Logical " 0 " Input Current (IIN(0)	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=-10 \mathrm{~V}$	-100.0	-0.005		$\mu \mathrm{A}$
Supply Current (1cc)	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=-10 \mathrm{~V} / 25 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}$ (Note 4)		20		$\mu \mathrm{A}$
	$V_{\text {cc }}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$ ( Note 4).		200		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=7.5 \mathrm{~V}$ (Note 4)		600		$\mu \mathrm{A}$

## CMOS/LPTTL INTERFACE

Logical " 1 " Input Voltage ( $V_{\text {IN(1) }}$ )	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	4.3		V
Logical "0" Input Voltage $\left(V_{1 N(0)}\right)$	$V_{c c}=5 \mathrm{~V}$		0.7	v
Logical "1" Output Voltage ( $\mathrm{V}_{\text {OUT(1) }}$ )	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}, I_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$		V
Logical "0" Output Voltage (Vout(0))	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \end{aligned}$		0.4 0.4	V

## OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)

Output Source Current (ISOURCE) (P-Channel).	$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1.75	$-3.3$	mA
Output Source Current (ISOURCE) (P-Channel)	$V_{C C}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-8.0	-15	mA
Output Sink Current (I INKK)   ( N -Channel)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6	mA
Output Sink Current (I $I_{\text {SINK }}$ )   (N-Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{\text {OUT }}=V_{C C} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	8.0	16	mA

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay from Input	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$		220	400	ns
to Output ( $\mathrm{t}_{\mathrm{pdO}}$ or $\mathrm{t}_{\mathrm{pd} 1}$ )	$\mathrm{V}_{\mathrm{cc}}=10$		80	200	ns
Input Capacitance	Any Input (Note 2)		5.0		pF
Power Dissipation Capacitance   (C   (Note 3) Per Gate		20	pF		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
Note 4: Only one input is at $1 / 2 \mathrm{~V}_{\mathrm{CC}}$, the others are either at $\mathrm{V}_{\mathrm{CC}}$ or GND.

## typical application



## typical performance characteristics



## MM54C915/MM74C915 7-segment-to-BCD converter

## general description

The MM54C915/MM74C915 is a monolithic complementary MOS (CMOS) integrated circuit, constructed with N and P -channel enhancement-mode transistors. This circuit accepts 7 -segment information and converts it into BCD information. The true state of the Segment inputs can be selected by use of the Invert/Non-invert control pin. A logical " 0 " on the Invert/Non-invert control pin selects active high true decoding at the Segment inputs. A logical " 1 " on the Invert/Non-invert control pin selects active low true decoding at the Segment inputs. In addition to 4 TTL compatible BCD outputs, an Error output and Minus output are available. The Error output goes to an active " 1 " whenever a non-standard 7 -segment code appears at the Segment inputs. The BCD outputs are forced into a TRI-STATE ${ }^{\circledR}$ condition when an error is detected. This allows the user to program his own error code by tying the BCD outputs to $V_{C C}$ or Ground via high value resistors (~500k). The BCD outputs may also be forced into TRISTATE by a logical " 1 " on output enable ( $\overline{O E}$ ).

The Minus output goes to a logical " 1 " whenever a minus code is detected and is useful as a microprocessor interrupt. The BCD outputs are in a flow-though condition when Latch Enable (LE) is at a logical " 0 ", and latched when LE is at a logical " 1 ". The inputs will not clamp signals to the positive supply, allowing simple level translation from MOS to TTL.

## features

- Wide supply range

3V-15V

- High noise immunity
$0.45 V_{C C}$ typ
- TTL compatible fan out

1 TTL load

- Selectable active true inputs
- TRI-STATE outputs
- On-chip latch
- Error output
- Minus output


## logic and connection diagrams



## absolute maximum ratings

Voltage at Any Output
Voltage at Any Input Operating Temperature Range MM54C915
MM74C915
$V_{C C}-0.3 V$ to $V_{C C}+0.3 V$ $\mathrm{V} C \mathrm{C}-0.3 \mathrm{~V}$ to 18 V
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range Package Dissipation $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 500 mW Operating $V_{C C}$ Range $3 V$ to 15 V Maximum VCC 18 V Lead Temperature, (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
dc electrical characteristics Min/max limits apply across temperature range unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO CMOS						
VIN(1)	Logica! " 1 " Input Voltage	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 8 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9 \\ & 13.5 \end{aligned}$		$V$ $V$ $V$
$V$ IN(0)	Logical "0' Input Voltage	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
$1 \mathrm{IN}(1)$	Logical "1" Input Current	$V_{I N}=15 \mathrm{~V}$		0.005	1	$\mu \mathrm{A}$
IIN(O)	Logical '0" Input Current	$V / \mathrm{N}=0 \mathrm{~V}$	-1	-0.005		$\mu \mathrm{A}$
VOUT(1)	Logical "1" Output Voltage	$\begin{aligned} & I_{O}=10 \mu \mathrm{~A} \\ & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 4.5 \\ & 9 \\ & 13.5 \end{aligned}$	,	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
VOUT(0)	Logical " 0 ' Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 1 \\ & 1.5 \end{aligned}$	$\cdots$	$V$ $V$ $v$
ICC	Supply Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.75 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 1.75 \\ & 2.25 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
CMOS/TTL INTERFACE						
$V_{I N(1)}$	```Logical "1" Input Voltage MM54C915 MM74C915```	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{C C}=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{C C^{-1}}{ }^{-1.7} \\ & V_{C C^{-1}} \end{aligned}$			V V
$V_{I N}(0)$	Logical " 0 " Input Voltage   MM54C915   MM74C915	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{C C}=4.75 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$V$ $V$
Vout(1)	Logical "1" Output Voltage   MM54C915   MM74C915	$\begin{aligned} & \mathrm{IO}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			V
VOUT(0)	Logical " 0 " Output Voltage   MM54C915   MM74C915	$\begin{aligned} & \mathrm{IO}_{\mathrm{O}}=1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{C C}=4.75 \mathrm{~V} \end{aligned}$	,		$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	V V
OUTPUT DRIVE						
IsOURCE	Output Source Current P.Channel	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$   (Note 2) $\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.75 \\ & -8 \\ & -15 \end{aligned}$	$\begin{aligned} & -3.3 \\ & -15 \\ & -25 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
ISINK	Output Sink Current N -Channel	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$   (Note 2) $\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$	5   20   30	8   30   50		mA   m $A$   mA

ac electrical characteristics
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{\text {tpd }}$ ( $0 . t_{\text {pd }} 1$	Propagation Delay Time to	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$				
	Logical " 0 " or a Logical " 1 "	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		500	1000	ns
		$V_{C C}=10 \mathrm{~V}$		300	600	ns
		$V_{C C}=15 \mathrm{~V}$		300	600	ns
$\mathrm{tOH}^{\text {, }} \mathrm{t}_{1 \mathrm{H}}$	Propagation Delay Time From	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$.				
	Logical " 0 " or Logical " 1 "	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		110	200	ns
	into High Impedance State	$V_{C C}=10 \mathrm{~V}$		75	130	ns
	-	$V_{C C}=15 \mathrm{~V}$		60	110	ns
${ }_{\text {tho }} \mathrm{t}^{\text {t }} \mathrm{H}$	Propagation Delay Time From	. $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$				
	High Impedance State to a	$V_{C C}=5 \mathrm{~V}$		150	250	ns
	Logical " 0 " or Logical " 1 "	$V_{C C}=10 \mathrm{~V}$		80	140	ns
		$V_{C C}=15 \mathrm{~V}$		70	125	ns
$\mathrm{t}_{\text {s }}$	Input Data Set-Up Time	$C_{L}=50 \mathrm{pF}$				
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		500	1000	ns
		$V_{C C}=10 \mathrm{~V}$		300	600	ns
		$V_{C C}=15 \mathrm{~V}$		300	600	ns
${ }_{\text {t }} \mathrm{H}$	Input Data Hold Time	$C_{L}=50 \mathrm{pF}$				
		$V_{C C}=5 \mathrm{~V}$		-150	0	ns
		$V_{C C}=10 \mathrm{~V}$		-100	0	ns
		$V_{C C}=15 \mathrm{~V}$		-100	0	ns
CIN	Input Capacitance	Any Input, (Note 3)		5	7.5	pF
COUT	TRI-STATE Output Capacitance	Any Output, (Note 3)		10		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range"' they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: These specifications apply to transient operation. It is not meant to imply that the device should be operated at these limits in sustained operation.
Note 3: Capacitance is guaranteed by periodic testing.

## truth table

CHARACTER AT SEGMENT INPUTS	BCD OUTPUTS				NON-BCD OUTPUTS	
	$\begin{gathered} \mathrm{D} \\ \mathbf{2}^{3} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathbf{2}^{2} \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & 2^{1} \\ & \hline \end{aligned}$	$\begin{array}{r} \hline \text { A } \\ 2^{0} \\ \hline \end{array}$		
					ERROR	MINUS
[]	0	0	0	0	0	0
1	0	0	0	1	0	0
1	0	0	0	1	0	0
${ }^{\text {c }}$	0	0	1	0	0	0
g	0	0	1	1	0	0
4	0	'1	0	0	0	0
${ }_{5}^{2}$	0	1	0	1	0	0
did	0	1	1	0	0	0
E	0	1	1	0	0	0
1	0	1	1	1	0	0
E	1	0	0	0	0	0
4	1	0	0	1	0	0
4	1	0	0	1	0	0
	1	1	1	. 1	0	0
	x	x	$x$	$x$	1	1
All other input	x	X	$x$	$x$	1	0
combinations	X	X	X	X	1.	0

SEGMENT IDENTIFICATION


[^4]
## typical applications




MM54C920/MM74C920, MM54C921/MM74C921 1024-bit static silicon gate CMOS RAMs

## general description

The MM54C920/MM74C920 $256 \times 4$ random access read/write memory is manufactured using silicon gate CMOS technology. Data output is the same polarity as data input. Internal latches store address inputs, CES and data output. This RAM is specifically designed to operate from standard 54/74 TTL power supplies. All inputs and outputs are TTL compatible.

The MM54C921/MM74C921 is identical to the MM54C920/MM74C920, except data inputs are internally connected to data outputs; the number of package leads thereby is reduced to 18.

Complete address decoding as well as two chip select functions, $\overline{\mathrm{CEL}}$ and $\overline{\mathrm{CES}}$, and TRI-STATE ${ }^{\circledR}$ outputs allow easy expansion with a minimum of external components. Versatility plus high speed and low power make these RAMs ideal elements for use in microprocessor, minicomputer as well as main frame memory applications.

## features

- Fast access-250 ns max
- TRI-STATE outputs
- Low power
- On-chip registers
- Single +5 V supply
- Dạta retained with $\mathrm{V}_{\mathrm{CC}}$ as low as 2 V


## functional description

The functional description will reference the logic diagram of the MM54C920/MM74C920 shown in Figure 1. Input addresses and $\overline{\mathrm{CES}}$ are clocked into the input latches by the falling edge of STROBE. Input setup and hold times must be observed on these signals (see timing diagrams). The true and complement address information is fed to the row and column decoders which access the selected 4-bit memory word.

## logic and connection diagrams



FIGURE 1. MM54C920/MM74C920 Logic Diagram


Dual-in-Line-Package


## functional description (con't)

The addressed word ( 4 bits) is fed to four sense amplifiers through the column decoders. The information from the sense amplifiers is retained in the output register when STROBE rises. The register drives the TRI-STATE output buffers.

Chip select inputs, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CES}}$, have identical functions except that CES (Chip Enable Stored) is clocked into a latch on the falling edge of STROBE; CEL (Chip Enable Level) is not.

Note that setup and hold times must be observed on $\overline{\mathrm{CES}}$. Because $\overline{\mathrm{CEL}}$ is not clocked by $\overline{\mathrm{STROBE}}$, it may
fall after $\overline{\text { STROBE }}$ has fallen without affecting access time.

The outputs are in a high impedance state when the chip is not selected ( $\overline{\mathrm{CES}}$ or $\overline{\mathrm{CEL}}$ high) or when writing ( $\overline{W E}$ low). Note that the information stored in the output latches will be changed whenever STROBE falls, regardless of the logic states of $\overline{W E}, \overline{C E L}$ or $\overline{\mathrm{CES}}$.

The timing diagrams in Figures 2, 3, and 4 define the read, write, and output enable/disable parameters respectively.

## absolute maximum ratings

Supply Voltage, $\mathrm{V}_{\mathrm{cc}}$
Operating Temperature Range
MM54C920, MM54C921
MM74C920, MM74C921
Storage Temperature Range

$$
-0.3 V \text { to } V_{c c}+0.3 V
$$

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
dc electrical characteristics $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=$ Operating Range

PARAMETER		CONDITIONS	MM54C920, MM54C921			MM74C920, MM74C921			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{V}_{1+}$	Logical " 1 " Input Voltage			$\mathrm{V}_{\mathrm{cc}}-2.0$		$\mathrm{V}_{\mathrm{cc}}$	$\mathrm{V}_{\mathrm{cc}}-2.0$		$V_{\text {cc }}$	V
$V_{1 L}$	Logical "0" Input Voltage		0		0.8	0		0.8	$v$	
$\mathrm{VOH1}^{\text {O }}$	Logical "1" Output Voltage	$\mathrm{I}_{O H}=-1.0 \mathrm{~mA}$	2.4			2.4			$v$	
$\mathrm{V}_{\mathrm{OH} 2}$	Logical "1" Output Voltage	$\mathrm{I}_{\text {OUT }}=0$	$v_{c c}-0.01$			$\mathrm{V}_{c c^{-0.01}}$			$v$	
$\mathrm{V}_{\text {OLt }}$	Logical "0" Output Voltage	$\mathrm{I}_{\text {OL }}=2.0 \mathrm{~mA}$			0.4			0.4	$v$	
$\mathrm{V}_{\text {OL2 }}$	Logical "0" Output Voltage	Iout $=0$			0.01			0.01	$v$	
116	Input Leakage	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	-1.0	0.001	1.0	-1.0	0.001	1.0	$\mu \mathrm{A}$	
10	Output Leakage	$\mathrm{OV} \leq \mathrm{V}_{O} \leq \mathrm{V}_{C C}, \overline{\mathrm{CEL}}=\mathrm{V}_{C C}$	$-1.0$	0.001	1.0	-1.0	0.001	1.0	$\mu \mathrm{A}$	
$I_{\text {cc }}$	Supply Current	$V_{\text {IN }}=V_{C c}, V_{O}=0 V$		0.1	10		0.1	10	$\mu \mathrm{A}$	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	(Note 1)		4	7		4	7	pF	
$\mathrm{C}_{0}$	Output Capacitance	(Note 1)		6	9		6	9	pF	
$\mathrm{C}_{1 / 0}$	Data Input/Output Capacitance	MM54C921/MM74C921 Only		8	12		8	12	pF	
$V_{D R}$	$V_{\text {cc }}$ for Data Retention	$\overline{C E L}=V_{c c}$	2.0			2.0			V	

Note 1: Capacitance is guaranteed by periodic testing.
ac electrical characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Range

PARAMETER		MM54C920, MM54C921			MM74C920, MM74C921			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
TTL Interface ( $\mathrm{V}_{1 H}=\mathrm{V}_{C C}-2.0 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}$, Input $\mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALL }}=5 \mathrm{~ns}$, Load $=1 \mathrm{TTL}$ Gate $\left.+50 \mathrm{pF}\right)$								
${ }^{\text {c }}$ c	Cycle Time	290	120		255	120		ns
$t_{\text {AcC }}$	Access Time From Address		120	275		120	250	ns
$t_{\text {Acs }}$	Access Time From Strobe		110	250		110	225	ns
$t_{A S}$	Address Setup Time	25	10		25	10.		ns
$t_{\text {AH }}$	Address Hold Time	25	15		25	15		ns
${ }^{\text {toe }}$	Output Enable Time		60	150		60	130	ns
too	Output Disable Time		60	150		60	130	ns
$\mathrm{t}_{\mathbf{S T}}^{\bar{T}}$	$\overline{\text { ST Pulse Width ( }}$ ( $\mathrm{egative)}$	150	60		130	60		ns
${ }^{\text {st }}$ T	ST Pulse Width (Positive)	140	60.		125	60		ns
$t_{\text {wp }}$	Write Pulse Width (Negative)	150	80		130	80		ns
tos	Data Setup Time	100	40	-	90	40		ns
${ }^{\text {t }}$ H	Data Hold Time	60	25		60	25		ns

## switching time waveforms



FIGURE 2. Read Cycle $\left(\overline{W E}=V_{I H}\right)$


FIGURE 3. Write Cycle


FIGURE 4. Output Enable/Disable

## typical performance characteristics


typical performance characteristics (con't)





MM54C922/MM74C922 16 key encoder
MM54C923/MM74C923 20 key encoder

## general description

These CMOS key encoders provide all the necessary logic to fully encode an array of SPST switches. The keyboard scan can be implemented by either an external clock or external capacitor. These encoders also have onchip pull-up devices which permit switches with up to $50 \mathrm{k} \Omega$ on resistance to be used. No diodes in the switch array are needed to eliminate ghost switches. The internal debounce circuit needs only a single external capacitor and can be defeated by omitting the capacitor. A Data Available output goes to a high level when a valid keyboard entry has been made. The Data Available output returns to a low level when the entered key is released, even if another key is depressed. The Data Available will return high to indicate acceptance of the new key after a normal. debounce period; this two key roll over is provided between any two switches.

An internal register remembers the last key pressed even after the key is released. The TRI-STATE ${ }^{\oplus}$ outputs
provide for easy expansion and bus operation and are LPTTL compatible.

## features

- $50 \mathrm{k} \Omega$ maximum switch on resistance
- On or off chip clock
- On chip row pull-up devices
- 2 key roll-over
- Keybounce elimination with single capacitor
- Last key register at outputs
- TRI-STATE outputs LPTTL compatible
- Wide supply range

3 V to 15 V

- Low power consumption


## connection diagrams



## absolute maximum ratings

Voltage at Any Pin
Operating Temperature Range MM54C922, MM54C923 MM74C922, MM74C923
Storage Temperature Range
$V_{C C}-0.3 V$ to $V_{C C}+0.3 V$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Package Dissipation
500 mW
Operating VCC Range
VCC
Lead Temperature (Soldering, 10 seconds)
3 V to 15 V
18 V
$300^{\circ} \mathrm{C}$
dc electrical characteristics Min/max limits apply across temperature range unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO cmos						
$V_{\mathbf{T}+}$	Positive-Going Threshold Voltage at Osc and KBM Inputs	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad I_{\mathrm{N}} \geq 0.7 \mathrm{~mA} \\ & V_{C C}=10 \mathrm{~V}, \quad \mathrm{IIN}_{\mathrm{N}} \geq 1.4 \mathrm{~mA} \\ & V_{C C}=15 \mathrm{~V}, \quad I_{\mathrm{N}} \geq 2.1 \mathrm{~mA} \end{aligned}$	$3$	$\begin{aligned} & 3.6 \\ & 6.8 \\ & 10 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 8.6 \\ & 12.9 \end{aligned}$	v v v
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Threshold Voltage at Osc and KBM Inputs	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad I_{\mathbb{N}} \geq 0.7 \mathrm{~mA} \\ & V_{C C}=10 \mathrm{~V}, \quad \mathbb{I N}^{2} \geq 1.4 \mathrm{~mA} \\ & V_{C C}=15 \mathrm{~V}, \quad \mathbb{I N}^{2} \geq 2.1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.4 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 3.2 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \end{aligned}$	$v$ $v$ $v$
$V_{I N(1)}$	Logical "1" Input Voltage, Except Osc and KBM Inputs	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V}, \\ & V_{C C}=15 \mathrm{~V} . \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9 \\ & 13.5 \end{aligned}$		$v$ $v$ $v$
$V_{I N}(0)$	Logical " 0 " Input Voltage, Except Osc and KBM Inputs	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=15 . \end{aligned}$		$\begin{aligned} & 0.5 \\ & 1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2 \\ & 2.5 \end{aligned}$	$v$ $v$ $v$
$I_{\text {rp }}$	Row Pull-Up Current at $\mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3$, Y4 and Y5 Inputs	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad V_{I N}=0.1 \mathrm{~V} C C \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -2 \\ & -10 \\ & -22 \end{aligned}$	$\begin{aligned} & -5 \\ & -20 \\ & -45 \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$
VOUT(1)	Logical "1" Output Voltage	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad I_{O}=-10 \mu \mathrm{~A} \\ & V_{C C}=10 \mathrm{~V}, \quad I_{O}=-10 \mu \mathrm{~A} \\ & V_{C C}=15 \mathrm{~V}, I_{O}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9 \\ & 13.5 \end{aligned}$			v v v
VOUT(0)	Logical "0" Output Voltage	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & I_{O}=10 \mu \mathrm{~A} \\ V_{C C}=10 \mathrm{~V}, & I_{O}=10 \mu \mathrm{~A} \\ V_{C C}=15 \mathrm{~V}, & I_{O}=10 \mu \mathrm{~A} \end{array}$			$\begin{aligned} & 0.5 \\ & 1 \\ & 1.5 \end{aligned}$	$v$ $v$ $v$
$\mathrm{R}_{\text {on }}$	Column "ON" Resistance at X1, X2, X3 and X4 Outputs	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & V_{O}=0.5 \mathrm{~V} \\ V_{C C}=10 \mathrm{~V}, & V_{O}=1 \mathrm{~V} \\ V_{C C}=15 \mathrm{~V}, & V_{O}=1.5 \mathrm{~V} \end{array}$		$\begin{aligned} & 500 \\ & 300 \\ & 200 \end{aligned}$	$\begin{aligned} & 1400 \\ & 700 \\ & 500 \end{aligned}$	$\Omega$ $\Omega$ $\Omega$
ICC	Supply Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad \text { Osc at } 0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.55 \\ & 1.1 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.9 \\ & 2.6 \end{aligned}$	mA   mA   mA
$\operatorname{liN}(1)$	$\begin{aligned} & \text { Logical " } 1 \text { " Input Current at } \\ & \text { Output Enable } \end{aligned}$	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005.	1.0	$\mu \mathrm{A}$
$\operatorname{IIN}(0)$	Logical " 0 " Input Current at Output Enable	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{1 N}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
CMOS/LPTTL INTERFACE						
$V_{\text {IN }}(1)$	Logical "1" Input Voltage, Except Osc and KBM Inputs	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{C C}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, V_{C C}=4.75 \mathrm{~V} \end{aligned}$	$\begin{aligned} & v_{C C^{-1}}{ }^{1.5} \\ & v_{C^{-1}} \end{aligned}$			v
$V_{\text {IN }}(0)$	Logical " 0 " Input Voitage, Except Osc and KBM Inputs	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	v
VOUT(1)	Logical "1" Output Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & 1 \mathrm{O}=-360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & 10=-360 \mu \mathrm{~A} \end{aligned}$	2.4   - 2.4			$v$ $v$
$\mathrm{V}_{\text {OUT }}(0)$	Logicat "0" Output Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & 10=-360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{v}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & 10=-360 \mu \mathrm{~A} \end{aligned}$			0.4 0.4	$v$ $v$

MM54C922/MM74C922. MM54C923/MM74C923
dc electrical characteristics (con't)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)					
ISOURCE Output Source Current (P-Channel)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-1.75	-3.3		mA
ISOURCE Output Sourçe Current (P-Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-8	-15		mA
ISINK Output Sink Current ( N -Channel)	$\begin{aligned} & V_{C C} \equiv 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6		mA
ISINK Output Sink Current (N-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	8	16		mA.

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\mathrm{pd}} 0, \mathrm{t}_{\mathrm{pd}} 1$	Propagation Delay Time to Logical " 0 " or Logical " 1 " from D.A.	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 1)				
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		60	150	ns
		$V_{C C}=10 \mathrm{~V}$		35	80	ns
		$V_{C C}=15 \mathrm{~V}$		25	60	ns
${ }^{\mathrm{t}} \mathrm{H}, \mathrm{t} \mathrm{I}_{1} \mathrm{H}$	Propagation Delay Time from Logical " 0 " or Logical " 1 " into High Impedance State	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, (Figure 2)				
		$V_{C C}=5 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		80	200	ns
		$V_{C C}=10 \mathrm{VCL}=10 \mathrm{pF}$		65	150	ns
		$V_{C C}=15 \mathrm{~V}$		50	110	ns
	Propagation Delay Time from   High Impedance State to a   Logical " 0 " or Logical " 1 "	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 2)				
		$V_{C C}=5 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		100	250	ns
		$V_{C C}=10 \mathrm{~V} C_{L}=50 \mathrm{pF}$		55	125	ns
		$V_{C C}=15 \mathrm{~V}$		40	90	ns
$\mathrm{CIN}_{\text {I }}$	Input Capacitance	Any Input, (Note 2)		5	7.5	pF
COUT	TRI-STATE Output Capacitance	Any Output, (Note 2)		10		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
switching time waveforms

$T 1 \simeq T 2 \approx R C, T 3 \approx 0.7 R C$ where $R \simeq 10 k$ and $C$ is external capacitor at KBM input.


FIGURE 1
FIGURE 2
block diagram


## truth table

SWITCH POSITION	$\begin{gathered} 0 \\ Y 1, X_{1} \end{gathered}$	$\begin{gathered} 1 \\ v_{1}, \times 2 \end{gathered}$	$\stackrel{2}{21, x 3}$	$\begin{gathered} 3 \\ v_{1}, \times 4 \end{gathered}$	$\begin{gathered} 4 \\ Y 2, \times 1 \end{gathered}$	$\stackrel{5}{42, \times 2}$	$\begin{gathered} 6 \\ \times 2, \times 3 \end{gathered}$	$\begin{gathered} 7 \\ \times 2, \times 4 \end{gathered}$	8 $\mathrm{Y} 3 . \mathrm{X} 1$	${ }_{\text {Y3, }}{ }^{9}$	$\begin{gathered} 10 \\ Y 3, \times 3 \end{gathered}$	$\begin{gathered} 11 \\ Y_{3, \times 4} \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{Y} 4 . \times 1 \end{gathered}$	$\begin{gathered} 13 \\ Y 4, \times 2 \end{gathered}$	$\begin{gathered} 14 \\ Y 4, \times 3 \end{gathered}$	$\begin{gathered} 15 \\ Y 4, X 4 \end{gathered}$	$\begin{gathered} 16 \\ Y 5^{*} \times 1 \end{gathered}$	$\begin{gathered} 17 \\ Y 5^{*} \times 2 \end{gathered}$	$\begin{gathered} 18 \\ Y 5^{*}, \times 3 \end{gathered}$	$\begin{gathered} 19 \\ Y 5^{*}, \times 4 \end{gathered}$
${ }_{\text {A }}^{\text {A }}$ A	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
T ${ }^{\text {a }}$	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
A C	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
$\bigcirc 0$	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
${ }_{\text {T }}{ }^{\text {E* }}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

*Omit for MM54C922/MM74C922

## typical performance characteristics



typical performance characteristics (con't)


typical applications

Synchronous Handshake (MM74C922)


Synchronous Data Entry Onto Bus (MM74C922)


Outputs are enabled when valid entry is made and go into TRI-STATE when key is released.

Asynchronous Data Entry Onto Bus (MM74C922)


Outputs are in TRI-STATE until key is pressed, then data is placed on bus. When key is released, outputs return to TRISTATE.

Note 3: The keyboard may be synchronously scanned by omitting the capacitor at osc. and driving osc. directly if the system clock rate is lower than 10 kHz .

MM74C925, MM74C926, MM74C927, MM74C928 4-digit counters with multiplexed 7 -segment output drivers general description

These CMOS counters consist of a 4-digit counter, an internal output latch, NPN output sourcing drivers for a 7 -segment display, and an internal multiplexing circuitry with four multiplexing outputs. The multiplexing circuit has its own free-running oscillator, and requires no external clock. The counters advance on negative edge of clock. A high signal on the Reset input will reset the counter to zero, and reset the carryout low. A low signal on the Latch Enable input will latch the number in the counters into the internal output latches. A high signal on Display Select input will select the number in the counter to be displayed; a low level signal on the Display Select will select the number in the output latch to be displayed.

The MM74C925 is a 4 -decade counter and has Latch Enable, Clock and Reset inputs.

The MM74C926 is like the MM74C925 except that it has a display select and a carry-out used for cascading counters. The carry-out signal goes high at 6000 , goes back low at 0000 .

The MM74C927 is like the MM74C926 except the second most significant digit divides by 6 rather țhan 10. Thus, if the clock input frequency is 10 Hz , the display would read tenths of seconds and minutes (i.e., 9:59.9).

The MM74C928 is like the MM74C926 except the most significant digit divides by 2 rather than 10 and the
carry-out is an overflow indicator which is high at 2000, and it goes back low only when the counter is reset. Thus, this is a $31 / 2$-digit counter.

## features

- Wide supply voltage range

3 V to 6 V

- Guaranteed noise margin

1 V

- High noise immunity $0.45 \mathrm{~V}_{\mathrm{cc}}$ typ
- High segment sourcing current 40 mA $@ V_{c c}-1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V}$
- Internal multiplexing circuitry


## design considerations

Segment resistors are desirable to minimize power dissipation and chip heating. The DM75492 serves as a good digit driver when it is desired to drive bright displays. When using this driver with a 5 V supply at room temperature, the display can be driven without segment resistors to full illumination. The user must use caution in this mode however, to prevent overheating of the device by using too high a supply voltage or by operating at high ambient temperatures.

The input protection circuitry consists of a series resistor, and a diode to ground. Thus input signals exceeding $\mathrm{V}_{\mathrm{Cc}}$ will not be clamped. This input signal should not be allowed to exceed 15 V .

## connection diagrams


functional description

Reset	- Asynchronous, active high
Display Select	High, displays output of counter   Low, displays output of latch
Latch Enable -High, flow through condition   Low, latch condition	
Clock	- Negative edge sensitive



Segment Output - Current sourcing with $80 \mathrm{~mA} @$ $V_{\text {out }}=V_{\text {cc }}-1.6 \mathrm{~V}$ typical. Also, sink capability $=2$ LTTL loads.
Digit Output - Current sourcing with 1 mA @ $\mathrm{V}_{\text {OUT }}=1.75 \mathrm{~V}$. Also, sink capability $=2$ LTTL loads
Carry-out

Voltage at Any Output Pin	Gnd - 0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Voltage at Any Input Pin	Gnd - 0.3 V to +15 V
Operating Temperature Range ( $\mathrm{T}_{\mathrm{A}}$ )	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation	Refer to $\mathrm{P}_{\mathrm{D} \text { (MAX) }}$ vs $\mathrm{T}_{\mathbf{A}}$ Graph
Operating $\mathrm{V}_{\mathrm{cc}}$ Range	3 V to 6.
$V_{c c}$	6.5 V
Lead Temperature (Soldering, 10 seconds)	s) $300^{\circ} \mathrm{C}$

dc electrical characteristics $\mathrm{Min} /$ max limits apply at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted.


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: , CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
Note 4: $\theta_{\mathrm{JA}}$ measured in free-air with device soldered into printed circuit board.
ac electrical characteristics $T_{j}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified

typical performance characteristics



Typical Average Segment Current vs Segment Resistor Value


Note. $\mathrm{V}_{\mathrm{D}}=$ Voltage across digit driver.
logic and block diagrams


MM74C927



MM74C928



Common Cathode LED Display


Input Protection

egment Identification
밐․ 5曰7日日客
switching time waveforms


MM54C929/MM74C929, MM54C930/MM74C930 1024-bit static silicon gate CMOS RAMs

## general description

The MM54C929/MM74C929 and the MM54C930/ MM74C930 $1024 \times 1$ random access read/write memories are manufactured using silicon gate CMOS technology. These RAMs are specifically designed to operate from standard 54/74 TTL power supplies; all inputs and outputs are TTL compatible. Data output is the same polarity as data input. Internal latches store the address inputs and data output. Chip select input CS1 serves as a chip strobe, controlling address and data latching. The Data-In and Data-Out terminals can be tied together for common I/O applications. Complete address decoding, 3-chip select functions (MM54C930/MM74C930) and TRI-STATE ${ }^{\circledR}$ output allow easy memory expansion and organization. The MM54C929/MM74C929 differs from the MM54C930/MM74C930 only in that $\overline{\mathrm{CS} 1}, \overline{\mathrm{CS} 2}$ and $\overline{\mathrm{CS3}}$ are internally connected together, providing a single chip-select input.

Versatility, high speed, and low power make these RAMs ideal elements for use in many microprocessor minicomputer and main frame memory applications.

## features

- Fast access-250 ns max
- TRI-STATE outputs
- Low power- $10 \mu \mathrm{~A}$ max standby
- On-chip registers
- Single 5 V supply
- Inputs and output TTL compatible
- Data retained with $V_{C C}$ as low as 2 V
- Can be operated common I/O


## functional description

Address inputs are clocked into the input latches by the falling edge of chip strobe $\overline{\mathrm{CS} 1}$; set-up and hold times must be observed on these input signals (see timing diagram). The true and complement address information is fed to the row and column decoders which select one of the 1024 -bit locations. The addressed bit is fed, via a sense amplifier, to the output register and TRI-STATE buffer. The information is latched into the output register on the rising edge of chip strobe $\overline{\mathrm{CS1}}$. The output is in a high impedance state when the chip is not selected ( $\overline{\mathrm{CS} 2}$ or $\overline{\mathrm{CS} 3}$ high) or when writing ( $\overline{\mathrm{WE}}$ low). Output buffer control is independent of chip strobe CS1.

## block and connection diagrams



FIGURE 1

Dual-In-Line Package


Dual-In-Line Package


## absolute maximum ratings

Supply Voltage, VCC
Voltage at Any Pin
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
dc electrical characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, T_{A}=$ Operating Range


Note 1: Capacitance maximum is guaranteed by periodic testing.
Note 2: MM54C929/MM74C929.
ac electrical characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Range

	PARAMETER	MM54C929, MM54C930			MM74C929, MM74C930			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
TTL Interface ( $\mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{\text {CC }}-2 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}$, Input $\mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALL }}=5 \mathrm{~ns}$, Load $=1 \mathrm{TTL}$ Gate $\left.+50 \mathrm{pF}\right)$								
${ }^{\text {t }}$ C	Cycle Time	290	135		255	135		ns
${ }^{\text {taCC }}$	Access Time From Address		105	265		105	240	ns
${ }^{\text {t }}$ ACS 1	Access Time From $\overline{\mathrm{CS} 1}$		100	250		100	225	ns
${ }^{\text {t }}$ AS	Address Set-Up Time	15	5		15	5		ns
${ }^{\text {t }}$ AH	Address Hold Time,	50	20		50	20		ns
toE	Output Enable Time		60	150		60	130	ns
tod	Output Disable Time		60	150		80	130	ns
t $\overline{\mathrm{CS}}$,   (Note 3)	$\overline{\mathrm{CS} 1}$ Pulse Width (Negative)	150	75		130	75		ns
tCS1	$\overline{\mathrm{CS1}}$ Pulse Width (Positive)	140	60		125	60		ns
twp	Write Pulse Width (Negative)	150	80		130	80		ns
tDS	Data Set-Up Time	150	75		140 '	75		ns
tDH	Data Hold Time	0	-30		0	-30		ns

Typical = Nominal at $25^{\circ} \mathrm{C}$
Note 3: Greater than minimum $\overline{\text { CS1 }}$ puise width must be used when reading data from the MM54C929/MM74C929 to ensure that output TRISTATING does not occur before data becomes valid. Writing has no such limitation.

## truth tables

MM54C929/MM74C929

$\overline{\mathrm{CS}}$	$\overline{\text { WE }}$	DI	FUNCTION
1	X	X	Output in Hi-Z State
X	0	X	Output in. Hi-Z State
0	0	0	Write "0,' Output in Hi-Z State
0	0	1	Write "1," Output in Hi-Z State
0	1	X	Read Data, Output Enabled

[^5]MM54C930/MM74C930

CS1	CS2	CS3	WE	DI	FUNCTION
X	1	X	X	X	Output in Hi-Z State
X	X	1	x	x	Output in Hi-Z State
X	X	X	0	X	Output in Hi-Z State
0	0	0	0	0	Write "0," Output in Hi-Z State
0	0	0	0	1	Write "1," Output in Hi-Z State
0	0	0	1	X	Read Data, Output Enabled

## switching time waveforms


*Greater than minimum $\overline{\text { CS1 }}$ pulse width must be used when reading data from the MM54C929/MM74C929 to ensure that output TRI-STATING does not occur before data becomes valid. Writing has no such limitation.

FIGURE 2. Read Cycle ( $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$ )


FIGURE 3. Write Cycle


FIGURE 4. Output Enable/Disable

## typical performance characteristics


typical performance characteristics (Continued)


## MM74C935/MM74C935-1 (ADD3500/ADD3501)

3 $1 / 2$ digit DVM with multiplexed 7 -segment output

## general description

The MM74C935 monolithic DVM circuit is manufactured using standard complementary MOS (CMOS) technology. A pulse modulation analog-to-digital conversion technique is used and requires no external precision components. In addition, this technique allows the use of a reference voltage that is the same polarity as the input voltage.

One 5 V (TTL) power supply is required. Operating with an isolated supply allows the conversion of positive as well as negative voltages. The sign of the input voltage is automatically determined and output on the sign pin. If the power supply is not isolated, only one polarity of voltage may be converted.

The conversion rate is set by an internal oscillator. The frequency of the oscillator can be set by an external RC network or the oscillator can be driven from an external frequency source. When using the external RC network, a square wave output is available. It is important to note that great care has been taken to synchronize digit multiplexing with the $A / D$ conversion timing to eliminate noise due to power supply transients.

The MM74C935 has been designed to drive 7-segment multiplexed LED displays directly with the aid of external digit buffers and segment resistors. Under condition of overrange, the overflow output will go high and the display will read +OFL or -OFL, depending on whether the input voltage is positive or negative. In addition to this, the most significant digit is blanked when zero.

A start conversion input and a conversion complete output are included on all 4 versions of this product.

## features

- Operates from single 5V supply
- Converts OV to $\pm 1.999 \mathrm{~V}$
- Multiplexed 7-segment
- Drives segments directly
- No external precision component necessary
- Medium speed - $200 \mathrm{~ms} /$ conversion
- All inputs and outputs TTL compatible
- Internal clock set with RC network or driven externally
- No offset adjust required
- Overrange indicated by +OFL or -OFL display reading and OFLO output
- Analog inputs in applications shown can withstand $\pm 200$ Volts


## connection diagram


absolute maximum rating (Note 1)
Voltage at Any Pin except Start Conversion $\quad-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
Voltage at Start Conversion -0.3 V to +15.0 V
Operating Temperature Range ( $T_{A}$ ) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
800 mW
Operating $V_{c c}$ Range $\quad 1$
4.5 V to 6.0 V

Absolute Maximum $V_{c c}$
6.5 V

Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
electrical characteristics $4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+85^{\circ} \mathrm{C}$, unless otherwise specified.


[^6]electrical characteristics MM74C935－1（ADD3501）

Accuracy of Output Reading	$\begin{aligned} & 5 \text { conversions } / \mathrm{sec} \\ & V_{I N}=0-2 \mathrm{~V} \\ & V_{I N}=0-200 \mathrm{mV} \end{aligned}$	$\begin{aligned} & -0.05 \\ & -1 \text { count } \end{aligned}$		$\begin{aligned} & +0.05 \\ & +0 \text { count } \end{aligned}$	$\%$ of full scale
Offset Error， $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		－0	＋1．5	＋3	mV
Offset Error， $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ ， with Offset Adjustment （See Applications）	，	－0	－	＋0	mV
Rollover Error			0		mV
Analog Input Current $\left(V_{1 N^{+}}, V_{1 N^{-}}\right)$		－10	$\pm 5$	＋10	nA

block diagram

theory of operation

A schematic for the analog loop is shown in figure 1. The output of SW1 is either at $\mathrm{V}_{\text {REF }}$ or zero volts, depending on the state of the $D$ flip-flop. If $Q$ is at a high level $V_{\text {OUT }}=V_{\text {REF }}$ and if $Q$ is at a low level $V_{\text {OUT }}$ $=0 \mathrm{~V}$. This voltage is then applied to the low pass filter comprised of R1 and C1. The output of this filter, $\mathrm{V}_{\mathrm{FB}}$, is connected to the negative input of the comparator, where it is compared to the analog input voltage, $\mathrm{V}_{\text {IN }}$. The output of the comparator is connected to the $D$ input of the D flip-flop. Information is then transferred from the D input to the Q and Q outputs on the positive edge of clock. This loop forms an oscillator whose duty cycle is precisely related to the analog input voltage, $V_{\text {IN }}$.

An example will demonstrate this relationship. Assume the input voltage is equal to 0.500 V . If the Q output of the $D$ flip-flop is high then. $V_{\text {OUT }}$ will equal $V_{\text {REF }}$ (2.000V) and $\mathrm{V}_{\mathrm{FB}}$ will charge toward 2 V with a time constant equal to $R_{1} C_{1}$. At some time $V_{F B}$ will exceed 0.500 V and the comparator output will switch to OV. At the next clock rising edge the $Q$ output of the $D$ flipflop will switch to ground, causing $V_{\text {OUT }}$ to switch to 0 V . At this time $\mathrm{V}_{\mathrm{FB}}$ will start discharging toward OV with a time constant $R_{1} C_{1}$. When $V_{F B}$ is less than 0.5 V the comparator output will switch high. On the rising edge of the next clock the $Q$ output of the $D$ flip-flop will switch high and the process will repeat. There exists at the output of SW1 a square wave pulse train with positive amplitude $\mathrm{V}_{\text {REF }}$ and negative amplitude OV .

The $D C$ value of this pulse train is:

$$
V_{O U T}=V_{R E F}\left(\frac{T_{O N}}{T_{O N}+T_{O F F}}\right)=V_{\text {REF }} \text { (duty cycle) }
$$

The lowpass filter will pass the DC value and then:

$$
V_{F B}=V_{R E F} \text { (duty cycle) }
$$

Since the closed loop system will always force $V_{F B}$ to equal $\cdot V_{\text {IN }}$, we can then say that:

$$
V_{I N}=V_{F B}=V_{R E F} \text { (duty cycle) }
$$

or

$$
\frac{V_{\text {IN }}}{V_{R E F}}=\text { (duty cycle) }
$$

The duty cycle is logically ANDed with the input frequency $\mathrm{f}_{\mathrm{iN}}$. The resultant frequency $f$ equals:

```
f = (duty cycle) x (clock)
```

Frequency $f$ is accumulated by counter no. 1 for a time determined by counter no. 2. The count contained in counter no. 1 is then:

$$
\begin{aligned}
(\text { count }) & =\frac{f}{(\text { clock }) / \mathrm{N}}=\frac{\text { (duty cycle) } \times \text { (clock) }}{(\text { clock }) / \mathrm{N}} \\
& =\frac{V_{I N}}{V_{\text {REF }}} \times N
\end{aligned}
$$

On the MM74C935 N = 2000 .

## schematic diagram



Figure 1. Analog Loop Schematic
Pulse Modulation A/D Converter

## general information

The timing diagram, shown in figure 2, gives operation for the free running mode. Free running operation is obtained by connecting the Start Conversion input to logic " 1 " $\left(V_{\mathrm{cc}}\right)$. In this mode the analog input is continuously converted and the display is updated at a rate equal to $64,512 \times 1 / \mathrm{f}_{\mathrm{N}}$.

The rising edge of the Conversion Complete output indicates that new information has been transferred from the internal counter to the display latch. This information will remain in the display latch until the next low-to-high transition of the Conversion Complete output. A logic " 1 " will be maintained on the Conversion Complete output for a time equal to $64 \times 1 / f_{\text {IN }}$.

Figure 3 gives the operation using the Start Conversion input. It is important to note that the Start Conversion input and Conversion Complete output do not influence the actual analog-to-digital conversion in any way.

Internally the MM74C935 is . always continuously converting the analog voltage present at its inputs. The Start Conversion input is used to control the transfer of information from the internal counter to the display latch.

An RS latch on the Start Conversion input allows a broad range of input pulse widths to be used on this signal. As shown in figure 3, the Conversion Complete output goes to a logic " 0 " on the rising edge of the Start Conversion pulse and goes to a logic " 1 " some time later when the new conversion is transferred from the internal counter to the display latch. Since the Start Conversion pulse can occur at any time during the conversion cycle, the amount of time from Start Conversion to Conversion Complete will vary. The maximum time is $64,512 \times 1 / \mathrm{f}_{\mathrm{IN}}$ and the minimum time is $256 \times 1 / \mathrm{f}_{\mathrm{IN}}$.

## timing waveforms



Figure 2. Conversion cycle for free running operation


Figure 3. Conversion Cycle Operating with Start Conversion Input

## applications

## SYSTEM DESIGN CONSIDERATIONS

Perhaps the most important thing to consider when designing a system using the MM74C935 is power supply noise on the $\mathrm{V}_{\mathrm{Cc}}$ and ground lines. Because a single power supply is used and currents in the 300 mA range are being switched, good circuit layout techniques cannot be overemphasized. Great care has been exercised in the design of the MM74C935 to minimize these problems but poor printed circuit layout can negate these features.

Figures 4, 5, and 6 show schematics of DVM systems. An attempt has been made to show, on these schematics, the proper distribution for ground and $\mathrm{V}_{\mathrm{cc}}$. To help isolate digital and analog portions of the circuit, the analog $V_{c c}$ and ground have been separated from the digital $\mathrm{V}_{\mathrm{Cc}}$ and ground. Care must be taken to eliminate high current from flowing in the analog $\mathrm{V}_{\mathrm{CC}}$ and ground wires. The most effective method of accomplishing this is to use a single ground point and a single $V_{C C}$ point where all wires are brought together. In addition to this the conductors must be of sufficient size to prevent significant voltage drops.

To prevent switching noise from causing jitter problems, a voltage regulator with good high frequency response is necessary. The LM309 and the LM340-5 voltage regulators both function well and are shown in figures 4,5 , and 6 . Adding more filtering than is shown will in general increase the jitter rather than decrease it. The
most important characteristic of transients on the $\mathrm{V}_{\mathrm{Cc}}$ line is the duration of the transient and not its amplitude.

Figure 4 shows a DPM system which converts $0 V$ to 1.999 V operating from a non-isolated power supply. In this configuration the sign output could be + (logic " 1 ") or - (logic " 0 ") and it should be ignored. Higher voltages could be converted by placing a fixed divider on the input; lower voltages could be converted by placing a fixed divider on the feedback, as shown in figure 6.

Figures 5 and 6 show systems operating with an isolated supply, that will convert positive and negative inputs. 60 Hz common mode input becomes a problem in this configuration and a transformer with an electrostatic shield between primary and secondary windings is shown. The necessity for using a shielded transformer depends on the performance requirements and the actual application.

The filter capacitors connected to $\mathrm{V}_{\mathrm{FB}}$ (pin 14) and $\mathrm{V}_{\text {FLT }}$ (pin 11) should be low leakage. In the application examples shown every 1.0 nA of leakage current will cause 0.1 mV error ( $1.0 \times 10^{-9} \mathrm{~A} \times 100 \mathrm{k} \Omega=0.1 \mathrm{mV}$ ). If the leakage current in both capacitors is exactly the same. no error will result since the source impedances driving them are matched.


Figure 4. $3 ½$-Digit DPM, +1.999 Volts Full Scale


Figure 5. $31 / 2$-Digit DPM, $\pm 1.999$ Volts Full Scale


Figure 6. $3 ½$-Digit DVM, Four Decade, $\pm 0.2 \mathrm{~V}, \pm 2 \mathrm{~V}, \pm 20 \mathrm{~V}$ and $\pm 200 \mathrm{~V}$ Full Scale

## MM74C936 33/4-digit DVM with multiplexed 7-segment output MM74C937 3½-digit DVM with multiplexed BCD output MM74C938 33/4-digit DVM with multiplexed BCD output

## general description

The MM74C935 family of monolithic DVM circuits is manufactured using standard complementary MOS (CMOS) technology. A pulse modulation analog-todigital conversion technique is used and requires no external precision components. In addition, this technique allows the use of a reference voltage that is the same polarity as the input voltage.

One 5 V (TTL) power supply is required. Operating with an isolated supply allows the conversion of positive as well as negative voltages. The sign of the input voltage is automatically determined and output on the sign pin. If the power supply is not isolated, only one polarity of voltage may be converted.
The conversion rate is set by an internal oscillator. The frequency of the oscillator can be set by an external RC network or the oscillator can be driven from an external frequency source. When using the external RC network, a square wave output is available. It is important to note that great care has been taken to synchronize digit multiplexing with the $A / D$ conversion timing to eliminate noise due to power supply transients.
The MM74C936 has been designed to drive 7 -segment multiplexed LED displays directly with the aid of external digit buffers and segment resistors. Under condition of overrange, the overflow output will go high and the display will read +OF L or -OFL, depending on whether the input voltage is positive or negative. In addition to this, the most significant digit is blanked when zero.

The MM74C937 and MM74C938 have been designed to output multiplexed BCD digits and are intended for use with microprocessors and other digital systems. BCD digits are output on demand via 2 Digit Select (DSO, DS1) inputs. Digit Select inputs are latched by a low-tohigh transition on the Digit Latch Enable (DLE) input and will remain latched as long as DLE remains high.

A start conversion input and a conversion complete output are included on all 4 versions of this product.

## features

- Operates from single 5 V supply
- Converts 0 V to $\pm 1.999 \mathrm{~V}$ or 0 V to $\pm 3.999 \mathrm{~V}$
- Multiplexed 7 -segment or BCD outputs
- Drives segments directly
- No external precision component necessary
- BCD versions easily interfaced to microprocessors or other digital systems
- Medium speed $-200 \mathrm{~ms} /$ conversion
- All inputs and outputs TTL compatible ${ }^{\prime}$
- Internal clock set with RC network or driven externally
- No offset adjust required
- Overrange indicated by +OFL and -OFL display reading


## applications

- Low cost digital power supply readouts
- Low cost digital multimeters
- Low cost digital panel meters
- Eliminate analog multiplexing by using remote $A / D$ converters
- Convert analog transducers (temperature, pressure, displacement, etc.) to digital transducers


## MM74C948 CMOS 8-bit A/D converter with 16 -channel analog multiplexer MM74C949 CMOS 8-bit A/D converter with 8-channel analog multiplexer MM74C950 CMOS 8-bit A/D converter with 8-channel analog multiplexer and sample and hold

## general description

The MM74C948/MM74C949/MM74C950 is a monolithic 8 -bit A/D converter employing CMOS technology. It contains a multi-channel analog multiplexer, a high input impedance comparator, successive approximation registers, control logic, voltage divider, analog switch tree, and an 8-bit latch with Tri-State outputs. A reference voltage is applied across the voltage divider, which has 256 resistors in series, and 256 taps (formed at each resistor junction) are connected to the top side of the analog switch tree; the bottom end of the analog switch tree is connected to the input of the comparator. Conversion is performed using successive approximation technique, where the unknown voltage from the
selected channel is compared to the voltage at the appropriate tap of the voltage divider, selected by the analog switch tree. At the end of conversion, the 8 -bit true binary word corresponding to the unknown voltage is latched into the 8 -bit latch with Tri-State output.

## features

- Supply Range, $\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{SS}}$
4.5 V to 5.5 V
- Reference Voltage REF(+)

REF(-)

- Tri-State Output with TTL Compatibility
drive 1 TTL load
- Monotonicity
connection diagrams



Start: When "start" goes high it resets the SAR. Conversion begins when "start" goes low. If "start" is reinitiated during conversion the conversion sequence starts over.
For MM74C950, the "start" will also function as Address Latch Enable and Expansion Control, and the converter will be at sample mode when it is "high."
E.O.C.: "High" when conversion is completed, "low" during conversion.
Address Latch Enable: Active at "Iow to high" transition.

Outputs: QA is LSB, QH is MSB.
Address: ADD A is LSB, ADD D is MSB.
Expansion Control: Active low. It disables internal multiplexed analog channels.

Clock: Connection to external clock.
Tri-State Control: Logic state when it is "high," TriState when it is "low."

Comparator In: Signal input to the comparator.
Common: The common node of the multiplexed analog channels.

Note 1: For MM74C950 only, S/H is the pin where the comparator $I N$ and common are connected together internally.

## block diagram




## switching time waveforms


MM70C95/MM80C95, MM70C97/MM80C97, MM70C96/MM80C96, MM70C98/MM80C98

㣘

## MM70C95/MM80C95,MM70C97/MM80C97 TRI-STATE ${ }^{\circledR}$ hex buffers MM70C96/MM80C96,MM70C98/MM80C98 TRI-STATE ${ }^{\oplus}$ hex inverters

## general description

These gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N and P channel enhancement mode transistors. The MM70C95/ MM80C95 and the MM70C97/MM80C97 convert CMOS or TTL outputs to TRI-STATE outputs with no logic inversion, the MM70C96/MM80C96 and the MM70C98/MM80C98 provide the logical opposite of the input signal. The MM70C95/MM80C95 and the MM70C96/MM80C96 have common TRI-STATE controls for all six devices. The MM70C97/MM80C97 and the MM70C98/MM80C98 have two TRI-STATE controls; one for two devices and one for the other four devices.

Inputs are protected from damage due to static discharge by diode clamps to $V_{c c}$ and GND.

## features

- Wide supply voltage range
3.0 V to 15 V
- Guaranteed noise margin 1.0 V
- High noise immunity
- TTL compatible
$0.45 \mathrm{~V}_{\mathrm{cc}}$ (typ)
Drive 1 TTL Load


## applications

- Bus drivers

Typical propagation delay into 150 pF load is 40 ns
connection diagrams (Dual-In-Line and Flat Packages)


MM70C97/MM80C97


TOP VIEW

MM70C96/MM80C96


MM70C98/MM80C98


TOP VIEW

## absolute maximum ratings (Note 1)

```
Voltage at Any Pin
Operating Temperature Range
MM70CXX
MM80CXX
```

Storage Temperature Range
Package Dissipation
Power Supply Voltage ( $\mathrm{V}_{\mathrm{cc}}$ )
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
500 \mathrm{~mW} \\
18 \mathrm{~V} \\
300^{\circ} \mathrm{C}
\end{array}
$$

dc electrical characteristics $\mathrm{Min} /$ max limits apply across temperature range unless otherwise specified.

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
cmos to cmos						
$V_{\text {IN(1) }}$	Logical "1" Input Voltage	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
$V_{\text {IN }}(0)$	Logical ' 0 ' Input Voitage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	v
Vout(1)	Logical "1" Output Voltage	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{\mathrm{cc}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			v
$V_{\text {OUT(0) }}$	Logical '0' Output Voltage	$\begin{aligned} & V_{\mathrm{Cc}}=5.0 \mathrm{~V} \\ & V_{\mathrm{cc}}=10 \mathrm{~V} \end{aligned}$	.		$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\mathrm{I}_{\text {IN(1) }}$	Logical "1" Input Current	$V_{c c}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
$I_{\text {IN }(0)}$	Logica! " 0 " Input Current		-1.0	-0.005		$\mu \mathrm{A}$
lout	Output Current in High Impedance State	$\begin{aligned} & V_{C C}=15 \mathrm{~V}, V_{O}=15 \mathrm{~V} \\ & V_{C C}=15 \mathrm{~V}, V_{O}=0 \mathrm{~V} \end{aligned}$	$-1.0$	$\begin{array}{r} 0.005 \\ -0.005 \end{array}$	1.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$I_{C C}$	Supply Current	$V_{C C}=15 \mathrm{~V}$		0.01	15	$\mu \mathrm{A}$
TTL INTERFACE						
$V_{\text {IN(1) }}$	Logical "1" Input Voltage	$\begin{array}{ll} \text { MM 70C } & V_{\mathrm{CC}}=4.5 \mathrm{~V} \\ \text { MM80C } & V_{\mathrm{CC}}=4.75 \mathrm{~V} \end{array}$	$\begin{aligned} & V_{C C^{-1}}-1.5 \\ & v_{c c^{-1}}-1.5 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
$V_{\text {IN }(0)}$	Logical " 0 ' Input. Voltage	$\begin{array}{ll} \text { MM70C } & V_{C C}=4.5 \mathrm{~V} \\ \text { MM80C } & V_{C C}=4.75 \mathrm{~V} \end{array}$			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
$V_{\text {OUT(1) }}$	Logical " 1 " Output Voltage	$\begin{array}{ll} \text { MM } 70 \mathrm{C} & V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-1.6 \mathrm{~mA} \\ \text { MM80C } & V_{C C}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-1.6 \mathrm{~mA} \end{array}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			$\begin{aligned} & v \\ & v \end{aligned}$
Vout(0)	Logical '0' Output Voltage	MM $70 \mathrm{C} \quad V_{C C}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$   MM80C $\quad V_{C C}=4.75 \mathrm{~V}, I_{0}=1.6 \mathrm{~mA}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
OUTPUT DRIVE CURRENT						
I Source	Output Source Current	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }(1)}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \end{aligned}$	-4.35			mA
Isource.	Output Source Current	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{\text {IN(1) }}=10 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=0 \mathrm{~V} \end{aligned}$	-20			mA
$I_{\text {SINK }}$	Output Sink Current	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {IN(0) }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} . V_{O U T}=V_{C C} \end{aligned}$	4.35			$m A$
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	20			mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise noted

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input (Note 2)		5.0		pF
$\mathrm{Cout}^{\text {O }}$	Output Capacitance TRI-STATE	Any Output (Note 2)		11.0		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacity	(Note 3)		60		pF
$\begin{aligned} & \mathrm{t}_{\mathrm{pdO}} \\ & \mathrm{t}_{\mathrm{pd} 1} \end{aligned}$	Propagation Delay Time to a Logical " 0 " or Logical "1" From Data input to Output MM70C95/MM80C95, MM70C97/MM80C97   MM70C96/MM80C96, MM70C98/MM80C98	$\begin{aligned} & V_{\mathrm{cc}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 60 \\ & 25 \\ & 70 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 40 \\ & 150 \\ & 75 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{ns} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \mathrm{~ns} \\ \hline \end{array}$
$\begin{aligned} & \mathbf{t}_{\mathrm{pdo}} \\ & \mathbf{t}_{\mathrm{pd} 1} \end{aligned}$	Propagation Delay Time to a Logical " 0 " or Logical "1" From Data Input to Output MM70C95/MM80C95, MM70C97/MM80C97   MM70C96/MM80C96, MM70C98/MM80C98	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & C_{L}=150 \mathrm{pF} \\ V_{C C}=10 \mathrm{~V}, & C_{\mathrm{L}}=150 \mathrm{pF} \\ V_{C C}=5 \mathrm{~V}, & C_{\mathrm{L}}=150 \mathrm{pF} \\ \mathrm{~V}_{C C}=10 \mathrm{~V}, & C_{L}=150 \mathrm{pF} \end{array}$		$\begin{aligned} & 85 \\ & 40 \\ & 95 \\ & 45 \end{aligned}$	$\begin{aligned} & 160 \\ & 80 \\ & 210 \\ & 110 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{1 \mathrm{H}} \\ & \mathrm{t}_{\mathrm{OH}} \end{aligned}$	Deiay From Disable Input to High Impedance State, (From Logical " 1 " or Logical " 0 ") MM70C95/MM80C95   MM70C96/MM80C96   MM70C97/MM80C97   MM70C98/MM80C98	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{Cc}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		1     80   50    100    70    70        50    90    70	135 90 180 125 125 90 170 125	
$\begin{aligned} & t_{H_{1}} \\ & t_{H O} \end{aligned}$	Delay From Disable Input to Logical "1" Level (From High Impedance State)   MM70C95/MM80C95   MM70C96/MM80C96   MM70C97/MM80C97   MM70C98/MM80C98	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & V_{\mathrm{CC}}=5 \mathrm{~V} \\ & V_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	.	120 50 130 60 95 40 1.20 50	$\begin{aligned} & 200 \\ & 90 \\ & 225 \\ & 110 \\ & 175 \\ & 80 \\ & 200 \\ & 90 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { ns } \end{aligned}$

## truth tables

DISABLE   DIS $_{\mathbf{1}}$	INPUT   DIS	INPUT	OUTPUT
0	0	0	0
0	0	1	1
0	1	$X$	$\mathrm{H} \cdot \mathrm{z}$
1	0	X	$\mathrm{H}-\mathrm{z}$
1	1	X	$\mathrm{H} \cdot \mathrm{z}$


MM70C96/MM80C96   DISABLE   DIS $_{1}$	INPUT   DIS $_{2}$	INPUT	OUTPUT
0	0	0	1
0	0	1	0
0	1	$X$	$\mathrm{H}-\mathrm{z}$
1	0	$X$	$\mathrm{H}-\mathrm{z}$
1	1	$X$	$\mathrm{H}-\mathrm{z}$


MM70C97/MM80c97   DIS $_{4}$	INPUT   DIS $_{2}$	INPUT	OUTPUT
0	0	0	0
0	0	1	1
$X$	1	$X$	$H-z^{*}$
1	$X$	$X$	$H-z^{* *}$


MM70C98/MM80C98   DISABL $_{4}$	INPUT   DIS $_{\mathbf{2}}$	INPUT	OUTPUT
0	0	0	1
0	0	1	0
$X$	1	$X$	$H \cdot z^{*}$
1	$X$	$X$	$H \cdot z^{* *}$

[^7]typical performance characteristics


## schematic diagrams



## ac test circuits and switching time waveforms

${ }^{t} \mathbf{p d} 0, t_{p d} 1$



[^8]
## MM78C29／MM88C29 quad single ended line driver

 MM78C30／MM88C30 dual differential line driver
## general description

The MM78C30／MM88C30 is a dual differential line driver that also performs the dual four－input NAND or dual four－input AND function．The absence of a clamp diode to $\mathrm{V}_{\mathrm{Cc}}$ in the input protection circuitry allows a CMOS user to interface systems operating at different voltage levels．Thus，a CMOS digital signal source can operate at a $V_{c c}$ voltage greater than the $V_{c c}$ voltage of the MM78C30 line driver．The differential output of the MM78C30／MM88C30 eliminates ground－loop errors．

The MM78C29／MM88C29 is a non－inverting single－wire transmission line driver with a similar input protection circuit．And since the output $O N$ resistance is a low $20 \Omega$
typ，the device can be used to drive lamps，relays， solenoids，and clock lines，besides driving data lines．

## features

－Wide supply voltage range 3.0 V to 15 V
$\begin{array}{lr}\text {－High noise immunity } & 0.45 \mathrm{~V}_{\mathrm{CC}} \text { typ } \\ \text {－Low output ON resistance } & 20 \Omega \text { typ }\end{array}$

## logic and connection diagrams



absolute maximum ratings (Note 1)	
Voltage at Any Pin	-0.3 V to +16 V
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MM78C29/MM78C30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MM88C29/MM88C30	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	500 mW
Package Dissipation	3.0 V to 15 V

Absolute Maximum $\mathrm{V}_{\mathrm{cc}}$
18 V
Average Current at $V_{C C}$ and Ground $\quad 100 \mathrm{~mA}$
Average Current at Output
MM78C30/MM88C30 50 mA

MM78C29/MM88C29 : 25 mA
Maximum Junction Temperature, $\mathrm{T}_{\mathrm{j}} \quad 150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
dc electrical characteristics Min/max limits apply across temperature range, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS TO cmos					
Logical " 1 " Input Voltage ( $\mathrm{V}_{\text {IN(1) }}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			v v
Logical " 0 " Input Voltage ( $\mathrm{V}_{\text {IN }(0)}$ )	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			1.5 2.0	- $\begin{array}{r}\text { V } \\ V\end{array}$
Logical " 1 " Input Current ( $\mathrm{I}_{\text {in(1) }}$ )	$V_{C C}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical " 0 " Input Current ( $\mathrm{I}_{1 \times(0)}$ )	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	. -1.0	-0.005		$\mu \mathrm{A}$
Supply Current (1cc)	$V_{\text {cc }}=15 \mathrm{~V}$		0.05	100	$\mu \mathrm{A}$
OUTPUT DRIVE					
Output Source Current MM78C29/MM78C30					
	$V_{\text {OUT }}=V_{\text {CC }}-1.6 \mathrm{~V}$,				
	$V_{c c} \geq 4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$	-57	-80		
	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	-32	-50		mA
MM88C29/MM88C30	$\begin{aligned} & V_{\text {OUT }}=V_{C C}-1.6 \mathrm{~V}, \\ & V_{C C} \geq 4.75 \mathrm{~V}, T_{j}=25^{\circ} \mathrm{C} \end{aligned}$	-47	-80		mA
	$\mathrm{T}_{\mathrm{j}}=85^{\circ} \mathrm{C}$		-60		mA
MM78C29/MM88C29	$V_{\text {OUT }}=V_{\text {cc }}-0.8 \mathrm{~V}$				
MM78C30/MM88C30	$V_{C C} \geqslant 4.5 \mathrm{~V}$	-2	-20		mA
Output Sink Current MM78C29/MM78C30					
	$V_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.50 \mathrm{~V}$				mA
	$T_{j}=25^{\circ} \mathrm{C}$	11	20		mA
	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	8	14		
					mA
	$T_{j}=25^{\circ} \mathrm{C}$	22	40		mA
	$\mathrm{T}_{i}=125^{\circ} \mathrm{C}$	16	28		
			,		
MM88C29/MM88C30	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=4.75 \mathrm{~V}$				
	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	9.5	22		mA
	$\mathrm{T}_{\mathrm{j}}=85^{\circ} \mathrm{C}$	8	18		mA
	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=10 \mathrm{~V}$				
	$T_{i}=25^{\circ} \mathrm{C}$	19	40		mA
	$\mathrm{T}_{\mathrm{i}}=85^{\circ} \mathrm{C}$	15.5	33		mA
Output Source Resistance					
MM78C29/MM78C30					
	$\begin{aligned} & V_{C C} \geq 4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$		20 32	28 50	$\Omega$ $\Omega$
	$\mathrm{T}_{\mathrm{j}}=125 \mathrm{C}$				$\Omega$
MM88C29/MM88C30	$V_{\text {OUT }}=V_{C C}-1.6 \mathrm{~V}$				
	$\begin{aligned} & V_{c c} \geq 4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{i}}=85^{\circ} \mathrm{C} \end{aligned}$		27	50	$\Omega$


ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time to Logical＂ 1 ＂ or＂ 0 ＂（ $t_{\text {pa }}$ ）	（See Figure 2）				
MM78C29／MM88C29	$V_{\text {cc }}=5 \mathrm{~V}$		80	200	ns
	$V_{c c}=10 \mathrm{~V}$		35	100	ns
MM78C30／MM88C30	$V_{C C}=5 \mathrm{~V}$		110	350	ns
	$V_{c c}=10 \mathrm{~V}$		50	150	ns
Power Dissipation Capacitance（ $\mathrm{C}_{\text {PD }}$ ）					
MM78C29／MM88C29	（Note 3）		150		pF
MM78C30／MM88C30	（Note 3）		200		pF
Input Capacitance（ $\mathrm{C}_{1 N}$ ）					
MM78C29／MM88C29	（Note 2）		5.0		pF
MM78C30／MM88C30	（Note 2）		5.0		pF
Differential Propagation Delay Time to Logical＂ 1 ＂or＂ 0 ＂	$R_{L}=100 \Omega, C_{L}=5000 \mathrm{pF}$   （See Figure 1）				
MM78C30／MM88C30	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$			400	ns
．－	$V_{C C}=10 \mathrm{~V}$			150	ns

Note 1：＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．Except for＂Operating Temperature Range＂they are not meant to imply that the devices should be operated at these limits．The table of＂Electrical Characteristics＂ provides conditions for actual device operation．
Note 2：Capacitance is guaranteed by periodic testing．
Note 3：CPD determines the no load ac power consumption of any CMOS device．For complete explanation see 54C／74C Family Characteristics application note，AN－90．

## typical performance characteristics

MM78C29/MM88C29
Typical Propagation Delay vs Load Capacitance


MM78C30/MM88C30
Typical Propagation Delay vs Load Capacitance


MM78C29/MM88C29
Typical Propagation Delay vs Load Capacitance


Typical Sink Current vs Output Voltage


MM78C30/MM88C30
Typical Propagation Delay vs Load Capacitance


Typical Source Current vs Output Voltage

ac test circuits



FIGURE 1.


FIGURE 2.

## typical applications



Typical Data Rate vs Transmission Line Length


Note 1: The transmission line used was \#22 guage unshielded twisted pair (40k termination).

Note 2: The curves generated assume that both drivers are driving equal lines, and that the maximum power is $500 \mathrm{~mW} /$ package.

# CMOS DATABOOK 

## CD4000B SERIES



$$
-
$$

CD4000M/CD4000C dual 3-input NOR gate plus inverter

## general description

The CD4000M/CD4000C is a monolithic complementary MOS (CMOS) dual 2 -input NOR gate plus an inverter. N - and P -channel enhancement mode transistors provide a symmetrical circuit with output swings essentially equal to the supply voltage. This results in high noise immunity over a wide supply voltage range. No dc power other than that caused by leakage current is consumed during static conditions. All inputs are protected against static discharge and latching conditions.

## features

- Wide supply voltage range
3.0 V to 15 V
- Low power

10 nW (typical)

- High noise immunity
$0.45 \mathrm{~V}_{\text {DD }}$ typical
schematic and connection diagrams



## absolute maximum ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range CD4000M CD4000C
Storage Temperature Range
Package Dissipation
Operating $\mathrm{V}_{\text {DD }}$ Range
Lead Temperature (Soldering, 10 seconds)
$V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 500 mW
$\mathrm{V}_{\mathrm{SS}}+3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}+15 \mathrm{~V}$
$300^{\circ} \mathrm{C}$
dc electrical characteristics-CD4000M (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
${ }^{1} \mathrm{DD}$	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.1 \end{aligned}$		,	0.05 0.1		$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$			0.05 0.05		0.05 0.05	V	
VOH	High Level Output Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.95 \\ & 9.95 \end{aligned}$		$\begin{aligned} & 4.95 \\ & 9.95 \end{aligned}$			4.95 9.95		$\begin{aligned} & v \\ & v \end{aligned}$	
$\mathrm{V}_{\mathrm{NL}}$	Noise Immunity (Note 3)	$\left\lvert\, \begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=1.4 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=2.8 \mathrm{~V} \text { or } 7.2 \mathrm{~V} \end{aligned}\right.$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$			1.4		$\begin{aligned} & v \\ & v \end{aligned}$	
$\mathrm{V}_{\mathrm{NH}}$	Noise Immunity (Note 3)	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=1.4 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=2.8 \mathrm{~V} \text { or } 7.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.9 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$			1.5 3.0		v	
$I_{\text {DN }}$	Low Level Output Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.5 \\ 1.1 \end{gathered}$		0.4 0.9			0.28 0.65	,	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
$I_{\text {DP }}$	High Level Output Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=2.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V} \end{aligned}$	$\left.\begin{aligned} & -0.62 \\ & -0.62 \end{aligned} \right\rvert\,$		$\begin{aligned} & -0.5 \\ & -0.5 \end{aligned}$			-0.35 -0.35		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
In	Input Current	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V} \end{aligned}$	-1.0	1.0	-0.1	$\begin{array}{r} -10^{-5} \\ 10^{-5} \end{array}$	0.1	-1.0	1.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
Note 3: For the NOR gates $V_{N H}$ and $V_{N L}$ are tested at each input while all other inputs are at $V_{S S}$.
Note 4: CPD determines the no load AC power consumption of any CMOS device. For explanation see 54C/74C Family Characteristics application note, AN-90.
ac electrical characteristics- CD4000M $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tpHL	Propagation Delay Time, High to Low Level	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 40 \\ & 20 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tpLH	Propagation Delay Time, Low to High Level	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 95 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {t THL }}$	Transition Time, High to Low Level	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		50 20	$\begin{aligned} & 125 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {t }}^{\text {TLH }}$	Transition Time, Low to High Level	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		70 35	$\begin{aligned} & 175 \\ & 75 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{C}_{1}$	Input Capacitance	Any Input		5		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	(Note 4)		35		pF

dc electrical characteristics- C4000C (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
${ }^{\text {I D D }}$	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 5 \end{aligned}$			0.5 5		$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
VOL	Low Level Output Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$			0.05 0.05		0.05 0.05	v	
$\mathrm{VOH}^{\text {O }}$	High Level Output Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.95 \\ & 9.95 \end{aligned}$		$\begin{aligned} & 4.95 \\ & 9.95 \end{aligned}$			4.95 9.95		v	
$\mathrm{V}_{\mathrm{NL}}$	Noise Immunity (Note 3)	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=1.4 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=2.8 \mathrm{~V} \text { or } 7.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 1.4 \\ & 2.9 \end{aligned}$			
$\mathrm{V}_{\mathrm{NH}}$	Noise Immunity (Note 3)	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=1.4 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=2.8 \mathrm{~V} \text { or } 7.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.9 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	.		1.5 3.0			
IDN	Low Level Output Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.72 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$			0.24 0.48		$\frac{\mathrm{mA}}{\mathrm{mA}}$	
$I_{\text {DP }}$	High Level Output Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=2.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V} \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.35 \\ & -0.3 \end{aligned}\right.$		$\begin{aligned} & -0.3 \\ & -0.25 \end{aligned}$			$\begin{aligned} & -0.24 \\ & -0.2 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
1 IN	Input Current	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V} \\ & V_{O D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V} \end{aligned}$	-0.3	0.3	-0.3	$\begin{array}{r} -10^{-5} \\ 10^{-5} \\ \hline \end{array}$	0.1	-1.0	1.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	

ac electrical characteristics-CD4000C $T_{A}=+25^{\circ} \mathrm{C}, C_{L}=15 \mathrm{pF}$, unless otherwise specified.

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
tPHL	Propagation Delay Time, High to Low Level	$V_{D D}=5 \mathrm{~V}$		40	80	ns
		$V_{D D}=10 \mathrm{~V}$		20	55	ns
$t_{\text {PLH }}$	Propagation Delay Time, Low to High Level	$V_{D D}=5 \mathrm{~V}$		50	120	ns
		$V_{D D}=10 \mathrm{~V}$		25	65	ns
${ }_{\text {t }}^{\text {THL }}$	Transition Time, High to Low Level	$V_{D D}=5 \mathrm{~V}$		50	200	ns
		$V_{D D}=10 \mathrm{~V}$		20	115	ns
${ }_{\text {tith }}$	Transition Time, Low to High Level	$V_{D D}=5 \mathrm{~V}$		70	300	ns
		$V_{D D}=10 \mathrm{~V}$		35	125	ns
	Input Capacitance	Any Input		5		pF
$C_{P D}$	Power Dissipation Capacitance	(Note 4)		35		pF

## CD4001M/CD4001C quadruple 2 -input NOR gate

## general description

The CD4001M/CD4001C is a monolithic complementary MOS` (CMOS) quadruple two-input NOR gate integrated circuit. N and P -channel enhancement mode transistors provide a symmetrical circuit with output swings essentially equal to the supply voltage. This results in high noise immunity over a wide supply voltage range. No dc power other than that caused by leakage current is consumed during static conditions.

All inputs are protected against static discharge and latching conditions.

## features

- Wide supply voltage range
$3 V$ to 15 V
- Low power

10 nW (typ)

- High noise immunity
$0.45 \mathrm{~V}_{\text {Do }}$ (typ)


## schematic and connection diagrams



## absolute maximum ratings

Voltage at Any Pin（Note 1）
$V_{S S}-0.3 V$ to $V_{D D}+0.3 V$
Operating Temperature Range
CD4001M
CD4001C
Storage Temperature Range
Package Dissipation
Operating $V_{D D}$ Range
Lead Temperature（Soldering， 10 seconds）

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
500 \mathrm{~mW} \\
\mathrm{~V}_{\mathrm{ss}}+3.0 \mathrm{~V} \text { to } \mathrm{V} \text { Ss }+15 \mathrm{~V} \\
300^{\circ} \mathrm{C}
\end{array}
$$

dc electrical characteristics CD4001M

PARAMETER	CONDITIONS	LIMITS									UNITS
		$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device	$V_{D D}=5 \mathrm{~V}$			0.05		0.001	0.05			3	$\mu \mathrm{A}$
Current（ $L_{\text {L }}$ ）	$V_{D D}=10 \mathrm{~V}$			0.1		0.001	0.1			6	$\mu \mathrm{A}$
Quiescent Device Dissi－	$V_{D D}=5 \mathrm{~V}$			0.25		0.005	0.25		．	15	$\mu \mathrm{W}$
pation／Package（ $\mathrm{P}_{\mathrm{D}}$ ）	$V_{D D}=10 \mathrm{~V}$			1		0.01	1			60	$\mu \mathrm{W}$
Output Voltage Low	$V_{D D}=5 \mathrm{~V}, V_{1}=V_{D D}, I_{O}=0 A$			0.01		0	0.01			0.05	$v$
Level（ $V_{O L}$ ）	$V_{D D}=10 \mathrm{~V}, V_{1}=V_{D O}, I_{O}=0 \mathrm{~A}$			0.01		0	0.01			0.05	$v$
Output Voltage High	$V_{D D}=5 \mathrm{~V}, V_{1}=V_{S S}, I_{0}=0 A$	4.99			4.99	5		4.95			$v$
Level（ $\mathrm{VOH}_{\mathrm{OH}}$ ）	$V_{D D}=10 \mathrm{~V}, V_{1}=V_{S S}, I_{O}=0 \mathrm{~A}$	9.99			9.99	10		9.95			$v$
Noise Immunity	$V_{O D}=5 \mathrm{~V}, V_{O}=3.6 \mathrm{~V}, 1_{0}=0 \mathrm{~A}$	1.5			1.5	2.25		1.4			V
（ $\mathrm{V}_{\text {NL }}$ ）（All Inputs）	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=7.2 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~A}$	3			3	4.5		2.9			v
Noise Immunity	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{O}=0.95 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~A}$	1.4		，	1.5	2.25		1.5			V
（ $\mathrm{V}_{\text {NH }}$ ）（All Inputs）	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=2.9 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~A}$	2.9			3	4.5		3			$V$
Output Drive Current	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{1}=V_{D D}$	0.5			0.40	1	，	0.28			mA
$N$－Channel（ $\mathrm{I}_{\mathrm{D}} \mathrm{N}$ ）	$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}, V_{1}=V_{D D}$	1.1			0.9	2.5		0.65			mA
Output Drive Current	$V_{D D}=5 \mathrm{~V}, V_{0}=2.5 \mathrm{~V}, V_{1}=V_{S S}$	－0．62			－0．5	－2		－0．35			mA
P－Channel（ $I_{0} P$ ）	$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}, V_{1}=V_{S S}$	－0．62			－0．5	－1		－0．35			mA
Input Current（ 11 ）						10					pA

dc electrical characteristics CD4001C

PARAMETER	CONDITIONS	LIMITS									UNITS
		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device Current（ $\mathrm{I}_{\mathrm{L}}$ ）	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			0.5 5		$\begin{aligned} & 0.005 \\ & 0.005 \end{aligned}$	0.5 5			15 30	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Quiescent Device Dissi－	$V_{D D}=5 \mathrm{~V}$			2.5		0.025	2.5			75	$\mu \mathrm{W}$
pation／Package（ $\mathrm{P}_{\mathrm{D}}$ ）	$V_{D D}=10 \mathrm{~V}$			50		0.05	50			300	$\mu W$
Output Voltage Low	$V_{D O}=5 \mathrm{~V}, \mathrm{~V}_{1}=V_{D D}, I_{O}=0 \mathrm{~A}$			0.01		0	0.01			0.05	V
Level（ $\mathrm{V}_{\text {OL }}$ ）	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{1}=V_{D D}, \mathrm{I}_{0}=0 \mathrm{~A}$			0.01		0	0.01			0.05	V
Output Voltage High	$V_{\text {DO }}=5 \mathrm{~V}, \quad V_{1}=V_{S S}, l_{0}=0 \mathrm{~A}$	4.99			4.99	5		4.95			V
Level（ $\mathrm{VOH}_{\mathrm{OH}}$ ）	$V_{D O}=10 \mathrm{~V}, V_{1}=V_{S S}, I_{O}=0 \mathrm{~A}$	9.99			9.99	10		9.95			V
Noise Immunity	$V_{D D}=5 \mathrm{~V}, V_{O}=3.6 \mathrm{~V}, I_{0}=0 \mathrm{~A}$	1.5			1.5	2.25		1.4			$v$
（ $\mathrm{V}_{\mathrm{NL}}$ ）（All Inputs）	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.2 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~A}$	3			3	4.5		2.9			V
Noise Immunity	$V_{O D}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.95 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~A}$	1.4			1.5	2.25		1.5			V
（ $\mathrm{V}_{\mathrm{NH}}$ ）（All Inputs）	$\mathrm{V}_{D O}=10 \mathrm{~V}, \mathrm{~V}_{0}=2.9 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~A}$	2.9			3	4.5		3			$v$
Output Drive Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}, V_{1}=V_{D D}$	0.35			0.3	1		0.24			mA
N－Channel（ $\mathrm{I}_{\mathrm{D}} \mathrm{N}$ ）	$V_{D D}=10 \mathrm{~V}, V_{0}=0.5 \mathrm{~V}, V_{1}=V_{D D}$	0.72			0.6	2.5		0.48			mA
Output Drive Current	$V_{D O}=5 \mathrm{~V}, V_{O}=2.5 \mathrm{~V}, \mathrm{~V}_{1}=V_{S S}$	－0．35			－0．3	－2		－0．24			mA
P－Channel（ $I_{D} \mathrm{P}$ ）	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{S S}$	－0．3			－0．25	－1		－0．2			mA
Input Current（ $\mathrm{I}_{1}$ ）						10					pA

Note 1：This device should not be connected to circuits with the power on because high transient voltages may cause permanent damage．
ac electrical characteristics CD4001M
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and input rise and fall times $=20 \mathrm{~ns}$. Typical temperature coefficient for all values of $\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time High to Low Level ( $\mathrm{t}_{\mathrm{PH}}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Propagation Delay Time Low to High Level ( $\mathrm{t}_{\text {PLH }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		35 25	$\begin{aligned} & 65 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Transition Time High to Low Level ( $t_{\text {THL }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 65 \\ & 35 \end{aligned}$	$\begin{aligned} & 125 \\ & 70 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Transition Time Low to High Level ( $t_{\text {TLH }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 65 \\ & 35 \end{aligned}$	$\begin{aligned} & 175 \\ & 75 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Input Capacitance ( $\mathrm{C}_{1}$ )	Any Input		5		pF

## ac electrical characteristics CD4001C

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and input rise and fall times $=20 \mathrm{~ns}$. Typical temperature coefficient for all values of $\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time High	$V_{D D}=5 \mathrm{~V}$		35	80	ns
to Low Level ( $\mathrm{t}_{\mathrm{PHL}}$ )	$V_{D D}=10 \mathrm{~V}$		25	55	ns
Propagation Delay Time Low	$V_{D D}=5 \mathrm{~V}$		35	120	ns
to High Level ( $\mathrm{t}_{\mathrm{PLH}}$ )	$V_{D D}=10 \mathrm{~V}$		25	65	ns
Transition Time High to Low	$V_{D D}=5 \mathrm{~V}$		65	200	ns
Level ( $\mathrm{t}_{\text {THL }}$ )	$V_{D D}=10 \mathrm{~V}$		35	115	ns
Transition Time Low to High	$V_{D D}=5 \mathrm{~V}$		65	300	ns
Level ( $\mathrm{t}_{\text {TLH }}$ )	$V_{D D}=10 \mathrm{~V}$		35	125	ns
Input Capacitance ( $\mathrm{C}_{1}$ )	Any Input		5		pF

CD4001BM/CD4001BC quad 2-input NOR buffered B series gate CD4011BM/CD4011BC quad 2 -input NAND buffered B series gate
general description
These quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N - and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

All inputs are protected against static discharge with diodes to $V_{D D}$ and $V_{S S}$.

## features

- Low power TTL compatability, fan out of 2 driving 74 L or 1 driving 74LS
- $5 \mathrm{~V}-10 \mathrm{~V}-15 \mathrm{~V}$ parametric ratings
- Symmetrical output characteristics
- Maximum input leakage $1 \mu \mathrm{~A}$ at 15 V over full temp. erature range
schematic and connection diagrams

$1 / 4$ of device shown
$J=\overline{A+B}$
Logical "1" = High
Logical " 0 " = Low
*All inputs protected by standard CMOS protection circuit.

$1 / 4$ of device shown
$J=\overline{A \cdot B}$
Logical "1" = High
Logical " 0 " = Low
*All inputs protected by standard CMOS protection circuit.
Voltage at Any Pin Package Dissipation $V_{D D}$ Range
Storage Temperature
Lead Temperature (Soidering, 10 seconds)
-0.5 V to $V_{D D}+0.5 \mathrm{~V}$
500 mW
$-0.5 \mathrm{~V}_{\mathrm{DC}}$ to +18 VDC
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Operating $V_{D D}$ Range	$3 V_{D C}$ to $15 V_{D C}$
Operating Temperature Range	
CD4001BM, CD4011BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4001BC, CD4011BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4001BM, CD4011BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		0.25		0.004	0.25		7.5	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		0.50		0.005	0.50		15	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		1.0		0.006	1.0		30	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$,		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}, \quad \\|{ }^{\circ} \mathrm{l}<1 \mu \mathrm{~A}$		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$,	4.95		4.95	5.		4.95		$\checkmark$	
		$V_{D D}=10 \mathrm{~V}, \quad{ }^{\prime} \mathrm{O}^{\prime}<1 \mu \mathrm{~A}$	9.95		9.95	10		9.95	-	V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V	
VIL	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.5 \mathrm{~V}$		1.5		2	1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.0 \mathrm{~V}$		3.0		4	3.0		3.0	V	
		$V_{\text {QD }}=15 \mathrm{~V}, \mathrm{~V}_{0}=13.5 \mathrm{~V}$		4.0		6	4.0		4.0	V	
$V_{1 H}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$	3.5		3.5	3		3.5	.	$v$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$	7.0		7.0	6		7.0		V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	11.0		11.0	9		11.0		$v$	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current		-0.64		-0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.6		-1.3	$-2.25$		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2		$-3.4$	-8.8		$-2.4$		$m A$	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		$-0.10$		$-10^{-5}$	$-0.10$		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.10		$10^{-5}$	0.10		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation:
Note 2: All voltages measured with respect to $V_{\text {SS }}$ unless othenwise specified.
dc electrical characteristics CD4001BC, CD40118C (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
100	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		1		0.004	1		7.5	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		2		0.005	2		15	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		4		0.006	4		30	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$ )		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
VOH	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$ (	4.95		4.95	5		4.95		$\checkmark$	
		$V_{D D}=10 \mathrm{~V}, \quad \\|_{0} \mid<1 \mu \mathrm{~A}$	9.95		9.95	10		9.95		V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$V$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=4.5 \mathrm{~V}$		1.5		2	1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.0 \mathrm{~V}$		3.0		4	3.0	-	3.0	$V$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$		4.0		6	4.0		4.0	V	
$V_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	3.5		3.5	3		3.5		V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$	7.0		7.0	6		7.0		V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	11.0		11.0	9		11.0		$\checkmark$	
${ }^{1} \mathrm{OL}$	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
${ }^{\mathrm{O}} \mathrm{OH}$	High Level Output Current ${ }^{\text {- }}$	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	$-3.6$		$-3.0$	-8.8		-2.4		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.30		$-10^{-5}$	-0.30		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.30		$10^{-5}$	0.30		1.0	$\mu \mathrm{A}$	

## ac electrical characteristics CD4001BC, CD4001BM

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}} ; \mathrm{t}_{\mathrm{f}}=20$ ns. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$. Typical temperature coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$.

	PARAMETER	CONDITIONS	TYP	MAX	UNITS
TPHL	Propagation Delay Time, High-to-Low Level	$V_{D D}=5 \mathrm{~V}$	120	250	ns
		$V_{D D}=10 \mathrm{~V}$	50	100	ns
		$V_{D D}=15 \mathrm{~V}$	35	70	ns
tPLH	Propagation Delay Time, Low-to-High Level	$V_{D D}=5 \mathrm{~V}$	110	250	ns
		$V_{D D}=10 \mathrm{~V}$	50	100	ns
		$V_{D D}=15 \mathrm{~V}$	35	70	ns
	Transition Time	$V_{D D}=5 \mathrm{~V}$	90	200	ns
		$V_{D D}=10 \mathrm{~V}$	50	100	ns
		$V_{D D}=15 \mathrm{~V}$	40	80	ns
CIN	Average Input Capacitance	Any Input	5	7.5	pF
CPD	Power Dissipation Capacity	Any Gate	14		pF

## ac electrical characteristics CD4011BC, CD4011BM

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}} ; \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} . \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$. Typical Temperature Coefficient is $0.3 \%{ }^{\circ} \mathrm{C}$.

PARAMETER		CONDITIONS	TYP	MAX	UNITS
tPHL	Propagation Delay, High-to-Low Level	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	120	250	ns
		$V_{D D}=10 \mathrm{~V}$	50	100	ns
		$V_{D D}=15 \mathrm{~V}$	35	70	ns
tPLH	Propagation Delay, Low-to-High Level	$V_{D D}=5 \mathrm{~V}$	85	250	ns
		$V_{D D}=10 \mathrm{~V}$	40	100	ns
		$V_{D D}=15 \mathrm{~V}$	30	70	ns
${ }^{\text {t }}$ HL, tTLH	Transition Time	$V_{\text {DD }}=5 \mathrm{~V}$	90	200	ns
-		$V_{D D}=10 \mathrm{~V}$	50	100	ns
		$V_{D D}=15 \mathrm{~V}$	40	80	ns
CIN	Average Input Capacitance	Any Input	5	7.5	pF
CPD	Power Dissipation Capacity	Any Gate	14		pF

## typical performance characteristics



FIGURE 1. Typical Transfer Characteristics


FIGURE 4. Typical Transfer Characteristics


FIGURE 2. Typical Transfer Characteristics


FIGURE 5


FIGURE 3. Typical Transfer Characteristics


FIGURE 6
typical performance characteristics (cont)


FIGURE 7


FIGURE 10


FIGURE 8


FIGURE 11


FIGURE 9


FIGURE 12


FIGURE 13


FIGURE 14

CD4002M/CD4002C dual 4 -input NOR gate

## general description

These NOR gates are monolithic complementary MOS (CMOS) integrated circuits. The $N$ and $P$ channel enhancement mode transistors provide a symmetrical circuit with output swings essentially equal to the supply voltage. This results in high noise immunity over a wide supply voltage range. No DC power other than that caused by leakagecurrent is consumed during static conditions. All inputs are protected against static discharge and latching conditions.

## features

- Wide supply voltage range
$3 V$ to 15 V
- Low power

10 nW (typical)

- High noise immunity
$0.45 \mathrm{~V}_{\mathrm{DD}}$ (typical)


## applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm system
- Industrial controls
- Remote metering
- Computers


## schematic and connection diagrams



## absolute maximum ratings

Voltage at Any. Pin (Note 1)		$V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {SS }}+15.5 \mathrm{~V}$
Operating Temperature Range	CD40XXM   CD40XXC	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{array}$
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation		00
a ${ }^{\text {ad Temperature (Soldering, }}$	10 seconds)	30

## electrical characteristics



Note 1: This device should not be connected to circuits with the power on because high transient voltage may cause permanent damage.

. CHARACTERISTICS	TEST   CONDITIONS   $V_{D D}$   (VOLTS)	LIMITS						UNITS
		CD4002M			CD4002C			
		MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Delay Time:	5	-	35	50	-	35	80	ns
Low-to-High Level $\left(t_{\text {PLH }}\right)$	10	-	25	40	-	25	55	
High-to-Low Level ( $\mathrm{tPHL}^{\text {) }}$ )	5	-	35	50	-	35	120	ns
	10	-	25	40	-	25	65	ns
Transition Time:	5	-	65	125	-	65	200	
Low-to-High Level ( $\mathrm{t}_{\mathrm{TLH}}$ )	10	-	35	70	-	35	115	ns
High-to-Low Level (t $\mathrm{thL}^{\text {a }}$ )	5	-	65.	175	-	65	300	
	10	-	35	75	-	35	125	ns
Input Capacitance ( $\mathrm{C}_{1}$ )	Any Input	-	5	-	-	5	-	pF

## CD4006M/CD4006C 18-stage static shift register

## general description

The CD4006M/CD4006C 18 -stage static shift register is comprised of four separate shift register sections, two sections of four stages and two sections of five stages. Each section has an independent data input. Outputs are available at the fourth stage and the fifth stage of each section. A common clock signal is used for all stages. Data is shifted to the next stage on the negative-going transition of the clock. Through appropriate connections of inputs and outputs, multiple register sections of 4,5,8 and 9 stages or single register section of $10,12,13,14,16,17$, and 18 stages can be implemented using one package.

## features

- Wide supply voltage range
m High noise immunity
- Low clock input capacitance

$$
\begin{array}{r}
3.0 \mathrm{~V} \text { to } 15 \mathrm{~V} \\
0.45 \mathrm{~V}_{\mathrm{DD}} \text { typ } \\
6 \mathrm{pF} \text { typ }
\end{array}
$$

- Medium speed operation

10 MHz typ with $V_{D D}=10 \mathrm{~V}$

- Low power
- Fully static operation


## applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm system
- Industry control
- Remote metering
- Computers


## logic diagrams



## connection diagram




## truth table

$D$	$C L^{\Delta}$	$D+1$
0	$-L$	0
1	$-L$	1
$\times$	$-\square$	$N C$

X = Don't care
$\Delta=$ Level change
$N C=$ No change

## absolute maximum ratings

Voltage at Any Pin（Note 1）
$V_{S S}-0.3 V$ to $V_{D D}+0.3 V$
Operating Temperature Range CD4006M CD4006C
Storage Temperature Range
Package Dissipation
Operating $\mathrm{V}_{\mathrm{DD}}$ Range
Lead Temperature（Soldering， 10 seconds）
$\mathrm{V}_{\mathrm{SS}}+3.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}+15 \mathrm{~V}$
$300^{\circ} \mathrm{C}$
dc electrical characteristics CD4006M

PARAMETER	CONDITIONS	LIMITS									UNITS
		$-55^{\prime \prime} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device	$V_{D D}=5.0 \mathrm{~V}$			0.5		0.01	0.5			30	$\mu \mathrm{A}$
Current（1L）	$V_{D O}=10 \mathrm{~V}$			1.0		0.01	1.0			60	$\mu \mathrm{A}$
Quiescent Device Dissi－	$V_{D O}=5.0 \mathrm{~V}$			2.5		0.05	2.5			150	$\mu \mathrm{W}$
pation／Package（ $\mathrm{P}_{\mathrm{D}}$ ）	$V_{D D}=10 \mathrm{~V}$			10		0.1	10			600	$\mu W^{\text {－}}$
Output Voltage Low	$V_{D D}=5.0 \mathrm{~V}$			0.01		0	0.01			0.05	$v$
Level（ $\mathrm{V}_{\text {OL }}$ ）	$V_{D D}=10 \mathrm{~V}$			0.01		0	0.01			0.05	V
Output Voltage High	$V_{D D}=5.0 \mathrm{~V}$	4.99				4.99	5	4.95			V
Level（ $\mathrm{V}_{\mathrm{OH}}$ ）	$V_{D D}=10 \mathrm{~V}$	9.99				9.99	10	9.95			V
Noise Immunity ${ }^{\text {－}}$	$V_{\text {DD }}=5.0 \mathrm{~V}$	1.5			1.5	2.25	．	1.4			V
（ $\mathrm{V}_{\text {NL }}$ ）（All Inputs）	$V_{O D}=10 \mathrm{~V}$	3.0			3.0	4.5		2.9		$\cdots$	V
Noise Immunity	$V_{D D}=5.0 \mathrm{~V}$	1.4			1.5	2.25		1.5			$v$
（ $\mathrm{V}_{\mathrm{NH}}$ ）（All Inputs）	$V_{O D}=10 \mathrm{~V}$	2.9			3.0	4.5		3.0			V
Output Drive Current	$V_{O D}=5.0 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	0.155			0.125	， 0.25		0.085			$m A$
$N$－Channel（ $\mathrm{I}_{0} \mathrm{~N}$ ）	$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	0.31			0.25	0.5		0.175			mA
Output Drive Current	$V_{D D}=5.0 \mathrm{~V}, V_{O}=4.5 \mathrm{~V}$	－0．125			－0．1	－0．15		－0．07			mA
P－Channel（ $I_{0} \mathrm{P}$ ）	$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	－0．25			－0．2－	－0．3		－0．14			mA
Input Current（ $1_{1}$ ）	Any Input					10					pA

dc electrical characteristics CD4006C

PARAMETER	CONDITIONS	LIMITS									UNITS
		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device Current（IL）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			5 10		$\begin{aligned} & 0.03 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 5 \\ & 10 \end{aligned}$			$\begin{aligned} & 70 \\ & 140 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Quiescent Device Dissi－ pation／Package（ $\mathrm{P}_{\mathrm{D}}$ ）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 25 \\ & 100 \end{aligned}$		0.15 0.5	$\begin{aligned} & 25 \\ & 100 \end{aligned}$			$\begin{aligned} & 350 \\ & 1400 \end{aligned}$	$\begin{aligned} & \mu W \\ & \mu W \end{aligned}$
Output Voltage Low Level（ $V_{O L}$ ）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$v$
Output Voltage High Level（ $\mathrm{V}_{\mathrm{OH}}$ ）	$\begin{aligned} & V_{D D}=5: 0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.99 \\ & 9.99 \end{aligned}$			4.99 9.99	5 10		4.95 9.95			v
Noise Immunity （ $\mathrm{V}_{\mathrm{NL}}$ ）（All Inputs）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3 \end{aligned}$			1.5 3	2.25		1.4 2.9			v
Noise Immunity $\left(\mathrm{V}_{\mathrm{NH}}\right)$（All Inputs）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.9 \end{aligned}$			1.5 3	2.25 4.5		1.5 3			$\begin{aligned} & v \\ & v \end{aligned}$
Output Drive Current   N－Channel（IDN）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \end{aligned}$	0.072 0.15			0.06 0.125	${ }_{0}^{0.25}$		0.048 0.10			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Drive Current P－Channel（ $I_{D} P$ ）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V}, V_{O}=4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.06 \\ & -0.12 \end{aligned}$			-0.05 -0.1	－0．15 -0.3		－0．04 -0.08			mA ma
Input Current（1，）	Any Input					10					pA

Note 1：This device should not be connected to circuits with power on because high transient voltages may cause permanent damage．

## ac electrical characteristics

$C D 4006 \mathrm{M}$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$. Typical temperature coefficient for all values of $\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}$

ac electrical characteristics CD4006C

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Propagation Delay Time ( $\mathrm{t}_{\text {PLH }}=\mathrm{t}_{\text {PHL }}$ )	$\mathrm{V}_{\text {DO }}=5.0 \mathrm{~V}$		180	500	ns
	$V_{D O}=10 \mathrm{~V}$		80	250	ns
Transition Time ( $\mathrm{t}_{\mathrm{TL} . \mathrm{H}}=\mathrm{t}_{\mathrm{THL}}$ )	$V_{D D}=5.0 \mathrm{~V}$		150	400	ns
	$V_{D D}=10 \mathrm{~V}$		60	250	ns
Minimum Clock Pulse Width$\left(T_{W H}=T_{W L}\right)$	$V_{\text {DD }}=5.0 \mathrm{~V}$,		100	830	ns
	$V_{D D}=10 \mathrm{~V}$		50	250	ns
Clock Riṣe and Fall Time $\left(t_{\mathrm{r}} \mathrm{Cl}=\mathrm{t}_{\mathrm{f}} \mathrm{l}\right)^{*}$	$V_{D D}=5.0 \mathrm{~V}$			15	$\mu \mathrm{s}$
	$V_{D D}=10 \mathrm{~V}$			5	$\mu \mathrm{s}$
Set-Up Time	$V_{D D}=5.0 \mathrm{~V}$		50	100	ns
	$V_{D D}=10 \mathrm{~V}$		. 25	50	ns
Maximum Clock Frequency ( $\mathrm{f}_{\mathrm{cl}}$ )	$V_{D O}=5.0 \mathrm{~V}$	0.6	5		MHz
	$V_{D D}=10 \mathrm{~V}$	2	10		MHz .
Input Capacitance ( $\mathrm{C}_{1}$ )	Data Input		5		pF
	Clock Input		6		pF

*If more than one unit is cascaded $\mathrm{t}_{\mathrm{r}} \mathrm{Cl}$ should be made less than or equal to the sum of the fixed propagation delay time at 15 pF and the transition time of the output stage for the estimated capacitive load.
switching time waveforms


## CD4007M／CD4007C dual complementary pair plus inverter

## general description

The CD4007M／CD4007C consists of three complemen－ tary pairs of N －channel and P －channel enhancement mode MOS transistors suitable for series／shunt applications． All inputs are protected from static discharge by diode clamps to $V_{D D}$ and $V_{S S}$ ．

For proper operation the voltages at all pins must be constrained to be between $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ at all times．

## features

－Wide supply voltage range
3.0 V to 15 V
－High noise immunity

## ac test circuits



Order Number CD4007MD See Package 1
Order Number CD4007MF See Package 4

Order Number CD4007C」
or CD4007MJ
See Package 16
Order Number CD4007CN
See Package 22

## absolute maximum ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range
CD4007M
CD4007C
Storage Temperature Range
Package Dissipation
Operating $V_{D D}$ Range
Lead Temperature (Soldering, 10 seconds)
$V_{S S}-0.3 V$ to $V_{D D}+0.3 V$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

500 mW
$V_{S S}+3.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}+15 \mathrm{~V}$
$300^{\circ} \mathrm{C}$
dc electrical characteristics CD4007M

PARAMETER	CONDITIONS	Limits									UNITS
		$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$			0.05		- 0.001	0.05			3	$\mu \mathrm{A}$
Current (1L)	$V_{D D}=10 \mathrm{~V}$			0.7		0.001	0.1	-		6	$\mu \mathrm{A}$
Quiescent Device Dissi-	$V_{D D}=5 \mathrm{~V}$			0.25		0.005	0.25			15	$\mu \mathrm{W}$
pation/Package ( $\mathrm{P}_{\mathrm{O}}$ )	$V_{D D}=10 \mathrm{~V}$			1		0.01	1			60	$\mu \mathrm{W}$
Output Voltage Low	$V_{D O}=5 \mathrm{~V}$			0.01		0	0.01	,		0.05	$v$
Level ( $\mathrm{V}_{\text {OL }}$ )	$V_{D D}=10 \mathrm{~V}$			0.01		0 .	0.01			0.05	$v$
Output Voltage High	$V_{D D}=5 \mathrm{~V}$	4.99			4.99	5		4.95			v
Level ( $\mathrm{V}_{\mathrm{OH}}$ )	$V_{D D}=10 \mathrm{~V}$	9.99			9.99	10		9.95			v
Noise Immunity	$\mathrm{V}_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.6 \mathrm{~V}$	1.5			1.5	2.25		1.4			V
( $\mathrm{V}_{\text {NL }}$ ) (All inputs)	$V_{D D}=10 \mathrm{~V}, V_{0}=7.2 \mathrm{~V}$	3			3	4.5		2.9			$v$
Noise Immunity	$V_{D D}=5 \mathrm{~V}, V_{O}=0.95 \mathrm{~V}$	1.4			1.5	2.25		1.5			$v$
$\left(\mathrm{V}_{\mathrm{NH}}\right)$ (All inputs)	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=2.9 \mathrm{~V}$	2.9			3	4.5		3			$v$
Output Drive Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}, V_{V}=V_{D D}$	0.75			0.6	1		0.4			mA
N -Channel ( $\mathrm{I}_{\mathrm{D}} \mathrm{N}$ )	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \mathrm{~V}_{1}=V_{D D}$	1.6			1.3	2.5		0.95			mA
Output Drive Current	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\text {SS }}$	$-1.75$			-1.4	-4					mA
P-Channel (10 ${ }^{\text {P }}$ )	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\text {SS }}$	$-1.35$			-1.1	-2.5		-0.75			mA
Input Current ( 11 )						10					pA

## dc electrical characteristics CD4007C

PARAMETER	CONDITIONS	LIMITS									UNITS
		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MiN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device Current ( $I_{L}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 1 \end{aligned}$		$\begin{aligned} & 0.005 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1 \end{aligned}$			$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Quiescent Device Dissipation/Package ( $\mathrm{P}_{\mathrm{D}}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} . \end{aligned}$			$\begin{aligned} & 2.5 \\ & 10 \end{aligned}$		0.025 0.05	2.5 10			$\begin{aligned} & 75 \\ & 300 \end{aligned}$	$\begin{aligned} & \mu W \\ & \mu W \end{aligned}$
Output Voltage Low Level ( $V_{0 L}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$v$
Output Voltage High Level ( $\mathrm{VOH}_{\mathrm{OH}}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.99 \\ & 9.99 \end{aligned}$			4.99 9.99	5 10		4.95 9.95			$v$
Noise Immunity ( $\mathrm{V}_{\mathrm{NL}}$ ) (All Inputs)	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=3.6 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=7.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 3 \end{aligned}$	2.25 4.5		1.4 2.9			$v$
Noise Immunity $\left(\mathrm{V}_{\mathrm{NH}}\right)$ (All Inputs)	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.95 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=2.9 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.9 \end{aligned}$			${ }^{1.5}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$		1.5 3			$v$
Output Drive Current N -Channel ( $\mathrm{I}_{\mathrm{D}} \mathrm{N}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}, V_{1}=V_{D D} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}, V_{1}=V_{D D} \end{aligned}$	$\begin{aligned} & 0.35 \\ & 1.2 \end{aligned}$			$\begin{aligned} & 0.3 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 0.24 \\ & 0.8 \end{aligned}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Drive Current   P-Channel (ID ${ }^{\text {P }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=2.5 \mathrm{~V}, V_{1}=V_{S S} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}, V_{1}=V_{S S} \end{aligned}$	-1.3   -0.65			$\begin{aligned} & -1.1 \\ & -0.55 \end{aligned}$	$\begin{aligned} & -4 \\ & -2.5 \end{aligned}$		-0.9 -0.45			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Input Current ( $1_{1}$ )						10					pA

Note 1: This device should not be connected to circuits with the power on because high transient voltages may cause permanent damage.

## ac electrical characteristics CD4007M

$T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and input rise and fall times $=20 \mathrm{~ns}$. Typical temperature coefficient for all values of $\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time $\left(\mathrm{t}_{\mathrm{PLH}}=\mathrm{t}_{\mathrm{PHL}}\right)$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		35	60	ns
	$\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$		20	40	ns
Transition Time $\left(\mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}}\right)$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		50	75	ns
	$\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$		30	40	ns
Input Capacitance $\left(C_{1}\right)$	Any Input		5		pF

## ac electrical characteristics CD4007C

$T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and input rise and fall times $=20 \mathrm{~ns}$. Typical temperature coefficient for all values of $\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time $\left(\mathrm{t}_{\mathrm{PLH}}=\mathrm{t}_{\mathrm{PHL}}\right)$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		35	75	ns
	$\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$		20	50	ns
Transition Time $\left(\mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}}\right)$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		50	100	ns
	$\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$		30	50	ns
	Any Input		5		pF

## switching time waveforms



## CD4008BM／CD4008BC 4－bit full adder

## general description

The CD4008B types consist of four full－adder stages with fast look－ahead carry provision from stage to stage． Circuitry is included to provide a fast＂parallel－carry－ out＂bit to permit high－speed operation in arithmetic sections using several CD4008B＇s．CD4008B inputs include the four sets of bits to be added，A1 to A4 and B1 to B4，in addition to the＂Carry $\operatorname{In}$＂bit from a previous section．CD4008B outputs include the four sum bits，S1 and S4，in addition to the high－speed ＂parallel－carry－out＂which may be utilized at a suc－ ceeding CD4008B section．

All inputs are protected from damage due to static discharge by diode clamps to $V_{D D}$ and Gnd．

## features

－Wide supply voltage range $3 V$ to 15 V
－High noise immunity
－Low power TTL compabitility $0.45 V_{D D}$ typ fan out of 2 driving 74L or 1 driving 74LS
－ 4 sum outputs plus parallel look－ahead carry－output
－Quiescent current specified to 15 V
－Maximum input leakage of $1 \mu \mathrm{~A}$ at 15 V （full package temperature range）

## block diagram



## connection diagram

## Dual－In－Line and Flat Package


top view
truth table

$\boldsymbol{A}_{\boldsymbol{i}}$	$\mathrm{B}_{\boldsymbol{i}}$	$\mathrm{C}_{\boldsymbol{i}}$	$\mathbf{C 0}$	SUM
$\mathbf{0}$	0	0	0	0
1	0	0	0	1
0	1	0	0	1
1	1	0	1	0
0	0	1	0	1
1	0	1	1	0
0	1	1	1	0
1	1	1	1	1

## absolute maximum ratings

(Notes 1 and 2)

VDD dc Supply Voltage	-0.5 to $+18 V_{D C}$
$V_{\text {IN }}$ Input Voltage	-0.5 to $V_{D D}+0.5 \mathrm{~V}_{D C}$
TS Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
PD Package Dissipation $^{\text {TL Lead Temperature (Soldering, } 10 \text { seconds) }} \quad 300 \mathrm{~mW}$	
	$300^{\circ} \mathrm{C}$

recommended operating conditions
(Note 2)
$\begin{array}{lr}V_{D D} \text { dc Supply Voltage } & 3 \text { to } 15 V_{D C} \\ V_{\text {IN }} \text { Input Voltage } & 0 \text { to } V_{D D} V_{D C} \\ T_{A} \text { Operating Temperature Range } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { CD4008BM } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\end{array}$
dc electrical characteristics CD4008BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		5		0.3	5.		150	$\mu \mathrm{A}$
				10		0.5	10		300	$\mu \mathrm{A}$	
				20		1.0	20		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$11 \mathrm{Ol}<1 \mu \mathrm{~A}$									
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
VOH	High Level Output Voltage	${ }^{11} \mathrm{O} \mid<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		V	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	, 10		9.95		v	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		v	
$V_{\text {IL }}$	Low Level Input Voltage	$\\|_{0} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V		3.0			3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V					4.0		4.0	V	
$V_{\text {IH }}$	High Level Input Voltage										
		$V_{D D}=5 \mathrm{~V}, \quad V_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V}$	3.5		3.5			3.5		v	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		V	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.25		-0.2	-0.35		-0.14		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	$-0.62$		-0.5	-0.8	.	-0.35		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-1.8		$-1.5$	-3.5		-1.1		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{1 N}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4008BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS		
		MIN	MAX	MIN	TYP	MAX	MIN	MAX				
${ }^{\prime}$ DD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		20		0.5	20	,	150	$\mu \mathrm{A}$	
				40		1	40		300	$\mu \mathrm{A}$		
				80		5	80		600	$\mu \mathrm{A}$		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\left\\|\\|_{0} \mid<1 \mu \mathrm{~A}\right.$										
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	V		
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V		
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v		
VOH	High Level Output Voltage	$\mid 1 \mathrm{OL}<1 \mu \mathrm{~A}$										
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		V		
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		V		
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V		
$V_{\text {IL }}$	Low Level Input Voltage	$\\|_{0} \mid<1 \mu \mathrm{~A}$		,								
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V}$		1.5			1.5	,	1.5	v		
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V		3.0			3.0		3.0	V		
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	V		
$V_{I H}$	High Level Input Voltage	$\\|_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$										
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5	,	$v$		
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		V		
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		V		

dc electrical characteristics (con't) $\operatorname{CD4008BC}$ (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
${ }^{1} \mathrm{OL}$	Low Level Output Current		$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.2	.	-0.16	-0.35		-0.12		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-0.5		-0.4	-0.8		-0.3		$m A$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-1.4		-1.2	-3.5		$-1.0$		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.3			-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.3			0.3		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, input $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

PARAMETER				TYP		UNITS
${ }^{\text {tPHL }}$ or tPLH	Propagation Delay Time			-		
	Sum In to Sum Out	$V_{D D}=5 V$		425	750	ns
	-	$V_{D D}=10 \mathrm{~V}$		170	250	ns
		$V_{D D}=15 \mathrm{~V}$		125	190	ns
	Carry In to Sum Out	$V_{D D}=5 \mathrm{~V}$.		320	650	ns
		$V_{D D}=10 \mathrm{~V}$.		125	225	ns
	,	$V D D=15 \mathrm{~V}$		95	175	ns
	Sum In to. Carry Out	$V_{D D}=5 \mathrm{~V}$		- 250	500	ns
		$V D D=10 \mathrm{~V}$		115	200	ns
		$V_{D D}=15 \mathrm{~V}$		90	160	ns
	Carry In to Carry Out	$V_{D D}=5 \mathrm{~V}$		130	245	ns
		$V_{D D}=10 \mathrm{~V}$		60	105	ns
		$V_{D D}=15 \mathrm{~V}$		45	80	ns
	Carry In to Carry Out	$C_{L}=15 \mathrm{pF}$				
		$V_{D D}=5 \mathrm{~V}$		100	175	ns
		$V D D=10 \mathrm{~V}$		45	75	ns
		$V D D=15 V$		35	60	ns
tTHL	High-to-Low Transition Time	$V_{D D}=5 V$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
tTLH	Low-to-High Transition Time	$V_{D D}=5 \mathrm{~V}$		- 200	400	ns
		$V_{D D}=10 \mathrm{~V}$		$100$	200.	ns
		$V_{D D}=15 \mathrm{~V}$		. 80	160	ns
$\mathrm{CIN}_{\text {IN }}$	Average Input Capacitance			5	7.5	pF
CPD	Power Dissipation Capacitance	Note 3		100		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics application note, AN-90.

## ac test circuit and switching time waveforms



CD4009M/CD4009C hex buffers (inverting) CD4010M/CD4010C hex buffers (non-inverting).

## general description

These hex buffers are monolithic complementary MOS (CMOS) integrated circuits. The $N$ and $P$ channel enhancement mode transistors provide a symmetrical circuit with output swings essentially equal to the supply voltage. This results in high noise immunity over a wide supply voltage range. No DC power other than that caused by leakage current is consumed during static conditions. All inputs are protected against static discharge. These gates may be used as hex buffers, CMOS to DTL or TTL interface or as CMOS current drivers. Conversion ranges are from 3 to 15 volts providing $\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{DD}}$.
features

- Wide supply voltage range
- Low power

3 V to 15 V
100 nW (typical)

- High noise immunity
$0.45 \mathrm{~V}_{\text {DO }}$ (typical)
- High current sinking capability $8 \mathrm{~mA}(\mathrm{~min})$ at $\mathrm{VO}=0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$


## applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm system
- Industrial controls
- Remote metering
- Computers


## schematic and connection diagrams



CD4009M/CD4009C


CD4010M/CD4010C


absolute maximum ratings	
Voltage at Any Pin (Note 1)	$\mathrm{V}_{\mathrm{ss}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{ss}}+15.5 \mathrm{~V}$
Operating Temperature Range $\begin{aligned} & \text { CD40XXM } \\ & \text { CD40XXC }\end{aligned}$	$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation	500 mW
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Operating $\mathrm{V}_{\text {DD }}$ Range	$\mathrm{V}_{\text {SS }}+3 \mathrm{~V}$ to $\mathrm{V}_{\text {SS }}+15 \mathrm{~V}$
dc electrical characteristics	


CHARACTERISTICS	TEST CONDITIONS VOLTS		LIMITS														UNITS
			CD40XXM							CD40XXC							
			$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		
	$\mathrm{V}_{0}$	VDD	MIN	MAX	MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
Quiescent Device Current $\left(I_{L}\right)$   Quiescent Deviçe Dissipation/Package ( $\mathrm{P}_{\mathrm{D}}$ )   Output Voltage Low Level ( $\mathrm{V}_{\mathrm{OL}}$ ) High Level ( $\mathrm{V}_{\mathrm{OH}}$ )		5.		0.3		0.01	0.3		20		3		0.03	3		42	$\mu \mathrm{A}$
		10		0.5		0.01	0.5		30		5		0.05	5		70	$\mu \mathrm{A}$
		5		1.5		0.05	1.5		100		15		0.15	15		210	$\mu \mathrm{W}$
		10		5		0.1	5		300		50		0.5	50		700	$\mu \mathrm{W}$
		5		0.01		0	0.01		0.05		0.01		0	0.01		0.05	v
		10		0.01		0	0.01		0.05		0.01		0	0.01		0.05	$v$
		5	4.99		4.99	5		4.95		4.99		4.99	5		4.95		$\checkmark$
		10	9.99		9.99	10		9.95		9.99		9.99	10		9.95		V
Noise Immunity (All Inputs)$\left(V_{N L}\right)^{C D 4009 M}$																	
	$V_{0} \geqslant 4.0$	5	1		1	2.25		0.9		1		1	2.25		0.9		V
	$\mathrm{V}_{0} \geqslant 8.0$	10	2		2	4.5		1.9		2		2	4.5		1.9		V
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{NL}}\right) \mathrm{CD} 4010 \mathrm{M} \\ & \left(\mathrm{~V}_{\mathrm{NH}}\right) \end{aligned}$	$V_{0} \geqslant 1.5$	5	1.6		1.5	2.25		1.4		1.6		1.5	2.25		1.4		v
	$V_{0} \geqslant 3.0$	10	3.2		3	4.5		2.9		3.2		3	4.5		2.9		$v$
	$v_{0} \geqslant 3.5$	5	1.4		1.5	2.25		1.5		1.4		1.5	2.25		1.5		V
	$v_{0} \geqslant 7.0$	10	2.9			4.5		3		2.9			4.5		3		$v$
Output Drive Current N -Channel ( $\mathrm{I}_{\mathrm{D}} \mathrm{N}$ )			3.75		3	4		2.1		3.6		3			2.4		mA
	0.5	10	10		8	10		5.6		9.6		8			6.4		mA
- P-Channel ( $\mathrm{D}_{\mathrm{D}} \mathrm{P}$ )	2.5	5	-1.85		-1.25	-1.75		-0.9		-1.5		-1.25					mA
	9.5	10	-0.9		-0.6	-0.8		-0.4		-0.72		-0.6			-0.48		mA
Input Current ( $1_{1}$ )						10							10				pA

Note 1: This device should not be connected to circuits with the power on because high transient voltage may cause permanent damage.
ac electrical characteristics at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=1.5 \mathrm{pF}$
Typical Temperature Coefficient for all values of $V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}$


## typical applications



CD4011M/CD4011C quad 2-input N.AND gate CD4012M/CD4012C dual 4 -input NAND gate CD4023M/CD4023C triple 3 -input NAND gate general description

These NAND gates are monolithic complementary MOS (CMOS) integrated circuits. The $N$ and $P$ channel enhancement mode transistors provide a symmetrical circuit with output swings essentially equal to the supply voltage. This results in high noise immunity over a wide supply voltage range. No DC power other than that caused by leakage current is consumed during static conditions. All inputs are protected against static discharge and latching conditions.

## features

- Wide supply voltage range
- Low power
- High noise immunity


## applications

- Automotive
- Data Terminals
- Instrumentation
- Medical Electronics
- Alarm System
- Industrial Controls
- Remote Metering
- Computers


## schematic and connection diagrams

CD4011M/CD4011C SCHEMATIC


CD4012M/CD4012C SCHEMATIC


CD4023M/CD4023C SCHEMATIC



10 nW (typical) $0 . \dot{45} \mathrm{~V}_{\text {DO }}$ (typical)


## absolute maximum ratings

Voltage at Any Pin (Note 1
Operating Temperature Range CD4002M CD4002C
Storage Temperature Range
Package Dissipation
Lead Temperature (Soldering, 10 seconds)
Operating $V_{D D}$ Range
$V_{S S}-0.3 \mathrm{~V}$ tc, $\mathrm{V}_{S S}+15.5 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
$300^{\circ} \mathrm{C}$
$\mathrm{V}_{S S}+3 \mathrm{~V}^{\circ}$ to $\mathrm{V}_{S S}+15 \mathrm{~V}$

$$
0
$$

$$
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$$
500 \mathrm{~mW}
$$

$$
300^{\circ} \mathrm{C}
$$

$$
V_{S S}+3^{\prime} \mathrm{V} \text { to } \mathrm{V}_{\mathrm{SS}}+15 \mathrm{~V}
$$

dc electrical characteristics

ac electrical characteristics (I) $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
Typical Temperature Coefficient for all valuess of $\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}$

CHARACTERISTICS	TEST CONIDITIONS$\qquad$ $V_{D O}$ ('VOLTS)	LIMITS						UNITS
		CD40XXM			CD40XXC			
		MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Delay Time:	5	-	50	75	-	50	100	ns
Low-to. High Level ( $\mathrm{t}_{\mathrm{PLH}}$ )	10	-	25	40	--	25	50	
High-to Low Level ( $\mathrm{tPHL}^{\text {) }}$	5	-	50	75	-	50	100	ns.
	10	-	25	40	-	25	50	
Transition Time:	5	-	75	100	-	75	125	ns
Low-to-High Level ( $\mathrm{t}_{\mathrm{TLH}}$ )	10	-	40	60	-	40	75	
High-to Low Level ( $\mathrm{t}_{\text {THL }}$ )	5	-	75	125	-	. 75	150	ns
	10	-	50	75	-	50	100	
Input Capacitance ( $\mathrm{C}_{1}$ )	Any Input	-	5	-	-	5	-	pF

## CD4013BM/CD4013BC dual D flip-flop

## general description

The CD4013B dual D flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P channel enhancement transistors. Each flip-flop has independent data, set, reset, and clock inputs and " Q " and " $\overline{\mathrm{Q}}$ " outputs. These devices can be used for shift register applications, and by connecting " $\overline{\mathrm{Q}}$ " output to the data input, for counter and toggle applications. The logic level present at the " $D$ " input is transferred to the O output during the positive-going transition af the clock pulse. Setting or resetting is independent of the clock and is accomplished by a high level on the set or reset line respectively.

## features

- Wide supply voltage range
3.0 V to 15 V
- High noise immunity
- Low power TTL compatibility
fan out of 2 driving 74L or 1 driving 74 LS


## applications

- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm system
- Industrial electronics
- Remote metering
- Computers


## connection diagram

## Dual-In-Line and Flat Package



## truth table

CLt	D	R	S	0	$\overline{0}$
$\Gamma$	0	0	0	0	1
$\widetilde{ }$	1	0	0	1	0
2	$x$	0	0	0	$\overline{0}$
$\times$	$x$	1	0	0	1
$x$	$x$	0	1	1	0
$\times$	x	1	1	1	1

## No change

$t=$ Level change
$x=$ Don't care case

## absolute maximum ratings

(Notes 1 and 2)
$\begin{array}{lr}V_{D D} \text { dc Supply Voltage } & -0.5 \text { to }+18 V_{D C} \\ V_{I N} \text { Input Voltage } & -0.5 \text { to } V_{D D}+0.5 V_{D C} \\ \text { TS Storage Temperature Range }_{P_{D} \text { Package Dissipation }} \quad-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Th Lead Temperature (Soldering, }^{10} \text { seconds) } & 500 \mathrm{~mW} \\ & 300^{\circ} \mathrm{C}\end{array}$

## recommended operating conditions

(Note 2)
VDD dc Supply Voltage
+3 to $+15 V_{D C}$
$V_{\text {IN }}$ Input Voltage
$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range CD4013BM 0 to $V_{D D} V_{D C}$

CD4013BC
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics CD4013BM (Note 2)

	PARAMETER	CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
			MIN	MAX	MIN	TYP	MAX	MIN	. MAX		
' ${ }^{\prime}$ D	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 30 \\ & 60 \\ & 120 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$	
VOL	Low Level Output Voltage	$\begin{aligned} & I_{O} \mid<1.0 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	
VOH	High Level Output Voltage	$\begin{aligned} & \\|_{O} \mid<1.0 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$		$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$			$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	
$V_{\text {IL }}$	Low Level Input Voltage	$\begin{aligned} & I_{O} \mid<1.0 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	
$V_{\text {IH }}$	High Level Input Voltage	$\begin{aligned} & I_{O} \mid<1.0 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$	־		$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	
${ }^{1} \mathrm{OL}$	Low Level Output Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.64 \\ & 1.6 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 0.51 \\ & 1.3 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 2.25 \\ & 8.8 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.9 \\ & 2.4 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	
IOH	High Level Output Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.64 \\ & -1.6 \\ & -4.2 \end{aligned}$		$\begin{aligned} & -0.51 \\ & -1.3 \\ & -3.4 \end{aligned}$	$\begin{aligned} & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$		$\begin{aligned} & -0.36 \\ & -0.9 \\ & -2.4 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	
INN	Input Current	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} -0.1 \\ 0.1 \end{array}$		$-10^{-5}$ $10^{-5}$	$\begin{array}{r} -0.1 \\ 0.1 \end{array}$		$\begin{array}{r} -1.0 \\ 1.0 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	

dc electrical characteristics CD4013BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 4.0 \\ & 8.0 \\ & 16.0 \end{aligned}$			4.0 8.0 16.0		30 60 120	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$ $\mu \mathrm{A}$
VOL	Low Level Output Voltage	$\begin{aligned} & !l_{0}<1.0 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		0.05 0.05 0.05			0.05 0.05 0.05		0.05 0.05 0.05	v v v	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\begin{aligned} & I_{O} \mid<1.0 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	4.95 9.95 14.95		4.95 9.95 14.95			4.95 9.95 14.95		v v v	
$V_{\text {IL }}$	Low Level Input Voitage	$\begin{aligned} & \\|_{O} \mid<1.0 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		1.5 3.0 4.0			1.5 3.0 4.0 .		1.5 3.0 4.0	v v	

dc electrical characteristics (con't) CD4013BC (Note 2)

	PARAMETER	CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS
			MIN	MAX	MIN	TYP	MAX	MIN	MAX	
$\mathrm{V}_{\mathrm{IH}}$	High Level Input Voltage	$11 \mathrm{OH}<1.0 \mu \mathrm{~A}$								
		$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		v
		$V_{D D}=10 \mathrm{~V}, V_{0}=1.0 \mathrm{~V}$ or 9.0 V	7.0		7.0	'		7.0		$v$
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$v$
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA
		$V_{D D}=10 \mathrm{~V}, V_{0}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA
		$V_{D D}=10 \mathrm{~V}, V_{0}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		-3.0	-8.8.		-2.4		mA
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$
		$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \bar{R}_{L}=200$, unless otherwise specified.



## legic diagram


switching time waveforms


CD4014M/CD4014C 8-stage static shift register

## general description

The CD4014M/CD4014C is an 8 -stage parallel input/ serial output shift register. A parallel/serial control input enables individual "jam" inputs to each of 8 stages. Q outputs are available from the sixth, seventh and eighth stages.
When the parallel/serial control input. is in the logical " 0 " state, data is serially shifted into the register synchronously with the positive transition of the clock. When the parallel/serial control input is in the logical " 1 " state, data is jammed into each stage of the register synchronously with the positive transition of the clock.

## features

- Synchronous operation
- Wide supply voltage range 3.0 V to 15 V
- High noise immunity $0.45 \mathrm{~V}_{\mathrm{cc}}$ typ 5 MHz typ
- Miedium speed operation clock rate at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}$
- Fully static operation
- Low power


## applications

- Parallel to serial conversion
- General purpose register

connection diagram


CL*	SERIAL INPUT	```PARALLEL/ SERIAL CONTROL```	PI 1	PIn	Q1   (INTERNAL)	$\mathbf{O}_{\boldsymbol{n}}$
$\Omega$	$x$	1	0	0	0	0
$\checkmark$	- X	1	1	0	1	0
$\sim$	$x$	1	0	1	0	1
$\sim$	$x$	1	1	1	1	1
$\sim$	0	0	$x$	$x$	0	$\mathrm{O}_{\mathrm{n}} 1$
$\sim$	1	0	$x$	$x$	1	$\mathrm{O}_{\mathrm{n}} \mathrm{I}$
,	X	X	X	X	Q1	$\mathrm{O}_{\mathrm{n}}$

- = LEVEL CHANGE $\quad \mathrm{X}=$ DON'T CARE CASE


# absolute maximum ratings (Note 1) 

Voltage at Any Pin
$V_{S S}-0.3 V$ to $V_{D D}+0.3 V$
Operating Temperature Range
CD4014M
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
Storage Temperature Range
Package Dissipation
Operating $V_{D D}$ Range
$V_{S S}+3 V$ to $V_{S S}+15 \mathrm{~V}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
dc electrical characteristics CD4014M

PARAMETERS	CONDITIONS	LIMITS									UNITS
		$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device Current ( $1_{L}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 5 \\ & 10 \end{aligned}$		0.5 1	$\begin{aligned} & 5 \\ & 10 \end{aligned}$			$\begin{aligned} & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Quiescent Device Dissipation	$V_{\text {DO }}=5 \mathrm{~V}$			25		2.5	25			1,500	$\mu \mathrm{W}$
Package ( $\mathrm{P}_{\mathrm{D}}$ )	$V_{00}=10 \mathrm{~V}$			100		10	100			6,000	$\mu \mathrm{W}$
Output Voltage	$V_{D O}=5 \mathrm{~V}$			0.01		0	0.01			0.05	$v$
Low-Level ( $\mathrm{V}_{\text {OL }}$ )	$V_{D O}=10 \mathrm{~V}$			0.01		0	0.01			0.05	V
Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.99			4.99	5		4.95			$v$
High-Level ( $\mathrm{V}_{\text {OH }}$ )	$V_{D O}=10 \mathrm{~V}$	9.99			9.99	10		9.95			V
Noise Immunity	$V_{O}=0.8 \mathrm{~V}, \mathrm{~V}_{D D}=5 \mathrm{~V}$	1.5			1.5	2.25		1.4			V
(All Inputs) ( $\mathrm{V}_{N L}$ )	$V_{O}=1 \mathrm{~V}, \quad V_{D D}=10 \mathrm{~V}$	3			3	4.5		2.9			V
Noise Immunity	$\mathrm{V}_{\mathrm{O}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$	1.4			1.5	2.25		1.5			V
(All Inputs) ( $\mathrm{V}_{\mathrm{NH}}$ )	$V_{O}=9 \mathrm{~V}, \quad V_{D D}=10 \mathrm{~V}$	2.9			3	4.5		3			V
Output Drive Current	$V_{O}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=5 \mathrm{~V}$	0.15			0.12	0.3		0.085			mA
N-Channel ( $\mathrm{I}_{\mathrm{D}} \mathrm{N}$ )	$V_{O}=0.5 \mathrm{~V}, V_{D O}=10 \mathrm{~V}$	0.31			0.25	0.5		0.175			mA
Output Drive Current	$V_{O}=4.5 \mathrm{~V}, \mathrm{~V}_{D O}=5 \mathrm{~V}$	-0.1			-0.08	-0.16		-0.055			mA
P-Channel ( $I_{D} \mathrm{P}$ )	$V_{O}=9.5 \mathrm{~V}, \mathrm{~V}_{D D}=10 \mathrm{~V}$	-0.25			-0.20	-0.44		-0.14			mA
Input Current ( $1_{1}$ )						10					pA

dc electrical characteristics CD4014C

PARAMETERS	CONDITIONS	LIMITS									UNITS
		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device Current ( $\mathrm{I}_{\mathrm{L}}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			50 100		$\begin{aligned} & 0.5 \\ & 1 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \end{aligned}$		.	$\begin{aligned} & 700 \\ & 1,400 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Quiescent Device Dissipation	$V_{D D}=5 \mathrm{~V}$			250		2.5	250			3,500	$\mu \mathrm{W}$
Package ( $P_{D}$ ).	$V_{\text {DO }}=10 \mathrm{~V}$			1,000		10	1,000			14,000	$\mu \mathrm{W}$
Output Voltage	$V_{D D}=5 \mathrm{~V}$			0.01		0	0.01			0.05	$v$
Low-Level ( $\mathrm{V}_{\text {OL }}$ )	$V_{\text {DO }}=10 \mathrm{~V}$			0.01		0	0.01			0.05	V
Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.99			4.99	5		4.95			V
High-Level ( $\mathrm{V}_{\mathrm{OH}}$ )	$V_{D D}=10 \mathrm{~V}$	9.99			9.99	10		9.95			V
Noise Immunity	$\mathrm{V}_{\mathrm{O}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$	1.5			1.5	2.25		1.4			V
(All Inputs) ( $\mathrm{V}_{\mathrm{NL}}$ )	$\mathrm{V}_{0}=1 \mathrm{~V}, \quad \mathrm{~V}_{\text {DD }}=10 \mathrm{~V}$	3			3	4.5		2.9			V
Noise Immunity	$V_{O}=4.2 \mathrm{~V}, V_{D D}=5 \mathrm{~V}$	1.4			1.5	2.25		1.5			V
(All inputs) ( $\mathrm{V}_{\mathrm{NH}}$ )	$V_{O}=9 \mathrm{~V}, \quad V_{D O}=10 \mathrm{~V}$.	2.9			3	4.5		3			V
Output Drive Current	$V_{O}=0.5 \mathrm{~V}, \mathrm{~V}_{D D}=5 \mathrm{~V}$	0.072			0.06	0.3		0.05			$m A$
$N$-Channel ( $\mathrm{I}_{\mathrm{D}} \mathrm{N}$ )	$\mathrm{V}_{0}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=10 \mathrm{~V}$	0.12			0.1	0.5		0.08			mA
Output Drive Current	$\mathrm{V}_{O}=4.5 \mathrm{~V}, \mathrm{~V}_{D D}=5 \mathrm{~V}$	$-0.06$			-0.05	-0.16		-0.04			mA
P-Channel ( $I_{0} \mathrm{P}$ )	$\mathrm{V}_{O}=9.5 \mathrm{~V}, \mathrm{~V}_{D D}=10 \mathrm{~V}$	-0.12			-0.1	-0.44		-0.08			mA
Input Current ( $1_{1}$ )						10					pA

ac electrical characteristics CD4014M

PARAMETERS	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Propagation Delay Time ( $t_{\text {PHL }}, t_{\text {PLH }}$ )	$\begin{aligned} & V_{O D}=5 \mathrm{~V} \\ & V_{O D}=10 \mathrm{~V} \end{aligned}$	-	300 100	$\begin{aligned} & 750 \\ & 225 \end{aligned}$	ns
Transition Time ( $\mathrm{t}_{\mathrm{THL}}, \mathrm{t}_{\text {TLH }}$ )	$V_{D D}=5 \mathrm{~V}$		150	300	( ns
	$V_{D D}=10 \mathrm{~V}$		75	125	ns
Minimum Clock Pulse Width $\left(t_{\text {WL }}, t_{\text {WH-H }}\right)$	$V_{D D}=5 \mathrm{~V}$		200	500	ns
	$V_{O D}=10 \mathrm{~V}$		100	175	ns
Minimum High Level Paraliel/Serial Control Pulse Width ( $\mathrm{t}_{\mathrm{WH}(\mathrm{P} / \mathrm{s})}$ )	$V_{D O}=5 \mathrm{~V}$		200	500	ns
	$V_{D D}=10 \mathrm{~V}$		100	175	ns
Clock Rise Time ( $\mathrm{trcL}^{\text {) }}$ ) or Clock Fall Time $\left(\mathrm{t}_{\mathrm{f}} \mathrm{CL}\right)$	$V_{D D}=5 \mathrm{~V}$			15	$\mu \mathrm{s}$
	$V_{D D}=10 \mathrm{~V}$.			15	$\mu \mathrm{s}$
Set-up Time	$V_{D D}=5 \mathrm{~V}$		100	350	ns
	$V_{D D}=10 \mathrm{~V}$		50	80	ns
Maximum Clock Frequency ( ${ }_{\text {c }} \mathrm{CL}$ )	$V_{\text {DO }}=5 \mathrm{~V}$	13	2.5		MHz
	$V_{D O}=10 \mathrm{~V}$		5		MHz
Input Capacitance ( $C_{1}$ ) (Note 2)	Any Input		5		pF

ac electrical characteristics CD4014C

PARAMETERS	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Propagation Delay Time ( $\left.\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}\right)$	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 300 \\ & 100 \end{aligned}$	$\begin{aligned} & 1,000 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Transition Time ( $\mathrm{t}_{\mathrm{THL}}, \mathrm{t}_{\text {TLH }}$ )	$\begin{aligned} & V_{D D}=5 V \\ & V_{D O}-10 V \end{aligned}$		150 75	400 150	ns
Minimum Clock Pulse Width $\left(\mathrm{t}_{\mathbf{W} \mathrm{L}}, \mathrm{t}_{\mathrm{WH}}\right.$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 200 \\ & 100 \end{aligned}$	830 200	ns
Minimum High Level Parallel/Serial Control Pulse Width ( $\mathrm{t}_{\mathrm{WH}(\mathrm{P} / \mathrm{S})}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\cdot$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 830 \\ & 200 \end{aligned}$	ns ns
Clock Rise Time ( $\mathrm{t}_{\text {chL }}$ ) or Clock Fall Time ( $\mathrm{t}_{\mathrm{f} \mathrm{CL}}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			15 15	$\begin{aligned} & \mu_{\mathrm{s}} \\ & \mu \mathrm{~s} \end{aligned}$
Set-up Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Maximum Clock Frequency ( ${ }^{\text {che }}$ )	$\begin{aligned} & V_{D O}=5 \mathrm{~V} \\ & V_{O D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.6 \\ & 2.5 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Input Capacitance ( $C_{1}$ ) (Note 2)	Any Input		5		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guapranteed by periodic testing.

## CD4015M/CD4015C dual 4-bit static register

## general description

The CD4015M/CD4015C consist of two identical, independent, 4-stage serial-input/parallel-output registers. Each register has independent "Clock" and "Reset" inputs as well as a single serial "Data" input. " $Q$ " outputs are available from each of the four stages on both registers. All register stages are D-type, master-slave flip-flops. The logic level present at the data input is transferred into the first register stage and shifted over one stage at each positive-going clock transition. Resetting of all stages is accomplished by a high level on the reset line. Register expansion to 8 stages using one CD4015M/CD4015C package, or to more than 8 stages using additional CD4015M/CD4015C is possible. All inputs are protected from static discharge by diode clamps to $V_{D D}$ and $V_{S S}$.

## features

m Wide supply voltage range 3.0 V to 15 V

- High noise immunity
$0.45 \mathrm{~V}_{\mathrm{CC}}$ typ
9 MHz (typ) clock rate at $V_{D D}-V_{S S}=10 \mathrm{~V}$


## applications

E Serial-input/parallel-output data queueing

- Serial to parallel data conversion
- General purpose register


## connection diagram and truth table



$C L^{\Delta}$	$D$	$R$	$Q 1$	$Q_{n}$
$\sim$	0	0	0	$Q_{n-1}$
	1	0	1	$Q_{n-1}$
$X$	$X$	0	$Q 1$	$Q_{n}$
$\sim$	1	0	0	

$\triangle$ Level change.
$X$ Don't care case.

## logic diagrams



Voltage at Any Pin $\quad V_{S S}-0.3 V$ to $V_{D D}+0.3 V$
Operating Temperature Range
CD4015M $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4015C $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range
Package Dissipation
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
Operating $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$ Range . 3.0 V to 15 V
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
dc electrical characteristics CD4015M

PARAMETER	CONDITIONS	LIMITS									UNITS
		$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device	$V_{D D}=5 \mathrm{~V}$			5 10		0.5	5 10			300 600	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Quiescent Device Dissipation/Package ( $P_{D}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			25 100		2.5 10	$\begin{aligned} & 25 \\ & 100 . \end{aligned}$			1500 6000	$\begin{aligned} & \mu W \\ & \mu W \end{aligned}$
Output Voltage Low	$V_{D D}=5 \mathrm{~V}$			0.01		0	0.01			0.05	$v$
Level ( $\mathrm{V}_{\mathrm{OL}}$ )	$V_{D D}=10 \mathrm{~V}$			0.01		0	0.01			0.05	v
Output Voltage High	$V_{D D}=5 \mathrm{~V}$	4.99			4.99	5		4.95			v
Level ( $\mathrm{V}_{\mathrm{OH}}$ )	$V_{D D}=10 \mathrm{~V}$	9.99			9.99	10		9.95			v
Noise Immunity (Any	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.8 \mathrm{~V}$	1.5			1.5	2.25		1.4		-	v
Input) ( $\mathrm{V}_{\mathrm{NL}}$ )	$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$	3			3	4.5		2.9			V
								1.5			v
Input) $\left(V_{N H}\right)$	$V_{D O}=10 \mathrm{~V}, V_{O}=9.0 \mathrm{~V}$	$2.9$			3	4.5		3			v
Output Drive Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	0.15			0.12	0.3		0.085			mA
$N$ Channel (lon)	$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	0.31			0.25	0.5		0.175			mA
Output Drive Current	$\dot{V}_{D D}=5 \mathrm{~V}, V_{O}=4.5 \mathrm{~V}$	-0.1			-0.08	-0.16		-0.055			mA
P-Channel ( $I_{D} \mathrm{P}$ ) -	$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-0.25			-0.20	-0.44		-0.14			mA
Input Current ( $I_{1}$ )						. 10					pA

dc electrical characteristics CD4015C

PARAMETER	CONDITIONS	LIMITS									UNITS
		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device	$V_{\text {DD }}=5 \mathrm{~V}$			50		0.5		,			$\mu \mathrm{A}$
- Current (l)	$V_{D D}=10 \mathrm{~V}$			100		1	100			1400	$\mu \mathrm{A}$
Quiescent Device Dissi-	$V_{D D}=5 \mathrm{~V}$			250		2.5	250			3500	$\mu \mathrm{W}$
pation/Package ( $\mathrm{P}_{\mathrm{D}}$ )	$V_{D D}=10 \mathrm{~V}$			1000		10	1000	,		14000	$\mu \mathrm{W}$
Output Voltage Low	$V_{D D}=5 \mathrm{~V}$			0.01		0	0.01			0.05	$v$
Level ( $V_{O L}$ )	$V_{D D}=10 \mathrm{~V}$			0.01		0	0.01			0.05	v
Output Voltage High	$V_{D D}=5 \mathrm{~V}$	4.99			4.99	5		4.95			$v$
Level ( $\mathrm{V}_{\mathrm{OH}}$ ).	$V_{D D}=10 \mathrm{~V}$	9.99			9.99	10		9.95			v
Noise Immunity ( Any	$V_{D D}=5 \mathrm{~V}, V_{O}=0.8 \mathrm{~V}$	1.5			1.5	2.25		1.4			$v$
Input ( $\mathrm{V}_{\mathrm{NL}}$ )	$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$	3			3	4.5		2.9			$v$
Noise Immunity ( Any	$V_{D D}=5 \mathrm{~V}, V_{O}=4.2 \mathrm{~V}$	1.4			1.5	2.25		1.5			$v$
Input ( $\mathrm{V}_{\mathrm{NH}}$ )	$V_{D D}=10 \mathrm{~V}, V_{O}=9.0 \mathrm{~V}$	2.9			3	4.5		3			$v$
Output Drive Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	0.072			0.06	0.3		0.05			mA
N -Channel ( $\mathrm{I}_{\mathrm{D}} \mathrm{N}$ )	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	0.12			0.1	0.5		0.08			mA
Output Drive Current	$V_{D D}=5 \mathrm{~V}, V_{0}=4.5 \mathrm{~V}$	-0.06			-0.05	-0.16		-0.04			mA
P-Channel (ID ${ }^{\text {P }}$ )	$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-0.12			-0.1	-0.44		$-0.08$			mA
Input Current ( $1_{1}$ )						10					pA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
ac electrical characteristics CD4015M

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
CLOCKED OPERATION					
Propagation Delay Time ( $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & 750 \\ & 225 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Transition Time ( $\mathrm{t}_{\text {THL }} \mathrm{t}_{\text {t }}^{\text {TLH }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 150 \\ & 75 \end{aligned}$	$\begin{aligned} & 300 \\ & 125 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Minimum Clock Pulse Width ( $\mathrm{t}_{\mathrm{WL}}, \mathrm{t}_{\mathrm{WH}}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 175 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Clock Rise and Fall Time (trcl, $\mathrm{t}_{\mathrm{f} \mathrm{CL}}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Set-Up Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 350 \\ & 80 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Maximum Clock Frequency ( $\mathrm{f}_{\text {cL }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 9 \end{aligned}$		MHz   MHz
Input Capacitance ( $\mathrm{C}_{1}$ )			5		pF
RESET OPERATION					
Propagation Delay Time ( $\mathrm{t}_{\text {PHL }}(\mathrm{R})$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	,	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 750 \\ & 225 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Minimum Set and Reset Pulse Widths (twh(R))	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 500 \\ & 175 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

ac electrical characteristics CD4015C

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
CLOCKED OPERATION					
Propagation Delay Time ( $\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\text {PLH }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & 1000 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Transition Time ( $\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TLH }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 150 \\ & 75 \end{aligned}$	$\begin{aligned} & 400 \\ & 150 \end{aligned}$	ns
Minimum Clock Pulse Width ( $\mathrm{t}_{\mathrm{WL}}, \mathrm{t}_{\mathrm{WH}}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{array}{r} 830 \\ 200 \end{array}$	ns
Clock Rise and Fall Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Set-Up Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 500 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Maximum Clock Frequency ( ${ }_{\text {cLL }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.6 \\ & 2.5 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Input Capacitance ( $\mathrm{C}_{1}$ ).			5		pF
RESET OPERATION					
Propagation Dèlay Time ( $\mathrm{t}_{\text {PHL }(R)}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 1000 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Minimum Set and Reset Pulse Widths ( $\mathrm{t}_{\mathrm{WH}(\mathrm{R})}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 830 \\ & 200 \end{aligned}$	ns

## schematic diagram



CD4016M/CD4016C quad bilateral switch general description

The CD4016M/CD4016C is a quad bilateral switch which utilizes P -channel and N -channel complementary MOS (CMOS) circuits to provide an extremely high "OFF" resistance and low "ON" resistance switch. The switch will pass signals in either direction and is extremely useful in digital switching.

## features

- Wide supply voltage range

> 3 V to 15 V
> $0.45 \mathrm{~V}_{\mathrm{Cc}}$ typ.

- High noise immunity
- Wide range of digital and analog levels
- Low "ON" resistance
- Matched switch characteristics
- High "ON/OFF" output voltage ratio
- High degree of linearity
- Extremely low leakage

$$
\begin{aligned}
V_{i s} & =5 V_{p-p} \\
V_{D D}-V_{S S} & =10 \mathrm{~V} \\
R_{L} & =10 \mathrm{k} \Omega
\end{aligned}
$$

- Transmits frequencies up to 10 MHz


## applications

- Analog signal switching/multiplexing
- Signal gating
- Squelch control
- Chopper
- Modulator
- Demodulator
- Commutating switch
- Digita! signal switching/multiplexing
- CMOS logic implementation
- Analog to digital/digital to análog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain


## schematic and connection diagrams



Note 1: All switch P-channel substrates are internally connected to terminal No. 14. Note 2: All switch N -channel substrates are internally connected to terminal No .7.

Normal operation: Control-line biasing, switch $0 N V_{C}$ " 1 " $=V_{D D}$, switch OFF $V_{C} " 0 "=V_{S S}$


## absolute maximum ratings

Voltage at Any Pin (Note 1) $\quad$ CD 4016 M
Operating Temperature Range CD4016M


Storage Temperature Range Package Dissipation Lead Temperature (S 500 mW
electrical characteristics CD4016M Operating $V_{D D}$ Range $300^{\circ} \mathrm{C}$


SIGNAL INPUTS ( $\mathrm{V}_{\text {is }}$ ) AND OUTPUTS ( $\mathrm{V}_{\text {o }}$


Note 1: The device should not be connected to circuits with the power on.
Note 2: $\pm 10 \times 10^{-3}$
'Note 3: Symmetrical about 0V.
electrical characteristics CD4016C


SIGNAL INPUTS ( $V_{i s}$ ) AND OUTPUTS ( $V_{o s}$ )


## typical ON resistance characteristics

CHARACTERISTIC*	SUPPLY CONDITIONS		LOAD CONDITIONS					
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	
	$\begin{aligned} & V_{D D} \\ & (V) \\ & \hline \end{aligned}$	$\begin{aligned} & v_{\text {SS }} \\ & \text { (v) } \end{aligned}$	VALUE ( $\Omega$ )	$\begin{aligned} & \hline \mathrm{v}_{\mathrm{i}} \\ & \text { (v) } \end{aligned}$	VALUE   ( $\Omega$ )	$\begin{aligned} & \hline v_{i s} \\ & \text { (v) } \end{aligned}$	VALUE ( $\Omega$ )	$\begin{aligned} & v_{i s} \\ & (\mathrm{~V}) \end{aligned}$
Ron	+15	0	200	+15	200	+15	180	+15
			200	0	200	0	200	0
Ron (max.)	+15	0	300	+11	300	+9.3	320	+9.2
Ron	+10	0	290	+10	250	+10	240	+10
			290	0	250	0	300	0
RON (max.)	+10	0	500	+7.4	560	+5.6	610	+5.5
Ron	+5	0	860	+5	470	+5	450	+5
			600	0	580	0	800	0
Ron (max.)	${ }^{+5}$	0	1.7k	+4.2	7 k	+2.9	33k	+2.7
Ron	+7.5	-7.5	200	+7.5	200	+7.5	180	+7.5
			200	-7.5	200	-7.5	180	-7.5
RON (max.)	+7.5	-7.5	290	$\pm 0.25$	280	$\pm 25$	400	$\pm 0.25$
$\mathrm{R}_{\text {ON }}$	+5	-5	260	+5	250	+5	240	+5
			310	-5	250	-5	240	-5
Ron (max.)	+5	-5	600	$\pm 0.25$	580	$\pm 0.25$	760	$\pm 0.25$
Ron		-2.5	590	+2.5	450	+2.5	490	+2.5
	+2.5		720	-2.5	520	-2.5	520	-2.5
$\mathrm{R}_{\text {ON }}($ max. $)$	+2.5	-2.5	232k	$\pm 0.25$	300k	$\pm 0.25$	870k	$\pm 0.25$

*Variation from a perfect switch: $\mathrm{R}_{\mathrm{ON}}=0 \Omega$.

## CD4017BM/CD4017BC decade counter/divider with 10 decoded outputs

 CD4022BM/CD4022BC divide-by-8 counter/divider with 8 decoded outputs
## general description

The CD4017BM/CD4017BC is a 5 -stage divide-by-10 Johnson counter with 10 decoded outputs and a carry out bit.

The CD4022BM/CD4022BC is a 4 -stage divide-by- 8 Johnson counter with 8 decoded outputs and a carryout bit.

These counters are cleared to their zero count by a logical " 1 " on their reset line. These counters are advanced on the positive edge of the clock signal when the clock enable signal is in the logical " 0 " state.

The configuration of the CD4017BM/CD4017BC and CD4022BM/CD4022BC permits medium speed operation and assures a hazard free counting sequence. The 10/8 decoded outputs are normally in the logical " 0 " state and go to the logical " 1 " state only at their respective time slot. Each decoded output remains high for 1 full clock cycle. The carry-out signal completes a full cycle for every $10 / 8$ clock input cycles and is used as a ripple carry signal to any succeeding stages.

## features

- Wide supply voltage range
3.0 V to 15 V
- High noise immunity
- Low power

TTL compatibility

- Medium speed operation
- Low power
- Fully static operation


## applications

- Automotive
- Instrumentation
- Medical electronics
- Alarm systems
- Industrial electronics
- Remote metering


## connection diagrams

CD4017B
Dual-In-Line and Flat Package


CD40228
Dual-In-Line and Flat Package


## absolute maximum ratings

(Notes 1 and 2)
$V_{\text {DO }}$ de Supply Voltage
$\mathrm{V}_{\text {IN }}$ Input Voltage
TS Storage Temperature Range
PD Package Dissipation
TL Lead Temperature (Soldering, 10 seconds)

recommended operating conditions
(Note 2)
$\begin{array}{lr}V_{D D} \text { dc Supply Voltage } & +3 \text { to }+15 V_{D C} \\ V_{\text {IN }} \text { Input Voltage } & 0 \text { to } V_{D D} V_{D C} \\ T_{A} \text { Operating Temperature Range } & \\ \text { CD4017BM, CD4022BM } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { CD4017BC, CD4022BC } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\end{array}$
dc electrical characteristics CD4017BM, CD4022BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 V \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		5	.	0.3	5		150	$\mu \mathrm{A}$
				10		0.5	10		300	$\mu \mathrm{A}$	
				20		1.0	20		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\mathrm{IO}_{0} \mathrm{l}<1.0 \mu \mathrm{~A}$									
		$V_{D D}=5 V$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$	,	0.05		0	0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	
V OH	High Level Output Voltage	$11 \mathrm{O} \mid<1.0 \mu \mathrm{~A}$		-							
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$v$	
$V_{\text {IL }}$	Low Level Input Voltage	$11_{0} l^{\prime}<1.0 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	v	
		$V_{D D}=10 \mathrm{~V}, V_{0}=1.0 \mathrm{~V}$ or 9.0 V		3.0			3.0		3.0	$v$	
		$\mathrm{V}_{\text {OD }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	V	
$V_{\text {IH }}$	High Level Input Voitage	$\left\|I_{0}\right\|<1.0 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		$v$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$ or 9.0 V			7.0			7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$\checkmark$	
${ }^{1} \mathrm{OL}$	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
${ }^{\mathrm{I} O H}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.25		-0.2	-0.36		-0.14		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	$-0.62$		-0.5	-0.9		-0.35		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-1.8		-1.5	-3.5		-1.1		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	$-0.1$		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		- 1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4017BC, CD4022BC (Note 2)

dc electrical characteristics (con't) CD4017BC, CD4022BC (Note 2)

PARAMETER ${ }^{\text {- }}$		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
VIL	Low Level Input Voltage		$\mathrm{HO}_{\mathrm{O}} \mathrm{l}<1.0 \mu \mathrm{~A}$								
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=1.0 \mathrm{~V}$ or 9.0 V		3.0			3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	V	
$V_{\text {IH }}$	High Level Input Voltage	$11 \mathrm{Ol}<1.0 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		$v$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$ or 9.0 V	7.0		7.0			7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$v$	
${ }^{1} \mathrm{OL}$	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.2		-0.16	-0.36		-0.12		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=9.5 \mathrm{~V}$	-0.5		-0.4	-0.9		-0.3		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-1.4		-1.2	-3.5		$-1.0$		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.
ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}, \mathrm{t}_{\mathrm{C}} \mathrm{CL}$ and $\mathrm{t}_{\mathrm{f}} \mathrm{CL}=20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
CLOCKED OPERATION							
tPHL, TPLH	Propagation Delay Time: Carry Out Line						
		$V_{D D}=5 \mathrm{~V}$		415	830	ns	
		$V_{D D}=10 \mathrm{~V}$		160	320	ns	
		$V_{D D}=15 \mathrm{~V}$		130	260	ns	
Carry Out Line		$V_{D D}=5 \mathrm{~V}$		240	480	. ns	
		$C_{L}=15 \mathrm{pF}$		85	170	ns	
			70	140	ns		
Decode Out Lines			$V_{D D}=5 \mathrm{~V}$		500	1000	ns
		$V_{D D}=10 \mathrm{~V}$		200	400	ns	
		$V_{D D}=15 \mathrm{~V}$		160	320	ns	
ttLH, tT.HL	Transition Time Carry Out and Decode Out Lines tTLH						
		$V_{D D}=5 \mathrm{~V}$		200	400	ns	
		$V_{D D}=10 \mathrm{~V}$		100	200	ns	
		$V_{D D}=15 \mathrm{~V}$		80	160	ns	
	tTHL	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		100	200	ns	
				50	100	ns	
				40	80	ns	
	Maximum Clock Frequency	$V_{D D}=5 \mathrm{~V}$ Measured with   $V_{D D}=10 \mathrm{~V}$ Respect to Carry   $V_{D D}=15 \mathrm{~V}$ Output Line	$\begin{aligned} & 1.0 \\ & 2.5 \\ & 3.0 \end{aligned}$	2		MHz	
				5	,	MHz	
				6		MHz	
${ }^{\text {tWL, }}$ WH	Minimum Clock Pulse Width	$V_{D D}=5 \mathrm{~V}$		125	250	ns	
		$V_{D D}=10 \mathrm{~V}$		45	90	ns	
		$V_{D D}=15 \mathrm{~V}$		35	70	ns	
$\mathrm{trcL}_{\text {c }} \mathrm{t}_{\text {f }} \mathrm{CL}$	Clock Rise and Fall Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$			20	$\mu \mathrm{s}$	
					15	$\mu \mathrm{s}$	
					5	$\mu \mathrm{s}$	
${ }^{\text {t SU }}$	Minimum Clock Inhibit Data Set-Up Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		120	240	ns	
				40	80	ns	
				32 .	65	ns	
$\mathrm{CIN}^{\text {IN }}$	Average Input Capacitance			5	7.5	pF	

## ac electrical characteristics (con't)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K}, \mathrm{t}_{\mathrm{r}} \mathrm{CL}$ and $\mathrm{t}_{\mathrm{f} C \mathrm{CL}}=20 \mathrm{~ns}$, unless otherwise specified.

timing diagrams
CD4017B



CD4018BM/CD4018BC presettable divide-by-N counter general description

The CD4018B consists of 5 Johnson counter stages. A buffered $\overline{\mathrm{Q}}$ output from each stage, "CLOCK", "RESET", "DATA", "PRESET ENABLE", and 5 individual "JAM" inputs are provided. The counter is advanced one count at the positive clock signal transition. A high "RESET" signal clears the counters to an "ALL ZERO" condition. A high "PRESET ENABLE" signal allows information on the "JAM" inputs to preset the counter. Anti-lock gating is provided to assure the proper counting sequence.

## features

- Wide supply voltage range
- High noise immunity
- Low power TTL compatibility
- Fully static operation


## applications

- Fixed and programmable divide-by-10, 9, 8, 7, 6, 5, 4, 3, 2, counter
- Fixed and programmable counters greater than 10
- Programmable decade counters
- Divide by " N " counters/frequency synthesizers


## logic diagram



## connection diagram

Dual-In-Line and Flat Package

top view

## absolute maximum ratings

(Notes 1 and 2)

$\mathrm{V}_{\text {DD }}$ dc Supply Voltage	-0.5 to $+18 V_{D C}$
$V_{\text {IN }}$ Input Voltage	-0.5 to $V_{D D}+0.5 V_{D C}$
TS Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
PD Package Dissipation	500 mW
$T_{L}$ Lead Temperature (Solderin	nds) $300^{\circ} \mathrm{C}$

recommended operating conditions
(Note 2)
$V_{\text {DD }}$ dc Supply Voltage
$V_{\text {IN }}$ Input Voltage
$T_{A}$ Operating Temperature Range
CD4018BM
CD4018BC
3 to $15 V_{D C}$ 0 to $V_{D D} V_{D C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics CD4018BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		5		0.3	5		150	$\mu \mathrm{A}$
				10		0.5	10		300	$\mu \mathrm{A}$	
				20		1.0	20		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\mathrm{IIO}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$110 \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		v	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		v	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$v$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	v	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	2.75		3.5		V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		v	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
IOH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.6		-1.3	$-2.25$		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{1} \mathrm{~N}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4018BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		20		0.5	20		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		40		1.0	40		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80		5.0	80		600	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$\mathrm{l}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\\|_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$v$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V					1.5		1.5	v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	$v$	
$V_{1 H}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		- 3.5	2.75		3.5		v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V	7.0	-	7.0	5.5		7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		v	

## dc electrical characteristics (Continued) CD4018BC

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IOL	Low Level Output Current		$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		$m A$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
${ }^{\mathrm{O}} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		$m A$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		$-3.0$	-8.8		-2.4		$m A$	
IN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.30		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.30		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.
Note 3: CPD determines the no load ac-power consumption of any CMOS device. For complete explanation, see 54C/74C family characteristics application note AN-90.

## typical performance characteristics

Typical Transition Time vs $\mathrm{C}_{\mathrm{L}}$



## external connections

External Connections for Divide by
10, 9, 8, 7, 6, 5, 4, 3, 2, Operation

Divide By 10
Divide By 8
Divide By 6
Divide By 4
Divide By 2
$\left.\begin{array}{l}\overline{\mathrm{Q}} 5 \\ \overline{\mathrm{Q}} 4 \\ \overline{\mathrm{Q}} 3 \\ \overline{\mathrm{a}} 2 \\ \overline{\mathrm{O}} 1\end{array}\right\}$ Connected Back

Divide By 9



Divide By 5


Divide By 3

timing diagram


Note. "Data" input tied to $\overline{\mathrm{C}} 5$ for decade counter configuration.

CD4019BM/CD4019BC quad AND-OR select gate

## general description

The CD4019BM/CD4019BC is a complementary MOS quad AND-OR select gate. Low power and high noise margin over a wide voltage range is possible through implementation of N and P -channel enhancement mode transistors. These complementary MOS (CMOS) transistors provide the building blocks for the 4 "AND-OR select" gate configurations, each consisting of two 2 -input AND gates driving a single 2 -input OR gate. Selection is accomplished by control bits $K_{A}$ and $K_{B}$. All inputs are protected against static discharge damage.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity
- Low power TTL compatibility


## applications

- AND-OR select gating
- Shift-right/shift-left registers
- True/complement selection
- AND/OR/EXCLUSIVE-OR selection


## connection diagram

Dual-In-Line and Flat Package


## schematic diagram



Schematic diagram for 1 of 4 identical stages

absolute maximum ratings   (Notes 1 and 2)		recommended operating conditions (Note 2)	
$V_{\text {DD }}$ Supply Voltage	-0.5 to +18 V	$V_{\text {DD }}$ Supply Voltage	3 to 15V
$V_{\text {IN }}$ Input Voltage	-0.5 to $\mathrm{V}_{\text {DD }}+0.5 \mathrm{~V}$	$V_{\text {IN }}$ Input Voltage	0 to $V_{D D} \mathrm{~V}$
TS Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range	
PD Package Dissipation	500 mW	CD4019BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$T_{L}$ Lead Temperature (Soldering, 10 sëconds)	) $300^{\circ} \mathrm{C}$	CD4019BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4019BM (Note 2)

	PARAMETER	. CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
			MIN	MAX	MIN	TYP	MAX	MIN	MAX		
IDD	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \\ 10 \\ 20 \end{array}$			$0.03$	5		150	$\mu \mathrm{A}$	
					$0.05$	10		300	$\mu \mathrm{A}$		
					$0.07$	20		600	$\mu \mathrm{A}$		
VOL	Low Level Output Voltage	$\\|_{\mathrm{O}} l^{\prime}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
$\mathrm{VOH}^{\text {OH}}$	High Level Output Voltage	$\|\mathrm{IO}\|<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$.	4.95			4.95	5		4.95		V
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V	
VIL	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2	1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V		3.0		4	3.0		3.0	V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6	4.0		4.0	V	
VIH	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	3		3.5		V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V	7.0		7.0	6		7.0		V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	9		11.0		V	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.64		0.51 -	1		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	1.6		1.3	2.5		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	4.2		3.4	10		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.25		-0.2	-0.4		-0.14		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-0.62		-0.5	-1.0		-0.35		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-1.8		-1.5	-3.0		-1.1.		mA	
IIN	Input Current	$V_{\text {DD }}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.10		$-10^{-5}$	$-0.10$		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.10		$10^{-5}$	0.10		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4019BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MiN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 V$		20		0.03	20		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		40		0.05	40		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80		0.07	80		600	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$\\|_{0} \mid<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05	.	0.05	V	
VOH	High Level Output Voltage	$\mathrm{IIO}_{\mathrm{O}}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$V$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$V$	
		$V_{D D}=15 \mathrm{~V}$	$14.95$		$14.95$	15		14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2	1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V		3.0		- 4	3.0	.	3.0	V	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6	4.0		4.0	V	
$V_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V			$3.5$	3		3.5		V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V	$7.0$	.	7.0	6		7.0		V	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	9		11.0	.	V	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.52		0.44	1		0.36		$m A$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.5		0.9		$m A$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	10		2.4		$m A$	
IOH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.2		-0.16	-0.4		-0.12		$m A$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-0.5		-0.4	-1.0		-0.3	.	mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-1.4		-1.2	-3.0		$-1.0$		$m A$	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.30		$-10^{-5}$	$-0.30$		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.30		$10^{-5}$	0.30		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K}$, unless otherwise specified


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=O V$ unless otherwise specified.
Note 3: Capacitance is guaranteed by periodic testing.

## CD4020BM/CD4020BC 14 -stage ripple carry binary counters CD4040BM/CD4040BC 14-stage ripple carry binary counters CD4060BM/CD4060BC 12-stage ripple carry binary counters

## general description

The CD4020BM/CD4020BC, CD4060BM/CD4060BC are 14 -stage ripple carry binary counters, and the CD4040BM/CD4040BC is a 12 -stage ripple carry binary counter. The counters are advanced one count on the negative transition of each clock pulse. The counters are reset to the zero state by a logical " 1 " at the reset input independent of clock.

## features

- Wide supply voltage range
- High noise immunity
- Low power TTL compatibility
- Medium speed operation 8 MHz typ at $\mathrm{V}_{D D}=10 \mathrm{~V}$
- Schmitt trigger clock input


## connection diagrams

top VIEW


CD4020BM/CD4020BC

absolute maximum ratings (Notes 1 and 2)

$V_{D D}$	Supply Voltage	-0.5 V to +18 V
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 V to $\mathrm{V}_{D D}+0.5 \mathrm{~V}$
$\mathrm{~T}_{S}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\mathrm{P}_{\mathrm{D}}$	Package Dissipation	500 mW
$\mathrm{~T}_{\mathrm{L}}$	Lead Temperature (soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## recommended operating conditions

$V_{D D}$ Supply Voltage
$+3 V$ to $+15 V$
$V_{\text {IN }}$ Input Voltage
$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range CD40XXBM CD40XXBC
$O V$ to $V_{D D}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics CD40XXBM (Note 2)

	PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		UNITS	
			MIN	MAX	MIN	TYP	MAX	MIN	MAX			
	IDO	Quiescent Device Current		$V_{\text {DO }}=5 \mathrm{~V}$	,	5			5		150	$\mu \mathrm{A}$
			$V_{D O}=10 \mathrm{~V}$		10			10		300	- $\mu \mathrm{A}$	
			$V_{\text {OO }}=15 \mathrm{~V}$		20			20		600	$\mu \mathrm{A}$	
	$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$V_{\text {OD }}=5 \mathrm{~V}$		0.05		0	0.05		0.05	V	
			$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$V$	
			$V_{D O}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
	$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$V_{\text {DD }}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$\checkmark$	
			$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		V	
			$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$\checkmark$	
	$V_{\text {IL }}$	Low Level Input Voltage	$V_{\text {DO }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2	1.5		1.5	V	
			$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V}$		3.0		4	3.0		3.0	$V$	
			$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V}$		4.0		6	4.0		4.0	V	
	$V_{\text {IH }}$	High Level input Voltage	$V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{\text {O }}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	3		3.5		- V	
			$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$ or 9.0 V	7.0		7.0	6		7.0		V	
			$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	9		11.0		V	
	JOL	Low Level Output Current (See Note 3)	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
.			$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
			$V_{D O}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
	1 OH	High Level Output Current (See Note 3)	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA	
			$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		mA	
			$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		mA	
	$\mathrm{I}_{\text {IN }}$	Input Current	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		-0.10		$-10^{-5}$	-0.10		-1.0	$\mu \mathrm{A}$	
.			$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.10		$10^{-5}$	0.10		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
Note 3: Data does not apply to oscillator points $\phi_{0}$ and $\phi_{0}$ of CD4060BM/CD4060BC.
ac electrical characteristics CD4060BM/CD4060BC $T_{A}=25^{\circ} C, C L=50 P F, R_{L}=200 \mathrm{~K}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {PHL4 }}, \mathrm{t}_{\text {PLH4 }}$	Propagation Delay Time to $\mathrm{Q}_{4}$	$V_{D D}=5 \mathrm{~V}$		550	1300	ns
		$V_{D D}=10 \mathrm{~V}$		250	525	ns
		$V_{D D}=15 \mathrm{~V}$		200	400	ns
$\mathrm{t}_{\text {PHLL }}, \mathrm{t}_{\text {PLH }}$	Interstage Propagation Delay Time from $Q_{n}$ to $Q_{n+1}$	$V_{\text {DD }}=5 \mathrm{~V}$		150	330	ns
		$V_{D D}=10 \mathrm{~V}$		60	125	ns
		$V_{D D}=15 \mathrm{~V}$		45	90	ns
$t_{\text {THL, }}, t_{\text {TLH }}$	Transition Time	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
$t_{\text {WL }} \mathrm{t}_{\text {WH }}$	Minimum Clock Pulse Width	$V_{D D}=5 \mathrm{~V}$		170	500	ns
		$V_{D D}=10 \mathrm{~V}$		65	170	ns
		$V_{D D}=15 \mathrm{~V}$		50	125	ns
$\mathrm{trCL}, \mathrm{t}_{\text {fCL }}$	Maximum Clock Rise and Fail Time	$V_{D D}=5 \mathrm{~V}$		-	no limit	ns
		$V_{D D}=10 \mathrm{~V}$		-	no limit	ns
		$V_{D D}=15 \mathrm{~V}$		-	no limit	ns
$\mathrm{f}_{\mathrm{CL}}$	Maximum Clock Frequency	$V_{D D}=5 \mathrm{~V}$	1	3		MHz
		$V_{D D}=10 \mathrm{~V}$	3	8		MHz
		$V_{D D}=15 \mathrm{~V}$	4	10		MHz
$\mathrm{t}_{\text {PHL(R) }}$	Reset Propagation Delay	$V_{D D}=5 \mathrm{~V}$		200	450	ns
		$V_{D D}=10 \mathrm{~V}$		100	210	ns
		$V_{D D}=15 \mathrm{~V}$		80	170	ns
$t_{\text {WH(R) }}$	Minimum Reset Pulse Width	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		200	450	ns
		$V_{D D}=10 \mathrm{~V}$		100	210	ns
		$V_{D D}=15 \mathrm{~V}$		80	170	ns
$\mathrm{C}_{\text {in }}$	Average Input Capacitance	Any Input (Note 1)		5	7.5	pF
$\mathrm{C}_{\mathrm{pd}}$	Power Dissipation Capacitance	(Note 2)		50		pF

Note 1: Capacitance guaranteed by periodic testing.
Note 2: Cpd determines the no-load etc.

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		20			20		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		10			10		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80			80		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{\text {DO }}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
$V_{\mathrm{OH}}$	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$V$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$V$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2	1.5		1.5	V	
		$V_{\text {DO }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V}$ or 9.0 V		3.0		4	3.0		3.0	$V$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6	4.0		4.0	V	
$V_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	3		3.5		$v$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V}$	7.0		7.0	6		7.0		$V$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V}$	11.0		11.0	9		11.0		V	
IOL	Low Level Output Current (See Note 3)	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}$	0.52		0.44	0.88	.	0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
$\mathrm{I}_{\mathrm{OH}}$.	High Level Output Current (See Note 3)		-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	$-1.3$		-1.1	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=13.5 \mathrm{~V}$	-3.6		-3.6	-8.8		-2.4		mA	
$\mathrm{I}_{\text {IN }}$	Input Current	$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-0.30		$-10^{-5}$	-0.30		-1.0	$\mu \mathrm{A}$	
		$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.30		$10^{-5}$	0.30		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $\operatorname{CD} 4040 B M / C D 4040 B C, T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{PF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH1 }}$	Propagation Delay Time to $\mathbf{Q}_{\mathbf{1}}$	$V_{D D}=5 \mathrm{~V}$		250	550	ns
		$V_{D D}=10 \mathrm{~V}$		100	210	ns
		$V_{D O}=15 \mathrm{~V}$		75	150	ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Interstage Propagation Delay Time	$V_{D D}=5 \mathrm{~V}$		150	330	ns
	from $Q_{n}$ to $Q_{n+1}$	$V_{D D}=10 \mathrm{~V}$		60	125	ns
		$V_{D D}=15 \mathrm{~V}$		45	90	ns
$t_{\text {THL }}, t_{\text {TLH }}$	Transition Time	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D O}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
$t_{\text {WL. }}, t_{\text {WH }}$	Minimum Clock Pulse Width	$V_{D D}=5 \mathrm{~V}$		125	335	- ns
		$V_{D D}=10 \mathrm{~V}$		50	125	ns
		$V_{D D}=15 \mathrm{~V}$		40	100	ns
$t_{\text {rCL }}, t_{\text {fCL }}$	Maximum Clock Rise and Fall Time	$V_{D D}=5 \mathrm{~V}$		-	no limit	ns
		$V_{D D}=10 \mathrm{~V}$		-	no limit	ns
		$V_{D D}=15 \mathrm{~V}$		-	no limit	ns ${ }^{\text {- }}$
$f_{C L}$	Maximum Clock Frequency	$V_{D D}=5 \mathrm{~V}$	1.5	4	,	MHz
		$V_{D D}=10 \mathrm{~V}$	4	10		MHz
	$\checkmark$	$V_{D D}=15 \mathrm{~V}$	5	12		MHz
$t_{\text {PHL }}(R)$	Reset Propagation Delay	$V_{D D}=5 \mathrm{~V}$		200	450	ns
		$V_{D D}=10 \mathrm{~V}$		100	210	ns
		$V_{D D}=15 \mathrm{~V}$		80	170	ns
$t_{\text {WH(R) }}$	Minimum Reset Pulse Width	- $V_{D D}=5 \mathrm{~V}$		200	450	ns
	- .	- $V_{D D}=10 \mathrm{~V}$		100	210	ns
		$V_{D D}=15 \mathrm{~V}$	*	80	170	ns
$C_{\text {in }}$	Average Input Capacitance	Any Input (Note 1)		5	7.5	pF
$\mathrm{C}_{\mathrm{pd}}$	Power Dissipation Capacitance	(Note 2)		50		pF

Note 1: Capacitance guaranteed by periodic testing.
Note 2: Cpd determines the no-load etc.


CD4021M/CD4021C 8-stage static shift register

## general description

The CD4021M/CD4021C is an 8 -stage parallel input/ serial output shift register. A parallel/serial control input enables individual "jam" inputs to each of 8 . stages. Q outputs are available from the sixth, seventh and eighth stages.

When the parallel/serial control input is in the logical " 0 " state, data is serially shifted into the register synchronously with the positive transition of the clock. When the parallel/serial control is in the logical " 1 " state, data is "jammed" into each stage of the register asynchronously with the clock.

## features

- Asynchronous parallel or synchronous serial operation.
- Wide supply voltage range
3.0 V to 15 V
- High noise immunity $0.45 V_{c c}$ typ
- Medium speed operation 5 MHz typ clock rate at $V_{D D}-V_{S S}=10 \mathrm{~V}$
- Fully static operation


## applications

- Parallel to serial data conversion
n General purpose register


## logic diagram



## connection diagram


truth table

CL*	SERIAL INPUT	PARALLEL/ SERIAL CONTROL	PI 1	PIn	01 (INTERNAL)	$\mathrm{a}_{\mathrm{n}}$
x	$x$	1	0	0	0	0
x	$x$	1	0	1	0	1
x	$x$	1	1	0	1	0
x	$x$	1	1	1	1	1
$\checkmark$	0	0	x	$x$	0	$\mathrm{Q}_{\mathrm{n}} 1$
$\Omega$	1	0	$x$	$x$	1	$\mathrm{Q}_{\mathrm{n}} 1$
2	x	0	$\times$	x	01	$\mathrm{a}_{n}$

$\stackrel{\Delta}{*}$ Level change
$x=$ DON'T CARE CASE

TOP VIEW

## absolute maximum ratings（Note 1）

Voltage at Any Pin
Operating Temperature Range
CD4021M
CD4021C
Storage Temperature Range
Package Dissipation
Operating $V_{D D}$ Range
Lead Temperature（Soldering， 10 seconds）
$V_{S S}-0.3 V$ to $V_{D D}+0.3 V$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
$V_{S S}+3 V$ to $V_{S S}+15 V$
dc electrical characteristics CD4021M

PARAMETERS	CONDITIONS	LIMITS									UNITS
		$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device Current（ $L_{\text {L }}$ ）	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			5 10		0.5 1	$\begin{aligned} & 5 \\ & 10 \end{aligned}$			300 600	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Quiescent Device Dissipation	$V_{\text {OD }}=5 \mathrm{~V}$			25		2.5	25			1，500	$\mu \mathrm{W}$
Package（ $\mathrm{P}_{\mathrm{D}}$ ）	$V_{D D}=10 \mathrm{~V}$			100		10	100			6，000	$\mu \mathrm{W}$
Output Voltage	$V_{D O}=5 \mathrm{~V}$		－	0.01		0	0.01			0.05	$v$
Low－Level（ $\mathrm{V}_{\mathrm{OL}}$ ）	$V_{D O}=10 \mathrm{~V}$			0.01		0	0.01			0.05	$v$
Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.99			4.99	5		4.95			$v$
High－Level（ $\mathrm{V}_{\mathrm{OH}}$ ）	$V_{D D}=10 \mathrm{~V}$	9.99			9.99	10		9.95			V
Noise Immunity	$V_{O}=0.8 \mathrm{~V}, V_{D D}=5 \mathrm{~V}$	$1.5$			1.5	2.25		$1.4$			$v$
（All Inputs）（ $\mathrm{V}_{\mathrm{NL}}$ ）	$V_{O}=1 \mathrm{~V}, \quad V_{O D}=10 \mathrm{~V}$	$3$			3	4.5		2.9			V
Noise Immunity	$\mathrm{V}_{O}=4.2 \mathrm{~V}, \mathrm{~V}_{\text {DO }}=5 \mathrm{~V}$	1.4			1.5	2.25		1.5			V
（All Inputs）（ $\mathrm{V}_{\mathrm{NH}}$ ）	$V_{O}=9 \mathrm{~V}, \quad V_{D D}=10 \mathrm{~V}$	2.9			3	4.5		3			$v$
Output Drive Current	$V_{O}=0.5 \mathrm{~V}, V_{D D}=5 \mathrm{~V}$ ．	0.15			0.12	0.3		0.085			mA
N －Channel（ $\mathrm{I}_{0} \mathrm{~N}$ ）	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=10 \mathrm{~V}$	0.31			， 0.25	0.5		0.175			mA
Output Drive Current	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=5 \mathrm{~V}$	－0．1			－0．08	－0．16	＊	－0．055			mA
P－Channel（ $I_{0} P$ ）	$V_{O}=9.5 \mathrm{~V}, V_{D D}=10 \mathrm{~V}$	－0．25			－0．20	－0．44		－0．14			mA
Input Current（ $1_{1}$ ）						10					pA

dc electrical characteristics CD4021C

PARAMETERS	CONDITIONS	LIMITS									UNITS
		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device Current（ $L_{\text {L }}$ ）	$\begin{aligned} & V_{D O}=5 \mathrm{~V} \\ & V_{D O}=10 \mathrm{~V} \end{aligned}$			50 100		0.5 1	$\begin{aligned} & 50 \\ & 100 \end{aligned}$			700 1,400	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Quiescent Device Dissipation	$V_{D D}=5 \mathrm{~V}$			250		2.5	250			3，500	$\mu \mathrm{W}$
Package（ $\mathrm{P}_{\mathrm{D}}$ ）	$V_{D O}=10 \mathrm{~V}$			1，000		10	1，000			14，000	$\mu \mathrm{W}$
Output Voltage	$V_{D O}=5 \mathrm{~V}$			0.01		0	0.01			0.05	$v$
Low－Level（ $V_{\text {OL }}$ ）	$V_{D D}=10 \mathrm{~V}$			0.01		0	0.01			0.05	V
Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.99			4.99	5		4.95			$v$
High－Level（ $\mathrm{V}_{\mathrm{OH}}$ ）	$V_{D O}=10 \mathrm{~V}$	9.99			9.99	10		9.95			v
Noise Immunity	$V_{O}=0.8 \mathrm{~V}, V_{D D}=5 \mathrm{~V}$	1.5			1.5	2.25		－ 1.4			$v$
（All Inputs）（ $\mathrm{V}_{\mathrm{NL}}$ ）	$V_{O}=1 \mathrm{~V}, \quad V_{D D}=10 \mathrm{~V}$	3			3	4.5		2.9			V
Noise Immunity	$V_{O}=4.2 \mathrm{~V}, V_{D O}=5 \mathrm{~V}$	1.4			1.5	2.25		1.5			$v$
（All Inputs）（ $\mathrm{V}_{\mathrm{NH}}$ ）	$V_{O}=9 \mathrm{~V} . \quad V_{D D}=10 \mathrm{~V}$	2.9			3	4.5		3			$V$
Output Drive Current	$V_{O}=0.5 \mathrm{~V}, V_{O D}=5 \mathrm{~V}$	0.072	$\cdots$		0.06	0.3		0.05			mA
N－Channel（ $\mathrm{D}_{\mathrm{D}} \mathrm{N}$ ）	$V_{O}=0.5 \mathrm{~V}, V_{O D}=10 \mathrm{~V}$	0.12			0.1	0.5		0.08			mA
Output Drive Current	$V_{O}=4.5 \mathrm{~V}, V_{D O}=5 \mathrm{~V}$	－0．06			－0．05	－0．16		－0．04			mA
P－Channel（ $1_{D} P$ ）	$V_{O}=9.5 \mathrm{~V}, \mathrm{~V}_{D D}=10 \mathrm{~V}$	－0．12			－0．1	－0．44		－0．08			mA
Input Current（ 11 ）						10					pA

ac electrical characteristics CD402iM

ac electrical characteristics CD4021C

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time ( $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		300 100	$\begin{aligned} & 1,000 \\ & 300 \end{aligned}$	ns
Transition Time ( $\mathrm{t}_{\mathrm{THL}}, \mathrm{t}_{\mathrm{TLH}}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		150 75	400 150	ns
Minimum Clock Pulse Width ( $\mathrm{t}_{\mathrm{WL}}, \mathrm{t}_{\mathrm{WH}}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		200 100	$\begin{aligned} & 830 \\ & 200 \end{aligned}$	ns
Minimum High Level Parallel/Serial Control Pulse Width	$V_{D O}=5 \mathrm{~V}$		200	830	ns
$\left(\mathrm{t}_{\mathrm{WH}(\mathrm{P} / \mathrm{S})}\right)$	$V_{D O}=10 \mathrm{~V}$	-	100	200	ns
Clock Rise Time ( $\mathrm{t}_{\mathrm{ccL}}$ ) or Clock Fall Time ( $\mathrm{t}_{\mathrm{f} \mathrm{CL}}$ )	$\begin{aligned} & V_{D O}=5 \mathrm{~V} \\ & V_{D O}=10 \mathrm{~V} \end{aligned}$		$\cdots$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\mu_{\mu}^{\mu}$
Set-up Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 100 \end{aligned}$	ns ns
Maximum Clock Frequency ( ${ }^{\text {cLL }}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.6 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5 \end{aligned}$		MHz   MHz
Input Capacitance ( $\mathrm{C}_{1}$ ) (Note 2)	Any Input		5		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.

CD4023BM/CD4023BC triple 3 input NAND gate CD4025BM/CD4025BC triple 3 input NOR gate

## general description

These triple gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N - and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain. All inputs are protected against static discharge with diodes to $V_{D D}$ and $V_{S S}$.

## features

- Wide supply voltage range
3.0 V to 15 V
- High noise immunity $0.45 \mathrm{~V}_{\text {DD }}$ typ
- Low power
fan out of 2 driving 74L or 1 driving 74LS
- $5 \mathrm{~V}-10 \mathrm{~V}-15 \mathrm{~V}$ parametric ratings
- Symmetrical output characteristics
- Maximum input leakage $1 \mu \mathrm{~A}$ at 15 V over full temperature range


## connection diagrams



CD4023BM/CD4023BM
TOP VIEW


CD4025BM/CD4025BC
TOP VIEW

dc electrical characteristics - CD4023BM, CD4025BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MiN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	-	0.25		0.004	0.25		7.5	$\mu \mathrm{A}$
		0.5				0.005	0.5		15	$\mu \mathrm{A}$	
		1.0				0.006	1.0		30	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$	0.05			0	0.05		0.05	$V$	
		$V_{D D}=10 \mathrm{~V}$	0.05			0	0.05		0.05	V	
		$V_{\text {DD }}=15 \mathrm{~V}$	0.05			0	0.05		0.05	V	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$V_{D D}=5 V$	$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$		4.95	5		4.95	.	V	
		$V_{D D}=10 \mathrm{~V}$			9.95	10 ,		9.95		$V$	
		$V_{\text {DD }}=15 \mathrm{~V}$			14.95	15		14.95		$V$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=4.5 \mathrm{~V}$		1.5		2	1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.0 \mathrm{~V}, \\| I_{0} \mid<1 \mu \mathrm{~A}$		3.0		4	3.0		3.0	V	
		$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$		4.0		6	4.0		4.0	V	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		3.5		3.5	3		3.5		$\checkmark$	
		$\left.V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}\right\}\left\|I_{0}\right\|<1 \mu \mathrm{~A}$	7.0		7.0	6 -		7.0		$V$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	11.0		11.0	9		11.0		$V$	
$\mathrm{I}_{\mathrm{OL}}$	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{0}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.6		1.3	2.2		0.90		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	4.2		3.4	8		2.4		mA	
$\mathrm{I}_{\mathrm{OH}}$	High Level Output Current	$V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{0}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		$m A$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-1.6	$\cdots$	-1.3	-2.2.		-0.90		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$	-4.2		-3.4	-8		-2.4		mA	
$I_{\text {IN }}$	Input Current	$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-0.10		$-10^{-5}$	-0.10		-1.0	$\mu \mathrm{A}$	
		$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.10		$10^{-5}$	0.10		1.0	$\mu \mathrm{A}$	


dc electrical characteristics - CD4023BC, CD4025BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
${ }^{\text {ID }}$	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$				0.004			7.5	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$				0.005			15	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$				0.006			30	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05	.	0.05	$v$	
$\mathrm{VOH}_{\mathrm{OH}}$	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		v	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{0}=4.5 \mathrm{~V}$ )		1.5		2	1.5		1.5	$v$	
		$\left.V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.0 \mathrm{~V}\right\} \\| \mathrm{l}$		3.0			3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$ )		4.0		6	4.0		4.0	v	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$ )	3.5		3.5	3		3.5		$v$	
		$\left.V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V}\right\}\left\|I_{0}\right\|<1 \mu \mathrm{~A}$	7.0		7.0	6		7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	11.0		11.0	9		11.0		$v$	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{0}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	1.3		1.1	2.2		0.90		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	3.6		3.0	8		2.4		mA	
1 OH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{0}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-1.3		-1.1.	-2.2		-0.90		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$	-3.6		-3.0	-8		-2.4		mA	
$\mathrm{I}_{\mathrm{IN}}$	Input Current	$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{5}$	0.3		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.

## schematic diagram



CD4025BM/CD4025BC
ac electrical characteristics $T_{A}=25^{\circ} C, C_{L}=50 p F ; R_{L}=200 k$, unless otherwise specified.

PARAMETER		CONDITIONS	$\begin{aligned} & \hline \text { CD4023BC } \\ & \text { CD4023BM } \end{aligned}$			$\begin{aligned} & \text { CD4025BC } \\ & \text { CD4025BM } \end{aligned}$			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {tPHL }}$	Propagation Delay, High to Low Level		$V_{D D}=5 \mathrm{~V}$		130	250		130	250	ns
		$V_{D D}=10 \mathrm{~V}$		60	100		60	100	ns	
		$V_{D D}=15 \mathrm{~V}$		40	70		40	70	ns	
${ }_{\text {tplh }}$	Propagation Delay, Low to High Level	$V_{D D}=5 \mathrm{~V}$		110	250		120	250	ns	
		$V_{D D}=10 \mathrm{~V}$		50	100		60	100	ns	
		$V_{D D}=15 \mathrm{~V}$		35	70		40	70	ns	
${ }^{\mathrm{t}} \mathrm{THL}$   ${ }^{\mathrm{t}} \mathrm{t}$ LH	Transition Time	$V_{D D}=5 \mathrm{~V}$		90	200		90	200	ns	
		$V_{D D}=10 \mathrm{~V}$		50	100		50	100	ns	
		$V_{D D}=15 \mathrm{~V}$		40	80		40	80	ns	
$\mathrm{C}_{\text {IN }}$	Average Input Capacitance (See Note 3)	Any Input		5	7.5		5	7.5	pF	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacity (See Note 4)	Any Gate		17			17		pF	

Note 3: Capacitance is guaranteed by periodic testing.
Note 4: CPD determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family characteristics Application Note AN-90.

CD4024BM/CD4024BC 7-stage ripple-carry binary counter

## general description

The CD4024BM/CD4024BC is a 7 -stage ripple-carry binary counter. Buffered outputs are externally available from stages 1 through 7. The counter is reset to its logical " 0 " state by a logical " 1 " on the reset input. The counter is advanced one count on the negative transition of each clock pulse.

## features

- Wide supply voltage range
- High noise immunity
3.0 V to 15 V
0.45 VDD typ fan out of 2 driving 74L or 1 driving 74LS

12 MHz (typ) input pulse rate $V_{D D}-V_{S S}=10 \mathrm{~V}$
absolute maximum ratings
(Notes 1 and 2)
$V_{D D}$ de Supply Voltage
$V_{\text {IN }}$ Input Voltage
TS Storage Temperature Range
$P_{D}$ Package Dissipation
$\mathrm{T}_{\mathrm{L}}$ Lead Temperature (Soldering, 10 seconds)
recommended operating conditions
(Note 2)

$V_{D D}$ dc Supply Voltage	+3 to $+15 V_{D C}$
$V_{\text {IN }}$ Input Voltage	0 to $V_{D D} V_{D C}$
$T_{A}$ Operating Temperature Range	
CD4024BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4024BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4024BM (Note 2)

dc electrical characteristics CD4024BC (Note 2)


## dc electrical characteristics (con't) CD4024BC (Note 2)

	PARAMETER	CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
			MIN	MAX	MIN	TYP	MAX	MIN	MAX		
VIL	Low Level Input Voltage	. ${ }^{0} \mathrm{O} \mid<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2	1.5		3.5	v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1.0 \mathrm{~V}$ or 9.0 V		3.0		4	3.0		3.0	V	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6	4.0		4.0	v	
$V_{1 H}$	High Level Input Voltage	$\\| \mathrm{O} \mid<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	3		3.5		V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$ or 9.0 V	7.0		7.0	6		7.0		V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	9	.	11.0		$v$	
${ }^{1} \mathrm{OL}$	Low Level Qutput Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
1 OH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3،		-1.1	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		$-3.0$	-8.8		-2.4		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.30		$-10^{-5}$	-0.30		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.30		$10^{-5}$	0.30		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}, \mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}}=20$ ns unless otherwise specified.


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
Note 3: To Q1 output.
Note 4: Capacitance is guaranteed by periodic testing.

## CD4025M/CD4025C triple 3 -input NOR gate

## general description

These NOR gates are monolithic complementary MOS (CMOS) integrated circuits. The $N$ and $P$. channel enhancement mode transistors provide a symmetrical circuit with output swings essentially equal to the supply voltage. This results in high noise immunity over a wide supply voltage range. No dc power other than that caused by leakage current is consumed during static conditions. All inputs are protected against static discharge and latching conditions.

## features

- Wide supply voltage range
- Low power
3.0 V to 15 V

10 nW (typ.)

- High noise immunity $\quad 0.45 \mathrm{~V}_{\mathrm{DD}}$ (typ.)
- Medium speed $\quad t_{\text {PHL }}=t_{\text {PLH }}=25 \mathrm{~ns}$ (typ.) operation
at $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$


## applications

- Automotive
- Data terminals
e Instrumentation
- Medical electronics
- Industrial controls
- Remote metering
- Computers


## logic and connection diagrams



## absolute maximum ratings

Voltage at Any Pin (Note 1)
Operating Temperature Range CD4025M CD4025C
Storage Temperature Range
Package Dissipation
Operating $V_{D D}$ Range

$$
V_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{SS}}+15.5 \mathrm{~V}
$$

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

500 mW
Lead Temperature (Soldering, 10 seconds)
$V_{S S}+3.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}+15 \mathrm{~V}$
dc electrical characteristics CD4025M


## dc electrical characteristics CD4025C

PARAMETER	CONDITIONS	LIMITS									UNITS
			$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device	$V_{D D}=5.0 \mathrm{~V}$			0.5		0.005	0.5			15	$\mu \mathrm{A}$
Current ( $\mathrm{I}_{\mathrm{L}}$ )	$V_{\text {OD }}=10 \mathrm{~V}$			1.0		0.005	1.0			30	$\mu \mathrm{A}$
Quiescent Device Dissi-	$V_{D D}=5.0 \mathrm{~V}$			0.25		0.025	2.5			75	$\mu \mathrm{A}$
pation Package ( $\mathrm{P}_{\mathrm{O}}$ )	$V_{O D}=10 \mathrm{~V}$			10		0.05	10			300	$\mu \mathrm{W}$
Output Voltage Low	$V_{1}=V_{S S}, 1_{0}=0 \mathrm{~A}, V_{D D}=5.0 \mathrm{~V}$			0.01		0	0.01			0.05	$V$
Level ( $\mathrm{V}_{\mathrm{OL}}$ )	$V_{1}=V_{S S}, I_{0}=0 A, V_{D D}=10 \mathrm{~V}$			0.01		0	0.01			0.05	$\checkmark$
Output Voltage High	$V_{1}=V_{D D}, I_{0}=0 A, V_{D D}=5.0 \mathrm{~V}$	4.99			4.99	5.0		4.95			$\checkmark$
Level ( $\mathrm{V}_{\mathrm{OH}}$ )	$V_{1}=V_{O D}, l_{0}=0 A, V_{D D}=10 \mathrm{~V}$	9.99			9.99	10		9.95			$v$
Noise Immunity	$\mathrm{I}_{0}=0, \mathrm{~V}_{0}=4.3 \mathrm{~V}, \mathrm{~V}_{D O}=5.0 \mathrm{~V}$	1.5			1.5	2.25		1.4	-		$V$
( $\mathrm{V}_{\mathrm{NL}^{\prime}}$ ( All Inputs)	$\mathrm{I}_{0}=0, \mathrm{~V}_{0}=9.3 \mathrm{~V}, \mathrm{~V}_{D O}=10 \mathrm{~V}$	3.0			3.0	4.5		2.9			$\checkmark$
Noise ! mmunity	$I_{0}=0, V_{O}=0.7 \mathrm{~V}, V_{D D}=5.0 \mathrm{~V}$	1.4			1.5	2.25		1.5			$v$
( $\mathrm{VNH}_{\mathrm{NH}}$ )(All Inputs)	$I_{O}=0, V_{O}=0.7 \mathrm{~V}, V_{D D}=10 \mathrm{~V}$	2.9			3.0	4.5		3.0			$V$
Output Drive Current	$V_{1}=V_{D D}, V_{O}=0.4 \mathrm{~V}, V_{D D}=5.0 \mathrm{~V}$	0.35			0.3	1.0		0.24			$m \mathrm{~A}$
$N$-Channel ( $\mathrm{I}_{\mathrm{D}} \mathrm{N}$ )	$V_{1}=V_{O D}, V_{O}=0.5 \mathrm{~V}, V_{D D}=10 \mathrm{~V}$	0.72			0.6	2.5		0.48			$m A$
Output Drive Current	$V_{1}=V_{S S}, V_{O} \neq 2.5 \mathrm{~V}, V_{\text {DO }}=5.0 \mathrm{~V}$	$-0.35$			-0.3	$-2.0$		-0.24			mA.
P-Channel ( $\mathrm{I}_{\mathrm{D}} \mathrm{P}$ )	$V_{1}=V_{S S}, V_{O}=9.5 \mathrm{~V}, V_{D D}=10 \mathrm{~V}$	-0.3			-0.25	$-1.0$		$-0.2$			$m A$
Input Current ( $1_{1}$ )	.		.			10				,	pA

Note 1: This device should not be connected to circuits with the power on because high transient voltages may cause permanent damage.

## ac electrical characteristics $C D 4025 \mathrm{M}$

$T_{A}=25^{\circ} \mathrm{C}$ and $C_{L}=15 \mathrm{pF}$. Typical temperature coefficient for all values of $\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Propagation Dèlay Time High to Low Level ( $\mathrm{t}_{\mathrm{PHL}}$ )	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$35$	$50$	ns
Low Level (tphl	$V_{D D}=10 \mathrm{~V}$				
Propagation Delay Time Low to	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V}$		35	70	ns
High Level ( $t_{\text {PLH }}$ )	$V_{D D}=10 \mathrm{~V}$		25	45	ns
Transition Time High to Low	$V_{\text {DD }}=5.0 \mathrm{~V}$		65	125	ns
Level ( $\mathrm{t}_{\text {THL }}$ )	$V_{D D}=10 \mathrm{~V}$		35	70	ns
Transition Time Low to High	$V_{\text {DD }}=5.0 \mathrm{~V}$		65	175	ns
Level ( $\mathrm{T}_{\text {TLH }}$ )	$V_{\text {DD }}=10 \mathrm{~V}$		35	75	ns
Input Capacitance ( $\mathrm{C}_{1}$ ) .	Any Input		5.0		pF

ac electrical characteristics CD4025C
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$. Typical temperature coefficient for all values of $\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Propagation Delay Time High to	$V_{D O}=5.0 \mathrm{~V}$		35	80	ns
Low Level ( $\mathrm{t}_{\text {PHL }}$ )	$V_{D D}=10 \mathrm{~V}$		25	55	ns
Propagation Delay Time Low to	$V_{D D}=5.0 \mathrm{~V}$		35	120	ns
High Level ( $\mathrm{t}_{\text {PLH }}$ )	$V_{D D}=10 \mathrm{~V}$		25	65	ns
Transition Time High to Low.	$V_{D D}=5.0 \mathrm{~V}$	-	65	200	ns
Level ( $\mathrm{T}_{\text {THL }}$ )	$V_{D D}=10 \mathrm{~V}$	-	35	115	ns
Transition Time Low to High	$V_{D D}=5.0 \mathrm{~V}$		65	300	ns
Level ( $\mathrm{t}_{\text {TLH }}$ )	$V_{D D}=10 \mathrm{~V}$		35	125	ns
Input Capacitance ( $\mathrm{C}_{1}$ )	Any Input		5.0		pF

## CD4027BM／CD4027BC dual JK master／slave flip－flop with set and reset

## general description

These dual JK flip－flops are monolithic complementary MOS（CMOS）integrated circuits constructed with $N$ and P－channel enhancement mode transistors．Each flip－flop has independent $\mathrm{J}, \mathrm{K}$ ，set，reset and clock inputs and buffered Q and $\overline{\mathrm{Q}}$ outputs．These flip－flops are edge sensitive to the clock input and change state on the positive－going transition of the clock pulses．Set or reset is independent of the clock and is accomplished by a high level on the respective input．

All inputs are protected against damage due to static discharge by diode clamps to $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$ ．

## features

$\begin{array}{lr}\text {－Wide supply voltage range } & 3 \mathrm{~V} \text { to } 15 \mathrm{~V} \\ \text {－High noise immunity } & 0.45 \mathrm{~V}_{\mathrm{DD}} \text { typ }\end{array}$
－Low power fan out of 2
TTL compatibility driving 74L or 1 driving

74LS
－Low power 50 nW typ
－Medium speed operation

## schematic diagram



## connection diagram



TOP VIEW
absolute maximum ratings (Notes 1 and 2)

$V_{\text {DD }}$ dc Supply Voltage	-0.5 to $+18 V_{\text {DC }}$
$V_{\text {IN }}$ Input Voltage	-0.5 to $V_{D D}+0.5 V_{D C}$
TS Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$P_{\text {D }}$ Package Dissipation	500 mW
$\mathrm{T}_{\mathrm{L}}$ Lead Temperature \Soldering	onds) $300^{\circ} \mathrm{C}$

recommended operating conditions
(Note 2)

$V_{D D}$ dc Supply Voltage	3 to $15 V_{D C}$
$V_{\text {IN }}$ Input Voltage	0 to $V_{D D} V_{D C}$
$T_{A}$ Operating Temperature Range	
CD4027BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4027BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4027BM (Note 2)

$\therefore \quad$ PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		1			1		30	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		2			2		60	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		4			4		120	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$1101<1 \mu \mathrm{~A}$					.				
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05	.	0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
VOH	High Level Output Voltage	$\\|_{0} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		V	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$v$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V		3.0			3.0		3.0	V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	V	
$V_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		$v$,	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		V	
IOL	Low Level Output Current.	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		$m A$	
IN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{1 N}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4027BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		4			4		30	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		8			8		60	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		16			16		120	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\\|_{0} \mid<1 \mu \mathrm{~A}$									
		$V_{D D}=5 V$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
VOH	High Level Output Voltage	$\left\|{ }_{10}\right\|<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V		3.0			3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	$v$	
$V_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=1 \mathrm{~V}$ or 9 V	7.0:		7.0			7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		. 11.0			11.0		$v$	
IOL	Low Level Output Current	$V_{D D}=5 V, \quad V_{O}=0.4 V$			0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	

## dc electrical characteristics（con＇t）CD4027BC（Note 2）

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MiN	TYP	MAX	MIN	MAX			
${ }^{1} \mathrm{OH}$	High Level Output Current		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	－0．52		－0．44	－0．88		－0．36		miA
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	－1．3		－1．1	－2．25		－0．9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	－3．6		$-3.0$	－8．8		－2．4		mA	
1 IN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		－0．3		$-10^{-5}$	－0．3		$-1.0$	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

ac electrical characteristics．$T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r} C L}=\mathrm{t}_{\mathrm{f}} \mathrm{CL}=20 \mathrm{~ns}$ ，unless otherwise specified．

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
tPHL or tPLH	Propagation Delay Time From	$V_{D D}=5 \mathrm{~V}$		200	400	ns
	Clock to Q or $\overline{\mathrm{Q}}$	$V_{D D}=10 \mathrm{~V}$		80	160	ns
		$V_{D D}=15 \mathrm{~V}$		65	130	ns
tPHL or tP．LH	Propagation Delay Time From	$V_{D D}=5 \mathrm{~V}$		170	340	ns－
	Set to $\overline{\mathrm{Q}}$ or Reset to Q	$V_{D D}=10 \mathrm{~V}$		70	140	ns
		$V_{D D}=15 \mathrm{~V}$		55	110	ns
tPHL or tPLH	Propagation Delay Time From	$V_{D D}=5 \mathrm{~V}$		110	220	ns
	Set to Q or Reset to $\overline{\mathrm{Q}}$	$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
$\mathrm{t}_{5}$	Minimum Data Set－Up Time	$V_{D D}=5 \mathrm{~V}$		135	270	ns
	．	$V_{D D}=10 \mathrm{~V}$		55	110	ns
		$V_{D D}=15 \mathrm{~V}$		45	90	ns
tTHL or tTLH	Transition Time ．	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
${ }^{\mathrm{f}} \mathrm{CL}$	Maximum Clock Frequency	$V_{D D}=5 \mathrm{~V}$	2.5	5		MHz
	（Toggle Mode）	$V_{D D}=10 \mathrm{~V}$	6.2	12.5		MHz
		$V_{D D}=15 \mathrm{~V}$	7.6	15.5		MHz
$\mathrm{trCL}^{\text {or }} \mathrm{tfCL}^{\text {che }}$	Maximum Clock Rise and	$V_{D D}=5 \mathrm{~V}$	15			$\mu \mathrm{s}$
	Fall Time	$V_{D D}=10 \mathrm{~V}$	10			$\mu \mathrm{s}$
		$V_{D D}=15 \mathrm{~V}$	5			$\mu \mathrm{s}$
tw	Minimum Clock Pulse Width	$V_{D D}=5 \mathrm{~V}$		100	200	ns
	（ $\mathrm{tWH}=\mathrm{tWL}$ ）	$V_{D D}=10 \mathrm{~V}$		40	80	ns
		$V_{\text {DD }}=15 \mathrm{~V}$		32	65	ns
tWH	Minimum Set and Reset	$V_{\text {DD }}=5 \mathrm{~V}$		80	160	ns
	Pulse Width	$V_{D D}=10 \mathrm{~V}$		30	60	ns
		$V_{\text {DD }}=15 \mathrm{~V}$		25	50	ns
CIN	Average Input Capacitance	Any Input		5	7.5	pF
CPD	Power Dissipation Capacity	Per Flip．Flop （Note 3）		． 35		pF

Note 1：＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．They are not meant to imply that the devices should be operated at these limits．The table of＂Recommended Operating Conditions＂and＂Electrical Characteristics＂ provides conditions for actual device operation．
Note 2： $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified．
Note 3：CPD determines the no load ac power consumption of any CMOS device．For complete explanation，see 54C／74C Family Characteristics application note AN－90．

## typical applications



## truth table

${ }^{1} t_{n-1}$ INPUTS						${ }^{\text {in }}$ OUTPUTS		
$\mathrm{CL}^{\text {4 }}$	J	K	S	R	0	0	$\overline{\mathbf{0}}$	
5	1	X	0	0	0	1	0	
5	x	0	0	0	1	1,	0	
5	0	X	0	0	0	0	1.	
5	X	1	0	0	1	0	1	
7	$x$	X	0	0	x			(No change)
$x$	x	$x$	1	0	$x$	1	0	
$x$	$x$	$x$	0	1	$x$	0	1	
$x$	x	x	1	1	x	1	1	

Where: $I=$ High Level
O = Low Level
$\Delta=$ Level Change
X = Don't Care

- $=t_{n-1}$ refers to the time interval prior to the positive clock pulse transition
$\bullet=t_{n}$ refers to the time intervals after the positive clock pulse transition

CD4028BM/CD4028BC BCD-to-decimal decoder general description

The CD4028BM/CD4028BC is a BCD-to-decimal or binary-to-octal decoder consisting of 4 inputs, decoding logic gates, and 10 output buffers. A BCD code applied to the 4 inputs, $A, B, C$ and $D$, results in a high level at the selected 1 -of- 10 decimal decoded outputs. Similarly, a 3-bit binary code applied to inputs A, B and C is decoded in octal at outputs $0-7$. A high level signal at the $D$ input inhibits octal decoding and causes outputs $0-7$ to go low.

All inputs are protected against static discharge damage by diode clamps to VDD and VSS.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity
- Low power TTL compatibility 0.45 VDD typ fan out of 2 driving 74L or 1 driving 74LS
- Low power
- Glitch free outputs
- "Positive logic" on inputs and outputs


## applications

- Code conversion
- Address decoding
- Indicator-tube decoder


## logic and connection diagrams



## truth table

$\mathbf{D}$	$\mathbf{C}$	$\mathbf{B}$	$\mathbf{A}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0}$	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1

[^9]$0=$ Low level

## absolute maximum ratings

(Notes 1 and 2)

$V_{D D}$ Supply Voltage	-0.5 to +18 V
$V_{\text {IN }}$ Input Voltage	-0.5 to $V_{D D}+0.5 \mathrm{~V}$
$T_{S}$ Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$P_{D}$ Package Dissipation	500 mW
TL Lead Temperature (Soldering, 10 seconds) $\quad 300^{\circ} \mathrm{C}$	

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 500 mW $300^{\circ} \mathrm{C}$
recommended operating conditions

## (Note 2)

$V_{D D}$ Supply Voltage	3 to 15 V
$V_{\text {IN }}$ Input Voitage	0 to $V_{D D} \mathrm{~V}$
$T_{A}$ Operating Temperature Range	
CD4028BM	$-55^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5}^{\circ} \mathrm{C}$
CD4028BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4028BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS		
		MIN	MAX	MIN	TYP	MAX	MIN	MAX				
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \\|_{O I}<1 \mu \mathrm{~A}, V_{I L}=0 \mathrm{~V}, V_{I H}=V_{D D} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		5		0.01	5		150	$\mu \mathrm{A}$	
				10		0.01	10		300	$\mu \mathrm{A}$		
				20		0.02	20		600	$\mu \mathrm{A}$		
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage											
				0.05		0	0.05		0.05	V		
				0.05		0	0.05		0.05	V		
				0.05		0	0.05		0.05	V		
VOH	High Level Output Voltage	$\\| \mathrm{O} \mid<1 \mu \mathrm{~A}, V_{I L}=0 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=V_{D D}$										
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$V$		
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95 ,	10		9.95		V		
	- .	$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V		
VIL	Low Level Input Voltage	$\\|_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$										
		$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	V		
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V .		3.0		4.5	3.0		3.0	$\checkmark$		
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0	.	4.0	V		
$V_{\text {IH }}$	High Level Input Voltage	$\left\|\mathrm{O}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$										
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	2.75		3.5		V		
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		V		
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		V		
IOL	Low Level Output Current	$V_{\text {IL }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=V_{\text {DD }}$										
		$V_{\text {DD }}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.64		0.51	1.0		0.36		mA		
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	1.6		1.3	2.6		0.9	,	mA		
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$	4.2		3.4	6.8		2.4		mA		
1 OH	High Level Output Current	$V_{I L}=0 \mathrm{~V}, V_{I H}=V_{D D}$										
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.25		-0.2	-0.4		-0.14		mA		
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-0.62		-0.5	-1.0		-0.35		mA		
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-1.8		-1.5	-3.0		-1.1		mA		
$I_{I N}$	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$		
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$		

dc electrical characteristics CD4028BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		. 20		0.01	20		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		40		0.01	40		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80		0.02	80		600	$\mu \mathrm{A}$.	
$V_{\text {OL }}$	Low Level Output Voltage	$\left\|I_{O}\right\|<1 \mu A, V_{\text {IL }}=0 V, V_{\text {IH }}=V_{\text {DD }}$					.				
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	V	
	.	$V_{\text {DD }}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
VOH	High Level Output Voltage	$\mathrm{I}_{\mathrm{O}} \mathrm{i}<1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{OV}, \mathrm{~V}_{I H}=\mathrm{V}_{\mathrm{DD}}$									
		$V_{D D}=5 V$	4.95		4.95	5		4.95		V	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$V$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage	$\mathrm{HOL}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	$V$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	V	

dc electrical characteristics (Continued) CD4028BC (Note 2)

	PARAMETER	CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS
			MIN	MAX	MIN	TYP	MAX	MIN	MAX	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mid 10 \mathrm{O}<1 \mu \mathrm{~A}$								
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		v
		$V_{D D}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		$v$
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		v
IOL	Low Level Output Current	$V_{I H}=V_{D D}, V_{I L}=0 V$								
		$V_{D D}=5 \mathrm{~V}, V_{0}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA
		$V_{D D}=10 \mathrm{~V}, V_{0}=0.5 \mathrm{~V}$	1.3		1.1	2.2		0.9		mA
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	6.0		2.4		mA
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{I H}=V_{D D}, V_{\text {IL }}=0 \mathrm{~V}$								
		$V_{D D}=5 \mathrm{~V}, V_{0}=4.6 \mathrm{~V}$	-0.2		-0.16	-0.32		-0.12		mA
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-0.5		-0.4	-0.8		-0.3		mA
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-1.4		-1.2	-2.4		-1.0		mA
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$	-0.3			-0.3			-1.0	$\mu \mathrm{A}$
		$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$	0.3			0.3			1.0	$\mu \mathrm{A}$

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, R_{L}=200 \mathrm{k}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{\text {tPHL }}$ or tPLH	Propagation Delay	$V_{C C}=5 \mathrm{~V}$		240	480	ns
		$V_{C C}=10 \mathrm{~V}$		100	200	ns
-		$V_{C C}=15 V$	-	70	140	ns
tTHL or tTLH	Transition Time	$V_{C C}=5 \mathrm{~V}$		175	350	ns
		$V_{C C}=10 \mathrm{~V}$		75	150	ns
		$V_{C C}=15 \mathrm{~V}$		60	110	ns
CIN	Input Capacitance	Any Input		5	7.5	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.

## switching time waveforms



CD4029BM/CD4029BC presettable binary/decade up/down counter

## general description

The CD4029BM/CD4029BC is a presettable up/down counter which counts in either binary or decade mode depending on the voltage level applied at binary/decade input. When binary/decade is at logical " 1, " the counter counts in binary; otherwise it counts in decade. Similarly, the counter counts up when the up/down input is at logical " 1 " and vice versa.

A logical "1" preset enable signal allows information at the "jam" inputs to preset the counter to any state asynchronously with the clock. The counter is advanced one count at the positive-going edge of the clock if the carry in and preset enable inputs are at logical " 0. ." Advancement is inhibited when either or both of these two inputs is at logical "1." The carry out signal is normally at logical " 1 " state and goes to logical " 0 " state when the counter reaches its maximum count in
the "up" mode or the minimum count in the "down" mode provided the carry input is at logical " 0 ' state.

All inputs are protected against static discharge by diode clamps to both $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity $0.45 V_{D D}$ typ
- Low power
fan out of 2 TTL compatibility
driving 74L or 1 driving 74LS
- Parallel jam inputs
- Binary or BCD decade up/down counting


## logic diagram



## absolute maximum ratings

(Notes 1 and 2)
$V_{D D}$ de Supply Voltage
$V_{\text {IN }}$ Input Voltage
Ts Storage Temperature Range
PD Package Dissipation
TL Lead Temperature (Soldering, 10 seconds)
(Note 2)

$V_{D D}$ dc Supply Voltage	3 to $15 V_{D C}$
$V_{\text {IN Input Voltage }}$	0 to $V_{D D} V_{D C}$
$T_{A}$ Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4029BM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4029BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		5			5	5	150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		10			10		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		20			20		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\mid \mathrm{IV}^{\prime} \mathrm{V}^{\circ}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
V OH	High Level Output Voltage	$\\|_{0} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$v$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5						$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V		3.0			3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	$v$	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$v$	
1 OL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V} V_{O}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
IOH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{0}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4029BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		20			20		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		40			40		300	$\mu \mathrm{A}$	
		- $V_{D D}=15 \mathrm{~V}$		80			80		600	$\mu \mathrm{A}$	
VoL	Low Level Output Voltage	$\mathrm{IIO}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	
VOH	High Level Output Voltage										
		$V_{D D}=5 \mathrm{~V}$	4.95							v	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V	

## dc electrical characteristics (con't) CD4029BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
$V_{\text {IL }}$	Low Level Input Voltage		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5$ or 4.5 V		1.5			1.5		1.5	$V$
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V		3.0			3.0		3.0	$V$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	$V$	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		$V$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		V	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$V$	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
${ }^{\mathrm{JOH}}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	$-0.52$		-0.44	-0.88	-	-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA	
	1	$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		-3.0	-8.8		-2.4		mA	
$1 / \mathrm{N}$	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{\text {DD }}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}, \mathrm{t}_{\mathrm{r}} \mathrm{CL}=\mathrm{t}_{\mathrm{f}} \mathrm{CL}=20 \mathrm{~ns}$, unless otherwise specified


## ac electrical characteristics (con't)

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r} C L}=\mathrm{t}_{\mathrm{f} C \mathrm{~L}}=20 \mathrm{~ns}$, unless otherwise specified

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
PRESET ENABLE OPERATION (con't)						
tPHL or tPLH	Propagation Delay Time to Carry Output	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	'	$\begin{aligned} & 400 \\ & 165 \\ & 135 \end{aligned}$	$\begin{aligned} & 800 \\ & 330 \\ & 270 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \\ & \text { ns } \end{aligned}$
twh	Minimum Preset Enable Pulse Width	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 80 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 160 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
trem	Minimum Preset Enable   Removal Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} . \\ & V_{D D}=15 \mathrm{~V} . \end{aligned}$		$\begin{aligned} & 150 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 300 \\ & 120 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
CARRY INPUT OPERATION						
tPHL or TPLH   tPHL. TPLH	Propagation Delay Time to Carry Output   Propagation Delay Time to Carry Output	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V}, C_{L}=15 \mathrm{pF} \\ & V_{D D}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & V_{D D}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 265 \\ & 110 \\ & 90 \\ & 200 \\ & 85 \\ & 70 \end{aligned}$	$\begin{aligned} & 530 \\ & 220 \\ & 180 \\ & 400 \\ & 170 \\ & 140 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=0 V$ unless otherwise specified.
Note 3: `CPD determines the no load ac power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics application note, AN-90.

## connection diagram




## switching time waveforms




## CD4030M/CD4030C quad EXCLUSIVE-OR gate

## general description

These EXCLUSIVE-OR gates are monolithic Complementary MOS (CMOS) integrated circuits constructed with N and P -channel enhancement mode transistors. All inputs are protected against static discharge with diodes to $V_{D D}$ and $V_{S S}$.
features

- Wide supply voltage range
- Low power
3.0 V to 15 V

100 nW (typ)
$\mathrm{t}_{\mathrm{PHL}}=\mathrm{t}_{\mathrm{PLH}}=40 \mathrm{~ns}$ (typ) at $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, 10 \mathrm{~V}$ supply operation

- High noise immunity $\quad 0.45 \mathrm{~V}_{\mathrm{cc}}$ (typ)
applications
- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Industrial controls
- Remote metering
- Computers


## schematic diagram



## connection diagram



TOP VIEW

## absolute maximum ratings

Voltage at Any Pin（Note 1）
Operating Temperature Range

## CD4030M

 CD4030CStorage Temperature Range
Package Dissipation
Operating $V_{D D}$ Range
Lead Temperature（Soldering， 10 seconds）
$V_{S S}-0.3 V$ to $V_{S S}+15.5 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
$\mathrm{V}_{\mathrm{SS}}+3.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}+15 \mathrm{~V}$
$300^{\circ} \mathrm{C}$
dc electrical characteristics CD4030M

dc electrical characteristics CD4030C．

Parameter	CONDITIONS	LIMITS									UNITS
		$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Quiescent Device Current（IL）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			5.0 10		$\begin{aligned} & \hline 0.05 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$			$\begin{aligned} & 70 \\ & 140 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Quiescent Device Dissi－ pation Package（ $\mathrm{P}_{\mathrm{D}}$ ）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$			25 100		0.25 1.0	$\begin{aligned} & 25 \\ & 100 \end{aligned}$			350 1,400	$\begin{aligned} & \mu \mathrm{W} \\ & \mu \mathrm{~W} \end{aligned}$
Output Voltage Low Level（Vol）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{O D}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	v
Output Voltage High Level（ $\mathrm{VOH}_{\mathrm{OH}}$ ）	$\begin{aligned} & V_{D O}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$					$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$		4.95 9.95			$\checkmark$
Noise Immunity （All Inputs）（VNL）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$			1.5 3.0	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$		1.4 2.9			$v$
Noise Immunity （All Inputs）（ $\mathrm{V}_{\mathrm{NH}}$ ）	$\begin{aligned} & V_{D O}=5.0 \mathrm{~V} \\ & V_{O D}=10 \mathrm{~V} \end{aligned}$	1.4 2.9			1.5 3.0	2.25 4.5		1.5 3.0			v
Output Drive Current N －Channel（10 N ）	$\begin{aligned} & V_{D O}=5.0 \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.7 \end{aligned}$	－		0.3 0.6	1.2 2.4		0.25 0.5			$\begin{aligned} & m A \\ & m A \end{aligned}$
Output Drive Current P．Channel（ID P ）	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D O}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.21 \\ & -0.45 \end{aligned}$			$\begin{aligned} & -0.15 \\ & -0.32 \end{aligned}$	-0.6 -1.3		－0．12 -0.25			mA
Input Current（ 11$)$	$V_{1}=0 V$ or $V_{1}=V_{00}$					10					pA

Note 1：This device should not be connected to circuits with power on because high transient voltages may cause permanent damage．
ac electrical characteristics CD4030M
at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$, and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$. Typical temperature coefficient for all values of $\mathrm{V}_{D D}=0.3 \%{ }^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Propagation Delay Time ( $\mathrm{t}_{\text {PHL }}$ )	$V_{D D}=5.0 \mathrm{~V}$		100	200	ns
	$V_{\text {DO }}=10 \mathrm{~V}$		40	100	ns
Propagation Delay Time ( $\mathrm{t}_{\text {PLH }}$ )	$V_{D D}=5.0 \mathrm{~V}$		100	200	ns
	$V_{D D}=10 \mathrm{~V}$		40	100	ns
Transition Time High to Low	$V_{D D}=5.0 \mathrm{~V}$		70	150	ns
Level ( $\mathrm{t}_{\text {THL }}$ )	$V_{D D}=10 \mathrm{~V}$		25	75	ns
Transition Time Low to High	$V_{D D}=5.0 \mathrm{~V}$		80	150	ns
Level ( $\mathrm{t}_{\text {the }}$ )	$V_{D D}=10 \mathrm{~V}$		30	75	ns
Input Capacitance ( $C_{1}$ )	$V_{1}=0 V$ or $V_{1}=V_{D D}$		5.0		pF

ac electrical characteristics $\operatorname{CD4030}$

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Propagation Delay Time ( $\mathrm{t}_{\mathrm{PHL}}$ )	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 100 \\ & 40 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	$\begin{array}{r} \mathrm{ns} \\ \mathrm{~ns} \end{array}$
Propagation Delay Time ( $\mathrm{t}_{\mathrm{PLH}}$ )	$\begin{aligned} & V_{D D}=5.0 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 100 \\ & 40 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Transition Time High to Low	$V_{D D}=5.0 \mathrm{~V}$	,	70	300	ns
Level ( $\mathrm{t}_{\text {THL }}$ )	$V_{D D}=10 \mathrm{~V}$		25	150	ns
Transitión Time Low to High	$V_{\text {DO }}=5.0 \mathrm{~V}$		80	300	ns
Level ( $\mathrm{T}_{\text {TLH }}$ )	$V_{D D}=10 \mathrm{~V}$		30	150	ns
Input Capacitance ( $\mathrm{C}_{1}$ )	$V_{1}=0 V$ or $V_{1}=V_{D D}$		5.0		pF

truth table (For One of Four Identical Gates)

$A$	$B$	$J$
0	0	0
1	0	1
0	1	1
1	1	0

Where: " 1 " = High Level " 0 " = Low Level

CD403IBM／CD403IBC 64 stage static shift register

## general description

The CD4031BM／CD4031BC is an integrated，comple－ mentary MOS（CMOS），64－stage，fully static shift register．Two data inputs，DATA IN and RECIRCULATE IN，and a MODE CONTROL input are provided．Data at the DATA input（when MODE CONTROL is LOW）or data at the RECIRCULATE input（when MODE CONTROL is HIGH），which meets the setup and hold time requirements，is entered into the first stage of the register and is shifted one stage at each positive transi－ tion of the CLOCK．

Data output is available in both true and complement forms from the 64th stage．Both the DATA OUT（Q） and $\overline{\text { DATA }} \overline{\text { OUT }}(\overline{\mathrm{Q})}$ outputs are fully buffered．
The CLOCK input of the CD4031BM／CD4031BC is fully buffered，and presents only a standard input load capacitance．However，a DELAYED CLOCK OUTPUT （ $C L_{D}$ ）has been provided to allow reduced clock drive fan－out and transition time requirements when cascading packages．

## features

－Wide supply voltage range 3.0 V to 15 V
－High noise immunity
－Low power TTL compatibility
－Fully static operation
－Fully buffered clock input
（typical＠$V_{D D}=10 \mathrm{~V}$ ）
5 pF （typ） input capacitance
－Single phase clocking requirements
ع．Delayed clock output for reduced clock drive re－ quirements
－Fully buffered outputs
－High Current Sinking Capability， 1.6 mA Q Output＠$\quad V_{D D}=5 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$

## logic and connection diagrams


absolute maximum ratings (Notes $1 \& 2$ )

$V_{D D}$ Supply Voltage	-0.5 V to +18 V	
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 V to $\mathrm{V}_{D D}+0.5 \mathrm{~V}$
$\mathrm{~T}_{S}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\mathrm{P}_{\mathrm{D}}$	Package Dissipation	500 mW
$\mathrm{~T}_{\mathrm{L}}$	Lead Temperature (Soldering,	10 seconds)
	$300^{\circ} \mathrm{C}$	

recommended operating conditions (Note 2)

$V_{D D}$ Supply Voltage<br>$V_{\text {IN }}$ Input Voltage<br>$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range CD4031BM CD4031BC

+3 V to +15 V
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics (Note 2) CD4031BM

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\left.\begin{array}{l} V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \\ V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \end{array}\right\} V_{I H}=V_{D D}, V_{I L}=0 \mathrm{~V},\left\|I_{O}\right\|<1 \mu \mathrm{~A}$		5		0.01	5		150	$\mu \mathrm{A}$
				10		0.01	10		300	$\mu \mathrm{A}$	
				20		0.02	20		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage			0.05		0	0.05		0.05	$V$	
				0.05		0	0.05		0.05	V	
				0.05		0	0.05		0.05	V	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\left(\begin{array}{l} V_{D D}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{array}\right\} \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V},\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	4.95		4.95	5		4.95		$v$	
			9.95		9.95	10		9.95		$V$	
			14.95		14.95	15		14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage	$\left.\begin{array}{l} V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{array}\right\}\left\|I_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$		1.5		2.25	1.5		1.5	V	
				3.0		4.5	3.0		3.0	V	
				4.0		6.75	4.0		4.0	V	
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage	$\left\{\begin{array}{l} V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{array}\right\}\left\|I_{O}\right\|<1 \mu \mathrm{~A}$	3.5		3.5	2.75		3.5		V	
			7.0		7.0	5.5		7.0		V	
			11.0		11.0	8.25		11.0		V	
$\mathrm{IOL}^{\text {L }}$	Low Level Output Current, Q Output	$\left.\begin{array}{l} V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \end{array}\right\} V_{1 \mathrm{H}}=V_{D D}=0 \mathrm{~V}$	2.3		1.9	3.8		1.3		mA	
			5.1		4.2	8.4		2.8		mA	
			10.5		8.8	17		6.1		mA	
IOL	Low Level Output Current, Q and $\mathrm{CL}_{\mathrm{D}}$ Outputs	$\left\{\begin{array}{l} V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \end{array}\right\} V_{1 H}=V_{D D}=0 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
			1.6		1.3	2.25		0.9		mA	
			4.2		3.4	8.8		2.4		mA	
$\mathrm{I}_{\mathrm{OH}}$	High Level Output Current, All Outputs	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}, V_{1 H}=V_{D D}$	-0.64		-0.51	-0.88		-0.36		mA	
		( $V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V},\left\{\begin{array}{l}\text { V } \\ V_{1 H}= \\ V_{1 L}=0 \mathrm{~V}\end{array}\right.$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$ ) $\mathrm{V}^{\text {IL }}$	-4.2		-3.4	-8.8		-2.4		$m A$	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

## truth tables

MODE CONTROL (data selection)

MODE   CONTROL	DATA   IN	RECIRCULATE   IN	DATA INTO   FIRST STAGE
0	0	$X$	0
0	1	$X$	1
1	$X$	0	0
1	$X$	1	1

## EACH STAGE

$\mathbf{D}_{\mathbf{n}}$	CL	$\mathbf{0}_{\mathbf{n}}$
0	-	0
1	-	1
X	$\sim$	NC

[^10]dc electrical characteristics (Note 2) CD4031BC

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		20		0.01	20		150	$\mu \mathrm{A}$
				40		0.01	40		300	$\mu \mathrm{A}$	
				80		0.02	80		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\left\{\begin{array}{l} V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \end{array}\right\} \mathrm{V}_{I H}=V_{D D}, V_{I L}=0 \mathrm{~V}, \\|_{\mathrm{O}}<1 \mu \mathrm{~A}$		0.05		0	0.05		0.05	$\checkmark$	
				0.05		0	0.05		0.05	$v$	
				0.05		0	0.05		0.05	$v$	
V OH	High Level Output Voltage	$\left\{\begin{array}{l} V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \end{array}\right\} \mathrm{V}_{I H}=\mathrm{V}_{\mathrm{DD}}, V_{I L}=0 \mathrm{~V},\left\|\\|_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$		4.95	5		4.95		$v$	
					9.95	10		9.95		V	
					14.95	15		14.95		$v$	
$V_{\text {il }}$	Low Level Input Voltage	$\left\{\begin{array}{l} V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{array}\right\} \\|_{\mathrm{O}}<1 \mu \mathrm{~A}$		1.5		2.25	1.5		1.5	$v$	
				3.0		4.5	3.0		3.0	$v$	
				4.0		6.75	4.0		4.0	v	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\left\{\begin{array}{l} V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{array}\right\} \\|_{O}<1 \mu \mathrm{~A}$	3.5		3.5	2.75		3.5		$v$	
			7.0		7.0	5.5		7.0		v	
			11.0		11.0	8.25		11.0		v	
IOL	Low Level Output Current, Q Output	,$~ \begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \\ & V_{D D}=15 \mathrm{~V},\end{aligned}$	1.8		1.6	3.8		1.3		mA	
			4.0		3.5	8.4		2.8		mA	
			8.7		7.5	17		6.1		mA	
1 OL	Low Level Output Current, Q and $\mathrm{CL}_{\mathrm{D}}$ Outputs		0.52		0.44	0.88		0.36		mA	
			1.3		1.1	2.25		0.9		mA	
			3.6		3.0	8.8		2.4		mA	
$\mathrm{IOH}^{2}$	High Level Output Current, All Outputs		-0.52		-0.44	-0.88		-0.36		mA	
		V $V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}, \begin{aligned} & V_{1 H}=V_{D D} \\ & V_{I L}=0 \mathrm{~V}\end{aligned}$	-1.3		-1.1	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$ ) $\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	-3.6		-3.0	-8.8		-2.4		mA	
1 I	Input Current	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions' and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $V_{S S}=0 \mathrm{~V}$ unless otherwise specified.

## switching time waveforms


ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, R_{L}=200 \mathrm{~K} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }_{\text {tPHL }} \mathrm{t}_{\text {PLH }}$ Propagation Delay Time, Clock to Q and $\overline{\mathrm{Q}}$		$\mathrm{V}_{C C}=5 \mathrm{~V}$		300	600	ns
		$V_{C C}=10 \mathrm{~V}$		125	250	ns
		$V_{C C}=15 \mathrm{~V}$		100	200	ns
$t_{\text {PHL }}$, PLLH Propagation Delay Time, Clock to $\mathrm{CL}_{\mathrm{D}}$		$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$.		125	250	ns
		$V_{C C}=10 \mathrm{~V}$		60	125	ns
		$V_{C C}=15 \mathrm{~V}$		50	100	ns
${ }_{\text {t }}^{\text {THL, }}$ tiLh Output Transition Time, All Outputs		$V_{C C}=5 \mathrm{~V}$		100	200	ns
		$V_{C C}=10 \mathrm{~V}$		50	100	ns
		$V_{C C}=15 \mathrm{~V}$		40	80	ns
${ }^{t} \mathrm{SU}_{0}$   ${ }^{\text {ts }} \mathrm{SU}_{1}$	Minimum Data Setup Time, DATA IN or RECIRCULATE IN to Clock	$V_{C C}=5 \mathrm{~V}$		100	200	ns
		$V_{C C}=10 \mathrm{~V}$		50	100	ns
	.	$V_{C C}=15 \mathrm{~V}$		40	80	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{H}_{0}} \\ & \mathrm{t}_{\mathrm{H}_{1}} \end{aligned}$	Minimum Data Hold Time, Clock to DATA IN or RECIRCULATE IN	$V_{C C}=5 \mathrm{~V}$		100	200	
		$V_{C C}=10 \mathrm{~V}$	-	50	100	ns
		$V_{C C}=15 \mathrm{~V}$		40	80	ns
${ }^{\text {twL }}$, ${ }^{\text {twH }}$	Minimum Clock Pulse Width	$V_{C C}=5 \mathrm{~V}$		150	300	
		$V_{C C}=10 \mathrm{~V}$		60	125	ns
		. $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		50	100	ns
$\mathrm{f}_{\mathrm{CL}}$	Maximum Clock Frequency	$V_{C C}=5 \mathrm{~V}$		3.2		
		$V_{C C}=10 \mathrm{~V}$	4.0	8.0		MHz
		$V_{C C}=15 \mathrm{~V}$	5.0	10		, MHz
${ }^{\text {tRCL. }}$ t FCL	Maximum Clock Input Rise and Fall Times (Note 3)	$V_{C C}=5 \mathrm{~V}$	15			$\mu \mathrm{s}$
		$V_{C C}=10 \mathrm{~V}$	10			$\mu \mathrm{s}$
		$V_{C C}=15 \mathrm{~V}$	5			$\mu \mathrm{s}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input		5	7.5	pF

Note 3: When clocking cascaded packages in parallel, one should insure that: $\operatorname{tr}_{\mathrm{CL}} \leqslant 2\left(\mathrm{t}_{\mathrm{PD}}-\mathrm{t}_{\mathrm{H}}\right)$ where: $\mathrm{t}_{\mathrm{PD}}=$ the propagation delay of the driving stage and $\mathrm{t}_{\mathrm{H}}=$ the hold time of the driven stage.

## block diagram

cascading packages using DELAYED CLOCK (CLD) output


## CD4034BM/CD4034BC

## 8-stage TRI-STATE ${ }^{\circledR}$ bidirectional parallel/serial input/output bus register

## general description

The CD4034BM/CD4034BC is an 8 -bit CMOS static shift register with two parallel bidirectional data ports ( $A$ and $B$ ) which, when combined with serial shifting operations, can be used to (1) bidirectionally transfer parallel data between two buses, (2) convert serial data to parallel form and direct them to either of two buses, (3) store (recirculate) parallel data, or (4) accept parallel data from either of two buses and convert them to serial form. These operations are controlled by five control inputs:

A ENABLE (AE) - " $A$ " data port is enabled only when $A E$ is at-logical "1." This allows the use of a common bus for multiple packages.
A-BUS-TO-B-BUS/B-BUS-TO-A-BUS (A/B) - This input controls the direction of data flow. When at logical " 1, " data flows from port $A$ to $B$ ( $A$ is input, $B$ is output). When at logical " 0, " the data flow direction is reversed.
ASYNCHRONOUS/SXNCHRONOUS (A/S) - When A/S is at logical " 0, " data transfer occurs at positive transition of the CLOCK. When $A / S$ is at logical " 1 ," data transfer is independent of the CLOCK for parallel operation. In serial mode A/S input is internally disabled such that the operation is always synchronous. (Asynchronous serial operation is not possible.)
PARALLEL/SERIAL (P/S) - A logical " 1 " P/S input allows data transfer into the registers via $A$ or $B$ port (synchronous if $A / S=$ logical " 0, " asynchronous if $A / S=$ logical " 1 "). A logical " 0 " $P / S$ allows serial data to transfer into the register synchronously with the positive transition of the CLOCK, independent of the $\mathrm{A} / \mathrm{S}$ input.
CLOCK - Single phase, enabled only in synchronous mode. (Either $\mathrm{P} / \mathrm{S}=$ logical " 1 " and $\mathrm{A} / \mathrm{S}=$. logical " 0 " or $P / S=$ logical " $0 . "$ )

All register stages are D-type master-slave flip.flops with separate master and slave clock inputs generated internally to allow synchronous or asynchronous data transfer from master to slave.

All inputs are protected against damage due to static discharge by diode clamps to $V_{D D}$ and $V_{S S}$.

## features

- Wide supply voltage range
3.0 V to 18 V
- High noise immunity
- Low power TTL compatibility
$0.45 V_{\text {DD }}$ typ
fan out of
2 driving 74L
or 1 driving 74LS
- RCA CD4034B second source


## applications

- Parallel Input/Parallel Output Parallel Input/Serial Output Serial Input/Parallel Output Serial Input/Serial Output Register
- Shift right/shift left register
- Shift right/shift left with parallel loading
- Address register
- Buffer register
- Bus system register with enable parallel lines at bus side
- Double bus register system
- Up-Down Johnson or ring counter
- Pseudo-random code generators
- Sample and hold register (storage, counting, display)
- Frequency and phase comparator


## connection diagram



$V_{D D}$	DC Supply Voltage	$-0.5 \mathrm{~V}_{D C}$ to $+18 \mathrm{~V}_{D C}$
$\mathrm{~V}_{I N}$	Input Voltage	$-0.5 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}_{D D}+0.5 \mathrm{~V}_{D C}$
$T_{S}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\mathrm{P}_{\mathrm{D}}$	Package Dissipation	500 mW
$\mathrm{~T}_{\mathrm{L}}$	Lead Temperature	
	(Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$


$V_{\text {DD }}$	DC Supply Voltage	DC
$V_{\text {IN }}$	Input Voltage	$0 V_{D C}$ to $V_{D D} V_{D C}$
$\mathrm{T}_{\text {A }}$	Operating Temperature Range CD4034BM CD4034BC	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{array}$

dc electrical characteristics-CD4034BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IOD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		5			5		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		10			10		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		20			20		600	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$		0.05			0.05		0.05	V	
		$V_{D D}=10 \mathrm{~V}$		0.05			0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05			0.05		0.05	$V$	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.95		4.95		-	4.95		$V$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95			9.95		V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95			14.95		$V$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1.0 \mathrm{~V}$ or 9.0 V		3.0			3.0		3.0	$\cdots \mathrm{V}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{VO}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	V	
$V_{1 H}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{0}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$ or 9.0 V	7.0		7.0			7.0		$V$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$ or 13.5 V	-11.0		11.0			11.0		$V$	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$	0.64		0.51			0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	1.6		1.3			0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$	4.2		3.4			2.4		mA	
$\mathrm{I}_{\mathrm{OH}}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.64		-0.51			-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V}$	-1.6		-1.3			-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=13.5 \mathrm{~V}$	-4.2		-3.4			-2.4		mA	
1 IN	Input Current	$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-0.1		-0.1	$-10^{-5}$		-1.0		$\mu \mathrm{A}$	
		$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	
	Tri-State Leakage Current	$V_{D D}=15 \mathrm{~V}, V_{O}=0 \mathrm{~V}$	-0.1		-0.1	$-10^{-5}$		$-1.0$		$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{OZ}}$		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.

## logic diagram


dc elecirical characteristics - CD4034BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		20			20		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		40			40		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80			80		600	$\mu \mathrm{A}$.	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$		0.05			0.05		0.05	V	
		$V_{D D}=10 \mathrm{~V}$		0.05			0.05		0.05	v	
		$V_{D D}=15 \mathrm{~V}$		0.05			0.05		0.05	$v$	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.95		4.95			4.95		V	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95			9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$			14.95			14.95		$v$	
$V_{1 L}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{0}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1.0 \mathrm{~V}$ or 9.0 V		3.0			3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	v	
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		$v$	
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V}$ or 9.0 V	7.0		7.0			7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$v$	
	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44			0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	1.3		1.1			0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$	3.6		3.0			2.4		mA	
${ }^{\mathrm{IOH}}$	High-Level Output Current	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{0}=4.6 \mathrm{~V}$	-0.52		-0.44			-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-1.3		-1.1			-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{0}=13.5 \mathrm{~V}$	-3.6		-3.0			-2.4		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$	-0.3		-0.3	$-10^{-5}$		-1.0		$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	
	Tri-State Leakage Current	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$	-0.3		-0.3	$-10^{-5}$		-1.0		$\mu \mathrm{A}$	
Ioz		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Time, $A(B)$ Synchronous Parallel Data or Serial Data Input, B(A) Parallel Data Output	$V_{D D}=5 \mathrm{VI}$		280	700	ns
		$V_{D D}=10 \mathrm{~V}$		120	270	ns
		$V_{D D}=15 \mathrm{~V}$		85	190	ns
$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	Propagation Delay Time, $A(B)$ A(B) Asynchronous Parallel Data Input, $B(A)$ Parallel Data Output	$V_{D D}=5 \mathrm{~V}$		280	700	ns
		$V_{D D}=10 \mathrm{~V}$		120	270	ns
		$V_{D D}=15 \mathrm{~V}$		85	190	ns
$t_{\text {PHZ }}{ }^{\text {t }}$ PLZ	Propagation Delay Time from $A / B$ or AE to High Impedance State at A Outputs or from A/B to High Impedance State at B Outputs	$V_{D D}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{~K} \Omega$		95	220	ns
		$V_{D D}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{~K} \Omega$		60	130	ns
		$V_{D D}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{~K} \Omega$		45	100	ns
$t_{\text {PZH, }}, \mathrm{t}_{\text {PZL }}$	Propagation Delay Time from A/B or $A E$ to Logical " 1 " or Logical " 0 " State at A Outputs or from $A / B$ to Logical " 1 " or Logical " 0 " State at B Outputs	$V_{D D}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{~K} \Omega$		180	480	ns
		$V_{D D}=10 \mathrm{~V}, R_{\mathrm{L}}=1.0 \mathrm{~K} \Omega$		75	190	ns
		$V_{D D}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{~K} \Omega$		55	140	ns
${ }^{\text {THL }}$, ${ }^{\text {t }}$ tLH	Output Transition Time	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
$\mathrm{f}_{\mathrm{CL}}$	Maximum Clock Input Frequency	$V_{D D}=5 \mathrm{~V}$	2	4.		MHz
		$V_{D D}=10 \mathrm{~V}$	5	10		MHz
		$V_{D D}=15 \mathrm{~V}$	7	14		MHz
${ }^{\text {twL }}$, $\mathrm{t}_{\text {WH }}$	Minimum Clock Pulse Width	$V_{D D}=5 \mathrm{~V}$		125	250	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		35	70	ns

ac electrical characteristics (cont'd.)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\mathrm{RCL}}, \mathrm{t}_{\mathrm{FCL}}$	Maximum Clock Rise \& Fall Time	$V_{D D}=5 \mathrm{~V}$	15			$\mu \mathrm{s}$
		$V_{D D}=10 \mathrm{~V}$	15			$\mu \mathrm{s}$
		$V_{D D}=15 \mathrm{~V}$	15			$\mu s$
${ }^{\text {t }}$ SU	Parallel (A or B) and Serial Data Setup Time	$V_{D D}=5 \mathrm{~V}$		25	70	ns
		$V_{D D}=10 \mathrm{~V}$		10	30	ns
		$V_{D D}=15 \mathrm{~V}$		7	20	ns
$\mathrm{t}_{\text {SU }}$	Control Inputs $A E, A / B, P / S, A / S$ Setup Time	$V_{D D}=5 \mathrm{~V}$	$\cdots$	110	280	ns
		$V_{D D}=10 \mathrm{~V}$		35	100	ns
		$V_{D D}=15 \mathrm{~V}$		20	60	ns
${ }^{\text {tWH }}$	Minimum High Level AE, A/B; P/S, A/S Pulse Width	$V_{D D}=5 \mathrm{~V}$		160	400	ns
		$V_{D D}=10 \mathrm{~V}$		70	160	ns
		$V_{D D}=15 \mathrm{~V}$		40	90	ns
$C_{1 N}$	Average Input Capacitance	A and B Data I/O and A/B Control Input		7	15	pF
		Any Other Input		5	7.5	pF
$\mathrm{CPD}^{\text {P }}$	Power Dissipation Capacitance	(Note 3)		155		pF

Note 3: CPD determines the no-load power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
schematics diagram


## switching time waveforms and test circuits



Synchronous Operation'


Asynchronous Operation



Frequency and Phase Comparator

## applications（cont＇d．）


＊WHEN $f_{1}=f_{2}, t_{w}$ IS PROPORTIONAL TO THE PHASE OF $f_{1}$ WITH RESPECT TO $f_{2}$


A＂High＂（＂Low＂）on the Shift Left／Shift Right input allows serial data on the Shift Left Input（Shift Right Input）to enter the register on the positive transition of the clock signal．A＂high＂on the＂A＂Enable Input disables the＂$A$＂parallel data lines on Registers 1 and 2 and enables the＂$A$＂data lines on Registers 3 and 4
and allows parallel data into Registers 1 and 2．Other logic schemes may be used in place of registers 3 and 4 for parallel loading．

When parallet inputs are not used Registers 3 and 4 and associated logic are not required．

## truth tables

"A" ENABLE	P/S	A/B	A/S	MODE	
0	0	0	$X$	Serial	Synchronous Serial data input, A- and B-Parallel data outputs disabled.
0	0	1	$X$	Serial	Synchronous Serial data input, B-Parallel data output.
0	1	0	0	Parallel	B Synchronous Parallel data inputs, A-Parallel data outputs disabled.
0	1	0	1	Parallel	B Asynchronous Parallel data inputs, A-Parallel data outputs disabled.
0	1	1	0	Parallel	A-Parallel data inputs disabled, B-Parallel data outputs, synchronous data recirculation.
0	1	1	1	Parallel	A-Parallel data inputs disabled, B-Parallel data outputs, asynchronous data recirculation.
1	0	0	$X$	Serial	Synchronous Serial data input, A-Parallel data output.
1	0	1	$X$	Serial	Synchronous Serial data input, B-Parallel data output.
1	1	0	0	Parallel	B Synchronous Parallel data input, A-Parallel data output.
1	1	0	1	Parallel	B Asynchronous Parallel data input, A-Parallel data output.
1	1	1	0	Parallel	A Synchronous Parallel data input, B-Parallel data output.
1	1	1	1	Parallel	A Asynchronous Parallel data input, B-Parallel data output.

$x=$ Don't Care

* For synchronous operation (serial mode or when $A / S=0$ in parallel mode), outputs change state at positive transition of the clock.

CD4035BM／CD4035BC 4－bit parallel－in／parallel－out shift register general description
The CD4035B 4－bit parallel－in／parallel－out shift register is a monolithic complementary MOS（CMOS）integrated circuit constructed with P and N －channel enhancement mode transistors．This shift register is a 4 －stage clocked serial register having provisions for synchronous parallel inputs to each stage and serial inputs to the first stage via $\mathrm{J} \overline{\mathrm{K}}$ logic．Register stages 2,3 ，and 4 are coupled in a． serial＂$D$＂flip．flop configuration when the register is in the serial mode（parallel／serial control low）．

Parallel entry via the＂$D$＂line of each register stage is permitted only when the parallel／serial control is＂high．＂

In the parallel or serial mode information is transferred on positive clock transitions．

When the true／complement control is＂high，＂the true contents of the register are available at the output ter－ minals．When the true／complement control is＂low＂， the outputs are the complements of the data in the regis－ ter．The true／complement control functions asynchro－ nously with respect to the clock signal．
$J \bar{K}$ input logic is provided on the first stage serial input to minimize logic requirements particularly in counting and sequence－generation applications．With $J \bar{K}$ inputs connected together，the first stage becomes a ＂D＂flip－flop．An asynchronous common reset is also provided．

## features

－Wide supply voltage range
3 V to 15 V
－High noise immunity
$0.45 V_{D D}$ typ
－Low power TTL compatibility fan out of 2 driving 74L or 1 driving 74LS
－4－stage clocked shift operation
－Synchronous parallel entry on all 4 stages
－ $\mathrm{J} \overline{\mathrm{K}}$ inputs on first stage
－Asynchronous true／complement control on all outputs
－Reset control
－Static flip－flop operation；master／slave configura－ tion
－Buffered outputs
－Low－power dissipation $5 \mu \mathrm{~W}$ typ（ceramic）
－High speed
to 5 MHz

## applications

－Automotive
－Data terminals
－Instrumentation
－Medical electronics
－Alarm systems
－Industrial controls
－Remote metering
－Computers

## logic diagram



$$
\begin{aligned}
& \mathrm{P} / \mathrm{S}=0=\text { serial mode } \\
& \mathrm{T} / \mathrm{C}=1=\text { true outputs } \\
& \text { *TG }=\text { transmission gate }
\end{aligned}
$$

Input to output is：
a）A bidirectional low impedance when control input 1 is low and control input 2 is high．
b）An open circuit when control input $\mathbf{1}$ is high and control input $\mathbf{2}$ is low．
absolute maximum ratings (Note 1 and 2)
operating conditions (Note 2)

VDD dc Supply Voltage	-0.5 to +18 V
$V_{\text {IN }}$ Input Voltage	-0.5 to $V_{D D}+0.5 \mathrm{~V}$
$T_{S}$ Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$P_{D}$ Package Dissipation	500 mW
$T_{L}$ Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

$V_{\text {DD }}$ dc Supply Voltage $V_{\text {IN }}$ Input Voltage
$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range CD40358M CD4035BC

3 to 15V 0 to $V_{D D V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics CD4035BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$5$		0.3	5		150	$\mu \mathrm{A}$
		$10$				0.5	10	$\cdot$	300	$\mu \mathrm{A}$	
		$20$				1.0	20		600	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$\begin{aligned} & \\| \mathrm{O} \mid<1.0 \mu \mathrm{~A} \\ & \mathrm{~V}_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{D D}=10 \mathrm{~V} \\ & \mathrm{~V}_{D D}=15 \mathrm{~V} \end{aligned}$									
			0.05			0	0.05		0.05	$v$	
			0.05			0	0.05		0.05	V	
			0.05			0	0.05		0.05	$v$	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\|\mathrm{OO}\|<1.0 \mu \mathrm{~A}$			-						
		$\begin{aligned} & V_{D D}=5 V \\ & V_{D D}=10 V \end{aligned}$	4.95		4.95	5		4.95		$v$	
			9.95		9.95	10		9.95		$V$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage	$\\| \mathrm{O} \mid<1.0 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$ or 9.0 V	.	3.0			3.0		3.0	V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	v	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\left\|\mathrm{IO}_{\mathrm{O}}\right\|<1.0 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		$v$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$ or 9.0 V	7.0		7.0	:		7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0		.	11.0		$V$	
1OL.	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	$0.64$		0.51	0.88		0.36		$m A$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		$m A$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		$m A$	
1 OH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.25		-0.2	0.36		-0.14	-	mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-0.62		-0.5	0.9		-0.35		$m A$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$			-1.5	-3.5		-1.1		$m A$	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, \quad V_{I N}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \quad V_{I N}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4035BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		20		0.5	20		150	$\mu \mathrm{A}$
				40		1.0	40		300	$\mu \mathrm{A}$	
				80		5.0	80		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\\| \mathrm{l}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\|\mathrm{OO}\|<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$v$	
$V_{\text {IL }}$	Low Level Input Voltage	$\mathrm{lol}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, \quad V_{0}=1.0 \mathrm{~V}$ or 9.0 V		3.0			3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, \quad V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	$v$	
$V_{1 H}$	High Level Input Voltage	$\mathrm{VOO}<1 \mu \mathrm{~A}$.									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		$v$	
		$V_{D D}=10 \mathrm{~V}, V_{0}=1.0 \mathrm{~V}$ or 9.0 V	7.0		7.0			7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, V_{0}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$v$	

dc electrical characteristics (Continued) CD4035BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IOL	Low Level Output Current		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA
		$V_{D D}=10 \mathrm{~V}, V_{0}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \quad V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
IOH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.2		-0.16	-0.36		-0.12		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-0.5		-0.4	-0.9		-0.3		mA	
		$V_{D D}=15 \mathrm{~V}, \quad V_{O}=13.5 \mathrm{~V}$	-1.4		-1.2	-3.5		-1.0		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \quad V_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.

## ac electrical characteristics

$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}, \mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

truth table

$C_{L}$	$t_{n}-1$ (INPUTS)				$t_{n}$ (OUTPUTS)
	$J$	$\stackrel{\rightharpoonup}{\mathrm{K}}$	R	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{a}_{\mathrm{n}}$
5	0	X	0	0	0
$5$	1	X	0	0	1
$\sqrt{ }$	X	0	0	1	0
$\Gamma$	1	0	0	$Q_{n-1}$	$\overline{\mathrm{Q}_{\mathrm{n}-1}}$ TOGGLE MODE
$\Gamma$	X	1	0	1	1
$\checkmark$	$x$	$x$	0	$\mathrm{Q}_{\mathrm{n} \cdot 1}$	$\mathrm{Q}_{\mathrm{n}-1}$
x	X	X	1	x	0

connection diagram
Dual-In-Line and Flat Package

switching time waveforms


T/C Input Low
Reset Input Low

## CD4041M/CD4041C quad true/complement buffer

## general description

The CD4041M/CD4041C is a quad true/complement buffer consisting of N - and P -channel enhancement mode transistors having low-channel resistance and high current (sourcing and sinking) capability. The CD4041 is intended for use as a buffer, line driver, or CMOS-toTTL driver.

All inputs are protected from static discharge by diode clamps to $V_{D D}$ and $V_{S S}$.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity $40 \% V_{D D} \operatorname{typ}$
- True output

High current source and sink capability $8 \mathrm{~mA}($ typ $) @ V_{O}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$ 3.2 mA (typ) @ $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (two TTL loads)

- Complement output

Medium current source and sink capability $3.6 \mathrm{~mA}(\mathrm{typ}) @ \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$ $1.6 \mathrm{~mA}(\mathrm{typ}) @ V_{O}=0.4 \mathrm{~V}, V_{D D}=5 \mathrm{~V}$

## connection diagram



## schematic diagram



1 of 4 Identical Units
absolute maximum ratings
(Notes 1 and 2)
$V_{D D}$ Suppiy Voltage
$V_{\text {IN }}$ Input Voltage
TS Storage Temperature Range
$P_{D}$ Package Dissipation
$T_{L}$ Lead Temperature (Soldering, 10 seconds)

## (Note 2)

$V_{D D}$ Supply Voltage	3 V to 15 V
$V_{1 N}$ Input Voltage	0 V to VDD
$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4041M	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4041M (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		1		0.01	1		30	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		2		0.01	2		60	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		4		0.01	4		120	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\\|_{\text {OI }}<1 \mu \mathrm{~A}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=\mathrm{V}_{\text {DD }}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\\|_{\text {O }} \mathrm{l}<1 \mu A_{i}, V_{I L}=0 V, V_{I H}=V_{D D}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		v	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		v	
$V_{\text {IL }}$	Low Level Input Voltage	$\\| \mathrm{l}$									
		$\mathrm{V}_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V		1.0		2	1.0		1.0	v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V		2.0		4	2.0		2.0	v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		3.0		6	3.0		3.0	v	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mid \mathrm{IOL}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	4.0		4.0	3		4.0		$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V	8.0		8.0	6	,	8.0		v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V	12.0		12.0	9		12.0		v	
IOL	Low Level Output Current True Output	$V_{\text {IL }}=0 \mathrm{~V}$									
		$V_{D D}=5 \mathrm{~V}, ~ V_{O}=0.4 \mathrm{~V}$	2.1		1.6			1.2		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	6.25		5.0	10		3.5		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	14		12	24		8		mA	
1 OL	Low Level Output Current Complement Output	$V_{I H}=V_{D D}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	1.0	-	0.8	1.6		0.55		mA	
		$v_{D D}=10 \mathrm{~V}, v_{O}=0.5 \mathrm{~V}$	2.5		2	4.0		1.4		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	5.5		4.5	9.0		3.0		mA	
$\xrightarrow{1} \mathrm{OH}$	High Level Output Current True Output	$V_{\text {IH }}=V_{\text {DD }}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-1.75		-1.4	-2.8		-1.0		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-5.0		-4.0	-8.0		-2.8		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-11.		-9.	-18		-6		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current Complement Output	$V_{\text {IL }}=0 \mathrm{~V}$									
		$V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V}$	-0.75		-0.6	-1.2		-0.4		mA.	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V}$	-2.25		-1.8	-3,6		-1.25		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.8		-4	-8		-2.7		mA	
IN	Input Current	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{1} \mathrm{~N}=15 \mathrm{~V}$		0.1		. $10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.

## dc electrical characteristics CD4041C (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS		
		MIN	MAX	MIN	TYP	MAX	MIN	MAX				
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \\|_{O}<1 \mu \mathrm{~A}, V_{I L}=0 \mathrm{~V}, V_{I H}=V_{D D} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		4		0.01	4		30	$\mu \mathrm{A}$	
				8		0.01	8		60	$\mu \mathrm{A}$		
				16		0.01	16		120	$\mu \mathrm{A}$		
VOL	Low Level Output Voltage											
				0.05		0	0.05		0.05	$v$		
				0.05		0	0.05		0.05	V		
				0.05		0	0.05		0.05	$v$		
$\mathrm{VOH}_{\mathrm{OH}}$	High Level Output Voltage	$\left\|I_{O}\right\|<1 \mu A, V_{I L}=0 V, V_{I H}=V_{D D}$										
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$		
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		V		
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V		
$V_{\text {IL }}$	Low Level Input Voltage	$\|\mathrm{IO}\|<1 \mu \mathrm{~A}$										
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.0		2	1.0		1.0	$V$		
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V .		2.0		4	2.0		2.0	V		
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		3.0		6	3.0		3.0	V		
$V_{1 H}$	High Level Input Voltage	$\\| \mathrm{l} \mid<1 \mu \mathrm{~A}$										
		$V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V	4.0		4.0	3		4.0		$v$		
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V	8.0		8.0	6		8.0		V		
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	12.0		12.0	9		12.0		V		
${ }^{1} \mathrm{OL}$	Low Level Output Current True Output	$V_{I L}=0 \mathrm{~V}$										
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	1.7		1.5	3.2		1.2		mA		
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	4.9		4.3	10		3.5		$m A$		
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	11		10	24		8		mA		
1 OL	Low Level Output Current Complement Output	$V_{I H}=V_{D D}$.										
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.75		0.68	1.6		0.55		$m A$		
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	2.0		1.8	4.0		1.4		mA		
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.4		3.8	9.0		3.0		mA		
IOH	High Level Output Current True Output	$V_{\text {IH }}=V_{\text {DD }}$										
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-1.5		-1.3	$-2.8$		-1.0		mA		
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-4.0		-3.5	-8.0		-2.8		mA		
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-8.7		$-7.5$	-18		-6		mA		
${ }^{1} \mathrm{OH}$	High Level Output Current Complement Output	$V_{\text {IL }}=0 \mathrm{~V}$										
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.57		-0.50	$-1.2$		-0.4		mA		
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.8		-1.6	-3.6		-1.25		mA		
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	$-3.9$		-3.4	-8.0		-2.7		$m A$		
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		$-1.0$	$\mu \mathrm{A}$		
		$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$		

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified.

PARAMETER		CONDITIONS	MBN	TYP	MAX	UNITS
tPHL or tPLH	Propagation Delay Time True Output	$V_{D D}=5 \mathrm{~V}$		60	120	ns
		$V_{D D}=10 \mathrm{~V}$		35	70	ns
		$V_{D D}=15 \mathrm{~V}$		25	50	ns
tPHL or tPLH	Propagation Delay Time Compiement Output	$V_{D D}=5 \mathrm{~V}$		75	150	ns
		$V_{D D}=10 \mathrm{~V}$		40	80	ns
		$V_{\text {DD }}=15 \mathrm{~V}$	.	30	65	ns
${ }^{\text {t }}$ HL or tTLH	Output Transition Time True Output	$V_{D D}=5 \mathrm{~V}$		55	110	ns
		$V_{D D}=10 \mathrm{~V}$		30	60	ns
		$V_{D D}=15 \mathrm{~V}$		25	50	ns
tTHL or tTLH	Output Transition Time Complement Cutput	$V_{D D}=5 V^{\circ}$		90	180	ns
		$V_{D D}=10 \mathrm{~V}$		45	90	ns
		$V_{D D}=15 \mathrm{~V}$		35	75	ns
$\mathrm{CIN}^{\text {N }}$	Input Capacitance	Any Input		10	15	pF

CD4041M/CD4041C
switching time waveforms


## CD4042BM／CD4042BC quad clocked＂D＂latch

## general description

The CD4042BM／CD4042BC quad clocked＂$D$＂latch is a monolithic complementary MOS（CMOS）integrated circuit constructed with P and N －channel enhancement mode transistors．The outputs Q and $\overline{\mathrm{Q}}$ either latch or follow the data input depending on the clock level which is programmed by the polarity input．For polarity $=0$ ；the information present at the data input is trans－ ferred to Q and $\overline{\mathrm{O}}$ during 0 clock level；and for polarity $=1$ ，the transfer occurs during the 1 clock level．When a clock transition occurs（positive for polarity $=0$ and negative for polarity $=1$ ）the information present at the input during the clock transition is retained at the outputs until an opposite clock transition occurs．

## features

－Wide supply voltage range
3 V to 15 V
－High noise immunity 0.45 VDD typ fan out of 2 driving 74L or 1 driving 74LS
－Clock polarity control
－Fully buffered data inputs
－ Q and $\overline{\mathrm{Q}}$ outputs

## connection diagram

Dual－In－Line and Flat Package


## truth table

CLOCK	POLARITY	0
0	0	$D$
$\Gamma$	0	Latch
1	1	$D$
$-L$	1	Latch

## logic diagrams




absolute maximum ratings
(Notes 1 and 2)

$V_{D D}$ Supply Voltage	-0.5 V to +18 V
$V_{\text {IN }}$ Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
$\mathrm{~T}_{S}$ Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
PD $_{\text {P Package Dissipation }}$	500 mW
$T_{L}$ Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

-0.5 V to +18 V
$V_{\text {IN }}$ Input Voltage
TS Storage Temperature Range
$T_{L}$ Lead Temperature (Soldering, 10 seconds)
$V$ to $V_{D D}+0.5 V$ 500 mW $300^{\circ} \mathrm{C}$
recommended operating conditions
(Note 2)

$V_{D D}$ Supply Voltage	$3 V$ to 15 V
$V_{\text {IN }}$ Input Voltage	0 V to $V_{D D}$
$\mathrm{~T}_{A}$ Operating Temperature Range	$-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4048M	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4042BM (Note 2)

	PARAMETERS	CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS
			MiN	MAX	MIN	TYP	MAX	MIN	MAX	
IDD	Quiescent Device Current	$V_{D D}=5 \mathrm{~V}$		1		0.02	1		30	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		2		0.02	2		60	$\mu \mathrm{A}$
		$V_{D D}=15 \mathrm{~V}$		4		0.02	4		120	$\mu \mathrm{A}$
$\mathrm{VOL}_{\text {O }}$	Low Level Output Voltage	$\|1 \mathrm{O}\|<1 \mu \mathrm{~A}, \mathrm{~V}_{1 H}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$								
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$v^{*}$
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$v$
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v
V OH	High Level Output Voltage	$\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}, \mathrm{~V}_{\text {IH }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$								
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		v
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		v
VIL	Low Level Input Voltage	ilol $<1 \mu \mathrm{~A}$								
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	$v$
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	$v$
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	v
$V_{\text {IH }}$	High Level Input Voltage	$\mathrm{ilOI}<1 \mu \mathrm{~A}$								
		$\mathrm{V}_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	2.75		3.5		v
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		$v$
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		v
1 OL	Low Level Output Current	$V_{I H}=V_{D D}, V_{I L}=0 \mathrm{~V}$								
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA
IOH	High Level Output Current.	$V_{I H}=V_{D D}, V_{I L}=0 \mathrm{~V}$								
		$V_{D D}=5 \mathrm{~V}, V_{0}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		mA
In	Input Current	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$

dc electrical characteristics CD4042BC (Note 2)

.	PARAMETER	CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS
			MIN	MAX	MIN	TYP	MAX	MIN	MAX	
IDD	Quiescent Device Current	$V_{D D}=5 \mathrm{~V}$		4		0.02	4		30	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		8		0.02	8		60	$\mu \mathrm{A}$
		$V_{D D}=15 \mathrm{~V}$		16		0.02	16		120	$\mu \mathrm{A}$
VOL	Low Level Output Voltage	$\mathrm{HOL}<1 \mu \mathrm{~A}, \mathrm{~V}_{\text {IH }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$								
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	v
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	v
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\mathrm{IIO}_{\mathrm{O}}<1 \mu \mathrm{~A}, \mathrm{~V}_{1 H}=\mathrm{V}_{\mathrm{DD}}, V_{1 L}=0 \mathrm{~V}$								
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		v
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		v
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		v
$V_{\text {IL }}$	Low Level Input Voitage	$\mathrm{VOL}<1 \mu \mathrm{~A}$								
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	v
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	v .
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	v

dc electrical characteristics (Continued) CD4042BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
VIH	High Level Input Voltage		$1101<1 \mu \mathrm{~A}$								
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	2.75		3.5		$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0	,	V	
IOL	Low Level Output Current	$V_{1 H}=V_{D D}, V_{1 L}=0 V$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		$m A$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
IOH	High Level Output Current	$V_{I H}=V_{D D}, V_{I L}=0 \mathrm{~V}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		$-3.0$	-8.8		-2.4		$m A$	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3	?	-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3	;	1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPHL, tPLH	Propagation Delay Time Data In to Q	$V_{D D}=5 \mathrm{~V}$		175	350	ns
		$V_{D D}=10 \mathrm{~V}$		75	150	ns
		$V_{D D}=15 \mathrm{~V}$		60	120	ns
tPHL, tPLH	Propagation Delay Time Data $\operatorname{In}$ to $\bar{\chi}$	$V_{D D}=5 \mathrm{~V}$		150	300	ns
		$V_{D D}=10 \mathrm{~V}$		75	150	ns
		$V_{D D}=15 \mathrm{~V}$		50	100	ns
tPHL, tPLH	Propagation Delay Time Clock to Q	$V_{D D}=5 \mathrm{~V}$	-	250	500	ns
		$V_{D D}=10 \mathrm{~V}$		100	200	ns
		$V_{D D}=15 \mathrm{~V}$		80	160	ns
tPHL, TPLH	Propagation Delay Time Clock to $\overline{\mathrm{Q}}$	$V_{D D}=5 \mathrm{~V}$		250	500	ns
		$V_{D D}=10 \mathrm{~V}$		115	230	ns
		$V_{\text {DD }}=15 \mathrm{~V}$		90	180	ns
${ }^{\text {H }} \mathrm{H}$	Minimum Hold Time	$V_{D D}=5 \mathrm{~V}$		60	120	ns
		$V_{D D}=10 \mathrm{~V}$		30	60	ns
		$. V_{D D}=15 V$		25	50	ns
${ }^{\text {t }}$ SU	Minimum Set-Up Time	$V_{D D}=5 \mathrm{~V}$		0	50	ns
		$V_{D D}=10 \mathrm{~V}$		0	30	ns
		$V_{D D}=15 \mathrm{~V}$		0	25	ns
tw	Minimum Clock Pulse Width	$V_{D D}=5 \mathrm{~V}$		100 ,	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$	,	30	60	ns
tTHL, tTLH	Transition Time	$V_{D D}=5 \mathrm{~V}$		125	250	ns
		$V_{\text {DD }}=10 \mathrm{~V}$		60	125	ns
		$V_{D D}=15 \mathrm{~V}$		50	100	ns
CIN	Input Capacitance	Any Input		5.0	7.5	pF

Note 1: "Absolute Maximum Ratings", are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $V_{S S}=0 V$ unless otherwise specified.
Note 3: Being a latch, the CD4042BM/CD4042BC is not clock rise and fall time sensitive.
switching time waveforms


## CD4043M/CD4043C quad TRI-STATE ${ }^{\oplus}$ NOR R/S latches CD4044M/CD4044C quad TRI-STATE ${ }^{\oplus}$ NAND R/S latches general description

CD4043M/CD4043C is quad cross-couple TRI-STATE CMOS NOR latches, and CD4044M/CD4044C is quad cross-couple TRI-STATE CMOS NAND latches. Each latch has a separate Q output and individual SET and RESET inputs. It has a common TRI-STATE ENABLE input for all four latches. A logic " 1 " on the ENABLE input connects the latch states to the $Q$ outputs. A logic " 0 " on the ENABLE input disconnects the latch states from the Q outputs resulting in an open circuit condition on the Q outputs. The TRI-STATE feature allows common bussing of the outputs.
features
$\begin{array}{lcl}\text { - Wide supply voltage range } & 3 \mathrm{~V} \text { to } 15 \mathrm{~V} & \text { - Four bits of independent storage with output enable } \\ \text { - Low power } & 100 \mathrm{nW} \text { typ. } & \text { - General digital logic }\end{array}$
a High noise immunity $0.45 \mathrm{~V}_{\mathrm{DD}}$ typ.

- Separate SET and RESET inputs for each latch
- NOR and NAND configuration
- TRI-STATE output with common output enable


## applications

- Multiple bus storage
- Strobed register


## schematic and connection diagrams

CD4043M/CD4043C



CD4043M/CD4043C Dual-ln-Line and Flat Packages


CD4044M/CD4044C



CD4044M/CD4044C
Dual-In-Line and Flat Packages


## truth tables

CD4043M/CD4043C

$S$	$R$	$E$	$O$
$X$	$X$	0	$O C$
0	0	1	$N C$
1	0	1	1
0	1	1	0
1	1	1	$\Delta$

CD4044M/CD4044C

$S$	$R$	$E$	$Q$
$X$	$X$	0	$O C$
1	1	1	$N C$
0	1	1	1
1	0	1	0
0	0	1	$\triangle \triangle$

[^11]
## absolute maximum ratings

Voltage at any Pin
Operating Temperature Range
CD4043M/CD4044M CD4043C/CD4044C
Storage Temperature Range Package Dissipation
Operating VDD Range
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
V_{\text {SS }}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\text {DD }}+0.3 \mathrm{~V} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
500 \mathrm{~mW} \\
\mathrm{~V}_{\text {SS }}+3.0 \mathrm{~V} \text { to } \mathrm{V}_{\text {SS }}+15 \mathrm{~V} \\
300^{\circ} \mathrm{C}
\end{array}
$$

## dc electrical characteristics CD4043M/CD4044M

PARAMETER		CONDITIONS	$-55^{6} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
$I_{L}$	Quiescent Device		$V_{O D}=5 \mathrm{~V}$			1		0.005	1			60	$\mu \mathrm{A}$
	Current	$V_{D D}=10 \mathrm{~V}$			2		0.005	2			120	$\mu \mathrm{A}$	
$P_{\text {D }}$	Quiescent Device	$V_{D D}=5 \mathrm{~V}$			5		0.025	5			300	$\mu \mathrm{W}$	
	Dissipation/Package	$V_{D D}=10 \mathrm{~V}$			20		0.05	20			1200	$\mu W$	
$V_{\text {OL }}$	Output Voltage	$V_{D D}=5 \mathrm{~V}$			0.01		0	0.01			0.05	V	
	Low Level	$V_{D D}=10 \mathrm{~V}$			0.01		0	0.01			0.05	V	
$\mathrm{V}_{\mathrm{OH}}$	Output Voltage	$V_{D O}=5 \mathrm{~V}$	4.99			4.99	5		4.95			V	
	High Level	$V_{D D}=10 \mathrm{~V}$	9.99			9.99	10		9.95			V	
$V_{N L}$	Noise Immunity	$V_{D D}=5 \mathrm{~V}, \quad V_{0}=0.95 \mathrm{~V}$	1.5			1.5	2.25		1.4			V	
	All Inputs	$V_{D D}=10 \mathrm{~V}, V_{O}=2.9 \mathrm{~V}$	3			3	4.5		2.9			V	
$V_{\text {NH }}$	Noise Immunity	$V_{D D}=5 \mathrm{~V}, \quad \mathrm{~V}_{0}=3.6 \mathrm{~V}$	1.4			1.5	2.25		1.5			V	
	All Inputs	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=7.2 \mathrm{~V}$	2.9			3	4.5		3			V	
$I_{0} N$	Output Drive Current	$V_{D O}=5 \mathrm{~V}, \quad V_{0}=0.5 \mathrm{~V}$	0.25			0.2	0.5		0.14			mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	0.61			0.5	1		0.35			mA	
$I_{0} P$	Output Drive Current	$V_{D O}=5 \mathrm{~V}, \quad V_{O}=4.5 \mathrm{~V}$	-0.22			-0.175	-0.5		-0.12			mA	
		$V_{O D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$				-0.4	-1		-0.28			mA	
$I_{1}$	Input Current	Any Input					10					pA	

dc electrical characteristics cD4043C/CD4044C

	PARAMETER	1 CONDITIONS	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
$I_{L}$	Quiescent Device	$V_{D D}=5 \mathrm{~V}$			10		0.01	10			140	$\mu \mathrm{A}$
	Current	$V_{D D}=10 \mathrm{~V}$			20		0.02	20			280	$\mu \mathrm{A}$
$P_{D}$	Quiescent Device	$V_{D D}=5 \mathrm{~V}$			50		0.05	50			700	$\mu \mathrm{W}$
	Dissipation/Package	$V_{D O}=10 \mathrm{~V}$			200		0.2	200		-	2800	$\mu \mathrm{W}$
$V_{\text {OL }}$	Output Voltage	$V_{D D}=5 \mathrm{~V}$			0.01		0	0.01			0.05	V
	Low Level	$V_{D D}=10 \mathrm{~V}$			0.01		0	0.01			0.05	V
$\mathrm{V}_{\mathrm{OH}}$	Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.99			4.99	5		4.95			V
	High Level	$V_{D D}=10 \mathrm{~V}$	9.99			9.99	10		9.95			V
$V_{N L}$	Noise Immunity	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.95 \mathrm{~V}$	1.5			1.5 ,	2.25		1.4			V
	All Inputs	$V_{D D}=10 \mathrm{~V}, V_{O}=2.9 \mathrm{~V}$	3			3	4.5		2.9			V
$\mathrm{V}_{\text {NH }}$	Noise Immunity	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=3.6 \mathrm{~V}$	1.4			1.5	2.25		1.5			$V$
	All inputs	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=7.2 \mathrm{~V}$	2.9			3	4.5		3			V
$I_{0} \mathrm{~N}$	Output Drive Current	$V_{\text {DO }}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$	0.12			0.1	0.5		0.9			mA
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	0.3			0.25	1		0.22			mA
$I_{D} P$	Output Drive Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.5 \mathrm{~V}$	-0.11			-0.09	-0.5		-0.08			mA
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$.	-0.24			-0.2	-1		-0.18			mA
11	Input Current	Any Input					10					pA

## ac electrical characteristics CD4043M/CD4044M

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and input rise and fall times $=20 \mathrm{~ns}$.
Typical Temperature Coefficient for all values of $V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}$

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$t_{\text {PLH }}=t_{\text {PHL }}$	Propagation Delay Time	$V_{D D}=5 \mathrm{~V}$		175	350	ns
		$V_{D D}=10 \mathrm{~V}$		75	175	ns
$t_{\text {TLH }}=t_{\text {THL }}$	Transition Time	$V_{\text {OD }}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
$t_{\text {WH(S) }}, t_{\text {WH(R) }}$	Minimum Set and Reset Pulse Width	$V_{D D}=5 \mathrm{~V}$		80	200	ns
		$V_{D D}=10 \mathrm{~V}$		40	100	ns .
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$	Delay Time From Enable to High Impedance State	$V_{D D}=5 \mathrm{~V}$		60	150	ns
		$V_{D D}=10 \mathrm{~V}$		45	110	ns
		$\begin{aligned} & R_{L}=10 \mathrm{k} \\ & C_{L}=10 \mathrm{pF} \end{aligned}$				
$t_{H 1}, t_{\text {HO }}$	Delay Time From Enable to Logical State	$V_{D D}=5 \mathrm{~V}$		90	250	ns
		$V_{D D}=10 \mathrm{~V}$		35	125	ns
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$				
		$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$				
$C_{1}$	Input Capacitance	Any Input		5		pF
$\mathrm{C}_{0}$	Output Capacitance	Any Output		5		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capaçitance	(Note 1)		50		pF

## ac electrica! characteristics CD4043C/CD4044C

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and input rise and fall times $=20 \mathrm{~ns}$.
Typical Temperature Coefficient for all values of $V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}$.


Note 1: CPD determine the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C family characteristics application note AN-90.

# typical performance characteristics 



## CD4046BM／CD4046BC micropower phase－locked loop

## general description

The CD4046B micropower phase－locked loop（PLL） consists of a low power，linear，voltage－controlled oscil－ lator（VCO），a source follower，a zener diode，and two phase comparators．The two phase comparators have a common signal input and a common comparator input． The signal input can be directly coupled for a large voltage signal，or capacitively coupled to the self－biasing amplifier at the signal input for a small voltage signal．

Phase comparator I，an exclusive OR gate，provides a digital error signal（phase comp．I Out）and maintains $90^{\circ}$ phase shifts at the VCO center frequency．Between signal input and comparator input（both at $50 \%$ duty cycle），it may lock onto the signal input frequencies that are close to harmonics of the VCO center frequency．

Phase comparator II is an edge－controlled digital memory network．It provides a digital error signal（phase comp．II Out）and lock－in signal（phase pulses）to indicate a locked condition and maintains a $0^{\circ}$ phase shift between signal input and comparator input．

The linear voltage－controlled oscillator（VCO）produces an output signal（VCO Out）whose frequency is deter－ mined by the voltage at the VCOIN input，and the capacitor and resistors connected to pin $\mathrm{C1}_{\mathrm{A}}, \mathrm{C1}_{\mathrm{B}}$ ， R1 and R2．

The source follower output of the VCOIN（demodulator Out）is used with an external resistor of $10 \mathrm{k} \Omega$ or more． The INHIBIT input，when high，disables the VCO and source follower to minimize standby power consump－ tion．The zener diode is provided for power supply regulation if necessary．

## features

－Wide supply voltage range -3 V to 18 V
－Low dynamic power consumption－70 $\mu \mathrm{W}$（typ）at $f_{0}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
－$V C O$ frequency -1.3 MHz （typ）at $V_{D D}=10 \mathrm{~V}$
－Low frequency drift with temperature $-0.06 \% /{ }^{\circ} \mathrm{C}$ at $V_{D D}=10 \mathrm{~V}$
－High VCO linearity－1\％（typ）

## block and connection diagrams


(Notes 1 and 2)
$V_{D D}$ DC Supply Voltage
$V_{\text {IN }}$ Input Voltage
TS Storage Temperature Range
PD Package Dissipation
$T_{L}$ Lead Temperature (Soldering, 10 seconds) $\quad 300^{\circ} \mathrm{C}$
(Note 2)

$V_{D D} D C$ Supply Voltage	3 to $15 V_{D C}$
$V_{\text {IN }}$ Input Voltage	0 to $V_{D D} V_{D C}$
$T_{A}$ Operating Temperature Rarge	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4046BM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4046BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TVP	MAX	MIN	MAX			
IDD	Quiescent Device Current		Inhibit $=V_{D D}$. Signal $1 n=V_{D D}$								
		$V_{D D}=5 \mathrm{~V}$		5		0.005	5		150	$\mu \mathrm{A}$	
		$V_{D D}=10 \mathrm{~V}$		10		0.01	10		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		20		0.015	20		500	$\mu \mathrm{A}$	
$\mathrm{VOL}_{\mathrm{OL}}$	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$V$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
VOH	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		V	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$V$	
$V_{\text {IL }}$	Low Level Input Voltage.	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V} V_{O}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	$V$	
	-	$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.25	4.0		4.0	$\checkmark$	
VIH	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	2.75		3.5	.	V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		$V$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		V	
${ }^{\text {IOL }}$	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		$m A$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
1 OH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		$m A$	
		. $V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	$-1.6$		-1.3	-2.25		-0.9		mA	
	.	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$				-8.8.		-2.4 i		mA	
IIN	Input Current	All Inputs Except Signal Input									
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$.		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	
CIN	Input Capacitance	Any Input, (Note 3)					7.5			pF	
$\mathrm{Pr}_{\mathrm{T}}$.	Total Power Dissipation	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{kHz}, \mathrm{R} 1=1 \mathrm{MS}$,									
		$\mathrm{R} 2=\infty, V C O_{1 N}=V_{D D} / 2$									
		$V_{D D}=5 \mathrm{~V}$				0.07			.	mW	
		$V_{D D}=10 \mathrm{~V}$				0.6				mW	
		$V_{D D}=15 \mathrm{~V}$				2.4				mW	

dc electrical characteristics CD4046BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		Inhibit $=V_{D D}$. Signal $\mathrm{In}=\mathrm{V}_{\text {D }}$								
		$V_{D D}=5 \mathrm{~V}$		20		0.005	20		150	$\mu \mathrm{A}$	
		$V_{D D}=10 \mathrm{~V}$		40		0.01	40		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80		0.015	80		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V D D=15 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
V OH	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$.	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$v$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, ~ V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V} V_{0}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	v	
		$V_{D D}=15 \mathrm{~V}, V_{0}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.25	4.0		4.0	v	
$V_{1 H}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad V_{0}=0.5 \mathrm{~V}$ or 4.5 V	3.5	-	3.5	2.75		3.5		$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		v	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		$v$	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, ~ V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
$\mathrm{IOH}^{2}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		-3.0	-8.8		-2.4		mA	
IIN	Input Current	All Inputs Except Signal Input									
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.3.		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance	Any Input, ( Note 3)					7.5			pF	
	Total Power Dissipation	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{kHz}, \mathrm{R} 1=1 \mathrm{M} \Omega$,									
		$\mathrm{R} 2=\infty, \mathrm{VCO}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} / 2$									
		$V_{D D}=5 \mathrm{~V}$				0.07				mW	
		$V_{D D}=10 \mathrm{~V}$				0.6				mW	
		$V_{D D}=15 \mathrm{~V}$				2.4				mW	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=\mathrm{OV}$ unless otherwise specified.
Note 3: Capacitance is guaranteed by periodic testing.
ac electrical characteristics $\mathrm{CD} 4046 \mathrm{BM} / \mathrm{CD} 4046 \mathrm{BC}\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$



## phase comparator state diagrams

PHASE COMPARATORI		
INPUT STATE   COMPARATOR   IN   SIGNAL   IN		
PHASE COMPIOUT	0	



FIGURE 2

## typical waveforms



FIGURE 3. Typical Waveform Employing Phase Comparator I in Locked Condition


FIGURE 4. Typical Waveform Employing Phase Comparator II in Locked Condition

## typical performance characteristics



Typical VCO Linearity vs R1 and C1


FIGURE 7

Note. To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator $1, P_{D}\left(T_{o t a l}\right)=P_{D}\left(f_{0}\right)+P_{D}\left(f_{M 1 N}\right)+$ $P_{D}\left(R_{S}\right)$; Phase Comparator II, $P_{D}($ Total $)=P_{D}\left(f_{M I N}\right)$.

design information   This information is a guide for approximating the value of external components for the CD4046B in a phase－ locked－loop system．The selected external components must be within the following ranges：$R 1, R 2 \geq 10 \mathrm{k} \Omega$ ， $R_{S} \geq 10 \mathrm{k} \Omega, \mathrm{C} 1 \geq 50 \mathrm{pF}$ ．   In addition to the given design information，refer to Figure 5 for R1，R2 and C1 component selections．				
	USING PHASE COMPARATOR 1.		USING PHASE COMPARATOR II	
CHARACTERISTICS	VCO WITHOUT OFFSET $R 2=\infty$	VCO WITH OFFSET	VCO WITHOUT OFFSET $\mathbf{R 2}=\infty$	VCO WITH OFFSET
VCO Frequency				
For No Signal Input	VCO in PLL system will adjust to center frequency，fo		VCO in PLL system will adjust to lowest operating frequency， $f_{\text {min }}$	
Frequency Lock Range， 2 fL	$\begin{aligned} & 2 f_{L}=\text { full VCO frequency range } \\ & 2 f_{L}=f_{\max }-f_{\min } \end{aligned}$			
Frequency Capture Range，${ }^{2 f} \mathrm{C}$	$2 f_{C} \approx \frac{1}{\pi} \sqrt{\frac{2 \pi f L}{\tau 1}}$		${ }^{f} \mathrm{C}=\mathrm{f} \mathrm{L}$	
Loop Filter Component Selection	For $2{ }^{f} \mathrm{C}$ ，see Ref．			
Phase Angle Between Signal and Comparater	$90^{\circ}$ at center frequency（ $\mathrm{F}_{\mathrm{O}}$ ），approximating $0^{\circ}$ and $180^{\circ}$ at ends of lock range（ 2 f L ）		Always $0^{\circ}$ in lock	
Locks on Harmonics of Center Frequency	Yes		No	
Signal Input Noise Rejection	High		Low	
VCO Component Selection	－Given： 10   －Use $f_{0}$ with Figure 50 to determine R1 and C1	－Given：$f_{0}$ and $f_{L}$   －Calculate $\mathrm{f}_{\mathrm{min}}$ from the equation $f_{\min }=f_{0}-f_{L}$   －Use $f_{\min }$ with Figure $5 b$ to determine R2 and C1   －Calculate $\frac{f_{\text {max }}}{f_{\text {min }}}$   from the equation $\frac{f_{\max }}{f_{\min }}=\frac{f_{O}+f_{L}}{f_{O}-f_{L}}$   －Use $\frac{f_{\text {max }}}{f_{\text {min }}}$ with Figure $5 c$ to determine ratio R2／ R1 to obtain R1	－Given：$f_{\text {max }}$   －Calculate $f_{0}$ from the equation $f_{0}=\frac{f_{\max }}{2}$   －Use fo with Figure 5a to determine R1 and C1	－Given：$f_{\text {min }}$ and $f_{\text {max }}$   －Use $f_{\min }$ with Figure $5 b$ to determine R2 and C1   －Calculate $\frac{f_{\text {max }}}{f_{\min }}$   －Use $\frac{f_{\text {max }}}{f_{\text {min }}}$ with Figure $5 c$   to determine ratio R2／R1   to obtain R1

REF．G．S．Moschytz，＇＂Miniaturized RC Filters Using Phase－Locked Loop＂，BSTJ，May， 1965.
Floyd Gardner，＂Phaselock Techniques，＂John Wiley \＆Sons， 1966.

## CD4047BM/CD4047BC low power monostable/astable multivibrator

## general description

CD4047B is capable of operating in either the monostable or astable mode. It requires an external capacitor (between pins 1 and 3) and an external resistor (between pins 2 and 3) to determine the output pulse width in the monostable mode, and the output frequency in the astable mode.'

Astable operation is enabled by a high level on the astable input or low level on the astable input. The output frequency (at $50 \%$ duty cycle) at Q and $\overline{\mathrm{Q}}$ outputs is determined by the timing components. A frequency twice that of $Q$ is available at the Oscillator Output; a 50\% duty cycle is not guaranteed.

Monostable operation is obtained when the device is triggered by low-to-high transition at + triggger input or high-to-low transition at - trigger input. The device can be retriggered by applying a simultaneous low-tohigh transition to both the + trigger and retrigger inputs.

A high level on Reset input resets the outputs Q to low, $\overline{\mathrm{Q}}$ to high.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity
- Low power TTL compatibility
$0.45 V_{D D}$ typ fan out of 2 driving 74L or driving 74LS


## SPECIAL FEATURES

- Low power consumption: special CMOS oscillator configuration
- Monostable (one-shot) or astable (free-running) operation
- True and complemented buffered outputs
- Only one external R and C required


## MONOSTABLE MULTIVIBRATOR FEATURES

- Positive or negative-edge trigger
- Output pulse width independent of trigger pulse duration
- Retriggerable option for pulse width expansion
- Long pulse widths possible using small RC components by means of external counter provision
- Fast recovery time essentially independent of pulse width
■ Pulse-width accuracy maintained at duty cycles approaching 100\%


## ASTABLE MULTIVIBRATOR FEATURES

- Free-running or gatable operating modes
- $50 \%$ duty cycle
- Oscillator output available
- Good astable frequency stability

- Frequency discriminators
- Timing circuits
- Time-delay applications
- Envelope detection
- Frequency multiplication
- Frequency division


## block and connection diagrams


absolute maximum ratings
recommended operating conditions
(Notes 1 and 2)

dc Supply Voltage	-0.5 to $+18 V_{D C}$
$V_{\text {IN }}$ Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$
TS Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
PD Package Dissipation	00 mW
$T_{L}$ Lead Temperature	ds) $300^{\circ} \mathrm{C}$

(Note 2)

$V_{D D}$ dc Supply Voltage	3 to $15 V_{D C}$
$V_{\text {IN }}$ Input Vottage	0 to $V_{D D} V_{D C}$
$T_{A}$ Operating Temperature Range	
CD4047BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4047BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4047BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		5			5		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$	$\because$	10			10		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		20			20		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\mathrm{IIO}^{\prime}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\mathrm{I}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95	,	v	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	$v$	
$V_{1 H}$	High Levei Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	2.75		3.5		$v$	
		$V_{D D}=10 \mathrm{~V}, V_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		$v$	
${ }^{\text {IOL }}$	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{0}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{0}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4047BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$.		20			20		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		40			40		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80			80		600	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{IIO}^{\mathrm{O}}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	

dc electrical characteristics (Continued) CD4047BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage		$\|10\|<1 \mu \mathrm{~A}$								
		$V_{D D}=5 \mathrm{~V}$	4.95 -		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$v$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, ~ V_{0}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, V_{0}=1 \mathrm{~V}$ or 9 V		3.0	-	4.5	3.0		3.0	v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	v	
$\mathrm{V}_{\text {IH }}$	High Level Input Voitage	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	2.75		3.5		$v$	
		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		$\checkmark$	
${ }^{\prime} \mathrm{OL}$	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, ~ V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{0}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	$-2.25$		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		-3.0	-8.8		-2.4		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		$-1.0$	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=0 V$ unless otherwise specified.
ac electrical characteristics CD4047B
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.



## truth table

FUNCTION	TERMINAL CONNECTIONS			OUTPUT PULSE   FROM	TYPICAL OUTPUT PERIOD OR PULSE WIDTH
	TO VDD	TO Vss	INPUT PULLSE то		
Astable Multivibrator   Free-Running   True Gating   Complement Gating	$\begin{aligned} & 4,5,6,14 \\ & 4,6,14 \\ & 6,14 \end{aligned}$	$\begin{aligned} & 7,8,9,12 \\ & 7,8,9,12 \\ & 5,7,8,9,12 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 10,11,13 \\ & 10,11,13 \\ & 10,11,13 \end{aligned}$	$\begin{aligned} & t_{A}(10,11)=4.40 R C \\ & t_{A}(13)=2.20 R C \end{aligned}$
Monostable Multivibrator   Positive-Edge Trigger   Negative-Edge Trigger   Retriggerable	4, 14   4, 8, 14   4, 14	$\begin{aligned} & 5,6,7,9,12 \\ & 5,7,9,12 \\ & 5,6,7,9 \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \\ & 8,12 \end{aligned}$	$\begin{aligned} & 10,11 \\ & 10,11 \\ & 10,11 \end{aligned}$	$\mathrm{t}_{\mathrm{M}}(10,11)=2.48 \mathrm{RC}$
External Countdown*	14	5, 6, 7, 8, 9, 12	(See'Figure)	(See Figure)	(See Figure)

Note: External resistor between terminals 2 and 3. External capacitor between terminals 1 and 3.
*Typical Implementation of External Countdown Option

INPUT $\qquad$


$$
t_{E X T}=(N-1) t_{A}+\left(t_{M}+t_{A} / 2\right)
$$

typical performance characteristics
Typical Q, $\overline{\mathrm{O}}, \mathbf{O s c}$ Out Period Accuracy vs Supply Voltage (Astable Mode Operation)


	$\mathbf{f o}, \overline{\mathbf{Q}}$	R	$\mathbf{C}$
A	1000 kHz	22 k	10 pF
B	100 kHz	22 k	100 pF
C	10 kHz	220 k	100 pF
D	$\mathbf{1 k H z}$	220 k	1000 pF
E	100 Hz	2.2 M	1000 pF

Typical $\mathrm{Q}, \overline{\mathrm{Q}}$ and Osc Out
Period Accuracy vs Temperature Astable Mode Operation


	fo, $\overline{\mathrm{O}}$	R	C
A	1000 kHz	22 k	10 pF
B	100 kHz	22 k	100 pF
C	10 kHz	220 k	100 pF
D	1 kHz	220 k	1000 pF



Typical Q and $\overline{\mathrm{O}}$ Pulse Width Accuracy vs Temperature Monostable Mode Operation


	$\boldsymbol{t}_{\mathrm{M}}$	$\mathbf{R}$	$\mathbf{C}$
A	$2 \mu \mathrm{~s}$	22 k	10 pF
B	$7 \mu_{\mathrm{s}}$	22 k	100 pF
C	$60 \mu_{\mathrm{s}}$	220 k	100 pF
D	$550 \mu \mathrm{~s}$	220 k	1000 pF

## timing diagrams



CD4048BM/CD4048BC TRI-STATE ${ }^{\text {® }}$ expandable 8 -function 8 -input gate

## general description

The CD4048BM/CD4048BC is a programmable 8 -input gate. Three binary control lines $K_{a}, K_{b}$ and $K_{c}$ determine the 8 different logic functions of the gate. These functions are OR, NOR, AND, NAND, OR/AND, OR/ NAND, AND/OR and AND/NOR. A fourth input, $K_{d}$, is a TRI-STATE control. When $K_{d}$ is high, the output is enabled; when $K_{d}$ is low, the output is a high impedance. This feature enables the user to connect the device to a common bus line. The Expand input permits the user to increase the number of gate inputs. For example, two 8 -input CD4048's can be cascaded into a 16 -input multifunction gate. When the Expand
input is not used, it should be connected to VSS. All inputs are buffered and protected against electro. static effects.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity $0.45 V_{D D}$ typ
- High sink and source current capability
- TTL compatibility-drives 1 standard TTL load at $V_{C C}=5 \mathrm{~V}$, over full temperature range
- Many logic functions in one package


## logic diagram



$$
\begin{aligned}
& V_{D D}=(16) \\
& V_{S S}=(8)
\end{aligned}
$$

## connection diagram

Dual-In-Line and Flat Package


## absolute maximum ratings

## recommended operating conditions

(Notes 1 and 2)

$V_{D D}$ Supply Voltage	-0.5 V to +18 V
$V_{\text {IN }}$ Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
TS Storage Temperature Range $_{P_{D} \text { Package Dissipation }} \quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
TL Lead Temperature, (Soldering, 10 seconds) $\quad 500 \mathrm{~mW}$	
	$300^{\circ} \mathrm{C}$

(Note 2)

$V_{D D}$ Supply Voltage	3 V to 15 V
VIN Input Voltage	0 V to $V_{D D}$
$T_{A}$ Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4048BM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CD4048BC	

dc electrical characteristics CD4048BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		5.0		0.01	5.0		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		10		0.01	10		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		20		0.01	20		600	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\\|_{\text {OL }} \mid<1 \mu A, V_{\text {IH }}=V_{\text {DD }}, V_{\text {IL }}=0 V$									
		$V_{D D}=5 \mathrm{~V}$		0.05	.	0	0.05		0.05	V	
		$V D D=10 \mathrm{~V}$.		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
VOH	High Level Output Voltage	$\left\|I_{O}\right\|<1 \mu A, V_{I H}=V_{D D}, V_{I L}=0 V$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		V	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	$10^{\circ}$		9.95		V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage	$\left\|l_{O}\right\|<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	$V$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	V	
$V_{\text {IH }}$	High Level Input Voltage	$1 \mathrm{OL} \mid<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	2.75		3.5		$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		$\checkmark$	
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		V	
IOL	Low Level Output Current	$V_{\text {IH }}=V_{D D}, V_{\text {IL }}=0 V$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	2.8		2.3	4.0		1.6		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	6.4		5.2	11		3.6		$m A$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	14	.	. 11.5	$23^{\circ}$		8.0		$m A$	
1 OH	High Level Output Current	$V_{I H}=V_{D D}, V_{I L}=0 V$			.					*	
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-2.8		-2.3	-4.0		-1.6	,	mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-6.4	.	-5.2	-11		-3.6		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-14		-11.5	-23		-8.0		mA	
102	TRI-STATE Leakage	$V_{D D}=15 \mathrm{~V}, V_{O}=0 \mathrm{~V}$		-0.2		-0.002	-0.2		-2	$\mu \mathrm{A}$	
	Current	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=15 \mathrm{~V}$		0.2		0.002	0.2		2	$\mu \mathrm{A}$	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4048BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & I_{O I}<1 \mu \mathrm{~A}, V_{I H}=V_{D D}, V_{I L}=0 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		20		0.01	20		150	$\mu \mathrm{A}$
				40		0.01	40		300	$\mu \mathrm{A}$	
				80		0.01	80		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voitage										
				0.05	.	0	0.05		0.05	V	
				0.05		0	0.05		0.05	V	
				0.05		0	0.05		0.05	V	

dc electrical characteristics (Continued) CD4048BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS		
		MIN	MAX	MIN	TYP	MAX	MIN	MAX				
V OH	High Level Output Voltage		$\begin{aligned} & \\| O \mid<1 \mu A, V_{I H}=V_{D D}, V_{I L}=0 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} . \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$		$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	$\begin{aligned} & 5 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$		v v v	
$V_{\text {IL }}$	Low Level Input Voltage	$\begin{aligned} & \\| O l<1 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2.25 \\ & 4.5 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	v v v		
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\begin{aligned} & \\| O \mid<1 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.5 \\ & 8.25 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$		v v v		
10L	Low Level Output Current	$\begin{aligned} & V_{I H}=V_{D D}, V_{I L}=0 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.3 \\ & 5.2 \\ & 11.5 \end{aligned}$		$\begin{array}{\|l\|}  \\ 2.0 \\ 4.5 \\ 9.8 \end{array}$	$\begin{aligned} & 4.0 \\ & 11 \\ & 23 \end{aligned}$			$\begin{aligned} & 1.6 \\ & 3.6 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$		
IOH	High Level Output Current	$\begin{aligned} & V_{I H}=V_{D D}, V_{I L}=0 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l} -2.3 \\ -5.2 \\ -11.5 \end{array}$		-2.0 $\begin{aligned} & \text {-4.5 } \\ & -9.8\end{aligned}$	- -4.0 -11 -23	.		$\begin{aligned} & -1.6 \\ & -3.6 \\ & -8.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$		
ItL	TRI-STATE Leakaga Current	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, V_{O}=0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} -0.6 \\ 0.6 \end{array}$		-0.005	$\begin{array}{r} -0.6 \\ 0.6 \end{array}$		$\begin{array}{r} -2 \\ 2 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$		
In	Input Current	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} -0.3 \\ 0.3 \end{array}$		$-10^{-5}$ $10^{-5}$	$\begin{array}{r} -0.3 \\ 0.3 \\ \hline \end{array}$		$\begin{array}{r} -1.0 \\ 1.0 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.
ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, R_{L}=200 \mathrm{k} \Omega$, and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

CD4048BM/CD4048BC

## truth table

OUTPUT   FUNCTION	BOOLEAN EXPRESSION	CONTROL INPUTS				UNUSED INPUTS
		$\mathrm{K}_{\mathrm{a}}$	$\mathrm{K}_{\mathrm{b}}$	$\mathrm{K}_{\mathrm{c}}$	$K_{\text {d }}$	
NOR	$J=\overline{A+B+C+D+E+F+G+H}$	0	0	0	1	$\mathrm{V}_{\text {SS }}$
OR	$J=A+B+C+D+E+F+G+H$	0	0	1	1	$V_{\text {SS }}$
OR/AND	$J=(A+B+C+D) \cdot(E+F+G+H)$	0	1	0	1	$V_{S S}$
OR/NAND	$J=\overline{(A+B+C+D) \cdot(E+F+G+H)}$	0	1	1	1	$V_{\text {SS }}$
AND	$J=A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H$	1	0	0	1	$V_{\text {DD }}$
NAND	$J=\overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H}$	1	0	1	1	VDD
AND/NOR	$J=\overline{(A \cdot B \cdot C \cdot D)+(E \cdot F \cdot G \cdot H})$	1	1	0	1	VDD
AND/OR	$J=(A \cdot B \cdot C \cdot D)+(E \cdot F \cdot G \cdot H)$	1	1	1	1	$V_{\text {DD }}$
Hi-Z		X .	$\times$	X	0	X

Positive logic: $0=$ low level, $1=$ high level, $X=$ irrelevant, EXPAND input tied to $V_{S S}$.
ac test circuits and switching time waveforms
Logic Propagation Delay Time Tests


TRI-STATE Propagation Delay Time Tests


## typical performance characteristics




## basic logic configurations



AND/NOR


## actual circuit configurations



$=111$

AND/NOR

$=110$

## truth table for EXPAND feature

$\begin{array}{c}\text { COMBINED } \\ \text { OUTPUT }\end{array}$	$\begin{array}{c}\text { FUNCTION } \\ \text { NEEDED AT }\end{array}$	$\begin{array}{c}\text { OUTPUT BOOLEAN } \\ \text { EUNCTION }\end{array}$
EXPAND INPUT		

Note. Positive logic is assumed. (EXP) represents the logic level present at the EXPAND input.

## typical applications of EXPAND feature



Output $=\overline{\mathrm{A} 1+\mathrm{B} 1+\mathrm{C} 1+\mathrm{D} 1+\mathrm{E} 1+\mathrm{F} 1+\mathrm{G} 1+}$
$\mathrm{H} 1+\mathrm{A} 2+\mathrm{B} 2+\mathrm{C} 2+\mathrm{D} 2+\mathrm{E} 2+\mathrm{F} 2+\mathrm{G} 2+\mathrm{H} 2$


Output $=(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}) \cdot(\mathrm{E}+$ $G+H) \cdot(X 1+X 2+X 3+X 4) F+$

## CD4049M/CD4049 C hex inverting buffer CD4050BM/CD4050BC hex non-inverting buffer

## general description

These hex buffers are monolithic complementary MOS (CMOS) integrated circuits constructed with N and P-channel enhancement mode transistors. These devices feature logic-level conversion using only one supply voltage ( $V_{D D}$ ). The input-signal high level ( $\mathrm{V}_{\mathrm{IH}}$ ) can exceed the $V_{D D}$ supply voltage when these devices are used for logic level conversions. These devices are intended for use as hex buffers, CMOS to DTL/TTL converters, or as CMOS current drivers, and at $\mathrm{V}_{D D}=$ 5 V , they can drive directly two DTL/TTL loads over the full operating temperature range.

## features

- Wide supply voltage range
- Direct drive to 2 TTL loads at 5 V over full temperature range
- High source and sink current capability
- Special input protection permits input voltages greater than VDD


## applications

- CMOS hex inverter/buffer
- CMOS to DTL/TTL hex converter
- CMOS current "sink" or "source" driver
- CMOS high-to-low logic level converter
connection diagrams


CD4050BM/CD4050BC Dual-In-Line and Flat Package


## schematic diagrams



## absolute maximum ratings

(Notes 1 and 2)

VDD Supply Voltage	-0.5 V to +18 V
$V_{\text {IN }}$ Input Voltage	-0.5 V to +18 V
V OUT Voltage at Any Output Pin	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
TS Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$P_{\text {D }}$ P Package Dissipation	500 mW
$\mathrm{T}_{\mathrm{L}}$ Lead Temperature (Soldering,	nds) $300^{\circ} \mathrm{C}$

-0.5 V to +18 V
$V_{\text {IN }}$ Input Voltage
-0.5 V to $\mathrm{V}_{D D}+0.5 \mathrm{~V}$
TS Storage Temperature Range
$T_{L}$ Lead Temperature (Soldering, 10 seconids)
${ }^{\circ}$
$300^{\circ} \mathrm{C}$

$V_{\text {DD }}$ Supply Voltage	3 V to 15 V
$V_{\text {IN }}$ Input Voltage	0 V to 15 V
V OUT Voltage at Any Output Pin $\quad 0$ to $V_{D D}$	
TA Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4049M, CD4050BM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4049M, CD4050BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & V_{I H}=V_{D D} . V_{I L}=0, \\ & V_{O} I<1 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		1.0		0.01	1.0		30	$\mu \mathrm{A}$
				2.0		0.01	2.0		60	$\mu \mathrm{A}$	
				4.0		0.03	4.0		120	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage										
				0.05		0	0.05		0.05	V	
				0.05		0	0.05		0.05	$v$	
				0.05		0	0.05		0.05	V	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\begin{aligned} & V_{I H}=V_{D D}, V_{I L}=0, \\ & I_{\mathrm{O}} \mid<1 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$									
			4.95		4.95	5		4.95		$v$	
			9.95		9.95	10		9.95		v	
			14.95		14.95	15		14.95		v	
VIL	Low Level Input Voltage (CD4050BM Only)	$\begin{aligned} & I_{O} \mid<1 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \end{aligned}$									
			-	1.5		2.25	1.5		1.5	V	
				3.0		4.5	3.0		3.0	V	
				4.0		6.75	4.0		4.0	V	
$V_{\text {IL }}$	Low Level Input Voltage (CD4049UBM Only)	$\\|^{1} \mathrm{O}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{0}=4.5 \mathrm{~V}$		1.0		1.5	1.0		1.0	V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9 \mathrm{~V}$		2.0		2.5	2.0		2.0	v	
		$V_{D D}=15 \mathrm{~V}, V_{0}=13.5 \mathrm{~V}$		3.0		3.5	3.0		3.0	V	
$V_{\text {IH }}$	High Level Input Voltage (CD4050BM Only)	$\|10\|<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.5 \mathrm{~V}$	3.5		3.5	2.75		3.5		V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9 \mathrm{~V}$	7.0		7.0	5.5		7.0	.	V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	11.0		11.0	8.25		11.0		V	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage (CD4049UBM Only)	$1 \mathrm{IIO}_{\mathrm{O}}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	4.0		4.0	3.5		4.0		v	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$	8.0		8.0	7.5		8.0		V	
		$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	12.0		12.0	11.5		12.0		V	
IOL	Low Level Output Current (Note 3)	$V_{I H}=V_{D D}, V_{I L}=0 \mathrm{~V}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	5.6		4.6	5		3.2		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$	12		9.8	12		6.8		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	35		29	40		20		mA	
${ }^{\mathrm{I}} \mathrm{OH}$	High Level Output Current (Note 3)	$V_{\text {IH }}=V_{\text {DO }}, V_{\text {IL }}=0 \mathrm{~V}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-1.3		-1.1	-1.6		-0.72		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-2.6		-2.2	-3.6		-1.5		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-8.0		$-7.2$	-12		$-5.0$		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		-0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.
Note 3: These are peak output current capabilities. Continuous output current is rated at 12 mA maximum. The output current should not be allowed to exceed this value for extended periods of time.
dc electrical characteristics CD4049C, CD4050BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\prime \prime} \mathrm{C}$		$25^{\prime \prime} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN.	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & V_{I H}=V_{D D}, V_{I L}=0 \mathrm{~V}, \\ & I_{I} I<1 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned} .$		4.		0.03	4.0		30	$\mu \mathrm{A}$
				8		0.05	8.0		60	$\mu \mathrm{A}$	
				16		0.07	16.0		120	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage										
				0.05		0	0.05	.	0.05	$v$	
				0.05		0	0.05		0.05	$v$	
				0.05		0	0.05		0.05	$v$	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\begin{aligned} & V_{I H}=V_{D D}, V_{I L}=0 V \\ & \left\|I_{O}\right\|<1 \mu A \end{aligned}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		V	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage (CD4050BC Only)	$\|10\|<1 \mu \mathrm{~A}$		$\cdots$							
		$V_{D D}=5 \mathrm{~V}, ~ V_{O}=0.5 \mathrm{~V}$		1.5		2.25	1.5		1.5	v	
	. .	$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$		3.0		4.5	3.0		3.0	v	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$		4.0		6.75	4.0		4.0	v	
$V_{\text {IL }}$	Low Level Input Voltage (CD4049UBC Only)	$\\|_{0} l^{\prime}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.5 \mathrm{~V}$		1.0		1.5	1.0		1.0	$v$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9 \mathrm{~V}$		2.0		2.5	2.0		2.0	V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$		3.0		3.5	3.0		3.0	V	
$V_{\text {IH }}$	High Level Input Voltage (CD4050BC Only)	$\\|_{0} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{\text {DD }}=5 \mathrm{~V}, ~ V_{O}=4.5 \mathrm{~V}$	3.5		3.5	2.75		3.5		v	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9 \mathrm{~V}$	7.0		7.0	5.5		7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	11.0		11.0	8.25	.	11.0		V	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage (CD4049UBC Only)										
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$	4.0		4.0	$3.5{ }^{1}$		4.0		V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$	8.0		8.0	7.5		8.0		v	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	12.0		12.0	11.5		12.0		v	
IOL	Low Level Output Current (Note 3)	$\begin{aligned} & V_{I H}=V_{D D}, V_{I L}=0 V \\ & V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V} \end{aligned}$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{\mathrm{O}}=0.4 \mathrm{~V}$						3.2			
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	9.8		8.5			6.8		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	29		25	40		20		mA	
1 OH	High Level Output Current (Note 3)	$V_{I H}=V_{D D}, V_{I L}=0 V$							,		
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-1.0		-0.9			-0.72			
		$V_{D D}=10 \mathrm{~V}, V_{0}=9.5 \mathrm{~V}$	-2.1		-1.9	-3.6		-1.5		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-7.1		-6.2	-12		-5		mA	
IIN	Input Current	$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	$-0.3$		-0.3	$-10^{-5}$			-1.0	$\mu \mathrm{A}$	
		$V_{\text {DD }}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$	0.3		0.3	$10^{-5}$			1.0	$\mu \mathrm{A}$	

## ac electrical characteristics CD4049M/CD4049C

$T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, R_{L}=200 \mathrm{k}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPHL	Propagation Delay Time High-to-Low Level	$V_{D D}=5 \mathrm{~V}$		30	65	ns
		$V_{D D}=10 \mathrm{~V}$		20	40	ns
		$V_{D D}=15 \mathrm{~V}$		15	30	ns
${ }_{\text {t }}^{\text {L }}$ LH	Propagation Delay Time Low-to-High Level	$V_{D D}=5 \mathrm{~V}$		45	85	ns
		$V_{D D}=10 \mathrm{~V}$		25	45	ns
		$V D D=15 \mathrm{~V}$	.	20	35	ns
tTHL	Transition Time High-to-Low Level	$V_{D D}=5 \mathrm{~V}$		30	60	ns
		$V_{D D}=10 \mathrm{~V}$		20	40	ns
		$V_{D D}=15 \mathrm{~V}$.		15	30	ns
tTLH	Transition Time Low-to-High Level	$V_{D D}=5 \mathrm{~V}$	.	60	120	ns
		$V_{D D}=10 \mathrm{~V}$		30	55	ns
		$V_{D D}=15 \mathrm{~V}$		25	45	ns
CiN	Input Capacitance	Any Input		15	22.5	pF

## ac electrical characteristics CD4050BM/CD4050BC

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPHL	Propagation Delay Time High-to-Low Level	$V_{D D}=5 \mathrm{~V}$		60	110	ns
		$V_{D D}=10 \mathrm{~V}$		25	55	ns
		$V_{D D}=15 \mathrm{~V}$		20	30	ns
tPLH	Propagation Delay Time Low-to-High Level	$V_{D D}=5 \mathrm{~V}$		60	120	ns
		$V_{D D}=10 \mathrm{~V}$		30.	55	ns
		$V_{D D}=15 \mathrm{~V}$		25	45	ns
${ }^{\text {t }}$ HL	Transition Time High-to-Low Level	$V_{D D}=5 \mathrm{~V}$		30	60	ns
		$V_{D D}=10 \mathrm{~V}$		20	40	ns
		$V_{D D}=15 \mathrm{~V}$		15	30	ns
tTLH	Transition Țime Low-to-High Level	$V_{D D}=5 \mathrm{~V}$		60	120	ns
		$V_{D D}=10 \mathrm{~V}$		30	55	ns
		$V_{\text {DD }}=15 \mathrm{~V}$		25	45	ns
$\mathrm{CIN}^{\text {N }}$	Input Capacitance	Any Input		5	7.5	pF

## switching time. waveforms



## typical application

CMOS to TTL or CMOS at a Lower VDD


Note: $V_{D D 1} \geq V_{D D 2}$
Note: In the case of the CD4049M/CD4049C
the output drive capability increases with increasing
input voltage. E.g., If VDDI $=10 \mathrm{~V}$ the CD4049M/ CD4049C could drive 4 TTL loads.

# CD4051BM/CD4051BC single 8-channel analog multiplexer/demultiplexer CD4052BM/CD4052BC dual 4-channel analog multiplexer/demultiplexer CD4053BM/CD4053BC triple 2-channel analog multiplexer/demultiplexer . 

## general description

These analog multiplexers/demultiplexers are digitally controlled analog switches having low "ON" impedance and very low "OFF" leakage currents. Control of analog signals up to $15 \mathrm{Vp}-\mathrm{p}$ can be achieved by digital signal amplitudes of $3-15 \mathrm{~V}$. For example, if $\mathrm{V}_{D D}=5 \mathrm{~V}$, $V_{S S}=0 \mathrm{~V}$ and $V_{E E}=-5 \mathrm{~V}$, analog signals from -5 V to +5 V can be controlled by digital inputs of $0-5 \mathrm{~V}$. The multiplexer circuits dissipate extremely low quiescent power over the full $V_{D D}-V_{S S}$ and $V_{D D}-V_{E E}$ supply voltage ranges, independent of the logic state of the control signals. When a logical " 1 " is present at the inhibit input terminal all channels are "OFF."

CD4051BM/CD4051BC is a single 8-channel multiplexer having three binary control inputs, $\mathrm{A}, \mathrm{B}$ and C , and an inhibit input. The three binary signals select 1 of 8 channels to be turned " ON " and connect the input to the output.

CD4052BM/CD4052BC is a differential 4-channel multiplexer having two binary control inputs, $A$ and $B$, and an inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the differential analog inputs to the differential outputs.

CD4053BM/CD4053BC is a triple 2-channel multiplexer having three separate digital control inputs, $\mathrm{A}, \mathrm{B}$ and C , and an inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole double-throw configuration.

## features

- Wide range of digital and analog signal levels: digital 3-15 V, analog to 15 Vp -p
- Low 'ON"' resistance: $80 \Omega$ (typ) over entire $15 \mathrm{Vp}-\mathrm{p}$ signal-input range for $V_{D D}-V_{E E}=15 \mathrm{~V}$
- High "OFF" resistance: channel leakage of $\pm 10 \mathrm{pA}$ (typ) at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=10 \mathrm{~V}$
- Logic level conversion for digital addressing signals of $3-15 \mathrm{~V}\left(\mathrm{~V}_{D D}-\mathrm{V}_{S S}=3-15 \mathrm{~V}\right)$ to switch analog signals to $15 \mathrm{Vp}-\mathrm{p}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V}\right)$
- Matched switch characteristics: $\Delta \mathrm{R}_{\mathrm{ON}}=5 \Omega$ (typ) for $V_{D D}-V_{E E}=15 \mathrm{~V}$
- Very low quiescent power dissipation under all digital-control input and supply conditions: $1 \mu \mathrm{~W}$ (typ) at $V_{D D}-V_{S S}=V_{D D}-V_{E E}=10 \mathrm{~V}$
- Binary address decoding on chip


## connection diagrams



dc electrical characteristics (con't)
(Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
$I_{\text {DO }}$	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		20			20		150	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {DD }}=10 \mathrm{~V}$		40			40		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80			80		600	$\mu \mathrm{A}$	

Signal Inputs ( $\mathrm{V}_{\text {IS }}$ ) and Outputs ( $\mathrm{V}_{\text {OS }}$ )

$\mathrm{R}_{\mathrm{ON}}$	"ON" Resistance (Peak for $V_{E E} \leqslant V_{\text {IS }} \leqslant V_{D D}$ )	$R_{L}=10 \mathrm{k} \Omega$   (any channel selected)	$\begin{aligned} & V_{D D}=2.5 \mathrm{~V}, \\ & V_{E E}=-2.5 \mathrm{~V} \\ & \text { or } V_{D D}=5 \mathrm{~V}, \\ & V_{E E}=0 \mathrm{~V} \\ & \hline V_{D D}=5 \mathrm{~V}, \\ & V_{E E}=-5 \mathrm{~V} \\ & \text { or } V_{D D}=10 \mathrm{~V}, \\ & V_{E E}=0 \mathrm{~V} \\ & \hline V_{D D}=7.5 \mathrm{~V} \\ & V_{E E}=-7.5 \mathrm{~V} \\ & o r V_{D D}=15 \mathrm{~V}, \\ & V_{E E}=0 \mathrm{~V} . \\ & \hline \end{aligned}$	2100   330   230	$\begin{gathered} 270 \\ 120 \\ 80 \end{gathered}$	$2500$   400 $280$	3200   520 $360$	$\Omega$   $\Omega$   $\Omega$
$\Delta \mathrm{R}_{\text {ON }}$	$\Delta$ "ON" Resistance Between Any Two Channels	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & \text { (any channel } \\ & \text { selected). } \end{aligned}$	$\begin{aligned} & V_{D D}=2.5 \mathrm{~V}, \\ & V_{E E}=-2.5 \mathrm{~V} \\ & \text { or } V_{D D}=5 \mathrm{~V}, \\ & V_{E E}=0 \mathrm{~V} \\ & \hline V_{D D}=5 \mathrm{~V} \\ & V_{E E}=-5 \mathrm{~V} \\ & \text { or } V_{D D}=10 \mathrm{~V}, \\ & V_{E E}=0 \mathrm{~V} \\ & \hline V_{D D}=7.5 \mathrm{~V} \\ & V_{E E}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{D O}=15 \mathrm{~V}, \\ & V_{E E}=0 \mathrm{~V} \\ & \hline \end{aligned}$	-	10   10   5			$\Omega$   $\Omega$   $\Omega$
	"OFF" Channel Leakage Current, any channel "OFF'   "OFF" Channel Leakage Current, all channels "OFF" (Common OUT/IN)	$\begin{aligned} & V V_{D D}=7.5 \mathrm{~V}, \\ & 0 / 1= \pm 7.5 \mathrm{~V}, \\ & \hline \text { Inhibit }=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \\ & \mathrm{VEE}=-7.5 \mathrm{~V}, \\ & 0 / 1=0 \mathrm{~V}, \\ & 1 / 0= \pm 7.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\frac{\mathrm{V}}{\mathrm{~V}=-7.5 \mathrm{~V}}, \begin{aligned} & \mathrm{I} / \mathrm{O}=0 \mathrm{~V} \\ & \hline \mathrm{CD} 4051 \\ & \mathrm{CD} 4052 \\ & \mathrm{CD} 4053 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 200 \\ & \pm 200 \\ & \pm 200 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.08 \\ & \pm 0.04 \\ & \pm 0.02 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 200 \\ & \pm 200 \\ & \pm 200 \end{aligned}$	$\begin{aligned} & \pm 500 \\ & \pm 2000 \\ & \pm 2000 \\ & \pm 2000 \end{aligned}$	nA nA nA nA

Control Inputs A, B, C and Inhibit

VIL	Low Level Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & \mathrm{~V}_{D D}=15 \mathrm{~V} \end{aligned}$		1.5 3 4			1.5 3 4		1.5 3 4	V v V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7 \\ & 11 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 7 \\ & 11 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 7 \\ & 11 \end{aligned}$	.	V V V
$\mathrm{I}_{\text {IN }}$	Input Current	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$		$\begin{array}{r} -10^{-5} \\ 10^{-5} \end{array}$	$\begin{array}{r} -0.1 \\ 0.1 \end{array}$		$\begin{array}{r} -1.0 \\ 1.0 \end{array}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All voltages measured with respect to $V_{S S}$ unless otherwise specified.

## ac electrical characteristics

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

PARAMETER		CONDITIONS	VDD	MIN	TYP	MAX	UNITS
$t_{\text {PZH }}$,   $t_{\mathrm{PZL}}$   $t_{\text {PHZ }}$.   $t_{\text {PLZ }}$   $C_{I N}$	Propagation Delay Time from Inhibit to Signal Output (channel turning on)   Propagation Delay Time from to Signal Output (channel turning off)   Input Capacitance   Control Input   Signal Input (IN/OUT)	$\begin{aligned} & V_{E E}=V_{S S}=0 \mathrm{~V} \\ & R_{L}=1 \mathrm{k} \Omega \\ & C_{L}=50 \mathrm{pF} \\ & V_{E E}=V_{S S}=0 \mathrm{~V} \\ & R_{L}=1 \mathrm{k} \Omega \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	$\begin{array}{r} 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 15 \mathrm{~V} \\ 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 15 \mathrm{~V} \end{array}$		$\begin{aligned} & 600 \\ & 225 \\ & 160 \\ & 210 \\ & 100 \\ & 75 \\ & 5 \\ & 10 \end{aligned}$	1200 450 320 420 200 150 7.5 15	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Cout	Output Capacitance (common OUT/IN)						
	$\begin{aligned} & \text { CD4051 } \\ & \text { CD4052 } \\ & \text { CD4053 } \end{aligned}$	$V_{E E}=V_{S S}=0 \mathrm{~V}$	$\begin{aligned} & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 30 \\ & 15 \\ & 8 \end{aligned}$		pF pF pF
$\mathrm{C}_{10 \mathrm{~S}}$	Feedthrougn Capacitance				0.2		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance						
	$\begin{aligned} & \hline \text { CD4051 } \\ & \text { CD4052 } \\ & \text { CD4053 } \end{aligned}$				$\begin{aligned} & 110 \\ & 140 \\ & 70 \end{aligned}$		pF pF pF

Signal Inputs ( $V_{\text {IS }}$ ) and Outputs ( $V_{\text {OS }}$ )

	Sine Wave Response (Distortion)	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & f_{I S}=1 \mathrm{kHz} \\ & V_{I S}=5 \mathrm{Vp} \cdot \mathrm{p} \\ & V_{E E}=V_{S I}=0 \mathrm{~V} \end{aligned}$	10 V		0.04		\%
	Frequency Response, Channel "ON" (Sine Wave Input)	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{E E}=V_{S S}=0 \mathrm{~V}, V_{I S}=5 \mathrm{Vp-p}, \\ & 20 \log _{10} V_{O S} / V_{I S}=-3 \mathrm{~dB} \end{aligned}$	10 V		40		MHz
	Feedthrough, Channel "OFF"	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{E E}=V_{S S}=0 \mathrm{~V}, V_{\text {IS }}=5 \mathrm{Vp} \cdot \mathrm{p}, \\ & 20 \log _{10} V_{\mathrm{OS}} / V_{\text {IS }}=-40 \mathrm{~dB} \end{aligned}$	10 V		10		MHz
	Crosstalk Between Any Two Channels (frequency at 40 dB )	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{E E}=V_{S S}=0 \mathrm{~V}, V_{\text {IS }}(A)=5 \mathrm{Vp}-\mathrm{p} \\ & 20 \log _{10} V_{O S}(B) / V_{\text {IS }}(A)=-40 \mathrm{~dB}(\text { Note } 3) \end{aligned}$	10 V		3		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}}, \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay Signal Input to Serial Output	$\begin{aligned} & V_{E E}=V_{S S}=0 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	$\begin{array}{r} 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 15 \mathrm{~V} \end{array}$		$\begin{aligned} & 25 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 55 \\ & 35 \\ & 25 \end{aligned}$	ns ns ns

Control Inputs, A, B, C and Inhibit

	Control Input to Signal Crosstalk	$V_{E E}=V_{S S}=0 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$ at both ends of channel.   Input Square Wave Amplitude $=10 \mathrm{~V}$	10 V	,	65		mV (peak)
$\begin{aligned} & \mathrm{t}_{\mathrm{PHLL}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay Time from Address to Signal Output (channels "ON" or "OFF")	$\begin{aligned} & V_{E E}=V_{S S}=0 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 15 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 500 \\ & 180 \\ & 120 \end{aligned}$	$\begin{aligned} & 1000 \\ & 360 \\ & 240 \end{aligned}$	ns ns ns

Note 3: A, B are two arbitrary channels with A turned "ON" and B "OFF."
block diagrams


CD4051BM/CD4051BC


CD4052BM/CD4052BC

## block diagram (cont)



INPUT STATES				"ON" CHANNELS			
INHIBIT	C	B	A	CD4051B	CD4052B	CD4053B	
0	0	0	0	0	$0 x, 0 y$	$c x, b x, a x$	
0	0	0	1	1	$1 \times, i y$	$c x, b x, a y$	
0	0	1	0	2	$2 X, 2 Y$	$c x, b y, a x$	
0	0	1	1	3	$3 X, 3 Y$	$c x, b y, a y$	
0	1	0	0	4		$c y, b x, a x$	
0	1	0	1	5		$c y, b x, a y$	
0	1	1	0	6		$c y, b y, a x$	
0	1	1	1	7		$c y, b y, a y$	
1	$*$	$*$	$*$	NONE	NONE	NONE	

[^12]switching time waveforms


## special considerations

In certain applications the external load-resistor current may include both $V_{D D}$ and signal-line components. To avoid drawing $V_{D D}$. current when switch current flows into IN/OUT pin, the voltage drop across the bidirec-

## typical performance characteristics

"ON" Resistance vs Signal
Voltage for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

"ON" Resistance as a
Function of Temperature for
$V_{D D}-V_{E E}=10 \mathrm{~V}$

tional switch must not exceed 0.6 V at $\mathrm{T}_{\mathrm{A}} \leqslant 25^{\circ} \mathrm{C}$, or 0.4 V at $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$ (calculated from $\mathrm{R}_{\mathrm{ON}}$ values shown). No $V_{D D}$ current will flow through $R_{L}$ if the switch current flows into OUT/IN pin.

## CD4066BM/CD4066BC quad bilateral switch

## general description

The CD4066BM/CD4066BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4016BM/CD4016BC, but has a much lower "ON" resistance, and "ON" resistance is relatively constant over the input-signal range.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity 0.45 VDD typ
- Wide range of digital and analog switching
- "ON" resistance for 15 V operation
- Matched "ON" resistance over 15 V signal input
- "ON" resistance flat over peak-to-peak signal range
- High "ON"/"OFF" output voltage ratio 65 dB typ $@ f_{\text {is }}=10 \mathrm{kHz}, R_{\mathrm{L}}=10 \mathrm{k} \Omega$
$<0.4 \%$ distortion typ $@ f_{\text {is }}=1 \mathrm{kHz}, V_{\text {is }}=5 \mathrm{Vp}-\mathrm{p}$,

$$
V_{D D}-V_{S S}=10 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega
$$



## applications

- Analog signal switching/multiplexing
- Signal gating
- Squelch control
- Chopper
- Modulator/Demodulator
- Commutating switch
- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital/digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain


## schematic and connection diagrams



## absolute maximum ratings

（Notes 1 and 2）
$V_{D D}$ Supply Voltag
$V_{\text {IN }}$ Input Voltage
Ts Storage Temperature Range
$P_{D}$ Package Dissipation
$T_{L}$ Lead Temperature（Soldering， 10 seconds）

-0.5 V to +18 V
-0.5 V to V DD +0.5 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\mathrm{nds})$
500 mW

## operating conditions

（Note 2）
$V_{D D}$ Supply Voltage
3 V to 15 V OV to $\mathrm{V}_{\mathrm{DD}}$
$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range CD4066BM
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics CD4066BM（Note 2）

dc electrical characteristics cD4066BC（Note 2）

	PARAMETER	，CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS
			MIN	MAX	MIN	TYP	MAX	MIN	MAX	
ID	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		1.0		0.01	1.0		7.5	$\mu \mathrm{A}$
				2.0		0.01	2.0		15	$\mu \mathrm{A}$
				4.0		0.01	4.0		30	$\mu \mathrm{A}$

dc electrical characteristics（Continued）CD4066BC（Note 2）


## CONTROL INPUTS


ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{V}_{S S}=0 \mathrm{~V}$ unless otherwise specified


## ac electrical characteristics (Continued)

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	$\begin{aligned} & \text { Feedthrough - Switch "OFF" } \\ & \text { (Frequency at }-50 \mathrm{~dB} \text { ) } \end{aligned}$	$\begin{aligned} & V_{D D}=5 V, V_{C}=V_{S S}=-5 V, \\ & R_{L}=1 \mathrm{k} \Omega, V_{\text {is }}=5 \mathrm{Vp}-\mathrm{p}, 20 \log 10, \\ & V_{\text {OS }} / V_{\text {is }}=-50 \mathrm{~dB},(\text { Figure } 4) \end{aligned}$		1.25		MHz
	Crosstalk Between Any Two   Switch (Frequency at -50 dB )	$\begin{aligned} & V_{D D}=V_{C(1)}=5 \mathrm{~V} ; V_{S S}=V_{C(2)}=-5 V \\ & R_{L}=1 \mathrm{kS}, V_{\text {is }}(A)=5 \mathrm{Vp} \cdot \mathrm{p}, 20 \log _{10} . \\ & V_{\text {os }(2)} / V_{\text {is }}(1)=-50 \mathrm{~dB} \\ & \text { (Figure } 5 \text { ) } \end{aligned}$		0.9		MHz
	Crosstalk: Control Input to Signal Output	$\begin{aligned} & V_{D D}=10 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega 2, \\ & R_{I N}=1 \mathrm{k} \Omega, V_{C C}=10 \mathrm{~V} \text { Square Wave, } \\ & \text { (Figure 6) } \end{aligned}$		400		$m \vee p \cdot p$
	Maximum Control Input	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figure 7)				
	Frequency (f at $\mathrm{V}_{\text {OS }}=$	$V_{D D}=5 \mathrm{~V}$		6.0		MHz
	1/2 VDDp.p)	$V_{D D}=10 \mathrm{~V}$		8.0		MHz
		$V_{D D}=15 \mathrm{~V}$		8.5		MHz
$\mathrm{c}_{\text {is }}$	Signal Input Capacitance			8		pF
Cos	Signal Output Capacitance			8		pF
$\mathrm{C}_{\text {ios }}$	Feedthrough Capacitance			0.5		pF
$\mathrm{CIN}^{\text {N }}$	Control Input Capacitance	.		5	7.5	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.
Note 3: These devices should not be connected to circuits with the power "ON".
Note 4: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in $C_{L}$ wherever it is specified.

## ac test circuits and switching time waveforms



FIGURE 1. tPHL, tPLH Propagation Delay Time Signal Input to Signal Output


FIGURE 3. tpZL, tPLZ Propagation Delay Time Control to Signal Output

## ac test circuits and switching time waveforms (Continued)



$V_{C}=V_{D D}$ for distortion and frequency response tests $V_{C}=V_{S S}$ for feedthrough test

FIGURE 4. Sine Wave Distortion, Frequency Response and Feedthrough

$v_{1 S(1)}$

figure 5. Crosstalk Between Any Two Switches


FIGURE 7. Maximum Control Input Frequency

## typical performance characteristics


"ON" Resistance as a Function of Temperature for $V_{D D}-V_{S S}=10 \mathrm{~V}$


## special considerations

In applications where separate power sources are used to drive $V_{D D}$ and the signal input, the $V_{D D}$ current capability should exceed $V_{D D} / R_{L}\left(R_{L}=\right.$ effective external load of the 4 CD4066BM/CD4066BC bilateral switches). This provision avoids any permanent current flow or clamp action on the VDD supply when power is applied or removed from CD4066BM/CD4066BC.

In certain applications, the external load-resistor current may include both VDD and signal-line components. To

## CD4069M／CD4069C inverter circuits

## general description

The CD4069B consists of six inverter circuits and is manufactured using complementary MOS（CMOS） to achieve wide power supply operating range，low power consumption，high noise immunity and sym－ metric controlled rise and fall times．

This device is intended for all general purpose inverter applications where the special characteristics of the MM74C901，MM74C903，MM74C907 and CD4049A Hex Inverter／Buffers are not required．In those applica－ tions requiring larger noise immunity the MM74C14 or MM74C914 Hex Schmitt Trigger is suggested．

All inputs are protected from damage due to static discharge by diode clamps to $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$ ．

## features

－Wide supply voltage range
3 V to 15 V
－High noise immunity
－Low power
TTL compatibility
fan out of 2 driving 74L or 1 driving

74LS

## schematic and connection diagrams

Dual－In－Line Package

ac test circuit and switching time waveforms


## absolute maximum ratings

recommended operating conditions
(Notes 1 and 2)
\(\begin{array}{lr}VDD dc Supply Voltage \& -0.5 to+18 V_{D C} <br>
V_{IN} Input Voltage \& -0.5 to V_{D D}+0.5 \mathrm{VDC}_{D C} <br>

TS Storage Temperature Range^{P_{D} Package Dissipation}\)	$-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}$
TL Lead Temperature (Soldering,  10  seconds) $^{500 \mathrm{~mW}}$	$\quad 300^{\circ} \mathrm{C}\end{array}$

(Note 2)

VDD dc Supply Voltage
$V_{\text {IN }}$ Input Voltage
$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range CD4069 M CD4069C

## dc electrical characteristics

CD4069M (Note 2)


## dc electrical characteristics CD4069C (Note 2)

,	PARAMETER	CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
			MIN	MAX	MIN	TYP	MAX	MIN	MAX		
IDD	Quiescent Device Current	$V_{D D}=5 \mathrm{~V}$		1.0			1.0		7.5	$\mu \mathrm{A}$	
		$V_{D D}=10 \mathrm{~V}$		2.0			2.0		15	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		4.0			4.0		30	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\mathrm{l}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	
VOH	High Level Output Voltage	$\mid \mathrm{IO}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95			4.95		v	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95			9.95		V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95			14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage	$\\|_{0} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.5 \mathrm{~V}$								V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9 \mathrm{~V}$		3.0			3.0		3.0	V	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=13.5 \mathrm{~V}$		4.0			4.0		4.0	v	
$V_{\text {IH }}$	High Level Input Voltage	$\mathrm{IIO}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	3.5		3.5			3.5		v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$	7.0		7.0			7.0		v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$	11.0		11.0			11.0		V	
1 OL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$	3.6		8.0	8.8		2.4		mA	
IOH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$	-3.6		-8.0	-8.8		-2.4		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.30		$-10^{-5}$	-0.30		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.30		$10^{-5}$	0.30		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$, $\mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{f} \leq 20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPHL or tPLH	Propagation Delay Time From	$V_{D D}=5 \mathrm{~V}$		50	90	ns
	Input To Output	$V_{D D}=10 \mathrm{~V}$		30	60	ns
		$V_{D D}=15 \mathrm{~V}$		25	50	ns
tTHL or tTLH	Transition Time	$V_{D D}=5 \mathrm{~V}$		80	150	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
CIN	Average Input Capacitance	Any Gate		6	7.5	pF
CPD	Power Dissipation Capacitance	Any Gate (Note 3)		12		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=0 V$ unless otherwise specified.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics application note-AN-90.
typical performance characteristics


## CD4070BM/CD4070BC quad 2-input EXCLUSIVE-OR gate

## general description

Employing complementary MOS (CMOS) transistors to achieve wide power supply operating range, low power consumption and high noise margin this gate provides basic functions used in the implementation of digital integrated circuit systems. The N and P -channel enhancement mode transistors provide a symmetrical circuit with output swing essentially equal to the supply voltage. No dc power other than that caused by leakage current is consumed during static condition. All inputs are protected from damage due to static discharge by diode clamps to $V_{D D}$ and VSS.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity
$0.45 V_{\text {DD typ }}$
- Low power fan out of 2 TTL compatibility driving 74L or 1 driving 74LS
- Pin compatible to CD4030A
- Equivalent to MM54C86/MM74C86 and MC14507B


## connection diagram



## typical performance characteristics

Propagation Delay Time vs Load Capacitance

## truth table

INPUTS		OUTPUTS
A	B	Y
L	L	L
L	$H$	$H$
$H$	L	$H$
$H$	$H$	L


absolute maximum ratings   （Notes 1 and 2）		recommended operating conditions （Note 2）	
$V_{\text {DD }}$ DC Supply Voltage	-0.5 to $+18 \mathrm{~V}_{\text {DC }}$	$V_{\text {DD }}$ DC Supply Voltage	3 to 15 V DC
$V_{\text {IN }}$ Input Voltage $\quad-0.5$ to	－0．5 to $\mathrm{V}_{D D}+0.5 \mathrm{~V}_{\text {DC }}$	$V_{\text {IN }}$ Input Voltage	0 to $V_{D D} V_{D C}$
TS Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range	
PD Package Dissipation	500 mW	CD4070BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$T_{L}$ Lead Temperature（Soldering， 10 seconds）	conds）$\quad 300^{\circ} \mathrm{C}$	CD40708M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$


dc electrical characteristics $\operatorname{CD4070BC}$ (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		1.0			1.0		7.5	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		2.0			2.0		15	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		4.0			4.0	.	30	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\\|_{0} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\\|_{0} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		v	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		v	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		v	
$V_{\text {IL }}$	Low Level Input Voltage	$\\|_{0} \mathrm{l}<1 \mu \mathrm{~A}$									
		$\mathrm{V}_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$		1.5			1.5		1.5	v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$		3.0			3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$		4.0			4.0		4.0	v	
$V_{\text {IH }}$	High Level Input Voltage	$\\|_{0} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.5 \mathrm{~V}$	3.5		3.5			3.5		v	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9 \mathrm{~V}$	7.0		7.0			7.0		V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	11.0		11.0			11,0		$v$	
${ }^{\text {IOL }}$	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad \mathrm{~V}_{0}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA	
$\cdots$		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$	-3.6		-3.0	-8.8		-2.4		mA	
IIN	Input Current	$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, $\mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
TPHL or TPLH	Propagation Delay Time From	$V_{D D}=5 \mathrm{~V}$		110	185	ns
	Input To Output	$V_{D D}=10 \mathrm{~V}$		50	90	ns
		$V_{D D}=15 \mathrm{~V}$		40	75	ns
tTHL or tTLH	Transition Time	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
CIN	Average Input Capacitance	Any Input		5	7.5	pF
CPD	Power Dissipation Capacitance	Any Input (Note 3)				

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics application note-AN-90.

## ac test circuit and switching time waveforms



Note: Delays measured with input $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$.

CD4071BM/CD4071BC, CD4081BM/CD4081BC

## CD4071BM/CD4071BC quad 2-input OR buffered B series gate

 CD4081BM/CD4081BC quad 2-input AND buffered B series gate general descriptionThese quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

All inputs are protected against static discharge with diodes to $V_{D D}$ and $V_{S S}$.

## features

- Low power TTL compatability, fan out of 2 driving 74 L or 1 driving 74LS
- $5 \mathrm{~V}-10 \mathrm{~V}-15 \mathrm{~V}$ parametric ratings
- Symmetrical output characteristics
- Maximum input leakage $1 \mu \mathrm{~A}$ at 15 V over full temperature range


## schematic and connection diagrams



CD4071B
Dual-In-Line and Flat Package


CD4081B
Dual-In-Line and Flat Package


## absolute maximum ratings (Notes 1 and 2 )

## operating conditions

Voltage at Any Pin	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Package Dissipation	500 mW
V 2 Range	$-0.5 \mathrm{VDC}_{\mathrm{DC}}$ to +18 VDC
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Operating $V_{D D}$ Range
Operating Temperature Range CD4071BM, CD4081BM CD4071BC, CD4081BC
$3 V_{D C}$ to $15 V_{D C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics CD4071BM, CD4081BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IOD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		0.25		0.004	0.25		7.5	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		0.50		0.005	0.50		15	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		1.0		0.006	1.0		30	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$V_{D D}=5 V$,		0.05		0	0.05		0.05	$v$	
		$\left.V_{D D}=10 \mathrm{~V}\right\} \quad \\|^{O} \mid<1 \mu \mathrm{~A}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
VOH	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$,	4.95		4.95	5		4.95		V	
		$V_{D D}=10 \mathrm{~V}$, $10 \mathrm{l}<1 \mu \mathrm{~A}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95.	15		14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$		1.5		2	1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V}$		3.0		4	3.0		3.0	$\checkmark$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$		4.0		6	4.0		4.0	$\checkmark$	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.5 \mathrm{~V}$	3.5		3.5	3		3.5		$\checkmark$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.0 \mathrm{~V}$	7.0		7.0	6		7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	11.0		11.0	9		11.0		$\checkmark$	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		$m A$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{0}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.10		$-10^{-5}$	-0.10	,	-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.10		$10^{-5}$	0.10		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions foractual device operation.
Note 2: All voltages measured with respect to $V_{S S}$ unless otherwise specified.
dc electrical characteristics CD4071BC, CD4081BC (Note 2)


## ac electrical characteristics CD4071BC, CD4071BM

$T_{A}=25^{\circ} \mathrm{C}$, Input $t_{r} ; \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} . C_{L}=50 \mathrm{pF} . \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega$ Typical temperature coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS	TYP	MAX	UNITS
tPHL	Propagation Delay Time, High-to-Low Level	$V_{D D}=5 \mathrm{~V}$	100	250	ns
		$V_{D D}=10 \mathrm{~V}$	40	100	ns
		$V_{D D}=15 \mathrm{~V}$	30	70	ns
tPLH	Propagation Delay Time, Low-to-High Level	$V_{D D}=5 \mathrm{~V}$	90	250	ns
		$V_{D D}=10 \mathrm{~V}$	40	100	ns
		$V_{D D}=15 \mathrm{~V}$	30	70	ns
tTHL,tTLH	Transition Time	$V_{D D}=5 \mathrm{~V}$	90	200	ns
		$V D D=10 \mathrm{~V}$	50	100	ns
		$V_{D D}=15 \mathrm{~V}$	40	80	ns
CIN	Average Input Capacitance	Any Input	5	7.5	pF
$C_{P D}$	Power Dissipation Capacity.	Any Gate	18		pF

ac electrical characteristics CD4081BC, CD4081BM
$T_{A}=25^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}} ; \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} . \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} . \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K}$ Typical temperature coefficient is $0.3 \%{ }^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS	TYP	MAX	UNITS
tPHL	Propagation Delay Time, High-to-Low Level	$V_{D D}=5 \mathrm{~V}$	100	250	ns
		$V_{D D}=10 \mathrm{~V}$	40	100	ns
		$V_{D D}=15 \mathrm{~V}$	30	70	ns
tPLH	Pronagation Delay Time, Low-to-High Level	$V_{D D}=5 \mathrm{~V}$	. 120	250	ns
		$V_{D D}=10 \mathrm{~V}$	50	100	ns
		$V_{D D}=15 \mathrm{~V}$	35	70	ns
${ }^{\text {t }}$ HL, t LLH	Transition Time	$V_{D D}=5 \mathrm{~V}$	90	200	ns
		$V_{D D}=10 \mathrm{~V}$.	50	100	ns
		$V_{D D}=15 \mathrm{~V}$	40	80	ns
$\mathrm{CIN}^{\text {N }}$	Average Input Capacitance	Any Input	5	7.5	pF
CPD	Power Dissipation Capacity	Any Gate	18		pF

## typical performance characteristics



FIGURE 1. Typical Transfer Characteristics


FIGURE 4. Typical Transfer Characteristics


FIGURE 2. Typical Transfer Characteristics 4


FIGURE 3. Typical Transfer Characteristics


FIGURE 5


FIGURE 6


FIGURE 7


FIGURE 10


FIGURE 8


FIGURE 11


FIGURE 9


FIGURE 12


FIGURE 13

$\mathrm{v}_{\text {CC }}-\mathrm{V}_{\text {DUT }}(\mathrm{V})$
FIGURE 14

CD4073BM/CD4073BC double buffered triple 3-input NAND gate CD4075BM/CD4075BC double buffered triple 3-input NOR gate

## general description

These triple gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N - and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard $B$ series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain. All inputs are protected against static discharge with diodes to $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$.

## features

- Wide supply voltage range
3.0 V to 15 V
- High noise immunity
$0.45 V_{D D}$ typ
fan out of
2 driving 74L or 1 driving 74 LS
- $5 \mathrm{~V}-10 \mathrm{~V}-15 \mathrm{~V}$ parametric ratings
- Symmetrical output characteristics
- Maximum input leakage $1 \mu \mathrm{~A}$ at 15 V over full temperature range


## connection diagrams



CD4073 Triple 3-Input AND Gate TOP VIEW


CD4075B Triple 3-Input OR Gate TOP VIEW
CD4073BM/CD4073BC, CD4075BM/CD4075BC
absolute maximum ratings (Notes 1 and 2)
$V_{D D} D C$ Supply Voltage $\quad-0.5 V_{D C}$ to $+18 V_{D C}$ $V_{I N}$ Input Voltage $\quad-0.5 V_{D C}$ to $V_{D D}+0.5 V_{D C}$
$\mathrm{T}_{\mathrm{s}} \quad$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$P_{D}$ Package Dissipation 500 mW
$T_{\mathrm{L}}$ Lead Temperature (soldering, 10 seconds) $300^{\circ} \mathrm{C}$
recommended operating conditions (Note 2)

$V_{D D}$ DC Supply Voltage	$+5 V_{D C}$ to $+15 V_{D C}$
$V_{\text {IN }}$ Input Voltage	$0 \mathrm{~V}_{D C}$ to $V_{D D} V_{D C}$
$\mathrm{~T}_{A}$ Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{CD} 4073 \mathrm{BM} / \mathrm{CD} 4075 \mathrm{BM}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$V_{\text {DD }}$ DC Supply Voltage
$+5 V_{D C}$ to $+15 V_{D C}$ $0 V_{D C}$ to $V_{D D} V_{D C}$
$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range
CD4073BM/CD4075BM
CD4073BC/CD4075BC
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics-CD4073BM/CD4075BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$0.25$		0.004	0.25		7.5	$\mu \mathrm{A}$
		$0.5$				-0.005	0.5		15	$\mu \mathrm{A}$	
		$1.0$				0.006 ${ }^{\circ}$	1.0		30	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$\left.\begin{array}{l} V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \end{array}\right\} . \operatorname{lol}$	0.05			0	0.05		0.05	$V$	
			0.05			0	0.05		0.05	V	
			0.05			0	0.05		0.05	V	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\left.\begin{array}{l} V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \end{array}\right\} \\|_{\mathrm{I}} \mathrm{l}<1 \mu \mathrm{~A}$	$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$		4.95	5		4.95		$V$	
					9.95	10		9.95		$V$	
					14.95	15		14.95		$V$	
$V_{\text {IL }}$	Low Level Input Voltage	$\left.\begin{array}{l} V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V}, V_{O}=1.0 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \end{array}\right\} \mid \mathrm{I}_{\mathrm{O}} \mathrm{I}<1 \mu \mathrm{~A}$		1.5		2	1.5		1.5	V	
				3.0	.	4	3.0		3.0	V	
				4.0		6	4.0		4.0	V	
$\mathrm{V}_{\text {IH }}$	High Level fnput Voltage	$\left.\begin{array}{l} V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V}, V_{O}=9.0 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V} \end{array}\right\} \mid I_{O}<1 \mu \mathrm{~A}$	3.5		3.5	3		3.5		$V$	
			7.0		7.0	6		7.0		$V$	
			11.0		11.0	9		11.0		V	
$\mathrm{I}_{\text {OL }}$	Low Level Output Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \end{aligned}$	0.64		0.51	0.88		0.36		mA	
			1.6		1.3	2.2		0.90		mA	
			4.2		3.4	8		2.4		mA	
IOH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{0}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.2		-0.90		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$	-4.2		-3.4	-8		-2.4		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		$-0.10$		$-10^{-5}$	-0.10		-1.0	$\mu \mathrm{A}$	
		$V_{\text {OD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.10		$10^{-5}$	0.10		1.0	$\mu \mathrm{A}$	

Notes on following page.

## schematic diagram


dc electrical characteristics-CD4073BC/CD4075BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		1		0.004	1		7.5	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		2		0.005	2		15	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		4		0.006	4		30	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$ )		0.05		0	0.05		0.05	$V$	
		$\left.V_{D D}=10 \mathrm{~V}\right\}\left\|I_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$V$	
		$\left.V_{D D}=10 \mathrm{~V}\right\}\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	9.95		9.95	10		9.95		V	
		$V_{D D}=15 \mathrm{~V}$ )	14.95		14.95	15	,	14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$		1.5		2	1.5		1.5	$V$	
		$\left.V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V}\right\}\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$		3.0		4	3.0		3.0	V	
		$\mathrm{V}_{\mathrm{OD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$		4.0		6	4.0		4.0	V	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=4.5 \mathrm{~V}$	3.5	.	3.5	3		3.5		V	
		$\left.V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.0 \mathrm{~V}\right\} \mathrm{V}_{\mathrm{O}} \mid<1 \mu \mathrm{~A}$	7.0		7.0	6		7.0		V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$ )	11.0		11.0	9		11.0		V	
. ${ }^{\text {OL }}$	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.3		1.1	2.2		0.90		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.2		-0.90		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$	-3.6		-3.0	-8		-2.4		mA	
$\mathrm{I}_{\mathrm{IN}}$	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {iN }}=0 \mathrm{~V}$		-0.30		$-10^{-5}$	-0.30		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.30		$10^{-5}$	0.30		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.

## schematic diagram


ac electrical characteristics-CD4073BM/CD4073BC, CD4075BM/CD4075BC
$T_{A}=25^{\circ} C, C_{L}=50 \mathrm{pF}, R_{L}=200 \mathrm{k}$, unless otherwise specified.

PARAMETER		CONDITIONS	$\begin{aligned} & \text { CD4073BC } \\ & \text { CD4073B } \end{aligned}$			$\begin{aligned} & \text { CD4075BC } \\ & \text { CD4075BM } \end{aligned}$			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX			
${ }_{\text {t }}$	Propagation Delay, High to Low Level		$V_{D D}=5 \mathrm{~V}$		130	250	.	140	250	ns
		$V_{D D}=10 \mathrm{~V}$		60	100		70	100	ns	
		$V_{D D}=15 \mathrm{~V}$		40	70		50	70	ns	
$t_{\text {PLH }}$	Propagation Delay, Low to High Level	$V_{D D}=5 \mathrm{~V}$		140	250		130	250	ns	
		$V_{D D}=10 \mathrm{~V}$		70	100		50	100	ns	
		$V_{D D}=15 \mathrm{~V}$		50	70		40	70	ns	
${ }^{\mathrm{t}} \mathrm{T} \mathrm{HL}$   ${ }^{t}$ TLH	Transition Time	$V_{D D}=5 \mathrm{~V}$		90	200		90	200	ns	
	.	$V_{D D}=10 \mathrm{~V}$		50	100		50	100	ns	
		$V_{D D}=15 \mathrm{~V}$		40	80		40	80	ns	
$\mathrm{C}_{\text {IN }}$	Average Input Capacitance (See Note 3)	Any Input		5	7.5		5	7.5	pF	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacity (See Note 4)	Any Gate		17			17		pF	

Note 3: Capacitance is guaranteed by periodic testing.
Note 4: CPD determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family characteristics Application Note AN-90.

## CD4076 BM/CD4076 BC TRI-STATE ${ }^{\oplus}$ quad D flip-flop

## general description

The CD4076BM/CD4076BC TRI-STATE quad D flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P -channel enhancement transistors. The four D type flip-flops operate synchronously from a common clock. The TRI-STATE output allows the device to be used in bus organized systems. The outputs are placed in the TRI-STATE mode when either of the two output disable pins are in the logic " 1 " level. The input disables allow the flip-flops to remain in their present states without disrupting the clock. If either of the two input disables is taken to a logic " 1 " level, the Q outputs are fed back to the inputs and in this manner the flip-flops do not change state.

Clearing is enabled by taking the clear input to a logic " 1 " level. Clocking occurs on the positive-going transition.

All inputs are protected against damage due to static discharge by diode clamps to $V_{D D}$ and $V_{S S}$.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity
- Low power TTL
$0.45 V_{D D}$ typ compatibility
fan out of 2 driving 74L or 1 driving 74LS
- High impedance TRI-STATE outputs
- Inputs can be disabled without gating the clock
- Equivalent to MM54C173/MM74C173


## logic and connection diagrams



## truth table

$t_{n}$		$t_{n+1}$
DATA INPUT DISABLE	DATA	
INPUT	OUTPUT	
Logic " 1 " on One or Both Inputs	$\times$	$a_{n}$
Logic " 0 " on Both Inputs	1	1
Logic " 0 " on Both Inputs	0	0


operating conditions (Note 2)

$V_{\text {DD }}$ dc Supply Voltage	3 to 15 V DC
$\mathrm{V}_{\text {IN }}$ Input Voltage	0 to $V_{D D} V_{D C}$
$\mathrm{T}_{\text {A }}$ Operating Temperature Range	
CD4076BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4076BC	$40^{\circ} \mathrm{C}$ to $+85^{\circ}$

dc electrical characteristics CD4076BM (Note 2)


## dc electrical characteristics (con't) CD4076BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\prime \prime} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TVP	MAX	MIN	MAX			
IN	Input Current		$V_{D D}=15 \mathrm{~V}, V_{I N}=C V$		$\bigcirc$		$-10^{-5}$	$-0.3$		-1.0	$\mu \mathrm{A}$
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.3		10.5	0.3		1.0	$\mu \mathrm{A}$	
IOZ	Output Current in High	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.3	-	$-10^{-5}$	-0.3		$-1.0$	$\mu \mathrm{A}$	
	Impedance State	$V_{D D}=15 \mathrm{~V}, V_{1: ~}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$, and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless othe wise specified.

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
tPHL   or tPLH	Propagation Delay Time From Clock to Output	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	.	220	400	ns
				80	200	ns
				65	160	ns
tPHL	Propagation Delay Time From Clear to Output	$V_{D D}=5 V$		240	490	ns
		$V_{D D}=10 \mathrm{~V}$		90	180	ns
	Minimum Input Data Set-Up Time	$V_{D D}=15 \mathrm{~V}$		70	145	ns
${ }^{\text {t }} \mathrm{S}$		$V_{D D}=5 V$		40	80	ns
		$V_{D D}=10 \mathrm{~V}$		15	30	ns
	Minimum Input Data Hold Time	$V_{D D}=15 \mathrm{~V}$		12	25	ns
		$V$ VD $=5 \mathrm{~V}$		-40	0	ns
		$V_{D D}=10 \mathrm{~V}$		-12	0	ns
		$V_{D D}=15 \mathrm{~V}$		-10	0	ns
${ }^{\text {t }} \mathrm{SU}$	Minimum Input Disable Set-Up Time	$V V_{D D}=5 V$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		35	70	ns
	Minimum Input Disable Hold Time	$V_{D D}=15 \mathrm{~V}$		28	55	ns
${ }^{t} \mathrm{H}$		$V_{D D}=5 V$		$-75$	0	ns
		$V_{D D}=10 \mathrm{~V}$		-30	0	ns
		$V_{D D}=15 \mathrm{~V}$		$-25$	0	ns
${ }^{\text {tPHZ }}$ 'tPLZ	Propagation Delay Time From Output	$V_{D D}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}$		170	340	ns
	Disable to $\mathrm{Hig}^{\text {h }}$ Impedance State	$V_{D D}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} 1.0 \mathrm{k}$		70	140	ns
		$V_{D D}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} 1.0 \mathrm{k}$		56	115	ns
${ }^{\text {t }} \mathrm{PZ} \mathrm{H}, \mathrm{tPZL}$	Propagation Delay From Output Disable to Logical "1" Level or Logical " 0 " Level (From High Imped. ance State)	$V_{D D}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}$		170	340	ns
		$V_{D D}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}$		70	140	ns
		$V_{D D}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}$		56	115	ns
${ }^{\mathrm{t}} \mathrm{TLH}$	Transition Time	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
${ }^{\text {f }} \mathrm{CL}$	Maximum Clock Frequency	$V_{D D}=5 \mathrm{~V}$	3.0	4.0		MHz
		$V_{D D}=10 \mathrm{~V}$	7.0	12.0		MHz
		$V D D=15 V$	8.75	15.0		MHz
tWH	Minimum Clear Pulse Width	$V_{D D}=5 V$		150		ns
		$V_{D D}=10 \mathrm{~V}$		70		ns
		$V_{D D}=15 \mathrm{~V}$		56		ns
${ }^{\text {t R CL, }}$, ${ }^{\text {F }}$ CL	Maximum Clock Rise and Fall Time	$V_{D D}=5 V$	10			$\mu \mathrm{s}$
		$V_{D D}=10 \mathrm{~V}$	5			$\mu \mathrm{s}$
		$V_{D D}=15 \mathrm{~V}$	2			$\mu \mathrm{s}$
CIN	Average Input Capacitance	Data Inputs (A, B, C, D)		3	7.5	pF
		Other Inputs		6	15	pF
CPD	Power Dissipation Capacity	All Four Flip-Flops, (Note 3)		100		pF
COUT	TRI-STATE® Output Capacitance	Any Output			15	pF

[^13]ac test circuits and switching time waveforms
tPZL

${ }^{\text {tpHZ }} \mathbf{~ a n d ~} \mathrm{tPZH}$

tPLZ and ${ }^{\text {TPZL }}$

${ }^{\mathbf{t} P Z H}$




## CD4089BM/CD4089BC binary rate multiplier CD4527BM/CD4527BC BCD rate multiplier

## general description

The CD4089B is a 4 -bit binary rate multiplier that provides an output pulse rate which is the input clock pulse rate multiplied by $1 / 16$ times the binary input number. For example, if 5 is the binary input number, there will be 5 output pulses for every 16 clock pulses.

The CD4527B is a 4 -bit BCD rate multiplier that provides an output pulse rate which is the input clock pulse rate multiplied by $1 / 10$ times the $B C D$ input number. For example, if 5 is the $B C D$ input number, there will be 5 output pulses for every 10 clock pulses.

These devices may be used to perform arithmetic operations including multiplication and division, $A / D$ and $D / A$ conversion and frequency division.

## features

a Wide supply voltage range $3 V$ to 15 V

- High noise immunity $0.45 V_{\text {DD }}$ typ
- Low power TTL compatibility fan out of 2 driving 74L or 1 driving 74LS
- Internally synchronous 4-bit counter
- Output clocked on the negative-going edge of clock
- STROBE for inhibiting and enabling outputs
- INHIBIT IN and CASCADE inputs for cascade operation
- Complementary output
- CLEAR and SET inputs
- " 9 " or " 15 " output and INHIBIT OUT output


## connection diagrams

SET TO "15" CD4089B

CD4527B


TOP VIEW

## absolute maximum ratings

(Notes 1 and 2)

$V_{D D}$ Supply Voltage	-0.5 to +18 V
$V_{\text {IN }}$ Input Voltage	-0.5 to $V_{D D}+0.5 \mathrm{~V}$
TS $_{S}$ Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
PD $_{\text {D }}$ Package Dissipation	500 mW
T $_{\text {L L Lead Temperature (Soldering, }} 10$ seconds)	$300^{\circ} \mathrm{C}$

recommended operating conditions
(Note 2)

$V_{D D}$ Supply Voltage	3 to 15 V
$V_{\text {IN }}$ Input Voltage	0 to $V_{D D} V$
$T_{A}$ Operating Temperature Range	
CD4089BM, CD4527BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4089BC, CD4527BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$\begin{array}{lr}V_{D D} \text { Supply Voltage } & 3 \text { to } 15 \mathrm{~V} \\ V_{\text {IN }} \text { Input Voltage } & 0 \text { to } V_{D D V}\end{array}$
A Operating Temperature Range CD4089BC, CD4527BC $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics CD4089BM, CD4527BM (Note 2)

dc electrical characteristics CD4089BC, CD4527BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	. TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		20			20		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		40			40		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80			80		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\mid 10 \mathrm{O} \leq 1 \mu \mathrm{~A}$									
		$V_{D D}=5 V$		0.05		0	0.05		0.05	V	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
VOH	High Level Output Voltage	${ }^{\prime} \mathrm{O}^{\prime} \leq 1 \leq \mathrm{A}$									
		$V_{D D}=5 \mathrm{~V}$,	4.95		4.95	5		4.95		V	
		$V_{D D}=10 \mathrm{~V}$	9.95	.	9.95	10		9.95		V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V		$1.5{ }^{\circ}$			1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V		3.0			3.0		3.0	V	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	V	
$\mathrm{V}_{\mathrm{IH}}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		V	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	

dc electrical characteristics (Continued) CD4089BC, CD4527BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
${ }^{1} \mathrm{OH}$	High Level Output Current		$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		-3.0	-8.8		-2.4		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

ac electrical characteristics


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=0 V$ unless otherwise specified.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics application note, AN-90.
truth tables

CD40898
Binary Rate Multiplier

INPUTS										NUMBER OF PULSES OR output logic level ( H OR L)			
D	C	B	A	No. of Clock Pulses	$\mathrm{Inh}_{1 /}$	Strobe	Cascade	Clear	Set	$\begin{aligned} & \overline{\text { Pin } 6} \\ & \text { Out } \end{aligned}$	$\begin{aligned} & \frac{\text { Pin } 5}{\text { Out }} \end{aligned}$	Pin 7   Inh Out	$\begin{aligned} & \text { Pin 1 } \\ & \text { ""15" } \end{aligned}$
0	0	0	0	16	0	0	0	0	0	L	H	1	1
0	0	0	1	16	0	0	0	0	0	1	1	1	1
0	0	1	0	16	0	0	0	0	0	2	2	1	1
0	0	1	1	16	0	0	0	0	0	3	3	1	1
0	1	0	0	16	0	0		0	0	4	4	1	1
0	1	0	1	16	0	0	0	0	0	5	5	1	1
0	1	1	0	16	0	0	0	0	0	6	6	1	1
0	1	1	1	16	0	0	0	0	0	7	7	1	1
1	0	0	0	16	0	0	0	0	0	8	8	1	1
1	0	0	1	16	0	0	0	0	0	9	9	1	1
1	0	1	0	16	0	0	0	0	0	10	10	1	1
1	0	1	1	16	0	0	0	0	0	11	11	1	1
1	1	0	0	16	0	0	0	0	0	12	12	1	1
1	1	0	1	16	0	0	0	0	0	13	13	1	1
1	1	1	0	16	0	0	0	0	0	14	14	1	1
1	1	1	1	16	0	0	0	0	0	15	15	1	1
X	$\times$	$\times$	X	16	1	0	0	0	0	Depends on internal state of counter			
X	$\times$	x	X	16	0	1	0	0	0	L	H	1	1
X	x	x	x	16	0	0	1	0	0	H	*	1	1
1	x	x	x	16	0	0	0	1	0	16	16	H	L
0	$\times$	$\times$	x	16	0 -	0	0	1	0	L	H	H	L
x	x	x	x	16	0	0	0	0	1	L	H	L	H

*Output same as the first 16 lines of this truth table (depending on values of $A, B, C, D)$

CD4527B
BCD Rate Multiplier

INPUTS										NUMBER OF PULSES OR OUTPUT LOGIC LEVEL (H OR L)			
D	C	B	A	No. of Clock Pulses	Inhin	Strobe	Cascade	Clear	Set	$\begin{aligned} & \text { Pin } 6 \\ & \text { Out } \end{aligned}$	$\frac{\operatorname{Pin} 5}{\partial u t}$	$\begin{gathered} \text { Pin } 7 \\ \text { Inh Out } \end{gathered}$	$\begin{aligned} & \hline \text { Pin } 1 \\ & " 9 " \end{aligned}$
0	0	0	0	10	0	0	0	0	0	L	H	1	1
0	0	0	1	10	0	0	0	0	0	1	1	1	1
0	0	1	0	10	0	0	0	0	0	2	2	1	1
0	0	1	1	10	0	0	0	0	0	3	3	1	1
0	1	0	0	10	0	0	0	0	0	4	4	1	1
0	1	0	1	10	0	0	0	0	0	5	5	1	1
0	1	1	0	10	0	0	0	0	0	6	6	1	1
0	1	1	1	10	0	0	0	0	0	7	7	1	1
1	0	0	0	10	0	0	0	0	0	8	8	1	1
1	0	0	1	10	0	0	0	0	0	9	9	1	1
1	0	1	0	10	0	0	0	0	0	8	8	1	1
1	0	1	1	10	0	0	0	0	0	9	9	1	1
1	1	0	0	10	0	0	0	0	0	8	8	1	1
1	1	0	1	10	0	0	0	0	0	9	9	1	1
1	1	1	0	10	0	0	0	0	0	8	8	1	1
1	1	1	1	10	0	0	0	0	0	9	9	1	1
X	X	X	X	10	1	0	0	0	0	Depends on internal state of counter			
$\times$	x	x	$x$	10	0	1	0	0	0	L	H	1	1
X	$x$	X	X	10	0	0	1	0	0	H	*	1	1
1	X	X	X	10	0	0	0.	1	0	10	10	H	L
0	X	X	X	10	0	0	0	1	0	L	H	H	L
$\times$	X	X	X	10	0	0	0	0	1	L	H	L	H

* Output same as the first 16 lines of this truth table (depending on values of $A, B, C, D$ )


CD4527B
BCD Rate Multiplier

logic diagrams


CD4527B
BCD Rate Multiplier


## cascading packages



Two CD4089B's cascaded in the "add" mode with a preset number of $89\left(\frac{5}{16}+\frac{9}{256}=\frac{89}{256}\right)$


Two CD4089B's cascaded in the "multiply" mode with a preset number of $98\left(\frac{7}{16} \times \frac{14}{16}=\frac{98}{256}\right)$.


Two CD4527B's cascaded in the "add" mode with a preset number of $27\left(\frac{2}{10}+\frac{7}{100}=\frac{27}{100}\right)$


Two CD4527B's cascaded in the "multiply" mode with a preset number of $27\left(\frac{3}{10} \times \frac{9}{10}=\frac{27}{100}\right)$

## CD4093BM/CD4093BC quad 2-input NAND Schmitt trigger

## general description

The CD4093B consists of four Schmitt-trigger circuits. Each circuit functions as a. 2 -input NAND gate with Schmitt-trigger action on both inputs. The gate switches at different points for positive and negative-going signals. The difference between the positive ( $V_{T+}$ ) and the negative voltage ( $\mathrm{V}_{\mathrm{T}^{-}}$) is defined as hysteresis voltage ( $V_{H}$ ).

All outputs have equal source and sink currents and conform to standard B-series output drive (see Static Electrical Characteristics).

## features

- Wide supply voltage range

3 V to 15 V

- Schmitt-trigger on each input with no external components
- Noise immunity greater than 50\%
- Equal source and sink currents
- No limit on input rise and fall time
- Standard B-series output drive
- Hysteresis voltage (any input) $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Typical	$V_{D D}=5 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{H}}=1.5 \mathrm{~V}$
	$\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{H}}=2.2 \mathrm{~V}$
	$\mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{H}}=2.7 \mathrm{~V}$
Guaranteed		$\mathrm{V}_{\mathrm{H}}=0.1 \mathrm{~V} D \mathrm{DD}$

## applications

- Wave and pulse shapers
- High-noise-environment systems
- Monostable multivibrators
- Astable multivibrators
- NAND logic


## connection diagram

Dual-In-Line Package


## absolute maximum ratings

(Notes 1 and 2)
DC Supply Voltage (VDD)
-0.5 to $+18 V_{D C}$
input Voltage ( $\mathrm{V}_{1 \mathrm{~N}}$ )
Storage Temperature Range ( $T_{S}$ )
-0.5 to $V_{D D}+0.5 V_{D C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation ( $P_{D}$ )
Lead Temperature (Soldering, 10 seconds) (TL) $300^{\circ} \mathrm{C}$
recommended operating conditions
(Note 2)

$V_{D D}$ de Supply Voltage	3 to $15 V_{D C}$
$V_{\text {IN }}$ Input Voltage	0 to $V_{D D} V_{D C}$
$T_{A}$ Operating Temperature Range	
CD4093BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4093BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4093BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		0.25			0.25		7.5	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		0.5			0.5		15.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		1.0			1.0		30.0	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$V_{I N}=V_{D D}, l_{\text {l }} \mathrm{O} \mid<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V D D=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
VOH	High Level Output Voltage	$V_{\text {IN }}=V_{\text {SS }}, \\|_{1} \mid<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		V	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V	
$V_{T-}$	Negative-Going Threshold Voltage (Any Input)	$\left\|I_{O}\right\|<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.5 \mathrm{~V}$	1.3	2.25	1.5	1.8	2.25	1.5	2.3	$v$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9 \mathrm{~V}$	2.85	4.5	3.0	4.1	4.5	3.0	4.65	V	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=13.5 \mathrm{~V}$	4.35	6.75	4.5	6.3	6.75	4.5	6.9	$v$	
$V_{T+}$	Positive-Going Threshold Voltage (Any Input)	$110 \mid<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	3.5	3.65	2.75	3.3	3.5	2.65	3.5	V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$	7.0	7.15	5.5	6.2	7.0	5.35	7.0	V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	10.5	10.65	8.25	9.0	10.5	8.1	10.5	$v$	
$V_{H}$		$V_{D D}=5 \mathrm{~V}$	0.5	2.35	0.5	1.5	2.0	0.35	2.0	$v$	
	(Any Input)	$V_{D D}=10 \mathrm{~V}$	1.0	4.30	1.0	2.2	4.0	0.70	4.0	V	
		$V_{D D}=15 \mathrm{~V}$	1.5	6.30	1.5	2.7	6.0	1.20	6.0	V	
${ }^{\text {IOL }}$	Low Level Output Current	$. V_{I N}=V_{D D}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.6		1.3	2.25	'	0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$	. 4.2		3.4	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{\text {IN }}=V_{S S}$		,							
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.64		0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.1	*	$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=0 \mathrm{~V}$ unless otherwise specified.
CD4093BM/CD4093BC
dc electrical characteristics CD4093BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		UNITS		
		MIN	MAX	MIN	TYP	MAX	MIN	MAX				
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 V \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		1.0			1.0		7.5	$\mu \mathrm{A}$	
				2.0			2.0		15.0	$\mu \mathrm{A}$		
				4.0			4.0		30.0	$\mu \mathrm{A}$		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{I N}=V_{D D}, I_{O} \mid<1 \mu \mathrm{~A} \\ & V_{D D}=5 V \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$										
				0.05		0	0.05		0.05	V		
				0.05		0	0.05		0.05	V		
				0.05		0	0.05		0.05	V		
VOH	High Level Output Voltage	$\begin{aligned} & V_{I N}=V_{S S},\\| \\|_{O} \mid<1 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} . \end{aligned}$										
			4.95		4.95	5		4.95		v		
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		V		
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		V		
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Threshold Voltage (Any Input)	$\\|^{\prime}{ }^{\prime}<1 \mu \mathrm{~A}$										
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.5 \mathrm{~V}$	1.3	2.25	1.5	1.8	2.25	1.5	2.30	$V$		
		$V_{D D}=10 \mathrm{~V}, V_{O}=9 \mathrm{~V}$	2.85	4.5	3.0	4.1	4.5	3.0	4.65	$V$		
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$	4.35	6.75	4.5	6.3	6.75	4.5	6.9	V		
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Threshold Voltage (Any Input)	$\left\|I_{O}\right\|<1 \mu \mathrm{~A}$										
		$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	3.5	3.6	2.75	3.3	3.5	2.65	3.5	- V		
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$	7.0	7.15	5.5	6.2	7.0	5.35	7.0	V		
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	10.5	10.65	8.25	9.0	10.5	8.1	10.5	V		
$\mathrm{V}_{\mathrm{H}}$	Hysteresis ( $\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$ ) (Any Input)	$V_{D D}=5 \mathrm{~V}$	0.5	2.35	0.5	1.5	2.0	0.35	2.0	V		
		$V_{D D}=10 \mathrm{~V}$	1.0	4.3	1.0	2.2	4.0	0.70	4.0	V		
		$V_{D D}=15 \mathrm{~V}$	1.5	6.3	1.5	2.7	6.0	1.20	6.0	V		
IOL	Low Levet Output Current	$V_{I N}=V_{D D}$										
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA		
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		-mA		
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA		
${ }^{\mathrm{I} O H}$	High Level Output Current	$V_{I N}=V_{S S}$										
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		$m A$		
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25.		-0.9		mA		
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		-8.0	-8.8		-2.4	;	mA		
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$		
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$		

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPHL, tPLH	Própagation Delay Time	$V_{D D}=5 \mathrm{~V}$		300	600	ns
		$V_{D D}=10 \mathrm{~V}$		120	300	ns
		$V_{D D}=15 \mathrm{~V}$		80	240	ns
tTHL, tTLH	Transition Time	$V_{D D}=5 \mathrm{~V}$		90	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
Cin	Average Input Capacitance			5.0	7.5	pF
CPD	Power Dissipation Capacitance			24		pF

## typical applications

## Assume $t_{1}+t_{2} \gg t_{P H L}+t_{P L H}$ then:

$t_{0}=R C \ln \left[V_{D D} / V_{T-}\right]$
$t_{1}=R C \ln \left[\left(V_{D D}-V_{T-}\right) /\left(V_{D D}+V_{T+}\right)\right]$
$t_{2}=R C \ln \left[V_{T_{+}} / V_{T_{-}}\right]$
$f=\frac{1}{t_{1}+t_{2}}=\frac{1}{R C \ln \frac{\left(V_{T+}\right)\left(V_{D D}-V_{T-}\right)}{\left(V_{T-}\right)\left(V_{D D}-V_{T+}\right)}}$

## Gated Oscillator



## Gated One-Shot

(a) Negative-Edge Triggered

(b) Positive-Edge Triggered

typical performance characteristics

input and output characteristics

ac test circuits and switching time waveforms



CD40106BM/CD40106BC hex Schmitt trigger

## general description

The CD40106B Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P -channel enhancement transistors. The positive and negative-going threshold voltages, $\mathrm{V}_{\mathrm{T}+}$ and $\mathrm{V}_{\mathrm{T}-\text {, show }}$ low variation with respect to temperature (typ $0.0005 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at $\mathrm{V}_{D D}=10 \mathrm{~V}$ ), and hysteresis, $V_{T_{+}}-V_{T-} \geq 0.2 V_{D D}$ is guaranteed.

All inputs are protected from damage due to static dịscharge by diode clamps to $V_{D D}$ and $V_{S S}$.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity
0.7 VDD typ
- Low power
fan out of 2
TTL compatibility
driving 74L or 1 driving 74LS
- Hysteresis
$0.4 \mathrm{~V}_{\mathrm{DD}}$ typ
0.2 V DD guaranteed
- Equivalent to MM54C14/MM74C14
* Equivalent to MC14584B


## schematic diagram


connection diagram

Dual-In-Line Package

switching time waveforms

absolute maximum ratings
(Notes 1 and 2)

$V_{D D}$ de Supply Voltage	-0.5 to $+18 V_{D C}$
$V_{\text {IN }}$ Input Voltage	-0.5 to $V_{D D}+0.5 \mathrm{~V}_{D C}$
$T_{S}$ Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$P_{D}$ Package Dissipation	500 mW
$T_{L}$ Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

$V_{D D}$ de Supply Voltage
$0.510+18 \mathrm{~V}_{\mathrm{DC}}$
$T_{S}$ Storage Temperature Range
PD Package Dissipation
TL Lead Temperature (Soldering, 10 seconds) $\quad 300^{\circ} \mathrm{C}$
(Note 2)

$V_{D D}$ dc Supply Voltage	3 to $15 V_{D C}$
$V_{\text {IN Input Voltage }}$	0 to $V_{D D} V_{D C}$
$T_{A}$ Operating Temperature Range	
CD40106BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD40106BC	$-40^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$

## dc electrical characteristics CD40106BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
${ }^{1} \mathrm{DD}$	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 30 \\ & 60 \\ & 120 \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu A$
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$\begin{aligned} & \\|_{O} \mid<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{D D}=10 \mathrm{~V} \\ & \mathrm{~V}_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\begin{aligned} & I_{\mathrm{O}} \mid<1 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$		$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	$\begin{aligned} & 5 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 4.95 \\ & 9.95 \\ & 14.95 \end{aligned}$	-	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Threshold Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=9 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.4 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.4 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 3.2 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 0.7 \\ 1.4 \\ 2.1 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	
$\mathrm{V}_{\mathrm{T}+}{ }^{\text {+ }}$	Positive-Going Threshold Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 8.6 \\ & 12.9 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 6.8 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 8.6 \\ & 12.9 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 8.6 \\ & 12.9 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	
$V_{H}$	Hysteresis ( $\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$ )	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 7.2 \\ & 10.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.6 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 7.2 \\ & 10.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 7.2 \\ & 10.8 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	
IOL	Low Level Output Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.64 \\ & 1.6 \\ & 4.2 \end{aligned}$		0.51 1.3 3.4	$\begin{aligned} & 0.88 \\ & 2.25 \\ & 8.8 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.9 \\ & 2.4 \end{aligned}$		mA   mA $m A$	
${ }^{1} \mathrm{OH}$	High Level Output Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.64 \\ & -1.6 \\ & -4.2 \end{aligned}$		$\begin{aligned} & -0.51 \\ & -1.3 \\ & -3.4 \end{aligned}$	$\begin{aligned} & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$		$\begin{aligned} & -0.36 \\ & -0.9 \\ & -2.4 \end{aligned}$		mA   mA   mA	
1 IN	Input Current	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} -0.10 \\ 0.10 \end{array}$		$\begin{array}{r} -10^{-5} \\ 10^{-5} \end{array}$	$\begin{array}{r} -0.10 \\ 0.10 \end{array}$		$\begin{array}{r\|r} -1.0 \\ 1.0 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which,the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics application note-AN-90.
dc electrical characteristics CD40105BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Duvie. Current		$V_{D D}=5 \mathrm{~V}$		4.0			4.0		30	$\mu \mathrm{A}$
		$\because 00 \cdot 10 \mathrm{~V}$		8.0			8.0		60	$\mu \mathrm{A}$	
		$\because$ U-15V		16.0			16.0		120	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	iini< $1 \mu \mathrm{~A}$									
		$V_{\text {(1) }}=5 \mathrm{~V}$		0.05			0.05		0.05	v	
		$\because \mathrm{OD}-10 \mathrm{~V}$		0.05			0.05		0.05	v	
		VOD $=15 \mathrm{~V}$		0.05			0.05		0.05	v	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\\|_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		v	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		v	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		v	
$\mathrm{V}_{\text {T- }}$	Negative-Going Threshold Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=4.5 \mathrm{~V}$	0.7	2.0	0.7	1.4	2.0	0.7	2.0	V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9 \mathrm{~V}$.	1.4	4.0	1.4	3.2	4.0	1.4	4.0	v	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	2.1	6.0	2.1	5.0	6.0	2.1	6.0	v	
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Threshold Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}-0.5 \mathrm{~V}$	3.0	4.3	0.0	3.6	4.3	3.0	4.3	V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$	6.0	8.6	E.C	¢. $\varepsilon$	8.6	3.0	8.6	v	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	9.0	12.9	9.0	100	12.9	9.0	12.9	v	
$\mathrm{V}_{\mathrm{H}}$	Hysteresis ( $\mathrm{V}_{\mathrm{T}_{+}--\mathrm{V}_{\mathrm{T}-} \text { ) }{ }^{\text {a }} \text { ( }}$	$V_{D D}=5 \mathrm{~V}$	1.0	3.6	$1 . \mathrm{C}$	2.2	3.6	1.0	3.6	V	
		$V_{D D}=10 \mathrm{~V}$	2.0	7.2	20	3.6	7.2	2.0	7.2	v	
		$V_{D D}=15 \mathrm{~V}$	3.0	10.8	3.0	5.0	10.8	3.0	10.8	$\checkmark$	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-1.3		-1.1	$-2.25$		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6.		-3.0	-8.8		-2.4		mA	
IIN	Input Current	$V_{\text {DD }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-0.30		$-10^{-5}$	-0.30		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.30		$10^{-5}$	0.30		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, R_{L}=200 \mathrm{k}, \mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPHL or tPLH	Propagation Delay Time From	$V_{D D}=5 \mathrm{~V}$		220	400	ns
	Input To Output	$V_{D D}=10 \mathrm{~V}$		80	200	ns
		$V_{D D}=15 \mathrm{~V}$		70	160	ns
${ }^{\text {t }}$ HL or t TLH	Transition Time	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
$\mathrm{CIN}^{\text {N }}$	Average Input Capacitance	Any Input		5 .	7.5	pF
CPD	Power Dissipation Capacitance	Any Gate (Note 3)		14		pF ${ }^{\text {. }}$

## typical applications

$$
\begin{aligned}
& \text { Low Power Oscillator } \\
& \qquad \begin{aligned}
& t_{1} \approx R C \ln \frac{V_{T+}}{V_{T-}} \\
& t_{2} \approx R C \ln \frac{V_{D D}-V_{T-}}{V_{D D}-V_{T+}} \\
& \approx \frac{1}{R C \ln \frac{V_{T+}\left(V_{D D}-V_{T-}\right)}{V_{T-}\left(V_{D D}-V_{T+}\right)}} \\
& \begin{array}{l}
\text { Note: } T \text { he equations assume } \\
t_{1}+t_{2} \gg t_{p H L}+t_{p L H}
\end{array}
\end{aligned}
\end{aligned}
$$

typical performance characteristics

$V_{D D}$


## CD40160BM/CD40160BC decade counter with asynchronous clear CD40161BM/CD40161BC binary counter with asynchronous clear CD40162BM/CD40162BC decade counter with synchronous clear CD40163BM/CD40163BC binary counter with synchronous clear

## general description

These (synchronous presettable up) counters are monolithic complementary MOS (CMOS) integrated circuits constructed with N and P-channel enhancement mode transistors. They feature an internal carry look-ahead for fast counting schemes and for cascading packages without additional gating.

A low level at the load input disables counting and causes the outputs to agree with the data input after the next positive clock edge. The clear function for the CD40162B and CD40163B is synchronous and a low level at the clear input sets all four outputs low after the next positive clock edge. The clear function for the CD40160B and CD40161B is asynchronous and a low level at the clear input sets all four outputs low, regardless of the state of the clock.

Counting is enabled when both count enable inputs are high. Input T is fed forward to also enable the carry out. The carry output is a positive pulse with a duration approximately equal to the positive portion of $\mathrm{O}_{\mathrm{A}}$ and
can be used to enable successive cascaded stages. Logic transitions at the enable P or T inputs can occur when the clock is high or low.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity
$0.45 V_{D D}$ typ
- Low power TTL compatibility
fan out of 2
driving 74L or 1 driving 74LS
- Internal look-ahead for fast counting schemes
- Carry output for N-bit cascading
- Load control line
- Synchronously programmable
- Equivalent to MC14160B, MC14161B, MC14162B, MC14163B
- Equivalent to MM74C160, MM74C161, MM74C162, MM74C163


## connection diagram

## absolute maximum ratings

(Notes 1 and 2)
$V_{\text {DD }}$ dc Supply Voltage
$V_{\text {IN }}$ Input Voltage
$T_{S}$ Storage Temperature Range
$P_{D}$ Package Dissipation
$T_{L}^{\prime}$ Lead Temperature (Soldering, 10 seconds)
-0.5 to $+18 V_{D C}$
-0.5 to $V_{D D}+0.5 V_{D C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
$300^{\circ} \mathrm{C}$

## recommended operating conditions

(Note 2)

$V_{D D}$ dc Supply Voltage	3 to $15 V_{D C}$
$V_{\text {IN Input Voltage }}$	0 to $V_{D D} V_{D C}$
$T_{A}$ Operating Temperature Range	
CD40XXXBM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD40XXXBC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD40160BM, CD40161BM, CD40162BM, CD40163BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		5			5		150	$\mu \mathrm{A}$
				10			10		300	$\mu \mathrm{A}$	
				20			20		600	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$\mid \mathrm{I}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$		0.05			0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05			0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05			0.05		0.05	V'	
VOH	High Level Output Voltage	$\mid \mathrm{I}_{0} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		v	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		v	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	v	
		$V_{D D}=10 \mathrm{~V}, V_{0}=1 \mathrm{~V}$ or 9 V		3.0			3.0		3.0	v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	V	
$V_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		v	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.6		-1.3	$-2.25$		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.10		$-10^{-5}$	-0.10		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.10		$10^{-5}$	0.10		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD40160BC, CD40161BC, CD40162BC, CD40163BC (Note 2)

dc electrical characteristics (con't) CD40160BC, CD40161BC, CD40162BC, CD40163BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
$V_{\text {IH }}$	High Level Input Voltage		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		V
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$v$	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		$-3.0$	-8.8		-2.4		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.30		$-10^{-5}$	-0.30		$-1.0$	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.30		$10^{-5}$	0.30		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.
Note 3: $C_{P D}$ determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, unless otherwise specified.

CD40160BM/CD40160BC, CD40161BM/CD40161BC, CD40162BM/CD40162BC, CD40163BM/CD40163BC


CD40161B, CD40163B Clear is Synchronous for the CD40163B


## logic waveforms


switching time waveforms


Note 1: All input pulses are from generators having
the following characteristics: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ PRR $\leq$
1 MHz duty cycle $\leq 50 \%, \mathrm{Z}_{\text {OUT }} \approx 50 \Omega$.
Note 2: All times are measured from $50 \%$ to $50 \%$.
cascading packages


CD40174BM/CD40174BC hex D flip-flop CD40175BM/CD40175BC quad D flip-flop

## general description

The CD40174B consists of six positive-edge triggered D-type flip-flops; the true output from each flip-flop are externally available. The CD40175B consists of four positive-edge triggered D-type flip-flops; both the true and complement outputs from each flip-flop are externally available:

All flip-flops are controlled by a common clock and a common clear. Information at the D inputs meeting the set-up time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. The clearing operation, enabled by a negative pulse at Clear input, clears all Q . outputs to logical " 0 " and $\overline{\mathrm{Q}}$ 's (CD40175B only) to logical "1,"

All inputs are protected from static discharge by diode clamps to VDD and VSS.

## features

- Wide supply voitage range

3 V to 15 V

- High noise immunity $\quad 0.45 \mathrm{~V}_{\mathrm{DD}}$ typ
- Low power TTL. fan out of 2 compatibility driving 74L or 1 driving 74LS
- Equivalent to MC14174B, MC14175B
a Equivalent to MM74C174, MM74C175


## connection diagrams

CD40174B
Dual-In-Line Package


## truth table

INPUTS			OUTPUTS	
CLEAR	CLOCK	D	$\mathbf{Q}$	$\overline{\mathbf{Q}}^{*}$
L	X	X	L	H
H	$\uparrow$	$H$	$H$	L
H	$\uparrow$	L	L	H
H	$H$	$X$	NC	NC
H	L	X	NC	NC

[^14]CD40175B
Dual-In-Line Package

switching time waveforms

$t_{r}=t_{f}=20 \mathrm{~ns}$

## absolute maximum ratings

(Notes 1 and 2)

$\mathrm{V}_{\text {DD }}$ dc Supply Voltage	-0.5 to $+18 \mathrm{~V}_{\text {DC }}$	$V_{\text {DD }}$ dc Supply Voltage	3 to $15 \mathrm{~V}_{\mathrm{DC}}$
$V_{\text {IN }}$ Input Voltage	-0.5 to $V_{D D}+0.5 V_{D C}$	$V_{\text {IN }}$ Input Voltage	0 to $V_{D D} V_{D C}$
TS Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range	
$P_{D}$ Package Dissipation	500 mW	CD40XXXBM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$T_{L}$ Lead Temperature, (Solderin	conds) $\quad 300^{\circ} \mathrm{C}$	CD40XXXBC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$


PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		1.0			1.0		30	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		2.0	.		2.0		60	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		4.0			4.0		120	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$110 \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05			0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05			0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05			0.05		0.05	$v$	
VOH	High Level Output Voltage	$\mid \mathrm{IO}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95	.	$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$v$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V		3.0			3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	$v$	
$V_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$v$	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
$\mathrm{I}^{\mathrm{OH}}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		mA	
IN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.1		$-10^{-5}$			-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=15 \mathrm{~V}$		0.1		$10^{-5}$			1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD40174BC, CD40175BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		4			4		30	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		8			8		60	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		16			16		120	$\mu \mathrm{A}$	
VoL	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$		0.05			0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05	.		0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05			0.05		0.05	$v$	
V OH	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$v$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V		3.0			3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	$v$	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$v$	
102	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36	-	ma	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{v}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$	3.6		8.0	8.8		2.4		mA	
IOH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52			-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9	.	mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		-8.0	-8.8		-2.4		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.30		$-10^{-5}$	-0.30		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{1 N}=15 \mathrm{~V}$		0.30		$10^{-5}$	0.30		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF} R_{L}=200 \mathrm{k}$, and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$, unless otherwise specified

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPHL or tpLH	Propagation Delay Time to a Logical	$V_{D D}=5 \mathrm{~V}$		190	300	ns
	"0" or Logical "1" from Clock to 0	$V_{D D}=10 \mathrm{~V}$		75	110	ns
	or $\overline{\mathrm{Q}}$ (CD40175 Only)	$V_{D D}=15 \mathrm{~V}$		60	90	ns
tPHL	Propagation Delay Time to a Logical	$V_{D D}=5 \mathrm{~V}$		180	300	ns
	'0' from Clear to Q	$V_{D D}=10 \mathrm{~V}$		70	110	ns
		$V_{D D}=15 \mathrm{~V}$		60	90	ns
tPLH	Propagation Delay Time to a Logical	$V_{D D}=5 \mathrm{~V}$		230	400	ns
	" 1 " from Clear to $\overline{\mathrm{Q}}$ (CD40175 Only)	$V_{D D}=10 \mathrm{~V}$		90	150	ns
		$V_{D D}=15 \mathrm{~V}$		75	120	ns
${ }^{\text {tsu }}$	Time Prior to Clock Pulse that Data	$V_{D D}=5 \mathrm{~V}$	100	45		ns
	must be Present	$V_{D D}=10 \mathrm{~V}$	40	16		ns
		$V_{D D}=15 \mathrm{~V}$	35	13		ns
$\mathrm{t}_{\mathrm{H}}$	Time after Clock Pulse that Data	$V_{D D}=5 \mathrm{~V}$		-11	0	ns
	must be Held	$V_{D D}=10 \mathrm{~V}$		-4	0	ns
		$V_{D D}=15 \mathrm{~V}$		-3	0	ns
tTHL   or tTLH	Transition Time	$V_{D D}=5 \mathrm{~V}$		100	200	ns
	-	$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
${ }^{\text {twh }}$, ${ }^{\text {twL }}$	Minimum Clock Pulse Width	$V_{D D}=5 \mathrm{~V}$		130	250	ns
		$V_{D D}=10 \mathrm{~V}$		45	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
${ }^{\text {tw }}$	Minimum Clear Pulse Width	$V_{D D}=5 \mathrm{~V}$		120	250	ns
		$V_{D D}=10 \mathrm{~V}$		45	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
$\mathrm{t}_{\mathrm{BCL}}$	Maximum Clock Rise Time	$V_{D D}=5 \mathrm{~V}$	15	450		$\mu \mathrm{s}$
		$V_{D D}=10 \mathrm{~V}$	5.0	125		$\mu \mathrm{s}$
		$V_{D D}=15 \mathrm{~V}$	5.0	125		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{fCL}}$	Maximum Clock Fall Time	$V_{D D}=5 \mathrm{~V}$	15	50		$\mu \mathrm{s}$
		$V_{D D}=10 \mathrm{~V}$	5.0	50		$\mu \mathrm{s}$
		$V_{D D}=15 \mathrm{~V}$	5	50		$\mu \mathrm{s}$
${ }^{\text {f }} \mathrm{CL}$	Maximum Clock Frequency	$V_{D D}=5 \mathrm{~V}$	2.0	3.5		MHz
	- .	$V_{D D}=10 \mathrm{~V}$	5.0	10		MHz
		$V_{D D}=15 \mathrm{~V}$	6.0	12		MHz
CIN	Input Capacitance	Clear Input,		10	15	pF
		Other Input		5.0	7.5	pF
CPD	Power Dissipation	Per Package, (Note 3)		130		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=0 V$ unless otherwise specified.
Note 3: CPD determines the no load ac power consúmption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics application note, AN-90.

CD40192BM/CD40192BC synchronous 4-bit up/down decade counter CD40193BM/CD40193BC synchronous 4 -bit up/down binary counter

## general description

These up/down counters are monolithic complementary MOS (CMOS) integrated circuits. The CD40192BM and CD40192BC are BCD counters. While the CD40193BM and CD40193BC are binary counters.

Counting up and counting down is performed by two count inputs, one being held high while the other is clocked. The outputs change on the positive-going transition of this clock.

These counters feature preset inputs that are enabled when load is a logical " 0 " and a clear which forces all outputs to " 0 " when it is at logical " 1 ". The counters also have carry and borrow outputs so that they can be cascaded using no external circuitry.

All inputs are protected against damage due to static discharge by clamps to $V_{D D}$ and $V_{S S}$.

## features

- Wide supply voltage range

3 V to 15 V

- High noise immunity $0.45 V_{D D}$ typ
- Low power TTL compatibility
fan out of 2 driving 74L or 1 driving 74LS
- Carry and borrow outputs for easy expansion to N -bit by cascading
- Asynchronous clear
- Equivalent to

MM54C192/MM74C192 and MM54C193/MM74C193

## connection diagram

Dual-In-Line Package


## cascading packages


CD40192BM/CD40192BC, CD40193BM/CD40193BC
absolute maximum ratings
(Notes 1 and 2)
$V_{D D}$ dc Supply Voltage
VIN Input Voltage
TS Storage Temperature Range
PD Package Dissipation
TL Lead Temperature, (Soldering, 10 seconds)
-0.5 to $+18 V_{D C}$
-0.5 to $V_{D D}+0.5 V_{D C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
$300^{\circ} \mathrm{C}$
recommended operating conditions
(Note 2)
$V_{D D}$ dc Supply Voltage 3 to $15 V_{D C}$
$V_{\text {IN }}$ Input Voltage $\quad 0$ to $V_{D D} V_{D C}$
$T_{A}$ Operating Temperature Range CD40192BM, CD40193BM $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ CD40192BC, CD40193BC $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics (Note 2) CD40192BM, CD40193BM

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		5			5		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		10.			10		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		20			20		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$		$0.05{ }^{\text {\} }$			0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05			0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05			0.05		0.05	$v$	
VOH	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.95		4.95			4.95		v	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95			9.95		v	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95			14.95		$v$	
$v_{12}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V		1.5			1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V		3.0			'3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V		4.0			4.0		4.0	$v$	
$\mathrm{V}_{1 H}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5			3.5		v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V	7.0		7.0			7.0		v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$v$	
1 OL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{0}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
${ }^{1 O H}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{0}=4.6 \mathrm{~V}$	-0.64		-0.51.	-0.88		-0.36		ma	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2.		-3.4	-8.8		-2.4		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

dc electrical characteristics (Note 2) CD40192BC, CD40193BC

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\prime \prime} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
${ }^{1} \mathrm{DD}$	Quiescent Device Current		$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$					20		150	$\mu \mathrm{A}$
		$40$					40		300	$\mu \mathrm{A}$	
		$80$					80		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$V_{D D}=5 \mathrm{~V}$	0.05				0.05		0.05	$v$	
		- $V_{D D}=10 \mathrm{~V}$	0.05				0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$	0.05				0.05		0.05	V	
VOH	High Level Output Voltage	$V_{D D}=5 \mathrm{~V}$	4.95		4.95			4.95		V	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95			9.95		V	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95			14.95		v	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5	-		1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V		3.0			3.0	-	3.0	V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	1	4.0			4.0		4.0	V	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$ or 4.5 V			3.5					V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V} \text { or } 9 \mathrm{~V}$	7.0		7.0			7.0		v	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0			11.0		$\checkmark$	
JOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
IOH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	$-0.52$			-0.88		$-0.36$		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA	
		$V_{D O}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		$-3.0$	-8.8		-2.4		mA	
I/N	Input Current	$V_{D D}=15 \mathrm{~V}, V_{1 N}=0 \mathrm{~V}$.		-0.3		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D O}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$, unless otherwise specified.


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=0 V$ unless otherwise specified.
Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics application note, AN-90.

## schematic diagrams



CD40192BM/CD40192BC Synchronous 4-Bit Up/Down Decade Counter


CD40193BM/CD40193BC Synchronous 4-Bit Up/Down Binary Counter

## timing diagrams



Sequence:

1. Clear outputs to zero.
2. Load (preset) to $B C D$ seven.
3. Count up to eight, nine, carry, zero, one and two.
4. Count down to one, zero, borrow, nine, eight and seven.

CD40192BM/CD40192BC


CD40193BM/CD40193BC

## CD4510BM/CD4510BC BCD up/down counter CD4516BM/CD4516BC binary up/down counter

## general description

The CD4510BM/CD4510BC and CD4516BM/CD4516BC are monolithic CMOS up/down counters which count in $B C D$ and binary, respectively.

The counters count up when the up/down input is at logical " 1 " and vise versa. A logical " 1 " preset enable signal allows information at the parallel inputs to preset the counters to any state asynchronously with the clock. The counters are advanced one count at the positivegoing edge of the clock if the carry in, preset enable, and reset inputs are at logical " 0 ". Advancement is inhibited when any of these three inputs are at logical " 1 ". The carry out signal is normally at logical " 1 " state and goes to logical " 0 " when the counter reaches its maximum count in the "up" mode or its minimum count in the "down" mode, provided the carry input is at logical " 0 " state. The counters are cleared asynchronously by applying a logical " 1 " voltage level at the reset input.

All inputs are protected against static discharge by diode clamps to both VDD and VSS.

## features

- Wide supply voltage range	3 V to 15 V
- High noise immunity	$0.45 \mathrm{~V}_{\mathrm{DD}}$ typ
- Low power TTL	fan out of 2   driving 74 L
compatibility	or 1 driving 74LS
- Parallel load "jam" inputs	
- Low quiescent power dissipation	$0.25 \mu \mathrm{~W} /$ package   typ @ $V_{C C}=5 \mathrm{~V}$
- Motorola MC14510, MC14516 second source	

## connection diagram



TOP VIEW

## truth table

CLOCK	RESET	PRESET   ENABLE	CARRY   IN	UP/DOWN	OUTPUT   FUNCTION
$\times$	1	X	X	X	Reset to zero
X	0	1	X	X	Set to P1, P2,P3, P4
$\sim$	0	0	0	1	Count up
$\sim$	0	0	0	0	Count down
$\sim$	0	0	X	X	No change
X	0	0	1	X	No change

[^15]
## absolute maximum ratings

(Notes 1 and 2)
VDD dc Supply Voltage
-0.5 V to +18 V
$V_{\text {in }}$ Input Voltage
TS Storage Temperature Range
PD Package Dissipation
TL Lead Temperature (Soldering, 10 seconds)
-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 500 mW
$300^{\circ} \mathrm{C}$
recommended operating conditions
(Note 2)
$\begin{array}{lr}\text { VDD dc Supply Voltage } & 3 V \text { to } 15 \mathrm{~V} \\ V_{\text {IN Input Voltage }} & 0 \text { to } V_{D D} \\ T_{A} \text { Operating Temperature Range } & \\ \text { CD4510BM, CD4516BM } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { CD4510BC, CD4516BC } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\end{array}$
dc electrical characteristics CD4510BC, CD4516BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		20		$\bigcirc .05$	20		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		40		0.1	40		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80		0.15	80		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$V_{\text {IH }}=V_{\text {DD }}, V_{\text {IL }}=0 V,{ }_{1} \mathrm{I} \mid<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$.		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	
VOH	High Level Output Voltage	$\left\lvert\, \begin{aligned} & \dot{V}_{I H}=V_{D D}, V_{I L}=0 V, \\|_{\mathrm{O}} \mid<1 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \end{aligned}\right.$	4.95		4.95	5		4.95		V	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		V	
		$V_{D D}=15 \mathrm{~V}$	. 14.95		14.95	15		14.95		V	

dc electrical characteristics (Continued) CD4510BC, CD4516BC (Note 2)

PARAMETER		CONDITIONS	, $-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
VIL	Low Level Input Voltage		$\mid 10^{\prime}<1 \mu \mathrm{~A}$								
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5	.	1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	V	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	V	
$V_{1 H}$	High Level Input Voltage	$\\|_{0} l^{\prime}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5.	2.75		3.5		V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0	;	V	
IOL	Low Level Output Current	$V_{\text {IH }}=V_{D D}, V_{\text {IL }}=0 V$.									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.8		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.3		1.1	2.0		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	7.8		2.4		mA	
${ }^{\mathrm{IOH}}$	High Level Output Current	$V_{\text {IH }}=V_{\text {DD }}, V_{\text {IL }}=0 \mathrm{~V}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52	$\checkmark$.	-0.44	-0.8		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.0		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V} \quad \cdots$	$-3.6$		$-3.0$	-7.8		-2.4		mA	
IIN	Input Cürrent	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		$-0.3$		$-10^{-5}$	-0.3		1.0	$\mu \mathrm{A}$	
	-	$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=0 V$ unless otherwise specified.
Note 3: Devices should not be connected while power is "ON."

## switching time waveforms


ac electrical characteristics CD4510BM/CD4510BC, CD4516BM/CD4516BC
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}, \mathrm{t}_{\mathrm{r} C L}=\mathrm{t}_{\mathrm{f} C \mathrm{~L}}=\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CLOCKED OPERATION						
tPHL, tPLH	Propagation Delay Time Clock	$V_{D D}=5 \mathrm{~V}$		220	500	ns
	to Q Outputs	$V_{D D}=10 \mathrm{~V}$		100	200	ns
		$V_{D D}=15 \mathrm{~V}$		80	180	ns
tPHL, tPLH	Propagation Delay Time Clock	$V_{D D}=5 \mathrm{~V}$		315	630	ns
	to Carry Output	$V_{D D}=10 \mathrm{~V}$		130	260	ns
		$V_{D D}=15 \mathrm{~V}$		100	200	ns
tTHL, tTLH	Transition Time Q and Carry Outputs	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
tWL, tWH	Minimum Clock Pulse Width	$V_{D D}=5 \mathrm{~V}$		160	315	ns
		$V_{D D}=10 \mathrm{~V}$		65	130	ns
		$V_{D D}=15 \mathrm{~V}$		50	100	ns
	Maximum Clock Rise and Fall Time	$V_{D D}=5 \mathrm{~V}$	15			$\mu \mathrm{s}$
		$V_{D D}=10 \mathrm{~V}$	15			$\mu \mathrm{s}$
		$V_{D D}=15 \mathrm{~V}$	15			$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU }}$	Minimum Carry In Set-Up Time	$V_{D D}=5 \mathrm{~V}$		100	220	ns
		$V_{D D}=10 \mathrm{~V}$		40	80	ns
		$V_{D D}=15 \mathrm{~V}$		35	70	ns
${ }^{\text {tsu }}$	Minimum Up/Down Set-Up Time	$V_{D D}=5 \mathrm{~V}$		200	420	ns
		$V_{D D}=10 \mathrm{~V}$		70	170	ns
		$V_{D D}=15 \mathrm{~V}$		60	150	ns
${ }^{f} \mathrm{CL}$	Maximum Clock Frequency	$V_{D D}=5 \mathrm{~V}$	1.5	3.1		MHz
		$V_{D D}=10 \mathrm{~V}$	3.8	7.6		MHz
		$V_{D D}=15 \mathrm{~V}$	5.0	10.0		MHz
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Any Input		5	$7.5^{\circ}$	pF
	Power Dissipation Capacitance (Note 4)	Per Package,		65		pF
RESET/PRESET ENABLE OPERATION						
tPHL, tPLH	Propagation Delay Time Reset/	$V_{D D}=5 \mathrm{~V}$		285	570	ns
	Preset Enable to Q Output	$V_{D D}=10 \mathrm{~V}$		115	230	ns
		$V_{D D}=15 \mathrm{~V}$		95	195	ns
tPHL, tPLH	Propagation Delay Time Reset/	$V_{D D}=5 \mathrm{~V}$		420	860	ns
	Preset Enable to Carry Output	$V_{D D}=10 \mathrm{~V}$		170	350	ns
		$V_{D D}=15 \mathrm{~V}$		140	290	ns
tWH	Minimum Reset/Preset Enable	$V_{D D}=5 \mathrm{~V}$		90	200	ns
	Pulse Width	$V_{D D}=10 \mathrm{~V}$		40	100	ns
		$V_{D D}=15 \mathrm{~V}$		35	80	ns
$t_{\text {REM }}$	Minimum Reset/Preset Enable	$V_{D D}=5 \mathrm{~V}$		170	330	ns
	Removal Time	$V_{D D}=10 \mathrm{~V}$		70	140	ns
		$V_{D D}=15 \mathrm{~V}$		60	120	ns
CARRY INPUT OPERATION						
tPHL, TPLH	Propagation Delay Time Carry In	$V_{D D}=5 \mathrm{~V}$		260	500	ns
	to Carry Output	$V_{D D}=10 \mathrm{~V}$		110	220	ns
		$V_{D D}=15 \mathrm{~V}$		90	180	ns

Note 4: Dynamic power dissipation ( $P_{D}$ ) is given by: $P_{D}=\left(C_{P D}+C_{L}\right) V_{D D}{ }^{2} f+P_{Q}$; where $C_{L}=$ load capacitance; $f=$ frequency of operation; $\mathrm{P}_{\mathrm{Q}}=$ Quiescent Power Dissipation. For further details, see application note AN-90, " $54 \mathrm{C} / 74 \mathrm{C}$ Family characteristics."


Ripple Clocking


## schematic diagrams



FIGURE 1. CD4510


[^16]FIGURE 2. CD4516


CD4516BM/CD4516BC


CD4511BM／CD4511BC BCD－to－7 segment latch／decoder／driver

## general description

The CD4511BM／CD4511BC BCD－to－seven segment latch／ decoder／driver is constructed with complementary MOS （CMOS）enhancement mode devices and NPN bipolar output drivers in a single monolithic structure．The circuit provides the functions of a 4 －bit storage latch，an 8421 BCD－to－seven segment decoder，and an output drive capability．Lamp test（LT），blanking（BI），and latch enable（LE）inputs are used to test the display，to turn－off or pulse modulate the brightness of the display， and to store a BCD code，respectively．It can be used with seven－segment light emitting diodes（LED），incan－ descent，fluorescent，gas discharge，or liquid crystal readouts either directly or indirectly．

Applications include instrument（e．g．，counter，DVM， etc．）display driver，computer／calculator display driver， cockpit display driver，and various clock，watch，and timer uses．

## features

－Low logic circuit power dissipation
－High current sourcing outputs（up to 25 mA ）
－Latch storage of code
－Blanking input
－Lamp test provision
－Readout blanking on all illegal input combinations
－Lamp intensity modulation capability
－Time share（multiplexing）facility
－Equivalent to Motorola MC14511

## connection diagram



Display


Segment Identification

## truth table

INPUTS							OUTPUTS							
LE	$\overline{B 1}$	$\stackrel{\rightharpoonup}{\text { LT }}$	D	c	8	A	a	b	c	$d$	e	$f$	9	DISPLAY
x	$x$	0	X	$x$	$x$	$x$	1	1	1	1	1	1	1	8
$x$	0	1	x	$\times$	$x$	x	0	0	0	0	0	0	0	
0	1.	1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	0	1	1	1	1	1	6
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	． 1	0	0	1	1	9
0	1	1	1	0	1	0	0	0	0	0	0	0	0	
0	1	1	1	0	1	1	0	0	0	0	0	0	0	
0	1	1	1	1	0	0	0	0	0	0	0	0	0	
0	1	1	1	$1$	0	1	0	0	0	0	0	0	0	
0	1	1	1	1	1	0	0	0	0	0	0	0	0	
0	1	1	1	1	1	1	0	0	0	． 0	0	0	0	
1	1	1	X	X	$\times$	$\times$				＊				．＊

X $=$ Don＇t care
－Depends upon the BCD code applied during the 0 to 1 transition of LE．

## absolute maximum ratings

(Notes 1 and 2)
$V_{D D}$ dc Supply Voltage
$V_{\text {IN }}$ Input Voltage
$T_{S}$ Storage Temperature Range
PD Package Dissipation
$T_{L}$ Lead Temperature (Soldering, 10 seconds)
-0.5 V to V DD +0.5 V $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 500 mW $300^{\circ} \mathrm{C}$
recommended operating conditions (Note 2)

VDD dc Supply Voltage
$V_{\text {IN }}$ Input Voltage
$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range CD45108M, CD4516BM CD4510BC, CD4516BC
. $3 V$ to 15 V 0 to $V_{D D}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics CD4511BM


[^17]
## dc electrical characteristics CD 4511 BC



## ac electrical characteristics

$T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, typical temperature coefficient for all values of $\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	CD4511BM			CD4511BC			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Capacitance ( $\mathrm{C}_{1 \mathrm{~N}}$ )	$V_{\text {IN }}=0$		5.0			5.0		pF
Output Rise Time ( $\mathrm{t}_{\mathrm{r}}$ ) (Figure 1a)	$V_{D D}=5.0 \mathrm{~V}$		30.	175		30	200	ns
	$V_{D D}=10 \mathrm{~V}$		17	75	.	17	110	ns
	$V_{D D}=15 \mathrm{~V}$		15			15		ns
Output Fall Time ( $\mathrm{t}_{\mathrm{f}}$ ) (Figure 1a)	$V_{\text {DD }}=5.0 \mathrm{~V}$		1000			1000		ns
	$V_{D D}=10 \mathrm{~V}$		1000			1000		ns
	$V_{D D}=15 \mathrm{~V}$		1000			1000		ns
Turn-Off Delay Time (Data) ( $\mathrm{t}_{\text {PLH }}$ ). (Figure 1a)	$V_{\text {DD }}=5.0 \mathrm{~V}$		640	1500		640	2250	ns
	$V_{D D}=10 \mathrm{~V}$		250	600.		250	900	ns
	$V_{D D}=15 \mathrm{~V}$		175			175		ns
Turn-On Delay Time (Data) ( $\mathrm{t}_{\mathrm{PHL}}$ ) (Figure 1a)	$V_{D D}=5.0 \mathrm{~V}$		720	1500		720	2250	ns
	$V_{D D}=10 \mathrm{~V}$		290	600		290	900	ns
	$V_{D D}=15 \mathrm{~V}$		195			195		ns
Turn-Off Delay Time (Blank) ( $\mathrm{t}_{\mathrm{PLH}}$ ) (Figure 1a)	$V_{\text {DD }}=5.0 \mathrm{~V}$		320	1000		320	1500	ns
	$V_{D D}=10 \mathrm{~V}$		130	400		130	600	ns
	$V_{D D}=15 \mathrm{~V}$		100			100		ns
Turn-On Delay Time (Blank) ( $\mathrm{t}_{\mathrm{PHL}}$ ) (Figure 1a)	$V_{D D}=5.0 \mathrm{~V}$		485	1000		485	1500	ns
	$V_{D D}=10 \mathrm{~V}$		200	400		200	600	ns
	$V_{D D}=15 \mathrm{~V}$		160			160		ns
Turn-Off Delay Time (Lamp	$V_{\text {OD }}=5.0 \mathrm{~V}$		290	625		290	940	ns
Test) (tphL) (Figure 7a)	$V_{D D}=10 \mathrm{~V}$		125	250		125	375	ns
	$V_{D D}=15 \mathrm{~V}$		85			85		ns
Turn-On Delay Time (Lamp Test) ( $\mathrm{t}_{\mathrm{PHL}}$ ) (Figure 1a)	$V_{D D}=5.0 \mathrm{~V}$		290	625		290	940	ns
	$V_{\text {DO }}=10 \mathrm{~V}$		120	250		120	375	ns
	$V_{\text {DD }}=15 \mathrm{~V}$		90			90		ns
Setup Time ( $\mathrm{t}_{\text {SETUP }}$ ) (Figure 1 b )	$V_{D D}=5.0 \mathrm{~V}$	180	90		270	90		ns
	$V_{D D}=10 \mathrm{~V}$	76	38		114	38		ns
	$V_{D D}=15 \mathrm{~V}$		20			20		ns
Hold Time ( $\mathrm{t}_{\text {HOLO }}$ ) (Figure 1 b$)$	$V_{\text {DO }}=5.0 \mathrm{~V}$	0	-90		90	-90	-	ns
	$V_{D D}=10 \mathrm{~V}$	0	-38		38	-38		ns
	$V_{D O}=15 \mathrm{~V}$		-20			-20		ns
Minimum Latch Enable Pulse Width ( $\mathrm{PW} \mathrm{LE}_{\text {L }}$ ) (Figure 1c)	$\because_{\text {OD }}=5.0 \mathrm{~V}^{\prime}$	520	260		780	260		ns
	$V_{D D}=10 \mathrm{~V}$	220	110		330	110		ns
	$V_{D D}=15 \mathrm{~V}$		65			65		ns

## switching time waveforms


figure 1.


Fluorescent Readout

iquid Crystal (LC) Readout


Direct dc drive of LC's not recommended for life of LC readouts.
CD4518BM/CD4518BC, CD4520BM/CD4520BC

## CD4518BM/CD4518BC, CD4520BM/CD4520BC dual synchronous up counters

## general description

The CD4518BM/CD4518BC dual BCD counter and the CD4520BM/CD4520BC dual binary counter are implemented with complementary MOS (CMOS) circuits constructed with N and P-channel enhancement mode transistors.

Each counter consists of two identical, independent, synchronous, 4 -stage counters. The counter stages are toggle flip-flops which increment on either the positivecdge of CLOCK or negatiye-edge of ENABLE, simplifying cascading of multiple stages. Each counter can be asynchronously cleared by a high level on the RESET
line. All inputs are protected against static discharge by diode clamps to both $V_{D D}$ and $V_{S S}$.

## features

- Wide supply voltage range

3 V to 15 V
m High noise immunity. 0.45 VDD typ

- Low power TTL fan out of 2 compatibility
driving 74L or 1 driving 74LS
- 6 MHz counting rate (typ) at $V_{D D}=10 \mathrm{~V}$


## truth table

CLOCK	ENABLE	RESET	ACTION
$\Gamma$	1	0	Increment counter
0	$\ddots$	0	Increment counter
$\sim$	$\times$	0	No change
$\times$	$\Gamma$	0	No change
$\sim$	0	0	No change
1	$\sim$	0	No change
$x$	$x$	1	Q1 thru $\mathrm{Q4}=0$

X = Don't Care

## connection diagram



## absolute maximum ratings

recommended operating conditions
(Notes 1 and 2)

$V_{\text {DD }}$ Supply Voltage	-0.5 V to +18 V
VIN Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
TS Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
PD Package Dissipation	500 mW
$T_{L}$ Lead Temperature (Solderi	ds) $300^{\circ}$

(Note 2)

$V_{D D}$ Supply Voltage	$3 V$ to 15 V
$V_{\text {IN Input }}$ Voltage	0 V to $V_{D D}$
$\mathrm{~T}_{\mathrm{A}}$ Operating Temperature Range	
CD4518BM, CD4520BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4518BC, CD4520BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

dc electrical characteristics CD4518BM, CD4520BM (Note 2)

PARAMETER		CONDITIONS	-55 " ${ }^{\text {c }}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	Max	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		5		0.01	5		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		10		0.01	10		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		20		0.01	20		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$H_{O} \mathrm{l}<1 \mu \mathrm{~A}, \mathrm{~V}_{\text {IH }}=V_{\text {DD }}, V_{\text {IL }}=0 \mathrm{~V}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	
VOH	High Level Output Voltage	$\|1 \mathrm{O}\|<1 \mu \mathrm{~A}, \mathrm{~V}_{\text {IH }}=\mathrm{V}_{\text {DD }}, V_{I L}=0 \mathrm{~V}$									
		$V_{D D}=5 \mathrm{~V}$,	4.95		4.95	5		4.95		v	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		v	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		v	
$V_{\text {IL }}$	Low Level Input Voltage	$1 \mathrm{OO}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	$v$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0			v	
$V_{\text {IH }}$	High Level Input Voltage	$\mathrm{\\| O} \mathrm{OL}<1 \mu \mathrm{~A}$									
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	2.75		3.5		v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		v	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		v	
IOL	Low Level Output Current	$V_{I H}=V_{D D}, V_{I L}=0 V$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
1 OH	High Level Output Current	$V_{I H}=V_{D D}, V_{I L}=0 V$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V} . V_{I N}=15 \mathrm{~V}$		0.1		$10^{5}$	0.1		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4518BC, CD4520BC (Note 2)

PARAMETER		CONDITİONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		20		0.01	20		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		40		0.01	40		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80		0.01	80		600	$\mu \mathrm{A}$	
VoL	Low Level Output Voltage	$\\| \mathrm{IO} \mid<1 \mu \mathrm{~A}, \mathrm{~V}_{1 H}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
VOH	High Level Output Voltage	$\\|_{\text {O }} \mathrm{l}<1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		v	

dc electrical characteristics (Continued) CD4518BC, CD4520BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
VIL	Low Level Input Voltage		$\|\mathrm{IO}\|<1 \mu \mathrm{~A}$								
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	V	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	V.'	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	V	
$V_{\text {IH }}$	High Level Input Voltage	$\|10\|<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	2.75		3.5		V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V .	11.0		11.0	8.25		11.0		V	
IOL	Low Level Output Current	$V_{\text {IH }}=V_{\text {DD }}, V_{\text {IL }}=0 \mathrm{~V}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{I H}=V_{D D}, V_{I L}=0 V$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		$-3.0$	-8.8		-2.4		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{I N}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		$-1.0$	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, R_{L}=200 \mathrm{k} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPHL. PPL.	Propagation Delay Time, Clock $\rightarrow$ Q	$V_{D D}=5 \mathrm{~V}$		325	650	ns
		$V_{D D}=10 \mathrm{~V}$		110	225	ns
		$V_{D D}=15 \mathrm{~V}$		85	170	ns
${ }^{\text {tPHL }}$	Propagation Delay Time Reset $\rightarrow 0$	$V_{D D}=5 \mathrm{~V}$		220	560	ns
		$V_{D D}=10 \mathrm{~V}$		90	230	ns
		$V_{D D}=15 \mathrm{~V}$		65	160	ns
tTHL, tTLH	Transition Time	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$	,	40	80	ns
${ }^{f} \mathrm{CL}$	Maximum Clock Input Frequency	$V_{D D}=5 \mathrm{~V}$	1.5	3		MHz
		$V_{D D}=10 \mathrm{~V}$	3.0	6		MHz
		$V_{D D}=15 \mathrm{~V}$	4.0	8		MHz
${ }^{\text {tWL, }}$ WH	Minimum Clock Pulse Width	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		35	70	ns
${ }^{\text {treL, }}{ }^{\text {t }}$ FCL	Maximum Clock or Enable Rise and Fall Time	$V_{D D}=5 \mathrm{~V}$	15			$\mu \mathrm{s}$
		$V_{D D}=10 \mathrm{~V}$	10			$\mu \mathrm{s}$
		$V_{D D}=15 \mathrm{~V}$	5			$\mu \mathrm{s}$
tWH, tWL	Minimum Enable Pulse Width	$V_{D D}=5 \mathrm{~V}$		125	250	ns
		$V_{D D}=10 \mathrm{~V}$		55	110	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
twh	Minimum Reset Pulse Width	$V_{D D}=5 \mathrm{~V}$		180	375	ns
		$V_{D D}=10 \mathrm{~V}$		80	160.	ns
		$V_{D D}=15 \mathrm{~V}$		65	130	ns
$\mathrm{Clin}^{\text {I }}$	Input Capacitance	Any Input		5	7.5	pF
CPD	Power Dissipation Capacity	Either Counter, (Note 3)		50		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=\mathrm{OV}$ unless otherwise specified:
Note 3: CPD determines the no load ac power consumption of a CMOS device. For a complete explanation, see " $54 \mathrm{C} / 74 \mathrm{C}$ Family Characteristics," application note AN-90.

## logic diagrams

Decade Counter (CD4518B) 1/2 Device Shown


Binary Counter (CD4520B) 1/2 Device Shown


## timing diagram


switching time waveforms


## CD4519BM/CD4519BC 4-bit AND/OR selector

## general description

The CD4519B is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P-channel enhancement mode transistors. Depending on the condition of the control inputs, this part provides three functions in one package: a 4 -bit AND/OR selector, a quad 2-channel Data Selector, or a Quad Exclusive-NOR Gate. The device outputs have equal source and sink current capabilities and conform to the standard $B$ series output drive and supply voltage ratings.
features

- Wide supply voltage range
3 V to 15 V
- High noise immunity
- Low power TTL compatibility 0.45 VDD typ fan out of 2 driving 74L or 1 driving 74LS
- $5 \mathrm{~V}-10 \mathrm{~V}-15 \mathrm{~V}$ parametric ratings
- Symmetrical output characteristics
- Maximum input leakage $1 \mu \mathrm{~A}$ at 15 V over full temperature range
- Second source of Motorola MC14519


## logic diagram


connection diagram

truth table

CONTROL INPUTS		OUTPUT   $Z_{n}$
$A$	$B$	0
0	0	0
0	1	$Y_{n}$
1	0	$X_{n}$
1	1	$X_{n} \odot Y_{n}$

Note: $x_{n} \odot r_{n}=\overline{X_{n} \oplus Y_{n}}=x_{n} Y_{n}+\bar{x}_{n} \bar{Y}_{n}$

## absolute maximum ratings

recommended operating conditions
(Notes 1 and 2)

(Note 2)
$V_{D D}$ dc Supply. Voltage . 3 to $15 V_{D C}$
$V_{\text {IN }}$ Input Voltage 0 to $V_{D D} V_{D C}$
$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range CD4519BM.
CD4519BC
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics CD4519BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		1		0.005	1		30	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		2		0.006	2		60	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		4		0.007	4		120	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$1 \mathrm{lol}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	V	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
VOH	High Level Output Voltage	$\mathrm{IO}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$.	9.95		9.95	10		9.95		v	
		$V_{D D}=15 \mathrm{~V}$.	14.95		14.95	15		14.95		$v$	
VIL	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2	1.5		1.5	v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V		3.0		4	3.0		3.0	v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6	4.0		4.0	v	
VIH	High Level Input Voltage	$11 \mathrm{O}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V} ., ~ V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	3		3.5		v	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V	7.0		7.0	6		$7.0^{\circ}$		v	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	9		11.0		v	
1 L	Low Level Output Current	$\mathrm{V}^{\prime} \mathrm{O}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88		0.36		mA	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	4.2		3.4	8.8		2.4		mA	
${ }^{1} \mathrm{OH}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{0}=4.6 \mathrm{~V}$			-0.51	-0.88	,	-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{0}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-4.2		-3.4	-8.8		-2.4		mA	
In	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.1		$-10^{-5}$	-0.1		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.1		$10^{-5}$	0.1		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4519BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
${ }^{\prime} \mathrm{DD}$	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		4			4		30	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		8			8		60	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		16			16		120	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OL}}$	Low Level Output Voltage	$\mathrm{IV}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$v$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	v	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	v	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\mathrm{V}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		v	
		$V_{D D}=10 \mathrm{~V}$	9.95	- -	9.95	10		9.95		v	
		$V_{D D}=15 \mathrm{~V}$	14.95	$\cdots$	14.95	15		14.95		$v$	

dc electrical characteristics (con't) CD4519BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
$V_{\text {IL }}$	Low Level Input Voltage		$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2	1.5		1.5	v
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V		3.0		4	3.0		3.0	v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6	4.0		4.0	$v$	
$\mathrm{V}_{\mathrm{IH}}$	High Level Input Voltage	$\mathrm{IIO}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	3		3.5		v	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V}$ or 9 V	7.0		7.0	6		7.0		v	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	9		11.0		v	
IOL	Low Level Output Current	$\mathrm{IIO}_{\mathrm{O}} \mathrm{l}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88	,	0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		mA	
1 OH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88				mA	
		$V_{D D}=10 \mathrm{~V}, V_{0}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		mA	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{0}=13.5 \mathrm{~V}$	-3.6		-3.0	-8.8		-2.4		mA	
1 N	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.3		$-10^{-5}$	-0.3		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.3		$10^{-5}$	0.3		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25{ }^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$, unless otherwise specified.

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
tPHL, tPLH	Propagation Delay High-to-Low Leve! or Low-to-High Level	(Figure 1)				
		$V_{D D}=5 \mathrm{~V}$		180	360	ns
		$V_{D D}=10 \mathrm{~V}$		75	150	ns
		$V_{D D}=15 \mathrm{~V}$		60	120	ns
${ }^{\text {tTHL, tTLH }}$	Transition Time	(Figure 1)				
		$V_{D D}=5 \mathrm{~V}$		90	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}{ }^{\prime}=15 \mathrm{~V}$		40	80	ns
$\mathrm{CiN}_{\text {I }}$	Average Input Capacitance	Any Input (Note 3)		5	7.5	pF
$\mathrm{Cpd}^{\text {d }}$	Power Dissipation Capacity	Any Gate (Note 4)		25		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified.
Note 3: Capacitance is guaranteed by periodic testing.
Note 4: $\mathrm{C}_{\text {pd }}$ determines the no load ac power consumption of any CMOS device. For complete explanation, see 54C/74C Family characteristics application note AN-90.

## ac test circuit and switching time waveforms



FIGURE 1
typical application


## CD4723BM/CD4723BC dual 4-bit addressable latch CD4724BM/CD4724BC CD4099BM/CD4099BC 8-bit addressable latches

## general description

The CD4723B is a dual 4-bit addressable latch with common control inputs, including two address inputs (AO, A1), an active low enable input ( $E$ ) and an active high clear input (CL). Each latch has a data input (D) and four outputs ( $\mathrm{O} 0-\mathrm{Q} 3$ ). The CD4724B and CD4099B are 8 -bit addressable latches with three address inputs (AO-A2), an active low enable input ( $\bar{E}$ ), active high clear input (CL), a data input (D) and eight outputs (Q0-Q7).

Data is entered into a particular bit in the latch when that bit is addressed by the address inputs and the enable $(\bar{E})$ is low. Data entry in inhibited when enable $(\bar{E})$ is high.

When clear (CL) and enable ( $\bar{E}$ ) are high, all outputs are low. When clear (CL) is high, enable ( $\bar{E}$ ) is low, the channel demultiplexing occurs. The bit that is addressed has an active output which follows the data input while
all unaddressed bits are held low. When operating in the addressable latch mode ( $\bar{E}=C L=$ low), changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode ( $\bar{E}=$ high, $C L=$ low).

## features

- Wide supply voltage range 3 V to 15 V
- High noise immunity 0.45 VDD typ
- Low power TTL fan out of 2 compatibility driving 74L
or 1 driving 74LS
- Serial to parallel capability
- Storage register capability
- Random (addressable) data entry
- Active high demultiplexing capability
- Common active high clear


## connection diagrams



## truth table

MODE SELECTION					
$\overline{\mathbf{E}}$	CL	ADDRESSED   LATCH	UNADDRESSED   LATCH	MODE	
L	L	Follows Data	Holds Previous Data	Addressable Latch   $H$	
L	Holds Previous Data	Holds Previous Data	Memory		
L	$H$	Follows Data	Reset to " 0 "	Demultiplexer	
$H$	$H$	Reset to " 0 "	Reset to " 0 "	Clear	

## absolute maximum ratings

(Notes 1 and 2)

$V_{\text {DD }}$ dc Supply Voltage	-0.5 to $+18 \mathrm{~V}_{\text {DC }}$
$V_{\text {IN }}$ Input Voltage	-0.5 to $V_{D D}+0.5 V_{D C}$
$\mathrm{T}_{S}$ Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
${ }^{\text {P }}$ D Package Dissipation	500 mW
$\mathrm{T}_{\mathrm{L}}$ Lead Temperature (Solderin	conds) $\quad 300^{\circ} \mathrm{C}$

recommended operating conditions
(Note 2)

$V_{\text {DD }}$ dc Supply Voltage	3 to $15 V_{\text {DC }}$
$V_{\text {IN }}$ Input Voltage	0 to $V_{D D} V_{D C}$
$\mathrm{T}_{\mathrm{A}}$ Operating Temperature Range	
CD4723BM, CD4724BM, CD4099BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4723BC, CD4724BC, CD4099BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$V_{\text {IN }}$ Input Voltage
AD
CD4723BC, CD4724BC, CD4099BC
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
dc electrical characteristics CD4723BM, CD4724BM, CD4099BM (Note 2)

PARAMETER		CONDITIONS	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IDD	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		5		0.02	5		100	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		10		0.02	10		200	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		20		0.02	20		400	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\\|_{0} l^{\prime}<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$		0.05		0	0.05		0.05	$V$	
		$V_{D D}=10 \mathrm{~V}$		0.05		0	0.05		0.05	$V$	
		$V_{D D}=15 \mathrm{~V}$	.	0.05		0	0.05		0.05	$\checkmark$	
$\mathrm{V}_{\mathrm{OH}}$	High Level Output Voltage	$\\| \mathrm{O} \mid<1 \mu \mathrm{~A}$									
		$V_{D D}=5 \mathrm{~V}$	4.95		4.95	5		4.95		$V$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$\checkmark$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$V$	
VIL	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V		1.5		2.25	1.5		1.5	$\checkmark$	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V		3.0		4.5	3.0		3.0	$V$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	V	
$V_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$ or 4.5 V	3.5		3.5	2.75		3.5		$\checkmark$	
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		V	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		V	
IOL	Low Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.64		0.51	0.88	,	0.36	.	mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.6		1.3	2.25		0.9		$m \mathrm{~A}$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$	4.2		3.4	8.8		. 2.4		mA	
${ }^{\mathrm{IOH}}$	High Level Output Current	$V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V}$	-0.64		-0.51	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.6		-1.3	-2.25		-0.9		$m A$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=13.5 \mathrm{~V}$.	-4.2		-3.4	-8.8		-2.4		$m A$	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$.		-0.10		$-10^{-5}$	-0.10		-1.0	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.10		$10^{-5}$	- 0.10		1.0	$\mu \mathrm{A}$	

dc electrical characteristics CD4723BC, CD4724BC, CD4099BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
$1 \mathrm{DD}$	Quiescent Device Current		$V_{D D}=5 \mathrm{~V}$		20		0.02	20		150	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		40		0.02	40		300	$\mu \mathrm{A}$	
		$V_{D D}=15 \mathrm{~V}$		80		0.02	80		600	$\mu \mathrm{A}$	
VOL	Low Level Output Voltage	$\|\mathrm{O}\|<1 \mu \mathrm{~A}$									
		$V_{D D}=5 V$		0.05		0	0.05		0.05	V	
		$V_{D D}=10 \mathrm{~V}$.		0.05		0	0.05		0.05	$v$	
		$V_{D D}=15 \mathrm{~V}$		0.05		0	0.05		0.05	V	
VOH	High Level Output Voltage	$\|I O\|<1 \mu \mathrm{~A}$								1	
		$V_{D D}=5 V$	4.95		4.95	5		4.95		$v$	
		$V_{D D}=10 \mathrm{~V}$	9.95		9.95	10		9.95		$v$	
		$V_{D D}=15 \mathrm{~V}$	14.95		14.95	15		14.95		$v$	
$V_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \text { or } 4.5 \mathrm{~V}$		1.5		2.25	$1.5$		1.5	V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V} \text { or } 9 \mathrm{~V}$		3.0		4.5	3.0		3.0	$v$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V		4.0		6.75	4.0		4.0	$v$	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V}$	3.5		3.5	2.75				V	
		$V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V}$ or 9 V	7.0		7.0	5.5		7.0		V	
		$V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V}$ or 13.5 V	11.0		11.0	8.25		11.0		V	

dc electrical characteristics (Continued) CD4723BC, CD4724BC, CD4099BC (Note 2)

PARAMETER		CONDITIONS	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		UNITS	
		MIN	MAX	MIN	TYP	MAX	MIN	MAX			
IOL	Low Level Output Current		$V_{D D}=5 \mathrm{~V}, \quad V_{O}=0.4 \mathrm{~V}$	0.52		0.44	0.88		0.36		mA
		$V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V}$	1.3		1.1	2.25		0.9		$m A$	
		$V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{O}=1.5 \mathrm{~V}$	3.6		3.0	8.8		2.4		$m A$	
IOH	High Level Output Current	$V_{D D}=5 \mathrm{~V}, \quad V_{O}=4.6 \mathrm{~V}$	-0.52		-0.44	-0.88		-0.36		mA	
		$V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V}$	-1.3		-1.1	-2.25		-0.9		$m A$	
		$V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V}$	-3.6		-3.0	-8.8		-2.4		mA	
IIN	Input Current	$V_{D D}=15 \mathrm{~V}, V_{\text {IN }}=0 \mathrm{~V}$		-0.30		$-10^{-5}$	-0.30		$-1.0$	$\mu \mathrm{A}$	
		$V_{\text {DD }}=15 \mathrm{~V}, V_{\text {IN }}=15 \mathrm{~V}$		0.30		$10^{-5}$	0.30		1.0	$\mu \mathrm{A}$	

ac electrical characteristics $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPLH, TPHL	Propagation Delay Data to Output	$V_{D D}=5 \mathrm{~V}$		200	400	ns
		$V_{D D}=10 \mathrm{~V}$		75	150	ns
		$V_{D D}=15 \mathrm{~V}$		50	100	ns
tPLH, tPHL	Propagation Delay Enable to	$V_{D D}=5 \mathrm{~V}$		200	400	ns
	Output	$V_{D D}=10 \mathrm{~V}$		80	160	ns
		$V_{D D}=15 \mathrm{~V}$		60	120	ns
tPHL	Propagation Delay Clear to	$V_{D D}=5 V^{\prime}$		175	350	ns
	Output	$V_{D D}=10 \mathrm{~V}$		80	160	ns
		$V_{D D}=15 \mathrm{~V}$		65	130	ns
tPLH, tPHL	Propagation Delay Address to	$V_{D D}=5 \mathrm{~V}$		225	450	ns
	Output	$V_{D D}=10 \mathrm{~V}$		100	200	ns
		$V_{D D}=15 \mathrm{~V}$		75	150	ns
tTHL, tTLH	Transition Time (Any Output)	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
${ }^{\text {W }}$ WH, ${ }^{\text {tWL }}$	Minimum Data Pulse Width	$V_{D D}=5 \mathrm{~V}$		100	200	ns
		$V_{D D}=10 \mathrm{~V}$		50	100	ns
		$V_{D D}=15 \mathrm{~V}$		40	80	ns
${ }^{\text {W WH, }}{ }^{\text {t }}$ WL	Minimum Address Pulse Width	$V_{D D}=5 V$		200	400	ns
		$V_{D D}=10 \mathrm{~V}$		100	200	ns
		$V_{D D}=15 \mathrm{~V}$		65	125	ns
twh	Minimum Clear Pulse Width	$V_{D D}=5 \mathrm{~V}$		- 75	150	ns
		$V_{D D}=10 \mathrm{~V}$		40	75	ns
		$V D D=15 \mathrm{~V}$		25	50	ns
${ }_{\text {t }} \mathrm{U}$	Minimum Set-Up Time Data to $\overline{\mathrm{E}}$	$V_{D D}=5 \mathrm{~V}$		40	80	ns
		$V_{D D}=10 \mathrm{~V}$		20	40	ns
		$V_{D D}=15 \mathrm{~V}$		15	30	ns
${ }_{t} \mathrm{H}$	Minimum Hold Time Data to $\bar{E}$	$V_{D D}=5 \mathrm{~V}$		60	120	ns
		$V_{D D}=10 \mathrm{~V}$		30	60	ns
		$V_{D D}=15 \mathrm{~V}$		25	50	ns
tsu	Minimum Set-Up Time Address to $\bar{E}$	$V_{D D}=5 \mathrm{~V}$		-15	50	ns
		$V_{D D}=10 \mathrm{~V}$		0	30	ns
		$V_{D D}=15 \mathrm{~V}$		0	20	ns
${ }_{\text {t }} \mathrm{H}$	Minimum Hold Time Address to $\bar{E}$	$V_{D D}=5 \mathrm{~V}$		-50	15	ns
		$V_{D D}=10 \mathrm{~V}$		-20	10	ns
		$V_{D D}=15 \mathrm{~V}$		-15	5	ns
CPD	Power Dissipation Capacitance	Per Package (Note 3)		100		pF
$\mathrm{CIN}^{\text {I }}$	Input Capacitance	Any Input		5	7.5	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions' and "Electrical Characteristics" provides conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
Note 3: Dynamic power dissipation ( $P_{D}$ ) is given by: $P_{D}=\left(C_{P D}+C_{L}\right) V_{C C}{ }^{2 f}+P_{Q}$; where $C_{L}=$ load capacitance; $f=$ frequency of operation; for further details, see application note AN-90, "54C/74C Family Characteristics".


CD4723BM/CD4723BC, CD4724BM/CD4724BC, CD4099BM/CD4099BC
switching time waveforms


# CMOS DATABOOK 

## COMPATIBLE BIPOLAR INTERFACE CIRCUITS



## DS1630/DS3630 hex CMOS compatible buffer

 general descriptionThe DS1630/DS3630 is a high current buffer intended for use with CMOS circuits interfacing with peripherals requiring high drive currents. The DS1630/DS3630 features low quiescent power consumption (typically $50 \mu \mathrm{~W}$ ) as well as high-speed driving of capacitive loads such as large MOS memories. The design of the DS1630/ DS3630 is such that $V_{c c}$ current spikes commonly found in standard CMOS circuits cannot occur, thereby, reducing the total transient and average power when operating at high frequencies.

## features

- High-speed capacitive driver
- Wide supply voltage range
- Input/output CMOS compatibility
- No internal transient $\mathrm{V}_{\mathrm{Cc}}$ current spikes
- $50 \mu \mathrm{~W}$ typical standby power
- Fan out of 10 standard TTL loads


## equivalent schematic and connection diagrams




Order Number DS1630J, DS3630, or DS3630N

## typical applications



CMOS to TTL Interface


CMOS To Transmission Line Interface


CMOS To CMOS Interface


LED Driver

			MIN	MAX	UNITS
Supply Voltage	16 V	Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ )	3	15	V
Input Voltage	16 V	Temperature ( $T_{A}$ )			
Output Voltage	16 V	DS1630	-55	+125	$-{ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	DS3630	0	+70	${ }^{\text {c }}$

## dc electrical characteristics (Notes 2 and 3 )

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IINH Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}, \mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}$	DS1630		90	200	$\mu \mathrm{A}$
		DS3630		90	200	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}-2.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630		0.5	3.2	mA
		DS3630		0.5	1.5	mA
IINL Logical "0" Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630		-0.15	-1	mA
		DS3630		$\mathrm{V}_{\mathrm{cc}}{ }^{-150}$	-800	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{OH}}$ Logical "1" Output Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}, \mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}$	DS1630	$\mathrm{V}_{\mathrm{cc}}{ }^{-1}$	$V_{\text {cc }}-0.75$		V
		DS3630	$\mathrm{V}_{\mathrm{cc}}{ }^{-0.9}$	$\mathrm{V}_{\mathrm{cc}}-0.75$		V
	$V_{\text {IN }}=V_{\text {cc }}-0.4 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630	$\mathrm{V}_{\mathrm{cc}}-2.5$	$\mathrm{V}_{c c}-2.0$		V
		DS3630	$\mathrm{V}_{\mathrm{cc}}-2.5$	$\mathrm{V}_{\mathrm{cc}}-2.0$		V
VoL Logical " 0 " Output Voltage	$V_{\text {IN }}=0 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=400 \mu \mathrm{~A}$	DS1630		0.75	1	V
		DS3630		0.75	0.9	V
	$V_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630		0.95	1.3	V
		DS3630		0.95	1.3	V
	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$	DS1630		1.2	1.6	V
		DS3630		1.2	1.5	V

ac electrical characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {pdo }}$	Propagation Delay to a Logical "0"'	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		30	45	ns
		$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		40	60	ns
		$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		50	75	ns
$\mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay to a Logical "1"	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15	25	ns
		$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		35	50	ns
		$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		50	75	ns

Note 1: "Absolute Maximum Ratings"' are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics". provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1630 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3630. All typicals are given for $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or $\min$ on absolute value basis.

## typical performance characteristics



## ac test circuit and switching time waveforms



Pulse Generator characteristics: PRR $=1.0 \mathrm{MHz}, \mathrm{PW}=500 \mathrm{~ns}, \mathrm{t}_{\mathrm{t}}=\mathrm{t}_{1}<10 \mathrm{~ns}$, $V_{I N}=0$ to $V_{C C}$

DS1631/DS3631, DS1632/DS3632, DS1633/DS3633, DS1634/DS3634 CMOS dual peripheral drivers

## general description

The DS1631 series of dual peripheral drivers was designed to be a universal set of interface components for CMOS circuits.

Each circuit has CMOS compatible inputs with thresholds that track as a function of $\mathrm{V}_{\mathrm{CC}}$ (approximately $1 / 2 \mathrm{~V}_{\mathrm{CC}}$ ). The inputs are PNPs providing the high impedance necessary for interfacing with CMOS.

Outputs have high voltage capability, minimum break. down voltage is 56 V at $250 \mu \mathrm{~A}$.

The outputs are Darlington connected transistors. This allows high current operation ( 300 mA max) at low internal $\mathrm{V}_{\mathrm{CC}}$ current levels since, base drive for the output transistor is obtained from the load in proportion to the required loading conditions. This is essential in order to minimize loading on the CMOS logic supply.

Typical $V_{C C}=5 \mathrm{~V}$ power is 28 mW with both outputs $\mathrm{ON} . \mathrm{V}_{\mathrm{cc}}$ operating range is 4.5 V to 15 V .

The circuit also features output transistor protection if the $\mathrm{V}_{\mathrm{Cc}}$ supply is lost by forcing the output into the
high impedance OFF state with the same breakdown levels as when $\mathrm{V}_{\mathrm{Cc}}$ was applied.

Pin-outs are the same as the respective logic functions found in the following popular series of circuits: DS75451, DS75461, DS3611. This feature allows direct conversion of present systems to the DM74C CMOS family and DS1631 series circuits with great power savings.

The DS1631 series is also TTL/DTL compatible at $V_{c c}=5 \mathrm{~V}$.

## features

- CMOS compatible inputs
- TTL/DTL compatible inputs
- High impedance inputs PNP's
- High output voltage breakdown 56 V min
- High output current capability 300 mA max
-. Same pin-outs and logic functions as DS75451, DS75461 and DS3611 series circuits
- Low $V_{C c}$ power dissipation ( 28 mW both outputs " ON " at 5 V )


## schematic diagram (Equivalent Circuit)



SEE CONNECTION DIAGRAMS FOR ORDERING INFORMATION

absolute maximum ratings (Note 1)		operating conditions			
			MIN	MAX	UNITS
Supply Voltage	16 V	Supply Voltage, $\mathrm{V}_{\text {CC }}$			
Voltage at Inputs	-0.3V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	DS1631/DS $1632 /$	4.5	15	$v$
Output Voltage	56 V	DS1633/DS1634			
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DS3631/DS3632/	4.75	15	v
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	DS3633/DS3634	4.75	15	$v$
		Temperature, $\boldsymbol{T}_{A}$ DS1631/DS1632/ DS1633/DS1634	-55	+125	${ }^{\circ} \mathrm{C}$
		$\begin{aligned} & \text { DS3631/DS3632/ } \\ & \text { DS3633/DS3634 } \end{aligned}$	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3 )

PARAMETER	CONDITIONS			min	TYP	MAX	UNITS
All Circuits							
Logical ' 1 " Input Voltage	(Figure 1)	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$		3.5	2.5	,	v
		$V_{C c}=10 \mathrm{~V}$		8.0	5		v
		$\mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}$		12.5	7.5		v
Logical "0" Input Voltage	(Figure 1)	$V_{c c}=5 \mathrm{~V}$			2.5	1.5	V
		$\mathrm{V}_{C c}=10 \mathrm{~V}$			5.5	2.0	v
		$\mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}$			7.5	2.5	V
$\mathrm{I}_{\mathbf{H}}$. Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {iN }}=15 \mathrm{~V}$, (Figure 2)				0.1		$\mu \mathrm{A}$
Logical "0" Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$. (Figure 3)	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$			-50		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}$			-200		$\mu \mathrm{A}$
$\mathrm{V}_{\text {OH }}$ Output Breakdown Voltage	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OH}}=250 \mu \mathrm{~A}$, (Figure 1)			56	65		$\checkmark$
Output Low Voltage.	$\mathrm{V}_{\mathrm{cc}}=\operatorname{Min}$, (Figure 1)	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$			0.9		v
		$\mathrm{I}^{\text {OL }}=300 \mathrm{~mA}$			1.1		V
DS1631/DS3631							
Supply Currents	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, (Figure 4)	$V_{c c}=5 \mathrm{~V}$	Output Low Both Drivers		7		mA
		$\mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}$			14		mA
$I_{\text {ccel }}$	(Figure 4)	$\mathrm{V}_{C \mathrm{C}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$	Output High Both Drivers		2		mA
		$\mathrm{V}_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$			7.5		mA
tpd1 Propagation to "1"	$V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V} .$   (Figure 5)				200		ns
tpao Propagation to "0"	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V},$   (Figure 5)				150		ns
DS1632/DS3632							
Supply Currents	(Figure 4)	$\mathrm{v}_{\text {cc }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$	Output Low		8		mA
		$\mathrm{V}_{\text {cc }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$			18		mA
I cce(1)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, (Figure 4)	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	Output High		2.5		mA
		$\mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}$			9		mA
tpdı Propagation to "1"	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V},$   (Figure 5)				150		ns
$\mathrm{t}_{\text {pdo }}$ Propagation to "0"	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V},$   (Figure 5)				150		ns
DS 1633/DS3633							
Supply Currents	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$, (Figure 4)	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	Output Low		7.5		mA
		$\mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}$			16.		mA
${ }^{\text {I ce(1) }}$	(Figure 4)	$\mathrm{V}_{\mathrm{C}} \dot{c}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{iN}}=5 \mathrm{~V}$	Output High		2		mA
		$\mathrm{V}_{\text {cc }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$			7.2		mA
tpal Propagation to "1"	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V},$   (Figure 5)				200		ns
tpd0 Propagation to " 0 "	$V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V},$   (Figure 5)				150		ns

electrical characteristics (con't)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
DS1634/DS3634							
Supply Currents	(Figure 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=5 \mathrm{~V}$	Output Low		7.5		mA
		$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$			18		mA
$\mathrm{I}_{\mathrm{CC}(1)}$	$V_{\text {IN }}=0 \mathrm{~V}$, (Figure 4)	$V_{C C}=5 \mathrm{~V}$	Output High		3		mA
		$V_{c c}=15 \mathrm{~V}$			11		mA
$\mathrm{t}_{\text {pdt }}$ Propagation to "1"	$V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V},$   (Figure 5)				150		ns
$\mathrm{t}_{\mathrm{paO}}$ Propagation to "0"	$V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V},$   (Figure 5)				150		ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1631, DS1632, DS1633 and DS1634 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3631, DS3632, DS3633 and DS3634. All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

## test circuits



CIRCUIT	INPUT UNDER TEST	OTHER INPUT	OUTPUT	
			APPLY	MEASURE
LM3611	$\begin{aligned} & V_{1 H} \\ & V_{I L} \end{aligned}$	$\begin{aligned} & V_{1 H} \\ & V_{c \mathrm{Cl}} \end{aligned}$	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OL}} \end{aligned}$	$\overline{V_{\mathrm{OH}}}$   $V_{O L}$
LM3612	$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	$\begin{aligned} & V_{1 H} \\ & V_{c \mathrm{cc}} \end{aligned}$	IOL $\mathrm{I}_{\mathrm{OH}}$	$V_{\mathrm{OL}}$   $\mathrm{V}_{\mathrm{OH}}$
LM3613	$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}$ IOL	$\mathrm{V}_{\mathrm{OH}}$   $V_{\text {OL }}$
LM3614	$\begin{aligned} & V_{1 H} \\ & V_{I L} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & V_{\text {IL }} \end{aligned}$	IOL $\mathrm{IOH}_{\mathrm{OH}}$	$V_{\text {OL }}$   $\mathrm{V}_{\mathrm{OH}}$

Note: Each input is tested separatelv.
FIGURE 1. $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$


FIGURE 2. IIH

## test circuits (con't) and switching time waveforms



Both gates are tested simultaneously.
Note $A$ : Each input is tested separately.
Note B: When testing DS1633 and DS1634 input not under test is prounded. For all other circuits it is at $\mathrm{V}_{\mathrm{Cc}}$.

FIGURE 3. IIL
FIGURE 4. ICC


Note 1: The pula generator has the following chsracteristics: PRR $=500 \mathrm{kHz}, Z_{\text {out }} \geqslant 50 \mathrm{~s}$. Note 2: $C_{L}$ includes probe and iis capacitane

FIGURE 5. Switching Times.
connection diagrams, truth tables and ordering information

(Pin 4 is electrically connected to the case.)
Order Number DS1631H/DS3631H


Order Number 3631N

Dual-In-Line Package


Order Number DS1631J/DS3631J

Positive logic: $A B=X$		
$A$	$B$	OUTPUT X
0	0	0
1	0	0
0	1	0
1	1	1


top VIEW
(Pin 4 is electrically connected to the case.) Order Number DS1632H/DS3632H


Dual-In-Line Package


Order Number DS 1632J/DS3632J

Positive logic: $\overline{\mathrm{AB}}=x$		
A	B	OUTPUT $X$
0	0	1
1	0	1
0	1	1
1	1	0

connection diagrams, truth tables and ordering information

DS1633
Metal Can Package

(Pin 4 is electrically comnected to the case.) Order Number DS 1633 H/DS3633H


TOP VIEW
Order Number DS3633N


Order Number DS 1633J/DS3633.
Positive logic: $A+B=X$

A	B	OUTPUT X
0	0	0
1	0	1
0	1	1
1	1	1

## DS1686/DS3686 positive voltage relay driver

## general description

The DS1686/DS3686 is a high voltage/current positive voltage relay driver having many features not available in present relay drivers.

PNP inputs provide both TTL/DTL compatibility and high input impedance for low input loading.

Output leakage is specified over temperature at an output voltage of 54 V . Minimum output breakdown (ac/ latch breakdown) is specified over temperature at 5 mA . This clearly defines the actual breakdown of the device since the circuit has incorporated in it an internal reference which does not allow output breakdown latching found in existing relay drivers. Additionally, this internal reference circuit feature will eliminate the need in most cases of an external clamping (inductive transient voltage protection) diode. When the output is turned "OFF" by input logic conditions the resulting inductive voltage transient seen at the output is detected by an internal zener reference. The reference then momentarily activates the output transistor long enough so that the relay energy is discharged. This feature eliminates the need of external circuit protection components and insures output transistor protection.

The outputs are Darlington connected transistors, which allow high current operation at low internal $\mathrm{V}_{\mathrm{CC}}$
current levels-base drive for the output transistor is obtained from the load in proportion to the required loading conditions. Typical VCC power with both outputs "ON" is 90 mW .

The circuit also features output transistor protection if the $V_{C C}$ supply is lost by forcing the output into the high impedance "OFF" state with the same breakdown levels as when $V_{C C}$ was applied.

## features

- TTL/DTL/CMOS compatible inputs
- High impedance inputs (PNP's)
- High output voltage breakdown ( 65 V typ)
- High output current capability ( $300 \mathrm{~mA} \max$ )
- Internal protection circuit eliminates need for output protection diode in most applications
- Output breakdown protection if $\mathrm{V}_{\mathrm{CC}}$ supply is lost
- Low VCC power dissipation ( 90 mW (typ) both outputs "ON")
- Voltage and current levels compatible for use in telephone relay applications.


## connection diagrams



Pin 4 is in electrical contact with the case
Order Number DS 1686 H or DS3686H


Order Number DS3686N
schematic diagram



Order Number DS1686J or DS3686J

## truth table

Positive logic: $\overline{A B}=x$		
A	B	OUTPUT $X$
0	0	1
1	0	1
0	1	1
1	1	0

Logic " 0 ' output 'ON'
Logic " 1 " output "OFF"
absolute maximum ratings (Note 1)

-			MIN	MAX	UNITS
Supply Voltage	7 V	Supply Voltage, VCC			
Input Voltage	15 V	DS1686	4.5	5.5	$v$
Output Voltage	56 V	DS3686	4.75	5.25	V
Storage Temperature Range	$65^{\circ} \mathrm{C}$ to $+150^{\prime \prime} \mathrm{C}$	Temperature, $\mathrm{T}_{\mathrm{A}}$			
Lead Temperature (Soldering, 10 seconds)	$300{ }^{\prime \prime} \mathrm{C}$	DS1686	-55	+125	${ }^{\circ} \mathrm{C}$
		DS3686	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 and 3 )

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
$V_{1 H}$	Logical '1" Input Voltage				2.0			$\checkmark$
$\mathrm{I}_{\mathrm{H}}$	Logical "1" Input Current	$V_{C C}=M a x, V_{\text {IN }}=5.5 \mathrm{~V}$				0.01	40	$\mu \mathrm{A}$
$V_{\text {IL }}$	Logical " 0 " Input Voltage						0.8	V
$1 / 2$	Logical " 0 ' Input Current	$V_{C C}=M a x, V_{\text {IN }}=0.4 \mathrm{~V}$				-60	-250	$\mu \mathrm{A}$
VCD	Input Clamp Voltage	$V_{C C}=5 \mathrm{~V}, \mathrm{ICLAMP}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				-1.0	-1.5	V
VOH	Output Breakdown	$V_{C C}=$ Max, $V_{I N}=0 V, 1$ OUT $=5 \mathrm{~mA}$			56	65		V
${ }^{\mathrm{I}} \mathrm{OH}$	Output Leakage	$V_{C C}=M_{a x}, V_{\text {IN }}=0 \mathrm{~V}, V_{\text {OUT }}=54 \mathrm{~V}$				0.5	250	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{OL}}$	Output "ON" Voltage	$\begin{aligned} & V_{C C}=M i n, \\ & V_{I N}=2 V \end{aligned}$	IOUT $=100 \mu \mathrm{~A}$	DS1686		0.85	1.1	V
				DS3686		0.85	1.0	V
			IOUT $=300 \mu \mathrm{~A}$	DS1686		0.95	1.3	V
				DS3686		0.95	1.2	V
$1 \mathrm{CC}(1)$	Supply Current (Both Drivers)	$V_{C C}=M a x, V_{I N}=O V, \text { Outputs Open }$				2.0	4.0	mA
$1 \mathrm{CC}(0)$	Supply Current (Both Drivers)	$V_{C C}=$ Max, $V_{\text {IN }}=3 V$, Outputs Open				18.0	28	mA
${ }^{1} \mathrm{pdO}$	Propagation Delay to a Logical " 0 " (Output Turn "ON")	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, V_{\mathrm{L}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega 2, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$				50		ns
${ }^{\text {tpd }}$ 1	Propagation Delay to a Logical " 1 " (Output Turn "OFF")	$\begin{aligned} & C_{L}=15 \mathrm{pF}, V_{\mathrm{L}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \end{aligned}$				1.0		$\mu s$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS1686 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS3686. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

## ac test circuit and switching time waveforms



Note 1: The pulse generator has the following characteristics: PRR $=1 \mathrm{MHz}, 50 \%$ duty cycle, $Z_{O U T} \geq 50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$.
Note 2: $C_{L}$ includes probe and jig capacitance.


## DS1687/DS3687 negative voltage relay driver

## general description

The DS1687/DS3687 is a high voltage/current negative voltage relay driver having many features not available in present relay drivers.
PNP inputs provide both TTL/DTL compatibility and high input impedance for low input loading.
Output leakage is specified over temperature at an output voltage of -54 V . Minimum output breakdown (ac/ latch breakdown) is specified over temperature at -5 mA . This clearly defines the actual breakdown of the device since the circuit has incorporated in it an internal reference which does not allow output breakdown latching found in existing relay drivers. Additionally, this internal reference circuit feature will eliminate the need in most cases of an external clamping (inductive transient voltage protection) diode. When the output is turned "OFF" by input logic conditions the resulting inductive voltage transient seen at the output is detected by an internal zener reference. The reference then momentarily activates the output transistor long enough so that the relay energy is discharged. This feature eliminates the need of external circuit protection components and insures output transistor protection.

The outputs are Darlington connected transistors, which
allow high current operation at low internal $\mathrm{V}_{\mathrm{CC}}$ current levels-base drive for the output transistor is obtained from the load in proportion to the required loading conditions. Typical VCC power with both outputs "ON" is 90 mW .
The circuit also features output transistor protection if the $V_{C C}$ supply is lost by forcing the output into the high impedance "OFF" state with the same breakdown levels as when VCC was applied.

## features

- TTL/DTL/CMOS compatible inputs
- High impedance inputs (PNP's)
- High output voltage breakdown (-65V typ)
- High output current capability ( 300 mA max)
- Internal protection circuit eliminates need for output protection diode in most applications
- Output breakdown protection if $\mathrm{V}_{\mathrm{CC}}$ supply is lost
- Low VCC power dissipation ( 90 mW (typ) both outputs "ON")
- Voltage and current levels compatible for use in telephone relay applications


## connection diagrams



Pin 4 is in electrical contact with the case
Order Number DS 1687H or DS3687H
schematic diagram



Order Number DS3687N


Order Number DS1687J or DS3687J

## truth table

Positive logic: $\overline{\mathrm{AB}}=\mathrm{X}$

A	B	OUTPUT X
0	0	1
1	0	1
0	1	1
1	1	0

Logic "0" output "ON"
Logic " 1 " output "OFF"

## absolute maximum ratings (Note 1 <br> 

operating conditions

Supply Voltage	7 V
Input Voltage	15 V
Output Voltage	56 V
Storage Temperature Range	65 C to $+150^{\prime \prime} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\prime \prime} \mathrm{C}$

electrical characteristics (Notes 2 and 3 )

PARAMETER		CONDITIONS			MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage				2.0			$\checkmark$
$\mathrm{I}_{\text {IH }}$	Logical "1" Input Current	$V_{C C}=$ Max	$V_{\text {IN }}=5.5 \mathrm{~V}$			0.01	40	$\mu \mathrm{A}$
$V_{\text {IL }}$	Logical "0" Input Voltage						0.8	V
$1 / 15$	Logical "0" Input Current	$V_{C C}=$ Max.	$V_{\text {IN }}=0.4 \mathrm{~V}$			-60	-250	$\mu \mathrm{A}$
$V_{C D}$	Input Clamp Voltage	$V_{C C}=5 \mathrm{~V}$, I	LAMP $=-12 \mathrm{~mA}$,	$T_{A}=25^{\circ} \mathrm{C}$		-1.0	-1.5	V
$\mathrm{V}_{\mathrm{OH}}$	Output Breakdown	$V_{C C}=M_{\text {ax }}$,	$V_{\text {IN }}=0 \mathrm{~V}$, IOUT $=$	$-5 \mathrm{~mA}$	-56	-65		V
${ }^{\mathrm{I} \mathrm{OH}}$	Output Leakage	$V_{C C}=$ Max,	$V_{I N}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$	$-54 \mathrm{~V}$		-0.5	-250	$\mu \mathrm{A}$
VOL	Output "ON" Voltage			DS1687		$-0.85$	-1.1	V
		$V_{C C}=$ Min,		DS3687		-0.85	-1.0	V
		$V_{\text {IN }}=2 \mathrm{~V}$	IOUT $=300 \mathrm{~mA}$	DS1687		-0.95	-1.3	V
			IOUT $=300 \mathrm{~mA}$	DS3687		-0.95	-1.2	V
ICC(1)	Supply Current (Both Drivers)	$V_{C C}=$ Max,	IN $=0 \mathrm{~V}$, Outputs	Open		2.0	4.0	mA
ICC(0)	Supply Current (Both Drivers)	$V_{C C}=$ Max,	$V_{\text {IN }}=3 \mathrm{~V}$, Outputs	Open		18.0	28	mA
${ }^{\text {tpd }}$ (ON)	Propagation Delay to a Logical " 0 " (Output Turn "ON")	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \end{aligned}$	$\begin{aligned} & V_{L}=-10 \mathrm{~V}, R_{L}=50 \\ & C C=5.0 \mathrm{~V} \end{aligned}$			50		${ }^{1} \mathrm{~ns}$
${ }^{\text {tpd }}$ (OFF)	Propagation Delay to a Logical " 1 " (Output Turn "OFF")	$\begin{aligned} C_{L} & =15 \mathrm{pF} \\ T_{A} & =25^{\circ} \mathrm{C} . \end{aligned}$	$\begin{aligned} & V_{L}=-10 \mathrm{~V}, R_{\mathrm{L}}=5 \\ & C C=5.0 \mathrm{~V} \end{aligned}$	50S2,		1.0		$\mu 5$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics' provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 1687 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS 3687 . All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

## ac test circuit and switching time waveforms



Note 1: The pulse generator has the following characteristics:
PRR $=1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{Z}_{\text {OUT }} \geq 50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$.
Note 2: $\mathrm{C}_{\mathrm{L}}$ includes probe and jig capacitance.


DS78C20/DS88C20 dual CMOS compatible differential line receiver

## general description

The DS78C20 and DS88C20 are high performance, dual differential, CMOS compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA and Federal Standards.

Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver, and the pinout is identical.

A response pin is provided for controlling sensitivity to input noise spikes with an external capacitor. Each receiver jncludes a $180 \Omega$ terminating resistor, which may be used optionally on twisted pair lines. The DS78C20 is specified over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range, and the DS88C20 over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range.

## features '

- Full compatibility with EIA Standards RS-232-C, RS-422 and RS-423, and Federal Standards 1020 and 1030
- Input voltage range of $\pm 15 \mathrm{~V}$ (differential or commonmode)
- Separate strobe input for each receiver
- $1 / 2 V_{C C}$ strobe threshold for CMOS compatibility
- $5 k$ input impedance
- 50 mV input hysteresis
- 200 mV input threshold
- Operation voltage range $=4.5 \mathrm{~V}$ to 15 V


## connection diagram


typical application


Note 1: (Optional internal termination resistor). a) Capacitor in series with internal line termination resistor; terminates the line and saves termination power. Exact value depends on line length.
b) Pin 1 connected to pin 2; terminates the line.
c) Pin 2 open; no internal line termination.
d) Transmission line may be terminated elsewhere or not at all.
Note 2: Optional to control response time.
Note 3: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 15 V for the DS78C20. For further information on line drivers and line receivers, refer to application notes AN-22, AN-83 and AN-108.

RS-232-C Application with Hysteresis


For signals which require fail-safe or have slow rise and fall times, use $R_{1}$ and $D_{1}$ as shown above; otherwise the positive input (pin 3 or pin 11) may be connected to ground.

$\mathrm{V}_{\mathrm{CC}}$	$\mathrm{R}_{1} \pm 5 \%$
5 V	$4.3 \mathrm{k} \Omega$
10 V	$15 \mathrm{k} \Omega$
15 V	$24 \mathrm{k} \Omega$



electrical characteristics (Notes 2 and 3)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
VTH	Differential Threshold Voltage	$\begin{aligned} & \text { IOUT }=-200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT }} \geq \mathrm{V}_{\mathrm{CC}}-1.2 \mathrm{~V} \end{aligned}$	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 10 \mathrm{~V}$		0.06	0.2	V
			$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$		0.06	0.3	V
		${ }^{\text {OUUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V}$	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 10 \mathrm{~V}$		-0.08	-0.2	V
			$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$		-0.08	-0.3	V
RIN	Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$			5		k $\Omega$
$\mathrm{R}_{\mathrm{T}}$	Line Termination Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	180	300	$\Omega$
IIND	Data Input Current (Unterminated)	$\mathrm{V}_{\text {CM }}=10 \mathrm{~V}$			2	3.1	mA
		$\mathrm{V}_{C M}=0 \mathrm{~V}$			0	-0.5	mA
		$V_{C M}=-10 \mathrm{~V}$			-2	-3.1	mA
$V_{\text {THB }}$	Input Balance	$\begin{aligned} & \text { IOUT }=200 \mu \mathrm{~A}, V_{\text {OUT }} \geq \\ & V_{C C}-1.2 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50052,(\text { Note } 5) \end{aligned}$	$-7 \vee \leq V_{C M} \leq 7 V$		0.1	0.4	V
		$\begin{aligned} & \text { IOUT }=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq 0.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=500 \Omega,(\text { Note } 5) \end{aligned}$	$-7 \vee \leq V^{\prime} \mathrm{CM} \leq 7 \mathrm{~V}$		-0.1	-0.4	V
VOH	Logical "1" Output Voltage	IOUT $=-200 \mu \mathrm{~A}, \mathrm{~V}_{\text {DIFF }}=1 \mathrm{~V}$		$V_{C C}{ }^{-1.2}$	$V_{C C}{ }^{-0.75}$		V
VOL	Logical "0" Output Voltage	IOUT $=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {DIFF }}=-1 \mathrm{~V}$			0.25	0.5	$\checkmark$
ICC	Power Supply Current	$\begin{aligned} & 15 \mathrm{~V} \leq V_{C M} \leq-15 \mathrm{~V}, \\ & V_{\text {DIFF }}=-0.5 \mathrm{~V} \text { (Both Receivers) } \end{aligned}$	$V_{C C}=5.5 \mathrm{~V}$		8	15	mA
			$V_{C C}=15 \mathrm{~V}$		15	30	mA
IIN(1)	Logical "1" Strobe Input Current	$V_{\text {STROBE }}=15 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=3 \mathrm{~V}$			15	100	$\mu \mathrm{A}$
IIN(0)	Logical "0" Strobe Input Current	$V_{\text {STROBE }}=0 \mathrm{~V}, V_{\text {DIFF }}=-3 \mathrm{~V}$			-0.5	-100	$\mu \mathrm{A}$
$V_{\text {IH }}$	Logical "1" Strobe Input Voltage	$\mathrm{I}^{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {OL }} \leq 0.5 \mathrm{~V}$	$V_{C C}=5 \mathrm{~V}$	3.5	2.5		V
			$V_{C C}=10 \mathrm{~V}$	8.0	5		V
			$V_{C C}=15 \mathrm{~V}$	12.5	7.5		V
$V_{\text {IL }}$	Logical " 0 " Strobe Input Voltage	$\begin{aligned} & \text { IOUT }=-200 \mu \mathrm{~A}, \\ & V_{O H}=V_{C C}-1.2 V \end{aligned}$	$V_{C C}=5 \mathrm{~V}$		2.5	1.5	V
			$V_{C C}=10 \mathrm{~V}$		5.0	2.0	V
			$V_{C C}=15 \mathrm{~V}$		7.5	2.5	V
los	Output Short-Circuit Current	$V_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=15 \mathrm{~V}, \mathrm{~V}_{\text {STROBE }}=0 \mathrm{~V},($ Note 4)		-5	-20	-40	mA

switching characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }^{\text {t }} \mathrm{pdO}(\mathrm{D})$ Differential Input to "0' Output	$C_{L}=50 \mathrm{pF}$		60	100	ns
$t_{\text {pdi( }}$ (D) Differential Input to "1" Output	$C_{L}=50 \mathrm{pF}$		100	150	ns
$t_{\text {pdO(S) }}$ Strobe Input to "0" Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		30	70	ns
${ }^{\text {tpd }}$ (S) Strobe Input to " 1 " Output	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		100	150	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices shoutd be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 78 C 20 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS88C20. All typical values are for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: Refer to EIA-RS-422 for exact conditions.

## ac test circuit and switching time waveforms


*Includes probe and jig capacitance
:


## ADC0800P(MM4357B/MM5357B) 8-bit A/D converter general description <br> features

The ADC0800P is an 8 -bit monolithic A/D converter using P -channel ion-implanted MOS technology. It contains a high input impedance comparator, 256 series resistors and analog switches, control logic and output latches. Conversion is performed using a successive approximation technique where the unknown analog voltage is compared to the resistor tie points using analog switches. When the appropriate tie point voltage matches the unknown voltage, conversion is complete and the digital outputs contain an 8 -bit complementary binary word corresponding to the unknown. The binary output is TRI-STATE ${ }^{\oplus}$ to permit bussing on common data lines.

The ADC0800PD is specified over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the $A D C 0800 P C N$ is specified over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

- Low cost
- $\pm 5 \mathrm{~V}, 10 \mathrm{~V}$ input ranges
- No missing codes
- High input impedance
- Ratiometric conversion
- TRI-STATE outputs
- Fast
- Contains output latches
- TTL compatible
- Supply voltages 5, -12, Gnd
- Resolution 8 bits
- Linearity $\pm 1 \mathrm{LSB} / \pm 1 / 2 \mathrm{LSB}$
- Conversion speed 40 clock periods
- Clock range 50 to 800 kHz


## connection diagram



## typical applications



General Connection
High Accuracy Connection
(8LGEGWW/gLGE๖WW) d00803a甘
absolute maximum ratings

Supply Voltage (VDD)	$V_{S S}-22 \mathrm{~V}$
Supply Voltage $\left(V_{G G}\right)$	$V_{S S}-22 \mathrm{~V}$
Voltage at Any Input	$V_{S S}+0.3 V$ to $V_{S S}-22 \mathrm{~V}$
Storage Temperature	$150^{\circ} \mathrm{C}$


Operating Temperature	
ADC0800PD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ADC0800PCN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

## electrical characteristics

These specifications apply for $\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$, and $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$; over $\pm 55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the $\mathrm{ADC0800P}$ and over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the ADC0800PCN unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Non-Linearity	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Notes 3 and 4)			$\pm 1$	LSB
	(Notes 3 and 4)		.	$\pm 2$	LSB
Total Unadjusted Error	(Note 3)			$\pm 2$	LSB
Differential Non-Linearity	(Note 3)			$\pm 1 / 2$	LSB
Zero Error (Not Adjusted)	(Note 3)			$\pm 2$	LSB
Zero Error Temperature Coefficient	(Note 1)			0.01 .	\% ${ }^{\circ} \mathrm{C}$
Full Scale Ėrror				$\pm 2$	LSB
Full Scale Error Temperature Coefficient	(Note 1)			0.01	$\%{ }^{\circ} \mathrm{C}$
Input Leakage				1	$\mu \mathrm{A}$
Power Supply Rejection	(Note 1)			0.1	\%/V.
Logical " $\uparrow$ " Input Voltage	All inputs	$\mathrm{V}_{\text {SS }}{ }^{-1.0}$		$V_{S S}$	$V$
Logical '0' Input Voltage	All Inputs	$\mathrm{V}_{\mathrm{GG}}$		$\mathrm{V}_{S S}{ }^{-4.2}$	V
Logical Input Leakage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, All Inputs, $\mathrm{V}_{\text {IL }}=V_{S S}-10 \mathrm{~V}$	,		1	$\mu \mathrm{A}$
Logical "1' Output Voltage	All Outputs, $1 \mathrm{OH}=100 \mu \mathrm{~A}$	2.4			$V$
Logical "0' Output Voltage	All Outputs, $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
Disabled Output Leakage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, All Outputs, $\mathrm{V}_{\text {OL }}=\mathrm{V}_{\text {SS }} @ 10 \mathrm{~V}$			2	$\mu \mathrm{A}$
Clock Frequency	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	50		800	kHz
	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	100		500	kHz
Clock Pulse Width	Duty Cycle	40		60	\%
TRI-STATE Enable/Disable Time				1000	ns
Start/Conversion Pulse		1		$31 / 2$	clock
					periods
Power Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			15	mA .

Note 1: Guaranteed by design only.
Note 2: With zero and full scale adjustments made as described in page 3.
Note 3: See Definitions section.
Note 4: Non-linearity specifications are based on best straight line.

## OPERATION

The ADC0800P contains a network with 256-300 2 resistors in series. Analog switch taps are made at the junction of each resistor and at each end of the network. In operation, a reference ( 10.00 V ) is applied across this network of 256 resistors. An analog input $\left(V_{I N}\right)$ is first compared to the center point of the ladder via the appropriate switch. If $\mathrm{V}_{\text {IN }}$ is larger than $V_{\text {REF }} / 2$, the internal logic changes the switch points and now compares $V_{I N}$ and $3 / 4 \mathrm{~V}_{\text {REF }}$. This process, known as successive approximation, continues until the best match of $V_{I N}$ and $V_{\text {REF }} / N$ is made. $N$ now defines a specific tap on the resistor network. When the conversion is complete, the logic loads a binary word corresponding to this tap into the output latch and an end of
conversion (EOC) logic level appears. The output latches hold this valid data until a new conversion is completed and new data is loaded into the latches. The data transfer occurs in about 200 ns so that valid data is present virtually all the time. Conversion requires 40 clock periods. The device may be operated in the freerunning mode by connecting. Start Conversion line to End of Conversion line. However, to insure start-up under all possible conditions, an external Start Conversion pulse is required during power up conditions.

## REFERENCE

The reference applied across the 256 resistor network determines the analog input range. $\mathrm{V}_{\mathrm{REF}}=10.00 \mathrm{~V}$ with
the top of the reference connected to 5 V gives a $\pm 5 \mathrm{~V}$ range．The reference can be level shifted between $V_{S S}$ and VGG．However，the VREF pin（pin 15）must not exceed $V_{S S}$ and the $R$ network pin（pin 5）must not go below $\mathrm{V}_{\mathrm{GG}}+5 \mathrm{~V}$ ．

Other reference voltages may be used（such as 10.24 V ）． If a 5 V reference is used，the analog range will be 5 V and accuracy will be reduced by a factor of 2 ．Thus，for maximum accuracy，it is desirable to operate with at least a 10 V reference．

## POWER SUPPLIES

Standard supplies are $\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V}$ and $V_{D D}=0 V$ ．Device accuracy is dependent on stability of the reference voltage and has slight sensitivity to $\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{GG}} . \mathrm{V}_{\mathrm{DD}}$ has no effect on accuracy．

## ZERO AND FULL SCALE ADJUSTMENT

Zero Adjustment：This is the offset voltage required on R Network（pin 5）to make the 11111111 to 11111110 transition when the input voltage is $1 / 2 \mathrm{LSB}(20 \mathrm{mV}$ for a 10.24 V scale）．This voltage is guaranteed to be within 2 LSB for the ADC0800P．In most cases，this can be accomplished by having a $1 \mathrm{k} \Omega$ pot on pin 5 ．

Full Scale Adjustment：This is the offset voltage required on $+V_{\text {REF }}$（pin 15）to make the 00000001 to 00000000 transition when the input voltage $11 / 2$ LSB from full scale（ 60 mV less than full scale for a 10.24 V scale）． This voltage is guaranteed to be within 2 LSB for the ADC0800P．In most cases，this can be accomplished by having a $1 \mathrm{k} \Omega$ pot on pin 15 ．

## DEFINITIONS

Zero Error：It is the required mean value of input voltage of an ADC to set zero code out．Zero error is usually caused by amplifier or comparator input offset voltage；it can usually be trimmed to zero with an offset zero adjust potentiometer external to the ADC．Zero error is expressed in fractional LSB．

Full Scale Error：In an ADC，it is the departure of actual input voltage from design input voltage for a full－scale output code．Scale errors can be caused by errors in reference voltage，ladder resistor values，or amplifier gain，et al．Scale errors may be corrected by adjusting output amplifier gain or reference voltage．

Quantizing Error：It is the maximum deviation from a straight line transfer function of a perfect ADC．As，by its very nature，an ADC quantizes the analog input into a finite number of output codes，only an infinite resolu－ tion ADC would exhibit zero quantizing error．A perfect ADC，suitably offset $1 / 2$ LSB at zero scale as shown in Figure 1，exhibits only $\pm 1 / 2$ LSB maximum output error．The quantizing error of an 8 －bit $A D C$ is $\pm 1 / 2$ part in $2^{8}$ or $\pm 0.195 \%$ of full scale．

Differential Non－Linearity：Indicates the difference between actual analog voltage change and the ideal （1 LSB）voltage change at any input voltage of an ADC． Differential non－linearity may be expressed in fractional bits．


FIGURE 1．ADC Transfer Curve， $\mathbf{1 / 2}$ LSB Offset at Zero ．
Differential non－linearity specifications are just as important as non－linearity specifications because the apparent quality of a converter curve can be significantly affected by differential non－linearity，even though the non－linearity specification is good．As this characteristic is impractical to measure on a production basis，it is rarely，if ever，specified，and linearity is the primary specified parameter．Differential non－linearity can always be as much as twice the non－linearity，but no more．

Non－Linearity：Non－linearity is the departure from a linear transfer curve．The definition of non－linearity is either based on best straight line or end points straight line．Best straight line basis is used when the non－linearity error is unidirectional（shown in Figure 2）．The end point straight line basis is used when the non－linearity error can be in either direction（shown in Figure 3）． Non－linearity error does not include quantizing，zero or scale errors．For simplicity，Figures 1，2，3 and 4 show a 3－bit ADC．Figure 2 also shows the limit lines for a $\pm 1 / 2$ LSB linearity specification based on best straight line．Figure 3 shows limit lines for a $\pm 1 / 2$ LSB linearity specification based on end points straight line．ADC0800P linearity specifications are based on best straight line．

Non－Linearity Error of ADC0800P：The non－linearity error is the deviation of the transfer characteristic of ADC0800P from the transfer characteristic of a similarly adjusted perfect 8 －bit ADC．This error in the ADC0800P is unidirectional and guaranteed to be positive（Figure 4）．

For further discussion of definitions，refer to application note AN－156．

Total Unadjusted Error：Unadjusted error is the devia－ tion from an ideal transfer function of a perfect 8 －bit A／D converter without any offset．Unadjusted zero error is shown in Figure 5．Unadjusted full scale error is shown in Figure 6．Unadjusted non－linearity error is shown in Figure 7．The directions in which these errors have been shown are typical of ADC0800P．Figure 8 shows a typi－ cal sketch of Analog Input－Digital Equivalent Output vs Analog Input for ADC0800P along with various other key parameters．

Total unadjusted error is the maximum deviation from an ideal transfer function of a perfect 8 －bit $A / D$ con－ verter．This error does not include quantizing error．The non－linearity error of an unadjusted ADCO800P is in the negative direction（Figure 7）and the unadjusted zero error and full scale errors are in the positive direc－ tion（Figures 5 and 6）．Because of this，the total unadjusted error is represented by whichever of these is greater．


FIGURE 2．Best Straight Line Base

$E=$ Unadjusted zero error．As shown， it is $+1 / 2$ bit


FIGURE 3．End Point Straight Line Base


FIGURE 6


FIGURE 4

$E=$ Linearity error．As shown， it is $-1 / 2$ bit

FIGURE 7
figure 5

QUANTIZING
ERROR



Note 1：Errors shown are positive if it is above the reference line．
Note 2：A detailed explanation of this characteristic can be found in AN－179．
FIGURE 8．Typical Output Characteristic for the ADC0800PCN
timing diagram


Data is complementary binary（full scale is all＂ 0 ＇s＇output）．

## typical applications (Continued)



Hi-Voltage CMOS Output Levels

Ratiometric Input Signal with Tracking Reference


Level Shifted Zero and Full Scale for Transducers

block diagram


## LM146/LM246/LM346 programmable quad operational amplifier

## general description

The LM146 series of quad op amps consist of four independent, high gain, internally compensated, low power, programmable amplifiers. Two external resistors (RSET) allow the user to program the gain-bandwidth product, slew rate, supply current, input bias current, input offset current and input noise. For example, the user can trade-off supply current for bandwidth or optimize noise figure for a given source resistance. In a similar way, other amplifier characteristics can be tailored to the application. Except for the two programming pins at the end of the package, the LM146 pin-out is the same as the LM124 and LM148.

## features (ISET $=10 \mu \mathrm{~A}$ )

- Programmable electrical characteristics
- Battery-powered operation
- Low supply current $350 \mu \mathrm{~A}$ per amplifier
- Gain-bandwidth product 1 MHz
- Large dc voltage gain 120 dB
- Low noise voltage
$25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Wide power supply range
$\pm 1.5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Class AB output stage-no crossover distortion
- Ideal pin out for Biquad active filters
- Overload protection for inputs and outputs


## connection diagram



## PROGRAMMING EQUATIONS

Total Supply Current $=1.4 \mathrm{~mA}\left(I_{S E T} / 10 \mu \mathrm{~A}\right)$
Gain-Bandwidth Product $=1 \mathrm{MHz}($ ISET $/ 10 \mu \mathrm{~A})$
Slew Rate $=0.4 \mathrm{~V} / \mu \mathrm{s}($ ISET $/ 10 \mu \mathrm{~A})$
Input Bias Current $\simeq 50 \mathrm{nA}($ ISET $/ 10 \mu \mathrm{~A})$
ISET $=$ Current into pin 8, pin 9 (see schematic diagram)

$$
\frac{\mathrm{v}^{+}-\mathrm{V}^{-}-0.6 \mathrm{~V}}{\mathrm{R}_{\text {SET }}}
$$

## schematic diagram



## absolute maximum ratings

	LM146	LM246	LM346
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage（Note 1）	$\therefore$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
CM Input Voltage（Note 1）	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Power Dissipation（Note 2）	900 mW	500 mW	500 mW
Output Short－Circuit Duration（Note 3）	Indefinite	Indefinite	Indefinite
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 seconds）	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Thermal Resistance（ $\theta_{\mathrm{jA}}$ ），（Note 2）	PD	900 mW	900 mW
	$\theta_{\mathrm{jA}}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$
			1000 mW

dc electrical characteristics $\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{SET}}=10 \mu \mathrm{~A}\right)$


Note 1：For supply voltages less than $\pm 15 \mathrm{~V}$ ，the absolute maximum input voltage is equal to the supply voltage．
Note 2：The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{j A}$ ，and the ambient temperature， $\mathrm{T}_{\mathrm{A}}$ ．The maximum available power dissipation at any temperature is $\mathrm{P}_{\mathrm{d}}=\left(\mathrm{T}_{\mathrm{jMAX}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{jA}}$ or the $25^{\circ} \mathrm{C}$ PdMAX，whichever is less．
Note 3：Any of the amplifier outputs can be shorted to ground indefinitely；however，more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded．

## LM195/LM295/LM395 ultra reliable power transistors

## general description

The LM195/LM295/LM395 are fast, monolithic power transistors with complete overload protection. These devices, which act as high gain power transistors, have included on the chip, current limiting, power limiting, and thermal overload protection making them virtually impossible to destroy from any type of overload. In the standard TO-3 transistor power package, the LM195 will deliver load currents in excess of 1.0A and can switch 40 V in 500 ns .

The inclusion of thermal limiting, a feature not easily available in discrete designs, provides virtually absolute protection against overload. Excessive power dissipation or inadequate heat sinking causes the thermal limiting circuitry to turn off the device preventing excessive heating.

## features

- Internal thermal limiting
- Greater than 1.0A output current
- $3.0 \mu \mathrm{~A}$ typical base current
- 500 ns switching time
- 2.0 V -saturation
- Base can be driven up to 40 V without damage
- Directly interfaces with CMOS or TTL

The LM195 offers a significant increase in reliability as well as simplifying power circuitry. In some applications, where protection is unusually difficult, such as switching regulators, lamp or solenoid drivers where normal power dissipation is low, the LM195 is especially advantageous.

The LM195 is easy to use and only a few precautions need be observed. Excessive collector to emitter voltage can destroy the LM195 as with any power transistor. When the device is used as an emitter follower with low source impedance, it is necessary to insert a 5.0 k resistor in series with the base lead to prevent possible emitter follower oscillations. Although the device is usually stable as an emitter follower, the resistor eliminates the possibility of trouble without degrading performance. Finally, since it has good high frequency response, supply by passing is recommended.

The LM195/LM295/LM395 are available in standard TO-3 power packages and solid Kovar TO-5. The LM195 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the LM 295 from $-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and the LM 395 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

## simplified circuit and connection diagrams



Simplified Circuit of the LM195


TO-220 Power Package


## absolute maximum ratings

Collector to Emitter Voltage	
LM195, LM295	42 V
LM395	36 V
Collector to Base Voltage	42 V
LM195, LM295	36 V
LM395	
Base to Emitter Voltage (Forward)	42 V
LM195, LM295	36 V
LM395	20 V
Base to Emitter Voltage (Reverse)	Internally Limited
Collector Current	Internally Limited
Power Dissipation	
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM195	$-25^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM295	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM395	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	LM195, LM295			LM395			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Collector-Emitter Operating Voltage	$\mathrm{I}_{0} \leq \mathrm{I}_{\mathrm{C}} \leq \mathrm{I}_{\text {MAX }}$			42			36	$v$
Base to Emitter Breakdown Voltage	$0 \leq V_{\text {CE }} \leq V_{\text {CEMAX }}$	42			36	60		$v$
Collector Current								
T0. 3	$V_{C E} \leq 15 \mathrm{~V}$	1.2	2.0		1.0	2.0		A
то. 5	$\mathrm{V}_{\text {ce }} \leq 7.0 \mathrm{~V}$	1.2	2.0		1.0	2.0		A
T0. 220	$\mathrm{V}_{\text {CE }} \leq 15 \mathrm{~V}$				1.0	2.0		A
Saturation Voltage	$\mathrm{I}_{\mathrm{c}} \leq 1.0 \mathrm{~A}$		1.8	2.0		1.8	2.2	$\checkmark$
Base Current	$\begin{aligned} & 0 \leq I_{C} \leq I_{\text {MAX }} \\ & 0 \leq V_{C E} \leq V_{C E M A X} \end{aligned}$		3.0	5.0		3.0	10	$\mu \mathrm{A}$
Quiescent Current	$\begin{aligned} & V_{\mathrm{be}}=0 \\ & 0 \leq \mathrm{V}_{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{CEMAX}} \end{aligned}$		2.0	5.0		2.0	10	mA
Base to Emitter Voltage ${ }^{-}$	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$		0.9			0.9		$v$
Switching Time	$\begin{aligned} & V_{C E}=36 \mathrm{~V}, R_{L}=36 \Omega . \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		500			500		ns
Thermal Resistance Junction to	TO-3 Package		2.3	3.0		2.3	3.0	${ }^{\circ} \mathrm{C} / \mathrm{w}$
Case (Note 2)	T0. 5 Package		12	15		12	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 195,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM295 and $0^{\circ} \mathrm{C} \leq+125^{\circ} \mathrm{C}$ for the LM395.
Note 2: Without a heat sink, the thermal resistance of the TO-5 package is about $+150^{\circ} \mathrm{C} / \mathrm{W}$, while that of the TO-3 package is $+35^{\circ} \mathrm{C} / \mathrm{W}$.

## typical performance characteristics









## typical performance characteristics (con't)





Small Signal Frequency
Response


## schematic diagram



## typical applications



## typical applications (con't)


1.0 Amp Negative Regulator

1.0 Amp Positive Voltage Regulator


Fast Optically Isolated Switch


Optically Isolated Power Transistor


CMOS or TTL Lamp Interface


Two Terminal Current Limiter


- ORIVE VOLTAGE OV TO $\geq 1.0 \mathrm{~V} \leq 42 \mathrm{~V}$

40V Switch

## typical applications (con't)


6.0V Shunt Regulator with Crowbar


Low Level Power Switch

*NEED FOR STABILITY

Emitter Follower


Two Terminal 100 mA Current Regulator


Power One-Shot


High Input Impedance AC Emitter Follower


Fast Follower

## typical applications (con't)




## MM5369, 17-stage programmable oscillator/divider

## general description

## -

The MM5369 is a CMOS integrated circuit with 17 binary divider stages that can be used to generate a precise 60 Hz reference from commonly available high frequency quartz crystals. An internal pulse is generated by mask programming the combinations of stages 1 through 4, 16 and 17 to set or reset the individual stages. The programmable number the circuit will divide by can vary from 10000 to 98000 . The MM5369 is advanced one count on the positive transition of each clock pulse. Two buffered outputs are available: the crystal frequency for tuning purposes and the 17th stage 60 Hz output. Mask options are available for use with commonly available,. low cost, high frequency crystals. Therefore, this design can be "customized" by special order to design specific programmable divider limits whereby the maximum divide-by can be 98,000 and the minimum divide-by can be 10,000 . The MM5369 is available in an 8 -lead dual-in-line epoxy package.

## features

- Crystal Oscillator
- Two buffered outputs

Output 1 cyrstal frequency
Output 2 full division

- High speed ( 4 MHz at $\mathrm{V}_{D D}=10$ )
- Wide supply range $3-15 \mathrm{~V}$
- Low Power
- Fully static operation
- 8 lead dual-in-line package
- Low current

Standard MM5369N Only

- 3.58 MHz (color TV oscillator) input frequency
- 60 Hz output frequency


## connection diagram

 block diagram

FIGURE 2.

## absolute maximum ratings

Voltage at Any Pin Operating Temperature
Storage Temperature
Package Dissipation
Maximum $V_{c c}$ Voltage
Operating $\mathrm{V}_{\mathrm{cc}}$ Range
Lead Temperature (Soldering, 10 seconds)

$$
-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}
$$

$$
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

500 mW
$300^{\circ} \mathrm{C}$

## electrical characteristics

$T_{A}$ within operating temperature range, $V_{S S}=G N D, 3 V \leq V_{D D} \leq 15 V$ unfess otherwise specified.


## functional description

A connection diagram for the MM5369 is shown in Figure 1 and a block diagram is shown in Figure 2.

## TIME BASE

A precision time base is provided by the interconnection of a $3,579,545 \mathrm{~Hz}$ quartz crystal and the RC network shown in Figure 3 together with the CMOS inverter/ amplifier provided between the OSC IN and the OSC OUT terminals. Resistor R1 is necessary to bias the inverter for class A amplifier operation. Capacitors C1 and C2 in series provide the parallel load capacitance required for precise tuning of the quartz crystal.

The network shown provides $>100 \mathrm{ppm}$ tuning range when used with standard crystals trimmed for $C_{L}=$ 12 pF . Tuning to better than $\pm 2 \mathrm{ppm}$ is easily obtainable.

## DIVIDER

A pulse is generated when divider stages 1 through 4, 16 and 17 are in the correct state. By mask options, this pulse is used to set or reset individual stages of the counter, thus varying the modulus of the counter from 10000 to 98000 . Figure 4 shows the relationship between the duty cycle and the programmed modulus.

## OUTPUTS

The Tuner Output is a buffered output at the crystal oscillator frequency. This output is provided so that the crystal frequency can be obtained without disturbing the crystal oscillator. The Divide Output is the input frequency divided by the mask programmed number. Both outputs are push-pull outputs. A typical application of the MM5369 is shown in Figure 5.

## functional description (cont.)



FIGURE 3. Crystal Oscillator Network


FIGURE 4. Plot of Divide-By Vs Duty Cycle


FIGURE 5. Clock Radio Circuit with Battery Back-Up


FIGURE 6. Typical Current Drain Vs Oscillator Frequency


FIGURE 7. Output Waveform for Standard MM5369

[^18]MM5393 push button telephone dialer

## general description

The MM5393 is a monolithic metal gate CMOS integrated circuit which provides all logic required to convert a push button input to a series of pulses suitable for simulating a telephone dial. Storage is provided for 21 digits, therefore, the information is retained after the call is completed and the number is available for redial. Entering a new number simply overrides the previous one. An interdigital pause can be externally selected as either 415 ms or 830 ms . A muting output is supplied to mute receiver noise during outpulsing, and a 600 Hz tone is activated every time a key is depressed.

## features

m 21-digit storage

- Selectable interdigital pause
- Redial of last number
- 600 Hz tone
- Line powered operation


## connection diagram



Order Number MM5393N
See Package 20
block diagram


## absolute maximum ratings

Voltage at Any Pin<br>Operating Temperature Range<br>Storage Temperature Range<br>$V_{D D}-V_{S S}$<br>Lead Temperature (Soldering, 10 seconds)<br>\[ \begin{array}{r} VSS-0.3 \mathrm{~V} to \mathrm{VDD}+0.3 \mathrm{~V}<br>-30^{\circ} \mathrm{C} to+65^{\circ} \mathrm{C}<br>-40^{\circ} \mathrm{C} to+70^{\circ} \mathrm{C}<br>6 \mathrm{~V} \max<br>300^{\circ} \mathrm{C} \end{array} \]

electrical characteristics $T_{A}$ within operating temperature range, $V_{S S}=G n d, 2 V \leq V_{D D} \leq 5.5 V$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Levels					
Logical "1"		$V_{D D}{ }^{-0.25}$		VDD	$v$
Logical "0"		VSS		VSS ${ }^{\text {d }}$. 25	v
Output Current Levels					
Dial Pulse					
Logical "1"	$V_{D D}=3 V, V_{O U T}=V_{D D}-0.5$	150			$\mu \mathrm{A}$
Logical "0"	$V_{D D}=3 V, V_{O U T}=V_{S S}+0.5$	150	-		$\mu \mathrm{A}$
Mute					
Logical "1".	$V_{D D}=3 V, V_{O U T}=V_{D D}-0.5$	100			$\mu \mathrm{A}$
Logical "0"	$V_{D D}=3 V, V_{\text {OUT }}=V_{S S}+0.5$	100			$\mu \mathrm{A}$
Tone					
Logical "1"	$V_{D D}=3 V, V_{O U T}=V_{D D}-0.5$	10			$\mu \mathrm{A}$
Logical "0"	$V_{\text {DD }}=3 V, V_{\text {OUT }}=V_{S S}+0.5$	10	,		$\mu \mathrm{A}$
01, 02, 03					
Logical "1"	$V_{\text {DD }}=3 V, V_{\text {OUT }}=V_{D D}-0.5$	20			$\mu \mathrm{A}$
Logical "0"	$V_{\text {DD }}=3 V, V_{\text {OUT }}=V_{S S}+0.5$	150			$\mu \mathrm{A}$

## functional description

The time base for the MM5393 is an RC controlled oscillator nominally tuned to 20 kHz . This is successively divided to provide timing signals for the various counters. The keyboard inputs, K1-K4, in conjunction with the scan counter outputs, 01-03, indicate the presence of a particular key depression. If only one key is detected for 5 ms , the decoded key will be loaded into the RAM. The push button inputs are accepted at an asynchronous rate, loaded into a first-in-first-out memory, and outpulsing of the correct number of pulses begins immediately after the first digit is entered. After the first digit has been completed, outpulsing will cease unless another key has been entered. This allows use in a PBX system to ensure receipt of a dial tone before entering the remainder of the number. If the call was not successful, it can be redialed at a later time by pressing the redial key (\#). If an access code is required as in a PBX system, it can be entered, the dial tone can be established, then the redial key can be pushed. Only one key can be entered before pushing the redial key because after the second key entry, the memory is erased. A block diagram of the MM5393 is shown in Figure 1.

## KEYPAD DATA INPUTS

Keypad closures cause the connection of 2 of 7 switch contacts arranged as a matrix (shown' in Figure 2). Key closures are protected from contact bounce for 5 ms .

## IMPULSING MARK-TO-SPACE RATIO

The mark-to-space ratio is $1.6: 1(61.5 \%$ to $38.5 \%)$.

## IMPULSING OUTPUT

The number of pulses will correspond to the input digit. For example, key 5 will generate 5 pulses. The outpulsing rate is 10 Hz , and it can be varied by adjusting the frequency of the oscillator. Because it is ' intended to drive a transistor buffer, the outpulsing data is inverted. Digits are separated by an interdigital pause which is pin programmable for either 415 ms or 830 ms .

## switching time waveforms



FIGURE 1

## keypad matrix



## typical application



## MM5395 TOUCH TONE ${ }^{\oplus}$ generator general description

The MM5395 is an integrated circuit that can provide all tone frequency pairs required for the TOUCH TONE ${ }^{(\ominus}$ telephone dialing system. The output frequencies are generated by programmably dividing the frequency of the on-chip crystal-controlled oscillator; thus, accurate output frequencies can be obtained without tuning. The only external compenent needed for the oscillator is an inexpensive 3.579545 MHz crystal.

The device has four row and four column inputs. Inputs to the device can either be in a 2 -out-of- 8 code format from a keyboard, or by BCD signals to the row inputs.

The device is fabricated using our low voltage CMOS process so that it may be powered directly from the telephone line.

The MM5395 is designed to be used in a wide variety of tone signaling and data transmission applications.

## features

- 3 V to 5 V supply
- On-chip 3.579545 MHz crystal-controlled oscillator
- Interface with standard telephone keypad
- Interface with single contact low-cost keypad option
- Multi-key lockout with single tone capability
- On-chip high band and low band tone generators and mixer
- High band pre-emphasis
- Low harmonic distortion
- Accurate tone frequencies
- Open emitter, emitter follower output
- Mute switch output
- Can be powered directly from the telephone line


## functional description

The functional block diagram of MM5395 is shown in Figure 1. The device can be operated in Keypad Interface Mode or Signal Interface Mode (BCD into row input) depending on the logical level at "Control" input. In either mode, the MM5395 will digitally synthesize the high and/or low band sine waves when valid signals are applied to row or column inputs. The sum of the two sine waves is then provided at the "Tone Output." The base of the output NPN transistor is brought out ("FILTER") for easy filtering. Operational functional features are summarized in tables.

## block diagram



FIGURE 1

## absolute maximum ratings

Voltage at Any Pin
Operating Temperature Range
Storage Temperature Range
$V_{D D}-V_{S S}$
Lead Temperature (Soldering, 10 seconds)
$V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 6 V
$300^{\circ} \mathrm{C}$

## electrical characteristics

$T_{A}$ within operating temperature, $3 V \leq V_{D D}-V_{S S} \leq 5 V$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Pull-Up Resistor @ Column Inputs	$V_{\text {IN }}=V_{\text {SS }}$	100		400	$k \Omega$
Input Pull.Down Resistor @ 'Xmit",	$V_{I N}=V_{D D}$	1.00		400	kS
Internal Resistor @ Row Inputs					
To V ${ }_{\text {DD }}$ (Option A$)$	$V_{\text {IN }}={ }^{\prime} V_{\text {SS }}$	100		400	$k \Omega$
To V SS (Option B)	$V_{I N}=V_{D D}$	100		400	$k \Omega$
Input Voltage Levels					
Logical "1"		$V_{\text {DD }}{ }^{-0.25}$		$V_{\text {DD }}$	V
Logical."0"		$\mathrm{V}_{\text {SS }}$		$\mathrm{V}_{\text {SS }}+0.25$	V
Output Voltage Swings @ "TONE	$V_{D D}-V_{S S}=3.0 V$.				
OUTPUT"	$R_{L}>500 \Omega$				
Low Band Only			820		$m \vee p-p$
High Band Only			1000		$m \vee p-p$
Harmonic Distortion	$R_{L} \geq 500$ 2,			-20	dB
	No External Filtering	.			
Tone Frequency Deviation				1.0	\%
Operating Frequency			3.579545		MHz
Key-Down Debounce Time			7	11.35	ms
Key-Up Debounce Time			4	7.15	ms
Power Dissipation	$V_{D D}-V_{S S}=6 \mathrm{~V}$,			30	mW
	$R_{L}=50082$				
Output Current Level @ "MUTE"	$V_{D D}-V_{S S}=3.0 \mathrm{~V}$				
Logical " ${ }^{\prime \prime}$	$V_{\text {OUT }}=V_{\text {DD }}-0.2 \mathrm{~V}$	20			$\mu \mathrm{A}$
Logical "0"	$V_{\text {OUT }}=V_{\text {SS }}+0.5 \mathrm{~V}$	2.0			mA

functional description (Continued)

TABLE I. Interface Mode Control
\(\left.\begin{array}{|c|c|l|}\hline CONTROL \& XMIT \& INTERFACE MODE <br>
\hline 0 \& Open \& Keypad <br>
1 \& 0 \& Idle <br>

1 \& 1 \& Send tones\end{array}\right\}\)| BCD Signal |
| :--- |
| e.g. MM5393 |

TABLE II. Keypad Interface
(a). Functional Truth Table

ROW	COLUMN	LOW BAND	HIGH BAND
None	None	DC	DC
One	One	$\mathrm{f}_{\mathrm{L}}$	$\mathrm{f}_{\mathrm{H}}$
None	One	DC	$\mathrm{f}_{\mathrm{H}}$
One	None	fL	DC
Two or more	None	DC	DC
Two or more	One	DC	$\mathrm{f}_{\mathrm{H}}$
None	Two or more	DC	DC
One	Two or more	$\mathrm{f}_{\mathrm{L}}$	DC

(b). Output Frequencies

INPUTS	DESIRED FREQUENCIES		ACTUAL FREQUENCY ( Hz )	PERCENT DEVIATION
	$f_{L}(\mathrm{~Hz})$	$\mathrm{fH}_{\mathrm{H}}(\mathrm{Hz})$		
R1	697	-	699.1	0.306
R2	770	-	766.2	-0.497
R3	852	-	847.4	-0.536
R4	941	-	948.0	0.741
C1	-	1209	1215.9	0.569
C2	-	1336	1331.7	-0.324
C3	-	1477	1471.9	-0.35
C4	-	1633	1645.0	0.736

TABLE III. Functional Truth Table for Signal Interface

XMIT	C1	C2	R1	R2	R3	R4	$\begin{aligned} & \text { FRED } \\ & \text { GEN } \end{aligned}$	ENCIES   RATED
							$\mathrm{f}_{\mathrm{L}}\left(\mathrm{Hz}^{\prime}\right)$	$\mathrm{f}_{\mathrm{H}}(\mathrm{Hz})$
0	X	$x$	X	X	X	X	DC	DC
1	Open	Open	0	0	0	0	941	1336
1	Open	Open	0	0	0	1	697	1209
1	Open	Open	0	0	1	0	697	1336
1	Open	Open	0	0	1	1	697	1477
1	Open	Open	0	1	0	0	770	1209
1	Open	Open	0	1	0	1	770	1336
1	Open	Open	0	1	1	0	770	1477
1	Open	Open	0	1	1	1	852	1209
1	Open	Open	1	0	0	0	852	1336
1	Open$0$	Open	1	0	0	1	852	1477
			Valid BCD Inputs				$\mathrm{f}_{\mathrm{L}}$	DC
1	Open	0					DC	${ }^{\text {f }} \mathrm{H}$
1	0	0					DC.	DC



## connection diagram



Order Number MM5395N See Package 20

## MM53100, MM53105 programmable TV timers

## general description

The MM53100 and MM53105 programmable TV timers are monolithic CMOS integrated circuits utilizing $P$ and N -channel low threshold enhancement devices. These circuits contain all the logic to give a 4 or 6 -digit, 24 hour display from a 50 or 60 Hz input, and control the "ON" time of the TV. The duration of the viewing period is $5,10,20$ or 30 mins, selected by 2 input pins. Manual "ON" and "OFF" inputs are also provided. The MM53100 and MM53105 have ultra-low power dissipation in the stand-by mode and are ideally suited to crystal controlled battery-operated systems. The MM53100 is designed for an optimum interface in TVs with a positive common reference voltage (e.g., +18 V ). The MM53105 is designed for an optimum interface for TVs with a OV reference voltage. Both are packaged in a 24 -lead dual-in-line epoxy package.

## features

- 50 or 60 Hz operation
- 24-hour display format
- Programmable TV on time
- Selectable view time
- Ultra-low power dissipation
- All counters resettable
- Low voltage operation
- Elimination of illegal time display at turn-on

E Daily repeat or non-repeating operating

- Fool-proof safety features
- Compatible with MM5840 or MM5841 display circuits
applications
- TV time display

घ Remote TV "ON"/"OFF" switch

- Computer clock
n Time data-logging systems


## block diagram



FIGURE 1. MM53100, MM53105 Block Diagram

## absolute maximum ratings (MM53100) (VDD common voltage reference)

Supply Voltage (VDD $-V_{S S}$ ) 6 V
Voltage at $50 / 60 \mathrm{~Hz}$ Select and Period $\quad V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Select Inputs
Current Into or Out of Any Other Input
$100 \mu \mathrm{~A}$ max
electrical characteristics (MM53100) $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{D D}=4.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage		2.8		5.0	V
Supply Current	$V_{D D}=4.5 \mathrm{~V}$		10	25	$\mu \mathrm{A}$
Input Logic Levels					
$50 / 60 \mathrm{~Hz}$ Input, Digit Select Inputs, Display Select, "ON", "OFF", Time Setting Control, Standby Control					
Logic " 1 "		$V_{D D}-0.5$		VDD	$v$
Logic " 0 "	(Note 1)			$V_{S S}+0.5$	V
$50 / 60 \mathrm{~Hz}$ Select, Period Select $(X, Y)$	$(X, Y)$				
Logic "1"		$V_{\text {DD }}{ }^{-0.5}$		VDD	V
Logic " 0 "		VSS		$\mathrm{V}_{\text {SS }}+0.5$	V
Display Select Input Delay		0.5		2.0	$\mu \mathrm{s}$
Output Logic Levels					
BCD Outputs	External Resistor, $15 \mathrm{k} \Omega$ to				
	$V_{D D}-12 \mathrm{~V}, \mathrm{C}_{L}=15 \mathrm{pF}$				
Logic "1"		$V_{D D}-0.8$			V
Logic. "0"				$V_{D D}-11.2$	V

Note 1: If input voltages go more negative than $V_{S S}$, the input current must be limited to a maximum of $100 \mu \mathrm{~A}$ by the use of external series resistors. No resistors are required on the $\mathrm{D}_{\mathrm{X}}, \mathrm{D}_{Y}, \mathrm{D}_{Z}$ inputs when interfacing with the MM5840.

## absolute maximum ratings (MM53105) (VSS common voltage reference)

Supply Voltage (VDD - V

Voltage at $50 / 60 \mathrm{~Hz}$ Select and Period Select Inputs Voltage at Any Other Pin
$\mathrm{V}_{\mathrm{SS}}+6 \mathrm{~V}$
$V_{S S}+13 V$
electrical characteristics (MM53105) $T_{A}=25^{\circ} \mathrm{C}, V_{D D}=4.5 \mathrm{~V}, V_{S S}=0 \mathrm{~V}$ unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage		2.8		5.0	V
Supply Current	$V_{D D}=4.5 \mathrm{~V}$		10	25	$\mu \mathrm{A}$
Input Logic Levels					
$50 / 60 \mathrm{~Hz}$ Input, Digit Select					
Inputs, "ON", "OFF', Display					
Select, Time Setting Controls,					
Standby Control					
Logic " 1 "		$V_{D D}-0.5$		13	v
Logic " 0 "		$\mathrm{V}_{\text {SS }}$		$\mathrm{V}_{\mathrm{SS}}+0.5$	V
50/60 Hz Select, Period Select					
( $\mathrm{X}, \mathrm{Y}$ ) .					
Logic "1"		$V_{D D}-0.5$		VDD	V
Logic " 0 "		$\mathrm{V}_{\text {SS }}$		$\mathrm{V}_{\text {SS }}+0.5$	V
Display Select Input Delay		0.5		2.0	$\mu \mathrm{s}$

electrical characteristics (Continued) (MM53105) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{D D}=4.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Logic Leveis					
BCD Outputs	External Resistor $15 \mathrm{k} \Omega$ to 12 V , $C_{L}=15 \mathrm{pF}$				
Logic " 1 "		11.2	.	.	$V$
Logic "0"				0.8	V
TV. 'ON' Output, Auto					
"ON" Output, View Period					
Output					
Logic "1"	Loaded $2.7 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{SS}}$	0.5		.	mA
Logic "0"	Loaded $2.7 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{DD}}$	1.0			mA

Note 1: Input voltages to go more positive than $V_{D D}$.

## functional description

A block diagram of the MM53100, MM53105 TV timers is shown in Figure 1. A connection diagram is shown in Figure 2. Unless otherwise indicated, the following discussions are based on Figure 1. Figures 5a and 5b illustrate the system configuration for a cerystal controlled TV display system using both circuits.


50 or 60 Hz Drive: This input is applied to a Schmitt trigger shaping circuit which allows use of a filtered sinewave input. A simple RC filter should be used to remove possible line voltage transients that could either cause the clock to gain time or damage the device. The input should swing between $V_{S S}$ and $V_{D D}$. The shaper output drives a counter chain which performs the timekeeping function.

Alternatively, in a crystal controlled battery operated system, an oscillator and prescaler such as the MM53107 could be used as a time base.

50 or 60 Hz Select Input: This input programs the prescale counter to divide by either 50 or 60 to obtain a 1 pps time base. The counter is programmed for 60 Hz operation by connecting this input to VDD. An internal $1 \mathrm{M} \Omega$ pull-down resistor is common to this pin; simply leaving this input unconnected programs the clock for 50 Hz operation.

Time Setting Inputs: Inputs to set hours and set minutes as well as hold input, are provided. Internal $1 \mathrm{M} \Omega$ pull-down resistors provide the normal timekeeping function. Switching any 1 of these inputs ( 1 at a time) to " 1 " results in the desired time setting function. Set Hours advances hours information at 1 hour/second and Set Minutes advances minutes information at 1 minute/ second, without roll over into the hours counter. Set Minutes also resets the seconds counter to 0 . The hold input stops the clock to the minutes counter and resets the seconds counter. Activating Set Minutes and Set Hours simultaneously resets the displayed counters to all O's.

Display: This input controls the display and timesetting operation. It has an internal $1 \mathrm{M} \Omega$ pull-down resistor to $V_{S S}$. When taken to Logic " 0 " or in open circuit condition, the real time is displayed and the Set Hours and Set Minutes inputs operate the real time counters. When taken to logic " 1 ", the "ON" time is displayed and the time-setting inputs operate on the "ON" counters.

Digital Select Inputs ( $D \mathrm{X}, \mathrm{DY}, \mathrm{DZ}$ ): These 3 inputs are used to determine which digit will be displayed. Table IA shows the code for each digit. Seconds will be displayed as " 00 " when the " $O N$ " time is being displayed.

Enable: This input has an internal resistor to $V_{S S}$. When taken to logic " 1 ", this input disables the programmed "ON" time for the TV output.

Period Select Inputs ( $\mathrm{X}, \mathrm{Y}$ ): These inputs have pulldown resistors to VSS. They determine the view period, i.e., 5, 10, 20 or 30 mins. Table IB shows the Period Select Code.

## functional description (Continued)

Standby Control Input: This input has an internal resistor to $V_{\text {SS }}$. Its function is to sense when the line generated 12 V supply is turned off and to then disable the outputs. In the TV, this input should be connected to the 12 V supply.

Manual "ON" Input: This input has an internal resistor to $V_{\text {SS. }}$. When taken to logic " 1 ", this input turns the TV output to the " 0 " state. It is designed to have typically 0.75 second debounce time to prevent maloperation.

Manual "OFF" Input: This input has an internal resistor to $V_{\text {SS }}$. When taken to logic " 1 ", this input turns the TV output to the " 1 " state. It is designed to have typically 0.75 second debounce time to prevent maloperation.

TV "ON" Output: Figure 3 illustrates the CMOS inverter output circuit used.

In the manual mode of operation, the manual "ON" input sets this output to " 0 ", the manual "OFF" input resets this output to " 1 ". The manual "ON" input inhibits the auto "ON" output.

In the programmable mode, this output goes to " 0 " when the programmed "ON" time coincides with the real time (unless enable $=1$ ). The output will then stay at " 0 " for the selected period of $5,10,20$ or 30 minutes before returning to " 1 " state. During this
period, a signal on the manual "ON" input will prevent the automatic switch-off.

Manual "OFF" input will always reset the output to a logic " 1 " state.

Auto "ON" TV Output: An additional output is provided to indicate that the TV is "ON" in the automatic mode of operation. This output goes to a logic " 0 " for the duration of the auto "ON" time. Manual "ON" switches this output back to a logic " 1 ".

View Period Indicator: This output normally is a logic " 1 ". When the TV switches on at the programmed time, this output transmits a 1 Hz waveform for the duration of the selected view period. Hence, it can be used to indicate that the TV is switched on for a limited period only by means of a flashing on-screen and/or off-screen display. The output will permanently return to " 1 " at the end of the viewing period or when a valid manual "ON" or "OFF" input signal is received during the view period.

BCD Outputs: Figure 4 illustrates the open drain output circuits used, a) MM53100, b) MM53105.

With the use of the external respective pull-up and pulldown resistors, these outputs are designed to be compatible with the MM5840 and MM5841 TV display circuits.

Note. Case (a) for common $V_{D D}$, case (b) for common $V_{\text {SS }}$ when used with the MM5840.

TABLE IA. Digit Select Code

DIGIT SELECT   LINES	DIGIT DISPLAYED								
	S1	S10	${ }^{*}$	M1	M10	${ }^{*}$	H1	H10	
DX	1	0	0	1	1	0	0	1	
DY	1	1	0	0	0	0	1	1	
DZ	0	0	0	0	1	1	1	1	

TABLE IB. Period Select Code

PERIOD SELECT   INPUTS		VIEW PERIOD   PROGRAMMED
$X$	$Y$	
0	0	5 mins
0	1	10 mins
1	0	20 mins
1	1	30 mins



FIGURE 3. CMOS Output (TV
"ON", Auto "ON", Indicator)


FIGURE 4a. BCD Outputs, MM53100


FIGURE 4b. BCD Outputs, MM53105
functional description (Continued).


- FIGURE 5a. Typical System Diagram, MM53100


FIGURE 5b. Typical System Diagram, MM53105

## MM53104 TV game clock generator

## general description

The MM53104 is a monolithic CMOS clock generator designed to generate the 2 -phase non-overlapping clocks, $\phi_{1}$ and $\phi_{2}$, for the MM57100 TV game chip.

The MM53104 contains two independent oscillator circuits that can either be driven by an external input or be used as a Colpitts-type oscillator (e.g., crystal oscillator). The first oscillator ( $\mathrm{X} 1, \mathrm{X} 2$ ) is designed to operate at 3.58 MHz and the output (X2) is fedinternally to a divide-by- $31 / 2$ counter to generate the 1.0227 MHz $\phi_{1}$ and $\phi_{2}$ outputs required by the MM57100. The second oscillator ( $\mathrm{Y} 1, \mathrm{Y} 2$ ) is a completely independent oscillator and is designed for a 4.5 MHz operation.

All pins are protected against static damages by diode clamps to both VCC and ground.

## features

- Directly drives MM57100
- Two on-chip oscillator circuits
- Low power consumption 250 mW typ @ 15 V


## connection diagram



## logic diagrams



## absolute maximum ratings (Note 1)

Voltage at Any Pin
VCC
Recommended $V_{C C}$
Operating Temperature Range
Storage Temperature Range
Package Dissipation
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} \\
-0.3 \mathrm{~V} \text { to } 16 \mathrm{~V} \\
15 \mathrm{~V} \pm 5 \% \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
500 \mathrm{~mW} \\
300^{\circ} \mathrm{C}
\end{array}
$$

dc electrical characteristics $14.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 15.75 \mathrm{~V}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ICC Quiescent Current	$\mathrm{X} 1=\mathrm{Y} 1=\mathrm{V}_{\mathrm{CC}}$			600	$\mu \mathrm{A}$
Operating Current	$\mathrm{Y} 1=\mathrm{GND}$		15		mA
$\mathrm{V}_{\mathrm{OH}}$ Output High Level, $\phi_{1}$ or $\phi_{2}$	$V_{C C}=15 \mathrm{~V}$	14.95			$v$
VOL Output Low Level, $\phi_{1}$ or $\phi_{2}$	$V_{C C}=15 \mathrm{~V}$			0.05	$\checkmark$
IOH Output Source Current, $\phi_{1}$ or $\phi_{2}$	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V}$	$-7.0$			mA
İOL Output Sink Current, $\phi_{1}$ or $\phi_{2}$	$V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V}$	11.0			mA

ac electrical characteristics $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, all limits apply across temperature.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$T_{R}$	Rise Time of $\phi_{1}$ or $\phi_{2}$			15	30	ns
$T_{F}$	Fall Time of $\phi_{1}$ or $\phi_{2}$			15	30	ns
TPW, $\phi_{1}{ }^{+}$	Positive Pulse Width of $\phi_{1}$		410	455	510	ns
TPW, ¢ $_{1-}$	Negative Pulse Width of $\phi_{1}$		470	520	570	ns
TPW, 2 $^{+}$	Positive Pulse Width of $\phi_{2}$		510	570	600	ns
TPW, 2 $^{-}$	Negative Pulse Width of. $\phi_{2}$		380	410	470	ns
TW, $\mathbf{Q}^{-}$-	Effective Negative Pulse Width of $\phi_{2}$	-	405	440		ns
$\mathrm{T}_{\mathrm{dL}} 1$	$\phi_{1}$ Overlapping $\phi_{2}$ Time			-13	5	ns
$\mathrm{T}_{\mathrm{dL2}}$	$\phi_{2}$ Overlapping $\phi_{1}$ Time			-2	10	ns
$\mathrm{V}_{\text {OL1 }}$	$\phi_{1}$ Cross-Over $\phi_{2}$ Voltage		$V_{C C}-1.0$	$V_{C C}$		V
VOL2	$\phi_{2}$ Cross-Over $\phi_{1}$ Voltage		$V_{C C}-2.0$	$V_{C C}{ }^{-0.8}$		V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

## timing diagram



## ac test circuit


$C_{L}=15 \mathrm{pF}$ including scope probe and all stray capacitances.
Note: When the MM53104 is used with the MM57100 and LM1889, the 4.5 MHz oscillator in the MM53104 is not needed and thus pin 3 should be grounded.
switching time waveforms


## MM55104, MM55106, MM55114, MM55116 PLL frequency synthesizer general description

The MM55104 and MM55106 devices contain phase locked loop circuits useful for frequency synthesizer applications in C.B. transceivers. The devices operate off a single power supply and contain an oscillator, a $2^{10}$ or $2^{11}$ divider chain, a binary input programmable divider, and phase detector circuitry. The devices may be used in double I.F. or single I.F. systems. The MM55104, MM55114, MM55106 and MM55116, use a 10.24 MHz or 5.12 MHz quartz crystal to determine the reference frequency. The MM55106 and MM55116 have an output pin which provides a 5.12 MHz signal, which may be tripled for use as a reference oscillator frequency. in two crystal systems. Also, the MM55106 provides an additional input to the programmable divider which allows $2^{9}-1$ division of the input frequency ( $\mathrm{F}_{\text {IN }}$ ). The inputs to the programmable divider are standard binary signals. Selection of a channel is accomplished by mechanical switches or by external electronic programming of the programmable divider.

The $\phi \mathrm{VCO}$ output provides a high level voltage (sources current) when the VCO frequency is lower than the lock
frequency, and $\phi \mathrm{VCO}$ provides a low level voltage (sinks current) when the VCO frequency is higher than the lock frequency. The $\phi \mathrm{VCO}$ output goes to a high impedance (TRI-STATE ${ }^{\oplus}$ ) condition under lock conditions, and the lock detector output LD goes to a high state under lock conditions.

## features

- Single power supply
- Low power CMOS technology
- Binary input channel select code
- 5 kHz or 10 kHz output from oscillator divide
- 5.12 MHz output (MM55106 and MM55116 only)
- On-chip oscillator
- Pull-down resistors on programmable divider inputs
- Low voltage operation-5V (MM55104, MM55106)
- High voltage operation-8V (MM55114, MM55116)


## block diagrams



MM55104, MM55114


MM55106, MM55116

## pin descriptions

PO-P8	Programmable divider inputs   FIN   Frequency input from VCO   down)
OSC IN	Oscillator amplifier input terminal
OSC OUT	Oscillator amplifier output terminal   LD
$\phi V C O$	Lock detector   Output of phase detector for control   of the VCO
FS	Frequency division select 10 kHz or   $5 \mathrm{kHz}-" 1 "$ is $10 \mathrm{kHz}: " 0 "$ is 5 kHz
5.12 MHz OUTOSC Frequency divided by 2 output	

## truth table

Truth table for binary inputs to programmable divider.

$N$	P8	P7	P6	P5	P4	P3	P2	P1	P0
1	0	0	0	0	0	0	0	0	$\times$
2	0	0	0	0	0	0	0	1	0
	$\cdot$								
	$\cdot$								
511	1	1	1	1	1	1	1	1	1

[^19]
## absolute maximum ratings

Voltage at Any Pin
$V_{C C}+0.3 \mathrm{~V}$ to $\mathrm{Gnd}-0.3 \mathrm{~V}$
VCC Max
Operating Temperature Range $-30^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
104, MM55106
7V
MM55114, MM55116
12 V
Lead Temperature (Soldering, 10 seconds) $\quad 300^{\circ} \mathrm{C}$
electrical characteristics $T_{A}=25^{\circ} \mathrm{C}$

connection diagrams (Dual-In-Line Packages, Top View)


Order Number MM55104N or MM55114N
See Package 19


Order Number MM55106N or MM55116N See Package 20

## typical applications

## INTRODUCTION TO FREQUENCY SYNTHESIS

The components of a frequency synthesizer are shown in Figure 1. The voltage controlled oscillator produces the desired output frequencies spaced $f_{v} \mathrm{~Hz}$ apart according to the relation:

$$
f_{v}=f_{r} N
$$

The reference frequency, fr, must be equal to or less than the (channel) spacing between the frequencies being synthesized.


FIGURE 1. Basic Frequency Synthesizer.
Although simple in concept, the circuit of Figure 1 has certain difficulties. In CB, we are synthesizing the following frequencies:

Ch 1	26.965
Ch 2	$\cdot$
$\cdot$	26.975
$\cdot$	$\cdot$
Ch 23	

Although the channel spacing is 10 kHz , a reference frequency of 5 kHz would be necessary due to the odd 5 kHz in the assigned channel. This in itself poses no


FIGURE 2(a). Frequency Prescaling
problem; however, present technology limits the counting speed of programmable dividers to something less than 5 MHz , ruling out the approach shown in Figure 1.

Two solutions to this problem are shown in Figure 2.

Frequency prescaling shown in Figure 2(a) reduces the VCO frequency by $M$ (a fixed number) to a frequency that can be divided by the programmable counter. The reference frequency $f_{r}$ must also be reduced by $M$. In the case of $C B$, if $M=10, f_{V}=26.965 \mathrm{MHz}$, the input to the programmable divider will be 2.6965 MHz , and the 5 kHz reference frequency will be reduced to 500 Hz . This poses problems in speed of response of the phase locked loop.

The second technique mixes the output frequency of the VCO with a stable fixed frequency to obtain a related reference frequency.

$$
f_{V}=N f_{r}+f_{o}
$$

This technique has the advantage of allowing a 10 kHz ' reference frequency in the loop instead of 5 kHz .

Further complexity arises when one considers that the synthesizer must also generate a local oscillator signal as well as a transmitter input signal for the radio (Figure 3). A system which provides these frequencies, as well as the proper offset to allow the programmable divider to operate within its limits is shown in the typical applications diagrams (Figure 4). The only departure from the ideal situation shown in Figure 3 is that the first IF frequency of 10.7 MHz must be changed to 10.695 MHz (a change of 5 kHz ).


FIGURE 2(b). Frequency Offset


FIGURE 3. Signals Needed to Transmit and Receive Ch 1


## MM5840 TV channel number ( 16 channels) and time display circuit

## general description

The MM5840 TV Channel Number and Time Display Chip is a monolithic metal gate CMOS integrated circuit which generates a display of channel numbers (up to 16 channels) and time readouts on the television screen.

By external connection, it has the option of displaying the channel number only while switching channels with a period controlled by the external RC time constant of a timeout monostable.

This chip includes all the logic required to provide two modes of operation, namely channel number, or channel number and time display.

In addition, it can have a five (hour tens, hour units, colon, minute tens, and minute units) or eight digit (hour tens, hour units, colon, minute tens, minute units, colon, second tens, and second units) display, depending on the digit select input logic level.

By employing the video gating input together with the video output, a symmetrical blanked rectangular frame around the display may be generated on the TV screen.

This chip serves as a display generator with $B C D$ channel inputs, as provided from the clock chips MM5318, MM53100 or MM53105. The position of the display on the TV screen can be controlled by adjusting external RC time constants.

## functional description

The channel number and time readout circuit operates with a 2 to 4.5 MHz input clock. Counters are incorporated in the chip, operated by the input clock to keep track of the time slots of the display.

The position of the display is controlled by adjusting the external RC time constants of the horizontal and vertical monostable multivibrators.

A 7-segment decoder is used to decode either channel inputs or time which is stored temporarily in the channel number buffers or 4-bit latches, respectively, depending on the time slot of the display. Each digit of time is stored in a 4 -bit latch while it is being decoded and displayed, and the next digit enters the latch while the horizontal sweep is between digits.

A time slot decoder is employed to decode the appropriate time slot and the digit to be displayed. It generates a video output signal that modulates the sweep of the television tube for the display on the screen.

## features

- 12 or 24 -hour operation (controlled by clock chip)
- 5 or 8 -digit display
- Channel number leading zero blanking
- Single power supply
- Channel number only or channel number and time display
- Video gating output for generating a symmetrical blanked rectangular frame around the display
- Oscillator inhibit output
- Channel number display only while switching channels
- 4-bit binary plus one code, for channel numbers


## functions

E 8-digit mode is selected by a logic " 1 " at digit select input

- Channel number and time mode is selected by a logic " 1 " at mode input
- Permanent channel number display is selected by a logic " 1 " at timeout monostable input



## absolute maximum ratings

Supply Voltage (VDD - VSS

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V} \mathrm{DD}+0.3 \mathrm{~V} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Voltage at Any Pin
Operating Temperature
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
electrical characteristics $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Voltage					
VDD	$V_{S S}=0$	11	12	14	v
Power Supply Current				800	$\mu \mathrm{A}$
Input Voltage Levels					
Time, Oscillator, Digit					
Select, and Mode Inputs					
Logical Low		$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}+0.9$	v
Logical High		$V_{\text {DD }}-0.5$	$V_{D D}$	$V_{\text {DD }}+0.3$	v
Channel Inputs					
Logical Low		$\mathrm{V}_{\text {SS }}-0.3$	$V_{\text {DD-5 }}$	$V_{D D}-4.5$	$v$
Logical High		$\mathrm{V}_{\mathrm{DD}}-0.5$	$V_{\text {DD }}$	$\mathrm{V}_{\mathrm{DD}}+0.3$	v
Horizontal and Vertical Inputs					
Logical Low		$\mathrm{V}_{\text {SS }}-0.3$	$V_{\text {DD }}$-5	$V_{D D}-4.5$	$v$
Logical High		$V_{\text {DD }}-0.5$	VDD	$\mathrm{V}_{\text {DD }}+0.3$	V
Input Frequency	Interfacing with MM53100, MM53105	2		4.5	MHz
Oscillator	Interfacing with MM5318	2		4.5	MHz
Horizontal	Pulse Width $=14 \mu \mathrm{~s}$		15.75		kHz
Vertical	Pulse Width $=1 \mathrm{~ms}$		60		Hz
Output Voltage Levels					
Video Gating, Osc. Inhibit					
Digit Address and Video Outputs					
Logical Low		$\mathrm{V}_{\text {SS }}-0.3$	VSS	$\mathrm{V}_{\text {SS }}+0.9$	$v$
Logical High		VDD-0.5	$V_{\text {DD }}$	$V_{\text {DD }}+0.3$	$v$.
One-Shot Output Pulse Duration					
Horizontal		15		50	$\mu s$
Vertical		1.5		13	ms
Output Drive					
Logical Low	$\mathrm{V}_{\text {SS }}+1 \mathrm{~V}$	- $\|-1\|$			mA
Logical High	$V_{D D}-1 V$	1			mA
Video Gating and Osc.					
Inhibit Outputs					
Logical Low	Output Forced Up to VDD -4.5 V	1-2\|			mA
Logical High	$V_{D D}-1 V$	0.2		-	mA
External RC					
CVERTICAL			0.1		$\mu \mathrm{F}$
Chorizontal			0.001		$\mu \mathrm{F}$
RVERTICAL		.	50		k $\Omega$
RHORIZÓNTAL			100		$k \Omega$
Ctimeout			5		$\mu \mathrm{F}$
RTIMEOUT.				1	$M \Omega$
Propagation Delay					
Video Gating and Osc.   Inhibit Outputs	From Input Clock to Oscillator Inhibit or Video Gating Outputs			2	clock   pulses
Input Leakage	-			1	$\mu \mathrm{A}$
Input Capacitance				5	pF



## truth table

Digit Address (DX, DY, DZ) Codes

CODES	DURING	DIGITS							
	RESET	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
DX	1	0	0	1	1	0	0	1	1
DY	1	1	0	0	0	0	1	1	1
DZ	1	1	1	1	0	0	0	0	1

timing diagram

With Video Gating, Output Gated with Video Output


typical applications (Continued)

TV Channel and Time Display Interfacing MM53100


Note. For interfacing with MM53105, refer to MM53105 specifications.

## MM5841 TV channel number and time readout circuit

## general description

The MM5841 TV Channel Number and Time Readout Circuit is a monolithic metal gate CMOS integrated circuit, which generates a display of channel number and time readouts on the television screen.

This chip includes all the logic required to provide two modes of operation, namely channel number, or channel number and time displays.

In addition, it can have a five (hour tens, hour units, colon, minute tens, and minute units) or eight digit (hour tens, hour units, colon, minute tens, minute units, colon, second tens, and second units) display, depending on the digit select input logic level.

This chip serves as a display generator between the BCD channel inputs, the clock chip (MM5318) and the television set. The position of the display on the TV screen can be controlled by adjusting the external RC time constants.

## functional description

The channel number and time readout circuit operates with a 4 MHz input clock. Counters are incorporated in the chip, operated by the input clock to keep track of the time slots of the display.

The position of the display is controlled by adjusting the external RC time constants of the horizontal and vertical monostable multivibrators.

A 7 -segment decoder is used to decode either channel inputs or time which is stored temporarily in the channel number buffers or 4 bit latches, respectively, depending on the time slot of the display. Each digit of time is stored in a 4 -bit latch while it is being decoded and displayed, and the next digit enters the latch while the horizontal sweep is between digits.

A time slot decoder is employed to decode the appropriate time slot and the digit to be displayed. It generates a video output signal that modulates the sweep of the television tube for the display on the screen.

## features

- 12 or 24 hour operation (controlled by clock chip)
- 5 or 8 digit display
- Channel number leading zero blanking
- Single power supply
- Channel number only or channel number and time display


## functions

- 8 digit mode is selected by a logic " 1 " at digit select input
- Channel number and time mode is selected by a logic " 1 " at mode input


## connection diagram

Dual-In-Line Package


Order Number MM5841N
See Package 23

## absolute maximum ratings

Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ )
-0.3 V to +15 V
Voltage at Any Pin $\quad V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{D D}+0.3 \mathrm{~V}$
Operating Temperature
Storage Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)
$300^{\circ} \mathrm{C}$

## electrical characteristics

$V_{D D}=12 \mathrm{~V}, V_{S S}=0 \mathrm{~V}$, unless otherwise specified.


## block diagram


timing diagram


## typical applications




Horizontal and Vertical One-Shot Circuit

## typical applications (con't)



## MM58106 digital clock and TV display circuit

## general description

The MM58106 is a monolithic CMOS integrated circuit which generates a display of channel number and time on the television screen. The circuit can either display channel number ( $2-83$ ) or program number (1-16). Time display can be 4 or 6 -digit, in either 12 or 24 -hour mode. Timekeeping is controlled from a 50 Hz or 60 Hz input. The position of the display on the TV screen is controlled by adjusting the external RC time constants.

The circuit is packaged in a 28 -lead dual-in-line epoxy package.

## features

- Single chip clock and display
- 12 or 24 -hour operation
- 5 or 8 -digit time display
- Channel or program number display
- $50 / 60 \mathrm{~Hz}$ operation
- Channel and time display on channel change


## block diagram

connection diagram


## absolute maximum ratings

Supply Voltage (VDD - V SS	5.5 V
Voltage at Any Pin	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to +5.5 V
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

electrical characteristics $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$, unless otherwise specified

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Voltage, VDD	$V_{S S}=0$	4.75	5	5.25	V
Power Supply Current				800	$\mu \mathrm{A}$
Input Voltage Levels .					
Channel Inputs					
Logical Low		$V_{\text {SS }}{ }^{-0.3}$	$V_{D D}{ }^{-5}$	$V_{D D}{ }^{-4.5}$	$V$
- Logical High		$V_{D D}-0.3$	VDD	$V_{D D}+0.3$	V
Horizontal and Vertical Inputs		.			
Logical Low		$\mathrm{V}_{\text {SS }}{ }^{-0.3}$	$V_{D D}{ }^{-5}$	$V_{D D}-4.5$	$V$
Logical High		$V_{D D}-0.3$	VDD	$V_{\text {DD }}+0.3$	V
Set Mins, Set Hours, Hold, 12/24.Hour	Internal Pull-Up Resistor to				
Select, $50 / 60 \mathrm{~Hz}$ Select, Channel/	VDD (600k Min)				
Program Select .					:
Logical Low	,	$\mathrm{V}_{\text {SS }}-0.3$	V.SS	$\mathrm{V}_{S S}+0.3$	V
Logical High			Open		
All Others				.	
Logical Low		$\mathrm{V}_{\text {SS }}-0.3$	VSS	$\mathrm{V}_{\mathrm{SS}}+0.3$	$V$
Logical High		$V_{D D}-0.3$	VDD	$V_{\text {DD }}+0.3$	V
Input Frequency					
4 MHz Clock		1	4	4.5	MHz
Horizontal	Pulse Width $=14 \mu \mathrm{~s}$		15.75		kHz
Vertical ,	Pulse Width $=1 \mathrm{~ms}$		60		Hz
Output Voltage Levels					
Oscillator Inhibit and Video Output					
Logical Low		$V_{\text {SS }}-0.3$	$V_{\text {SS }}$	$\mathrm{V}_{\text {SS }}+0.9$	$V$
Logical High	- .	$V_{\text {DD }}-0.5$	VDD	$V_{\text {DD }}+0.3$	$V$
One-Shot Output Pulse Duration					
Horizontal			50		$\mu \mathrm{s}$
Vertical			13		ms
Output Drive					:
Video Output			,	-	
Logical Low	$V_{S S}+1 V$	$(-1)$			$m A$
- Logical High	$V_{D D}-1 V$	1			mA
Oscillator Inhibit Output					
Logical Low	Output Forced Up to $\mathrm{V}_{\mathrm{DD}}{ }^{-4.5 V}$	$(-2)$			mA
Logical High	$V_{D D}-1 \mathrm{~V}$.	0.2			mA
External RC	, :				
CVERTICAL			0.1		$\mu \mathrm{F}$
CHORIZONTAL			0.001		$\mu \mathrm{F}$
RVERTICAL ,			100		$k \Omega$ pot
RHORIZONTAL			100	.	$k \Omega$ pot
Propagation Delay Oscillator Inhibit	From Input Clock to Oscillator			2	clock pulses
Output	Inhibit Output .				
Input Leakage	- .	.		1	$\mu \mathrm{A}$
Input Capacitance	,			5	pF
Edge Detect Pulse Duration	$C=2 \mu \mathrm{~F}, \mathrm{R}=1 \mathrm{M} \Omega-$		2		sec

## functional description

A block diagram of the MM58106 TV timer is shown in Figure 1. A connection diagram is shown in Figure 2. Unless otherwise indicated, the following discussions are based on Figure 1.

50 or 60 Hz Input: This input has a shaping circuit which allows using a filtered sinewave input. A simple RC filter such as shown in Figure 4 should be used to remove possible line voltage transients that could either cause the clock to gain time or damage the device. The input should swing between $V_{S S}$ and VDD. The shaper output drives a counter chain which performs the timekeeping function.

Alternatively, in a crystal controlled battery operated system, an oscillator and prescaler circuit such as the MM5369 could be used as a timebase.

50 or 60 Hz Select Input: This input programs the prescale counter to divide by either 50 or 60 to obtain a 1 pps timebase. The counter is programmed for 60 Hz operation by connecting this input to $\mathrm{V}_{\mathrm{SS}}$. An internal $1 \mathrm{M} \Omega$ pull-up resistor is common to this pin; simply leaving this input unconnected programs the clock for 50 Hz operation.

Time Setting Inputs: Inputs to sethours and set minutes as well as a hold input, are provided. Internal $1 \mathrm{M} \Omega$ pull-up resistors provide the normal timekeeping function. Switching any one of these inputs (one at a time) to " 0 " results in the desired time setting function. Set Hours advances hours information at 1 hour per second, and Set Minutes advances minutes information at one minute per second, without roll over into the hours counter. The hold input stops the clock to the minutes counter and resets the seconds counter.

Display Control: The channel number and time display circuits operate from the 4 MHz input clock frequency. The horizontal and vertical position of the display is controlled by adjusting the external RC time constants ( $\mathrm{RH}_{\mathrm{H}}, \mathrm{C}_{\mathrm{H}}, \mathrm{RV}_{\mathrm{V}}, \mathrm{C}_{\mathrm{V}}$ ).

These monostables are triggered by the horizontal and vertical retrace signals as shown in the timing diagram in Figure 3.

A 7-segment decoder is used to decode either channel inputs or time. Also a time slot decoder is employed to decode the appropriate time slot and the digit to be displayed. It generates a video output signal that can modulate the sweep of the television tube for the onscreen display.

Channel/Program Number Select: This control pin has a pull-up resistor to $\mathrm{V}_{\mathrm{DD}}$ and, with the input open, the chip will accept a binary plus 1 code on the CU1 to CU8 inputs and display the program number. For example, an input code of 0000 will indicate channel 1 and 1111 will indicate channel 16.

With this input at " 0 ", inputs CU1 to CU8 and CT1 to CT8 will accept BCD inputs for channel units and channel tens respectively, and display channels $2-83$.

Edge Detect: On program change, the time and number will be displayed for a period depending on the external capacitor and resistor connected to the Edge Detect pin (Figure 4).


FIGURE 3. Timing Diagram


FIGURE 4.


FIGURE 5. Horizontal and Vertical One-Shot Circuit

## HIGH RELIABILITY CMOS

For years，National＇s products have been acknowledged as among the most reliable available．It is only natural， therefore，that National should be committed to the Military／Aerospace semiconductor market，where re－ liability is of paramount importance．In the forefront of our Hi－Rel product line，our CMOS devices（both 4000 series and 54C series）are available with a wide range of screening options tailored to meet all levels of user needs．In addition to the basic flows shown on the following pages（and ANY of our Mil－grade CMOS devices can be screened to any of those flows），we also offer Rad－hardened CMOS（ $1 \times 10^{6}$ rads Si），SEM acceptance，and numerous other special tests．Regardless of your screening needs，whether you have designed around A series，B series，or 54C，we have what you need．And，since we can meet those needs with standard flows，we can meet them economically．We can also offer these devices，at the chip level，for use in hybrid circuits，with screening on a sample basis，if required．

National offers the following screening options（detailed in the following tables）：

1．Hermetic devices
a．Class B（as defined by Method 5004 of Mil－Std－ 883）．We offer both 38510 class B flow（which includes read－and－record）and－883B（which has only go－no－go screening）．These flows are ideal for systems where retrievability and replaceability is not a vital consideration，but where a failure rate of less than $0.001 \% / 1000$ hours is desirable．
b．Class A（as defined by Method 5004 of Mil－Std－ 883）．We offer both the conventional－883A flow and a flow equivalent to that called out by the CMOS Mil－M－38510 detail specifications（that is， three burn－ins，with read－and－record）．These flows should be used for manned space flight，non－ retrievable hardware，or any other systems where failure rates of less than $0.01 \% / 10^{6}$ hours are essential．
2．Commercial（molded）devices
a．A＋，designed for the user of commercial products who would like the additional assurance of a $100 \%$ burn－in at extremely low added cost．
b．$B+$ ，which affords the user，for only pennies per unit，a $90 \%$ reduction in failure rate．

Note 1：JAN is a registered trademark and can be used only to indicate parts processed $100 \%$ to the requirements of Mil－M－38510 and the applicable detail specification．JAN－processed material meets a／l of the requirements of the applicable slash sheet，except that parts are assembled in our offshore facility．The applicable part marking would be as follows：

$$
\begin{array}{llll}
\text { JAN } & \approx 27014 & \text { JM38510/05603BCB } 7650 & \text { U.S.A. } \\
\text { JAN-proc } & \approx 27014 & \text { CD4020AJ/05603BCB } 7650 \text { U.S.A. }
\end{array}
$$

Note 2：The RETS（an acronym for REL Electrical Test Specification）is a one－page document which translates into data sheet format the contents of our standard test tapes．RETSs are available from our sales office．
Note 3：Post burn－in read－and－record is required only when post burn－in electrical testing is not performed within 24 hours of the completion of burn－in．


TABLE 1. Product Flows
Note 4: On the class A flows, SEM is performed, and a certificate of conformance is provided certifying to the wafer lot acceptance requirements of Mil-Std-883 Method 5007. Class A flows may be obtained without SEM upon special request.
DYNAMIC BURN-IN
240 HRS
R\&R PER S/S
$\triangle C A L C ~ 5 \% ~ P D A ~$
3TEMP DC
SCREEN PLUS
AC AT 25 $C$
TOSLASH SHEET

JAN Processed (5)
883A

R\&R
PER S/S


TABLE 3. Class A Flows
Note 5: For the class $A$ flows, inspection lot formation is on a metallization run basis.

Group B - every 6 weeks per generic famity/package type combination	Accepted   Cisteria	
Subgroup 1	Physical Dimensions per Method 2016	2 units/0 rejects
Subgroup 2	Resistance to Solvents per Method 2015   Internal Visual \& Mechanical per Method 2014         Bond Strength per Method 2011, Condition D	3 units $/ 0$ rejects      Subgroup 3
Solderability per Method 2003	25 bonds $/ 1$ reject	


Group C - every 90 days per generic family		
Subgroup 1	Operating Life per Method 1005 (1000 hrs/ $125^{\circ} \mathrm{C}$ ) Electrical End Points	77 units/1 reject
Subgroup 2	Temp Cycle, Method 1010, Condition C, 10 cycles Constant Acceleration, Method 2001, Condition E Fine and Gross Leak per Method 1014 Electrical End Points	15 units/0 rejects


Group D - every 6 months per package type	
Subgroup 1	Physical Dimensions per Method 2016 . 15 units/0 rejects
Subgroup 2	Lead Integrity per Method 2004, Condition B2   Fine and Gross Leak per Method 1014   15 units/O rejects
Subgroup 3	$\left.\begin{array}{l\|l}\text { Thermal Shock per Method 1011B, } 15 \text { cycles } \\ \text { Temp Cycle per Method } 1010 \mathrm{C}, 100 \text { cycles } \\ \text { Moisture Resistance per Method } 1004 \\ \text { Fine and Gross Leak per Method } 1014 \\ \text { Visual Examination per Method } 1010 \\ \text { Electrical End Points }\end{array}\right\} 25$ units/1 reject
Subgroup 4	$\left.\begin{array}{l\|l}\text { Mechanical Shock per Method 2002, Condition D } \\ \text { Vibration Variable Frequency per Method 2007, Condition A } \\ \text { Constant Acceleration per Method 2001, Condition E } \\ \text { Fine \& Gross Leak per Method } 1014 \\ \text { Visual Examination } \\ \text { Electrical End Points }\end{array}\right\} 15$ units/1 reject
Subgroup 5	Salt Atmosphere per Method 1009, Condition A Visual Examination

TABLE 4. Quality Conformance Testing, Class A or B

## A+ PROGRAM

A+ Program: A comprehensive program that utilizes National's experience gained from participation in the many Military/Aerospace programs.

A program that not only assures high quality but also increases the reliability of molded integrated circuits.

The A+ program is intended for users who cannot perform incoming inspection of ICs or does not wish to do so, yet needs significantly better than usual incoming quality and higher reliability levels for his standard integrated circuit.

Users who specify A+ processed parts will find that the program:

- Eliminates incoming electrical inspection.
- Eliminates the need for, and thus the added cost of, independent testing laboratories.
- Reduces the cost of reworking assembly boards.
- Reduces field failures.
- Reduces equipment down time.
- Reduces the need for excess inventories due to yield loss incurred as a result of processing performed at independent testing laboratories.


## The A+ Program Saves You Money

It is widely accepted fact that down-time of equipment is costly not only in lost hours of machine usage but also costly in the repair and maintenance cycle. One of the added advantages of the A+ program is the burn-in screen, which is one of the most effective screening procedures in the semiconductor industry. Failure rates as a result of the burn-in can be decreased many times. The objective of burn-in is to stress the device much higher than it would be stressed during normal usage.

## Reliability vs. Quality

The words "reliability" and "quality" are often used interchangeably, as though they connoted identical facets of a product's merit. But reliability and quality are different, and IC users must understand the essential difference between the two concepts in order to evaluate properly the various vendors' programs for products improvement that are generally available, and National's A+ program in particular.

The concept of quality gives us information about the population and faulty IC devices among good devices, and generally relates to the number of faulty devices that arrive at a user's plant. But looked at in another way, quality can instead relate to the number of faulty ICs that escape detection at the IC vendor's plant.

It is the function of a vendor's Quality Control arm to monitor the degree of success of that vendor in reducing the number of faulty ICs that escape detection. Quality Control does this by testing the outgoing parts on a sampled basis. The Acceptable Quality Level (AQL) in
turn determines the stringency of the sampling. As the AQL decreases it becomes more difficult for defective parts to escape detection, thus the quality of the shipped parts increases.

The concept of reliability, on the other hand, refers to how well a part that is initially good will withstand its environment. Reliability is measured by the percentage of parts that fail in a given period of time.
Thus the difference between quality and reliability means the ICs of high quality may, in fact, be of low reliability, while those of low quality may be of high reliability.

## Improving the Reliability of Shipped Parts

The most important factor that affects a part's reliability is its construction: the materials used and the method by which they are assembled.
Reliability cannot be tested into a part. Still, there are tests and procedures that an IC vendor can implement which will subject the IC to stresses in excess of those that it will endure in actual use, and which will elim. inate marginal, short-life parts.

In any test of reliability the weaker parts will normally fail first. Further, stress tests will accelerate, or shorten, the time of failure of the weak parts. Because the stress tests cause weak parts to fail prior to shipment to the user, the population of shipped parts will in fact demonstrate a higher reliability in use.

## National's A+ Program

National has combined the successful $B+$ program with the Military/Aerospace processing specifications and provides the A+ program as the best practical approach to maximum quality and reliability on molded devices. The following flow chart shows how we do it step by step.


SEM
Randomly selected wafers are taken from production regularly and subjected to SEM analysis.

## Epoxy B Seal

At National, all molded semiconductors, including ICs, have been built by this process for some time now. All processing steps, inspections and QC monitoring are designed to provide highly reliable products. (A reliability report is available that gives, in detail, the background of Epoxy B, the reason for its selection at National, and reliability data that proves its success.)

Six Hour, $150^{\circ} \mathrm{C}$ Bake
This stress places the die bond and all wire bonds into a combined tensile and shear stress mode, and


Here are the QC sampling plans used in our A+ test program:

TEST	TEMPERATURE	AQL
Electrical Functionality	$25^{\circ} \mathrm{C}$	$0.14 \%$
Parametric, DC	$25^{\circ} \mathrm{C}$	$0.28 \%$
Major Mechanical	$25^{\circ} \mathrm{C}$	$0.25 \%$
Minor Mechanical	$25^{\circ} \mathrm{C}$	$1 \%$

## B+ PROGRAM

B+ Program: a comprehensive program that assures high quality and high reliability of molded integrated circuits.

The $\mathrm{B}+$ program improves both the quality and the reliability of National's digital, linear, and CMOS Epoxy $B$ integrated circuit products. It is intended for the manufacturing user who cannot perform incoming inspection of his ICs, or does not wish to do so, yet needs significantly-better-than-usual incoming quality and reliability levels for his standard ICs.

Integrated circuit users who specify B+ processed parts will find that the program:

- Eliminates incoming electrical inspection
- Eliminates the need for, and thus the costs of, independent testing laboratories
- Reduces the cost of reworking assembled boards
- Reduces field failures
- Reduces equipment downtime


## Reliability Saves You Money

With the increased population of integrated circuits in modern electronic systems has come an increased concern with IC failures in such systems.

And rightly so, for at least two reasons.
First of all, the effect of component reliability on system reliability can be quite dramatic. For example, suppose that you, as a system manufacturer, were to. choose an IC that is 99 percent reliable. You would find that if your system used only 70 such ICs, the overall reliability of the system's IC portion would be only 50 percent. In other words, only one out of two of your systems would operate. The result? A system very costly to produce and probably very difficult to sell.

Secondly, whether the system is large or small you cannot afford to be hounded by the spectre of unnecessary maintenance costs. Not only because labor, repair and rework costs have risen - and promise to continue to rise - but also because field replacement may be prohibitively expensive. If you ship a system that contains a marginally-performing IC, an IC that later fails in the field, the cost of replacement may be - literally - hundreds of times more than the cost of the failed IC itself.

## Improving the Reliability of Shipped Parts

The most important factor that affects a part's reliability is its construction: the materials used and the method by which they are assembled.

Now, it's true that reliability cannot be tested into a part. Still, there are tests and procedures that an IC vendor can implement, which will subject the IC to stresses in excess of those that it will endure in actual use, and which will eliminate most marginal, short-life parts.

In any test for reliability the weaker parts will normally fail first. Further, stress tests will accelerate, or shorten, the time to failure of the weak parts. Because the stress tests cause weak parts to fail prior to shipment to the user, the population of shipped parts will in facg demonstrate a higher reliability in use.

## Quality Improvement

When an IC vendor specifies 100 percent final testing of his parts then, in theory, every shipped part should be a good part. However, in any population of massproduced items there does exist some small percentage of defective parts.

One of the best ways to reduce the number of such faulty parts is, simply, to retest the parts prior to shipment. Thus, if there is a one percent change that a bad part will escape detection initially, retesting the parts reduces that probability to only 0.01 percent. (A comparable tightening of the QC group's sampled-test plan ensures the maintenance of the improved quality level.)

## National's B+ Program Gets It All Together

We've stated that the $\mathrm{B}+$ program improves both the quality and the reliability of National's molded integrated circuits, and pointed out the difference between those two concepts. Now, how do we bring them together? The answer is in the $\mathrm{B}+$ program processing, which is a continuum of stress and double testing. With the exception of the final QC inspection, which is sampled, all steps of the B+ process are performed on 100 percent of the program parts. The following flow chart shows how we do it, step by step.

$\square$

## Epoxy B Processing for All Molded Parts

At National, all molded semiconductors, including ICs, have been built by this process for some time now. All processing steps, inspections and QC monitoring are designed to provide highly reliable products. [A reliability report is available that gives, in detail, the background of Epoxy B, the reason for its selection at National and reliability data that proves its success.]

Six Hour, $150^{\circ} \mathrm{C}$ Bake
This stress places the die bond and all wire bonds into a combined tensile and shear stress mode, and helps eliminate marginal bonds and electrical connections.

Five Temperature Cycles $\left(0^{\circ} \mathrm{C}\right.$ to $100^{\circ} \mathrm{C}$ )
Exercising the circuits over a $100^{\circ} \mathrm{C}$ temperature range further stresses the bonds and generally eliminates any marginal bonds missed during the bake.

High Temperature $\left(100^{\circ} \mathrm{C}\right)$ Functional Electrical Test
A high-temperature test such as this with voltages
applied places the die under the most severe stress possible. The test is actually performed at $100^{\circ} \mathrm{C}$ $-30^{\circ} \mathrm{C}$ higher than the commercial ambient limit. All devices are thoroughly exercised at the $100^{\circ} \mathrm{C}$ ambient. [Even though Epoxy B processing has virtually eliminated thermal intermittents, we perform this test to ensure againnt even the remote possibility of such a problem. Remember, the emphasis in the $\mathrm{B}+$ program is on the elimination of those marginally-performing devices that would otherwise lower field reliability of the parts.]

DC Functional and Parametric Tests
These room-temperature functional and parametric tests are the normal, final tests through which all National products pass.

Tighter-than-Normal QC Inspection Plans
Most vendors sample inspect outgoing parts to a $0.65 \%$ AQL. Some use even a looser $1 \%$ AQL. When you specify the $B+$ program, however, not only do we sample your parts to a $0.28 \% \mathrm{AOL}$ for all data-sheet DC parameters, but they receive a $0.14 \%$ AQL for functionality as well. Now, functional failures - not parameter shifts beyond spec - cause most system failures. Thus, the five-times to seven-times tightening of the sampling procedure (from $0.65-1 \%$ to $14 \%$ AQL) gives a substantially higher quality to your $\mathrm{B}+$ parts. And you can rely on the integrity of your received ICs without incoming tests at your facility.

Ship Parts

Here are the QC sampling plans used in our $\mathrm{B}+$ test program:

TEST TEMPERATURE AQL

Electrical Functionality	$25^{\circ} \mathrm{C}$	$0.14 \%$
Parametric, DC	$25^{\circ} \mathrm{C}$	$0.25 \%$
Parametric, DC	$100^{\circ} \mathrm{C}$	$1 \%$
Parametric, AC	$25^{\circ} \mathrm{C}$	$1 \%$
Major Mechanical	-	$0.25 \%$
Minor Mechanical	-	$1 \%$

# cmos DATABOOK 

## 

## 



# APPLICATION NOTESIBRIEFS 

## CMOS, THE IDEAL LOGIC FAMILY

## INTRODUCTION

Let's talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have noise immunity equal to $50 \%$ of the logic swing.

Well, that ideal logic family is here - almost. The properties of CMOS (complementary MOS) begin to approach these ideal characteristics.
First, CMOS dissipates low power. Typically, the static power dissipation is 10 nW per gate which is due to the flow of leakage currents. The active power depends on power supply voltage, frequency, output load and input rise time, but typically, gate dissipation at 1 MHz with a 50 pF load is less than 10 mW .

Second, the propagation delays through CMOS are short, though not quite zero. Depending on power supply voltage, the delay through a typical gate is on the order of 25 to 50 ns .

Third, rise and fall times are controlled, tending to be ramps rather than step functions. Typically, rise and fall times tend to be 20 to $40 \%$ longer than the propagation delays.

Last, but not least, the noise immunity approaches $50 \%$, being typically $45 \%$ of the full logic swing.

Besides the fact that it approaches the characteristics of an ideal logic family and besides the obvious low power battery applications, why should designers choose CMOS for new systems? The answer is cost.

On a component basis, CMOS is still more expensive than TTL. However, system level cost may be
lower. The power supplies in a CMOS system will be cheaper since they can be made smaller and with less regulation. Because of lower currents, the power supply distribution system can be simpler and therefore, cheaper. Fans and other cooling equipment are not needed due to the lower dissipation. Because of longer rise and fall times, the transmission of digital signals becomes simpler making transmission techniques less expensive. Finally, there is no technical reason why CMOS prices cannot approach present day TTL prices as sales volume and manufacturing experience increase. So, an engineer about to start a new design should compare the system level cost of using CMOS or some other logic family. He may find that, even at today's prices, CMOS is the most economical choice.

National is building two lines of CMOS. The first is a number of parts of the CD4000A series. The second is the $54 \mathrm{C} / 74 \mathrm{C}$ series which National introduced and which will become the industry standard in the near future.

The $54 \mathrm{C} / 74 \mathrm{C}$ line consists of CMOS parts which are pin and functional equivalents of many of the most popular parts in the 7400 TTL series. This line is typically $50 \%$ faster than the 4000A series and sinks $50 \%$ more current. For ease of design, it is spec'd at TTL levels as well as CMOS levels, and there are two temperature ranges available: 54 C , $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ or $74 \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Table 1 compares the port parameters of the $54 \mathrm{C} / 74 \mathrm{C}$ CMOS line to those of the $54 \mathrm{~L} / 74 \mathrm{~L}$ low power TTL line.

TABLE 1. Comparison of 54L/74L Low Power TTL and 54C/74C CMOS Port Parameters.

FAMILY	Vcc	$\begin{aligned} & V_{1 L} \\ & \text { MAX } \end{aligned}$	$\mathrm{ILL}_{\text {MAX }}$	$\begin{aligned} & V_{I H} \\ & \mathrm{MIN} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{IH}} \\ & 2.4 \mathrm{~V} \end{aligned}$	Vol MAX	IOL	VOH   MIN	${ }^{\mathrm{I}} \mathrm{OH}$	$\begin{aligned} & \mathbf{t}_{\text {pdo }} \\ & \mathbf{T Y P}^{2} \end{aligned}$	$\begin{aligned} & \mathbf{t}_{\text {pdI }} \\ & \mathrm{TYP} \end{aligned}$	PoIss/GATE STATIC	$\begin{gathered} \text { PDISS/GATE } \\ 1 \mathrm{MHz}, 50 \mathrm{pF} \text { LOAD } \end{gathered}$
54L/74L	5	0.7	0.18 mA	2.0	$10 \mu \mathrm{~A}$	0.3	2.0 mA	2.4	$100 \mu \mathrm{~A}$	31	35	1 mW	2.25 mW
$54 \mathrm{C} / 74 \mathrm{C}$	5	0.8	-	3.5	-	0.4	${ }^{*} 360 \mu \mathrm{~A}$	2.4	$\cdot 100 \mu \mathrm{~A}$	60	45	0.00001 mW	1.25 mW
54C/74C	10	2.0	-	8.0	-	1.0	${ }^{*} 10 \mu \mathrm{~A}$	9.0	${ }^{*} 10 \mu \mathrm{~A}$	25	30	0.00003 mW	5 mW

[^20]
## CHARACTERISTICS OF CMOS

The aim of this section is to give the system designer not familiar with CMOS, a good feel for how it works and how it behaves in a system. Much has been written about MOS devices in general. Therefore, we will not discuss the design and fabrication of CMOS transistors and circuits.

The basic CMOS circuit is the inverter shown in Figure 2-1. It consists of two MOS enhancement mode transistors, the upper a P-channel type, the lower an N -channel type.


FIGURE 2-1. Basic CMOS Inverter.
The power supplies for CMOS are called $V_{D D}$ and $V_{S S}$, or $V_{C C}$ and Ground depending on the manufacturer. $V_{D D}$ and $V_{S S}$ are carryovers from conventional MOS circuits and stand for the drain and source supplies. These do not apply directly to CMOS since both supplies are really source supplies. $V_{C C}$ and Ground are carryovers from TTL logic and that nomeclature has been retained with the introduction of the $54 \mathrm{C} / 74 \mathrm{C}$ line of CMOS. $\mathrm{V}_{\mathrm{CC}}$ and Ground is the nomenclature we shall use throughout this paper.

The logic levels in a CMOS system are $\mathrm{V}_{\mathbf{c c}}$ (logic " 1 ") and Ground (logic " 0 "). Since "on" MOS transistor has virtually no voltage drop across it if there is no current flowing through it, and since the input impedance to CMOS device is so high (the input characteristic of an MOS transistor is essentially capacitive, looking like a $10^{12} \Omega$ resistor shunted by a 5 pF capacitor), the logic levels seen in a CMOS system will be essentially equal to the power supplies.

Now let's look at the characteristic curves of MOS transistors to get an idea of how rise and fall times, propagation delays and power dissipation will vary with power supply voltage and capacitive loading. Figure 2.2 shows the characteristic curves of N -channel and P -channel enhancement mode transistors.

There are a number of important observations to be made from these curves. Refer to the curve of $\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}$ (Gate to Source Voltage) for the N -channel transistor. Note that for a constant drive voltage $V_{G S}$, the transistor behaves like a current source for $V_{D S}$ 's (Drain to Source Voltage) greater than $V_{G S}-V_{T}\left(V_{T}\right.$ is the threshold
voltage of an MOS transistor). For $V_{D s}$ 's below $V_{G S}-V_{T}$, the transistor behaves essentially like a resistor. Note aiso that for lower $\mathrm{V}_{\text {Gs }}$ 's, there are similar curves except that the magnitude of the $I_{\text {DS's }}$ are significantly smaller and that in fact, $I_{\text {Ds }}$ increases approximately as the square of increasing $\mathrm{V}_{\mathrm{GS}}$. The P-channel transistor exhibits essentially identical, but complemented, characteristics.


FIGURE 2-2. Logical " 1 " Output Voltage vs Source Current.

If we try to drive a capacitive load with these devices, we can see that the initial voltage change across the load will be ramp-like due to the current source characteristic followed by a rounding off due to the resistive characteristic dominating as $V_{D S}$ approaches zero. Referring this to our basic CMOS inverter in Figure 2-1, as $V_{D S}$ approaches zero, $\mathrm{V}_{\text {OUt }}$ will approach $\mathrm{V}_{\mathrm{CC}}$ or Ground depending on whether the P -channel or N -channel transistor is conducting.

Now if we increase $V_{C C}$ and, therefore, $V_{G S}$ the inverter must drive the capacitor through a larger voltage swing. However, for this same voltage increase, the drive capability ( $I_{D S}$ ) has increased roughly as the square of $V_{G S}$ and, therefore, the rise times and the propagation delays through the inverter as measured in Figure 2.3 have decreased.

So, we can see that for a given design, and therefore fixed capacitive load, increasing the power supply voltage will increase the speed of the system.

Increasing $V_{c c}$ increases speed but it also increases power dissipation. This is true for two reasons. First, $\mathrm{CV}^{2} \mathrm{f}$ power increases. This is the power dissipated in a CMOS circuit, or any other circuit for that matter, when driving a capacitive load.


FIGURE 2.3. Rise and Fall Times and Propagation Delays as Measured in a CMOS System.

For a given capacitive load and switching frequency, power dissipation increases as the square of the voltage change across the load.

The second reason is that the VI power dissipated in the CMOS circuit increases with $V_{c c}$ (for $V_{C C}$ 's $>2 V_{T}$. Each time the circuit switches, a current momentarily flows from $V_{c c}$ to Ground through both output transistors. Since the threshold voltages of the transistors do not change with increasing $\mathrm{V}_{\mathrm{cc}}$, the input voltage range through which the upper and lower transistors are conducting simultaneously increases as $\mathrm{V}_{\mathrm{Cc}}$ increases. At the same time, the higher $V_{C C}$ provides higher $V_{G S}$ voltages which also increase the magnitude of the $l_{D S}$ currents. Incidently, if the rise time of the input signal was zero, there would' be no current flow from $V_{c c}$ to Ground through the circuit. This current flows because the input signal has a finite rise time and, therefore, the input voltage spends a finite amount of time passing through the region where both transistors conduct simultaneously. Obviously, input rise and fall times should be kept to a minimum to minimize VI power dissipation.

Let's look at the transfer characteristics, Figure 2-4, as they vary with $V_{\mathrm{cc}}$. For the purposes of this discussion we will assume that both transistors in our basic inverter have identical but complementary characteristics and threshold voltages. Assume the threshold voltages, $V_{T}$, to be 2 V . If $\mathrm{V}_{\mathrm{CC}}$ is less than the threshold voltage of 2 V , neither transistor can ever be turned on and the circuit cannot operate. If $\mathrm{V}_{\mathrm{cc}}$ is equal to the threshold voltage exactly then we are on the curve Figure 2-4a. We appear to have $100 \%$ hysteresis. However, it is not truly hysteresis since both output transistors are off and the output voltage is being held on the gate capacitances of succeeding circuits. If $V_{C C}$ is somewhere between one and two threshold voltages (Figure 2.4b), then we have diminishing amounts of "hysteresis" as we approach. $V_{C C}$ equal to $2 \mathrm{~V}_{\mathrm{T}}$ (Figure $2 \cdot 4 \mathrm{c}$ ). At $\mathrm{V}_{\mathrm{Cc}}$ equal to two thresholds we have no "hysteresis" and no current flow through both the upper and lower transistors during switching. As $V_{\mathrm{CC}}$ exceeds two thresholds the
transfer curves begin to round off (Figure 2-4d). As $\mathrm{V}_{\text {IN }}$ passes through the region where both transistors are conducting, the currents flowing through the transistors cause voltage drops across them giving the rounded characteristic.


FIGURE 2-4. Transfer Characteristics vs $V_{C C}$.

Considering the subject of noise in a CMOS system, we must discuss at least two specs: noise immunity and noise margin.

National's CMOS circuits have a typical noise immunity of 0.45 V cc . This means that a spurious input which is $0.45 \mathrm{~V}_{\mathrm{cc}}$ or less away from $\mathrm{V}_{\mathrm{cc}}$ or Ground typically will not propagate through the system as an erroneous logic level. This does not mean that no signal at all will appear at the output of the first circuit. In fact, there will be an output signal as a result of the spurious input, but it will be reduced in amplitude. As this signal propagates through the system, it will be attenuated even more by each circuit it passes through until it finally disappears. Typically, it will not change any signal to the opposite logic level. In a typical flip flop, a $0.45 \mathrm{~V}_{\mathrm{cc}}$ spurious pulse on the clock line would not cause the flop to change state.

National also guarantees that its CMOS circuits have a $1 \mathrm{~V} D C$ noise margin over the full power supply range and temperature range and with any combination of inputs. This is simply a variation of the noise immunity spec only now a specific set of input and output voltages have been selected and guaranteed. Stated verbally, the spec says that for the output of a circuit to be within $0.1 \mathrm{~V}_{\mathrm{cc}}$ volts of a proper logic level $\left(\mathrm{V}_{\mathrm{Cc}}\right.$ or Ground), the input
can be as much as $0.1 \mathrm{~V}_{\mathrm{cc}}$ plus 1 V away from power supply rail. Shown graphically we have:


FIGURE 2.5. Guaranteed CMOS DC Margin Over Temperature as a Function of $\mathrm{V}_{\mathrm{CC}}$. CMOS Guarantees IV.

This is similar in nature to the standard TTL noise margin spec which is 0.4 V .


FIGURE 2-6. Guaranteed TTL DC Margin Over Temperature as a Function of $\mathrm{V}_{\mathrm{CC}}$. TTL Guarantees 0.4V.

For a complete picture of $V_{\text {OUT }}$ vs $V_{\text {IN }}$ refer to the transfer characteristic curves in Figure 2-4.

## SYSTEM CONSIDERATIONS

This section describes how to handle many of the situations that arise in normal system design such as unused inputs, paralleling circuits for extra drive, data bussing, power considerations and interfaces to other logic families.

Unused inputs: simply stated, unused inputs should not be left open. Because of the very high impedance $\left(\sim 10^{12} \Omega\right)$, a floating input may drift back and forth between a " 0 " and " 1 " creating some very intriguing system problems. All unused inputs should be tied to $\mathrm{V}_{\mathrm{Cc}}$, Ground or another used input. The choice is not completely arbitrary, however, since there will be an effect on the output drive capability of the circuit in question. Take, for example, a four input NAND gate being used as a two input gate. The internal structure is shown in Figure 3-1. Let inputs $A \& B$ be the unused inputs.

If we were going to tie the unused inputs to a logic level, inputs A \& B would have to be tied to $V_{\text {cc }}$ to enable the other inputs to function. That would turn on the lower $A$ and $B$ transistors and turn off the upper $A$ and $B$ transistors. At most, only two of the upper transistors could ever be turned on. However, if inputs $A$ and $B$ were tied to input $C$, the input capacitance would triple, but each time C went low, the upper A, B and C transistors would turn on, tripling the available source current. If input $D$ was low also, all four of the upper transistors would be on.


FIGURE 3-1. MM74C20 Four Input NAND Gate.
So, tying unused NAND gate inputs to $V_{c c}$ (Ground for NOR gates) will enable them, but tying unused inputs to other used inputs guarantees an increase in source current in the case of NAND gates (sink current in the case of NOR gates). There is no increase in drive possible through the series transistors. By using this approach, a multiple input gate could be used to drive a heavy current load such as a lamp or a relay.

Parallel gates: depending on the type of gate, tying inputs together guarantees an increase in either source or sink current but not both. To guarantee an increase in both currents, a number of gates must be paralleled as in Figure 3-2. This insures that there are a number of parallel combinations of the series string of transistors (Figure 3-1), thereby increasing drive in that direction also.


FIGURE 3-2. Paralleling Gates or Inverters Increases Output Drive in Both Directions.

Data bussing: there are essentially two ways to do this. First, connect ordinary CMOS parts to a bus using transfer gates (part no. CD4016C). Second,
and the preferred way，is to use parts specifically designed with a CMOS equivalent of a TRI－STATE ${ }^{(8)}$ output．

Power supply filtering：since CMOS can operate over a large range of power supply voltages（ 3 V to 15 V ），the filtering necessary is minimal．The minimum power supply voltage required will be determined by the maximum frequency of opera－ tion of the fastest element in the system（usually only a very small portion of any system operates at maximum frequency）．The filtering should be designed to keep the power supply voltage some－ where between this minimum voltage and the maximum rated voltage the parts can tolerate． However，if power dissipation is to be kept to a minimum，the power supply voltage should be kept as low as possible while still meeting all speed requirements．

Minimizing system power dissipation：to minimize power consumption in a given system，it should be run at the minimum speed to do the job with the lowest possible power supply voltage．$A C$ and $D C$ transient power consumption both increase with frequency and power supply voltage．The AC power is described as $\mathrm{CV}^{2} \mathrm{f}$ power．This is the power dissipated in a driver driving a capacitive load．Obviously，AC power consumption increases directly with frequency and as the square of the power supply．It also increases with capacitive load， but this is usually defined by the system and is not alterable．The DC power is the VI power dissipated during switching．In any CMOS device during switching，there is a momentary current path from the power supply to ground，（when $\mathrm{V}_{\mathrm{Cc}}>2 \mathrm{~V}_{\mathrm{T}}$ ） Figure 3－3．


VI POWER IS GIVEN BY：
$P_{V I}=V_{C C} \times \frac{1}{2} I_{\text {MAX }} \times$ RISE tIME TO PERIOD RATIO
$\underset{\text { PERIOD RATIO }}{\text { RISE TIME TO }}=\frac{V_{C C}-2 V_{T}}{V_{C C}} \times \frac{t_{\text {RISE }}+t_{\text {FALL }}}{\text { t TOTAL }}$
WHERE $\frac{1}{\text { ttotal }^{\prime}}=$ FREQUENCY
$P_{V I}=1 / 2\left(V_{C C}-2 V_{T}\right) I_{\text {CC MAX }}\left(t_{\text {RISE }}+t_{\text {FALL }}\right)$ FREQ．
FIGURE 3－3．DC Transient Power．

The maximum amplitude of the current is a rapidly increasing function of the input voltage which in turn is a direct function of the power supply voltage．See Figure 2．4d．

The actual amount of VI power dissipated by the system is determined by three things：power supply voltage，frequency and input signal rise time．A very important factor is the input rise time．If the
rise time is long，power dissipation increases since the current path is established for the entire period that the input signal is passing through the region between the threshold voltages of the upper and lower transistors．Theoretically，if the rise time were zero，no current path would be established and the VI power would be zero．However，with a finite rise time there is always some current flow and this current flow increases rapidly with power supply voltage．
Just a thought about rise time and power dissipa－ tion．If a circuit is used to drive many loads，its output rise time will suffer．This will result in an increase in VI power dissipation in every device being driven by that circuit（but not in the drive circuit itself）．If power consumption is critical，it may be necessary to improve the rise time of that circuit by buffering or by dividing the loads in order to reduce overall power consumption．

So，to summarize the effects of power supply voltage，input voltage，input rise time and output load capacitance on system power dissipation，we can say the following：

1．Power supply voltage： $\mathrm{CV}^{2} \mathrm{f}$ power dissipation increases as the square of power supply voltage． VI power dissipation increases approximately as the square of the power supply voltage．

2．Input voltage level：VI power dissipation in－ creases if the input voltage lies somewhere between Ground plus a threshold voltage and $V_{c c}$ minus a threshold voltage．The highest power dissipation occurs when $V_{I N}$ is at $1 / 2$ $\mathrm{V}_{\mathrm{CC}} . \mathrm{CV}^{2} \mathrm{f}$ dissipation is unaffected．
3．Input rise time：VI power dissipation increases with longer rise times since the $D C$ current path through the device is established for a longer period．The $\mathrm{CV}^{2} \mathrm{f}$ power is unaffected by slow input rise times．
4．Output load capacitance：the $\mathrm{CV}^{2} \mathrm{f}$ power dissi－ pated in a circuit increases directly with load capacitance．VI power in a circuit is unaffected by its output load capacitance．However，in－ creasing output load capacitance will slow down the output rise time of a circuit which in turn will affect the VI power dissipation in the devices it is driving．

## INTERFACES TO OTHER LOGIC TYPES

There are two main ideas behind all of the follow－ ing interfaces to CMOS．First，CMOS outputs should satisfy the current and voltage requirements of the other family＇s inputs．Second，and probably most important，the other family＇s outputs should swing as near as possible to the full voltage range of the CMOS power supplies．
P－Channel MOS：there are a number of things to watch for when interfacing CMOS and P－MOS．The first is the power supply set．Most of the more popular P－MOS parts are specified with 17 to 24 V power supplies while the maximum power supply voltage for CMOS is 15 V ．Another problem
is that unlike CMOS, the output swing of a pushpull P-MOS output is significantly less than the power supply voltage across it. P-MOS swings from very close to its more positive supply ( $\mathrm{V}_{\mathrm{SS}}$ ) to quite a few volts above its more negative supply ( $V_{D D}$ ). So, even if P-MOS uses a 15 V or lower power supply set, its output swing will not go low enough for a reliable interface to CMOS. There are a number of ways to solve this problem depending on the configuration of the system. We will discuss two solutions for systems that are built totally with MOS and one solution for systems that include bipolar logic.


FIGURE 3-4. A One Power Supply System Built Entirely of CMOS and P-MOS.

First, MOS only. P-MOS and CMOS using the same power supply of less than 15 V . Figure 3-4.

In this configuration CMOS drives P-MOS directly. However, P-MOS cannot drive CMOS directly because of its output will not pull down close enough to the lower power supply rail. $R_{\text {PD }}$ (R pull down) is added to each P -MOS output to pull it all the way down to the lower rail. Its value is selected such that it is small enough to give the desired RC time constant when pulling down but not so small that the P-MOS output cannot pull it virtually all the way up to the upper power supply rail when it needs to. This approach will work with push-pull as well as open drain P-MOS outputs.

Another approach in a purely MOS system is to build a cheap zener supply to bias up the lower power supply rail of CMOS, Figure 3-5.


FIGURE 3-5. A P-MOS and CMOS System Where The P-MOS Supply is Greater Than 15 V .

In this configuration the P-MOS supply is selected to satisfy the P-MOS voltage requirement. The bias supply voltage is selected to reduce the total voltage across the CMOS (and therefore its logic swing) to match the minimum swing of the P-MOS
outputs. The CMOS can still drive P-MOS directly and now the P-MOS can drive CMOS with no pull-down resistors. The other restrictions are that the total voltage across the CMOS is less than 15 V and that the bias supply can handle the current requirements of all the CMOS. This approach is useful if the P-MOS supply must be greater than 15 V and the CMOS current requirement is low enough to be done easily with a small discrete component regulator.
If the system has bipolar logic, it will usually have at least two power supplies. In this case, the CMOS is run off the bipolar supply and it interfaces directly to P-MOS, Figure 3-6.


Run the CMOS from the bipolar supply and interface directly to P.MOS

FIGURE 3-6. A System With CMOS, P-MOS and Bipolar Logic.

N-Channel MOS: interfacing to N-MOS is somewhat simpler than interfacing to P-MOS although similar problems exist. First, N-MOS requires lower power supplies than P-MOS, being in the range of 5 V to 12 V . This is directly compatible with CMOS. Second, N-MOS logic levels rangefrom slightly above the lower power supply rail to about 1 to 2 V below the upper rail.
At the higher power supply voltages, N-MOS and CMOS can be interfaced directly since the N-MOS high logic level will be only about 10 to 20 percent below the upper rail. However, at lower supply voltages the N-MOS output level will be down 20 to 40 percent below the upper rail and something may have to be done to raise it . The simplest solution is to add puil up resistors on the N-MOS outputs as shown in Figure 3-7.


Both operate off same supply with pull up resistors optional from N-MOS to CMOS.

FIGURE 3-7. A System With CMOS and N-MOS Only.

TTL, LPTTL, DTL: two questions arise when interfacing bipolar logic families to CMOS. First, is the bipolar family's logic " 1 " output voltage high enough to drive CMOS directly?

TTL，LPTTL，and DTL can drive 74C series CMOS directly over the commercial temperature range without external pull up resistors．However，TTL and LPTTL cannot drive 4000 series CMOS directly （DTL can）since 4000 series specs do not guarantee that a direct interface with no pull up resistors will operate properly．

DTL and LPTTL manufactured by National（NS LPTTL pulls up one diode drop higher than the LPTTL of other vendors）will also drive 74C directly over the entire military temperature range． LPTTL manufactured by other vendors and stan－ dard TTL will drive 74C directly over most of the mil temperature range．However，the TTL logic ＂ 1 ＂drops to a somewhat marginal level toward the lower end of the mil temperature range and a pull up resistor is recommended．

According to the curve of $D C$ margin vs $V_{C C}$ for CMOS in Figure 2－5，if the CMOS sees an input voltage greater than $V_{C C}-1.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\right)$ ，the output is guaranteed to be less than 0.5 V from Ground．The next CMOS element will amplify this 0.5 V level to the proper logic levels of $\mathrm{V}_{\mathrm{cc}}$ or Ground．The standard TTL logic＂ 1 ＂spec is a $V_{\text {OUT }}$ min ．of 2.4 V sourcing a current of $400 \mu \mathrm{~A}$ ．This is an extremely conservative spec since a TTL output will only approach a one level of 2.4 V under the extreme worst case conditions of lowest temperature，high input voltage（ 0.8 V ），highest possible leakage currents（into succeeding TTL devices），and $\mathrm{V}_{\mathrm{CC}}$ at the lowest allowable（ $\mathrm{V}_{\mathrm{CC}}=$ 4.5 V ）．

Under nominal conditions $\left(25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}\right.$ ， nominal leakage currents into CMOS and $\mathrm{V}_{\mathrm{cc}}=$ 5 V ）a TTL logic＂ 1 ＂will be more like $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}_{\mathrm{D}}$ ． or $V_{c c}-1.2 \mathrm{~V}$ ．Varying only temperature，the output will change by two times -2 mV per ${ }^{\circ} \mathrm{C}$ ，or -4 mV per ${ }^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{Cc}}-1.2 \mathrm{~V}$ is more than enough to drive CMOS reliably without the use of a pull up resistor．

If the system is such that the TTL logic＂ 1 ＂output can drop below $\mathrm{V}_{\mathrm{cc}}-1.5 \mathrm{~V}$ ，use a pull up resistor to improve the logic＂ 1 ＂voltage into the CMOS．


FIGURE 3－8．TTL to CMOS Interface．

The second question is，can CMOS sink the bipolar input current and not exceed the maximum value of the bipolar logic zero input voltage？The logic ＂ 1 ＂input is no problem．

The LPTTL input current is small enough to allow CMOS to drive two loads directly．Normal power TTL input currents are ten times higher than those in LPTTL and consequently the CMOS out－ put voltage will be well above the input logic＂ 0 ＂ maximum of 0.8 V ．However，by carefully examin－ ing the CMOS output specs we will find that a two input NOR gate can drive one TTL load，albeit somewhat marginally．For example，the logical ＂ 0 ＂output voltage for both an＇MM74C00 and MM74C02 over temperature is specified at 0.4 V sinking $360 \mu \mathrm{~A}$（about $420 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$ ）with an input voltage of 4.0 V and a $V_{C c}$ of 4.75 V ．Both schematics are shown in Figure 3－9．


FIGURE 3－9a．MM74C00．


FIGURE 3－9b．MM74C02．

Both parts have the same current sinking spec but their structures are different．What this means is that either of the lower transistors in the MM74C02 can sink the same current as the two lower series transistors in the MM74C00．Both MM74C02 transistors together can sink twice the specified current for a given output voltage．If we allow the output voltage to go to 0.8 V ，then a MM74C02 can sink four times $360 \mu \mathrm{~A}$ ，or 1.44 mA which is nearly 1.6 mA ．Actually， 1.6 mA is the maximum
spec for the TTL input current and most TTL parts run at about 1 mA . Also, $360 \mu \mathrm{~A}$ is the minimum CMOS sink current spec, the parts will really sink somewhere between 360 and $540 \mu \mathrm{~A}$ (between 2 and 3 LPTTL input loads). The $360 \mu \mathrm{~A}$ sink current is specified with an input voltage of 4.0 V . With an input voltage of 5.0 V , the sink current will be about $560 \mu \mathrm{~A}$ over temperature, making it even easier to drive TTL. At room temperature with an input voltage of 5 V , a CMOS output can sink about $800 \mu \mathrm{~A}$. A 2 input NOR gate, therefore, will sink about 1.6 mA with a $V_{\text {OUT }}$ of about 0.4 V if both NOR gate inputs are at 5 V .
The main point of this discussion is that a common 2 input CMOS NOR gate such as an MM74C02
can be used to drive a normal TTL load in lieu of a special buffer. However, the designer must be willing to sacrifice some noise immunity over temperature to do so.

## TIMING CONSIDERATIONS IN CMOS MSIS

There is one more thing to be said in closing. All the flip-flops used in CMOS designs are genuinely edge sensitive. This means that the J-K flip-flops do not "ones catch" and that some of the timing restrictions that applied to the control lines on MSI functions in TTL have been relaxed in the 74C series.

Gene Taatjes JULY 1973

## CMOS LINEAR APPLICATIONS

PNP and NPN bipolar transistors have been used for many years in "complementary" type of amplifier circuits. Now, with the arrival of CMOS technology, complementary P-channel/N-channel MOS transistors are available in monolithic form. The MM74C04 incorporates a P-channel MOS transistor and an N -channel MOS transistor connected in complementary fashion to function as an inverter.

Due to the symmetry of the $P$. and $N$-channel transistors, negative feedback around the complementary pair will cause the pair to self bias itself to approximately $1 / 2$ of the supply voltage. Figure 1 shows an idealized voltage transfer characteristic curve of the CMOS inverter connected with negative feedback. Under these conditions the inverter is biased for operation about the midpoint in the linear segment on the steep transition of the voltage transfer characteristic as shown in Figure 1.


FIGURE 1. Idealized Voltage Transfer Characteristics of an MM74C04 Inverter.

Under AC conditions, a positive going input will cause the output to swing negative and a negative going input will have an inverse effect. Figure 2 shows $1 / 6$ of a MM74C04 inverter package connected as an AC amplifier.


FIGURE 2. A 74 CMOS Invertor Biased for Linear Mode Operation.

The power supply current is constant during dynamic operation since the inverter is biased for Class $A$ operation. When the input signal swings near the supply, the output signal will become distorted because the P-N channel devices are driven into the non-linear regions of their transfer characteristics. If the input signal approaches the supply voltages, the P - or N -channel transistors become saturated and supply current is reduced to essentially zero and the device behaves like the classical digital inverter.


FIGURE 3. Voltage Transfer Characteristics for an Inverter Connected as a Linear Amplifier.

Figure $\check{3}$ shows typical voltage characteristics of each inverter at several values of the $\mathrm{V}_{\mathrm{CC}}$. The shape of these transfer curves are relatively constant with temperature. Temperature affects for the self biased inverter with supply voltage is shown in Figure 4. When the amplifier is operating at 3 volts, the supply current changes drastically as a function of supply voltage because the MOS transistors are operating in the proximity of their gate-source threshold voltages.


FIGURE 4．Normalized Amplifier Supply Current Versus Ambient Temperature Characteristics．

Figure 5 shows typical curves of voltage gain as a function of operating frequency for various supply voltages．

Output voltages can swing within millivolts of the supplies with either a single or dual supply．


FIGURE 5．Typical Voltage Gain Versus Frequency Characteristics for Amplifier Shown in Figure 2.

## APPLICATIONS

## Cascading Amplifiers for Higher Gain．

By cascading the basic amplifier block shown in Figure 2 a high gain amplifier can be achieved．The gain will be multiplied by the number of stages used．If more than one inverter is used inside the feedback loop（as in Figure 6）a higher open loop gain is achieved which results in more accurate closed loop gains．


FIGURE 6．Three CMOS Inverters Used as an $\times 10$ AC Amplifier．

## Post Amplifier for Op Amps．

A standard operational amplifier used with a CMOS inverter for a Post Amplifier has several advantages．The operational amplifier essentially sees no load condition since the input impedance to the inverter is very high．Secondly，the CMOS inverters will swing to within millivolts of either supply．This gives the designer the advantage of operating the operational amplifier under no load conditions yet having the full supply swing capability on the output．Shown in Figure 7 is the LM4250 micropower Op Amp used with a 74C04 inverter for increased output capability while maintaining the low power advantage of both devices．


FIGURE 7．MM74C04 Inverter Used as a Post Amplifier for a＇Battery Operated Op Amip．

The MM74C04 can also be used with single supply amplifier such as the LM324．With the circuit shown in Figure 8，the open loop gain is approxi－ mately 160 dB ．The LM324 has 4 amplifiers in a package and the MM74CO4 has 6 amplifiers per package．


FIGURE 8．Single Supply Amplifier Using a CMOS Cascade Post Amplifier with the LM324．

CMOS inverters can be paralleled for increased power to drive higher current loads，Loads of 5.0 mA per inverter can be expected under AC conditions．

Other 74 C devices can be used to provide greater complementary current outputs．The MM74C00 ：NAND Gate will provide approximately 10 mA
from the $V_{\text {CC }}$ supply while the MM74C02 will supply approximately 10 mA from the negative supply. Shown in Figure 9 is an operational amplifier using a CMOS power post amplifier to provide greater than 40 mA complementary currents.


FIGURE 9. MM74C00 and MM74C02 Used as a Post Amplifier to Provide Increased Current Drive.

## Other Applications.

Shown in Figure 10 is a variety of applications utilizing CMOS devices. Shown is a linear phase shift oscillator and an integrator which use the CMOS devices in the linear mode as well as a few circuit ideas for clocks and one shots.

## Conclusion

Careful study of CMOS characteristics show that CMOS devices used in a system design can be used for linear building blocks as well as digital blocks.

Utilization of these new devices will decrease package count and reduce supply requirements. The circuit designer now can do both digital and linear designs with the same type of device.


Phase Shift Oscillator Using MM74C04


Integrator Using Any Inverting CMOS Gate


Square Wave Oscillator

$T=1.4 \mathrm{RC}$

One Shot


## Staircase Generator

FIGURE 10. Variety of Circuit Ideas Using CMOS Devices.

Thomas P. Redfern National Semiconductor

## 54C/74C FAMILY CHARACTERISTICS

## INTRODUCTION

The purpose of this 54C/74C Family Character. istics application note is to set down, in one place, all those characteristics which are common to the devices in the MM54C/MM74C logic family. The characteristics which can be considered to apply are:

1. Output voltage-current characteristics
2. Noise characteristics
3. Power consumption
4. Propagation delay (speed)
5. Temperature characteristics

With a good understanding of the above characteristics the designer will have the necessary tools to optimize his system. An attempt will be made to present the information in as simple a manner as possible to facilitate its use. T.his coupled with
the fact that $54 \mathrm{C} / 74 \mathrm{C}$ has the same function and pin-out as standard series 54L/74L will make the application of CMOS to digital systems very straightforward.

## OUTPUT CHARACTERISTICS

Figure 1 and Figure 2 show typical output drain characteristics for the basic inverter used in the $54 \mathrm{C} / 74 \mathrm{C}$ family. For more detailed information on the operation of the basic inverter the reader is directed to application note AN-77, "CMOS, The Ideal Logic Family." Although more complex gates, and MSI devices, may be composed of combinations of parallel and series transistors the considerations that govern the output characteristics of the basic inverter apply to these more complex structures as well.
(A) Typical Output Sink Characteristic (N-Channel)


(B) Typical Output Source Characteristic
(P-Channel)

FIGURE 1

(A) Typical Output Sink Characteristic (N-Channel)

(B) Typical Output Source Characteristic (P-Channel)

FIGURE 2
－The 54C／74C family is designed so that the output characteristics of all devices are matched as closely as possible．To ensure uniformity all devices are tested at four output conditions（see Figures 1 and 2）．These points are：

$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{DS}} \geq 1.75 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}} \geq 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{\text {IN }}=0 \mathrm{~V} \\ & \left\|I_{\text {os }}\right\| \geq 1.75 \mathrm{~mA} \\ & \left\|\mathrm{~V}_{\mathrm{DS}}\right\| \geq 5.0 \mathrm{~V} \end{aligned}$
$V_{c c}=10 \mathrm{~V}$	$V_{\text {IN }}=10 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
	$\begin{aligned} & \mathrm{I}_{\mathrm{DS}} \geq 8.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}} \geq 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \left\|\left.\right\|_{\mathrm{DS}}\right\| \geq 8.0 \mathrm{~mA} \\ & \left\|\mathrm{~V}_{\mathrm{DS}}\right\| \geq 10 \mathrm{~V} \end{aligned}$

Note that each device data sheet guarantees these points in the table of electrical characteristics．

The output characteristics can be used to determine the output voltage for any load condition．Figures 1 and 2 show load lines for resistive loads to $\mathrm{V}_{\mathrm{cc}}$ for sink currents and to GND for source currents． The intersections of this load line with the drain characteristic in question gives the output voltage． For example at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}$（typ） with a load of $500 \Omega$ to ground．

These figures also show the guaranteed points for driving two 54L／74L standard loads．As can be seen there is typically ample margin at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ ．

In the case where the 54C／74C device is driving another CMOS device the load line is coincident with the $I_{D S}=0$ axis and the output will then typically switch to either $V_{C c}$ or ground．

## NOISE CHARACTERISTICS

## Definition of Terms

Noise Immunity：The noise immunity of a logic element is that voltage which applied to the input will cause the output to change its output state．

Noise Margin：The noise margin of a logic element is the difference between the guaranteed logical ＂ 1 ＂（＂0＂）level output voltage and the guaranteed logical＂ 1 ＂（＂${ }^{\prime \prime}$＂）level input voltage．

The transfer characteristic of Figure 3 shows typical noise immunity and guaranteed noise margin for a $54 \mathrm{C} / 74 \mathrm{C}$ device operating at $\mathrm{V}_{\mathrm{cc}}=$ 10 V ．The typical noise immunity does not change with voltage and is $45 \%$ of $V_{c c}$ ．


FIGURE 3．Typical Transfer Characteristic

All $54 \mathrm{C} / 74 \mathrm{C}$ devices are guaranteed to have a noise margin of 1.0 V or greater over all operating conditions（see Figure 4）．


FIGURE 4．Guaranteed Noise Margin Over Temperature vs $V_{C C}$

Noise immunity is an important device character－ istic．However，noise margin is of more use to the designer because it very simply defines the amount of noise a system can tolerate under any circum－ stances and still maintain the integrity of logic levels．

Any noise specification to be complete must define how measurements are to be made．Figure 5 indicates two extreme cases；driving all inputs simultaneously and driving one input at a time． Both conditions must be included because each represents one worst case extreme．


FIGURE 5．Noise Margin Test Circuits

To guarantee a noise margin of 1.0 V ，all $54 \mathrm{C} / 74 \mathrm{C}$ devices are tested under both conditions．It is important to note that this guarantees that every node within a system can have 1.0 V of noise，in logic＂ 1 ＂or logic＂ 0 ＂state，without malfunction－ ing．This could not be guaranteed without testing for both conditions in Figure 5.

## POWER CONSUMPTION

There are four sources of power consumption in CMOS devices: (1) leakage current (2) transient power due to load capacitance (3) transient power due to internal capacitance and (4) transient power due to current spiking during switching.

The first, leakage current, is the easiest to calculate, and is simply the leakage current times $\mathrm{V}_{\mathrm{cc}}$. The data sheet for each specific device specifies this leakage current.

The second, transient power due to load capacitance, can be derived from the fact that the energy stored on a capacitor is $1 / 2 \mathrm{CV}^{2}$. Therefore every time the load capacitance is charged or discharged this amount of energy must be provided by the CMOS device. The energy per cycle is then $2\left[(1 / 2) C V_{c c}{ }^{2}\right]=C V_{c c}{ }^{2}$. Energy per unit time, or power, is then $C V_{C C}{ }^{2} f$, where $C$ is the load capacitance and $f$ is the frequency.

The third, transient power due to internal capacitance takes exactly the same form as the load capacitance. Every device has some internal nodal capacitance which must be charged and discharged. This then represents another power term which must be considered.

The fourth, transient power due to switching current, is caused by the fact that whenever a CMOS device goes through a transition, with $\mathrm{V}_{\mathrm{CC}} \geq 2 \mathrm{~V}_{\mathrm{T}}$, there is a time when both N -channel and P-channel devices are both conducting. An expression for this current is derived in application note AN-77. The expression is:
$P_{V I}=\frac{1}{2}\left(V_{C C}-2 V_{T}\right) I_{\text {CCMAX }}\left(t_{\text {RISE }}+t_{\text {FALL }}\right) f$
where:
$V_{T}=$ threshold voltage
$I_{\mathrm{CC}(\mathrm{MAX})}=$ peak non-capacitive current during switching

## $f=$ frequency

Note that this expression, like the capacitive power term is directly proportional to frequency. If the $\mathrm{P}_{\mathrm{VI}}$ term is combined with the term arising from the internal capacitance, a capacitance $\mathrm{C}_{\text {PD }}$ may be defined which closely approximates the no load power consumption for a CMOS device when used in the following expression:

Power (no load) $=C_{P D} V_{C C^{2} f}$
The total power consumption is then simplified to:

Total Power $=\left(C_{P D}+C_{L}\right) V_{C C}^{2} f+I_{\text {LEAK }} V_{C C}$ (1)

The procedure for obtaining $\mathrm{C}_{\text {PD }}$ is to measure the no load power at $V_{c c}=10 \mathrm{~V}$ vs frequency and calculate the value of $C_{P D}$ which corresponds to the measured power consumption. This value of $C_{P D}$ is given on each $54 \mathrm{C} / 74 \mathrm{C}$ data sheet and with equation (1) the computation of power consumption is straightforward.

To simplify the task even further Figure 6 gives a graph of normalized power vs frequency for different power supply voltages. To obtain actual power consumption find the normalized power for a particular $\mathrm{V}_{\mathrm{Cc}}$ and frequency, then multiply by $C_{P D}+C_{L}$.


FIGURE 6. Normalized Typical Power Consumption vs Frequency

As an example let's find the total power consumption for an MM74C00 operating at $f=100 \mathrm{kHz}$, $V_{C C}=10 \mathrm{~V}$ and $C_{L}=50 \mathrm{pF}$. From the curve, normalized power per gate equals $10 \mu \mathrm{~W} / \mathrm{pF}$. From the data sheet $\mathrm{C}_{\mathrm{PD}}=12 \mathrm{pF}$; therefore, actual power per gate is:

$$
\frac{\text { power }}{\text { gate }}=\frac{10 \mu \mathrm{~W}}{\mathrm{pF}} \times(12 \mathrm{pF}+50 \mathrm{pF})=\frac{0.62 \mathrm{~mW}}{\text { gate }}
$$

$$
\text { total power }=\frac{\text { no. of gates }}{\text { package }} \times \frac{\text { power }}{\text { gate }}+I_{\text {LEAKAGE }} \times V_{C C}
$$

$$
=4 \times 0.62 \mathrm{~mW}+0.01 \mu \mathrm{~A} \times 10 \mathrm{~V} \cong 2.48 \mathrm{~mW}
$$

Up to this point the discussion of power consumption has been limited to simple gate functions. Power consumption for an MSI function is more complex but the same technique just derived applies. To demonstrate the technique let's compute the total power consumption of a MM74C161, four bit binary counter, at $V_{c c}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ and $C_{L}=50 \mathrm{pF}$ on each output.

The no load power is still given by $\mathrm{P}(\mathrm{no} \mathrm{load})=$ $C_{P D} V_{C c}{ }^{2} f$. This demonstrates the usefuiness of the concept of the internal capacitance, $\mathrm{C}_{\text {PD }}$. Even through the circuit is very complex and has many nodes charging and discharging at various rates, all of the effects can be easily lumped into one easy to use term, $\mathrm{C}_{\mathrm{PD}}$.

Calculation of transient power due to load capacitance is a little more complex since each output is switched at one half the rate of the previous output: Taking this into account the complete expression for power consumption is:


This reduces to:
$P_{\text {TOTAL }}^{\prime}=\left(C_{P D}+C_{L}\right) V_{C C}^{2} f+I_{L} V_{C C}$

From the data sheet $\mathrm{C}_{P D}=90 \mathrm{pF}$ and $\mathrm{I}_{\mathrm{L}}=0.05 \mu \mathrm{~A}$. Using Figure 6 total power is then:

$$
\begin{aligned}
P_{\text {TOTAL }}= & (90 \mathrm{pF}+50 \mathrm{pF}) \times \frac{100 \mu \mathrm{~W}}{\mathrm{pF}}+0.05 \times 10^{-6} \\
& \times 10 \mathrm{~V} \cong 14 \mathrm{~mW}
\end{aligned}
$$

This demonstrates that with more complex devices the concept of $\mathrm{C}_{\mathrm{PD}}$ greatly simplifies the calculation of total power consumption. It becomes an easy task to compute power for different voltages and frequencies by use of Figure 6 and the equations above.

## PROPAGATION DELAY

Propagation delay for all 54C/74C devices is guaranteed with a load of 50 pF and input rise and fall times of 20 ns . A 50 pF load was chosen, instead of 15 pF as in the 4000 series, because it is representative of loads commonly seen in CMOS systems. A good rule of thumb, in designing with CMOS, is to assume 10 pF of interwiring capacitance. Operating at the specified propagation delay would allow 5 pF fanout for the 4000 series while $54 \mathrm{C} / 74 \mathrm{C}$ has a fanout of 40 pF . A fanout of 5 pF (one gate input) is all but useless, and specified propagation delay would most probably not be realized in an actual system.

Operating at loads other than 50 pF poses a problem since propagation is a function of load capacitance. To simplify the problem Figure 7 has been generated and gives the slope of the propagation delay vs load capacitance line ( $\Delta t_{\text {pd }}$ ) pF ) as a function of power supply voltage. Because


FIGURE 7. Typical Propagation Delay per pF of Load Capacitance vs Povjer Supply
the propagation delay for zero load capacitance is not zero and depends on the internal structure of each device, an offset term must be added that is unique to a particular device type. Since each data sheet gives propagation delay for 50 pF the actual delay for different loads can be computed with the aid of the following equation:
$\left.t_{p d}\right|_{C_{L}=C}=(C-50) p F \times \frac{\Delta t_{p d}}{p F}+\left.t_{p d}\right|_{C_{L}=50 p F}$
where:

C = Actual load capacitance
${ }^{\mathrm{t}_{\mathrm{pd}}} \left\lvert\, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}=\begin{aligned} & \text { propagation delay with } 50 \mathrm{pF} \\ & \begin{array}{l}\text { load, (specified on each de- } \\ \text { vice data sheet) }\end{array}\end{aligned}\right.$
$\frac{\Delta t_{p d}}{p F}=$ Value obtained from Figure 7.

As an example let's compute the propagation delay for an MM74C00 driving 15 pF load and operating with a $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$. The equation gives:

$$
\begin{aligned}
\left.\mathrm{t}_{\mathrm{pd}}\right|_{C_{\mathrm{L}}=15 \mathrm{pF}} & =(15-50) \rho F \times 0.57 \frac{\mathrm{~ns}}{\mathrm{pF}}+50 \mathrm{~ns} \\
& =-20 \mathrm{~ns}+50 \mathrm{~ns}=30 \mathrm{~ns}
\end{aligned}
$$

The same formula and curves may be applied to more complex devices. For example the propagation delay from data to output for an MM74C157 operating at $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ is:

$$
\begin{aligned}
t_{p d} \mid C_{L}=100 \mathrm{pF} & =(100-50) 0.29 \mathrm{~ns}+70 \mathrm{~ns} \\
& =14.5+70 \cong 85 \mathrm{~ns}
\end{aligned}
$$

It is significant to note that this equation and Figure 7 apply to all $54 \mathrm{C} / 74 \mathrm{C}$ devices. This is true because of the close match in drive characteristics of every device including MSI functions, i.e., the slope of the propagation delay vs load capacitance line at a given voltage is typically equal for all devices. The only exception is high fan-out buffers which have a smaller $\Delta \mathrm{t}_{\mathrm{pd}} / \mathrm{pF}$.
Another point to consider in the design of a CMOS system is the affect of power supply voltage on propagation delay. Figure 8 shows propagation delay as a function of $\mathrm{V}_{\mathrm{cc}}$ and propagation delay times power consumption vs $\mathrm{V}_{\mathrm{CC}}$ for an MM74C00 operating with 50 pF load at $f=100 \mathrm{kHz}$.


FIGURE 8. Speed Power Product and Propagation Delay vs VCC

Above $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ note the speed power product curve approaches a straight line. However the $\mathrm{t}_{\mathrm{pd}}$ curve starts to "flatten out." Going from

(A) Typical Output Drain Characteristic (N-Channel)

(A) Typical Output Drain Characteristic (N-Channel)
$V_{c c}=5.0 \mathrm{~V}$ to $V_{C C}=10 \mathrm{~V}$ gives a $40 \%$ decrease in propagation delay and going from $V_{C C}=10 \mathrm{~V}$ to $V_{C C}=15 \mathrm{~V}$ only decreases propagation delay by $25 \%$. Clearly for $\mathrm{V}_{\mathrm{cc}}>10 \mathrm{~V}$ a small increase in speed is gained by a disproportionate increase in power. Conversely, for small decreases in power below $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ large increases in propagation delay result.
Obviously it is optimum to use the lowest voltage consistent with system speed requirements. However in general it can be seen from Figure 8 that the best speed power performance will be obtained in the $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$ range .

## TEMPERATURE CHARACTERISTICS

Figures 9 and 10 give temperature variations in drain characteristics for the N -channel and P -channel devices operating at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{Cc}}=10 \mathrm{~V}$ respectively. As can be seen from these curves the output sink and source current decreases as temperature increases. The affect is almost linear and can be closely approximated by a temperature coefficient of $-0.3 \%$ per degree centigrade.
Since the $t_{p d}$ can be entirely attributed to rise and fall time, the temperature deperidance of $t_{p d}$ is a function of the rate at which the output load capacitance can be charged and discharged. This in turn is a function of the sink/source current which was shown above to vary as $-0.3 \%$ per degree centigrade. Consequently we can say that $t_{p d}$ varies as $-0.3 \%$ per degree centigrade. Actual measurements of $t_{p d}$ with temperature verifies this number.

(B) Typical Output Drain Characteristic (P-Channel)
FIGURE 9

(B) Typical Output Drain Characteristic (P-Channel)

FIGURE 10


FIGURE 11. Typical Gate Transfer Characteristics

The drain characteristics of Figure 9 and 10 show considerable variation with temperature. Examination of the transfer characteristics of Figure 11
indicates that they are almost independent of temperature. The transfer characteristic is not dependent on temperature because although both the N -channel and P -channel device characteristics change with temperature these changes track each other closely. The proof of this tracking is the temperature independance of the transfer characteristics. Noise margin and maximum/minimum logic levels will then not be dependent on temperature.

As discussed previously power consumption is a function of $C_{P D}, C_{L}, V_{C C}, f$ and $I_{\text {LEAKAGE }}$. All of these terms are essentially constant with temperature except I leakage. However, the leakage current specified on each $54 \mathrm{C} / 74 \mathrm{C}$ device applies across the entire temperature range and therefore represents a worst case limit.

## CMOS OSCILLATORS

## INTRODUCTION

This note describes several square wave oscillators that can be built using CMOS logic elements. These circuits offer the following advantages:

- Guaranteed startability
- Relatively good stability with respect to power supply variations
m Operation over a wide supply voltage range ( 3 V to 15 V )
- Operation over a wide frequency range from less than 1 Hz to about 15 MHz
- Low power consumption (see AN-90)
- Easy interface to other logic families and elements including TTL

Several RC oscillators and two crystal controlled oscillators are described. The stability of the RC oscillator will be sufficient for the bulk of applications; however, some applications will probably require the stability of a crystal. Some applications that require a lot of stability are:

1. Timekeeping over a long interval. A good deal of stability is required to duplicate the performance of an ordinary wrist watch (about 12 ppm ). This is, of course, obtainable with a crystal. However, if the time interval is short and/or the resolution of the timekeeping device is relatively large, an RC oscillator may be adequate. For example: if a stopwatch is built with a resolution of tenths of seconds and the longest interval of interest is two minutes, then an accuracy of 1 part in 1200 ( 2 minutes $\times 60$ seconds/minute $x$ 10 tenth/second) may be acceptable since any error is less than the resolution of the device.
2. When logic elements are operated near their specified limits. It may be necessary to maintain clock frequency accuracy within very tight limits in order to avoid exceeding the limits of the logic family being used, or in which the timing relationships of clock signals in dynamic MOS memory or shift register systems must be preserved.
3. Baud rate generators for communications equipment.
4. Any system that must interface with other tightly specified systems. Particularly those that use a "handshake" technique in which Request or Acknowledge pulses must be of specific widths.

## LOGICAL OSCILLATORS

Before describing any specific circuits, a few words about logical oscillators may clear up some recurring confusion.

Any odd number of inverting logic gates will oscillate if they are tied togather in a ring as shown in Figure 1. Many beginning logic designers have discovered this (to their chagrin) by inadvertently providing such a path in their designs. However, some people are confused by the circuit in Figure 1 because they are accustomed to seeing sinewave oscillators implemented with positive feedback, or amplifiers with non-inverting gain. Since the concept of phase shift becomes a little strained when the inverters remain in their linear region for such a short period, it is far more straightforward to analyze the circuit from the standpoint of ideal switches with finite propagation delays rather than as amplifiers with $180^{\circ}$ phase shift. It then becomes obvious that a " 1 " chases itself around the ring and the network oscillates.


FIGURE 1. Odd Number of Inverters will Always Oscillate
The frequency of oscillation will be determined by the total propagation delay through the ring and is given by the following equation.

$$
f=\frac{1}{2 n T p}
$$

Where:

$$
\begin{aligned}
f & =\text { frequency of oscillation } \\
T p & =\text { Propagation delay per gate } \\
n & =\text { number of gates }
\end{aligned}
$$

This is not a practical oscillator, of course, but it does illustrate the maximum frequency at which such an oscillator will run. All that must be done to make this a useful oscillator is to slow it down to the desired frequency. Methods of doing this are described later.

To determine the frequency of oscillation, it is necessary to examine the propagation delay of the inverters. CMOS propagation delay depends on supply voltage and load capacitance. Several curves for propagation delay for National's 74 C line of CMOS gates are reproduced in Figure 2. From these, the natural frequency of oscillation of an odd number of gates can be determined.

An example may be instructive.
Assume the supply voltage is 10 V . Since only one input is driven by each inverter, the load capacitance on each inverter is at most about 8 pF . Examine the curve in Figure $2 c$ that is drawn for $V_{c c}=10 \mathrm{~V}$ and extrapolate it down to 8 pF . We see that the curve predicts a propagation delay of about 17 ns . We can then calculate the frequency of oscillation for three inverters using the expression mentioned above. Thus:

$$
f=\frac{1}{2 \times 3 \times 17 \times 10^{-9}}=9.8 \mathrm{MHz}
$$

Lab work indicates this is low and that something closer to 16 MHz can be expected. This reflects the conservative nature of the curves in Figure 2.

Since this frequency is directly controlled by propagation delays, it will vary a great deal with temperature, supply voltage, and any external loading, as indicated
by the graphs in Figure 2. In order to build a usefully stable oscillator it is necessary to add passive elements that determine oscillation frequency and minimize the effect of CMOS characteristics.

## STABLE RC OSCILLATOR

Figure 3 illustrates a useful oscillator made with three inverters. Actually, any inverting CMOS gate or combination of gates could be used. This means left over portions


FIGURE 3. Three Gate Oscilaltor
of gate packages can be often used. The duty cycle will be close to $50 \%$ and will oscillate at a frequency that is given by the following expression.

$$
f \cong \frac{1}{2 R 1 C\left(\frac{0.405 R 2}{R 1+R 2}+0.693\right)}
$$

Another form of this expression is:

$$
\mathrm{f} \cong \frac{1}{2 \mathrm{C}\left(0.405 \mathrm{R}_{\mathrm{eq}}+0.693 \mathrm{R} 1\right)}
$$

Where:

$$
R_{e q}=\frac{R 1 R 2}{R 1+R 2}
$$



FIGURE 2. Propagation Delay for 74C Gates

The following three special cases may be useful.

$$
\begin{array}{ll}
\text { If } R 1=R 2=R & f \cong \frac{0.559}{R C} \\
\text { If } R 2 \gg R 1 & f \cong \frac{0.455}{R C} \\
\text { If } R 2 \lll<1 & f \cong \frac{0.722}{R C}
\end{array}
$$

Figure 4 illustrates the approximate output waveform and the voltage $\mathrm{V}_{1}$ at the charging node.


FIGURE 4. Wavaforms for Oscillator in Figure 3

Note that the voltage $V_{2}$ will be clamped by input diodes when $V_{1}$ is greater than $V_{c c}$ or more negative than ground. During this portion of the cycle current will flow through R2. At all other times the only current through R2 is a very minimal leakage term. Note also that as soon as $V_{1}$ passes through threshold (about 50\% of supply) and the input to the last inverter begins to change, $\mathrm{V}_{1}$ will also change in a direction that reinforces the switching action; i.e., providing positive feedback. This further enhances the stability and predictability of the nétwork.

This oscillator is fairly insensitive to power supply variations due largely to the threshold tracking close to $50 \%$ of the supply voltage. Just how stable it is will be determined by the frequency of oscillation; the lower the frequency the more stability and vice versa. This is because propagation delay and the effect of threshold shifts comprise a smaller portion of the overall period. Stability will also be enhanced if R1 is made large enough to swamp any variations in the CMOS output resistance.

## TWO GATE OSCILLATOR WILL NOT NECESSARILY OSCILLATE

A popular oscillator is shown in Figure 5a. The only undesirable feature of this oscillator is that it may not oscillate. This is readily demonstrated by letting the value of $C$ go to zero. The network then degenerates into

Figure $5 b$, which obviously will not oscillate. This illustrates that there is some value of C 1 that will not force the network to oscillate. The real difference between this two gate oscillator and the three gate oscillator is that the former must be forced to oscillate by the capacitor while the three gate network will always oscillate willingly and is simply slowed down by the capacitor. The three gate network will always oscillate, regardless of the value of C1 but the two gate oscillator will not oscillate when C1 is small.

(a)

(b)

FIGURE 5. Less Than Perfect Oscillator

The only advantage the two gate oscillator has over the three gate oscillator is that it uses one less inverter. This may or may not be a real concern, depending on the gate count in each user's specific application. However, the next section offers a real minimum parts count oscillator.

## A SINGLE SCHMITT TRIGGER MAKES AN OSCILLATOR

Figure 6 illustrates an oscillator made from a single Schmitt trigger. Since the MM74C14 is a hex Schmitt trigger, this oscillator consumes only one sixth of a package. The remaining 5 gates can be used either as ordinary inverters like the MM74C04 or their Schmitt trigger characteristics can be used to advantage in the normal manner. Assuming these five inverters can be used elsewhere in the system, Figure 6 must represent the ultimate in low gate count oscillators.


FIGURE 6. Schmitt Trigger Oscillator

Voltage $V_{1}$ is depicted in Figure 7 and changes between the two thresholds of the Schmitt trigger. If these thresholds were constant percentages of $\mathrm{V}_{\mathrm{cc}}$ over the supply voltage range, the oscillator would be insensitive to variations in $\mathrm{V}_{\mathrm{cc}}$. However, this is not the case. The thresholds of the Schmitt trigger vary enough to make the oscillator exhibit a good deal of sensitivity to $\mathrm{V}_{\mathrm{cc}}$.

Applications that do not require extreme stability or that have access to well regulated supplies should not be bothered by this sensitivity to $\mathrm{V}_{\mathrm{cc}}$. Variations in threshold can be expected to run as high as four or five percent when $V_{\mathrm{cc}}$ varies from 5 V to 15 V .


FIGURE 7. Waveforms for Schmitt Trigger Oscillator in Figure 6

## A CMOS Crystal Oscillator

Figure 8 illustrates a crystal oscillator that uses only one CMOS inverter as the active element. Any odd number of inverters may be used, but the total propagation delay through the ring limits the highest frequency
that can be obtained. Obviously, the fewer inverters that are used, the higher the maximum possible frequency.

## CONCLUSIONS

A large number of oscillator applications can be implemented with the extremely simple, reliable, inexpensive and versatile CMOS oscillators described in this note. These oscillators consume very little power compared to most other approaches. Each of the oscillators requires less than one full package of CMOS inverters of the MM74C04 variety. Frequently such an oscillator can be built using leftover gates of the MM74C00, MM74C02, MM74C10 variety. Stability superior to that easily attainable with TTL oscillators is readily attained, particularly at lower frequencies. These oscillators are so versatile, easy to build, and inexpensive that they should find their way into many diverse designs.


FIGURE 8. Crystal Oscillator

Thomas P. Redfern National Semiconductor

## USING THE CMOS DUAL MÓNOSTABLE MULTIVIBRATOR

## INTRODUCTION

The MM54C221/MM74C221 is a dual CMOS monostable multivibrator. Each one-shot has three inputs ( $A, B$ and $C L R)$ and two outputs ( $Q$ and $\overline{\mathrm{Q}}$ ). The output pulse width is set by an external RC network.

The $A$ and $B$ inputs trigger an output pulse on a negative or positive input transition respectively. The CLR input when low resets the one-shot. Once triggered the $A$ and $B$ inputs have no further control on the output.

## THEORY OF OPERATION

Figure 1 shows that in its stable state, the one-shot clamps $\mathrm{C}_{\mathrm{EXT}}$ to ground by turning N1 ON and holds the positive comparator input at $\mathrm{V}_{\mathrm{cc}}$ by turning N 2 OFF. The prefix $N$ is used to denote $N$-channel transistors.

The signal, G, gating N2 OFF also gates the comparator OFF thereby keeping the internal power dissipation to an absolute minimum. The only power dissipation when in the stable state is that generated by the current through $R_{E X T}$. The bulk of this dissipation is in $R_{E X T}$ since the voltage drop across N1 is very small for normal ranges of $\mathrm{R}_{\mathrm{EXT}}$.

To trigger the one-shot the CLR input must be high. The gating, $G$, on the comparator is designed such that the comparator output is high when the one-shot is in its stable state. With the CLR input high the clear input to FF is disabled allowing the flip-flop to respond to the $A$ or $B$ input. A negative transition on $A$ or a positive transition on $B$ sets $Q$ to a high state. This in turn gates N1 OFF, and N2 and the comparator ON.

Gating N2 ON establishes a reference of $0.63 \mathrm{~V}_{\mathrm{Cc}}$ on the comparator's positive input. Since the voltage on $\mathrm{C}_{\text {EXT }}$ can not change instantaneousiy $\mathrm{V} 1=0 \mathrm{~V}$ at this time. The comparator then will maintain its one level on the output. Gating N1 OFF allows $\mathrm{C}_{\mathrm{EXT}}$ to start charging through $\mathbf{R}_{\text {EXT }}$ toward $V_{C C}$ exponentially.

Assuming a perfect comparator (zero offset and infinite gain) when the voltage on $\mathrm{C}_{E_{X T}}, \mathrm{~V} 1$, equals $0.63 \mathrm{~V}_{\mathrm{CC}}$ the comparator output will go from a high state to a low state resetting Q to a low state. Figure 2 is a timing diagram summarizing this sequence of events.

This diagram is idealized by assuming zero rise and fall times and zero propagation delay but it shows the basic operation of the one-shot. Also shown is the effect of taking the CLR input low. Whenever CLR goes low FF


is reset independent of all other inputs. Figure 2 also shows that once triggered, the output is independent of any transitions on $B$ (or $A$ ) until the cycle is complete.

The output pulse width is determined by the following equation:

$$
\begin{equation*}
V_{1}=V_{C C}\left(1-e^{-T / R} R_{E X T} C_{E X T}\right)=0.63 V_{C C} \tag{1}
\end{equation*}
$$

Solving for $t$ gives:

$$
\begin{equation*}
T=R_{E X T} C_{E X T} \ln (1 / 0.37)=R_{E X T} C_{E X T} \tag{2}
\end{equation*}
$$

A word of caution should be given in regards to the ground connection of the external capacitor ( $\mathrm{C}_{\mathrm{EXT}}$ ). It should always be connected as shown in Figure 1 to pin 14 or 6 and never to pin 8. This is important because of the parasitic resistor $\mathrm{R}^{*}$. Because of the large discharge current through $\mathrm{R}^{*}$, if the capacitor is connected to pin 8 , a four layer diode action can result causing the circuit to latch and possibly damage itself.

## ACCURACY

There are many factors which influence the accuracy of the one-shot. The most important are:
a. Comparator input offset
b. Comparator gain
c. Comparator time delay
d. Voltage divider R1, R2
e. Delays in logic elements
f. ON impedance of N1 and N2
g. Leakage of N 1
h. Leakage of $\mathrm{C}_{\mathrm{EXT}}$
i. Magnitude of $R_{E X T}$ and $C_{E \times T}$

The characteristics of $C_{E X T}$ and $R_{E X T}$ are, of course, not determined by the characteristics of the one-shot. In order to establish the accuracy of the one-shot, devices were tested using an external resistance of $10 \mathrm{k} \Omega$ and various capacitors. A resistance of $10 \mathrm{k} \Omega$ was chosen
because the leakage and ON impedance of transistor N1 have a minimal effect on accuracy with this value of resistance.

Two values of $\mathrm{C}_{\mathrm{EXt}}$ were chosen, 1000 pF and $0.1 \mu \mathrm{~F}$. These values give pulse widths of $10 \mu \mathrm{~s}$ and $1000 \mu \mathrm{~s}$ with $R_{E X T}=10 \mathrm{k} \Omega$.

Figures 3 and 4 show the resulting distributions of pulse widths at $25^{\circ} \mathrm{C}$ for various power supply voltages. Because propagation delays, at the same power supply voltage, are the same independent of pulse width, the shorter the pulse width the more the accuracy is


FIGURE 3. Typical Pulse Width Distribution for $10 \mu \mathrm{~s}$ Pulse.


FIGURE 4. Typical Pulse Width Distribution for $1000 \mu s$ Pulse.
affected by propagation delay. Figures 3 and 4 clearly show this effect. As pointed out in application note AN-90, 54C/74C Family Characteristics, propagation delay is a function of $\mathrm{V}_{\mathrm{Cc}}$. Figure 3, (Pulse Width $=$ $10 \mu \mathrm{~s})$ shows much greater variation with $V_{c c}$ than Figure 4 (Pulse Width $=1000 \mu \mathrm{~s}$ ). This same information is shown in Figures 5 and 6 in a different format. In


FIGURE 5. Typical Percentage Deviation from $V_{C C}=10 \mathrm{~V}$ Value vs $V_{C C}(P W=10 \mu \mathrm{~s})$.


FIGURE 6. Typical Percentage Deviation from $V_{C C}=10 V$ Value vs $V_{C C}(P W=1000 \mu \mathrm{~s})$.
these figures the percent deviation from the average pulse width at $10 \mathrm{~V} V_{c c}$ is shown vs $V_{c c}$. In addition to the average value the $10 \%$ and $90 \%$ points are shown. These percentage points refer to the statistical distribution of pulse width error. As an example, at $V_{C C}=10 \mathrm{~V}$ for $10 \mu \mathrm{~s}$ pulse width, $90 \%$ of the devices have errors of less than $+1.7 \%$ and $10 \%$ have errors less than $-2.1 \%$. In other words, $80 \%$ have errors between $+1.7 \%$ and $-2.1 \%$.

The minimum error can be obtained by operating at the maximum $V_{c c}$. A price must be paid for this and this price is, of course, increased power dissipation.


FIGURE 7. Typical Minimum Pulse Width and Power Dissipation vs VCC.

Figure 7 shows typical power dissipation vs $V_{C C}$ operating both sides of the one-shot at $50 \%$ duty cycle. Also shown in the same figure is typical minimum pulse width vs $\mathrm{V}_{\mathrm{cc}}$. The minimum pulse width is a strong function of internal propagation delays. It is obvious from these two curves that increasing $V_{C C}$ beyond 10 V will not appreciably improve inaccuracy due to propagation delay but will greatly increase power dissipation.

Accuracy is also a function of temperature. To determine the magnitude of its effects the one-shot was tested at temperature with the external resistance and capacitance maintained at $25^{\circ} \mathrm{C}$. The resulting variation is shown in Figures 8 and 9.


FIGURE 8. Typical Pulse Width Error vs Temperature ( $\mathrm{PW}=10 \mu \mathrm{~s}$ ).


FIGURE 9. Typical Puise Width Error vs Temperature ( $\mathrm{PW}=1000 \mu \mathrm{~s}$ ).

Up to this point the external timing resistor, $\mathrm{R}_{\text {EXT }}$, has been held fixed at $10 \mathrm{k} \Omega$. In actual applications other values may be necessary to achieve the desired pulse width. The question then arises as to what effect this will have on accuracy.


As $R_{E X T}$ becomes larger and larger the leakage current on transistor N1 becomes an ever increasing problem. The equivalent circuit for this leakage is shown in Figure 10.
$\mathrm{v}(\mathrm{t})$ is given by:

$$
v(t)=\left(V_{C C}-I_{L} R_{E X T}\right)\left(1-e^{\left.-t_{L} / R_{E X T} C_{E X T}\right)}\right.
$$

As before, when $v(t)=0.63 \mathrm{~V}_{\mathrm{cc}}$, the output will reset. Solving for $t_{L}$ gives:

$$
\begin{equation*}
t_{L}=R_{E X T} C_{E X T} \ln \left(\frac{V_{C C}-I_{L} R_{E X T}}{0.37 V_{C C}-I_{L} R_{E X T}}\right) \tag{3}
\end{equation*}
$$

Using T as defined in Equation 2 the pulse width error is:

$$
\text { PW Error }=\frac{t_{L}-T}{T} \times 100 \%
$$

Substituting Equations 2 and 3 gives:

PW Error $=\frac{R_{E X T} C_{E X T} \ln \left(\frac{V_{C C}-I_{L} R_{E X T}}{0.37 V_{C C}-I_{L} R_{E X T}}\right)-R_{E X T} C_{E X T} \ln (1 / 0.37)}{R_{E X T} C_{E X T} \ln (1 / 0.37)}$

PW Error is plotted in Figure 11 for $\mathrm{V}_{\mathrm{CC}}=5,10$ and 15 V . As expected, decreasing $\mathrm{V}_{\mathrm{cc}}$ causes PW Error to increase with fixed $I_{L}$. Note that the leakage current, although here assumed to flow through $N 1$, is general and could also be interpreted as leakage through $\mathrm{C}_{\text {EXT }}$. See MM54C221/MM74C221 data sheet for leakage limits.


FIGURE 11. Percentage Pulse Width Error Due to Leakage.

To demonstrate the usefulness of Figure 11 an example will be most helpful. Let us assume that N 1 has a leakage of $250 \times 10^{-9} \mathrm{amps}, \mathrm{C}_{\mathrm{EXT}}$ has leakage of $150 \times 10^{-9} \mathrm{amps}$, output pulse width $=0.1$ seconds and $V_{C C}=5 \mathrm{~V}$. What $R_{E X T} C_{E X T}$ should be used to guarantee an error due to leakage of less than $5 \%$.

From Figure 11 we see that to meet these conditions $\mathrm{R}_{\mathrm{EXT}} \mathrm{I}_{\mathrm{L}}<0.14 \mathrm{~V}$.

Then:

$$
\begin{aligned}
R_{E X T} & <0.14 /(250+150) \times 10^{-9} \\
& <350 \mathrm{k} \Omega
\end{aligned}
$$

Choosing standard component values of $250 \mathrm{k} \Omega$ and $0.004 \mu \mathrm{~F}$ would satisfy the above conditions.

We have just defined the limitation on the maximum size of $\mathrm{R}_{\mathrm{EXT}}$. There is a corresponding limit on the minimum size that $R_{E X T}$ can assume. This is brought about because of the finite ON impedance of N1. As $R_{E X T}$ is made smaller and smaller the amount of voltage across N 1 becomes significant. The voltage across N 1 is:

$$
\begin{equation*}
V_{N 1}=v_{C C} r_{O N} /\left(R_{E X T}+r_{O N}\right) \tag{4}
\end{equation*}
$$

The output pulse width is defined by:

$$
\begin{aligned}
v\left(t_{O}\right)= & \left(V_{C C}-V_{N 1}\right)\left(1-e^{-t_{O} / R_{E X T}} C_{E X T}\right) \\
& +V_{N 1}=0.63 V_{C C}
\end{aligned}
$$

Solving for $t_{0}$ gives:

$$
t_{O}=R_{E X T} C_{E X T} \ln \left(\frac{V_{C C}-V_{N 1}}{0.37 V_{C C}}\right)
$$

Pulse Width Error is then:

$$
\text { PW Error }=\frac{t_{0}-T}{T} \times 100 \%
$$

Substituting Equations 2 and 4 gives:

$$
=\frac{R_{E X T} C_{E X T} \ln \left(\frac{V_{C C}-V_{N 1}}{0.37 V_{C C}}\right)-R_{E X T} C_{E X T} \ln (1 / 0.37)}{R_{E X T} C_{E X T} \ln (1 / 0.37)}
$$

This function is plotted in Figure 12 for ron of $50 \Omega$, $25 \Omega$ and $16.7 \Omega$. These are the typical values of $r_{\text {ON }}$ for a $\mathrm{V}_{\mathrm{cc}}$ of $5 \mathrm{~V}, 10 \mathrm{~V}$ and 15 V respectively.

As an example, assume that the pulse width error due to $r_{\text {ON }}$ must be less than $0.5 \%$ operating at $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$. The typical value of $r_{O N}$ for $V_{c c}=5 \mathrm{~V}$ is $50 \Omega$. Referring to


FIGURE 12. Percentage Pulse Width Error Due to Finite ron of Transistor N1 vs REXT.
the $50 \Omega$ curve in Figure 12, $\mathrm{K}_{E X T}$ must be greater than $10 \mathrm{k} \Omega$ to maintain this accuracy. At $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}$ must be greater than $5 \mathrm{k} \Omega$ as can be seen from the $25 \Omega$ curve in Figure 12.

Although clearly shown on the MM54C221/MM74C221 data sheet, it is worthwhile, for the sake of clarity, to point out that the parasitic capacitance between pins 7 (15) and 6 (14) is typically 15 pF . This capacitor is in parallel with $C_{E X T}$ and must be taken into account when accuracy is critical.


Basic One-Shot Oscillator


Frequency Magnitude Comparator

Gerald Buurma National Semiconductor

## CMOS SCHMITT TRIGGER A UNIQUELY VERSATILE DESIGN COMPONENT

## INTRODUCTION

The Schmitt trigger has found many applications in numerous circuits, both analog and digital. The versatility of a TTL Schmitt is hampered by its narrow supply range, limited interface capability, low input impedance and unbalanced output characteristics. The Schmitt trigger could be built from discrete devices to satisfy a particular parameter, but this is a careful and sometimes time-consuming design.

The CMOS Schmitt trigger, which comes six to a package, uses CMOS characteristics to optimize design and advance into areas where TTL could not go. These areas include: interfacing with op amps and transmission lines, which operate from large split supplies, logic level conversion, linear operation, and special designs relying on a CMOS characteristic. The CMOS Schmitt trigger has the following advantages:

- High impedance input ( $10^{12} \Omega$ typical)
- Balanced input and output characteristics
- Thresholds are typically symmetrical to $1 / 2 \mathrm{~V}_{\mathrm{CC}}$
- Outputs source and sink equal currents
- Outputs drive to supply rails
- Positive and negative-going thresholds show low variation with respect to temperature
- Wide supply range (3-15V), split supplies possible
- Low'power consumption, even during transitions
- High noise immunity, $0.70 \mathrm{~V}_{\mathrm{cc}}$ typical

Applications demonstrating how each of these characteristics can become a design advantage will be given later in the application note.

## ANALYZING THE CMOS SCHMITT

The input of the Schmitt trigger goes through a standard input protection and is tied to the gates of four stacked devices. The upper two are P-channel and the lower two are N -channel. Transistors P3 and N3 are operating in the source follower mode and introduce hysteresis by feeding back the output voltage, out', to two different points in the stack.

When the input is at 0 V , transistors P 1 and P 2 are ON , and N1, N2 and P3 are OFF. Since out' is high, N3 is ON and acting as a source follower, the drain of N 1 , which is the source of N 2 , is at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{TH}}$. If the input voltage is ramped up to one threshold above ground transistor N1 begins to turn ON, N1 and N3 both being ON form a voltage divider network biasing the source of N2 at roughly half the supply. When the input is a threshold above $1 / 2 \mathrm{Vcc}, \mathrm{N} 2$ begins to turn ON and regenerative switching is about to take over. Any more voltage on the input causes out' to drop. When out' drops, the source of N3 follows its gate, which is out'; the influence of N3 in the voltage divider with N1 rapidly diminishes, bringing out' down further yet. Meanwhile P3 has started to turn ON, its gate being brought low by the rapidly dropping out'. P3 turning ON brings the source of P2 low and turns P2 OFF. With P2 OFF, out' crashes down. The snapping action is'due to greater than unity loop gain through the stack caused by positive feedback through the source follower transistors. When the input is brought low again an identical process occurs in the upper portion of the stack and the snapping action takes place when the lower threshold is reached.


FIGURE 1. CMOS Schmitt Trigger

Out' is fed into the inverter formed by P4 and N4; another inverter built with very small devices, P5 and N5, forms a latch which stabilizes out'. The output is an inverting buffer capable of sinking $360 \mu \mathrm{~A}$ or two LPTTL loads.

The typical transfer characteristics are shown in Figure 2; the guaranteed trip point range is shown in Figure 3.

## WHAT HYSTERESIS CAN DO FOR YOUR

Hysteresis is the difference in response due to the direction of input change. A noisy signal that traverses the threshold of a comparator can cause multiple transitions at the output, if the response time of the comparator is less than the time between spurious effects. A Schmitt trigger has two thresholds: any spurious effects must be greater than the threshold difference to cause multiple transitions. With a CMOS Schmitt at $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$ there is
typically 3.6 V of threshold difference, enough hysteresis to overcome almost any spurious signal on the input.

A comparator is often used to recover information sent down an unbalanced transmission line. The threshold of the comparator is placed at one half the signal amplitude (See Figure 4b). This is doen to prevent slicing level distortion. If a $4 \mu \mathrm{~s}$ wide signal is sent down a transmission line a $4 \mu \mathrm{~s}$ wide signal should be received or signal distortion occurs. If the comparator has a threshold above half the signal amplitude, then positive pulses sent are shorter and negative pulses are lengthened (See Figure 4c). This is called slicing level distortion. The Schmitt trigger does have a positive offset, $\mathrm{V}_{\mathrm{T}}$, but it also has a negative offset $V_{T-}$. In CMOS these offsets are approximately symmetrical to half the signal level so a $4 \mu \mathrm{~s}$ wide pulse sent is also recovered (see Figure 4d). The recovered pulse is delayed in time but the length is not changed, so noise immunity is achieved and signal distortion is not introduced because of threshold offsets.


FIGURE 4. CMOS Schmitt Trigger Ignores Noise

) Capacitor impedance at lowest operating frequency should be much less than $R: R=1 / 2 R$.

b) By using split supply $( \pm 1.5$ to $\pm \mathbf{7} .5$ ) direct interface is achieved

FIGURE 5. Sine to Square Wave Converter with Symmetrical Level Detection.


FIGURE 6. Diode Dump Tach Accepts any Input Waveform.

## APPLICATIONS OF THE CMOS SCHMITT

Most of the following applications use a CMOS Schmitt characteristic to either simplify design or increase performance. Some of the applications could not be done at all with another logic family.

The circuit in Figure 5a is the familiar sine to square wave converter. Because of input symmetry the Schmitt trigger is easily biased to achieve a $50 \%$ duty cycle. The high input impedance simplifies the selection of the biasing resistors and coupling capacitor. Since CMOS has a wide supply range the Schmitt trigger could be powered from split supplies (see Figure 5b). This biases the mean threshold value around zero and makes direct coupling from an op amp output possible.

In Figure 4, we see a frequency to voltage converter that accepts' many waveforms with no change in output voltage. Although the energy in the waveforms are quite different, it is only the frequency that determines the output voltage. Since the output of the CMOS Schmitt pulls completely to the supply rails, a constant voltage swing across capacitor C1 causes a current to flow through the capacitor, dependent only on frequency. On positive output swings, the current is dumped to ground through D1. On negative output swings, current is pulled from the inverting op amp node through D2 and transformed into an average voltage by R2 and C2.

Since the CMOS Schmitt pulls completely to the supply rails the voltage change across the capacitor is just the supply voltage.

Schmitt triggers are often used to generate fast transitions when a slowly varying function exceeds a predetermined level. In Figure 7, we see a typical circuit, a light activated switch. The high impedance input of the CMOS Schmitt trigger makes biasing very easy. Most photo cells are several $k \Omega$ brightly illuminated and a couple $M \Omega$ dark. Since CMOS has a $10^{12} \Omega$ typical input impedance, no effects are felt on the input when the output changes. The selection of the biasing resistor is just the solution of a voltage divider equation.

A CMOS application note wouldn't be complete without a low power application. Figure 8 shows a simple RC oscillator. With only six R's and C's and one Hex CMOS
trigger, six low power oscillators can be built. The square wave output is approximately $50 \%$ duty cycle because of the balanced input and output characteristics of CMOS. The output frequency equation assumes that $\mathrm{t}_{1}=\mathrm{t}_{2} \gg$ $t_{p d 0}+t_{\text {pd } 1}$.

We earlier saw how the CMOS Schmitt increased noise immunity on an unbalanced transmission line. Figure 9 shows an application for a balanced or differential transmission line. The circuit in Figure 7a is CMOS EXCLUSIVE OR, the MM74C86, which could also be built from inverters, and NAND gates. If unbalanced information is generated on the line by signal crosstalk or external noise sources, it is recognized as an error.

FIGURE 8. Simplest RC Oscillator? Six R's and C's make the CMOS Schmitt into Six Low Power Oscillators. Balanced Input and Output Characteristics give the Output Frequency a Typically 50\% Duty Cycle.

The circuit in Figure $9 b$ is a differential line receiver that recovers balanced transmitted data but ignores unbalanced signals by latching up. If both circuits of Figure 9 were used together, the error detector could signal the transmitter to stop transmission and the line receiver would remember the last valid information bit when unbalanced signals persisted on the line. When balanced signals are restored, the receiver can pick up where it left off.

The standard voltage range for CMOS inputs is $\mathrm{V}_{\mathrm{Cc}}$ +0.3 V and ground -0.3 V . This is because the input protection network is diode clamped to the supply rails. Any input exceeding the supply rails either sources or sinks a large amount of current through these diodes. Many times an input voltage range exceeding this is desirable; for example, transmission lines often operate from $\pm 12 \mathrm{~V}$ and op amps from $\pm 15 \mathrm{~V}$. A solution to this problem is found in the MM74C914. This new device has an uncommon input protection that allows the input signal to go to 25 V above ground, and 25 V below V cc . This means that the Schmitt trigger in the sine to square wave converter, in Figure 5b, could be powered by $\pm 1.5 \mathrm{~V}$ supplies and still be directly compatible with an op amp powered by $\pm 15 \mathrm{~V}$ supplies.

A standard input protection circuit and the new input protection are shown in Figure 10. The diodes shown have a 35 V breakdown. The input voltage can go positive until reverse biased D2 breaks down through forward bias D3, which is 35 V above ground. The input voltage can go negative until reverse biased D1 breaks down through forward-bias $D 2$, which is 35 V below $\mathrm{V}_{\mathrm{CC}}$. Adequate input protection. against static charge is still maintained.

CMOS can be linear over a wide voltage range if proper consideration is paid to the biasing of the inputs. Figure 11 shows a simple VCO made with a CMOS inverter, acting as an integrator, and a CMOS Schmitt, acting as a comparator with hysteresis. The inverter integrates the positive difference between its threshold and the input voltage $V_{I N}$. The inverter output ramps up until the positive threshold of the Schmitt trigger is reached. At that time, the Schmitt trigger output goes low, turning on the transistor through $\mathrm{R}_{\mathrm{s}}$ and speeding up capacitor $\mathrm{C}_{\mathrm{s}}$. Hysteresis keeps the output low until the integrating capacitor $C$ is discharged through $R_{D}$. Resistor $R_{D}$ should be kept much smaller than RC to keep reset time negligible. The output frequency is given by

$$
f_{O}=\frac{V_{T H}-V_{I N}}{\left(V_{T+}-V_{T-}\right)} R_{C C}
$$

The frequericy dependence with control voltage is given by the derivative with respect to $V_{I N}$ So,

$$
\frac{d f_{0}}{d V_{I N}}=\frac{-1}{\left(V_{T_{+}}-V_{T-}\right) R C}
$$

where the minus sign indicates that the output frequency increases as the input is brought further below the inverter threshold. The maximum output frequency occurs when $V_{\text {IN }}$ is at ground and the frequency will decrease as $V_{\text {IN }}$ is raised up and will finally stop oscillating at the inverter threshold, approximately $0.55 \mathrm{~V}_{\mathrm{Cc}}$.

a)

b)

FIGURE 10. Input Protection Diodes, in a) Normally Limit the Input Voltage Swing to 0.3 V above $\mathrm{V}_{\mathrm{CC}}$ and 0.3 V below Ground. In b) D2 or D1 is Reverse Biased Allowing Input Swings of 25 V above Ground or 25 V below $\mathrm{V}_{\mathrm{CC}}$.


$$
f_{0}=\frac{V_{T H}-V_{I N}}{\left(V_{T^{*}}-V_{T} \mid R_{C} C\right.}
$$

$$
\frac{d f_{0}}{d V_{I N}}=\frac{-1}{\left(V_{T+}-V_{T}\right) A_{C} C}
$$

FIGURE 11. Linear CMOS (Voltage Controlled Oscillator)

The pulses from the VCO output are quite narrow because the reset time is much smaller than the integration time. Pulse stretching comes quite naturally to a Schmitt trigger. A one-shot or pulse stretcher made with an inverter and Schmitt trigger is shown in Figure 12. A positive pulse coming into the inverter causes its output to go low, discharging the capacitor through the diode D1. The capacitor is rapidly discharged, so the Schmitt input is brought low and the output goes positive. Check the size of the capacitor to make sure that inverter can fully discharge the capacitor in the input pulse time, or

$$
I_{\text {SINK INVERTER }}>\frac{C \Delta V}{\Delta T}+\frac{\Delta V}{R}
$$

where $\Delta V=V_{c c}$ for CMOS, and $\Delta T$ is the input pulse width.

For very narrow pulses, under 100 ns, the capacitor can be omitted and a large resistor will charge up the CMOS gate capacitance just like a capacitor.

When the inverter input returns to zero, the blocking diode prevents the inverter from charging the capacitor and the resistor must charge it from its supply. When the input voltage of the Schmitt reaches $\mathrm{V}_{\mathrm{T}+}$, the Schmitt output will go low sometime after the input pulse has gone low.

## THE SCHMITT SOLUTION

The Schmitt trigger, built from discrete parts, is a careful and sometimes time-consuming design. When introduced in integrated TTL, a few years ago, many circuit designers had renewed interest because it was a building block part. The input characteristics of TTL often make biasing of the trigger input difficult. The outputs don't source as much as they sink, so multivibrators don't have 50\% duty cycle, and a limited supply range hampers interfacing with non 5 V parts.

The CMOS Schmitt has a very high input impedance with thresholds approximately symmetrical to one half the supply. A high voltage input is available. The outputs sink and source equal currents and pull directly to the supply rails.

A wide threshold range, wide supply range, high noise immunity, low power consumption, and low board space make the CMOS Schmitt a uniquely versatile part.

Use the Schmitt trigger for signal conditioning, restoration of levels, discriminating noisy signals, level detecting with hysteresis, level conversion between logic families, and many other useful functions.

The CMOS Schmitt is one step closer to making design limited only by the imagination of the designer.


$$
T=R C \ln \left(\frac{V_{C C}-V_{B E}}{V_{C C}-V_{T+}}\right) \text { BE SURE THAT } I_{\text {SINKINVERTEA }}-\frac{C V_{C C}}{t}+\frac{V_{C C}}{R}
$$

FIGURE 12. Pulse Stretcher. A CMOS Inverter Discharges a Capacitor, a Blocking Diode allows Charging through R only. Schmitt Trigger Output goes Low after the RC Delay.

## dual polarity $3 ½$-digit DVM realized with simple CMOS interface

Two powerful building blocks, the LF11300 dual slope analog building block and the MM74C928 CMOS $31 / 2$ decade counter with 7 -segment outputs, are easily mated with a simple CMOS interface to produce an auto-zero, auto-polarity $31 / 2$-digit DVM.
The LF11300 has a very high impedance FET input and internal circuitry for automatic offset correction and polarity determination. Only a single 2 -volt reference is needed for both positive and negative full-scale readings of 1999.
The MM74C928 is a $31 / 2$-decade counter that directly drives an LED display with multiplex 7 segment information. The multiplexing circuit has its own free running oscillator and requires, no external clock. The interface circuitry provides non-overlapping control signals to the LF11300 for polarity determination and offset correction for every conversion cycle, and also provides clock and display update control signals to the MM74C928.
A conversion cycle is begun by a positive edge on flipflop D1: additional transitions do not affect this input until the Conversion Complete signal is received at the end of the cycle. Schmitt Trigger S 1 generates 10 ms pulses which are converted into control signals by the Logic circuitry.
Each conversion cycle is preceded by offset correction, polarity determination, another offset correction, and a ramp unknown signal into the LF11300. The offset correction signals allow the analog building block to store any internal offsets in its integrator and comparator on an external capacitor. The LF 11300 uses this stored offset voltage to automatically zero the display when no voltage is present at the analog input. The polarity determination signal samples the input voltage and the comparator output of the LF11300 indicates to the control logic whether to switch in ramp unknown minus or ramp unknown plus. The analog building
block integrator becomes a positive integrator for positive voltage inputs or a negative integrator for negative voltage inputs. This way a single reference serves as a standard for either polarity voltage at the analog input.
These preparations occur at the beginning of every conversion cycle, and all control signals are non-overlapped by one gate delay by the control logic so that stored offset voltages are not disturbed.
The rest of the conversion cycle is a standard dual slope conversion where the unknown is integrated for 2000 counts and the reference is integrated until the internal comparator indicates a zero crossing of the integrated voltage.
The comparator going low generates a series of control pulses to the MM74C928. The first control pulse latches the count into an internal register. The second control pulse resets the interface logic for a new cycle, and the last pulse indicates the end of conversion.

For continuous operation, end of conversion can be tied to start conversion and the display will update itself at the end of each conversion cycle.
If too large a voltage is present at the analog input or if the external leads are switched in the middle of a conversion cycle, the counter overflows and an overflow light indicates this condition. The overflow light will remain on until a valid conversion has been obtained.
All circuitry is automatically reset when power comes on and waits until a conversion start signal unless used in the continuous conversion mode.
The complete circuit of nine packages and external components including a temperature compensated reference can be built on a $3 \times 5$-inch piece of vector board. The analog circuit excluding reference requires only 1.5 mA from each 12.5 V battery and the digital circuit requires approximately 40 mA from the 6 V supply.


## Designing with MM74C908, MM74C918 Dual High Voltage CMOS Drivers

## INTRODUCTION

By combining the merits of both CMOS and bipolar technologies on a single silicon chip, the MM74C908, MM74C918 provides the following distinguished features as general purpose high voltage drivers.

- Wide supply voltage range ( 3 V to 18 V )
- High noise immunity (typ 0.45 VCC)
- High input impedance (typ $10{ }^{12} \Omega$ )
- Extremely low standby power consumption (typ 750 nW at 15 V )
- Low output "ON" resistance (typ 8 8 )
- High output drive capability (IOUT $\geq 250 \mathrm{~mA}$ at $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}-3 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{j}}=65^{\circ} \mathrm{C}$ )
- High output "OFF" voltage (typ 56V at $200 \mu \mathrm{~A}$ )

Among these, the first 4 are typical and unique characteristics of CMOS technology which are fully utilized in this circuit to achieve all the design advantages in a typical CMOS system.

The high output currents and low "ON" resistance are achieved through the use of an NPN Darlington pair at the output stage.

The MM74C908 is housed in an 8-lead epoxy dual-in-line package, which can dissipate at least 1.14 W . The higher power version, MM74C918, comes in a 14-lead epoxy dual-in-line package, with power capability up to a minimum of 2.27 W .


The circuitry for each of the 2 identical sections is shown in Figure 1.

With both inputs sitting at logical " 1 " level, the output of the inverter is also at logical " 1 ", which prevents the P-channel transistor from being turned "ON"; therefore, the output is in its "OFF" state. Only a small amount of leakage current can flow.

On the other hand, when one or both of the inputs is at logical " 0 " level, the output of the inverter is also at logical " 0 ", which turns on the P-channel transistor and, hence, the Darlington pair.

## POWER CONSIDERATION

To assure junction temperature of $150^{\circ} \mathrm{C}$ or less, the on-chip power consumption must be limited to with in the power handling capability of the packages. In Figure 2, the maximum power dissipation on-chip is shown as a function of ambient temperature for both MM74C908 and MM74C918. These curves are generated from (1) at $T_{j}=T_{j(M A X)}=150^{\circ} \mathrm{C}$.

$$
\begin{equation*}
T_{j}=T_{A}+P_{D} \theta_{j A} \tag{1}
\end{equation*}
$$

where $T_{j}=$ junction temperature $T_{A}=$ ambient temperature
$P_{D}=$ power dissipation
$\theta_{\mathrm{jA}}=$ thermal resistance between junction and ambient


FIGURE 1

figure 2. Maximum Power Dissipation vs Ambient Temperature MM74C918 is as shown in Figure 3.


FIGURE 3

For both sections $A$ and $B$;

$$
\begin{equation*}
\text { IOUT }=\frac{V_{C C}-V_{L}}{R_{O N}+R_{L}} \tag{2}
\end{equation*}
$$

The device "ON" resistance, $\mathrm{R}_{\mathrm{ON}}$, is a function of junction temperatüre, $\mathrm{T}_{\mathrm{j}}$. The worst-case $\mathrm{R}_{\mathrm{ON}}$ as a function of $T_{j}$ is given in (3).

$$
\begin{equation*}
\text { RON }=9\left[1+0.008\left(T_{j}-25\right)\right] \tag{3}
\end{equation*}
$$

The total power dissipation in the device also consists of normal CMOS power terms (due to leakage current, internal capacitance, switching etc.) which are insignificant compared to the power dissipated at the output stages. Thus, the output power term defines the allowable limits of operation and is given by:

$$
\begin{align*}
P_{D} & =P_{D A}+P_{D B}  \tag{4}\\
& =1^{2} \text { OUTA } \cdot R_{O N}+1^{2} O U T B \cdot R_{O N}
\end{align*}
$$

Given RLA and RLB. (1), (2), (3), (4) can be used to calculate $P_{D}, T_{j}$, etc. through iteration.

For example, let $V_{L}=0 V, V_{C C}=10 \mathrm{~V}, R_{L A}=100 \Omega$, $R_{L B}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}, \theta_{j A}=110^{\circ} \mathrm{C} / \mathrm{W}$.

Assume:
$R_{\text {ON }}=12.28 \Omega$
By (2):

$$
\begin{aligned}
& \text { IOUTA }=\frac{10}{12.28+100}=0.089 \mathrm{~A} \\
& \text { IOUTB }=\frac{10}{12.28+50}=0.161 \mathrm{~A}
\end{aligned}
$$

By (4):

$$
P_{D}=(0.089)^{2} \cdot 12.28+(0.161)^{2} \cdot 12.28=0.41 \mathrm{~W}
$$

By (1):

$$
T_{j}=70.5^{\circ} \mathrm{C}
$$

And by (3):

$$
\mathrm{RON}=12.28 \Omega
$$

## DESIGN TECHNIQUE

In a typical design, $R_{L}$ must be chosen to satisfy the load requirement (e:g., a minimum current to turn on a relay) and at the same time, the power consumed in the driver package must be kept below its maximum power handling capability.

To minimize the design effort, a graphical technique is developed, which combines all the parameters in one plot, which can be used efficiently to obtain an optimal design.

Assume $T_{A}=25^{\circ} \mathrm{C}$ and that both sections of the MM74C908 in Figure 3 are operating under identical conditions. The maximum allowable package dissipation is:

$$
\begin{align*}
P_{D} & =2\left(V_{C C}-V_{\text {OUT }}\right) \times I \text { OUT } \\
& =\frac{1}{110}\left(150-T_{A}\right)=1.14 W \tag{6}
\end{align*}
$$

where $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{jA}}=110^{\circ} \mathrm{C} \mathrm{W}$ are used in (1) per the data sheet.

Thus, the maximum power allowed in each section is:

$$
P_{D}=\left(V_{C C}-V_{O U T}\right) \times I_{O U T}=0.57 W
$$

A constant power curve $\mathrm{P}_{\mathrm{D}}=0.57 \mathrm{~W}$ can then be plotted as shown in Figure 4. The circuit must operate below this curve. Any voltage-current combination beyond it (in the shaded region) will not guarantee $T_{j}$ to be lower than $150^{\circ} \mathrm{C}$.

For any given $R_{L}$, a load line (7) can be superimposed on Figure 4.

IOUT $=\frac{1}{R_{L}}\left(V_{C C}-V_{L}\right)-\frac{1}{R_{L}}\left(V_{C C}-V_{O U T}\right)$

The slope of this load line is $-1 / R_{L}$ and it intersects with the vertical and horizontal axes at $1 / \mathrm{R}_{\mathrm{L}}$ (VCC $V_{L}$ ) and $V_{C C}-V_{L}$ respectively.

Given $V_{C C}$ and $V_{L}$, a minimum $R_{L}$ can be obtained by drawing the load line tangent to the constant power curve. In Figure 4, at $\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}$ the line intersects IOUT axis at IOUT $=450 \mathrm{~mA}$. Thus, $\mathrm{R}_{\mathrm{L}}(\mathrm{MIN})=$ $5 \mathrm{~V} / 450 \mathrm{~mA}=11.1 \Omega$. Any $R_{L}$ value below this will move the intersecting point up and cause a section of the load line to extend into the shaded region. Therefore, the junction temperature can exceed $\mathrm{T}_{\mathrm{j}}(\mathrm{MAX})=150^{\circ} \mathrm{C}$ in the worst case if the circuit operates on such a section of the load line.

Whether this situation will occur or not is determined by both the value of $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{L}}$ and the RON range of the drivers.


By (3), at $T_{j}=150^{\circ} \mathrm{C}$ RON(MAX) $=18 \Omega$, this is a straight line* passing through the origin with a slope of IOUT/(VCC $\left.-V_{\text {OUT }}\right)=1 / 18$ mho and intersects the load line at point $A$. Similarly, point $B$ and $C$ can be found for typical $(\sim 10 \Omega)$ and minimum $(\sim 5 \Omega)$ RON at $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$.

For $V_{C C}-V_{L}=5 \mathrm{~V}$, the tangent point falls between $A$ and $C$. Hence, $R_{L} \geq 11.1 \Omega$ calculated above must be satisfied; otherwise, part of the load line within the specified RON range will extend into the shaded region and therefore, $\mathrm{T}_{\mathrm{j}} \geq 150^{\circ} \mathrm{C}$ may occur.

For $V_{C C}-V_{L}=10 \mathrm{~V}$, however, a section of the load line can go beyond the $\mathrm{P}_{\mathrm{D}}=0.57 \mathrm{~W}$ curve without affecting the safe operation of the circuit. By inspection of Figure 4, the reason is clear-the load line extends into the shaded region only outside of the specified RON range (to the right of point $A^{\prime}$ ). Within the RON range, the load line lies below the $\mathrm{P}_{\mathrm{D}}=0.57 \mathrm{~W}$ curve, thus, a safe operation.

To a first approximation**, the section of the load line. between A and C is the operating range for the circuit at $V_{C C}-V_{L}=5 V$ and $R_{L}=11.1 \Omega$. Hence, the available current and voltage ranges for this circuit are $310 \mathrm{~mA} \geq$ IOUT $\geq 172 \mathrm{~mA}$ and $3.4 \mathrm{~V} \geq \mathrm{V}_{\text {OUT }} \geq 1.9 \mathrm{~V}$, respectively.

Thus, by simply drawing no more than 3 straight lines, one obtains all of the following immediately:

1. All the necessary design information (e.g., minimum $\mathbf{R}_{\mathrm{L}}$, minimum available IOUT and VOUT, etc.)
2. Operating characteristics of the circuit as a whole, including the effect of different RON values due to process variations, thus, a better insight into the circuit operation.
3. Most importantly, a guarantee that the circuit will be operating in the safe region, ( $\mathrm{T}_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$ ).

For different ambient temperatures or for different power considerations, Figure 4 can be applied by properly scaling the IOUT axis. (Note that IOUT $\propto T_{j}-T_{A}$ and IOUT $\propto P_{D}$ ).


FIGURE 5. Typical Iout vs Typical Vout
*Strictly speaking, RON is a non-linear function of lout. A typical RON characteristic at $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ is shown in Figure 5. The non-linear characteristic near the origin is due to the fact that the output NPN transistor is not saturated. As soon as saturation is reached (IOUT $\sim 150 \mathrm{~mA}$ ) the curve becomes a straight line which extrapolates back to the origin. For practical design purposes, it is sufficient to consider RON as a linear function of lout.
**Note that as the operating point on the load line moves away from the $P_{D}=0.57 \mathrm{~W}$ curve, (away from the tangent point in this case), the actual junction temperature drops. Therefore, at point A, for example, the device is actually running cooler than $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$, even in the worst case. Hence, RON value drops below $18 \Omega$ and the actual operating point is slightly different from $A$.

To further simplify the design, a family of such curves has been generated as shown in Figure 6. Each of these curves corresponds to a particular $\mathrm{T}_{\mathrm{A}}$ and $\mathrm{PD}_{\mathrm{D}}$ (perdriver) as indicated, and similar to the $P_{D}=0.57 \mathrm{~W}$ curve in Figure 4, is generated from (6) by using appropriate $\mathrm{T}_{\mathrm{A}}$ values. The application of these curves is illustrated as follows:

## Example 1

1. In Figure 3, assume that the two drivers in the MM74C908 package are to operate under identical conditions. Find minimum $R_{L}$ at $T_{A}=25^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}$, $65^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$ for both $V_{\mathrm{CC}}-\mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}-$ $V_{L}=10 \mathrm{~V}$.

Then plot $R_{L}($ MIN $)$ vs $T_{A}$.
a) $V_{C C}-V_{L}=5 V$

By constructing the load lines tangent to the curves for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}, 65^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, $R_{L}($ MIN ) for each case can be obtained through the vertical coordinate for the intersection points as shown in Figure 6. These are calculated in Table I.

Note that the same results (within graphical error) can be obtained analytically by letting $d R_{\mathrm{L}} /$ $\mathrm{dR}_{\mathrm{ON}}=0$. It can be shown that

$$
\begin{equation*}
R_{L(M I N)}=\frac{\left(V_{C C}-V_{L}\right)^{2}}{4 X(\text { Max Power Per Driver })} \tag{8}
\end{equation*}
$$

b) $V_{C C}-V_{L}=10 V$

The $R_{L}(M I N)$ given in (8) may not be a true minimum if the tangent point does not fall inside the specified RON region. The actual RL(MIN) can be obtained as shown in Figure 7. The calculations and results are given in Table II.

Note that the $R_{L}(M I N)$ values in Table II are lower than those given by (8). This corresponds to the section on each of the 4 load lines in Figure 7 which extends beyond the power limit curve at each associated temperature. However, this section on each load line is outside the specified RON range. Within the RON range, load lines are below the power limits; therefore, safe operation is guaranteed.

The $\mathrm{R}_{\mathrm{L}}\left(\right.$ MIN ) vs $\mathrm{T}_{A}$ plot is as shown in Figure 8.

All the curves generated so far are restricted to $P_{D} \leq 0.57 \mathrm{~W}$ due to our simplifying assumption that both drivers are operating identically. In Figure 9 a few more curves are added to account for the general situation in which only the restriction $P_{D A}+P_{D B} \leq 1.14 \mathrm{~W}$ is required, (i.e., PDA can be different from PDBl. Application of Figure 9 is illustrated as follows:

TABLE II.

$T_{A}$				
$I_{\text {OUT }} @ \operatorname{D1}, 2,3,4(\mathrm{~mA})$	$25^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{L}(\mathrm{MIN})}=\frac{10}{I_{\text {OUT }} @ \mathrm{D} 1,2,3,4}$	261	230	197	166

AN-177 Designing with MM74C908/MM74C918 Dual High Voltage CMOS Drivers




FIGURE 8


FIGURE 9

In Figure 3, assume that driver $A$ has to deliver 200 mA to its load while driver B needs only 100 mA . Design $R_{L A}$ and $R_{L B}$ for $V_{C C}-V_{L}=5 \mathrm{~V}$.

By inspection of Figure 4, units with high RON values will not be able to deliver 200 mA . However, since section $B$ does not need the same amount of drive, we can reduce the power consumed in this section to compensate for the higher power ( $>0.57 \mathrm{~W}$ ) required in section $A$.

The design procedure follows:
Section A

1. Draw a load line intersecting $\mathrm{RON}=18 \Omega$ line at IOUT $=200 \mathrm{~mA}$.
2. This load line intersects the IOUT axis at lOUT $=$ 710 mA and is tangent to $\mathrm{PDA} \simeq 0.9 \mathrm{~W}$ curve, thus $R_{\mathrm{LA}} \cong 5 \mathrm{~V} / 710 \mathrm{~mA}=7.1 \Omega$ will guarantee both $P_{\text {DA }} \leq 0.9 \mathrm{~W}$ and IOUTA $\geq 200 \mathrm{~mA}$.

Section B

1. Draw a load line intersecting $\mathrm{RON}=18 \Omega$ line at IOUT $=100 \mathrm{~mA}$.
2. Similar to (2) above, it is seen immediately that $R_{\text {LB }} \cong 5 \mathrm{~V} / 150 \mathrm{~mA}=33.3 \Omega$ will guarantee $I_{\text {OUTB }} \geq$ 100 mA and $\mathrm{P}_{\mathrm{DB}} \leq 0.18 \mathrm{~W}$.

Since $P_{D A}+P_{D B} \leq 0.9+0.18<1.14 W$

$$
\begin{aligned}
& R_{L A}=7.1 \Omega \\
& R_{\mathrm{LB}}=33.3 \Omega
\end{aligned}
$$

satisfy all the requirements in this problem.
The design in Example 2 illustrated the simple and straight-forward use of the curves and the result meets all the problem requirements. However, it should be noted that there is not much design margin left for tolerance in resistances and other circuit parameters. The reason is obvious-we are pushing at the power limit of the MM74C908 package-and the solutions are simple:
a) Increase VCC supply
b) Use the higher power package MM74C918.

The design for higher $V_{C C}$ is identical to that in Example 2 and will not be repeated here.

For the 14 -lead higher power (2.27W) MM74C918, $\theta_{\mathrm{jA}}=55^{\circ} \mathrm{C} / \mathrm{W}$, this is exactly half that of the 8 -lead MM 74 C908. Therefore, by scaling the IOUT axis by a factor of 2, the same family of curves in Figure 9 can be applied directly. This is shown in Figure 10. (Note that the slope of the RON $=18 \Omega$ line has been adjusted to the new scale).


FJGURE 10

By drawing the same load lines, it is found that:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{LA}} \cong 5 \mathrm{~V} / 710 \mathrm{~mA}=7.1 \Omega \\
& \text { guarantees PDA } \leq 0.9 \mathrm{~W}
\end{aligned}
$$

and
$R_{L B} \cong 5 \mathrm{~V} / 150 \mathrm{~mA}=33.3 \Omega$
guarantees PDB $\leq 0.18 \mathrm{~W}$

$$
\mathrm{P}_{\mathrm{DA}}+\mathrm{P}_{\mathrm{DB}} \leq 1.08 \mathrm{~W}
$$

which is way below the maximum power 2.27 W available. Therefore, both $R_{\text {LA }}$ and $R_{\text {LB }}$ can be lowered to account for tolerance in the resistors. Consider specifically the following example:

## Example 3

Assume driver A, B of the MM74C918 have to deliver 250 mA and 150 mA , respectively, to its load. Design $R_{L A}$ and $R_{L B}$ at $V_{C C}-V_{L}=10 \mathrm{~V}$.

## Driver A

1. In Figure 11, draw the load line intersecting RON $=$ $18 \Omega$ at lout $=250 \mathrm{~mA}$.
2. This load line intersects the IOUT axis at 450 mA . Thus, by inspection $R_{\mathrm{LA}} \cong 10 \mathrm{~V} / 450 \mathrm{~mA} \cong 22.2 \Omega$ guarantees $P_{D A} \leq 1.14 W$.

## Driver B

1. Draw the load line intersecting RON $=18 \Omega$ at lout $=150 \mathrm{~mA}$.
2. This load line intersects the IOUT axis at 210 mA . Thus, by inspection $\mathrm{R}_{\mathrm{LB}} \cong 10 \mathrm{~V} / 210 \mathrm{~mA}=47.6 \Omega$ guarantees $\mathrm{PDB} \leq 0.4 \mathrm{~W}$.

Since $\operatorname{PDA}+\mathrm{PDB}_{\mathrm{DB}} \leq 1.14+0.4=1.8 \mathrm{~W}$, while the package is capable of delivering 2.27 W , both R RA and $R_{\mathrm{LB}}$ can be lower than the above values and the circuit still operates safely. By picking the closest standard resistance values:

$$
\begin{aligned}
& R_{L A}=20 \Omega \\
& R_{L B}=43 \Omega
\end{aligned}
$$

For $5 \%$ tolerance in these values,

$$
\begin{aligned}
& 19 \Omega \leq R_{\text {LA }} \leq 21 \Omega \\
& 40.85 \Omega \leq R_{\mathrm{LB}} \leq 45.15 \Omega
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& \operatorname{IOUTA}(\mathrm{MIN}) \geq \frac{10 \mathrm{~V}}{18 \Omega+21 \Omega}=256.4 \mathrm{~mA}>250 \mathrm{~mA} \\
& \operatorname{IOUTB}(\mathrm{MIN}) \geq \frac{10 \mathrm{~V}}{18 \Omega+45.15 \Omega}=158.3 \mathrm{~mA}>150 \mathrm{~mA}
\end{aligned}
$$

$$
\operatorname{PDA}(M A X) \leq\left(\frac{10 \mathrm{~V}}{18 \Omega+19 \Omega}\right)^{2} \cdot 18 \Omega=1.31 \mathrm{~W}
$$

$$
\operatorname{PDB}(\operatorname{MAX}) \leq\left(\frac{10 \mathrm{~V}}{18 \Omega+40.85 \Omega}\right)^{2} \cdot 18 \Omega=9.52 \mathrm{~W}
$$

$$
P_{D A(M A X)}+P_{D B}(M A X) \leq 1.31+0.52<2.27 \mathrm{~W}
$$

Therefore:
$R_{\text {LA }}=20 \Omega(1.5 \mathrm{~W}, 5 \%)$
$R_{\text {LB }}=43 \Omega(1 \mathrm{~W}, 5 \%)$
will guarantee satisfactory performance of the circuit.

figure 11

Like most other drivers, the MM74C908, MM74C918 can be used to drive relays, lamps, speakers, etc. These are shown in Figure 12. (To suppress transient spikes at turn-off, a diode as shown as Figure 12a is recommended at the relay coil or any other inductive load.)

However, the MM74C908, MM74C918 offers a unique CMOS feature that is not available in drivers from other logic families-extremely low standby power. At $\vee_{C C}=$

15 V , power dissipation per package is typically 750 nW when the outputs are not drawing current. Thus, the drivers can be sitting out on line (a telephone line, for example) drawing essentially zero current until acti-vated-an ideal feature for many applications.

The dual feature and the NAND function of the driver design can also be used to advantage as shown in the following applications:


FIGURE 12a. Relay Driver


FIGURE 12b. Lamp Driver


FIGURE 12c. Speaker Driver

In Figure 13, the 2 drivers in the package are connected as a Schmitt trigger oscillator, where R1 and R2 are used to generate hysteresis. R3 and C are the inverting feedback timing elements and R4 is the pull-down load for the first driver. Because of its current capability, the
circuit can be used to drive an array of LEDs or lamps. If resistor R4 is replaced by an LED (plus a current limiting resistor), the circuit becomes a double flasher with the 2 LEDs flashing out of phase. This is shown in Figure 14.


FIGURE 13. High Drive Oscillator/Flasher


FIGURE 14. Out of Phase Double Flasher

Another oscillator circuit using only $1 / 2$ of the package and 4 passive components is shown in Figure 15. Assume $V_{I}$ is slightly below the input trip point, the driver is "ON" and charging both $V_{O}$ and $V_{1}$ until $V_{1}$ reaches the trip point, $V_{T}$, when, the driver starts to turn "OFF". $V_{O}$ can be made much higher than $V_{l}$ at this instance by adjusting the component values such that $\mathrm{R}_{\mathrm{f}} \mathrm{C}_{\mathrm{f}} \gg$ $\left(R_{O N} \| R_{L}\right) C_{L}$. Since $V_{O}$ is higher than $V_{I}, V_{I}$ is still going up, although the driver is "OFF" and $V_{O}$ is ramping down. The rising $V_{1}$ will eventually equal to
the falling $V_{O}$, and then start discharging. Then, both $V_{1}$ and $V_{O}$ discharge until $V_{1}$ hits the trip point, $V_{T}$, again, when the driver is turned "ON", charging up $V_{O}$ and subsequently $V_{1}$ to complete a cycle.

This oscillator is ideal for low cost applications like the 1-package siren shown in Figure 16, where 1 oscillator is used as a VCO while the other is generating the voltage ramp to vary the frequency at the VCO output.


FIGURE 15. Single Driver Oscillator


FIGURE 16. Low Cost Siren

The NAND functions at the input can also be used to reduce package count in applications where both high
output drive and input NAND features are required. One such example is given in Figure 17.


FIGURE 17. High Drive RS Latch

## Keyboard programmable divide-by-N counter with symmetrical output

A CMOS key encoder combines with a couple of Dual D flip-flops and an exclusive OR package to form a simple but versatile programmable divider. The input frequency can be divided by any number $n$ between 1 and 16 by simply pressing the appropriate key. The counter output is symmetrical for both odd and even divisors.

This circuit is useful for simple frequency synthesis or as an oscilloscope triggering unit where the displayed signal is applied to the counter input and the external trigger of the oscilloscope is connected to the counter output. The trigger signal is then some submultiple of displayed signal which often results in a more stable trace. Different divisors can be easily keyed in as the input signal varies.


Simply press the key and the input frequency is divided by that number. The output frequency is symmetrical for odd and even divisors. Use it for simple frequency synthesis or as a keyboard controlled oscilloscope triggering unit.

The key encoder scans the key array which is set up so the key labeled " 16 " is in the matrix position which causes " 0 " to be encoded, the key labeled " 15 " causes " 1 " to be encoded, and so on until we find that the key position labeled " 1 " causes a binary " 15 ," or all ones, at the output of the encoder. The key arrangement converts a key position so that any number n from 1 to 16 is encoded as $16-\mathrm{n}$ at the encoder output. For example, if the key labeled 5 is pressed the binary number $1011=11$ appears at the encoder output. The MM74C922 key encoder scans the keys, detects, debounces, and encodes any entry. An internal register remembers the last key pressed and presents it to the Tri-State ${ }^{\circledR}$ outputs.

The input to the exclusive OR is a "zero" when the respective encoder output is a "zero" or when the feedback signal from the last counter stage forces the encoder outputs into Tri-State. When in Tri-State the pull down resistors feed a "zero" into the exclusive OR inputs.
When the output is an active "one," the clock signal from one flip-flop to the next is inverted by the exclusive ORs.

When the output is a "zero" or the encoder is in Tri-State, due to the feedback signal, the clock signal from one flipflop to the next is the same phase. For every $\mathrm{n} / 2$ input time period, the counter output and feedback change state. Whenever the feedback signal changes state, all flip-flops programmed with a "one" by the encoder change their phases; this effectively adds a clock pulse to that stage of the counter. The addition of clock pulses to the $2^{0}, 2^{1}, 2^{2}$ or $2^{3}$ stages allows us to divide by any number between 1 and 16 . Since the feedback changes state every $n / 2$ input time period, the output frequency is symmetrical for any divisor.
The unit operates over the standard CMOS supply range of 3 to 15 volts and has a typical upper frequency limit of one megacycle with a 10 volt supply.

## REFERENCE

1. M. V. Subba Rao, "Programmable Divide by $n$ Counter Provides Symmetrical Outputs for all Divisors," Electronic Design, no. 2, January 19, 1976, p. 82.

## INTRODUCTION

A new series of MM54C/MM74C buffers has been designed to interface systems operating at different voltage levels. In addition to performing voltage translation, the MM54C901/MM74C901 through MM54C904/MM74C904 hex buffers can drive two standard TTL loads at $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$. This is an increase of ten times over the two LpTTL loads that the standard MM54C/MM74C gate can drive. These new devices greatly increase the flexibility of the MM54C/MM74C family when interfacing to other logic systems.

## PMOS TO CMOS INTERFACE

Since most PMOS outputs normally can pull more negative than ground, the conventional CMOS input diode clamp from input to ground poses problems. The least of these is increased power consumption. Even though the output would be clamped at one diode drop ( -0.6 V ), all the current that flows comes from the PMOS negative supply. For TTL compatible PMOS this is -12 V . A PMOS output designed to drive one TTL load will typically sink 5 mA . The total power per TTL output is then $5 \mathrm{~mA} \times 12 \mathrm{~V}=60 \mathrm{~mW}$. The second problem is more serious. Currents of 5 mA or greater from a CMOS input clamp diode can cause four-layer diode action on the CMOS device. This, at best, will totally disrupt normal circuit operation and, at worst, will cause catastrophic failure.

To overcome this problem the MM74C903 and MM74C904 have been designed with a clamp diode from inputs to $\mathrm{V}_{\mathrm{Cc}}$ only. This single diode provides adequate static discharge protection and, at the same time, allows voltages of up to $\mathbf{- 1 7 V}$ on any input. Since there is essentially no current without the diode, both the high power dissipation and latch up problems are eliminated.

To demonstrate the above characteristics, Figures 1, 2, and 3 show typical TTL compatible PMOS circuits driving standard CMOS with two clamp diodes, TTT compatible PMOS driving MM74C903/MM74C904, and the TTL compatible. PMOS to CMOS system interface, respectively.

figure 1.


FIGURE 2.


FIGURE 3. PMOS to CMOS or TTL Interface

## CMOS TO CMOS OR TTL INTERFACE

When a CMOS system which is operating at $\mathrm{V}_{\mathrm{Cc}}=10 \mathrm{~V}$ must provide signals to a CMOS system whose $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$, a problem similar to that found in PMOS-to-CMOS interface occurs. That is, current would flow through the upper input diode of the device operating at the lower $\mathrm{V}_{\mathrm{cc}}$. This current could be in excess of 10 mA on a typical 74C device, as shown in Figure 4. Again, this will cause increased power as well as possible four layer diode action.


FIGURE 4,


FIGURE 5.
Using the MM74C901 or MM74C902 will eliminate this problem. This occurs simply because these parts are designed with the upper diode removed, as shown in

Figure 5. With this diode removed the current being sourced goes from about 10 mA to the leakage current of the reverse biased input diode.

Since the MM74C901 and MM74C902 are capable of driving two standard TTL loads with only normal input levels, the output can be used to directly drive TTL. With the example shown, the inputs of the MM74C901 are in excess of 5 V . Therefore, they can drive more than two TTL loads. In this case the device would drive four loads with $V_{I N}=10 \mathrm{~V}$. If the MM74C902 were used, the output drive would not increase with increased input voltage. This is because the gate of the output $n$-channel device is always being driven by an internal inverter whose output equals that of $V_{C C}$ of the device.

The example used was for systems of $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$ on one system and $V_{c c}=5 \mathrm{~V}$ on the second, but the MM74C901 and MM74C902 are capable of using any combination of supplies up to 15 V and greater than 3 V , as long as $\mathrm{V}_{\mathrm{CC} 1}$ is greater than or equal to $V_{\mathrm{CC}}$ and grounds are common. Figure 6 diagrams this configuration.


FIGURE 6. CMOS to TTL or CMOS at a Lower VCC

The inputs on these devices are adequately protected with the single diode, but, as with all MOS devices, normal care in handling should be observed.

$$
1
$$

## clos DATEBOOK

## ORDERING INFORMATION AND PACKAGES




## CMOS Packages

All dimensions expressed as $\frac{\text { inches }}{\text { millimeters }}$


20-Lead Hermetic Dual-In-Line Package (D)


28-Lead Hermetic Dual-In-Line Package (D)


－14－Lead Hermetic Dual－In－Line Package（J）
16－Lead Hermetic Dual－In－Line Package（J）


18－Lead Hermetic Dual－In－Line Package（J）



8-Lead Molded Mini Dual-In-Line Package (N)
14-Lead Molded Dual-In-Line Package (N)


16-Lead Molded Dual-In-Line Package (N)
18-Lead Molded Dual-In-Line Package (N)



28-Lead Moided Dual-In-Line Package (N)


40-Lead Molded Dual-In-Line Package (N)


National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051
(408) 737-5000

TWX: 910-339-9240

National Semiconductor GmbH
808 Fuerstenfeldbruck
Industriestrasse 10
West Germany
Telephone: (08141) 1371
Telex: 05-27649

## NS Electronics (HK) Ltd.

A Hing Yip Street, 11th Floor
Kwun Tong
Kowloon, Hong Kong
Telephone: 3-411241-8
Telex: 73866 NSE HK HX

NS International Inc.
Miyake Bldg. 6F, 1-9 Yotsuya
Shinjuku-Ku
Tokyo 160. Japan
Telephone: 03-355-3711
Telex: J28592

NS Electronics Pty. Ltd.
CNR-Stud Road \& Mountain Highway
Bayswater, Victoria 3153. Australia
Telephone: 03-729-6333
Telex: 32096


[^0]:    ＊No change in output from previous state．

[^1]:    ${ }^{\text {S }}$ Shitting left requires external connection of $O_{B}$ to $A, O_{C}$ to $B$, and $O_{D}$ to $C$. Serial data is entered at input $D$
    $H \times$ high level (steady state), $L$ - low level listeady state), $X=$ irrelevant (any input, including transitions)
    $t=$ transition from high to low level, $1=$ transition from low to high level
    $a_{A 0}, a_{B 0}, a_{C 0}, a_{D O}=$ the level of $a_{A}, a_{g}, a_{C}$, or $a_{D}$. respectively, before the indicated steady-state input conditions were established. $a_{A n}, a_{B n}, a_{C n}, a_{D_{n}}=$ the level of $a_{A}, a_{B}, a_{C}$, or $Q_{D}$, respectively, before the mostrecent I transition of the ctock

[^2]:    $H=$ High level
    $L$ = Low level
    $t=$ Transition from low to high
    = Transition from high to low
    $\Omega=$ One high level pulse
    $\underline{L}^{-}=$One low level pulse
    $X=$ Irrelevant

[^3]:    $H=$ High level
    $L=$ Low level
    $X=$ Don't care

[^4]:    X = represents TRI-STATE condition

[^5]:    X = Don't care

[^6]:    Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

[^7]:    *Output 5-6 only
    **Output 1-4 only
    X = Irrelevant

[^8]:    Note: Delays measured with input $\mathrm{t}_{\mathrm{t}}, \mathrm{t}_{\mathbf{4}} \leq \mathbf{2 0} \mathrm{ns}$.

[^9]:    $1=$ High level

[^10]:    $X=$ irrelevant
    $\mathrm{NC}=$ no change
    $=$ Low to High level transition
    $=$ High to Low level transition

[^11]:    OC - TRISTATE
    NC - No change
    X - Don't care
    $\Delta$ - Dominated by $S=1$ input
    $\Delta \Delta-$ Dominated by $R=0$ input

[^12]:    - Don't Care condition.

[^13]:    Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.
    Note 2: $V_{S S}=0 V$ unless otherwise specified.
    Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics application note, AN-90.

[^14]:    $H=$ High level
    $L$ = Low levei
    $X=$ Irrelevant
    $\uparrow=$ Transition from low to high level
    $\mathrm{NC}=$ No change

    * $=\overline{\mathrm{Q}}$ for CD40175B only

[^15]:    $\Gamma=$ positive transition
    $=$ negative transition
    $X=$ don't care

[^16]:    *Flip-flop toggles at the positive-going edge of clock (C) if Toggle Enable
    (TE) is at logical " 1 " and Preset Enable (PE) is at logical " 0 '"

[^17]:    Note 1: Devices should not be connected with power on.

[^18]:    *To be selected based on $\times$ tal used

[^19]:    FOUT $=\mathrm{F}_{\text {IN }} / \mathrm{N}$
    $1=$ High voltage level, $\mathrm{V}_{\mathrm{OH}}$
    $0=$ Low voltage level, $V_{\mathrm{OL}}$
    X = Don't care

[^20]:    *Assumes interfacing to low power TTL.
    **Assumes interfacing to CMOS.

