TNTEERRAKED CRRGUITS

 Netional $)^{-2}+2$Here is the new INTERFACE catalog from National Semiconductor Corporation. It contains complete information on all of National's INTERFACE products whether they be Linear, Digital, or MOS. It is the first such catalog in the industry and we hope it becomes your most important INTERFACE guide. For your convenience, two different Tables of Contents are provided. One lists the products by type-Line Driver, Sense Amplifier, etc.-and the other lists the products alphanumerically by part number. Product selection guides and a complete product applications section are also included.

Voltage Comparators
Level Translators/Buffers
Memory/Clock Drivers
Line Drivers/Receivers
Peripheral/Power Drivers

Display Drivers

Sense Amplifiers

Analog Switches

New Products

Applications

Physical Dimensions/Def. of Terms

Ordering Information

The ordering information for Natıonal devices covered in this catalog is as follows:

DEVICE FAMILY

AH - Analog Hybrid
AM - Analog Monolithic
DH - Digital Hybrids
DM - Digital Monolithic
LF - Linear FET
LH - Linear Hybrid
LM - Linear Monolithic
LX - Transducer
MH - MOS Hybrid
MM - MOS Monolithic

DEVICE NUMBER

3, 4 or 5 digit number.
Suffix Indicators:
A - Improved Electrical Specification
C - Reduced Temperature Range

PACKAGE

D - Glass/Metal Dual-In-Line Package
F - Flat Package ($0.25^{\prime \prime}$ wide)
G - TO-8 (12 lead) Metal Can
H - TO-5 (multi-lead) Metal Can
J - Glass/Glass Dual-In-Line Package
K - TO-3 Power Package
N - Molded Dual-In-Line Package
W - Flat Package ($0.275^{\prime \prime}$ wide)

Devices are listed in the table of contents alpha-numerically by device family (LH, LM, LX, etc.) and then by device number. With most of National's proprietary linear circuits, a 1-2-3 numbering system is employed. The 1 denotes a Military temperature range device $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$, the 2 denotes an Industrial temperature range device $\left(-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$), and the 3 denotes a Commercial temperature range device $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$), i.e. LM111/LM211/LM311.

Exceptions to this are some hybrid circuits which employ a " C " suffix to denote the commercial temperature range; and second-source products which follow the original manufacturers numbering system, i.e. LM710/ LM710C or LM1414/LM1514.

Interface circuits and sense amplifiers employ a 55 as the first two digits for the military temperature range part, and a 75 for the commercial part, i.e. LM5520/LM7520. Display drivers and line drivers and receivers employ a $78 / 88$ prefix. The 78 applies to the military part, and the 88 to the commercial part, i.e. DM7830/DM8830. And digital products employ a 54 as the first two digits for the military temperature range part, and a 74 for the commercial part, i.e. DM5406/DM7406.

Table of Contents

Edge Index by Product Family i
Ordering Information ii
Alpha-Numerical Index ix
PRODUCT GUIDES
Interface Cross Reference Guide xv
Voltage Comparator Guide xvi
Transmission Line Driver and Receiver Product Guide xvii
Peripheral Driver Guide xviii
LED Driver Selection Guide xix
Analog Switch Cross Reference Guide xx
VOLTAGE COMPARATORS - SECTION 1
LF111 Voltage Comparator 1-1
LF211 Voltage Comparator 1-1
LF311 Voltage Comparator 1-1
LH2111 Dual Voltage Comparator 1-7
LH2211 Dual Voltage Comparator $1-7$
LH2311 Dual Voltage Comparator 1-7
LM106 Voltage Comparator 1-9
LM111 Voltage Comparator $1-15$
LM119 High Speed Dual Comparator 1-25
LM139 Quad Comparator 1-29
LM139A Low Offset Voltage Quad Comparator $1-34$
LM160 High Speed Differential Comparator 1-37
LM161 High Speed Differential Comparator. 1-39
LM206 Voltage Comparator $1-9$
LM211 Voltage Comparator $1-15$
LM219 High Speed Dual Comparator $1-25$
LM239 Quad Comparator 1-29
LM239A Low Offset Voltage Quad Comparator $1-34$
LM260 High Speed Differential Comparator $1-37$
LM261 High Speed Differential Comparator $1-39$
LM306 Voltage Comparator 1-12
LM311 Voltage Comparator $1-20$
LM319 High Speed Dual Comparator 1-27
LM339 Quad Comparator $1-29$
LM339A Low Offset Voltage Quad Comparator $1-34$
LM360 High Speed Differential Comparator $1-37$
LM361 High Speed Differential Comparator 1-39
LM529 High Speed Differential Comparator $1-39$
LM710 Voltage Comparator 1-41
LM710C Voltage Comparator 1-44
LM711 Dual Comparator $1-47$
LM711C Dual Comparator 1-50
LM760 High Speed Differential Voltage Comparator 1-37
LM1414 Dual Differential Voltage Comparator 1-53
LM1514 Dual Differential Voltage Comparator 1-53
LEVEL TRANSLATORS/BUFFERS - SECTION 2DH0034 High Speed Dual Level Translator2-1
DM5406 Hex Inverter Buffer/Driver 2-4
DM5407 Hex Buffer/Driver 2-6
DM5416 Hex Inverter Buffer/Driver 2-4
LEVEL TRANSLATORS/BUFFERS - SECTION 2 (CONTINUED)
DM5417 Hex Buffer/Driver 2-6
DM5426 Quad 2-Input TTL-MOS Interface Gate $2-8$
DM7406 Hex Inverter Buffer/Driver 2-4
DM7407 Hex Buffer/Driver 2-6
DM7416 Hex Inverter Buffer/Driver 2-4
DM7417 Hex Buffer/Driver 2-6
DM7426 Quad 2-Input TTL-MOS Interface Gate $2-8$
DM7800 Dual Voltage Translator 2-10
DM7802 High Speed MOS to TTL Level Converter 7-1
DM7806 High Speed MOS to TTL Level Converter 7-1
DM7810 Quad 2-Input TTL-MOS Interface Gate 2-13
DM7811 Quad 2-Input TTL-MOS Interface Gate 2-13
DM7812 TTL-MOS Hex Inverter 2-13
DM7819 Quad 2-Input TTL-MOS AND Gate 2.18
DM8800 Dual Voltage Translator 2-10
DM8802 High Speed MOS to TTL Level Converter 7-1
DM8806 High Speed MOS to TTL Level Converter 7.1
DM8810 Quad 2-Input TTL-MOS Interface Gate 2.13
DM8811 Quad 2-Input TTL-MOS Interface Gate 2-13
DM8812 TTL-MOS Hex Inverter 2-13
DM88L12 TTL-MOS Hex Inverter/Interface Gate 2-16
DM8819 Quad 2-Input TTL-MOS AND Gate 2-18
MEMORY/CLOCK DRIVERS - SECTION 3
DH3467C Quad PNP Core Driver 3-1
DH3725C Quad NPN Core Driver 3-3
LM55325 Memory Driver 3-11
LM75324 Memory Driver with Decode Inputs 3-5
LM75325 Memory Driver 3-11
MH0007 DC Coupled MOS Clock Driver 3-18
MH0009 DC Coupled Two Phase MOS Clock Driver 3-20
MH0012 High Speed MOS Clock Driver 3-22
MH0013 Two Phase MOS Clock Driver 3-24
MH0025 Two Phase MOS Clock Driver 3-28
MH0026 5 MHz Two Phase MOS Clock Driver 3-31
MH7803 Two Phase Oscillator/Clock Driver 3-40
MH7807 Oscillator/Clock Driver 9.7
MH8803 Two Phase Oscillator/Clock Driver $3-40$
MH8804 Quad MOS Memory Driver 9-6
MH8805 Dual MOS Memory Driver 9-6
MH8807 Oscillator/Clock Driver 9.7
MH8808 Dual High Speed MOS Clock Driver 3-44
LINE DRIVERS/RECEIVERS - SECTION 4
DM7820 Dual Line Receiver 4-1
DM7820A Dual Line Receiver 4.4
DM7822 Dual Line Receiver 4.8
DM7830 Dual Differential Line Driver 4-11
DM7831 TRI-STATE ${ }^{\circledR}$ Line Driver 4-14
DM7832 TRI-STATE ${ }^{\circledR}$ Line Driver. 4-14
DM7833 Quad TRI-STATE ${ }^{\circledR}$ Transceiver 9-1
DM7834 Quad TRI-STATE ${ }^{\circledR}$ Transceiver 9-1
DM7835 Quad TRI-STATE ${ }^{\circledR}$ Transceiver 9-1
DM7836 Quad NOR Unified Bus Receiver 4-19
DM7837 Hex Unified Bus Receiver 4-21
DM7838 Quad Unified Bus Transceiver 4-23
DM7839 Quad TRI-STATE ${ }^{\circledR}$ Transceiver. 9-1
DM8820 Dual Line Receiver 4-1
DM8820A Dual Line Receiver 4-4
DM8822 Dual Line Receiver 4-8
LINE DRIVERS/RECEIVERS - SECTION 4 (CONTINUED)
DM8830 Dual Differential Line Driver 4-11
DM8831 TRI-STATE ${ }^{\circledR}$ Line Driver 4-14
DM8832 TRI-STATE ${ }^{\circledR}$ Line Driver 4-14
DM8833 Quad TRI-STATE ${ }^{\circledR}$ Transceivers 9-1
DM8834 Quad TRI-STATE ${ }^{\circledR}$ Transceivers 9-1
DM8835 Quad TRI-STATE ${ }^{\circledR}$ Transceivers 9-1
DM8836 Quad NOR Unified Bus Receiver 4-19
DM8837 Hex Unified Bus Receiver 4-21
DM8838 Quad Unified Bus Transceiver $4-23$
DM8839 Quad TRI-STATE ${ }^{\circledR}$ Transceiver 9-1
LM163 Dual TRI-STATE ${ }^{\circledR}$ Line Receiver 4-30
LM363 Dual TRI-STATE ${ }^{\circledR}$ Line Receiver $4-30$
LM363A Dual TRI-STATE ${ }^{\circledR}$ MOS Sense Amplifier 4-30
LM1488 Quad Line Driver $4-25$
LM1489 Quad Line Receiver 4-28
LM1489A Quad Line Receiver 4-28
LM55107A Dual Line Receiver $4-30$
LM55108A Dual Line Receiver $4-30$
LM55109 Dual Line Driver $4-37$
LM55110 Dual Line Driver $4-37$
LM55121 Dual Line Driver $4-40$
LM55122 Triple Line Receiver 4-42
LM55150 Triple Line Receiver $9-4$
LM55154 Triple Line Receiver 9-4
LM75107A Dual Line Receiver 4-30
LM75108A Dual Line Receiver $4-30$
LM75109 Dual Line Driver 4-37
LM75110 Dual Line Driver 4-37
LM75121 Dual Line Driver $4-40$
LM75122 Triple Line Receiver 4-42
LM75123 Dual Line Driver $4-45$
LM75124 Triple Line Receiver 4-47
LM75150 Dual Line Driver 9-4
LM75154 Triple Line Receiver $9-4$
LM75207 Dual Line Receiver 4.30
LM75208 Dual Line Receiver $4-30$
PERIPHERAL/POWER DRIVERS - SECTION 5
DH0006 Current Driver 5-1
DH0008 High Voltage High Current Driver 5-4
DH0011 High Voltage High Current Driver $5-7$
DH0016 High Voltage High Current Driver 5-10
DH0017 High Voltage High Current Driver 5-10
DH0018 High Voltage High Current Driver 5-10
DH0028 Hammer Driver 5-13
DH0035 PIN Díode Switch Driver 5-15
LM350 Dual Peripheral Driver 5-53
LM351 Dual Peripheral Driver 5-25
LM3611 Dual Peripheral Driver 5-17
LM3612 Dual Peripheral Driver $5-17$
LM3613 Dual Peripheral Driver 5-17
LM3614 Dual Peripheral Driver 5-17
LM55325 Memory Driver 3-11
LM75324 Memory Driver with Decode Inputs 3-5
LM75325 Memory Driver 3-11
LM75450 Dual Peripheral Driver 5-23
LM75451 Dual Peripheral Driver 5-25
LM75452 Dual Peripheral Driver 5-25
LM75453 Dual Peripheral Driver 5-25
LM75454 Dual Peripheral Driver 5-27
DISPLAY DRIVERS - SECTION 6
DM5441A BCD to Decimal Decoder/Nixie ${ }^{\text {TM }}$ Driver 6-1
DM5445 BCD to Decimal Decoder/Driver 6-3
DM5446A BCD to 7-Segment Decoder/Driver 6-5
DM5447A BCD to 7-Segment Decoder/Driver 6-5
DM5448 BCD to 7-Segment Decoder/Driver 6-5
DM54141 BCD to Decimal Decoder/Driver 6-10
DM54145 BCD to Decimal Decoder/Driver 6-3
DM7441A BCD to Decimal Decoder/Nixie ${ }^{\text {TM }}$ Driver 6-1
DM7445 BCD to Decimal Decoder/Driver 6-3
DM7446A BCD to 7-Segment Decoder/Driver 6-5
DM7447A BCD to 7-Segment Decoder/Driver 6-5
DM7448 BCD to 7-Segment Decoder/Driver 6-5
DM74141 BCD to Decimal Decoder/Driver 6-10
DM74145 BCD to Decimal Decoder/Driver 6-3
DM75491 MOS-to-LED Quad Segment Driver 6-12
DM75492 MOS-to-LED Hex Digit Driver 6-12
DM75493 Quad LED Segment Driver 6-15
DM75494 Hex Digit Driver 6-17
DM7856 BCD to 7-Segment LED Driver 6-19
DM7858 BCD to 7-Segment LED Driver 6-19
DM7880 High Voltage 7-Segment Decoder/Driver 6-30
DM7887 8-Digit High Voltage Anode Driver 6-37
DM7889 8-Digit High Voltage Cathode Driver 6-37
DM7897 8-Digit High Voltage Anode Driver 6-37
DM8856 BCD to 7-Segment LED Driver 6-19
DM8857 BCD to 7-Segment LED Driver 6-19
DM8858 BCD to 7-Segment LED Driver 6-19
DM8859 TLL Compatible Hex LED Driver 6-23
DM8861 MOS to LED 5-Segment Driver. 6-25
DM8864 LED Cathode Driver 6-28
DM8865 LED Cathode Driver 6-28
DM8866 LED Cathode Driver 6-28
DM8869 TTL Compatible Hex LED Driver 6-23
DM8880 High Voltage 7-Segment Decorder/Driver 6-30
DM8884A High Voltage Cathode Decorder/Driver 6-33
DM8885 MOS to High Voltage Cathode Buffer 6-35
DM8887 8-Digit High Voltage Anode Driver 6-37
DM8889 8-Digit High Voltage Cathode Driver 6.37
DM8897 8-Digit High Voltage Anode Driver 6-37
SENSE AMPLIFIERS - SECTION 7
DM7802 Dual High Speed MOS Sense Amplifier 7-1
DM7806 Dual High Speed MOS Sense Amplifier 7-1
DM8802 Dual High Speed MOS Sense Amplifier $7-1$
DM8806 Dual High Speed MOS Sense Amplifier 7-1
LM 163 Dual TRI-STATE ${ }^{\circledR}$ MOS Sense Amplifier 4-30
LM165 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM166 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM167 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM168 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM363 Dual TRI-STATE ${ }^{\circledR}$ MOS Sense Amplifier $4-30$
LM363A Dual TRI-STATE ${ }^{\circledR}$ MOS Sense Amplifier $4-30$
LM365 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM366 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM367 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM368 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM3625 Dual High Speed MOS Sense Amplifier $9-4$
LM5520 Dual Core Memory Sense Amplifier 7.5
LM5521 Dual Core Memory Sense Amplifier 7-5
LM5522 Dual Core Memory Sense Amplifier $7-5$
SENSE AMPLIFIERS - SECTION 7 (CONTINUED)
LM5523 Dual Core Memory Sense Amplifier 7-5
LM5524 Dual Core Memory Sense Amplifier 7-5
LM5525 Dual Core Memory Sense Amplifier 7-5
LM5528 Dual Core Memory Sense Amplifier 7-5
LM5529 Dual Core Memory Sense Amplifier 7-5
LM5534 Dual Core Memory Sense Amplifier 7.5
LM5535 Dual Core Memory Sense Amplifier 7.5
LM5538 Dual Core Memory Sense Amplifier 7-5
LM5539 Dual Core Memory Sense Amplifier 7-5
LM55107A Dual MOS Sense Amplifier 4-30
LM55108A Dual MOS Sense Amplifier 4-30
LM7520 Dual Core Memory Sense Amplifier 7-5
LM7521 Dual Core Memory Sense Amplifier 7-5
LM7522 Dual Core Memory Sense Amplifier $7-5$
LM7523 Dual Core Memory Sense Amplifier 7.5
LM7524 Dual Core Memory Sense Amplifier 7-5
LM7525 Dual Core Memory Sense Amplifier 7-5
LM7528 Dual Core Memory Sense Amplifier 7-5
LM7529 Dual Core Memory Sense Amplifier 7-5
LM7534 Dual Core Memory Sense Amplifier $7-5$
LM7535 Dual Core Memory Sense Amplifier 7-5
LM7538 Dual Core Memory Sense Amplifier 7-5
LM7539 Dual Core Memory Sense Amplifier $7-5$
LM75107A Dual MOS Sense Amplifier 4-30
LM75108A Dual MOS Sense Amplifier 4-30
LM75207 Dual MOS Sense Amplifier 4-30
LM75208 Dual MOS Sense Amplifier 4-30
ANALOG SWITCHES - SECTION 8
AH0014 DPDT MOS Analog Switch 8-1
AH0015 Quad SPST MOS Analog Switch 8-1
AH0019 Dual DPST-TTL/DTL Compatible MOS Analog Switch 8-1
AH0126 Analog Switch 8-4
AH0129 Analog Switch 8-4
AH0133 Analog Switch 8-4
AH0134 Analog Switch 8-4
AH0139 Analog Switch 8-4
AH0140 Analog Switch 8-4
AH0141 Analog Switch 8-4
AH0142 Analog Switch 8-4
AH0143 Analog Switch 8-4
AH0144 Analog Switch 8-4
AH0145 Analog Switch 8-4
AH0146 Analog Switch 8-4
AH0151 Analog Switch 8-4
AH0152 Analog Switch 8-4
AH0153 Analog Switch 8-4
AH0154 Analog Switch 8-4
AH0161 Analog Switch 8-4
AH0162 Analog Switch 8-4
AH0163 Analog Switch 8-4
AH0164 Analog Switch 8-4
AH2114 DPST Analog Switch 8-11
AH5009 Low Cost Analog Current Switch 8-13
AM1000 Silicon N-Channel High Speed Analog Switch 8-20
AM1001 Silicon N-Channel High Speed Analog Switch 8-20
AM1002 Silicon N-Channel High Speed Analog Switch 8-20
AM2009 6-Channel MOS Multiplex Switch 8-22
AM3705 8-Channel MOS Analog Multiplexer 8-24
LF1650 Quad JFET Analog Switch 8-27
ANALOG SWITCHES - SECTION 8 (CONTINUED)
LF2650 Quad JFET Analog Switch 8-27
LF3650 Quad JFET Analog Switch 8-27
MM450 MOS Analog Switch 8-31
MM451 MOS Analog Switch 8-31
MM452 MOS Analog Switch 8-31
MM454 4-Channel Commutator $8-35$
MM455 MOS Analog Switch 8-31
MM4504 6-Channel MOS Multiplex Switch 8-22
MM550 MOS Analog Switch 8-31
MM551 MOS Analog Switch $8-31$
MM552 MOS Analog Switch $8-31$
MM554 4-Channel Commutator 8.35
MM555 MOS Analog Switch 8-31
MM5504 6-Channel MOS Multiplex Switch 8-22
NEW PRODUCTS - SECTION 9
APPLICATIONS - SECTION 10
AN-22 Integrated Circuits for Digital Data Transmission 10.1
AN-33 Analog-Signal Commutation. $10-17$
AN-38 Applications of MOS Analog Switches 10-23
AN-49 Pin Diode Drivers $10-31$
AN-53 High Speed Analog Switches 10-37
AN-76 Applying Modern Clock Drivers to MOS Memories 10-43
AN-83 Data Bus and Differential Line Drivers and Receivers 10-55
AN-84 Driving 7-Segment Gas Discharge Display Tubes with NS Circuits 10-67
AN-87 Comparing the High Speed Comparators 10-71
AN-99 Driving 7-Segment LED Displays with NS Circuits 10-77
AN-108 Transmission Line Characteristics 10-88
PHYSICAL DIMENSIONS/DEFINITIONS OF TERMS - SECTION 11

Alpha-Numerical Index

AH0014 DPDT MOS Analog Switch 8-1
AH0015 Quad SPST MOS Analog Switch 8-1
AH0019 Dual DPST-TTL/DTL Compatible MOS Analog Switch 8-1
AH0126 Analog Switch 8-4
AH0129 Analog Switch 8-4
AH0133 Analog Switch 8-4
AH0134 Analog Switch 8-4
AH0139 Analog Switch 8-4
AH0140 Analog Switch 8-4
AH0141 Analog Switch 8-4
AH0142 Analog Switch $8-4$
AH0143 Analog Switch 8-4
AH0144 Analog Switch 8-4
AH0145 Analog Switch 8-4
AH0146 Analog Switch 8-4
AH0151 Analog Switch 8-4
AH0152 Analog Switch 8-4
AH0153 Analog Switch $8-4$
AH0154 Analog Switch 8-4
AH0161 Analog Switch 8-4
AH0162 Analog Switch 8-4
AH0163 Analog Switch 8-4
AH0164 Analog Switch 8-4
AH2114 DPST Analog Switch 8-11
AH5009 Low Cost Analog Current Switch 8-13
AM1000 Silicon N-Channel High Speed Analog Switch 8-20
AM1001 Silicon N-Channel High Speed Analog Switch 8-20
AM1002 Silicon N-Channel High Speed Analog Switch 8-20
AM2009 6-Channel MOS Multiplex Switch 8-22
AM3705 8-Channel MOS Analog Multiplexer 8-24
DH0006 Current Driver 5-1
DH0008 High Voltage High Current Driver 5-9
DH0011 High Voltage High Current Driver 5-7
DH0016 High Voltage High Current Driver 5-10
DH0017 High Voltage High Current Driver 5-10
DH0018 High Voltage High Current Driver 5-10
DH0028 Hammer Driver 5-13
DH0034 High Speed Dual Level Translator 5-13
DH0035 PIN Diode Switch Driver 5-15
DH3467C Quad PNP Core Driver 3-1
DH3725C Quad NPN Core Driver 3-3
DM5406 Hex Inverter Buffer/Driver 2-4
DM5407 Hex Buffer/Driver 2-6
DM5416 Hex Inverter Buffer/Driver 2-4
DM5417 Hex Buffer/Driver 2-6
DM5426 Quad 2-Input TTL-MOS Interface Gate 2-8
DM5441A BCD to Decimal Decoder/Nixie ${ }^{\text {TM }}$ Driver 6-1
DM5445 BCD to Decimal Decoder/Driver 6-3
DM5446A BCD to 7-Segment Decoder/Driver 6-5
DM5447A BCD to 7-Segment Decoder/Driver 6-5
DM5448 BCD to 7-Segment Decoder/Driver 6-5
DM54141 BCD to Decimal Decoder/Driver 6-10
DM54145 BCD to Decimal Decoder/Driver 6-3
DM7406 Hex Inverter Buffer/Driver 2-4
DM7407 Hex Buffer/Driver 2-6
DM7416 Hex Inverter Buffer/Driver 2-4
DM7417 Hex Buffer/Driver 2-6
DM7426 Quad 2-Input TTL-MOS Interface Gate 2-8
DM7441A BCD to Decimal Decoder/Nixie ${ }^{\text {TM }}$ Driver 6-1
DM7445 B'CD to Decimal Decoder/Driver 6.3
DM7446A BCD to 7-Segment Decoder/Driver 6-5
DM7447A BCD to 7-Segment Decoder/Driver 6-5
DM7448 BCD to 7-Segment Decoder/Driver 6-5
DM74141 BCD to Decimal Decoder/Driver 6-10
DM74145 BCD to Decimal Decoder/Driver 6-3
DM75491 MOS-to-LED Quad Segment Driver 6-12
DM75492 MOS-to-LED Hex Digit Driver 6-12
DM75493 Quad LED Segment Driver 6-15
DM75494 Hex Digit Driver 6-17
DM7800 Dual Voltage Translator 2-10
DM7802 Dual High Speed MOS Sense Amplifier 7-1
DM7806 Dual High Speed MOS Sense Amplifier 7-1
DM7810 Quad 2-Input TTL-MOS Interface Gate 2-13
DM7811 Quad 2-Input TTL-MOS Interface Gate 2-13
DM7812 TTL-MOS Hex Inverter 2-13
DM7819 Quad 2-Input TTL-MOS AND Gate 2-18
DM7820 Dual Line Receiver 4-1
DM7820A Dual Line Receiver 4-4
DM7822 Dual Line Receiver 4-8
DM7830 Dual Differential Line Driver 4-11
DM7831 TRI-STATE ${ }^{\circledR}$ Line Driver 4-14
DM7832 TRI-STATE ${ }^{\circledR}$ Line Driver 4-14
DM7833 Quad TRI-STATE ${ }^{\circledR}$ Transceiver 9-1
DM7834 Quad TRI-STATE ${ }^{\circledR}$ Transceiver 9-1
DM7835 Quad TRI-STATE ${ }^{\circledR}$ Transceiver 9-1
DM7836 Quad NOR Unified Bus Reciever 4-19
DM7837 Hex Unified Bus Receiver 4-21
DM7838 Quad Unified Bus Transceiver 4-23
DM7839 Quad TRI-STATE ${ }^{\circledR}$ Transceiver 9-1
DM7856 BCD to 7-Segment LED Driver 6-19
DM7858 BCD to 7-Segment LED Driver 6-19
DM7880 High Voltage 7-Segment Decoder/Driver 6-30
DM7887 8-Digit High Voltage Anode Driver 6-37
DM7889 8-Digit High Voltage Cathode Driver 6-37
DM7897 8-Digit High Voltage Anode Driver 6-37
DM8800 High Voltage 7-Segment Decoder/Driver 2-10
DM8802 Dual High Speed MOS Sense Amplifier 7-1
DM8806 Dual High Speed MOS Sense Amplifier 7-1
DM8810 Quad 2-Input TTL-MOS Interface Gate 2-13
DM8811 Quad 2-Input TTL-MOS Interface Gate 2-13
DM8812 TTL-MOS Hex Inverter 2-13
DM88L12 TTL-MOS Hex Inverter/Interface Gate 2-16
DM8819 Quad 2-Input TTL-MOS AND Gate 2-18
DM8820 Dual Line Receiver 4-1
DM8820A Dual Line Receiver 4.4
DM8822 Dual Line Receiver 4.8
DM8830 Dual Differential Line Driver 4-11
DM8831 TRI-STATE ${ }^{\circledR}$ Line Driver 4-14
DM8832 TRI-STATE ${ }^{\circledR}$ Line Driver 4-14
DM8833 Quad TRI-STATE ${ }^{\circledR}$ Transceiver $9-1$
DM8834 Quad TRI-STATE ${ }^{\circledR}$ Transceiver 9-1
DM8835 Quad TRI-STATE ${ }^{\circledR}$ Transceiver 9-1
DM8836 Quad NOR Unified Bus Receiver 4-19
DM8837 Hex Unified Bus Reciever. 4-21
DM8838 Quad Unified Bus Transceiver 4-23
DM8839 Quad TRI-STATE ${ }^{\circledR}$ Transceiver 9-1
DM8856 BCD to 7-Segment LED Driver 6-19
DM8857 BCD to 7-Segment LED Driver 6-19
DM8858 BCD to 7-Segment LED Driver 6-19
DM8859 TTL Compatible Hex LED Driver 6-23
DM8861 MOS to LED 5-Segment Driver 6-25
DM8864 9-Digit LED Driver 6-28
DM8865 LED Cathode Driver 6-28
DM8866 7-Digit LED Driver 6-28
DM8869 TTL Compatible Hex LED Driver 6-23
DM8880 High Voltage 7-Segment Decoder/Driver 6-30
DM8884A High Voltage Cathode Decoder/Driver 6-33
DM8885 MOS to High Voltage Cathode Buffer. 6-35
DM8887 8-Digit High Voltage Anode Driver 6-37
DM8889 8-Digit High Voltage Cathode Driver $6-37$
DM89897 8-Digit High Voltage Anode Driver 6-37
LF111 Voltage Comparator 1-1
LF211 Voltage Comparator 1-1
LF311 Voltage Comparator 1-1
LF1650 Quad JFET Analog Switch 8-27
LF2650 Quad JFET Analog Switch 8-27
LF3650 Quad JFET Analog Switch 8-27
LH2111 Dual Voltage Comparator 1-7
LH2211 Dual Voltage Comparator 1-7
LH2311 Dual Voltage Comparator 1-7
LM106 Voltage Comparator $1-9$
LM111 Voltage Comparator $1-25$
LM119 High Speed Dual Comparator 1-25
LM139 Quad Comparator 4-30
LM139A Low Offset Voltage Quad Comparator $1-34$
LM160 High Speed Dıfferential Comparator 1-37
LM161 Hıgh Speed Differential Comparator 1-39
LM 163 Dual TRI-STATE ${ }^{\circledR}$ Line Receiver $1-39$
LM165 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM166 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM167 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM168 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM206 Voltage Comparator $1-9$
LM211 Voltage Comparator $1-15$
LM219 High Speed Dual Comparator $1-25$
LM239 Quad Comparator 1-29
LM239A Low Offset Voltage Quad Comparator 1-34
LM260 High Speed Differential Comparator 1.37
LM261 High Speed Differential Comparator. 1-39
LM265 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM266 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM267 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM268 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM306 Voltage Comparator $1-39$
LM311 Voltage Comparator 1-20
LM319 High Speed Dual Comparator 1-27
LM339 Quad Comparator 1-29
LM339A Low Offset Voltage Quad Comparator 1-34
LM350 Dual Peripheral Driver 5-21
LM351 Dual Peripheral Driver 5-23
LM360 High Speed Differential Comparator. 1.37
LM361 High Speed Differential Comparator. 1-39
LM363 Dual TRI-STATE ${ }^{\circledR}$ Line Receiver $4-30$
LM363A Dual TRI-STATE ${ }^{\circledR}$ MOS Sense Amplifier 4-30
LM365 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM366 MOS Sense Amplifier (MOS to TTL Converter) $9 \cdot 3$
LM367 MOS Sense Amplıfier (MOS to TTL Converter) 9-3
LM368 MOS Sense Amplifier (MOS to TTL Converter) 9-3
LM529 High Speed Differential Comparator 1.39
LM710 Voltage Comparator 1.41
LM710C Voltage Comparator 1.44
LM711 Dual Comparator $1-47$
LM711C Dual Comparator $1-50$
LM760 High Speed Differential Voltage Comparator $1-37$
LM1414 Dual Differential Voltage Comparator $1-53$
LM1488 Quad Line Driver 4-25
LM1489 Quad Line Receiver 4-28
LM1489A Quad Line Receiver 4-28
LM1514 DualDifferential Voltage Comparator 1.53
LM3611 Dual Peripheral Driver 5-16
LM3612 Dual Peripheral Driver 5-16
LM3613 Dual Peripheral Driver 5-16
LM3614 Dual Peripheral Driver 5-16
LM3625 Dual High Speed MOS Sense Amplifier 9-4
LM5520 Dual Core Memory Sense Amplifier 7.5
LM5521 Dual Core Memory Sense Amplifier 7.5
LM5522 Dual Core Memory Sense Amplifier 7.5
LM5523 Dual Core Memory Sense Amplifier 7-5
LM5524 Dual Core Memory Sense Amplifier 7.5
LM5525 Dual Core Memory Sense Amplifier 7-5
LM5528 Dual Core Memory Sense Amplifier $7-5$
LM5529 Dual Core Memory Sense Amplifier $7-5$
LM5534 Dual Core Memory Sense Amplifier 7.5
LM5535 Dual Core Memory Sense Amplifier 7.5
LM5538 Dual Core Memory Sense Amplifier 7-5
LM5539 Dual Core Memory Sense Amplifier 7.5
LM55107A Dual Line Receiver 4-30
LM55108A Dual Line Receiver $4-30$
LM55109 Dual Line Driver $4-37$
LM55110 Dual Line Driver $4-37$
LM55121 Dual Line Driver 4-40
LM55122 Triple Line Receiver 4-42
LM55325 Memory Driver 3-11
LM7520 Dual Core Memory Sense Amplifier 7-5
LM7521 Dual Core Memory Sense Amplifier 7.5
LM7522 Dual Core Memory Sense Amplifier $7-5$
LM7523 Dual Core Memory Sense Amplifier 7-5
LM7524 Dual Core Memory Sense Amplifier 7-5
LM7525 Dual Core Memory Sense Amplifier 7-5
LM7528 Dual Core Memory Sense Amplifier $7-5$
LM7529 Dual Core Memory Sense Amplifier 7-5
LM7534 Dual Core Memory Sense Amplifier 7-5
LM7535 Dual Core Memory Sense Amplifier 7.5
LM7538 Dual Core Memory Sense Amplifier 7.5
LM7539 Dual Core Memory Sense Amplifier 7.5
LM75107A Dual Line Receiver $4-30$
LM75108A Dual Line Receiver $4-30$
LM75109 Dual Line Driver 4-37
LM75110 Dual Line Driver 4-37
LM75121 Dual Line Driver $4-40$
LM75122 Triple Line Receiver 4-42
LM75123 Dual Line Driver 4-45
LM75124 Triple Line Receiver 4-47
LM75150 Dual Line Driver 9-4
LM75154 Quad Line Receiver 9-4
LM75207 Dual MOS Sense Amplifier $4-30$
LM75208 Dual MOS Sense Amplifier $4-30$
LM75324 Memory Driver with Decode Inputs 3-5
LM75325 Memory Driver 3-11
LM75450 Dual Peripheral Driver 5-21
LM75451 Dual Peripheral Driver 5-23
LM75452 Dual Peripheral Driver 5-23
LM75453 Dual Peripheral Driver 5-23
LM75454 Dual Peripheral Driver 5-26
MH0007 DC Coupled MOS Clock Driver 3-18
MH0009 DC Coupled Two Phase MOS Clock Driver 3-20
MH0012 High Speed MOS Clock Driver 3-22
MH0013 Two Phase MOS Clock Driver 3-24
MH0025 Two Phase MOS Clock Driver 3-28
MH0026 5 MHz Two Phase MOS Clock Driver 3-31
MH7803 Two Phase Oscillator/Clock Driver 3-40
MH7807 Oscillator/Clock Driver 9.7
MH8803 Two Phase Oscillator/Clock Driver $3-40$
MH8804 Quad MOS Memory Driver 9-6
MH8805 Dual MOS Memory Driver 9-6
MH8807 Oscillator/Clock Driver. 9-7
MH8808 Dual High Speed MOS Clock Driver 3.44
MM450 MOS Analog Switch 8.31
MM451 MOS Analog Switch $8-31$
MM452 MOS Analog Switch 8-31
MM454 4-Channel Commutator $8-35$
MM455 MOS Analog Switch 8-31
MM4504 6-Channel MOS Multiplex Switch 8-22
MM550 MOS Analog Switch 8.31
MM551 MOS Analog Switch 8-31
MM552 MOS Analog Switch 8-31
MM554 4-Channel Commutator 8-35
MM555 MOS Analog Switch 8-31
MM5504 6-Channel MOS Multıplex Switch $8-22$

Interface Cross Reference Guide

DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT	DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT	DEVICE NUMBER	NATIONAL PIN-FOR-PIN EQUIVALENT	NATIONAL FUNCTIONAL EQUIVALENT
Texas Instr			SN75154J	LM75154J		N8T13F	LM75121J	
SN5500F		LM5524J	SN75154N	LM75154N		N8T14B	LM75122N	
SN5524J	LM5524J		SN75182J	DM8820AJ		N8T14F	LM75122J	
SN5525J	LM5525J		SN75182N	DM8820AN		N8T23B	LM75123N	
SN7500F SN7501F		LM7524J LM7524J	SN75183J SN75183N	DM8830J		N8T24B N8T25B	LM75124N LM3625N	
SN7502F		LM7524J	SN75324J	LM75324 J		NE518A		LM306H
SN7520J	LM7520J		SN75324N	LM75324N		NE518G		LM306H
SN7520N	LM 7520 N		SN75325J	LM75325J		NE518K		LM306H
SN7521J SN7521N	LM7521J		SN75325N SN75450AN	LM 75325 N LM75450		NE526A		LM306H
SN7521N SN7522	LM7521N		SN75450AN SN75450N	LM75450N		NE526G NE526K		LM306H
SN7522N	LM7522N		SN75451AP	LM75451N		NE529A	LM361N	
SN7523J	LM7523J		SN75451P	LM75451N		NE529K	LM361H	
SN7523N	LM7523N		SN75452P	LM75452N		S5710T	LM 710 H	
SN7524J	LM7524J		SN75453P	LM75453N		S5711K	LM711H	
SN7524N SN7525J	LM7524N		SN75454P SN75491N	LM75454N		S5711T		LM711H
SN7525J SN7525N	LM7525J		SN75491N SN75492N	DM75491N DM		SE518A		LM106H
SN7528J	LM7528J		SN75207J	LM75207J		SE518K		LM106H
SN7528N	LM7528N		SN75207N	LM75207N		SE526A		LM106H
SN7529J	LM7529J		SN75208J	LM75208J		SE526G		LM106H
SN7529N	LM7529N		SN75208N	LM75208N		SE526K		LM106H
SN52710J SN52710L	LM710H	LM710H	Motorola			SE529K	LM161H	
SN52710N	LM7*	LM710H	MC1414L	LM1414J		Fairchild		
SN52710S		LM710H	MC1440F		LM7524」	U31962051X		DM7820D
SN52711J SN52711L		LM711H	${ }_{\text {MC1440 }}^{\text {MC1440 }}$		LM7524J	U31962059X		DM8820N
SN52711L	LM711H	LM711H	MC1440L		LM7524J	U31962151X U31962159		DM7830D
SN52711S		LM711H	MC1441L		LM7524J	U31962251x		DM78200
SN55107J	LM55107J		MC1488L	LM1488J		U31962259X		DM8820N
SN55108J	LM55108J		MC1489AL	LM1489AJ		U4L961451X		DM7830D
SN55109J	LM55109J		MC1489L	LM1489J		U4L961459X		DM8830D
SN55182J	DM7820AJ		MC1580L	LM1514	DM7831J	U4L961551X		DM 7820 D DM8820N
SN55183J	DM7830J		MC1582L		DM7830J	U5B7710312	LM710AH	
SN72710J		LM710CN	MC1583L		DM 7820 J	U5B7710393	LM710CH	
SN72710N	LM710CN		MC1710CF		LM710CH	U5F7711312	LM711H	
SN72710S		LM710CH	MC1710CG	LM710CH		U5F7734312		LM111H
SN72711J		LM711CN	MC1710CL		LM710CH	U5F7734393		LM311H
SN72711L SN72711	LM711CH		MC1710F $\mathrm{MC1710G}$	LM710H	LM710H	U6A7710312 U6A7710393	LM710CN	LM710AH
SN72720N	LM1414N		MC1710L		LM710H	U6A7711312		LM711H
SN72811S SN75100L		LM711CH DM8820D	MC1711CF		LM711CH	U6A7711393	LM711CN	
SN75107J	LM75107J		MC1711CL	LM711CH	LM711CH	U6A7750393		$\underset{\text { LM111H }}{\text { LM311H }}$
SN75107N SN75108J	LM75107N		MC1711F		LM711H	U6A7760312	LM160J	
SN75108J	LM75108J LM75108N		${ }_{\text {MC1711/ }}$	LM711H		U6A7760393	LM360J	
SN75109J	LM75109」		Mcilit		LM711H	U787524392	LM7524J LM7525J	
SN75109N SN75110J	LM75109N		Signetics			U7B7761391		LM7524J
SN75110J SN7510N	LM75110J LM75110N	.	DM8880N	DM8880N		U787761392	LM7524J	
SN75121J	LM75121		N5710A N5710T	LM710CN LM710CH		U787761393 U7B961451X	LM7525J	DM7830D
SN75121N SN75122	LM75121N		N5711A	LM711CN		U78961459X		DM8830N
SN75122N	LM75122J		N5711K	LM711CH		U78961551X		DM7820D
SN75123J	LM75123J		N7520B N7521B	LM7520N		U78961559X		DM8820N
SN75123N	LM75123N		N7522	LM 7522 N		U7B961659X		LM1488J
SN75124J SN75124N	LM75124J LM 75124 N		N7523B	LM7523N		U78961751X		LM1489AJ
SN75150J	LM75150J		N7524B N7525B	LM7524N		U7B961759X U7B964451X		LM1489AJ
SN75150N	LM75150N		N8T13B	LM75121N				DH0011H

Voltage Comparator Guide

Device	Temperature Range*	DTL/TTL	Supply Voltage Typ (Volts) (Voits)	Input Bias Current $\left(+25^{\circ} \mathrm{C}\right)$ Max ($\mu \mathrm{A}$)	Input Offset Current $\left(+25^{\circ} \mathrm{C}\right)$ Max ($\mu \mathrm{A}$)	Input Offset Voltage (+25 C) Max (mV)	Response Timet Typ (ns)	$\begin{aligned} & \text { Voltage } \\ & \text { Gann } \\ & \text { Typ } \end{aligned}$	Package Type	Comments
LM106	Military	10	$\mathrm{V}^{+}=+12$	20	3	2	40 max	- 40 k	T0.5FP	Single comparator with strobe, high speed and sensitivity, large fanout
LM206	Industrial	10	$\mathrm{v}^{-}=-3$	20	3	2	40 max	40k	TO-5 F P	
LM306	Commercial	10	To- 12	25	5	5	40 max	40k	TO-5 FP	
$\begin{aligned} & \text { LM111 (Note 1) } \\ & \text { LH2111 (Not } \end{aligned}$	Military	5	± 15	1	04	7	200	200k	TO-5 DIP F P	Single, with strobe, will work from single supply, low bias current
$\begin{aligned} & \text { LM211 } \\ & \text { LH2211 (Note 1) } \end{aligned}$	Industral	5	To +5	1	04	7	200	200k	TO-5 DIP F P	
LM311 LH2311 (Note 1)	Commercial	5	And GND	25	06	2	200	200k	TO-5 DIP FP	
LM119	Military	2 (each side)	± 15	5	075	4	80	40k	TO-5 DIP FP	High speed dual comparator
LM219	Industrial	2 (each side)	To +5	5	075	4	80	40k	TO-5 DIP FP	
LM319	Commercial	2 (each side)	And GND	1	2	8	80	40k	TO.5 DIP	
LM139	Military	1	$\left[\begin{array}{ll} \pm 1\end{array}\right]$	1	025	5	$13 \mu \mathrm{~s}$	200 k	DIPFP	Quad comparator designed for single supply operation, input common mode range includes ground
LM239	Industrial	1	To ± 18	25	050	5	$13 \mu \mathrm{~s}$	200k	DIP	
LM339	Commercial	1	Or From	25	050	5	$13 \mu \mathrm{~s}$	200k	DIP	
LM139A	Military	1	+2	1	025	2	$13 \mu \mathrm{~s}$	200k	DIPFP	Low offset voltage Quad comparator with DTL/TTL logic levels.
LM239A	Industrial	1	To +36	25	050	2	$13 \mu \mathrm{~s}$	200k	DIP	
Lm339A	Commercial	1	[And GND	25	050	2	$13 \mu \mathrm{~s}$	200k	DIP	
LM160	Military	2	± 45	10	2	2	16	3 k	TO-5 DIP FP	Very high speed, outputs compatible with DTL/TTL logic levels
LM260	Industrial	2	To	10	2	2	16	3k	TO-5 DIP	
LM360	Commercial	2	± 65	15	4	4	16	3k	TO-5 DIP	
LM161	Military	2	± 5	10	2	2	12	3k	TO-5 DIP F P	Very high speed, with individual strobes, DTL/TTL compatible
LM261	Industrial	2	To ± 15	10	2	2	12	3k	TO-5 DIP	
LM361	Commercial	2	And +5	15	4	4	12	3 k	TO-5 DIP	
LM710	Military	1	$\mathrm{V}^{+}=+12$	20	3	2	40	1750	T0-5	Single, differentual in, single output
LM710C	Commercial	1	$\mathrm{v}^{-}=-6$	25	5	5	40	1500	TO-5 DIP	
LM711	Military	1	$\mathrm{V}^{+}=+12$	75	10	35	40	1500	TO-5	Dual differential, common output, individual strobes
LM711C	Commercial	1	$\mathrm{V}^{-}=-6$	100	15	5	40	1500	TO-5 DIP	
LM1514	Military	1	$\mathrm{v}^{+}=+14$	20	3	3	30	1250	DIP	Dual LM710 with separate strobes. individual outputs
LM1414	Commercial	1	$\mathrm{v}^{-}=-7$	25	5	4	30	1000	DIP	
		-Military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Industrial $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Commerctal $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			${ }^{\dagger}$ Response time is specified for 100 mV step input with 5 mV overdrive Note 1 Dual version of device					

Transmission Line Driver and Receiver Product Guide

DEVICE	DRIVER OR RECEIVER	COMMON MODE OR DIFFERENTIAL	input THRESHOLD	OUTPUT LEVELS	POWER SUPPLY	DESCRIPTION AND COMMENTS
DM7820/DM8820	Receiver	Differential	200 mV	TTL	+5.0	Dual $\pm 15 \mathrm{~V}$ Common Mode Range
DM7820A/DM8820A	Receiver	Differential	200 mV	TTL	+5.0	High Performance DM7820
DM7822/DM8822	Receiver	Differential/Common Mode	-2.0 to +20	TTL	+5.0	Dual EIA Standard RS232
DM7830/DM8830	Driver	Differential	TTL	TTL	+5.0	Dual
DM7831/DM8831	Driver	Differential/Common Mode	TTL	TTL	+5.0	TRI-STATE ${ }^{\circledR}$ DM7830
DM7832/DM8832	Driver	Differential/Common Mode	TTL	TTL	+5.0	DM7831 Without V CC Clamp Diodes
LM55107/LM75107	Receiver	Differential	25 mV	TTL	± 5.0	10 mV Threshold LM55107 Dual
LM55207/LM75207	Receiver	Differential	10 mV	TTL	± 5.0	10 mV Threshold LM55107
LM55108/LM75108	Receiver	Differential	25 mV	TTL	± 5.0	Open Collector LM55107
LM55208/LM75208	Receiver	Differential	10 mV	TTL	± 5.0	10 mV Threshold LM55108
LM163/LM363	Receiver	Differential	25 mV	TTL	± 5.0	TRI-STATE ${ }^{\circledR}$ LM55107
LM163A/LM363A	Receiver	Differential	10 mV	TTL	± 5.0	10 mV Threshold LM163
LM55109/LM75109	Driver	Differential	TTL	6.0 mA	± 5.0	Dual
LM55110/LM75110	Driver	Differential	TTL	12 mA	± 5.0	12 mA LM55109
LM55121/LM75121	Driver	Common Mode	TTL	TTL	+5.0	Dual 50Ω or Coax Driver
LM55122/LM75122	Receiver	Common Mode	0.8 to 2.0	TTL	+5.0	Triple with Hysteresis
LM55123/LM75123	Driver	Common Mode	TTL	TTL	+5.0	LM55121 for IBM Interface
LM55124/LM75124	Receiver	Common Mode	0.7 to 1.7	TTL	+5.0	LM55123 for IBM Interface
DM7834/DM8834	Transceiver	Common Mode	TTL	TTL	+5.0	Quad TRI-STATE ${ }^{\text {® }}$ Hysteresis
DM7835/DM8835	Transceiver	Common Mode	TTL	TTL	+5.0	DM7834 with Strobed Receiver
DM7839/DM8839	Transceiver	Common Mode	TTL	TTL	+5.0	Non-inverting DM7834
DM7833/DM8833	Transceiver	Common Mode	TTL	TTL	+5.0	DM7839 with Strobed Receiver
DM7131/DM8131	Receiver	Common Mode	0.97 to 2.65	TTL	+5.0	6-Bit Comparator with Hysteresis
DM7136/DM8136	Receiver	Common Mode	0.97 to 2.65	TTL	+5.0	Expandable DM7131
LM1488	Driver	Common Mode	TTL	$\pm 7.0 \mathrm{~V}$	± 90 to 15	Quad EIA Standard RS232
LM1489	Receiver	Common Mode	0.75 to 1.5	TTL	+5.0	Quad EIA Standard RS232 with Hysteresis
LM1489A	Receiver	Common Mode	0.75 to 2.25	TTL	+5.0	Higher Noise Immunity LM1489

Note: In applications devices grouped with Comparators and Sense Amplifiers may be used at line receivers. Also devices grouped with Peripheral drivers may be used as line drivers For additional application information reference:

National Application Note 22, IC's for Digital Data Transmission
National Applicatıon Note 83, Data Bus and Differentıal Lıne Drivers and Receivers
National Application Note 108, Transmission Line Characterıstics

Peripheral Driver Guide

LF111/LF211/LF311 voltage comparators

general description

The LF111, LF211 and LF311 are FET input voltage comparators that virtually eliminate input current errors.
Designed to operate over a 5.0 V to $\pm 15 \mathrm{~V}$ range the LF111 can be used in the most critical applications.

The extremely low input currents of the LF111 allows the use of a simple comparator in applications usually requiring input current buffering. Leakage testing, long time delay circuits, charge measurements, and high source impedance voltage comparisons are easily done.

Further, the LF111 can be used in place of the LM111 eliminating errors due to input currents.

advantages

- Eliminates input current errors
- Interchangeable with LM111
- No need for input current buffering

connection diagrams*

Order Number LF111H, LF211H or LF31 1H See Package 11
*Pin connections shown on schematic diagram and typical applications are for TO-5 package.

?

Order Number LF111F See Package 3

schematic diagram and auxiliary circuits

Offset Balancing

Strobing

Incresess typpeal common modo
slew from $7.0 \mathrm{~V} / \mu \mathrm{s}$ to $18 \mathrm{~V} / \mu \mathrm{s}$.
Increasing Input
Stage Current*

absolute maximum ratings

Total Supply Voltage ($\mathrm{V}_{\mathbf{8 4}}$)
Output to Negative Supply Voltage (V_{74})
Ground to Negative Supply Voltage (V_{14})
Differential Input Voltage
Input Voltage (Note 1)
Power Dissipation (Note 2)
Output Short Circuit Duration
Operating Temperature Range
LF111
LF211
LF311
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

LF111/LF211

LF311

36 V	36 V
50 V	40 V
30 V	30 V
$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
500 mW	500 mW
10 seconds	10 seconds

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
electrical characteristics (LF111/LF211) (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {S }}$		0.7	4.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$ (Note 6)		5.0	25	pA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$ (Note 6)		20	50	pA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\mathrm{V}_{\text {IN }} \leq-5.0 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	1.5	\checkmark
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5.0 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2	10	nA
Input Offset Voltage (Note 4)				6.0	mV
Input Offset Current (Note 4)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		2.0	3.0	$n \mathrm{~A}$
Input Bias Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		5.0	7.0	nA
Input Voltage Range			$\begin{aligned} & +14 \\ & -13.5 \end{aligned}$		V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-6.0 \mathrm{mV}, \mathrm{I}_{\text {SINK }} \leq 8.0 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5.0 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	6.0	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LF111 is $+150^{\circ} \mathrm{C}$, the LF211 is $+110^{\circ} \mathrm{C}$ and the LF311 is $+85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $+45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $+185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten, 0.03 -inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is $+100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$ for the LF111, unless otherwise stated. With the LF211, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and for the LF311 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5.0 mV supply up to $\pm 15 \overline{\mathrm{~V}}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.
Note 6: For input voltages greater than 15 V above the negative supply the bias and offset currents will increase-see typical performance curves.

:lectrical characteristics (LF311) (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
רput Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		2.0	10	mV
רput Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C M}=0$ (Note 6)		5.0	75	pA
רput Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C M}=0$ (Note 6)		25	150	pA
'oltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		V / mV
lesponse Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
iaturation Voltage	$V_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.75	1.5	V
itrobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
)utput Leakage Current	$V_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.2	10	nA
nput Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			15	mV
nput Offset Current (Note 4)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		1.0		nA
nput Bias Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		3.0		nA
nput Voltage Range			$\begin{aligned} & +14 \\ & -13.5 \end{aligned}$		V
jaturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 8.0 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
'ositive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	7.5	mA
Vegative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Vote 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit s equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Vote 2: The maximum junction temperature of the LF111 is $+150^{\circ} \mathrm{C}$, the LF211 is $+110^{\circ} \mathrm{C}$ and the LF311 is $+85^{\circ} \mathrm{C}$. For operating at elevated emperatures, devices in the TO-5 package must be derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $+45^{\circ} \mathrm{C} / \mathrm{W}$, junction o case. For the flat package, the deratıng is based on a thermal resistance of $+185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with :en, 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $+100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Vote 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LF111, unless otherwise stated. With the LF211, however, ill temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and for the LF311 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. The offset voltage, offset current and bias :urrent specifications apply for any supply voltage from a sıngle 5.0 mV supply up to $\pm 15 \mathrm{~V}$ supplies.
Vote 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Vote 5: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.
Note 6: For input voltages greater than 15 V above the negative supply the bias and offset currents will increase-see typical performance curves.

typical applications

typical performance

Response Time for Various

Transfer Function

typical applications (con't)

Zero Crossing Detector Driving MOS Switch

Driving Ground-Referred Load

Comparator and Solenoid Driver

Switching Power Amplifier

Crowbar Over-Voltage Protector

LH2111/LH2211/LH2311 dual voltage comparator general description

The LH2111 series of dual voltage comparators are two LM111 type comparators in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost and smaller size than two singles. For additional information see the LM111 data sheet and National's Linear Application Handbook.

The LH2111 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2211 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LH2311 is speci-
fied for operation over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

features

- Wide operating supply range	$\pm 15 \mathrm{~V}$ to a single +5 V
- Low input currents	6 nA
- High sensitivity	$10 \mu \mathrm{~V}$
- Wide differential input range	$\pm 30 \mathrm{~V}$
- High output drive	$50 \mathrm{~mA}, 50 \mathrm{~V}$

connection diagram

Order Number LH2111D,
LH2211D or LH2311D See Package 2
Order Number LH2111F, LH2211F or LH2311F See Package 5
auxiliary circuits

Offset Balancing

Strobing

Increasing Input Stage Current*

Comparator and Solenoid Driver

Driving Ground-Referred Load

Using Clamp Diodes to Improve Responses

absolute maximum ratings

Total Supply Voltage（ $\mathrm{V}^{+}-\mathrm{V}^{-}$） 36 V
Output to Negative Supply Voltage（ $\mathrm{V}_{\text {OUT }}-\mathrm{V}^{-}$） 50 V
Ground to Negative Supply Voltage（GND－ V^{-}） 30 V
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage（Note 1）
Power Dissipation（Note 2）

Output Short Circuit Duration
Operating Temperature Range LH2111 LH221 LH2311
Storage Temperature Range
Lead Temperature（Soldering， 10 sec ）

10 sec
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$
electrical characteristics－each side（Note 3）

PARAMETER	CONDITIONS	L．IMITS			UNITS
		LH2111	LH2211	LH2311	
Input Offset Voltage（Note 4）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$	3.0	3.0	7.5	$m \mathrm{max}$
Input Offset Current（Note 4）	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	10	10	50	nA Max
Input Bias Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	100	100	250	nA Max
Voltage Gain	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	200	200	200	V／mV Typ
Response Time（Note 5）	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	200	200	200	ns Typ
Saturation Voltage	$\begin{aligned} & V_{\text {IN }} \leq-5 \mathrm{mV}, \text { I OUT }=50 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.5	1.5	1.5	\checkmark Max
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.0	3.0	3.0	n A Typ
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	10	50	nA Max
Input Offset Voltage（Note 4）	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$	4.0	4.0	10	mV Max
Input Offset Current（Note 4）		20	20	70	nA Max
Input Bias Current		150	150	300	nA Max
Input Voltage Range		± 14	± 14	± 14	\checkmark Typ
Saturation Voltage	$\begin{aligned} & V^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {SINK }} \leq 8 \mathrm{~mA} \end{aligned}$	0.4	0.4	0.4	\checkmark Max
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.0	6.0	7.5	mA Max
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.0	5.0	5.0	mA Max

Note 1：This rating applıes for $\pm 15 \mathrm{~V}$ supplies．The positive input voltage limit is 30 V above the negative supply．The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply，whichever is less．
Note 2：The maximum junction temperature is $150^{\circ} \mathrm{C}$ ．For operating at elevated temperatures，devices in the flat package，the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$－inch－thick epoxy glass board with 0.03 －inch－ wide， 2 ounce copper conductor．The thermal resistance of the dual－in－line package is $100^{\circ} \mathrm{C} / \mathrm{W}$ ，junction to ambient．
Note 3：These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the $\mathrm{LH} 2111,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ for the LH2211，and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}$ for the LH2311，unless otherwise stated．The offset voltage，offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies．For the LH2311， $\mathrm{V}_{1 \mathrm{~N}}= \pm 10 \mathrm{mV}$ ．
Note 4：The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load．Thus，these parameters define an error band and take into account the worst case effects of voltage gain and input impedance．
Note 5：The response time specified is for a 100 mV input step with 5 mV overdrive．

Voltage Comparators

LM106/LM206 voltage comparator general description

The LM106 and LM206 are high-speed voltage comparators designed to accurately detect lowlevel analog signals and drive a digital load. They are equivalent to an LM710, combined with a two input NAND gate and an output buffer. The circuits can drive RTL, DTL or TTL integrated circuits directly. Furthermore, their outputs can switch voltages up to 24 V at currents as high as 100 mA . Other features include:

- Improved accuracy: 2 mV maximum worst case offset.
- Fan-out of 10 with DTL or TTL
- Added logic or strobe capability
- Useful as a relay or lamp driver
- Plug-in replacement for the LM710.
- 40 ns maximum response time

The devices have short-circuit protection which limits the inrush current when it is used to drive incandescent lamps, in addition to preventing damage from accidental shorts to the positive supply. The speed is equivalent to that of an LM710. However, they are even faster where buffers and additional logic circuitry can be eliminated by the increased flexibility of the LM106 and LM206. They can also be operated from any negative supply voltage between -3 V and -12 V with little effect on performance.

The LM106 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM206 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

schematic and connection diagrams

typical applications
Level Detector and Lamp Driver

Relay Driver

Note Pin 4 connected to case Order Number LM106H or LM206H See Package 11

Flat Package

Order Number LM106F or LM206F See Package 4

Fast Response Peak Detector

Adjustable Threshold Line Receiver

absolute maximum ratings

Positive Supply Voltage	15 V
Negative Supply Voltage	-15 V
Output Voltage	24 V
Output to Negative Supply Voltage	30 V
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage	$\pm 7 \mathrm{~V}$

Power Dissipation (Note 1)	600 mW	
Output Short Circuit Duration		10 sec
Operating Temperature Range	LM106	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	LM206	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10 sec)	$300^{\circ} \mathrm{C}$	

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	Note 3		0.5	2.0	mV
Input Offset Current	Note 3		0.7	3.0	$\mu \mathrm{A}$
Input Bias Current			10	20	$\mu \mathrm{A}$
Response Time	$\text { Note } \begin{aligned} 4, R_{L} & =390 \Omega \text { to }+5 \mathrm{~V} \\ C_{L} & =15 \mathrm{pF} \end{aligned}$		28	40	ns
Saturation Voltage	$\mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}$, $\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$		10	1.5	V
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V}$	'	002	10	$\mu \mathrm{A}$

electrical characteristics
The following specifications apply for $T_{L} \leq T_{A} \leq T_{H}$ (Note 5)

Input Offset Voltage	Note 3			30	mV
Average Temperature Coefficient of Input Offset Voltage			30	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{array}{r} \text { Note 3, } T_{L} \leq T_{A} \leq 25^{\circ} \mathrm{C} \\ 25^{\circ} \mathrm{C} \leq T_{A} \leq T_{H} \end{array}$		$\begin{aligned} & 1.8 \\ & 0.25 \end{aligned}$	7.0 3.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq \mathrm{T}_{H} \\ & \mathrm{~T}_{\mathrm{L}} \leq \mathrm{T}_{A} \leq 25^{\circ} \mathrm{C} \end{aligned}$		5.0 15	25 75	$\begin{aligned} & \mathrm{nA} / /^{\circ} \mathrm{C} \\ & \mathrm{nA} / \rho^{\circ} \mathrm{C} \end{aligned}$
Input Bias Current	$\begin{aligned} & T_{L} \leq T_{A} \leq 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq \mathrm{T}_{H} \end{aligned}$			45 20	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Voltage Range	$-7 V \geq V^{-} \geq-12 V$	± 5.0			V
Differential Input Voltage Range		± 5.0			V
Saturation Voltage .	$\mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}$			1.0	V
Saturation Voltage	$\mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$			0.4	V
Positive Output Level	$V_{\text {IN }} \geq 5 \mathrm{mV}$, $\mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}$	2.5		5.5	V
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V} \\ & T_{\mathrm{L}} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \end{aligned}$			10	$\mu \mathrm{A}$
	$25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{H}}$			100	$\mu \mathrm{A}$
Strobe Current	$\mathrm{V}_{\text {strobe }}=0.4 \mathrm{~V}$		-17	-3.2	mA
Strobe ON Voltage		0.9	1.4		V
Strobe OFF Voltage	$\mathrm{t}_{\text {sink }} \leq 16 \mathrm{~mA}$		14	2.2	V
Positive Supply Current	$V_{\text {IN }}=-5 \mathrm{mV}$		55	10	mA
Negative Supply Current			-1.5	-3.6	mA

Note 1: The maximum junction temperature of the LM106 is $+150^{\circ} \mathrm{C}$, while that of the LM206 is $+110^{\circ} \mathrm{C}$ For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $+45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $+185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a 1/16-inch-thick epoxy glass board with ten, 003 -inch-wide, 2-ounce copper conductors.
Note 2: These specifications apply for $-3.0 \mathrm{~V} \geq \mathrm{V}^{-} \geq-12 \mathrm{~V}, \mathrm{~V}^{+}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified All currents into device pins are considered positive.
Note 3: The offset voltages and offset currents given are the maximum values required to drive the output down to 0.5 V or up to 5.0 V . Thus, these parameters actually define an error band and take

	T_{L}	T_{H}
LM106	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
LM206	$-25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$

Note 4: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.
Note 5: All currents into device pins are considered positive.

typical performance characteristics

Positive Supply Current

Positive Output Level

Negative Supply Current

Voltage Gain

Short Circuit Output Current

Voltage Comparators

LM306 voltage comparator/buffer general description

The LM306 is a high-speed voltage comparator designed to accurately detect low-level analog signals and drive a digital load. It is equivalent to an LM710C, combined with a two input NAND gate and an output buffer. The circuit can drive RTL, DTL or TTL integrated circuits directly. Furthermore, the output can switch voltages up to 24 V at currents as high as 100 mA . Other features include:

- Improved accuracy: 5 mV (max) offset
- Fan-out of 10 with DTL or TTL
- Added logic or strobe capability
- Useful as a relay or lamp driver
- Plug-in replacement for the LM710C.
- 40 ns maxımum response time

The device has short-circuit protection which limits the inrush current when it is used to drive incandescent lamps, in addition to preventing damage from accidental shorts. The speed is equivalent to that of an LM710C. However, it is even faster where buffers and additional logic circuitry can be eliminated by the increased flexibility of the LM306. It can also be operated from any negative supply voltage between -3 V and -12 V with little effect on performance. The LM306 is identical to the LM106, except that it is specified over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

schematic and connection diagrams**

typical applications**

Level Detector and Lamp Driver

Relay Driver

Note Pin 4 connected to case
Order Number LM306H
See Package 11

Fast Response Peak Detector

Adjustable Threshold Line Receiver

*Optional for response time control

absolute maximum ratings

Positive Supply Voltage	15 V
Negative Supply Voltage	-15 V
Output Voltage	24 V
Output to Negative Supply Voltage	30 V
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage	$\pm 7 \mathrm{~V}$
Power Dissipation (Note 1)	600 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$300^{\circ} \mathrm{C}$

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	Note 3		1.6	5.0	mV
Input Offset Current	Note 3		1.8	5.0	$\mu \mathrm{A}$
Input Bias Current			16	25	$\mu \mathrm{A}$
Response Tıme	$\text { Note } \begin{aligned} 4, R_{L} & =390 \Omega \text { to }+5 \mathrm{~V}, \\ C_{L} & =15 \mathrm{pF} \end{aligned}$		28	40	ns
Saturation Voltage	$\mathrm{V}_{\text {IN }} \leq-7 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$		0.8	2.0	V
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 7 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V}$		0.02	2.0	$\mu \mathrm{A}$

electrical characteristics

The following specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ (Note 5)

Input Offset Voltage	Note 3			6.5	mV
Average Temperature Coefficient of Input Offset Voltage			5	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	Note 3, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C}$		24	7.5	$\mu \mathrm{A}$
	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$			50	$\mu \mathrm{A}$
Average Temperature Coefficient	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$		15	50	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
of Input Offset Current	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$		24	100	$n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C}$		25	40	$\mu \mathrm{A}$
	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$			25	$\mu \mathrm{A}$
Input Voltage Range	$-7 \mathrm{~V} \geq \mathrm{V}^{-} \geq-12 \mathrm{~V}$	± 5.0			V
Differential Input Voltage Range		± 50			V
Saturation Voltage	$V_{\text {IN }} \leq-8 \mathrm{mV}$, $\mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}$			1.0	V
Saturation Voltage	$V_{\text {IN }} \leq-8 \mathrm{mV}$, $\mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$			0.4	v
Positive Output Level	$\mathrm{V}_{\text {IN }} \geq 8 \mathrm{mV}$, $\mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}$	2.5		5.5	v
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 8 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V}$				
	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$			2.0	$\mu \mathrm{A}$
	$25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$
Strobe Current	$\mathrm{V}_{\text {strobe }}=0.4 \mathrm{~V}$		-1.7	-3.2	mA
Strobe ON Voltage		0.9	1.4		V
Strobe OFF Voltage	$\mathrm{l}_{\text {smik }} \leq 16 \mathrm{~mA}$		1.4	22	V
Positive Supply Current	$V_{\text {IN }}=-8 \mathrm{mV}$		5.5	10	mA
Negative Supply Current			-1.5	-3.6	mA

Note 1: For operating at elevated temperatures, the device must be derated based on a $85^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case or $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: These specifications apply for $-3 \mathrm{~V} \geq \mathrm{V}^{-} \geq-12 \mathrm{~V}, \mathrm{~V}^{+}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified All currents into pins are considered positive
Note 3. The offset voltages and offset currents given are the maximum values required to drive the output down to 05 V or up to 50 V Thus, these parameters actually define an error band and take into account the worst-case effects of voltage gain, and input impedance, specified supply voltage variations, and common mode voltage variations
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive Note 5. All currents into device pins are considered positive

typical performance characteristics

Voltage Comparators

LM111/LM 211 voltage comparator

general description

The LM111 and LM211 are voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710. They are also designed to operate over a wider range of supply voltages: from standard $\pm 15 \mathrm{~V}$ op amp supplies down to the single 5 V supply used for IC .logic. Their output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50 V at currents as high as 50 mA . Outstanding characteristics include:

- Operates from single 5 V supply
- Input current: 150 nA max. over temperature
- Offset current: 20 nA max. over temperature

schematic diagram and auxiliary circuits**

connection diagrams

Metal Can
Flat Package

Note. Pin 4 connected to case

LM111H or LM211H See Package 11

Note Pin 5 connected to bottom of package
TOP VIEW
Order Number
LM111F or LM211F See Package 3

Note Pin 6 connected to bottom of package TOP VIEW

Order Number
LM111D or LM211D See Package 1
typical applications

Detector for Magnetic Transducer

* *Pin connections shown are for metal can

absolute maximum ratings

Total Supply Voltage $\left(V_{84}\right)$	36 V
Output to Negative Supply Voltage $\left(\mathrm{V}_{74}\right)$	50 V
Ground to Negative Supply Voltage $\left(\mathrm{V}_{14}\right)$	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range LM111	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LM211	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		0.7	3.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.0	10	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60	100	nA
Voltage Gain	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, \quad V_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	10	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			4.0	mV
Input Offset Current (Note 4)				20	nA
Input Bias Current				150	nA
Input Voltage Range			± 14		V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-6 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Output Leakage Current	$V_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	6.0	$m A$
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LM111 is $150^{\circ} \mathrm{C}$, while that of the LM 211 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-ınch-thick epoxy glass board with ten, 0.03 -ınch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.

Note 3: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise stated. With the LM211, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
typical performance characteristics

typical performance characteristics (con't)

typical applications (con't)

Zero Crossing Detector Driving MOS Switch

10 Hz to 10 kHz Voltage Controlled Oscillator

100 kHz Free Running Multivibrator

*Input polarity is reversed when using pen 1 as output

Driving Ground-Referred Load

Using Clamp Diodes to Improve Response

TTL Interface with High Level Logic

Crystal Oscillator

Comparator and Solenoid Driver
typical applications（con＇t）

Positive Peak Detector

Negative Peak Dectector

Voltage Comparators

LM311 voltage comparator general description

The LM311 is a voltage comparator that has input currents more than a hundred times lower than devices like the LM306 or LM710C. It is also designed to operate over a wider range of supply voltages: from standard $\pm 15 \mathrm{~V}$ op amp supplies down to the single 5 V supply used for IC logic. Its output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, it can drive lamps or relays, switching voltages up to 40 V at currents as high as 50 mA

features

- Operates from single 5V supply
- Maximum input current: 250 nA
- Maxımum offset current 50 nA
- Differential input voltage range: $\pm 30 \mathrm{~V}$
- Power consumption: 135 mW at $\pm 15 \mathrm{~V}$

Both the input and the output of the LM311 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM306 and LM710C (200 ns response time vs 40 ns) the device rs also much less prone to spurious oscillations. The LM311 has the same pin configuration as the LM306 and LM710C.

schematic diagram and auxiliary circuits*

connection diagrams

Order Number LM311H
See Package 11

Order Number LM311F
See Package 3

Order Number LM311N See Package 20

Offset Balancing

*Increases typical common mode
slew from $70 \mathrm{~V} / \mu \mathrm{s}$ to $18 \mathrm{~V} / \mu \mathrm{s}$ Increasing Input Stage Current*

Order Number LM311D See Package 1
Order Number LM311N-14 See Package 22

absolute maximum ratings

Total Supply Voltage $\left(\mathrm{V}_{84}\right)$	36 V
Output to Negative Supply. Voltage $\left(\mathrm{V}_{74}\right)$	40 V
Ground to Negative Supply Voltage $\left(\mathrm{V}_{14}\right)$	30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$300^{\circ} \mathrm{C}$

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{~K}$		2.0	7.5	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	250	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & V_{\text {IN }} \leq-10 \mathrm{mV}, \quad \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$\begin{aligned} & V_{I N} \geq 10 \mathrm{mV}, \quad V_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	50	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{~K}$			10	mV
Input Offset Current (Note 4)				70	nA
Input Bias Current				300	nA
Input Voltage Range			± 14		V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	7.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies The positive input voltage limit is 30 V above the negative supply The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.

Note 2: The maxımum junction temperature of the LM311 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten, 0.03 -ınch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.

Note 3: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$, unless otherwise specified The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.

Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

typical performance characteristics

typical performance characteristics (con't)

typical applications

100 kHz Free Running Multivibrator

Using Clamp Diodes to Improve Response

TTL Interface with High Level Logic

Crystal Oscillator

Comparator and Solenoid Driver
typical applications (con't)

Positive Peak Detector

Negative Peak Dectector

Strobing off Both Input* and Output Stages

Precision Photodiode Comparator

*Absorbs inductive kickback of relay and
${ }^{*}$ protects IC from severe voltage transients on V^{++}line

Relay Driver with Strobe

Switching Power Amplifier

Voltage Comparators

LM119/LM219 high speed dual comparator general description

The LM119/LM219 are precision high speed dual comparators fabricated on a single monolithic chip. They are designed to operate over a wide range of supply voltages down to a single 5 V logic supply and ground. Further, they have higher gain and lower input currents than devices like the LM710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA . Outstanding features include:

features

- Two independent comparators
- Operates from a single 5 V supply
- Typically 80 ns response time at $\pm 15 \mathrm{~V}$
- Minimum fan-out of 2 each side
- Maximum input current of $1 \mu \mathrm{~A}$ over temperature
- Inputs and outputs can be isolated from system ground
- High common mode slew rate

Although designed primarily for applications requiring operation from digital logic supplies, the LM119 is fully specified for power supplies up to $\pm 15 \mathrm{~V}$. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices like the LM711.

The LM219 is identical to the LM119, except that its performance is specified over a $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range instead of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

schematic and connection diagrams

typical applications

Relay Driver

Window Detector

Order Number LM119D or LM219D See Package 1

Metal Can Package

Order Number LM119H or LM219H See Package 12

Flat Package

Order Number LM119F or LM219F See Package 3
absolute maximum ratings

Total Supply Voltage
Output to Negative Supply Voltage
Ground to Negative Supply Voltage
Ground to Positive Supply Voltage
Differential Input Voltage
input Voltage (Note 1)

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		0.7	4.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		30	75	nA
Input Bias Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		150	500	nA
Voltage Gaın	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	40		V / mV
Response Time (Note 5)	$T_{A}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		80		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{I}_{\mathrm{OUT}}=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	v
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	2	$\mu \mathrm{A}$
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$			7	mV
Input Offset Current (Note 4)				100	nA
Input Bras Current				1000	nA
Input Voltage Range	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \end{aligned}$	1	± 13	3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Saturatıon Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\text {IN }} \leq-6 \mathrm{mV}, \mathrm{I}_{\text {SINK }} \leq 3.2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}} \geq 0^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}} \leq 0^{\circ} \mathrm{C} \end{aligned}$		0.23	0.4 0.6	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		1	10	$\mu \mathrm{A}$
Differential Input Voltage				± 5	v
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3		mA
Positive Supply Current	$T_{A}=25^{\circ} \mathrm{C} \quad V_{S}= \pm 15 \mathrm{~V}$		8	11.5	mA
Negative Supply Current	$T_{A}=25^{\circ} \mathrm{C} \quad V_{S}= \pm 15 \mathrm{~V}$		3	4.5	mA

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$ the absolute maxımum input voltage is equal to the supply voltage.
Note 2: The maximum junction temperature of the LM119 is $150^{\circ} \mathrm{C}$, while that of the LM219 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten, 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-ın-lıne package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise stated. With the LM219, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output withın a volt of elther supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

typical performance characteristics

LM319 high speed dual comparator general description

The LM319 is a precision high speed dual comparator fabricated on a single monolithic chip. It is designed to operate over a wide range of supply voltages down to a single 5 V logic supply and ground. Further, it has higher gain and lower input currents than devices like the LM710. The uncommitted collector of the output stage makes the LM319 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to $\mathbf{2 5} \mathbf{~ m A}$.

features

- Two independent comparators
- Operates from a single 5 V supply
- Typically 80 ns response time at $\pm 15 \mathrm{~V}$
- Minimum fan-out of 2 each side
- Maximum input current of 1. $\mu \mathrm{A}$
- Inputs and outputs can be isolated from system ground
- High common mode slew rate

Although designed primarily for applications requiring operation from digital logic supplies, the LM319 is fully specified for power supplies up to $\pm 15 \mathrm{~V}$. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM319 much more versatile than older devices like the LM711.

The LM319 has its performance specified over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

schematic and connection diagrams

typical applications

Relay Driver

Window Detector

Dual In-Line-Package
Metal Can Package ${ }^{\dagger}$

Order Number LM319D
See package 1 LM319N
See Package 22

Wide Range Variable Oscillator
absolute maximum ratings
Total Supply Voltage

36 V	Power Dissipation (Note 2)	500 mW
36 V	Output Short Cırcuit Duration	10 sec
25 V	Operating Temperature Range LM319	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
18 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$\pm 5 \mathrm{~V}$	Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Ground to Negative Supply Voltage
Sive Supply Voltage
Lead Temperature (Soldering, 10 sec)
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
ential input Voltage
$\pm 15 \mathrm{~V}$
electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		2.0	8.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		80	200	nA
Input Bias Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		250	1000	nA
Voltage Gaın	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	8	40		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		80		ns
Saturation Voltage	$\begin{aligned} & V_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Output Leakage Current	$\begin{aligned} & V_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	10	$\mu \mathrm{A}$
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$			10	mV
Input Offset Current (Note 4)				300	nA
Input Bias Current				1200	nA
Input Voltage Range	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \end{aligned}$	1	± 13	3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 3.2 \mathrm{~mA} \end{aligned}$		0.3	0.4	v
Differential Input Voltage				± 5	\checkmark
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3		mA
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		8	12.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		3	5	mA

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage
Note 2: The maximum junction temperature of the LM319 is $85^{\circ} \mathrm{C}$ For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a sıngle 5 V supply up to $\pm 15 \mathrm{~V}$ supplies
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance
Note 5: The response tirne specified is for a 100 mV input step with 5 mV overdrive.

typical performance characteristics

LM139／LM239／LM339 quad comparators general description

The LM139 series consists of four independent voltage comparators which were designed specifi－ cally to operate from a single power supply over a wide range of voltages．Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage．These comparators also have a unique characteristic in that the input common－mode voltage range includes ground， even though operated from a single power supply voltage．
Application areas include limit comparators，sımple analog to digital converters；pulse，squarewave and time delay generators；wide range VCO；MOS clock timers；multivibrators and high voltage digital logic gates．The LM139 series was designed to directly interface with TTL and CMOS．When operated from both plus and minus power supplies，the LM339 will directly interface with MOS logic－ where the low power drain of the LM339 is a distınct advantage over standard comparators．

advantages

－Eliminates need for dual supplies
－Allows sensing near GND
－Compatible with all forms of logic
－Power drain suitable for battery operation

features

－Wide single supply
Voltage range

$$
\begin{array}{r}
2 V_{D C} \text { to } 36 V_{D C} \\
\pm 1 V_{D C} \text { to } \pm 18 V_{D C}
\end{array}
$$ or dual supplies

－Very low supply current drain（ 0.8 mA ）－ independent of supply voltage（ $1 \mathrm{~mW} /$ compara－ tor at $+5 \mathrm{~V}_{\mathrm{DC}}$ ）
－Low input biasing current 35 nA
－Low input offset current 3 nA and offset voltage 3 mV
－Input common－mode voltage range includes ground
－Differential input voltage range equal to the power supply voltage
－Low output
1 mV at $5 \mu \mathrm{~A}$ saturation voltage

70 mV at 1 mA
－Output voltage compatible with TTL（fanout of 2），DTL，ECL，MOS and CMOS logic systems

schematic and connection diagrams

typical applications

Dual－In－Line and Flat Package

Order Number LM139F
See Package 4
Order Number LM139D，LM239D or LM339D
See Package 1
Order Number LM339N
See Package 22

Driving TTL

Driving CMOS

Comparator with Hysteresis
absolute maximum ratings

Supply Voltage, V^{+}
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Molded DIP . (LM339N)
Cavity DIP (LM139D,
Flat Pack (LM139F)
Output Short-Circuit to GND (Note 2)
$36 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 18 \mathrm{~V}_{\mathrm{DC}}$
$36 \mathrm{~V}_{\mathrm{DC}}$
$-0.3 \mathrm{~V}_{\mathrm{DC}}$ to $+36 \mathrm{~V}_{\mathrm{DC}}$
electrical characteristics $\left(\mathrm{V}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}\right.$, see Note 4)

PARAMETER	CONDITIONS	LM139			LM239, LM339			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 9)		± 2	± 50		+2	± 50	$m V_{\text {DC }}$
Input Bias Current (Note 5)	$\mathrm{I}_{\text {IN(.) }}$ or $\mathrm{I}_{\text {IN(-) }}$ With Output in Linear Range, $T_{A}=+25^{\circ} \mathrm{C}$		25	100		25	250	$n A_{D C}$
Input Offset Current	$I_{\text {IN(}+ \text {) }}-I_{\text {IN(})}, T_{A}=+25^{\circ} \mathrm{C}$		± 3	± 25		+5	± 50	$n A_{D C}$
Input Common-Mode Voltage Range (Note 6)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0		$\mathrm{v}^{+}-15$	0		$\mathrm{v}^{+}-15$	$V_{D C}$
Supply Current	$\begin{aligned} & R_{L}=\infty \text { On All Comparators } \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		08	20		08	20	$m A_{D C}$
Voltage Gaın	$\mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		200			200		V / mV
Large Signal Response Time	$V_{I N}=T T L$ Logic Swing, $V_{\text {REF }}=+14 V_{D C}, V_{R L}=$ $50 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{R}_{\mathrm{L}}=51 \mathrm{k} \Omega$		300			300		ns
Response Time ${ }^{\text {(}}$ Note 7)	$\begin{aligned} & V_{R L}=50 V_{D C} \text { and } R_{L}= \\ & 5.1 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		13			13		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & V_{(N()} \geq+10 V_{D C}, V_{I N(+)}=0 \\ & \text { and } V_{0} \leq+15 V_{D C}, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	6	16		6	16		$\mathrm{mA}_{\text {DC }}$
Saturation Voltage	$\begin{aligned} & V_{\text {IN }}() \geq+10 \mathrm{~V}_{D C}, V_{\text {IN }(+)}=0 \\ & \text { and } \mathrm{I}_{\text {SINK }} \leq 4.0 \mathrm{~mA}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		250	500		250	500	$m V_{\text {DC }}$
Output Leakage Current	$\begin{aligned} & V_{\text {IN (t) }} \geq+10 V_{D C}, V_{\text {IN(-) }}=0 \\ & \text { and } V_{\text {OUT }}=50 V_{D C}, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		01			01		$n A_{D C}$
Input Offset Voltage	(Note 9)			90			90	$m V_{D C}$
Input Offset Current	$\operatorname{IIN}(+)^{-I_{\operatorname{IN}(-)}}$			± 100			± 150	$n A_{\text {DC }}$
Input Bias Current	$I_{I_{N(+)}}$ or $I_{\mathbb{I N}_{(-)}}$With Output in Linear Range			300			400	$n A_{D C}$
Input Common-Mode Voltage Range		0		$\mathrm{V}^{+}-20$	0		$v^{+}-20$	$V_{D C}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN (1) }} \geq+1.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\text {IN (}+1}=0 \\ & \text { and } \mathrm{I}_{\mathrm{SINK}} \leq 4.0 \mathrm{~mA} \end{aligned}$			700			700	$m V_{\text {DC }}$
Output Leakage Current	$\begin{aligned} & V_{\text {IN(t) }} \geq+1.0 V_{D C}, V_{I N(-)}=0 \\ & \text { and } V_{\text {OUT }}=30 V_{D C} \end{aligned}$			1.0			10	$\mu A_{\text {DC }}$
Differential Input Voltage (Note 8)	Keep All $V_{\text {IN }}$'s $\geq 0 V_{D C}$ (or V^{-}, if used)			36			36	$V_{D C}$

Note 1: For operating at high temperatures, the LM339 must be derated based on $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239 and LM139 must be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature. The low bias dissipation and the ON-OFF characteristic of the outputs keeps the chip dissipation very small ($\mathrm{Pd} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V^{+}.
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3 V_{D C}$
Note 4: These specifications apply for $\mathrm{V}^{+}=+5.0 \vee \mathrm{DC}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated, With the LM239, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and the LM 339 temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 03 V The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to $+30 \mathrm{~V}_{\mathrm{DC}}$ without damage.
Note 7: The response time specified is for a 100 mV input step with 5.0 mV overdrive For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.
Note 8: The positive excursions of the input can exceed the power supply voltage level, and if the other input voltage remains within the common-mode voltage range, the comparator will provide a proper output state The low input voltage state must not be less than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (or $0.3 \mathrm{~V}_{\mathrm{DC}}$ below the magnitude of the negative dower supply voltage, if used).
Note 9: At output switch point, $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from $5 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$, and over the full input common mode range ($0 \mathrm{~V}_{\mathrm{DC}}$ to V^{+} $\pm 1.5 \mathrm{~V}_{\mathrm{DC}}$).

typical performance characteristics

Response Time for Various Input Overdrives－Negative Transition

Response Time for Various Input Overdrives－Positive Transition

application hints

The LM139 is a high gain，wide bandwidth device；which，like most comparators，can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance．This shows up only during the output voltage transition intervals as the comparator chan－ ges states．Power supply bypassing is not re－ quired to solve this problem．Standard PC board layout is helpful as it reduces stray input－output coupling．Reducing the input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally， adding even a small amount（ 1 to 10 mV ）of posi－ tive feedback（hysteresis）causes such a rapid tran－ sition that oscillations due to stray feedback are not possible．Simply socketing the I／C and attach－ ing resistors to the pins will cause input－output oscillations during the small transition intervals unless hysteresis is used．If the input signal is a pulse waveform，with relatively fast rise and fall times，hysteresis is not required．

All pins of any unused comparators should be grounded．

The bias network of the LM139 establishes a drain current which is independent of the magni－ tude of the power supply voltage over the range of from $2 V_{D C}$ to $30 V_{D C}$ ．
It is usually unnecessary to use a bypass capacitor across the power supply line．

The differential input voltage may be larger than V^{+}without damaging the device．Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}\left(\right.$ at $25^{\circ} \mathrm{C}$ ）．An input clamp diode and input resistor can be used as shown in the applications section．

The output of the LM139 is the uncommitted collector of a grounded－emitter NPN output tran－ sistor．Many collectors can be tied together to pro－ vide an output OR＇ing function．An output＂pull－ up＂resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+}terminal of the LM139 pack－ age．The output can also be used as a simple SPST switch to ground（when a＂pull－up＂resistor is not used）．The amount of current which the output device can sink is limited by the drive available （which is independent of V^{+}）and the β of this device．When the maximum current limit is reached（approxımately 16 mA ），the output tran－ sistor will come out of saturation and the output voltage will rise very rapidly．The output satura－ tion voltage is limited by the approximately 60Ω $r_{\text {sat }}$ of the output transistor．The low offset voltage of the output transistor（ 1 mV ）allows the output to clamp essentially to ground level for small load currents．
typical applications (con't)

Ground Referenced Thermocouple in Single Supply System

Visible Voltage Indicator

MOS to TTL Logic Translator

Remote Temperature Sensing

TTL to MOS Logic Converter

Pulse Generator

typical applications (con't)

Squarewave Oscillator

Crystal Controlled Oscillator

Two-Decade High-Frequency VCO

Basic Comparator

Non-Inverting Comparator with Hysteresis

Inverting Comparator with Hysteresis

Comparing Input Voltages of Opposite Polarity

$\stackrel{\text { Or logic gate }}{\text { - }}$ without pull up resistor
Output Strobing

Voltage Comparators

LM139A/LM239A/LM339A low offset voltage quad comparators

 general descriptionThe LM139A series consists of four independent precision voltage comparators with an offset voltage specification of 2 mV max. for all four comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139A series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM339A will directly interface with MOS logic-where the low power drain of the LM339A is a distinct advantage over standard comparators.

advantages

- High precision comparators
- Reduced $\mathrm{V}_{\text {Os }}$ drift over temperature
- Eliminates need for dual supplies
- Allows sensing near GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

features

- Wide single supply Voltage range or dual supplies

$$
2 V_{D C} \text { to } 36 V_{D C}
$$

$$
\pm 1 \mathrm{~V} D \text { to } \pm 18 \mathrm{~V} \mathrm{DC}
$$

- Very low supply current drain $(0.8 \mathrm{~mA})$ independent of supply voltage ($1 \mathrm{~mW} /$ comparator at $+5 \mathrm{~V}_{\mathrm{DC}}$)
- Low input biasing current 35 nA
- Low input offset current 3 nA and maximum offset voltage 2 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage

1 mV at $5 \mu \mathrm{~A}$ 70 mV at 1 mA

- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

schematic and connection diagrams

Dual-In-Line and Flat Package

See Package 4
"Order Number LM139AD, LM239Å' or LM339AD See Package 1
Order Number LM339AN See Package 22

Basic Comparator

Driving CMOS

Driving TTL

absolute maximum ratings

Supply Voltage,		$36 V_{\text {DC }}$ or $\pm 18 V_{\text {DC }}$
Differential Inpu	t Voltage	36 VDC
Input Voltage		$-0.3 V_{D C}$ to $+36 V_{D C}$
Power Dissipation (Note 1)		
Molded DIP	(LM339AN)	570 mW
Cavity DIP	(LM139AD, LM239AD,	
Flat Pack	(LM139AF)	800 mW
Output Short-Cir	rcuit to GND (Note 2)	Contınuous

Input Current (VIN $\left.<-0.3 V_{D C}\right)$ (Note 3)	50 mA
Operating Temperature Range	
LM339A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM239A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM139A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

electrical characteristics $\left(\mathrm{V}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}\right.$, see Note 4)

PARAMETER	CONDITIONS	LM139A			LM239A, LM339A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 9)		± 1	± 20		± 1	± 2.0	$m V_{D C}$
Input Blas Current (Note 5)	$I_{I_{(+)}}$or $I_{\operatorname{IN}(-)}$ with Output in Linear Range, $T_{A}=+25^{\circ} \mathrm{C}$		25	100		25	250	$n A_{\text {dc }}$
Input Offset Current	$\mathrm{I}_{\text {IN }(+)}-\mathrm{I}_{\text {IN(}-1}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 3	± 25		± 5	± 50	${ }^{n} A_{\text {dc }}$
Input Common-Mode Voltage Range (Note 6)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0		$\mathrm{v}^{+}-15$	0		$\mathrm{v}^{+}-1.5$	$V_{\text {DC }}$
Supply Current	$\begin{aligned} & R_{\mathrm{L}}=\infty, \text { on all Comparators } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		08	2.0		08	2.0	$m A_{D C}$
Voltage Gain	$\begin{aligned} & R_{L} \geq 15 \mathrm{k} \Omega, T_{A}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \text { (To Support } \\ & \text { Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \end{aligned}$	50	200		50	200		V / mV
Large Signal Response Time	$\begin{aligned} & V_{I N}=\text { TTL Logic Swing, } V_{\text {REF }}= \\ & +1.4 \mathrm{~V}_{D C}, V_{\tilde{R}_{L}}=5 \mathrm{~V}_{D C}, R_{L}= \\ & 51 \mathrm{k} \Omega \text { and } T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		300			300		ns
Response Time (Note 7)	$\begin{aligned} & V_{R_{L}}=5 V_{D C} \text { and } R_{L}=51 \mathrm{k} \Omega, \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		13			13		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & V_{I N(-)} \geq+1 V_{D C}, V_{I N(+)}=0, \\ & \text { and } V_{0} \leq+1.5 V_{D C}, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	60	16		60	16		$m A_{D C}$
Saturation Voltage	$\begin{aligned} & V_{\text {IN(-) }} \geq+1 \mathrm{~V}_{\mathrm{DC}}, V_{I N(+)}=0, \\ & \text { and } \mathrm{I}_{\text {SINK }} \leq 4 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		250	500		250	500	$m V_{\text {DC }}$
Output Leakage Current	$\begin{aligned} & V_{I N(t)} \geq+1 V_{D C}, V_{I N(-)}=0 \\ & \text { and } V_{O}=5 V_{D C}, T_{A}=+25^{\circ} C \end{aligned}$		01			01		$n A_{\text {DC }}$
Input Offset Voltage	(Note 9)			40			40	$m V_{D C}$
Input Offset Current	$\mathrm{I}_{\mathbf{N (+)} \text { - }} \mathrm{I}_{\text {IN(}- \text {) }}$			± 100			± 150	$n A_{D C}$
Input Blas Current	$\mathrm{I}_{\mathrm{IN}(+)}$ or $\mathrm{I}_{\text {IN }(-)}$ with Output in Linear Range			300			400	$n A_{D C}$
Input Common-Mode Voltage Range		0		$\mathrm{v}^{+}-20$	0		$\mathrm{v}^{+}-2.0$	V_{DC}
Saturation Voitage	$\begin{aligned} & V_{I N(-)} \geq+1 V_{D C}, V_{V_{N(+)}}=0 \\ & \text { and } I_{\text {SINK }} \leq 4 \mathrm{~mA} \end{aligned}$			700			700	$m V_{\text {DC }}$
Output Leakage Current	$\begin{aligned} & V_{V_{N(+)}} \geq+1 V_{D C}, V_{\text {IN(-) }}=0 \\ & \text { and } V_{O}=30 V_{D C} \end{aligned}$			10		-	10	$\mu A_{D C}$
Differential Input Voltage (Note 8)	Keep all $V^{\prime N}{ }^{\prime} s \geq 0 V_{D C}$ (or V^{-}, if used)			v^{+}			v^{+}	$V_{\text {DC }}$

Note 1: For operatıng at hıgh temperatures, the LM339A must be derated based on a $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient The LM239A and LM139A must be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature The low bias dissipation and the ON-OFF characteristic of the outputs keeps the chip dissipation very small ($\mathrm{Pd} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction The maximum output current is approximately 20 mA independent of the magnitude of V^{+}
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip This transistor action can cause the output voltages of the comparators to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative This is not destructive and normal output states will re-establish when the input voltage, which was negatıve, again returns to a value greater than $-03 \mathrm{~V} D$.
Note 4: These specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}_{D C}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated With the LM239A all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ and the LM339A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Note 5. The direction of the input current is out of the IC due to the PNP input stage This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines
Note 6: The input common-mode voltage or ether input signal voltage should not be allowed to go negative by more than 0.3 V The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to $+30 \mathrm{~V}_{\mathrm{DC}}$ without damage
Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section
Note 8. If the voltage applied to any input exceeds V^{+}, all four comparator outputs will go to the high voltage level The low input voltage state must not be less than $-0.3 V_{D C}$ (or $0.3 \mathrm{~V}_{D C}$ below the magn:tude of the negative power supply, if used)
Note 9: At output switch point, $V_{O} \cong 14 V_{D C}, R_{S}=0 \Omega$ with V^{+}from $5 V_{D C}$ to $30 V_{D C}$, and over the full input common mode range ($0 \mathrm{~V}_{D C}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{D C}$)

typical performance characteristics

application hints

The LM139A is a high gain, wide bandwidth device; which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause inputoutput oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.

The bias network of the LM139A establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2 \mathrm{~V}_{\mathrm{DC}}$ to 30 V VC .

It is usually unnecessary to use a bypass capacitor across the power supply line.

Response Time for Various
Input Overdrives - Positive
Transition

The differential input voltage may be larger than V^{+}without damaging the device (see Note 8). Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{D C}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the applications section.

The output of the LM139A is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+}terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60 \Omega r_{\text {sat }}$ of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents.

Voltage Comparators

general description

LM160/LM260/LM360 high speed differential comparator

The LM160/LM260/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the $\mu \mathrm{A} 760 / \mu \mathrm{A} 760 \mathrm{C}$, for which it is a pin-forpın replacement. The device has been optımized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 500 mV .

Complementary outputs having minımum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disc file systems.

features

- Guaranteed high speed 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible
schematic and connection diagrams

Metal Can Package

TOP VIEW
Order Number LM160H, LM260H, or LM360H See Package 11

Dual-In-Line Package

Order Number LM360N
See Package 20
Dual-In-Line and Flat Packages

Order Number LM160D, LM260D or LM360D

absolute maximum ratings

Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage Input Voltage

+8 V	Operatıng Temperature Range	
-8 V	LM160	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
20 mA	LM260	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\pm 5 \mathrm{~V}$	LM360	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}^{+} \geq \mathrm{V}_{\text {IN }} \geq \mathrm{V}^{-}$	Storage Temperature Range Lead Temperature (Soldering, 10 sec)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
		$300^{\circ} \mathrm{C}$

electrical characteristics $\left(T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}\right.$)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Conditions					
Supply Voltage $\mathrm{V}_{\mathrm{cc}}{ }^{+}$		4.5	5	6.5	V
Supply Voltage Vcc^{-}		-45	-5	-65	V
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega$		2	5	mV
Input Offset Current			. 5	3	$\mu \mathrm{A}$
Input Bias Current			5	20	$\mu \mathrm{A}$
Output Resistance (Either Output)	$V_{\text {OUT }}=V_{\text {OH }}$		100		Ω
Response Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 5 \mathrm{~V}$ (Note 1)		13	25	ns
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ (Note 2)		12	20	ns
	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 5 \mathrm{~V}$ (Note 3)		14		ns
Response Time Difference Between Outputs					
$\left(t_{p d}\right.$ of $\left.+\mathrm{V}_{\mathrm{IN} 1}\right)-\left(t_{p d}\right.$ of $\left.-\mathrm{V}_{\mathrm{IN} 2}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 1$)$		2		ns
$\left(t_{p d}\right.$ of $\left.+\mathrm{V}_{\mathrm{IN} 2}\right)-\left(\mathrm{t}_{\mathrm{pd}}\right.$ of $\left.-\mathrm{V}_{\mathrm{IN} 1}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 1)		2		ns
$\left(t_{p d}\right.$ of $\left.+\mathrm{V}_{\mathrm{IN} 1}\right)-\left(\mathrm{t}_{\mathrm{pd}}\right.$ of $\left.+\mathrm{V}_{\mathrm{IN} 2}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 1)		2		ns
(t_{pd} of $\left.-\mathrm{V}_{\mathrm{IN} 1}\right)-\left(\mathrm{t}_{\mathrm{pd}}\right.$ of $\left.-\mathrm{V}_{\mathrm{IN} 2}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 1)		2		ns
Input Resistance	$f=1 \mathrm{MHz}$		17		$\mathrm{k} \Omega$
Input Capacitance	$f=1 \mathrm{MHz}$		3		pF
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\text {S }}=50 \Omega$		8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current			7		$n A /{ }^{\circ} \mathrm{C}$
Common Mode Input Voltage Range	$V_{S}= \pm 6.5 \mathrm{~V}$	± 4	± 4.5		V
Differential Input Voltage Range		± 5			V
Output High Voltage (Either Output)	$\mathrm{I}_{\text {OUT }}=-320 \mu \mathrm{~A}, \mathrm{~V}_{\text {S }}= \pm 4.5 \mathrm{~V}$	2.4	3		V
Output Low Voltage (Either Output)	$\mathrm{I}_{\text {SINK }}=6.4 \mathrm{~mA}$. 25	. 4	V
Positive Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 6.5 \mathrm{~V}$		18	32	mA
Negative Supply Current	$V_{S}= \pm 6.5 \mathrm{~V}$		-9	-16	mA

Note 1: Response tıme measured from the 50% point of a 30 mV p-p 10 MHz sinusoidal input to the 50% point of the output.
Note 2: Response time measured from the 50% point of a $2 \mathrm{Vp}-\mathrm{p} 10 \mathrm{MHz}$ sinusoidal input to the 50% point of the output.
Note 3: Response tıme measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold.

Voltage Comparators
LM161/LM261/LM361 high speed differential comparators

general description

The LM161/LM261/LM361 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the SE529/NE529 for which it is a pin-for-pin replacement. The device has been optimized for greater speed performance and lower input offset voltage. Typically delay varies only 3 ns for over-drive variations of 5 mV to 500 mV . It may be operated from op amp supplies ($\pm 15 \mathrm{~V}$).

Complementary outputs having minımum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disc file systems.

features

- Independent strobes
- Guaranteed high speed 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- Operates from op amp supplies
- Low speed variation with overdrive variation
- Low input offset voltage
- Versatile supply voltage range

schematic and connection diagrams

Dual-In-Line and Flat Package

Order Number LM361N See Package 22
Order Number LM161D, LM261D or LM361D See Package 1
Order Number LM161F See Package 4

Metal Can Package

Order Number LM161H or LM261H
See Package 12
logic diagram

absolute maximum ratings
Positive Supply Voltage, V^{+}
Negatıve Supply Voltage, V^{-}
Gate Supply Voltage, V_{cc}
Output Voltage
Differential Input Voltage
Input Common Mode Voltage
Power Dissipation
Storage Temperature Range
Operatıng Temperature Range
LM161
LM261
LM361
Lead Temperature (Soldering, 10 sec)
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
operating conditions

MIN	TYP	MAX
5 V		15 V
5 V		15 V
		-15 V
-6 V		-15 V
-6 V		
4.5 V	5 V	5.5 V
4.75 V	5 V	5.25 V

electrical characteristics $i v^{+}=+10 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {max }}$, unless noted)

PARAMETER	CONDITIONS	LIMITS						UNITS	
		LM161/LM261			LM361				
		MIN	TYP	MAX	MIN	TYP	MAX		
Input Offset Voltage			1	3		1	5	$m \mathrm{~V}$	
Input Bras Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	20		10	30	${ }_{\mu}^{\mu} \mathrm{A}$	
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	3		2	5	${ }_{\mu \mathrm{A}} \mathrm{A}^{\text {a }}$	
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3		V / mV	
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		20			20		k Ω	
Logical "1" Output Voltage	$\begin{aligned} & V_{\text {CC }}=475 \mathrm{~V}, \\ & I_{\text {SOURCE }}=-5 \mathrm{~mA} \end{aligned}$	24	33		24	33		v	
Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=475 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{SINK}}=64 \mathrm{~mA} \end{aligned}$			4			4	v	
Strobe Input " 1 " Current	$\begin{aligned} & \mathrm{V}_{\text {CC }}=525 \mathrm{~V}, \\ & \mathrm{~V}_{\text {STROBE }}=24 \mathrm{~V} \end{aligned}$			200			200	$\mu \mathrm{A}$	
Strobe Input " 0 " Current	$\begin{aligned} & V_{\text {CC }}=525 \mathrm{~V}, \\ & V_{\text {STROBE }}=4 \mathrm{~V} \end{aligned}$			-16			-16	mA	
Strobe Input "0" Voltage	$\mathrm{V}_{\mathrm{cC}}=475 \mathrm{~V}$			8			8	v	
Strobe Input " 1 " Voltage	$\mathrm{V}_{\mathrm{cc}}=475 \mathrm{~V}$	2			2			\checkmark	
Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=525 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \end{aligned}$	-18		-55	-18		-55	mA	
Supply Current 1^{+}	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=525 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			45				mA	
Supply Current 1^{+}	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{Cc}}=525 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$						5	mA	
Supply Current I^{-}	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=525 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			10				mA	
Supply Current I^{-}	$\begin{aligned} & \mathrm{v}^{+}=10 \mathrm{~V}, \mathrm{v}^{-}=-10 \mathrm{~V}, \\ & \mathrm{v}_{\mathrm{cc}}=525 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$						10	mA	
Supply Current Icc	$\begin{aligned} & \mathrm{v}^{+}=10 \mathrm{~V}, \mathrm{v}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}}=525 \mathrm{~V} . \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			18			* an	mA	
Supply Current Icc	$\begin{aligned} & V_{c c}=525 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$						20	mA	
TRANSIENT RESPONSE	$\mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}$ Overdrive								
Propagation Delay Time ($t_{\text {pot }(0)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		14	20		14	20	ns	
Propagation Delay Time ($\mathrm{t}_{\text {pd(} 11}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		14	20		14	20	ns	
Delay Between Output A and B	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	5		2	5	ns	
Strobe Delay Time ($\mathrm{t}_{\text {pat(0) }}$)	$T_{A}=25^{\circ} \mathrm{C}$		8			8		ns	
Strobe Delay Time ($\mathrm{t}_{\text {po(1) }}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8			8		ns	

Voltage Comparators

LM710 voltage comparator

general description

The LM710 is a high-speed voltage comparator intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differential input and a single-ended output, with saturated output levels compatible with practically all types of integrated logic.
The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minoritycarrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in
saturating comparator applications. In fact, the low stray and wiring capacitances that can be realized with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.
The LM710 is useful as a pulse height discriminator, a voltage comparator in high-speed A/D converters or a go, no-go detector in automatic test equipment. It also has applications in digital systems as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the unit suggests it for applications replacing relatively simple discrete component circuitry.
schematic* and connection diagrams

Metal Can

Note Pin 4 connected to case
Order Number LM710H See Package 11

typical applications*

Schmidt Trigger

Pulse Width Modulator

Line Receiver With
Increased Output Sink Current

Level Detector With
Lamp Driver

absolute maximum ratings

Positive Supply Voltage	14.0 V
Negative Supply Voltage	-7.0 V
Peak Output Current	10 mA
Differential Input Voltage	$\pm 5.0 \mathrm{~V}$
Input Voltage	$\pm 7.0 \mathrm{~V}$
Power Dissipation	
TO-99 (Note 1)	300 mW
Flat Package (Note 2)	200 mW
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Solderıng, 10 sec)	$300^{\circ} \mathrm{C}$

electrical characteristics (Note 3)

Note 1: Rating applies for case temperatures to $+125^{\circ} \mathrm{C}$, derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+105^{\circ} \mathrm{C}$.
Note 2: Derate linearly at $4.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+100^{\circ} \mathrm{C}$.
Note 3: These specifications apply for $\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-6.0 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified. The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8 V at $-55^{\circ} \mathrm{C}$, 1.4 V at $+25^{\circ} \mathrm{C}$, and 1.0 V at $+125^{\circ} \mathrm{C}$.

Note 4: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive

typical performance characteristics

Input Bias Current

Input Offset Current

Response Time For
Various Input Overdrives

Output Sink
Current

Voltage Gain

Supply Current

Common Mode Pulse Response

Maximum Power
Dissipation

Voltage Comparators

LM710C voltage comparator

general description

The LM710C is a high-speed voltage comparator intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differential input and a single-ended output, with saturated output levels compatible with practically all types of integrated logic.
The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minoritycarrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in saturating comparator applications. In fact, the low stray and wiring capacitances that can be realized
with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.

The LM710C is useful as a pulse height discriminator, a voltage comparator in high-speed A/D converters or a go, no-go detector in automatic test equipment. It also has applications in digital systems as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the unit suggests it for applications replacing relatively simple discrete component circuitry.
The LM710C is the commercial/industrial version of the LM710. It is identical to the LM710 except that operation is specified over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

schematic* and connection diagrams

typical applications*

Schmidt Trigger

Pulse Width Modulator

*Pin connections shown are for metal can.

Metal Can Package

Note Pin 4 connected to case.
Order Number LM710CH See Package 11

Dual-In-Line Package

Order Number LM710CN See Package 22

Line Receiver With Increased Output Sink Current

Level Detector With Lamp Driver

absolute maximum ratings

Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)

TO-99
Flat Package
Output Short Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
14.0V
$-7.0 \mathrm{~V}$
10 mA
$\pm 5.0 \mathrm{~V}$
$\pm 7.0 \mathrm{~V}$
300 mW
200 mW
10 sec
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}<200 \Omega \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		16	50	mV
Input Offset Current	$T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=1.4 \mathrm{~V}$		18	50	$\mu \mathrm{A}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		16	25	$\mu \mathrm{A}$
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1000	1500		
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		Ω
Output Sink Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \Delta V_{I N} \geq 10 \mathrm{mV} \\ & V_{\text {OUT }}=0 \end{aligned}$	1.6	25		mA
Response Time (Note 3)	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		40		ns
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$			65	$m V$
Average Temperature	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$				
Coefficient of Input	$\mathrm{R}_{\mathrm{S}} \leq 50 \Omega$		50	20	$\mu \vee{ }^{\circ} \mathrm{C}$
Offset Voltage					
Input Offset Current				75	$\mu \mathrm{A}$
Average Temperature	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$		15	50	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Coefficient of Input	$0^{\circ} \mathrm{C} \leq T_{A} \leq 25^{\circ} \mathrm{C}$		24	100	$n A /{ }^{\circ} \mathrm{C}$
Offset Current					
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$		25	40	$\mu \mathrm{A}$
Input Voltage Range	$\mathrm{V}^{-}=-70 \mathrm{~V}$	± 5.0			\checkmark
Common Mode Rejection Ratıo	$\mathrm{R}_{\mathbf{S}} \leq 200 \Omega$	70	98		dB
Differential Input Voltage Range		± 5.0			V
Voltage Gain		800			
Positive Output Level	$\begin{aligned} & V_{I N} \geq 10 \mathrm{mV} \\ & 0 \leq \mathrm{I}_{\text {OUT }} \leq-5 \mathrm{~mA} \end{aligned}$	25	3.2	40	V
Negative Output Level	$V_{\text {IN }} \leq-10 \mathrm{mV}$	-1.0	-0.5	0	v
Output Sink Current	$\mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	0.5			mA
Positive Supply Current	$\mathrm{V}_{\mathrm{IN}} \leq-10 \mathrm{mV}$		5.2	90	mA
Negative Supply Current			4.6	70	mA
Power Consumption				150	mW

Note 1: Ratıngs apply for ambient temperatures to $+70^{\circ} \mathrm{C}$
Note 2: These specifications apply for $\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=60 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified. The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.5 V at $0^{\circ} \mathrm{C}, 1.4 \mathrm{~V}$ at $+25^{\circ} \mathrm{C}$ and 1.2 V at $+70^{\circ} \mathrm{C}$.

Note 3: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.

typical performance characteristics

Transfer Function

Input Bias Current

Response Time For
Various Input Overdrives

Voltage Gain

Input Offset Current

Response Time For Various Input Overdrives

Voltage Gain

Supply Current

Common Mode Pulse Response

LM711 dual comparator

general description

The LM711 contains two voltage comparators with separate differential inputs, a common output and provision for strobing each side independently. Similar to the LM710, the device features low offset and thermal drift, a large input voltage range, low power consumption, fast recovery from large overloads and compatibility with most integrated logic circuits.

With the addition of an external resistor network, the LM711 can be used as a sense amplifier for core memories. The input thresholding, combined with the high gain of the comparator, eliminates many of the inaccuracies encountered with con-
ventional sense amplifier designs. Further, it has the speed and accuracy needed for reliably detecting the outputs of cores as small as 20 mils.

The LM711 is also useful in other applications where a dual comparator with OR'ed outputs is required, such as a double-ended limit detector. By using common circuitry for both halves, the device can provide high speed with lower power dissipation than two single comparators. The LM711 is available in either an 10 -lead low profile TO- 5 header or a $1 / 4^{\prime \prime}$ by $1 / 4^{\prime \prime}$ metal flat package.
schematic** and connection diagrams

Note Pin 5 connected to case
Order Number LM711H See Package 14

typical applications**

Double-Ended Limit Detector
With Lamp Driver

**Pin connections shown are for metal can

absolute maximum ratings

Positive Supply Voltage

$$
+14.0 \mathrm{~V}
$$

Negative Supply Voltage
-7.0V
25 mA
$\pm 5.0 \mathrm{~V}$
$\pm 7.0 \mathrm{~V}$
0 to +6.0 V
300 mW
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
electrical characteristics (These specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V}$)

PARAMETER	CONDITIONS (Note 2)	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0$		1.0	3.5	mV
	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega,-5 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+5 \mathrm{~V}$		1.0	5.0	mV
Input Offset Current			0.5	10.0	$\mu \mathrm{A}$
Input Bias Current			25	75	$\mu \mathrm{A}$
Voltage Gain		750	1500		
Response Time (Note 3)			40		ns
Strobe Release Time			12		ns
Input Voltage Range	$\mathrm{V}^{-}=.7 .0 \mathrm{~V}$	± 5.0			V
Differential Input Voltage Range		± 5.0			V
Output Resistance			200		Ω
Positive Output Level	$V_{1 N} \geq 10 \mathrm{mV}$		4.5	5.0	V
Loaded Positive Output Level	$V_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=-5 \mathrm{~mA}$	2.5	3.5		V
Negative Output Level	$\mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}$	-1.0		0	V
Strobed Output Level	$\mathrm{V}_{\text {STROBE }} \leq 0.3 \mathrm{~V}$	-1.0		0	V
Output Sink Current	$\mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{V}_{\text {OUT }} \geq 0$	0.5	0.8		mA
Strobe Current	$V_{\text {STROBE }}=100 \mathrm{mV}$		1.2	2.5	mA
Positive Supply Current	$\mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}$		8.6		mA
Negative Supply Current		,	3.9		mA
Power Consumption			130	200	mW
The following specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$:					
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0$			4.5	mV
	$R_{S} \leq 200 \Omega$			6.0	$m V$
Input Offset Current				20	$\mu \mathrm{A}$
Input Bias Current				150	$\mu \mathrm{A}$
Average Temperature Coefficient of Input Offset Voltage			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Voltage Gain		500			

Note 1: Ratıng applies for case temperatures to $+125^{\circ} \mathrm{C}$; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $105^{\circ} \mathrm{C}$.
Note 2: The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8 V at $-55^{\circ} \mathrm{C}, 1.4 \mathrm{~V}$ at $+25^{\circ} \mathrm{C}$, and 1.0 V at $+125^{\circ} \mathrm{C}$.
Note 3: The response time specified is for a 100 mV input step with 5 mV overdrive (see definitions).

typical performance characteristics

Response Time for Various Input Overdrives

Common Mode Pulse
Response

Power Consumption

temperature $\left({ }^{\circ} \mathrm{C}\right)$

Strobe Release Time for
Various Input Overdrives

Input Bias Current

Power Consumption

Output Pulse Stretching With Capacitive Loading

Output Voltage Level

Maximum Power Dissipation

Voltage Comparators

LM711C dual comparator

general description

The LM711C contains two voltage comparators with separate differential inputs, a common output and provision for strobing each side independently. Similar to the LM710C, the device features low offset and thermal drift, a large input voltage range, low power consumption, fast recovery from large overloads and compatibility with most integrated logic circuits.

With the addition of an external resistor network, the LM711C can be used as a sense amplifier for core memories. The input thresholding, combined with the high gain of the comparator, eliminates many of the inaccuracies encountered with con-
ventional sense amplifier designs. Further, it has the speed and accuracy needed for reliably detecting the outputs of cores as small as 20 mils.

The LM711C is also useful in other applications where a dual comparator with OR'ed outputs is required, such as a double-ended limit detector. By using common circuitry for both halves, the device can provide high speed with lower power dissipation than two single comparators. The LM711C is the commercial/industrial version of the LM711. It is identical to the LM711, except that operation is specified over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

schematic** and connection diagrams

typical applications**

Sense Amplifier With Supply Strobing
for Reduced Power Consumption*

Order Number LM711CH See Package 14

Order Number LM711CN See Package 22

Double-Ended Limit Detector
With Lamp Driver

absolute maximum ratings

Positive Supply Voltage	+14.0 V
Negative Supply Voltage	-7.0 V
Peak Output Current	25 mA
Differential Input Voltage	$\pm 5.0 \mathrm{~V}$
Input Voltage	$\pm 7.0 \mathrm{~V}$
Strobe Voltage	0 to +6.0 V
Internal Power Dissipation (Note 1)	300 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

electrical characteristics

(The following specfications apply for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=12.0 \mathrm{~V}, \mathrm{~V}^{-}=-6.0 \mathrm{~V}$ unless otherwise specified)

PARAMETER	CONDITIONS (Note 2)	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0$		1.0	5.0	mV
	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega,-5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+5 \mathrm{~V}$		1.0	7.5	mV
Input Offset Current	\because		0.5	15	$\mu \mathrm{A}$
Input Bias Current			25	100	$\mu \mathrm{A}$
Voltage Gain		700	1500		
Response Time (Note 3)			40		ns
Strobe Release Time			12		ns
Input Voltage Range	$V^{-}=-7.0 \mathrm{~V}$	± 5.0			V
Differential Input Voltage Range		± 5.0			V
Output 'Resistance			200		Ω
Positive Output Level	$\mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}$		4.5	5.0	V
Loaded Positive Output Level	$V_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=-5 \mathrm{~mA}$	2.5	3.5		V
Negative Output Level	$V_{\text {IN }} \leq-10 \mathrm{mV}$	-1.0	-0.5	0	V
Strobed Output Level	$\mathrm{V}_{\text {Strobe }} \leq 0.3 \mathrm{~V}$	-1.0		0	V
Output Sink Current	$\mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{V}_{\text {OUT }} \geq 0$	0.5	0.8		mA
Strobe Current	$V_{\text {STROBE }}=100 \mathrm{mV}$		1.2	2.5	mA
Positive Supply Current	$\mathrm{V}_{\mathrm{IN}} \leq-10 \mathrm{mV}$		8.6		mA
Negative Supply Current			3.9		mA
Power Consumption			130	230	mW

The following specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$:
Input Offset Voltage

Input Offset Current
Input Bias Current
Average Temperature Coefficient of Input Offset Voltage

Voltage Gain
$\left|\begin{array}{l}R_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \\ \mathrm{R}_{\mathrm{S}} \leq 200 \Omega,-5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+5 \mathrm{~V}\end{array}\right|$

		6.0	
		10	
		150	
	5.0		
500			

Note 1: Ratıngs apply for ambient temperatures to $70^{\circ} \mathrm{C}$.
Note 2: The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 15 V at $0^{\circ} \mathrm{C}, 1.4 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, and 1.2 V at $+70^{\circ} \mathrm{C}$.
Note 3: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
typical performance characteristics

Response Time for Various Input Overdrives

Common Mode Pulse

Response

Strobe Release Time for Various Input Overdrives

Input Bias Current

Output Pulse Stretching With Capacitive Loading

Power Consumption

Voltage Comparators

LM1514／LM1414 dual differential voltage comparator

general description

The LM1514／LM1414 is a dual differential voltage comparator intended for applications requiring high accuracy and fast response times．The device is constructed on a single monolithic silicon chip．

The LM1514／LM1414 is useful as a variable thresh－ old Schmitt trigger，a pulse height discriminator， a voltage comparator in high－speed A－D converters， a memory sense amplifier or a high noise immunity line receiver．The output of the comparator is compatible with all integrated logic forms．The LM1514／LM1414 meet or exceed the specifications for the MC1514／MC1414 and are pin－for－pin re－ placements．The LM1514 is available in the ceramic dual－in－line package．The LM 1414 is available in either the ceramic or molded dual－in－line package．

The LM1514 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range．The LM1414 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range．

features

－Two totally separate comparators per package
－Independent strobe capability
－High speed 30 ns typ
－Low input offset voltage and current
－High output sink current over temperature
－Output compatible with TTL／DTL logic
－Molded or ceramic dual－in－line package

schematic and connection diagram

Dual－In－Line Package

Order Number LM1414J or LM1514J
See Package 16
Order Number LM1414N
See Package 22
absolute maximum ratings (Note 1)

Positive supply voltage	+140 V
Negatıve supply voltage	-70 V
Peak output current	10 mA
Differentıal input voltage	$\pm 5.0 \mathrm{~V}$
Input voltage	$\pm 7.0 \mathrm{~V}$

Power dissıpatıon (Note 2)		600 mW
Operatıng temperature Range	LM 1514	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	LM1414	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature (solderıng, 10 sec)	$300^{\circ} \mathrm{C}$	

electrical characteristics for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V}$, unless otherwise specified

PARAMETER	CONDITIONS	LM1514			LM1414			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.4 \mathrm{~V}$		0.6	20		1.0	5.0	mV
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=14 \mathrm{~V}$		08	30		12	50	$\mu \mathrm{A}$
Input Bias Current				20			25	$\mu \mathrm{A}$
Voltage Gain		1250			1000			
Output Resistance			200			200		Ω
Differential Input Voltage Range		± 50			± 5.0			v
Input Voltage Range	$\mathrm{V}^{-}=-7.0 \mathrm{~V}$	± 50			± 5.0			v
Common Mode Rejection Ratıo	$\mathrm{R}_{\text {S }} \leq 200 \Omega, \mathrm{~V}^{-}=-70 \mathrm{~V}$	80	100		70	100		dB
Positive Output Voltage	$V_{\text {IN }} \geq 7.0 \mathrm{mV}, 0 \leq 1$ OUT $\leq-50 \mathrm{~mA}$	2.5	3.2	4.0	25	3.2	40	v
Negative Output Voltage	$\mathrm{V}_{\text {IN }} \leq-70 \mathrm{mV}$	-1.0	-0.5	0	-1.0	-0.5	0	v
Strobed Output Voitage	$\mathrm{V}_{\text {Strobe }} \leq 0.3 \mathrm{~V}$	-1.0	-0.5	0	-10	-0.5	0	v
Strobe "0" Current	$V_{\text {StROBE }}=100 \mathrm{mV}$		-12	-2.5		-1.2	-2.5	mA
Positive Supply Current	$\mathrm{V}_{\text {IN }} \leq-7 \mathrm{mV}$			18			18	mA
Negative Supply Current	$\mathrm{v}_{\text {IN }} \leq-7 \mathrm{mV}$			-14			-14	mA
Power Consumption			180	300		180	300	mW
Response Time	(Note 3)		30			30		ns
LM 1514/LM 1414: The following apply for $T_{L} \leq T_{A} \leq T_{H}$ (Note 4) unless otherwise specified								
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 200 \Omega, V_{\text {OUT }}=1.8 \mathrm{~V} \text { for } T_{A}=T_{L} \\ & V_{C M}=0 \mathrm{~V}, V_{\text {OUT }}=1.0 \mathrm{~V} \text { for } T_{A}=T_{H} \end{aligned}$			3.0 30				$\begin{aligned} & m V \\ & m V \end{aligned}$
Input Blas Current Temperature Coefficient of Input Offset Voltage			3.0	45		50	40	$\stackrel{\mu \mathrm{A}}{\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}}$
Input Offset Current	$\begin{aligned} & V_{C M}=0 \mathrm{~V}, V_{\text {OUT }}=1.8 \mathrm{~V}, T_{A}=T_{L} \\ & V_{C M}=0 \mathrm{~V}, V_{\text {OUT }}=10 \mathrm{~V}, T_{A}=T_{H} \end{aligned}$			$\begin{aligned} & 7.0 \\ & 3.0 \end{aligned}$			75 7.5	$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$
Voltage Gain		1000			800			
Output Sink Current	$V_{\text {IN }} \leq-90 \mathrm{mV}, \mathrm{V}_{\text {OUT }} \geq 0 \mathrm{~V}$	2.8	4.0		1.6	25		mA

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the referenced pin.
Note 2: LM1514 ceramic package: The maximum junction temperature is $+150^{\circ} \mathrm{C}$, for operating at elevated temperatures, devices must be derated linearly at $125 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ LM1414 ceramic package. The maximum junction temperature is $+95^{\circ} \mathrm{C}$ for operating at elevated temperatures, devices must be derated linearly at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. LM1414 molded package: The maxımum junction temperature is $+115^{\circ} \mathrm{C}$, for operating at elevated temperatures, devices must be derated linearly at $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 3: The response time specified (see Definitions) for a 100 mV input step with 5 mV overdrive.
Note 4: For $L M 1514, T_{L}=-55^{\circ} \mathrm{C}, \mathrm{T}_{H}=+125^{\circ} \mathrm{C}$. For $\mathrm{LM} 1414, \mathrm{~T}_{\mathrm{L}}=0^{\circ} \mathrm{C}, \mathrm{T}_{H}=+70^{\circ} \mathrm{C}$.

Level Translators／Buffers

DH0034／DH0034C high speed dual level translator

general description

The DH0034／DH0034C is a high speed level trans－ lator suitable for interfacing to MOS or junction FET analog switches．It may also be used as a universal logic level shifter capable of accepting TTL／DTL input levels and shifting to CML，MOS， or SLT levels．

features

－Fast switching， $\mathrm{t}_{\mathrm{pdo}}$ ：typically $15 \mathrm{~ns} ; \mathrm{t}_{\mathrm{pd} 1}$ ： typically 35 ns
－Large output voltage range：25V
－Input is TTL／DTL compatible
－Low output leakage：typically $0.1 \mu \mathrm{~A}$
－High output currents：up to $\pm 100 \mathrm{~mA}$

schematic and connection diagrams

Metal Can Package

TOP VIEW
Order Number DH0034H or DH0034CH See Package 12

Dual－in－Line Package

typical applications

5 MHz Analog Switch

TTL to IBM（SLT）Logic Levels

absolute maximum ratings

Vcc Supply Voltage	7.0 V
Negative Supply Voltage	-30 V
Positive Supply Voltage	+25 V
Differential Supply Voltage	25 V
Maximum Output Current	100 mA
Input Voltage	+5.5 V
Operating Temperature Range:	DH0034
	DH0034C

electrical characteristics (See Notes $1 \& 2$)

PARAMETER	CONDITIONS	DH0034			DH0034C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Logical "1" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V} \end{aligned}$	2.0	,		2.0			V
Logical " 0 " Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V} \end{aligned}$			0.8			0.8	v
Logical "1" Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V} \end{aligned}$			40			40	$\mu \mathrm{A}$
Logical " 1 " Input Current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$			1.0			1.0	mA
Logical "0" Input Current	$\begin{aligned} & V_{c c}=5.5 \mathrm{~V}, V_{\text {IN }}=0.4 \mathrm{~V} \\ & V_{c c}=5.25 \mathrm{~V}, V_{\text {IN }}=0.4 \mathrm{~V} \end{aligned}$			1.6			1.6	mA
Power Supply Current Logic " 0 "	$\begin{aligned} & (\text { Note 3) } \\ & V_{c c}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V} \end{aligned}$		30	38		30	38	mA
Power Supply Current Logic " 1 "	(Note 3) $\begin{aligned} & V_{c \mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{aligned}$		37	48		37	48	mA
Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=50 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & v^{-}+.50 \\ & v^{-}+.3 \end{aligned}$	$\begin{aligned} & v^{-}+.75 \\ & v^{-}+.50 \end{aligned}$		$\begin{aligned} & v^{-}+.50 \\ & v^{-}+.3 \end{aligned}$	$\begin{aligned} & \mathrm{v}^{-}+.80 \\ & \mathrm{v}^{-}+.65 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V} \\ & \mathrm{~V}^{+} \cdot \mathrm{V}^{-}=25 \mathrm{~V} \end{aligned}$		0.1	5		0.1	5	$\mu \mathrm{A}$
Transition Time to Logical " 0 "	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{3}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & V^{-}=-25 \mathrm{~V}, R_{\mathrm{L}}=510 \Omega \end{aligned}$		15	25		15	35	ns
Transition Time to Logical " 1 "	$\begin{aligned} & V_{\text {CC }}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & V^{-}=-25 \mathrm{~V}, R_{L}=510 \Omega \end{aligned}$		35	60		35	65	ns

Note 1: These specifications apply over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DH0034 and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the DH0034C with a 510 ohm resistor connected between output and ground, and V^{-}connected to -25 V , unless otherwise specified.
Note 2: All typical values are for $\mathrm{T}_{A}=\mathbf{2 5}$. .
Note 3: Current, measured is total drawn from $V_{\text {CC }}$ supply.

theory of operation

When both inputs of the DH0034 are raised to logic＂ 1 ＂，the input AND gate is turned＂on＂ allowing Q1＇s emitter to become forward biased． Q1 provides a level shift and constant output cur－ rent．The collector current is essentially the same as the emitter which is given by $\frac{V_{C C}-V_{B E}}{R 1}$ Approximately 7.0 mA flows out of Q 1 ＇s col－ lector．

applications information

1．Paralleling the Outputs

The outputs of the DH0034 may be paralleled to increase output drive capability or to accomplish the＂wire OR＂．In order to prevent current hog－ ging by one output transistor or the other，resis－ tors of 2 ohms $/ 100 \mathrm{~mA}$ value should be inserted between the emitters of the output transistors and the minus supply．

2．Recommended Output Voltage Swing

The graph shows boundary conditions which govern proper operation of the DH0034．The range of operation for the negative supply is shown on the X axis and must be between -3 V and -25 V ．The allowable range for the positive supply is governed by the value chosen for $\mathrm{V}^{-} . \mathrm{V}^{+}$ may be selected by drawing a vertical line through the selected value for V^{-}and terminated by the

About 2 mA of Q1＇s collector current is drawn off by pull down resistor，R2．The balance， 5 mA ，is available as base drive to Q 2 and to charge its associated Miller capacitance．The output is pulled to within a $\mathrm{V}_{\text {SAT }}$ of V^{-}．When either（or both） input to the DH0034 is lowered to logic＂ 0 ，＂the AND gate output drops to 0.2 V turning Q 1 off． Deprived of base drive Q 2 rapidly turns off causing the output to rise to the V_{3} supply voltage．Since O2＇s emitter operates between 0.6 V and 0.2 V ，the speed of the DH0034 is greatly enhanced．
boundaries of the operating region．For example，a value of V^{-}equal to -6 V would dictate values of

V^{+}between -5 V and +19 V ．In general，it is de－ sirable to maintain at least 5 V difference between the supplies．

DM5406/DM7406,DM5416/DM7416 hex inverter buffers/drivers

general description

These TTL hex inverter buffers/drivers are fully compatible for use with TTL and DTL logic circuits. Each inverter features high-voltage, opencollector outputs (DM5406/DM7406 30 volts minimum breakdown and DM5416/DM7416 15 volts minimum breakdown). These inverters also feature high sink current capability. (DM5406, DM5416 30 mA and DM7406, DM7416 40 mA).

features

- Input clamp diodes
- High voltage open-collector outputs DM5406/DM7406
DM5416/DM7416
- High sink current capability

DM5406, DM5416
30 mA
DM7406, DM7416
40 mA

- 15 ns typical propagation delay time

schematic and connection diagrams

Dual-In-Line and Flat Package

Order Number DM5406J, DM7406J, DM5416J or DM7416J See Package 16
Order Number DM5406N, DM7406N, DM5416N or DM7416N See Package 22
Order Number DM5406W or DM5616W See Package 27

Note 1: "Absolute Maximum Ratings" are those values beyond which the operation of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DM5406, DM5416 and across the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ range for the DM7406, DM7416. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
ac test circuit and switching time waveforms

Level Translators/Buffers

DM5407/DM7407,DM5417/DM7417
hex buffers/drivers

general description

These TTL hex buffers/drivers are fully compatible for use with TTL and DTL logic circuits. Each buffer features high-voltage, open-collector outputs (DM5407/DM7407 30V minimum breakdown and DM5417/DM7417 15V minimum breakdown). These buffers also feature high sink current capability (DM5407, DM5417 30 mA and DM7407, DM7417 40 mA$)$.

features

- Input clamp diodes
- High voltage open-collector outputs $\begin{array}{ll}\text { DM5407/DM7407 } & 30 \mathrm{~V} \\ \text { DM5417/DM7417 } & 15 \mathrm{~V}\end{array}$
- High sink current capability DM5407,DM5417

30 mA 40 mA

- 14 ns typical propagation delay time
- 145 mW typical power dissipation
schematic and connection diagrams

Note Component values shown are nominal

Order Number DM5407J, DM7407J,
DM5417J or DM7417J
See Package 16
Order Number DM5407N, DM7407N,
DM5417N or DM7417N See Package 22
Order Number DM5407W or DM5417W See Package 27

absolute maximum ratings (Note 1)		operating conditions				UNITS
				MIN	MAX	
Supply Voltage Input Voltage Output Voltage DM5407/DM7407	7.0 V	Supply Voltage (V_{CC})		4.5		
	5.5 V	DM5407,DM5417		4.5	55	V
	30 V	DM7407, DM7417		4.75	5.25	V
DM5417/DM7417 Storage Temperature Range Lead Temperature (Soldering, 10 sec)	15 V	Temperature (T_{A}) DM5407,DM5417 DM7407,DM7417				
	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			-55	+125	${ }^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$			0	70	${ }^{\circ} \mathrm{C}$
		Output Sink Current DM5407,DM54:17 DM7407, DM7417			$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$m A$ $m A$
electrical characteristics (Note 2)						
PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Logical "1" Input Voltage			2			V
Logical " 0 " Input Voltage					0.8	v
Output Breakdown Voltage						
DM5407/DM7407	$\mathrm{V}_{\text {cC }}=\mathrm{Max} \mathrm{l}_{\text {OFF }}=250 \mu \mathrm{~A}$	$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V}$	30			v
DM5417/DM7417	$V_{\text {CC }}=\mathrm{Max}^{\text {, }} \mathrm{l}_{\text {OFF }}=250 \mu \mathrm{~A}$	$\mathrm{V}_{\text {IN }}=20 \mathrm{~V}$	15			v
Logical "0" Output Voltage	$\mathrm{V}_{\text {cc }}=M$ in $\} \quad \mathrm{l}_{\text {Out }}=\mathrm{Max}$				0.7	v
	$\left.V_{\text {IN }}=08 \mathrm{~V}\right\} \quad$ Iout $=16$			-	04	V
Logical "1" Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=24 \mathrm{~V}$				40	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {cc }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=55 \mathrm{~V}$				1	mA
Logical ' 0 " Input Current	$\mathrm{V}_{\text {cc }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$				-1.6	mA
Supply Current - Logical " 1 "Logical " 0 "	$\mathrm{V}_{\text {CC }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$			29	41	mA
	$\mathrm{V}_{\text {cc }}=\mathrm{Max} \quad \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			21	30	mA
Input Clamp Voltage	$V_{C C}=5.0 \mathrm{~V} \quad \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$, $T_{A}=25^{\circ} \mathrm{C}$			-1.5	V
Propagation Delay to a Logical " 0 ", $\mathrm{t}_{\text {pdo }}$	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}$	$=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=110 \Omega$		20	30	ns
Propagation Delay to a Logical " 1 ", $\mathrm{t}_{\mathrm{pd} 1}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}$	$=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=110 \Omega$		6	10	ns

Note 1: "Absolute Maxımum Ratıngs" are those values beyond which the operation of the device cannot be guaranteed. Except for "Operatıng Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified mın/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DM5407, DM5417 and across the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ range for the DM7407, DM7417. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

ac test circuit and switching time waveforms

DM5426/DM7426

quad 2-input TTL-MOS interface gate

general description

These Series 54/74 compatible gates are high output voltage versions of the DM5403 (SN5403), DM7403 (SN7403). Their open-collector outputs may be "pulled-up" to +15 volts in the logical " 1 " state thus providing guaranteed interface between TTL and MOS logic levels.

In addition the devices may be used in applications
where it is desirable to drive low current relays or lamps that require up to 15 volts.

features

- 15V standoff voltage
- Pin compatible with DM5403/DM7403

schematic and connection diagrams

Dual-In-Line Package

TOP VIEW
Order Number DM5426J or DM7426J
See Package 16
Order Number DM5426N or DM7426N See Package 22

typical applications

absolute maximum ratings

$V_{c c}$
7 V
5.5 V
15 V

$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
$7 V$
Input Voltage 5.5V
Output Voltage
Operating Temperature Range

DM5426
DM7426
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Diode Clamp Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA} \end{aligned}$			-1.5	V
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{cc}}=\frac{4.5 \mathrm{~V}}{4.75 \mathrm{~V}}$	2.0			V
Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{cc}}=\frac{4.5 \mathrm{~V}}{4.75 \mathrm{~V}}$			0.8	V
Logical "1" Output Current	$\begin{aligned} & V_{C C}=\frac{4.5 \mathrm{~V}}{4.75 \mathrm{~V}} \quad V_{\text {IN }}=0.8 \mathrm{~V} \\ & V_{\text {OUT }}=12 \mathrm{~V} \end{aligned}$			50	$\mu \mathrm{A}$
Logical " 1 " Output Breakdown Voltage	$\begin{aligned} & V_{C C}=\frac{4.5 \mathrm{~V}}{4.75 \mathrm{~V}} \quad \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \end{aligned}$	15			V
Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=\frac{4.5 \mathrm{~V}}{4.75 \mathrm{~V}} \quad \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=16 \mathrm{~mA} \end{aligned}$			0.4	V
Logical " 1 " Input Current	$\mathrm{V}_{\mathrm{Cc}}=\frac{5.5 \mathrm{~V}}{5.25 \mathrm{~V}} \quad \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=\frac{5.5 \mathrm{~V}}{5.25 \mathrm{~V}} \quad \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			1	mA
Logical "0' Input Current	$V_{C C}=\frac{5.5 \mathrm{~V}}{5.25 \mathrm{~V}} \quad V_{I N}=0.4 \mathrm{~V}$			-1.6	mA
$\begin{aligned} & \text { Supply Current - Logical " } 0 \text { " } \\ & \text { (Each Gate) } \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\frac{5.5 \mathrm{~V}}{5.25 \mathrm{~V}} \quad \mathrm{~V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		3.0	5.1	mA
$\begin{aligned} & \text { Supply Current - Logical " } 1 \text { " } \\ & \text { (Each Gate) } \end{aligned}$	$V_{c \mathrm{C}}=\frac{5.5 \mathrm{~V}}{5.25 \mathrm{~V}} \quad \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$		1.0	1.8	mA
Propagation Delay Time to a Logical " 0 ", $\mathrm{t}_{\mathrm{pdo}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{OUT}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$		8	17	ns
Propagation Delay Time to a Logical " 1 ", $\mathrm{t}_{\mathrm{pd} 1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{OUT}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$		14	24	ns

Note 1: Min/Max units apply across the guaranteed temperature range $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DM5426 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the DM7426 unless otherwise specified. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
ac test circuit and switching time waveforms

Level Translators/Buffers

DM7800/DM8800 dual voltage translator

general description

The DM7800/DM8800 are dual voltage translators designed for interfacing between conventional TTL or DTL voltage levels and those levels associated with high impedance junction or MOS FET-type devices. The design allows the user a wide latitude in his selection of power supply voltages, thus providing custom control of the output swing. The translator is especially useful in analog switching; and since low power dissipation occurs in the "off" state, minimum system power is required.

features

- 31 volt (max) output swing
- 1 mW power dissipation in normal state
- Standard 5V power supply
- Temperature range:

DM7800	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM8800	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

- Compatible with all MOS devices

schematic and connection diagrams

typical applications

Bipolar to MOS Interfacing

Metal Can Package

Order Number DM7800H
or DM8800H
See Package 12

*Analog signals within the range of +8 V to -8 V

4-Channel Analog Switch

absolute maximum ratings

$V_{\text {cc }}$ Supply Voltage	7.0 V
$\mathrm{~V}_{2}$ Supply Voltage	-30 V
$\mathrm{~V}_{3}$ Supply Voltage	+30 V
$\mathrm{~V}_{3}-\mathrm{V}_{2}$ Voltage Differential	40 V
Input Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
DM7800	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM8800	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

electrical characteristics (Note 1)

PARAMETER		CONDITIONS	MIN	TYP (Note 4)	MAX	UNITS
Logical "1" Input Voltage	DM7800	$\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$	2.0		,	V
Logical "0" Input Voltage	DM7800	$\frac{V_{c c}=4.5 \mathrm{~V}}{\mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}}$			0.8	V
Logical "1" Input Current	$\frac{\text { DM7800 }}{}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ ($\mathrm{V}_{\text {cc }}=5.25 \mathrm{~V} \quad \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V}$			5	$\mu \mathrm{A}$
Logical " 1 " Input Current	DM7800	$\frac{V_{C C}=5.5 \mathrm{~V}}{\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}} \quad \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			1	mA
Logical "0" Input Current	DM7800	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V} \end{aligned} \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		-0.2	-0.4	mA
Output Leakage Current (Note 2)	$\frac{\text { DM7800 }}{\text { DM8800 }}$	$\left.\frac{V_{C C}=5.5 \mathrm{~V}}{V_{\mathrm{CC}}=5.25 \mathrm{~V}} \quad \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { (Note } 5\right)$			10	$\mu \mathrm{A}$
Output Collector Resistor		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	11.5	16.0	20.0	k Ω
Logical "0" Output Voltage	$\frac{\text { DM7800 }}{\text { DM8800 }}$	$\left.\frac{V_{c \mathrm{CC}}=4.5 \mathrm{~V}}{\mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}} \quad \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \text { (Note } 5\right)$			$\mathrm{V}_{2}+2.0$	V
Power Supply Current Logical " 0 " (Note 3) (Each Gate)	DM7800	$\frac{V_{C C}=5.5 \mathrm{~V}}{\mathrm{~V}_{\mathrm{Cc}}=5.25 \mathrm{~V}} \quad \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		0.85	1.6	mA
Power Supply Current Logical " 1 " (Note 3) (Each Gate)	$\frac{\text { DM7800 }}{}$	$\frac{V_{C C}=5.5 \mathrm{~V}}{V_{C C}=5.25 \mathrm{~V}} \quad V_{I N}=0 \mathrm{~V}$		0.22	0.41	mA
Transition Time to Logical " 0 " Output		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{C}=15 \mathrm{pF}$ (Note 6)	25	70	125	ns
Transition Time to Logical "1" Output		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{C}=15 \mathrm{pF}$ (Note 7)	25	62	125	ns

Note 1: $\mathrm{Min} / \mathrm{max}$ limits apply across the guaranteed temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DM 7800 and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the DM8800 unless otherwise specified.
Note 2: Current measured is drawn from V_{3} supply.
Note 3: Current measured is drawn from $V_{C C}$ supply.
Note 4: All typical values are measured at $T_{A}=25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{2}=-22 \mathrm{~V}, \mathrm{~V}_{3}=+8 \mathrm{~V}$.
Note 5: Specification applies for all allowable values of V_{2} and V_{3}.
Note 6: Measured from 1.5 V on input to 50% level on output.
Note 7: Measured from 1.5 V on input to logic " 0 " voltage, plus 1 V .

theory of operation

The two input diodes perform the AND function on TTL or DTL input voltage levels. When at least one input voltage is a logical " 0 ", current from $V_{C C}$ (nominally 5.0 V) passes through \mathbf{R}_{1} and out the input(s) which is at the low voltage. Other than small leakage currents, this current drawn from V_{CC} through the $20 \mathrm{k} \Omega$ resistor is the only source of power dissipation in the logical " 1 " output state.

When both inputs are at logical " 1 " levels, current passes through R_{1} and diverts to transistor Q_{1}, turning it on and thus pulling current through \mathbf{R}_{2}. Current is then supplied to the PNP transistor, Q_{2}. The voltage losses caused by current through $\mathrm{Q}_{1}, \mathrm{D}_{3}$, and Q_{2} necessitate that node P reach a voltage sufficient to overcome these losses before current begins to flow. To achieve this voltage at node P, the inputs must be raised to a voltage level which is one diode potential lower than node P. Since these levels are exactly the same as those experienced with conventional TTL and DTL, the interfacing with these types of circuits is achieved.

Transistor Q_{2} provides "constant current switching" to the output due to the common base connection of Q_{2}. When at least one input is at the logical " 0 " level, no current is delivered to Q_{2}; so that its collector supplies essentially zero current to the output stage. But when both inputs are raised to a logical " 1 " level current is supplied to Q_{2}.

Since this current is relatively constant, the collector of Q_{2} acts as a constant current source for the output stage. Logic inversion is performed since logical " 1 " input voltages cause current to be supplied to Q_{2} and to Q_{3}. And when Q_{3} turns on the output voltage drops to the logical " 0 " level.

The reason for the PNP current source, Q_{2}, is so that the output stage can be driven from a high impedance. This allows voltage V_{2} to be adjusted in accordance with the application. Negative voltages to -25 V can be applied to V_{2}. Since the output will neither source nor sink large amounts of current, the output voltage range is almost exclusively dependent upon the values selected for V_{2} and V_{3}.

Maximum leakage current through the output transistor Q_{3} is specified at $10 \mu \mathrm{~A}$ under worst-case voltage between V_{2} and V_{3}. This will result in a logical " 1 " output voltage which is 0.2 V below V_{3}. Likewise the clamping action of diodes D_{4}, D_{5}, and D_{6}, prevents the logical " 0 " output voltage from falling lower than 2 V above V_{2}, thus establishing the output voltage swing at typically 2 volts less than the voltage separation between V_{2} and V_{3}.

selecting power supply voltage

The graph shows the boundary conditions which must be used for proper operation of the unit. The range of operation for power supply V_{2} is shown on the X axis. It must be between -25 V and -8 V . The allowable range for power supply V_{3} is governed by supply V_{2}. With a value chosen for $\mathrm{V}_{2}, \mathrm{~V}_{3}$ may be selected as any value along a vertical line passing through the V_{2} value and terminated by the boundaries of the operating region. A voltage difference between power supplies of at least 5 V should be maintained for adequate signal swing.

switching time waveforms

Level Translators/Buffers

DM7810/DM8810 quad 2 -input TTL-MOS interface gate DM7811/DM8811 quad 2 -input TTL-MOS interface gate DM7812/DM8812 TTL-MOS hex inverter

general description

These Series 54/74 compatıble gates are high output voltage versions of the DM5401/DM7401 (SN5401/SN7401), DM5403/DM7403 (SN5403/SN7403), and DM5405/DM7405 (SN5405/SN7405). Their open-collector outputs may be "pulled-up" to +14 volts in the logical " 1 " state thus providing guaranteed interface between TTL and MOS logıc levels.

In addition the devices may be used in applications where it is desirable to drive low current relays or lamps that require up to 14 volts.

schematic and connection diagrams

DM7810/DM8810, DM7811/DM8811
Dual-In-Line Package

DM7810/DM8810

DM7812/DM8812

DM7811/DM8811

ORDER NUMBER	SEE PKG	ORDER NUMBER	SEE PKG	ORDER NUMBER	SEE PKG
DM7810J	16	DM7810N	22	DM7811W	27
DM7811J	16	DM7811N	22	DM7812W	27
DM7812J	16	DM7812N	22	DM8811W	27
DM8810J	16	DM8810N	22	DM8812W	27
DM8811J	16	DM8811N	22		
DM8812J	16	DM8812N	22		

absolute maximum ratings

VCC	7 V
Input Voltage	5.5 V
Output Voltage	14 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage (V_{CC})			
DM78XX	4.75	5.25	V
DM88XX	4.75	5.25	V
Temperature (T_{A})			
DM78XX	-55	+125	${ }^{\circ} \mathrm{C}$
DM88XX	0	+70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Diode Clamp Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA} \end{aligned}$			-1.5	V
Logical " 1 " Input Voltage	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$	2.0			v
Logical " 0 " Input Voltage	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$			0.8	V
Logical "1" Output Current	$\begin{array}{ll} V_{\text {CC }}=\operatorname{Min} & V_{\text {IN }}=0.8 \mathrm{~V} \\ V_{\text {OUT }}=10 \mathrm{~V} & V_{\text {IN }}=0.0 \mathrm{~V} \end{array}$			$\begin{array}{r} 250 \\ 40 \end{array}$	${ }_{\mu \mathrm{A}}^{\mathrm{A}}$
Logical " 1 " Output Breakdown Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \end{aligned}$	14			V
Logical "0" Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA} \end{aligned}$			0.4	V
Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
Logical " 1 " Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			1	mA
Logical " 0 " Input Current	$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-1.6	mA
Supply Current - Logical "0" (Each Gate)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		3.0	5.1	mA
$\begin{aligned} & \text { Supply Current - Logical "1" } \\ & \text { (Each Gate) } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		1.0	1.8	mA
Propagation Delay Time to a Logical " 0 ", $\mathrm{t}_{\mathrm{pd} 0}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & C_{\text {OUT }}=15 \mathrm{pF}, R_{L}=1 \mathrm{k} \end{aligned}$	4	12	18	ns
Propagation Delay Time to a Logical "1", $\mathrm{t}_{\mathrm{pd} 1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{OUT}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	18	29	45	ns

Note 1: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DM 78 XX and across the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ range for the DM88XX. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

typical applications

ac test circuit and switching time waveforms

Level Translators/Buffers

DM88L12 TTL-MOS hex inverter/interface gate general description

The DM88L12 is a low power TTL to MOS hex inverter element. The outputs may be "pulled up" to +14 V in the logical " 1 " state, thus providing guaranteed interface between TTL and MOS logic levels. The gate may also be operated with V_{CC}
levels up to +14 V without resistive pull-ups at the outputs and still providing a guaranteed logical " 1 " level of $\mathrm{V}_{\mathrm{cc}}-2.2 \mathrm{~V}$ with an output current of $-200 \mu \mathrm{~A}$

schematic and connection diagrams

typical applications

TTL Interface to MOS ROM Without Resistive Pull-Up

ac test circuits

Figure 1

Figure 2

TTL Interface to MOS ROM With Resistive Pull-Up

absolute maximum ratings (Note 1) . operating cenditions

			MIN	MAX	UNITS
Supply Voltage	15 V	Supply Voltage			
Input Voltage	5.5 V	DM78L12	4.5	5.5	V
Output Voltage.	15 V	DM88L12	4.75	5.25	V
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Temperature		
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$	DM78L12	-55	125	${ }^{\circ} \mathrm{C}$
		DM88L12	0	70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Note 2)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Logıcal "1" Input Voltage	$\begin{aligned} & V_{c c}=14.0 \mathrm{~V} \\ & V_{c c}=M 1 n \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$
Logıcal " 0 " Input Voltage	$\begin{aligned} & V_{c c}=14.0 \mathrm{~V} \\ & V_{c c}=M 1 n \end{aligned}$				13 1.3	$\begin{aligned} & 07 \\ & 0.7 \end{aligned}$	v
Logical "1" Output Voltage	$\begin{aligned} & V_{c c}=140 \mathrm{~V} \\ & V_{c c}=M ı n \\ & V_{c c}=M ı n \end{aligned}$	$\begin{aligned} & V_{i N}=0.7 \mathrm{~V} \\ & V_{i N}=0.7 \mathrm{~V} \\ & V_{I N}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { IOUT }=-200 \mu \mathrm{~A} \\ & \text { IOUT }=+200 \mu \mathrm{~A} \\ & \text { IOUT }=-5.0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 118 \\ 145 \\ V_{c c}=1.1 \mathrm{~V} \end{gathered}$	12.0 15.0		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Logical " 0 " Output Voltage	$\begin{aligned} & V_{c c}=14.0 \mathrm{~V} \\ & V_{c c}=M ı n \end{aligned}$	$\begin{aligned} & V_{1 N}=2.0 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=12 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=3.6 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Logical "1" Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=140 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \end{aligned}$	$\begin{aligned} & V_{\text {IN }}=2.4 \mathrm{~V} \\ & V_{\text {IN }}=2.4 \mathrm{~V} \end{aligned}$			<1 <1	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	$\begin{aligned} & V_{c c}=14.0 \mathrm{~V} \\ & V_{c c}=M a x \end{aligned}$	$\begin{aligned} & V_{\text {IN }}=5.5 \mathrm{~V} \\ & V_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$			<1 <1	100 100	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Logical " 0 " Input Current	$\begin{aligned} & V_{c C}=14.0 \mathrm{~V} \\ & V_{c c}=M a x \end{aligned}$	$\begin{aligned} & V_{\text {IN }}=0.4 \mathrm{~V} \\ & V_{\text {IN }}=0.4 \mathrm{~V} \end{aligned}$				$\begin{aligned} & -500 \\ & -180 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output Short Circuit Current (Note 3)	$\begin{aligned} & V_{c c}=14.0 \mathrm{~V} \\ & V_{c c}=M a x \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$		$\begin{array}{r} -10 \\ -3 \end{array}$	-25 -8	-50 -15	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Supply Current - Logical " 1 " (Each Inverter)	$\begin{aligned} & V_{c c}=14.0 \mathrm{~V} \\ & V_{c c}=M a x \end{aligned}$	$\begin{aligned} & V_{i N}=0 \mathrm{~V} \\ & V_{i N}=0 \mathrm{~V} \end{aligned}$			0.32 0.11	050 0.16	$\begin{aligned} & m A \\ & m A \end{aligned}$
Logical "0"	$\begin{aligned} & V_{c c}=14.0 \mathrm{~V} \\ & V_{c c}=M a x \end{aligned}$	$\begin{aligned} & V_{1 N}=5.25 \mathrm{~V} \\ & V_{I N}=5.25 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 10 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 15 \\ & 0.5 \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$
Propagation Delay to a Logical " 0 " from Input to Output, $\mathrm{t}_{\text {pdo }}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	See Figure 2			27	45	ns
Propagation Delay to a Logical " 0 " from Input to Output, $t_{\text {pdo }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=14.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	See Figure 1			11	20	ns
Propagation Delay to a Logical " 1 " from Input to Output, $\mathrm{t}_{\mathrm{pd} 1}$ (Note 4)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	See Figure 2			79	100	ns
Propagation Delay to a Logical " 1 " from Input to Output, $\mathrm{t}_{\mathrm{pd} 1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=14.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	See Figure 1			34	55	ns

Note 1: "Absolute Maximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DM78L12 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DM88L12. All typicals are given for $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, or for $\mathrm{V}_{C C}=14.0 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
Note 3: Only one output at a time should be shorted.
Note 4: $t_{\text {pd1 }}$ for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ is dependent upon the resistance and capacitance used.

Level Translators/Buffers

DM7819/DM8819 quad 2-input TTL-MOS AND gate

general description

The DM7819 is the high output voltage version of the SN5409. Its open-collector outputs may be "pulled-up" to +14 volts in the logical " 1 " state
thus providing guaranteed interface between TTL and MOS logic levels.

schematic and connection diagrams

Dual-In-Line and Flat Package

Order Number DM7819J or DM8819J See Package 16
Order Number DM7819N or DM8819N See Package 22
Order Number DM7819W or DM8819W See Package 27
top view
absolute maximum ratings (Note 1) operating conditions

			MIN	MAX	UNITS
Supply Voltage	7.0 V	Supply Voltage (V_{CC})			
Input Voltage	5.5 V	DM7819	4.5	5.5	V
Output Voltage	5.5 V	DM8819	4.75	5.25	V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperature (T_{A})			
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$	DM7819	-55	+125	${ }^{\circ} \mathrm{C}$
		DM8819	0	70	${ }^{\circ} \mathrm{C}$

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$V_{c c}=M ı n$	20			V
Logical "0' Input Voltage	$V_{c c}=M_{\text {In }}$			08	V
Logıcal " 1 " Output Current	$\begin{aligned} & V_{\text {CC }}=M_{\text {In }}, V_{\text {IN }}=20 \mathrm{~V}, V_{\text {OUT }}=10 \mathrm{~V} \\ & V_{\text {CC }}=M_{\text {In }}, V_{\text {IN }}=4.5 \mathrm{~V}, V_{\text {OUT }}=14 \mathrm{~V} \end{aligned}$			40.0 1.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Logıcal "0' Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$			04	V
Logical "1" Input Current	$V_{C C}=\operatorname{Max}, \begin{aligned} & V_{I N}=2.4 V \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$			40.0 10	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Logical " 0 " Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \quad \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			-1.6	mA
Supply Current - Logical "1"	$V_{\text {cC }}=$ Max, $V_{\text {IN }}=5 \mathrm{~V}$		110	21.0	mA
Logical "0"	$V_{\text {cc }}=$ Max, $V_{\text {IN }}=0 \mathrm{~V}$		200	33.0	mA
Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}$, -1.5	V
Propagation Delay to a Logical ' 0 ' $\mathrm{t}_{\text {pdo }}$					
$\frac{\text { DM7819 }}{\text { DM8819 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		16.0	24.0	ns
$\begin{aligned} & \text { Propagation Delay to a Logıcal " } 1 \text { " } t_{\text {pdı }} \\ & \frac{\text { DM } 7819}{\text { DM8819 }} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		16.0	32.0	ns

Note 1: "Absolute Maxımum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits The table of "Electrical Characteristics" provides conditions for actual device operation
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DM7819 and across the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ range for the DM8819 All typicals are given for $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
ac test circuit and switching time waveforms

DH3467C quad PNP core driver

general description

The DH3467C consists of four 2N3467 type PNP transistors mounted in a 14 -pın molded dual-ın-line package. The device is primarily intended for core memory application requiring operating currents in the ampere range, high stand-off voltage, and fast turn-on and turn-off times.

typical characteristics

Turn-ON Time	18 ns
Turn-OFF Time	45 ns
Collector Current	1 A
Collector-Base Breakdown Voltage	120 V typ.
Collector Saturation Voltage at $I_{C}=1 \mathrm{~A}$	
Collector Saturation Voltage at $I_{C}=0.5 \mathrm{~A}$	0.55 V

connection diagram

Dual-In-Line Package

TOP VIEW

Order Number DH3467CD
See Package 1
Order Number DH3467CN
See Package 22

FIGURE 1. Turn-On Equivalent Test Circuit

FIGURE 2. Turn-Off Equivalent Test Circuit

FIGURE 3. $\mathbf{Q}_{\mathbf{T}}$ Test Circuit

absolute maximum ratings

Collector to Base Voltage	40 V
Collector to Emitter Voltage	40 V
Collector to Emitter Voltage (Note 1)	40 V
Emitter to Base Voltage	5 V
Collector Current - Continuous	1.0 A
Power Dissipation ($\mathrm{T}_{A}=25^{\circ} \mathrm{C}$) (each device)	0.85 W
Power Dissipation ($\mathrm{T}_{A}=25^{\circ} \mathrm{C}$) (total package)	2.5 W
Operating Junction Temperature	$150^{\circ} \mathrm{C} \mathrm{Max}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

electrical characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

PARAMETER	CONDITIONS	LIMITS		UNITS
		MIN	MAX	
Collector to Base Breakdown Voltage ($\mathrm{BV}_{\mathbf{C B O}}$)	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \mathrm{I}_{\mathrm{E}}=0$	-40		v
Emitter to Base Breakdown Voltage ($\mathrm{BV}_{\mathrm{EBO}}$)	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A} \mathrm{I}_{\mathrm{C}}=0$	-50		v
Collector to Emitter Breakdown Voltage (Note 1) ($\mathrm{BV}_{\text {CEO }}$)	$I_{C}=10 \mathrm{~mA} \mathrm{I}_{\mathrm{B}}=0$	-40		V
DC Pulse Current Gain (Note 1) ($\mathrm{h}_{\text {FE }}$)	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} \mathrm{~V}_{\text {CE }}=-1.0 \mathrm{~V}$	40		
DC Pulse Current Gain (Note 1) ($\mathrm{hfE}^{\text {) }}$	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \mathrm{~V}_{\text {CE }}=-10 \mathrm{~V}$	40	120	
DC Pulse Current Gain (Note 1) ($\mathrm{hFE}_{\text {l }}$)	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} \mathrm{~V}_{C E}=-50 \mathrm{~V}$	40		
Pulsed Collector Saturation Voltage (Note 1) ($\mathrm{V}_{\text {CE(sat) }}$)	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} \mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}$		-0.30	V
Pulsed Collector Saturation Voltage (Note 1) ($\mathrm{V}_{\text {CE(sat) }}$)	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$		-0.50	V
Pulsed Collector Saturation Voltage (Note 1) ($\mathrm{V}_{\text {CE(sat) }}$)	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$		-1.0	V
Pulsed Base Saturation Voltage (Note 1) ($\mathrm{V}_{\mathrm{BE} \text { (sat) }}$)	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA} \mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}$		-1.0	V
Pulsed Base Saturation Voltage (Note 1) ($\mathrm{V}_{\mathrm{BE} \text { (sat) }}$)	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$	-0.8	-1.2	V
Pulsed Base Saturation Voltage (Note 1) ($\mathrm{V}_{\mathrm{BE} \text { (sat) }}$)	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$		-1.6	V
Collector Cutoff Current (${ }_{\text {croo }}$)	$V_{C B}=-30 \mathrm{~V} \quad \mathrm{I}_{\mathrm{B}}=0$		100	$n \mathrm{~A}$
Collector Cutoff Current ($\mathrm{I}_{\mathbf{C B O}\left(100^{\circ} \mathrm{C}\right)}$	$V_{C B}=-30 \mathrm{~V} \quad \mathrm{I}_{\mathrm{B}}=0$		15	$\mu \mathrm{A}$
Collector Cutoff Current ($\mathrm{I}_{\text {CEX }}$)	$V_{C B}=-30 \mathrm{~V} \quad V_{E B}=-3.0 \mathrm{~V}$		100	$n \mathrm{~A}$
Base Cutoff Current (I_{BL})	$V_{C B}=-30 \mathrm{~V} \quad V_{E B}=-3.0 \mathrm{~V}$		120	nA
Total Control Charge ($\mathrm{F}_{\text {gure }}$ 3) (O_{T})	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$		60	$n \mathrm{C}$
Turn On Delay Time (Figure 1) (t_{d})	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \mathrm{I}_{\mathrm{B} 1}=50 \mathrm{~mA}$		10	ns
Rise Time (Figure 1) (t_{r})	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \mathrm{I}_{\mathrm{B} 1}=50 \mathrm{~mA}$		30	
Storage Time (Figure 2) (t_{s})	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=50 \mathrm{~mA}$		60	ns
Fall Time (Figure 2) (t_{f})	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=50 \mathrm{~mA}$		30	ns
Output Capacitance ($f=100 \mathrm{kHz}$) ($\mathrm{C}_{\text {ob }}$)	$I_{E}=0 \quad V_{C B}=-10 \mathrm{~V}$		25	pF
Input Capacitance ($f=100 \mathrm{kHz}$) (C $\mathrm{Cb}_{\text {b }}$)	$\mathrm{I}_{\mathrm{C}}=0 \quad \mathrm{~V}_{C B}=-05 \mathrm{~V}$		100	pF
High Frequency Current Gain ($f=100 \mathrm{MHz}$) ($\mathrm{hfe}_{\text {fe }}$)	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} \quad \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$	1.75		

Note 1: Pulsed test, $\mathrm{PW}=300 \mu \mathrm{~s}$, duty cycle $=1 \%$

DH3725C quad NPN core driver

general description

The DH3725C consists of four 2N3725 type NPN transistors mounted in a 14 -pin molded dual-in-line package. The device is primarily intended for core memory application requiring operating currents in the ampere range, high stand-off voltage, and fast turn-on and turn-off times.

Memory/Clock Drivers

connection diagram

Dual-In-Line Package

TOP VIEW
switching time test circuit

$$
I_{C} \approx 500 \mathrm{~mA}, I_{B 1} \approx 50 \mathrm{~mA}, I_{B 2} \approx-50 \mathrm{~mA}
$$

absolute maximum ratings

Collector to Base Voltage	80 V
Collector to Emitter Voltage	80 V
Collector to Emitter Voltage (Note 1)	50 V
Emitter to Base Voltage	6 V
Collector Current - Continuous	1.0 A
Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)	0.6 W
Power Dissipation $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$)	1.5 W
Operating Junction Temperature	$150^{\circ} \mathrm{C}$ Max
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

electrical characteristics-Each transistor $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Collector to Emitter Sustainıng Voltage ($\mathrm{V}_{\text {cEO }}$ (sust)	$I_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	50			V
Collector to Emitter Breakdown Voltage ($\mathrm{BV}_{\mathrm{CES}}$)	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BE}}=0$	80			V
Collector to Base Breakdown Voltage ($\mathrm{BV}_{\mathrm{CBO}}$)	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	80			V
Emitter to Base Breakdown Voltage (BV VEBO)	$I_{C}=0, I_{E}=10 \mu \mathrm{~A}$	6.0			V
Collector Saturation	$I_{C}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$		0.55	0.95	V
Voltage ($\mathrm{VCE}_{(\text {(Sat) }}$) (Note 2)	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$		0.31 0.19	0.52	V
DC Pulse Current Gain (h_{FE}) (Note 2)	$\begin{aligned} & I_{C}=1 \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V} \\ & I_{C}=0.5 \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V} \\ & I_{C}=0.1 \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \\ & 60 \end{aligned}$	65 45 90	150	V
Base Saturation	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$		1.10	1.70	V
Voltage (V_{BE} (Sat) (Note 2)	$\begin{aligned} & I_{C}=0.5 A, I_{B}=50 \mathrm{~mA} \\ & I_{C}=0.1 A, I_{B}=10 \mathrm{~mA} \end{aligned}$		0.95 0.75	1.20 0.86	V
Collector Cutoff Current (${ }_{\text {cbo }}$)	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=60 \mathrm{~V}$		0.33	1.70	$\mu \mathrm{A}$
Turn-ON Time	$I_{C}=0.5 \mathrm{~A}, I_{\mathrm{B} 1}=50 \mathrm{~mA}$ (See test circuit)		18	30	ns
Turn-OFF Time	$\begin{aligned} & I_{C}=0.5 A, I_{B 1}=50 \mathrm{~mA} \\ & I_{B 2}=50 \mathrm{~mA} \end{aligned}$ (See test circuit)		45	60	ns
High Frequency Current Gain	$\begin{aligned} & f=100 \mathrm{MHz}, \mathrm{lc}=50 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V} \end{aligned}$	2.5	4.5		
Common Base, Open Circuit, Output Capacitance	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=10 \mathrm{~V}$		4.8	10	pF
Common Base, Open Circuit, Input Capacitance	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{BE}}=0.5 \mathrm{~V}$		40	55	pF

Note 1: Ratıngs refer to a high-current point where collector-to-emitter voltage is lowest.
Note 2: Pulse conditions. Length $=300 \mu \mathrm{~s}$, duty cycle $=1 \%$.

Memory/Clock Drivers

LM75324 memory driver with decode inputs general description

Abstract

The LM75324 is a monolithic memory driver which features two 400 mA (source/sink) switch pairs along with decoding capability from four address lines. Inputs B and C function as mode selection lines (source or sink) while lines A and D are used for switch-parr selection (output pair Y / Z or W / X)

features

- Output capability

400 mA

- High voltage outputs
- Dual sink/source outputs
- Internal decoding and tıming circuitry
- Fast switching times
- Operation
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- DTL/TTL compatible
- Input clamping diodes

schematic and connection diagrams

Dual-In-Line Package (N)

Order Number LM75324N
See Package 22

absolute maximum ratings

Supply Voltage V_{cc} (Note 1)
Input Voltage (Note 2)
Operatıng Case Temperature Range
Continuous Total Power Dissipation at (or Below) $+70^{\circ} \mathrm{C}$ Case Temperature
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

$$
\begin{array}{r}
17 \mathrm{~V} \\
5.5 \mathrm{~V} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
800 \mathrm{~mW} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
$$

dc electrical characteristics $\left(V_{c c}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Required to Insure Logical "1" At Any Input (ViN(1))	Figure 1	3.5			V
Input Voltage Required to Insure Logical "0" At Any Input (ViN(0)	Figure 1	,		0.8	V
Logical " 1 " Level Address Input Current ($\left.\mathrm{I}_{\mathrm{IN}(1)}\right)$	$V_{\text {IN }}=5 \mathrm{~V}$, Figure 1			200	$\mu \mathrm{A}$
Logical " 1 " Level Timıng Input Current ($1_{\text {IN(1) }}$)	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, Figure 1			100	$\mu \mathrm{A}$
Logical " 0 " Level Address Input Current ($1_{\text {IN }(0)}$)	$V_{\text {IN }}=0 \mathrm{~V}$, Figure 1			-6	mA
Logical " 0 " Level Timing Input Current ($\left.\mathrm{I}_{\mathrm{IN}(0)}\right)$	$V_{\text {IN }}=0 V$, Figure 1			-12	mA
Sink Saturation Voltage ($\mathrm{V}_{\text {sat }}$)	$I_{\text {SINK }} \simeq 420 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=53 \Omega$, Figure 2		0.75	0.85	v
Source Saturation Voltage ($\mathrm{V}_{\text {sat }}$)	$I_{\text {SOURCE }} \simeq-420 \mathrm{~mA}, R_{\mathrm{L}}=47.5 \Omega$, Figure 2		0.75	0.85	V
Output Reverse Current (Off State) (Ioff)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, Figure 1		125	200	$\mu \mathrm{A}$
Supply Current, All Sources and Sinks Off ($\mathrm{Icc}_{\text {c }}$)	$V_{\text {IN }}=0 \mathrm{~V}$, Figure 3		12.5	15	mA
Supply Current, Either Sink Selected ($I_{\text {cc }}$)	Figure 4		30	40	mA
Supply Current, Either Source Selected (Icc)	Figure 4		25	35	mA
Input Clamp Voltage (V_{1})	$\mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-15	V

ac switching characteristics $\left(\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time to Logical " 1 " Level, Source Output ($\mathrm{t}_{\mathrm{pd} 1}$) Propagation Delay Tıme to Logıcal "0" Level, Source Output ($t_{\text {pao }}$) Propagation Delay Time to Logical " 1 " Level, Sink Output ($t_{\text {pa1 }}$) Propagation Delay Time to Logical " 0 " Level, Sink Output ($\mathrm{t}_{\text {pao }}$) Sink Storage Time (t_{s})	$R_{L 1}=53 \Omega, R_{L 2}=500 \Omega, C_{L}=20 \mathrm{pF},$ Figure 5 $\mathrm{R}_{\mathrm{L}}=53 \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF},$ Figure 6			$\begin{aligned} & 90 \\ & 50 \\ & 110 \\ & 40 \\ & 70 \end{aligned}$	ns ns ns ns ns

Note 1: Voltage values are with respect to network ground terminal.
Note 2: Input signals must be zero or positive with respect to network ground terminal.

truth table

INPUTS							OUTPUTS			
ADDRESS				TIMING			$\frac{\text { SINK }}{w}$	SOURCES		$\frac{\text { SINK }}{z}$
A	B	C	-	E	F	G		X	Y	
0	0	1		1	1	1	ON	OFF	OFF	OFF
0	1	0		1	1	1	OFF	ON	OFF	OFF
1	1	0	0	1	1	1	OFF	OFF	ON	OFF
1	0	1		1	1	1	OFF	OFF	OFF	ON
x	X	x	x	0	x	x	OFF	OFF	OFF	OFF
x	x	x	X	x	0	x	OFF	OFF	OFF	OFF
X	X	x		X	X	0	OFF	OFF	OFF	OFF

test circuits and switching time waveforms

Note 2 Measure $\mathbf{I}_{\text {IN (0) }}$ per test table
Note 3 When measuring $\operatorname{lin}(1)$, all other inputs are at GND Each input is tested separately

TEST TABLE FOR $\operatorname{lin}_{\text {(}}(0)$

APPLY 3.5V	GROUND	TEST IIN(0)
B, C, E, F, and G	A and D	A
B, C, E, F, and G	A and D	D
A, D, E, F, and G	B and C	B
A, D, E, F, and G	B and C	C
A, B, C, D, F, and G	E	E
A, B, C, D, E, and G	F	F
A, B, C, D, E, and F	G	G

FIGURE 1. $V_{I N}(0), V_{I N}(1), \operatorname{IIN}(0), I_{I N}(1)$, and IOFF

test circuits and switching time waveforms (con't)

Note This parameter must be measured using pulse techniques
$\mathrm{t}_{\mathrm{p}}=500 \mathrm{~ns}$, duty cycle $\leq 1 \%$

FIGURE 2. V(SAT)

FIGURE 3. ICC (All Outputs Off)

test circuits and switching time waveforms (con't)

Note 1 GND A and B, apply +35 V to C and D , and measure I_{Cc} (output W is on) Note 2 GND B and D, apply +35 V to A and C , and measure I_{Cc} (output Z is on)
Note 3 GND A and C, apply +35 V to B and D, and measure $I_{C C}$ (output X is on)
Note 4 GND C and D, apply +35 V to A and B, and measure $I_{\text {Cc }}$ (output Y is on)

FIGURE 4. Icc (One Output On)

FIGURE 5. Source-Output Switching Times

test circuits and switching time waveforms (con't)

FIGURE 6. Sink-Output Switching Times

LM55325/LM75325 memory drivers general description

The LM55325 and LM75325 are monolithic memory drivers which feature high current outputs as well as internal decoding of logic inputs These circuits are designed for use with magnetic memories
The circuit contains two 600 mA sink-switch pairs and two 600 mA source-switch palls Inputs A and B determine source selection while the source strobe (S_{1}) allows the selected source turn on In the same manner, inputs C and D determine sink selection while the sink strobe $\left(\mathrm{S}_{2}\right)$ allows the selected sink turn on

Sink-output collectors feature an internal pull-up resistor in parallel with a clamping diode connected to $\mathrm{V}_{\mathrm{CC} 2}$ This piotects the outputs fiom voltage surges associated with switching inductive loads

The source stage features Node R which allows extreme flexibility in source curtent selection by controlling the amount of base drive to each source transistor This method of setting the base dive brings the power associated with the resistor outside the package thereby allowing the circuit to
operate at higher source currents for a given junction temperature if this method of source current setting is not desued, then Nodes R and $R_{\text {INT }}$ can be shorted externally activating an internal resistor connected from $\mathrm{V}_{\mathrm{CC} 2}$ to Node R This piovides adequate base drive for source currents up to 375 mA with $\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}$ or 600 mA with $\mathrm{V}_{\mathrm{cc} 2}=24 \mathrm{~V}$
The LM55325 operates over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, while the LM 75325 operates from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

features

- 600 mA output capability
- 24 V output capability
- Dual sink and dual source outputs
- Fast switching tımes
- Source base drive externally adjustable
- Input clamping diodes
- DTL/TTL compatıble
schematic and connection diagrams

Dual-In-Line Package

Order Number LM55325J or LM75325J See Package 17

Order Number LM75325N See Package 23

truth table

ADDRESS INPUTS				STROBE INPUTS		OUTPUTS			
SOURCE A B		SINK		SOURCE S1	SINK S2	SOURCE		SINK	
		C	D			w	x	Y	z
L	H	\times	X	L	H	ON	OFF	OFF	OFF
H	L	X	X	L	H	OFF	ON	OFF	OFF
X	X	L	H	H	L	OFF	OFF	ON	OFF
X	\times	H	L	H	L	OFF	OFF	OFF	ON
X	X	\times	X	H	H	OFF	OFF	OFF	OFF
H	H	H	H	X	X	OFF	OFF	OFF	OFF

$H=$ high level, $L=$ low level, $X=$ irrelevant
NOTE Not more than one output is to be on at any one time

absolute maximum ratings

Supply Voltage $\mathrm{V}_{\mathrm{CC} 1}$ (Note ${ }^{11}$
7 V
Supply Voltage $\mathrm{V}_{\mathrm{Cc} 2}$ (Note 1)
25 V
Input Voltage (Any Addiess or Stiohe Input)
Continuous Total Dissipation at (or Below)
+70 C Fipe AıI Temperature (Note 2)
Operating Temperature Range LM55325
LM75325
800 mW

Storage Temperature Range
$55^{\prime \prime} \mathrm{C} 10 \cdot 125^{\prime \prime} \mathrm{C}$
$0^{\prime} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperdture (Soldering. 10 sec)
$65 \mathrm{C} 10 \cdot 150^{\circ} \mathrm{C}$
dc electrical characteristics

Note 1: Voltage values are with respect to network ground terminal.
Note 2: For operation of LM55325 above $+70^{\circ} \mathrm{C}$ free-air temperature, refer to Dissipation Derating Curve (Figure 12).
Note 3: These parameters must be measured using pulse technıques. $\mathrm{t}_{\mathrm{W}}=\mathbf{2 0 0} \mu \mathrm{s}$, duty cycle $\leq \mathbf{2 \%}$.
${ }^{*}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
**Not more than one output is to be on at any one tıme.
ac switching characteristics $\left(\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$.

| PARAMETER | | | LIMITS | |
| :--- | :--- | :--- | :--- | :--- | :--- |

dc test circuits

TEST TABLE

A	B	S1
GND	GND	$2 V$
$2 V$	$2 V$	GND

C	\mathbf{D}	S2	\mathbf{Y}	\mathbf{Z}
2 V	45 V	GND	V_{OH}	OPEN
GND	45 V	2 V	$\mathrm{~V}_{\mathrm{OH}}$	OPEN
45 V	2 V	GND	OPEN	V_{OH}
45 V	GND	2 V	OPEN	V_{OH}

FIGURE 2. $\mathbf{V}_{I H}$ and \mathbf{V}_{OH}

FIGURE 1. IOFF

dc test circuits(con't)

Note 1. Figures $\mathbf{3}$ and 4 parameters must be measured using pulse techniques $t_{w}=\mathbf{2 0 0} \mu$ s, duty cycle $\leq \mathbf{2} \%$

TEST TABLE

A	B	S1	\mathbf{W}	\mathbf{X}
0.8 V	4.5 V	0.8 V	GND	OPEN
45 V	0.8 V	0.8 V	OPEN	GND

FIGURE 3. $V_{\text {IL }}$ and Source VSAT

TEST TABLE

\mathbf{C}	\mathbf{D}	$\mathbf{S 2}$	\mathbf{Y}	\mathbf{Z}
0.8 V	4.5 V	0.8 V	$\mathbf{R}_{\mathbf{L}}$	OPEN
4.5 V	0.8 V	0.8 V	OPEN	R_{L}

FIGURE 4. $V_{\text {IL }}$ and Sink $V_{\text {SAT }}$

$\mathbf{I}_{1}, \mathbf{I}_{\mathbf{H}}$			test tables	$V_{1}, I_{1 L}$	
APPLY $\mathrm{V}_{\mathbf{1}}=5.5 \mathrm{~V}$ MEASUREII	RO	APP		APPLY $V_{1}=0.4 \mathrm{~V}$, MEASURE IIL	V
APPLY $V_{1}=2.4 \mathrm{~V}$ MEASURE $I_{I H}$,			APPLY $I_{1}=\mathbf{- 1 0} \mathrm{mA}$, MEASURE $\mathrm{V}_{\mathbf{1}}$	APPLY 5.5V
A	S1	B, C, S2, D		A	S1, B, C, S2, D
S1	A, B	C, S2, D		S1	A, B, C, S2, D
B	S1	A, C, S2, D		B	A, S1, C, S2, D
C	S2	A, S1, B, D		C	A, S1, B, S2, D
S2	C, D	A, S1, B		S2	A, S1, B, C, D
D	S2	A, S1, B, C.		D	A, S1, B, C, S2

FIGURE 5. $V_{1}, I_{1}, I_{I H}$, and $I_{I L}$

```
dc test circuits(con't)
```


FIGURE-6. ICC1(OFF) and ICC2(OFF)
TEST TABLE

\mathbf{C}	\mathbf{D}	$\mathbf{S 2}$	\mathbf{Y}	\mathbf{Z}
GND	$5 V$	GND	' $^{(S I N K)}$	OPEN
$5 V$	GND	GND	OPEN	$I^{(\text {SINK })}$

FIGURE 7. ICC1, Either Sink On

dc test circuits(con't)

Note 1 The pulse generator has the following characteristics $Z_{\text {OUT }}=50 \Omega$, duty cycle $\leq 1 \%$.
Note $2 \mathrm{C}_{\mathrm{L}}$ includes probe and Jig capacitance
TEST TABLE

PARAMETER	OUTPUT UNDER TEST	INPUT	CONNECT TO 5V
${ }^{\text {tPLH }}$ and ${ }^{\text {tPHL }}$	Source collectors	A and S1	B, C, D and S2
		B and S1	A, C, D and S2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}, \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}, \\ & \text { and } \mathrm{t}_{\mathrm{s}} \end{aligned}$	Sink output Y	C and S2	A, B, D and S1
	Sink output 2	D and S2	A, B, C and S1

FIGURE 9. Switching Times

FIGURE 10. Transition Times of Source Outputs

applications

External Resistor Calculation

A typical magnetic-memory word drive requirement is shown in Figure 11. A source-output transistor of one LM75325 delivers load current (IL). The sink-output transistor of another LM75325 sinks this current.

The value of the external pull-up resistor ($\mathrm{R}_{\text {ext }}$) for a particular memory application may be determined using the following equation:

$$
\begin{equation*}
R_{e x t}=\frac{16\left[V_{\mathrm{CC} 2(\min)}-V_{S}-2.2\right]}{I_{L}-1.6\left[V_{\mathrm{CC} 2(\mathrm{~min})}-V_{\mathrm{S}}-2.9\right]} \tag{1}
\end{equation*}
$$

where: $R_{\text {ext }}$ is in $k \Omega$,
$\mathrm{V}_{\mathrm{CC} 2(\min)}$ is the lowest expected value of $\mathrm{V}_{\mathrm{CC} 2}$ in volts, V_{S} is the source output voltage in volts with respect to ground, I_{L} is in mA .

The power dissipated in resistor $\mathrm{R}_{\text {ext }}$ during the load current pulse duration is calculated using Equation 2.

$$
\begin{equation*}
P_{\text {Rext }} \approx \frac{I_{L}}{16}\left[V_{\mathrm{CC} 2(\text { min })}-V_{S}-2\right] \tag{2}
\end{equation*}
$$

where: $P_{\text {Rext }}$ is in mW .

Note 1 For clarity, partal logic diagrams of two LM55325's are shown Note 2 Source and sink shown are in different packages

FIGURE 11. Typical Application Data

After solving for $\mathrm{R}_{\text {ext }}$, the magnitude of the source collector current (I_{cs}) as determined from Equation 3.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{CS}} \approx 0.94 \mathrm{I}_{\mathrm{L}} \tag{3}
\end{equation*}
$$

where: $I_{c s}$ is in $m A$.
As an example, let $V_{C C 2(m i n)}=20 \mathrm{~V}$ and $V_{L}=3 \mathrm{~V}$ while I_{L} of 500 mA flows. Using Equation 1:

$$
R_{e x t}=\frac{16(20-3-2.2)}{500-1.6(20-3-2.9)}=0.5 \mathrm{k} \Omega
$$

and from Equation 2:

$$
\mathrm{P}_{\text {Rext }} \approx \frac{500}{16}[20-3-2] \approx 470 \mathrm{~mW}
$$

The amount of the memory system current source (${ }_{\text {cs }}$) from Equation 3 is:

$$
I_{\mathrm{cs}} \approx 0.94(500) \approx 470 \mathrm{~mA}
$$

In this example the regulated source-output transistor base current through the external pull-up resistor ($\mathrm{R}_{\text {ext }}$) and the source gate is approximately 30 mA . This current and $\mathrm{I}_{\text {CS }}$ comprise I_{L}.

MH0007/MH0OO7C dc coupled MOS clock driver

general description

The MH0007 is a voltage translator and power booster designed for interfacing between conventional TTL or DTL voltage levels and those levels associated with inputs or clocks of MOS FET type devices. The design allows the user a wide latitude in selection of supply voltages, and is especially useful in normally "off" applications, since power dissipation is typically only 5 milliwatts in the "off" state.

features

- 30 volts (max) output swing
- Standard 5V power supply
- Peak currents in excess of $\pm 300 \mathrm{~mA}$ available
- Compatible with all MOS devices
- High speed: 5 MHz with nominal load
- External trimming possible for increased performance

schematic and connection diagram

10 Pin TO-100 Package

TOP VIEW
Order Number MH0007H
or MH0007CH
See Package 13

typical applications

Switching Time Test Configuration

High Speed Operation

absolute maximum ratings

$\mathrm{V}_{\text {cc }}$ Supply Voltage	8 V
V^{-}Supply Voltage	-40V
V^{+}Supply Voltage	+28V
$\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right.$) Voltage Differential	30 V
Input Voltage	5.5 V
Power Dissipation ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)	800 mW
Peak Output Current	${ }^{+500 ~ m A}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\prime \prime} \mathrm{C}$
Operating Temperature Range MH0007	$-55^{\circ} \mathrm{C}$ to $+125^{\prime \prime} \mathrm{C}$
MH0007C	$0^{\prime \prime} \mathrm{C}$ to $+85^{\prime \prime} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\prime \prime} \mathrm{C}$

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
Logical " 1 " Input Voltage	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$	2.2			V
Logical " 0 " Input Voltage	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$			0.8	V
Logical " 1 " Input Current	$V_{\text {cc }}=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
Logical " 0 " Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$		1.0	1.5	mA
Logıcal " 1 " Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=30 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}-4.0 \\ & \mathrm{~V}^{+}-2.0 \end{aligned}$			V
Logıcal " 0 " Output Voltage	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2.2 \mathrm{~V}$			$\mathrm{V}^{-}+2.0$	V
Transition Tıme to Logical "0" Output	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} \text { (Note } 3 \text {) }$		50		ns
Transition Time to Logical "1" Output	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$ (Note 3)		75		ns

Note 1: Min/max limits apply across the guaranteed range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the MH 0007 , and from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the MH0007C, for all allowable values of V^{-}and V^{+}
Note 2: All typical values measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=50$ volts, $\mathrm{V}^{-}=-25$ volts, $\mathrm{V}^{+}=0$ volts.
Note 3: Transition tıme measured from tıme $V_{\text {IN }}=50 \%$ value untıl $V_{\text {OUT }}$ has reached 80% of
final value.

Allowable Values for V^{-}and V^{+}

Maximum Power Dissipation

Memory/Clock Drivers

MH0009/MH0009C dc coupled two phase MOS clock driver

general description

The MH0009/MH0009C is high speed, DC coupled, dual MOS clock driver designed to operate in conjunction with high speed line drivers such as the DM8830, DM7440, or DM7093. The transition from TTL/DTL to MOS logic level is accomplished by PNP input transistors which also assure accurate control of the output pulse width.

features

- DC logıcally controlled operatıon
- Output Swings - to 30 V
- Output Currents - in excess of $\pm 500 \mathrm{~mA}$
- High rep rate - in excess of 2 MHz
- Low standby power

schematic and connection diagrams

12-Lead TO-8 Package

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$
$\mathbf{v}^{-} \mathbf{v}^{+} \quad \mathbf{- 1 2 v}$
Order Number MH0009G or MH0009CG See Package 6

typical application

FIGURE 1

absolute maximum ratings

V^{-}Supply Voltage: Differential (Pın 5 to $P \not \operatorname{}$ 3) or (P ın 5 to P in 7)	-40V
${ }^{+}$Supply Voltage: Differential (Pin 11 to Pin 5)	30 V
Input Current. (Pin 2, 4, 6 or 8)	$\pm 75 \mathrm{~mA}$
Peak Output Current	$\pm 500 \mathrm{~mA}$
Power Dissipation (Note 2 and Figure 2)	1.5 W
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operatıng Temperature: MH0009	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MH0009C	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Temperature (Solderıng, 10 Sec.$)$	$300^{\circ} \mathrm{C}$

electrical characteristics (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	- MAX	UNITS
t_{ON}	$\mathrm{C}_{1 \mathrm{~N}}=.0022 \mu \mathrm{~F}$	$C_{L}=001 \mu \mathrm{~F}$		10	35	ns
$\mathrm{t}_{\text {rise }}$	$\mathrm{C}_{\text {IN }}=.0022 \mu \mathrm{~F}$	$C_{L}=001 \mu \mathrm{~F}$		40	50	ns
Pulse Width (50\% to 50\%)	$\mathrm{C}_{\mathrm{IN}}=0022 \mu \mathrm{~F}$	$\mathrm{C}_{\mathrm{L}}=.001 \mu \mathrm{~F}$	340	400	440	ns
$t_{\text {fall }}$	$\mathrm{C}_{\text {IN }}=0022 \mu \mathrm{~F}$	$C_{L}=.001 \mu \mathrm{~F}$		80	120	ns
$\mathrm{t}_{\text {delay }}$	$C_{\text {IN }}=600 \mathrm{pF}$	$C_{L}=200 \mathrm{pF}$		10		ns
$\mathrm{t}_{\text {rise }}$	$C_{1 N}=600 \mathrm{pF}$	$C_{L}=200 \mathrm{pF}$		15		ns
Pulse Width (50\% to 50\%)	$C_{1 N}=600 \mathrm{pF}$	$C_{L}=200 \mathrm{pF}$	40	70	120	ns
$\mathrm{t}_{\text {fall }}$	$\mathrm{C}_{1 \mathrm{~N}}=600 \mathrm{pF}$	$C_{L}=200 \mathrm{pF}$		40		ns

Note 1: Characteristics apply for circuit of Figure 1 With $\mathrm{V}^{-}=-20$ volts; $\mathrm{V}^{+}=0$ volts; $\mathrm{V}_{\mathrm{CC}}=50$ volts. Minımum and maxımum limits apply from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the MH 0009 and from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the MH0009C Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 2: Transient power is given by $P=f C_{L}\left(V^{+}-V^{-}\right)^{2}$ watts, where $f=$ repetition rate, $C_{L}=$ load capacitance, and $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)=$output swing
Note 3: For typical performance data see the MH0013/MH0013C data sheet.

FIGURE 2. Maximum Power Dissipation

Memory/Clock Drivers

MH0012/MH0012C high speed MOS clock driver

general description

The MH0012/MH0012C is a high performance clock driver that is designed to be driven by the DM7830/DM8830 or other line drivers or buffers with high output current capability. It will provide a fixed width pulse suitable for driving MOS shift registers and other clocked MOS devices.

features

- High output voltage swings- 12 to 30 volts
- High output current drive capability-1000 mA peak
- High repetition rate- 10 MHz at 18 volts into 100 pF
- Low standby power-less than 30 mW

schematic and connection diagrams

TOP VIEW
Order Number MH0012G
or MH0012CG
See Package 6
typical application

timing diagram

absolute maximum ratings

V^{-}Supply Voltage	Differential (Pin 1 or 2 to Pin 5)	-40V
V^{+}Supply Voltage	Differential (Pin 8 or 9	30 V
Input Current (Pın	3 or 7)	$\pm 75 \mathrm{~mA}$
Peak Output Current		$\pm 1000 \mathrm{~mA}$

Maximum Output Load-See Figure 2		
Power Dissipation-See Figure 1		15 W
Storage Temperature		$-65^{\prime \prime} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	MH0012	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	MH0012C	$0^{\prime \prime} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Sold	ering. 10 sec)	$300^{\circ} \mathrm{C}$

dc electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logic "1" Input Voltage (Pıns 7 and 3)	$\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \leq \mathrm{V}^{-}+2 \mathrm{~V}$		10	20	V
Logic " 0 " Input Voltage (Pıns 7 and 3)	$V^{\prime}-V^{-}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \geq \mathrm{V}^{+}-15 \mathrm{~V}$	04	06		v
Logic "1" Output Voltage	$\begin{aligned} & V^{+}-V^{-}=20 \mathrm{~V}, I_{\text {OUT }}=1 \mathrm{~mA}, \\ & V_{\text {IN }}=20 \mathrm{~V} \end{aligned}$		$v^{-}+10$	$\mathrm{v}^{-}+20$	v
Logic "0" Output Voltage	$\begin{aligned} & V^{+}-V^{-}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=-1 \mathrm{~mA}, \\ & V_{\text {IN }}=04 \mathrm{~V} \end{aligned}$	$v^{+}-15$	$\mathrm{v}^{+}-07$		v
$\mathrm{I}_{\mathrm{DC}}\left(\mathrm{V}^{-}\right.$Supply)	$\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=20 \mathrm{~V}$		34	60	mA

ac electrical characteristics

PARAMETER	CONDITIONS (Note 3)	MIN	TYP	MAX	UNITS
Turn-On Delay ($\mathrm{tON}^{\text {) }}$			10	15	ns
Rise Time (t_{r})	$\begin{aligned} & V^{\prime}-V^{-}=20 \mathrm{~V}, V_{\mathrm{cc}}=50 \mathrm{~V} \\ & C_{L}=200 \mathrm{pF}, f=10 \mathrm{MHz} \end{aligned}$		5	10	ns
Turn-Off Delay ($\mathrm{t}_{\text {OFF }}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		35	50	ns
Fall Time (t_{f})			35	45	ns

Note 1: Characterıstics apply for circuit of Figure 1. Min and max limits apply from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the MH0012 and from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the MH0012C. Typical values are for $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$.
Note 2: Due to the very fast rise and fall times, and the high currents involved, extremely short connections and good by passing techniques are required.
Note 3: All conditions apply for each parameter.

Figure 1.

Maximum Output Load vs Voltage Swing vs Rise Times

Figure 2.

applications information

Power Dissipation Consıderatıons

The power dissipated by the MH0012 may be divided into three areas of operation $=$ ON, OFF and switching. The OFF power is approximately 30 mW and is dissipated by R_{2} when Pin 3 is in the logic " 1 " state The OFF power is neglible and will be ignored in the subsequent discussion. The ON power is dissipated primarily by O_{3} and R_{9} and is given by:

$$
\begin{equation*}
P_{O N} \cong\left[N^{-} \|_{I N}+\frac{\left(V^{+}-V^{-}\right)^{2}}{R_{9}}\right] D C \tag{1}
\end{equation*}
$$

Where
DC $=$ Duty Cycle $=\frac{\text { ON Time }}{\text { ON Time \& OFF Time }}$
$I_{\text {IN }}$ is given by $\frac{V_{\text {IN }}-V_{\text {BE3 }}}{R_{1}}$ and equation (1)
becomes
$P_{O N}=\left[\frac{\left(V_{I N}-V_{B E 3}\right)\left|V^{-}\right|}{R_{1}}+\frac{\left(V^{+}-V^{-}\right)^{2}}{R_{9}}\right] D C$ (2)
For $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=07 \mathrm{~V}, \mathrm{~V}^{+}=0 \mathrm{~V}, \mathrm{~V}^{-}=-20 \mathrm{~V}$ and $\mathrm{DC}=20 \%, \mathrm{P}_{\mathrm{ON}} \cong 200 \mathrm{~mW}$

Rise and Fall Times vs Load Capacitance

The transient power incurred during switching is given by-

$$
\begin{equation*}
P_{A C}=\left(V^{+}-V^{-}\right)^{2} C_{L} f \tag{3}
\end{equation*}
$$

For $\mathrm{V}^{+}=0 \mathrm{~V}, \mathrm{~V}^{-}=-20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$, and $f=5.0 \mathrm{MHz}, P_{A C}=400 \mathrm{~mW}$.
The total power is given by

$$
\begin{equation*}
P_{T}=P_{A C}+P_{O N} \tag{4}
\end{equation*}
$$

$$
\mathrm{P}_{\mathrm{T}} \leq \mathrm{P}_{\mathrm{MAX}}
$$

For the above example, $\mathrm{P}_{\mathbf{T}}=600 \mathrm{~mW}$.

Memory/Clock Drivers

MH0013/MH0013C two phase MOS clock driver

general description

The MH0013/MH0013C is a general purpose clock driver that is designed to be driven by DTL or TTL line drivers or buffers with high output current capability. It will provide fixed width clock pulses for both high threshold and low threshold MOS devices. Two external input coupling capacitors set the pulse width maximum, below which the output pulse width will closely follow the input pulse width or logic control of output pulse width may be obtained by using larger value input capacitors and no input resistors.

features

- High Output Voltage Swings-up to 30 V
- High Output Current Drive Capability-up to 500 mA
- Hıgh Repetıtion Rate-up to 5.0 MHz
- Pin Compatible with the MH0009/MH0009C
- "Zero" Quiescent Power

schematic and connection diagrams

12-Lead TO-8 Package

Order Number MH0013G or MH0013CG See Package 6

typical applications

absolute maximum ratings

$\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$Voltage Differential	30 V
Input Current (Pin 2, 4, 6 or 8)	$\pm 75 \mathrm{~mA}$
Peak Output Current	$\pm 600 \mathrm{~mA}$
Power Dissipation (Figure 7)	1.5 W
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature MH0013	MH0013C
Lead Temperature (Soldering, 10 sec $1 / 16^{\prime \prime}$ from Case)	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

electrical characteristics (Note 1 and Figure 8)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "0" Output Voltage	$\begin{array}{ll} I_{\text {OUT }}=-50 \mathrm{~mA} & I_{\text {IN }}=10 \mathrm{~mA} \\ I_{\text {OUT }}=-10 \mathrm{~mA} & I_{\text {IN }}=10 \mathrm{~mA} \end{array}$	$\mathrm{v}^{+}-30$	$\begin{aligned} & \mathrm{V}^{+}-10 \\ & \mathrm{~V}^{+}-07 \end{aligned}$	$\mathrm{V}^{+}-05$	V
Logical "1" Output Voltage	$\mathrm{I}_{\text {OUT }}=50 \mathrm{~mA} \quad \mathrm{I}_{\text {IN }}=10 \mathrm{~mA}$		$v^{-}+15$	$v^{-}+20$	V
Power Supply Leakage Current	$\begin{aligned} & \left(\mathrm{V}^{+}-\mathrm{V}^{+}\right)=30 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=\mathrm{I}_{\mathrm{IN}}=0 \mathrm{~mA} \end{aligned}$		10	100	$\mu \mathrm{A}$
Negative Input Voltage Clamp	$\mathrm{I}_{\text {IN }}=-10 \mathrm{~mA}$	$v^{-}-12$	$V^{-}-08$	1	v
t_{d} ON			20	35	ns
$\mathrm{t}_{\text {rise }}$	$\mathrm{C}_{1 \mathrm{~N}}=00022 \mu \mathrm{~F}$		35	50	ns
$\mathrm{t}_{\text {d OFF }}$ (Note 2)	$R_{\mathbf{I N}}=0 \Omega$		30	60	ns
$\mathrm{t}_{\text {fall }}$ (Note 2)	$\mathrm{C}_{\mathrm{L}}=0001 \mu \mathrm{~F}$	40	50	80	ns
$\mathrm{t}_{\text {fall }}$ (Note 3)		40	70	120	ns
Pulse Width (50\% to 50\%) (Note 3)		340	420	490	ns
$\mathrm{t}_{\text {rise }}$	$C_{1 N}=500 \mathrm{pF}$		15		ns
$\mathrm{t}_{\text {fall }}$	$\mathrm{R}_{1 \mathrm{~N}}=0 \Omega$,	20		ns
Puise Width (50\% to 50\%) (Note 3)	$C_{L}=200 \mathrm{pF}$		110		ns
Positive Output Voltage Swing			$\mathrm{v}^{+}-07 \mathrm{~V}$		V
Negative Output Voltage Swing			$V^{-}+07 \mathrm{~V}$		V

Note 1: Min/Max limits apply over guaranteed operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for
MH0013 and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for MH0013C, with $\mathrm{V}^{-}=-20 \mathrm{~V}$ and $\mathrm{V}^{+}=0 \mathrm{~V}$ unless otherwise specified.
Typical values are for $25^{\circ} \mathrm{C}$
Note 2: Parameter values apply for clock pulse width determined by input pulse width.
Note 3: Parameter values apply for input pulse width greater than output clock pulse width
TABLE I. Typical Drive Capability of One Half MH0013 at $70^{\circ} \mathrm{C}$ Ambient

$\begin{aligned} & \left(v_{3}-v_{2}\right) \\ & \text { vOLTS } \end{aligned}$	$\begin{aligned} & \text { FREQUENCY } \\ & \text { MHz } \end{aligned}$	PULSE WIDTH ns	$\underset{\Omega}{\text { TYPICAL } R_{\text {IN }}}$	$\underset{\text { TYP }}{\text { TYPICAL } C_{\text {IN }}}$	OUTPUT DRIVE CAPABILITY IN PF ${ }^{\prime}$	RISE TIME LIMIT ns 2
28					50	-
20	40	100	0	750	200	7
16					350	10
28					100	5
20	20	200	10	1600	400	14
16					700	19
28	1				400	19
20	10	200	0	2300	1000	34
16					1700	45
28					2800	130
20	05	500	10	4000	5500	- 183
16					9300	248

Note 1: Output load is the maximum load that can be driven at $70^{\circ} \mathrm{C}$ without exceeding the package rating under the given conditions.
Note 2: The rise tıme given is the minimum that can be used without exceeding the peak transient output current for the full rated output load.

circuit operation

Input current forced into the base of Q 1 through the coupling capacitor $\mathrm{C}_{1 \mathrm{~N}}$ causes Q 1 to be driven into saturation, swinging the output to $\mathrm{V}^{-}+\mathrm{V}_{\mathrm{CE}}(S A T)+\mathrm{V}_{\text {DIODE }}$.

When the input current has decayed, or has been switched, such that Q1 turns off, Q2 receives base
drive through R2, turning Q 2 on. This supplies current to the load and the output swings positive to $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{BE}}$.
It may be noted that Q1 always switches off before O 2 begins to supply current; hence, high internal transient currents from V^{+}to V^{-}cannot occur.

typical performance characteristics

FIGURE 1. Output Load vs Voltage

FIGURE 2. Transient Power vs Rep.

FIGURE 3. Transient Power vs Rep.

FIGURE 4. Average Internal Power vs Output Swing vs Duty Cycle

FIGURE 5. Typical Clock Pulse Variations vs Ambient Temperature

FIGURE 7. Package Power Derating

ac test circuit

timing diagram

Figure 8

pulse width

Maxımum output pulse width is a function of the input driver characteristics and the coupling capacitance and resistance. After being turned on, the input current must fall from its initial value $I_{I N}$ peak to below the input threshold current $I_{I N} \min \simeq V_{B E} / R I$ for the clock driver to turn off. For example, referring to the test circuit of Figure 8, the output pulse width, 50% to 50%, is given by

$$
\begin{aligned}
& p w_{O U T} \cong \frac{1}{2}\left(t_{\text {rise }}+t_{\text {fall }}\right) \\
& +R_{O} C_{I N} \ln \frac{I_{\text {IN }} \text { peak }}{I_{I N} \min } \cong 400 n s .
\end{aligned}
$$

For operation with the input pulse shorter than the above maximum pulse width, the output pulse width will be directly determined by the input pulse width.
$p W_{\text {OUT }}=p W_{I N}+t_{d \text { OFF }}+t_{d \text { ON }}+\frac{1}{2}\left(t_{\text {fall }}+t_{\text {rise }}\right)$

Typıcal maximum pulse width for various $\mathrm{C}_{1 \mathrm{~N}}$ and $R_{I N}$ values are given in Figure 6.

fan-out calculation

The drive capability of the MH 0013 is a function of system requirements, i.e., speed, ambient temperature, voltage swing, drive circuitry, and stray wiring capacity.
The following equations cover the necessary calculatıons to enable the fan-out to be calculated for any system condition. Some typical fan-outs for conditions are given in Table 1.

Transient Current

The maxımum peak output current of the MH0013 is given as 600 mA . Average transient current required from the driver can be calculated from.

$$
\begin{equation*}
I=\frac{C_{L}\left(V^{+}-V^{-}\right)}{T_{R}} \tag{1}
\end{equation*}
$$

This can give a maximum limit to the load.
Figure 1 shows maximum voltage swing and capacitive load for various rise times

1. Transıent Output Power

The average transient power (P_{AC}) dissipated is equal to the energy needed to charge and discharge the output capacitive load $\left(C_{L}\right)$ multiplied by the frequency of operation (F)

$$
\begin{equation*}
P_{A C}=C_{L} \times\left(V^{+}-V^{-}\right)^{2} \times F \tag{2}
\end{equation*}
$$

Figures 2 and 3 show transient power for two different values of $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$versus output load and frequency.
2. Internal Power
" O " State
Neglıgible $(<3 \mathrm{~mW})$
"1" State

$$
\begin{equation*}
P_{\text {INT }}=\frac{\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)^{2}}{R_{2}} \times \text { Duty Cycle. } \tag{3}
\end{equation*}
$$

Figure 4 gives various values of internal power versus ouptut voltage and duty cycle.

3 Input Power

The average input power is a function of the input current and duty cycle. Due to input voltage clamping, this power contribution is small and can therefore be neglected. At maxımum duty cycle of 50%, at $25^{\circ} \mathrm{C}$, the average input power is less than 10 mW per phase for $\mathrm{R}_{1 \mathrm{~N}} \mathrm{C}_{1 \mathrm{~N}}$ controlled pulse widths For pulse widths much shorter than $R_{I N} C_{I N}$, and maximum duty cycle of 50%, input power could be as high as 30 mW , since $I_{I_{N}}$ peak is maintained for the full duration of the pulse width

$$
\begin{aligned}
& 4 \text { Package Power Dissipation } \\
& \text { Total Average Power }= \text { Transient Output Power }+ \\
& \text { Internal Power }+ \text { Input } \\
& \text { Power }
\end{aligned}
$$

Typical Example Calculatıon for One Half
MH0013C
How many MM506 shift registers can be driven by an MH 0013 C driver at 1 MHz using a clock pulse width of 400 ns, rise time 30-50 ns and 16 volts amplitude over the temperature range $0-70^{\circ} \mathrm{C}$?

Power Dissipation

From the graph of power dissipation versus temperature, Figure 7, it can be seen that an MH 0013 C at $70^{\circ} \mathrm{C}$ can dissipate 1 W without a heat sınk, therefore, each half can dissıpate 500 mW .

Transient Peak Current Limitation

From Figure 1 (equation 1), it can be seen that at 16 V and 30 ns , the maxımum load that can be driven is limited to 1140 pF .

Average Internal Power

Figure 4 (equation 3) gives an average power of 102 mW at $16 \mathrm{~V} 40 \%$ duty cycle.
Input power will be a maxımum of 8 mW

Transient Output Power

For one half of the MH0013C
$500 \mathrm{~mW}=102 \mathrm{~mW}+8 \mathrm{~mW}$

+ transient output power
$390 \mathrm{~mW}=$ transient output power
Using Figure 2 (equation 2) at $16 \mathrm{~V}, 1 \mathrm{MHz}$ and 390 mW , each half of the MH0013C can drive a 1520 pF load. This is, however, in excess of the load derived from the transient current limitation (Figure 1, equation 1), and so a maximum load of 1140 pF would prevail.
From the data sheet for the MM506, the average clock pulse load is 80 pF . Therefore the number of devices driven is $\frac{1140}{80}$ or 14 registers.
For nonsymmetrical clock widths, drive capability is improved.

Memory/Clock Drivers

MH0025/MH0025C two phase MOS clock driver
 general description
 features

The MH0025/MH0025C is monolithic, low cost, two phase MOS clock driver that is designed to be driven by TTL/DTL line drivers or buffers such as the DM932, DM8830, or DM7440. Two input coupling capacitors are used to perform the level shift from TTL/DTL to MOS logic levels. Optımum performance in turn-off delay and fall time are obtained when the output pulse is logically controlled by the input. However, output pulse widths may be set by selection of the input capacitors eliminating the need for tight input pulse control.

- 8-lead TO-5 or 8 -lead dual-ın-line package
- High Output Voltage Swings-up to 30 V
- High Output Current Drive Capability-up to 1.5A
- Rep. Rate: 1.0 MHz into $>1000 \mathrm{pF}$
- Driven by DM932, DM8830, DM7440(SN7440)
- "Zero" Quiescent Power

connection diagrams

typical application

ac test circuit

timing diagram

absolute maximum ratings

$\left(\mathrm{V}^{+}-\mathrm{V}\right)$ Voltage Differentıal	30 V
Input Current	100 mA
Peak Output Current	1.5A
Power Dissipation	See Curves
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $\mathrm{MH0025}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MH0025C	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

electrical characteristics (Note 1) See test circuit.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{T}_{\text {don }}$	7		15	30	ns
$\mathrm{T}_{\text {rise }}$	$\mathrm{C}_{\text {IN }}=.001 \mu \mathrm{~F}$		25	50	ns
$\mathrm{T}_{\text {doFF }}$ (Note 2)	$\} \mathrm{R}_{\text {IN }}=0 \Omega$		30	60	ns
$\mathrm{T}_{\text {fall }}$ (Note 2)	$C_{L}=.001 \mu \mathrm{~F}$	60	90	120	ns
$\mathrm{T}_{\text {fall }}$ (Note 3)		100	150	250	ns
P.W. (50\% to 50\%) (Note 3)	\int		500		ns
Positive Output Voltage Swing	$V_{\text {IN }}=0 V, I_{\text {OUT }}=-1 \mathrm{~mA}$	$\mathrm{V}^{+}-1.0$	$\mathrm{V}^{+}-0.7 \mathrm{~V}$		V
Negative Output Voltage Swing	$\mathrm{I}_{\mathrm{IN}}=10 \mathrm{~mA}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$		$\mathrm{V}^{-}+0.7 \mathrm{~V}$	$\mathrm{V}^{-}+1.5 \mathrm{~V}$	V

Note 1. $\mathrm{Min} / \mathrm{Max}$ limits apply across the guaranteed operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
for MH0025 and $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for MH0025C. Typical values are for $+25^{\circ} \mathrm{C}$.
Note 2. Parameter values apply for clock pulse width determined by input pulse width.
Note 3. Parameter values apply for input pulse width greater than output clock pulse width.

typical performance

applications information

Circuit Operation

Input current forced into the base of Q_{1} through the coupling capacitor $\mathrm{C}_{\mathrm{IN}_{N}}$ causes Q_{1} to be driven into saturation, swinging the output to $\mathrm{V}^{-}+\mathrm{V}_{\mathrm{CE}}($ sat $)+$ $V_{\text {Diode }}$.
When the input current has decayed, or has been switched, such that Q_{1} turns off, Q_{2} receives base drive through R_{2}, turning Q_{2} on. This supplies current to the load and the output swings positive to $V^{+}-V_{B E}$.
It may be noted that Q_{1} must switch off before Q_{2} begins to supply current, hence high internal transients currents form V^{-}to V^{+}cannot occur.

FIGURE 1. MHOO25 Schematic (One-Half Circuit)

Fan-Out Calculation

The drive capability of the MH0O25 is a function of system requirements, i.e. speed, ambient temperature, voltage swing, drive circuitry, and stray wiring capacity.

The following equations cover the necessary cal-

example calculation

How many MM506 shift registers can be driven by an MH0025CN driver at 1 MHz using a clock pulse width of 200 ns , rise time $30-50$ ns and 16 V amplitude over the temperature range $0-70^{\circ} \mathrm{C}$?

Power Dissipation:

At $70^{\circ} \mathrm{C}$ the MH 0025 CN can dissipate 630 mW when soldered into printed circuit board.

Transient Peak Current Limıtation:
From equation (1), it can be seen that at 16 V and 30 ns , the maximum load that can be driven is limited to 2800 pF .

Average Internal Power:
Equation (3), gives an average power of 50 mW at 16 V and a 20% duty cycle.
culations to enable the fan-out to be calculated for any system condition.

Transient Current

The maximum peak output current of the MH0025 is given as 1.5 A . Average transient current required from the driver can be calculated from:

$$
\begin{equation*}
1=\frac{C_{L}\left(V^{+}-V^{-}\right)}{t_{r}} \tag{1}
\end{equation*}
$$

Typical rise times into 1000 pF load is 25 ns For $\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{I}=0.8 \mathrm{~A}$.

Transient Output Power

The average transient power (P_{ac}) dissipated, is equal to the energy needed to charge and discharge the output capacitive load (C_{L}) multiplied by the frequency of operation (f).

$$
\begin{equation*}
P_{A C}=C_{L} \times\left(V^{+}-V^{-}\right)^{2} \times f \tag{2}
\end{equation*}
$$

For $\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, $P_{A C}=400 \mathrm{~mW}$.

Internal Power

" 0 " State \quad Negligible ($<3 \mathrm{~mW}$)
" 1 " State

$$
\begin{align*}
P_{\text {int }} & =\frac{\left(V^{+}-V^{-}\right)^{2}}{R_{2}} \times \text { Duty Cycle } \tag{3}\\
& =80 \mathrm{~mW} \text { for } V^{+}-V^{-}=20 \mathrm{~V}, D C=20 \%
\end{align*}
$$

Package Power Dissipation

Total average power = transient output power + internal power

For one half of the $\mathrm{MH} 0025 \mathrm{C}, 630 \mathrm{~mW} \div 2$ can be dissıpated.
$315 \mathrm{~mW}=50 \mathrm{~mW}+$ transient output power
$265 \mathrm{~mW}=$ transient output power
Using equation (2) at $16 \mathrm{~V}, 1 \mathrm{MHz}$ and 250 mW , each half of the MH0025CN can drive a 975 pF load. This is, less than the load imposed by the transient current limitation of equation (1) and so a maximum load of 975 pF would prevail.

From the data sheet for the MM506, the average clock pulse load is 80 pF . Therefore the number of devices driven is $\frac{975}{80}$ or 12 registers.

MH0026/MHOO26C 5 MHz two phase MOS clock driver

general description

The MH0026/MH0026C is a low cost monolithic high speed two phase MOS clock driver and interface circuit. Unique circuit design along with advanced processing provide both very high speed operation and the ability to drive large capacitive loads. The device accepts standard TTL/DTL outputs and converts them to MOS logic levels. It may be driven from standard $54 / 74$ series gates and flip-flops or from drivers such as the DM8830 or DM7440. The MH0026 is intended for applications in which the output pulse width is logically controlled: i.e., the output pulse width is equal to the input pulse width.

features

- Fast rise and fall tımes-20 ns with 1000 pF load
- High output swing-20V
- High output current drive $- \pm 1.5 \mathrm{amps}$
- TTL/DTL compatible inputs
- High rep rate-5 to 10 MHz depending on load
- Low power consumption in MOS " 0 " state2 mW
- Drives to 0.4 V of GND for RAM address drive

The MH0026 is intended to fulfill a wide variety of MOS interface requirements. As a MOS clock driver for long silicon gate shift registers, a single device can drive over 10 k bits at 5 MHz . Six devices provide input address and precharge drive for a 8 k by 16 bit MM1103 RAM memory system. Information on the correct usage of the MH0O26 in these as well as other systems is included in the application section starting on page 5. A thorough understanding of its usage will insure optimum performance of the device.

The device is available in 8 -lead TO-5, one watt copper lead frame 8 -pin mini-DIP, and one and a half watt TO-8 packages.

connection diagrams

schematic diagram
(1/2 of Circuit Shown)

absolute maximum ratings

$\mathrm{V}^{+}-\mathrm{V}^{-}$Differential Voltage
Input Current 100 mA
Input Voltage ($\mathrm{V}_{\mathrm{IN}}-\mathrm{V}^{-}$) 5.5 V

Peak Output Current 1.5A

Power Dissipation
Operating Temperature Range MHOO26 MH0026C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
22 V
100 mA
5.5 V
1.5 A
See curves
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
dc electrical characteristics (Notes $1 \& 2$)

ac electrical characteristics (Notes $1 \& 2, \mathrm{AC}$ test circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Turn-On Delay (ton)		5.0	7.5	12	ns
Turn-Off Delay (toff)		5.0	12	15	ns
Rise time (t_{r}) - Note 3	$\mathrm{V}^{+}-\mathrm{V}^{-}=17 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		12		ns
	$\mathrm{V}^{+}-\mathrm{V}^{-}=17 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		15	18	ns
	$C_{L}=1000 \mathrm{pF}$		20	35	ns
Fallitime (tf_{f} - Note 3	$\mathrm{V}^{+}-\mathrm{V}^{-}=17 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}$		10		ns
	$\mathrm{V}^{+}-\mathrm{V}^{-}=17 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		12	16	ns
	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		17	25	ns

Note 1: These specifications apply for $\mathrm{V}^{+}-\mathrm{V}^{-}=10 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the MH0026 and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the MH0026C, unless otherwise specified.
Note 2: All typical values for the $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Rise and fall tıme are given for MOS logic levels; i.e., rise tıme is transistion from logic " 0 " to logic " 1 " which is voltage fall. See waveforms on the following pages.
ac test circuit

switching time waveforms

typical performance characteristics

Transient Power ($\mathbf{P A C}_{\mathbf{A C}}$) vs

DC Power (P_{DC}) vs Duty Cycle

3

typical applications (cont.)

AC Coupled MOS Clock Driver

*See applications section for detailed information on input/output design criterion.

DC Coupled RAM Memory Address or Precharge

Driver (Positive Supply Only)

typical applications

Transistor Coupled MOS Clock Driver

application information

1.0 Introduction

The MH0026 is capable of delivering 30 watts peak power (1.5 amps at 20 V needed to rapidly charge large capacitative loads) while its package is limited to the watt range. This section describes the operation of the crrcuit and how to obtain optimum system performance. If additional design information is required, please contact your local National field application engineer.

2.0 Theory of Operation

Conventional MOS clock drivers like the MH0O13 and similar devices have relied on the circuit configuration in Figure 1. The AC coupling of an input pulse allows the device to work over a wide range of supplies while the output pulse width may be controlled by the time constant $-R_{1} \times C_{1}$.

FIGURE 1. Conventional MOS Clock Drive
D_{2} provides 0.7 V of dead-zone thus preventing Q_{1} and Q_{2} from conducting at the same time. In order to drive large capacitive loads, Q_{1} and Q_{2} are large geometry devices but C_{ob} now limits useful output rise time. A high voltage TTL output stage (Figure 2) could be used; however, during switching until the stored charge is removed from Q_{1}, both output devices conduct at the same time. This is familiar in TTL with supply line glitches in the order of 60 to 100 mA . A clock driver built this way would introduce 1.5 amp spikes into the supply lines.

FIGURE 2. Alternate MOS Clock Drive
Unique circuit design and advanced semiconductor processing overcome these clasic problems allowing the high volume manufacture of a device, the MH0026, that delivers 1.5A peak output currents with 20 ns rise and fall times into 1000 pF loads. In
a simplified diagram, D_{1} (Figure 3) provides 0.7 V dead zone so that Q_{3} is turned $O N$ for a rising input pulse and Q_{2} OFF prior to Q_{1} turning ON a few nanoseconds later. D_{2} prevents zenering of the emitter-base junctıon of Q_{2} and provides an initial discharge path for the load via Q_{3}. During a falling input, the stored charge in Q_{3} is used beneficially' to keep Q_{3} ON thus preventing Q_{2} from conducting until Q_{1} is OFF. Q_{1} stored charge is quickly discharged by means of common-base transistor O_{4}.

The complete circuit of the MHOO26 (see schematic on page 1) basically makes Darlingtons out of each of the transistors in Figure 3.

FIGURE 3. Simplified MH0026

When the output of the TTL input element (not shown) goes to the logic " 1 " state, current is supplied through $\mathrm{C}_{1 \mathrm{~N}}$ to the base of Q_{1} and Q_{2} turning them ON , and Q_{3} and Q_{4} OFF when the input voltages reaches 0.7 V . Initial discharge of the load as well as $\mathrm{E}-\mathrm{B}$ protection for Q_{3} and Q_{4} are provided by D_{1} and D_{2}. When the input voltage reaches about $1.5 \mathrm{~V}, \mathrm{O}_{6}$ and O_{7} begin to conduct and the load is rapidly discharged by Q_{7}. As the input goes low, the input side of $\mathrm{C}_{1 \mathrm{~N}}$ goes negative with respect to V^{-}causing Q_{8} and Q_{9} to conduct momentarily to assure rapid turn-off of Q_{2} and Q_{7} respectively. When Q_{1} and Q_{2} turn OFF, Darlington connected Q_{3} and Q_{4} rapidly charge the load toward V^{+}volts. R_{6} assures that the output will reach to within one V_{BE} of the V^{+}supply.

The real secret of the device's performance is proper selection of transistor geometries and resistor values so that Q_{4} and Q_{7} do not conduct at the same time while minimizing delay from input to output.

3.0 Power Dissipation Considerations

There are four considerations in determining power dissipations.

1. Average $D C$ power
2. Average $A C$ power
3. Package and heat sink selection
4. Remember-2 drivers per package

application information (cont.)

The total average power dissipated by the MH0026 is the sum of the DC power and AC transient power. The total must be less than given package power ratings.

$$
P_{D I S S}=P_{A C}+P_{D C} \leq P_{M A X}
$$

Since the device dissipates only 2 mW with output voltage high (MOS logic " 0 "), the domınatıng factor in average DC power is duty cycle or the percent of time in output voltage low state (MOS logic " 1 "). Percent of total power contributed by $P_{D C}$ is usually neglible in shift register applicatıons where duty cycle is less than 25%. P_{DC} domınates in RAM address line driver applications where duty cycle can exceed 50%.

3.1 DC Power (per driver)

DC Power is given by:

$$
P_{D C}=\left(V^{+}-V^{-}\right) \times\left(I_{S(\text { Low })}\right) \times
$$

$$
\begin{gathered}
\left(\frac{\text { ON time }}{(\text { OFF time-ON time }}\right) \\
\text { or } P_{D C}=(\text { Output Low Power }) \times(\text { Duty Cycle }) \\
\text { where: } I_{S(L O W)}=I_{S} @\left(V^{+}-V^{-}\right) \\
\text {Example 1: }\left(V^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}\right)
\end{gathered}
$$

a) Duty cycle $=25 \%$, therefore

$$
\begin{aligned}
& P_{D C}=17 \mathrm{~V} \times 40 \mathrm{~mA} \times 17 / 20 \times 25 \% \\
& P_{D C}=145 \mathrm{~mW} \text { worst-case, each side } \\
& P_{D C}=109 \mathrm{~mW} \text { typically }
\end{aligned}
$$

b) Duty cycle $=5 \%$

$$
P_{D C}=21 \mathrm{~mW}
$$

c) See graph on page 3

The above illustrates that for shift register applications, the minimum clock width allowable for the given type of shift register should be used in order to drive the largest number of registers per clock driver.

Example 2: $\left(V^{+}=+17 V, V^{-}=G N D\right):$
a) Duty cycle $=50 \%$
$P_{D C}=290 \mathrm{~mW}$ worst-case
$P_{D C}=218 \mathrm{~mW}$ typically
b) Duty cycle $=100 \%$

$$
P_{D C}=580 \mathrm{~mW}
$$

Thus for RAM address line applications, package type and heat sink technique will limit drive capability rather than $A C$ power.

3.2 AC Transient Power (per driver)

AC Transient power is given by:

$$
P_{A C}=\left(V^{+}-V^{-}\right)^{2} \times f \times C_{L}
$$

where: $f=$ frequency of operation

$$
\begin{aligned}
C_{L}= & \text { Load capacitance (including all } \\
& \text { strays and wiring) }
\end{aligned}
$$

Example 3: $\left(V^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}\right)$

$$
\begin{aligned}
P_{A C}= & 17 \times 17 \times f(M H z) \times 10^{6} \times \\
& C_{L}(\mathrm{nF}) \times 10^{-9} \\
P_{A C}= & 290 \mathrm{~mW} \text { per } \mathrm{MHz} \text { per } 1000 \mathrm{pF}
\end{aligned}
$$

Thus at 5 MHz , a 1000 pF load will cause any driver to dissipate one and one half watts. For long shift registers, a driver with the highest package power rating will drive the largest number of bits for the lowest cost per bit.

3.3 Package Selection

Power ratings are based on a maximum junction rating of $175^{\circ} \mathrm{C}$. The following guidelines are suggested for package selection. Graphs on page 3 illustrate derating for various operating temperatures.
3.31 TO-5 (" ${ }^{\prime \prime}$ ") Package: Rated at 600 mW still air (derate at $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$) and 900 mW with clip on heat sink (derate at $6.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$). This popular hermetic package is recommended for small systems. Low cost (about 10ф) clip-on-heat sink increases driving capability by 50\%.
3.32 8-Pın ("N") Molded Mını-DIP: Rated at 600 mW still air (derate at $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$) and 1.0 watt soldered to PC board (derate at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). Constructed with a special copper lead frame, this package is recommended for medium size commercial systems particularly where automatic insertion is used. (Please note for prototype work, that this package is only rated at 600 mW when mounted in a socket and not one watt until it is soldered down.)
3.33 TO-8 ("G") Package: Rated at 1.5 watts still air (derate at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$) and 2.3 watts with clip on heat sink (Wakefield type 215-1.9 or equivalent-derate at $15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). Selected for its power handling capability and moderate cost, this hermetic package will drive very large systems at the lowest cost per bit.

application information (cont.)

3.4 Summary-Package Power Considerations

The maximum capacitative load that the MH0026 can drive is thus determined by package type, heat sink technique, ambient temperature, AC power (which is proportional to frequency and capacitive load) and DC power (which is principally determined by duty cycle). Combining equations previously given, the following formula is valid for any clock driver with negligible input power and negligible power in output high state:

$$
\begin{gathered}
C_{L}(\max \operatorname{in~} p F)=\frac{10^{-3}}{n} \times \\
\frac{P_{\max (m W)}\left(T_{A}, p k g\right) \times R_{e q}-\left(V^{+}-V^{-}\right)^{2} \times(\mathrm{Dc}) \times 10^{3}}{\left(\mathrm{~V}^{+}-\mathrm{V}^{+}\right)^{2} \times \operatorname{Req} \times f(\mathrm{MHz})} \\
\text { or: } \quad C_{L}(\max \operatorname{in~} \mathrm{pF})=.5 \times 10^{-3} \times \\
\frac{P_{\max }(m W) \times 500-V_{S}{ }^{2} \times \mathrm{Dc} \times 10^{3}}{V_{S}{ }^{2} \times 500 \times f(\mathrm{MHz})}
\end{gathered}
$$

Where: $\mathrm{n}=$ number of drivers per pkg. (2 for the MH0026)
$P_{\text {max }(\mathrm{mW})}\left(\mathrm{T}_{\mathrm{A}}, \mathrm{pkg}\right)=$ Package power rating in milliwatts for given package, heat sink, and max, ambient temperature (See graphs)
$R_{\text {eq }}=$ equivalent internal resistance
$R_{e q}=\left(V^{+}-V^{-}\right) / I_{S(\text { Low })}=500$ ohms (worst case over temperature for the MH0026 or 660 ohms typically)
$V_{s}=\left(V^{+}-V^{-}\right)=$total supply voltage across

Dc $=$ Duty Cycle $=$
Time in output low state
Time in output low + Time in output high state

Table I illustrates MHOO26 drive capability under various system conditions.

4.0 Pulse Width Control

The MH0O26 is intended for applications in which the input pulse width sets the output pulse width; i.e., the output pulse width is logically controlled by the input pulse. The output pulse width is given by:

$$
(P W)_{\text {OUT }}=(P W)_{I N}+\frac{t_{r}+t_{f}}{2}=P W_{I N}+25 n s
$$

Two external input coupling capacitors are required to perform the level translation between TTL/DTL and MOS logic levels. Selection of the capacitor size is determined by the desired output pulse width. Minimum delay and optimum performance is attained when the voltage at the input of the MH0O26 discharges to just above the devices threshold (about 1.5 V). If the input is allowed to discharge below the threshold, $\mathrm{t}_{\mathrm{OFF}}$ and t_{f} will be degraded. The graph on page 3 shows optimum values for $\mathrm{C}_{\text {IN }}$ vs desired output pulse width. The value for C_{IN} may be roughly predicted by:

$$
C_{I N}=\left(2 \times 10^{-3}\right)(P W)_{\text {OUT }}
$$

For an output pulse width of 500 ns , the optimum value for $C_{1 N}$ is:

$$
C_{I N}=\left(2 \times 10^{-3}\right)\left(500 \times 10^{-9}\right) \cong 1000 \mathrm{pF}
$$

TABLE 1. Worst Case Maximum Drive Capability for MH0026*

PACKAG	GE TYPE	TO-8 WITH HEAT SINK		TO-8 FREE AIR		MINI-DIP SOLDERED DOWN		TO-5 AND MINI-DIP FREE AIR	
Max. Operating Frequency		$60^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$						
100 kHz	5\%	30 k	24 k	19 k	15 k	13 k	10k	7.5k	5.8k
500 kHz	10\%	6.5 k	5.1k	4.1k	3.2k	2.7k	2k	1.5k	1.1k
1 MHz	20\%	2.9k	2.2 k	1.8k	1.4k	1.1k	840	600	430
2 MHz	25\%	1.4k	1.1k	850	650	550	400	280	190
5 MHz	25\%	620	470	380	290	240	170	120	80
10 MHz	25\%	280	220	170	130	110	79	-	-

*Note• Values in pF and assume both sides in use as non-overlaping 2 phase driver, each side operatıng at same frequency and duty cycle with $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)=17 \mathrm{~V}$ for loads greater than 1200 pF , rise and fall times will be limited by output current, see Section 50

application information (cont.)

5.0 Rise \& Fall Time Considerations(Note 3)

The MH0026's peak output current is limited to 1.5A. The peak current limitation restricts the maximum load capacitance which the device is capable of driving and is given by:

$$
\mathrm{I}=\mathrm{C}_{\mathrm{L}} \frac{\mathrm{dv}}{\mathrm{dt}} \leqslant 1.5 \mathrm{~A}
$$

The rise time, t_{r}, for various loads may be predicted by:

$$
\mathrm{t}_{\mathrm{r}}=(\Delta \mathrm{V})\left(250 \times 10^{-12}+C_{L}\right)
$$

Where: $\Delta V=$ The change in voltage across C_{L}

$$
\cong v^{+}-v^{-}
$$

$$
\mathrm{C}_{\mathrm{L}}=\text { The load capacitance }
$$

For $\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}$ is:

$$
\begin{aligned}
\mathrm{t}_{\mathrm{r}} & \cong(20 \mathrm{~V})\left(250 \times 10^{-12}+10^{-12}\right) \\
& =25 \mathrm{~ns}
\end{aligned}
$$

For small values of C_{L}, equation above predicts optımistic values for t_{r}. The graph on page 3 shows typical rise times for varıous load capacitances.
The output fall time (see Graph) may be predicted by:

$$
t_{f} \cong 2.2 R\left(C_{s}+\frac{C_{L}}{h_{F E}+1}\right)
$$

6.0 Clock Overshoot

The output waveform of the MH0O26 can overshoot. The overshoot is due to finite inductance of the clock lines. It occurs on the negative going edge when Q_{7} saturates, and on the positive edge when Q_{3} turns OFF as the output goes through $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{be}}$. The problem can be eliminated by placing a small series resistor in the ouput of the MH0026. The critical valve for $R_{s}=2 \sqrt{L} / C$ e where L is the self-inductance of the clock line. In
practice, determination of a value for L is rather difficult. However, R_{s} is readily determined emperically, and values typically range between 10 and 51 ohms. R_{s} does reduce rise and fall times as given by:

$$
t_{r}=t_{f} \cong 2.2 R_{S} C_{L}
$$

7.0 Clock Line Cross Talk

At the system level, voltage spikes from ϕ_{1} may be transmitted to ϕ_{2} (and vice-versa) during the transition of ϕ_{1} to MOS logic " 1 ". The spike is due to mutual capacitance between clock lines and is, in general, aggravated by long clock lines when numerous registers are being driven. Transistors Q_{3} and Q_{4} on the ϕ_{2} side of the MHOO26 are essentially "OFF" when ϕ_{2} is in the MOS logic " 0 " state since only micro-amperes are drawn from the device. When the spike is coupled to ϕ_{2}, the output has to drop at least $2 \mathrm{~V}_{\mathrm{BE}}$ before Q_{3} and Q_{4} come on and pull the output back to V^{+}. A simple method for eliminating or minimizing this effect is to add bleed resistors between the MH0026 outputs and ground causing a current of a few milliamps to flow in O_{4}. When a spike is coupled to the clock line Q_{4} is already "ON" with a finite $h_{f e}$. The spike is quickly clamped by Q_{4}. Values for R depend on layout and the number of registers being driven and vary typically between 2 k and 10 k ohms.

8.0 Power Supply Decoupling

Power supply decoupling is a widespread and accepted practice. Decoupling of V^{+}to V^{-}supply lines with at least $0.1 \mu \mathrm{~F}$ noninductive capacıtors as close as possible to each MH 0026 is strongly recommended. This decoupling is necessary because otherwise 1.5 ampere currents flow during logic transition in order to rapidly charge clock lines.

Memory/Clock Drivers

MH7803/MH8803 two phase oscillator/clock driver

general description

The MH7803 is a self contained two phase oscillator/clock driver. It requires no external components to generate one of three primary oscillator frequencies and pulse widths. Other frequencies can easily be obtained by programming input voltages. Three sets of outputs are provided: damped and un-damped MOS outputs and TTL monitor outputs. The MOS outputs easily drive 500 pF loads with less than 150 ns rise and fall times. In addition the outputs have current limiting to protect against momentary shorts to the supplies.

The MH7803 and MH8803 are available in a 14 lead cavity DIP. The MH8803 is also available in a 14 pin molded DIP.

features

- Two phase non-overlapping outputs
- No external timing components required
- Frequency adjustable from 100 kHz to 500 kHz
- Pulse width adjustable from 260 ns to $1.4 \mu \mathrm{~s}$
- Damped and un-damped MOS outputs
- TTL monitor outputs

block and connection diagrams

Dual-In-Line Package

Order Number MH7803J or MH8803J
See Package 16
Order Number MH8803N
See Package 22
absolute maximum ratings
$V_{S S}-V_{D D}$
V_{Cc}-GND
Pulse Width Adjust Voltage
Frequency Adjust Voltage
$V_{S S}-V_{D D}$ Mınımum
Test and Inhibit Input Voltages
22 V
7.0 V
$\mathrm{~V}_{\mathrm{SS}}+0.5 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{SS}}+0.5 \mathrm{~V}$
14 V
$\mathrm{~V}_{\mathrm{SS}}$

Operatıng Temperature Range

MH7803
MH8803
Storage Temperature Range
Lead Temperature (Solderıng, 10 seconds)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
electrical characteristics
(Note 1)

Note 1: These specifications apply for the $M H 7803$ at $V_{S S}-V_{D D}=17 \mathrm{~V} \pm 10 \%$ and over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; for the MH8803 at $V_{S S}-V_{D D}=17 \mathrm{~V} \pm 5 \%$ and over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified.
Note 2: The duty cycle can not physically exceed 50% at any output. At high frequencies the frequency adjust pin will affect the pulse width by limiting the duty cycle to slightly less than 50%. Under this condition the pulse width spec does not apply.
typical performance characteristics

typical performance characteristics (con't)

applications information

TTL MONITOR OUTPUTS

The TTL outputs are extra functions provided for monitor or synchronızation applicatıons. In some systems these outputs may not be required. For these cases the V_{CC} pin may be left open and the TTL circuitry power consumption will be virtually zero.

The TTL outputs are slaved to the MOS outputs. Thus the TTL outputs start to switch when the MOS outputs cross the TTL threshold voltage (about 1.5 V above ground). Figure 1 depicts the effect of different supply voltages on the TTL waveform when the MOS outputs are driving capacitive loads.

DAMPED MOS OUTPUTS

An extra set of MOS outputs provides a 10 ohm resistor in series with each output line. These resistors give the output pulses an R-C rolloff which tends to minimize ringing or peaking problems associated with board layout.

INHIBIT AND TEST INPUTS

The INHIBIT and TEST inputs are designed to facilitate testing of the device. They were not included in the IC for system use.

FIGURE 1.

Typically they perform as follows:
INHIBIT Input: in the low state prevents pulses
from being initiated on either phase output.
High Level Input:

$$
V_{I H} \geq V_{D D}+2.0 V
$$

Low Level Input:

$$
V_{D D}+0.2 V \geq V_{I L} \geq V_{D D}-0.5 V
$$

applications information (con't)

TEST Input: in the low state forces a ONE state on all outputs. The test input should only be used with the INHIBIT input also in the low state.

High Level:

$$
V_{I H} \geq V_{D D}+8.0 V
$$

Low Level:

$$
V_{D D}+0.5 V \geq V_{1 L} \geq V_{D D}
$$

A pull-up resistor is connected from the TEST pin to V_{SS} internally.

POWER CONSIDERATIONS

Internal power dissipation is affected by three factors:

- dc power
- ac power
- package dissipation capability

The total average power dissipation is the summation of the dc power and ac power. This sum must be less than the maximum package dissipation capability at the particular operating temperature to insure safe operation, i.e.:

$$
P_{D I S S}=P_{A C}+P_{D C} \leq P_{M A X}
$$

Where

$$
\begin{aligned}
P_{A C}= & P_{A C T T L}+P_{A C M O S} \\
P_{A C}= & {\left[\left(V_{C C}-G N D\right)^{2} \times f \times C_{L}\right] T T L } \\
& +\left[\left(V_{S S}-V_{D D}\right)^{2} \times f \times C_{L}\right] \text { MOS }
\end{aligned}
$$

And

$$
\begin{aligned}
P_{D C}= & \left(I_{C C}\right) \times\left(V_{c C}-G N D\right)+\left(I_{S S}\right) \\
& \times\left(V_{S S}-V_{D D}\right)
\end{aligned}
$$

for $I_{\text {cc }}$ and $I_{\text {Ss }}$ selected at the appropriate duty cycle.
For practical cases the $P_{A C}$ tTL can be neglected as being very small compared to $P_{A C}$ MOs.

Thus PDIss is the sum of the MOS transient power (total for both sides of the MH7803) and the standby power of the TTL and MOS sections of the MH7803.

DECOUPLING

It is recommended that each device be decoupled with a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}$. If there is noise on the supply lines, better frequency and pulse width stability can be obtained by connecting a $0.001 \mu \mathrm{~F}$ capacitor from the frequency control pin to $V_{D D}$ and another $0.001 \mu \mathrm{~F}$ capacitor from the pulse width control pin to $V_{D D}$.

Memory/Clock Drivers

MH8808 dual high speed MOS clock driver

general description

The MH8808 is a high speed dual MOS clock driver intended to drive the two phases of a memory array of 500 pF per phase at rates up to 4 MHz . The design includes output current limiting for controlled rise and fall tımes, and thermal shutdown which protects the chip against excessive power dissipation or accidental output shorts. Two DTL/TTL compatible status outputs monitor clock outputs and provide a corresponding TTL logic level for status indication. Both direct and internally damped outputs are available for each phase to suit the particular application. It is ideally suited for driving MM5262 2k RAMs.

features

- High Speed: 18 ns typ delay and 20 ns typ rise and fall times with 500 pF load
- Current limited outputs $\pm 450 \mathrm{~mA}$ typ
- Direct and damped outputs available
- Thermal shutdown protection
- TTL compatible status outputs
- 1 W dissipation capability at $25^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}$
- 16 pin cavity dual-in-lıne package
- Output high level clamped to +5 V

Dual-In-Line Package

absolute maximum ratings

electrical characteristics

The following apply for $\mathrm{V}_{\mathrm{BB}}=+7 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated

PARAMETER	CONDITIONS	MIN	MAX	UNITS
Input Current	$V_{\text {IN }}=-9 V($ Note 2)		10	$m \mathrm{~A}$
Output Low Voltage	$\mathrm{I}_{\mathrm{OUT}}=+1 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=-10 \mathrm{~V}$ (Note 2)	-14		V
Output High Voltage	$\mathrm{I}_{\text {OUT }}=-1 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=-14 \mathrm{~V}$	45	53	V
Status "1" Voltage	$\mathrm{I}_{\text {OUT }}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=-14 \mathrm{~V}$	3		V
Status " 0 " Voltage	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=-10 \mathrm{~V} \\ & (\text { Note } 2) \end{aligned}$		05	V
Output Leakage Current	$\begin{aligned} & V_{B B}=+85 \mathrm{~V}, V_{S S}=5 \mathrm{~V} \\ & V_{D D}=-175 \mathrm{~V}, V_{O U T}=+85 \mathrm{~V} \\ & V_{I N}=\text { open } \end{aligned}$		100	$\mu \mathrm{A}$
Damping Resistor		4		S2
$I_{B B}$	$\begin{aligned} & V_{I N}=-115 \mathrm{~V} \\ & V_{S S}=+65 \mathrm{~V}, V_{D D}=-175 \mathrm{~V} \\ & V_{B B}=+85 \mathrm{~V} \quad(\text { Note } 2) \end{aligned}$		32	mA
$\mathrm{I}_{\text {ss }}$	$\begin{aligned} & V_{\text {IN }}=-115 \mathrm{~V} \\ & V_{S S}=+65 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-175 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BB}}=+85 \mathrm{~V} \quad(\text { Note } 2) \end{aligned}$		23	mA
$I_{\text {DO }}$	$\begin{aligned} & V_{\text {IN }}=-115 \mathrm{~V} \\ & V_{S S}=+65 \mathrm{~V}, \mathrm{~V}_{\mathrm{OD}}=-175 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BB}}=+85 \mathrm{~V} \quad(\text { Note } 2) \end{aligned}$	-	-55	mA
Output Rise Time	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		26	ns
Output Fall Time	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		26	ns
Delay to Negative-Going Output	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$	7	22	ns
Delay to Positive-Going Output	$C_{L}=500 \mathrm{pF}$	10	25	ns

Note 1: Maximum junction temperature is $+125^{\circ} \mathrm{C}$. For operation above $+25^{\circ} \mathrm{C}$ derate at $+80^{\circ} \mathrm{C} / \mathrm{W} \theta \mathrm{JA}$ for still air.
Note 2: Test only one input high (more positive) at a time.

DM7820/DM8820 dual line receiver

general description

The DM7820, specified from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and the DM8820, specified from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, are digital line receivers with two completely independent units fabricated on a single silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with RTL, DTL or TTL integrated circuits.

features

- Operation from a single +5 V logic supply
- Input voltage range of $\pm 15 \mathrm{~V}$
- Each channel can be strobed independently
- High input resistance
- Fanout of two with either DTL or TTL integrated circuits

The response time can be controlled with an external capacitor to eliminate noise spikes, and the output state is determined for open inputs. Termination resistors for the twisted pair line are also included in the circuit. Both the DM7820 and the DM8820 are specified, worst case, over their full operating temperature range, for ± 10-percent supply voltage variations and over the entire input voltage range.

schematic and connection diagrams

Order Number DM7820J or DM8820J See Package 16 Order Number DM8820N See Package 22
Order Number DM7820W or DM8820W See Package 27

typical application

absolute maximum ratings

Supply Voltage	8.0 V
Input Voltage	$\pm 20 \mathrm{~V}$
Differential Input Voltage	$\pm 20 \mathrm{~V}$
Strobe Voltage	8.0 V
Output Sink Current	25 mA
Power Dissipation (Note 1)	600 mW
Operating Temperature Range	
DM7820	
DM8820	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

electrical characteristics (Notes 2 \& 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Threshold Voltage	$\begin{aligned} & V_{\text {IN }}=0 \\ & -15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.5 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
High Output Level	lout $\leq 0.2 \mathrm{~mA}$	2.5		5.5	v
Low Output Level	$\mathrm{I}_{\text {sink }} \leq 3.5 \mathrm{~mA}$	0		0.4	V
Inverting Input Resistance		3.6	5.0		k Ω
Non-inverting Input Resistance		1.8	2.5		$k \Omega$
Line Termination Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	120	170	250	Ω
Response Time	$\begin{aligned} & C_{\text {delay }}=0 \\ & C_{\text {delay }}=100 \mathrm{pF} \end{aligned}$		$\begin{array}{r} 40 \\ 150 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Strobe Current	$\begin{aligned} & V_{\text {strobe }}=0.4 \mathrm{~V} \\ & V_{\text {strobe }}=5.5 \mathrm{~V} \end{aligned}$		1.0	1.4 -5.0	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Power Supply Current	$\begin{aligned} & V_{I N}=15 \mathrm{~V} \\ & V_{I N}=0 \\ & V_{I N}=-15 \mathrm{~V} \end{aligned}$		3.2 5.8 8.3	6.0 10.2 15.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Non-inverting Input Current	$\begin{aligned} & V_{\text {IN }}=15 \mathrm{~V} \\ & V_{\text {IN }}=0 \\ & V_{I N}=-15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.6 \\ & -9.8 \end{aligned}$	5.0 -1.0 -7.0	7.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Inverting Input Current	$\begin{aligned} & V_{\text {IN }}=15 \mathrm{~V} \\ & V_{I N}=0 \\ & V_{I N}=-15 \mathrm{~V} \end{aligned}$	-4.2	$\begin{gathered} 3.0 \\ 0 \\ -3.0 \end{gathered}$	4.2 -0.5	mA mA mA

Note 1: For operating at elevated temperatures, the device must be derated based on a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$ and a maximum junction temperature of $160^{\circ} \mathrm{C}$ for the DM7820 or $105^{\circ} \mathrm{C}$ for the DM8820.
Note 2: These specifications apply for $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 55 \mathrm{~V},-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the DM7820 or $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the DM8820 unless otherwise specified; typical values given are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CM}}=0$ unless stated differently.

Note 3: The specifications and curves given are for one side only Therefore, the total package dissipation and supply currents will be double the values given when both receivers are operated under identical conditions.
typical performance characteristics (Note 3)

Supply Voltage Sensitivity

Response Time

Transfer Function

Termination Resistance

Positive Supply Current

Common Mode Rejection

Output Voltage Levels

Maximum Power Dissipation

Line Drivers/Receivers

DM7820A/DM8820A dual line receiver

general description

The DM7820A and the DM8820A are improved performance digital line receivers with two completely independent units fabricated on a sıngle silicon chip. Intended for use with digital systems connected by twisted pair lines, they have a differential input designed to reject large common mode signals while responding to small differential signals. The output is directly compatible with RTL, DTL or TTL integrated circuits. Some important design features include:

- Operation from a single +5 V logic supply
- Input voltage range of $\pm 15 \mathrm{~V}$
- Strobe low forces output to " 1 " state
- High input resistance
- Fanout of ten with either DTL or TTL integrated circuits
- Outputs can be wire OR'ed
- Series 54/74 compatible

The response time can be controlled with an external capacitor to reject input noise spikes. The output state is a logic " 1 " for both inputs open. Termınatıon resistors for the twisted par line are also included in the circuit. Both the DM7820A and the DM8820A are specified, worst case, over their full operating temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $125^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ respectively), over the entire input voltage range, for $\pm 10 \%$ supply voltage variations.

absolute maximum ratings

Supply Voltage	8.0 V
Common-Mode Voltage	$\pm 20 \mathrm{~V}$
Differential Input Voltage	$\pm 20 \mathrm{~V}$
Strobe Voltage	8.0 V
Output Sink Current	50 mA
Power Dissipation (Note 1)	600 mW
Operating Temperature Range	
DM7820A	
DM8820A	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

electrical characteristics (Notes 2, 3 \& 4)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
	V_{CM}	OUTPUT	OTHER				
Differential Threshold Voltage	$-3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+3 \mathrm{~V}$	$-400 \mu \mathrm{~A}$	$V_{\text {OUT }} \geq 25 \mathrm{~V}$		+0.06	+0.5	V
	$-15 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+15 \mathrm{~V}$	$-400 \mu \mathrm{~A}$	$\mathrm{V}_{\text {OUT }} \geq 25 \mathrm{~V}$		+0 06	+1.0	V
	$-3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+3 \mathrm{~V}$	$+16 \mathrm{~mA}$	$\mathrm{V}_{\text {OUT }} \leq 0.4 \mathrm{~V}$		-0.08	-0.5	V
	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$	+16 mA	$\mathrm{V}_{\text {OUt }} \leq 0.4 \mathrm{~V}$		-0.08	-10	V
Inverting Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$			36	5		$\mathrm{k} \Omega$
Non-Inverting Input Resistance	$-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$			18	25		$k \Omega$
Line Termination Resistance			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	120	170	250	Ω
Invertıng Input Current	+15V				+3.0	+42	mA
	OV				0	-0.5	mA
	$-15 \mathrm{~V}$				-3.0	-4.2	mA
Non-Inverting Input Current	+15V				+5.0	+7.0	mA
	OV				-10	-16	mA
	-15V				-7.0	-9.8	mA
Power Supply Current	+15V	Logic ' 0 "	$V_{\text {DIFF }}=-1 \mathrm{~V}$		+3.9	+6.0	mA
	OV	Logic " 0 "	$V_{\text {DIFF }}=-05 \mathrm{~V}$		+65	+10.2	mA
	-15V	Logic ' 0 "	$V_{\text {DIFF }}=-1 \mathrm{~V}$		+92	+14.0	mA
Logıcal "1" Output Voltage		$-400 \mu \mathrm{~A}$	$\mathrm{V}_{\text {DIFF }}=+1 \mathrm{~V}$	25	4.0	55	V
Logical "0" Output Voltage		+ 16 mA	$V_{\text {DIFF }}=-1 \mathrm{~V}$	0	022	0.4	V
Logıcal " 1 " Strobe Input Voltage		+ 16 mA	$\mathrm{V}_{\text {OUT }} \leq 0.4 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$	21			V
Logıcal " 0 " Strobe Input Voltage		$-400 \mu \mathrm{~A}$	$\mathrm{V}_{\text {OUT }} \geq 25 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$			0.9	V
Logical " 1 " Strobe Input Current			$\mathrm{V}_{\text {STROBE }}=55 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=+3 \mathrm{~V}$		001	50	$\mu \mathrm{A}$
Logical " 0 " Strobe Input Current			$\mathrm{V}_{\text {STROBE }}=04 \mathrm{~V}, \mathrm{~V}_{\text {DIFF }}=-3 \mathrm{~V}$		-10	-1.4	mA
Output Short Circuit Current		OV	$\mathrm{V}_{\text {CC }}=55 \mathrm{~V}, \mathrm{~V}_{\text {Strobe }}=0 \mathrm{~V}$	-2.8	-45	-6.7	mA
Propagatıon Delays (see waveforms)							
Differential Input to "0" Output			$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		30	45	ns
Differential Input to "1" Output			$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		35	55	ns
Strobe Input to "0" Output			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		16	25	ns
Strobe Input to "1" Output			$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		18	30	ns

Note 1: For operating at elevated temperatures, the device must be derated based on a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$ and a maximum junction temperature of $160^{\circ} \mathrm{C}$ for the DM7820A, or $150^{\circ} \mathrm{C} / \mathrm{W}$ and $115^{\circ} \mathrm{C}$ maximum junction temperature for the DM8820A.
Note 2: These specifications apply for $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 55 \mathrm{~V},-15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq$ $\mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the DM7820A or $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the DM8820A unless otherwise specified. Typical values given are for $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C M}=0 \mathrm{~V}$ unless stated differently
Note 3: The specifications and curves given are for one side only. Therefore, the total package dissipation and supply currents will be double the values given when both receivers are operated under identical conditions.

Note 4: Min and max limits apply to absolute values.
typical performance characteristics (Note3)

Transfer Function

Common-Mode Voltage
Sensitivity

Termination Resistance
 $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$

Strobe Delays

Internal Power Dissipation

Temperature Sensitivity

Input Characteristics

INPUT VOLTAGE (WITH RESPECT TO GROUND) (V)

Differential Input Delays

Line Drivers /Receivers

DM7822/DM8822 dual line receiver

general description

The DM7822/DM8822 is a dual inverting line receiver which meets the requirements of EIA specification RS232 Revision B. The device contains both receivers on a single monolithic silicon chip. The receivers share common power supply and ground connections, otherwise their operation is fully independent.

In addition to meeting the requirements of RS232, the DM7822/DM8822 also has independent strobe inputs which allow the receiver to be placed in the
high state independent of the information being received at the input.

The output of the DM7822/DM8822 is completely compatible with five volt DTL and TTL logic families

The DM7822 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The DM8822 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

connection diagram

*Make no connection to these pins
**For operation requiring "Mark Hold" with the input open connect a 470Ω resistors from each of these pins to ground

Order Number DM7822J
See Package 16
Order Number DM8822N
See Package 22

typical connection

absolute maximum ratings

Supply Voltage	8.0 V
Input Voltage	$\pm 30 \mathrm{~V}$
Strobe Voltage	8.0 V
Output Sink Current	25 mA
Power Dissipation (Note 1)	600 mW
Operating Temperature Range	DM 7822
	DM 8822

electrical characteristics (Note 2)

PARAMETER	PARAGRAPH IN RS-232	CONDITIONS	MIN	TYP	MAX	UNITS
Negative Input Threshold Voltage	4.8 (8)	$\mathrm{V}_{\text {OUT }} \geq 2.5 \mathrm{~V}$	-2.0			V
Positive Input Threshold Voltage (Note 3)		$\mathrm{V}_{\text {OUT }} \leq 04 \mathrm{~V}$			2.0	v
Input Resistance	4.5 and 48 (5)		3.0	5.0	70	k $\Omega 2$
Input Current		$V_{\text {IN }}=25 \mathrm{~V}$	3.57	5	8.33	mA
		$V_{\text {IN }}=0 \mathrm{~V}$		0		mA
		$V_{\text {IN }}=-25 \mathrm{~V}$	-8.33	-5	-3.57	mA
Open Cırcuit Input Voltage	4.5 and 4.8 (4)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$. 03	0.5	v
Logical "1" Output Voltage		$\mathrm{I}_{\text {OUT }} \leq-0.2 \mathrm{~mA}$	2.5			v
Logical "0' Output Voltage	.	Iout $=3.5 \mathrm{~mA}$			0.4	V
Strobe Current		$\begin{aligned} & V_{\text {STROBE }}=0.4 \mathrm{~V} \\ & V_{\text {STROBE }}=5.5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1.0 \\ -5.0 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 1.4 \\ -1.0 \mathrm{~mA} \end{gathered}$	mA
Power Supply Current (Both Receivers)		$-25 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$			24.0	mA
Response Time, t_{1} or t_{2}		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \text { Input Ramp Rate } \leq 10 \mathrm{~ns} \end{aligned}$		65	125	ns

Note 1. For operating at elevated temperatures, the device must be derated in accordance with the "Maximum Power Dissipation" curve

Note 2. Min/Max lımits apply across the guaranteed temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DM7822 and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the DM8822 unless otherwise specified Likewise the limits apply across the guaranteed $V_{C C}$ range of 4.5 V to 5.5 V for the DM 7822 and 475 V to 5.25 V for the DM8822 unless otherwise specified. Typıcal values are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$

Note 3. Since the EIA RS-232 specification requires the threshold to be between $-3 V$ and $+3 V$, the immunity limits shown here guarantee 1 volt additional noise immunity

typical performance characteristics

Threshold Voltage vs Supply Voltag

INPUT RAMP TIME (ns)

Response Time vs Input Ramp Time

Threshold Voltage vs Supply Voltage

switching time waveforms

ac test circuit

Line Drivers/Receivers

DM7830/DM8830 dual differential line driver general description

The DM7830/DM8830 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function.

TTL (Transistor-Transistor-Logic) multiple emitter inputs allow this line driver to interface with standard TTL or DTL systems. The differential outputs are balanced and are designed to drive long lengths of coaxial cable, strip line, or twisted pair transmission lines with characteristic impedances of 50Ω to 500Ω. The differential feature of the output eliminates troublesome ground-loop errors
normally associated with single-wire transmissions.

features

- Single 5 volt power supply
- Diode protected outputs for termination of positive and negative voltage transients
- Diode protected inputs to prevent line ringing
- High Speed
- Short Circuit Protection
schematic* and connection diagrams

Dual-In-Line and Flat Package

TOP VIEW

Order Number DM7830J or DM8830J
See Package 16
Order Number DM8830N
See Package 22
Order Number DM7830W or DM8830W See Package 27
*2 PER PACKAGE.

typical application

Digital Data Transmission


```
absolute maximum ratings
VCC
    7.0V
Input Voltage
Operatıng Temperature
DM7830
                                DM8830
Storage Temperature
Lead Temperature (Soldering, 10 sec)
Output Short Circuit Duration (125 ' C)
\begin{tabular}{lrr} 
VCC & 7.0 V \\
Input Voltage & 5.5 V \\
Operatıng Temperature & DM 7830 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
& DM 8830 & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Lead Temperature (Soldering, 10 sec\()\) & \(300^{\circ} \mathrm{C}\) \\
Output Short Circuit Duration \(\left(125^{\circ} \mathrm{C}\right)\) & 1 second
\end{tabular}
```

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage		2.0			V
Logical "0" Input Voltage				0.8	V
Logical "1" Output Voltage	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V} \mathrm{I}_{\text {OUT }}=-0.8 \mathrm{~mA}$	2.4			V
Logical "1"Output Voltage	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ I $\mathrm{IOUT}=40 \mathrm{~mA}$	1.8	3.3		V
Logical "0" Output Voltage	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} \mathrm{I}_{\text {OUT }}=+32 \mathrm{~mA}$		0.2	0.4	V
Logical "0" Output Voltage	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} \mathrm{l}_{\text {OUT }}=+40 \mathrm{~mA}$		0.22	0.5	V
Logical " 1 " Input Current	$\mathrm{V}_{\text {IN }}=+2.4 \mathrm{~V}$			120	$\mu \mathrm{A}$
Logical "1" Input Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			2	mA
Logical " 0 " Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			4.8	mA
Output Short Circuit Current	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	40	100	120	mA
Supply Current	$V_{I N}=5.0 \mathrm{~V}$ (Each Driver)		11	18	mA
Propagation Delay AND Gate $\mathrm{t}_{\mathrm{pd} 1}$) $T_{A}=25^{\circ} \mathrm{C}$		8	12	ns
$t_{p d o}$	\} $\quad V_{c c}=5.0 \mathrm{~V}$		11	18	ns
Propagation Delay NAND Gate $\mathrm{t}_{\mathrm{pd} 1}$	[$C_{L}=15 \mathrm{pF}$		8	12	ns
	\int See Figure 1		5	8	ns
Differential Delay \mathbf{t}_{1}	Load, 100Ω and 5000 pF		12	16	ns
Differential Delay $\mathbf{t}_{\mathbf{2}}$	\int See Figure 2		12	16	ns

Note 1: Specifications apply for DM7830 $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}, V_{C C}=+5 \mathrm{~V} \pm 10 \%$, DM8830 $0^{\circ} \mathrm{C}$
$\leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise stated. Typical values given are for $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$,
$\bar{v}_{C C}=5.0 \mathrm{~V}$.

FIGURE 1.

FIGURE 2.
typical performance characteristics

ac test circuit

switching time waveforms

Line Drivers/Receivers

DM7831/DM8831,DM7832/DM8832 TRI-STATE ${ }^{\text {™ }}$ line driver

general description

Through simple logic control, the DM7831/ DM8831, DM7832/DM8832 can be used as either a quad single-ended line driver or a dual differential line driver. They are specifically designed for party line (bus-organized) systems. The DM7832/ DM8832 does not have the V_{cc} clamp diodes found on the DM7831/DM8831.

The DM7831 \& DM7832 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The DM8831 \& DM8832 are specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

features

- Series 54/74 compatible
- 17 ns propagation delay
- Very low output impedance-high drii. capability
- 40 mA sink and source currents
- Gating control to allow either single-ended or differential operation
- High impedance output state which allows many outputs to be connected to a common bus line.

mode of operation

To operate as a quad single-ended line driver apply logical " 0 " s to the Output Disable pins (to keep the outputs in the normal low impedance mode) and apply logical " 0 "'s to both Differential/ Single-ended Mode Control inputs. All four channels will then operate independently and no signal inversion will occur between inputs and outputs.
To operate as a dual differential line driver apply logical " 0 " s to the Output Disable pins and apply at least one logical " 1 " to the Differential/Singleended Mode Control inputs. The inputs to the A channels should be connected together and the inputs to the B channels should be connected toIn this mode the signals applied to the resulting inputs will pass non-inverted on the A_{2} and B_{2} outputs and inverted on the A_{1} and B_{1} outputs.
When operating in a bus-organized system with outputs tied directly to outputs of other

connection and logic diagram

Order Number DM7831J, DM8831J, DM7832J or DM8832J See Package 17
Order Number DM8831N or DM8832N See Package 23
Order Number DM7831W, DM8831W, DM7832W or DM8832W See Package 28
truth table (Shown for A Channels Only)

"A" OUTPUT DISABLE	DIFFERENTIAL/ SINGLE-ENDED MODE CONTROL	INPUT A_{1}	OUTPUT A ${ }_{1}$	INPUT A_{2}	OUTPUT A2
0 0 0 0 1 X X 1	$\begin{array}{cc} 0 & 0 \\ \times & 1 \\ 1 & x \\ x & x \end{array}$	Logical "1" or Logical " 0 " Logical "1" or Logical " 0 "	Same as Input A_{1} Opposite of Input A_{1} High impedance state	Logical " 1 " or Logical " 0 " Logical "1" or Logical " 0 "	Same as Input A_{2} Same as Input A_{2} High tmpedance state

absolute maximum ratings

Supply Voltage
Input Voltage
Output Voltage
Storage Temperature Range
Operating Temperature Range DM7831, DM7832 DM8831, DM8832
Lead Temperature (Soldering, 10 sec)
7 V
55 V
55 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Time that 2 bus-connected devices may
be in opposite low impedance states
stmultaneously

Note 1: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature
range for the DM7831, DM7832 and across the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range for the DM8831, DM8832 All typicals are given for $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Applies for $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ only Only one output should be shorted at a tıme

mode of operation (cont.)

DM7831/DM8831's, DM7832/DM8832's (Figure 1), all devices except one must be placed in the "high impedance" state. This is accomplished by ensuring that a logical " 1 " is applied to at least one of the Output Disable pins of each device which is to be in the "high impedance" state. A NOR gate was purposely chosen for this function since it is possible with only two DM5442/ DM7442, BCD-to-decimal decoders, to decode as many as 100 DM7831/DM8831's, DM7832/ DM8832's (Figure 2).
The unique device whose Disable inputs receive two logical " 0 " levels assumes the normal low

Figure 1
impedance output state, providing good capacitive drive capability and waveform integrity especially during the transition from the logical " 0 " to logical " 1 " state. The other outputs-in the high impedance state-take only a small amount of leakage current from the low impedance outputs. Since the logical " 1 " output current from the selected device is 100 times that of a conventional Series $54 / 74$ device (40 mA vs. $400 \mu \mathrm{~A}$), the output is easily able to supply that leakage current for several hundred other DM7831/DM8831's, DM7832/DM8832's and still have available drive for the bus line (Figure 3).

Figure 2

Figure 3

typical performance characteristics

switching time waveforms

Amplitude $=\mathbf{3} \mathbf{0 V}$
Frequency $=\mathbf{1 . 0} \mathbf{~ M H z , 5 0 \% ~ d u t y ~ c y c l e ~}$
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathbf{1 0} \mathrm{ms}(\mathbf{1 0 \%}$ to $\mathbf{9 0 \%})$

${ }^{\mathrm{t}} \mathrm{H} 1$

	Switch S_{1}	Switch S_{2}	C_{L}
t_{pd1}	closed	closed	50 pF
$\mathrm{t}_{\mathrm{pdO}}$	closed	closed	50 pF
t_{OH}	closed	closed	$\cdot 5 \mathrm{pF}$
$\mathrm{t}_{1 \mathrm{H}}$	closed	closed	$\cdot 5 \mathrm{pF}$
t_{HO}	closed	open	50 pF
$\mathrm{t}_{\mathrm{H},}$	open	closed	50 pF

*Jig capacitance.

DM7836/DM8836 quad NOR unified bus receiver

general description

The DM7836/DM8836 are quad 2-input receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The design employs a built-in input hysteresıs providing substantial noise immunity. Low input current allows up to 27 driver/ receiver pars to utilize a common bus. This receiver has been specifically configured to replace the SP380 gate pin-for-pin to provide the distinct advantages of the DM7837 receiver design in existing systems. Performance is optımızed for systems with bus rise and fall times $\leq 10 \mu$ s.

features

- Plug-in replacement for SP380 gate
- Low input current with normal V_{cc} or $V_{C C}=0 V(15 \mu \mathrm{~A}$ typ $)$
- Built-in input hysteresis (1V typ)
- High noise immunity (2V typ)
- Temperature-insensitive input thresholds track bus logic levels
- DTL/TTL compatible output
- Matched, optımızed noise immunity for " 1 " and " 0 " levels
- High speed (18 ns typ)

typical application

connection diagram

Dual-In-Line and Flat Package

top view
Order Number DM7836J
or DM8836J See Package 16

Order Number DM8836N Order Number DM7836W See Package 22 or DM8836W See Package 27

absolute maximum ratings (Note 1)

Supply Voltage
Input Voltage
Power Dissipation
Operating temperature range:
DM7836
DM8836
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

```
-55 ' C to +125* C
    0.}\textrm{C}\mathrm{ to +70 %
-65 ' C to + 150 % C
    300 %
```


electrical characteristics

The following apply for $V_{L} \leq V_{C C} \leq V_{H}, T_{L} \leq T_{A} \leq T_{H}$, unless otherwise specified (Note 2)

PARAMETER	INPUT	OUTPUT	COMMENTS	MIN	TYP	MAX	UNIT
High Level Input Threshold							
DM7836	$\mathrm{V}_{\text {TH }}$	16 mA	Output $<04 \mathrm{~V}$	1.65	225	265	V
DM8836	$V_{T H}$	16 mA	Output $<04 \mathrm{~V}$	1.80	2.25	250	V
Low Level Input Threshold							
DM7836	$V_{\text {TH }}$	-400 $\mu \mathrm{A}$	Output $>24 \mathrm{~V}$	0.97	130	163	V
DM8836	$V_{T H}$	$-400 \mu \mathrm{~A}$	Output $>24 \mathrm{~V}$	1.05	1.30	1.55	V
Maximum Input Current	4 V		$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{H}}$		15	50	$\mu \mathrm{A}$
Maximum Input Current	4 V		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		1	50	$\mu \mathrm{A}$
Logic "1" Output Voltage	05 V	$-400 \mu \mathrm{~A}$		24			V
Logic ' 0 " Output Voltage	4 V	16 mA			025	04	\checkmark
Output Short Circuit Current	05 V	OV	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\mathrm{H}}$	-18		-55	mA
Power Supply Current	4 V		Per Package		25	40	mA
Input Clamp Diode Voltage	-12 mA		$\mathrm{T}_{\mathrm{A}}=25^{\prime \prime} \mathrm{C}$		-1	-1.5	V
The following apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified							
Propagatıon Delays							
Input to Logic "1" Output			Note 3		20	30	ns
Input to Logic "0' Output			Note 4		18	30	ns

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the reference pin.
Note 2: For DM7836: $V_{L}=4.5 \mathrm{~V}, V_{H}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{L}}=-55^{\circ} \mathrm{C}, \mathrm{T}_{H}=+125^{\circ} \mathrm{C}$. For DM8836: $V_{L}=4.75 \mathrm{~V}, \mathrm{~V}_{H}=5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{L}}=0^{\circ} \mathrm{C}, \mathrm{T}_{H}=+70^{\circ} \mathrm{C}$.
Note 3: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total, measured from $\mathrm{V}_{1 \mathrm{~N}}=1.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}$ to 3 V pulse.
Note 4: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total, measured from $\mathrm{V}_{I N}=2.3 \mathrm{~V}$ to $\mathrm{V}_{O U T}=1.5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}$ to 3 V pulse.

DM7837/DM8837 hex unified bus receiver

general description

The DM7837/DM8837 are high speed receivers designed for use in bus organized data transmission systems interconnected by terminated $120 \Omega \mathrm{im}$ pedance lines. The external termination is intended to be 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The receiver design employs a built-in input hysteresis providing substantial noise immunity. Low input current allows up to 27 driver/receiver pairs to utilize a common bus. Disable inputs provide time discrimınation. Disable inputs and receiver outputs are DTL/TTL compatible. Performance is optımized for systems with bus rise and fall times $\leq 10 \mu \mathrm{~s}$.

features

- Low receiver input current for normal V_{Cc} or $V_{C C}=0 V(15 \mu A$ typ $)$
- Six separate receivers per package
- Built-in receiver input hysteresis (1V typ)
- High receiver noise immunity (2 V typ)
- Temperature insensitive receiver input thresholds track bus logic levels
- DTL/TTL compatible disable and output
- Molded or cavity dual-in-lıne or flat package
- High speed

typical application

connection diagram

Dual-In-Line and Flat Package

Order Number DM7837J or DM8837J

See Package 17

See Package 23
Order Number DM7837W or DM8837W

absolute maximum ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Power Dissipation	600 mW
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\quad DM7837	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DM8837	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	
electrical characteristics	

The following apply for $V_{L} \leq V_{C C} \leq V_{H}, T_{L} \leq T_{A} \leq T_{H}$, unless otherwise specified (Note 2)

PARAMETER	RECEIVER INPUT	DISABLE INPUT	OUTPUT	COMMENTS	MIN	TYP	MAX	UNIT
High Level Receiver Threshold DM7837	$V_{\text {TH }}$	08 V	16 mA	Output $<04 \mathrm{~V}$	165	225	265	V
High Level Receiver Threshold DM8837	$V_{\text {TH }}$	08 V	16 mA	Output < 04 V	180	225	250	\checkmark
Low Level Receiver Threshold DM7837	$V_{\text {TH }}$	08 V	-400 mA	Output $>24 \mathrm{~V}$	0.97	130	163	V
Low Level Receiver Threshold DM8837	$V_{T H}$	08 V	-400 mA	Output $>24 \mathrm{~V}$	1.05	130	155	V
Maxımum Receiver Input Current	4 V *			$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{H}}$		150	500	$\mu \mathrm{A}$
Maxımum Receiver Input Current	4 V			$\mathrm{V}_{\text {cc }}$ OV		10	500	$\mu \mathrm{A}$
Logic " 1" Input Voltage Disable	05 V	$V_{\text {IN }}$	16 mA	Output $<04 \mathrm{~V}$	20			V
Logic " 0 " Input Voltage Disable	05 V	$V_{\text {IN }}$	$-400 \mu \mathrm{~A}$	Output $>24 \mathrm{~V}$			08	V
Logic "1" Output Voltage	05 V	08 V	$-400 \mu \mathrm{~A}$		24			\checkmark
Logic "0' Output Voltage	4 V	08 V	16 mA			025	04	V
Logic "1" Input Current Disable		24 V	-				800	$\mu \mathrm{A}$
Logıc "1" Input Current Disable		55 V					20	mA
Logic " 0 " Input Current Disable	4 V	04 V					-32	mA
Output Short Circuit Current	05 V	OV	OV	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{V}_{\mathrm{H}}$	-180		-550	mA
Power Supply Current	4 V	OV		Per Package		45.0	600	mA
Input Clamp Diode	-12 mA	-12 mA		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-10	-15	V
The following apply for $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\prime \prime} \mathrm{C}$ unless otherwise specified								
Propagation Delays Receiver Input to Logic " 1 " Output		OV		Note 3		20	30	ns
Receiver Input to Logic "0" Output		OV		Note 4		18	30	ns
Disable Input to Logic " 1 " Output	OV			Note 5		9	15	ns
Disable Input to Logic "0" Output	OV			Note 5		4	10	ns

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the referenced pin.
Note 2: For DM7837: $V_{L}=4.5 \mathrm{~V}, V_{H}=5.5 \mathrm{~V}, T_{L}=-55^{\circ} \mathrm{C}, T_{H}=+125^{\circ} \mathrm{C}$

$$
\text { For DM8837: } \mathrm{V}_{\mathrm{L}}=4.75 \mathrm{~V}, \mathrm{~V}_{H}=5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{L}}=0^{\circ} \mathrm{C}, \mathrm{~T}_{H}=+70^{\circ} \mathrm{C}
$$

Note 3: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{I N}=1.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$ to 3 V pulse.
Note 4: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{I N}=2.3 \mathrm{~V}$ to $\mathrm{V}_{O U T}=1.5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}$ to 3 V pulse. Note 5: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total. Measured from $\mathrm{V}_{1 \mathrm{~N}}=1.5 \mathrm{~V}$ to $\mathrm{V}_{O U T}=1.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$ to 3 V pulse.

Line Drivers /Receivers

DM7838/DM8838 quad unified bus transceiver general description
 features

The DM7838/DM8838 are quad high speed driversf receivers designed for use in bus organized data transmission systems interconnected by terminated 120Ω impedance lines. The external termination is intended to be a 180Ω resistor from the bus to the +5 V logic supply together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends. Low bus pin current allows up to 27 driver/receiver pairs to utilize a common bus. The bus loadıng is unchanged when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. The receivers incorporate hysteresis to greatly enhance bus nose immunity. One two-input NOR gate is included to disable all drivers in a package simultaneously. Receiver performance is optimized for systems with bus rise and fall tımes $\leq 10 \mu \mathrm{~s}$.

- 4 totally separate driver/receıver pairs per package
- 1V typical receiver input hysteresis
- Receiver hysteresis independent of receiver output load
- Guaranteed minımum bus noise immunity of 1.3V, 2V typ.
- Temperature-insensitive receiver thresholds track bus logic levels
- $20 \mu \mathrm{~A}$ typical bus termınal current with normal $V_{c c}$ or with $V_{c c}=0 V$
- Open collector driver output allows wire-OR connection
- High speed
- Series 74 TTL compatıble driver and disable inputs and receiver outputs

typical application

connection diagram

Dual In-Line and Flat Package

absolute maximum ratings

Supply Voltage
Input and Output Voltage 7 V

5 V
600 mW

Operating Temperature Range
DM7838 DM7838
DM8838
-55 C to +125 C 0 C to +70 C
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)
electrical characteristics
DM7838/DM8838 The following apply for $V_{L} \leq V_{C C} \leq V_{H}, T_{L} \leq T_{A} \leq T_{H}$ unless otherwise specified (Note 2)

Note 1: Voltage values are with respect to network ground terminal Positive current is defined as current into the referenced
pin.
Note 2: For $D M 7838 . V_{L}=4.5 \mathrm{~V}, V_{H}=5.5 \mathrm{~V}, T_{L}=-55^{\circ} \mathrm{C}, T_{H}=+125^{\prime} \mathrm{C}$
For DM8838. $\mathrm{V}_{\mathrm{L}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{L}}=0^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{H}}=+70^{\circ} \mathrm{C}$
Note 3: 91Ω from bus pin to $V_{C C}$ and 200Ω from bus pin to ground, $C_{\text {LOAD }}=15 p F$ total Measured from $V_{I N}=1.5 \mathrm{~V}$ to
$V_{\text {BUS }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to 3.0 V pulse.
Note 4: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total Measured from $\mathrm{V}_{\text {IN }}=1.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to 3.0 V pulse
Note 5: Fan-out of 10 load, $C_{\text {LOAD }}=15 \mathrm{pF}$ total Measured from $\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OUT}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to 30 V pulse.

LM1488 quad line driver

general description
The LM1488 is a quad line driver which converts standard DTL/TTL input logic levels through one stage of inversion to output levels which meet EIA Standard No. RS-232C and CCITT Recommendation V. 24.

features

- Current limited output $\pm 10 \mathrm{~mA}$ typ
- Power-off source impedance 300Ω min
- Simple slew rate control with external capacitor
- Flexible operating supply-range
- Inputs are DTL/TTL compatible
schematic and connection diagrams

Dual-In-Line Package

TOP VIEW
Order Number LM1488J
See Package 16

typical applications

RS232C Data Transmission

*OPTIONAL FOR NOISE FILTERING

absolute maximum ratings (Note 1)

Supply Voltage
V^{+}
V^{-}
Input Voltage ($\mathrm{V}_{\text {IN }}$)
Output Voltage
Power Derating (Note 2)
(Package Limitation, J Package)
Derating above $T_{A}=+25^{\circ} \mathrm{C}\left(1 / 0_{J A}\right)$
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

$$
\begin{array}{cc}
15 \mathrm{~V} \\
-15 \mathrm{~V} \leq \mathrm{V} \\
\hdashline \mathrm{IN} & -15 \mathrm{~V} \\
\pm 15 \mathrm{~V} \\
\pm 15
\end{array}
$$

$$
1000 \mathrm{~mW}
$$

$$
6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}^{2}
$$

$$
0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}
$$

$$
-65^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
$$

$$
300^{\circ} \mathrm{C}
$$

electrical characteristics (Note 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Logic " 0 " Input Current	$V_{1 N}=0 V$			-1.0	-1.3	mA
Logıc " 1 " Input Current	$V_{\text {IN }}=+5.0 \mathrm{~V}$. 005	10.0	$\mu \mathrm{A}$
Hıgh Level	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega 2$	$\left\{\begin{array}{l}\mathrm{V}^{+}=90 \mathrm{~V} \\ \mathrm{~V}^{-}=-9.0 \mathrm{~V}\end{array}\right.$	6.0	7.0		V
Output Voltage	$V_{\text {IN }}=08 \mathrm{~V}$	$\left\{\begin{array}{l}V^{+}=13.2 \mathrm{~V} \\ \mathrm{~V}^{-}=-13.2 \mathrm{~V}\end{array}\right.$	9.0	10.5		V
		$\left\{\begin{array}{l}\mathrm{V}^{+}=9.0 \mathrm{~V} \\ \mathrm{~V}^{-}=-9.0 \mathrm{~V}\end{array}\right.$	-6.0	-6.8		V
Output Voltage	$\mathrm{V}_{\text {IN }}=1.9 \mathrm{~V}$	$\left\{\begin{array}{l}V^{+}=13.2 \mathrm{~V} \\ \mathrm{~V}^{-}=-132 \mathrm{~V}\end{array}\right.$	-9.0	-10.5		V
High Level Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		-6.0	-100	-12.0	mA
Low Level Output Short-Circuit Current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & V_{\text {IN }}=1.9 \mathrm{~V} \end{aligned}$		6.0	10.0	12.0	mA
Output Resistance	$\begin{aligned} & V^{+}=V^{-}=0 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 2 \mathrm{~V} \end{aligned}$		300			Ω
		($\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		15.0	20.0	mA
	$V_{\text {IN }}=1.9 \mathrm{~V}$	$\left\{\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}\right.$		19.0	25.0	mA
Positive Supply		$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		25.0	34.0	mA
Current (Output Open)		$\left\{\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}\right.$		4.5	6.0	mA
(Output Open)	$V_{\text {IN }}=0.8 \mathrm{~V}$	$\left\{\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}\right.$		5.5	7.0	mA
		$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		8.0	12.0	mA
		$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		-13.0	-17.0	mA
	$V_{\text {IN }}=1.9 \mathrm{~V}$	$\left\{V^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}\right.$		-18.0	-23.0	mA
Negative Supply		$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		-25.0	-34.0	mA
Current	$V_{\text {IN }}=0.8 \mathrm{~V}$	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$		-. 001	-1.0	mA
(Output Open)		$\left\{\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}\right.$		-. 001	-1.0	mA
		$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$		-. 01	-2.5	mA
Power Dissipation	$\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$			252	333	mW
	$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$			444	576	mW
Propagation Delay to " 1 " $\left(t_{\text {pd } 1}\right)$	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega$	$C_{L}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		230	350	ns
Propagation Delay to " 0 " ($\mathrm{t}_{\mathrm{paO}}$)	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		70	175	ns
Rise Time ($\mathbf{t r}_{\mathbf{r}}$)	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		75	100	ns
Fall Time ($\mathrm{t}_{\boldsymbol{f}}$)	$\mathrm{R}_{\mathrm{L}}=3.0 \mathrm{k} \Omega$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		40	75	ns

Note 1: Voltage values shown are with respect to network ground terminal. Positive current is defined as current into the referenced pin.
Note 2: The maximum junction temperature of the LM1488 is $150^{\circ} \mathrm{C}$. For operating at elevated temperatures the cavity Dual-In-Line Package (J) must be derated based on a thermal resistance of $85^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $\mathrm{V}^{+}=+9.0 \mathrm{~V} \pm 1 \%, \mathrm{~V}^{-}=-9.0 \mathrm{~V} \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise noted. All typicals are for $\mathrm{V}^{+}=9.0 \mathrm{~V}, \mathrm{~V}^{-}=-9.0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

applications

By connecting a capacitor to each driver output the slew rate can be controlled utilizing the output current limiting characteristics of the LM1488. For a set slew rate the appropriate capacitor value may be calculated using the following relationship

$$
C=I_{\mathrm{Sc}}(\Delta T / \Delta V)
$$

where C is the required capacitor, $I_{\text {SC }}$ is the short circuit current value, and $\Delta \mathrm{V} / \Delta \mathrm{T}$ is the slew rate.

RS232C specifies that the output slew rate must not exceed 30 V per microsecond. Using the worst case output short circuit current of 12 mA in the above equation, calculations result in a required capacitor of 400 pF connected to each output.

DTL/TTL-to-HTL Translator

DTL/TTL-to-RTL Translator

ac load circuit

${ }^{*} C_{L}$ includes probe and Jg capacitance
switching time waveforms

typical performance characteristics

Output Voltage and Current-Limiting Characteristics

Line Drivers/Receivers

LM1489/LM1489A quad line receiver

general description

The LM1489/LM1489A are quad line receivers designed to interface data terminal equipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of EIA standard No. RS232C. The LM1489/LM1489A meet and exceed the specifications of MC1489/MC1489A and are pin-for-pin replacements. The LM1489/ LM1489A are available in 14 lead ceramic dual-in-line package.

features

- Four totally separate receivers per package
- Programmable threshold
- Built-in input threshold hysteresis
- "Fail safe" operating mode
- Inputs withstand $\pm 30 \mathrm{~V}$
schematic and connection diagrams

ac test circuit and voltage waveforms

typical applications

MOS to $\mathbf{T}^{\mathbf{2}} \mathbf{L / D T L}$ Translator

absolute maximum ratings (Note 1)

The following apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Power Supply Voltage	10 V
Input Voltage Range	$\pm 30 \mathrm{~V}$

Output Load Current 20 mA

Power Dissipation (Note 2)
Operatıng Temperature Range Storage Temperature Range
electrical characteristics (Note 3)
LM1489/LM1489A The following apply for $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \pm 1 \%, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$ unless otherwise specified

PARAMETER	CONDITIONS	LM1489			LM1489A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input High Threshold Voltage	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {OUT }} \leq 045 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$	10		15	175		225	V
Input Low Threshold Voltage	$T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }} \geq 25 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-05 \mathrm{~mA}$	075		125	075		125	V
Input Current	$V_{\text {IN }}=+25 \mathrm{~V}$	+36	+56	+83	+36	+56	+83	mA
	$V_{\text {IN }}=-25 V$	-36	-56	-8.3	-36	-56	-83	
	$V_{\text {IN }}=+3 V$	+043	+053		+043	+0 53		mA
	$V_{\text {IN }}=-3 V$	-043	-053		-043	-053		
Output High Voltage	$\mathrm{V}_{\text {IN }}=075 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-05 \mathrm{~mA}$	26	38	50	26	38	50	V
	Input $=$ Open, $\mathrm{I}_{\text {Out }}=-05 \mathrm{~mA}$	26	38	50	26	38	50	V
Output Low Voltage	$V_{\text {IN }}=30 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$		033	045		033	045	v
Output Short Circuit Current	$\mathrm{V}_{\mathrm{iN}}=0.75 \mathrm{~V}$		3.0			30		mA
Supply Current	$\mathrm{V}_{\text {IN }}=50 \mathrm{~V}$		14	26		14	26	mA
Power Dissipation	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$		70	130		70	130	mW

LM 1489/LM1489A: The following apply for $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} \pm 1 \%, T_{A}=25^{\circ} \mathrm{C}$

Input to Output "High" Propagation Delay ($t_{\text {pd1 }}$)	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k}$ (Figure 1) (AC Test Circuit)	28	85	28	85	ns
Input to Output "Low" Propagation Delay ($\mathrm{t}_{\text {pdo }}$)	$\mathbf{R}_{\mathrm{L}}=390 \Omega$ (Figure 1) (AC Test Circuit)	20	50	20	50	ns
Output Rise Time	$\mathrm{R}_{\mathrm{L}}=39 \mathrm{k}$ (Figure 1) (AC Test Circuit)	110	175	110	175	ns
Output Fall Time	$\mathrm{R}_{\mathrm{L}}=390 \Omega$ (Figure 1) (AC Test Circuit)	9	20	9	20	ns

Note 1: Voltage values shown are with respect to network ground terminal. Positive current is defined as current into the referenced pin.
Note 2: For operation at elevated temperatures, the device must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $85^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.
Note 3: These specifications apply for response control pin=open.

Line Drivers/Receivers

LM55107A/LM75107A,LM55108A/LM75108A,
LM163/LM363 dual line receivers
LM75207,LM75208,LM363A dual MOS sense amplifiers

general description

The nine products described herein are TTL compatible dual high speed circuits intended for sensing in a broad range of system applications. While the primary usage will be for line receivers or MOS sensing, any of the products may effectively be used as voltage comparators, level translators, window detectors, transducer preamplifiers, and in other sensing applications. As digital line receivers the products are applicable with the LM55109/LM75109 and LM55110/LM75110 companion drivers, or may be used in other balanced or unbalanced party-line data transmission systems. The improved input sensitivity and delay specifications of the LM75207, LM75208 and LM363A make them ideal for sensing high performance MOS memories as well as high sensitivity line receivers and voltage comparators. TRI-STATE ${ }^{\circledR}$ products enhance bused organizations.

. 1 :

features

- High speed

17 ns typ

- TTL compatible
- Input sensitivity $\pm 10 \mathrm{mV}$ or $\pm 25 \mathrm{mV}$
- Input common-mode range $\pm 3 \mathrm{~V}$
- High input impedance with normal $V_{C C}$, or $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$
- Strobes for channel selection
- TRI-STATE outputs for high speed buses
- Dual circuits
- Sensitivity guaranteed over full common-mode range
- Logic input clamp diodes
- 14 pin cavity or molded dual-ın-line package
- Standard supply voltages $\pm 5 \mathrm{~V}$

connection diagrams

Dual-In-Line Package

Order Number LM55107AF or LM55108AF
See Package 4
Order Number LM55107AJ, LM75107AJ,
LM55108AJ, LM75108AJ, LM75207J or LM75208J
See Package 16
Order Number LM75107AN, LM75108AN, LM75207N or LM75208N See Package 22

Dual-In-Line Package

Order Number LM163J, LM363J, or LM363AJ See Package 16
Order Number LM363N or LM363AN See Package 22

product selection guide

TEMPERATURE \rightarrow PACKAGE \rightarrow	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$ CAVITY DIP	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ CAVITY OR MOLDED DIP	
INPUT SENSITIVITY \rightarrow OUTPUT LOGIC \downarrow	$\pm 25 \mathrm{mV}$	$\pm 25 \mathrm{mV}$	$\pm 10 \mathrm{mV}$
TTL Active Pull-up TTL Open Collector TTL TRI.STATE	LM55107A LM55108A LM163	LM75107A LM75108A LM363	$\begin{aligned} & \text { LM75207 } \\ & \text { LM75208 } \\ & \text { LM363A } \end{aligned}$

absolute maximum ratings

Supply Voltage, $\mathrm{V}_{\mathrm{CC}}{ }^{+}$	7 V
Supply Voltage, VCC^{-}	-7 V
Differential Input Voltage	$\pm 6 \mathrm{~V}$
Common Mode Input Voltage	$\pm 5 \mathrm{~V}$

Strobe Input Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	600 mW
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

typical applications

Line Receiver Used in MOS Memory System

schematic diagrams

Note 1: $1 / 2$ of the dual circuit is shown.
Note 2: *Indicates connections common to second half of dual circuit.
Note 3. Components shown with dash lines are applicable to the LM55107A, LM75107A, and LM75207 only.

LM 163/LM363, LM363A

LM55107A/LM75107A, LM55108A/LM75108A
dc electrical characteristics $\left(T_{\text {MIN }} \leq T_{A} \leq T_{\text {max }}\right)$

PARAMETER	CONDITIONS	LIMITS						UNITS
		LM55107A/LM75107A			LM55108A/LM75108A			
		MIN	TYP	MAX	MIN	TYP	MaX	
High Level Input Current Into 1A, 1B, 2A or 2B (I_{iH})	$\begin{aligned} & V_{c c}^{+}=M a x, V_{c c}^{-}=\operatorname{Max}, \\ & V_{10}=05 \mathrm{~V}, V_{1 C}=-3 V \text { to } 3 V \end{aligned}$		30	75		30	75	$\mu \mathrm{A}$
Low Level Input Current Into 1A, 1B, 2A or 2B ($I_{1 L}$)	$\begin{aligned} & V_{c c}^{+}=M a x, V_{c c}^{--}=M a x, \\ & V_{10}=-2 V, V_{1 c}=-3 V \text { to } 3 V \end{aligned}$			-10			-10	$\mu \mathrm{A}$
High Level Input Current Into 1G or 2G ($1_{I H}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}^{+}=\mathrm{Max}, \mathrm{~V}_{\mathrm{cc}^{-}}=\mathrm{Max}_{, \ldots} \\ & \mathrm{V}_{\mathrm{IH}(\mathrm{~S})}=24 \mathrm{~V} \end{aligned}$			40			40	$\mu \mathrm{A}$
High Level Input Current Into 1G or 2G ($I_{I H}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{+}=}=\mathrm{Max}, \mathrm{~V}_{\mathrm{cc}^{-}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}(\mathrm{~s})}=\mathrm{Max} \mathrm{~V}_{\mathrm{cc}^{+}} \end{aligned}$			1			1	mA
Low Level Input Current Into 1G or 2G (1/L)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{+}}=\text {Max, } \mathrm{V}_{\mathrm{cc}^{-}}=\mathrm{Max}, \\ & \mathrm{~V}_{1 \mathrm{~L}(\mathbf{s})}=04 \mathrm{~V} \end{aligned}$			-16			-16	mA
High Level Input Current Into $S\left(I_{1 H}\right)$	$\begin{aligned} & V_{C C}^{+}=M a x, V_{C C}^{-}=\operatorname{Max}, \\ & V_{1 H(S)}=24 \mathrm{~V} \end{aligned}$			80			80	$\mu \mathrm{A}$
High Level Input Current Into S ($I_{I H}$)	$\begin{aligned} & V_{\mathrm{Cc}^{+}}=\operatorname{Max}, V_{\mathrm{Cc}^{-}}=\operatorname{Max}, \\ & V_{(H(\mathbf{s})}=\operatorname{Max} V_{c c^{+}} \end{aligned}$			2			2	mA
Low Level Input Current Into S (IIL)	$\begin{aligned} & V_{\mathrm{Cc}^{+}}=\operatorname{Max}, \mathrm{V}_{\mathrm{cc}^{-}}=\operatorname{Max}, \\ & \mathrm{V}_{1 L(\mathrm{~s})}=04 \mathrm{~V} \end{aligned}$			-32			-32	mA
High Level Output Voltage (V_{OH})	$\begin{aligned} & V_{C C}^{+}=M_{1 n}, V_{C C}^{-}=M_{1 n}, \\ & I_{\text {LOAD }}=-400 \mu A, V_{I D}=25 \mathrm{mV}, \\ & V_{I C}=-3 V \text { to } 3 \mathrm{~V} \end{aligned}$	24						v
Low Level Output Voltage (V_{OL})	$\begin{aligned} & V_{c c^{+}}=M i n, V_{c c}^{-}=M 1 n, \\ & I_{\text {SINK }}=16 \mathrm{~mA}, V_{1 D}=-25 \mathrm{mV}, \\ & V_{I C}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$			04			04	v
High Level Output Current (I_{OH})	$\begin{aligned} & V_{\mathrm{cc}^{+}}=\mathrm{Min}, V_{\mathrm{cc}^{-}}^{-}=M \mathrm{Min} \\ & V_{\mathrm{OH}}=M a x V_{\mathrm{cc}^{+}} \end{aligned}$						250	$\mu \mathrm{A}$
Short Circuit Output Current (los)	$\mathrm{V}_{\mathrm{Cc}}{ }^{+}=\mathrm{Max}, \mathrm{V}_{\text {cc }}{ }^{-}=\mathrm{Max}$	-18		-70				mA
High Logic Level Supply Current From $\mathrm{V}_{\mathrm{cc}}\left(\mathrm{I}_{\mathrm{cch}}{ }^{+}\right)$	$\begin{aligned} & V_{C C^{+}}=M a x, V_{C c}^{-}=M a x, \\ & V_{I D}=25 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		18	30		18	30	mA
High Logic Level Supply Current From $\mathrm{V}_{\mathrm{cc}}\left({ }^{\mathbf{C c h}}{ }^{-}\right.$)	$\begin{aligned} & V_{\mathrm{Cc}^{+}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{Cc}^{-}}=\mathrm{Max}, \\ & \mathrm{~V}_{1 \mathrm{C}}=25 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		-84	-15		-84	-15	mA
Input Clamp Voltage on G or $S\left(V_{1}\right)$	$\begin{aligned} & V_{\mathrm{CC}^{+}}=M ı n, V_{\mathrm{CC}^{-}}=\mathrm{Min}_{1} \\ & I_{I N}=-12 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-1	-15		-1	-15	v

ac switching characteristics $\left(\mathrm{V}_{\mathrm{cc}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}{ }^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	LIMITS						UNITS
		LM55107A/LM75107A			LM55108A/LM75108A			
		MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Deiay Time, Low to High Level, From Differential Inputs A and B to Output (Note 1) ($\mathrm{t}_{\mathrm{PLH}(\mathrm{D})}$)	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		17	25				ns
Propagation Delay Time, Low to High Level, From Differential Inputs A and B to Output (Note 1) ($\left.\mathrm{t}_{\mathrm{PLH}(\mathrm{D})}\right)$	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$					19	25	ns
Propagation Delay Time, High to Low Level, From Differential Inputs A and B to Output (Note 1) ($\mathrm{t}_{\text {PHL(D) }}$)	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		17	25				ns
Propagation Delay Time, High to Low Level, From Differential Inputs A and B to Output (Note 1) ($\mathrm{t}_{\mathrm{PHL}}(\mathrm{D})$)	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$					19	25	ns
Propagation Delay Time, Low to High Level, From Strobe Input G or S to Output ($\mathrm{t}_{\mathrm{PLH}(\mathrm{S})}$)	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10	15				ns
Propagation Delay Time, Low to High Level, From Strobe Input G or S to Output ($\mathrm{t}_{\mathrm{PLH}(\mathrm{s})}$)	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$					13	20	ns
Propagation Delay Time, High to Low Level, From Strobe Input G or S to Output ($\mathrm{t}_{\mathrm{PHL}}(\mathrm{s})$)	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		8	15				ns
Propagation Delay Time, High to Low Level, From Stı obe Input G or S to Output (tpHL(s))	$\mathrm{R}_{\mathrm{L}}=39022, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,		13	20	ns

Note 1: Differential input is +100 mV to -100 mV pulse. Delays read from 0 mV on input to 1.5 V on output.

LM75207, LM75208

dc electrical characteristics $\left(0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	LIMITS						UNITS
		LM75207			LM75208			
		MIN	TYP	MAX	MIN	TYP	MAX	
High Level Input Current Into 1A, 1B, 2A or 2B (I_{IH})	$\begin{aligned} & V_{\mathrm{cc}^{+}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{cc}^{-}}=\mathrm{Max}, \\ & \mathrm{~V}_{10}=05 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{C}}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & x, 30 \\ & 0+10 \end{aligned}$	75		30	75	$\mu \mathrm{A}$
Low Level Input Current Into 1A, 1B, 2A or 2B ($I_{I L}$)	$\begin{aligned} & V_{c c}^{+}=M a x, V_{c c}=M a x, \\ & V_{10}=-2 V, V_{1 c}=-3 V \text { to } 3 V \end{aligned}$		$\begin{aligned} & \text { xn, } \\ & \text { n } 1: i \end{aligned}$	-10			-10	$\mu \mathrm{A}$
High Level Input Current Into 1G or 2G ($1_{1 H}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{+}=}=\mathrm{Max}, \mathrm{~V}_{\mathrm{cc}^{-}=}=\mathrm{Max}, \\ & \mathrm{~V}_{1 \mathrm{H}(\mathrm{~S})}=24 \mathrm{~V} \end{aligned}$		x \% ${ }^{\circ}$	40			40	$\mu \mathrm{A}$
High Level Input Current Into 1G or 2G (I_{iH})	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{+}=}=\mathrm{Max}, \mathrm{~V}_{\mathrm{cc}^{-}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}(\mathrm{~s})}=\mathrm{Max} \mathrm{~V}_{\mathrm{cc}}{ }^{+} \end{aligned}$		46 M	1			1	mA
Low Level Input Current Into 1G or 2G(1/L)	$\begin{aligned} & V_{c c^{+}}=M a x, V_{C C}^{-}=M a x . \\ & V_{(L /(s)}=04 V \end{aligned}$			-16			-16	mA
High Level Input Current Into S (I $I_{I H}$)	$\begin{aligned} & V_{\mathrm{CC}^{+}=}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}^{-}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}(\mathrm{~S})}=24 \mathrm{~V} \end{aligned}$			80			80	$\mu \mathrm{A}$
High Level Input Current Into S ($I_{\text {IH }}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{+}=\operatorname{Max},} \mathrm{V}_{\mathrm{cc}^{-}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IH}(\mathrm{~s})}=\mathrm{Max}_{\mathrm{VCC}^{+}} \end{aligned}$			2			2	mA
Low Level Input Current Into S (IL)	$\begin{aligned} & V_{C C^{+}}=M a x, V_{C C}^{-}=\operatorname{Max}, \\ & V_{\text {IL (} s)}=04 V \end{aligned}$			-32			-32	mA
High Level Output Voltage (V_{OH})	$\begin{aligned} & V_{C C}^{+}=M 1 n, V_{C C}^{-}=M 1 n, \\ & I_{L C A D}=-400 \mu \mathrm{~A}, V_{I D}=10 \mathrm{mV}, \\ & V_{I C}=-3 V \text { to } 3 \mathrm{~V} \end{aligned}$	24						v
Low Level Output Voltage (V_{OL})	$\begin{aligned} & V_{\mathrm{CC}^{+}}=M_{1 n}, V_{\mathrm{CC}^{-}}=M \mathrm{Min}, \\ & I_{\text {SINK }}=16 \mathrm{~mA}, V_{10}=-10 \mathrm{mV}, \\ & V_{I C}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$			04			04	v
High Level Output Current (IOH)	$\begin{aligned} & V_{\mathrm{cc}^{+}}=\mathrm{Min}_{1}, \mathrm{~V}_{\mathrm{cc}^{-}}=\mathrm{Min}^{2} \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{Max}_{\mathrm{cc}} \mathrm{~V}_{\mathrm{cc}}^{+} \end{aligned}$						250	$\mu \mathrm{A}$
Short Circuit Output Current (los)	$\mathrm{V}_{\text {cc }}{ }^{+}=\mathrm{Max}, \mathrm{V}_{\mathrm{cc}^{-}}=$Max	-18		-70				mA
High Logic Level Supply Current From $\mathrm{V}_{\mathrm{cc}}\left(\mathrm{I}_{\mathrm{cch}}{ }^{+}\right)$	$\begin{aligned} & V_{C l^{+}}^{+}=M a x, V_{C c}^{-}=M a x, \\ & V_{1 D}=10 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		18	30		18	30	mA
High Logic Level Supply Current From $\mathrm{V}_{\mathrm{cc}}\left(\mathrm{I}_{\mathrm{CCH}^{-}}\right.$)	$\begin{aligned} & V_{C C}^{+}=M a x, V_{C C}^{-}=M a x, \\ & V_{I D}=10 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-84	-15		-84	-15	mA
Input Clamp Voltage on G or $S\left(V_{1}\right)$	$\begin{aligned} & V_{C C}^{+}=M ı n_{1}, V_{C C}^{-}=M ı n_{1} \\ & I_{I N}=-12 m A, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-1	-15		-1	-15	V

ac switching characteristics $\left(\mathrm{V}_{\mathrm{Cc}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}{ }^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	LIMIITS						UNITS
		LM75207			LM75208			
		MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Delay Time, Low to High Level, From Differential Inputs A and B to Output (Note 1) ($\mathrm{t}_{\mathrm{pLH}(\mathrm{D})}$)	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	35				ns
Prodagation Delay Time, Low to High Level, From Differential Inputs A and B to Output (Note 1) ($\mathbf{t}_{\text {PLH }(\mathrm{D})}$)	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$						35	ns
Propagation Delay Time, High to Low Level, From Differential Inputs A and B to output (Note 1) ($\mathrm{t}_{\mathrm{PHL}}(\mathrm{D})$)	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			20				ns
Propagation Delay Time, High to Low Level, From Differential Inputs A and B to Output (Note 1) ($\mathrm{t}_{\mathrm{PHL}(\mathrm{D})}$)	$R_{L}=470 \Omega, C_{L}=15 \mathrm{pF}$						20	ns
Propagation Delay Time, Low to High Level, From Strobe Input G or S to Output (tplis(s))	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			17				ns
Propagation Delay Time, Low to High Level, From Strobe Input \mathbf{G} or S to Output ($\mathrm{t}_{\mathrm{pLH}}(\mathrm{s})$)	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$						17	ns
Propagation Delay Time, High to Low Level, From Strobe Input G or S to Output (tphL(s))	$\mathrm{R}_{\mathrm{L}}=470 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			17				ns
Propagation Delay Time, High to Low Level, From Strobe Input G or S to Output ($\mathrm{t}_{\mathrm{PHL}(\mathrm{s})}$)	$R_{L}=470 \Omega, C_{L}=15 \mathrm{pF}$						17	ns

Note 1: Differential input is +10 mV to -30 mV pulse. Delays read from 0 mV on input to 1.5 V on output.

LM163/LM363

dc electrical characteristics ($T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$)

PARAMETER	CONDITIONS	LIMITS			UNITS
		LM163/LM363			
		MIN	TYP	MAX	
High Level Input Current Into 1A, 1B, 2A or 2B ($\mathrm{I}_{\mathbf{H}}$)	$\begin{aligned} & V_{\mathrm{cc}^{+}=M a x}, V_{\mathrm{cc}^{-}}=\mathrm{Max}_{1} \\ & \mathrm{~V}_{1 \mathrm{D}}=05 \mathrm{~V}, \mathrm{~V}_{\mathrm{IC}}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$		30	75	$\mu \mathrm{A}$
Low Level Input Current Into $1 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~A}$ or 2 B ($\left.\mathrm{I}_{\mathrm{L}}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}^{+}=}=\mathrm{Max}, \mathrm{~V}_{\mathrm{cc}^{-}}=\mathrm{Max} \\ & \mathrm{~V}_{1 \mathrm{D}}=-2 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{C}}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$			-10	$\mu \mathrm{A}$
High Level Input Current Into 1G, 2G or D ($1_{1 H}$)				40	$\mu \mathrm{A}$
High Level Input Current Into 1G, 2G or D ($\left(_{I H}\right.$)	$\begin{aligned} & V_{c c^{+}}=\operatorname{Max}, V_{\mathrm{CC}^{-}}=\operatorname{Max}, \\ & V_{(H\|S\|}=\operatorname{Max} V_{C C}^{+} \end{aligned}$			1	mA
Low Level Input Current Into D ($1_{1 L}$)	$\begin{aligned} & V_{\mathrm{cc}^{+}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{cc}^{-}}=\mathrm{Max} . \\ & \mathrm{V}_{\text {(L(D) }}=04 \mathrm{~V} \end{aligned}$			-16	mA
Low Level Input Current Into 1G or 2G ($I_{1 L}$)	$\begin{aligned} & V_{c C}^{+}=M a x, V_{C C}^{-}=M a x, \\ & V_{1 H(D)}=2 V, V_{I L(G)}=04 V \end{aligned}$			-40	$\mu \mathrm{A}$
Low Level Input Current Into 1G or 2G (ILL)	$\begin{aligned} & V_{c c^{+}}^{+}=\operatorname{Max}, V_{C C}^{-}=\operatorname{Max}, \\ & V_{1 L(D)}=08 V, V_{1 L(G)}=04 V \end{aligned}$			-16	mA
High Level Output Voltage (V_{OH})	$\begin{aligned} & V_{C C}^{+}=M_{1 n}, V_{C C}^{-}=M_{1 n}, \\ & I_{L O A D}=-2 m A, V_{1 D}=25 \mathrm{mV}, \\ & V_{I L(D)}=08 \mathrm{~V}, V_{I C}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$	24			v
Low Level Output Voltage (V_{OL})	$\begin{aligned} & V_{C C^{+}}=M_{I n}, V_{c C}^{-}=M 1 n_{1}, \\ & I_{S I N K}=16 \mathrm{~mA}, V_{I D}=-25 \mathrm{mV}, \\ & V_{I L(D)}=08 \mathrm{~V}, V_{I C}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$			04	v
Output Disable Current (100)	$\begin{aligned} & V_{\mathrm{cc}^{+}}=\mathrm{Max}_{\mathrm{M}}, \mathrm{~V}_{\mathrm{cc}^{-}=}=\operatorname{Max}, \\ & V_{\text {IH (D) }}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=24 \mathrm{C} \end{aligned}$			40	$\mu \mathrm{A}$
Output Disable Current (loo)	$\begin{aligned} & V_{c c}{ }^{+}=M a x, V_{c c}^{-}=M a x, \\ & V_{\text {IH }(D)}=2 \mathrm{~V}, V_{\text {OUT }}=04 \mathrm{~V} \end{aligned}$			-40	$\mu \mathrm{A}$
Short Circuit Output Current (los)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}^{+}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IL}(\mathrm{D})}=08 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}^{-}}=\operatorname{Max} \end{aligned}$	-18		-70	mA
High Logic Level Supply Current From $\mathrm{VCC}^{+}\left(\mathrm{I}_{\mathrm{ccH}}{ }^{+}\right)$	$\begin{aligned} & V_{\mathrm{Cc}^{+}}=M a x, V_{\mathrm{CC}^{-}}=\mathrm{Max}, \\ & V_{10}=25 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		28	40	mA
High Logic Level Supply Current From $\mathrm{V}_{\mathrm{Cc}}{ }^{-}\left(\mathrm{I}_{\mathrm{CCH}}{ }^{-}\right)$	$\begin{aligned} & V_{\mathrm{CC}^{+}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{CC}^{-}=\mathrm{Max},} \\ & \mathrm{~V}_{\mathrm{ID}}=25 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		-84	-15	mA
Input Clamp Voltage on G or D (V1)	$\begin{aligned} & V_{C C^{+}}=M i n, V_{C C^{-}}^{-}=M_{1 n}, \\ & I_{I N}=-12 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-1	-15	v

ac switching characteristics $\left(\mathrm{V}_{\mathrm{Cc}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}{ }^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	LIMITS			UNITS
		LM163/LM363			
		MIN	TYP	MAX	
Propagation Delay Time, Low to High Level, Fiom Differential Inputs A and B to Output (Note 1) (tpLH(D))	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		17	25	ns
Piopaqation Delay Time, High to Low Level, Fiom Differential Inputs A and B to Output (Note 1) ($\left.\mathrm{t}_{\mathrm{PHL}(\mathrm{D})}\right)$	$\mathrm{R}_{\mathrm{L}}=390 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		17	25	ns
Propagation Delay Time, Low to High Level, Fiom Strobe Input G to Output ($\mathrm{t}_{\mathrm{PLH}}(\mathbf{s})$)	$R_{L}=390 \Omega 2, C_{L}=50 \mathrm{pF}$		10	15	ns
Pıopagation Delay Time. High to Low Level, From Stıobe Input G to Output ($\mathrm{tPHL}_{\mathrm{P}}(\mathbf{s})$)	$\mathrm{R}_{\mathrm{L}}=39082, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		8	15	ns
Disable Low to High to Output High to Off $\left(\mathrm{t}_{1 H}\right)$	$R_{L}=390 \Omega 2, C_{L}=5 \mathrm{pF}$			20	ns
Disable Low to High to Output Low to Off (t_{OH})	$R_{L}=390 \Omega \Omega, C_{L}=5 \mathrm{pF}$			30	ns
Disable High to Low to Output Off to High ($t_{H_{1}}$)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ to $0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			25	ns
Disable High to Low to Output Off to Low (t_{HO})	$R_{L}=390 \bigcirc \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			25	ns

Note 1: Differential input is +100 mV to -100 mV pulse Delays read from 0 mV on input to 15 V on output

LM363A
dc electrical characteristics $\left.10^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	LIMITS			UNITS
		L.M363A			
		MIN	TYP	MAX	
High Level Input Current Into 1A, 1B, 2A or 2B ($I_{T H}$)	$\begin{aligned} & V_{C C}^{+}=M a x, V_{C C^{-}}=M a x \\ & V_{I D}=05 \mathrm{~V}, V_{I C}=-3 V \text { to } 3 V \end{aligned}$		30	75	$\mu \mathrm{A}$
Low Level Input Current Into 1A, 1B, 2A or 2B ($I_{1 L}$)	$\begin{aligned} & V_{\mathrm{CC}^{+}}=\text {Max, } V_{\mathrm{CC}^{-}}=\text {Max, } \\ & V_{I D}=-2 V, V_{I C}=-3 V \text { to } 3 V \end{aligned}$			-10	$\mu \mathrm{A}$
High Level Input Current Into 1G, 2G or D ($(1, H)$	$\begin{aligned} & V_{\mathrm{CC}^{+}}=\operatorname{Max}, V_{\mathrm{CC}^{-}}=\mathrm{Max}, \\ & V_{I \mathrm{H}(\mathrm{~S})}=24 \mathrm{~V} \end{aligned}$			40	$\mu \mathrm{A}$
High Level Input Current Into 1G, 2G or D ($I_{(H)}$)	$\begin{aligned} & V_{\mathrm{CC}^{+}}=\operatorname{Max}, \mathrm{V}_{\mathrm{CC}^{-}}=\operatorname{Max}, \\ & \mathrm{V}_{(\mathrm{H}(\mathbf{S})}=\operatorname{Max} \mathrm{V}_{\mathrm{CC}^{+}} \end{aligned}$			1	mA
Low Level Input Curient Into D ($I_{\text {LL }}$)	$\begin{aligned} & V_{C C}{ }^{+}=M a x, V_{C C}^{-}=M a x . \\ & V_{I L(D)}=04 V \end{aligned}$			-16	mA
Low Level Input Current Into 1G or 2G (ILL)	$\begin{aligned} & V_{C C}^{+}=M a x, V_{C C}^{-}=M a x \\ & V_{(H(D)}=2 V, V_{L L(G)}=04 V \end{aligned}$			-40	$\mu \mathrm{A}$
Low Level Input Current Into 1G or 2G (ILL)	$\begin{aligned} & V_{C C}^{+}=M a x, V_{C C}^{-}=\operatorname{Max} \\ & V_{(L(D)}=08 V, V_{1 L(G)}=04 V \end{aligned}$			-16	mA
High Level Output Voltage ($\mathrm{VOH}_{\mathrm{OH}}$)	$\begin{aligned} & V_{C C}^{+}=M i n, V_{C C}^{-}=M i n, \\ & I_{L O A D}=-2 \mathrm{~mA}, V_{I D}=10 \mathrm{mV}, \\ & V_{I L(D)}=08 \mathrm{~V}, V_{I C}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$	24			V
Low Level Output Voltage (V_{OL})	$\begin{aligned} & V_{\mathrm{CC}^{+}}=M_{1 n}, V_{\mathrm{CC}^{-}}=M \mathrm{Mn} \\ & I_{\mathrm{SINK}}=16 \mathrm{~mA}, V_{I D}=-10 \mathrm{mV} \\ & V_{I L(D)}=08 \mathrm{~V}, V_{I C}=-3 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$			04	V
Output Disable Current (loo)	$\begin{aligned} & V_{C C}^{+}=M a x, V_{C C}^{-}=M a x, \\ & V_{I H(D)}=2 V, V_{O U T}=24 V \end{aligned}$			40	$\mu \mathrm{A}$
Output Disable Current (10 OD)	$\begin{aligned} & V_{C C}^{+}=M a x, V_{C c}^{-}=M a x, \\ & V_{I H(D)}=2 V, V_{O U T}=04 V \end{aligned}$			-40	$\mu \mathrm{A}$
Short Circuit Output Current (Ios)	$\begin{aligned} & V_{c c^{+}}=\operatorname{Max}, V_{I L(D)}=08 \mathrm{~V}, \\ & V_{c c^{-}}=\operatorname{Max} \end{aligned}$	-18		-70	$m A$
High Logic Level Supply Current From $\mathrm{V}_{\mathbf{C C}}{ }^{+}\left(\mathrm{ICCH}^{+}\right)$	$\begin{aligned} & V_{\mathrm{CC}^{+}}=M a x, V_{\mathrm{CC}^{-}}=M a x, \\ & V_{I D}=10 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		28	40	mA
High Logic Level Supply Current From $\mathrm{VCC}^{-}\left(\mathrm{I}_{\mathrm{CCH}^{-}}{ }^{-}\right)$	$\begin{aligned} & V_{C C}^{+}=M a x, V_{C C}^{-}=M a x, \\ & V_{I D}=10 \mathrm{mV}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-84	-15	mA
Input Clamp Voltage on G or D (V_{1})	$\begin{aligned} & V_{C C}^{+}=M i n, V_{C C}^{-}=M i n \\ & I_{\mathbb{N}}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$,	-1	-15	V

ac switching characteristics $\left(v_{c c}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}{ }^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Parameter	conotrions	Lumis			unirs
		LM363A			
		MIN	typ	max	
B to Output (Note 1) ($\mathrm{t}_{\text {PLH }}$ (D)	$\mathrm{R}_{L}=408 . \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			${ }_{3}$	ns
B to Output (Note 1) ($\mathrm{t}_{\text {PHL(D) }}$)	$\mathrm{R}_{\mathrm{L}}=4080 . \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			${ }^{20}$	ns
Propagation Delay Time, Low to High Level, From Strobe Input G to Output (tplih(s))	$\mathrm{R}_{L}=4708 . \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			${ }^{17}$	ns
Propagation Delay Time, High to Low Output (tpHL(s))	$\mathrm{R}_{L}=4080 . \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			17	ns
Disable Low to High to Output High to Off $\left(\mathrm{t}_{1 \mathrm{H}}\right)$	$\mathrm{R}_{\mathrm{L}}=4700 . \mathrm{C}_{\mathrm{L}}=5 \mathrm{p}$ p			${ }^{20}$	ns
Disable Low to High to Output Low to Off (t_{OH})	$R_{L}=400 . C_{L}=5$ PF			${ }^{30}$	ns
Disable High to Low to Output Off to High ($t_{H_{1}}$)	$R_{L}=1 \mathrm{k} 10 \mathrm{ov}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$			${ }_{25}$	ns
Disable High to Low to Output Off to Low (t_{HO})	$\mathrm{R}_{\mathrm{L}}=4700 . \mathrm{C}_{\mathrm{L}}=15 \mathrm{oF}$			${ }^{25}$	ns

Line Drivers/Receivers

LM55109/LM75109, LM55110/LM75110 dual line drivers

general description

These products are TTL compatible high speed differential line drivers intended for use in termınated twisted-pair party-line data transmission systems. They may also be used for level shiftıng since output common-mode range is -3 V to +10 V . An internal current sink is switched to either output dependent on input logic conditions. The current sink may be turned off by appropriate inhibit input conditions.

features

- Tightly controlled output currents over temperature, V_{cc}, and common-mode variatıons
- High speed 15 ns max
- Wide output common-mode range
- High output impedance
- Inhibits for party-line applications
- Current sink outputs 6 or 12 mA
- Dual circuits
- Standard supply voltages $\pm 5 \mathrm{~V}$
- Input clamp diodes
- 14 pin cavity or molded DIP

schematic diagram

Note 1. $1 / 2$ of the dual circuit shown
Note 2: "Indicates connections common to second half of circuit.
connection diagram
Dual-In-Line Package

Order Number LM55109J, LM55110J, LM75109J, or LM75110J See Package 16

Order Number LM75109N or LM75110N See Package 22

typical application

Party-Line Data Transmission System

absolute maximum ratings

Supply Voltage, $\mathrm{V}_{\mathrm{cc}}{ }^{+}$
Supply Voltage, $\mathrm{V}_{\mathrm{cc}}{ }^{-}$
Logic and Inhibitor Input Voltages
Common-mode Output Voltage
Storage Temperature Range
Power Dissipation
Lead Temperature (Solderıng, 10 sec)

$7 V$ 55 V
-5 V to 12 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
600 mW
$300^{\circ} \mathrm{C}$
operating conditions

	MIN	MAX	UNITS
Supply Voltage (VCC)			,
LM55109, LM55110	4.5	5.5	V
LM75109, LM75110	4.75	5.25	V
Temperature (TA)			
LM55109, LM55110	-55	+125	${ }^{\circ} \mathrm{C}$
LM75109, LM75110	0	+70	${ }^{\circ} \mathrm{C}$

dc electrical characteristics ($\left.T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}\right)$

PARAMETER	CONDITIONS	LIMITS						UNITS	
		LM55109/LM75109			LM55110/LM75110				
		MIN	TYP	MAX	MIN	TYP	MAX		
Positive Common Mode Output Voltage		0		10	0		10	v	
Negative Common Mode Output Voltage		0		-3	0		-3	v	
High Level Input Current Into 1A, 1B, $2 A$ or $2 B\left(\\|_{H(L)}\right)$	$\begin{aligned} & V_{c c}^{+}=M a x, V_{c c}^{--}=M a x, \\ & V_{1 H(L)}=24 \mathrm{~V} \end{aligned}$			40			40	$\mu \mathrm{A}$	
High Level Input Current Into 1A, 1B, $2 A$ or $2 B \quad\left(I_{1 H(L)}\right)$	$\begin{aligned} & V_{C^{+}}{ }^{+}=\operatorname{Max},^{V_{c c^{-}}^{-}=M a x,} \\ & V_{1 H(L)}=M a x V_{c C^{+}} \end{aligned}$			1			1	mA	
Low Level Input Current Into 1A, 1B, 2A or 2B ($\left.\\|_{\text {LL(L) }}\right)$	$\begin{aligned} & V_{c c}^{+}=M a x, V_{c c}^{-}=M a x, \\ & V_{1 L(L)}=04 \mathrm{~V} \end{aligned}$			-3			-3	mA	
High Level Input Current Into 1C or 2C $\left(1_{1 H(1)}\right)$	$\begin{aligned} & V_{c C^{+}}=\operatorname{Max}, V_{\mathrm{Cc}^{-}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathbf{H}(1)}=24 \mathrm{~V} \end{aligned}$			40			40	$\mu \mathrm{A}$	
High Level Input Current Into 1C or 2C ($\left.1_{1+(1)}\right)$	$\begin{aligned} & V_{\mathrm{cc}^{+}}=\operatorname{Max}, V_{\mathrm{cc}^{-}}=\operatorname{Max}, \\ & V_{1 H(1)}=\operatorname{Max} V_{\mathrm{cc}^{+}} \end{aligned}$			1			1	mA	
Low Level Input Current Into 1C or 2C (IL(1))	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}{ }^{+}=\operatorname{Max}, \mathrm{V}_{\mathrm{cc}}{ }^{-}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}(1)}=04 \mathrm{~V} \end{aligned}$			-3			-3	mA	
High Level Input Current Into D ($1_{1 H(I I)}$)	$\begin{aligned} & V_{\mathrm{cc}^{+}}=\operatorname{Max} \mathrm{V}_{\mathrm{cc}^{-}}=\mathrm{Max}, \\ & \mathrm{~V}_{1 \mathrm{H}(1)}=24 \mathrm{~V} \end{aligned}$			80	,		80	$\mu \mathrm{A}$	
High Level Input Current Into D ($1_{1 H(1)}$)	$\begin{aligned} & V_{c c^{+}}^{+}=\operatorname{Max}, V_{c c^{-}}^{-}=M a x, \\ & V_{I H(1)}=M a x V_{c c}^{+} \end{aligned}$			2			2	mA	
Low Level Input Current Into D (ILLI $^{\prime}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}{ }^{+}=\operatorname{Max}, \mathrm{V}_{\mathrm{CC}^{-}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}(1)}=04 \mathrm{~V} \end{aligned}$			-6			-6	mA	
On State Output Current (IO(ON)	$\begin{aligned} & V_{c c^{+}}=\operatorname{Max}, V_{c c^{-}}=\operatorname{Max}, \\ & V_{c c}^{+}=M ı n, V_{c c}^{-}=\operatorname{Max} \end{aligned}$	35		7	65		15	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
Off State Output Current (IO(off))	$\mathrm{V}_{\mathrm{cc}^{+}}=\mathrm{Min}, \mathrm{V}_{\mathrm{cc}}{ }^{-}=\mathrm{Mın}$			100			100	$\mu \mathrm{A}$	
Supply Current From $\mathrm{V}_{\mathrm{cc}}{ }^{+}$With Driver Enabled ($\mathrm{CcC}^{+}{ }^{+} \mathrm{ON}$)	$V_{\text {IL }(L)}=04 \mathrm{~V}, \mathrm{~V}_{1 H(1)}=2 \mathrm{~V}$		18	30		23	35	mA	
Supply Current From $\mathrm{V}_{\mathrm{cc}}{ }^{-}$With Driver Enabled (Icc ${ }^{-}$(ON)	$V_{\text {IL }}(L)=0.4 \mathrm{~V}, \mathrm{~V}_{\text {IH(I) }}=2 \mathrm{~V}$		-18	-30		-34	-50	mA	
Supply Current From $\mathrm{V}_{\mathrm{cc}}{ }^{+}$With Driver Inhibited (Icc ${ }^{+}$(off))	$V_{\text {IL(L) }}=0.4 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~L}(1)}=04 \mathrm{~V}$		18			21		mA	
Supply Current From $\mathrm{V}_{\mathrm{cc}}{ }^{-}$With Driver Inhibited (Icc ${ }^{-}$(off))	$V_{I L(L)}=0.4 \mathrm{~V}, V_{I L(I)}=04 \mathrm{~V}$		-10			-17		mA	
Input Clamp Voltage on Inputs or Inhibits (V_{1})	$\begin{aligned} & V_{C C}^{+}=M 1 n, V_{C C}^{-}=M ı n, \\ & I_{I N}=-12 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-1	-1.5		-1	-15	V	

ac switching characteristics $\left(\mathrm{V}_{\mathrm{CC}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}{ }^{-}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	LIMITS						UNITS
		LM55109/LM75109			LM55110/LM75110			
		MIN	TYP	MAX	MIN	TYP	MAX	
Propagation Delay Time, Low to High Level, From Logic Input A or B to Output Yor Z (tpLH(L))	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$		9	15		9	15	ns
Propagation Delay Time, High to Low Level, From Logic Input A or B to Output Y or \mathbf{Z} ($\mathrm{t}_{\mathrm{PHL}}(\mathrm{L})$)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$		9	15		9	15	ns
Propagation Delay Time, Low to High Level, From Inhibitor Input C or D to Output Y or Z ($\mathrm{t}_{\text {pLH }}$ (I))	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$		16	25		16	25	ns
Propagation Delay Time, High to Low Level, From Inhibitor Input C or D to Output Y or Z ($\mathrm{t}_{\mathrm{PHL}}(1)$)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$		13	25		13	25	ns

Line Drivers/Receivers

LM55121/LM75121 dual line drivers

general description

The LM55121/LM75121 are monolithic dual line drivers designed to drive long lengths of coaxial cable, strip line, or twisted pair transmission lines having impedances from 50 to 500 ohms. Both are compatible with standard TTL logic and supply voltage levels.

The LM55121/LM75121 will drive terminated low impedance lines due to the low-impedance emitterfollower outputs. In addition the outputs are uncommitted allowing two or more drivers to drive the same line.

Output short-circuit protection is incorporated to turn off the output when the output voltage drops below approximately 1.5 V .

features

- Designed for digital data transmission over 50 to 500 ohms coaxial cable, strip line, or twisted pair transmission lines
- TTL compatible
- Open emitter-follower output structure for party-line operation
- Short-circuit protection
- AND-OR logic configuration
- High speed (max propagation delay time 20 ns)
- Plug-in replacement for the SN55121 and the 8T13

connection diagram

typical performance

 characteristics

truth table

INPUTS						OUTPUT
A	B	C	D	E	F	Y
H	H	H	H	X	X	H
X	X	X	X	H	H	H
All	Other Input Combinations	L				

$H=$ high level, $L=$ low level, $X=$ irrelevant
ac test circuit and switching time waveforms

Note A. The pulse generators have the following characteristics
$Z_{\text {OUT }} \approx 50 \Omega, \mathrm{t}_{\mathrm{W}}=\mathbf{2 0 0} \mathrm{ns}$, duty cycle $=50 \%, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5.0 \mathrm{~ns}$
Note B: C_{L} includes probe and ر口 capacitance
absolute maximum ratings
(Notes 1 and 2)

Supply Voltage, VCC	6.0 V
Input Voltage	6.0 V
Output Voltage	6.0 V
Output Current	-75 mA
Continuous Total Dissipation at (or below)	
$\quad 25^{\circ} \mathrm{C}$ Free-Air Temperature (Note 5)	800 mW
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage, V_{CC}	4.75	5.25	V
Temperature, T_{A}			
LM55121	-55	+125	${ }^{\circ} \mathrm{C}$
LM75121	0	+75	${ }^{\circ} \mathrm{C}$

electrical characteristics (Note 3) $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V (unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
High Level Input Voltage ($\mathrm{V}_{1 \mathrm{H}}$)		2.0			\checkmark
Low Level Input Voltage ($\mathrm{V}_{1 \mathrm{~L}}$)				0.8	V
Input Clamp Voltage (V_{1})	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
Input Breakdown Voltage $\mathrm{V}_{(\mathrm{BR}) \text {) }}$	$V_{c c}=5.0 \mathrm{~V}, I_{1}=10 \mathrm{~mA}$	5.5			V
High Level Output Voltage (V_{OH})	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-75 \mathrm{~mA}($ Note 4)	2.4			\checkmark
High Level Output Current ($\mathrm{IOH}_{\mathrm{OH}}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{1 H}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note 4) } \end{aligned}$	-100		-250	mA
Low Level Output Current ($\mathrm{IOL}^{\text {) }}$	$\mathrm{V}_{\text {IL }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ (Note 4)			-800	$\mu \mathrm{A}$
Off State Output Current (Io(off)	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.0 \mathrm{~V}$			500	$\mu \mathrm{A}$
High Level Input Current ($\mathrm{I}_{1 H}$)	$\mathrm{V}_{1}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Low Level Input Current (ILL)	$V_{1}=0.4 \mathrm{~V}$	-0 1		-16	mA
Short Circuit Output Current (Ios)	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-30	mA
Supply Current, Outputs High ($\mathrm{ICCH}^{\text {) }}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, All Inputs at 2.0 V , Outputs Open			28	mA
Supply Current, Outputs Low (${ }_{\text {ccl }}$)	$V_{C C}=5.25 \mathrm{~V}$, All Inputs at 0.8 V , Outputs Open			60	mA

switching characteristics $V_{C C}=5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time, Low to High Level Output ($\mathrm{t}_{\text {PLH }}$) Propagation Delay Time, High to Low Level Output ($\mathrm{t}_{\mathrm{PHL}}$)	$\mathrm{R}_{\mathrm{L}}=37 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (See AC Test Cırcuit and Switchıng Time Waveforms)		11 80	20 20	ns ns
Propagatıon Delay Tıme, Low to High Level Output ($\mathrm{t}_{\text {PLH }}$) Propagation Delay Tıme, High to Low Level Output ($\mathrm{t}_{\mathrm{PHL}}$)	$\mathrm{R}_{\mathrm{L}}=37 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$ (See AC Test Cırcuit and Switching Time Waveforms)		22 20	50 50	ns ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted. All values shown as max or min on absolute value basis.
Note 3: Min/max limits apply across the guaranteed operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for LM55121 and $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ for LM75121, unless otherwise specified. Typicals are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Positive current is defined as current into the referenced pin.
Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.
Note 5: For operating at elevated temperatures, the cavity DIP package (J) must be derated based on a thermal resistance of $+85^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient. The molded DIP package (N) must be derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.

Line Drivers/Receivers

LM55122/LM75122 triple line receivers

general description

The LM55122/LM75122 are triple line receivers designed for digital data transmission with line impedances from 50Ω to 500Ω. Each receiver has one input with built-in hysteresis which provides a large noise margin. The other inputs on each receiver are in a standard TTL configuration. The LM55122/LM75122 are compatible with standard TTL logic and supply voltage levels.

features

- Built-in input threshold hysteresis
- High speed . . . typical propagation delay time 20 ns
- Independent channel strobes
- Input gating increases application flexibility
- Single 5.0 V supply operation
- Fanout to 10 series $54 / 74$ standard loads
- Plug-in replacement for the SN55122 and the 8T14

connection diagram

Dual-In-Line Package

TOP VIEW
Order Number LM55122J, LM75122J
See Package 17
Order Number LM75122N See Package 23
truth table

INPUTS				OUTPUT
A	B †	R	S	Y
H	H	X	X	L
X	X	L	H	L
L	X	H	X	H
L	X	X	L	H
X	L	H	X	H
X	L	X	L	H

$H=$ high level, $L=$ low level, $X=$ irrelevant
\dagger_{B} input and last two lines of the truth table are applicable to receivers 1 and 2 only
ac test circuit and switching time waveforms

[^0]absolute maximum ratings
(Notes 1 and 2)

Supply Voltage, VCC	6.0 V
Input Voltage	
R Input	6.0 V
A, B, or S Input	5.5 V
Output Voltage	6.0 V
Output Current	$\pm 100 \mathrm{~mA}$
Continuous Total Power Dissipation at (or	
below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (Note 5)	800 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage, V_{CC}	4.75	5.25	V
Operating Temperature, T_{A}			
LM55122	-55	+125	${ }^{\circ} \mathrm{C}$
LM75122	0	+75	${ }^{\circ} \mathrm{C}$
High Level Output Current, ${ }^{\mathrm{I} O H}$		-500	$\mu \mathrm{A}$
Low Level Output Current, ${ }^{\mathrm{I} O L}$		16	mA

electrical characteristics
(Note 3) $\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$ to 5.25 V (unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
High Level Input Voltage ($\mathrm{V}_{1 \mathrm{H}}$) A, B, R, or S		2.0			V
Low Level Input Voltage (V_{IL}) A, B, R, or S				0.8	V
$\begin{aligned} & \text { Hysteresis }\left(\mathrm{V}_{\mathbf{T +}}-\mathrm{V}_{\mathbf{T}-\ldots}\right) \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Note 7) } \end{aligned}$	0.3	0.6		V
$\begin{aligned} & \text { Input Clamp Voltage }\left(V_{1}\right) \\ & \text { A, B, or S } \end{aligned}$	$V_{c c}=50 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
Input Breakdown Voltage ($\mathrm{V}_{(\mathrm{BR}) \mathrm{I}}$) A, B, or S	$V_{C C}=50 \mathrm{~V}, \mathrm{I}_{1}=10 \mathrm{~mA}$	5.5			V
High Level Output Voltage (V_{OH})	$V_{I H}=0 \mathrm{~V}, \mathrm{~V}_{I L}=08 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A} \text {, }$ (Note 4)	2.6			V
	$\begin{aligned} & V_{1(A)}=0 \mathrm{~V}, V_{1(B)}=0 \mathrm{~V}, V_{1(S)}=2.0 \mathrm{~V}, \\ & V_{1(R)}=1.45 \mathrm{~V},(\text { Note } 8), I_{O H}=-500 \mu \mathrm{~A} \end{aligned}$	26			V
Low Level Output Voltage (V_{OL})	$\begin{aligned} & V_{I H}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=08 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \\ & \text { (Note 4) } \end{aligned}$			0.4	v
	$\begin{aligned} & V_{1(A)}=0 \mathrm{~V}, V_{1(B)}=0 \mathrm{~V}, V_{1(S)}=20 \mathrm{~V}, \\ & V_{1(R)}=1.45 \mathrm{~V},(\text { Note } 9), I_{O L}=16 \mathrm{~mA} \end{aligned}$			0.4	V
High Level Input Current ($\mathrm{I}_{1 H}$)					
A, B, or S	$\mathrm{V}_{1}=45 \mathrm{~V}$			40	$\mu \mathrm{A}$
R	$V_{1}=38 \mathrm{~V}$			170	$\mu \mathrm{A}$
Low Level Input Current ($I_{1 L}$)					
A, B, or S	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	-0.1		-1.6	mA
Short Circuit Output Current ($\mathrm{l}_{\text {OS }}$)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},($ Note 6)	-50		-100	mA
Supply Current ($\mathrm{Icc}^{\text {) }}$	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$			72	mA

switching characteristics $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX
Propagation Delay Tıme, Low to Hıgh Level Output from R Input (t $t_{\text {PLH }}$) Propagation Delay Tıme, High to Low Level Output from R Input (t (See AC Test Circuit and Switching	Time Waveforms)	20	30	ns

Note 1: "Absolute Maxımum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground termınal, unless otherwise noted. All values shown as max or min on absolute value basis.
Note 3: Mın/max limits apply across the guaranteed operatıng temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for LM 55122 and $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ for LM75122, unless otherwise specified Typicals are for $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Positive current is defined as current into the referenced pin.
Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output
Note 5: For operating at elevated temperatures, the cavity DIP package (J) has a maxımum junction temperature of $+150^{\circ} \mathrm{C}$ and must be derated based on a thermal resistance of $+85^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient. The molded DIP package (N) has a maximum junction temperature of $+150^{\circ} \mathrm{C}$ and must be derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient
Note 6: Not more than one output should be shorted at a time
Note 7: Hysteresis is the difference between the positive going input threshold voltage, $\mathrm{V}_{\mathbf{T}+}$, and the negative going input threshold voltage, $\mathrm{V}_{\mathrm{T}-\text {. }}$
Note 8: Receiver input was at a high level immediately before being reduced to 1.45 V .
Note 9: Receiver input was at a low level immediately before being rased to 1.45 V .

typical performance characteristics

Output Voltage vs Receiver Input Voltage

V_{1} - INPUT VOLTAGE (V)

typical applications

Single-Ended Party Line Circuits

LM75123 dual line driver

general description

The LM75123 is a monolithic dual line driver designed specifically to meet the I/O interface specifications for IBM System 360. It is compatible with standard TTL logic and supply voltage levels.

The low-impedance emitter-follower outputs of the LM75123 enable driving terminated low impedance lines. In addition the outputs are uncommited allowing two or more drivers to drive the same line.

Output short-circuit protection is incorporated to turn off the output when the output voltage drops below approximately 1.5 V .

features

- Meet IBM System 360 I/O interface specifications for digital data transmission over 50Ω to 500Ω coaxial cable, strip line, or terminated pair transmission lines
- TTL compatible with single 5.0 V supply
- 3.11 V output at $\mathrm{I}_{\mathrm{OH}}=-59.3 \mathrm{~mA}$
- Open emitter-follower output structure for party-line operation
- Short circuit protection
- AND-OR logic configuration
- Plug-in replacement for the SN75123 and the 8T23

connection diagram

typical performance characteristics

truth table

INPUTS					OUTPUT	
A	B	C	D	E	F	Y
H	H	H	H	X	X	H
X	X	X	X	H	H	H
All	Other Input Combinations	L				

$H=$ high level, $L=$ low level, $X=$ irrelevant

ac test circuit and switching time waveforms

NOTE A. THE PULSE GENERATORS HAVE THE FOLLOWING CHARACTERISTICS $Z_{\text {OUT }} \approx 50 \Omega$,
$\mathrm{t}_{\mathrm{w}}=\mathbf{2 0 0} \mathrm{ns}$, DUTY CYCLE $=\mathbf{5 0 \%}$
NOTE B C. INCLUDES PROBE AND JIG CAPACITANCE

absolute maximum ratings

(Notes 1 and 2)
$\begin{array}{ll}\text { Supply Voltage, } V_{C C} & 7.0 \mathrm{~V} \\ \text { Input Voltage } & 5.5 \mathrm{~V}\end{array}$
Output Voltage
Continuous Total Power Dissipation at (or
below) $\mathbf{2 5}{ }^{\circ}$ C Free-Air Temperature (Note 5) 800 mW Operating Free-Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Solderıng, 10 seconds) $300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage, ${ }_{\text {CC }}$	4.75	5.25	V
High Level Output Current,		-100	mA
IOH	0	+75	${ }^{\circ} \mathrm{C}$

electrical characteristics (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
High Level Input Voltage ($\mathrm{V}_{1 \mathrm{H}}$)		2.0			V
Low Level Input Voltage ($\mathrm{V}_{1 L}$)				0.8	v
Input Clamp Voltage (V_{1})	$V_{C C}=5.0 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	v
Input Breakdown Voltage ($\mathrm{V}_{(\mathrm{BR}) \mathrm{I}}$)	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{I}_{1}=10 \mathrm{~mA}$	5.5			v
High Level Output Voltage (V_{OH})	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{I H}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-59.3 \mathrm{~mA},(\text { Note } 4) \end{aligned}$				
	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \end{aligned}$	$\begin{aligned} & 3.11 \\ & 2.9 \end{aligned}$			v
High Level Output Current (${ }^{\text {OH }}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(\text { Note } 4) \\ & \mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V} \end{aligned}$	-100		-250	mA
Low Level Output Voltage ($\mathrm{V}_{\text {OL }}$)	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=-240 \mu \mathrm{~A},($ Note 4)			0.15	V
Off State Output Current (lo off)	$\mathrm{V}_{\mathrm{CC}}=0, \mathrm{~V}_{\mathrm{O}}=3.0 \mathrm{~V}$			40	$\mu \mathrm{A}$
High Level Input Current ($1_{1 H}$)	$\mathrm{V}_{1}=4.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Low Level Input Current ($I_{\text {IL }}$)	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	-0 1		-1.6	mA
Short Circuit Output Current (Ios)	$\mathrm{V}_{\text {cC }}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-30	mA
Supply Current, Outputs High ($\mathrm{ICcH}^{\text {) }}$	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}$, All Inputs at 2.0 V , Outputs Open			28	mA
Supply Current, Outputs Low (${ }_{\text {ccLL }}$)	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}$, All Inputs at 0.8 V , Outputs Open			60	mA

switching characteristics $\mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time, Low to High Level Output ($\mathrm{t}_{\mathrm{pLH}}$) Propagation Delay Tıme, High to Low Level Output ($t_{\text {PHL }}$)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (See AC Test Circuit and Switching Time Waveforms)		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns ns
Propagation Delay Tıme, Low to Hıgh Level Output ($\mathrm{t}_{\mathrm{pLH}}$) Propagation Delay Tıme, High to Low Level Output ($\mathrm{t}_{\mathrm{PHL}}$)	$R_{L}=50 \Omega, C_{L}=100 \mathrm{pF}$ (See AC Test Circuit and Switchıng Time Waveforms)		$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \end{aligned}$	ns ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted. All values shown as max or min on absolute value basis.
Note 3: Min/max limits apply across the guaranteed operating temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ for LM75123, unless otherwise specified. Typicals are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Positive current is defined as current into the referenced pin.
Nöte 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.
Note 5: For operating at elevated temperatures, the cavity DIP package (J) has a maximum junction temperature of $+150^{\circ} \mathrm{C}$ and must be derated based on a thermal resistance of $+85^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient. The molded DIP package (N) has a maximum junction temperature of $+150^{\circ} \mathrm{C}$ and must be derated based on a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.

Line Drivers/Receivers

LM75124 triple line receivers

general description

The LM75124 is designed to meet the input/ output interface specifications for IBM System 360. It has built-in hysteresis on one input on each of the three receivers to provide large noise margin. The other inputs on each receiver are in a standard TTL configuration. The LM75124 is compatible with standard TTL logic and supply voltage levels.

features

- Built-in input threshold hysteresis
- High speed . . typ propagation delay time 20 ns
- Independent channel strobes
- Input gating increases application flexibility
- Single 5.0 V supply operation
- Plug-in replacement for the SN75124 and the 8T24

connection diagram and truth table

Dual-In-Line Package

INPUTS				$\begin{gathered} \hline \text { OUTPUT } \\ Y \end{gathered}$
A	B^{\dagger}	R	S	
H	H	X	X	L
X	X	L	H	L
L	X	H	X	H
L	X	X	L	H
X	L	H	X	H
X	L	X	L	H

$H=$ high level, $L=$ low level, $X=$ irrelevant
${ }^{\dagger} B$ input and last two lines of the truth table are applicable to receivers 1 and 2 only

Order Number LM75124J See Package 17

Order Number LM75124N
See Package 23

typical application

Supply Voltage, V_{CC}	7.0v
Input Voltage	
R Input with $\mathrm{V}_{\text {CC }}$ Applied	7.0V
R Input with V_{CC} not Applied	6.0 V
A, B, or S Input	5.5 V
Output Voltage	7.0V
Output Current	$\pm 100 \mathrm{~mA}$
Continuous Total Power Dissipation at (or below)	
$25^{\circ} \mathrm{C}$ Free-Air Temperature (Note 5)	800 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)) $300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage, V_{CC}	4.75	5.25	\checkmark
High Level Output Current, IOH		-800	$\mu \mathrm{A}$
Low Level Output Current, IOL		16	mA
Operating Temperature, $\mathrm{T}_{\mathbf{A}}$	0	+75	${ }^{\circ} \mathrm{C}$

electrical characteristics (Note 3)

PARÁMETER	CONDITIONS	MIN	TYP	MAX	UNITS
High Level Input Voltage ($\mathrm{V}_{1 H}$) A, B, or S R		2.0 1.7			$\begin{aligned} & v \\ & v \end{aligned}$
Low Level Input Voltage (V_{IL}) $A, B \text { or } S$ R				$\begin{aligned} & 0.8 \\ & 0.7 \end{aligned}$	v V
$\begin{aligned} & \text { Hysteresis }\left(V_{T+}-V_{T-}\right) \\ & R \end{aligned}$	(Note 7) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.2	0.4		V
$\begin{aligned} & \text { Input Clamp Voltage (V) } \\ & \text { A, B, or S } \end{aligned}$	$V_{c c}=50 \mathrm{~V}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
Input Breakdown Voltage ($\mathrm{V}_{(\mathrm{BR}) \text {) }}$) A, B, or S	$V_{C C}=50 \mathrm{~V}, \mathrm{I}_{1}=10 \mathrm{~mA}$	5.5			V
High Level Output Voltage (V_{OH})	$\begin{aligned} & V_{1 H}=V_{1 H \text { MIN }}, V_{I L}=V_{I L \text { MAX }}, \\ & I_{\text {OH }}=-800 \mu A \text { (Note 4) } \end{aligned}$	2.6			V
Low Level Output Voltage (V_{OL})	$\begin{aligned} & V_{I H}=V_{\text {IN MIN }}, V_{I L}=V_{I L} \text { MAX }, \\ & I_{\text {OL }}=16 \mathrm{~mA}(\text { Note } 4) \end{aligned}$			0.4	V
Input Current at Maximum Input Voltage	$\mathrm{V}_{1}=7.0 \mathrm{~V}$			5.0	mA
$\left(1_{1}\right) \quad R$	$\mathrm{V}_{1}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0$			5.0	mA
High Level Input Current ($I_{1 H}$) A, B, or S R	$\begin{aligned} & V_{1}=4.5 \mathrm{~V} \\ & V_{1}=3.11 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 40 \\ & 170 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Low Level Input Current (IIL) A, B, or S	$V_{1}=0.4 \mathrm{~V}$	-0.1	-	-1.6	mA
Short Circuit Output Current (los)	$V_{C C}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},($ Note 6)	-50		-100	$m A$
Supply Current ($\mathrm{Icc}^{\text {) }}$	$\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}$			72	mA

switching characteristics $\mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagatıon Delay Tıme, Low to Hıgh Level Output from R Input ($t_{\text {PLH }}$) Propagation Delay Tıme, High to Low Level Output from R Input ($t_{\text {PHL }}$) (See AC Test Circuit and Switching Time Waveforms)		20	30	ns	

Note 1: "Absolute Maximum Ratıngs" are those values beyónd which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All currents into device pins are shown as positive, currents out of device pins shown as negative, all voltage values are referenced with respect to network ground terminal, unless otherwise noted All values shown as max or min on absolute value basis.
Note 3: Mın/max limits apply across the guaranteed operatıng temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ for LM 75124 , unless otherwise specified. Typicals are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Positive current is defined as current into the referenced pin.
Note 4: The output voltage and current limits are guaranteed for any appropriate combination of high and low inputs specified by the truth table for the desired output.
Note 5: For operatıng at elevated temperatures, the cavity DIP package (J) must be derated based on a thermal resistance of $+85^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient. The molded DIP package (N) must be derated based on a thermal reststance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 6: Note more than one output should be shorted at a time.
Note 7: Hysteresis is the difference between the positive going input threshold voltage, $\mathrm{V}_{\mathbf{T}+}$, and the negative going input threshold voltage, V_{T} -

ac test circuit and switching time waveforms

NOTE A. THE PULSE GENERATOR HAS THE FOLLOWING CHARACTERISTICS: $Z_{O U T} \approx 50 \Omega, \mathrm{t}_{\mathrm{w}}=\mathbf{2 0 0} \mathrm{ns}$, DUTY CYCLE = 50\%.
NOTE B C_{L} INCLUDES PROBE AND JIG CAPACITANCE.

typical performance characteristics

> Output Voltage vs
> Receiver Input Voltage
> V_{1} - INPUT VOLTAGE (V)

Peripheral/Power Drivers

DH0006/DH0006C*current driver

general description

The DH0006/DH0006C is an integrated high voltage, high current driver designed to accept standard DTL or TTL logic levels and drive a load of up to 400 mA at 28 volts. AND inputs are provided along with an Expander connection, should additional gating be required. The addition of an external capacitor provides control of the rise and fall times of the output in order to decrease cold lamp surges or to minimize electromagnetic interference if long lines are driven.

Since one side of the load is normally grounded,
*Previously called NH0006/NH0006C
there is less likelihood of false turn-on due to an inadvertent short in the drive line.

features

- Operation from a Single +10 V to +45 V Power Supply.
- Low Standby Power Dissipation of only 35 mW for 28 V Power Supply.
- 1.5A, 50 ms , Pulse Current Capability.

schematic and connection diagrams

typical applications
Relay Driver

Lamp Driver with Expanded Inputs

absolute maximum ratings

Peak Power Supply Voltage (for 0.1 sec)	60 V
Continuous Supply Voltage	45 V
Input Voltage	5.5 V
Input Extender Current	5.0 mA
Peak Output Current ($50 \mathrm{~ms} \mathrm{On} / 1 \mathrm{sec}$ Off)	1.5 A
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DH0006	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DH0006C, DH0006CN	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP (Note 2)	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{cc}}=45 \mathrm{~V}$ to 10 V	2.0			V
Logical "0' Input Voltage	$\mathrm{V}_{\mathrm{Cc}}=45 \mathrm{~V}$ to 10 V			0.8	V
Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=400 \mathrm{~mA}$	26.5	27.0		V
Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$. 001	. 01	V
Logical "1" Output Voltage	$\mathrm{V}_{\text {CC }}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=150 \mathrm{~mA}$	8.8	9.2		\checkmark
Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=.4 \mathrm{~V}$		-0.8	-1.0	mA
Logical " 1 " Input Current	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$		0.5	5.0	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
"Off' Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}$		1.6	2.0	$m A$
"On" Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$			8	mA
Rise Time	$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=82 \Omega$		0.10		$\mu \mathrm{s}$
Fall Time	$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=82 \Omega$		0.8		$\mu \mathrm{s}$
Ton	$\mathrm{V}_{\mathrm{Cc}}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=82 \Omega$		0.26		$\mu \mathrm{s}$
Toff	$\mathrm{V}_{\mathrm{Cc}}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=82 \Omega$		2.2		$\mu \mathrm{s}$

Note 1: Unless otherwise specified, limits shown apply from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for DH 0006 and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for DH0006C.
Note 2: Typical values are for $25^{\circ} \mathrm{C}$ ambient.
Note 3: Power ratıngs for the TO-5 based on a maxımum junction temperature of $+175^{\circ} \mathrm{C}$ and a ϕ_{JA} of $210^{\circ} \mathrm{C} / \mathrm{W}$
Note 4: Power rating for the DH0006CN Molded DIP based on a maximum junction temperature of $+150^{\circ} \mathrm{C}$ and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ when mounted in a standard DIP socket
Note 5: Power ratıng for the DH0006CN Molded DIP based on a maximum junction temperature of $+150^{\circ} \mathrm{C}$ and a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$ inch thick, epoxy-glass board with ten 003 inch wide 2 ounce copper conductors.

switching time waveforms

typical performance

Maximum Continuous Output Current For Molded DIP

MAXIMUM CONTINUOUS OUTPUT CURRENT (mA)

Input Threshold Voltage vs Temperature

Peripheral/Power Drivers

DH0008/DH 0008C*
 high voltage, high current driver

general description

The DH0008/DH0008C is an integrated high voltage, high current driver, designed to accept standard DTL or TT.L input levels and provide a pulsed load of up to 3A from a contınuous supply voltage up to 45 V . AND inputs are provided with an EXPANDER connection, should additional gating be required.

Since one side of the load is normally grounded, there is less likelihood of false turn-on due to an inadvertent short in the drive line.

The high pulse current capability makes the DH0008/DH0008C ideal for driving nonlinear resistive loads such as incandescent lamps. The *Previously called NH0008/NH0008C
circuit also requires only one power supply for circuit functional operation.

The DH0008 is avarlable in a 10 -pın TO-5 package; the DH0008C is also available in a 10 -pin TO-5, in addition to a 10 -lead molded dual-ın-line package.

features

- Operation from a Single +10 V to +45 V Power Supply.
- Low Standby Power Dissipation of only 35 mW for 28V Power Supply.
- 3.0A, 50 ms , Pulse Current Capability.
schematic and connection diagrams

typical application

Controller for Closed Loop Stepper Motor

Order Number DH0008H or DH0008CH
See Package 13

Order Number DH0008CN See Package 21

Switching Sequence

Step	A	B	C	D
1	1	0	1	0
2	1	0	0	1
3	0	1	0	1
4	0	1	1	0
1	1	0	1	0

To reverse the direction use a 4, 3, 2, 1 sequence

absolute maximum ratings

Peak Power Supply Voltage (for 0.1 sec)	60 V
Continuous Supply Voltage	45 V
Input Voltage	5.5 V
Input Extender Current	5.0 mA
Peak Output Current	
(50 msec On/1 sec Off)	3.0 Amp

Continuous Output Current (See continuous operating curves.)
Operating Temperature

DH0008
DH0008C
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 2) } \end{gathered}$	MAX	UNITS
Logıcal " 1 " Input Voltage	$\mathrm{V}_{\mathrm{Cc}}=45 \mathrm{~V}$ to 10 V	2.0			V
Logıcal " 0 " Input Voltage	$\mathrm{V}_{\mathrm{cc}}=45 \mathrm{~V}$ to 10 V			0.8	V
Logıcal "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~A} \\ & 50 \mathrm{~ms} O \mathrm{n} / 1 \mathrm{sec} \mathrm{Off} \end{aligned}$	43	43.5		V
Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$		0.02	0.1	V
Logical "1" Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0.8 \mathrm{~A} \\ & 50 \mathrm{~ms} \mathrm{On} / 1 \mathrm{sec} \mathrm{Off} \end{aligned}$	26.5	27.1		V
Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		-0.8	-1.0	mA
Logical " 1 " Input Current	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$		0.5	5.0	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
"Off" Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		1.6	2.0	mA
Rise Time	$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \Omega, \mathrm{~V}_{\text {IN }}=5.0 \mathrm{~V}$		0.2		$\mu \mathrm{s}$
Fall Time	$\mathrm{V}_{\text {CC }}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \Omega, \mathrm{~V}_{\text {IN }}=5.0 \mathrm{~V}$		3.0		$\mu \mathrm{s}$
Ton	$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \Omega, \mathrm{~V}_{\text {IN }}=5.0 \mathrm{~V}$		0.4		$\mu \mathrm{s}$
Toff	$\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \Omega, \mathrm{~V}_{\text {IN }}=5.0 \mathrm{~V}$		7.0		$\mu \mathrm{s}$

Note 1: Unless otherwise specified limits shown apply from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for $\mathrm{DHOOO8}$ and $0^{\circ} \mathrm{C}$ to
$70^{\circ} \mathrm{C}$ for DH0008C.
Note 2: Typical values are $25^{\circ} \mathrm{C}$ ambient
Note 3: Power ratıngs for the TO-5 based on a maxımum junction temperature of $+175^{\circ} \mathrm{C}$ and a $\phi \mathrm{JA}$ of $210^{\circ} \mathrm{C} / \mathrm{w}$
Note 4: Power ratıngs for the DH0008CN Molded DIP based on a maximum junction temperature of $150^{\circ} \mathrm{C}$ and a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{w}$ when mounted in a standard DIP socket
Note 5: Power ratıngs for the DH0008CN Molded DIP based on a maximum junction temperature of $150^{\circ} \mathrm{C}$ and a thermal resistance of $115^{\circ} \mathrm{C} / \mathrm{w}$ when mounted on a $1 / 16$ inch thick, epoxy-glass board with ten 0.03 inch wide 2 ounce copper conductors.

switching time waveforms

typical performance

MAXIMUM CONTINUOUS OUTPUT CURRENT (mA)

ON Supply Current Drain

Turn OFF Control

Available Output Current

Logical "0" Input Current

Turn OFF and Fall Times

Turn ON and Rise Time

Peripheral/Power Drivers

DH0011*(SH2001)

DH0011C*(SH2OO2)
DH0011CN*(SH2OO2P)

high voltage high current drivers

general description

The DH0011 high voltage, high current driver family consists of hybrid integrated circuits which provide a wide range of variations in temperature range, package, and output current drive capability. A summary of the variations is listed below.

Applications include driving lamps, relays, cores, and other devices requiring several hundred milliamp currents at voltages up to 40 V . Logic flexibility is provided through a 4 -input NAND gate, a NOR input and an input which bypasses the gating and connects the base of the output transistor.
*Previously called NH0011, NH0011C, NH0011CN

logic diagram

Dual-In-Line Package*

ordering information

NSC DESIGNATION	SH DESIGNATION	SEE PACKAGE	TEMPERATURE RANGE	OUTPUT CURRENT CAPABILITY
DH0011H	SH2001	12	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	250 mA
DH0011CH	SH2002	12	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	150 mA
DH0011CN	SH2002P	22	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	150 mA

*Metal can pin numbers are the same as the dual-ın-line pin numbers.

absolute maximum ratings

	8 V
VCc	80 V
Collector Voltage (Output)	1.0 mA
Input Reverse Current	800 mW
Power Dissipation	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	DH0011H
	DH0011CH/DH0011CN
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

electrical characteristics

TEST NO.	PIN 1	PIN 2	PIN 3	PIN 4	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9	PIN 10	SENSE	MIN	MAX
1	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{1 \mathrm{H}}$	V_{IH}	$\mathrm{V}_{1 \mathrm{H}}$	GND		GND	IOL1		$\mathrm{V}_{\mathrm{CCL}}$	V_{8}		$\mathrm{V}_{\text {OL }}$
2	$V_{\text {IL }}$				GND		GND	IOL1	$V_{\text {IL }}$	$\mathrm{V}_{\mathrm{CCL}}$	V_{8}		V_{OL}
3	$V_{\text {IL }}$				GND	$\mathrm{I}_{\text {OL2 }}$				$\mathrm{V}_{\text {ccl }}$	V_{6}		$\mathrm{V}_{\text {OL2 }}$
4		$V_{\text {IL }}$			GND	IOL2				$\mathrm{V}_{\text {ccl }}$	V_{6}		$\mathrm{V}_{\text {OL2 }}$
5			$\mathrm{V}_{1 L}$		GND	$\mathrm{l}_{\mathrm{OL} 2}$				$\mathrm{V}_{\text {ccl }}$	V_{6}		$\mathrm{V}_{\text {OL2 }}$
6				$V_{\text {IL }}$	GND	IOL2				$\mathrm{V}_{\text {ccl }}$	V_{6}		$\mathrm{V}_{\text {OL2 }}$
7				GND	GND	IOL2			$V_{1 H}$	$\mathrm{V}_{\text {ccl }}$	V_{6}		$\mathrm{V}_{\mathrm{OL} 2}$
8	V_{R}	GND	GND	GND	GND					$\mathrm{V}_{\mathrm{CCH}}$	I_{1}		I_{R}
9	GND	$V_{\text {R }}$	GND	GND	GND					$\mathrm{V}_{\mathrm{cch}}$	I_{2}		I_{R}
10	GND	GND	V_{R}	GND	GND					$\mathrm{V}_{\mathrm{CCH}}$	I_{3}		I_{R}
11	GND	GND	GND	V_{R}	GND					$\mathrm{V}_{\mathrm{CcH}}$	I_{4}		I_{R}
12					GND				V_{R}	$\mathrm{V}_{\mathrm{CcH}}$	19		I_{R}
13	V_{F}	V_{R}	V_{R}	V_{R}	GND					$\mathrm{V}_{\mathrm{cch}}$	I_{1}		$-I_{F}$
14	V_{R}	V_{F}	V_{R}	V_{R}	GND					$\mathrm{V}_{\mathrm{cch}}$	I_{2}		$-I_{F}$
15	$V_{\text {R }}$	V_{R}	V_{F}	V_{R}	GND					$\mathrm{V}_{\mathrm{CCH}}$	I_{3}		$-I_{F}$
16	$V_{\text {R }}$	V_{R}	V_{R}	V_{F}	GND					$\mathrm{V}_{\mathrm{cch}}$	I_{4}		$-I_{F}$
17				GND	GND				V_{F}	$\mathrm{V}_{\mathrm{CCH}}$	I_{9}		$-I_{F}$
18					GND		GND			$\mathrm{V}_{\text {ccl }}$	V_{6}	V_{OH}	
19	GND				GND		GND	$\mathrm{V}_{\text {ox }}$		$\mathrm{V}_{\text {ccl }}$	I_{8}		lox
20					GND		GND			$V_{P D}$	$1{ }_{10}$		$I_{\text {PDH }}$
21	GND				GND					$V_{\text {MAX }}$	l_{10}		$I_{\text {MAX }}$
22*					GND					$V_{P D}$			t_{ON}
23*					GND					$V_{P D}$			$\mathrm{t}_{\text {OFF }}$

*See Test Circuits and Waveforms on Page 4.
forcing functions (Note 1) DH0011

PARAMETER	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	UNITS
$V_{\text {cCL }}$	4.5	4.5	4.5	V
$\mathrm{V}_{\mathrm{CCH}}$	5.5	5.5	5.5	V
$V_{P D}$		5.0		V
$V_{\text {MAX }}$		8.0		V
$V_{\text {IL }}$	1.4	1.1	0.8	V
$\mathrm{V}_{\text {IH }}$	2.1	1.9	1.7	V
$V_{\text {R }}$	4.0	4.0	4.0	V
V_{F}	0.0	0.0	0.0	V
lols	250	250	250	mA
Iol2	8.0	8.0	7.5	mA
V ox	40.0	40.0	40.0	V
te 1: Temperatur	o $+125^{\circ} \mathrm{C}$			*

forcing functions (Note 2) DH0011C, DH0011CN

Note 1: Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Note 2: Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

switching time test circuit

switching time waveforms

Peripheral/Power Drivers

DH0016CN*
DH0017CN*(SH2200P) DH0018CN*

high voltage high current drivers

general description

This high-voltage, high-current driver family consists of hybrid integrated circuits which provide a wide range of output currents and output voltages. Applications include driving lamps, relays, cores, and other devices requiring up to 500 mA and
*Previously called NH0016CN, NH0017CN, NH0018CN

logic diagram

withstanding voltages up to 100 V . Logic flexibility is provided through a 4 -input NAND gate, a NOR input and an input which bypasses the gating and connects to the base of the output transistor.

ordering information

NSC DESIGNATION	DESIGNATION	SEE PACKAGE	OUTPUT CHARACTERISTICS	
			Maximum Standoff Voltage	Current
DH0016CN	N/A	21	70 V	250 mA
DH0017CN	SH2200P	21	50 V	500 mA
DH0018CN	N/A	21	100 V	500 mA

test limits

SYMBOL	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	UNITS
$\mathrm{V}_{\mathrm{OL} 1}$	0.6	0.6	0.6	V
$\mathrm{~V}_{\mathrm{OL} 2}$	0.45	0.45	0.45	V
$\mathrm{~V}_{\mathrm{OHI}}$	1.95	1.85	1.65	V
I_{R}		60	60	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{F}}$	1.6	1.6	1.6	mA
I_{OX}		5.0	200	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {PD }}$		12.2		mA
$\mathrm{I}_{\text {MAX }}$		10		mA

Typical Output Voltages vs Temperature Typical Switching Times IC = $\mathbf{2 5 0} \mathbf{~ m A}$ DH0016CN

Typical Switching Times $I_{C}=\mathbf{5 0 0} \mathrm{mA}$ DH0017CN, DH0018CN

switching time test circuit

switching time waveform

Peripheral/Power Drivers

DH0028C/DH0028CN*hammer driver

general description

The DH0028C/DH0028CN is a high current hammer driver designed for utilization in a wide variety of printer applications. The device is capable of driving 6 amp pulsed loads at duty cycles up to 10% ($1 \mathrm{~ms} \mathrm{ON} / 10 \mathrm{~ms}$ OFF). The input is DTL/TTL compatible and requires only a single voltage supply in the range of 10 V to 45 V .

features

- Low standby power: 45 mW at $\mathrm{V}_{\mathrm{cc}}=36 \mathrm{~V}$, 35 mW at $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$.
- AND input with expander affords logic flexibility.
- Fast turn-on, typically 200 ns.
*Previously called NH0028C/NH0028CN

connection diagrams

Metal Can Package

TOP VIEW
Order Number DH0028CH
See Package 13

Molded Dual-In-Line Package

typical application

* Use one decoupling capacitor per six hammer drivers for improved ac noise immunity
**Zener is used to control the dynamics of the hammer

absolute maximum ratings

Continuous Supply Voltage 45V
Instantaneous Peak Supply Voltage
(Pin 1 to Ground for 0.1 sec) 60 V
Input Voltage 5.5 V
Expander Input Current
Peak Otuput Current (1 ms ON/10 ms OFF)
Continuous Output Current DH0028C at $25^{\circ} \mathrm{C}$
DH0028CN at $25^{\circ} \mathrm{C} \quad 1000 \mathrm{~mA}$
Operating Temperature
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Lead Soldering Temperature (10 sec)
$300^{\circ} \mathrm{C}$
electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 1) } \end{gathered}$	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$ to 45 V	20			V
Logical " 0 " Input Voltage	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ to 45 V			0.8	v
Logical " 0 " Input Current	$\mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=04 \mathrm{~V}$		08	10	mA
Logical "1" Input Current	$\begin{aligned} & V_{c C}=45 \mathrm{~V}, V_{\text {IN }}=24 \mathrm{~V} \\ & V_{C C}=45 \mathrm{~V}, V_{\text {IN }}=55 \mathrm{~V} \end{aligned}$		05	5.0 1000	$\mu \mathrm{A}$
Logical "1" Output Voltage	$\begin{array}{r} \mathrm{V}_{\mathrm{CC}}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=20 \mathrm{~V}, \\ \text { IOUT }=16 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CC}}=36 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=20 \mathrm{~V}, \\ \text { IOUT }^{2}=5 \mathrm{~A} \\ \text { (Note 2) } \end{array}$	430 335	435 340		v v
Logical " 0 " Output Voltage	$V_{C C}=45 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{\mathrm{IN}}=08 \mathrm{~V}$		020	100	V
OFF Power Supply Current	$\mathrm{V}_{\text {CC }}=45 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=00 \mathrm{~V}$		16	20	mA
Rise Time (10% to 90\%)	$\begin{aligned} & V_{C C}=45 \mathrm{~V}, R_{\mathrm{L}}=39 \Omega 2 \\ & V_{\text {IN }}=50 \mathrm{~V} \text { peak, } P R F=1 \mathrm{kHz} \end{aligned}$		02		$\mu \mathrm{s}$
Fall Time (90\% to 10\%)	$\begin{aligned} & V_{C C}=45 \mathrm{~V}, R_{\mathrm{L}}=39 \Omega 2 \\ & V_{\text {IN }}=50 \mathrm{~V} \text { peak, } P R F=1 \mathrm{kHz} \end{aligned}$		30		$\mu \mathrm{s}$
Ton	$\begin{aligned} & V_{C C}=45 \mathrm{~V}, R_{\mathrm{L}}=39 \Omega 2 \\ & V_{I N}=50 \mathrm{~V} \text { peak, } \mathrm{PRF}=1 \mathrm{kHz} \end{aligned}$		04		$\mu \mathrm{s}$
$\mathrm{T}_{\text {OFF }}$	$\begin{aligned} & V_{C C}=45 \mathrm{~V}, R_{\mathrm{L}}=39 \mathrm{~S} 2 \\ & V_{I N}=50 \mathrm{~V} \text { peak, } P R F=1 \mathrm{kHz} \end{aligned}$		70		$\mu \mathrm{s}$

Note 1. These specifications apply for ambient temperatures from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise specified All typical values are for $25^{\circ} \mathrm{C}$ ambient
Note 2. Measurement made at 1 ms ON and 10 ms OFF
Note 3: Power ratings for the DH 0028 C are based on a maximum junction temperature of $175^{\circ} \mathrm{C}$ and
a thermal resistance of $210^{\circ} \mathrm{C} / \mathrm{W}$
Note 4: Power ratings for the DH0028CN are based on a maximum function temperature of $175^{\circ} \mathrm{C}$ and a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$

typical performance characteristics

Peripheral/Power Drivers

DH0035/DH0035C PIN diode switch driver

general description

The .DH0035/DH0035C is a hıgh speed digital driver designed to drive PIN diodes in RF modulators and switches. The device is used in conjunction with an input buffer such as the DM7830/DM8830 or DM5440/DM7440.

features

- Large output voltage swing -30 V
- Peak output current in excess of 1 Amp
- Inputs TTL/DTL compatible
- Short propogation delay - 10 ns
- High repetıtion rate -5 MHz

The DH0035/DH0035C is capable of driving a variety of PIN diode types including parallel, serial, anode grounded and cathode grounded. For additional information, see AN-49 PIN Diode Drivers.

The DH0035 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ whereas the DH 0035 C is guaranteed from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

schematic and connection diagrams

Metal Can Package

TOP VIEW
Order Number DH0035G or DH0035CG See Package 6

typical applications

Note Cathode grounded pin dıode $R_{P}=62 \Omega$ limits diode forward current to 100 mA Typical switching for HP33604A
RF turn-on 25 ns , turn-off $5 \mathrm{~ns} \mathbf{C 2}=250 \mathrm{pF}, \mathrm{R}_{\mathrm{P}}=\mathbf{0} \Omega$,
$\mathrm{C} 1=01 \mathrm{~F}$

absolute maximum ratings

V- Supply Voltage Differentıal (Pın 5 to P in 1 or 2)	40 V
V $^{+}$Supply Voltage Differentıal (Pın 1 or 2 to P in 8 or 9$)$	30 V
Input Current (Pın 3 or 7)	$\pm 75 \mathrm{~mA}$
Peak Output Current	$\pm 10 \mathrm{Amps}$
Power Dissipation (Note 3)	15 W

Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operatıng Temperature Range	DH0035	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	DH0035C	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	$10 \mathrm{sec})$	$300^{\circ} \mathrm{C}$

electrical characteristics (Notes 1, 2)

PARAMETER	CONDITIONS	LIMITS			UNITS	
		MIN	TYP	MAX		. .
Input Logic "1" Threshold	$\mathrm{V}_{\text {OUT }}=-8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10032$	15			V	
Input Logic "0" Threshold	$\mathrm{V}_{\text {OUT }}=+8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10052$			04	V	
Positive Output Swing	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$	70	+8.0		V	
Negative Output Swing	$\mathrm{I}_{\text {OUt }}=100 \mathrm{~mA}$		-8.0	-7.0	\checkmark	
Positive Short Circuit Current	$V_{I N}=0 V, R_{L}=0 \Omega$ (Pulse Test; Duty Cycle $\leq 3 \%$)	400	800		mA	
Negative Short Circuit Current	$\begin{aligned} & V_{\mathbb{I N}=1.5 \mathrm{~V}, \mathrm{I}_{\mathbb{N}}=50 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=0 \Omega}^{\text {(Pulse Test, Duty Cycle } \leq 3 \% \text {) }} 8 \text {. } \end{aligned}$	800	-1000		mA	
Turn-On Delay	$V_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-3 \mathrm{~V}$		10	15	ns	
Turn-Off Delay	$V_{\text {IN }}=15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=+3 \mathrm{~V}$		15	30	ns	
On Supply Current	$V_{\text {IN }}=15 \mathrm{~V}$		45	60	mA	

Note 1: Unless otherwise specified, these specifications apply for $\mathrm{V}^{+}=10.0 \mathrm{~V}, \mathrm{~V}^{-}=-10.0 \mathrm{~V}$, pin 5 grounded, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DH 0035 , and $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for the DH0035C.
Note 2: All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Derate linearly at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $\mathbf{2 5}{ }^{\circ} \mathrm{C}$.

typical applications (cont.)

Peripheral/Power Drivers

LM3611, LM3612, LM3613, LM3614 dual peripheral drivers general description features
 - 300 mA output current capability per driver
 - High-voltage outputs 80 V
 - TTL or DTL compatible
 - Input clamping diodes
 - Chorce of logic function

connection diagrams and truth tables
LM3611

Order Number LM3611N or LM3612N
See Package 20

Positive logic $\quad A B=X$		
A	B	OUTPUT X^{*}
0	0	0
1	0	0
0	1	0
1	1	1

*'" 0 " Output $\leq 0.7 \mathrm{~V}$
" 1 " Output $\leq 100 \mu \mathrm{~A}$

$$
\text { *"0" Output } \leq 0.7 \mathrm{~V}
$$

$$
" 1 " \text { Output } \leq 100 \mu \mathrm{~A}
$$

Order Number LM3613N
or LM3614N
See Package 20
Positive logic $A+B=X$

A	B	OUTPUT X^{*}
0	0	0
1	0	1
0	1	1
1	1	1

*'0" Output $\leq 0.7 \mathrm{~V}$
" 1 " Output $\leq 100 \mu \mathrm{~A}$

LM3612

"'0"' Output $\leq 0,7 \mathrm{~V}$
" 1 " Output $\leq 100 \mu \mathrm{~A}$
absolute maximum ratings (Note 1)
Supply Voltage, $\mathrm{V}_{\mathrm{cc}} \quad 7.0 \mathrm{~V}$
Input Voltage 5.5 V

Output Voltage (Note 3) 80 V
Continuous Output Current
Continuous Total Power Dissipation (Note 2)
Operating Free Air Temperature Range
300 mA
800 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
electrical characteristics (LM3611 Dual AND Peripheral Driver)
The following apply at $0^{\circ} \mathrm{C} \leqq \mathrm{T}_{\mathrm{A}} \leqq+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V}+5 \%$ unless otherwise specified.

PARAMETER	LOGIC INPUT	OUTPUT	SUPPLY VOLTAGE	COMMENTS	MIN	TYP	MAX	UNITS
Logical " 1 " Input Voltage	$V_{\text {IN }}$		475 V	Figure 1	20			V
Logical " 0 " Input Voltage	$V_{\text {IN }}$		475 V	Figure 1			08	\checkmark
Logical " 1 " Input Current	24 V		5.25 V	Figure 2			40	$\mu \mathrm{A}$
	5.5 V		5.25 V	Figure 2			10	mA
Logical " 0 " Input Current	04 V		525 V	Figure 3		-1.0	-16	mA
Output Low Voltage	08 V	100 mA	475 V	Figure 1		025	04	V
	08 V	300 mA	4.75 V	Figure 1		05	07	V
Output Leakage Current	2 OV	$100 \mu \mathrm{~A}$	4.75 V	Figure 1	80			v
	20 V	$100 \mu \mathrm{~A}$	OV	Figure 1	80			V
Supply Currents								
Output Low	OV		525 V	Per Package Figure 4			69	mA
Output High	50 V		525 V	Per Package Figure 4			11	mA
Input Clamp Diode Voltage	$-12 \mathrm{~mA}$		50 V	$T_{A}=+25^{\circ} \mathrm{C}$ Figure 3			-15	v
Propagation Delay Times. The following apply for $\mathrm{V}_{C C}=50 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$								
Propagation to "1" ($\mathrm{tpd} 1^{\text {) }}$)			(Note 4)	Figure 6		130		ns
Propagation to " 0 " ($\mathrm{t}_{\text {pdo }}$)			(Note 4)	Figure 6		125		ns

electrical characteristics (LM3612 Dual NAND Peripheral Driver)
The following apply at $0^{\circ} \mathrm{C} \leqq \mathrm{T}_{\mathrm{A}} \leqq+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%$ unless otherwise specified.

PARAMETER	LOGIC INPUT	OUTPUT	SUPPLY VOLTAGE	COMMENTS	MIN	TYP	MAX	UNITS
Logical " 1 " Input Voltage	$V_{\text {IN }}$		475 V	Figure 1	20			v
Logical " 0 " Input Voltage	$V_{\text {IN }}$		475 V	Figure 1			0.8	\checkmark
Logical " 1 " Input Current	24 V		5.25 V	Figure 2			40	$\mu \mathrm{A}$
	5.5 V		525 V	Figure 2			1.0	mA
Logical "0" Input Current	04 V		525 V	Figure 3		-1.0	-16	mA
Output Low Voltage	20 V	100 mA	475 V	Figure 1		0.25	04	v
	20 V	300 mA	475 V	Figure 1		05	07	v
Output Leakage Current	08 V	$100 \mu \mathrm{~A}$	475 V	Figure 1	80			v
	08 V	$100 \mu \mathrm{~A}$	OV	Figure 1	80			v
Supply Currents Output Low	50 V		5.25 V	Per Package			71	mA
				Figure 4				
Output High	OV		525 V	Per Package Figure 4			14	mA
Input Clamp Diode Voltage	-12 mA		50 V	$T_{A}=+25^{\circ} \mathrm{C}$ Figure 3			-1.5	v
Propagation Delay Times The following apply for $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$								
Propagation to " 1 " ($\mathrm{t}_{\mathrm{pd} 1}$)			(Note 4)	Figure 6		110		ns
Propagation to " 0 " ($t_{\text {pao }}$)			(Note 4)	Figure 6		110		ns

electrical characteristics (LM3613 Dual OR Peripheral Driver)
The following apply at $0^{\circ} \mathrm{C} \leqq \mathrm{T}_{\mathrm{A}} \leqq+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%$ unless otherwise specified.

PARAMETER	LOGIC INPUT	OUTPUT	SUPPLY VOLTAGE	COMMENTS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$V_{\text {IN }}$		475 V	Figure 1	20			v
Logical " 0 " Input Voltage	$V_{\text {IN }}$		4.75 V	Figure 1			08	v
Logical "1" Input Current	24 V		5.25 V	Figure 2			40	$\mu \mathrm{A}$
	5.5 V		525 V	Figure 2			10	mA
Logical " 0 " Input Current	0.4 V		5.25 V	Figure 3		-1.0	-16	mA
Output Low Voltage	08 V	100 mA	475 V	Figure 1		025	04	v
	0.8 V	300 mA	475 V	Figure 1		05	07	v
Output Leakage Current	20 V	$100 \mu \mathrm{~A}$	475 V	Figure 1	80			v
	20 V	$100 \mu \mathrm{~A}$	OV	Figure 1	80			v
Supply Currents								
Output Low	OV		525 V	Per Package Figure 5			73	mA
Output High	5.0 V		525 V	Per Package Figure 5			14	mA
Input Clamp Diode Voltage	-12 mA		50 V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			-15	V

Propagation Delay Times The following apply for $\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

electrical characteristics (LM3614 Dual NOR Peripheral Driver)
The following apply at $0^{\circ} \mathrm{C} \leqq \mathrm{T}_{\mathrm{A}} \leqq+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%$ unless otherwise specified.

PARAMETER	LOGIC INPUT	OUTPUT	SUPPLY VOLTAGE	COMMENTS	MIN	TYP	MAX	UNITS
Logic " 1 " Input Voltage Logical " 0 " Input Voltage Logical " 1 " Input Current	$V_{\text {IN }}$		4.75 V	Figure 1	20			v
	$V_{\text {IN }}$		475 V	Figure 1			08	v
	24 V		525 V	Figure 2			40	$\mu \mathrm{A}$
	55 V		5.25 V	Figure 2			1.0	mA
Logical " 0 " Input Current	04 V		525 V	Figure 3		-1.0	-16	mA
Output Low Voltage	20 V	100 mA	475 V	Figure 1		0.25	04	v
	2.0 V	300 mA	475 V	Figure 1		05	0.7	v
Output Leakage Current	08 V	$100 \mu \mathrm{~A}$	475 V	Figure 1	$\begin{aligned} & 80 \\ & 80 \end{aligned}$			v
	08 V	$100 \mu \mathrm{~A}$	OV	Figure 1				v
Supply Currents Output Low								
	50 V		5.25 V	Per Package Figure 5			79	mA
Output High	OV		525 V	Per Package Figure 5			17	mA
Input Clamp Diode Voltage	-12 mA		5.0 V	$T_{A}=+25^{\circ} \mathrm{C}$ Figure 3			-15	v
Propagation Delay Tımes The following apply for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$								
Propagation to " 1 " ($\mathrm{t}_{\mathrm{pd} 1}$)			(Note 4)	Figure 6		220		ns
Propagation to " 0 " ($\mathrm{t}_{\mathrm{pdo}}$)			(Note 4)	Figure 6		150		ns

Note 1: All voltage values are with respect to ground. Positive current is defined to be current into referenced pin.
Note 2: Maximum junction temperature is $150^{\circ} \mathrm{C}$. For operating at elevated temperatures, the package must be derated based on a thermal resistance, θ JA, of $110^{\circ} \mathrm{C} / \mathrm{W}$.
Note 3: Maximum voltage to be applied to either output in the off state.
Note 4: Delay is measured with a 50Ω load to $10 \mathrm{~V}, 15 \mathrm{pF}$ load capacitance, measured from 1.5 V input to 50% point on output.
tเ9EWา ‘とเ9عWา ‘Zเ9عWา ‘LI9EWา
schematic diagrams (each driver)

LM3612 Dual NAND Peripheral Driver

LM3613 Dual OR Peripheral Driver

schematic diagrams (con't)

LM3614 Dual NOR Peripheral Driver

test circuits

NOTE: Each input is tested separately.

FIGURE 1. $V_{I H}, V_{I L}, I_{O H}, V_{O L}$

FIGURE 2. $I_{I}, I_{I H}$

both gates are tested simultaneously

NOTE A EACH INPUT IS TESTED SEPARATELY.
nOTE B When testing Lm3613 and Lm3614 input not under test is grounded. For ALL OTHER CIRCUITS IT IS AT 4.5 V

FIGURE 3. $V_{1}, I_{I L}$

both gates are tested simultaneously.

FIGURE 4. ICCH, ICCL for AND, NAND Circuits
FIGURE 5. ICCH, ICCL for OR, NOR Circuits
test circuit and switching time waveforms

NOTE 1 THE PULSE GENERATOR HAS THE FOLLOWING CHARACTERISTICS PRR $\times 10 \mathrm{mHz}$, $\mathrm{Z}_{\text {OUT }}=50 \mathrm{~S} 2$
NOTE $2 \mathrm{C}_{\mathrm{L}}$ INCLUDES PROBE AND JIG CAPACITANCE
FIGURE 6. Switching Times of Complete Drivers

Peripheral/Power Drivers

LM75450,LM350 dual peripheral driver

general description

The LM75450 and LM350 are general purpose dual peripheral drivers. The design employs two standard TTL gates (NOR in LM350, NAND in LM75450) and two totally uncommitted, highvoltage, high-current NPN transistors. These transistors are capable of sinking 300 mA and will withstand 30 V in the OFF state. Inputs are fully DTL/TTL compatible. The LM75450 meets or exceeds the specifications for both the SN75450 and the SN75450A and is a pin-for-pin replacement.

features

- High speed
- High sink current 300 mA
- Separate gates and transistors
- Both transistors can sink 300 mA simultaneously
- Transistors withstand 30 V collector to emitter in the OFF state
- Input clamp diodes

schematic and connection diagrams

Positive Logic: $\overline{\mathbf{A}+\mathbf{S}}=\mathbf{X}$

Order Number LM350N
See Package 22

LM75450

Positive Logic: $\overline{\mathbf{A} \cdot \mathbf{S}}=\mathbf{X}$

Order Number LM75450N
See Package 22
absolute maximum ratings (Note 1)
Supply Voltage $\mathrm{V}_{\mathrm{cc}} \quad{ }_{7 \mathrm{~V}}$
Input Voltage
Emitter-Base Voltage
V_{cc}-to-Substrate Voltage
Continuous Collector Current
5 V
Continuous Collector Current
300 mA
Collector-to-Substrate Voltage
Operating Free-Aır Temperature Range
800 mW
Collector-Base Voltage
Storage Temperature Range

electrical characteristics

The following apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, for LM 75450 and LM 350 unless otherwise specified. TTL GATES

PARAMETER	COMMENTS	LOGIC INPUT	LOGIC OUTPUT	SUPPLY VOLTAGE	MIN	TYP	MAX	UNIT
Logical " 1 " Input Voltage	Logic Output $\leq 04 \mathrm{~V}$	$V_{\text {IN }}$	16 mA	475 V	2			V
Logical " 0 " Input Voltage	Logic Output $\geq 24 \mathrm{~V}$	$V_{\text {IN }}$	$-400 \mu \mathrm{~A}$	475 V			0.8	v
Logical " 1 " Output Voltage		08 V	$-400 \mu \mathrm{~A}$	475 V	24			v
Logical " 0 " Output Voltage		2 V	16 mA	475 V			04	v
Logical " 1 " Input Current	A Input	24 V		525 V			40	$\mu \mathrm{A}$
	S Input	24 V		525 V			80	$\mu \mathrm{A}$
	A Input	55 V		525 V			1	mA
	S Input	55 V		525 V			2	mA
Logical " 0 " Input Current	A Input	0.4 V		525 V			-16	mA
	S Input	04 V		525 V			-32	mA
Output Short Circuit Current	Note 4	OV	OV	5.25 V	-18		-55	mA
Supply Current Output Low								
LM350	Per Package	5 V		525 V		8	14	mA
LM75450	Per Package	5 V		525 V		6	11	mA
Output High LM350	Per Package	OV		525 V		4	7	mA
LM75450	Per Package	OV		525 V		2	4	mA
Input Diode Clamp Voltage	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUB }}=0 \mathrm{~V}$	-12 mA		5 V			-1.5	V

TRANSISTORS

The following apply for $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$

TTL GATES (Note 6)

PARAMETER	TYP	MAX
$\mathrm{t}_{\mathrm{pd} 1}$	10 ns	22 ns
$\mathrm{t}_{\mathrm{pdo}}$	5 ns	15 ns

TRANSISTORS

PARAMETER	TYP	MAX
t_{d}	6 ns	15 ns
t_{r}	12 ns	20 ns
t_{s}	6 ns	15 ns
t_{f}	8 ns	15 ns

GATES AND TRANSISTORS (Note 7)

PARAMETER	TYP
$t_{\mathrm{pd} 1}$	30 ns
$\mathrm{t}_{\mathrm{pd0}}$	30 ns
t_{r}	12 ns
t_{f}	15 ns

Note 1: All voltage values are with respect to ground terminal. Positive current is defined to be current into referenced pin.
Note 2: With base-emitter resistance $\leq 500 \Omega$.
Note 3: The maximum function temperature is $150^{\circ} \mathrm{C}$. For operating at elevated temperatures the package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W} \theta \mathrm{JA}$.
Note 4: Only one output should be shorted at a time.
Note 5: These parameters are to be measured with less than 2% duty cycle.
Note 6: Delays measured with fanout of $10,15 \mathrm{pF}$ total load capacitance; measured from 1.5 V input to 1.5 V output.
Note 7: Delays measured with 50Ω load to $10 \mathrm{~V}, 15 \mathrm{pF}$ total load capacitance; measured from 1.5 V input to 50% of output.

Peripheral/Power Drivers

LM75451, LM75452, LM75453, LM351 dual peripheral driver

general description

These devices are general purpose dual peripheral drivers, each capable of sınking two independent 300 mA loads to ground. In the off state (or with $V_{C C}=O V$) the outputs will withstand 30 V . Inputs are fully DTL/TTL compatible. The LM75451 meets or exceeds the specifications for the SN75451 and is a pin-for-pin replacement. The LM75452 and LM75453 meet or exceed the specifications for SN75452 and SN75453, respectively, and are pin-for-pin replacements.

features

- High speed
- Both outputs can sink 300 mA simultaneously
- Withstands 30 V on output with $\mathrm{V}_{\mathrm{Cc}}=0 \mathrm{~V}$ for power strobing applications
- Input clamp diodes
- Two separate drivers per package

schematic diagrams

Note $1 / 2$ of unt shown
connection diagrams

Order Number LM75451N
See Package 20
truth tables

A	B	OUTPUT ${ }^{\text {* }}$
0	0	0
1	0	0
0	1	0
1	1	1

*" 0 " Output $\leq 0.7 \mathrm{~V}$ " 1 " Output $\leq 100 \mu \mathrm{~A}$

LM75452

Note: $1 / 2$ of unt shown

TOP VIEW
Order Number LM75452N
See Package 20

Positive logic: $\overline{\mathrm{AB}}=\mathrm{x}$		
A	B	OUTPUT ${ }^{*}$ *
0	0	1
1	0	1
0	1	1
1	1	0

*"0" Output $\leq 0.7 \mathrm{~V}$
" 1 " Output $\leq 100 \mu \mathrm{~A}$

LM351, LM75453

Note $1 / 2$ of unt shown

top view
Order Number LM75453N or LM351 See Package 20
Positive logic: $A+B=X$

A	B	OUTPUT \mathbf{X}^{*}
0	0	0
1	0	1
0	1	1
1	1	1

"" 0 " Output $\leq 0.7 \mathrm{~V}$
" 1 " Output $\leq 100 \mu \mathrm{~A}$

absolute maximum ratings (Note 1)

Supply Voltage $V_{\text {cc }}$	7 V
Input Voltage	55 V
Output Voltage (Note 2)	30 V
Continuous Output Current	300 mA

Continuous Total Power Dissipation (Note 3) Operating Free Aır Temperature Ran'ge Storage Temperature Range Lead Temperature (soldering, 10 sec)
Output Voltage (Note 2)
300 mA
$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

electrical characteristics

The following apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified (Note 4)

Note 1: All voltage values are with respect to ground terminal. Positive current is defined to be current into referenced pın.
Note 2: Maximum voltage to be applied to etther output in the off state.
Note 3: The maximum junction temperature is $150^{\circ} \mathrm{C}$. For operating at elevated temperatures, the package must be derated based on a thermal resistance of $110^{\circ} \mathrm{C} / \mathrm{W} \theta \mathrm{JA}$.
Note 4: Test conditions in parentheses pertain to LM75452, other test conditions pertain to LM75451A and LM75453.
Note 5: Delays measured with 50Ω load to $10 \mathrm{~V}, 15 \mathrm{pF}$ total load capacitance; measured from 1.5 V input to 50% of output.

Peripheral/Power Drivers

LM75454 dual peripheral driver

general description

The LM75454 is a dual NOR peripheral line driver with output transistors rated up to 300 mA continuous current. Both output transistors can sink this current at the same time, bringing maximum chip power dissipation to 820 mW . Switching speeds are compatible with standard TTL and logic levels interface directly with TTL, DTL, and LPTTL logic families. The overall input to output NOR function allows pin for pin replacement with TI's SN75454 positive logic NOR driver.

features

- High speed
- Both outputs can sink 300 mA simultaneously
- Withstands 30 V on outputs
- Input clamp diodes
- Maximum package power dissipation at maximum current rating $\leqq 820 \mathrm{~mW}$

schematic diagram

NOTE: $\mathbf{1 / 2}$ SCHEMATIC SHOWN

connection diagram

Order Number LM75454N
See Package 20

truth table

A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

absolute maximum ratings (Note 1)

Supply Voltage, V_{CC} 7V
Input Voltage 5.5 V
Output Voltage (Note 4) 30V
Contınuous Output Current
300 mA
Contınuous Total Power Dissipation (Note 2)
820 mW
Operating Free Aır Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10 sec)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
electrical characteristics The following apply at $0^{\circ} \mathrm{C} \leqq T_{\mathrm{A}} \leqq+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}+5 \%$ unless otherwise noted.

Note 1: All voltage values are with respect to ground. Positive current is defined to be current into referenced pin.
Note 2: Maximum junction temperature is $150^{\circ} \mathrm{C}$. For operating at elevated temperatures, the package must be derated based on a thermal resistance, $\theta \mathrm{JA}$, of $110^{\circ} \mathrm{C} / \mathrm{W}$.
Note 3: Delay is measured with a 50Ω load to $10 \mathrm{~V}, 15 \mathrm{pF}$ load capacitance, measured from 1.5 V input to 50% point on output. Unused inputs should be grounded for this test.
Note 4: Maximum voltage to be applied to either output in the off state.

DM5441A／DM7441A

BCD to decimal decoder／nixie＊driver

general description

The DM5441A／DM7441A is monolithic binary－ coded－decimal to decimal decoder．The BCD number to be decoded is applied to the four input lines；and the unique output corresponding to the decimal equivalent of the input number falls to a logical 0 level．Outputs are designed to drive gas－filled－readout（Nixie＊）tubes but are also
able to operate with other low current lamps and relays．

An over－range feature provides that if binary num－ bers between 10 and 15 are applied to the input the least significant bit of these numbers（ 0 through 5）will be decoded on the output．

connection diagram

Dual－In－Line and Flat Package

Order Number DM5441AJ or DM7441AJ See Package 17
Order Number DM7441N See Package 23
Order Number DM5441AW See Package 28

logic table

INPUT				LOW OUTPUT
D	C	B	A	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1 OVERRANGE				
1	0	1	0	0
1	0	1	1	1
1	1	0	0	2
1	1	0	1	3
1	1	1	0	4
1	1	1	1	5

typical applications

Nixie＊Readout

Over－Range Decoding

Note：Values for $B+$ and R_{L} are as specified by the tube manufacturer．

[^1]absolute maximum ratings

Supply Voltage (V_{cc})	7.0 V	
Output Voltage	70 V	
Input Voltage		5.5 V
Operating Temperature Range		
	DM5441A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	DM 7441 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$	

electrical characteristics (Note 1)

Note 1: Unless otherwise specified mın/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DM 5441 A , and the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range for the DM7441A.
Note 2: All typicals apply at $25^{\circ} \mathrm{C}$ for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Display Drivers

DM5445/DM7445
DM54145/DM74145
BCD-to-decimal decoder/drivers

general description

The DM5442/DM7442 and DM54145/DM74145 BCD-to-decimal decoder/drivers are fully compatible for use with TTL or DTL logic circuits. Each circuit features full decoding of all valid BCD input conditions (0 to 9) ensuring that all outputs will be off for any invalid input condition. Each output transistor is capable of sinking 80 mA . In the off condition each transistor can withstand
high breakdown voltages (DM5445/DM7445 $=30 \mathrm{~V}$ and DM54145/DM74145 = 15V).

features

- 210 mW typical power dissipation
- 30 ns maximum propagation delay
- Series 54/74 compatible

logic and connection diagrams

Dual-In-Line and Flat Package

Order Number DM5445J, DM7445J, DM54145J or DM74145J See Package 17
Order Number DM7445N or DM74145N
See Package 23
Order Number DM5445W, DM7445W, DM54145W or DM74145W
See Package 28

truth table

InPuts				OUTPUTS								
	C	B		0	1	2	3	4	5	6	8	89
0	0	0	0	0	1	1	1	1	1	1	1	11
0	0	0	1	1	0	1	1	1	1	1	1	11
0	0	1	0	1	1	0	1	1	1	1	1	11
0	0	1	1	1	1	1	0	1	1	1	1	11
0	1	0	0	1	1	1	1	0	1	1		11
0	1	0	1	1	1	1	1	1	0	1	1	11
0	1	1	0	1	1	1	1	1	1	0	1	11
0	1	1	1	1	1	1	1	1	1	1		11
1	0	0	0	1	1	1	1	1	1	1		01
1	0	0	1	1	1	1	1	1	1	1	1	10
1	0	1	0	1	1	1	1	1	1	1	1	11
1	0	1	1	1	1	1	1	1	1	1	1	11
1	1	0	0	1	1	1	1	1	1	1	1	11
1	1	0	1	1	1	1	1	1	1	1	1	11
1	1	1	0	1	1	1	1	1	1	1	1	11
1	1	1	1	1	1	1	1	1	1	1	1	11

absolute maximum ratings (Note 1)

Supply Voltage	7 V	
Input Voltage		55 V
Output Voltage	DM5445/DM7445	30 V
	DM54145/DM74145	15 V
Operatıng Temperature Range		
	DM5445,DM54145	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	DM7445,DM74145	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$	

operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$			
DM5445,DM54145	4.5	5.5	V
DM7445,DM74145	475	5.25	V

electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logic "1" Input Voltage		2			V
Logic " 0 " Input Voltage				08	
Output Breakdown Voltage	$V_{\text {cC }}=M_{\text {ax }}, \mathrm{I}_{\text {OFF }}=250 \mu \mathrm{~A}$	30			V
	$V_{\text {CC }}=$ Max, $\mathrm{I}_{\text {OFF }}=250 \mu \mathrm{~A}$	15			V
Logıcal "0" Output Voltage	$V_{\text {CC }}=M$ In, $I_{\text {OUT }}=80 \mathrm{~mA}$		05	09	V
	$V_{\text {cC }}=M$ In, $I_{\text {OUT }}=20 \mathrm{~mA}$		02	04	v
Logical "1" Input Current	$\mathrm{V}_{\text {cC }}=$ Max, $\mathrm{V}_{\text {IN }}=24 \mathrm{~V}$			40	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=55 \mathrm{~V}$			1	mA
Logical " 0 " Input Current	$\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=04 \mathrm{~V}$			-16	$m A$
Supply Current	$\mathrm{V}_{\text {CC }}=$ Max \quad DM5445/DM54145		42	62	mA
	$V_{\text {cc }}=$ Max \quad DM7445/DM74145		42	70	mA
Input Clamp Voltage	$\begin{aligned} & V_{C C}=50 \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned} \quad \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$			-15	V
Propagation Delay to a Logical " 0 ", $t_{p d o}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=50 \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned} \quad C_{\mathrm{L}}=15 \mathrm{pF} \quad \mathrm{R}_{\mathrm{L}}=100 \Omega$		17	30	ns
Propagatıon Delay to a Logıcal " 1 "	$\begin{aligned} & V_{C C}=50 \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned} \quad C_{L}=15 \mathrm{pF} \quad R_{L}=100 \Omega 2$		18	30	ns

Note 1: "Absolute Maxımum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed Except for "Operating Temperature Range"' they are not meant to imply that the devices should be operated at these limits The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DM5445, DM54145 and across the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ range for the DM7445, DM74145 All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{OV}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

ac test circuit and switching time waveforms

DM5446A/DM7446A
DM5447A/DM7447A
DM5448/DM7448
BCD-to-7-segment decoder/drivers

general description

This versatile series of 7 -segment display drivers fulfills a wide variety of requirements for most active high (common cathode) and active low (common anode) Light Emittıng Diodes (LED) or lamp displays. Each device fully decodes a 4 -bit BCD input into a number from 0 through 9 in the standard 7 -segment display format, and BCD numbers above 9 into unique patterns that verify operation. All circuits operate from a single 5.0 V supply.

The DM5446A/DM7446A has active-low, opencollector outputs that will drive segments requiring up to 40 mA of current. The outputs are capable of withstanding 30 V at a maxımum leakage current of $250 \mu \mathrm{~A}$. This configuration is particularly well suited for common anode LED displays or higher voltage lamp displays. The high sink current capability also allows this circuit to be used in the multiplex or nonmultiplex mode of display drive. In addition, the device may be used to drive logic circuits since its normalized fanout is 25 .

The DM5447A/DM7447A has the same output characteristics as the DM5446A/DM7446A except that the outputs withstand 15 V at a maximum
leakage current of $250 \mu \mathrm{~A}$. Since its output configuration is the same as the DM5446A/DM7446A its applications will also be the same, the only restriction is that a lower voltage type display be used because of the reduced output voltage limit of 15 V .

The DM5448/DM7448 has active-high, passivepull up outputs with a fanout of 4. Typical source current is 2.0 mA at an output voltage of 0.85 V . The sink capability is 6.4 mA at a maximum voltage of 0.4 V . It is normally used to drive logic circuits, operate high-voltage loads such as electroluminescent displays through buffer transistors or SCR switches, and in low current common cathode Non-Multiplex LED applications.

features

- Lamp-test input
- Leading/trailing zero suppression (RBI and RBO)
- Blanking input that may be used to modulate lamp intensity or inhibit output
- TTL and DTL compatible
- Input clamping diodes

connection diagrams

absolute maximum ratings (Note 1) operating conditions

			MIN	MAX	UNITS
Supply Voltage	7.0 V	Supply Voltage (V_{CC})			
Input Voltage	5.5 V	DM5446A, DM5447A, \}			
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	DM5448,	4.5	5.5	V
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	$\left.\begin{array}{l} \text { DM7446A, DM7447, } \\ \text { DM7448 } \end{array}\right\}$	4.75	5.25	V
		Temperature (T_{A})			
		$\begin{aligned} & \text { DM5446A, DM5447A, } \\ & \text { DM5448 } \end{aligned}$	-55	+125	${ }^{\circ} \mathrm{C}$
		$\begin{aligned} & \text { DM7446A, DM7447A, }\} \\ & \text { DM7448 } \end{aligned}$	0	+70	${ }^{\circ} \mathrm{C}$
		Output Voltage DM5446A, DM7446A		30	V
		DM5447A, DM7447A		15	V
	,	DM5448, DM7448		5.5	V
		Output Sink Current (per segm DM5446A, DM7446A,	ment)	40	mA
		DM5447A, DM7447A		40	mA
		DM5448, DM7448		6.4	mA

electrical characteristics (Note 2) The following is applicable to all parts.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage		2.0			V
Logical '0' Input Votlage				0.8	V
Logical "1" Output Voltage BI/RBO Node	$V_{C C}=M$ in, $I_{\text {OUT }}=-200 \mu \mathrm{~A}$	2.4	37		V
Logical " 0 " Output Voltage at BI/RBO Node	$V_{C C}=M i n, I_{\text {IN }}=8.0 \mathrm{~mA}$		0.3	0.4	V
Logical "1" Input Current at any	$\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
Input Except BI/RBO Node	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			1.0	mA
Logical " 0 " Input Current (Except BI/RBO Node)	$V_{C C}=M a x, V_{\text {IN }}=0.4 V$			-1.6	mA
Logical " 0 " Input Current BI/RBO Node	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$			-4.2	mA
Output Short Circuit Current at BI/RBO Node	$V_{C C}=M a x$			-4.0	mA
Input Clamp Voltage	$V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{1 \mathrm{~N}}=-12 \mathrm{~mA}$			-1.5	V

output characteristics and supply current
DM5446A/DM7446A, DM5447A/DM7447A (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Output Voltage Outputs a through g DM5446A, DM7446A DM5447A, DM7447A Logical " 0 " Output Voltage Outputs a through g Supply Current DM5446A, DM5447A DM7446A, DM7447A	$\begin{aligned} & V_{C C}=M a x, I_{\text {OUT }}=250 \mu \mathrm{~A} \\ & V_{C C}=M \text { In, } I_{\text {OUT }}=40 \mathrm{~mA} \\ & V_{C C}=M a x \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 03 \\ & \\ & 60 \\ & 60 \end{aligned}$	04 85 103	$\begin{gathered} V \\ V \\ V \\ m A \\ m A \end{gathered}$

output characteristics and supply current

DM5448/DM7448 (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Output Voltage					
Outputs a through g					
DM5448, DM7448	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}$	2.4	3.2		V
Logical '0" Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OUT}}=6.4 \mathrm{~mA}$		0.25	0.4	V
Outputs a through g	Cc Min, ${ }_{\text {OUT }}$ - 6.4 mA				
Logical " 1 " Load Current Available, Outputs a through g	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\text {OUT }}=0.85 \mathrm{~V}$	-1.3	-2.0		mA
Output Short Circuit Current Outputs a through g (Note 3)	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$		-3.0	-4.0	mA
Supply Current DM5448	$\mathrm{V}_{\text {cc }}=\mathrm{Max}$			76	
DM7448			50	90	mA

Note 1: "Absolute Maxımum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for DM 5446 A , DM5447A, and DM5448, and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for DM7446A, DM7447A, and DM7448. All typicals are given for $V_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

switching characteristics

DM5446A/DM7446A, DM5447A/DM7447A, DM5448/DM7448 ($\left.\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER \& CONDITIONS \& MIN \& TYP \& MAX \& UNITS

\hline ```
Propagation Delay to a Logical " 0 "
from A Input to any Output ($\mathrm{t}_{\mathrm{pdo}}$)
DM5446A/DM7446A
DM5447A/DM7447A
DM5448
DM7448
Propagation Delay to a Logical " 0 "
from RBI to any Output ($t_{\text {pao }}$)
DM5446A/DM7446A
DM5447A/DM7447A
DM5448
DM7448
Propagation Delay to a Logical " 1 ".

- from A Input to any Output ($\mathrm{t}_{\mathrm{pd} 1}$)
DM5446A/DM7446A
DM5447A/DM7447A
DM5448
DM7448
Propagation Delay to a Logıcal "1"
from RBI to any Output ($\mathrm{t}_{\mathrm{pd} 1}$)
DM5446A/DM7446A
DM5447A/DM7447A
DM5448
DM7448

``` & \[
\begin{aligned}
&\left\{\begin{array}{l}
C_{L} \\
R_{L}
\end{array}=15 \mathrm{pF}\right. \\
& R_{\mathrm{L}}=120 \Omega \\
& \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega
\end{aligned}
\]
\[
\begin{aligned}
&\left\{\begin{array}{l}
C_{L} \\
R_{L}
\end{array}=15 p F\right. \\
& C_{L}=15 p F, R_{L}=1 \mathrm{k} \Omega \\
& C_{L}=15 p F, R_{L}=667 \Omega
\end{aligned}
\]
\[
\begin{aligned}
&\left\{\begin{array}{l}
C_{L} \\
R_{L}
\end{array}=15 \mathrm{pF}\right. \\
& \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\
& C_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega
\end{aligned}
\]
\[
\begin{aligned}
&\left\{\begin{array}{l}
C_{L} \\
R_{L}
\end{array}=15 \mathrm{pF}\right. \\
& \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, R_{\mathrm{L}}=1 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega
\end{aligned}
\] & & & 100
100
100
100

100
100
100
100

100
100
100
100

100
100
100
100 &  \\
\hline
\end{tabular}

\section*{truth tables}

DM5446A/DM7446A, DM5447A/DM7447A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{INPUTS} & \multicolumn{9}{|c|}{OUTPUTS} \\
\hline \[
\begin{aligned}
& \text { DECIMAL } \\
& \text { OR } \\
& \text { FUNCTION }
\end{aligned}
\] & LT & RBI & D & C & B & A & BI/RBO & a & b & c & d & e & f & \(g\) & NOTE \\
\hline 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & . 1 \\
\hline 1 & 1 & \(x\) & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & \(\times\) & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 7 & 0 & 0 & 1 & 0 & \\
\hline 3 & 1 & \(x\) & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & \\
\hline 4 & 1 & \(x\) & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & \\
\hline 5 & i & x & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & \\
\hline 6 & 1 & \(\times\) & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & \\
\hline 7 & 1 & x & 0 & 1 & 1. & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & \\
\hline 8 & 1 & \(\times\) & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline 9 & 1 & \(x\) & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & \\
\hline 10 & 1 & \(x\) & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & . 0 & \\
\hline 11 & 1 & \(\times\) & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & \\
\hline 12 & 1 & \(x\) & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & \\
\hline 13 & 1 & \(\times\) & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & \\
\hline 14 & 1 & \(x\) & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & \\
\hline 15 & 1 & \(x\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline BI & x & \(\times\) & x & \(\times\) & x & \(\times\) & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline RBI & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline LT & 0 & \(\times\) & x & \(\times\) & x & \(\times\) & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
\hline
\end{tabular}

Note 1: \(\mathrm{BI} / \mathrm{RBO}\) is wire-AND logic serving as blanking input ( BI ) and/or ripple-blanking output (RBO). The blanking input (BI) must be open or held at a logical 1 when output functions 0 through 15 are desired, and the ripple-blanking input (RBI) must be open or at a logical 1 if blanking of a decimal 0 is not desired. \(X=\) input may be high or low.
Note 2: When a logical 0 is applied directly to the blanking input (forced condition) all segment outputs go to a logical 1 regardless of the state of any other input condition
Note 3: When the ripple-blankıng input (RBI) and inputs A, B, C, and D are at logical 0 , with the lamp test input at logical 1, all segment outputs go to a logıcal 1 and the ripple-blanking output (RBO) goes to a logical 0 (response condition). Note 4: When the blanking input/ripple-blanking output ( \(\mathrm{BI} / \mathrm{RBO}\) ) is open or held at a logical 1, and a logical 0 is applied to the lamp-test input, all segment outputs go to a logical 0.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{INPUTS} & \multicolumn{8}{|c|}{OUTPUTS} \\
\hline DECIMAL OR FUNCTION & LT & RBI & D & C & B & A & BI/RBO & a & b & c & d & e & \(f\) & \(g\) & NOTE \\
\hline 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline 1 & 1 & x & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline 2 & 1 & \(x\) & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & \\
\hline 3 & 1 & \(x\) & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & \\
\hline 4 & 1 & X & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & \\
\hline 5 & 1 & x & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & \\
\hline 6 & 1 & X & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & \\
\hline 7 & 1 & x & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & \\
\hline 8 & 1 & x & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline 9 & 1 & x & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & \\
\hline 10 & 1 & x & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & \\
\hline 11 & 1 & \(x\) & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & \\
\hline 12 & 1 & \(\times\) & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & \\
\hline 13 & 1 & x & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & \\
\hline 14 & 1 & \(x\) & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & \\
\hline 15 & 1 & \(x\) & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline BI & x & x & x & \(\times\) & \(x\) & x & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\hline RBI & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
\hline LT & 0 & x & X & X & X & X & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 4 \\
\hline
\end{tabular}

Note 1: \(\mathrm{BI} /\) RBO is wire-AND logic serving as blankıng input ( BI ) and/or ripple-blanking output (RBO). The blankıng input (BI) must be open or held at a logical 1 when output functions 0 through 15 are desired, and the ripple-blanking input (RBI) must be open or at a logical 1 if blanking of a decımal 0 is not desired. \(X=\) input may be high or low.
Note 2: When a logical 0 is applied directly to the blanking input (forced condition) all segment outputs go to a logical 0 regardless of the state of any other input condition.
Note 3: When the ripple-blanking input (RBI) and inputs A, B, C, and D are at logical 0, with the lamp test at logical 1 all segment outputs go to the logical 0 and the ripple blanking output (RBO) goes to a logical 0 (response condition).
Note 4: When the blanking input/ripple-blanking output (RI/RBO) is open or held at a logical 1, and a logical 0 is applied to the lamp-test input, all segment outputs go to a logical 1.

\section*{output display}


\section*{output stage schematics}


DM5446A/DM7446A DM5447A/DM7447A


DM5448/DM7448
ac test circuit


\section*{switching time waveforms}


A Input to Outputs


RBI Input to Outputs
Note 1 The truth table generator and pulse generator have the following characteristics
\(V_{\text {OUT }(1)} \geq \mathbf{2 4 V}, V_{\text {OUT }(0)} \leq 04 V, t_{r}\) and \(\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}\), and PRR \(=10 \mathrm{MHz}\)
Note 2 Inputs B, C, and D transitions occur simultaneously with or prior to input \(A\)
transituons \(R B=4.5 \mathrm{~V}\).
Note \(3 \mathbf{C}_{\mathbf{L}}\) includes probe and Hg capacitance.

Display Drivers

\section*{DM54141/DM74141}

BCD to decimal decoder/driver

\section*{general description}

The DM54141/DM74141 is a second-generation BCD to decimal decoder designed specifically to drive cold cathode indicator tubes. This decoder demonstrates an improved capability to minimize switching transients in order to maintain a stable display.

Full decoding is provided for all possible input states. For binary inputs 10 through 15, all the outputs are off. Therefore the DM54141/DM74141, combined with a minimum of external circuitry, can use these invalid codes in blanking leadingand/or trailing-edge zeros in a display as shown in the typical application data. The ten high-performance NPN output transistors have a maximum reverse current of \(50 \mu \mathrm{~A}\) at 55 V .

Low-forward-impedance diodes are also provided for each input to clamp negative-voltage transitions
in order to minimize transmission-line effects. Power dissipation is typically 55 mW , which is about one-half the power requirement of earlier designs.

\section*{features}
- Drives cold cathode numeric indicator tubes directly
- Low leakage current at 55 V
\(50 \mu \mathrm{~A}\) max
- Low power dissipation of 55 mW typ
- Fully decoded inputs ensure all outputs off for invalid codes
- Input clamp diodes for minimizing transmission line effects

\section*{logic diagram}

connection diagram


Order Number DM54141J or DM74141J See Package 17
Order Number DM74141N See Package 23
Order Number DM54141W or DM74141W See Package 28
absolute maximum ratings (Note 1) operating conditions
\begin{tabular}{|c|c|c|c|c|}
\hline & & MIN & MAX & UNITS \\
\hline Supply Voltage 7.0V & \multicolumn{4}{|l|}{Supply Voltage, \(\mathrm{V}_{\text {CC }}\)} \\
\hline Input Voltage 5.5 V & DM74141 & 4.75 & 5.25 & V \\
\hline Output Voltage 60V & DM54141 & 4.5 & 5.5 & V \\
\hline Storage Temperature Range \(\quad-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & \multicolumn{4}{|l|}{Temperature, \(\mathrm{T}_{\mathrm{A}}\)} \\
\hline Lead Temperature (Soldering, 10 seconds) \(300^{\circ} \mathrm{C}\) & DM74141 & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline & DM54141 & -55 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
electrical characteristics
(Notes 2 and 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Logical "1" Input Voltage ( \(\mathrm{V}_{\text {IH }}\) ) & \(V_{\text {cc }}=M_{\text {I }}\) & \multirow[t]{9}{*}{20} & & & V \\
\hline Logical "1" Input Current ( \(\mathrm{I}_{1 H}\) ) & \(V_{C C}=M a x, V_{1 H}=55 \mathrm{~V}\) & & & 0.1 & mA \\
\hline A Input & \(\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1 H}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline \(B, C\) or D Input & \(\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1 H}=24 \mathrm{~V}\) & & & 80 & \(\mu \mathrm{A}\) \\
\hline Logical " 0 " Input Voltage ( \(\mathrm{V}_{\text {IL }}\) ) & \(V_{C C}=M_{\text {in }}\) & & & 08 & \(\checkmark\) \\
\hline Logical " 0 " Input Current ( \(I_{\text {IL }}\) ) & & & & & \\
\hline A Input & \(V_{C C}=M a x, V_{\text {IL }}=0.4 \mathrm{~V}\) & & & -16 & mA \\
\hline B, C, or D Input & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}\) & & & -3.2 & mA \\
\hline Input Clamp Voltage ( \(\mathrm{V}_{\text {CD }}\) ) & \(V_{C C}=M_{\text {I }}, I_{C D}=-12 \mathrm{~mA}\) & & & -15 & \(\checkmark\) \\
\hline Logical "1" Output Voltage ( \(\mathrm{V}_{\mathrm{OH}}\) ) & \(V_{C C}=M a x, I_{O H}=05 \mathrm{~mA}\) & \multirow[t]{5}{*}{60} & & & \(\checkmark\) \\
\hline Logical "1" Output Current ( \(\mathrm{IOH}_{\mathrm{OH}}\) ) & \(V_{C C}=M a x, V_{O}=55 \mathrm{~V}\) & & & 50 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=30 \mathrm{~V}\) Input States 10-15 & & & 50 & \(\mu \mathrm{A}\) \\
\hline Logical "0' Output Voltage ( \(\mathrm{V}_{\mathrm{OL}}\) ) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=7.0 \mathrm{~mA}\) & & & 25 & \(V\) \\
\hline Supply Current ( \(\mathrm{I}_{\mathrm{CC}}\) ) & \(\mathrm{V}_{\mathrm{CC}}=\) Max, All Inputs GND, All Outputs Open & & 11 & 25 & mA \\
\hline
\end{tabular}

Note 1: "Absolute Maximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characterıstics" provides conditions for actual device operation.
Note 2: Unless otherwise specifıed min/max lımits apply across the \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) temperature range for the DM 54141 and across the \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) range for the DM 74141 . All typicals are given for \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or \(\min\) on absolute value basis.

\section*{truth table}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{D} & \multicolumn{3}{|l|}{INPUT} & \multirow[t]{2}{*}{OUTPUT \(\mathrm{ON}^{\dagger}\)} \\
\hline & C & B & A & \\
\hline L & L & L & L & 0 \\
\hline L & L & L & H & 1 \\
\hline L & L & H & L & 2 \\
\hline L & L & H & H & 3 \\
\hline L & H & L & L & 4 \\
\hline L & H & L & H & 5 \\
\hline L & H & H & L & 6 \\
\hline L & H & H & H & 7 \\
\hline H & L & L & L & 8 \\
\hline H & L & L & H & 9 \\
\hline H & L & H & L & NONE \\
\hline H & L & H & H & NONE \\
\hline H & H & L & L & NONE \\
\hline H & H & L & H & NONE \\
\hline H & H & H & L & NONE \\
\hline H & H & H & H & NONE \\
\hline
\end{tabular}
\(H=\) high level, \(L=\) low level
\({ }^{\dagger}\) All other outputs are off

Display Drivers

\section*{DM75491 MOS-to-LED quad segment driver} DM75492 MOS-to-LED hex digit driver

\section*{general description}

The DM75491 and DM75492 are interface circuits designed to be used in conjunction with MOS integrated circuits and common-cathode LED's in serially addressed multi-digit displays. The number of drivers required for this time-multiplexed system is minimized as a result of the segment-address-and-digit-scan method of LED drive.

\section*{features}
- Source or sink capability per driver (DM75491) 50 mA
- Sink capability per driver (DM75492)

250 mA
- MOS compatability (low input current)
- Low standby power.
- High-gain Darlington circuits

\section*{schematic and connection diagrams}

\section*{DM75491 (each driver)}


DM75491 Dual-In-Line Package


DM75492 (each driver)


DM75492 Dual-In-Line Package

rop VIEW

Order Number DM75491J or DM75492J
See Package 16
Order Number DM75491N or DM75492N
See Package 22

\section*{absolute maximum ratings}

Input Voltage Range (Note 1)
Collector Output Voltage (Note 2)
Collector Output to Input Voltage
Emitter to Ground Voltage ( \(\mathrm{V}_{1} \geq 5 \mathrm{~V}\) )
Emitter to Input Voltage
Voltage at \(\mathrm{V}_{\text {SS }}\) Terminal With Respect to
Any Other Device Terminal
DM75491
DM75492

Collector Output Current Each Collector Output All Collector Outputs
Continuous Total Dissipation
250 mA
50 mA
600 mA
800 mW
800 mW
\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C} \quad 0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C} \quad-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\(300^{\circ} \mathrm{C}\)
\(300^{\circ} \mathrm{C}\)

\section*{dc electrical characteristics}

DM75491 ( \(\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline On State Collector Emitter Voltage ( \(\mathrm{V}_{\text {CE ON }}\) ) & \[
\begin{aligned}
& \text { Input }=85 \mathrm{~V} \text { through } 1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{E}}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & . 9 & 12 & V \\
\hline On State Collector Emitter Voltage ( \(\mathrm{V}_{\text {CE ON }}\) ) & \[
\begin{aligned}
& \text { Input }=8.5 \mathrm{~V} \text { through } 1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{E}}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}
\end{aligned}
\] & & & 1.5 & V \\
\hline Off State Collector Current ( \({ }_{\text {c of }}\) of ) & \(\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{I}_{\text {IN }}=40 \mu \mathrm{~A}\) & & & 100 & \(\mu \mathrm{A}\) \\
\hline Off State Collector Current ( \({ }_{\text {c OfF }}\) ) & \(\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{~V}_{\text {IN }}=.7 \mathrm{~V}\) & & & 100 & \(\mu \mathrm{A}\) \\
\hline Input Current at Maxımum Input Voltage ( \(I_{1}\) ) & \(V_{\text {IN }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}\) & & 2.2 & 3.3 & mA \\
\hline Emitter Reverse Current ( \(I_{E}\) ) & \(V_{\text {IN }}=0, V_{E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\) & & & 100 & \(\mu \mathrm{A}\) \\
\hline Current Into \(\mathrm{V}_{\text {ss }}\) Termınal ( \(\mathrm{sss}^{\text {) }}\) & & & & 1 & mA \\
\hline
\end{tabular}

DM75492 \(\left(\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Low Level Output Voltage ( \(\mathrm{V}_{\text {OL }}\) ) & \[
\begin{aligned}
& \text { Input }=65 \mathrm{~V} \text { through } 1 \mathrm{k} \Omega, \mathrm{I}_{\text {OUT }}=250 \mathrm{~mA} \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & . 9 & 1.2 & v \\
\hline Low Level Output Voltage ( \(\mathrm{V}_{\mathrm{OL}}\) ) & Input \(=65 \mathrm{~V}\) through \(1 \mathrm{k} \Omega\), I \(\mathrm{IOUT}=250 \mathrm{~mA}\) & & & 1.5 & \(v\) \\
\hline High Level Output Current ( \(\mathrm{IOH}^{\text {a }}\) & \(\mathrm{V}_{\text {OH }}=10 \mathrm{~V}, \mathrm{I}_{\text {IN }}=40 \mu \mathrm{~A}\) & & & 200 & \(\mu \mathrm{A}\) \\
\hline High Level Output Current ( \(\mathrm{IOH}^{\text {) }}\) & \(\mathrm{V}_{\text {OH }}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=.5 \mathrm{~V}\) & & & 200 & \(\mu \mathrm{A}\) \\
\hline Input Current at Maximum Input Voltage ( \(1_{1}\) ) & \(\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\) & & 2.2 & 3.3 & mA \\
\hline Current Into \(\mathrm{V}_{\text {ss }}\) Terminal ( \(\mathrm{I}_{\mathrm{ss}}\) ) & & & & 1 & mA \\
\hline
\end{tabular}

\section*{ac switching characteristics}

DM75491 ( \(\left.\mathrm{V}_{\mathrm{SS}}=7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Propagation Delay Time, Low to HIgh Level Output (Collector) ( \(t_{P L H}\) ) & \(\mathrm{V}_{I H}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0\), & & 100 & & ns \\
Propagation Delay Time, High to Low Level Output (Collector) ( \(\mathrm{t}_{\mathrm{PHL}}\) ) & \(\mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & & 20 & ns \\
\hline
\end{tabular}

DM75492 \(\left(\mathrm{V}_{\mathrm{SS}}=7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \begin{tabular}{l}
Propagation Delay Time, Low to High Level Output (t \(\mathrm{t}_{\mathrm{PLH}}\) ) \\
Propagation Delay Time, High to Low Level Output ( \(\mathrm{t}_{\mathrm{PHL}}\) )
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{1 H}=7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \Omega, \\
& C_{\mathrm{L}}=15 \mathrm{pF}
\end{aligned}
\] & & \[
\begin{array}{r}
300 \\
30
\end{array}
\] & & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1: The input is the only device terminal which may be negative with respect to ground.
Note 2: Voltage values are with respect to network ground terminal unless otherwise noted.

\title{
ac test circuits and switching time waveforms
}


NOTE 1 THE PULSE GENERATOR HAS THE FOLLOWING CHARACTERISTICS \(Z_{\text {out }}=50 \Omega\), PRR \(=100 \mathrm{KHz}, t_{w}=1 \mu \mathrm{~s}\).
NOTE 2. \(\mathrm{C}_{\mathrm{L}}\) INCLUDES PROBE ANO JIG CAPACITANCE

Display Drivers

\section*{DM75493 quad LED segment driver}

\section*{general description}

The DM75493 is a quad LED segment driver. It is designed to interface between MOS IC's and LED's. An external resistor is required for each segment to drive the output current which is approximately equal to \(0.7 \mathrm{~V} / R_{L}\) and is relatively constant, independent ot supply variations. Blanking can be achieved by taking the chip enable (CE) to a logical " 1 " level.

\section*{features}
- Low voltage operation
- Low input current for MOS compatibility
- Low standby power
- Display blanking capability
- Output current regulation
- Quad high gain circuits

\section*{logic and connection diagram}


Order Number DM75493J
See Package 17

Order Number DM75493N
See Package 23
switching time waveforms

truth table
\begin{tabular}{|c|c|c|}
\hline CE & \(\mathrm{V}_{\text {IN }}\) & IOUT \\
\hline 0 & 1 & ON \\
0 & 0 & OFF \\
1 & X & OFF \\
\hline
\end{tabular}
\(x=\) Don't care
absolute maximum ratings (Note 1) operating conditions

electrical characteristics \(\left(V_{s s} \geq V_{c c}\right)\)


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics." provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) range for the DM75493. All typicals are given for \(V_{C C}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\).
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

\section*{ac test circuits}


\section*{Display Drivers}

\section*{DM75494 hex digit driver}

\section*{general description}

The DM75494 is a hex digit driver. It is designed to interface between most MOS devices and common cathodes configured LED's with a low output voltage at high operating currents. The enable input disables all the outputs when taken high.

\section*{features}
- 150 mA sink capability
- Low voltage operation
- Low input current for MOS compatibility
- Low standby power
- Display blanking capability
- Low voltage saturating outputs
- Hex high gain circuits

\section*{logic and connection diagram}


\section*{switching time waveforms}


Order Number DM75494N See Package 23

\section*{Dual-In-Line Package}


Order Number DM75494J
See Package 17
truth table
\begin{tabular}{|c|c|c|}
\hline ENABLE & \(V_{\text {IN }}\) & \(V_{\text {OUT }}\) \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 \\
1 & \(x\) & 1 \\
\hline
\end{tabular}
\(\mathrm{X}=\) don't care
absolute maximum ratings (Note 1)
\begin{tabular}{lrllccc} 
& & & MIN & MAX & UNITS \\
Supply Voltage & 10 V & Supply Voltage, \(V_{C C}\) & 3.2 & 8.8 & V \\
Input Voltage & 10 V & Temperature, \(\mathrm{TA}_{\mathrm{A}}\) & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
Output Voltage & 10 V & & & \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & & & \\
Lead Temperature (Soldering, 10 seconds) & \(300^{\circ} \mathrm{C}\) & & &
\end{tabular}
electrical characteristics (Notes 2 and 3 )
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Logical "1" Input Current ( \(\mathrm{I}_{\mathbf{H} \mathrm{H}}\) ) & \[
V_{C C}=M I n, V_{I N}=8.8 \mathrm{~V}, V_{C E}=8.8 \mathrm{~V}
\] through 100k & & \multirow{10}{*}{0.25} & 2.0 & mA \\
\hline & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=8.8 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=8.8 \mathrm{~V}\) & & & 2.7 & mA \\
\hline Logical " 0 " Input Current ( \(I_{\text {IL }}\). & \(\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=-5.5 \mathrm{~V}\) & & & -20 & \(\mu \mathrm{A}\) \\
\hline Logical " 1 " Output Current ( \(\mathrm{IOH}^{\text {) }}\) & \[
\begin{aligned}
& V_{C C}=M a x, V_{I N}=8.8 \mathrm{~V} \text { through } 100 \mathrm{k}, \\
& V_{O H}=8.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}
\end{aligned}
\] & & & 400 & \(\mu \mathrm{A}\) \\
\hline & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=8.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=8.8 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{CE}}=6.5 \mathrm{~V} \text { through } 1.0 \mathrm{k}
\end{aligned}
\] & & & 400 & \(\mu \mathrm{A}\) \\
\hline Logıcal " 0 " Output Voltage ( \(\mathrm{V}_{\mathrm{OL}}\) ) & \[
V_{C C}=M i n, I_{O L}=150 \mathrm{~mA}, V_{I N}=6.5 \mathrm{~V}
\]
\[
\text { through } 1.0 \mathrm{k}, \mathrm{~V}_{\mathrm{CE}}=8.8 \mathrm{~V} \text { through } 100 \mathrm{k}
\] & & & 0.35 & V \\
\hline Supply Current ( \({ }_{\text {ccc }}\) ) & \(\mathrm{V}_{\text {cc }}=\) Max, One Driver ON, \(\mathrm{V}_{\text {IN }}=8.8 \mathrm{~V}\) & & & 8.0 & mA \\
\hline & \(V_{C C}=M a x, V_{C E}=6.5 \mathrm{~V}\) through 1.0 k All Other Pins to GND & & & 100 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\mathrm{cc}}=\) Max, All Pins to GND & & & 40 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=8.8 \mathrm{~V}\) through 100 k All Other Pins to GND & & & 100 & \(\mu \mathrm{A}\) \\
\hline \(t_{\text {OFF }}\) & \begin{tabular}{l}
\[
C_{L}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \mathrm{~V}_{\mathrm{Cc}}=4.0 \mathrm{~V}
\] \\
See AC Test Circuits
\end{tabular} & & 0.04 & 1.2 & \(\mu \mathrm{s}\) \\
\hline ton & \begin{tabular}{l}
\[
C_{L}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \mathrm{~V}_{\mathrm{CC}}=4.0 \mathrm{~V}
\] \\
See AC Test Cırcuits
\end{tabular} & & 13 & 100 & ns \\
\hline
\end{tabular}

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) range for the DM 75494 .
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or \(\min\) on absolute value basis.

\section*{ac test circuits}


\section*{Display Drivers}

\section*{DM7856/DM8856, DM8857, DM7858/DM8858 BCD-to-7-segment LED drivers general description}

This series of 7 -segment display drivers fulfills a wide variety of requirements for most active high (common cathode) Light Emitting Diodes (LEDs). Each device fully decodes a 4-bit BCD input into a number from 0 through 9 in the standard 7 segment display format, and BCD numbers above 9 into unique patterns that verify operation. All circuits operate off of a single 5.0 V supply.

The DM7856/DM8856 has active-high, passive pull-up outputs which provide a typical source current of 6.0 mA at an output voltage of 1.7 V . The applications are the same as for the DM5448/ DM7448 except that more design freedom is allowed with higher source current levels. This circuit was designed to drive the MAN-4 or equivalent type display directly without the use of external current limit resistors.

The DM8857 has active-high outputs and is designed to be used with common cathode LED's in the multiplex mode. It provides a typical source current of 50 mA at an output voltage of 2.3 V .

In addition, with the use of an external current limit resistor per segment, this circuit can be used in higher current nonmultiplex LED applications.

The DM7858/DM8858 has active high outputs with source current adjustable with the use of external current limit resistors, one per segment. This feature allows extreme flexibility in source current value selection for either multiplex or non-multiplex common cathode LED drive applications. It allows the system designer freedom to tailor the drive current for his particular applications.

\section*{features}
- Lamp-test input
- Leading/trailing zero suppression (RBI and RBO)
- Blanking input that may be used to modulate lamp intensity or inhibit output
- TTL and DTL compatible
- Input clamping diodes

\section*{connection diagram}


Order Number DM7856J, DM8856J,
DM8857J, DM7858J, DM8858J See Package 17

Order Number DM7856N, DM8856N, DM7858N or DM8858N See Package 23

Order Number DM7856W, DM8856W, DM7858W or DM8858W See Package 28

\section*{output display}

absolute maximum ratings (Note 1) operating conditions
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & MIN & MAX & UNITS \\
\hline Supply Voltage & 7.0 V & Supply Voltage ( \(\mathrm{V}_{\mathrm{CC}}\) ) & & & \\
\hline Input Voltage & 5.5 V & DM7856, DM7858 & 4.5 & 5.5 & V \\
\hline Storage Temperature Range & \[
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\] & DM8856, DM8857, \} & 4.75 & 5.25 & V \\
\hline \multirow[t]{7}{*}{Lead Temperature (Soldering, 10 seconds)} & \[
300^{\circ} \mathrm{C}
\] & & & & \\
\hline & & \multirow[t]{2}{*}{```
Temperature (TA)
    DM7856, DM7858
    DM8856, DM8857, }
```} & -55 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline & & & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline & & Output Voltage All Circuits & & 5.5 & V \\
\hline & & \multicolumn{2}{|l|}{Output Sink Current (per Segment) DM7856, DM8856} & 6.4 & mA \\
\hline & & \multicolumn{3}{|l|}{Output Source Current (per Segment)} & mA \\
\hline & & DM7858, DM8858 & & 50 & mA \\
\hline
\end{tabular}
electrical characteristics (Note 2) The following is applicable to all parts.
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Logical "1" Input Voltage & & 2.0 & & & V \\
\hline Logical " 0 " Input Votlage & & & & 0.8 & V \\
\hline Logical "1" Output Voltage BI/RBO Node & \(V_{\text {CC }}=M\) In, \(I_{\text {OUT }}=-200 \mu \mathrm{~A}\) & 24 & 37 & & V \\
\hline Logical " 0 " Output Voltage at BI/RBO Node & \(V_{C C}=M_{1 n}, I_{\text {IN }}=8.0 \mathrm{~mA}\) & & 0.3 & 0.4 & V \\
\hline Logical "1" Input Current at any & \(\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline Input Except BI/RBO Node & \(\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}\) & & & 1.0 & mA \\
\hline Logical " 0 " Input Current (Except BI/RBO Node) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline Logical " 0 " Input Current BI/RBO Node & \(V_{C C}=\) Max, \(V_{\text {IN }}=0.4 \mathrm{~V}\) & & & -4.2 & mA \\
\hline Output Short Circuit Current at BI/RBO Node & \(\mathrm{V}_{\text {CC }}=\mathrm{Max}\) & & & -4.0 & mA \\
\hline Input Clamp Voltage & \(V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{1 \mathrm{~N}}=-12 \mathrm{~mA}\) & & & -1.5 & V \\
\hline
\end{tabular}
output characteristics and supply current
DM7856/DM8856 (Note 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Logical "0' Output Voltage Outputs a through g & \(V_{\text {CC }}=M_{\text {In }}, \mathrm{I}_{\text {OUT }}=6.4 \mathrm{~mA}\) & & 0.25 & 0.4 & V \\
\hline Logical " 1 " Load Current Available, Outputs a through g & \(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.7 \mathrm{~V}\) & -4.7 & \(-60\) & -7.5 & mA \\
\hline Output Short Circuit Current Outputs a through g (Note 3) & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) & & -12 & -15 & mA \\
\hline \begin{tabular}{l}
Supply Current \\
DM7856 \\
DM8856
\end{tabular} & \(\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}\) & & \[
\begin{aligned}
& 90 \\
& 90
\end{aligned}
\] & 120
130 & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline
\end{tabular}
output characteristics and supply current (con't)
DM8857, DM7858/DM8858 (Notes 2 and 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Logical " 1 "' Load Current & & & & & \\
Avallable, Outputs a through g & & & & \\
DM8857 & \(V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=23 \mathrm{~V}\) & -40 & & -60 & mA \\
DM7858 (Note 4) & \(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-50 \mathrm{~mA}\) & 27 & 32 & & V \\
DM8858 (Note 4) & \(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=-50 \mathrm{~mA}\) & 2.9 & 32 & & V \\
Supply Current & \(V_{C C}=\operatorname{Max}\) & & & 60 & mA \\
\hline
\end{tabular}

Note 1: "Absolute Maxımum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) temperature range for DM7856, and DM7858 and across the \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) range for DM8856, DM8857, and DM8858. All typicals are given for \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(T_{A}=25^{\circ} \mathrm{C}\).
Note 3: Care must be taken in not shorting the outputs to ground while they are in the " 1 " state because excessive current flow would result from the Darlington upper stages.
Note 4: Special care must be taken in the use of the DM7858 ceramic (J) and the DM8858 plastic (N) DIP's with regard to not exceeding the maximum operating junction temperature of the devices. The maximum junction temperature of the DM7858J is \(150^{\circ} \mathrm{C}\) and must be derated based on a thermal resistance of \(80^{\circ} \mathrm{C} /\) watt, junction to ambient. The maximum junction temperature for the DM8858N is \(150^{\circ} \mathrm{C}\) and must be derated based on a thermal resistance of \(140^{\circ} \mathrm{C} /\) watt junction to ambient.

\section*{truth table}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{INPUTS} & \multicolumn{8}{|c|}{OUTPUTS} \\
\hline \[
\begin{aligned}
& \text { DECIMAL } \\
& \text { OR } \\
& \text { FUNCTION }
\end{aligned}
\] & LT & RBI & D & C & B & A & BI/RBO & a & b & c & d & e & \(f\) & g & NOTE \\
\hline 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline 1 & 1 & \(x\) & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline 2 & 1 & \(x\) & 0 & 0 & 1 & - 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & \\
\hline 3 & 1 & \(x\) & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & , \\
\hline 4 & 1 & \(x\) & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & \\
\hline 5 & 1 & \(x\) & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & \\
\hline 6 & 1 & \(x\) & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & \\
\hline 7 & 1 & \(x\) & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & \\
\hline 8 & 1 & \(x\) & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline 9 & 1. & \(x\) & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & \\
\hline 10 & 1 & x & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & \\
\hline 11 & 1 & \(x\) & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & \\
\hline 12 & 1 & \(x\) & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & \\
\hline 13 & 1 & \(x\) & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & \\
\hline 14 & 1 & x & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & \\
\hline 15 & 1 & x & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline BI & X & x & X & x & X & X & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\hline RBI & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
\hline LT & 0 & X & X & X & X & X & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 4 \\
\hline
\end{tabular}

Note 1: \(\mathrm{BI} /\) RBO is wire-AND logıc serving as blanking input (BI) and/or ripple-blanking output (RBO). The blankıng input (BI) must be open or held at a logical 1 when output functions 0 through 15 are desired, and the ripple-blanking input (RBI) must be open or at a logical 1 if blanking of a decimal 0 is not desired. \(X=\) input may be high or low.
Note 2: When a logical 0 is applied directly to the blanking input (forced condition) all segment outputs go to a logıcal 1 regardless of the state of any other input condition
Note 3: When the ripple-blanking input (RBI) and inputs A, B, C, and D are at logical O, with the lamp test input at logical 1, all segment outputs go to a logical 1 and the ripple-blanking output (RBO) goes to a logical 0 (response condition).
Note 4: When the blanking input/ripple-blanking output (BI/RBO) is open or held at a logical 1, and a logical 0 is applied to the lamp-test input, all segment outputs go to a logical 0 .
output stage schematics

DM7856/DM8856

DM7858/DM8858

\section*{general description}

The DM8859, DM8869 are TTL compatible hex LED drivers with programmable current source outputs. The current sources are nominally set at 20 mA but may be adjusted by external resistors for any value between \(0-50 \mathrm{~mA}\). Each device contains six latches which may be set by input data terminals. A strobe common to all six latches enables the data input terminals. The DM8859 current source outputs are switched on
by entering a high level into the latches and the DM8869 current source outputs are switched on by entering a low level into the latches.

The devices are available in either a molded or cavity package. In order not to damage the devices there is a limit placed on the power dissipation allowable for each package type. This information is shown in the graph on the back page.

\section*{schematic diagram}

\section*{DM8859}

connection diagram
Dual-In-Line Package

TOP VIEW
Order Number DM8859J or DM8869J
See Package 17
Order Number DM8859N or DM8869N
See Package 23
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
COMMON \\
STROBE
\end{tabular} & I/P & \begin{tabular}{l}
DM8859 \\
O/P \((t+1)\)
\end{tabular} & \begin{tabular}{l}
DM8869 \\
O/P \((t+1)\)
\end{tabular} \\
\hline 0 & 0 & OFF & ON \\
0 & 1 & ON & OFF \\
1 & X & O/P (t) & O/P (t) \\
\hline
\end{tabular}

\title{
absolute maximum ratings (Note 1) operating conditions
}
\begin{tabular}{lrrrrc}
Supply Voltage & +7.0 V & & MIN & MAX & UNITS \\
Input Voltage & +5.5 V & Supply Voltage \(\left(\mathrm{V}_{\mathrm{CC}}\right)\) & & & \\
Output Voltage & +5.5 V & DM8859, DM8869 & 4.75 & 5.25 \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & Temperature (TA) & & & \\
Lead Temperature (Soldering, 10 seconds) & \(300^{\circ} \mathrm{C}\) & DM8859, DM8869 & 0 & +70 & \({ }^{\circ} \mathrm{C}\)
\end{tabular}
electrical characteristics (Note 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \begin{tabular}{l}
Logical " 1 " Input Voltage \\
Logical "0" Input Voltage \\
Logical " 1 " Input Current \\
Logical " 0 " Input Current \\
Typical Output Current \\
Supply Current (each device) Input Clamp Voltage
\end{tabular} & \[
\begin{aligned}
& V_{C C}=4.75 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{ADJ}} \text { Pin Open, } 25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \text { Current Sources "Off" } \\
& \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}
\end{aligned}
\] & 20 & \[
\begin{array}{r}
-10 \\
20 \\
-1.1
\end{array}
\] & \[
\begin{gathered}
08 \\
40 \\
-16 \\
\\
50 \\
-1.5
\end{gathered}
\] & \[
\begin{gathered}
V \\
V \\
\mu \mathrm{~A} \\
\mathrm{~mA} \\
\mathrm{~mA} \\
\mathrm{~mA} \\
\mathrm{~V}
\end{gathered}
\] \\
\hline
\end{tabular}

Note 1: "Absolute Maxımum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditıons for actual device operation.
Note 2: Unless otherwise specified mın/max lımits apply across the \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) temperature range for the DM8859 and the DM8869. All typicals are given for \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\).

\section*{typical performance characteristics}

test circuit

IADJ may be programmed by a voltage source or by resistors.

\section*{Display Drivers}

\section*{DM8861 MOS-to-LED 5-segment driver}

\section*{general description}

The DM8861 is designed to be used in conjunction with MOS integrated circuits and common-cathode LED's in serially addressed multi-digit displays.

The DM8861 is a 5 -segment driver capable of sinking or sourcing up to 50 mA from each driver.

\section*{features}
- Source or sink capability per driver

50 mA
- MOS compatibility (low input current)
- Low standby power
- High gain Darlington circuits

\section*{schematic and connection diagrams}

DM8861

Dual-In-Line Package

Order Number DM8861N
See Package 25

\section*{absolute maximum ratings}

Input Voltage Range (Note 1)
Collector (Output) Voltage (Note 2)
\[
\begin{gathered}
-5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{ss}} \\
10 \mathrm{~V} \\
10 \mathrm{~V} \\
10 \mathrm{~V} \\
5 \mathrm{~V} \\
10 \mathrm{~V} \\
\\
50 \mathrm{~mA} \\
200 \mathrm{~mA} \\
800 \mathrm{~mW} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{gathered}
\]

Collector (Output)-to-Input Voltage
Emitter-to-Ground Voltage (\(\mathrm{V}_{1} \geq 5 \mathrm{~V}\)) 10 V
Emitter-to-Input Voltage 5 V
Voltage at \(\mathrm{V}_{\text {ss }}\) Terminal With Respect to
Any Other Device Terminal 10 V

Collector (Output) Current
Each Collector (Output)
All Collectors (Output)
Continuous Total Dissipation
Operatıng Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

\section*{dc electrical characteristics}

DM8861 (\(\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline On State Collector Emitter Voltage (\(\mathrm{V}_{\text {ce }}\) ON) & \[
\begin{aligned}
& \text { Input }=8.5 \mathrm{~V} \text { through } 1 \mathrm{kS}, \mathrm{~V}_{\mathrm{E}}=5 \mathrm{~V} \text {, } \\
& \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & . 9 & 1.2 & V \\
\hline On State Collector Emitter Voltage (\(\mathrm{V}_{\text {ce on }}\)) & Input \(=8.5 \mathrm{~V}\) through \(1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{E}}=5 \mathrm{~V}\), \(\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}\) & & & 1.5 & V \\
\hline Off State Collector Current (\(\mathrm{I}_{\mathrm{c} \text { off }}\)) & \(\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{IN}}=40 \mu \mathrm{~A}\) & & & 100 & \(\mu \mathrm{A}\) \\
\hline Off Set Collector Current (IC OfF) & \(\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{~V}_{\text {IN }}=.7 \mathrm{~V}\) & & & 100 & \(\mu \mathrm{A}\) \\
\hline Input Current at Maximum Input Voltage (\((1)\) & \(V_{\text {IN }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}\) & & 2.2 & 3.3 & mA \\
\hline Emitter Reverse Current (\(I_{E}\)) & \(\mathrm{V}_{\text {IN }}=0, \mathrm{~V}_{\mathrm{E}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\) & & & 100 & \(\mu \mathrm{A}\) \\
\hline Current Into \(\mathrm{V}_{\text {ss }}\) Terminal (\(\mathrm{I}_{\text {ss }}\)) & & & & 1 & mA \\
\hline
\end{tabular}
ac switching characteristics
DM8861 (\(\left.\mathrm{V}_{\mathrm{SS}}=7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Propagation Delay Tıme, Low to High Level Output (Collector) (\(\mathrm{t}_{\mathrm{PLH}}\)) Propagation Delay Time, High to Low Level Output (Collector) (\(\mathrm{t}_{\mathrm{PHL}}\)) & \[
\begin{aligned}
& V_{I H}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \\
& \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}
\end{aligned}
\] & & \[
\begin{array}{r}
100 \\
20
\end{array}
\] & & ns ns \\
\hline
\end{tabular}

Note 1: The input is the only device terminal which may be negative with respect to ground.
Note 2: Voltage values are with respect to network ground terminal unless otherwise noted.
ac test circuits and waveforms

NOTE 1 THE PULSE GENERATOR HAS THE FOLLOWING CHARACTERISTICS \(Z_{\text {OUT }}=50 S\), PRR \(=100 \mathrm{KHz}, \mathrm{t}_{\mathrm{W}}=1 \mathrm{t}_{\mu}\)
NOTE \(2 C_{L}\) INCLUDES PROBE AND JG CAPACITANCE

\section*{Display Drivers}

\author{
DM8864, DM8865, DM8866 LED cathode drivers general description \\ The DM8864, DM8865 and DM8866 are cathode drivers for 9,8 , and 7 digit LED displays respectively. They are designed to interface between MOS calculator or clock circuits supplying 2.0 mA , and LED displays operating up to 50 mA in a multiplex mode. The DM8864 and DM8866 feature a "low battery" indicator driver which will light a decimal point whenever a 9.0 V battery drops below 6.5 V typical.
features \\ - Used with 50 mA LED displays \\ - "Low battery voltage" indicator \\ - Directly interfaced from MOS \\ - Inputs and outputs clustered for easy wiring \\ - Drivers consume no standby power
}
connection diagrams (Dual-In-Line Packages)

Order Number DM8865N
See Package 25

typical application

\({ }^{*} V_{\text {CC2 }}\) AND PIN 1 CONNECTION APPLICABLE ONLY TO DMB864 AND DM8866

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristıcs" provides conditions for actual device operation.
Note 2: Apply over \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) operatıng temperature range.
Note 3: Note applicable to DM8865.

Display Drivers

\section*{DM7880/DM8880 high voltage 7-segment decoder/driver (for driving Sperry and Panaplex \(\mathrm{II}^{\text {TM }}\) displays)}

\section*{general description}

The DM7880/DM8880 is custom designed to decode four lines of BCD and drive a gas-filled seven-segment display tube.

The design employs a 112 -bit read-only memory which provides BCD input to full hexadecimal output decoding in the standard DM7880/DM8880 product. For applications desiring other fonts; or not using standard BCD coding, the ROM contents can be custom modified to produce any 16 output displays for the \(\mathbf{1 6}\) binary input combinations.

Each output constitutes a switchable, adjustable current sink which provides constant current to the tube segment, even with high tube anode supply tolerance or fluctuation. These current sinks have a voltage compliance from 3 V to at least 80 V ; typically the output current varies \(1 \%\) for output voltage changes of 3 to 50 V . Each bit line of the ROM switches a current sink on or off as prescribed by the input code. Each current sink is ratioed to the b-output current as required for even illumination of all segments.

Output currents may be varied over the 0.2 to 15 mA range for driving various tube types or multiplex operation. The output current is adjusted by connecting an external program resistor (\(\mathrm{R}_{\mathrm{p}}\)) from \(\mathrm{V}_{\mathrm{cc}}\) to the Program input in accor dance with the programming curve The circuit design provides a one-to-one correlation between program input current and b-segment output current.

The Blankıng Input provides unconditional blanking of any output display, while the Ripple Blanking pins allow simple leading- or tralling-zero blankıng.

\section*{features}
- Current sink outputs
- Adjustable output current -0.2 to 1.5 mA
- High output breakdown voltage - 110 V typ
- Suitable for multıplex operation
- Blanking and Ripple Blankıng provisions
- Low fan-in and low power
logic and connection diagrams

\section*{absolute maximum ratings}
\begin{tabular}{lr}
VCC & 7 V \\
Input Voltage (Except BI) & 6 V \\
Input Voltage (BI) & \(\mathrm{VCC}_{\mathrm{C}}\) \\
Segment Output Voltage & 80 V \\
Power Dissipation (Note 1) & 600 mW \\
Transient Segment Output Current (Note 2) & 50 mA \\
Storage Temperature Range & \(-65^{\prime \prime} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
Lead Temperature (Soldering, 10 sec) & \(300^{\prime \prime} \mathrm{C}\)
\end{tabular}
operating conditions
\begin{tabular}{|c|c|c|c|}
\hline & MIN & MAX & UNITS \\
\hline \multicolumn{4}{|l|}{Supply Voltage (\(\mathrm{V}_{\mathrm{CC}}\))} \\
\hline DM7880 & 45 & 55 & \(\checkmark\) \\
\hline DM8880 & 475 & 525 & V \\
\hline \multicolumn{4}{|l|}{Temperature (\(\mathrm{T}_{\mathrm{A}}\))} \\
\hline DM7880 & -55 & +125 & C \\
\hline DM8880 & 0 & +70 & C \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Logic "1" Input Voltage & \(V_{C C}=M_{\text {In }}\) & 20 & & & \(\checkmark\) \\
\hline Logıc "0' Input Voltage & \(V_{C C}=M_{1 n}\) & & & 08 & \(\checkmark\) \\
\hline Logic "1" Output Voltage (RBO) & \[
\begin{aligned}
& V_{C C}=M_{1 n}, \\
& I_{\text {OUT }}=-200 \mu \mathrm{~A}
\end{aligned}
\] & 24 & 37 & & V \\
\hline Logic "0' Output Voltage (RBO) & \(\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{\text {OUT }}=8 \mathrm{~mA}\) & & 013 & 04 & V \\
\hline Logic "1" Input Current (Except BI) & \[
\begin{aligned}
& V_{C C}=\operatorname{Max}, V_{I N}=24 V \\
& V_{C C}=M a x, V_{I N}=55 V
\end{aligned}
\] & . & 2 & 15
400 & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline Logic " 0 ' Input Current (Except BI) & \(\mathrm{V}_{\text {CC }}=\) Max, \(\mathrm{V}_{\text {IN }}=04 \mathrm{~V}\) & & -300 & -600 & \(\mu \mathrm{A}\) \\
\hline Logic ' 0 " Input Current (BI) & \(V_{C C}=\) Max, \(V_{\text {IN }}=04 \mathrm{~V}\) & & -12 & -20 & mA \\
\hline Powe: Supply Current & \[
\begin{aligned}
& V_{C C}=M a x, R_{P}=22 k \\
& \text { All Inputs }=0 V
\end{aligned}
\] & & 27 & 43 & mA \\
\hline Input Diode Clamp Voltage & \[
\begin{aligned}
& V_{C C}=\operatorname{Max}, T_{A}=25^{\circ} \mathrm{C} \\
& \mathrm{I}_{I N}=-12 \mathrm{~mA}
\end{aligned}
\] & & -09 & \(-15\) & V \\
\hline \multirow[t]{2}{*}{Segrnent Outputs Outputs a, f, g ON Curient Ratıo} & & & & & \\
\hline & All Outputs \(=50 \mathrm{~V}\) Output b Curr \(=\) Ref & 084 & 093 & 102 & \\
\hline Output c ON Current Ratıo & \begin{tabular}{l}
All Outputs \(=50 \mathrm{~V}\), \\
Output b Curr = Ref
\end{tabular} & 1.12 & 125 & 138 & \\
\hline Output d ON Current Ratıo & \begin{tabular}{l}
All Outputs \(=50 \mathrm{~V}\) \\
Output \(b\) Curr \(=\) Ref
\end{tabular} & 090 & 100 & 110 & , \\
\hline Output e ON Current Ratıo & \begin{tabular}{l}
All Outputs \(=50 \mathrm{~V}\) \\
Output b Curr \(=\) Ref
\end{tabular} & 099 & 110 & 1.21 & \\
\hline Output b ON Current & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{b}=50 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{P}}=181 \mathrm{k}
\end{aligned}
\] & 018 & 020 & 022 & mA \\
\hline & \[
\begin{aligned}
& V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{b}=50 \mathrm{~V} \\
& T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{P}}=7.03 \mathrm{k}
\end{aligned}
\] & 045 & 050 & 055 & mA \\
\hline & \[
\begin{aligned}
& V_{C C}=5 \mathrm{~V}, V_{\text {OUT }} b=50 \mathrm{~V} \\
& T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{P}}=340 \mathrm{k}
\end{aligned}
\] & 090 & 1.00 & 110 & mA \\
\hline & \[
\begin{aligned}
& V_{C C}=5 \mathrm{~V}, V_{\text {OUT }} b=50 \mathrm{~V} \\
& T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{P}}=220 \mathrm{k}
\end{aligned}
\] & 135 & 1.50 & 165 & mA \\
\hline Output Saturation Voltage & \[
\begin{aligned}
& V_{C C}=M i n, R_{P}=1 k \pm 5 \% \\
& I_{\text {OUT }} b=2 m A(\text { Note } 4)
\end{aligned}
\] & & 0.8 & 2.5 & V \\
\hline Output Leakage Current & \(\mathrm{V}_{\text {OUT }}=75 \mathrm{~V}, \mathrm{BI}=0 \mathrm{~V}\) & & . 003 & 3 & \(\mu \mathrm{A}\) \\
\hline Output Breakdown Voltage & \(\mathrm{I}_{\text {OUT }}=250 \mu \mathrm{~A}, \mathrm{BI}=0 \mathrm{~V}\) & 80 & 110 & & V \\
\hline \multicolumn{2}{|l|}{Propagation Delays} & & & & \\
\hline BCD Input to Segment Output & \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\) & & 04 & 10 & \(\mu \mathrm{s}\) \\
\hline BI to Segment Output & \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\) & & 04 & 10 & \(\mu \mathrm{s}\) \\
\hline RBI to Segment Output & \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\) & & 0.7 & 10 & \(\mu \mathrm{s}\) \\
\hline RBI to RBO & \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 04 & 10 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

Note 1: Maxımum junction temperature for DM 7880 is \(+150^{\circ} \mathrm{C}\) whereas that for DM8880 is \(+130^{\circ} \mathrm{C}\). For operating at elevated temperatures the device must be derated based on a thermal resistance of \(85^{\circ} \mathrm{C} / \mathrm{W} \Theta_{J A}\) for DM8880.
Note 2: In all applications transient segment output current must be limited to 50 mA . This may be accomplished in dc applications by connecting a 2.2 k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.
Note 3. Min/max limits apply across the guaranteed operating temperature range of \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) for DM 7880 and \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) for DM8880, unless otherwise specified Typicals are for \(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\). Positive current is defined as current into the referenced pin. Note 4: For saturation mode the segment output currents are externally limited and ratioed

\section*{typical performance characteristics}

typical application

On Currents vs Temperature

Output Characteristic

\section*{truth table}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DECIMAL OR FUNCTION & RBI & D & C & B & A & BI/RBO & a & b & c & d & e & f & g & DISPLAY & \\
\hline 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 11 & \\
\hline 1 & x & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & \\
\hline 2 & x & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & F' & \\
\hline 3 & \(x\) & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & \#' & \\
\hline 4 & \(x\) & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & I-1 & \\
\hline 5 & x & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & E & \(\stackrel{\text { a }}{\square}\) \\
\hline 6 & X & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & E & 1/g/0 SEGMEnt \\
\hline 7 & x & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 7 & e/a identification \\
\hline 8 & \(x\) & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1-1 & d \\
\hline 9 & X & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 딘 & \\
\hline 10 & x & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 17 & , \\
\hline 11 & \(x\) & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 齊 & \\
\hline 12 & X & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & L & \\
\hline 13 & x & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & A1 & \\
\hline 14 & x & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & \(E\) & \\
\hline 15 & \(x\) & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & I & \\
\hline BI & \(x\) & x & \(x\) & \(x\) & \(x\) & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline RBI & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline
\end{tabular}

\section*{DM8884A high voltage cathode decoder/driver (for driving Panaplex II \(^{\text {M }}\) and Sperry displays)}

\section*{general description}

The DM8884A is designed to decode four lines of BCD input and drive seven-segment digits of gasfilled readout displays. Two separate inputs are provided for driving the decimal point and comma cathodes.
All outputs consist of switchable and programable current sinks which provide constant current to the tube cathodes, even with high tube anode supply tolerance. Output currents may be varied over the 0.2 to 1.2 mA range for multiplex operation. The output current is adjusted by connecting an external program resistor \(\left(\mathrm{R}_{\mathrm{p}}\right)\) from \(\mathrm{V}_{\mathrm{cc}}\) to the
program input in accordance with the programming curve.

\section*{features}
- Usable with AC or DC input coupling
- Current sink outputs
- High output breakdown voltage
- Low input load current
- Intended for multiplex operation.
- Input pullups increase noise immunity
logic and connection diagrams

Dual-In-Line Package

TOP VIEW
Order Number DM8884AN
See Package 25

\section*{absolute maximum ratings}
\(V_{c c}\) \(7 V\)
Input Voltage (Note 1)
Segment Output Voltage
Power Dissipation (Note 2)
Transient Segment Output Current (Note 3)
Operatıng Temperature Range
Storage Temperature Range
帾
electrical characteristics \(10^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\) - Unless otherwise noted), \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%\).
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & MAX & UNITS \\
\hline Logic "1" Input Voltage & \(V_{C C}=4.75 \mathrm{~V}\) & 20 & & V \\
\hline Logic " 0 " Input Voltage & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) & & 1.0 & V \\
\hline Logic "1" Input Current & \(V_{C C}=5.25 \mathrm{~V}, V_{\text {IN }}=2.4 \mathrm{~V}\) & & 15 & \(\mu \mathrm{A}\) \\
\hline Positive Input Clamp Voltage & \(V_{C C}=4.75, I_{\text {IN }}=1 \mathrm{~mA}\) & 5.0 & & V \\
\hline Logic " 0 " Input Current & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}\) & & -250 & \(\mu \mathrm{A}\) \\
\hline Power Supply Current & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{P}}=2.8 \mathrm{k}, \\
& \text { All Inputs }=5 \mathrm{~V}
\end{aligned}
\] & & 40 & mA \\
\hline Negative Input Clamp Voltage & \(V_{C C}=5 \mathrm{~V}, \mathrm{I}_{\text {IN }}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & -15 & V \\
\hline Segment Outputs \({ }^{\text {- }}\) & & & & \\
\hline All Outputs ON Current Ratio & All Outputs \(=50 \mathrm{~V}\) Output b Current \(=\) Ref & 09 & 11 & \\
\hline Output b ON Current & \(\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{b}=50 \mathrm{~V}\), & & & \\
\hline & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{P}}=18.1 \mathrm{k}\) & 0.18 & 0.22 & mA \\
\hline & \(\mathrm{R}_{\mathrm{P}}=7.03 \mathrm{k}\) & 045 & 0.55 & mA \\
\hline & \(\mathrm{R}_{\mathrm{P}}=3.40 \mathrm{k}\) & 0.90 & 1.10 & mA \\
\hline & \(\mathrm{R}_{\mathrm{P}}=2.80 \mathrm{k}\) & 108 & 1.32 & mA \\
\hline Output Leakage Current & \(\mathrm{V}_{\text {OUT }}=75 \mathrm{~V}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline Output Breakdown Voltage & \(\mathrm{I}_{\text {OUT }}=250 \mu \mathrm{~A}\) & 80 & & V \\
\hline Propagatıon Delay: & & & & \\
\hline Any Input to Segment Output & \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 10 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

Note 1: This limit can be higher for a current limiting voltage source
Note 2: The maximum junction temperature is \(140^{\circ} \mathrm{C}\) For operation at elevated temperatures, the device must be derated based on a thermal resistance of \(140^{\circ} \mathrm{C} / \mathrm{W} \theta \mathrm{JA}\)
Note 3: In all applications transient segment output current must be limited to 50 mA This may be accomplished in DC applications by connecting a 2.2 k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications
truth table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline FUNCTION & DPT & COMMA & D & c & B & A & a & b & b & c & \(d\) & - & 1 & 9 & DISPLAY & \\
\hline 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & I7 & \\
\hline 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & I & \\
\hline 2 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & - 1 & 1 & 0 & 0 & 1 & 0 & \(\square\) & \\
\hline 3 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 3 & \\
\hline 4 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 4 & \\
\hline 5 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 5 & \\
\hline 6 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & E & \\
\hline 7 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 7 & \\
\hline 8 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & S & \\
\hline 9 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 5 & \\
\hline 10 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 10 & 0 & 0 & 0 & 1 & 1 & - & \\
\hline 11 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & - & c & 0 & 0 & 1 & - & 17 & \(1{ }^{\circ}\) \\
\hline 12 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & , & - & 7/9/6 \\
\hline 13 & 1 & , & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & - & E & \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & - & \({ }^{1}\) \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline \({ }^{\circ} \mathrm{OPT}\) & 0 & 1 & x & \(\times\) & x & \(\times\) & \(\times\) & \(\times\) & \(\times\) & \(\times\) & x & \(\times\) & \(\times\) & x & - & \\
\hline -Comma & 0 & 0 & x & x & x & x & \(\times\) & x & \(\times\) & \(x\) & x & \(\times\) & \(\times\) & x & 1 & o Decimal Point \\
\hline
\end{tabular}
*Decımal point and comma can be displayed with or without any numeral.

\section*{typical application}

Display Drivers

\section*{DM8885 MOS to high voltage cathode buffer}

\section*{general discription}

The DM8885 interfaces MOS calculator or counter－ latch－decoder－driver circuits directly to seven－ segment high－voltage gas－filled displays．The six inputs A，B，D，E，F，G are decoded to drive the seven segments of the tube．

Each output constitutes a switchable，adjustable current source which provides constant current to the tube segment，even with high tube anode supply tolerance or fluctuation．These current sources have a voltage compliance from 3 V to at least 80 V ．Each current source is ratioed to the b－output current as required for even illumination of all segments． Output currents may be varied over the 0.2 to 1.5 mA range for driving various tube types or
multiplex operation The output current is adjusted by connectıng a program resistor（ \(R_{P}\) ）from \(\mathrm{V}_{\mathrm{Cc}}\) to the program input．

\section*{features}
－Current source outputs
－Adjustable output currents 0.2 to 1.5 mA
－High output breakdown voltage 80 V min
－Suitable for multiplex operation
－Low fan－in and low power
－Blankıng via program input
－Also drives overrange，polarity，decımal point cathodes
connection diagram

TOP VIEW
Order Number DM8885J
See Package 17
Order Number DM8885N
See Package 23

\section*{typical applications}

Open－Drain MOS Output

\section*{truth tables}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline A & B & D & E & F & G & DISPLAY \\
\hline 1 & 1 & 1 & 1 & 1 & 0 & I＇ \\
\hline 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline 1 & 1 & 1 & 1 & 0 & 1 & 『 \\
\hline 1 & 1 & 1 & 0 & 0 & 1 & \(\exists\) \\
\hline 0 & 1 & 0 & 0 & 1 & 1 & H \\
\hline 1 & 0 & 1 & 0 & 1 & 1 & E \\
\hline 1 & 0 & 1 & 1 & 1 & 1 & E \\
\hline 1 & 1 & 0 & 0 & 0 & 0 & 7 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 㫛 \\
\hline 1 & 1 & 1 & 0 & 1 & 1 & 5 \\
\hline 0 & 0 & 1 & 1 & 1 & 1 & 口 \\
\hline 1 & 1 & 0 & 0 & 1 & 1 & 5 \\
\hline 1 & 1 & 0 & 1 & 1 & 1 & A \\
\hline 0 & 1 & 0 & 1 & 1 & 1 & ！－！ \\
\hline 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & E＇ \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline INPUT＊ & OUTPUT＊ \\
\hline 0 & 1 （OFF） \\
1 & \(0(\mathrm{ON})\) \\
\hline
\end{tabular}
＊Positive Logic

\(\mathrm{C}=(\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{D}}+\mathrm{E}) \overline{\mathrm{F}}\)

\section*{absolute maximum ratings}
\(V_{c c}\)
Input Voltage
Segment Output Voltage
Transient Segment Output Current (Note. 2)
Operating Temperature Range
50 mA
\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\(300^{\circ} \mathrm{C}\)
electrical characteristics (Note 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Logic "1" Input Voltage & \(\mathrm{V}_{\mathrm{cc}}=475 \mathrm{~V}\) & \multirow[t]{8}{*}{20} & & & \(v\) \\
\hline Logic " 0 " Input Voltage & \(V_{C C}=475 \mathrm{~V}\), & & & 08 & \(v\) \\
\hline \multirow[t]{2}{*}{Logic " 1 " Input Current} & \(\mathrm{V}_{\text {cc }}=525 \mathrm{~V}, \mathrm{~V}_{\text {iN }}=24 \mathrm{~V}\) & & 2 & 15 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\text {CC }}=525 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=55 \mathrm{~V}\) & & 4 & 400 & \(\mu \mathrm{A}\) \\
\hline Logic " 0 " Input Current & \(\mathrm{V}_{C C}=525 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=04 \mathrm{~V}\) & & -300 & -600 & \(\mu \mathrm{A}\) \\
\hline Power Supply Current & \(\mathrm{V}_{\mathrm{CC}}=525 \mathrm{~V}\), All Inputs \(=0 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=22 \mathrm{k}\) & & 22 & 31 & mA \\
\hline Input Diode Clamp Voltage & \(V_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & -09 & -15 & \multirow[t]{2}{*}{\(\checkmark\)} \\
\hline \multicolumn{4}{|l|}{Segment Outputs} & & \\
\hline Outputs a, f, g On Current Ratio & All Outputs \(=50 \mathrm{~V}\), Output b Curr \(=\) Ref & 084 & 093 & 102 & \\
\hline Output c On Current Ratıo & All Outputs \(=50 \mathrm{~V}\), Output b Curr \(=\) Ref & 112 & 125 & 138 & \\
\hline Output d On Current Ratıo & All Outputs \(=50 \mathrm{~V}\). Output b Curr \(=\) Ref & 090 & 100 & 110 & \\
\hline Output e On Current Ratio & All Outputs \(=50 \mathrm{~V}\), Output b Curr \(=\) Ref & 099 & 110 & 121 & \\
\hline \multirow[t]{4}{*}{Output b On Current} & \(\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{b}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{P}}=181 \mathrm{k}\) & 018 & 020 & 022 & mA \\
\hline & \(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{b}=50 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{P}}=703 \mathrm{k}\) & 045 & 050 & 055 & mA \\
\hline & \(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{b}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{P}}=340 \mathrm{k}\) & 090 & 100 & 110 & mA \\
\hline & \(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{b}=50 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{P}}=220 \mathrm{k}\) & \multirow[t]{4}{*}{135} & 150 & 165 & mA \\
\hline Output Saturation Voltage & \(\mathrm{V}_{\text {cC }}=475 \mathrm{~V}\), lout \(\mathrm{b}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{P}}=1 \mathrm{k} \pm 5 \%(\) Note 4\()\) & & 08 & 25 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{Output Leakage Current} & \(V_{\text {OUT }}=75 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=08 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}>1 \mathrm{k}\) & & 0003 & 3 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\text {OUT }}=75 \mathrm{~V}, \mathrm{~V}_{\text {PROG }}=04 \mathrm{~V}\) & & 0003 & 3 & \(\mu \mathrm{A}\) \\
\hline Output Breakdown Voltage & \(\mathrm{l}_{\text {OUT }}=250 \mu \mathrm{~A}, \mathrm{~V}_{\text {IN }}=08 \mathrm{~V}\) & 80 & 110 & & \(\checkmark\) \\
\hline Propagation Delays & & & & & \\
\hline Input to Segment Output & \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 04 & 10 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

Note 1: Maximum junction temperature is \(130^{\circ} \mathrm{C}\). For operatıng at elevated temperatures, the device must be derated based on a thermal resistance of \(150^{\circ} \mathrm{C} / \mathrm{W} \theta \mathrm{JA}\).
Note 2: In all applications transient segment output current must be limited to 50 mA . This may be accomplished in \(D C\) applıcations by connecting a 22 k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications.
Note 3: \(\mathrm{M} ı \mathrm{n} / \mathrm{max}\) limits apply across the guaranteed operatıng temperature range of \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\), unless otherwise specified Typicals are for \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\). Positive current is defined as current into the referenced pin
Note 4: For saturation mode the segment output currents are externally limited and ratioed

\section*{typical performance characteristics (see DM7880 data sheet)}

Display Drivers

\section*{DM7887/DM8887 8-digit high voltage anode driver} (active-high inputs)
DM7889/DM8889 8-digit high voltage cathode driver (active-high inputs)

\section*{DM7897/DM8897 8-digit high voltage anode driver (active-low inputs)}

\section*{general description}

The DM7887/DM8887 and DM7897/DM8897 are designed to drive the individual anodes of a seven segment (cathodes) high-voltage gas discharge panel in a time multiplexed fashion.

When driven with appropriate input signals, the driver will switch voltage and impedance levels at the anode. This will allow or prevent ionization of gas around selected cathode in order to form a numeric display. Their main application will be to act as buffers between MOS outputs (fullydecoded) and the anodes of a gas-discharge panel, since the devices can source up to 16 mA at a low impedance and can tolerate more than 55 V in the off state.

DM7889/DM8889 is capable of drıving eight segments of a high-voltage display tube with a
constant output sink current, which can be adjusted by external program resistor, \(\mathrm{R}_{\mathrm{p}}\). The program current is half that of output on current. In the "OFF" state the outputs can tolerate more than 80 V . The ratio of "ON" output currents is within \(\pm 10 \%\). Inputs have negative clamp diodes. Active high input logic. The main application of the device is to interface MOS circuits to high-voltage displays. The total power dissipation in the package is low.

\section*{features}
- Versatile circuits for a wide range of display applicatıons
- High breakdown voltages
- Low power dissipation
connection diagrams (dual-in-line packages)

DM7887/DM8887, DM7897/DM8897

Order Number DM7887J or DM8887J
See Package 24
Order Number DM8887N
See Package 25

DM7889/DM8889

Order Number DM7889J or DM8889J
See Package 24
Order Number DM8889N
See Package 25

ac electrical characteristics \(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{6}{|l|}{DM8887} \\
\hline \begin{tabular}{l}
Propagation Delay from Input to Output "ON" (\(t_{\mathrm{ON}}\)) \\
Propagation Delay from Input to Output "ON" (\(\mathrm{t}_{\text {RISE }}\))
\end{tabular} & (See AC Test Circuit and Switching Time Waveforms) & & & \[
50
\]
\[
10
\] & \begin{tabular}{l}
\(\mu \mathrm{s}\) \\
\(\mu \mathrm{s}\)
\end{tabular} \\
\hline \multicolumn{6}{|l|}{DM7889/DM8889} \\
\hline \begin{tabular}{l}
Propagation Delay to a Logical " 0 " from Input to Output (\(\mathrm{t}_{\mathrm{pdo}}\)) \\
Propagation Delay to a Logical " 1 " from Input to Output (\(\mathrm{t}_{\mathrm{pd} 1}\))
\end{tabular} & \[
\begin{aligned}
& R_{P}=6.0 \mathrm{k} \text { to } 60 \mathrm{~V}, \mathrm{R}_{\text {OUT }}=10 \mathrm{k} \text { to } 60 \mathrm{~V} \\
& \text { Input Ramp Rate } \leq 15 \mathrm{~ns} \text {, Freq }=10 \mathrm{MHz} \text {, } \\
& \mathrm{DC}=50 \% \text {, Amplitude }=60 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{gathered}
37 \\
92
\end{gathered}
\] & \[
\begin{aligned}
& 100 \\
& 200
\end{aligned}
\] & ns
ns \\
\hline
\end{tabular}

Note 1: "Absolute Maxımum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed Except for "Operatıng Temperature Range" they are not meant to imply that the devices should be operated at these fimits The table of "Electrical Characteristics" provides conditions for actual device operation
Note 2. All voltages shown for DM7887/DM8887, DM7897/DM8897 W R T \(V_{C C}=0 \mathrm{~V}\) All currents into device pins shown as positive, out of device pıns as negative All values shown as max or mın on absolute value basis
Note 3: All voltages for DM7889/DM8889 with respect to \(\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}\)
Note 4: Unless otherwise specified min/max limits apply across the \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) temperature range for the DM 7889 and across the \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) range for the DM8887, DM8889 and DM8897 All typicals are given for \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
Note 5: Supply currents specified for any one input \(=-10 \mathrm{~V}\) All other inputs \(=-55 \mathrm{~V}\) and selected output having 16 mA load

\section*{typical application}

NOTE 1 ALL OUTPUTS OF BOTH CATHODE AND ANODE DRIVER HAVE LOADS AS SHOWN FOR OUTPUT a NOTE 2 USE DM7887/DM8887 FOR ACTIVE HIGH INPUTS AND DM7897/DM8897 FOR ACTIVE LOW INPUTS

\section*{typical performance characteristics}

ac test circuit and switching time waveforms

logic diagrams

DM7889/DM8889

Sense Amplifiers

DM7802/DM8802, DM7806/DM8806 high speed MOS to TTL level converters

\section*{general description*}

The DM7802/DM8802, DM7806/DM8806 are high speed MOS to TTL level converters. These circuits act as an interface level converter between MOS and TTL logic devices. It consists of two 1 -input converters with common strobe input to inhibit " 0 " entry when strobe is high. It allows parallel entry when strobe is low and the internal latch is preset by the common preset input. TRISTATE \({ }^{\circledR}\) output logic is implemented in this circuit to facilitate high speed time sharing of decoder-drivers, fast random-access (or sequential) memory arrays, etc.

\section*{features}
- Very low output impedance - high drive ability
- High impedance output state which allows many outputs to be connected to a common bus line
- Average power dissipation 110 mW per converter
*Also see LM3625.
logic and connection diagrams

absolute maximum ratings (Note 1)
operating conditions
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & MIN & MAX & UNITS \\
\hline Supply Voltage & 7.0 V & Supply Voltage (\(\mathrm{V}_{\mathrm{CC}}\)) & & & \\
\hline Input Voltage & 55 V & DM7802, DM7806 & 4.5 & 55 & V \\
\hline Output Voltage & 5.5 V & DM8802, DM8806 & 4.75 & 5.25 & V \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) & Temperature (\({ }_{\text {A }}\))
DM7802, DM7806 & -55 & +125 & C \\
\hline Lead Temperature (Solderıng, 10 seconds) & \(300^{\circ} \mathrm{C}\) & DM8802, DM8806 & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
electrical characteristics (Note 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Logical " 1 " Input Current (\(I_{\text {INA }}\), \(I_{\text {INB }}\)) & \(V_{c c}=M_{1 n}\) & 500 & & & \(\mu \mathrm{A}\) \\
\hline Logical " 0 " Input Current ((INA, \(\mathrm{I}_{\text {INB }}\)) & \(V_{\text {cc }}=M_{\text {In }}\) & & & 200 & \(\mu \mathrm{A}\) \\
\hline Logical " 1 " Input Voltage, Strobe, Preset, Disable & \(V_{c c}=M_{1 n}\) & 20 & & & \(\checkmark\) \\
\hline Logical " 0 " Input Voltage, Strobe, Preset, Disable & \(V_{c c}=M_{1 n}\) & & & 08 & V \\
\hline Logical "1" Output Voltage & \(V_{\text {CC }}=M_{\text {In }}, I_{\text {OUT }}=15 \mathrm{~mA}\) & 24 & & & V \\
\hline Logical " 0 " Output Voltage & \(V_{\text {CC }}=\mathrm{Min}^{\text {, }}\) I OUT \(=16 \mathrm{~mA}\) & & & 04 & \(\checkmark\) \\
\hline Third State Output Current & \[
\begin{aligned}
& V_{c c}=M a x, V_{O}=24 \mathrm{~V} \\
& V_{C C}=M a x, V_{O}=04 V
\end{aligned}
\] & & & 40
-40 & \[
\begin{aligned}
& \mu A \\
& \mu A
\end{aligned}
\] \\
\hline Logical "1" Input Current & \[
\begin{aligned}
& V_{C C}=M a x, V_{I N}=24 V \\
& V_{C C}=M a x, V_{I N}=55 V
\end{aligned}
\] & & & \[
\begin{aligned}
& 40 \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
\mu \mathrm{A} \\
\mathrm{~mA}
\end{gathered}
\] \\
\hline Logical " 0 " Input Current & \(\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=04 \mathrm{~V}\) & & & -16 & mA \\
\hline Supply Current & \[
\begin{aligned}
& V_{C C}=M a x, V_{\text {IN(DISABLE }}=2 \\
& \text { Other Inputs }=\phi V
\end{aligned}
\] & & & 40 & mA \\
\hline Input Clamp Voltage & \(V_{C C}=M 12, I_{1 N}=12 \mathrm{~mA}\) & & & 15 & V \\
\hline Output Short Circuit Current (Note 3) & \[
\begin{aligned}
\mathrm{V}_{\mathrm{CC}}= & M a x, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \\
& \mathrm{DM} 7802, \mathrm{DM} 7806 \\
& \mathrm{DM} 8802, \text { DM8806 }
\end{aligned}
\] & \[
\begin{array}{r}
20 \\
-18
\end{array}
\] & & \[
\begin{array}{r}
70 \\
-70
\end{array}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Propagation Delay to a Logical " 0 " From STROBE to Output (\(\mathrm{t}_{\mathrm{ds}}\)) & \[
\begin{aligned}
& V_{C C}=50 \mathrm{~V} \text { (See waveforms) } \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 17 & 25 & ns \\
\hline Propagation Delay to a Logical " 1 " From Preset to Output (\(t_{\text {dp }}\)) & \[
\begin{aligned}
& V_{C C}=50 \mathrm{~V} \text { (See waveforms) } \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 22 & 32 & ns \\
\hline Delay From Disable Input to High Impedance State (From Logical " 1 " Level) (\(\mathrm{t}_{1 \mathrm{H}}\)) & \[
\begin{aligned}
& V_{C C}=50 \mathrm{~V} \quad \text { (See ac test circuit) } \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 70 & 11 & ns \\
\hline Delay From Disable Input to High Impedance State (From Logical " 0 " Level) (\(\mathrm{t}_{\mathrm{OH}}\)) & \[
\begin{aligned}
& V_{C C}=50 \mathrm{~V} \quad \text { (See ac test cırcuit) } \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 17 & 25 & ns \\
\hline Delay From Disable Input to Logical "1" Level (From High Impedance State) (\(\mathrm{t}_{\mathrm{H}}\)) & \[
\begin{aligned}
& V_{C C}=50 \mathrm{~V} \text { (See ac test circuit) } \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 90 & 14 & ns \\
\hline Delay From Disable Input to Logical " 0 " Level (From High Impedance State) (\(\mathrm{t}_{\mathrm{HO}}\)) & \[
\begin{aligned}
& V_{C C}=50 \mathrm{~V} \text { (See ac test circuit) } \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 135 & 16 & ns \\
\hline
\end{tabular}

Note 1: "Absolute Maximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) temperature range for the DM 7802 ,
DM7806 and across the \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) range for the DM8802, DM8806. All typicals are given for \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 3: Only one output at a time should be shorted.

\section*{typical input circuit}

\section*{ac test circuits}

\begin{tabular}{|l|c|c|c|}
\hline & SWITCH \(\mathbf{S}_{\mathbf{1}}\) & SWITCH \(\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{C}_{\mathrm{L}}\) \\
\hline \(\mathrm{t}_{\mathrm{dp}}\) & Closed & Closed & 50 pF \\
\(\mathrm{t}_{\mathrm{ds}}\) & Closed & Closed & 50 pF \\
\(\mathrm{t}_{\mathbf{O H}}\) & Closed & Closed & \({ }^{*} 5 \mathrm{pF}\) \\
\(\mathrm{t}_{1 \mathrm{H}}\) & Closed & Closed & \({ }^{*} 5 \mathrm{pF}\) \\
\(\mathrm{t}_{\mathrm{HO}}\) & Closed & Open & 50 pF \\
\(\mathrm{t}_{\mathrm{H} 1}\) & Open & Closed & 50 pF \\
\hline
\end{tabular}
*Jıg capacitance
(a)

(b)

(c)

(d)

Test Circuit 20
switching time waveforms

(a)
\({ }^{t} \mathrm{HO}\)

(c)
\({ }^{\mathrm{t}} \mathrm{H} 1\)

(d)

\section*{Sense Amplifiers}

\section*{LM5520/LM7520 series dual core memory sense amplifiers general description}

The devices in this series of dual core sense amplifiers convert bipolar millivolt-level memory sense signals to saturated logic levels. The design employs a common reference input which allows the input threshold voltage level of both amplifiers to be adjusted. Separate strobe inputs provide time discrimination for each channel. Logic inputs and outputs are DTL/TTL compatible. All devices of the series have identical preamplifier configurations, while various logic connections are provided to suit the specific application.
The LM5520/LM7520 has output latch capability and provides sense, strobe, and memory function for two sense lines. The LM5522/LM7522 contains a single open collector output which may be used to expand the number of inputs of the LM5520/LM7520, or to drive an external Memory Data Register (MDR). Intended for small memories, the two channels of the LM5524/LM7524 are independent with two separate outputs. The LM5534/LM7534 is similar to the LM5524/ LM7524 but has uncommitted, wire-ORable outputs. The LM5528/LM7528 has the same logic configuration of the LM5524/LM7524 and in addition provides separate low impedance Test Points at each preamplifier output. A similar device having uncommitted, wire-ORable outputs is the LM5538/LM7538.

\section*{features}
- High speed
- Guaranteed narrow threshold uncertainty over temperature
- Adjustable input threshold voltage
- Fast overload recovery times
- Two amplifiers per package
- Molded or cavity dual-in-line package
- Six logic configurations

The part number ending with an even number (e.g., LM5520) designates a tighter guaranteed input threshold uncertainty than the subsequent odd number ending (e.g., LM5521). The remaining specifications for the two are identical. All devices meet or exceed the specifications for the corresponding device (where applicable) in the SN5520/SN7520 series and are pin-for-pin replacements.

\section*{absolute maximum ratings}
\begin{tabular}{rr}
Supply Voltage & \(\pm 7 \mathrm{~V}\) \\
Differential or Reference Input & \\
Voltage & \(\pm 5 \mathrm{~V}\) \\
Logic Input Voltage & +5.5 V \\
Operating Temperature Range & \\
LM55XX & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
LM75XX & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

\section*{typical application}

\section*{LM5520/LM7520 and LM5521/LM7521 electrical characteristics}

LM5520/LM5521: The following apply for \(-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{8}{|c|}{TEST CONDITIONS (EACH AMPLIFIER)} \\
\hline PARAMETER & MIN & TYP & MAX & UNIT & DIFF. INPUT & REF. INPUT & STROBE INPUT & GATE 0 input & GATE \(\overline{0}\) INPUT & LOGIC OUTPUT (NOTE 3) & SUPPLY VOLT. & COMMENTS \\
\hline \begin{tabular}{l}
Differential Input \\
Threshold Voltage \\
(\(V_{T H}\)) (Note 2) \\
Differential \& Reference Input Bias Current
\end{tabular} & \begin{tabular}{l}
10(8) \\
35(33)
\end{tabular} & \begin{tabular}{l}
15 \\
15 \\
40 \\
40 \\
30
\end{tabular} & \[
\begin{aligned}
& 20(22) \\
& 45(47) \\
& 100
\end{aligned}
\] & \begin{tabular}{l}
mV \\
mV \\
mV \\
mV \\
\(\mu \mathrm{A}\)
\end{tabular} & \begin{tabular}{l}
\(\pm V_{T H}\) \\
\(\pm V_{T H}\) \\
\(\pm V_{T H}\) \\
\(\pm V_{T H}\) \\
ov
\end{tabular} & 15 mV 15 mV 40 mV 40 mV OV & \begin{tabular}{l}
\(+5 \mathrm{~V}\) \\
\(+5 \mathrm{~V}\) \\
\(+5 \mathrm{~V}\) \\
\(+5 \mathrm{~V}\) \\
\(+525 \mathrm{~V}\)
\end{tabular} & \[
\begin{aligned}
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +525 \mathrm{~V}
\end{aligned}
\] & +5 25V & \[
\begin{gathered}
+16 \mathrm{~mA}(\mathrm{Q}) \\
-400 \mu \mathrm{~A}(\mathrm{Q}) \\
+16 \mathrm{~mA}(\mathrm{Q}) \\
-400 \mu \mathrm{~A}(\mathrm{Q})
\end{gathered}
\] & \begin{tabular}{l}
\(\pm 5 \mathrm{~V}\) \\
\(\pm 5 \mathrm{~V}\) \\
\(\pm 5 \mathrm{~V}\) \\
\(\pm 5 \mathrm{~V}\) \\
\(\pm 5.25 \mathrm{~V}\)
\end{tabular} & \begin{tabular}{l}
Logic Output <0 4V \\
Logic Output \(>2.4 \mathrm{~V}\) \\
Logic Output <0 4V \\
Logic Output >24V
\end{tabular} \\
\hline
\end{tabular}

\section*{LM7520/LM7521: The following apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\)}

LM5520/LM5521: The following apply for \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C}\)
LM7520/LM7521: The following apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Differential Input Offset Current & & 05 & & \(\mu \mathrm{A}\) & OV & OV & +5 25V & +5 25V & +5 25V & & \(\pm 525 \mathrm{~V}\) & \\
\hline Logic " 1 " Input Voltage (Strobes) & 2 & & & v & 40 mV & 20 mV & +2V & +4 75V & & -400 \(\mu \mathrm{A}(\mathrm{Q})\) & \(\pm 5 \mathrm{~V}\) & Logic Output \(>2 \mathbf{4 V}\) \\
\hline (Gate Q) & 2 & & & v & 40 mV & 20 mV & OV & +2V & & \(-400 \mathrm{~mA}(\mathrm{O})\)
\(+16 \mathrm{~mA})\) & \(\pm \begin{aligned} & \pm 5 \mathrm{~V}\end{aligned}\) & Logic Output \(<0.4 \mathrm{~V}\) \\
\hline (Gate \(\overline{\mathbf{O}}\)) & 2 & & & \(v\) & 40 mV & 20 mV & OV & OV & +2V & + \(16 \mathrm{~mA}(\overline{\mathrm{C}})\) & \(\pm 5 \mathrm{~V}\) & Logic Output <0 4V \\
\hline Logic " 0 " Input Voltage (Strobes) & & & 08 & v & 40 mV & 20 mV & +0 8V & +4.75V & & + \(16 \mathrm{~mA}(\mathrm{Q})\) & \(\pm 5 \mathrm{~V}\) & gic Output <0.4V \\
\hline (Gate Q) & & & 08 & v & 40 mV & 20 mV & OV & +0.8V & & -400 \(\mu \mathrm{A}(\mathrm{Q})\) & \(\pm 5 \mathrm{~V}\) & Logic Output \(>24 \mathrm{~V}\) \\
\hline (Gate \(\overline{\mathbf{Q}}\)) & & & 08 & \(v\) & 40 mV & 20 mV & OV & OV & +08V & \(-400 \mu \mathrm{~A}(\overline{\mathrm{C}})\) & \(\pm 5 \mathrm{~V}\) & Logic Output \(>24 \mathrm{~V}\) \\
\hline Logic " 0 " Input Current & & -1 & -16 & mA & 40 mV & 20 mV & +0 4V & +0 4V & +0 4V & & \(\pm 525 \mathrm{~V}\) & Each Input \\
\hline Logic " 1 " Input Current & & 5 & 40 & \(\mu \mathrm{A}\) & OV & 20 mV & +2 4V & +5 25V & +2 4V & & \(\pm 5 \mathrm{25v}\) & Each Input \\
\hline (Strobe \& Gate \(\overline{\mathbf{O}}\)) & & 02 & 1 & mA & OV & 20 mV & +5 25V & +5 25V & +5 25V & & \(\pm 5 \mathrm{25V}\) & Each Input \\
\hline (Gate Q) & & 5 & 40 & \(\mu \mathrm{A}\) & 40 mV & 20 mV & +5 25V & +24V & & & \(\pm 525 \mathrm{~V}\) & \\
\hline & & 02 & 1 & inA & 40 mV & 20 mV & \(+525 \mathrm{~V}\) & \(+525 \mathrm{~V}\) & & & \(\pm 525 \mathrm{~V}\) & \\
\hline Logic " 1 " Output Voltage & & & & & & & & & & & & \\
\hline (Strobe) & 24 & 39 & & \(v\) & 40 mV & 20 mV & +2 OV & +5 25V & & -400 \(\mu \mathrm{A}(\mathrm{Q})\) & \(\pm 475 \mathrm{~V}\) & \\
\hline (Gate \({ }^{\text {O }}\)) & 24 & 39 & & v & 40 mV & 20 mV & OV & +08V & & \(-400 \mu \mathrm{~A}(\mathrm{O})\) & \(\pm 475 \mathrm{~V}\) & \\
\hline (Gate \(\overline{\mathbf{O}}\)) & 24 & 39 & & \(v\) & 40 mV & 20 mV & \(+4.75 \mathrm{~V}\) & OV & +08V & -400 \(\mu \mathrm{A}(\overline{\mathrm{a}})\) & \(\pm 475 \mathrm{~V}\) & \\
\hline Logic " 0 " Output Voltage (Strobe) & & 025 & 040 & V & 40 mV & 20 mV & +0.8V & +475V & & + \(16 \mathrm{~mA}(\mathrm{Q})\) & \(\pm 475 \mathrm{~V}\) & \\
\hline (Gate Q) & & 025 & 040 & \(v\) & OV & 20 mV & OV & +2V & & +16 mA(0) & \(\pm 475 \mathrm{~V}\) & \\
\hline (Gate \(\overline{\mathrm{Q}}\)) & & 025 & 040 & \(v\) & OV & 20 mV & OV & OV & +2V & + \(16 \mathrm{~mA}(\overline{\mathrm{C}})\) & \(\pm 475 \mathrm{~V}\) & \\
\hline Q Output Short Circuit Current & -3 & -4 & -5 & mA & OV & 20 mV & OV & OV & & \(0 \mathrm{~V}(\mathrm{O})\) & \(\pm 5\) 25V & \\
\hline Ō Output Short Circuit Current & -2 1 & -2 8 & -35 & mA & OV & 20 mV & OV & ov & OV & O V \((\overline{\mathrm{O}})\) & \(\pm 525 \mathrm{~V}\) & \\
\hline V+Supply Current & & 21 & 35 & mA & OV & 20 mV & OV & OV & OV & & \(\pm 525 \mathrm{~V}\) & \\
\hline V-Supply Currept & & -13 & -18 & mA & OV & 20 mV & OV & OV & OV & & \(\pm 525 \mathrm{~V}\) & \\
\hline
\end{tabular}

Note 1: For \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\) operation, electrical characteristics for LM5520 and LM5521 are guaranteed the same as LM7520 and LM7521, respectively.
Note 2: Limits in parentheses pertain to LM5521, other limits pertain to LM5520.
Note 3: Q or \(\overline{\mathrm{Q}}\) in parentheses indicate Q or \(\overline{\mathrm{Q}}\) logic output, respectively.
Note 4: Limits in parentheses pertain to LM7521, other limits pertain to LM7520.
Note 5: Positive current is defined as current into the referenced pın.
Note 6: Pin 1 to have \(\geq 100 \mathrm{pF}\) capacitor connected to ground.

LM5520/LM7520 and LM5521/LM7521 electrical characteristics
LM5520/LM5521 and LM7520/LM7521: The following apply for \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}\)

LM5520/LM7520 and LM5521/LM7521
schematic diagram

\section*{connection diagram}

Order Number LM5520J or LM7520J
See Package 17
Order Number LM7520N
See Package 23
Order Number LM5521J or LM7521J

\section*{LM5520/LM7520 and LM5521/LM7521}

\section*{AC test circuit (1)}

voltage waveforms (1)

1 Pulse generator characteristics
\(Z_{\text {OUT }}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=15 \pm 5 \mathrm{~ns}\), PRR \(=1 \mathrm{MHz}\)
2 Propagation delays
A \(=\) Differental input to logical " 1 " output 0
\(B=\) Differential input to logical " 0 " output 0
\(\mathrm{C}=\) Differential input to logical " O " output \(\mathbf{0}\)
\(D=\) Differential input to logical " 1 " output 0
\(\mathrm{E}=\) Strohe input to logical " 1 " output 0
\(F=\) Strobe imput to logical " 0 " output \(\mathbf{Q}\)
\(\mathbf{G}=\) Strobe input to logical " 0 " output \(\overline{0}\)
\(H=\) Strobe mput to logical " 1 " output \(\overline{0}\)

AC test circuit (2)
voltage waveforms (2)

1 Pulse generator characteristics
\(Z_{\text {Out }}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=15 \pm 5 \mathrm{~ns}\), PRR \(=1 \mathrm{MHz}\) 2 Propayation delays.
\(\mathbf{A}=\) Gate \(\mathbf{Q}\) input to logıcal " 0 " output \(\mathbf{Q}\)
\(B=\) Gate \(\mathbf{Q}\) input to logical " 1 " output \(\mathbf{Q}\)
\(\mathbf{C}=\) Gate \(\mathbf{Q}\) input to logical " 1 " output \(\overline{\mathbf{Q}}\)
\(\mathbf{D}=\) Gate \(\mathbf{Q}\) input to logical " 0 " output \(\mathbf{0}\)
\(F=\) Gate \(\overline{\mathbf{Q}}\) input to logical " 1 " output \(\overline{\overline{\mathbf{a}}}\)

\section*{LM5522/LM7522 and LM5523/LM7523} electrical characteristics
LM5522/LM5523: The following apply for \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\) (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{MIN} & \multirow[b]{2}{*}{TYP} & \multirow[b]{2}{*}{MAX} & \multirow[b]{2}{*}{UNIT} & \multicolumn{7}{|c|}{TEST CONDITIONS (EACH AMPLIFIER)} \\
\hline & & & & & \begin{tabular}{l}
DIFF. \\
INPUT
\end{tabular} & REF. INPUT & STROBE INPUT & GATE INPUT & LOGIC OUTPUT & SUPPLY VOLT. & COMMENTS \\
\hline \begin{tabular}{l}
Differential Input \\
Threshold Voltage (\(\mathrm{V}_{\mathrm{TH}}\)) (Note 2) \\
Differential \& Reference Input Bias Current
\end{tabular} & \begin{tabular}{l}
10(8) \\
35(33)
\end{tabular} & \begin{tabular}{l}
15 \\
15 \\
40 \\
40 \\
30
\end{tabular} & \[
\begin{aligned}
& 20(22) \\
& 45(47) \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& m V \\
& m V \\
& m V \\
& m V
\end{aligned}
\] & \[
\begin{aligned}
& \pm V_{T H} \\
& 0 V
\end{aligned}
\] & 15 mV 15 mV 40 mV 40 mV & \[
\begin{aligned}
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +525 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +525 \mathrm{~V}
\end{aligned}
\] & \[
\begin{gathered}
-400 \mu \mathrm{~A} \\
+16 \mathrm{~mA} \\
-400 \mu \mathrm{~A} \\
+16 \mathrm{~mA}
\end{gathered}
\] & \[
\begin{aligned}
& \pm 5 \mathrm{~V} \\
& \\
& \pm 5.25 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Logic Output \(>24 \mathrm{~V}\) \\
Logic Output \(<04 \mathrm{~V}\) \\
Logıc Output \(>24 \mathrm{~V}\) \\
Logic Output \(<04 \mathrm{~V}\)
\end{tabular} \\
\hline
\end{tabular}

LM7522/LM7523: The following apply for \(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Differential Input Threshold Voltage (\(\mathrm{V}_{\mathrm{TH}}\)) (Note 3) \\
Differential \& Reterence Input Bias Current
\end{tabular} & \[
\begin{array}{|l|}
\hline 11(8) \\
36(33)
\end{array}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 40 \\
& 40 \\
& 30
\end{aligned}
\] & \begin{tabular}{l}
19(22) \\
44(47) \\
75
\end{tabular} & & \begin{tabular}{l}
\[
\begin{aligned}
& \pm V_{T H} \\
& \pm V_{T H} \\
& \pm V_{T H} \\
& \pm V_{T H}
\end{aligned}
\] \\
OV
\end{tabular} & 15 mV 15 mV 40 mV 40 mV OV & \begin{tabular}{l}
\(+5 \mathrm{~V}\) \\
\(+5 \mathrm{~V}\) \\
\(+5 \mathrm{~V}\) \\
\(+5 \mathrm{~V}\) \\
\(+525 \mathrm{~V}\)
\end{tabular} & \[
\begin{aligned}
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5.25 \mathrm{~V}
\end{aligned}
\] & \[
\begin{gathered}
-400 \mu \mathrm{~A} \\
+16 \mathrm{~mA} \\
-400 \mu \mathrm{~A} \\
+16 \mathrm{~mA}
\end{gathered}
\] & \begin{tabular}{l}
\(\pm 5 \mathrm{~V}\) \\
\(\pm 5 \mathrm{~V}\) \\
\(\pm 5 \mathrm{~V}\) \\
\(\pm 5 \mathrm{~V}\) \\
\(\pm 525 \mathrm{~V}\)
\end{tabular} & \begin{tabular}{l}
Logic Output >2.4V \\
Logic Output \(<0.4 \mathrm{~V}\) \\
Logic Output \(>2.4 \mathrm{~V}\) \\
Logic Output <0 4V
\end{tabular} \\
\hline
\end{tabular}

LM5522/LM5523: The following apply for \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\)
LM7522/LM7523: The following apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\)

schematic diagram

connection diagram

Order Number LM5522J or LM7522J
See Package 17
Order Number LM7522N See Package 23
Order Number LM5523J or LM7523J
See Package 17
Order Number LM7523N See Package 23

\section*{AC test circuit}

\section*{voltage waveforms}

1. One strobe is grounded when the other side is being tested
2. Pulse generator characteristics.
2. Pulse generator characteristics.
\(Z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=15 \pm 5 \mathrm{~ns}\), PRR \(=1 \mathrm{MHz}\)
3. Propagation delays:
\(A=\) Differential input to logical " 0 " output
\(B=\) Differential input to logical "1" output
\(C=\) Strobe input to logical " " 0 " output
\(D=\) Strobe input to logical " 1 " output
\(E=\) Gate input to logical " " " output
\(F=\) Gate input to logical " 0 " output
LM5520/LM7520 Series

\section*{LM5524/LM7524 and LM5525/LM7525 electrical characteristics}

LM5524/LM5525: The following apply for \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\) (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{6}{|c|}{TEST CONDITIONS (EACH AMPLIFIER)} \\
\hline PARAMETER & MIN & TYP & MAX & UNIT & DIFF. INPUT & REF. INPUT & STROBE INPUT & LOGIC OUTPUT & SUPPLY VOLT. & COMMENTS \\
\hline \begin{tabular}{l}
Differential Input \\
Threshold Voltage \\
(\(\mathrm{V}_{\mathrm{TH}}\)) (Note 2) \\
Differential \& Reference Input Bias Current
\end{tabular} & \[
10(8)
\]
\[
35(33)
\] & \begin{tabular}{l}
15 \\
15 \\
40 \\
40 \\
30
\end{tabular} & \[
\begin{aligned}
& 20(22) \\
& 45(47) \\
& 100
\end{aligned}
\] & \begin{tabular}{l}
mV \\
mV mV mV \(\mu \mathrm{A}\)
\end{tabular} & \[
\begin{aligned}
& \pm V_{T H} \\
& O V
\end{aligned}
\] & 15 mV 15 mV 40 mV 40 mV OV & \[
\begin{aligned}
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{e} 2 \mathrm{~V}
\end{aligned}
\] & \[
\begin{gathered}
+16 \mathrm{~mA} \\
-400 \mu \mathrm{~A} \\
+16 \mathrm{~mA} \\
-400 \mu \mathrm{~A}
\end{gathered}
\] & \[
\begin{aligned}
& \pm 5 \mathrm{~V} \\
& \\
& \pm 525 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Logic Output \(<04 \mathrm{~V}\) \\
Logic Output \(>24 \mathrm{~V}\) \\
Logic Output \(<04 \mathrm{~V}\) \\
Logic Output >24V
\end{tabular} \\
\hline
\end{tabular}

LM7524/LM7525: The following apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Differential Input Threshold Voltage (\(\mathrm{V}_{\mathrm{TH}}\)) (Note 3) \\
Differential \& Reference Input Bias Current
\end{tabular} & \[
\begin{array}{|l|}
\hline 11(8) \\
36(33)
\end{array}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 40 \\
& 40 \\
& \\
& 30
\end{aligned}
\] & \begin{tabular}{l}
19(22) \\
44(47) \\
75
\end{tabular} & \[
\begin{aligned}
& \mathrm{mV} \\
& \mathrm{mV} \\
& \mathrm{mV} \\
& \mathrm{mV} \\
& \\
& \mu \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l}
\(\pm V_{\text {TH }}\) \\
\(\pm V_{\text {TH }}\) \\
\(\pm V_{T H}\) \\
\(\pm V_{T H}\) \\
OV
\end{tabular} & \[
\begin{aligned}
& 15 \mathrm{mV} \\
& 15 \mathrm{mV} \\
& 40 \mathrm{mV} \\
& 40 \mathrm{mV} \\
& 0 V
\end{aligned}
\] & \[
\begin{aligned}
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +525 \mathrm{~V}
\end{aligned}
\] & \[
\begin{gathered}
+16 \mathrm{~mA} \\
-400 \mu \mathrm{~A} \\
+16 \mathrm{~mA} \\
-400 \mu \mathrm{~A}
\end{gathered}
\] & \(\pm 5 \mathrm{~V} \pm 5 \%\)
\(\pm 525 \mathrm{~V}\) & \begin{tabular}{l}
Logic Output <0 4V \\
Logic Output \(>24 \mathrm{~V}\) \\
Logic Output \(<0\) 4V \\
Logic Output >24V
\end{tabular} \\
\hline
\end{tabular}

LM5524/LM5525: The following apply for \(-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}\)
LM7524/LM7525: The following apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Diff Input Offset Current & & 0.5 & & \(\mu \mathrm{A}\) & OV & OV & +5 25V & & \(\pm 525 \mathrm{~V}\) & \\
\hline Logic " 1 " Input Voltage & 2 & & & \(v\) & 40 mV & 20 mV & +2V & \(-400 \mu \mathrm{~A}\) & \(\pm 5 \mathrm{~V}\) & Logic Output \(>24 \mathrm{~V}\) \\
\hline Logic ' 0 " Input Voltage & & & 08 & \(\checkmark\) & 40 mV & 20 mV & +0.8V & +16 mA & \(\pm 5 \mathrm{~V}\) & Logic Output <0.4V \\
\hline Logic " 0 " Input Current & & -1 & -16 & mA & 40 mV & 20 mV & +0.4V & & \(\pm 525 \mathrm{~V}\) & \\
\hline Logic "1" Input & & 5 & 40 & \(\mu \mathrm{A}\) & OV & 20 mV & +2 4V & & \(\pm 525 \mathrm{~V}\) & \\
\hline Current & & 0.02 & 1 & mA & OV & 20 mV & \(+5.25 \mathrm{~V}\) & & \(\pm 5.25 \mathrm{~V}\) & \\
\hline Logic "1" Output Voltage & 2.4 & 3.9 & & \(v\) & 40 mV & 20 mV & +20V & \(-400 \mu \mathrm{~A}\) & \(\pm 475 \mathrm{~V}\) & \\
\hline Logic "0" Output Voltage & & 025 & 0.40 & v & 40 mV & 20 mV & +0.8V & + 16 mA & \(\pm 475 \mathrm{~V}\) & \\
\hline Output Short Circuit Current & -2 1 & -28 & -3.5 & mA & 40 mV & 20 mV & +5 25V & OV & \(\pm 5.25 \mathrm{~V}\) & \\
\hline \(\mathrm{V}^{+}\)Supply Current & & 29 & 40 & mA & OV & 20 mV & OV & & \(\pm 525 \mathrm{~V}\) & \\
\hline \(\mathrm{V}^{-}\)Supply Current & & -13 & -18 & mA & OV & 20 mV & OV & & \(\pm 525 \mathrm{~V}\) & \\
\hline
\end{tabular}

LM5524/LM5525 and LM7524/LM7525: The following apply for \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}\)

Note 1: For \(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\) operation, electrical characteristics for LM5524 and LM5525 are guaranteed the same as LM7524 and LM7525 respectively.
Note 2: Limıts in parentheses pertain to LM5525, other limits pertaın to LM5524.
Note 3: Limits in parentheses pertain to LM7525, other limits pertain to LM7524.
Note 4: Positive current is defıned as current into the referenced pin.
Note 5: Pin 1 to have \(\geq 100 \mathrm{pF}\) capacitor connected to ground.

LM5524/LM7524 and LM5525/LM7525
schematic diagram

connection diagram

Order Number LM5524J or LM7524J
See Package 17
Order Number LM7524N See Package 23
Order Number LM5525J or LM7525J
See Package 17
Order Number LM7525N See Package 23

\section*{AC test circuit}

voltage waveforms

1. Pulse generator characteristics:
\(Z_{\text {OUT }}=50 \Omega, \mathrm{t}_{\mathrm{t}}=\mathrm{t}_{\mathrm{f}}=15 \pm 5 \mathrm{~ns}\), PRR \(=1 \mathrm{MHz}\)
2. Propagation delays:
\(A=\) Differential input to logical " 1 " output
\(B=\) Differential input to logical " 0 " output
C Strobe input to logical " 1 " output
\(D=\) Strobe input to logical " 0 " output

LM5528/LM7528 and LM5529/LM7529 electrical characteristics
LM5528/LM5529: The following apply for \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\) (Note 1)

LM7528/LM7529: The following apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Differential Input \\
Threshold Voltage \\
(\(\mathrm{V}_{\mathrm{TH}}\)) (Note 3) \\
Differential \& Reference Input Bias Current
\end{tabular} & \[
\begin{aligned}
& 11(8) \\
& 36(33)
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 40 \\
& 40 \\
& 30
\end{aligned}
\] & \begin{tabular}{l}
19(22) \\
44(47) \\
75
\end{tabular} & \begin{tabular}{l}
mV \\
mV \\
mV \\
mV \\
\(\mu \mathrm{A}\)
\end{tabular} & \begin{tabular}{l}
\(\pm V_{T H}\) \\
\(\pm V_{T H}\) \\
\(\pm V_{T H}\) \\
\(\pm V_{T H}\) \\
OV
\end{tabular} & 15 mV 15 mV 40 mV 40 mV OV & \begin{tabular}{l}
\(+5 \mathrm{~V}\) \\
\(+5 \mathrm{~V}\) \\
\(+5 \mathrm{~V}\) \\
\(+5 \mathrm{~V}\) \\
\(+525 \mathrm{~V}\)
\end{tabular} & \[
\begin{gathered}
+16 \mathrm{~mA} \\
-400 \mu \mathrm{~A} \\
+16 \mathrm{~mA} \\
-400 \mu \mathrm{~A}
\end{gathered}
\] & \[
\begin{aligned}
& \pm 5 \mathrm{~V} \\
& \\
& \pm 525 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Logic Output <0 4V \\
Logic Output \(>24 \mathrm{~V}\) \\
Logic Output \(<04 \mathrm{~V}\) \\
Logic Output \(>24 \mathrm{~V}\)
\end{tabular} \\
\hline \multicolumn{11}{|l|}{LM5528/LM5529: The following apply for \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\) LM7528/LM7529: The following apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\)} \\
\hline \begin{tabular}{l}
Diff Input Offset Current \\
Logic "1" Input Voltage \\
Logic "0" Input Voltage \\
Logic " 0 " Input Current \\
Logic " 1 " Input \\
Current \\
Logic "1" Output Voltage \\
Logic "0" Output Voltage \\
Output Short Circuit \\
Current \\
\(\mathrm{v}^{+}\)Supply Current \\
\(\mathrm{V}^{-}\)Supply Current
\end{tabular} & 2

2.4
-21 & 05
-1
5
0.02
3.9
0.25
-28
29
-13 & \[
\begin{gathered}
08 \\
-1.6 \\
40 \\
1 \\
040 \\
-35 \\
40 \\
-18
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(v\) \\
v \\
mA \\
\(\mu \mathrm{A}\) \\
mA \\
v \\
v \\
mA \\
mA \\
mA
\end{tabular} & \begin{tabular}{l}
OV \\
40 mV \\
40 mV \\
40 mV \\
OV \\
OV \\
40 mV \\
40 mV \\
40 mV \\
OV \\
ov
\end{tabular} & \begin{tabular}{l}
OV \\
20 mV \\
20 mV
\end{tabular} & \begin{tabular}{l}
\(+525 \mathrm{~V}\) \\
\(+2 \mathrm{~V}\) \\
\(+08 \mathrm{~V}\) \\
\(+04 \mathrm{~V}\) \\
\(+24 \mathrm{~V}\) \\
\(+5.25 \mathrm{~V}\) \\
\(+20 \mathrm{~V}\) \\
\(+08 \mathrm{~V}\) \\
\(+525 \mathrm{~V}\) \\
OV \\
ov
\end{tabular} & \(-400 \mu \mathrm{~A}\)
+16 mA

\(-400 \mu \mathrm{~A}\)
+16 mA
0 V & \[
\begin{aligned}
& \pm 525 \mathrm{~V} \\
& \pm 5 \mathrm{~V} \\
& \pm 5 \mathrm{~V} \\
& \pm 525 \mathrm{~V} \\
& \pm 5.25 \mathrm{~V} \\
& \pm 525 \mathrm{~V} \\
& \pm 475 \mathrm{~V} \\
& \pm 475 \mathrm{~V} \\
& \pm 525 \mathrm{~V} \\
& \pm 525 \mathrm{~V} \\
& \pm 5.25 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Logic Output >24V \\
Logic Output \(<04 \mathrm{~V}\)
\end{tabular} \\
\hline
\end{tabular}

LM5528/LM5529 and LM7528/LM7529: The following apply for \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline AC Common-Mode Input Firing Voltage & \(\pm 25\) & & V & PULSE & 20 mV & \(+5 \mathrm{~V}\) & SCOPE & \\
\hline Propagation Delays & & & & & & & & \\
\hline Differential Input to Logical "1" Output & 20 & 40 & ns & & 20 mV & & & AC Test Circuit \\
\hline Differential Input to Logical " 0 " Output & 28 & & ns & & 20 mV & & & AC Test Circuit \\
\hline Strobe Input to Logical "1" Output & 10 & 30 & ns & & 20 mV & & & AC Test Circuit \\
\hline Strobe Input to Logical " 0 " Output & 20 & & ns & & 20 mV & & & AC Test Circuit \\
\hline Differential Input Overload Recovery Time & 10 & & ns & & & & & \\
\hline Common-Mode Input Overload Recovery Time & 5 & & ns & & & & & \\
\hline Min. Cycle Time & 200 & & ns & & & & & \\
\hline
\end{tabular}

Note 1: For \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\) operation, electrical characteristics for LM5528 and LM5529 are guaranteed the same as LM7528 and LM7529 respectively.
Note 2: Limits in parentheses pertain to LM5529, other limits pertain to LM5528.
Note 3: Limits in parentheses pertain to LM7529, other limits pertain to LM7528.
Note 4: Positive current is defined as current into the referenced pin.
Note 5: Pin 1 to have \(\geq 100 \mathrm{pF}\) capacitor connected to ground.
Note 6: Each test point to have \(\leq 15 \mathrm{pF}\) capacitive load to ground.

\section*{AC test circuit}

voltage waveforms

\section*{LM5534/LM7534 and LM5535/LM7535 electrical characteristics}

LM5534/LM5535: The following apply for \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\) (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{6}{|c|}{TEST CONDITIONS (EACH AMPLIFIER)} \\
\hline PARAMETER & MIN & TYP & MAX & UNIT & DIFF. INPUT & REF. INPUT & STROBE INPUT & \[
\begin{aligned}
& \text { LOGIC } \\
& \text { OUTPUT }
\end{aligned}
\] & \[
\begin{gathered}
\text { SUPPLY } \\
\text { VOLT. }
\end{gathered}
\] & COMMENTS \\
\hline \begin{tabular}{l}
Differential Input Threshold Voltage (\(V_{T H}\)) (Note 2) \\
Differential \& Reference Input Bias Current
\end{tabular} & \[
\left.\begin{aligned}
& 10(8) \\
& 35(33)
\end{aligned} \right\rvert\,
\] & \begin{tabular}{l}
15 \\
15 \\
40 \\
40 \\
30
\end{tabular} & \[
\begin{aligned}
& 20(22) \\
& 45(47) \\
& 100
\end{aligned}
\] & \begin{tabular}{l}
mV \\
mV \\
mV \\
mV \\
\(\mu \mathrm{A}\)
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \pm V_{T H} \\
& \pm V_{T H} \\
& \pm V_{T H} \\
& \pm V_{T H}
\end{aligned}
\] \\
OV
\end{tabular} & \begin{tabular}{l}
15 mV 15 mV 40 mV 40 mV \\
OV
\end{tabular} & \[
\begin{aligned}
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +525 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& +525 \mathrm{~V} \\
& +20 \mathrm{~mA} \\
& +525 \mathrm{~V} \\
& +20 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 5 \mathrm{~V} \\
& \pm 525 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Logic Output \(<250 \mu \mathrm{~A}\) \\
Logic Output <04V \\
Logic Output \(<250 \mu \mathrm{~A}\) \\
Logic Output \(<04 \mathrm{~V}\)
\end{tabular} \\
\hline
\end{tabular}

LM7534/LM7535: The following apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\)

LM5534/LM5535: The following apply for \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\)
LM7534/LM7535: The following apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Diff Input Offset Current & & 05 & & \(\mu \mathrm{A}\) & OV & OV & +525V & & \(\pm 525 \mathrm{~V}\) & \\
\hline Logic " 0 " Input Voltage & & & 0.8 & \(V\) & 40 mV & 20 mV & +08V & +5.25V & \(\pm 5 \mathrm{~V}\) & Logic Output <250 \(\mu \mathrm{A}\) \\
\hline Logic "1" Input Voltage & 2.0 & & & \(V\) & 40 mV & 20 mV & \(+2.0 \mathrm{~V}\) & +20 mA & \(\pm 5 \mathrm{~V}\) & Logic Output < 0.4 V \\
\hline Logic " 0 " Input Current & & -1 & -1.6 & mA & 40 mV & 20 mV & +0.4V & & \(\pm 5.25 \mathrm{~V}\) & \\
\hline Logic "1" Input & & 5 & 40 & \(\mu \mathrm{A}\) & OV & 20 mV & +2.4V & & \(\pm 525 \mathrm{~V}\) & \\
\hline Current & & 0.02 & 1 & mA & OV & 20 mV & +5 25V & & \(\pm 525 \mathrm{~V}\) & \\
\hline Logic '0' Output Voltage & & 0.25 & 0.40 & V & 40 mV & 20 mV & +2V & +20 mA & \(\pm 4.75 \mathrm{~V}\) & \\
\hline Output Leakage Current & & 0.01 & 250 & \(\mu \mathrm{A}\) & 40 mV & 20 mV & +0.8V & +5 25V & \(\pm 475 \mathrm{~V}\) & \\
\hline \(\mathrm{V}^{+}\)Supply Current & & 28 & 38 & \(m A\) & OV & 20 mV & OV & & \(\pm 525 \mathrm{~V}\) & \\
\hline \(\checkmark^{-}\)Supply Current & & -13 & -18 & mA & OV & 20 mV & OV & & \(\pm 525 \mathrm{~V}\) & \\
\hline
\end{tabular}

LM5534/LM5535 and LM7534/LM7535: The following apply for \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline AC Common-Mode Input Firing Voltage & \(\pm 2.5\) & & V & PULSE & 20 mV & +5V & SCOPE & \\
\hline Propagation Delays & & & & & & & & \\
\hline Differential Input to Logical "1" Output & 24 & & ns & & 20 mV & & & AC Test Circuit \\
\hline Differential Input to Logical ' 0 " Output & 20 & 40 & ns & & 20 mV & & & AC Test Circuit \\
\hline Strobe Input to Logical "1" Output & 16 & & ns & & 20 mV & & & AC Test Circuit \\
\hline Strobe Input to Logical " 0 " Output & 10 & 30 & ns & & 20 mV & & & AC Test Circuit \\
\hline Differential Input Over load Recovery Time & 10 & & ns & & & & & \\
\hline Common-Mode Input Overload Recovery Time & 5 & & ns & & & & & \\
\hline Min. Cycle Time & 200 & & ns & & & & & \\
\hline
\end{tabular}

Note 1: For \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\) operation, electrical characteristics for LM5534 and LM5535 are guaranteed the same as LM7534 and LM7535 respectively
Note 2: Limits in parentheses pertain to LM5535, other limits pertain to LM5534.
Note 3: Limits in parentheses pertain to LM7535, other limits pertain to LM7534.
Note 4: Positive current is defined as current into the referenced pin.
Note 5: Pin 1 to have \(\geq 100 \mathrm{pF}\) capacitor connected to ground.

LM5534/LM7534 and LM5535/LM7535
schematic diagram

connection diagram

Order Number LM5534J or LM7534J
See Package 17
Order Number LM7534N See Package 23
Order Number LM5535J or LM7535J
See Package 17
Order Number LM7535N See Package 23

\section*{AC test circuit}

voltage waveforms

\section*{LM5538/LM7538 and LM5539/LM7539 electrical characteristics}

LM5538/LM5539: The following apply for \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\) (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{6}{|c|}{TEST CONDITIONS (EACH AMPLIFIER)} \\
\hline PARAMETER & MIN & TYP & MAX & UNIT & DIFF. INPUT & REF. INPUT & STROBE INPUT & \[
\begin{aligned}
& \text { LOGIC } \\
& \text { OUTPUT }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SUPPLY } \\
& \text { VOLT. }
\end{aligned}
\] & COMMENTS \\
\hline \begin{tabular}{l}
Differential Input \\
Threshold Voltage (\(V_{T H}\)) (Note 2) \\
Differential \& Reference Input Bias Current
\end{tabular} & \[
\left|\begin{array}{l}
10(8) \\
35(33)
\end{array}\right|
\] & \[
\begin{aligned}
& 15 \\
& 15 \\
& 40 \\
& 40 \\
& 30
\end{aligned}
\] & \[
\begin{array}{|l}
20(22) \\
45(47) \\
100
\end{array}
\] & \begin{tabular}{l}
mV \\
mV \\
\(m V\) \\
mV \\
\(\mu \mathrm{A}\)
\end{tabular} & \begin{tabular}{l}
\(\pm V_{T H}\) \\
\(\pm V_{T H}\) \\
\(\pm V_{T H}\) \\
\(\pm V_{T H}\) \\
OV
\end{tabular} & \[
\begin{gathered}
15 \mathrm{mV} \\
15 \mathrm{mV} \\
40 \mathrm{mV} \\
40 \mathrm{mV} \\
0 \mathrm{~V}
\end{gathered}
\] & \[
\begin{aligned}
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +525 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& +525 \mathrm{~V} \\
& +20 \mathrm{~mA} \\
& +525 \mathrm{~V} \\
& +20 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 5 \mathrm{~V} \\
& \\
& \pm 5.25 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Logic Output \(<\mathbf{2 5 0} \mu \mathrm{A}\) \\
Logic Output <0 4V \\
Logic Output \(<250 \mu \mathrm{~A}\) \\
Logic Output <0 4V
\end{tabular} \\
\hline \multicolumn{11}{|l|}{LM7538/LM7539: The following apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}\)} \\
\hline \begin{tabular}{l}
Differential Input \\
Threshold Voltage (\(V_{\text {TH }}\)) (Note 3) \\
Differential \& Reference Input Bias Current
\end{tabular} & \[
\begin{aligned}
& 11(8) \\
& 36(33)
\end{aligned}
\] & & \[
\begin{aligned}
& 19(22) \\
& 44(47) \\
& 75
\end{aligned}
\] & \begin{tabular}{l}
mV \\
\(m V\) \\
mV \\
mV \\
\(\mu \mathrm{A}\)
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \pm V_{T H} \\
& \pm V_{T H} \\
& \pm V_{T H} \\
& \pm V_{T H}
\end{aligned}
\] \\
OV
\end{tabular} & \begin{tabular}{l}
15 mV \\
15 mV 40 mV 40 mV
\end{tabular} & \[
\begin{aligned}
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5 \mathrm{~V} \\
& +5.25 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& +5.25 \mathrm{~V} \\
& +20 \mathrm{~mA} \\
& +5.25 \mathrm{~V} \\
& +20 \mathrm{~mA}
\end{aligned}
\] & \(\pm 5 \mathrm{~V}\)
\(\pm 5 \mathrm{~V}\)
\(\pm 5 \mathrm{~V}\)
\(\pm 5 \mathrm{~V}\)
\(\pm 525 \mathrm{~V}\) & \begin{tabular}{l}
Logic Output \(<250 \mu \mathrm{~A}\) Logic Output <0.4V \\
Logic Output \(<250 \mu \mathrm{~A}\) Logic Output <0.4V
\end{tabular} \\
\hline
\end{tabular}

LM5538/LM5539: The following apply for \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\)
LM7538/LM7539: The following apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Diff. Input Offset Current \\
Logic "1" Input Voltage \\
Logic " 0 " Input Voltage \\
Logic " 0 " Input Current \\
Logic "1" Input \\
Current \\
Logic "0" Output Voltage \\
Output Leakage Current \\
\(\mathbf{v}^{+}\)Supply Current \\
\(\mathrm{V}^{-}\)Supply Current
\end{tabular} & 2 \begin{tabular}{l|l}
0.5 \\
& \\
& \\
& -1 \\
& 5 \\
& 0.02 \\
& 0.25 \\
& 0.01 \\
& 28 \\
& -13 \\
\hline
\end{tabular} & \begin{tabular}{c}
0.8 \\
-1.6 \\
40 \\
1 \\
0.40 \\
250 \\
38 \\
-18 \\
\hline
\end{tabular} & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(v\) \\
\(v\) \\
mA \\
\(\mu \mathrm{A}\) \\
mA \\
V \\
\(\mu \mathrm{A}\) \\
mA \\
mA
\end{tabular} & OV 40 mV 40 mV 40 mV OV OV 40 mV 40 mV OV OV & \[
\begin{array}{|l|}
\hline 0 \mathrm{~V} \\
20 \mathrm{mV} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +5.25 \mathrm{~V} \\
& +2 \mathrm{~V} \\
& +0.8 \mathrm{~V} \\
& +0.4 \mathrm{~V} \\
& +2.4 \mathrm{~V} \\
& +5.25 \mathrm{~V} \\
& +2.0 \mathrm{~V} \\
& +0.8 \mathrm{~V} \\
& \mathrm{oV} \\
& \mathrm{oV} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
+20 mA \\
\(+525 \mathrm{~V}\) \\
+20 mA \\
\(+5.25 \mathrm{~V}\)
\end{tabular} & \[
\begin{aligned}
& \pm 525 \mathrm{~V} \\
& \pm 5 \mathrm{~V} \\
& \pm 5 \mathrm{~V} \\
& \pm 525 \mathrm{~V} \\
& \pm 5.25 \mathrm{~V} \\
& \pm 5.25 \mathrm{~V} \\
& \pm 475 \mathrm{~V} \\
& \pm 4.75 \mathrm{~V} \\
& \pm 5.25 \mathrm{~V} \\
& \pm 5.25 \mathrm{~V} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Logic Output <0 4V \\
Logic Output \(<\mathbf{2 5 0} \mu \mathrm{A}\)
\end{tabular} \\
\hline LM5538/LM5539 and & M7538/L & 539: & & low & g app & for & 25 & \(\mathrm{V}^{+}\) & , \(\mathrm{V}^{-}=-5 \mathrm{~V}\) \\
\hline \begin{tabular}{l}
AC Common-Mode Input Firing Voltage \\
Propagation Delays \\
Differential Input to \\
Logical " 1 " Output \\
Differential Input to \\
Logical " 0 " Output \\
Strobe Input to \\
Logical " 1 "Output \\
Strobe Input to Logical " 0 " Output \\
Differential Input Over. load Recovery Time \\
Common-Mode Input \\
Overload Recovery \\
Time \\
Min. Cycle Time
\end{tabular} & \(\pm 2.5\)
24
20
16
10
10
5
200 & 40
\[
30
\] & \begin{tabular}{l}
v \\
ns \\
ns \\
ns \\
ns \\
ns \\
ns \\
ns
\end{tabular} & PULSE & \begin{tabular}{l}
20 mV \\
20 mV \\
20 mV \\
20 mV \\
20 mV
\end{tabular} & +5V & SCOPE & & \begin{tabular}{l}
AC Test Circuit \\
AC Test Circuit \\
AC Test Circuit \\
AC Test Circuit
\end{tabular} \\
\hline
\end{tabular}

Note 1: For \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\) operation, electrical characteristics for LM5538 and LM5539 are guaranteed the same as LM7538 and LM7539 respectively.
Note 2: Limits in parentheses pertain to LM5539, other lımits pertain to LM5538.
Note 3: Limits in parentheses pertain to LM7539, other lımıts pertaın to LM7538.
Note 4: Positive current is defined as current into the referenced pin.
Note 5: Pin 1 to have \(\geq 100 \mathrm{pF}\) capacitor connected to ground.
Note 6: Each test point to have \(\leq 15 \mathrm{pF}\) capacitive load to ground.
schematic diagram

connection diagram

Order Number LM5538J or LM5538J
See Package 17
Order Number LM7538N
See Package 23
Order Number LM5539J or LM7539J
See Package 17
Order Number LM7539N
See Package 23

AC test circuit

1 Pulse generator characteristics
Pulse generator characteristics
\(Z_{\text {OUT }}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=15 \pm 5 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}\)
2 Propagatoon delays
\(\begin{array}{ll}A=\text { Differential input to logical " } 0 \text { " output } \\ B= & \end{array}\)
\(\mathbf{B}=\) Differential input to logical " 1 " outpu
\(\mathrm{C}=\) Strobe input to logical " 0 " output
D = Strobe input to logical " 1 " output
guaranteed performance characteristics

Differential Input Threshold Voltage

Differential Input Threshold Voltage

\section*{typical performance characteristics}

\section*{typical performance characteristics (cont.)}

Gate to Output Propagation

Gate to Output Propagation
Delays

\section*{typical applications}

Large Memory System with Sectored Core Planes

Small Memory System

Large Memory System
\%:

Analog Switches

\section*{AH0014/AH0014C* DPDT, AH0015/AH0015C quad SPST, AH0019/AH0019C* dual DPST-TTL/DTL compatible \\ MOS analog switches}

\section*{general description}

This series of TTL/DTL compatible MOS analog switches feature high speed with internal level shifting and driving. The package contains two monolithic integrated circuit chips: the MOS ana\(\log\) chip is similar to the MM450 type which consists of four MOS analog switch transistors; the second chip is a bipolar I.C. gate and level shifter. The series is available in both hermetic dual-in-line package and flatpack.

\section*{features}
- Large analog voltage switching \(\pm 10 \mathrm{~V}\)
- Fast switching speed 500 ns
- Operation over wide range of power supplies
- Low ON resistance
\(200 \Omega\)
- High OFF resistance
\(10^{11} \Omega\)
- Fully compatible with DTL or TTL logic
- Includes gating and level shifting

These switches are particularly suited for use in both military and industrial applications such as commutators in data acquisition systems, multiplexers, \(A / D\) and \(D / A\) converters, long time constant integrators, sample and hold circuits, modulators/demodulators, and other analog signal switching applications. For information on other National analog switches and analog interface elements, see listing on last page.

The AH0014, AH0015 and AH0019 are specified for operation over the \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) military temperature range. The AH0014C, AH0015C and AH0019C are specified for operation over the \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) temperature range.
block and connection diagrams

Order Number. AH0014F or AH0014CF
See Package 4
Quad SPST

Note All logic mputs shown at logic " 1 "
Order Number AH0015D or AH0015CD See Package 2

\section*{typical applications}

Order Number AH0014D or AH0014CD
See Package 1
Dual DPST

Order Number AH0019F or AH0019CF
See Package 4
Order Number AH0019D or AH0019CD See Package 1

\section*{absolute maximum ratings}
\begin{tabular}{lr}
V Cc Supply Voltage & 7.0 V \\
\(\mathrm{~V}^{-}\)Supply Voltage & -30 V \\
\(\mathrm{~V}^{+}\)Supply Voltage & +30 V \\
\(\mathrm{~V}^{+} / \mathrm{V}^{-}\)Voltage Differential & 40 V \\
Logic Input Voltage & 5.5 V \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Operating Temperature Range & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
AHOO14, AH0015, AH0019 & \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
AHOO14C, AH0015C, AH0019C & \(300^{\circ} \mathrm{C}\)
\end{tabular}
electrical characteristics (Notes 1 and 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Logical "1" Input Voltage & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}\) & \multirow[t]{31}{*}{2.0} & & & V \\
\hline Logical "0" Input Voltage & \[
V_{c c}=4.5 \mathrm{~V}
\] & & & 0.8 & \(V\) \\
\hline Logical "1" Input Current & \multirow[t]{2}{*}{\[
\begin{array}{ll}
V_{c C}=5.5 \mathrm{~V} & V_{I N}=2.4 \mathrm{~V} \\
V_{c C}=5.5 \mathrm{~V} & V_{I N}=5.5 \mathrm{~V}
\end{array}
\]} & & & 5 & \(\mu \mathrm{A}\) \\
\hline Logical "1" Input Current & & & & 1 & mA \\
\hline Logical " 0 " Input Current & \[
V_{c c}=5.5 \mathrm{~V} \quad V_{1 N}=0.4 \mathrm{~V}
\] & & 0.2 & 0.4 & mA \\
\hline Power Supply Current Logical " 1 " Input - each gate (Note 3) & \[
V_{c C}=5.5 \mathrm{~V} \quad V_{i N}=4.5 \mathrm{~V}
\] & & 0.85 & 1.6 & mA \\
\hline Power Supply Current Logical " 0 " Input - each gate (Note 3) & \multirow[t]{4}{*}{\(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}\)} & & & & \\
\hline AH0014, AH0014C & & & 1.5 & 3.0 & mA \\
\hline AH0015, AH0015C & & & 0.22 & 0.41 & mA \\
\hline AH0019, AH0019C & & & 0.22 & 0.41 & mA \\
\hline \multirow[t]{2}{*}{Analog Switch ON Resistance - each gate} & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{\text {iN }}(\text { Analog })=+10 \mathrm{~V} \\
& V_{\text {IN }}(\text { Analog })=-10 \mathrm{~V}
\end{aligned}
\]} & & 75 & 200 & \(\Omega\) \\
\hline & & & 150 & 600 & \(\Omega\) \\
\hline Analog Switch OFF Resistance & & & \(10^{11}\) & & \(\Omega\) \\
\hline Analog Switch Input Leakage Current each input (Note 4) & \(V_{\text {IN }}=-10 \mathrm{~V}\) & & & & \\
\hline \multirow[t]{2}{*}{AH0014, AH0015, AH0019} & \[
T_{A}=25^{\circ} \mathrm{C}
\] & & 25 & 200 & pA \\
\hline & \[
T_{A}=125^{\circ} \mathrm{C}
\] & & 25 & 200 & nA \\
\hline \multirow[t]{2}{*}{AH0014C, AH0015C, AH0019C} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}
\end{aligned}
\]} & & 0.1 & 10 & nA \\
\hline & & & 30 & 100 & nA \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Analog Switch Output Leakage } \\
& \text { Current - each output (Note 4) } \\
& \text { AH0014, AH0015, AH0019 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OUT }}=-10 \mathrm{~V}\)} & & & & \\
\hline & & & & & \\
\hline & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 40 & 400 & pA \\
\hline & \(\mathrm{T}_{A}=125^{\circ} \mathrm{C}\) & & 40 & 400 & nA \\
\hline \multirow[t]{2}{*}{AH0014C, AH0015C, AH0019C} & \multirow[t]{2}{*}{\[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{A}=70^{\circ} \mathrm{C}
\end{aligned}
\]} & & 0.05 & 10 & nA \\
\hline & & & 4 & 50 & nA \\
\hline Analog Input (Drain) Capacitance & 1 MHz @ Zero Bias & & 8 & 10 & pF \\
\hline Output Source Capacitance & 1 MHz @ Zero Bias & & 11 & 13 & pF \\
\hline Analog Turn-OFF Time - \(\mathrm{t}_{\text {OFF }}\) & See test circuit; \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\) & & 400 & 500 & ns \\
\hline Analog Turn-ON Time - \(\mathrm{t}_{\text {ON }}\) & \multirow[t]{4}{*}{See test circuit; \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\)} & & & & \\
\hline AH0014, AH0014C & & & 350 & 425 & ns \\
\hline AH0015, AH0015C & & & 100 & 150 & ns \\
\hline AH0019, AH0019C & & & 100 & 150 & ns \\
\hline
\end{tabular}

Note 1: Min/max limits apply across the guaranteed temperature range of \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) for AHOO14, AHOO15, AHOO19 and \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) for AH0014C, AH0015C, AH0019C. \(\mathrm{V}^{-}=-20 \mathrm{~V}\). \(\mathrm{V}^{+}=+10 \mathrm{~V}\) and an analog test current of 1 mA uniess otherwise specified.
Note 2: All typical values are measured at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) with \(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V} . \mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}^{-}=-22 \mathrm{~V}\).
Note 3: Current measured is drawn from \(V_{\text {CC }}\) supply.
Note 4: All analog switch pins except measurement pin are tied to \(\mathrm{V}^{+}\)

\section*{analog switch characteristics (Note 2)}

\section*{selecting power supply voltage}

The graph shows the boundary conditions which must be used for proper operation of the unit. The range of operation for power supply \(\mathrm{V}^{-}\)is shown on the X axis. It must be between -25 V and -8 V . The allowable range for power supply \(\mathrm{V}^{+}\)is governed by supply \(\mathrm{V}^{-}\). With a value chosen for \(\mathrm{V}^{-}, \mathrm{V}^{+}\)may be selected as any value along a vertical line passing through the \(\mathrm{V}^{-}\)value and terminated by the boundaries of the operating region. A voltage difference between power supplies of at least 5 V should be maintained for adequate signal swing.

\section*{Analog Switches}

\section*{AH0120/AH0130/AH0140/AH0150/AH0160 series analog switches}

\section*{general description}

The AH0100 series represents a complete family of junction FET analog switches. The inherent flexibility of the family allows the designer to tailor the device selection to the particular application. Switch configuratıons avallable include dual DPST, dual SPST, DPDT, and SPDT. \(\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}\) ranges from 10 ohms through 100 ohms. The series is available in both 14 lead flat pack and 14 lead cavity DIP. Important design features include:
- TTL/DTL and RTL compatible logic inputs
- Up to 20 V p-p analog input signal
- \(r_{d s(O N)}\) less than \(10 \Omega\) (AH0140, AH0141, AHO145, AHO146)
- Analog signals in excess of 1 MHz
- "OFF" power less than 1 mW
- Gate to drain bleed resistors eliminated
- Fast switching, \(\mathrm{t}_{\mathrm{ON}}\) is typically \(.4 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{OFF}}\) is \(1.0 \mu \mathrm{~s}\)
- Operation from standard op amp supply voltages, \(\pm 15 \mathrm{~V}\), available (AH0150/AHO160 series)
- Pin compatible with the popular DG 100 series.

The AH0100 series is designed to fulfill a wide variety of analog switching applications including commutators, multiplexers, D/A converters, sample and hold circuits, and modulators/demodulators. The AH0100 series is guaranteed over the temperature range \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\); whereas, the AH0100C series is guaranteed over the temperature range \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\).

\section*{schematic diagrams}

DUAL DPST and DUAL SPST

Note Dotted line portions are not applicable to the dual SPST.

\section*{logic and connection diagrams}

Note Dotted line portions are not applicable to the SPDT (differential)

Order any of the devices below using the part number with a D or F suffix. See Packages 1 and 4.

\section*{absolute maximum ratings}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
High \\
Level
\end{tabular} & Medium Level \\
\hline Total Supply Voltage (\(\mathrm{V}^{+}-\mathrm{V}^{-}\)) & 36 V & 34 V \\
\hline Analog Signal Voltage (\(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{A}}\) or \(\mathrm{V}_{\mathrm{A}}-\mathrm{V}^{-}\)) & 30 V & 25 V \\
\hline Positive Supply Voltage to Reference (\(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{R}}\)) & 25 V & 25 V \\
\hline Negatıve Supply Voltage to Reference (\(\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-}\)) & 22 V & 22 V \\
\hline Positive Supply Voltage to Input (\(\mathrm{V}^{+}-\mathrm{V}_{\text {IN }}\)) & 25 V & 25 V \\
\hline Input Voltage to Reference (\(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{R}}\)) & \(\pm 6 \mathrm{~V}\) & \(\pm 6 \mathrm{~V}\) \\
\hline Differential Input Voltage (\(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {IN } 2}\)) & \(\pm 6 \mathrm{~V}\) & \(\pm 6 \mathrm{~V}\) \\
\hline Input Current, Any Terminal & 30 mA & 30 mA \\
\hline Power Dissipation & \multicolumn{2}{|r|}{See Curve} \\
\hline Operating Temperature Range AH0100 Series & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)} \\
\hline AH0100C Series & \multicolumn{2}{|l|}{\(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)} \\
\hline Storage Temperature Range & \multicolumn{2}{|l|}{\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)} \\
\hline Lead Temperature (Soldering, 10 sec) & \multicolumn{2}{|r|}{\(300^{\circ} \mathrm{C}\)} \\
\hline
\end{tabular}
electrical characteristics for "HIGH LEVEL" Switches (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{4}{|c|}{DEVICE TYPE} & CONDITIONS & \multicolumn{2}{|r|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & DUAL DPST & DUAL SPST & DPDT (DIFF) & SPDT (DIFF) & \(\mathrm{V}^{+}=120 \mathrm{~V}, \mathrm{~V}^{-}=-180 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=00 \mathrm{~V}\) & TYP & MAX & \\
\hline \begin{tabular}{l}
Logıc " 1 " \\
Input Current
\end{tabular} & \(\mathrm{I}_{\text {IN(ON }}\) & \multicolumn{4}{|c|}{All Circuits} & Note \(2 \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}\) & 20 & 60 & \(\mu \mathrm{A}\) \\
\hline Logıc " 0 " & & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{All Circuits}} & Note \(2 \quad \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C}\) & 01 & . 1 & \(\mu \mathrm{A}\) \\
\hline Input Current & (in'OFF) & & & & & Note 2 Over Temp Range & & 20 & \(\mu \mathrm{A}\) \\
\hline Positive Supply Current & & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{All Circuits}} & One Driver ON Note \(\quad T_{A}=25^{\circ} \mathrm{C}\) & 22 & 30 & mA \\
\hline Switch ON & (ON) & & & & & One Driver ON Note \(2 \quad\) Over Temp Range & & 33 & mA \\
\hline Negative Supply & \(\mathrm{I}^{-1}\) & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{All Circuits}} & One Driver ON Nate \(2 \quad T_{A}=25^{\circ} \mathrm{C}\) - & -10 & -18 & \(m A\) \\
\hline Current Switch ON & (1ON) & & & & & One Driver ON Note \(2 \quad\) Over Temp Range & & -20 & \(m A\) \\
\hline Reference Input & & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{All Circuits}} & One Driver ON Note \(2 \quad T_{A}=25^{\circ} \mathrm{C}\) & -10 & -14 & mA \\
\hline (Enable) ON Current & R(ON) & & & & & One Driver ON Note 2 Over Temp Range & & -16 & \(\overline{m A}\) \\
\hline Positive Supply & & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{All Circuits}} & \(V_{1 N 1}=V_{1 N 2}=08 \mathrm{~V} \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}\) & 10 & 10 & \(\mu \mathrm{A}\) \\
\hline Current Switch OFF & (OFF) & & & & & \(V_{1 N 1}=V_{\text {IN2 }}=08 \mathrm{~V} \quad\) Over Temp Range & & 25 & \(\mu \mathrm{A}\) \\
\hline Negative Supply & \(1^{-}\)(OFF) & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{All Circuits}} & \(V_{1 N 1}=V_{1 N 2}=08 \mathrm{~V} \quad T_{A}=25^{\circ} \mathrm{C}\) & \(-10\) & -10 & \(\mu \mathrm{A}\) \\
\hline Current Switch OFF & 1 (OFF) & & & & & \(V_{1 N 1}=V_{\text {iN2 }}=08 \mathrm{~V} \quad\) Over Temp Range & & -25 & \(\mu \mathrm{A}\) \\
\hline Reference Input & & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{All Circuits}} & \(V_{\text {IN } 1}=V_{\text {IN } 2}=08 \mathrm{~V} \quad \frac{T_{A}=25^{\circ} \mathrm{C}}{\text { Over }}\) & -10 & -10 & \(\mu \mathrm{A}\) \\
\hline (Enable) OFF Current & R(OFF) & & & & & \(V_{\text {IN1 }}=V_{\text {IN2 }}=08 \mathrm{~V} \quad\) Over Temp Range & & -25 & \(\mu \mathrm{A}\) \\
\hline Switch ON Resistance & \(\mathrm{ras}_{\text {(}}^{\text {(ON }}\)) & AH0126 & AH0134 & AH0142 & AH0143 & \[
\begin{array}{ll}
V_{D}=10 \mathrm{~V} & T_{A}=25^{\circ} \mathrm{C} \\
I_{D}=1 \mathrm{~mA} & \text { Over Temp Range }
\end{array}
\] & 45 & 80
150 & \[
\begin{aligned}
& \Omega \\
& \Omega
\end{aligned}
\] \\
\hline Switch ON Resistance & \(\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}\) & AH0129 & AH0133 & AH0139 & AH0144 & \[
\begin{array}{ll}
V_{D}=10 \mathrm{~V} & T_{A}=25^{\circ} \mathrm{C} \\
I_{D}=1 \mathrm{~mA} & \text { Over Temp Range }
\end{array}
\] & 25 & 30 & ת \(\Omega\) \\
\hline \multirow[t]{2}{*}{Switch ON Resistance} & & \multirow[t]{2}{*}{AH0140} & \multirow[t]{2}{*}{AH0141} & \multirow[t]{2}{*}{AH0145} & \multirow[t]{2}{*}{AH0146} & \(\nabla_{D}=10 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 8 & 10 & \(\Omega\) \\
\hline & \(\mathrm{r}_{\mathrm{ds}}(\mathrm{ON})\) & & & & & \(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA} \quad\) Over Temp Range & & 20 & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Driver Leakage Current} & \multirow[t]{2}{*}{\(\left(I_{0}+I_{\text {S }}\right)_{\text {ON }}\)} & \multicolumn{4}{|c|}{All Circuits} & \(V_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 01 & 1 & \(n \mathrm{~A}\) \\
\hline & & & All & cuits & & \(V_{O}=V_{S}=-10 \mathrm{~V} \quad\) Over Temp Range & & 100 & nA \\
\hline Switch Leakage & \(I_{\text {S (OFF) }}\) OR & AH0126 & AH0134 & AH0142 & AH0143 & \(V_{D S}=+20 \mathrm{~V} \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\) & 08 & 1 & nA \\
\hline Current & Idoff) & AH0129 & AH0133 & AH0139 & AH0144 & \(V_{\text {DS }}= \pm 20 \mathrm{~V} \quad\) Over Temp Range & & 100 & nA \\
\hline Switch Leakage & IStoff) OR & & & & & S \(= \pm 20 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 4 & 10 & nA \\
\hline Current & Idofa) & AH0140 & AH0141 & AH0145 & AH0146 & OS \(= \pm 20 \mathrm{~V} \quad\) Over Temp Range & & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{Switch Turn-ON Time} & \multirow[b]{2}{*}{ton} & AH0126 & AH0134 & AH0142 & AH0143 & See Test Circuit & 05 & 08 & \(\mu s\) \\
\hline & & AH0129 & AH0133 & AH0139 & AH0144 & \(V_{A}= \pm 10 \mathrm{~V} \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\) & 05 & 0 & \(\mu s\) \\
\hline Switch Turn-ON Time & \({ }^{\text {ton }}\) & AH0140 & AH0141 & AH0145 & AH0146 & See Test Circuit
\[
V_{A}= \pm 10 \mathrm{~V} \quad T_{A}=25^{\circ} \mathrm{C}
\] & 08 & 1.0 & \(\mu \mathrm{s}\) \\
\hline \multirow[t]{2}{*}{Switch Turn-OFF Time} & \multirow[b]{2}{*}{\({ }^{\text {tofF }}\)} & \multirow[t]{2}{*}{AH0126
AH0129} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { AHO134 } \\
& \text { AHO133 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { AHO142 } \\
& \text { AH0139 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { AHO143 } \\
& \text { AHO144 }
\end{aligned}
\]} & See Test Circuit & \multirow[t]{2}{*}{09} & \multirow[t]{2}{*}{16} & \multirow[t]{2}{*}{\(\mu \mathrm{s}\)} \\
\hline & & & & & & \(V_{A}= \pm 10 \mathrm{~V} \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\) & & & \\
\hline Switch Turn-OFF Time & toff & AH0140 & AH0141 & AH0145 & AH0146 & See Test Circuit
\[
V_{A}= \pm 10 \mathrm{~V} \quad T_{A}=25^{\circ} \mathrm{C}
\] & 11 & 25 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

Note 1: Unless otherwise specified these limits apply for \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) for the \(\mathrm{AH0100}\) series
and \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) for the AH 0100 C series. All typical values are for \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: For the DPST and Dual DPST, the ON condition is for \(\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}\); the OFF condition is for \(\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}\). For the differential switches and SW 1 and \(2 \mathrm{ON}, \mathrm{V}_{\text {IN2 }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN1 }}=3.0 \mathrm{~V}\). For SW 3 and \(4 \mathrm{ON}, \mathrm{V}_{\mathrm{IN} 2}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 1}=2.0 \mathrm{~V}\).
electrical characteristics for "MEDIUM LEVEL" Switches (Note 1)

Note 1: Unless otherwise specified, these limits apply for \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) for the \(\mathrm{AHO1OO}\) series and \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) for the \(\mathrm{AHO1OOC}\) series. All typical values are for \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: For the DPST and Dual DPST, the ON condition is for \(V_{I N}=2.5 \mathrm{~V}\); the OFF condition is for \(\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}\). For the differential switches and SW 1 and \(2 \mathrm{ON}, \mathrm{V}_{\text {IN2 }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN1 }}=3.0 \mathrm{~V}\). For SW 3 and \(4 \mathrm{ON}, \mathrm{V}_{\text {IN2 }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN1 }}=2.0 \mathrm{~V}\).
typical performance characteristics

\section*{switching time test circuits}

\section*{Single Ended Input}

Differential Input

\section*{applications information}

\section*{1. INPUT LOGIC COMPATIBILITY}

\section*{A. Voltage Considerations}

In general, the AH0100 series is compatible with most DTL, TTL, and RTL logic families. The ONinput threshold is determined by the \(\mathrm{V}_{\mathrm{BE}}\) of the input transistor plus the \(\mathrm{V}_{f}\) of the diode in the emitter leg, plus \(1 \times R_{1}\), plus \(V_{R}\). At room temperature and \(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}\), the nominal ON threshold is: \(0.7 \mathrm{~V}+0.7 \mathrm{~V}+0.2 \mathrm{~V},=1.6 \mathrm{~V}\). Over temperature and manufacturing tolerances, the threshold may be as high as 2.5 V and as low as 0.8 V . The rules for proper operation are:
\(V_{I N}-V_{R} \geq 2.5 V\) All switches ON
\(V_{I N}-V_{R} \leq 0.8 V\) All switches OFF

B. Input Current Considerations
\(I_{\text {IN(ON) }}\), the current drawn by the driver with \(\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}\) is typically \(20 \mu \mathrm{~A}\) at \(25^{\circ} \mathrm{C}\) and is guaranteed less than \(120 \mu \mathrm{~A}\) over temperature. DTL, such as the DM930 series can supply \(180 \mu \mathrm{~A}\) at logic " 1 " voltages in excess of 2.5 V . TTL output levels are comparable at \(400 \mu \mathrm{~A}\). The DTL and TTL can drive the AHO100 series directly. However, at low temperature, DC noise margin in the logic " 1 " state is eroded with DTL. A pull-up resistor of \(10 \mathrm{k} \Omega\) is recommended when using DTL over military temperature range.

If more than one driver is to be driven by a DM930 series (6 K) gate, an external pull-up resistor should be added. The value is given by:
\[
R_{P}=\frac{11}{N-1} \text { for } N>2
\]
where:
\(R_{p}=\) value of the pull-up resistor in \(k \Omega\)
\(N=\) number of drivers.

\section*{C. Input Slew Rate}

The slew rate of the logic input must be in excess of \(0.3 \mathrm{~V} / \mu \mathrm{s}\) in order to assure proper operation of the analog switch. DTL, TTL, and RTL output rise times are far in excess of the minimum slew rate requirements. Discrete logic designs, however, should include consideration of input rise time.

\section*{2. ENABLE CONTROL}

The application of a positive signal at the \(\mathrm{V}_{\mathrm{R}}\)
terminal will open all switches. The \(\mathrm{V}_{\mathrm{R}}\) (ENABLE) signal must be capable of rising to within 0.8 V of \(V_{\text {IN(ON) }}\) in the OFF state and of sinking \(I_{\text {R(ON) }}\) milliamps in the ON state (at \(\mathrm{V}_{\text {IN(ON }}\) - \(-\mathrm{V}_{\mathrm{R}}>\) 2.5 V). The \(\mathrm{V}_{\mathrm{R}}\) terminal can be driven from most TTL and DTL gates.

\section*{3. DIFFERENTIAL INPUT CONSIDERATIONS}

The differential switch driver is essentially a differential amplifier. The input requirements for proper operation are:
\[
\begin{aligned}
& \left|V_{I N 1}-V_{I N 2}\right| \geq 0.3 V \\
& 2.5 \leq\left(V_{I N 1} \text { or } V_{I N 2}\right)-V_{R} \leq 5 V
\end{aligned}
\]

The differential driver may be furnished by a DC level as shown below. The level may be derived from a voltage divider to \(\mathrm{V}^{+}\)or the \(5 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}\) of the DTL logic. In order to assure proper operation, the divider should be "stiff" with respect to IIN2. Bypassing R1 with a \(0.1 \mu \mathrm{~F}\) disc capacitor will prevent degradation of \(\mathrm{t}_{\mathrm{ON}}\) and \(\mathrm{t}_{\mathrm{OFF}}\).

Alternatively, the differential driver may be driven from a TTL flip-flop or inverter.

Connection of a 1 mA current source between \(\mathrm{V}_{\mathrm{R}}\) and \(\mathrm{V}^{-}\)will allow operation over a \(\pm 10 \mathrm{~V}\) common mode range. Differential input voltage must be less than the 6 V breakdown, and input threshold of 2.5 V and 300 mV differential overdrive still prevail.

\section*{4. ANALOG VOLTAGE CONSIDERATIONS}

The rules for operating the \(\mathrm{AHO100}\) series at supply voltages other than those specified essentially breakdown into OFF and ON considerations. The OFF considerations are dictated by the maximum negative swing of the analog signal and the pinch off of the JFET switch. In the OFF state, the gate of the FET is at \(\mathrm{V}^{-}+\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{SAT}}\) or about 1.0 V above the \(\mathrm{V}^{-}\)potential. The maximum \(V_{p}\) of the FET switches is 7 V . The most negatıve analog voltage, \(\mathrm{V}_{\mathrm{A}}\), swing which can be accomodated for any given supply voltage is:
\[
\begin{aligned}
& \left|V_{A}\right| \leq\left|V^{-}\right|-V_{P}-V_{B E}-V_{S A T} \text { or } \\
& \left|V_{A}\right| \leq\left|V^{-}\right|-8.0 \text { or }\left|V^{-}\right| \geq\left|V_{A}\right|+8.0 V
\end{aligned}
\]

For the standard high level switches, \(\mathrm{V}_{\mathrm{A}} \leq|-18|\) \(+8=-10 \mathrm{~V}\). The value for \(\mathrm{V}^{+}\)is dictated by the maximum positive swing of the analog input voltage. Essentially the collector to base junction of the turn-on PNP must remain reversed biased for all positive value of analog input voltage. The base of the PNP is at \(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{SA}}-\mathrm{V}_{\mathrm{BE}}\) or \(\mathrm{V}^{+}-1.0 \mathrm{~V}\). The PNP's collector base junction should have at least 1.0 V reverse bias. Hence, the most positive analog voltage swing which may be accommodated for a given value of \(\mathrm{V}^{+}\)is:
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{A}} \leq \mathrm{V}^{+}-\mathrm{V}_{\mathrm{SA}}-\mathrm{V}_{\mathrm{BE}}-1.0 \mathrm{~V} \text { or } \\
& \mathrm{V}_{\mathrm{A}} \leq \mathrm{V}^{+}-2.0 \mathrm{~V} \text { or } \mathrm{V}^{+} \geq \mathrm{V}_{\mathrm{A}}+2.0 \mathrm{~V}
\end{aligned}
\]

For the standard high level switches, \(\mathrm{V}_{\mathrm{A}}=12\) \(2.0 \mathrm{~V}=+10 \mathrm{~V}\).

\section*{5. SWITCHING TRANSIENTS}

Due to charge stored in the gate-to-source and gate-to-drain capacitances of the FET switch, transients may appear in the output during switching. This is particularly true during the OFF to ON transition. The magnitude and duration of the transient may be minimized by making source and load impedance levels as small as practical.

Furthermore, transients may be minimized by operating the switches in the differential mode; i.e., the charge delivered to the load during the ON to OFF transition is, to a large extent, cancelled by the OFF to ON transition.

\section*{typical applications}

\section*{Programmable One Amp Power Supply}

Four to Ten Bit D to A Converter (4 Bits Shown)

\section*{typical applications (con't)}

Four Channel Differential Transducer Commutator

Delta Measurement System for Automatic Linear Circuit Tester

Note \(S 1\) must he open for \(50 \mu \mathrm{~s}\) min to take first reading with \(\mathrm{I}_{\mathrm{L}}=\mathbf{5 0} \mathrm{mA}\) Second reading is taken with S 2 closed. 1 With S1 and other set-up forcing functions under computer control, system will measure line and load regulation on voltage regulators, voltage gain, offset current, CMVRR and PSRR on op amps as well as other circuits requiring measurement of the change of a parameter with the change of a forcing function

Precision Long Time Constant Integrator with Reset

Four Channel Commutator

\section*{Analog Switches}

\section*{AH2114／AH2114C DPST analog switch general description}

The AH2114 is a DPST analog switch circuit com－ prised of two junction FET switches and their associated driver．The AH2114 is designed to fulfill a wide variety of high level analog switching appli－ cations including multiplexers，\(A\) to \(D\) Converters， integrators，and choppers．Design features include：
－Low ON resistance，typically \(75 \Omega\)
－High OFF resistance，typically \(10^{11} \Omega\)
－Large output voltage swing，typically \(\pm 10 \mathrm{~V}\)
－Powered from standard op－amp supply voltages of \(\pm 15 \mathrm{~V}\)
－Input signals in excess of 1 MHz
－Turn－ON and turn－OFF times typically \(1 \mu \mathrm{~s}\)

The AH2114 is guaranteed over the temperature range \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) whereas the AH 2114 C is guaranteed over the temperature range \(0^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) ．

\section*{schematic and connection diagrams}

Order Number AH2114G or AH2114CG
See Package 6A
ac test circuit and waveforms

FIGURE 1.

FIGURE 2.

\section*{absolute maximum ratings}

Vplus Supply Voltage
Vmınus Supply Voltage -25V
Vplus-Vminus Differential Voltage 40 V
Logic Input Voltage 25 V
Power Dissipation (Note 3)
Operating Temperature Range

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
+25 V
-25 V
40 V
25 V
136 W

\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(0^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\(-65^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(300^{\circ} \mathrm{C}\)
electrical characteristics (Notes 1 and 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{AH2114} & \multicolumn{3}{|c|}{AH2114C} & \multirow{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \begin{tabular}{l}
Static Drain-Source \\
"On" Resistance
\end{tabular} & \[
\begin{aligned}
& I_{D}=10 \mathrm{~mA}, V_{G S}=0 V, T_{A}=25^{\circ} \mathrm{C} \\
& I_{D}=10 \mathrm{~mA}, V_{G S}=0 V
\end{aligned}
\] & & 75 & \[
\begin{aligned}
& 100 \\
& 150
\end{aligned}
\] & & 75 & \[
\begin{aligned}
& 125 \\
& 160
\end{aligned}
\] & \[
\begin{aligned}
& \Omega \\
& \Omega
\end{aligned}
\] \\
\hline Drain-Gate & \(V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=-7 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\) & & 02 & 10 & & 0.2 & 50 & nA \\
\hline Leakage Current & & & & 60 & & & 60 & nA \\
\hline FET Gate-Source Breakdown Voltage & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}
\end{aligned}
\] & 35 & & & 35 & & & V \\
\hline Drain-Gate Capacıtance & \[
\begin{aligned}
& V_{D G}=20 \mathrm{~V}, I_{S}=0 \\
& f=1.0 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.0 & 5.0 & & 40 & 50 & pF \\
\hline Source-Gate Capacitance & \[
\begin{aligned}
& V_{D G}=20 \mathrm{~V}, I_{D}=0 \\
& f=10 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 40 & 50 & & 40 & 50 & pF \\
\hline Input 1 Turn-ON Time & \begin{tabular}{l}
\[
V_{1 N 1}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
(See Figure 1)
\end{tabular} & & 35 & 60 & & 35 & 60 & ns \\
\hline Input 2 Turn-ON Time & \begin{tabular}{l}
\[
V_{1 N 2}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
(See Figure 1)
\end{tabular} & & 12 & 15 & & 12 & 12 & \(\mu \mathrm{s}\) \\
\hline Input 1 Turn-OFF Time & \begin{tabular}{l}
\[
V_{1 N 1}=10 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}
\] \\
(See Figure 1)
\end{tabular} & & 06 & 0.75 & & 06 & 0.75 & \(\mu \mathrm{s}\) \\
\hline Input 2 Turn OFF Time & \begin{tabular}{l}
\[
V_{\mathrm{IN} 2}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
(See Figure 1)
\end{tabular} & & 50 & 80 & & 50 & 80 & ns \\
\hline DC Voltage Range & \begin{tabular}{l}
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
(See Figure 2)
\end{tabular} & \(\pm 90\) & \(\pm 100\) & & \(\pm 9.0\) & \(\pm 100\) & & V \\
\hline AC Voltage Range & \begin{tabular}{l}
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
(See Figure 2)
\end{tabular} & \(\pm 90\) & \(\pm 100\) & & \(\pm 90\) & \(\pm 100\) & & V \\
\hline
\end{tabular}

Note 1: Unless otherwise specified these specifications apply for pin 12 connected to +15 V , pin 2 connected to \(-15 \mathrm{~V},-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) for the AH 2114 , and \(0^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) for the AH 2114 C .
Note 2: All typical values are for \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 3: Derate linearly at \(100^{\circ} \mathrm{C} / \mathrm{W}\) above \(25^{\circ} \mathrm{C}\).

Analog Switches

\section*{AH5009 series low cost analog current switches}

\section*{general description}

The AH5009 series is a versatile family of analog switches designed to economically fulfill a wide variety of multiplexing and analog switching applications.
Even numbered switches (AH5010, AH5012, AH5014, etc.,) may be driven directly from standard (5V) TTL; whereas the odd numbered switches (AH5009, AH5011, AH5013, etc.,) are intended for applications utilizing open-collector (15V) structures.

\section*{features}
- Large analog signal range \(\pm 10 \mathrm{~V}\) peak
- Excellent isolation 80 dB between channels at 1 kHz
- Very low leakage 50 pA
- High switchıng speed 150 ns
- Low on resistance \(100 \Omega\)
- Interfaces with standard TTL
functional and schematic diagrams (See additional types on page 6.)

\section*{connection diagrams}

Dual-In-Line Package

TOP VIEW

Dual-In-Line Package

Order Number AH5009CN AH5010CN, AH5013CN, or AH5014CN See Package 22

Dual-In-Line Package

Order Number AH5011CN, AH5012CN, AH5015CN, or AH5016CN See Package 23

Order Number AH5017CN AH5018CN, AH5019CN, AH5020CN, AH5021CN, AH5022CN, AH5023CN, or AH5024CN See Package 20

\section*{absolute maximum ratings}

Input Voltage (\(\mathrm{V}_{\mathrm{IN}}\))
Positive Analog Signal Voltage (\(\mathrm{V}_{\mathrm{A}}\))
Negative Analog Signal Voltage \(\left(V_{A}\right)\)
Diode Current
Drain Current (ID)
Power Dissipation (see graph)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec .)
\[
\begin{array}{r}
\pm 30 \mathrm{~V} \\
30 \mathrm{~V} \\
-15 \mathrm{~V} \\
10 \mathrm{~mA} \\
30 \mathrm{~mA} \\
500 \mathrm{~mW} \\
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
300^{\circ} \mathrm{C}
\end{array}
\]
electrical characteristics (each channel)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER (Note 2) & CIRCUIT TYPE & CONDITIONS (Note 1) & TYP & MAX & UNITS \\
\hline Input Current "ON" (I INTON) & All & \[
\begin{aligned}
& V_{I N}=O V, I_{D}=2 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \\
& V_{I N}=O V, I_{D}=2 \mathrm{~mA}
\end{aligned}
\] & . 01 & 100.1 & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Input Current "OFF" \\
(Intoff))
\end{tabular} & 5VTTL & \[
\begin{aligned}
& V_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{~V}_{A}= \pm 10 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\
& V_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{~V}_{A}= \pm 10 \mathrm{~V}
\end{aligned}
\] & . 04 & \(10{ }^{.2}\) & \[
\begin{aligned}
& n A \\
& n A
\end{aligned}
\] \\
\hline Input Current "OFF" (Intoff)) & 15VTTL & \(V_{\text {IN }}=11 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & . 04 & \(10{ }^{.2}\) & \[
n A
\] \\
\hline Channel Control Voltage & 5VTTL & \(V_{A}= \pm 10 \mathrm{~V}, I_{D}=1 \mathrm{~mA}\) & & . 5 & V \\
\hline "ON" (Vinton) & 15 VTTL & \(\mathrm{V}_{\mathrm{A}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}\) & & 1.5 & v \\
\hline Channel Control Voltage & 5 VTTL & \(V_{\text {A }}= \pm 10 \mathrm{~V}\) & & 4.5 & \(v\) \\
\hline "OFF" (Vindoff) & 15 VTTL & \(\mathrm{V}_{\mathrm{A}}= \pm 10 \mathrm{~V}\) & & 11 & v \\
\hline Leakage Current "OFF" (\({ }_{\text {D(OFF) }}\)) & 5VTTL & \[
\begin{aligned}
& V_{\text {IN }}=4.5 \mathrm{~V}, V_{A}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& V_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}
\end{aligned}
\] & . 02 & \(10^{.2}\) & \[
\begin{aligned}
& \text { nA } \\
& n A
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Leakage Current "OFF" \\
(\({ }_{\text {D(OFF) }}\))
\end{tabular} & 15VTTL & \[
\begin{aligned}
& V_{\text {IN }}=+11 \mathrm{~V}, V_{A}= \pm 10 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\
& V_{I N}=+11 \mathrm{~V}, V_{A}= \pm 10 \mathrm{~V}
\end{aligned}
\] & . 02 & \(10^{.2}\) & \[
\begin{aligned}
& n A \\
& n A
\end{aligned}
\] \\
\hline Leakage Current "ON" (ID(ON)) & 5VTTL & \[
\begin{aligned}
& V_{I N}=0 V, I_{S}=1 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \\
& V_{I N}=0 V, I_{S}=1 \mathrm{~mA}
\end{aligned}
\] & . 3 & 1. & \[
\begin{aligned}
& \mathrm{nA} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline Leakage Current "ON" (ID(ON)) & 15VTTL & \[
\begin{aligned}
& V_{I N}=0 \mathrm{~V}, I_{S}=1 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \\
& V_{I N}=0 \mathrm{~V}, I_{S}=1 \mathrm{~mA}
\end{aligned}
\] & . 1 & . 5 & \[
\begin{aligned}
& \mathrm{nA} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline Leakage Current "ON" (IDION) & 5VTTL & \[
\begin{aligned}
& V_{I N}=0 \mathrm{~V}, I_{\mathrm{S}}=2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& V_{I N}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}
\end{aligned}
\] & & \[
\begin{array}{r}
1 \\
10
\end{array}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline Leakage Current "ON" (IDION) & 15VTTL & \[
\begin{aligned}
& V_{I N}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}
\end{aligned}
\] & & & \[
\begin{aligned}
& n A \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline Dran-Source Resistance "ON" (ros(on)) & 5VTTL & \[
\begin{aligned}
& V_{I N}=0.5 \mathrm{~V}, I_{D}=2 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \\
& V_{I N}=0.5 \mathrm{~V}, I_{D}=2 \mathrm{~mA}
\end{aligned}
\] & 90 & \[
\begin{aligned}
& 150 \\
& 240
\end{aligned}
\] & \[
\begin{aligned}
& \Omega \\
& \Omega
\end{aligned}
\] \\
\hline Dran-Source Resistance "ON" (rosion) & 15VTTL & \[
\begin{aligned}
& V_{I N}=1.5 \mathrm{~V}, I_{D}=2 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\
& V_{I N}=1.5 \mathrm{~V}, I_{D}=2 \mathrm{~mA}
\end{aligned}
\] & 60 & \[
\begin{aligned}
& 100 \\
& 160
\end{aligned}
\] & \[
\begin{aligned}
& \Omega \\
& \Omega
\end{aligned}
\] \\
\hline \(r_{\text {DS(on) }}\) Match (Effective \(r_{\text {DS(ON) }}\)) (\(r_{\text {DSS(ON) }}\) EFF.) & \begin{tabular}{l}
15VTTL MUX \\
5VTTL MUX
\end{tabular} & \[
\begin{aligned}
& V_{I N}=1.5 \mathrm{~V}, I_{D}=2 \mathrm{~mA} \\
& V_{I N}=0.5 \mathrm{~V}, I_{D}=2 \mathrm{~mA}
\end{aligned}
\] & & 50 & \(\Omega\) \\
\hline Turn-On Time (\(\mathrm{t}_{\left(\mathrm{ON}^{\prime}\right)}\)) & All & See AC Test Circuits, \(T_{A}=25^{\circ} \mathrm{C}\) & 150 & 500 & ns \\
\hline Turn-Off Time (\(\mathbf{t}_{\text {(OFF) }}\)) & All & See AC Test Circuits, \(T_{A}=25^{\circ} \mathrm{C}\) & 300 & 500 & ns \\
\hline Cross Talk (CT) & All & See AC Test Circuits, \(T_{A}=25^{\circ} \mathrm{C}\) & 120 & & dB \\
\hline
\end{tabular}

Note 1: Unless otherwise noted, these specifications apply for \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) for AH 5009 C through AH 5012 C .
Note 2: "OFF" and "ON" notation refers to the conduction state of the FET switch.

\section*{typical performance characteristics}

Leakage Current, ID(OFF) vs Temperature

Leakage Current, ID(ON) vs is

SOURCE CURRENT (mA).

On Resistance, rDS(ON)
vs Temperature

Leakage Current, ID(ON) vs Temperature

\section*{test circuits}

AC Switching Test Circuits

Cross Talk Test Circuit

\section*{applications information}

\section*{Theory of Operation}

The AH5009 series of analog switches are primarily intended for operation in current mode switch applications; i.e., the drains of the FET switch are held at or near ground by operating into the summing junction of an operational amplifier. Limiting the drain voltage to under a few hundred mV eliminates the need for a special gate driver. Thus, the switch may be controlled with conventional TTL elements (5 V) or with the open collector (15 V) structures.

Two basic switch configurations are available: multiple independent' switches (N by SPST) and multiple pole switches used for multiplexing (NPST-MUX). The MUX versions such as the AH5009 offer common drains and include a series FET operated at \(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}\). The additional FET is placed in feedback path in order to compensate for the "ON" resistance of the switch FET as shown in Figure 1.

The closed-loop gain of Figure 1 is:
\[
A_{\mathrm{VCL}}=\frac{R_{2}+r_{\text {DS(ON) }} \mathrm{Q2}_{2}}{R_{1}+r_{\text {DSION)Q1 }}}
\]

FIGURE 1. Use of Compensation FET

For \(\mathbf{R}_{1}=\mathbf{R}_{\mathbf{2}}\), gain accuracy is determined by the \(r_{\text {DSS(ON }}\) match between \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\). Standard match between \(Q_{1}\) and \(Q_{2}\) is \(50 \Omega\) resulting in a gain accuracy of \(0.5 \%\) (for \(R_{1}=R_{2}=10 \mathrm{k}\)). Tighter \(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}\) match versions are available.

\section*{Noise Immunity}

The switches with the source diodes grounded exhibit improved noise immunity for positive analog signals in the "OFF" state. With \(V_{I N}=15 \mathrm{~V}\) and the \(\mathrm{V}_{\mathrm{A}}=+10 \mathrm{~V}\), the source of \(\mathrm{Q}_{1}\) is clamped to about 0.6 V by the diode (\(\mathrm{V}_{\mathrm{GS}}=14.4 \mathrm{~V}\)). The "ON" impedance of the diode is about \(26 \Omega\) ensuring that AC signals imposed on the +10 V will not gate the FET "ON."

\section*{Selection of Gain Setting Resistors}

Since the AH5009 series of analog switches are operated current mode, it is generally advisable to make the signal current as large as possible. However, current through the FET switch tends to forward bias the gate to channel (source) diode resulting in leakage across the diode. This leakage, \(I_{D(O N)}\), increases exponentially with increasing \(I_{S}\). As shown in Figure 2, ID(ON) represents a finite error in the current reaching the summing junction of the op amp.

FIGURE 2. On Leakage Current, ID(ON)
Secondly, the \(r_{\text {DS(ON })}\) of the FET begins to "round" as \(I_{s}\) approaches IDss. A practical rule of thumb is to maintain \(I_{S}\) at less than \(1 / 10\) of \(I_{\text {DSS }}\).
Combining the criteria from the above discussion yields:
or:
\[
\begin{equation*}
R_{1(M I N)} \geq \frac{V_{A(M A X)} A_{D}}{I_{D(O N)}} \tag{2a}
\end{equation*}
\]
\[
\begin{equation*}
\geq \frac{\mathrm{V}_{\mathrm{A}(\mathrm{MAX})}}{\mathrm{I}_{\mathrm{DSS}} / 10} \tag{2b}
\end{equation*}
\]
which ever is worse.
Where: \(V_{A(M A X)}=\) Peak amplitude of the analog input signal
\(A_{D} \quad=\) Desired accuracy
\(I_{D(O N)}=\) Leakage at a given \(I_{S}\)
IDss \(=\) Saturation current of the FET switch
\[
\cong 20 \mathrm{~mA}
\]

In a typical application, \(\mathrm{V}_{\mathrm{A}}\) might \(= \pm 10 \mathrm{~V}, \mathrm{~A}_{\mathrm{D}}=\) \(0.1 \%, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}\). The criterion of equation (2b) predicts:
\[
R_{1(\mathrm{MIN})} \geq \frac{10 \mathrm{~V}}{\frac{20 \mathrm{MA}}{10}}=5 \mathrm{k} \Omega
\]

For \(R_{1}=5 k, I_{S} \cong 10 \mathrm{~V} / 5 \mathrm{k}\) or 2 mA . The electrical characteristics guarantee an \(\mathrm{I}_{\mathrm{D}(\mathrm{ON})} \leq 1 \mu \mathrm{~A}\) at \(85^{\circ} \mathrm{C}\) for the AH5010C. Per the criterion of equation (2a):
\[
R_{1(\mathrm{MIN})} \geq \frac{(10 \mathrm{~V})\left(10^{-3}\right)}{1 \times 10^{-6}} \geq 10 \mathrm{k} \Omega
\]

Since equation (2a) predicts a higher value, the 10k resistor should be used.

FIGURE 3.
The "OFF" condition of the FET also effects gain accuracy. As shown in Figure 3, the leakage across \(\mathrm{Q}_{2}, \mathrm{I}_{\mathrm{D}(\mathrm{OFF})}\) represents a finite error in the current arriving at the summing junction of the op amp.

\section*{applications information (con't)}

FIGURE 4. Interfacing with +5 V Logic

FIGURE 5. Interfacing with +15V Open Collector Logic

Accordingly:
\[
\begin{aligned}
R_{1(M A X)} \leq & \frac{V_{A(M I N)} A_{D}}{(N) I_{D(O F F)}} \\
\text { Where: } V_{A(M I N)} & =\begin{array}{l}
\text { Minimum value for the ana- } \\
\text { log input signal }
\end{array} \\
A_{D} & =\text { Desired accuracy } \\
N & =\text { Number of channels } \\
I_{D(O F F)} & =\begin{array}{l}
\text { OFF leakage of a given FET } \\
\text { switch }
\end{array}
\end{aligned}
\]

As an example, if \(N=10, A_{D}=0.1 \%\), and \(I_{D(O F F)}\) \(\leq 10 \mathrm{nA}\) at \(85^{\circ} \mathrm{C}\) for the AH5009C, \(\mathrm{R}_{1 \text { (MAX) }}\) is:
\[
R_{1 \text { (MAX })} \leq \frac{(1 \mathrm{~V})\left(10^{-3}\right)}{(10)\left(10 \times 10^{-9}\right)}=10 k
\]

Selection of \(R_{2}\), of course, depends on the gain desired and for unity gain \(\mathbf{R}_{\mathbf{1}}=\mathbf{R}_{\mathbf{2}}\).

Lastly, the foregoing discussion has ignored resistor tolerances, input bias current and offset voltage of the op amp - all of which should be considered in setting the overall gain accuracy of the circuit.

\section*{TTL Compatibility}

Two input logic drive versions of AH5009 series are available: the even numbered part types are specified to be driven from standard 5V-TTL logic
and the odd numbered types from 15 V open collector TTL.
Standard TTL gates pull-up to about 3.5V (no load). In order to ensure turn-off of the even numbered switches such as AH5010, a pull-up resistor, \(R_{\text {EXT }}\), of at least \(10 \mathrm{k} \Omega\) should be placed between the \(5 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}\) and the gate output as shown in Figure 4.
Likewise, the open-collector, high voltage TTL outputs should use a pull-up resistor as shown in Figure 5. In both cases, \(\mathrm{t}_{(\mathrm{OFF})}\) is improved for lower values of \(\mathrm{R}_{\mathrm{EXT}}\) and the expense of power dissipation in the low state.

FIGURE 6. Definition of Terms

\section*{Definition of Terms}

The terms referred to in the electrical characteristics tables are as defined in Figure 6.

\section*{device schematics and pin connections}

\section*{FOUR CHANNEL}

AH5009CN (RDS(ON) \(\leq 100 \Omega\) 15V - TTL) AH5010CN \(\left(\mathrm{R}_{\mathrm{DS}}(\mathrm{ON}) \leq 150 \Omega 5 \mathrm{~V}\right.\) - TTL) 14 PIN DIP

AH5011CN (RDS(ON) \(\leq 100 \Omega\) 15V - TTL) AH5012CN (RDS (ON) \(\leq 150 \Omega 5 \mathrm{~V}\) - TTL) 16 PIN DIP

THREE CHANNEL

AH5015CN (RDS(ON) \(\leq 100 \Omega 15 \mathrm{~V}\) - TTL) AH5016CN (RDS (ON) \(\leq 150 \Omega 5 \mathrm{~V}\) - TTL) 16 PIN DIP

two Channel

AH5019CN (RDS(ON) \(\leq 100 \Omega\) 15V - TTL) AH5020CN (RDS (ON) \(\leq 150 \Omega 5 \mathrm{~V}\) - TTL) 8 PIN DIP

SINGLE CHANNEL 8 PIN DIP
```

AH5021CN (RDS(ON) \leq100\Omega 15V - TTL)
AH5021CN (RDS(ON) \leq100\Omega 15V - TTL)
AH5022CN (RDS(ON) \leq150\Omega5V - TTL)
AH5022CN (RDS(ON) \leq150\Omega5V - TTL)


AH5023CN (RDS(ON) $\leq 100 \Omega 15 \mathrm{~V}$ - TTL) AH5024CN (RDS $\left.\mathrm{R}_{\mathrm{DS}}\right) \leq 150 \Omega 5 \mathrm{~V} \cdot \mathrm{TTL}$ ) 8 PIN DIP


## typical applications

Gain Programmable Amplifier


Low Cost Demultiplexer


16-Channel Multiplexer


Low Cost Multiplexer/Mixer


Analog Switches

## AM1000,AM1001,AM1002 silicon N-channel high speed analog switch

## general description

The AM1000 series are junction FET integrated circuit analog switches. These devices commutate faster and with less voltage spiking than any other analog switch presently available. By comparison, discrete JFET switches require elaborate drive circuits to obtain reasonable performance for high toggle rates. Encapsulated in a four pin TO-72 package, these units require a minimum of cırcuit board area. Switching transients are greatly reduced by a monolithic integrated circuit process. The resulting analog switch device provides the following features:

- Low ON Resistance
$30 \Omega$
- High Analog Signal Frequency

100 MHz

- High Toggle Rate 4 MHz
- Low Leakage Current 250 pA
- Large Analog Sıgnal Swing $\pm 15 \mathrm{~V}$
- Break Before Make Actıon

The AM-1000 series of analog switches are particularly suitable for the following applications:

- High Speed Commutators
- Multiplexers
- Sample and Hold Circuits
- Reset Switching
- Video Switching


## schematic and connection diagram

TO-72 Package


Order Number AM1000H, AM1001H or AM1002H

See Package 9A
equivalent circuit

$\pm 15$ Volt Swing Analog Switch


## absolute maximum ratings



Note 1: The maxımum voltage ratıngs may be applied between any pin or pins simultaneously. Power dissipation may be exceeded in some modes if the voltage pulse exceeds 10 ms . Normal operation will not cause excessive power dissipation even in a dc switching application.
Note 2: All parameters are measured with external silicon diodes. See electrical connection diagram for proper diode placement
Note 3: I BIAS (Switch OFF) is equal to IDRIVE (Switch OFF). I (BIAS) (Switch ON), is equal to external diode leakage.
Note 4: Rise and fall times of VDRIVE shall be 15 ns maxımum for switchıng tıme testing.

## switching time test circuit and waveforms



## Analog Switches

## AM2009/AM2009C/MM4504/MM5504

 six channel MOS multiplex switches
## general description

The AM2009/AM2009C/MM4504/MM5504 are six channel multıplex switches constructed on a single silicon chip using low threshold P-channel MOS process. The gate of each MOS device is protected by a diode circuit.

## features

- Typical low "on" resistance $150 \Omega$
- Typical low "off" leakage 100 pA
- Typical large analog voltage range $\pm 10 \mathrm{~V}$
- Zero inherent offset voltage
- Normally off with zero gate voltage

The AM2009/AM2009C/MM4504/MM5504 are designed for applications such as time division multiplexing of analog or digital signals. Switching speeds are primarly determined by conditions external to the device such as signal source impedance, capacitive loading and the total number of channels used in parallel.

The AM2009/MM4504 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The AM2009C/MM5504 are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

## schematic diagram



Order Number AM2009F, AM2009CF, MM4504F or MM5504F
See Package 4
Order Number AM2009D, AM2009CD, MM4504D or MM5504D See Package 1

## typical applications



TTL Compatible 6 Channel MUX


32 Channel MUX
absolute maximum ratings $\left(V_{B U L K}=0 \mathrm{~V}\right)$

Voltage on Any Source or Drain Voltage on Any Gate
Positive Voltage on Any Pin
Source or Drain Current
Gate Current（forward direction of zener clamp）
-30 V
-35 V
+03 V
50 mA
01 mA

Total Power Dissipation（at $T_{A}=25^{\circ} \mathrm{C}$ ）	900 mW
Power Dissipation－each gate circuit	150 mW
Operating Temperature Range $\quad$ AM2009	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	AM2009C
Storage Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 sec ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

Note 1：Ratings apply over the specified temperature range and $V_{B U L K}=0$ unless otherwise specified．
Note 2：All other pins grounded．
Note 3：Capacitance measured on dual－ın－lıne package between pin under measurement to all other pins．Capacitances are guaranteed by design．

## typical performance characteristics



## Analog Switches

## AM3705/AM3705C 8-channel MOS analog multiplexer general description

The AM3705/AM3705C is an eight-channel MOS analog multiplex switch. TTL compatible logic inputs that require no level shifting or input pull-up resistors and operation over a wide range of supply voltages is obtaıned by constructing the device with low threshold P-channel enhancement MOS technology. To simplify external logic requirements, a one-of-erght decoder and an output enable are included in the device.

Important design features include:

- TTL/DTL compatible input logic levels
- Operation from standard +5 V and -15 V supplies
- Wide analog voltage range $- \pm 5 \mathrm{~V}$
- One-of-eight decoder on chip
- Output enable control
- Low ON resistance - $150 \Omega$
- Input gate protection
- Low leakage currents - $0.5 n \mathrm{n}$

The AM3705/AM3705C is designed as a low cost analog multıplex switch to fulfill a wide variety of data acquisition and data distribution applications including cross-point switching, MUX front ends for A/D converters, process controllers, automatic test gear, programmable power supplies and other military or industrial instrumentation applications.

The AM3705 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The AM3705C is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.



Order Number AM3705D or AM3705CD See Package 2
block diagram (MIL-STD.806B)

truth table

LOGIC inputs				CHANNEL
$2^{0}$	$2^{1}$	$2^{2}$	OE	ON
L	L	L	H	s ,
H	L	L	H	$\mathrm{S}_{2}$
L	H	L	H	$\mathrm{S}_{3}$
H	H	L	H	$\mathrm{S}_{4}$
L	L	H	H	$\mathrm{S}_{5}$
H	L	H	H	$\mathrm{S}_{6}$
L	H	H	H	$\mathrm{S}_{5}$
H	H	H	H	$\mathrm{S}_{8}$
$\times$	$\times$	$\times$	L	OFF

## typical application

Buffered 8-Channel Multiplex, Sample and Hold

absolute maximum ratings
Positive Voltage on Any Pin (Note 1)
Negative Voltage on Any Pin (Note 1)
Source to Draın Current
Logic Input Current
Power Dissipation (Note 2)
Operatıng Temperature Range AM3705
Storage Temperature Range
AM3705C
Lead Temperature (Soldering, 10 sec )
+03 V
-35 V
$\pm 30 \mathrm{~mA}$
$\pm 01 \mathrm{~mA}$
500 mW
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
electrical characteristics (Note 3)

PARAMETER	SYMBOL	CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
ON Resistance	$\mathrm{R}_{\mathrm{ON}}$	$V_{\text {IN }}=V_{\text {SS }}, \mathrm{I}_{\text {OUT }}=100 \mu \mathrm{~A}$		80	250	$\Omega$
ON Resistance	$\mathrm{R}_{\text {ON }}$	$V_{\text {IN }}=-5 \mathrm{~V}$, I $_{\text {OUT }}=-100 \mu \mathrm{~A}$		160	400	S
ON Resistance	$\mathrm{R}_{\text {ON }}$	$V_{\text {IN }}=-5 \mathrm{~V}$, I OUT $=-100 \mu \mathrm{~A}$				
AM3705		$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			400	$\Omega$
AM3705C		$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$			400	$\Omega$
ON Resistance	$\mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=-15 \mathrm{~V}$,				
		$\mathrm{I}_{\text {OUT }}=100 \mu \mathrm{~A}$		100		S
ON Resistance	$\mathrm{R}_{\mathrm{ON}}$	$V_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DO }}=-15 \mathrm{~V}$,				
		$\mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$		150		$\Omega$
ON Resistance	$\mathrm{R}_{\mathrm{ON}}$	$V_{I N}=-5 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=-15 \mathrm{~V}$,				
		$\mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$		250		S2
OFF Resistance	$\mathrm{R}_{\text {OFF }}$			$10^{10}$		$\Omega$
Output Leakage Current	I Lo	$V_{\text {SS }}-V_{\text {OUT }}=15 \mathrm{~V}$		05	10	nA
AM3705	ILO	$V_{\text {SS }}-V_{\text {OUT }}=15 \mathrm{~V}, \mathrm{~T}_{\text {A }}=125^{\circ} \mathrm{C}$	-	150	500	nA
AM3705C	ILO	$V_{\text {SS }}-V_{\text {OUT }}=15 \mathrm{~V}, \mathrm{~T}_{\text {A }}=70^{\circ} \mathrm{C}$		35	500	nA
Data Input Leakage Current	ILDI	$V_{S S}-V_{\text {IN }}=15 \mathrm{~V}$		01	30	nA
AM3705	ILDI	$V_{S S}-V_{I N}=15 \mathrm{~V}, \mathrm{~T}_{A}=125^{\circ} \mathrm{C}$		25	500	nA
AM3705C	I LDI	$V_{S S}-V_{\text {IN }}=15 \mathrm{~V}, \mathrm{~T}_{\text {A }}=70^{\circ} \mathrm{C}$		05	500	nA
Logic Input Leakage Current	$I_{\text {LI }}$	$V_{\text {SS }}-V_{\text {Logic in }}=15 \mathrm{~V}$		001	1	$\mu \mathrm{A}$
AM3705	$I_{\text {LI }}$	$V_{S S}-V_{\text {Logic in }}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		. 05	10	$\mu \mathrm{A}$
AM3705C	$I_{L I}$	$V_{S S}-V_{\text {Logic in }}=15 \mathrm{~V}, \mathrm{~T}_{A}=70^{\circ} \mathrm{C}$		05	10	$\mu \mathrm{A}$
Logıc Input LOW Level	$V_{\text {IL }}$	$V_{S S}=+50 \mathrm{~V}$		05	1.0	V
Logic Input LOW Level	$V_{\text {IL }}$		$V_{D D}$		$\mathrm{V}_{\text {ss }}-4.0$	V
Logic Input HIGH Level	$V_{\text {IH }}$	$V_{S S}=+50 \mathrm{~V}$	3.0	3.5		V
Logic Input HIGH Level	$\mathrm{V}_{1 \mathrm{H}}$		$\mathrm{V}_{\text {SS }}-2.0$		$\mathrm{V}_{\text {SS }}+03$	V
Channel Switching Tıme-Positive	$\mathrm{t}^{+}$	Switching Time		300		ns
Channel Switching Time-Negative	$t^{-}$	$\int$ Test Circuit		600		ns
Channel Separation		$\mathrm{f}=1 \mathrm{kHz}$		62		dB
Output Capacitance	$\mathrm{C}_{\mathrm{db}}$	$V_{\text {SS }}-V_{\text {OUT }}=0, f=1 \mathrm{MHz}$		35		pF
Data Input Capacitance	$\mathrm{C}_{\text {sb }}$	$V_{\text {SS }}-V_{\text {DIP }}=0, f=1 \mathrm{MHz}$		6.0		pF
Logic Input Capacitance	$\mathrm{C}_{\mathrm{cg}}$	$V_{\text {SS }}-V_{\text {Logic in }}=0, f=1 \mathrm{MHz}$		60		pF
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	$V_{D D}=-31 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$		125	175	mW

Note 1: All voltages referenced to $\mathrm{V}_{\mathrm{SS}}$.
Note 2: Rating applies for ambient temperatures to $+25^{\circ} \mathrm{C}$, derate linearly at $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+25^{\circ} \mathrm{C}$.
Note 3: Specifications apply for $T_{A}=25^{\circ} \mathrm{C},-24 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq-20 \mathrm{~V}$, and $+5.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SS}} \leq+7.0 \mathrm{~V}$; unless otherwise specified (all voltages are referenced to ground).
AM3705/AM3705C

## typical performance characteristics



Output Leakage Current vs Ambient Temperature


switching time test circuit


## typical applications (con't.)



## Analog Switches

## LF1650/LF2650/LF3650 quad JFET analog switch

## general description

The LF1650/LF2650/LF3650 is a monolithic combination of bipolar and JFET technology producing the industry's first one chip quad FET switch. A unique circuit technique is employed to maintain a constant $\mathrm{R}_{\text {ON }}$ over the analog voltage range. The input is designed to operate from minimum TTL levels, and switch operation also ensures a break before make action.

## features

- Constant ON resistance for signals $\pm 10 \mathrm{~V}$ and 100 kHz
- $t_{\text {OFF }}<\mathrm{t}_{\mathrm{ON}}$, break before make action
- Open switch isolation at 1.0 MHz
$-50 \mathrm{~dB}$
- < 1.0 nA leakage in OFF state
- TTL, DTL, RTL direct drive compatibility
- Single disable pin turns all switches in package OFF

The LF1650/LF2650/LF3650 is designed to operate from $\pm 15 \mathrm{~V}$ supplies and swing a $\pm 10 \mathrm{~V}$ analog signal. The FET switches can be used wherever a dc to medium frequency analog signal needs to be controlled.

## connection diagram

## Dual-In-Line Package

(Logic " 0 " $\ln$ ).


TOP VIEW
Order Number LF1650D, LF2650D or LF3650D
Order Number LF3650N
See Package 2

## typical circuit and schematic diagrams



Figure 1.


FIGURE 2.

# absolute maximum ratings 

Positive Supply - Negative Supply	36 V	
Positive Supply - Reference Supply	36 V	
Input Voltage	$\mathrm{V}_{\mathrm{cc}}-2.5 \mathrm{~V}$	
Reference Voltage $\mathrm{V}_{\mathrm{cc}}-$	$V \geq V_{R} \geq-V_{E E}$	
Input Voltage + Reference Voltage	-4.0V	
Input Voltage - Reference Voltage	6.0 V	
Positive Analog Voltage	$\mathrm{V}_{\mathrm{cc}}$	
Negative Analog Voltage	$V_{\text {EE }}$	
Analog Current	$\left\|\\|_{A}\right\|<20 \mathrm{~mA}$	
Power Dissipation (Note 1)		
Molded DIP (LF3650N)	570 mW	
Cavity DIP (LF1650D, LF2650D, LF3650D)	800 mW	
Operating Temperature Range		
LF1650	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
LF2650	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
LF3650	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	

electrical characteristics $\left(+V_{C C}=15 \mathrm{~V},-V_{E E}=-15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ON Resistance ( $\mathrm{R}_{\mathrm{ON}}$ )	$V_{A}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$		150		$\Omega$
Maximum Analog Swing ( $\mathrm{V}_{\text {AMAX }}$ ) (Figure 1)			+11		V
			-12		v
Analog Current Loss ( $\left.I_{\text {S(ON }}+I_{\text {D(ON) }}\right)$	Switch ON, Source and Drain Connect to +10 V		0.3		nA
Source Current OFF ( $\mathrm{IS}_{\text {SOFF }}$ )	Switch OFF, Source at +10 V , Drain at -10 V		0.4		nA
Drain Current OFF (ID(OFF)	Switch OFF, Source at +10 V , Drain at -10 V		0.1		nA
Logic Input Bias Current ( $\mathrm{I}_{\text {NH }}$ )	$\mathrm{V}_{\text {IN }}$ at +5.0 V		3.6		$\mu \mathrm{A}$
Delay Time ON ( $\mathrm{O}_{\text {ON }}$ ) (Figures 3 and 4)	Source at -10 V		500		ns
Delay Time OFF ( $\mathrm{t}_{\text {OFF }}$ ) (Figures 3 and 4)	Source at +10 V		90		ns
Source Capacitance ( $\mathrm{C}_{\text {S(OFF) }}$ )	Switch OFF Source at -10 V		4.0		pF
Drain Capacitance ( $\mathrm{C}_{\text {D(OFF) }}$ )	Switch OFF Drain at -10 V		3.0		pF
Active Source and Drain Capacitance ( $\mathrm{C}_{\text {S(ON) }}$ and $\mathrm{C}_{\text {D(ON) }}$ )	Switch ON Source and Drain at OV		5.0		pF
OFF Isolation	Switch OFF, 10 MHz Signal on Source (Figure 5)		-50		dB
Crosstalk	One Switch OFF Another Switch ON with 1.0 Vrms @ 1.0 MHz at Source (Figure 5)		-65		dB
Positive Supply Current ( ${ }_{\text {cc }}$ )	All Switches OFF		5.0		mA
Negative Supply Current ( $I_{\text {EE }}$ )	All Switches OFF		-3.0		mA
Reference Supply Current ( $\mathrm{I}_{\mathrm{R}}$ )	All Switches OFF		-2.0		mA
$V_{\text {IN }}$ Logic "0"				0.8	$v$
$V_{\text {IN }}$ Logic " 1 "		2.0			V
Signal Path Slew Rate			50		$\mathrm{V} / \mathrm{\mu s}$

Note 1: For operating at high temperatures the molded DIP products must be derated based on a $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+175^{\circ} \mathrm{C} / \mathrm{W}$, devices in the cavity DIP are based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and are derated at $+100^{\circ} \mathrm{C} / \mathrm{W}$.

## est circuits



FIGURE 3. tON, TOFF, Test


FIGURE 4. ton, toff Test Circuit


FIGURE 5. OFF Isolation and Crosstalk

## ypical performance characteristics



## typical performance characteristics (con't)



Supply Current vs Supply








Logic "1" Input Bias Current vs Temperature

Crosstalk and OF F Isolation vs Frequency Using Test Circuit of Figure 5

*Note: The above graph indicates the analog current at which $1 \%$ of the analog current is lost.
When the drain of the analog switch is positive with respect to the source the drain gate junction tends to forward bias and the output FET becomes a PNP transistor with base and substrate current losses. Operation in this mode allows much higher analog currents while maintaining a minimum R $\mathrm{R}_{\mathrm{ON}}$.

## Analog Switches

## MM450/MM550, MM451/MM551

MM452/MM552, MM455/MM555 MOS analog switches

## general description

The MM450, and MM550 series each contain four $p$ channel MOS enhancement mode transistors built on a single monolithic chip. The four transistors are arranged as follows:

MM450, MM550	Dual Differential   Switch
MM451, MM551	Four Channel
MM452, MM552	Switch   Four MOS Transis-   tor Package   MM455, MM555
Three MOS Tran-   sistor Package	

These devices are useful in many airborne and ground support systems requiring multiplexing, analog transmission, and numerous signal routing applications. The use of low threshold transistors ( $\mathrm{V}_{\mathrm{TH}}=2$ volts) permits operations with large analog input swings ( $\pm 10$ volts) at low gate voltages ( -20 volts). Significant features, then, include:

- Large Analog Input   - Low Supply Voltage	Swing $\pm 10$ Volts
	$\mathrm{V}_{\text {BULK }}=+10$ Volts
	$\mathrm{V}_{\mathrm{GG}}=-20$ Volts
- Low ON Resistance	$V_{\text {IN }}=-10 \mathrm{~V} \quad 150 \Omega$
	$V_{\text {IN }}=+10 \mathrm{~V} \quad 75 \Omega$
- Low Leakage Current $200 \mathrm{pA} @ 25^{\circ} \mathrm{C}$	
Input Gate Protection	
Zero Offset Voltage	

Each gate input is protected from static charge build-up by the incorporation of zener diode protective devices connected between the gate input and device bulk.

The MM450, MM451, MM452 and MM455 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The MM550, MM551, MM552 and MM555 are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

## schematic and connection diagrams



Note Pin 5 connected to case and device bulk. MM450, MM550

Order Number MM450H or MM550H See Package 12


Note Pin 5 connected to case and device bulk Dran and Source may

Order Number MM455H or MM555H See Package 12


Note 1 Pins 1 and 8 connected to case and device bulk Drain and Source may be interchanged MM452F, MM552F Note 2 MM452D and MM552D (dual-in-line packages) have same pin connections as MM452F and MM552F shown above

Order Number MM452F or MM552F See Package 4
Order Number MM452D or MM552D See Package 1


Note Pin 5 connected to case and
device bulk MM451, MM551
Order Number MM451H or MM551H See Package 12

## typical applications



PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
Analog Input Voltage				$\pm 10$	V
Threshold Voltage ( $\mathrm{V}_{\mathrm{GS}(\mathrm{T})}$ )	$V_{D G}=0, I_{D}=1 \mu \mathrm{~A}$	1.0	2.2	3.0	V
ON Resistance	$V_{\text {IN }}=-10 \mathrm{~V}$		150	600	$\Omega$
ON Resistance	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$		75	200	$\Omega$
OFF Resistance			$10^{10}$		$\Omega$
Gate Leakage Current (1) ${ }_{\text {GSB }}$ )	$V_{G S}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20		pA
Input (Drain) Leakage Current					
MM450, MM451, MM452, MM455	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		. 025	100	nA
	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		. 002	1.0	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		. 025	1.0	$\mu \mathrm{A}$
Input (Drain) Leakage Current					
MM550, MM551, MM552, MM555	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1	100	nA
	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		. 030	1.0	$\mu \mathrm{A}$
Output (Source) Leakage Current					
MM450, MM451, MM452, MM455	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		. 040	100	$n \mathrm{~A}$
Output (Source) Leakage Current					
MM450	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
MM451	$\mathrm{T}_{\mathrm{A}}^{\prime}=85^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
MM452, MM455	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
MM450, MM451, MM452, MM455	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
Output (Source) Leakage Current					
MM550	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
MM551	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
MM552, MM555	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS					
Large Signal Transconductance	$\begin{aligned} & V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		4000		$\mu \mathrm{mhos}$

CAPACITANCE CHARACTERISTICS (Note 2)

PARAMETER	DEVICE TYPE	MIN	TYP	MAX	UNITS
Analog Input (Drain) Capacitance ( $\mathrm{C}_{\mathrm{DB}}$ )	ALL		8	10	pF
	MM450, MM550		11	14	pF
Output (Source) Capacitance ( $\mathrm{C}_{\text {SB }}$ )	MM451, MM551		20	24	pF
	MM452, MM552		7.5	11	pF
	MM455, MM555		7.5	11	pF
	MM450, MM550		10	13	pF
Gate Input Capacitance ( $\mathrm{C}_{\mathrm{GB}}$ )	MM451, MM551		5.5	8	pF
	MM452, MM552		5.5	9	pF
	MM455, MM555		5.5	9	pF
Gate to Output Capacitance ( $\mathrm{C}_{\text {GS }}$ )	ALL		3.0	5	pF

Note 1: The resistance specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GG}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BULK}}=$
+10 V , and a test current of 1 mA . Leakage current is measured with all pins held at ground except
the pin being measured which is biased at -25 V .
Note 2: All capacitance measurements are made at 0 volts bias at 1 MHz .

## typical input capacitance characteristics



MM452, MM552 , MM455, MM555

typical applications (con't)


DPST High-Frequency Switch

*Expansion in the number of data input lines is possible by using multuple level series switches allowing the same decode gates to be used for all lower rank decoding.

Analog Switches

## MM454/MM554 four-channel commutator

## general description

The MM454/MM554 is a four-channel analog commutator capable of switching four analog input channels sequentially onto an output line. The device is constructed on a single silicon chip using MOS P Channel enhancement transistors; it contains all the digital circuitry necessary to sequentially turn ON the four analog switch transistors permitting multiplexing of the analog input data. The device features:

- High Analog Voltage Handling $\pm 10 \mathrm{~V}$
- High Commutating Rate 500 kHz
- Low Leakage Current ( $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \quad 200 \mathrm{pA}$
$\left(T_{A}=85^{\circ} \mathrm{C}\right) \quad 50 \mathrm{nA}$
- All Channel Blanking input provided
- Reset capability provided
- Low ON Resistance
$200 \Omega$
In addition, the MM454/MM554 can easily be applied where submultiplexing is required since a 4:1 clock countdown signal is provided which can drive the clock input of subsequent MM454/MM554 units.

The MM454 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The MM554 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

## schematic and connection diagrams



Note: Pin 7 connected to case and to device bulk. Nofinnal Operating Voltages $V_{G G}=-24 V, V_{D D}=0 V ; V_{S S}=+12 V$, RESET BIAS $=+12 \mathrm{~V}$ (OV for RESET) ALL CHANNEL BLANKING BIAS $=+12 \mathrm{~V}$ ( 0 V for BLANKING)

Order Number MM454F or MM554F
See Package 4

# absolute maximum ratings (Note 1) 

Gate Voltage ( $\mathrm{V}_{\mathrm{GG}}$ )
Bulk Voltage ( $\mathrm{V}_{\text {SS }}$ )
Analog Input ( $\mathrm{V}_{\text {IN }}$ )
Power Dissipation
Operatıng Temperature MM454
MM554
Storage Temperature

$$
\begin{array}{r}
+10 \mathrm{~V} \text { to }-30 \mathrm{~V} \\
+10 \mathrm{~V} \\
+10 \mathrm{~V} \text { to }-20 \mathrm{~V} \\
200 \mathrm{~mW} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
$$

static characteristics (Note 2)

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
Analog Input Voltage				$\pm 10$	$\checkmark$
ON Resistance	$V_{\text {IN }}=-10 \mathrm{~V}$		170	600	S
ON Resistance	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$		90	200	S2
OFF Resistance			$10^{10}$		s
Analog Input Leakage Current MM454	$T_{A}=25^{\circ} \mathrm{C}$		050	100	nA
MM454	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		006	1.0	$\mu \mathrm{A}$
MM554	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0001	100	nA
MM554	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		. 030	1.0	$\mu \mathrm{A}$
Analog Output Leakage Current MM454	$T_{A}=25^{\circ} \mathrm{C}$		0100	100	nA
MM454	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		30	1.0	$\mu \mathrm{A}$
MM554	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0001	100	nA
MM554	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		. $030^{\circ}$	1.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SS }}$ Supply Current Drain	$\mathrm{V}_{\text {SS }}=+12 \mathrm{~V}$		3.8	5.5	mA
$V_{\text {GG }}$ Supply Current Drain	$V_{G G}=-24 \mathrm{~V}$		2.4	3.5	mA

## capacitance characteristics

PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
Analog Input Capacitance Channel OFF	$\mathrm{I}_{\mathrm{IN}}=0$		4	6	pF
Analog Input Capacitance ChanneI ON	$\mathrm{I}_{\mathrm{IN}}=0$		20	24	pF
Analog Output Capacitance	$\mathrm{I}_{\text {IN }}=0$		20	24	pF
Clock Input	$\mathrm{V}_{\mathrm{CL}}=+12 \mathrm{~V}$		2.0		pF
Reset Input	$\mathrm{V}_{\text {RESET }}=+12 \mathrm{~V}$		20		pF
Blanking Input	$\mathrm{V}_{\text {BLANK }}=+12 \mathrm{~V}$		20		pF

clock characteristics
(Note 3)

PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
Clock Input (HIGH)(4)		$V_{S S}-2$		$V_{\text {SS }}$	V
Clock Input (LOW)		-5	0	+5	V
Clock Input Rise Time (POS GOING)		No requirement			
Clock Input Fall Tıme (NEG GOING)				20	$\mu \mathrm{sec}$
Countdown Output (POS) $\mathrm{V}_{\mathrm{OH}}$		$v_{\text {Ss }}-2$		$\mathrm{V}_{\text {Ss }}$	V
Countdown Output (NEG) $\mathrm{V}_{\mathrm{OL}}$			0		$\checkmark$
Maximum Commutation Rate		05	2.0		MHz
$V_{\text {SS }}$		+100	+12	+14	$\checkmark$

Note 1: Maximum ratıngs are limiting values above which the device may be damaged. All voltages referenced to $V_{D D}=0$.
Note 2: These specifications apply over the indicated operatıng temperature range for $\mathrm{V}_{\mathrm{GG}}=-24 \mathrm{~V}$,
$V_{D D}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {RESET }}=+12 \mathrm{~V}, \mathrm{~V}_{\text {BLANK }}=+12 \mathrm{~V}$ ON resistance measured at 1 mA , OFF resistance and leakage measured with all analog inputs and output common Capacitance measured at 1 MHz .
Note 3: Operating conditions in Note 2 apply. $V_{S S}$ to $V_{D D}(O V)$ voltage is applied to counting and gating circuits $V_{G G}$ is required only for analog switch biasing All logic inputs are high resistance and are essentially capacitive.
Note 4: Logic input voltage must not be more positive than $\mathrm{V}_{\mathrm{SS}}$.

## typical performance characteristics



## timing diagram



New Products

## DM7833/DM8833,DM7834/DM8834, DM7835/DM8835, DM7839/DM8839 quad TRI-STATE ${ }^{\circledR}$ transceivers

## general description

This family of TRI-STATE ${ }^{\circledR}$ party line transceivers offer extreme versatility in bus organized data transmission systems. The data bus may be unterminated, or terminated DC or AC at one or both ends. Drivers in the third (high impedance) state load the data bus with a negligible leakage current. The receiver input current is low allowing at least 100 driver/receiver pairs to utilize a single bus. The bus loading is unchanged when $\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$. The receiver incorporates hysteresis to provide greater noise immunity. All devices utilize a high current TRI-STATE output driver. The DM7833/ DM8833 and DM7835/DM8835 employ TRASTATE outputs on the receiver also, while on the DM7834/DM8834 and DM7839/DM8839 the receiver outputs are standard active pull up $T^{2} L$.

The DM7833/DM8833 are non-inverting quad transceivers with a common driver disable control and a common receiver disable control. The DM7839/DM8839 are non-inverting quad transceivers with a common two-input driver disable control.

The DM7834/DM8834 are inverting quad transceivers with a common two input driver disable control.

The DM7835/DM8835 are invertıng quad transceivers with a common driver disable control and a common receiver disable control.

## features

- Receiver hysteresis
- Receiver noise immunity
- Receiver input current for normal $\mathrm{V}_{\mathrm{cc}}$ or $V_{c c}=0 V$
- Receivers | Sink | 16 mA at $0.4 \mathrm{~V}(\mathrm{max})$ |
| :--- | :--- |
| Source | $2.0 \mathrm{~mA}(\mathrm{mil})$ |
|  | $5.2 \mathrm{~mA}(\mathrm{com})$ | at $2.4 \mathrm{~V}(\mathrm{~min})$
- Drivers Sink

Source

- Drivers have TRI-STATE outputs
- DM7833/DM8833 and DM7835/DM8835 receivers have TRI-STATE outputs
- Capable of driving $100 \Omega$ DC terminated buses
- 74 series TTL compatible


## connection diagrams



DM7839/DM8839


New Products

## LM165/LM365, LM166/LM366, LM167/LM367, LM168/LM368 MOS sense amplifiers (MOS to TTL converters)

## general description

This is a new series of hex sense amplifiers. The LM165/ LM365 and LM166/LM366 have TRI-STATE outputs. The LM167/LM367 and LM168/LM363 have both TRI-STATE inputs and outputs. High impedance states are controlled by an enable input.

The current threshold at which the outputs change state is determined by the current at the programming pin. The current threshold is $100 \mu \mathrm{~A}$ with the programming pin grounded and $350 \mu \mathrm{~A}$ with the pin
unconnected. It can be set from $100 \mu \mathrm{~A}$ to $350 \mu \mathrm{~A}$ by connecting a resistor from the pin to ground, and set above $350 \mu \mathrm{~A}$ by connecting a resistor from the pin to the positive supply.

The outputs are high current drivers capable of sinking 50 mA in the low state and sourcing 5.0 mA in the high state. The circuits feature high speed direct MOS sense capability with high impedance states to allow use of a common bus line.

## connection diagram

Dual-In-Line Package


## truth tables

LM165/LM365		
$I_{\text {IN }}$	$D_{\text {IS }}$	OUT
$X$	$H$	$\mathrm{Hi}-\mathrm{z}$
$>I_{\mathrm{t}}$	L	H
$\left\langle I_{\mathrm{t}}\right.$	L	L


LM166/LM366		
$I_{\text {IN }}$	$D_{\text {IS }}$	OUT
$X$	$H$	$H i-z$
$>I_{t}$	$L$	$L$
$\left\langle I_{t}\right.$	$L$	$H$


LM167/LM367		
$I_{\text {IN }}$	$D_{\text {IS }}$	OUT
$X$	$H$	$H i-z$
$>I_{t}$	$L$	$L$
$\left\langle I_{t}\right.$	$L$	$H$


LM168/LM368		
$I_{\text {IN }}$	$D_{\text {IS }}$	OUT
$X$	$H$	$H i-z$
$>I_{t}$	$L$	$H$
$<I_{t}$	$L$	$L$

## ibsolute maximum ratings (Note 1)

			MIN	MAX	UNITS
	Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ )				
upply Voltage	7.0 V	LM165,LM166,LM167,LM168	4.5	5.5	V
ıput Voltage	5.5 V	LM365,LM366,LM367,LM368	4.75	5.25	V
utput Voltage	5.5 V	Temperature ( $\mathrm{T}_{\mathrm{A}}$ )			
torage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	LM165,LM166,LM167,LM168	$-55$	+125	${ }^{\circ} \mathrm{C}$
ead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	LM365,LM366,LM367,LM368	0	+70	${ }^{\circ} \mathrm{C}$

## :lectrical characteristics (Notes 2 and 3 )

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage ( $\mathrm{V}_{1 \mathrm{H}}$ )	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$	2.0			$\checkmark$
Logical "1" Input Current Disable ( $\mathrm{I}_{1 H}$ )	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
Input Threshold ( $I_{\text {t }}$ )	$\mathrm{I}_{\mathrm{P}}=0.0 \mu \mathrm{~A}$		400		$\mu \mathrm{A}$
Logical " 0 " Input Voltage ( $V_{1 L}$ )	$V_{\text {cc }}=\mathrm{Min}$			0.8	V
Logical " 0 " Input Current ( $I_{1 L}$ )	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		,	-1.6	mA
Input Clamp Voltage ( $\mathrm{V}_{\mathrm{co}}$ )	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{\text {OUT }}=-12 \mathrm{~mA}$		1.0		V
Logical "1" Output Voitage ( $\mathrm{V}_{\mathrm{OH}}$ )	$V_{C C}=$ Min, $I_{\text {OUT }}=-5.0 \mathrm{~mA}$	2.4			V
Output Short Circuit Current (Ios) (Note 4)	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$	-20		-100	mA
Logical " 0 " Output Voltage ( $\mathrm{V}_{\mathrm{OL}}$ )	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}$		0.3		V
Supply Current ( $\mathrm{I}_{\text {cc }}$ )					
LM165/LM365, LM166/LM366	$V_{C C}=M a x$		70		mA
LM167/LM367, LM168/LM368	$V_{c c}=M a x$		80		mA
Input and Output Disable Current (I ${ }_{\text {DIS }}$ )	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, 0.4 \mathrm{~V} \leq \mathrm{V} \leq 2.4 \mathrm{~V}$		$\pm 5.0$		$\mu \mathrm{A}$

witching characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time, Low to Hıgh Level ( $t_{\text {pdLH }}$ )	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=80 \Omega$				
LM165/LM365, LM168/LM368			12		ns
LM166/LM366, LM167/LM367			15		ns
Propagation Delay Time, Hıgh to Low Level ( $t_{\text {pdHL }}$ )	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=80 \Omega$				
LM165/LM365			10		
LM166/LM366, LM167/LM367			15	ns	
LM168/LM368			ns		

ote 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating emperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" rovides conditions for actual device operation.
ote 2: Unless otherwise specified $\mathrm{min} /$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the LM165, LM166, LM167, LM168 id across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the LM365, LM366, LM367, LM368. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
ote 3: All currents into device pins shown as positive, out of device pins as negative. All voltages referenced to ground unless otherwise noted. All ilues shown as max or min on absolute value basis.
ote 4: Only one output at a time should be shorted.

New Products

## LM3625 dual high speed MOS sense amp

## general description

The LM3625 is a dual high speed MOS to TTL level converter. It acts as an interface level converter between MOS and TTL logic devices. It consists of two 1-input converters with common strobe input to inhibit " 0 " entry when strobe is high. It allows parallel entry when strobe is low and the internal latch is preset by the common preset input. TRI-STATE ${ }^{\circledR}$ output logic is implemented in this circuit to facilitate high speed time sharing of decoder-drivers, fast random-access (or sequential) memory arrays, etc.

## features

- Easily interfaces with most popular $1 k$ and $2 k$ dynamic MOS RAMs
- Pin-for-pin replacement for the 8T25
- Very low output impedance - high drive ability
- High impedance output state which allows many outputs to be connected to a common bus line
- Average power dissipation 110 mW per converter


## logic and connection diagrams



Dual-In-Line Package


Order Number LM3625N
See Package 20
absolute maximum ratings (Note 1)

Supply Voltage	7.0 V
Input Voltage	5.5 V
Output Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

operating conditions

	MIN	MAX	UNITS
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.75	5.25	V
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	0	+70	${ }^{\circ} \mathrm{C}$

## electrical characteristics (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical " 1 " Input Current ( $\mathrm{I}_{\text {INA, }} \mathrm{I}_{\text {INB }}$ )	$V_{C C}=M_{1 n}$	400			$\mu \mathrm{A}$
Logical " 0 " Input Current ( $I_{\text {INA }}$, $I_{\text {INB }}$ )	$V_{c c}=M_{1 n}$			200	$\mu \mathrm{A}$
Logical "1" Input Voltage, Strobe, Preset/Disable	$V_{C C}=M_{1 n}$	20			V
Logical "0" Input Voltage; Strobe, Preset/Disable	$V_{c c}=M_{1 n}$			08	V
Logıcal "1" Output Voltage	$V_{\text {CC }}=M$ In, $I_{\text {OUT }}=-15 \mathrm{~mA}$	28			V
Logical " 0 " Output Voltage	$V_{\text {CC }}=M$ Mn, $I_{\text {OUT }}=16 \mathrm{~mA}$			04	V
Thırd State Output Current	$\begin{aligned} & V_{C C}=M a x, V_{O}=39 V \\ & V_{C C}=M a x, V_{O}=00 V \end{aligned}$			100 -100	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Logıcal "1" Input Current	$\begin{aligned} & V_{C C}=M a x, V_{I N}=24 V \\ & V_{C C}=M a x, V_{I N}=55 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 40 \\ & 10 \end{aligned}$	$\begin{array}{r} \mu \mathrm{A} \\ \mathrm{~mA} \end{array}$
Logıcal " 0 " Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=04 \mathrm{~V}$			-16	mA
Supply Current	$\begin{aligned} & V_{C C}=\text { Max, } V_{\text {IN(PRE/DIS) }}=20 \mathrm{~V} \\ & \text { Other Inputs }=0 \mathrm{~V} \end{aligned}$			40	mA
Input Clamp Voltage	$V_{C C}=M$ In, $I_{\text {IN }}=-12 \mathrm{~mA}$			15	V
Output Short Circuit Current (Note 3)	$V_{c c}=M a x, V_{O}=0 \mathrm{~V}$	-20		-70	mA
Propagation Delay to a Logıcal " 0 " from STROBE to Output ( $\mathrm{t}_{\mathrm{ds}}$ )	$V_{C C}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		17	25	ns
Delay from Disable Input to High Impedance State (from Logical " 1 " Level) ( $\mathrm{t}_{1 \mathrm{H}}$ )	$V_{C C}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.0	11	ns
Delay from Disable Input to High Impedance State (from Logical " 0 " Level) $\left(\mathrm{t}_{\mathrm{OH}}\right)$	$V_{C C}=50 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		17	25	ns
Delay from Disable Input to Logical "1" Level (from High Impedance State) $\left(\mathrm{t}_{\mathrm{H}_{1}}\right)$	$V_{C C}=50 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$		90	14	ns
Delay from Disable Input to Logical "0" Level (from High Impedance State) ( $\mathrm{t}_{\mathrm{HO}}$ )	$V_{C C}=50 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		13.5	16	ns

Note 1: "Absolute Maximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of
"Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min/max limits apply across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Only one output at a tıme should be shorted.

## New Products

## LM75150 dual line driver

## general description

The LM75150 is a monolithic dual line driver designed to interface with data communication equipment. The device satisfies the specifications of EIA standard RS232C. A rate of 20,000 bits per second can be transmitted with a full 2500 pF load. Other applications are in data-transmission systems using relatively short single lines, in level translators, and for driving MOS devices. The logic input is compatible with most TTL and DTL families. Operation is from +12 V and -12 V power supplies. The LM75150 is characterized for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## features

- Withstands sustained output short-circuit to any lowimpedance voltage between -25 V and +25 V
- $2.0 \mu \mathrm{~s}$ max transition time through the +3.0 V to -3.0 V transition region under full 2500 pF load
- Inputs are DTL/TTL compatible
- Common strobe input
- Inverting output
- Slew rate control with external capacitor


## connection diagrams



## Dual-In-Line Package



New Products

## LM75154 quad line receiver <br> general description

The LM75154 is a quad line receiver designed to interface with data communications equipment. This device satisfies the specifications of EIA standard RS232C. The LM75154 can also be used for short, single-line, point-to-point transmission and for level translators.

In normal operation, the threshold-control terminals are connected to pin 15, the $\mathrm{V}_{\mathrm{cc} 1}$ terminal. This provides a wider hysteresis loop. When the input voltage goes to zero, the output voltage will remain at the low or high level as determined by the previous input.

For fail-safe operation, the threshold-control terminals are open. This narrows the hysteresis loop by causing the negative-going threshold voltage to be above zero. When the input voltage goes to zero, the output will go to the high level independent of the previous input condition.

This guarantees that the output will be in the high level if the input voltage goes to zero or an open-circuit.

## features

- Input resistance ... $3.0 \mathrm{k} \Omega$ to $7.0 \mathrm{k} \Omega$ over full RS232C voltage range
- Input threshold adjustable to meet "Fail-Safe" requirements without using external components
- Built-in hysteresis for increase noise immunity
- Inverting output compatible with DTL or TTL
- Output with active pull-up for symmetrical switching speeds
- Standard supply voltage 5.0V
- Can also operate with 12 V supply

Dual-In-Line Package


TOP VIEW

New Products

## MH7807/MH8807 oscillator/clock drivers

## general description

The MH7807/MH8807 is a complete self-contained two-phase oscillators and clock driver subsystems for MOS micro-computer, calculator and shift register systems.

## features

- No external timing components
- Two non-overlapping outputs
- Both frequency and pulse width are voltage controlled
- Frequency adjustable from 400 kHz to 2 MHz
- Pulse width adjustable from 300 ns to $2 \mu \mathrm{~s}$
- Low power for battery operation
- TTL outputs for verification and synchronization
- Both direct and damped MOS outputs


## logic diagram


connection diagram


New Products

## MH8804 quad MOS memory driver

MH8805 dual MOS memory driver

## general description

The quad MH8804 and the dual MH8805 are bipolar to MOS drivers specifically designed to drive input address lines for MOS memory arrays using MM1103 type RAMs. The MH8804 is pin compatible with the 13207 and the MH8805 with the SN75361.

## features

- Current mode output drive $\pm 500 \mathrm{~mA}$
- Rise and fall tımes 20 ns
- Delay times 15 ns
- High output voltage $\mathrm{V}_{\mathrm{SS}}-1.0 \mathrm{~V}$
- Low output voltage
0.3 V

TTL/DTL

## connection diagrams



MH8804


MH8805

## INTEGRATED CIRCUITS FOR DIGITAL DATA TRANSMISSION

## INTRODUCTION

It is frequently necessary to transmit digital data in a high-noise environment where ordinary integrated logic circuits cannot be used because they do not have sufficient noise immunity. One solution to this problem, of course, is to use high-noise-immunity logic. In many cases, this approach would require worst case logic swings of 30 V , requiring high power-supply voltages. Further, considerable power would be needed to transmit these voltage levels at high speed. This is especially true if the lines must be terminated to eliminate reflections, since practical transmission lines have a low characteristic impedance.

A much better solution is to convert the ground referred digital data at the transmission end into a differential signal and transmit this down a balanced, twisted-pair line. At the receiving end, any induced noise, or voltage due to ground-loop currents, appears equally on both ends of the twisted-pair line. Hence, a receiver which responds only to the differential signal from the line will reject the undesired signals even with moderate voltage swings from the transmitter.

Figure 1 illustrates this situation more clearly. When ground is used as a signal return as in Figure 1a, the voltage seen at the receiving end will be the output voltage of the transmitter plus any noise voltage induced in the signal line. Hence, the noise immunity of the transmitter-receiver combination must be equal to the maximum expected noise from both sources.

The differential transmission scheme diagrammed in Figure 1b solves this problem. Any ground noise or voltage induced on the transmission lines will appear equally on both inputs of the receiver. The receiver responds only to the differential signal coming out of the twisted-pair line and delivers a single-ended output signal referred to the ground

## LINE DRIVER

Figure 2 shows a schematic diagram of the line transmitter. The circuit has a marked resemblance to a standard TTL buffer. In fact, it is possible to use a standard dual buffer as a transmitter. However, the DM7830 incorporates additional features. For one, the output is current limited to protect the driver from accidental shorts in the transmission lines. Secondly, diodes on the output clamp severe voltage transients that may be induced into the transmission lines. Finally, the circuit has internal inversion to produce a differential output signal, reducing the skew between the outputs and making the output state independent of loading.


FIGURE 2. Schematic Diagram of the DM7830 Line Driver

As can be seen from the upper half of Figure 2, a quadruple-emitter input transistor, Q9, provides four logic inputs to the transmitter. This transistor drives the inverter stage formed by Q10 and Q11
to give a NAND output. A low state logic input on any of the emitters of Q 9 will cause the base drive to be removed from Q10, since 09 will be saturated by current from R8, holding the base of Q10 near ground. Hence, Q10 and Q11 will be turned off; and the output will be in a high state. When all the emitters of Q9 are at a one logic level, Q10 receives base drive from R8 through the forward biased collector-base junction of 09 . This saturates Q10 and also Q11, giving a low output state. The input voltage at which the transition occurs is equal to the sum of the emitter-base turn on voltages of Q10 and Q11 minus the saturation voltage of Q 9 . This is about 1.4 V at $25^{\circ} \mathrm{C}$.

A standard "totem-pole" arrangement is used on the output stage. When the output is switched to the high state, with Q10 and Q11 cut off, current is supplied to the load by Q13 and Q14 which are connected in a modified Darlington configuration. Because of the high compound current gain of these transistors, the output resistance is quite low and a large toad current can be supplied. R10 is included across the emitter-base junction of Q13 both to drain off any collector-base leakage current in Q13 and to discharge the collector-base capacitance of Q 13 when the output is switched to the low state. In the high state, the output level is approximately two diode drops below the positive supply, or roughly 3.6 V at $25^{\circ} \mathrm{C}$ with a 5.0 V supply.

With the output switched into the low state, Q10 saturates, holding the base of Q14 about one diode drop above ground. This cuts off Q13. Further, both the base current and the collector current of Q10 are driven into the base of Q11 saturating it and giving a low-state output of about 0.1 V . The circuit is designed so that the base of 011 is supplied 6 mA , so the collector can drive considerable load current before it is pulled out of saturation.
The primary purpose of R12 is to provide current to remove the stored charge in Q11 and charge its collector-base capacitance when the circuit is switched to the high state. Its value is also made enough less than R9 to prevent supply current transients which might otherwise occur* when the power supply is coming up to voltage.

[^2]The lower half of the transmitter in Figure 2 is identical to the upper, except that an inverter stage has been added. This is needed so that an input signal which drives the output of the upper half positive will drive the lower half negative, and vice versa, producing a differential output signal. Transistors Q2 and Q3 produce the inversion. Even though the current gain is not necessarily needed, the modified Darlington connection is used to produce the proper logic transition voltage on the input of the transmitter. Because of the low load capacitance that the inverter sees when it is completely within the integrated circuit, it is extremely fast, with a typical delay of 3 ns . This minimizes the skew between the outputs.

One of the schemes used when dual buffers are employed as a differential line driver is to obtain the NAND output in the normal fashion and provide the AND output by connecting the input of the second buffer to the NAND output. Using an internal inverter has some distinct advantages over this: for one, capacitive loads which slow down the response of the NAND output will not introduce a time skew between the two outputs; secondly, line transients on the NAND output will not cause an unwanted change of state on the AND output.

Clamp diodes, D1 through D4, are added on all inputs to clamp undershoot. This undershoot and ringing can occur in TTL systems because the rise and fall times are extremely short.

Output-current limiting is provided by adding a resistor and transistor to each of the complementary outputs. Referring again to Figure 2, when the current on the NAND output increases to a value where the voltage drop across R11 is sufficient to turn on Q12, the short circuit protection comes into effect. This happens because further increases in output current flow into the base of Q12 causing it to remove base drive from Q14 and, therefore, Q13. Any substantial increase in output current will then cause the output voltage to collapse to zero. Since the magnitude of the short circuit depends on the emitter base turn-on voltage of Q12, this current has a negative temperature coefficient. As the chip temperature increases from power dissipation, the available short circuit current is reduced. The current limiting also serves to control the current transient that occurs when
the output is going through a transition with both Q11 and Q13 turned on.

The AND output is similarly protected by R6 and Q5, which limit the maximum output current to about 100 mA , preventing damage to the circuit from shorts between the outputs and ground.

The current limiting transistors also serve to increase the low state output current capability under severe transient conditions. For example, when the current into the NAND output becomes so high as to pull Q11 out of saturation, the output voltage will rise to two diode drops above ground. At this voltage, the collector-base junction of 012 becomes forward biased and supplies additional base drive to Q11 through Q10 which is saturated. This minimizes any further increase in output voltage.

When either of the outputs are in the high state, they can drive a large current towards ground without a significant change in output voltage. However, noise induced on the transmission line which tries to drive the output positive will cut it off since it cannot sink current in this state. For this reason, D6 and D8 are included to clamp the output and keep it from being driven much above the supply voltage, as this could damage the circuit.

When the output is in a low state, it can sink a lot of current to clamp positive-going induced voltages on the trans̀mission line. However, it cannot source enough current to eliminate negative-going transients so D5 and D7 are included to clamp those voltages to ground.

It is interesting to note that the voltage swing produced on one of the outputs when the clamp diodes go into conduction actually increases the diffferential noise immunity. For example with no induced common mode current, the low-state output will be a saturation voltage above ground while the high output will be two diode drops below the positive supply voltage. With positivegoing common mode noise on the line, the low output remains in saturation; and the high output is clamped at a diode drop above the positive supply. Hence, in this case, the common mode noise increases the differential swing by three diode drops.


FIGURE 3. High State Output Voltage as a Function of Output Current

Having explained the operation of the line driver, it is appropriate to look at the performance in more detail. Figure 3 shows the high-state output characteristics under load. Over the normal range of output currents, the output resistance is about $10 \Omega$. With higher output currents, the short circuit protection is activated, causing the output voltage to drop to zero. As can be seen from the figure, the short-circuit current decreases at higher temperatures to minimize the possibility of overheating the integrated circuit.


FIGURE 4. Low-State Output Current as a Function of Output Current

Figure 4 is a similar graph of the low-state output characteristics. Here, the output resistance is about $5 \Omega$ with normal values of output current. With larger currents, the output transistor is pulled out of saturation; and the output voltage increases. This is most pronounced at $-55^{\circ} \mathrm{C}$ where the transistor current gain is the lowest. However, when the output voltage rises about two diode drops above ground, the collector-base junction of the current-limit transistor becomes forward biased,
providing additional base drive for the output transistor. This roughly doubles the current available for clamping positive common-mode transients on the twisted-pair line. It is interesting to note that even though the output level increases to about 2 V under this condition, the differential noise immunity does not suffer because the high-state output also increases by about 3 V with positive going common-mode transients.

It is clear from the figure that the low state output current is not effectively limited. Therefore, the device can be damaged by shorts between the output and the 5 V supply. However, protection against shorts between outputs or from the outputs to ground is provided by limiting the highstate current.

The curves in Figures 3 and 4 demonstrate the performance of the line driver with large, capaci-tively-coupled common-mode transients, or under


FIGURE 5. Differential Output Voltage as a Function of Differential Output Current
gross overload conditions. Figure 5 shows the ability of the circuit to drive a differential load: that is, the transmission line. It can be seen that for output currents less than 35 mA , the output resistance is approximately $15 \Omega$. At both temperature extremes, the output falls off at high currents. At high temperatures, this is caused by current limiting of the high output state. At low temperatures, the falloff of current gain in the lowstate output transistor produces this result.

Load lines have been included on the figure to show the differential output with various load resistances. The output swing can be read off from the intersection of the output characteristic with the load line. The figure shows that the driver can easily handle load resistances greater than $100 \Omega$.

This is more than adequate for practical, twistedpair lines.

Figure 6 shows the no load power dissipation, for one-half of the dual line driver, as a function of frequency. This information is important for two reasons. First, the increase in power dissipation at high frequencies must be added to the excess power dissipation caused by the load to determine the total package dissipation. Second, and more important, it is a measure of the "glitch" current which flows from the positive supply to ground through the output transistors when the circuit is going through a transition. If the output stage is


FIGURE 6. Power Dissipation as a Function of Switching Frequency
not properly designed, the current spikes in the power supplies can become quite large; and the power dissipation can increase by as much as a factor of five between 100 KHz and 10 MHz . The figure shows that, with no capacitive loading, the power increase with frequencies as high as 10 MHz is almost negligible. However, with large capacitive loads, more power is required.

The line receiver is designed to detect a zero crossing in the differential output of the line driver. Therefore, the propagation time of the driver is measured as the time difference between the application of a step input and the point where the differential output voltage crosses zero. A plot of the propagation time over temperature is shown in Figure 7. This delay is added directly to the propagation time of the transmission line and the delay of the line receiver to determine the total datapropagation time. However, in most cases, the delay of the driver is small, even by comparison to the uncertainties in the other delays.


FIGURE 7. Propagation Time as a Function of Tempera-' ture

To summarize the characteristics of the DM7830 line driver, the input interfaces directly with standard DTL or TTL circuits. It presents a load which is equivalent to a fan out of 3 to the circuit driving it, and it operates from the $5.0 \mathrm{~V}, \pm 10 \%$ logic supplies. The output can drive low impedance lines down to $50 \Omega$ and capacitive loads up to 5000 pF . The time skew between the outputs is minimized to reduce radiation from the twisted-pair lines, and the circuit is designed to clamp common mode transients coupled into the line. Short circuit protection is also provided. The integrated circuit consists of two independent drivers fabricated on a $41 \times 53$ mil-square die using the standard TTL process. A photomicrograph of the chip is shown in Figure 8.


FIGURE 8. Photomicrograph of the DM7830 Dual Line Driver

## LINE RECEIVER

As mentioned previously, the function of the line receiver is to convert the differential output signal of the line driver into a single ended, groundreferred signal to drive standard digital circuits on the receiving end. At the same time it must reject the common mode and induced noise on the transmission line.

Normally this would not be too difficult a task because of the large signal swings involved. However, it was considered important that the receiver operate from the +5 V logic supply without requiring additional supply voltages, as do most other line receiver designs. This complicates the situation because the receiver must operate with $\pm 15 \mathrm{~V}$ input signals which are considerably greater than the operating supply voltage.

The large common mode range over which the circuit must work can be reduced with an attenuator on the input of the receiver. In this design, the input signal is attenuated by a factor of 30 . Hence, the $\pm 15 \mathrm{~V}$ common mode voltage is reduced to $\pm 0.5 \mathrm{~V}$, which can be handled easily by circuitry operating from a 5 V supply. However, the differential input signal, which can go down as low as $\pm 2.4 \mathrm{~V}$ in the worst case, is also reduced to $\pm 80 \mathrm{mV}$. Hence, it is necessary to employ a fairly accurate zero crossing detector in the receiver.

System requirements dictated that the threshold inaccuracy introduced by the zero crossing detector be less than 17 mV . In principle, this accuracy requirement should not pose insurmountable problems because it is a simple matter to make well matched parts in an integrated circuit.

Figure 9 shows a simplified schematic diagram of the circuit configuration used for the line receiver. The input signal is attenuated by the resistive dividers R1-R2 and R8-R3. This attenuated signal is fed into a balanced dc amplifier, operating in the common base configuration. This input amplifier, consisting of Q1 and Q2, removes the common mode component of the input signal. Further, it delivers an output signal at the collector of Q2, which is nearly equal in amplitude to the original differential input signal. This output signal is buffered by Q6 and drives an output amplifier, Q8. The output stage drives the logic load directly.


FIGURE 9. Simplified Schematic of the Line Receiver

An understanding of the circuit can be obtained by first considering the input stage. Assuming high current gains and neglecting the voltage drop across R3, the collector current of Q1 will be:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C} 1}=\frac{\mathrm{V}^{+}-\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 3}-\mathrm{V}_{\mathrm{BE} 4}}{\mathrm{R} 11} . \tag{1}
\end{equation*}
$$

With equal emitter-base voltages for all transistors, this becomes:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C} 1}=\frac{\mathrm{V}^{+}-3 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{R} 11} \tag{2}
\end{equation*}
$$

The output voltage at the collector of O 2 will be:

$$
\begin{equation*}
V_{C 2}=V^{+}-I_{C 2} R 12 \tag{3}
\end{equation*}
$$

When the differential input voltage to the receiver is zero, the voltages presented to the emitters of Q1 and Q2 will be equal. If Q1 and Q2 are matched devices, which is easy to arrange when they are fabricated close together on a single silicon chip, their collector currents will be equal with zero input voltage. Hence, the output voltage from Q 2 can be determined by substituting (2) into (3):

$$
\begin{equation*}
V_{C 2}=V^{+}-\frac{R 12}{R 11}\left(V^{+}-3 V_{B E}\right) \tag{4}
\end{equation*}
$$

operation under all conditions. For one, the explanation of the simplified circuit ignores the fact that the collector current of Q1 will be affected by common mode voltage developed across R3. This can give a 0.5 V threshold error at the extremes of the $\pm 15 \mathrm{~V}$ common mode range. To compensate for this, a separate divider, R9 and R10, is used to maintain a constant collector current in Q1 with varying common mode signals. With an increasing common mode voltage on the non-inverting input, the voltage on the emitter of Q1 will increase. Normally, this would cause the voltage across R11 to decrease, reducing the collector current of Q1. However, the increasing common mode signal also drives the top end of R11 through R9 and R10 so as to hold the voltage drop across R11 constant.

In addition to improving the common mode rejection, R9 also forces the output of the receiver into the high state when nothing is connected to the input lines. This means that the output will be in a pre-determined state when the transmission cables are disconnected.

A diode connected transistor, Q 5 , is also added in the complete circuit to provide strobe capability. With a logic zero on the strobe terminal, the out-

A complete schematic of the line receiver, shown in Figure 10, shows several refinements of the basic circuit which are needed to secure proper

For R11 = R12, this becomes:

$$
V_{C 2}=3 V_{B E} .
$$

The voltage on the base of 06 will likewise be $3 \mathrm{~V}_{\mathrm{BE}}$ when the output is on the verge of switching from a zero to a one state. A differential input signal which causes $\mathbf{O 2}$ to conduct more heavily will then make the output go high, while an input signal in the opposite direction will cause the output to saturate.

It should be noted that the balance of the circuit is not affected by absolute values of componentsonly by how well they match. Nor is it affected by variations in the positive supply voltage, so it will perform well with standard logic supply voltages between 4.5 V and 5.5 V . In addition, component values are chosen so that the collector currents of Q4 and Q6 are equal. As a result, the base currents of Q4 and Q6 do not upset the balance of the input stage. This means that circuit performance is not greatly affected by production or temperature variations in transistor current gain.


FIGURE 10. Complete Schematic of the Line Receiver
put will be high no matter what the input signal is. With the strobe, the receiver can be made immune to any noise signals during intervals where no digital information is expected. The output state with the strobe on is also the same as the output state with the input terminals open.

The collector of $\mathbf{Q 2}$ is brought out so that an external capacitor can be used to slow down the receiver to where it will not respond to fast noise spikes. This capacitor, which is connected between the response-time-control terminal and ground, does not give exactly-symmetrical delays. The delay for input signals which produce a positivegoing output will be less than for input signals of opposite polarity. This happens because the impedance on the collector of Q 2 drops as Q 6 goes into saturation, reducing the effectiveness of the capacitor.

Another difference in the complete circuit is that the output stage is improved both to provide more gain and to reduce the output resistance in the high output state. This was accomplished by adding Q9 and Q10. When the output stage is operating in the linear region, that is, on the verge of switching to either the high or the low state, Q9 and Q10 form sort of an active collector load for Q8. The current through R15 is constant at approximately 2 mA as the output voltage changes through the active region. Hence, the percentage change in the collector current of Q8 due to the voltage change across R17 is made smaller by this pre-bias current; and the effective stage gain is increased.

With the output in the high state (O8 cut off), the output resistance is equal to R15, as long as the load current is less than 2 mA . When the load current goes above this value, 09 turns on; and the output resistance increases to 1.5 K , the value of R17.

This particular output configuration gives a higher gain than either a standard DTL or TTL output stage. It can also drive enough current in the high state to make it compatible with TTL, yet outputs can be wire OR'ed as with DTL.

Remaining details of the circuit are that $\mathbf{Q 7}$ is connected as an emitter follower to make the circuit even less sensitive to transistor current gains. R16 limits the base drive to 07 with the output saturated, while R17 limits the base drive to the output transistor, Q8. A resistor, R7, which can be used to terminate the twisted-pair line is also included on the chip. It is not connected directly
across the inputs. Instead, one end is left open so that a capacitor can be inserted in series with the resistor. The capacitor significantly reduces the power dissipation in both the line transmitter and receiver, especially in low-duty-cycle applications, by terminating the line at high frequencies but blocking steady-state current flow in the terminating resistor.

Since line receivers are generally used repetitively in a system, the DM7820 has been designed with two independent receivers on a single silicon chip. The device is fabricated on a $41 \times 49 \mathrm{mil}$-square die using the standard six mask planar-epitaxial process. The processing employed is identical to that used on TTL circuits, and the design does not impose any unusual demands on the processing. It is only required that various parts within the circuit match well, but this is easily accomplished in a monolithic integrated circuit without any special effort in manufacturing. A photomicrograph of the integrated circuit chip is shown in Figure 11.


FIGURE 11. Photomicrograph of the DM7820 Dual Line Receiver
The only components in the circuit which see voltages higher than standard logic circuits are the resistors used to attenuate the input signal. These resistors, R1, R7, R8 and R9, are diffused into a separate, floating, N-type isolation tub, so that the higher voltage is not seen by any of the transistors. For a $\pm 15 \mathrm{~V}$ input voltage range, the breakdown voltages required for the collector-isolation and collector-base diodes are only 15 V and 19 V , respectively. These breakdown voltages can be achieved readily with standard digital processing.

The purpose of the foregoing was to provide some insight into circuit operation. A more exact mathematical analysis of the device is developed in Appendix A.

## RECEIVER PERFORMANCE

The characteristics of the line receiver are described graphically in Figures 12 through 18. Figure 12 illustrates the effect of supply voltage variations on the threshold accuracy. The upper curve gives the differential input voltage required to hold the output at 2.5 V while it is supplying $200 \mu \mathrm{~A}$ to the digital load. The lower curve shows the differential input needed to hold the output at 0.4 V while it sinks 3.5 mA from the digital load. This load corresponds to a worst case fanout of 2 with either DTL or TTL integrated circuits. The data shows that the threshold accuracy is only affected by $\pm 60 \mathrm{mV}$ for a $\pm 10 \%$ change in supply voltage. Proper operation can be secured over a wider range of supply voltages, although the error becomes excessive at voltages below 4 V .


FIGURE 12. Differential Input Voltage Required for High or Low Output as a Function of Supply Voltage

Figure 13 is a similar plot for varying common mode input voltage. Again the differential input voltages are given for high and low states on the output with a worst case fanout of 2. With precisely matched components within the integrated circuit, the threshold voltage will not


FIGURE 13. Differential Input Voltage Required for High or Low Output as a Function of Common Mode Voltage
change with common mode voltage. The mismatches typically encountered give a threshold voltage change of $\pm 100 \mathrm{mV}$ over a $\pm 20 \mathrm{~V}$ common mode range. This change can have either a positive slope or a negative slope.


FIGURE 14. Voltage Transfer Function

The transfer function of the circuit is given in Figure 14. The loading is for a worst case fanout of 2. The digital load is not linear, and this is reflected as a non-linearity in the transfer function which occurs with the output around 1.5 V . These transfer characteristics show that the only significant effect of temperature is a reduction in the positive swing at $-55^{\circ} \mathrm{C}$. However, the voltage available remains well above the 2.5 V required by digital logic.


FIGURE 15. Response Time With and Without an External Delay Capacitor

Figure 15 gives the response time, or propagation delay, of the receiver. Normally, the delay through the circuit is about 40 ns . As shown, the delay can be increased, by the addition of a capacitor between the response-time terminal and ground, to make the device immune to fast noise spikes on the input. The delay will generally be longer for negative going outputs than for positive going outputs.

Under normal conditions, the power dissipated in the receiver is relatively low. However, with large common mode input voltages, dissipation increases markedly, as shown in Figure 16. This is of little consequence with common mode transients, but the increased dissipation must be taken into account when there is a dc difference between the grounds of the transmitter and the receiver. It is important to note that Figure 16 gives the dissipation for one half the dual receiver. The total package dissipation will be twice the values given when both sides are operated under identical conditions.


FIGURE 16. Internal Power Dissipation as a Function of Common Mode Input Voltage

Figure 17 shows that the power supply current also changes with common mode input voltage due to the current drawn out of or fed into the supply through R9. The supply current reaches a maximum with negative input voltages and can actually reverse with large positive input voltages. The figure also shows that the supply current with the output switched into the low state is about 3 mA higher than with a high output.


FIGURE 17. Power Supply Current as a Function of Common Mode Input Voltage
The variation of the internal termination resistance with temperature is illustrated in Figure 18. Taking into account the initial tolerance as well as the change with temperature, the termination resistance is by no means precise. Fortunately, in most cases, the termination resistance can vary appreciably without greatly affecting the characteristics of the transmission line. If the resistor tolerance is a problem, however, an external resistor can be used in place of the one provided within the integrated circuit.


FIGURE 18. Variation of Termination Resistance With Temperature

## DATA TRANSMISSION

The interconnection of the DM7830 line driver with the DM7820 line receiver is shown in Figure 19. With the exception of the transmission line, the design is rather straightforward. Connections on the input of the driver and the output or strobe of the receiver follow standard design rules for DTL or TTL integrated logic circuits. The load presented by the driver inputs is equal to 3 standard digital loads, while the receiver can drive a worst-case fanout of 2 . The load presented by the receiver strobe is equal to one standard load.

The purpose of C1 on the receiver is to provide dc isolation of the termination resistor for the transmission line. This capacitor can both increase the differential noise immunity, by reducing attenuation on the line, and reduce power dissipation in both the transmitter and receiver. In some applications, C1 can be replaced with a short between Pins 1 and 2, which connects the internal termination resistor of the DM7820 directly across the line. C2 may be included, if necessary, to control the response time of the receiver, making it immune to noise spikes that may be coupled differentially into the transmission lines.


FIGURE 20. Transmission Line Response With Various Termination Resistances
The effect of termination mismatches on the transmission line is shown in Figure 20. The line was constructed of a twisted pair of No. 22 copper conductors with a characteristic impedance of approximately $170 \Omega$. The line length was about 150 ns and it was driven directly from a DM7830 line driver. The data shows that termination resistances which are a factor of two off the nominal value do not cause significant reflections on the line. The lower termination resistors do, however, increase the attenuation.


FIGURE 19. Interconnection of the Line Driver and Line Receiver

Figure 21 gives the line-transmission characteristics with various termination resistances when a dc isolation capacitor is used. The line is identical to that used in the previous example. It can be seen that the transient response is nearly the same as a dc terminated line. The attenuation, on the other hand, is considerably lower, being the same as an unterminated line. An added advantage of using the isolation capacitor is that the dc signal current is blocked from the termination resistor which reduces the average power drain of the driver and the power dissipation in both the driver and receiver.


FIGURE 21. Line Response for Various Termination Resistances With a DC Isolation Capacitor

The effect of different values of dc isolation capacitors is illustrated in Figure 22. This shows that the RC time constant of the termination resistor/isolation capacitor combination should be 2 to 3 times the line delay. As before, this data was taken for a 150 ns long line.


FIGURE 22. Response of Terminated Line With Different DC Isolation Capacitors

In Figure 23, the influence of a varying ground voltage between the transmitter and the receiver is shown. The difference in the characteristics arises because the source resistance of the driver is not constant under all conditions. The high output of


FIGURE 23. Line Response With Different Terminations and Common Mode Input Voltages
the transmitter looks like an open circuit to voltages reflected from the receiving end of the transmission line which try to drive it higher than its normal dc state. This condition exists until the voltage at the transmitting end becomes high enough to forward bias the clamp diode on the 5 V supply. Much of the phenomena which does not follow simple transmission-line theory is caused by this. For example, with an unterminated line, the overshoot comes from the reflected signal charging the line capacitance to where the clamp diodes are forward biased. The overshoot then decays at a rate determined by the total line capacitance and the input resistance of the receiver.

When the ground on the receiver is 15 V more negative than the ground at the transmitting end, the decay with an unterminated line is faster, as shown in Figure 23b. This occurs because there is more current from the input resistor of the receiver to discharge the line capacitance. With a terminated line, however, the transmission characteristics are the same as for equal ground voltages because the terminating resistor keeps the line from getting charged.

Figure 23c gives the transmission characteristics when the receiver ground is 15 V more positive than the transmitter ground. When the line is not terminated, the differential voltage swing is increased because the high output of the driver will be pulled against the clamp diodes by the common mode input current of the receiver. With a dc isolation capacitor, the differential swing will reach this same value with a time constant determined by the isolation capacitor and the input resistance of the receiver. With a dc coupled termination, the characteristics are unchanged because the differential load current is large by comparison to the common mode current so that the output transistors of the driver are always conducting.

The low output of the driver can also be pulled below ground to where the lower clamp diode con-
ducts, giving effects which are similar to those described for the high output. However, a current of about 9 mA is required to do this, so it does not happen under normal operating conditions.

To summarize, the best termination is an RC combination with a time constant approximately equal to 3 times the transmission-line delay. Even though its value is not precisely determined, the internal termination resistor of the integrated circuit can be used because the line characteristics are not greatly affected by the termination resistor.

The only place that an RC termınation can cause problems is when the data transmission rate approaches the line delay and the attenuation down the line (terminated) is greater than 3 dB . This would correspond to more than 1000 ft . of twisted-pair cable with No. 22 copper conductors. Under these conditions, the noise margin can disappear with low-duty-cycle signals. If this is the case, it is best to operate the twisted-pair line without a termination to minimize transmission losses. Reflections should not be a problem as they will be absorbed by the line losses.

## CONCLUSION

A method of transmitting digital information in high-noise environments has been described. The technique is a much more attractive solution than high-noise-immunity logic as it has lower power consumption, provides more noise rejection, operates from standard 5 V supplies, and is fully compatible with almost all integrated logic circuits. An additional advantage is that the circuits can be fabricated with integrated circuit processes used for standard logic circuits.

## APPENDIX A

## LINE RECEIVER

## Design Analysis

The purpose of this appendix is to derive mathematical expressions describing the operation of the line receiver. It will be shown that the performance of the circuit is not greatly affected by the absolute value of the components within the integrated circuit or by the supply voltage. Instead, it depends mostly on how well the various parts match.

The analysis will assume that all the resistors are well matched in ratio and that the transistors are likewise matched, since this is easily accomplished over a broad temperature range with monolithic construction. However, the effects of component mismatching will be discussed where important. Further, large transistor current gains will be assumed, but it will be pointed out later that this is valid for current gains greater than about 10.

A schematic diagram of the DM7820 line receiver is shown in Figure A-1. Referring to this circuit, the collector current of the input transistor is given by

$$
\begin{aligned}
& I_{C 1}=\frac{V^{+}-V_{B E 1}-V_{B E 3}-V_{B E 4}}{R 9 / / R 10+R 11+R 3 / / R 8} \\
& -\frac{\frac{R 3}{R 4+2 R 6+R 3} V_{B E 1}-\frac{R 3 / / R 11}{R 8+R 3 / / R 1} V_{\text {IN }}}{R 9 / / R 10+R 11+R 3 / / R 8} \\
& \left(V_{\text {IN }}-V^{+}\right) \frac{R 10 / / R 11}{R 9+R 10 / / R 11} \\
& +\frac{\left.\mathrm{V}_{\text {IN }}-\mathrm{V}\right) \frac{\mathrm{R} 9+\mathrm{R} 10 / / \mathrm{R} 11}{\mathrm{R} 90+\mathrm{R} 11+\mathrm{R} 3 / / \mathrm{R} 8}}{(/ \mathrm{R}}
\end{aligned}
$$

where $\mathrm{V}_{\text {IN }}$ is the common mode input voltage and $R_{a} / / R_{b}$ denotes the parallel connection of the two resistors. In Equation (A. 1), R8 $=R 9, R 3=R 10$, R10<<R11, R9>>R10, R3<<R11, R8>>R3

$$
\begin{align*}
& \text { and } \frac{R 3}{R 4+2 R 6+R 3} \ll 3 \text { so it can be reduced to } \\
& I_{C 1}=\frac{V^{+}-3 V_{B E}-\frac{R 10}{R 9} V^{+}}{R 10+R 11+R 3} \tag{A.2}
\end{align*}
$$

which shows that the collector current of Q 1 is not affected by the common mode voltage.

The output voltage on the collector of Q 2 is

$$
\begin{equation*}
V_{c 2}=V^{+}-I_{C 2} R 12 \tag{A.3}
\end{equation*}
$$

For zero differential input voltage, the collector currents of Q1 and Q 2 will be equal so Equation (A. 3) becomes

$$
\begin{equation*}
V_{C 2}=V^{+}-\frac{R 12\left(V^{+}-3 V_{B E}-\frac{R 10}{R 9} V^{+}\right)}{R 10+R 11+R 3} \tag{A.4}
\end{equation*}
$$

It is desired that this voltage be $3 V_{B E}$ so that the output stage is just on the verge of switching with zero input. Forcing this condition and solving for R12 yields

$$
\begin{equation*}
R 12=(R 10+R 11+R 3) \frac{V^{+}-3 V_{B E}}{V^{+}-3 V_{B E}-\frac{R 10}{R 9} V^{+}} \tag{A.5}
\end{equation*}
$$



FIGURE A-1. Schematic Diagram of the DM7820 Line Receiver

This shows that the optimum value of R12 is dependent on supply voltage. For a 5 V supply it has a value of $4.7 \mathrm{k} \Omega$. Substituting this and the other component values into (A. 4),

$$
\begin{equation*}
V_{C 2}=2.83 \mathrm{~V}_{\mathrm{BE}}+0.081 \mathrm{~V}^{+}, \tag{A.6}
\end{equation*}
$$

which shows that the voltage on the collector of Q2 will vary by about 80 mV for a 1 V change in supply voltage.

The next step in the analysis is to obtain an expression for the voltage gain of the input stage.


FIGURE A-2. Equivalent Circuit Used to Calculate Input Stage Gain

An equivalent circuit of the input stage is given in Figure A-2. Noting that $R 6=R 7=R 8$ and $R 2 \cong 0.1$ ( $R 6+R 7 / / R 8$ ), the change in the emitter current of Q 1 for a change in input voltage is
$\Delta I_{E 2}=\frac{0.9 R 2}{R 1\left(0.9 R 2+R_{E 2}\right)} \Delta V_{I N}$.
Hence, the change in output voltage will be

$$
\begin{align*}
\Delta V_{\text {OUT }} & =\alpha 1_{E 2} R 12 \\
& =\frac{0.9 \alpha R 2 R 12}{R 1\left(0.9 R 2+R_{E 2}\right)} \Delta V_{I N} . \tag{A.8}
\end{align*}
$$

Since $\alpha \cong 1$, the voltage gain is
$A_{V 1}=\frac{0.9 R 2 R 12}{R 1\left(0.9 R 2+R_{E 2}\right)}$
The emitter resistance of $\mathbf{Q 2}$ is given by

$$
\begin{equation*}
R_{E 2}=\frac{k T}{q I_{C 2}} \tag{A.10}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{C 2}=\frac{V^{+}-3 V_{B E}}{R 12} \tag{A.11}
\end{equation*}
$$

so

$$
\begin{equation*}
R_{E 2}=\frac{k T R 12}{q\left(V^{+}-3 V_{B E}\right)} \tag{A.12}
\end{equation*}
$$

Therefore, at $25^{\circ} \mathrm{C}$ where $\mathrm{V}_{\mathrm{BE}}=670 \mathrm{mV}$ and $\mathrm{kT} / \mathrm{q}=26 \mathrm{mV}$, the computed value for gain is 0.745 . The gain is not greatly affected by temperature as the gain at $-55^{\circ} \mathrm{C}$ where $\mathrm{V}_{\mathrm{BE}}=810 \mathrm{mV}$ and $\mathrm{kT} / \mathrm{q}=18 \mathrm{mV}$ is 0.774 , and the gain at $125^{\circ} \mathrm{C}$ where $V_{B E}=480 \mathrm{mV}$ and $\mathrm{kT} / \mathrm{q}=34 \mathrm{mV}$ is 0.730 .

With a voltage gain of 0.75 , the results of Equation (A. 6) show that the input referred threshold voltage will change by 0.11 V for a 1 V change in supply voltage. With the standard $\pm 10$-percent supplies used for logic circuits, this means that the threshold voltage will change by less than $\pm 60 \mathrm{mV}$.

Finally, the threshold error due to finite gain in the output stage can be considered. The collector current of Q7 from the bleeder resistor R14, is large by comparison to the base current of 08 , if Q8 has a reasonable current gain. Hence, the collector current of Q7 does not change appreciably when the output switches from a logic one to a logic zero. This is even more true for Q6, an emitter follower which drives Q7. Therefore, it is safe to presume that Q6 does not load the output of the first-stage amplifier, because of the compounded current gain of the three transistors, and that Q 8 is driven from a low resistance source.

It follows that the gain of the output stage can be determined from the change in the emitter-base voltage of Q 8 required to swing the output from a logic one state to a logic zero state. The expression

$$
\begin{equation*}
\Delta V_{B E}=\frac{k T}{q} \log _{e} \frac{I_{C 1}}{I_{C 2}} \tag{A.13}
\end{equation*}
$$

describes the change in emitter-base voltage required to vary the collector current from one value, $\mathrm{I}_{\mathrm{C} 1}$, to a second, $\mathrm{I}_{\mathrm{C} 2}$. With the output of the receiver in the low state, the collector current of Q8 is

$$
\begin{align*}
I_{O L} & =\frac{V^{+}-V_{O L}-V_{B E 9}-V_{B E 10}}{R 17} \\
& +\frac{V_{B E 9}}{R 15}-\frac{V_{B E 8}}{R 14}+\frac{V_{B E 7}}{R 13}+I_{\text {SINK }} . \tag{A.14}
\end{align*}
$$

where $\mathrm{V}_{\mathrm{OL}}$, is the low state output voltage and $I_{\text {SINK }}$ is the current load from the logic that the receiver is driving. Noting that R13 $=2$ R14 and figuring that all the emitter-base voltages are the same, this becomes

$$
\begin{gather*}
\mathrm{I}_{\mathrm{OL}}=\frac{\mathrm{V}^{+}-\mathrm{V}_{\mathrm{OL}}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{R} 17}+\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{R} 15} \\
-\frac{\mathrm{V}_{\mathrm{BE}}}{2 \mathrm{R} 14}+\mathrm{I}_{\mathrm{SINK}} . \tag{A.15}
\end{gather*}
$$

Similarly, with the output in the high state, the collector current of $\mathrm{Q8}$ is

$$
\begin{align*}
I_{O H} & =\frac{V^{+}-V_{O H}-V_{B E 9}-V_{B E 10}}{R 17} \\
& +\frac{V_{B E 9}}{R 15}-\frac{V_{B E 8}}{R 14} \\
& +\frac{V_{B E 7}}{R 13}-I_{\text {SOURCE }} \tag{A.16}
\end{align*}
$$

where $\mathrm{V}_{\mathrm{OH}}$ is the high-level output voltage and $I_{\text {SOURCE }}$ is the current needed to supply the input leakage of the digital circuits loading the comparator.

With the same conditions used in arriving at (A. 15), this becomes

$$
\begin{align*}
I_{\mathrm{OH}} & =\frac{\mathrm{V}^{+}-\mathrm{V}_{\mathrm{OH}}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{R} 17}+\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{R} 15} \\
& -\frac{\mathrm{V}_{\mathrm{BE}}}{2 \mathrm{R} 14}-\mathrm{I}_{\text {SOURCE }} . \tag{A.17}
\end{align*}
$$

From (A. 13) the change in the emitter-base voltage of $\mathbf{Q 8}$ in going from the high output level to the low output level is
$\Delta V_{B E}=\frac{k T}{q} \log _{e} \frac{l_{\mathrm{OL}}}{l_{\mathrm{OH}}}$
providing that $\mathrm{Q8}$ is not quite in saturation, although it may be on the verge of saturation.

The change of input threshold voltage is then

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{TH}}=\frac{\mathrm{kT}}{\mathrm{qA}_{\mathrm{V} 1}} \log _{\mathrm{e}} \frac{\mathrm{I}_{\mathrm{OL}}}{\mathrm{I}_{\mathrm{OH}}} \tag{A.19}
\end{equation*}
$$

where $A_{V 1}$ is the input stage gain. With a worst case fanout of 2 , where $\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$, $I_{\text {SOURCE }}=40 \mu \mathrm{~A}$ and $I_{\text {SINK }}=3.2 \mathrm{~mA}$, the calculated change in threshold is 37 mV at $25^{\circ} \mathrm{C}$, 24 mV at $-55^{\circ} \mathrm{C}$ and 52 mV at $125^{\circ} \mathrm{C}$.

The measured values of overall gain differ by about a factor of two from the calculated gain. This is not too surprising because a number of assumptions were made which introduce small errors, and all these errors lower the gain. It is also not too important because the gain is high enough where another factor of two reduction would not cause the circuit to stop working.

The main contributors to this discrepancy are the non-ideal behavior of the emitter-base voltage of Q8 due to current crowding under the emitter and the variation in the emitter base voltage of Q7 and 08 with changes in collector-emitter voltage ( $\mathrm{h}_{\mathrm{RE}}$ ).

Although these parameters can vary considerably with different manufacturing methods, they are relatively fixed for a given process. The $\Delta \mathrm{V}_{\mathrm{BE}}$ errors introduced by these quantities, if known, can be added directly into Equation (A. 18) to give a more accurate gain expression.

The most stringent matching requirement in the receiver is the matching of the input stage divider resistors: R1 with R8 and R2 with R3. As little as $1 \%$ mismatch in one of these pairs can cause a threshold shift of 150 mV at the extremes of the $\pm 15 \mathrm{~V}$ common mode range. Because of this, it is necessary to make the resistors absolutely identical and locate them close together. In addition, since R1 and R8 do dissipate a reasonable amount of power, they have to be located to minimize the thermal gradient between them. To do this, R9 was located between R1 and R8 so that it would heat both of these resistors equally. There are not serious heating problems with R2 and R3; however, because of their low resistance value, it was necessary even to match the lengths of the aluminum interconnects, as the resistance of the aluminum is high enough to cause intolerable mismatches. Of secondary importance is the matching of Q1 and Q 2 and the matching of ratios between R11 and R12. A 1 mV difference in the emitterbase voltages of Q1 and Q2 causes a 30 mV input offset voltage as does a $1 \%$ mismatch in the ratio of R11 to R12.

The circuit is indeed insensitive to transistor current gains as long as they are above 10. The collector currents of Q4 and $\mathbf{Q 6}$ are made equal so that their base currents load the collectors of Q1 and Q 2 equally. Hence, the input threshold voltage is affected only by how well the current gains match. Low current gain in the output transistor, Q8, can cause a reduction in gain. But even with a current gain of 10, the error produced in the input threshold voltage is less than 50 mV .

Applications

## ANALOG-SIGNAL COMMUTATION

## INTRODUCTION

Telemetry and other data-acquisition systems have become very compact and efficient, particularly when built with integrated circuits. To keep in step, small, low-power commutators are needed to multiplex large numbers of analog signals. Metal-oxide-semiconductor field-effect transistors do the job well.

MOS IC's containing several MOSFET switching channels are presently available in production quantities and perform excellently as low-level analog commutators if the system designer understands their limitations and exploits their advantages. This report will describe the DC characteristics involved in switching analog signals when the signal input range varies between -10 V and +10 V .

MOSFET's size up very well against earlier switching devices when their overall characteristics are considered (see Table 1 and the discussion of competitive devices). In addition to being fabricated easily as multichannel IC's-in some cases, complete with switching-control circuitry on the chip-MOSFET's have several significant electrical advantages:

- Power dissipation is essentially zero in most applications. No DC power is consumed in the control gate, and practically no signal power is dissipated in the switch.
- Offset voltage is zero in a well-designed switch.
- Resistance is reasonably low when the channel is conducting.
- Resistance of an OFF channel is practically open-circuit ( $\mathrm{R}_{\mathrm{OFF}}$ is on the order of $10^{12}$ ohms and leakage currents are very small, about $100 \mathrm{pA})$.
- Analog signals are well isolated from the switch-control signals.

With all of these things in their favor, MOS ana-log-switching IC's will come into much wider use, especially in large, multichannel instrumentation and data-transmission systems.

	Mechancal   Switch	Bipolar   Transistor	N   Photocell	Junction   FET	P MOS   FET
"On" Resistance	$10^{-2} \Omega$	$10 \Omega$	$1 \mathrm{~K} \Omega$	$30 \Omega$	$100 \Omega$
"Off" Leakage	10 pA	100 pA	10 nA	100 pA	100 pA
Offset Voltage	0	$10^{-2} \mathrm{~V}$	0	0	0
Commutation Rate	1 KHz	100 KHz	100 Hz	10 MHz	50 MHz

Table 1
Comparison of Switches

## MOS IC STRUCTURE

MOS IC's generally provide four or more channels in a monolithic chip, but two are enough to illustrate the basic construction that governs switch operation. The cutaway view of Figure 1 shows two complete MOSFET's, one of which may be on while the other is off. Figure 2 is the schematic.


FIGURE 1. Cross-section of Two MOSFET's in an Integrated Circuit.


FIGURE 2. Schematic Diagram of Two-Channel Analog Switch.

Both MOSFET's have a common substrate, the "bulk" consisting of lightly doped N type silicon. Thermally grown silicon oxide covers the entire chip surface, except where the oxide was etched away to allow ohmic connections of input and output electrodes to stripes diffused with P+ dopants. These stripes are the MOSFET drain and source regions. Each gate is defined by the gate electrode, which lies over a channel region and is isolated from it by the oxide (hence, MOSFET's are sometimes called insulated-gate FET's or IGFET's).

All electrodes are etched from a thin film of deposited aluminum. Each MOSFET has separate input and gate electrodes, but the output electrodes may be paired as shown, connected to a common output pin, or connected to separate output pins on the package. The same basic MOSFET
structure can be used, whether the circuit is a differential switch, a multiplexer, or independent switches in a single package (see Figure 3).


FIGURE 3. Connection Diagrams of Dual Differential Switch, Four-Channel Switch and Quad MOS Transistor.

MOSFET's are, for practical purposes, bilaterally symmetrical. The drain (or source) can be either the input or output. By strict definition, the drain is the electrode to which majority-carrier current flows. The majority carriers are "holes" in the channel of P-channel MOSFET's (N-channel MOSFET's are not commonly used in MOS IC's). In most analog switching applications, the signal contains AC components, so the direction of current flow frequently alternates.

## SWITCHING AND ISOLATION

A P-channel MOSFET turns on when negative voltage is applied between gate and source. The gate is biased negative with respect to the bulk. Electrons accumulate on the gate, creating positive charges in the channel region. This inverts the electric charge thus creating an "enhanced" P type channel in the n-type semiconductor. When the gate is several volts more negative than threshold, a conducting channel is formed, allowing majority carrier current (holes) to flow freely between source and drain. The channel is said to be "enhanced," so these MOSFET's are called P-channel enhancement MOSFET's.

Operating voltages in a typical switching channel are illustrated in Figure 4. In most schematics, the bulk connection would not be shown. ^


FIGURE 4. Biases on Single MOS Channel at Maximum Signal Range of $\pm 10 \mathrm{~V}$.

The applied biases are those that would be used at an analog signal range of $\pm 10 \mathrm{~V}$. At any signal range, the following guidelines apply:

1. Bulk bias $\mathrm{V}_{\mathrm{BB}}$ must equal or be more positive than the most positive excursion of the analog signal. This bias must be maintained at all times, so is taken from a DC supply.
2. To turn the switch ON and make $\mathrm{R}_{\mathrm{ON}}$ low, the voltage applied to the gate should be at least 5 V more negative than the most negative excursion of the analog signal ( 10 V is desirable). The actual gate voltage is $V_{G G}$ and the gate bias is $-V_{G B}$.
3. To ensure that the switch turns OFF fully, $V_{G G}$ should be as positive as $V_{B B}$ making $V_{G B}=0$.

The first rule must be followed to get good performance from the switch. With $\mathrm{V}_{\mathrm{BB}}$ most positive, the p-n junctions are kept reverse-biased. When the channel is OFF, this condition isolates the drain from the source. When the switch is turned ON and the P-channel is enhanced, the drain-channel-source region is isolated by the p-n junction from the substrate because the substrate is "reverse biased" from all of these regions at all times.

The voltage across the switch, from drain to source, is caused by IR drop whether the switch is on or off. The MOS analog switch does not have any inherent offset voltage. To get $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }}$ in a MOSFET switch merely requires that load resistance $R_{L}$ be much larger than the resistance in the conducting channel, $R_{\text {ON }}$. Since $R_{L}$ is generally about 100 kilohms in most high-accuracy analog commutator applications, the requirement is easily met.

Figure 5 helps clarify rules (2) and (3). This curve shows how the gate-source threshold voltage changes with bulk-source bias voltage. Channel resistance is high and current flow at the output can only be a few microamperes. A forward bias higher than threshold is needed to enhance the channel. Making gate bias much more negative than $V_{T H}$ at turn-ON does this. Then, at turn-OFF, the gate bias becomes more positive than $V_{T H}$ when $\mathrm{V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{BB}}$. The channel must revert to N-type silicon thus preventing majority carrier current flow.


FIGURE 5. Variation in Switching-Threshold Voltage with Changes in Bulk-to-Source Bias Voltage.

The circuit designer must use biases that prevent the drain from having a positive potential when the switch is OFF. For example, $\mathrm{V}_{\text {in }}=+10 \mathrm{~V}$ and $V_{B B}=+9 \mathrm{~V}$ should not be allowed. Operating with $\mathrm{V}_{\mathrm{DS}}=+1 \mathrm{~V}$ won't harm the MOSFET, but some of the signal will appear at the output. Effects of improper biasing can be seen in Figure 6. With the source and bulk grounded while $\mathrm{V}_{D s}$ varies, output currents at different gate biases are measured to produce the "drain family of curves." The normal family looks like Figure 6b (the drain


6a


6b


6c

FIGURE 6. Drain-Current Measuring Circuit, Normal Drain Family of Curves, and "Bipolar" Drain Family of Curves.
family of National Semiconductor's MM450/MM550 MOS switching IC's). The "bipolar" family in Figure 6c shows what happens when $V_{D S}$ is allowed to go positive.

During small excursions of $V_{D S}$, the MOSFET acts as a voltage-variable resistor. But when $\mathrm{V}_{\mathrm{DS}}$ rises to about +0.6 V , there is an abrupt increase in drain current. At this point, the diode drop is exceeded and the drain-bulk junction becomes forward biased. Minority carriers are injected into the n-type channel region, causing grounded-base pnp bipolar transistor action (note in Figure 1 that a MOSFET resembles a lateral pnp transistor in the OFF condition). Output current will be $\alpha$ times the input current. In most MOS devices, the amplification factor will be 0.5 to 0.9 .

It is absolutely mandatory that the $\mathrm{V}_{\mathrm{DS}} \geq+0.6 \mathrm{~V}$ be avoided. Otherwise the effective $\mathrm{R}_{\text {OFF }}$ will be poor and the channel will seem to have abnormally high leakage current.

Only the upper right corner of the graph in Figure 6b, detailed in the third quadrant of Figure 6c, is useful in practical circuit designs. The useful characteristics are to the right of $-V_{D S}=-1$. and above a load line at about $\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$.

## ON AND OFF RESISTANCE

Both $\mathbf{R}_{\text {ON }}$ and $\mathbf{R}_{\text {OFF }}$ normally vary with signal voltage and operating temperature. A positive signal voltage improves channel enhancement by making the gate more negative with respect to drain and source.
$R_{O N}$ is minimum at the most positive signal level. It will increase slowly with temperature, since high temperatures reduce the mobility of majority carriers. Neverthless, $\mathrm{R}_{\mathrm{ON}}$ will have little effect on signal quality if $R_{L}$ is much larger. $R_{\text {ON }}$ does vary nonlinearly, though, so we investigated its effect upon signal quality. Figure 7 proves that the effect


FIGURE 7. Small-Signal Harmonic Distortion (Measured with Only About 100 Ohms Load Resistance).
is negligible provided that the biasing rules are observed.

The curves of small-signal harmonic distortion in Figure 7 were measured with practically no load resistance. AC signals at various voltages were
applied to the MOSFET input and the current flow was measured at the output with the help of a 100 -ohm current-sensing resistor. Distortion levels less than $0.1 \%$ could not be measured with available instruments. The anomaly in the +10 V curve is due to diode distortion of the type illustrated in Figure 6c. The input signal's AC plus DC components exceeded the bulk voltage, $V_{B B}=+10 \mathrm{~V}$, by more than the +0.6 V diode drop.

The harmonic distortion is amply low for practical applications. With a 1 -kilohm load, the small-signal distortion typically would be less than $0.5 \%$, with $V_{\text {in }}= \pm 10 \mathrm{~V}$ and $V_{D S}$ almost $\pm 1 \mathrm{~V}$. A load of 1 kilohm is unusually small. Small signal distortion would be almost unmeasurable with a 10 -kilohm load. When signal accuracy must be very high, 100 kilohms are used by some designers.

Worst-case $\mathrm{R}_{\mathrm{ON}}$ can be expected at a -10 V input. Figure 8 gives the change in $R_{O N}$ of the MM450/MM550 series devices when the analog input is at $+10 \mathrm{~V}, 0 \mathrm{~V}$ and -10 V . If lower impedance is essential, the gate can be biased more negative. For instance, at $\mathrm{V}_{\mathrm{BB}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}$ can be made -25 V or -30 V instead of -20 V , increasing $-\mathrm{V}_{\mathrm{GB}}$ to -35 V or -40 V . Don't go over the specificed maximum bias, which is usually -45 V , because excessive bias could reduce the device operating life.

Conversely, all biases can be reduced if the signal voltage range is less than $\pm 10 \mathrm{~V}$. The gate-drive circuit will not have to swing as far, the switch can be operated faster, and switching transients will be smaller. Or, the bulk bias can be reduced and the gate bias maintained at the previous ON level. This


FIGURE 8. Typical R ON Characteristics of MM450/MM550 MOS Devices at Most Positive, Zero and Most Negative Signal Voltages.
will give the effect shown in Figure 9-an improvement in channel enhancement and reductions in $\mathrm{R}_{\mathrm{ON}}$ at the various signal levels.


FIGURE 9. Bulk Bias Effect on RON.

When the gate is turned OFF, impedance between source and drain becomes very high ( $\mathrm{R}_{\text {OFF }} \approx 10^{12}$ ohms). A MOSFET's only significant DC conduction is leakage current. Total leakage in MM450/MM550 devices is typically less than 100 pA at $25^{\circ} \mathrm{C}$. It rises more rapidly than $\mathrm{R}_{\mathrm{ON}}$ with increasing temperature, approximately doubling with every $10^{\circ} \mathrm{C}$ rise in temperature. However, the MM450 devices are low-leakage types that are specified for use to $125^{\circ} \mathrm{C}$. At the maximum temperature, leakage will usually be less than 100 nA . (At very high signal frequencies, another conduction mechanism may occur-analog signal feedthrough in the device capacitances, which can be prevented by making the gate-driver impedance low when the switch is OFF.)

The two significant forms of DC leakage are leakage from source and drain to bulk, and leakage through the channel from input to output. When all channels in the multiplexer are OFF, and the outputs of each MOSFET are connected to a common package pin, total leakage will be the sum of the bulk and channel leakages.

Worst-case leakage is measured with the circuit in Figure 10. The pin at which the leakage current is measured is biased to -25 V and all other pins are grounded. This is equivalent to the bulk being biased at +10 V , all gates at +10 V , and all analogsignal inputs at +10 V , with the output at -15 V .


FIGURE 10. Worst-Case Leakage Test Circuit and Typical Worst-Case Total Leakage of MM451 at $25^{\circ} \mathrm{C}$.

Channel leakage is measured with the test circuit in Figure 11a. At $V_{\text {in }}=+10 \mathrm{~V}$, the leakage at the output is at its maximum positive value. As $\mathrm{V}_{\text {in }}$ goes more negative than +10 V , channel leakage decreases, goes through zero, and becomes negative, as in Figure 11b.


FIGURE 11. Channel-Leakage Test Circuit and Variation in Leakage with Signal Voltage.

The designer of switching systems that require very high R $_{\text {OFF }}$ values under all signal conditions should anticipate the possibility of worst-case leakage. But average leakage will generally be considerably less than worst case. First, leakage currents in each switch are voltage-sensitive, and will be less than maximum at signal voltages less than +10 V . Secondly, when the analog signals on some channels are positive and those on other channels are negative, the negative currents will subtract from the positive currents, further reducing the total leakage at the output. Also, when a switch is ON, it would not be contributing to the leakage. Assuming signal voltages vary randomly between +10 and -10 V , total leakage will run about half that of worst case. Of course, leakage will be still less if the analog signal limits are less than $\pm 10 \mathrm{~V}$.

## CONCLUSION

Integrated MOSFET switching circuits make excellent low-level analog commutators. Power dissipation is essentially zero, capacitance is reasonably low (typically 8 pF at the analog input), the $R_{\text {OFF }} / R_{\text {ON }}$ ratio is high, and the control signal is isolated from the input. MOS IC's with four or more switching channels are readily available in production quantities.

Conventional bipolar drive circuitry can control channel switching at rates in the megahertz range. Hybrid integrated circuits containing monolithic MOS multiplexers and bipolar drivers are being manufactured for medium-speed applications (NH0014 and NH0019). Level-changing circuits in these devices allow external TTL or DTL IC's to control the commutator at analog signal levels to $\pm 10 \mathrm{~V}$. MOS commutator systems can be built with building-block circuits such as the MM454F in Figure 12. This monolithic IC can commutate at rates to 1 MHz , depending on the range of signal voltages. The control logic on the chip includes a clock-countdown chain that facilitates submultiplexing.


FIGURE 12. Logic Diagram of MM454F Four-Channel MOS Multiplexer. Switches and Control Circuitry Are Fabricated in the Same Monolithic Chip.

MOSFET switches are generally used to commutate low-frequency analog signals. Today, the preferred device for RF-signal multiplexing is the N -channel junction FET, which can handle signal frequencies in the VHF range. MOS IC's have operated successfully, however, in some RF application. The high-frequency capabilities of MOS IC's are being investigated by the author and will be the subject of a future report.

Although the most outstanding feature of MOSFET's is the ease with which they can be fabricated as multichannel monolithic IC's, their electrical characteristics compare quite favorably with those of other switching components. An "order of magnitude" comparison of MOSFET's and other devices that could be used for low-level analog switching is given by Table 1. Better characteristics might be obtained in each case, but these values are typical.

Each type of analog switch has advantages and limitations that must be considered for practical use. No switch is perfect. If a switch were perfect, it would have zero resistance when ON, infinite resistance when OFF, and be $100 \%$ efficient-that is, it would consume no power.

Electrically, the mechanical switch comes close to this ideal. It has the highest $R_{\text {OFF }} / R_{\text {ON }}$ ratio and totally isolates the analog signal from the switch-ing-control function. However, it has mechanical drawbacks that make it noisy and unsuitable for
low-level commutation: contact bounce, contact pitting, susceptibility to vibration, and the necessity to move a physical mass to turn the switch on or off. It cannot commutate very fast and consumes more power than a solid-state switch, as a rule.

Bipolar transistors make excellent digital switches, the fastest ever developed, but they are usually a poor choice for multiplexing low-level analog signals. Their main disadvantages are an inherent offset voltage and the impossibility of isolating the switching control signal from the analog signal being switched. Furthermore, analog switching rates are slower than FET's. Their $\mathrm{R}_{\text {on }}$ is low, though-typically 10 ohms in analog switches (versus milliohms in power transistors). Bipolar transistors fare much better in high-level switching, where DC offset is not a problem.

Photocells make fairly good analog switches. Because light is used as the control signal, the control is completely isolated from the analog electrical signal. However, $\mathrm{R}_{\mathrm{ON}}$ is high and the $R_{\text {OFF }} / R_{\text {ON }}$ ratio is relatively poor. Even at moderate $R_{\text {OFF }} / R_{\text {ON }}$ ratios, photocells cannot commutate much faster than 100 Hz . After exposure to intense light, a photocell made with a semiconductor such as cadmium sulfide or cadmium selenide exhibits a long turn-off decay time. Photocell turn-off time constants may stretch out for many seconds before $R_{\text {OFF }}$ reaches an acceptable level. Faster switches can be made with combinations of electroluminescent diodes and phototransistors, but these devices are still very expensive.

Some N-channel junction FET's come close to being ideal switches. Offset voltage is zero, and the admittance-to-input capacitance ratio $Y_{f s} / C_{\text {ss }}$ is the highest of any contemporary device. These two parameters govern commutation rate, which can be very high if the impedances of the signal source and the load are made very low. Theoretically, the high majority-carrier mobility in an N -channel J-FET enables it to operate at a frequency higher than any other type of FET. A good example is the $2 N 4391: R_{\text {OFF }} / R_{\text {ON }}$ is about $10^{9}, R_{d s}$ (on) is a maximum of 30 ohms, and maximum leakage at $25^{\circ} \mathrm{C}$ is 100 pA . The one major disadvantage of N -channel J-FET's is that they are extremely difficult to make in the form of multichannel IC's. For high-frequency commutation, the P-channel type of J-FET is a poor choice because its majority carrier mobility is lower than N channel J-FET's.

## Applications

## APPLICATIONS OF MOS ANALOG SWITCHES


#### Abstract

This discussion begins with some basic commutation circuits, then describes some uses in linear amplifier applications such as reset functions and chopper applications. The use of MOS switches as a suppressed carrier double-sideband modulator and a double-sideband demodulator is then covered; followed by a circuit proposal for a phaselocked loop AM-FM detector without tuned circuits.


## THE MOS DIFFERENTIAL SWITCH-DC TO RF

The dual differential switch is a particular switch connection scheme which at first glance prompts one to say-so what? It is, however, one of those simple circuit configurations which can find a wide variety of uses in electronic circuits. The dual differential switch could also be called a DPDT switch or two SPDT switches-depending on how they are toggled.

MOS switches have some unique features which make them very useful for data switching ${ }^{1,2,3}$ : no offset voltage, high $R_{\text {OFF }} / R_{\text {ON }}$ ratios, low leakage, fast operation, and matched "on" resistance. Within definite bounds, MOS switches exhibit good isolation between the switching drive and signal path.

MOS switches do have somewhat unique driving requirements. In order to solve this problem, National manufactures a hybrid integrated circuit which provides DTL-TTL drive compatibility with the dual differential switch. These devices use the DM7801 chip with an MM450 chip for the NH0014 and the DM7800 chip with an MM450 chip for the NH0019. The NH0O14 is basically a DPDT switch while the NH0019 is two SPDT switches in the same package. Each connection has its particular advantages and disadvantages.

## COMMUTATION CIRCUITS

The NH0014 may be used as a two channel commutator only, because two of its four channels are always on. The NH0019 may be used for systems with any number of channels since it can shut all channels off on command.

Figure 3 shows a six channel commutator which may be easily expanded. Data sampling may be done on any format which the user chooses. Sampling format is easily controlled by DTL or TTL logic design independent of the NH0019. Since each buffer-driver of the NH0019 has a dual input gate, all channel blanking is readily achieved. If desired, the format shown in Figure 3 may be

(a) MOS Configuration

(b) Schematic Configuration
modified so as to use the NH0019 logic inputs as binary gates which can reduce the command logic complexity if the blanking function is not required.

Since the multiplexed information is in differential form, common mode noise is greatly reduced. Also, the MOS gate drive spiking is drastically reduced because of the differential channel con-
figuration. Demultiplexing may be accomplished by using a circuit identical to the multiplexer because the MOS device is a true bilateral switch. In hard-wired systems where the multiplex "outputs" are electrically connected as in Figure 4, the signal may be transmitted in either direction. For non-hardwired systems, the modulation-demodulation sequence is still bilateral, but provisions must be made for transmit/receive function control.

(a) NH 0014

(b) $\mathrm{NHOO19}$


FIGURE 3. Differential Signal Commutator-NH0019


FIGURE 4. Commutation-Modulation and Demodulation

## USAGE IN LINEAR AMPLIFIER CIRCUITS

The NHOO14 and NH0019 devices are useful for switching functions in linear circuit applications because of high off/on resistance ratio and ease of switching control using logic elements. Sample and hold circuits, integrator reset switching, and reset stabilized amplifiers are a few examples (Figure 5). More detailed information on this type of circuitry is available in National Semiconductor applications notes AN-4, AN-5, AN-20, and AN-29 ${ }^{4-7}$.

An obvious use of the NH0014 and NH0019 are in chopper stabilized amplifiers (Figure 6). One of the better forms of chopper stabilized amplifiers is the series shunt chopper with sample and hold type of output. The NHOO14 does a good job at this because it contains the complete set of switches plus proper drive for the switches. The

NH0014 can greatly reduce component count for chopper stabilized amplifiers.

## DOUBLE SIDEBAND MODULATOR

The NH0019 can be used as a double sideband modulator. In modulator applications, the NH0019 functions as a DPDT switch which alternately reverses the polarity of the modulating signal at the chopper frequency. MOS switches work quite well at this application because of zero offset voltage and large signal handling ability.

In order to build a double sideband balanced modulator ${ }^{8,9}$, one of the two modulating inputs must be applied as a balanced input. For the circuit shown in Figure 7, an LM102 and LM107 were used for an audio phase splitter.

(a) Integrator

(b) Reset Stabilized Amplifier

FIGURE 5. Switching Applications With Linear Circuits


FIGURE 6. Series-Shunt Chopper Stabilized Amplifier


FIGURE 7. Double Sideband Modulator-Demodulator

Both point $A$ and point $B$ in Figure 7 are DSB modulated outputs; so, technically, you could get by with only one. The waveform at point A is illustrated in Figure 8a for a carrier frequency of 100 kHz and an audio frequency of 12.5 kHz . Point $B$ is equal and out of phase.

One type of spurious response encountered with MOS switching devices is output spikes caused by a charge being dumped into the channel by the gate drive through gate-channel capacitance. By adding C1, part of the charge can be absorbed,
the switching transients are an "in phase" or "common mode" error.

To better illustrate the improvement by using a balanced output, the audio signal was reduced to zero volts and the points $A, B$, and $A-B$ were measured as shown in Figure 9. The improvement operating in the differential mode is obvious.

The circuit drive requirements for Figure 7 may be simplified by using the NHOO14 since it provides an inverting function internally. Only one phase of toggle drive to the NH 0014 is required.


FIGURE 8. Double Sideband Signal
thus reducing the voltage amplitude of the spikes. The R1C1 combination has its 3 dB point at about 80 kc , so output from the phase splitter was not attenuated in the audio range.

The astute observer will notice switching transients on the waveform in Figure 8a. By taking the output in differential form at points $A$ and $B$, these transients are greatly reduced because the desired signals are equal but of opposite polarity, while

The modulation will be distorted more due to the phase lag created by the internal inverter of the NH0014. Figure 10a shows the switching performance of the NH0019 while Figure 10b shows the switching performance of the NH0014. In applications which do not require high carrier frequencies, the NH0014 is adequate, but for carrier frequencies above 100 kHz , the NH0019 provides improved performance because of its symmetrical switching behavior.


FIGURE 9. MOS Switching Transients

(a) $\mathrm{NH} 001950 \mathrm{~ns} / \mathrm{cm}$

(b) NH0014 $50 \mathrm{~ns} / \mathrm{cm}$

FIGURE 10. Channel Switching-NH0019 vs NH0014


FIGURE 11. Demodulator Recovered Output

## DOUBLE SIDEBAND DEMODULATOR

The major requirement of double sideband signal demodulation is proper carrier reinsertion. For maximum output, the carrier must be reinserted exactly in phase or exactly $180^{\circ}$ out of phase with respect to the signal. Any departure from this optimum phase relationship will reduce the recovered signal amplitude. By applying the double sideband signal to a second NHOO19, as shown in Figure 7, the original modulating waveform may be recovered, along with some switching transients (Figure 11).

These switching transients may be filtered out quite easily. It is, however, instructive to compare the recovered audio signal with the original. The modulating signal had less than $0.1 \%$ distortion at 1 kHz . Figure 12 shows the distortion of the recovered signal vs. signal amplitude.

Carrier frequency was 100 Hz for the upper curve and 10 kHz for the lower. These curves indicate that most of the distortion is due to switching transients, especially at low modulation levels. Output filtering will significantly reduce the recovered signal distortion.

Figure 13 emphasizes the affect that switching transients have on harmonic distortion. At carrier frequencies below 10 kHz , the RMS value of the transients is reduced to a point where distortion of the MOS switches themselves can be seen.

The NHOO14 and NH0019 data sheet suggests a V plus supply value of 10 volts and a V minus supply value of -20 volts. However, switching transients may be reduced by using different power supply voltages. Figure 14 and Figure 15 show what happens to harmonic distortion caused by spiking versus power supply level. Figure 14 is plotted for V minus with V plus at 10 volts. Figure 15 shows what happens as $V$ plus is varied. All of the previous data was taken at $V$ plus at 14 volts and $V$ minus at -12 volts.

## AM-FM DEMODULATOR

Although an AM-FM demodulator was not physically constructed, the previously discussed "double sideband demodulator" performance implies that a very interesting phase detector can be built. The interesting features of this type of a detector are large dynamic range, recovery of both
in-phase (amplitude modulated) and quadraturephase (frequency modulated) signals plus the feasibility of not using any inductors for tuning.

Figure 16 shows the proposed circuit block diagram which uses a phase-locked loop for phase reference signal. The voltage controlled oscillator (VCO) is operated at $4 f_{o}$. Flip Flop \#1 provides a two phase output which is fed into FF \#2 and FF \#3. The outputs of FF \#2 and FF \#3 are exactly $90^{\circ}$ out of phase regardless of the frequency of the VCO. This kind of performance is awfully hard to achieve using tuned circuits. For a 455 kHz detector, the VCO would operate at 1820 kHz . TTL flip flops will operate quite nicely at that frequency and should hold phase shift errors to practically zero. The LM107 provides DC gain to close the phase-locked loop, it forces the VCO to a frequency and phase angle which causes the "FM out" port to zero volts DC; this port is then operating exactly in quadrature with the applied signal. This part of the detector is then insensitive to amplitude modulation and sensitive to frequency modulation. Since the AM detector portion is operating exactly $90^{\circ}$ out of phase with the FM portion, its output is insensitive to FM and sensitive to AM.


There was little significant difference in distortion at stgnal amplitudes of $30 \mathrm{~V}, 10 \mathrm{~V}, 03 \mathrm{~V}, 01 \mathrm{~V}$ RMS

FIGURE 13. Recovered Signal Harmonic Distortion vs Carrier Frequency


FIGURE 15. Harmonic Distortion vs Positive Supply Voltage


FIGURE 12. Recovered Signal Harmonic Distortion vs Audio Modulation Level


FIGURE 14. Harmonic Distortion vs Negative Power Supply Voltage


FIGURE 16. AM-FM Demodulator

## CONCLUSION

The most obvious use of the NH0014 and NH0019 is in commutator applications, and it indeed is a very useful device for that purpose. The use of these switches in linear circuit applications is also very attractive because of DTL-TTL control compatibility. There are many more uses of these switches possible than the few examples described here.

The unusual application of these devices as suppressed carrier double-sideband modulators and demodulators suggests applications in servo systems and even communications systems due to their high speed operation. The final circuit suggestion, a phase-locked loop AM-FM demodulator without tuned circuits should be very useful in communications systems. The NHOO19 will operate quite well at an IF frequency of 455 kHz or less.

These basic capabilities of the MOS dual differential switch should encourage much greater usage of this type of device in new product designs.

## REFERENCES

1. D. Mrazek, "High Speed MOS Commutators", National Semiconductor AN-28, January 1970.
2. D.L. Wollesen, "Analog Signal Commutation", National Semiconductor AN-33, February 1970.
3. D.L. Wollesen, "Analog Switching-High Speed With JFET's', EDN, January 15, 1970.
4. R.J. Widlar, "Monolithic Operational Amplifiers", National Semiconductor AN-4, April 1968.
5. R.J. Widlar, "Integrated Voltage Follower", National Semiconductor AN-5, May 1968.
6. W.S. Routh, "Applications Guide For Op Amps", National Semiconductor AN-20, February 1969.
7. R.J. Widlar, "I.C. Op Amp Beats FET's On Input Current", National Semiconductor AN-29, December 1969.
8. F.E. Terman, Electronic and Radio Engineering, McGraw-Hill, New York, 1955.
9. M. Schwartz, Information Transmission Modulation and Noise, McGraw-Hill, New York, 1959.

## PIN DIODE DRIVERS

## INTRODUCTION

The DH0035/DH0035C is a TTL/DTL compatible, DC coupled, high speed PIN diode driver. It is capable of delivering peak currents in excess of one ampere at speeds up to 10 MHz . This article demonstrates how the DH0035 may be applied to driving PIN diodes and comparable loads which require high peak currents at high repetition rates. The salient characteristics of the device are summarized in Table 1.

PARAMETER	CONDITIONS	VALUE
Differential Supply		30 V Max.
Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$		
Output Current		1000 mA
Maximum Power ,		1.5 W
$\mathrm{t}_{\text {delay }}$	PRF $=5.0 \mathrm{MHz}$	10 ns
$\mathrm{t}_{\text {rise }}$	$\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}$	15 ns
	$10 \%$ to $90 \%$	
$\mathrm{t}_{\text {fall }}$	$\mathrm{V}^{+}-\mathrm{V}^{-}=20 \mathrm{~V}$	10 ns
	$90 \%$ to $10 \%$	

Table I DH0035 Characteristics

## PIN DIODE SWITCHING REQUIREMENTS

Figure 1 shows a simplified schematic of a PIN diode switch. Typically, the PIN diode is used in RF through microwave frequency modulators and switches. Since the diode is in shunt with the RF path, the RF signal is attenuated when the diode is forward biased ("ON"), and is passed unattenuated when the diode is reversed biased ("OFF").

There are essentially two considerations of interest in the "ON" condition. First, the amount of "ON" control current must be sufficient such that RF signal current will not significantly modulate the "ON" impedance of the diode. Secondly, the time required to achieve the "ON" condition must be minimized.


FIGURE 1. Simplified PIN Diode Switch

The charge control model of a diode ${ }^{1 ; 2}$ leads to the charge continuity equation given in equation (1).

$$
\begin{equation*}
\mathrm{i}=\frac{\mathrm{dQ}}{\mathrm{dt}}+\frac{\mathrm{Q}}{\tau} \tag{1}
\end{equation*}
$$

where: $\mathrm{Q}=$ charge due excess minority carriers $\tau=$ mean life time of the minority carriers

Equation (1) implies a circuit model shown in Figure 2. Under steady conditions $\frac{d Q}{d t}=0$, hence:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{DC}}=\frac{\mathrm{Q}}{\tau} \text { or } \mathrm{Q}=\mathrm{I}_{\mathrm{DC}} \tau \tag{2}
\end{equation*}
$$

where: $\quad$ = steady state "ON" current.


FIGURE 2. Circuit Model for PIN Switch

The conductance is proportional to the current, I; hence, in order to minimize modulation due to the RF signal, $I_{D C} \gg i_{R F}$. Typical values for $I_{D C}$ range from 50 mA to 200 mA depending on PIN diode type, and the amount of modulation that can be tolerated.

The time response of the excess charge, $Q$, may be evaluated by taking the Laplace transform of equation (1) and solving for Q :

$$
\begin{equation*}
\mathrm{Q}(\mathrm{~s})=\frac{\tau 1(\mathrm{~s})}{1+\mathrm{s} \tau} \tag{3}
\end{equation*}
$$

Solving equation (3) for $Q(t)$ yields:

$$
\begin{equation*}
\mathrm{Q}(\mathrm{t})=\mathrm{L}^{-1}[\mathrm{Q}(\mathrm{~s})]=\mathrm{I} \tau\left(1-\epsilon^{-\mathrm{t} / \tau}\right) \tag{4}
\end{equation*}
$$

The time response of $Q$ is shown in Figure 3a. As can be seen, several carrier lifetimes are required to achieve the steady state "ON" condition ( $\mathrm{Q}=$ $I_{D C} \cdot \tau$ ).


FIGURE 3a.

The time response of the charge, hence the time for the diode to achieve the "ON" state could be shortened by applying a current spike, Ipk, to the diode and then dropping the current to the steady state value, $\mathrm{I}_{\mathrm{DC}}$, as shown in Figure 3b. The optimum response would be dictated by:

$$
\begin{equation*}
(\mathrm{lpk})(\mathrm{t})=\tau \cdot \mathrm{I}_{\mathrm{DC}} \tag{5}
\end{equation*}
$$



FIGURE 3b.

The turn off requirements for the PIN diode are quite similar to the turn on, except that in the "OFF" condition, the steady current drops to the diode's reverse leakage current.

A charge, $\mathrm{I}_{\mathrm{DC}} \cdot \tau$, was stored in the diode in the "ON" condition and in order to achieve the "OFF" state this charge must be removed. Again, in order to remove the charge rapidly, a large peak current (in the opposite direction) must be applied to the PIN diode:

$$
\begin{equation*}
-1 \mathrm{pk} \gg \frac{\mathrm{Q}}{\tau} \tag{6}
\end{equation*}
$$

It is interesting to note an implication of equation (5). If the peak turn on current were maintained for a period of time, say equal to $\tau$, then the diode would acquire an excess charge equal to $\mathrm{lpk} \cdot \mathrm{T}$. This same charge must be removed at turn off, instead of a charge $I_{D C} \cdot \tau$, resulting in a considerably slower turn off. Accordingly, control of the width of turn on current peak is critical in achieving rapid turn off.

## APPLICATION OF THE DH0035 AS A PIN DIODE DRIVER

The DH0035 is specifically designed to provide both the current levels and timing intervals required to optimally drive PIN diode switches. Its


FIGURE 4. DH0035 Schematic Diagram


FIGURE 5. Anode Grounded Driver
schematic is shown in Figure 4. The device utilizes a complementary TTL input buffer such as the DM7830/DM8830 or DM5440/DM7440 for its input signals.

Two configurations of PIN diode switch are possible: cathode grounded and anode grounded. The design procedures for the two configurations will be considered separately.

## ANODE GROUND DESIGN

Selection of power supply voltages is the first consideration. Table I reveals that the DHOO35 can withstand a total of 30 V differentially. The supply voltage may be divided symmetrically at $\pm 15 \mathrm{~V}$, for example. Or asymmetrically at +20 V and -10 V . The PIN diode driver shown in Figure 5 , uses $\pm 10 \mathrm{~V}$ supplies.

When the $\mathbf{Q}$ output of the DM8830 goes high a transient current of approximately 50 mA is applied to the emitter of $Q_{1}$ and in turn to the base of $\mathrm{Q}_{5}$.
$\mathrm{Q}_{5}$ has an $\mathrm{h}_{\mathrm{fe}}=20$, and the collector current is $h_{f e} \times 50$ or 1000 mA . This peak current, for the most part, is delivered to the PIN diode turning it "ON" (RF is "OFF").

Ipk flows until $C_{2}$ is nearly charged. This time is given by:

$$
\begin{equation*}
t=\frac{C 2 \Delta V}{I p k} \tag{7}
\end{equation*}
$$

where: $\quad \Delta V=$ the change in voltage across $C_{2}$.
Prior to $\mathrm{Q}_{5}$ 's turn on, $\mathrm{C}_{2}$ was charged to the minus supply voltage of -10 V . $\mathrm{C}_{2}$ 's voltage will rise to within two diode drops plus a $\mathrm{V}_{\text {sat }}$ of ground:

$$
\begin{equation*}
V=V^{-} I-V f(P I N \text { Diode })-V_{f_{C R 1}}-V_{\text {sat }} \tag{8}
\end{equation*}
$$

for $\mathrm{V}^{-}=-10 \mathrm{~V}, \Delta \mathrm{~V}=8 \mathrm{~V}$.
Once $\mathrm{C}_{2}$ is charged, the current will drop to the stead $y$ state value, $I_{D C}$, which is given by:

$$
\begin{equation*}
I_{D C}=\frac{V}{R_{M}}-\frac{V^{+}}{R_{3}}-\frac{V_{C C}}{R_{1}} \tag{9}
\end{equation*}
$$

where: $V_{c c}=5.0 \mathrm{~V}$
$R_{1}=250 \Omega$
$R_{3}=500 \Omega$

$$
\begin{equation*}
\therefore R_{M}=\frac{\left(R_{3}\right)(\Delta V)\left(R_{1}\right)}{R_{1} V++I_{D C} R_{3} R_{1}+V_{c c} R_{3}} \tag{9a}
\end{equation*}
$$

For the driver of Figure 5, and $I_{D C}=100 \mathrm{~mA}, \mathrm{R}_{\mathrm{M}}$ is 56 ohms (nearest standard value).

Returning to equation (7) and combining it with equation (5) we obtain:

$$
\begin{equation*}
\mathrm{t}=\frac{\tau I_{\mathrm{DC}}}{I \mathrm{pk}}=\frac{\mathrm{C}_{2} V}{I \mathrm{pk}} \tag{10}
\end{equation*}
$$

Solving equation (10) for $\mathrm{C}_{2}$ gives:

$$
\begin{equation*}
\mathrm{C}_{2}=\frac{\mathrm{I}_{\mathrm{DC}} \tau}{\mathrm{~V}} \tag{11}
\end{equation*}
$$

For $\tau=10 \mathrm{~ns}, \mathrm{C}_{2}=120 \mathrm{pF}$.
One last consideration should be made with the diode in the "ON" state. The power dissipated by the DH0035 is limited to 1.5 W (see Table 1). The DH0035 dissipates the maximum power with $\mathrm{Q}_{5}$ "ON". With $\mathrm{O}_{5}$ "OFF", neglible power is dissipated by the device. Power dissipation is given by:

$$
\begin{array}{r}
P \text { diss } \cong\left[I_{D C}\left(\left|V^{-}\right|-\Delta V\right)+\frac{\left(V^{+}-V^{-}\right)^{2}}{R 3}\right] \\
x(D . C .) \leq P_{\max } \tag{12}
\end{array}
$$

where: D.C. $=$ Duty Cycle $=$

$$
\begin{gathered}
\frac{\left(" \mathrm{ON}^{\prime} \text { time }\right)}{\left(" \mathrm{ON}^{\prime \prime} \text { time }+\right. \text { "OFF" time) }} \\
\text { Pmax }=1.5 \mathrm{~W}
\end{gathered}
$$

In terms of $\mathrm{I}_{\mathrm{DC}}$ :

$$
\begin{equation*}
I_{D C} \leq \frac{\left[\frac{(P \max )}{(D . C .)}-\frac{\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)^{2}}{500}\right]}{\left|\mathrm{V}^{-}\right|-\Delta V} \tag{12a}
\end{equation*}
$$

For the circuit of Figure 5 and a $50 \%$ duty cycle, P diss $=0.5 \mathrm{~W}$.

Turn-off of the PIN diode begins when the Q output of the DM8830 returns to logic " 0 " and the $\overline{\mathrm{Q}}$ output goes to logic " 1 ". $\mathrm{Q}_{2}$ turns " ON ", and in turn, causes $\mathrm{Q}_{3}$ to saturate. Simultaneously, $\mathrm{Q}_{1}$ is turned "OFF" stopping the base drive to $Q_{5}$. $\mathrm{Q}_{3}$ absorbs the stored base charge of $\mathrm{Q}_{5}$ facilitating its rapid turn-off. As $\mathrm{O}_{5}$ 's collector begins to rise, $\mathrm{Q}_{4}$ turns "ON". At this instant, the PIN diode is still in conduction and the emitter of $\mathrm{Q}_{4}$ is held at approximately -0.7 V . The instantaneous current available to clear stored charge out of the PIN diode is:

$$
\begin{align*}
I \mathrm{pk} & =\frac{\mathrm{V}^{+}-V_{\mathrm{BE} \mathrm{Q}_{4}}+V_{\mathrm{f}(\mathrm{PIN})}}{\frac{R_{3}}{h_{\mathrm{fe}}+1}} \\
& \cong \frac{\left(h_{\mathrm{fe}}+1\right)\left(\mathrm{V}^{+}\right)}{R_{3}} \tag{13}
\end{align*}
$$

where:

$$
\begin{aligned}
\mathrm{h}_{\mathrm{fe}}+1= & \text { current gain of } \mathrm{Q}_{4}=20 \\
\mathrm{~V}_{\mathrm{BE} \mathrm{O4}}= & \text { base-emitter drop of } \mathrm{Q}_{4}=0.7 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{f}(\mathrm{PIN})}= & \text { forward drop of the PIN } \\
& \text { diode }=0.7 \mathrm{~V}
\end{aligned}
$$

For typical values given, $1 \mathrm{pk}=400 \mathrm{~mA}$. Increasing $\mathrm{V}^{+}$above 10 V will improve turn-off time of the diode, but at the expense of power dissipation in the DH0035. Once turn-off of the diode has been achieved, the DH0035 output current drops to the reverse leakage of the PIN diode. The attendant power dissipation is reduced to about $35 \mathrm{~m} / \mathrm{N}$.

## CATHODE GROUND DESIGN

Figure 6 shows the DH0035 driving a cathode grounded PIN diode switch. The peak turn-on current is given by:

$$
\begin{equation*}
I \mathrm{pk} \cong \frac{\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)\left(\mathrm{h}_{\mathrm{fe}}+1\right)}{\mathrm{R}_{3}} \tag{14}
\end{equation*}
$$

$=800 \mathrm{~mA}$ for the values shown.
The steady state current, $I_{D C}$, is set by Rp and is given by:

$$
\begin{equation*}
I_{D C}=\frac{V^{+}-2 V_{B E}}{\frac{R_{3}}{h_{f e}+1}+R_{P}} \tag{15}
\end{equation*}
$$


where: $\quad 2 V_{B E}=$ forward drop of $Q_{4}$ base emitter junction plus $\mathrm{V}_{\mathrm{f}}$ of the PIN diode $=1.4 \mathrm{~V}$.

In terms of Rp, equation (15) becomes:

$$
\begin{equation*}
R_{P}=\frac{\left(h_{\mathrm{fe}}+1\right)\left(\mathrm{V}^{+}-2 \mathrm{~V}_{\mathrm{BE}}\right)-I_{\mathrm{DC}} R_{3}}{\left(\mathrm{~h}_{\mathrm{fe}}+1\right) I_{\mathrm{DC}}} \tag{15a}
\end{equation*}
$$

For the circuit of Figure 6, and $I_{D C}=100 \mathrm{~mA}$, Rp is 62 ohms (nearest standard value).

It now remains to select the value of $\mathrm{C}_{\mathbf{1}}$. To do this, the change in voltage across $\mathrm{C}_{1}$ must be evaluated. In the "ON" state, the voltage across $\mathrm{C}_{1}, \mathrm{Vc}$, is given by:

$$
\begin{equation*}
(V c)_{O N}=\frac{V^{+} R_{3}+R p\left(h_{\mathrm{fe}}+1\right)\left(2 V_{\mathrm{BE}}\right)}{R_{3}+\left(h_{\mathrm{fe}}+1\right) R p} \tag{16}
\end{equation*}
$$

For the values indicated above, $(\mathrm{Vc})_{\mathrm{ON}}=3.8 \mathrm{~V}$. In the "OFF" state, Vc is given by:

$$
\begin{equation*}
(\mathrm{Vc})_{\mathrm{OFF}}=\frac{\mathrm{V}^{+} \mathrm{R}_{3}-\left|\mathrm{V}^{-}\right| \mathrm{Rp}}{\mathrm{Rp}+\mathrm{R}_{3}} \tag{17}
\end{equation*}
$$

$=8.0 \mathrm{~V}$ for the circuit of Figure 6.
Hence, the change in voltage across $C_{1}$ is:

$$
\begin{align*}
V & =(\mathrm{Vc})_{O F F}-(\mathrm{Vc})_{O N}  \tag{18}\\
& =8.0-3.8 \\
& =4.2 \mathrm{~V}
\end{align*}
$$

The value of $\mathrm{C}_{4}$ is given, as before, by equation (11):

$$
\begin{equation*}
\mathrm{C}_{1}=\frac{\mathrm{I}_{\mathrm{DC}} \tau}{\mathrm{~V}^{-}} \tag{19}
\end{equation*}
$$

For a diode with $\tau=10 \mathrm{~ns}$ and $\mathrm{I}_{\mathrm{DC}}=100 \mathrm{~mA}$, $\mathrm{C}_{1}=250 \mathrm{pF}$.

Again, the power dissipated by the DH0035 must be considered. In the "OFF" state, the power dissipation is given by:

$$
\begin{equation*}
P_{\text {OFF }}=\left[\frac{\left.\mathrm{v}^{+}-\mathrm{V}^{-}\right)^{2}}{\mathrm{R}_{3}}\right] \text { (D.C.) } \tag{20}
\end{equation*}
$$

where: $\quad$ D.C. $=$ duty cycle $=$

$$
\frac{" \mathrm{OFF}^{\prime} \text { time }}{\text { "OFF" time }+ \text { "ON" time }}
$$

The "ON" power dissipation is given by:

$$
\begin{equation*}
P_{\mathrm{ON}}=\left[\frac{(\mathrm{Vc})_{\mathrm{ON}}{ }^{2}}{\mathrm{R}_{3}}+\mathrm{I}_{\mathrm{DC}} \times(\mathrm{Vc})_{\mathrm{ON}}\right](1-\mathrm{D} . C .) \tag{21}
\end{equation*}
$$

where: $(\mathrm{Vc})_{\text {ON }}$ is defined by equation (16).
Total power dissipated by the DHOO35 is simply PON $+\mathrm{P}_{\text {OFF }}$. For a $50 \%$ duty cycle and the circuit of Figure 6, P diss $=616 \mathrm{~mW}$.

The peak turn-off current is, as indicated earlier, equal to $50 \mathrm{~mA} \times \mathrm{h}_{\mathrm{fe}}$ which is about 1000 mA . Once the excess stored charge is removed, the current through $\mathrm{Q}_{5}$ drops to the diodes leakage current. Reverse bias across the diode $=\mathrm{V}^{-}-\mathrm{V}_{\text {sat }} \cong$ -10 V for the circuit of Figure 6.

## REPETITION RATE CONSIDERATIONS

Although ignored until now, the PRF, in particular, the "OFF" time of the PIN diode is important in selection of $C_{2}, R_{M}$, and $C_{1}, R p$. The capacitors must recharge completely during the diode "OFF" time. In short:

$$
\begin{align*}
& 4 \mathrm{R}_{\mathrm{M}} \mathrm{C}_{2} \leq \mathrm{t}_{\mathrm{OFF}}  \tag{22a}\\
& 4 \mathrm{RpC}_{1} \leq \mathrm{t}_{\mathrm{OFF}}
\end{align*}
$$

(22b)


FIGURE 7. RF Turn-On ( $10 \mathrm{~ns} / \mathrm{cm}$ )


FIGURE 8. RF Turn-Off ( $10 \mathrm{~ns} / \mathrm{cm}$ )
has been demonstrated which enable the designer to tailor the DH0035 driver to the PIN diode application.

## REFERENCES

1. 'Pulse, Digital, \& Switching Waveforms", Jacob Millman \& Herbert Taub, McGraw-Hill Book Company, Inc., New York, N.Y.
2. "Models of Transistors and Diodes", John G. Linvill, McGraw-Hill Book Company, Inc., New York, N.Y.
3. National Semiconductor AN-18, Bert Mitchell, March 1969.
4. Hewlett-Packard Application Note314, January 1967.

## HIGH SPEED ANALOG SWITCHES

## SUMMARY

In the past, many factors combined to make precision, high speed analog switching circuits complex and expensive, if not impossible. A unique monolithic J-FET family opens new analog switching applications which require high toggle rates, high frequency signal handling ability, and high level analog signals with broad dynamic range.
Called the AM1000, AM1001 and AM1002 analog switches, these devices were developed specifically for high speed analog switching applications. The AM 1000 series overcomes the problem of slow switching speed normally associated with junction FET analog switches. While MOS analog switches are noted for their high speed, they have the peculiar problem of their ON resistance being modulated by the analog signal level. The AM 1000 series eliminates this problem too.

National's AM1000 series analog switches are simple N -channel monolithic integrated circuit J-FETs. They are packaged in TO-72 (4-pin TO-18) headers to reduce circuit board space and yet retain the advantages of a hermetically sealed package.

## WHAT IS AN ANALOG SIGNAL?

An analog signal is an electrical voltage (or current) whose level is an analog of certain information. This information can be an electrical level itself, a voice signal, an electrical analog of a pressure, temperature, position, etc., or any other data source. The analog information may also be preconditioned by logarithmic compression or expansion, or other desired "distortion." If the analog information does not vary quickly with time and if many analog signals have to be handled in a system, the analog information may be sampled periodically rather than monitored continuously. Sampled data systems can dramatically reduce cost and weight by proper utilization of available information channel bandwidth where the cost of additional data channels becomes expensive.

The telephone companies are probably the most adept at signal multiplexing, but other applications are beginning to appear. Modern aircraft are using multiplexing to reduce weight in wire harnesses. Any applications requiring long multiconductor cable runs are prime targets for economic use of analog signal multiplexing.

## TIME DOMAIN MULTIPLEXING

There are two basic types of multiplexing: frequency domain multiplexing and time domain multiplexing. Frequency domain multiplexing is common in RF communications, it uses a number of subcarriers on a data channel, each subcarrier being modulated in some manner. An example would be FM radio standard broadcast which has home stereo multiplex information (a suppressed carrier double sideband subcarrier) and the SCA commercial "background music" multiplex information (an FM modulated subcarrier). When the number of data channels becomes great, frequency domain multiplexing becomes difficult to implement.
In time domain multiplexing, a certain time slot is allowed for sampling of a particular data line. Thus, if you sample some analog information during a $10 \mu \mathrm{~s}$ time slot at a 10 kHz rate, you have time "left over" to sample nine other signals at $10 \mu \mathrm{~s}$ intervals at a 10 kHz rate. If you can improve the analog switch device to execute a suitable sample in only $1 \mu \mathrm{~s}$, you have made a tenfold improvement and you have the choice of increasing system channel capability to 100 channels (with no change in analog signal bandwidth), increasing analog signal frequency bandwidth by 10 times (with no increase in channels), or a compromise between increasing signal bandwidth and increasing the number of data channels. This is what the AM1000 family of analog switches is all about; they allow shorter sampling times for a given signal accuracy.

## WHAT MAKES A GOOD ANALOG SWITCH?

There are five principle parameters which determine how good an analog switch is:

ON resistance<br>ON resistance modulation<br>OFF resistance<br>Offset voltage<br>Commutation rate

There are other considerations which may also be significant for special cases, but these five will almost always have significant bearing on a system design. For most applications, there are two devices which are the most popular-MOS switches and J-FET switches. Relays normally would be a good choice but they won't toggle very fast. In general, the MOS switches have had a speed advantage, and ease of fabrication advantage, whereas the J-FET switches have an advantage of lower ON resistance, no ON resistance modulation, higher voltage capability. $4,5,6$ The AM1000 family of analog switches have all of the advantages of the J-FET plus high speed which makes it superior to any MOS switch in a precision system.

## WHAT MAKES THE AM1000 FAST?

Figure 1 shows a typical J-FET circuit used in analog switching. Diode $D_{1}$ allows the gate drive signal to drive the gate negative thus turning off the J-FET switch. When the gate drive signal goes positive, diode $D_{1}$ decouples the drive from the gate and resistor $R_{g}$ discharges the gate-source capacitance. $R_{g}$ must be large so it doesn't load the analog signal, typical values for $R_{g}$ are $100 \mathrm{k} \Omega$ and up; thus the gate capacitance- $\mathrm{R}_{\mathrm{g}}$ time constant is large which precludes high switching rates. If $\mathrm{C}_{\text {iss }}$ of the J-FET is 15 pF nominal and $\mathrm{R}_{\mathrm{g}}$ is $100 \mathrm{k} \Omega$, the time constant is $1.5 \mu \mathrm{~s}$ thus making megacycle toggle rates impossible.


FIGURE 1. Typical J-FET Analog Switch

The AM1000 consists of three J-FETs. One large and two small ones. The large one acts as the analog signal pass transistor. The two smaller FETs act as a turn-on circuit which reduces switching transients.
The pinchoff voltage of all these FETs are almost identical and are all less than 10V. In Figure 3 (ignoring diode drops), the gates of all three FETs are at -20 V and the AM 1000 is turned off.

There is at least -10 V from gate to source of $\mathrm{O}_{1}$ so it is pinched off and leakage from input to output is in the pA range. $\mathrm{Q}_{2}$ has -10 V from gate to source so it is also pinched off and its current which shunts the input signal is in the pA range.


FIGURE 2. AM 1000 Circuit


FIGURE 3. AM1000 Turned Off
$\mathrm{Q}_{3}$ is operated at 0 V gate-source so it draws saturation current, I IDss. The bias supply for $\mathrm{D}_{1}$ must be 10 V more positive than the negative drive signal.

During turn-on, the drive signal ideally makes a step function change from -20 V to +10 V thus turning $D_{2}$ off. The gates of $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and $\mathrm{Q}_{3}$ are then driven positive by the saturation current of $Q_{3}$ through diode $D_{1}$. The rate that this voltage slews is dependent on gate capacitance and IDSs of $\mathrm{Q}_{3} . \mathrm{C}_{\text {iss(off) }}$ of the AM 1000 is about 10 pF so the voltage slews at:

$$
\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{I}_{\text {DSS }}}{\mathrm{C}_{\text {Iss }}}=\frac{5 \times 10^{-3}}{10^{-11}}=5 \times 10^{8} \mathrm{~V} / \mathrm{sec}
$$

Within 5 V of rise (about 10 ns ), $\mathrm{Q}_{2}$ begins to turn on and $D_{1}$ turns off. The remainder of the gate capacitance charge is discharged into the input (or source) of $Q_{1}$ via the $O N$ resistance of $Q_{2}$ and $\mathrm{Q}_{3}$. During this time interval the average series resistance of $Q_{2}$ and $Q_{3}$ is about $2 \mathrm{k} \Omega$ and the gate capacitance is changing from about 10 pF to about 25 pF . The approximate RC time constant is 20 pF and $2 \mathrm{k} \Omega$, or 40 ns , depending on the level of the analog signal. Total turn on time is therefore about 50 ns. For a +10 V analog signal, the correct analysis is a little more complex, but the AM1000 will turn on in about 70 ns for this circuit condition. The reason that the turn-on transient at $R_{L}$ is drastically reduced is that the discharge path of gate capacitance does not flow through $R_{L}$. The small transient that may appear at $R_{L}$ is due to the time that $D_{1}$ is on during turn-on.


FIGURE 4. AM1000 Turning On

So, the AM1000 achieves its high switching speed because its $\mathbf{R}_{\mathbf{g}}$ (see Figure 1) is very low during turn on, yet its $R_{g}$ during the OFF state is in the G ohm range and thus doesn't load the signal.

## TOGGLE RATE

The toggle rate (how fast the switch can be turned on and off) of an analog switch is not a simple straightforward parameter for a real system design. The reason is that most analog switches are specified at a ridiculously low impedance level; this is done in order to show the highest speed that the device can possibly go. This speed is not normally realistic for most systems designs. In order to demonstrate a realistic comparison, the AM1000 will be pitted against an MOS analog switch for a system with a $\pm 10 \mathrm{~V}$ analog signal swing.

TABLE 1: AM1000 - MOS Parameter Comparison

PARAMETER	AM1000	MOS   ANALOG SWITCH
$R_{\text {DS(on) }}$ (Max)	$30 \Omega$	$400 \Omega$
$R_{\text {DS(on) }}$	(Min)	$20 \Omega$
$R_{\text {DS(on) }}$	(Nom)	$25 \Omega$
$\mathrm{C}_{\text {Iss }}$ (Nom)	15 pF	$150 \Omega$
Breakdown Volts	40 V	$275 \Omega$

$R_{\text {DS(on) }}$ and $\mathrm{C}_{\text {iss }}$ indicate the basic speed capability of the devices assuming low source and load impedance, here the AM 1000 has a speed advantage of about 5:1 over the MOS switch.

The parameter that affects toggle rate the most, however is $R_{D S(o n)}$ variation with analog signal level. At an analog signal of +10 V , the MOS switch has an. R ${ }_{\text {DS(on) }}$ of $150 \Omega$ and for a -10 V analog signal it has an on resistance of $400 \Omega$. This variation of ON resistance is caused by the bulk gate to channel voltage modulating the ON resistance of the MOS switch. ${ }^{5}$ Thus, the MOS switch has a design on resistance characteristic of $275 \Omega \pm 125 \Omega$. The AM 1000 has an $R_{\text {DS(on) }}$ of $25 \Omega$ $\pm 5 \Omega$ and its resistance does not vary with analog signal level.
For a system of a given accuracy, the load impedance is determined by the variations expected in channel resistance. Assuming a system accuracy of $\pm 0.5 \%$, the AM1000 load resistance could be as low as $1 \mathrm{k} \Omega$; the MOS switch load resistance would have to be $25 \mathrm{k} \Omega( \pm 125 \Omega$ being $0.5 \%$ of $25 \mathrm{k} \Omega)$.

The capacitance of the AM1000 is about twice that of the MOS switch but the system load resistance is 25 times lower thus giving the AM1000 a toggle rate advantage of about 12 times over the MOS "high speed" analog switch. In order to graphically illustrate the superiority of the AM1000, two simple series switches were constructed; one with the MOS switch and one with an AM1000. The MOS analog switch was set up to sample a +10 V DC signal, after being switched off, the output returns to ground level. The AM 1000 was set up to sample a portion of the turn off transient of the MOS analog switch, each switch with a $0.5 \%$ system accuracy! Figure 5 shows the circuit used to obtain the oscillograph shown in Figure 6A.


FIGURE 5. Analog Switch Comparison Circuit

A National LH0033 high speed buffer was used to sense the analog voltage at the load resistor of the MOS switch and drive the analog input of the AM1000. Figure 6A shows the oscillogram; the upper trace is the MOS switch turning off; its load voltage heading toward ground; the lower trace (oscilloscope vertical gain reduced slightly for photo clarity) shows the AM 1000 sampling this switching transient. Figure 6B shows the timing pulses, the upper trace being the MOS drive timing and the lower is the AM1000 drive timing (positive indicating off for both devices). It is interesting to note that the turn-on delay or "aperture time" of the AM 1000 is primarily caused by the DH0034 translator. Maximum specified turn on time is 100 ns and turn off time is specified at 100 ns for the AM1000. Figure 6 shows absolute superiority of the AM1000 in switching ability for a given system accuracy.

## AM1000 DRIVE CIRCUITS

Normally, analog switches will be selected by some digital control means which will usually mean OV add +5 V power supply levels. The AM 1000 needs a driver capable of handling the full analog voltage swing, plus 10 V . Therefore a circuit known as an analog switch translator is normally requried. There are several types available. All of the following circuits feature "break before make" action which is desirable for multiplexing.


FIGURE 6A. AM1000 Sampling the Switching Transient of an MOS Analog Switch


FIGURE 6B. Analog Switch Drive Timing

Analog switch translator-drivers fall into two basic categories. Those with pullups and those without. If the translator-driver has a pullup, such as the National DM7800, then a switching diode must be used to decouple the driver from the AM1000 when the driver goes positive.


FIGURE 7. Translator-Driver with Voltage Pullup

The AM1000 does not require a driver with a pullup. Figure 8 shows the circuit for this configuration. Note that the driver decoupling diode is not required. This configuration eliminates one power supply but adds the capacitance of the driver
which the AM1000 must charge. Usually this additional capacitance is not excessive.


FIGURE 8. Translator-Driver without Pullup
In some systems, the cost of monolithic or hybrid drivers is not worth the space they save. Figure 9 shows a four channel driver using low cost discrete components. The ON channel is selected by binary coding and is DTL-TTL compatible. If $A$ and $B$ are "high" then drive is removed from $\mathrm{Q}_{5}$ allowing channel 1 AM1001 to pull up and turn on. $\mathrm{Q}_{6}, \mathrm{Q}_{7}$ and $\mathrm{Q}_{8}$ have drive applied which pull down on $\mathrm{CH} 2,3$ and 4 thus turning them off. The voltages and devices indicated in Figure 9 allow $\pm 15 \mathrm{~V}$ analog signals to be handled.


FIGURE 9. Binary Controlled Four Channel Multiplexer

## CURRENT MODE MULTIPLEXING

So far, the discussion of multiplexing circuits has been confined to sampling various analog input voltages. Voltage mode analog switching allows maximum toggle rates but limited voltage range $( \pm 10 \mathrm{~V}$ for $\mathrm{AM} 1000, \mathrm{AM} 1002$ and $\pm 15 \mathrm{~V}$ for AM1001).

If large analog voltages must be handled, current mode multiplexing must be used; toggle rate is reduced because accurate current-voltage converters are not as fast as non-inverting voltage amplifiers. Analog signal loading can also be a problem. Nevertheless current mode multiplexing allows sampling of very high analog voltages. This is accomplished by using scaling resistors and bound limit diodes at the input of the analog switch. Also, in this case the current to voltage converter should be the lowest impedance point in the system, so the AM1000 must be "turned around", so its analog "output" is used for the signal input and vice versa.


FIGURE 10. Current Mode Multiplexing

The system sensitivity in Figure 10 is determined by $R_{f}$ in the current to voltage converter op amp. The LH0032 J-FET input op amp is selected because of its high slew rate and low input current.

The $10 \mathrm{k} \Omega$ feedback resistor shown results in 10 V output for 1 mA input. Thus the scaling resistor at the input is selected for 1 mA for 100 V input, or $10 \mu \mathrm{~A} / \mathrm{V}$. A 1000 V analog signal would use a $1 \mathrm{M} \Omega$ scaling resistor. For lower voltage signals, the $\mathrm{R}_{\text {on }}$ of the AM1000 would have to be considered for precision systems. The bound limit diodes connected to +10 V and -10 V prevents excessive voltage from appearing at the AM1000. Input impedance to the current to voltage converter is $R_{f}$ divided by the open loop op amp gain (5000 for the LHOO32); the input impedance would be $2 \Omega$ in Figure 10.

## OTHER APPLICATIONS

Analog computer circuits can make good use of analog switches. A few examples are sample and hold circuits, reset stabilized circuits, integrator reset switches, and chopper stabilized amplifiers. ${ }^{4}$
Video signal switching can be done with a minimum of switching transients. More unusual applications such as double sideband suppressed carrier modulators can be constructed plus double sideband suppressed carrier demodulation and FM quadrature demodulators. ${ }^{5}$

## CONCLUSION

Where precision, high speed analog switching is required, the AM1000 series of analog switches "rewrites the book."

Time domain multiplexing can be dramatically improved in channel capability and/or analog signal bandwidth capability. Sample and hold circuits can be improved, chopper stabilized amplifiers can be improved and virtually any other circuit which requires precision, high level, high speed analog switching can be improved.

BIBLIOGRAPHY

1. Mrazek, Dale "High Speed MOS Commutators" National Semiconductor AN-28.
2. Wollesen, Donald L. "Analog Signal Commutation" National Semiconductor AN-33.
3. Wollesen, Donald L. "Analog Switching - High Speed with J-FETS" EDN, January 15, 1970.
4. Cohen, Joel M. "Sample and Hold Circuits Using FET Analog Gates" EEE, January 1971.
5. Stump, Ronald and Wollesen, Donald, "MOS Analog Switches" National Semiconductor AN38.
6. Gordon, Bernard, "Digital Sampling and Recovery of Analog Signa/s" EEE, May 1970.

## APPLYING MODERN CLOCK DRIVERS TO MOS MEMORIES

## INTRODUCTION

MOS memories present unıque system and circuit challenges to the engineer since they require precise timing of input wave forms. Since these inputs present large capacitive loads to drive circuits, it is often that timing problems are not discovered until an entire system is constructed. This paper covers the practical aspects of using modern clock drivers in MOS memory systems. Information includes selection of packages and heat sınks, power dissipation, rise and fall time considerations, power supply decoupling, system clock line ringing and crosstalk, input coupling techniques, and example calculations. Applications covered include driving various types shift registers and RAM's (Random Access Memories) using logical control as well as other techniques to assure correct non-overlap of timing waveforms.

Although the information given is generally applicable to any type of driver, two new monolithic integrated circuit drivers, the MHOO25 and MH0O26 are selected as examples because of their low cost.

The MHOO25 was the first monolithic clock driver. It is intended for applications up to one megacycle where low cost is of prime concern. Table I illustrates its performance while Appendix I describes its circuit operation. Its monolithic, rather than hybrid or module construction, was made possible by a new high voltage-gold doped process utilizing a collector sinker to minimize $\mathrm{V}_{\text {CE SAT }}$.

The MH0026 is a high speed, low cost, monolithic clock driver intended for applications above one megacycle. Table II illustrates its performance characteristics while its unique circuit design is presented in Appendix II. Of course the above are just examples of the many different types that are commercially available. Other National Semiconductor MOS interface circuits are listed in Appendix III.

The following section will hopefully allow the design engineer to select and apply the best circuit to his particular application while avoiding common system problems.

## PRACTICAL ASPECTS OF USING MOS CLOCK DRIVERS

Of course each of us is careful of details but reminders such as "turn on the power supplies" or "don't reverse supply polarity" sometımes solve a not-so-obvious problem. This section is intended to review and answer design questions like "how much should I decouple supplies?"

## Package and Heat Sink Selection

Package type should be selected on power handling capability, standard size, ease of handlıng, availability of sockets, ease or type of heat sinking

TABLE I. MH0025 Characteristics

PARAMETER	CONDITIONS $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)=17 \mathrm{~V}$	VALUE	UNITS
${ }^{\text {ton }}$		15	ns
$\mathrm{t}_{\text {OFF }}$	$\mathrm{C}_{\text {IN }}=0022 \mu \mathrm{~F}, \mathrm{R}_{\text {IN }}=0 \Omega$	30	ns
$t_{r}$	$C_{L}=0001 \mu \mathrm{~F}, \mathrm{R}_{0}=50 \Omega$	25	ns
$t_{f}$		150	ns
Positive Output Voltage Swing	$V_{\text {IN }}-V^{-}=0 V, I_{\text {OUT }}=-1 \mathrm{~mA}$	$\mathrm{v}^{+}-07$	V
Negative Output Voltage Swing	$\mathrm{I}_{\text {IN }}=10 \mathrm{~mA}, \mathrm{I}_{\text {OUt }}=1 \mathrm{~mA}$	$V^{-}+10$	$\checkmark$
On Supply Current ( $\mathrm{V}^{+}$)	$\mathrm{I}_{\mathrm{IN}}=10 \mathrm{~mA}$	17	mA

TABLE II. MH0026 Characteristics

PARAMETER	CONDITIONS $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)=17 \mathrm{~V}$	VALUE	UNITS
${ }^{\text {ton }}$		75	ns
$t_{\text {OFF }}$	$\mathrm{C}_{\text {IN }}=001 \mu \mathrm{~F}, \mathrm{R}_{\text {IN }}=0 \Omega$	75	ns
$t_{r}$	$\mathrm{R}_{\mathrm{O}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$	25	ns
$\mathrm{t}_{\text {f }}$		25	ns
Positive Output Voltage Swing	$V_{\text {IN }}-V^{-}=0 V^{\text {, }}$ I OUT $=-1 \mathrm{~mA}$	$\mathrm{V}^{+}-07$	V
Negative Output Voitage Swing	$\mathrm{I}_{\text {IN }}=10 \mathrm{~mA}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	$\mathrm{V}^{-}+0.5$	$\checkmark$
On Supply Current ( $\mathrm{V}^{+}$)	$1_{1 N}=10 \mathrm{~mA}$	28	mA

TABLE III. Package Power Ratings

required, reliability and cost. Power handling capability for various packages is illustrated in Table III. The following guidelines are recommended:

The TO-5 (" H ") package is rated at 600 mW still air (derate at $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ) and 900 mW with clip on heat sink (derate at $6.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ). This popular cavity package is recommended for small systems. Low cost (about 10 cents) clip-on-heat sink increases driving capability by $50 \%$.
The 8 pin (" $N$ ") molded mini-DIP is rated at 600 mW still air (derate at $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ) and 1.0 W soldered to P.C. board (derate at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ). Constructed with a special copper lead frame, this package is recommended for medium size commercial systems particularly where automatic insertion is used. (Please note for prototype work, that this package is only rated at 600 mW when mounted in a socket and not one watt until it is soldered down.)

The TO-8 (" $\mathrm{G}^{\prime \prime}$ ) package is rated at 1.5 W still air (derate at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ ) and 2.3 W with with clip on heat sink (Wakefield type 215-1.9 or equivalent-derate at $15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ). Selected for its power handling capability and moderate cost, this hermetic package will drive very large systems at the lowest cost per bit.

The 14 pin cavity DIP is rated at 600 mW free air. While some rate this package at 1 W case temperature, National does not recommend its use for clock drivers. This is because from a user point of view, it is impossible to get more than 400 to

500 mW rating under normal system conditions; I.e., there is no practical way to conduct heat away from the device other than air.

Other package types range in size and power handling capability. Most have the disadvantage of being in non-standard sizes and are difficult to mount in a system.

## Power Dissipation Considerations

The amount of registers that can be driven by a given clock driver is usually limited first by internal power dissipation. There are four factors:

- Package and heat sink selection
- Average DC power, $\mathrm{P}_{\mathrm{DC}}$
- Average $A C$ power, $P_{A C}$
- Numbers of drivers per package, n

From the package heat sink, and maximum ambient temperature one can determine $\mathrm{P}_{\text {MAX }}$, which is the maximum internal power a device can handle and still operate reliably. The total average power dissipated in a driver is the sum of DC power and $A C$ power in each driver times the number of drivers. The total of which must be less than the package power rating.

$$
\begin{equation*}
P_{\text {DISS }}=n \times\left(P_{A C}+P_{D C}\right) \leq P_{M A X} \tag{1}
\end{equation*}
$$

Average DC power has three components: input power, power in the "OFF" state (MOS logic " 0 ") and power in the "ON" state (MOS logic " 1 ").

$$
\begin{equation*}
P_{D C}=P_{I N}+P_{O F F}+P_{O N} \tag{2}
\end{equation*}
$$

For most types of clock drivers, the first two terms are neglible (less than 10 mW ) and may be ignored.

Thus:

$$
P_{D C} \cong P_{O N}=\frac{\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)^{2}}{\operatorname{Req}} \times(\mathrm{DC})
$$

where:

$$
\begin{align*}
& \mathrm{V}^{+}-\mathrm{V}^{-}=\text {Total voltage across the driver } \\
& \text { Req }=\text { Equivalent device resistance } \\
& \text { in the "ON" state }  \tag{3}\\
&=\mathrm{V}^{+}-\mathrm{V}^{-} / I_{\mathrm{SO}}(\mathrm{ON}) \\
& \mathrm{DC}=\text { Duty Cycle } \\
&=\frac{\text { "ON" Time }}{\text { "ON" Time }+ \text { "OFF" Time }}
\end{align*}
$$

For the MH0025, Req is typically $1 \mathrm{k} \Omega$ while Req is typically $600 \Omega$ for the MHOO26. Graphical solutions for $\mathrm{P}_{\mathrm{DC}}$ appear in Figure 1. For example if $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$, Req $=500 \Omega$, and $D C=25 \%$, then $P_{D C}=145 \mathrm{~mW}$. However, if the duty cycle was only $5 \%, P_{D C}=29 \mathrm{~mW}$. Thus to maximize the number of registers that can be driven by a given clock driver as well as minımızing average system power, the minimum allowable clock pulse width should be used for the particular type of MOS register.


FIGURE 1. PDC vs Duty Cycle

In addition to $P_{D C}$, the power driving a capacitive load is given approximately by:

$$
\begin{equation*}
P_{A C}=\left(V^{+}-V^{-}\right)^{2} \times f \times C_{L} \tag{4}
\end{equation*}
$$

where:

$$
\begin{aligned}
f & =\text { Operating frequency } \\
C_{L} & =\text { Load capacitance }
\end{aligned}
$$

Graphical solutions for $P_{A C}$ are illustrated in Figure 2. Thus, any type of clock driver will
dissipate internally 290 mW per MHz per thousand pF of load. At 5 MHz , this would be 1.5 W for a 1000 pF load. For long shift register applications, the driver with the highest package power rating will drive the largest number of bits.

Combining equations (1), (2), (3), and (4) yields a criterion for the maximum load capacitance which can be driven by a given driver:


FIGURE 2. PAC vs PRF

$$
\begin{equation*}
C_{L} \leq \frac{1}{f}\left[\frac{P_{M A X}}{n\left(V^{+}-V^{-}\right)^{2}}-\frac{(D C)}{R e q}\right] \tag{5}
\end{equation*}
$$

As an example, the MHOO25CN can dissipate 630 mW at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ when soldered to a printed circuit board. Req is approximately equal to 1 k . For $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$, and $\mathrm{DC}=20 \%$, $C_{L}$ is:

$$
\begin{aligned}
& C_{L} \leq \frac{1}{10^{6}}\left[\frac{\left(630 \times 10^{-3}\right)}{(2)(17)^{2}}-\frac{0.2}{1 \times 10^{3}}\right] \\
& C_{L} \leq 880 p F \text { (each driver) }
\end{aligned}
$$

A typical application might involve driving an MM5013 triple 64-bit shift register with the MH0025. Using the conditions above and the clock line capacitance of the MM5013 of 60 pF , a single MH0025 can drive 880pF/60pF, or 14 MM5013's.

Similarly, the MH0026CG can dissipate 1.0 W at $75^{\circ} \mathrm{C}$. For $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}, \mathrm{f}=2 \mathrm{MHz}$, and $D C=20 \%$, the maximum load capacitance which may be driven is:

$$
C_{L} \leq 2 \times \frac{1}{10^{6}}\left[\frac{(1.0)}{(2)(17)^{2}}-\frac{0.2}{600}\right]
$$

$C_{L} \leq 700 \mathrm{pF}$ (each driver)
AN-76 Applying Modern Clock Drivers to MOS Memories

TABLE IV. Worst Case Maximum Drive Capability for MH0026*

PACKAG	EE TYPE	TO-8 WITH HEAT SINK		TO-8FREE AIR		MINI-DIP SOLDERED DOWN		TO-5 AND MINI-DIP FREE AIR	
Max Operating Frequency		$60^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$						
100 kHz	5\%	30 k	24 k	19 k	15 k	13 k	10k	75 k	58 k
500 kHz	10\%	6.5 k	51 k	41 k	3.2 k	27 k	2 k	15 k	1.1k
1 MHz	20\%	29 k	22 k	18 k	14 k	1 1k	840	600	430
2 MHz	25\%	14 k	$1 \mathrm{1k}$	850	650	550	400	280	190
5 MHz	25\%	620	470	380	290	240	170	120	80
10 MHz	25\%	280	220	170	130	110	79	-	-

[^3]Returning to the MM5013 example, a single MH0026 can drive 700pF/60pF, or 11 5013's. Using the above equations, Table IV has been calculated for quick reference. In summary, the maximum capacitive load that any clock driver can drive is determined by package type and rating, heat sink technique, maximum system ambient temperature, AC power (which depends on frequency, voltage across the device, and capacitive load) and DC power (which is principally determined by duty cycle).

## Rise and Fall Time Considerations

In general rise and fall times are determined by (a) clock driver design, (b) reflected effects of heavy external load, and (c) peak transient current available. Details of these are included in Appendixes I and II. Figures AI-3, AI-4, All-2, and AllI-3 illustrate performance under various operating conditions. Under light loads, performance is determined by internal design of the driver; for moderate loads, by load $C_{L}$ being reflected (usually as $C_{L / \beta}$ ) into the driver, and for large loads by peak output current where:

$$
\frac{\Delta V}{\Delta T}=\frac{\text { IouT peak }}{C_{L}}
$$

Logic rise and fall times must be known in order to assure non-overlap of system timing.

Note the definition of rise and fall times in this app. note follow the convention that rise time is the transition from logic " 0 " to logic " 1 " levels and vise versa for fall times. Since MOS logic is inverted from normal TTL, "risetime" as used in this note is "voltage fall" and "fall time" is "voltage rise."

## Power Supply Decoupling

Although power supply decoupling is a wide spread and accepted practice, the question often arises as
to how much and how often. Our own experience indicates that each clock driver should have at least $0.1 \mu \mathrm{~F}$ decoupling to ground at the $\mathrm{V}^{+}$and $\mathrm{V}^{-}$supply leads. Capacitors should be located as close as is physically possible to each driver. Capacitors should be non-inductive ceramic discs. This decoupling is necessary because currents in the order of 0.5 to 1.5 amperes flow during logic transitions.

## Clock Line Overshoot and Cross Talk

Overshoot: The output waveform of a clock driver can, and often does, overshoot. It is particularly evident on faster drivers. The overshoot is due to the finite inductance of the clock lines. Since most MOS registers require that clock signals not exceed $\mathrm{V}_{\mathrm{SS}}$, some method must be found in large systems to eliminate overshoot. A straightforward approach is shown in Figure 3. In this instance, a small damping resistor is inserted


FIGURE 3. Use of Damping Resistor to Eliminate Clock Overshoot
between the output of the clock driver and the load. The critical value for $R_{S}$ is given by:

$$
\begin{equation*}
R_{S}=2 \sqrt{\frac{L_{S}}{C_{L}}} \tag{6}
\end{equation*}
$$

In practice, analytical determination of the value for $\mathbf{R}_{\mathbf{S}}$ is rather difficult. However, $\mathbf{R}_{\mathbf{S}}$ is readily determined empirically, and typical values range in value between 10 and $50 \Omega$.

Use of the damping resistor has the added benefit of essentially unloading the clock driver; hence a greater number of loads may often be driven by a given driver. In the limit, however, the maximum value that may be used for $\mathbf{R}_{\mathrm{S}}$ will be determined by the maximum allowable rise and fall tıme needed to assure proper operation of the MOS register. In short:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{r}(\text { max })}=\mathrm{t}_{\mathrm{f}(\text { max })} \leq 2.2 \mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{L}} \tag{7}
\end{equation*}
$$

One last word of caution with regard to use of a damping resistor should be mentioned. The power dissipated in $R_{S}$ can approach $\left(V^{+}-V^{-}\right)^{2} f C_{L}$ and accordingly the resistor wattage rating will generally be in excess of 1 W . There are, obviously, applications where degradation of $t_{r}$ and $t_{f}$ by use of damping resistors cannot be tolerated. Figure 4


FIGURE 4. Use of High Speed Clamp to Limit Clock Overshoot
shows a practical circuit which will limit overshoot to a diode drop. The clamp network should physically be located in the center of the distributed load in order to minimize inductance between the clamp and registers.

Cross Talk: Voltage spikes from $\phi_{1}$ may be transmitted to $\phi_{2}$ (and vise-versa) during the transition of $\phi_{1}$ to MOS logıc " 1 ." The spike is due to mutual capacitance between clock lines and is, in general, aggravated by long clock lines when numerous registers are being driven. Figure 5 illustrates the problem.

figure 5. Clock Line Cross Talk

The negative going transition of $\phi_{1}$ (to MOS logic " 1 ") is capacitively coupled via $\mathrm{C}_{\mathrm{M}}$ to $\phi_{2}$. Obviously, the larger $\mathrm{C}_{\mathrm{M}}$ is, the larger the spike. Prior to $\phi_{1}$ 's transition, $\mathrm{Q}_{1}$ is "OFF" since only $\mu \mathrm{A}$ are drawn from the device. A simple method of minimizing cross-talk is shown in Figure 6.


FIGURE 6. Use of Bleed Resistors to Minimize ClockLine Crosstalk

Bleed resistors are connected between the clock driver and ground causing a current of a few mA to flow. The output impedance of the clock driver is reduced and the negative spike is thus mınimized. Values for $R_{b}$ depend on layout and the number of registers being driven. Typical values are between 1 k and $10 \mathrm{k} \Omega$.

A major point should be emphasized with regard to clock-line crosstalk, i.e., even if the output impedance of the driver is zero ohms, self inductance between the clock driver and registers will cause the clock lines to spike on the transitions. Hence, the technique shown in Figure 6 works reasonably well for small systems.

For large systems, the circuit of Figure 7 is recommended. In this instance, $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ are turned "ON" just prior to the clocks transition to logic "1." The spike is therefore clamped by the $V_{C E \text { (sat) }}$ of $\mathrm{O}_{1}$ and $\mathrm{Q}_{2}$. A key feature of the circuit is that the clamps are physically placed adjacent the register thus minimizing the inductance between the clamp and the load.


FIGURE 7. Cross Talk Minimization Circuit

## Input Capacitive Coupling

Generally, MOS shift registers are powered from +5 V and -12 V supplies. A level shift from the TTL levels $(+5 \mathrm{~V})$ to MOS levels $(-12 \mathrm{~V})$ is therefore required. The level shift could be made utilizing a PNP transistor or zener diode. The disadvantage to DC level shifting is the increased power dissipation and propagation delay in the level shifting device. Both the MH0O25 and MH0O26 utilize input capacitors when level shifting from TTL to negative MOS capacitors. Not only do the capacitors perform the level shift function without inherent delay and power dissipation, but as will be shown later, the capacitors also enhance the performance of both the MHOO25 and MH0O26.

## CONCLUSION

The practical aspects of driving MOS memories with new low cost clock drivers has been discussed in detail. When the design guide lines set forth in this paper are followed and reasonable care is taken in circuit layout, the MHOO25 and MH0O26 provide superior performance for most MOS input interface applications.

## REFERENCES

1. Bert Mitchell, "New MOS Clock Driver for MOS Shift Registers," National Semiconductor, AN-18, March 1969.
2. John Vennard, "MOS Clock Drivers," National Semiconductor, MB-9, December 1969.
3. Dale Mrazek, "MOS Delay Lines," National Semiconductor, AN-25, April 1969.
4. Dale Mrazek, "MOS Clock Savers," National Semiconductor, MB-5.
5. Dale Mrazek, "Silicon Disc's Challenge Magnetic Disc Memories," EDN/EEE Magazine, Sept. 1971.
6. Richard Percival, "Dynamic MOS Shift Registers can also simulate Stack and Silo Memories," Electronics Magazine, Nov. 8, 1971.
7. Bapat and Mrazek, "Dynamic MOS Random Access Memory System Considerations," National Semiconductor, AN-50, Aug. 1971.
8. Don Femling, "Using the MM5704 Keyboard Interface in Keyboard Systems," National Semiconductor, AN-52.

## APPENDIX I

## MH0025 Circuit Operation

The schematic diagram of the MHOO25 is shown in Figure AI-1. With the TTL driver in the logic " 0 " state $Q_{1}$ is " $O F F$ " and $Q_{2}$ is " $O N$ " and the output is at approximately one $\mathrm{V}_{\mathrm{BE}}$ below the $\mathrm{V}^{+}$supply.


FIGURE AI-1. MH0026 Schematic (One-Half Circuit)

When the output of the TTL driver goes high, current is supplied to the base of $\mathrm{Q}_{1}$, through $C_{1 N}$, turning it "ON." As the collector of $Q_{1}$ goes negative, $Q_{2}$ turns OFF. Diode $\mathrm{CR}_{2}$ assures turn-on of $Q_{1}$ prior to $\mathrm{O}_{2}$ 's turn-off minimizing current spiking on the $\mathrm{V}^{+}$line, as well as providing a low impedance path around $\mathrm{Q}_{2}$ 's base emitter junction.

The negative voltage transistion (to MOS logic " 1 ") will be quite linear since the capacitive load will force $Q_{1}$ into its linear region until the load is discharged and $Q_{1}$ saturates. Turn-off begins when the input current decays to zero or the output of the TTL driver goes low. $\mathrm{Q}_{1}$ turns "OFF" and $\mathrm{Q}_{2}$ turns "ON" charging the load to within a $\mathrm{V}_{\mathrm{BE}}$ of the $\mathrm{V}^{+}$supply.

## Rise Time Considerations

The logic rise time (voltage fall) of the MHOO25 is primarily a function of the $A C$ load, $C_{L}$, the available input current and total voltage swing. As shown in Figure AI-2, the input current must


FIGURE AI-2. Rise Time Model for the MH0025
charge the Miller capacitance of $\mathrm{Q}_{1}, \mathrm{C}_{\mathrm{TC}}$, as well as supply sufficient base drive to $Q_{1}$ to discharge $C_{L}$ rapidly. By inspection:

$$
\begin{equation*}
I_{I N}=I_{M}+I_{B}+I_{R 1} \tag{AI-1}
\end{equation*}
$$

$$
I_{I N} \cong I_{M}+I_{B}, \text { for } I_{M} \gg I_{R 1} \& I_{B} \gg I_{R 1}
$$

$$
\begin{equation*}
I_{B}=I_{I N}-C_{T C} \frac{\Delta V}{\Delta t} \tag{AI-2}
\end{equation*}
$$

If the current through $\mathbf{R}_{\mathbf{2}}$ is ignored,

$$
\begin{equation*}
I_{C}=I_{B} h_{F E Q 1}=I_{L}+I_{M} \tag{AI-3}
\end{equation*}
$$

where:

$$
I_{L}=C_{L} \frac{\Delta V}{\Delta t}
$$

Combining equations $\mathrm{Al}-1, \mathrm{Al}-2, \mathrm{AI}-3$ yields:

$$
\begin{equation*}
\frac{\Delta V}{\Delta t}\left[C_{L}+C_{T C}\left(h_{F E Q 1}+1\right)\right]=h_{F E Q 1} I_{I N} \tag{AI-4}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{r} \cong \frac{\left[C_{L}+\left(h_{F E Q 1}+1\right) C_{T C}\right] \Delta V}{h_{F E Q 1} l_{I N}} \tag{AI-5}
\end{equation*}
$$

Equation (AI-5) may be used to predict $t_{r}$ as a function of $C_{L}$ and $\Delta V$. Values for $C_{T C}$ and $h_{F E}$ are 10 pF and 25 respectively. For example, if a DM7440 with peak output current of 50 mA were used to drive a MHOO25 loaded with 1000 pF , rise times of:

$$
\frac{(1000 \mathrm{pF}+250 \mathrm{pF})(17 \mathrm{~V})}{(50 \mathrm{~mA})(20)}
$$

or 21 ns may be expected for $\mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$. Figure Al-3 gives rise time for varıous values of $C_{L}$.


FIGURE Al-3. Rise Time vs $\mathrm{C}_{\mathrm{L}}$ for the MH0025

## Fall Time Considerations

The MOS logic fall time (voltage rise) of the MH0025 is dictated by the load, $\mathrm{C}_{\mathrm{L}}$, and the output capacitance of $Q_{1}$. The fall time equivalent circuit of MH0O25 may be approximated with the circuit of Figure AI-4. In actual practice, the base


FIGURE AI-4. Fall Time Equivalent Circuit
drive to $\mathrm{Q}_{2}$ drops as the output voltage rises toward $\mathrm{V}^{+}$. A rounding of the waveform occurs as the output voltage reaches to within a volt of $\mathrm{V}^{+}$. The result is that equation ( $\mathrm{Al}-7$ ) predicts conservative values of $t_{f}$ for the output voltage at the beginning of the voltage rise and optimistic
values at the end. Figure AI-5 shows $t_{f}$ as function of $C_{L}$.


FIGURE AI-5. MH0025 Fall Time vs $C_{L}$

Assuming $\mathrm{h}_{\text {FE2 }}$ is a constant of the total transition:

$$
\begin{equation*}
\frac{\Delta V}{\Delta t}=\frac{\left(\frac{V^{+}-V^{-}}{2 R_{2}}\right)}{C_{T C \& 1}+C_{L} / h_{F E Q 1+1}} \tag{AI-6}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{t}_{\mathrm{f}} \cong 2 \mathrm{R}_{2}\left(\mathrm{C}_{\mathrm{TCO1}}+\frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{~h}_{\mathrm{FEQ1+1}}}\right) \tag{AI-7}
\end{equation*}
$$

## MH0025 Input Drive Requirements

Since the MH0025 is generally capacitively coupled at the input, the device is sensitive to current not input voltage. The current required by the input is in the 50 to 60 mA region. It is therefore a good idea to drive the MHOO25 from TTL line drivers, such as the DM7440 or DM8830. It is possible to drive the MH0025 from standard 54/74 series gates or flip-flops but $t_{O N}$ and $t_{r}$ will be somewhat degraded.

## Input Capacitor Selection

The MH0025 may be operated in either the logically controlled mode (pulse width out $\cong$ pulse width in) or $\mathrm{C}_{\mathrm{IN}}$ may be used to set the output


FIGURE AI-6. MH0025 Input Current Waveform
pulse width. In the latter mode a long pulse is supplied to the MH0025. The input current is of the general shape as shown in Figure AI-6. I MAX
is the peak current delivered by the TTL driver into a short circuit (typically 50 to 60 mA ). $\mathrm{Q}_{1}$ will begin to turn-off when $I_{I N}$ decays below $V_{B E} / R_{1}$ or about 2.5 mA . In general:

$$
\begin{equation*}
I_{I N}=I_{\text {MAX }} e^{-t / R_{0}} C_{I N} \tag{AI-8}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& R_{0}=\text { Output impedance of the TTL driver } \\
& C_{I N}=\text { Input coupling capacitor }
\end{aligned}
$$

Substituting $I_{I N}=I_{\text {MIN }}=\frac{V_{B E}}{R_{1}}$ and solving for $t_{1}$
yields:

$$
\begin{equation*}
t_{1}=R_{0} C_{I N} \ln \frac{I_{\text {MAX }}}{I_{\text {MIN }}} \tag{AI-9}
\end{equation*}
$$

The total pulse width must include rise and fall time considerations. Therefore, the total expression for pulse width becomes:

$$
\begin{align*}
t_{\text {PW }} & \cong \frac{t_{r}+t_{f}}{2}+t_{1} \\
& =\frac{t_{r}+t_{f}}{2}+R_{0} C_{I N} \ln \frac{I_{\text {MAX }}}{I_{\text {MIN }}} \tag{Al-10}
\end{align*}
$$

The logic " 1 " output impedance of the DM7440 is approximately $65 \Omega$ and the peak current (I MAX ) is about 50 mA . The pulse width for $\mathrm{C}_{\mathrm{IN}}=2,200 \mathrm{pF}$ is:

$$
\begin{gathered}
\mathrm{t}_{\mathrm{PW}} \cong \frac{25 \mathrm{~ns}+150 \mathrm{~ns}}{2}+(65 \Omega)(2,200 \mathrm{pF}) \mathrm{ln} \\
\frac{50 \mathrm{~mA}}{2.5 \mathrm{~mA}}=517 \mathrm{~ns}
\end{gathered}
$$

A plot of pulse width for various types of drivers is shown in Figure AI-7. For applications in which


FIGURE AI-7. Output PW Controlled by $\mathrm{C}_{\mathrm{IN}}$
the output pulse width is logically controlled, $\mathrm{C}_{\text {IN }}$ should be chosen 2 to 3 times larger than the maximum pulse width dictated by equation (AI-10).

## DC Coupled Operation

The MH0025 may be direct-coupled in applications when level shifting to a positive value only. For example, the MM1103 RAM typically operates between ground and plus 20V. The MHOO25 is shown in Figure AI-8 driving the address or precharge line in the logically controlled mode.


FIGURE AI-8. DC Coupled MH0025 Driving 1103 RAM.

If DC operation to a negative level is desired, a level translator such as the DM7800 or DH0034 may be employed as shown in Figure AI-9. Finally, the level shift may be accomplished using PNP transistors are shown in Figure AI-10.


FIGURE AI-9. DC Coupled Clock Driver Using DH0034.


FIGURE AI-10. Transistor Coupled MH0025 Clock Driver.

## APPENDIX II

## MH0026 Circuit Operation

The schematic of the MHOO26 is shown in Figure All-1. The device is typically AC coupled on the input and responds to input current as does the MH0025. Internal current gain allows the device to be driven by standard TTL gates and flip-flops.

With the TTL input in the low state $Q_{1}, Q_{2}, Q_{5}$, $\mathrm{Q}_{6}$, and $\mathrm{O}_{7}$ are "OFF" allowing $\mathrm{Q}_{3}$ and $\mathrm{O}_{4}$ to come "ON." $R_{6}$ assures that the output will pull up to within a $V_{B E}$ of $\mathrm{V}^{+}$volts. When the TTL input starts toward logic " 1 ," current is supplied via $C_{I N}$ to the bases of $Q_{1}$ and $Q_{2}$ turning them "ON." Simultaneously, $Q_{3}$ and $Q_{4}$ are snapped "OFF." As the input voltage rises (to about 1.2 V ), $\mathrm{Q}_{5}$ and $\mathrm{Q}_{6}$ turn-on. Multiple emitter transistor $\mathrm{Q}_{5}$ provides additional base drive to $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ assuring their complete and rapid turn-on. Since $\mathrm{Q}_{3}$ and $\mathrm{Q}_{4}$ were rapidly turned OFF minımal power supply current spikıng will occur when $\mathrm{O}_{7}$ comes "ON."


FIGURE All-1. MH0025 Schematic (One-Half Circuit)
$\mathrm{Q}_{6}$ now provides sufficient base drive to $\mathrm{Q}_{7}$ to turn it "ON." The load capacitance is then rapidly discharged toward $\mathrm{V}^{-}$. Diode $\mathrm{D}_{4}$ affords a low impedance path to $\mathrm{Q}_{6}$ 's collector which provides additional drive to the load through current gain of $Q_{7}$. Diodes $D_{1}$ and $D_{2}$ prevent avalanching $\mathrm{Q}_{3}$ 's and $\mathrm{Q}_{4}$ 's base-emitter junction as the collectors of $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ go negative. The output of the MH0O26 continues negative stopping about 0.5 V more positive than $\mathrm{V}^{-}$.

When the TTL input returns to logic " 0 ," the input voltage to the MH0O26 goes negative by an amount proportional to the charge on $\mathrm{C}_{I \mathrm{~N}}$. Transistors $\mathrm{Q}_{8}$ and $\mathrm{Q}_{9}$ turn-on, pulling stored base charge out of $Q_{7}$ and $Q_{2}$ assuring their rapid turn-off. With $Q_{1}$, $\mathrm{Q}_{2}, \mathrm{Q}_{6}$ and $\mathrm{Q}_{7}$ off, Darlington connected $\mathrm{Q}_{3}$ and $\mathrm{O}_{4}$ turn-on and rapidly charge the load to within a $V_{B E}$ of $\mathrm{V}^{+}$.

## Rise Time Considerations

Predicting the MOS logic rise time (voltage fall) of the MHOO26 is considerably involved, but a reasonable approximation may be made by utilizing equation (AI-5), which reduces to:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{r}} \cong\left[\mathrm{C}_{\mathrm{L}}+250 \times 10^{-12}\right] \Delta V \tag{AII-1}
\end{equation*}
$$

For $C_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}$, $\mathrm{t}_{\mathrm{r}} \cong 21 \mathrm{~ns}$. Figure All-2 shows MHOO26 rise times vs. $C_{L}$.


FIGURE All-2. Rise Time vs Load Capacitance

## Fall Time Considerations

The MOS logic fall time of the MHOO26 is determined primarily by the capacitance Miller capacitance of $\mathrm{O}_{5}$ and $\mathrm{Q}_{1}$ and $\mathrm{R}_{5}$. The fall time may be predicted by:

$$
\begin{align*}
t_{f} & \cong(2.2)\left(R_{5}\right) \quad\left(C_{S}+\frac{C_{L}}{h_{F E}^{2}}\right) \\
& \cong\left(4.4 \times 10^{3}\right) \quad\left(c_{S}+\frac{C_{L}}{h_{F E}^{2}}\right) \tag{All-2}
\end{align*}
$$

where:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{S}}= & \text { Capacitance to ground } \\
& \text { seen at the base of } \mathrm{Q}_{3} \\
= & 2 \mathrm{pF} \\
\mathrm{~h}_{\mathrm{FE}^{2}}= & \left(\mathrm{h}_{\mathrm{FEO} 3}+1\right)\left(\mathrm{h}_{\mathrm{FEO} 4}+1\right) \\
& \cong 500
\end{aligned}
$$

For the values given and $C_{L}=1000 \mathrm{pF}, \mathrm{t}_{\mathrm{f}} \cong 17.5 \mathrm{~ns}$. Figure All-3 gives $t_{f}$ for varıous values of $C_{L}$.

## MH0026 Input Drive Requirements

The MH0026 was designed to be driven by standard 54/74 elements. The device's input characterıstics


FIGURE All-3. Fall Time vs Load Capacitance
are shown in Figure All-4. There is breakpoint at $\mathrm{V}_{\text {IN }} \cong 0.6 \mathrm{~V}$ which corresponds to turn-on of $\mathrm{Q}_{1}$ and $\mathrm{O}_{2}$. The input current then rises with a slope of about $600 \Omega\left(R_{2} \| R_{3}\right)$ until a second breakpoint at approxımately 1.2 V is encountered, corresponding to the turn-on of $Q_{5}$ and $Q_{6}$. The slope at this point is about $150 \Omega\left(R_{1}\left\|R_{2}\right\| R_{3} \| R_{4}\right)$.


FIGURE All-4. Input Current vs Input Voltage

The current demanded by the input is in the 5 to 10 mA region. A standard $54 / 74$ gate can source currents in excess of 20 mA into 1.2 V . Obviously, the minımum " 1 " output voltage of 2.5 V under these conditions cannot be maintaned. This means that a 54/74 element must be dedicated to driving $1 / 2$ of a MH0026. As far as the MH0026 is concerned, the current is the determining turn-on mechanism not the voltage output level of the 54/74 gate.

## Input Capacitor Selection

A major difference between the MH0O25 and MH0026 is that the MH0O26 requires that the output pulse width be logically controlled. In short, the input pulse width $\cong$ output pulse width. Selection of $\mathrm{C}_{\text {IN }}$ boils down to choosing a capacitor small enough to assure the capacitor takes on nearly full charge, but large enough so that the input current does not drop below a minimum level to keep the MH0026 "ON." As before:

$$
\begin{equation*}
t_{1}=R_{0} C_{I N} \ln \frac{I_{M A X}}{I_{M I N}} \tag{AII-3}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{C}_{I N}=\frac{t_{1}}{R_{0} \ln \frac{I_{\mathrm{MAX}}}{I_{\mathrm{MIN}}}} \tag{All-4}
\end{equation*}
$$

In this case $R_{0}$ equals the sum of the TTL gate output impedance plus the input impedance of the MHOO26 (about $150 \Omega$ ). I MIN from Figure All-5 is about 1 mA . A standard $54 / 74$ series gate has an high state output impedance of about $150 \Omega$ in the logic " 1 " state and an output (short circuit) current of about 20 mA into 1.2 V . For an output pulse width of 500 ns ,


FIGURE All-5. Logical "1" Output Voltage vs Source Current

$$
\mathrm{C}_{\mathrm{IN}}=\frac{500 \times 10^{-9}}{(150 \Omega+150 \Omega) \ln \frac{20 \mathrm{~mA}}{1 \mathrm{~mA}}}=560 \mathrm{pF}
$$

In actual practice it's a good idea to use values of about twice those predicted by equation (All-4) in order to account for manufacturing tolerances in the gate, MH0026, and temperature variations.


FIGURE All-6. Optimum Input Capacitance vs Output Pulse Width

A plot of optimum value for $\mathrm{C}_{\text {IN }}$ vs desired output pulse width is shown in Figure All-6.

## DC Coupled Applications

The MH0026 may be applied in direct coupled applications. Figure AII-7 shows the device driving address or pre-charge lines on an MM1103 RAM.


FIGURE AlI-7. DC Coupled RAM Memory Address or Precharge Driver (Positive Supply Only)

For applications requiring a DC level shift, the circuit of Figure All-8 or All-9 are recommended.


FIGURE All-8. Transistor Coupled MOS Clock Driver


FIGURE All-9. DC Coupled MOS Clock Driver

APPENDIX III
MOS Interface Circuits
MOS Clock Drivers
MH0007 Direct coupled, single phase, TTL compatible clock driver.

MH0009 Two phase, direct or AC coupled clock driver.
MH 001210 MHz , single phase direct coupled clock driver.
MH0013 Two phase, AC coupled clock driver.
MHOO25 Low cost, two phase clock driver.
MH0026 Low cost, two phase, high speed clock driver.

MH8808 Dual clock driver for MM5262 2k RAM.

## MOS Oscillator/Clock Drivers

MH7803/MH7807 - Complete two phase clock system for MOS micro-processors and calculators.

MOS RAM Memory Address and Precharge Drivers MH8804 Quad TTL to 1103 address driver. MH8805 Dual TTL to 1103 address driver.
MH0025 Dual address and precharge driver.

MH0026 Dual high speed address and precharge driver.

TTL to MOS Interface
DH0034 Dual high speed TTL to negative level converter.
DM7800 Dual TTL to negative level converter.
DM7810/DM7812/DM7819 - Open collector TTL to positive high level MOS converter gates.
DM78L12 Active pull-up TTL to positive high level MOS converter gates.
MOS to TTL Level Converters and Sense Amps
DM7802/DM7806* - Dual sense amp for MM5262 2k MOS RAM memory.
LM165 Series* - Hex sense amp MOS to TTL.
LM163/LM75107/LM75207* - Dual sense amp for MM1103 1k MOS RAM memory.

## Voltage Regulators for MOS Systems

LM109/LM140 Series - Positive regulators.
LM120 Series - Negative regulators.
LM125 Series* - Dual +/-regulators.

[^4]
## DATA BUS AND DIFFERENTIAL LINE DRIVERS AND RECEIVERS

## INTRODUCTION

Monolithic circuits designed specifically to transmit and receive digital data via buses and differential cables have been available for two or three years. But important changes in transmission concepts and IC designs have been made recently. This note will bring designers up to data on circuits developed at National Semiconductor. Table $I$ and Figure 1 outline the devices to be discussed.

In general, the new bus circuits offer these advances: self-isolation of powered-down receivers;
much lower input currents, permitting more driver/ receivers pairs per bus line; input hysteresis to raise noise immunity; higher speed with better control of bus levels; and eliminating of terminating pull-up resistors by the TRI-STATE ${ }^{\circledR}$ designs.

The DM7820/DM8820 and DM7830/DM8830 were described in Application Note AN-22. This note adds to the previous discussion of termination techniques and reports on new tests of their longlines drive capability and crosstalk immunity.

TABLE I. Table of Devices Discussed

LINE DRIVERS DEVICE NO.	LINE RECEIVERS DEVICE NO.	DESCRIPTION	POWER SUPPLY	COMMENTS
LM1488	LM1489/LM1489A	Communication to EIA standard RS 232C.	$\begin{gathered} \pm 12 \mathrm{~V} \\ \text { LM } 1489 \mathrm{~A}+50 \mathrm{~V} \end{gathered}$	Twisted pair single ended Unidirectional
DM7830/DM8830	DM7820A/DM8820A	Dual differential line driver and receiver	$+50 \mathrm{~V}$	True differential. $\pm 15 \mathrm{~V}$ common mode rejection Unidirectional Use of internal receiver termination recommended up to 100 feet
DM7831/DM8831	DM7820A/DM8820A	Dual differential line driver and receiver	+5.0V	True differential, bidırectional. Driver includes upper and lower level clamps to combat transients Use of internal receiver termination optional
DM7832/DM8832	DM7820A/DM8820A	Dual differential line driver and receiver	+5.0V	As above, but without upper level clamping, so party line busses may be used, even with some peripherals powered down
DM7831/DM8831	DM7837/DM8837 (hex) or DM7836/ DM8836 (quad)	Quad single-ended line driver and hex receiver, or a quad 2 input NOR receiver	+5.0V	If used unidirectionally, receiver should be terminated In party line applications disabled driver clamps line Receiver input current is $15 \mu \mathrm{~A}$ typical, has 1.0 V hysteresis.
TRANSCEIVER DEVICE NO.		DESCRIPTION	POWER SUPPLY	COMMENTS
DM7838/DM8838		Quad open collector transceiver	$+50 \mathrm{~V}$	Receiver has typical $15 \mu \mathrm{~A}$ input current 10 V hysteresis. Driver will pull down double terminated $120 \Omega$ line
DM7839/DM8839		Quad TRI-STATE ${ }^{\circledR}$ transceiver Four transmitters all disabled by control NOR gate	+5.0V	Drivers have 104 mA forward drive at 24 V , sink 32 mA at 04 V Receivers have 1.0 V hysteresis, input current is $15 \mu$ A typical Disabled driver clamps undershoots $A$ transceiver on the bus may be powered down without affecting bus logic levels
DM7833/DM8833		Quad TRI-STATE transceiver One control disables all transmitters, one control disables ali receiver outputs	+5.0V	
DM7834/DM8834		Quad TRI-STATE transceiver Controls same as DM7839 but driver and receiver are inverting	+5.0V	
DM7835/DM8835		Quad TRI-STATE transceiver Controls same as DM7833 but driver and receiver are inverting	+5.0V	


note pin 7 CONnected to bottom of cavity package
TOP VIEW

DM7831/DM8831, DM7832/DM8832


DM7834/DM8834


DM7835/DM8835


FIGURE 1.

DM7836/DM8836


DM7838/DM8838


DM7837/DM8837


DM7839/DM8839


FIGURE 1. (Con't)

Not much need be said about the EIA RS232C designs. They meet or exceed a standard which is below today's attainable performance levels.

## UNIFIED BUS

A typical unified bus is a flat, multiconductor cable interconnecting the CPU and peripherals of a minicomputer (Figure 2). The lines are singleended (non-differential), ground-referenced, bidirectional, and terminated at each end in $120 \Omega$ to 3.2 V . The line level is high except when an open-collector driver pulls the line low. Drivers take turns transmitting, as controlled by "polling" or other control sequences.

Single-ended communications are susceptible to common mode voltage induced by ground currents between chassis. In a computer room, the problem is usually minimized by linking the chassis with heavy-gauge grounding cables. Communications with remote points go through differential transmission links, or modems coupled to phone lines.

In early unified bus designs, open-collector TTL buffers were used as drivers, and standard gates as receivers. However, the low threshold voltage of the receiving gate (it can be as low as 1.0 V ) is too close to ground potential, which can itself be carrying transients of almost a volt. In addition, the gate's input current can be as high as 1.6 mA , severely limiting the number of receivers which can be controlled by one driver. This is true particularly if the driver has an open collector output, and must also be sinking the current from a $120 \Omega$ termination at each end of the unified bus.

That problem was solved by the SP380 gate. Its signal input is the base of an NPN emitter-follower, giving a higher threshold and lower input current. Unfortunately, the input transistor's collector-base junction becomes forward-biased when $\mathrm{V}_{\mathrm{cc}}$ goes down. If a peripheral is shut off, the bus lines are clamped near ground unless the bus cable is disconnected manually.

The new unified bus designs in Table I have a receiver that is self-isolating when power is down. The main bus is still usable if peripherals are turned off.

Other improvements include: very low input current, typically $15 \mu \mathrm{~A}$ whether $\mathrm{V}_{\mathrm{Cc}}$ is 5.0 V or zero; input hysteresis of 1.0 V , providing 1.8 V noise immunity; thresholds of 1.3 V and 2.3 V ; and temperature compensation to keep thresholds and noise immunity constant.

The DM7836/DM8836 is pin-compatible with the SP380. Each receiver trio in the DM7837/DM8837 has an enable control, so the system can force receiver outputs to zero whether the bus is pulled down or not. The four drivers in the DM7838/ DM8838 transceiver are disabled by a NOR gate control.

Each open-collector driver in the transceiver sinks 50 mA at 0.7 V . It has the power to pull down the double-terminated bus and drive 20 of the low-current receivers.

## TRI-STATE BUS

TRI-STATE logic (or TSL) outputs are active in both the " 1 " and " 0 " state. This greatly improves risetimes and allows many more driver/receiver pairs to be connected to a bus since power is not wasted in terminations. Switching delays can be halved during certain data exchanges.

A disabled output switches into a third, highimpedance state. Only small leakage currents flow in the output in this state, virtually disconnecting the output from the bus. TSL outputs do not "wire-OR" - the bus is operated by one set of outputs at a time.

Figure 3 is a TSL bus line. Although there are no terminations, reflections are less of a problem than in a unified bus. The bus is tightly controlled without terminations because the disabled drivers actually clamp undershoots.


FIGURE 2. Unified Open Collector Bus


FIGURE 3. TRI-STATE Bus


FIGURE 4. Open Collector Line With Stub


FIGURE 5. TRI-STATE Line With Stub

Tests indicate the transceivers can drive bus lines longer than 25 feet. They are guaranteed to source 10.4 mA at the minimum "one" level of 2.4 V . Small-signal source impedance is typically $50 \Omega$ to 5.0 V compared with $120 \Omega$ to 3.2 V on the unified bus. That explains TSL's higher speed the active-pull-up output charges the line capacitance much faster. If even greater source current capability is needed, the DM7831/DM8831 and DM7832/DM8832 are available. As quad singleended drivers they can source and sink at least 40 mA (and have a source impedance of only $11 \Omega$ ). They can drive lines with characteristic impedance down to $40 \Omega$.

When a peripheral equipped with a transceiver is powered down or disabled, no current (apart from microamps of leakage) will flow in the input/ output while the data levels move between ground and +5.0 V . Other peripherals can still use the bus without their signals being shunted or degraded. The receivers are isolated like the unified bus designs. (The DM7832/DM8832 has the same
degree of freedom. However, the DM7831/DM8831 has an output diode to $\mathrm{V}_{\mathrm{cc}}$ to control transients when used in its differential mode. It will clamp the bus lines when powered-down, so it is not recommended for use in a peripheral which might be switched off in isolation from the rest of the system).

In the TSL transceiver family, typical receiver input characteristics are $17 \mu \mathrm{~A}$ current, 400 mV hysteresis, and 1.4 V noise immunity. All types are completely compatible with standard TTL.

Figure 4 shows a line with a stub (actually a branch of equal length, to ease analysis). It is terminated in the line's characteristic impedance at all three ends.

Figure 5 shows an identical hook-up, this time "terminated" only by a disabled TRI-STATE gate at the receiving end and the stub end.

The result of driving the circuit of Figure 4 is seen in Figure 6. The current pulled from the line by the driver (top trace) was determined by the effective impedance of the termination in parallel with the $120 \Omega$ line charged to 3.2 V . When this wavefront reached the fork, half the current was drawn from each leg. So when the half-current front arrives at the stub only half the voltage pull-down results (Figure 6 lower trace).

A series of these timed halvings and quarterings produces the bathtub effect shown. The duty cycle distortion experienced by a receiver at the stub termination is obvious. If we take off the stub termination network, the situation gets no better. Figure 7 shows it (time base and sensitivity unchanged). The undershoot in the lower trace is followed by an overshoot which reaches 1.0 V above ground: and the stub continues to ring (which isn't surprising since its two ends have terminations
in $60 \Omega$ and infinity respectively). A receiver at the end of the stub would have to be ignored until the ringing had decayed, and its output had become valid.

Contrast this with Figure 8, demonstrating the results of the TRI-STATE driver of Figure 5. The same rapid falling edge at the receiving end is brought to a halt very sharply, and instead of reflective overshoots, there is a shallow series of level adjustments which never cross the maximum zero level of 0.4 V above ground.

How is this achieved?

Figure 9 shows the schematic of the output stage of a TRI-STATE transceiver. Now if the output is disabled, point $A$ is held by the TRI-STATE control at $\mathrm{V}_{\mathrm{CE}}$ sat $+\mathrm{V}_{\mathrm{BE}}$, or 1.0 V at $25^{\circ} \mathrm{C}$.


FIGURE 6. Open Collector Bus With Two Terminated Stubs 2.0V/div 20 ns/div


FIGURE 7. Open Collector Bus at an Unterminated Stub


HORIZONTAL: $20 \mathrm{~ns} / \mathrm{DIV}$
VERTICAL: EXPANDED TO 1V/DIV

FIGURE 8. TRI-STATE ${ }^{\circledR}$ Bus at a Stub - Demonstration of the TSL Non-Linear Termination


FIGURE 9. DC Levels in a Disabled TRI-STATE Element

So to turn on the Darlington pull-up stage will take an undershoot below ground on the bus line of $2 \mathrm{~V}_{\mathrm{BE}}$ lower than point A . Or at $25^{\circ} \mathrm{C}, 1.0-1.6$, $=-0.6 \mathrm{~V}$. Allowing for a chip temperature somewhat above ambient, the output will begin to clamp at -0.4 V . Figure 10 shows a typical result of


FIGURE 10. Current Available as a Function of Bus Voltage at a Disabled TRI-STATE Output
a test of pulling current out of a disabled TRISTATE output.
O. A. Horna* has pointed out the effectiveness of a non-linear termination in emitter-coupled
logic transmission lines. The ability of the disabled TSL output to turn on very hard in a precisely similar way in an otherwise uncontrollable situation has been conclusively demonstrated.

A further advantage for an unterminated line appears under certain special conditions of architecture. Figures 11 and 12 compare two test circuits, simulating two peripherals one on each


FIGURE 11. Central Controller in an Open Collector Environment
*O. A. Horna - "Non-Linear Termination of Transmission Lines" IEEE Transactions on Computers, Sept. 1972, pp. 1011-1-15.
side of a CPU, linked by, in the first case an open collector terminated bus; in the second case a TRI-STATE bus.


FIGURE 12. Central Controller in a TRI-STATE Environment

In both cases, the bus drivers are holding the bus in one state, and not switching data during the experiment.

Looking at Figure 13, in the open collector case, relinquishment by one driver and immediate taking up by the other at the low state still leaves the termination to pull the bus high for two line


FIGURE 13. Open Collector Bus Signals With Central Controller
delays. And the receiver, waiting for data from the far end, must obviously be ignored until a safe amount of time after the glitch seen in Figure 13 trace 3 has died down. Contrast this with the TRI-STATE case shown in Figure 14. The relinquished bus, seeing only extremely low leakage current, does not move. It may be safely assumed that very shortly after the changeover, a change on the line will be a signal being propagated on the bus.

## TRUE DIFFERENTIAL TRANSMISISON

Often, a zero ground reference can't be established between remote subsystems. One can overwhelm the ground difference with a high-amplitude, singleended transmission. But a differential transmission not referenced to ground is more efficient (Figure 15). The data is complemented at normal logic levels, transmitted over a twisted-pair cable, and received with a comparator sensitive enough to overcome signal degradations, yet rejecting common mode voltages.


FIGURE 14. TRI-STATE Bus Signals With Central Controller


FIGURE 15. Differential Drive - Ideal

FIGURE 16. DM8830 Schematic

We implemented the differential concept several years ago with the DM7830/DM8830 driver and DM7820/DM8820 receiver. More recently, the two TRI-STATE drivers have been used in such applications. DM7831 output characteristics in the differential driving mode are shown in Figure 17.


FIGURE 17. Differential Output Voltage as a Function of Differential Output Current in the DM7831

The DM7820 and DM7830 designs were explained in AN-22. Rather than repeat the information in that note, the following sections will answer questions frequently asked by users.

First, how does the new DM7820A differ from the DM7820? They both have the same schematic. One of the two receivers on the chip is shown in Figure 18. However, the " $A$ " version's fanout is 10 TTL or DTL loads rather than 2, the strobe input is specified fully and is guaranteed to be driven by saturated logic, and the speeds are guaranteed.

Second, what establishes the driver current requirement? The receiver's non-inverting input is at the center of a voltage divider between $\mathrm{V}_{\mathrm{cc}}$ and ground. This sets the voltage into the terminal at $1 / 2 \mathrm{~V}$ cc , or 2.5 V in a 5.0 V system. The smallsignal input impedance is the parallel combination of the two $5.0 \mathrm{k} \Omega+167 \Omega$ paths, or about $2.5 \mathrm{k} \Omega$. When the input swings from high to ground, the current transient is about 1.0 mA . A similar analysis shows the driver must source about $1 / 2 \mathrm{~mA}$ to bring the inverting input up to 2.4 V .


NOTE SCHEMATIC SHOWS ONE HALF OF UNIT

FIGURE 18. DM7820 Schematic


FIGURE 19. DM7830 Driving Daisy-Chained DM7820's

The DM7830 and DM7831 output curves are similar. Either can drive up to 12 DM7820 receivers strung along a cable, as in Figure 19, and have ample overdrive at the last receiver.

## TERMINATING THE DIFFERENTIAL LINE

There are three modes of operation of the differential line, each of which demands a different answer to the commonly asked question of how to terminate the line. AN-22 only went into one case, namely, terminating a short line where data period exceeds two line lengths. The second case covers those lines where the period is less than two line lengths, and the third the case where the line is long.

Why is two line delay times significant? It's a question of power dissipation only. When the line
is short, so that effectively no voltage is lost in the copper of the cable, running without a termination, where the differential capability of the driver exceeds 3.5 V will produce reflections of 7.0 V magnitude in the line.

This situation is best avoided, so a termination in the characteristic impedance of the line is advisable. When data rates are slow, this means that the driver, if the termination is dc, will continue to dissipate the power plotted on the load line of Figure 17, quite unnecessarily. If instead a capacitor is included in series with the dc termination, at the leading edge the termination appears dc, so Radio Frequency Interference (RFI) doesn't get generated. But as the capacitor charges, the voltage on the higher line rises, and the current in the driver drops, until at one $\mathrm{V}_{\mathrm{BE}}$ below $\mathrm{V}_{\mathrm{CC}}$, line power ceases to be dissipated.

So long as the rise is controlled, RFI won't be a problem. And the rule of thumb of $\mathrm{R}_{1} \mathrm{C}=3$ line lengths works very well. Where the driver is running so fast as never to be waiting for the reflection, it will be continuously dissipating the power indicated by the load line continuously.

As the line gets longer, the loop resistance gets up to the same order as the terminating resistor. That translates into an attenuation of the differential drive voltage at the receiver. Once the leading edge of the received voltage gets below 2.5 V , the reflection ceases to have RFI significance, and a progressively worse mismatch is acceptable as the line gets longer, since the higher the termination resistor value, the more signal is available. For a typical cable, 1000 feet marks the point where any termination serves only to weaken the signal and narrow the channel bandwidth.

The bandwidth of the DM7820 receiver may be reduced by use of a shunt capacitor. The response curve is shown in Figure 20.


FIGURE 20. Noise Rejection in the DM7820A

## MAXIMUM LINE LENGTHS

The tests in Table II were made with a DM7820 and DM7830 to settle questions about maximum line lengths and frequencies. Characteristics of the test cable were: 24 AWG gauge; $110 \Omega$ impedance; $5.6 \Omega / 100 \mathrm{ft}$ loop resistance; and $14 \mathrm{pF} / \mathrm{ft}$ capacitance ( D -200 multi-pair cable made by Dynatronic Engineering Corp., Los Angeles).

Receiver inputs were complementary pulses with 25/75\% duty cycles. These simulate a string of alternating ones and zeros in an RZ (return to zero) format. The first results column indicates safe maximum data rates. The second column shows the rates at which attenuation reached a point where the signal could not switch the line receiver. These are typical, not maximum or safe rates.

Figure 21 illustrates the weaker signals which will switch the receiver. There is obviously no noise margin. For maximum performance, a single twisted-pair line should meet all three of these criteria:

1. High characteristic impedance (to maximize initial voltage step and voltage across the termination at the receiver)
2. Low capacitance (minimizes the "line charging" effect, which attenuates the signal's highfrequency components and makes dc loss worse by degrading the response to fast transients)
3. Low resistance to dc (use heavier-gauge cable for long runs driven at high frequency)

TABLE II. DM8830A/DM8820A 24 Gauge $110 \Omega$

Line Length	Point of Duty   Cycle Distortion	Point of Failure   To Invert
$25^{\prime}$	10 MHz	25 MHz
$200^{\prime}$	50 MHz	12 MHz
$1000^{\prime}$	125 MHz	3.2 MHz
$5000^{\prime}$	0.125 MHz	0.275 MHz



FIGURE 21. Differential Drive Long Distance

## CROSSTALK IMMUNITY

One more question concerns crosstalk in multipair cables. The tests reported in Table III indicate that the individual pairs rarely, if ever, need individual shielding. One shield over all the pairs in the sheath should be adequate.

TABLE III.

NOISE THRESHOLD AT POINT A   (VOLTS)   LOWER	FPPER	FREQUENCY
1.22	126	500 kHz
1.22	127	100 kHz
124	1.30	10 kHz
1.24	1.30	1.0 kHz

Two side-by-side runs of twisted pairs in D-200 cable were selected to provide two 800-foot lengths adjacent to each other in the bundle for their whole length. A DM7830 driver and a DM7820 receiver were connected to each pair. One driver's input was a pulse train and the other driver's input was a dc voltage. Tests were made to determine the susceptibility of the receiver on the dc line to signals cross-coupled into it from the pulsed line.

This driver/cable/receiver combination is susceptible in a transition region about 60 mV wide between the " 1 " and " 0 " states, indicated by the tabulated thresholds for the dc line. Signals from the ac side coupled-in sufficiently to trip the dc pair's receiver.

However, in a real system both driver outputs will swing through this region rapidly. The minimum swing is 2.0 V . Therefore, the sensitive region is $60 \mathrm{mV} / 2,000 \mathrm{mV}$, or $3 \%$ of the swing and of the logic switching time. The minimum risetime of a non-damped DM7820 receiver output is 50 ns . Assuming this is the result of a straight voltage/ time ramp input, the receiver is susceptible to crosstalk only if it is being driven with transition times greater than $50 \mathrm{~ns} / 3 \%$, or 1.6 ms .

In fact, the longest driver risetimes observed when the DM7830 was driving the longest cable in the previous test (Table II) were always less than 10 ns . We can conclude that a twisted pair with the driver and receiver is immune to crosstalk from another DM7830-DM7820 combination operating with any adjacent twisted pair.

## EIA STANDARD CIRCUITS

The drivers and receivers listed as EIA RS232C circuits in Table I meet the specifications of that standard. It might be noted, however, that the standard's provisions antedate the availability of integrated circuits for such communications. Thus, it tends to restrict further development.

Compare the results in Table II, for example, with paragraph 1.3 of the standard. The standard indicates 20 kilobits/second is a nominal data transfer rate. And paragraph 1.4 requires singleended, ground-referenced links even though true differential communications are demonstratedly more efficient in data exchanges between chassis.


FIGURE 22. Crosstalk Between Close Twisted Pairs

## DRIVING 7-SEGMENT GAS DISCHARGE DISPLAY TUBES WITH NATIONAL SEMICONDUCTOR CIRCUITS

## INTRODUCTION

Circuitry for driving high voltage cold cathode gas discharge 7 -segment displays, such as Sperry Information Displays and Burroughs Panaplex II, is greatly simplified by a complete new line of monolithic integrated circuits from National Semiconductor. The new products also make possible reduced cost of system implementation. They are: DM7880/DM8880 high voltage cathode decoder/driver; DM8884A high voltage cathode decoder/driver; DM8885 MOS to high voltage cathode buffer; DM8889 low power cathode driver; and DM8887 8-digit anode drıver.

In addition to satisfying all the displays' parameter requirements, including high output breakdown voltage, the new circuits have capability of programmıng segment current, and providing constant current sinking for the display segments. This feature alleviates the problem of achieving uni formity of brightness with unregulated display anode voltage. The National circuits can drive the displays directly.

Sperry Information Displays and Burroughs Panaplex II are used principally in calculators and digital instruments. These 7 -segment, multi-digit displays form characters by passing controlled currents through the appropriate anode/segment combinations. The cathode in any digit will glow when a voltage greater than the ionization voltage is applied between it (the cathode) and the anode for that digit. In the multiplexed mode of operation, a digit position is selected by driving the anode for that digit with a positive voltage pulse. At the same time, the selected cathode segments are driven with a negative current pulse. This causes the potential between the anode and the selected cathodes to exceed the ionization level, causing a visible glow discharge.

Generally, these displays exhibit the following characteristics: low "on" current per segmentfrom $200 \mu \mathrm{~A}$ (in DC mode) to 1.2 mA (in multiplex mode); high tube anode supply voltage- 180 V to 200 V ; and moderate ionization voltage-170V. Once the element fires, operating voltage drops to approximately 150 V and light output becomes a direct function of current, which is controlled by current limiting or current regulating cathode circuits. Current regulation therefore is most desirable since brightness will then be constant for large anode voltage changes. Tube anode to cathode "off" voltage is approximately 100 V ; and maximum "off" cathode leakage is $3 \mu \mathrm{~A}$ to $5 \mu \mathrm{~A}$.

Correspondingly, specifications for the cathode driver must be complımentary, approximately as follows: A high "off" output breakdown voltage 80 V minimum; typical "on" output voltage of 50 V ; maximum "on" output current of 1.5 mA per segment; and maximum "off" leakage current of $3 \mu \mathrm{~A}$ to $5 \mu \mathrm{~A}$.

To allow operation without anode voltage regulation, the cathode driver must be able to sink a constant current in each output, with the output
(a) Cathode Driver Output Characteristic

(b) On Currents vs Temperature


FIGURE 1.
"on" voltage ranging from 5 V to 50 V (see Figure 1). The following is a brief description of the circuits now offered by National:

## DM7880/DM8880 High Voltage Cathode Decoder/Driver

The DM7880/DM8880 offers 7 -segment outputs with high output breakdown voltage of 80 V minımum; constant current-sink outputs; and programmable output current from 0.2 mA to 1.5 mA .

## Application

The circuit has a built-in BCD decoder and can interface directly to Sperry and Panaplex II displays, minimızing external components (Figure 2). The inputs can be driven by TTL or MOS outputs directly. It is optimized for use in systems with 5 V supplies.


FIGURE 2. DC Operation From TTL

The DM7880/DM8880 decoder/driver provides for unconditional as well as leading and trailing zero blankıng. It utilizes negative input voltage clamp diodes. Typically, output current varies only 1\% for output voltage changes of 3 V to 50 V . Operating
power supply voltage is 5 V . The device can be used for multiplexed or DC operation.

Available in 16 -pin cavity DIP packages, the DM7880 is guaranteed over the full military operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the DM8880 in molded DIP over the industrial range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## DM8884A High Voltage Cathode Decoder/Driver

The DM8884A offers 9 -segment outputs with high output breakdown voltage of 80 V minimum; constant current-sink outputs, programmable from 0.2 mA to 1.2 mA . It also offers input negative and positive voltage clamp diodes for DC restoring, and low input load current of -0.25 mA maximum.

## Application

DM8884A decodes four lines of BCD input and drives 7 -segment digits of gas-filled displays. There are two separate inputs and two additional outputs for direct control of decimal point and comma cathodes. The inputs can be DC coupled to TTL (Figure 3) or MOS outputs (Figure 4), or ACcoupled to TTL or MOS outputs (Figure 5) using only a capacitor. This means the device is useful in applications where level shiftıng is required. It can be used in multiplexed operation, and is available in an 18 -pin molded DIP package.

Other advantages of the DM8884A are: typical output current variation of $1 \%$ for output voltage changes of 3 V to 50 V ; and operating power supply


FIGURE 3. Interfacing Directly With TTL Output


FIGURE 4. BCD Data Interfacing Directly With MOS Output


FIGURE 5. Cathode BCD Data AC Coupled From MOS Output
voltage of 5 V . Inputs have pull-up resistors to increase noise immunity in AC coupled applicatıons.

The DM8884A is guaranteed over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range.

## DM8885 MOS to High Voltage Cathode Buffer

The DM8885 features seven constant current-sink outputs; programmable output current of 0.2 mA to 1.5 mA ; high output breakdown voltage of 80 V minimum; and capability for blankıng through program current input. It operates from a +5 V supply.

## Application

DM8885 is best suited for interfacing 7 -segment fully decoded MOS chips to digit displays. It is also useful for driving polarity, overrange, and decimal point segments.

DM8885 has 6 inputs and 7 outputs. Output c is decoded internally; the other 6 outputs are directly controlled by the 6 corresponding inputs. A typical application of this device is interfacing between an MOS calculator chip with 7 -segment decoded outputs (open-drain or push-pull) and Sperry/ Panaplex II displays (Figure 6).

When the DM8885 is used to drive minus and plus (polarity) cathodes, overrange, and decimal points, output c should be tied to $\mathrm{V}_{\mathrm{cc}}$ so it does not saturate (Figure 7). This leaves 6 inputs and 6 outputs related one-to-one. The inputs can be driven directly from TTL or MOS outputs.

*Output may be paralleled for cathodes requiring more current, providing the corresponding inputs are also paralleled

FIGURE 7. Polarity, Overrange, Decimal Point Driving

The DM8885 is available in 16 -pin molded DIP package, and is guaranteed over the operating temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## DM8889 Low Power Cathode Driver

The DM8889 requires no power supply since power is derived from program current. It offers extremely low standby power-only 1 mW internally. Features include programmable output currents 0.3 mA to 1.7 mA ; 8 constant current-sink outputs; and input negative voltage clamp diodes for DC restoring. Outputs have 80 V minimum breakdown voltage.

The device is suitable for multiplexed operation from fully decoded chips and is capable of drıving decimal point segments simultaneously with numeric segments.

## Application

The DM8889 has 8 inputs and 8 outputs, and interfaces directly between 7 -segment decoded MOS outputs and numeric display tubes (Figures 8 and 9). It is optimized for use in systems with a limited number of power supplies.


FIGURE 6. Fully Decoded MOS Cathode Outputs

The program input is characterized in terms of input current, therefore any supply (greater than 5 V ) can provide proper operation by connecting a single resistor to the program pin from the supply.

The DM8889, guaranteed for the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range, is offered in the 18 pin molded DIP.

## DM8887 8-Digit Anode Driver

The DM8887 interfaces directly to MOS chips and operates from a -40 V to -80 V power supply.

The DM8887 can operate virtually any multiplex display system requiring more output performance from the MOS chip than is available (Figures 4, 6, 8 and 9). It has low input current and voltage swing requirements but can drive up to 16 mA , and exhibits -55 V mınimum output breakdown voltage.

The DM8887 is available in the 18 -pin molded DIP package; and is guaranteed over the operating temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.


FIGURE 8. Decoded Cathode Data AC Coupled From MOS Output


FIGURE 9. Decoded Cathode Data Direct Coupled From MOS Output

## COMPARING THE HIGH SPEED COMPARATORS

## INTRODUCTION

Several integrated circuit voltage comparators exist which were designed with high speed and complementary TTL outputs as the main objectives. The more common applications for these devices are high speed analog to digital ( $A$ to $D$ ) converters, tape and disk-file read channels, fast zero-crossing detectors, and high speed differential line receivers. This note compares the National Semiconductor devices to sımilar devices from other manufacturers.

The product philosophy at National was to create pin-for-pin replacement circuits that could be considered as second-sources to the other comparators, while simultaneously containing the improvements necessary to make a more optimum device
for the intended usage. Optimized parameters include speed, input accuracy and impedance, supply voltage range, fanout, and reliability. The LM160/LM260/LM360 are replacement devices for the $\mu \mathrm{A} 760$, while the LM161/LM261/LM361 replace the SE/NE529. Tables I and II compare the critical parameters of the National commercial range devices to their respective counterparts.

## SPEED

Throughout the universe the subject of speed must be approached with caution; the same holds true here. Speed (propagation delay time) is a function

TABLE I. LM360 $/ \mu A 760 \mathrm{C}$ Comparison $0^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{V}^{+}=+50 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}$

PARAMETER	LM360	$\mu \mathrm{A} 760 \mathrm{C}$	UNITS
Input Offset Voltage	5.0	6.0	$m V$ max
Input Offset Current	3.0	75	$\mu \mathrm{A}$ max
Input Bias Current	20	60	$\mu \mathrm{A}$ max
Input Capacitance	4.0	8.0	pF typ
Input Impedance	17	50	k $\Omega$ typ @ $1 \mathrm{MHz} \mathbf{2 5}{ }^{\circ} \mathrm{C}$
Differential Voltage Range	$\pm 5.0$	$\pm 5.0$	$\checkmark$ typ
Common Mode Voltage Range	$\pm 4.0$	$\pm 4.0$	$\checkmark$ typ
Gain	3.0	3.0	$\mathrm{V} / \mathrm{mV}$ typ $25^{\circ}$
Fanout	4.0	20	74 Series TTL Loads
Propagation Delays ${ }^{\text {- }}$			
(1) 30 mV P - 10 MHz Sinewave in	25	30	ns max $25^{\circ}$
(2) 2.0 V P-p 10 MHz Sinewave in	20	25	ns max $25^{\circ}$
(3) 100 mV Step + 50 mV Overdrive	14	22	ns typ $25^{\circ}$

TABLE II. LM261/NE529 Comparison $0^{\circ} \leq T_{A} \leq+70^{\circ} \mathrm{C}, \mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+50 \mathrm{~V}$

PARAMETER	LM261	NE529	UNITS
Input Offset Voltage	30	10	mV max
Input Offset Current	3.0	15	$\mu \mathrm{~A}$ max
Input Blas Current	20	50	$\mu \mathrm{~A} \mathrm{max}$
Input Impedance	17	50	$\mathrm{k} \Omega$ typ @ 1 MHz 25 ${ }^{\circ} \mathrm{C}$
Differentıal Voltage Range	$\pm 5.0$	$\pm 5.0$	V typ
Common Mode Voltage Range	$\pm 6.0$	$\pm 6.0$	V typ
Gain	3.0	4.0	$\mathrm{~V} / \mathrm{mV}$ typ 25
Fanout	4.0	6.0	74 Series TTL Loads
Propagation Delay - 50 mV Overdrive	20	22	ns max 25 ${ }^{\circ}$

of the measurement technique. The earlier "standard" of using a 100 mV input step with 5.0 mV overdrive has given way to seemingly endless variations. To be meaningful, speed comparisons must be made with identical conditions. It is for this reason that the speed conditions specified for the National parts are the same as those of the parts replaced.

Probably the most impressive speed characteristic of the six National parts is the fact that propagation delay is essentially independent of input overdrive (Figure 1); a highly desirable characteristic in A to D applicatıons. Their delay typically


FIGURE 1. Delay vs Overdrive
varies only 3 ns for overdrive variations of 5.0 mV to 500 mV , whereas the other parts have a corresponding delay variation of two to one. As can be seen in Tables I and II, the National parts have an improved maximum delay specification. Further, the 20 ns maximum delay is meaningful since it is specified with a representative load: a $2.0 \mathrm{k} \Omega$ resistor to +5.0 V and 15 pF total load capacitance. Figure 2 shows typical delay variation with temperature.


FIGURE 2. Delay vs Temperature

## INPUT PARAMETERS

The $A$ to $D$, level detector, and line receiver applications of these devices require good input accuracy and impedance. In all these cases the
differential input voltage is relatively large, resulting in a complete switch of input bias current as the input signal traverses the reference voltage level. This effect can give rise to reduced gain and threshold inaccuracy, dependent on input source impedances and comparator input bias currents. Tables I and II show that the National parts have a substantially lower maximum bias current to ease this problem. This was done without resorting to Darlington input stages whose price is higher offset voltages and longer delay times. The lower bias currents also raise input resistance in the threshold region. Lower input capacitance and higher input resistance result in higher input impedance at high frequencies.

Even with low source impedances, input accuracy is still dependent on offset voltage. Since none of the devices under discussion has internal offset null capability, ultimate accuracy was improved by designing and specifying lower maximum offset voltage. Refer to Figure 3 for typical offset voltage drift with temperature.


FIGURE 3. Offset Temperature Coefficient

## OTHER PERFORMANCE AREAS

In the case of the LM160/LM260/LM360, fanout was doubled over the previous device. For the LM161/LM261/LM361, operating supply voltage range was extended to $\pm 15 \mathrm{~V}$ op amp supplies


FIGURE 4. LM161 Common Mode Range
which are often readily available where such a comparator is used. Figure 4 reveals the common mode range of the latter device.

The performance improvements previously mentioned were a result of circuit design (Figures 5 and 6 ) and device processing. Schottky clamping, which can give rise to reliability problems, was not used. Gold doping, which results in processing dependent speeds and low transistor beta, was not used. Instead a non-gold-doped process with high breakdown voltage, high beta, and high $f_{\mathrm{T}}(\approx 1.5 \mathrm{GHz}$ )
was selected which produced remarkably consistent performance independent of normal process variation. The higher breakdown voltage allows the LM161/LM261/LM361 to operate on $\pm 15 \mathrm{~V}$ supplies and results in lower transistor capacitance; higher beta provides lower input bias currents; and higher $f_{T}$ helps reduce propagation time.


FIGURE 6. LM160 Schematic Diagram

## APPLICATIONS

Typical applications have been mentioned previously. The LM160 and LM161 may be combined as in Figure 7 to create a fast, accurate peak detector for use in tape and disk-file read channels. A 3-bit A to D converter with 21 ns typical conversion time is shown in Figure 8. Although
primarily intended for interfacing to TTL logic, direct connection may be made to ECL logic from the LM161 by the technique shown in Figure 9. When used this way the common mode range is shifted from that of the TTL configuration. Finally level detectors or line receivers may be implemented with hysteresis in the transfer characteristic as seen in Figure 10.



FIGURE 9. Direct Interfacing to ECL


$$
\begin{aligned}
& V_{U T}=V_{O H}\left(\frac{R 2}{R 1}\right)-V_{O L}\left(\frac{R 4}{R 3}\right) \\
& V_{L T}=V_{O L}\left(\frac{R 2}{R 1}\right)-V_{O H}\left(\frac{R 4}{R 3}\right)
\end{aligned}
$$

FIGURE 10. Level Detector with Hysteresis

DRIVING 7-SEGMENT LED DISPLAYS WITH NATIONAL SEMICONDUCTOR CIRCUITS

## INTRODUCTION

There are many different information display technologies available today, including liquid crystals, gas-discharge tubes, fluorescent tubes, incandescent lamps, and light emitting diodes (LEDs). Each technology has its own particular drive requirement. This note will focus on 7 segment LED display drive requirements and demonstrate that National Semiconductor has a full line of display drivers that meet the requirements for most any 7 -segment LED drive application.

## WHY ARE LED DRIVERS NEEDED?

The purpose of 7 -segment LED drivers is to act as an interface element between data input and the display. This interface is necessary when either the input data format or circuitry current capabilities do not allow direct connection between input and display. To satisfy these needs, National's 7 -segment LED drivers are divided into two basic categories.

1. Internally decoded (BCD to 7-segment)

DM5446A/DM7446A
DM5447A/DM7447A
DM5448/DM7448
DM7856/DM8856
DM8857
DM7858/DM8858
2. Non-decoding, direct drive (MOS to 7 -segment)

DM75491	DM8864
DM75492	DM8865
DM8861	DM8866
DM8863	

Thus, National,has circuits that will drive 7 -segment LEDs from either fully decoded circuits or from non-decoded outputs.

## CONFIGURATIONS AND CONSTRUCTION OF 7-SEGMENT LEDs

LEDs are segregated into two groupings with regard to construction, see Figure 1.

Common anode displays are constructed on a common substrate which forms the anode of the diodes, while each of the seven cathodes are bonded out to separate pins. The second type, common cathode, has the cathode fabricated on a common substrate with the anodes bonded out to individual pins. Due to these radically different configurations, drive circuits are usually tailored in their design for one or the other type. Tailoring in this respect means either sinking current (active low) or sourcing current (active high) when referenced to segment drive. In addition, drive requirements are quite variable because of LED light intensity requirements as well as digit size


FIGURE 1. 7-Segment LED Construction


FIGURE 2. Multi-Digit 7-Segment LED


FIGURE 3. A Typical Multiplexing Scheme
and efficiency. Thus the system designer needs a degree of latitude not only with respect to the type of display used but also the drive current available.

7-segment LEDs can be purchased in either single or multi-digit display packages. Single digit displays have individual segment and common pins while multi-digits have paralleled segment pins and separate digit pins equal to the number of digits in the package, see Figure 2.

Multi-digit displays, due to their configuration, must be driven in a multiplex mode of drive, where segment drivers are time shared by all the digits. This is contrasted to the single digit displays which
may be driven in either the multiplex or the nonmultiplex (direct drive) mode. The nonmultiplex mode uses separate segment drivers for each digit of the display. Multiplex operation has a decided cost saving advantage over nonmultiplex operation especially when the number of digits being driven is large.

## MODES OF 7-SEGMENT LED DRIVE

In the multiplex mode of drive the LED digits in a multi-digit format are driven by a single set of segment drivers while each digit is selected by its own digit driver. Figure 3 shows the circuitry needed to implement a typical six digit multiplexed display.

Each digit is selected individually by enabling its digit driver whose control is determined by a counter or equivalent circuitry operating at some clock frequency. Strobed data, by way of the counter and multiplex circuitry, is then displayed on the selected digit by the single set of segment drivers. If the strobe rate is high enough, from about 250 to $1,000 \mathrm{~Hz}$ depending on external conditions, the display will appear flicker free to the human eye. The BCD-to-7-segment decoder converts BCD data to the desired 7 -segment output format.

In the multiplex mode each digit has a reduced duty cycle and is operated at somewhat higher than average or typical dc operating current levels. The amount of current will be a function of the number of digits, duty cycle, and the type and efficiency of the display used. Since currents are higher than average so also will be the LED brightness due to the nearly linear brightness versus current curve for most LEDs. The human eye will detect the brightness peaks and through a partially integrating and peak detecting action will perceive a higher display brightness at some average current level in the multiplex mode than the same average current in the nonmultiplex (direct drive) mode. The result is that a multiplexed display will operate at a lower total power than the same display operated in the nonmultiplex mode with the same apparent brightness.

In the nonmultiplex mode of 7 -segment LED drive each digit has its own set of segment drivers thereby dropping the digit driver select requirement of multiplexed operation. In this case, the common digit pin may be tied to the highest potential if common anode or the lowest if common cathode. It is evident that in a nonmultiplexed display the driver package count would be high since each digit requires its own set of segment and possibly decoder drivers. If a large number of digits are used the segment driver package count would equal the number of digits while in the multiplex mode this count is equal to one. Granted, in the multiplex mode additional control circuitry is required. Consideration of the relative cost of this circuitry in comparison to the segment decoder driver circuitry in the nonmultiplex mode results, in general, in the fact that if the number of digits in the display equals or is more than four, total package count and/or cost is less in the multiplex mode of drive.

In most MOS circuits multiplex operation is ideal since the counter, multiplexer, and BCD to 7 segment decoders or equivalent circuitry can usually be incorporated on the same chip along with calculator, clock or other function. In this case the only external interface components required would be the digit and segment drivers since MOS circuits are generally unable to sink or source the higher current required for most multiplex operations.

In summary, LED driver requirements for multiplex or nonmultiplex drive operation require either segment, digit or BCD to 7 -segment drivers. Analysis of the particular system needs with regard to the number of digits and relative circuit costs should be the determining factor for multiplex or nonmultiplex operation. Circuit requirements for multiplex operation will in general require relatively high current capabilities.

## NATIONAL'S 7-SEGMENT LED DRIVERS

Table I lists the 7-segment LED drivers available from National. Each circuits application is divided into groupings with respect to common anode or cathode, digit or segment, multiplex or nonmultiplex areas. Additionally, current capabilities are also specified for each product.

From the table it is evident that some of the circuits may be used in dual roles - both multiplex or nonmultiplex; common cathode or anode. In general, what will determine whether one drivers application is multiplex or nonmultiplex is that drivers current capability. The direction of current flow through the driver (source or sink) is the determining factor in dual application with regard to common anode or cathode.

Table II lists the operating temperature range and package types for the 7 -segment LED drivers.

In the following sections each circuit is described in greater detail and typical applications are given.

## BCD TO 7-SEGMENT DECODER DRIVERS

## DM5446A/DM7446A, DM5447A/DM7447A, DM5448/DM7448

This family of BCD to 7 -segment decoder drivers was designed for the most general possible display drive applications including display technologies other than LEDs. The difference between the circuits is in their output stage configurations. These differences will be discussed separately later.

The circuits convert the standard 4-bit BCD input to the popular 7 -segment output format. All input BCD codes above 9 are decoded into unique patterns that verify operation. The circuits are TTL-DTL compatible and operate off of a single 5.0 V supply.

Added features included in all circuits are a ripple blanking input pin as well as a lamp test pin for display turn on. In addition the blanking input/ ripple blanking output pin may be used to modulate display intensity.
AN-99 Driving 7-Segment LED Displays with NS Circuits
TABLE I. National 7-Segment LED Drivers

DEvice NUMBER	Multiplex	CATHODE Nonmultiplex	COMM Multiplex	N ANODE Nonmultiplex	DIGIT DRIVER	SEGMENT DRIVER	INTERNAL DECODING	CURRENT CAPABILITY AND FEATURES
DM5446A/DM7446A DM5447A/DM7447A		"	X	X		X	X	Up to 40 mA Sink, Open Collector   High Breakdown (30/15V)   TTL Input Compatibility
DM5448/DM7448		x	x*	**		x	$x$	13 mA Source, Adjustable Externally, TTL Input Compatibility
DM7856/DM8856		x	**	**		$x$	$x$	60 mA Typical Source, TTL Input Compatibility
DM8857	$x$	$x$				x	$x$	50 mA Typical Source, Externally Adjustable, TTL Input Compatibility
DM7858/DM8858	X	X				X	x	Adjustable Source Current 0 to 50 mA , TTL Input Compatibility patibility
DM75491	$x$	x	$x$	$x$	x	x		50 mA Source/Sink, 4 Drivers per Package, MOS Input Compatibility
DM75492	$x$		x	x	x	X**		250 mA Sink, 6 Drivers per Package, MOS Input Compatibility
DM8861	$x$	x	x	x	x	x		50 mA Source/Sink, 5 Drivers per Package, MOS Input Compatiblity
DM8863	x		x	x	$x$	x**		500 mA Sink, 8 Drivers per Package, MOS Input Compatibility
DM8864	x		X	X	X	x**		50 mA Sink, 9 'Drivers per Package, MOS Input Compatibility
DM8865	$x$		x	$x$	x	X**		50 mA Sink, 8 Drivers per Package, MOS Input Compatiblity
DM8866	$x$		x	x	x	X**		50 mA Sınk, 7 Drivers per Package, MOS Input Compatibility

*With the use of an external transistor/segment
**For common anode LED's
TABLE II. Operating Temperature Range and Package Type

DEVICE NUMBER	OPERATING TEMPERATURE RANGE		NUMBER OF PINS			PACKAGE TYPE		
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14	16	18	Plastic Molded DIP (N)	Ceramic DIP (J)	Flat Pack (W)
DM5446A, DM5447A		X		$x$			X	X
DM7446A, DM7447A	$x$			$x$		$x$	$x$	$x$
DM5448		$x$		$x$	*		$x$	$X$
DM7448	X	,		$\chi$		X	X	$X$
DM7856		X		$x$			$x$	$X$
DM8856	$x$			$x$		$x$	$x$	$X$
DM8857	X			$x$			$X$	
DM7858		$x$		$x$			$x$	X
DM8858	$x$			$x$		$x$	$X$	$x$
DM75491	$x$		$x$			$x$	$x$	$x$
DM75492	$x$		X			X	$X$	$X$
DM8861	$x$				$x$	$x$		
DM8863	$x$				X	$X$		
DM8865	$x$	,			X	$x$		
DM8866	$x$				X	$x$		
DM8864	$x$		22			X	.	



WHERE $V_{\text {LED }}$ (@ $I_{s}$ ) IS THE DIODE (LED) VOLTAGE DROP AT OPERATING CURRENT $I_{s}$ EXAMPLE:

$$
\begin{aligned}
& I_{S}=20 \mathrm{~mA} \\
& V_{\text {LED }}\left(@ I_{S}\right)=3.4 \mathrm{~V}^{*} \\
& V_{C C}=5.0 \mathrm{~V} \\
& R_{X}=65 \Omega
\end{aligned}
$$

*MAN-1 OR EQUIVALENT
FIGURE 5. Nonmultiplex Application of the DM7447A

## DM5446A/DM7446A, DM5447A/DM7447A

These circuits feature active-low, open collector high current outputs (Figure 4a). Each output is capable of sinking up to 40 mA at a maximum internal drop of 0.4 V . This high current capability makes these circuits particularly well suited for driving the large MAN-1 or equivalent type displays directly. The circuits are also applicable, with or without the use of external current limit resistors, to driving lower current displays in the multiplex mode of drive.

The DM5446A and DM7446A outputs are capable of withstanding 30 V at a maximum leakage of $250 \mu \mathrm{~A}$ over temperature. The DM5447A and DM7447A have a 15 V output capability at a maximum leakage over temperature of $250 \mu \mathrm{~A}$. This standoff voltage ability makes the circuits applicable for direct drive to indicator lamp type displays. Figure 5 shows a typical application of the circuits with LEDs.

Refer to Table II for the operating temperature range and package types for the DM5446A/ DM7446A and DM5447A/DM7447A.

## DM5448/DM7448

The DM5448/DM7448 has active high passive pull-up outputs (Figure 4b) with a TTL fanout of 4. The typical output source current is 2.0 mA at an output voltage of 0.85 V . Each output is capable of sinking 6.4 mA with a maximum internal drop of 0.4 V . Since the output current level is low the circuit can be used to drive low current common cathode displays operating in the nonmultiplex mode.

The major application of the DM5448/DM7448 is to drive logic circuits, operate high-voltage loads such as electroluminescent displays through buffer transistors or SCR switches, or high-current


R $_{\mathrm{x}}$ may be calculated using the following equation

$$
R_{X}=\frac{5.0-V_{L E D}}{I_{S}-1.6} k \Omega=\frac{3.3}{I_{S}-1.6} k \Omega\left[\begin{array}{l}
V_{L E D}=1.7 V @ 5.0 \mathrm{~mA} \\
R_{X} \geq 650 \Omega
\end{array}\right]
$$

WHERE:
$R_{X}=$ PULL.UP RESISTOR VALUE
$I_{S}=$ CURRENT PER SEGMENT IN mA
EXAMPLE:

$$
\mathrm{I}_{\mathrm{s}}=5.0 \mathrm{~mA}
$$

$$
R_{X}=970 \Omega
$$

FIGURE 6. Nonmultiplex Application of the DM7448
loads through buffer transistors. Figure 6 shows the DM7448 in a low current direct drive LED application.

The operating temperature range and package types for the DM5448/DM7448 are given in Table II.

## BCD TO 7-SEGMENT LED DRIVERS DM7856/DM8856, DM8857, DM7858/DM8858

This series of three circuits was designed to provide a wide range of current capabilities in driving common cathode 7 -segment LEDs operating in the multiplex or nonmultiplex mode. The circuits, discussed individually below, have output stages with varying source current capability designed for specific as well as general applications.

All circuits accept 4-bit BCD and decode this input to the desired 7 -segment output format for direct drive to LEDs. In addition, the circuits feature a lamp test pin for display turn-on check, ripple blanking-input pin and blanking input/ripple blanking output pin which may be used to modulate display intensity.

The three circuits are TTL-DTL compatible and provide full decoding of the 16 possible input combinations. All parts operate off of a single 5.0 V supply.

## DM7856/DM8856

The DM7856/DM8856 output stages, passivepullup (active high, Figure 4b), provide a typical
source current of 6.0 mA at an output voltage of 1.7V. This current level was designed for directly driving, without the use of external current limit resistors, the MAN-4 or equivalent type displays in the nonmultiplex mode of operation.

Each output has a fan-out of 4 and is capable of sinking 6.4 mA with a maximum internal drop of 0.4 V making the circuit suitable for use with logic circuits. With the use of an external buffer transistor per output the circuit may be used to drive high current common anode LED displays as well as high voltage electroluminescent displays. Figure 7 shows a typical application of the DM8856.


FIGURE 7. Nonmultiplex Application of the DM8856

Operating temperature range and package types for the DM7856/DM8856 are given in Table II.

DM8857
The output stages of the DM8857, active pull-up (active-high, Figure 4c), source a typical current


FIGURE 4c. Output Stage
of 50 mA at an output voltage of 2.3 V . The circuit was designed to be used with MAN-4 or equivalent type displays operating in the multiplex mode of drive. With this high current capability the circuit can drive up to 16 such digits.

The applications of this circuit obviously are not limited to just the MAN-4 type of display. Common cathode displays with high dc current requirements or lower multiplex current levels may be driven by this circuit with the use of an external current limit resistor per segment. A typical application of the DM8857 is given in Figure 8.

Table II gives the operating temperature range and package type for the DM8857.

## DM7858/DM8858

The DM7858/DM8858 output stages are active pull-up (active-high, Figure 4d) like those of the


FIGURE 4d. Output Stage

DM8857. The output stages are exactly the same as the DM8857 except that the internal current limit resistor per output has been removed. External current limit resistors must then be used. This allows the circuit to be customized for a particular common cathode multiplex or nonmultiplex application. Each output stage, through its own external resistor, can be programmed to some current from 50 mA down to 0 mA . Care must be taken in not shorting the outputs to ground because of the excessive current flow that would result from the Darlington upper stage. See Figure 9 for a typical application of the DM8858.



FOR MULTIPLEX OR NONMULTIPLEX APPLICATIONS WHERE AN EXTERNAL CURRENT LIMIT RESISTOR PER SEGMENT IS REQUIRED SEE THE OUTPUT CURRENT VS VOLTAGE CURVE FOR THE DM8857 AND USE THE EQUATION GIVEN IN FIGURE 9 TO CALCULATE THE RESISTOR VALUE

Maximum output source current per segment for the DM7858/DM8858 is 50 mA . Operating temperature range and package types are given in Table II.

Special care must be taken in the use of the DM7858 ceramic and the DM8858 plastic DIP's with regard to not exceeding the maximum operating junction temperature of the devices. The maximum junction temperature of the DM7858J is $150^{\circ} \mathrm{C}$ and must be derated based on a thermal resistance of $80^{\circ} \mathrm{C} / \mathrm{Watt}$, junction to ambient. The maximum junction temperature for the DM8858N is $150^{\circ} \mathrm{C}$ and must be derated based on a thermal resistance of $140^{\circ} \mathrm{C} /$ Watt, junction to ambient.

## DM75491, DM8861 MOS TO LED SEGMENT DRIVERS

The DM75491 and DM8861 were designed for MOS calculator applications. Both circuits feature

low input current, 3.3 mA maximum at 10 V input, making them suitable for direct drive from MOS circuits. The circuits are used to drive the paralleled segments in multi-digit displays. Since both circuits feature accessable collectors and emitters they may be used as either common cathode or anode segment drivers. They feature a source or sink current capability of up to 50 mA with a maximum collector to emitter drop of 1.5 V over the operating temperature range. In addition, each output is specified to have a maximum leakage of $100 \mu \mathrm{~A}$ at an output voltage of 10 V over temperature. Both circuits operate from a single supply that can have a maximum voltage of 10 V .

## DM75491 FOUR SEGMENT DRIVER

The DM75491 is a four segment driver whose main application is with multi-digit LEDs operating in the multiplex mode of drive. Each package contains four separate segment drivers, each driver

vs Voltage
to find the appropriate value of the segment current limit resistor rat the FOLLOWING EQUATION SHOULD BE USED

$$
\begin{aligned}
& R_{\mathrm{X}}=\frac{V_{\text {out }}-V_{0}}{I_{s}} \\
& \text { WHERE } \\
& I_{s}=\text { segment current } \\
& V_{D}=\text { LED DIODE DROP AT CURRENT } I_{S} \\
& V_{\text {OUT }}=\text { DMB858 DUTPUT VOLTAGE AT CURRENT Is (SEE GRAPH) }
\end{aligned}
$$

with free collector and emitter points, see Figure 4 e .


FIGURE 4e. Circuit Schematic

In the multiplex mode of drive, a six digit calculator needs only two DM75491's to drive the segments in the display, see Figure 10. The total of eight segment drivers allows drive to each of the individual seven segments plus logic control for the decimal point. Figure 11 shows the DM75491 used in an 8 digit calculator application.
Table II lists the package type and temperature range of the DM75491.

## DM8861 FIVE SEGMENT DRIVER

The DM8861 is a five segment driver which like the DM75491 is used with multi-digit LEDs operating in the multiplex mode of drive. Each package contains five separate drivers, each driver with free collector and emitter points, Figure $4 e$.

A typical application of the DM8861 is given in Figure 11 where the DM8861 is combined with the DM75491 to provide a total of nine independent sources of LED segment current from an MOS calculator. This allows control of the 7 segments plus decimal point and minus sign. This combination of circuits is not solely applicable to just the 8 digit calculator configuration shown but can be used with a display having as many digits as desired as long as the multiplexed segment current requirement does not exceed 50 mA .

As with the DM75491, the DM8861 is also applicable to use with common anode displays as well as common cathode since each driver has its collector bonded out to a separate pin.


FIGURE 10. 6-Digit Caiculator

Refer to Table II for operating temperature range and package type for the DM8861.

## DM75492, DM8863 MOS TO LED DIGIT DRIVERS

The DM75492 and DM8863 are digit drivers designed to drive multi-digit common cathode LEDs directly from MOS circuits. Since digit currents are quite high in multiplex operation MOS circuits usually cannot sink the required digit select current, therefore these circuits provide the required current buffering. The two circuits have different current handling capability as well as different numbers of drivers per package, each will be discussed individually later.

The circuits are totally compatible for use with both the DM75491 and the DM8861. The most common usage of the circuits is in MOS calculator applications where the DM75491 or the DM8861 source the segment current and either the DM75492 or the DM8863 sink the digit current.

DM75492 SIX DIGIT DRIVER
The DM75492 is a six digit LED driver designed to be used with common cathode multi-digit
displays operating in the multiplex mode of drive.
The circuit features six high gain Darlington connected transistors, with collectors open and emitters tied to ground (Figure 4f), capable of


FIGURE 4f. Circuit Schematic
sinking up to 250 mA with a maximum collector to ground drop of 1.5 V over the operating temperature range. Low input current of 3.3 mA maximum at 10 V makes the drivers suitable for direct connection to MOS circuits. Output leakage is $200 \mu \mathrm{~A}$ maximum at 10 V over temperature. Maximum $\mathrm{V}_{\mathrm{Cc}}$ is 10 V .


FIGURE 11. 8-Digit Calculator

In Figure 10 the DM75492 is shown along with the DM75491 in a typical six digit calculator application. Since the calculator circuit shown is operated in the multiplex mode of drive only one DM75492 is required, replacing at least six transistors and resistors for the equivalent discrete circuit.

The operating temperature range and package type for the DM75492 is given in Table II.

## DM8863 EIGHT DIGIT DRIVER

The DM8863 is an eight digit LED driver designed to be used in conjunction with either the DM75491 and/or the DM8861 in driving eight common cathode LED digits operating in the multiplex mode of drive.

This circuit features eight separate high gain Darlington connected transistor circuits, see Figure 4f. Each Darlington transistor pair is capable of sinking 500 mA with a maximum collector to ground drop of 1.6 V . Each collector can withstand

10 V at a maximum leakage of $250 \mu \mathrm{~A}$ in the off state. Maximum input current is 2.0 mA at 10 V , making the circuit particularly well suited for direct drive from MOS circuits.

Figure 11 shows the DM8863 used in a typical 8 -digit calculator application. The important feature of the DM8863 is the very high sink current capability. This allows multiplex operation of large digits or large numbers of digits without the use of discrete high current transistors.

Another application of the DM8863 is shown in Figure 12. In this case the DM8863 is used along with the MM4311/MM5311 series digital clock circuits in the implementation of a 6 -digit clock display. Here the DM8863 is used as a segment driver for a common anode display. The use of the DM8863 in this manner replaces a total of 14 resistors and 7 transistors.

The DM8863 uses a single supply with a maximum voltage of 10 V . Table II specifies the operating temperature range and package type for the DM8863.


FIGURE 12. Digital Clock Using DM8863

## DM8864, DM8865, DM8866 MOS TO LED DIGIT DRIVERS

The DM8864, DM8865, and DM8866 were designed to drive common cathode nine, eight, and seven digit displays respectively. The applications of these drivers are similar to those of the DM75492 and DM8863 except that operating current levels are lower.

All circuits feature maximum input current of 2.0 mA at a voltage of 6.5 V . Output sink capability is 50 mA at a maximum collector to ground drop of 1.5 V . Output leakage is $40 \mu \mathrm{~A}$ (max) at an output voltage of 6.0 V . All circuits operate from a supply that can vary from 5.0 V to 9.5 V .

## DM8864 NINE DIGIT DRIVER

The DM8864 is a nine digit common cathode LED driver. Each package contains nine separate digit drivers. The circuit also features a "low battery" indicator driver which will light a decimal point whenever a 9.0 V battery drops below 6.5 V typical.

Figure 13 shows the DM8864 in a typical calculator drive application. The operating temperature range
and package type for the DM8864 is given in Table II.

## DM8865 EIGHT DIGIT DRIVER

The DM8865 is an eight digit common cathode LED driver. Eight separate drivers are contained within each package. As with the DM8864 and DM8866 the DM8865 can also be used as a segment driver for common anode displays in the multiplex or nonmultiplex mode as long as the segment current does not exceed 50 mA .

Table II gives the operating temperature range and package type for the DM8865.

## DM8866 SEVEN DIGIT DRIVER

The DM8866 is a seven digit common cathode LED driver. Each package contains seven separate digit drivers. Logic is also provided for a "low battery" indicator which will detect a 9.0 V battery drop to below 6.5 V typical and drive a decimal point.

Table II lists the package type and temperature range of the DM8866.


FIGURE 13. A Typical Application of the DM8864, Showing a Complete 8-Digit, 5 Function Calculator with Memory.

## TRANSMISSION LINE CHARACTERISTICS

## INTRODUCTION

Digital systems generally require the transmission of digital signals to and from other elements of the system. The component wavelengths of the digital signals will usually be shorter than the electrical length of the cable used to connect the subsystems together and, therefore, the cables should be treated as a transmissions line. In addition, the digital signal is usually exposed to hostile electrical noise source which will require more noise immunity then required in the individual subsystems environment.

The requirements for transmission line techniques and noise immunity are recognized by the designers of subsystems and systems, but the solution used vary considerably. Two widely used example methods of the solution are shown in Figure 1. The two methods

figure 1.
illustrated use unbalanced and balanced circuit techniques. This application note will delineate the characteristics of digital signals in transmission lines and characteristics of the line that effect the quality, and will compare the unbalanced and balanced circuits performance in digital systems.

## NOISE

The cables used to transmit digital signals external to a subsystem and in route between the subsystem, are exposed to external electromagnetic noise caused by
switching transients from actuating devices of neighboring control systems. Also external to a specific subsystem, another subsystem may have a ground problem which will induce noise on the system, as indicated in Figure 2.


INDUCED NOISE ALONG CABLE ROUTE GROUND PROBLEMS IN ASSOCIATED EQUIPMENT

## FIGURE 2. External Noise Sources

The signals in adjacent wires inside a cable may induce electromagnetic noise on other wires in the cable. The induced electromagnetic noise is worse when a line terminated at one end of the cable is near to a driver at the same end, as shown in Figure 3. Some noise may be


FIGURE 3. Internal Noise Sources
induced from relay circuits which have very large transient voltage swings compared to the digital signals in the same cable. Another source of induced noise is current in the common ground wire or wires in the cable.

## DISTORTION

The objective is the transmission and recovery of digital intelligence between subsystems, and to this end, the characteristics of the data recovered must resemble the data transmitted. In Figure 4 there is a difference in the pulse width of the data and timing signal transmitted, and the corresponding signal received. In addition there is a further difference in the signal when the data is "AND"ed with the timing signal. The distortion of the signal occurred in the transmission line and in the line driver and receiver.


FIGURE 4. Effect of Distortion

A primary cause of distortion is the effect the transmission line has on the rise time of the transmitted data. Figure 5 shows what happens to a voltage step from the driver as it travels down the line. The rise time of the signal increases as the signal travels down the line. This effect will tend to affect the timing of the recovered signal.


FIGURE 5. Signal Response at Receiver


FIGURE 6. Signal Rise Time

The rise time in a transmission line is not an exponential function but a complementary error function. The high frequency components of the step input are attenuated and delayed more than the low frequency components. This attenuation is inversely proportional to the frequency. Notice in Figure 6 particularly that the signal takes much longer to reach its final dc value. This effect is more significant for fast risetimes.

The Duty Cycle of the transmitted signal also causes distortion. The effect is related to the signal rise time as shown in Figure 7. The signal doesn't reach one logic level before the signal changes to another level. If the signal has a $1 / 2$ ( $50 \%$ ) Duty Cycle and the threshold of the receiver is halfway between the logic levels, the distortion is small. But if the Duty Cycle is $1 / 8$ as shown in the second case the signal is considerably distorted. In some cases, the signal may not reach the receiver threshold at all.


FIGURE 7. Signal Distortion Due to Duty Cycle
In the previous example, it was assumed that the threshold of the receiver was halfway between the ONE and ZERO logic levels. If the receiver threshold isn't halfway the receiver will contribute to the distortion of the recovered signal. As shown in Figure 8, the pulse time is lengthened or shortened, depending on the polarity of the signal at the receiver. This is due to the offset of the receiver threshold.


FIGURE 8. Slicing Level Distortion

## UNBALANCED METHOD

Another source of distortion is caused by the IR losses in the wire. Figure 9 shows the IR losses that occur in a thousand feet of no. 22 AWG wire. Notice in this
example that the losses reduce the signal below the threshold of the receiver in the unbalanced method. Also that part of the IR drop in the ground wire is common to other circuits-this ground signal will appear as a source of noise to the other unbalanced line receivers in the system.


FIGURE 9. Unbalanced Method
Transmission lines don't necessarily have to be perfectly terminated at both ends, (as will be shown later) but the termination used in the unbalanced method will cause additional distortion. Figure 10 shows the signal on the transmission line at the driver and at the receiver. In this case the receiver was terminated in $120 \Omega$, but the characteristic impedance of the line is much less. Notice that the wave forms have significant steps due to the incorrect termination of the line. The signal is subject to misinterpretation by the line receiver during the period of this signal transient because of the distortion caused by Duty Cycle and attenuation. In addition, the noise margin of the signal is reduced.


FIGURE 10. LM75451, DM7400 Line Voltage Waveforms
The signal waveforms on the transmission line can be estimated before hand by a reflection diagram. Figure 11 shows the reflection diagram of the rise time wave forms. The voltage versus current plot on left is used to predict the transient rise time of the signal shown on the right. The initial condition on the transmission line is an IR drop across the line termination. The first transient on the line traverses from this initial point to zero current. The path it follows corresponds to the characteristic impedance of the line. The second transient on the diagram is at the line termination. As shown, the signal reflects back and forth until it reaches its final dc value.

Figure 12 shows the reflection diagram of the fall time. Again the signal reflects back and forth between the line
termination until it reaches its final dc value. In both the rise and fall time diagrams, there are transient voltage and current signals that subtract from the particular signal and add to the system noise.


FIGURE 11. Line Reflection Diagram of Rise Time


FIGURE 12. Line Reflection Diagram of Fall Time

## BALANCED METHOD

In the balanced method shown in Figure 13, the transient voltages and currents on the line are equal and


THE GROUND LOOP CURRENT IS MUCH LESS THAN SIGNAL CURRENT
FIGURE 13. Cross Talk of Signals
opposite and cancel each others noise. Also unlike the unbalanced method, they generate very little ground noise. As a result, the balanced circuit doesn't contribute to the noise pollution of its environment.

The circuit used for a line receiver in the balanced method is a differential amplifier. Figure 14 shows a noise transient induced equally on line $A$ and line $B$ from line C. Because the signals on line $A$ and $B$ are equal, the signals are ignored by the differential line receiver.

Likewise for the same reason, the differential signals on line A\&B from the driver will not induce transients on line C. Thus, the balanced method doesn't generate noise and also isn't susceptible to noise. On the other hand the unbalanced method is more sensitive to noise and also generates more noise.


## FIGURE 14. Cross Talk of Signals

The characteristic impedance of the unbalanced transmission line is less than the impedance of the balanced transmission line. In the unbalanced method there is more capacitance and less inductance than in the balanced method. In the balance method the Reactance to adjacent wires is almost cancelled (see Figure 15). As a result a transmission line may have a $60 \Omega$ unbalanced impedance and a $90 \Omega$ balanced impedance. This means that the unbalanced method, which is more susceptible to IR drop, must use a smaller value termination, which will further increase the IR drop in the line.


FIGURE 15. $Z_{O}$ Unbalanced $<Z_{O}$ Balanced
The impedance measurement of an unbalance and balance line must be made differently. The balanced impedance must be measured with a balanced signal. If there is any unbalance in the signal on the balanced line, there will be
an unbalance reflection at the terminator. Therefore, the lines should also be terminated for unbalanced signals. Figure 16 shows the perfect termination configuration of a balanced transmission line. This termination method is primarily required for accurate impedance measurements.


FIGURE 16. Impedance Measurement
The unbalanced method circuit used in this application note up to this point is the unbalanced circuit shown in Figure 1. The termination of its transmission line was greater than the characteristic impedance of the unbalanced line and the circuit had considerable threshold offset. The measured performance of the unbalanced circuit wasn't comparable to the balanced method. Therefore, for the following comparison of unbalanced and balanced circuits, an improved termination shown in Figure 17 will be used. This circuit terminates the line in $60 \Omega$ and minimized the receiver threshold offset.


FIGURE 17. Improved Unbalanced Method
A plot of the Absolute Maximum Data Rate versus cable type is shown in Figure 18. The graph shows the different performances of the DM7820A line receiver and


FIGURE 18. Data Rate vs Cable Type


FIGURE 19. Data Rate vs Duty Cycle


FIGURE 20. Data Rate vs Line Termination


FIGURE 21. Data Rate vs Distorion of LM75452, DM7400
the DM7830 line driver circuits with a worse case $1 / 8$ Duty Cycle in no. 22 AWG stranded wire cables. In a single twisted pair cable there is less reactance than in a cable having nine twisted pairs and in turn this cable has less reactance than shielded pairs. The line length is reduced in proportion to the increased line attenuation which is proportional to the line reactance. The plot shows that the reactance and attenuation has a significant effect on the cable length. Absolute Maximum Data Rate is defined as the Data Rate at which the output of the line receiver is starting to be degraded. The roll off of the performance above 20 mega baud is due to the circuit switching response limitation.

Figure 19 shows the reduction in Data Rate caused by Duty Cycle. It can be observed that the Absolute Maximum Duty Rate of $1 / 8$ Duty Cycle is less than $1 / 2$ Duty Cycle. The following performance curves will use $1 / 8$ Duty Cycle since it is the worst case.

Absolute Maximum Duty Rate versus the Line Termination Resistance for two different lengths of cable is shown in Figure 20. It can be seen from the figure that the termination doesn't have to be perfect in the case of balanced circuits. It is better to have a termination resistor to minimize the extra transient signal reflecting between the ends of the line. The reason the Data Rate increases with increased Termination Resistance is that there is less IR drop in the cable.

The graphs in Figure 21 shows the Data Rate versus the Line Length for various percentage of timing distortion using the unbalanced LM75452 and DM7400 circuits shown in Figure 17. The definition of Timing Distortion


FIGURE 22. Data Rate vs Distorion of DM7820A, DM7830
is the percentage difference in the pulse width of the data sent versus the data received.

Data Rate versus the Line Length for various percentage of timing distorition using the balanced DM7820A and DM7830 circuit is shown in Figure 22. The distortion of this method is improved over the unbalanced method, as was previously theorized.

The Absolute Maximum Data Rate versus Line Lengths shown in the previous two figures didn't include any induced signal noise. Figure 23 shows the test configuration of the unbalanced circuits which was used to


FIGURE 23. Signal Cross Talk Experiment Using DM75452, DM7400
measure near end cross talk noise. In this configuration there are eight line drivers and one receiver at one end of the cable. The performance of the receiver measured in the presence of the driver noise is shown in Figure 24.
AN-108 Transmission Line Characteristics

Figure 24 shows the Absolute Maximum Duty Rate of the unbalanced method versus line length and versus the number of line drivers corresponding to the test configuration delineated in Figure 23. In the noise measurement set-up there was a ground return for each signal wire. If there is only one ground return in the cable the performance is worse. The graph shows that the effective line length is drastically reduced as additional Near End Drivers are added. When this performance is compounded by timing distortion the performance is further reduced.


FIGURE 24. Data Rate vs Signal Cross Talk of LM75452, DM7400

Figure 25 shows the test configuration of the balanced circuit used to generate worst case Near End cross talk


FIGURE 25. Signal Cross Talk Experiment Using DM7830, DM7820A
noise similar to the unbalance performance shown in the previous figure. Unlike the unbalanced case, there was no measurable degradation of the circuits Data Rate or distortion.

## CONCLUSION

National has a full line of both Balanced and Unbalanced Line Drivers and Receivers. Both circuit types work well when used within their limitations. This application note shows that the balanced method is perferable for long lines in noisy electrical evironments. On the other hand the unbalanced circuit works perfectly well with shorter lines and reduced data rates. It should be kept in mind that when you are spending $\$ 500,000$ for a CPU and $\$ 75,000$ for peripherals, it pays to investigate the best way to transmit data between them.

## DEFINITION OF BAUD RATE



The data in this note was plotted versus Baud Rate. The minimum unit interval reflected the worse case conditions and also normalized the diagrams so that the diagrams were independent of duty cycle. If the duty cycle is $50 \%$ then the Baud Rate is twice the Bit Rate.

## REFERENCES

IC's for Digital Data Transmission , Widlar and Kubinec, National Semiconductor Application Note AN-22.

Data Bus and Differential Line Drivers and Receivers, Richard Percival, National Semiconductor Application Note AN-83.

RADC TR73-309, Experimental Analysis of the Transmission of Digital Signals over Twisted Pair Cable, Hendrickson and Evanowski, Digital Communication Section Communications and Navigation Division, Rome Air Development Center, Griffis Air Force Base, New York.

Fast Pulse Techniques, Thad Dreher, E-H Research Laboratories, Inc., The Electronic Engineer, Aug. 1969.

Transient Analysis of Coaxial Cables, Considering Skin Effects, Wigingtom and Nahmaj, Proceedings of the IRE, Feb. 1957.

Reflection and Crosstalk in Logic, Circuit Interconnections, John DeFalco, Honeywell, Inc., IEEE Spectrum, July 1970.

## MIL-STD-883

Mil-Standard-883 is a Test Methods and Procedures Document for Microelectronic Circuits. It was derived from MIL-S-19500, MIL-STD-750, and MIL-STD-202C for transistors and diodes at about the time that National Semiconductor Corporation was entering the military microelectronics market. As a result, our standard quality control operations are written around MIL-STD-883. The bonding control, visual inspections, and post seal screening requirements set forth by 883 (as well as added control procedures beyond the requirements of 883) have been part of National's quality control procedures almost from the start. Our Quality Assurance Procedures Manual is available upon request.

## MIL-M-38510

MIL-M-38510 specifies the general requirements for supplying microcircuits. These are; product assurance, which includes screening and quality conformance inspection; design and construction; marking; and workmanship. The screening and quality conformance inspection are conducted in accordance with MIL-STD-883.

## SCREENING

All microcircuits delivered in accordance with MIL-M- 38510 must have been subjected to, and passed all the screening tests detailed in Method 5004 of MIL-STD-883 for the type of microcircuit and product assurance level.

The device electrical and package requirements of MIL-M-38510 are detailed by a device specification referred to as a slash sheet. Each slash sheet defines the microcircuit electrical performance and mechanical requirements. Each device listed on a slash sheet is referred to as a slash number and the group of the microcircuits contained on a slash sheet is defined as a family of devices. The device may be Class B or C as defined by MIL-STD-883, Method 5004 and 5005. Three lead finishes are allowed by the slash sheet, pot solder dip, bright tin plate, and gold plate.

We offer a complete line of linear/883 (Class B) products as standard, off-the-shelf items. Special Linear/883 data sheets have been prepared to reflect this capability. They show process flow, electrical parameters, end of test criteria, and test circuits. We save you the problem of specifying test and inspection procedures, and offer significant cost savings by having an off-the-shelf, "to the letter" 883 program. In addition, we will test any of our integrated circuits to any class of MIL-STD-883.

The detailed information concerning MIL-STD-883 screening is contained in National's specification NSC10002.

The MIL-M- 38510 specs for standard linear devices require $100 \% \mathrm{DC}$ testing at $25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$. AC testing is performed at $+25^{\circ} \mathrm{C}$. The electrical parameters specified are tighter than the normal data sheet guaranteed limits. Additionally, MIL-M-38510 requires device traceability, extensive documentation and closely matched maintenance.

## QUALITY CONFORMANCE

Quality conformance inspection is conducted in accordance with the applicable requirements of Group A, (electrical test), Group B and C, (environmental test) of Method 5005, MIL-STD.883. These tests are conducted on a sample basis with GroupA performed on each sublot, Group B on each lot, and Group C as specified (usually every three months).

To supply devices to MIL-M-38510, the IC manufacturer must quality the devices he plans to supply to the detail specifications. Qualification consists of notifying the qualifying activity of one's intent to qualify to MIL-M-38510. After passing comprehensive audits of facilities and documentation systems, the IC manufacturer will subject the device to and demonstrate that they satisfy all of

## MIL-M-38510 (con't)

the Group A, B, and C requirements of Method 5005 of MIL-STD-883 for the specified classes and types of IC. The qualification tests shall be monitored by the qualifying agency. Finally the IC manufacturer shall prepare and submit qualification test data to the qualifying agency. Groups A , $B$, and $C$ inspections then shall be performed at intervals no greater than three months.

The purpose of qualification testing is to assure that the device and lot quality conform to certain standard limits. In effect, lot qualification tests tend to ensure that once a particular device type is demonstrated to be acceptable, it's production including materials, processing, and testing will continue to be acceptable. These limits are specified in MIL-STD-883 in terms of LTPD's (Lot Tolerance Percent Defective) for the various qualification test sub-groups. Qualification testing is
performed on a sample of devices which are chosen at random from a lot of devices that has satisfactorily completed the screening of Method 5004 must be performed on each device, i.e. on a $100 \%$ basis as opposed to qualification testing (Method 5005) which occurs on a random sample basis.

In summary, the entire purpose of MIL-M-38510 and MIL-STD-883 is to provide the military, through its contractors with standard devices.

We at National Semiconductor have supplied and are supplying devices to the MIL-M- 38510 specifications. To order a MIL-M-38510 microcircuit, specify the following:
For example; to specify an LM741 in a DIP processed to the requirements of MIL-M-38510, Class B, with gold plated leads, specify M-38510/ 10101BCC.

MM38510/	XXX	XX	X	X	X
Specifies the	Slash	Device	Device	Case	Lead
General Require-	Sheet	Type	Class	Outline	Finish
MIL-M-38510					

## voltage comparators

Input Bias Current: The average of the two input currents.

Input Offset Current: The absolute value of the difference between the two input currents for which the output will be driven higher than or lower than specified voltages.

Input Offset Voltage: The absolute value of the voltage between the input terminals required to make the output voltage greater than or less than specified voltages.

Input Voltage Range: The range of voltage on the input terminals (common mode) over which the offset specifications apply.

Logic Threshold Voltage: The voltage at the output of the comparator at which the loading logic circuitry changes its digital state.

Negative Output Level: The negative DC output voltage with the comparator saturated by a differential input equal to or greater than a specified voltage.

Output Leakage Current: The current into the output terminal with the output voltage within a given range and the input drive equal to or greater than a given value.

Output Resistance: The resistance seen looking into the output terminal with the DC output level at the logic threshold voltage.

Output Sink Current: The maximum negative current that can be delivered by the comparator.

Positive Output Level: The high output voltage level with a given load and the input drive equal to or greater than a specified value.

Power Consumption: The power required to operate the comparator with no output load. The power will vary with signal level, but is specified as a maxımum for the entire range of input signal conditions.

Response Time: The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive.

Saturation Voltage: The low-output voltage level with the input drive equal to or greater than a specified value

Strobe Current: The current out of the strobe terminal when it is at the zero logic level.

Strobed Output Level: The DC output voltage, independent of input conditions, with the voltage on the strobe terminal equal to or less than the specified low state.

Strobe ON Voltage: The maxımum voltage on either strobe terminal required to force the output to the specified high state independent of the input voltage.

Strobe OFF Voltage: The minimum voltage on the strobe terminal that will guarantee that it does not interfere with the operation of the comparator

Strobe Release Time: The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from zero to the one logic level.

Supply Current: The current required from the positive or negative supply to operate the comparator with no output load. The power will vary with input voltage, but is specified as a maximum for the entire range of input voltage conditions.

Voltage Gain: The ratıo of the change in output voltage to the change in voltage between the input terminals producing it

## analog switches

Driver Leakage Current: The sum of the currents into the source and drain switch terminals, with both held at the same specified voltage.

Logic " 1 " Input Voltage: The voltage level which is guaranteed to be interpreted by the device as a logical "true" sıgnal.

Logic " 0 " Input Voltage: The voltage level which is guaranteed to be interpreted by the device as a logical "false" sıgnal.

Logic Input Slew Rate: The voltage difference between the logic " 1 " and logic " 0 " states divided by the transition time.

## analog switches (con't)

Switch Leakage Current: The current seen when a specified voltage is applied between drain and source of a channel that is logically turned off.

Switch On Resistance: The equivalent resistance from source to drain, tested by forcing a specified current and measuring the resultant voltage drop.

Switch Turn-Off Time: The interval between the
time that the logic input passes through the threshold voltage and the time that the output goes to a specified voltage level in the test circuit.

Switch Turn-On Time: The interval between the time that the logic input passes through the threshold voltage and the time that the output goes to $90 \%$ of its final value in the specified test circuit

## interface circuits

Common Mode Voltage: Arithmetic mean of voltages at the differential inputs referenced to ground pin at the receiver.

Common Mode Sensitivity: Rate of change of input differential voltage required to produce a given output level, against common mode voltage.

Supply Sensitivity: Rate of change of input dif-
ferential voltage required to prodcue a given output level, against power supply voltage (V Pin 14 $\vee \operatorname{Pin} 7$ ).

Disabled Output Clamp Current: The current which flows from the output of a disabled TRI-STATE gate when it is dragged below ground (for instance by a transmıssion-line-associated transient). It is derived from the $\mathrm{V}_{\mathrm{cc}}$ power rail.

## sense amplifiers

AC Common-Mode Input Firing Voltage: The peak level of a common-mode pulse which will exceed the input dynamic range and cause the logic output to switch. Pulse characteristics: $t_{r}=t_{f}$ $\leq 15 \mathrm{~ns}, \mathrm{PW}=50 \mathrm{~ns}$.

Common-Mode Input Overload Recovery Time: The time necessary for the device to recover from a $\pm 2 \mathrm{~V}$ common-mode pulse ( $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ ) prior to the strobe enable signal.

Differential Input Offset Current: The absolute difference in the two input bias currents of one differential input.

Differential Input Overload Recovery Time: The time necessary for the device to recover from a 2 V differential pulse ( $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$ ) prior to the strobe enable signal.

Differential Input Threshold Voltage: The DC input voltage which forces the logic output to the logic threshold voltage ( $\sim 1.5 \mathrm{~V}$ ) level.

Input Bias Current: The DC current which flows into each input pin with differential input of OV .

Supply Current: The total DC current per package drawn from the voltage supply.

Offset Voltage: Difference between the absolute values of threshold voltage in positive- and negativegoing directions.

Propagation Delay Time: Interval from switching input through 1.5 V to output traversing its $50 \%$ voltage point. Measured with $50 \Omega$ load to.+10V 15 pF total capacitance.

## Physical Dimensions

(All dimensions are in inches.)


Package 1
14 Lead Cavity DIP (D)


Package 2 16 Lead Cavity DIP (D)


Package 3 10 Lead Flat Package (F)


Package 4 14 Lead Flat Package (F)


Package 5
16 Lead Flat Package (F)


Package 6
12 Lead TO-8 Metal Can (G)


Package 6A 12 Lead TO.8 Metal Can (G) (AH2114/AH2114C only)
Physical Dimensions



Package 10
6 Lead TO-5 Metal Can (H)


Package 11
8 Lead TO-5 Metal Can (H)

$-1-\frac{095}{016}{ }^{014} 10$ leads


Package 12
10 Lead TO-5 Metal Can (H) (Low Profile)


## (High Profile)

Note Dimension is $\frac{155}{185}$ for all products except as follows $\frac{260}{290}$ for LHOOO1H/LHOOO1CH,LHOOO3/LHOOOCH, and LHOOO4/
LH0004CH $\frac{240}{260}$ for LH0005AH/LH0005H/LH0005CH, $\frac{180}{210}$ for MH0007H/MHOOO7CH


Package 15
8 Lead Cavity Package (J)


Package 16
14 Lead Cavity DIP (J)


Package 17
16 Lead Cavity DIP (J)


Package 20
8 Lead Molded Mini DIP (N)


Package 21
10 Lead Molded DIP (N)


Package 22
14 Lead Molded DIP (N)


Package 23
16 Lead Molded DIP (N)


Package 24 18 Lead Cavity DIP (J)

Package 25 18 Lead Molded DIP (N)



Package 29
22 Lead Molded DIP (N)

National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051
(408) 732-5000

TWX: 910-339-9240

National Semiconductor GmbH
D 808 Fuerstenfeldbruck
Industriestrasse 10
West Germany
Telephone: (08141) 1371
Telex: 27649

National Semiconductor Electronics SDNBHD

## Batu Berendam

Free Trade Zone
Malacca, Malaysia
Telephone: 5171
Telex: NSELECT 519 MALACCA (c/o Kuala Lumpur)

## National Semiconductor (UK) Ltd.

Larkfield Industrial Estates
Greenock, Scotland
Telephone: (0475) 33251
Telex: 778632

NS Electronics (PTE) Lfd.
No. 1100 Lower Delta Rd.
Singapore 3
Telephone: 630011
Telex: 21402

## REGIONAL AND DISTRICT SALES OFFICES

## ALABAMA

DIXIE DISTRICT OFFICE
3322 Memorial Parkway, S.W. \#67
Huntsville, Alabama 35802
(205) 881-0622

TWX: 810-726-2207

## ARIZONA

ROCKY MOUNTAIN REGIONAL OFFICE 7349 Sixth Avenue
Scottsdale, Arizona 85251
(602) 945-8473

TWX: 910-950-1195

## CALIFORNIA

NORTH-WEST REGIONAL OFFICE
2680 Bayshore Frontage Road. Suite 112
Mountain View, California 94043
(415) $961-4740$

TWX: 910-379-6432
NATIONAL SEMICONDUCTOR
DISTRICT SALES OFFICE
Valley Freeway Center Building
15300 Ventura Boulevard, Suite 305
Sherman Oaks, Galifornia 91403
(213) 783-8272

TWX: 910-495-1773
NATIONAL SEMICONDUCTOR SOUTH-WEST REGIONAL OFFICE
17452 Irvine Boulevard Suite M
Tustin, Galifornia 92680
(714) 832-8113

TWX: 910-595-1523

## CONNECTICUT

AREA OFFICE
Commerce Park
Danbury, Connecticut 06810
(203) 744-2350

DISTRICT SALES OFFICE
25 Sylvan Road South
Westport, Connecticut 06880
(203) 226-6833

## INTERNATIONAL SALES OFFICES

## AUSTRALIA

NS ELECTRONICS PTY, LTD
Cnr. Stud Road \& Mountain Highway
Bayswater, Victoria 3153
Australia
Telephone: 729-6333
Telex: 32096

## CANADA

NATIONAL SEMICONDUCTOR CORP
1111 Finch Avenue West
Downsview, Ontario, Ganada
(416) 635-9880

TWX: 610-492-1334

## DENMARK

NATIONAL SEMICONDUCTOR
SCANDINAVIA
Vordingborggade 22
2100 Copenhagen
Denmark
Telephone: (01) 92-OBRO-5610
Telex: DK 6827 MAGNA

FLORIDA
AREA SALES OFFICE
2721 South Bayshore Drive, Suite 121
Miami, Florida 33133
(305) 446-8309

TWX: 810-848-9725
CARIBBEAN REGIONAL SALES OFFICE
P.O. Box 6335

Clearwater, Florida 33518
(813) 441-3504

## ILLINOIS

NATIONAL SEMICONDUCTOR WEST-CENTRAL REGIONAL OFFICE
800 E. Northwest Highway, Suite 203
Mt. Prospect, Illino is 60056
(312) 394-8040

TWX: 910-689-3346

## INDIANA

NATIONAL SEMICONDUCTOR NORTH-CENTRAL REGIONAL OFFICE
P.O. Box 40073

Indianapolis, Indiana 46240
(317) 255-5822

## KANSAS

DISTRICT SALES OFFICE
13201 West 82 nd Street
Lenexa, Kansas 66215
(816) 358-8102

## MARYLAND

CAPITAL REGIONAL SALES OFFICE
300 Hospital Drive, No. 232
Glen Burnie, Maryland 21061
(301) 760-5220

TWX: 710-861-0519

## MASSACHUSETTS

NORTH-EAST REGIONAL OFFICE
No, 3 New England, Exec. Office Park
Burlington, Massachusetts 01803
(617) 273-1350

TWX: 710-332-0166

## ENGL.AND

NATIONAL SEMICONDUCTOR (UK) LTD
The Precinct
Broxbourne, Hertfordshire
England
Telephone: Hoddesdon 69571
Telex: 267-204

## FRANCE

NATIONAL SEMICONDUCTOR
FRANCE S.A.R.L.
28, Rue de la Redoute
92260-Fontenay-Aux-Roses
Telephone: 660-81-40
TWX: NSF 25956F

## HONG KONG

NATIONAL SEMICONDUCTOR
HONG KONG LTD.
9 Lai Yip Street
Kwun Tung, Kowloon
Hong Kong
Telephone: 3-458888
Telex: HX3866

## MICHIGAN

DISTRICT SALES OFFICE
23629 Liberty Street
Farmington, Michigan 48024
(313) 477-0400

## MINNESOTA

DISTRICT SALES OFFICE
8053 Bloomington Freeway, Suite 101
Minneapolis, Minnesota 55420
(612) 888-3060

Telex: 290766

## NEW JERSEY/NEW YORK CITY

MID-ATLANTIC REGIONAL OFFICE 301 Sylvan Avenue
Englewood Cliffs, New Jersey 07632
(201) 871-4410

TWX: 710-991-9734

## NEW YORK (UPSTATE)

CAN-AM REGIONAL SALES OFFICE
104 Pickard Drive
Syracuse, New York 13211
(315) 455-5858

OHIO/PENNSYLVANIA/
W. VIRGINIA/KENTUCKY

EAST-CENTRAL REGIONAL OFFICE
Financial South Building
5335 Far Hills, Suite 214
Dayton, Ohio 45429
(513) 434-0097

## TEXAS

SOUTH-CENTRAL REGIONAL OFFICE
5925 Forest Lane, Suite 205
Dallas, Texas 75230
(214) 233-6801

TWX: 910-860-5091

## WASHINGTON

DISTRICT OFFICE
300 120th Avenue N.E
Building 2, Suite 205
Bellevue, Washington 98005
(206) 454-4600

## JAPAN

NATIONAL SEMIGONDUCTOR JAPAN
Nakazawa Building
1-19 Yotsuya, Shinjuku-Ku
Tokyo, Japan 160
Telephone: 03-359-4571
Telex: J 28592

## SWEDEN

NATIONAL SEMICONDUGTOR SWEDEN
Sikvagen 17
13500 Tyreso
Stockholm
Sweden
Telephone: (08) 712.04-80

## WEST GERMANY

NATIONAL SEMICONDUCTOR GMBH
8000 Munchen 81
Cosimstrasse 4
Telephone: (0811) 915-027


[^0]:    Note $A$. The pulse generator has the following characteristics
    $Z_{\text {OUT }} \approx 50 \Omega, \mathrm{t}_{\mathrm{W}}=200 \mathrm{~ns}$, duty cycle $=50 \%, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{BD} \mathrm{ns}$.
    Note B $C_{L}$ includes probe and $\mu \mathrm{g}$ capacitance

[^1]:    ＊Trademark of Burroughs Corporation

[^2]:    *J. Kalb, "Design Considerations for a TTL Gate, "'National Semiconductor TP-6, May, 1968.

[^3]:    *Note• Values in pF and assume both sides in use as non-overlaping 2 phase driver, each side operating at same frequency and duty cycle with $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)=17 \mathrm{~V}$ For loads greater than 1200 pF , rise and fall times will be limited by output current

[^4]:    *To be announced.

