
®MOTOROLA 9800J PATUXENT WOODS DRIVE
COLUMBIA, MD 21046-1561
TELEPHONE: 301/596/7800
800/842/7769 FAX: 301/59617821

® MOTOROLA

MCF5102 User's Manual

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liabillty, including without !imitation consequential or incidental damages. 'Typical' parameters can and do vary in different
applications. All operating parameters, including 'Typicals" must be validated for each customer application by custome(s technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain ltte, orforany other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended
or unauthorized application, Buyer shall indemntty and hold Motorola and Its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with
such unintended or unauthorized use, even W such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and
® are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

©MOTOROLA INC., 1995

PREFACE

The MCF5102 User's Manual describes the capabilities, operation, and programming of
the MCF5102 ColdFire microprocessors. The M6BOOO Family Programmer's Reference
Manual contains the complete instruction set.

The organization of this manual is as follows:

Section 1
Section 2
Section 3
Section 4
Section 5
Section 6
Section 7
Section 8
Section 9
Section 10
Section 11
Appendix A
Appendix B
Index

Introduction
Execution Pipelines
Access Control Units
Instruction and Data Caches
Signal Description
IEEE 1149.1 Test Access Port (JTAG)
Bus Operation
Exception Processing
Instruction Timings
MCF5102 Electrical and Thermal Characteristics
Ordering Information and Mechanical Data
Address, TIP, and LOCKE Generation
MCF5102 Evaluation Socket

ELECTRONIC SUPPORT:
The Technical Support BBS, known as AESOP (Application Engineering Support
Through On-Line Productivity), can be reach by modem or the internet. AESOP
provides commonly asked application questons, latest device errata, device specs,
software code, and many other useful support functions.

Modem: Call 1-800-843-3451 (outside US or Canada 512-891-3650) on a modem that
runs at 14,400 bps or slower. Set your software to N/8/1/F emulating a vt100.

Internet: This access is provided by telneting to pirs.aus.sps.mot.com [129.38.233.1] or
through the World Wide Web at http://pirs.aus.sps.mot.com.

Apps FAX Line: You may FAX questions to 1-800-248-8567.

MOTOROLA MCf5102 USER'S MANUAL iii

iv MCF5102 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS
Paragraph

Number Title
Page

Number

Section 1
Introduction

1.1 Features .. 1-1
1 .2 Functional Blocks .. 1-2
1 .3 Processing States ... 1-3
1.4 Programming Model .. 1-4
1.5 Data Format Summary .. 1-7
1.6 Addressing Capabilities Summary .. 1-7
1.7 Notational Conventions ... 1-9
1.8 Instruction Set Overview ... 1-12

2.1
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.2.4
2.2.2.5

Section 2
Execution Pipelines

Pipelines .. 2-1
Programming Model Registers .. 2-3

User Programming Model .. 2-3
Data Registers (D7-DO) ... 2-3
Address Registers (A6-AO) .. 2-3
System Stack Pointer (A7) ... 2-4
Program Counter ... 2-4
Condition Code Register .. 2-4

Supervisor Programming Model .. 2-5
Interrupt and Master Stack Pointers .. 2-6
Status Register .. 2-6
Vector Base Register ... 2-7
Alternate Function Code Registers .. 2-7
Cache Control Register .. 2-7

Section 3
Access Control Units

3.1 Access Control Registers .. 3-1
3.2 Address Comparison ... 3-3
3.3 Effects of RSTI on the ACU ... 3-3

MOTOROLA MCF5102 USER'S MANUAL v

Paragraph
Number

4.1
4.2
4.3
4.3.1
4.3.1.1
4.3.1.2
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.6
4.6.1
4.6.2
4.7
4.7.1
4.7.2

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.3
5.3.1

vi

TABLE OF CONTENTS (Continued)

Title

Section 4
Instruction and Data Caches

Page
Number

Cache Operation ... 4-1
Cache Management .. 4-4
Caching Modes ... 4-4

Cachable Accesses ... 4-5
Write-Through Mode .. 4-5
Copyback Mode ... 4-5

Cache-Inhibited Accesses ... 4-5
Special Accesses .. 4-6

Cache Protocol ... 4-6
Read Miss ... 4-6
Write Miss .. 4-6
Read Hit .. 4-7
Write Hit ... 4-7

Cache Coherency ... 4-8
Memory Accesses for Cache Maintenance ... 4-9

Cache Filling .. 4-9
Cache Pushes ... 4-11

Cache Operation Summary ... 4-12
Instruction Cache ... 4-12
Data Cache .. 4-13

Section 5
Signal Description

Address/Data Bus (A31/D31-AO/DO) .. 5-4
Transfer Attribute Signals .. 5-4

Transfer Type (TI1, TTO) .. 5-4
Transfer Modifier (TM2-TMO) ... 5-4
Transfer Line Number (TLN 1, TLNO) ... 5-5
Read/Write (R/W) .. 5-5
Transfer Size (SIZ1, SIZO) .. 5-6
Lock (LOCK) .. 5-6
Cache Inhibit Out (CIOUT) .. 5-6

Bus Transfer Control Signals .. 5-6
Transfer Start (TS) ... 5-6

MCF5102 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

5.3.2 Transfer Acknowledge {TA) ... 5-6
5.3.3 Transfer Error Acknowledge {TEA) .. 5-6
5.3.4 Transfer Cache Inhibit (TCI) .. 5-7
5.3.5 Transfer Burst Inhibit (TBI) ... 5-7
5.4 Snoop Control Signals ... 5-7
5.4.1 Snoop Control (SC1, SCO) .. 5-7
5.4.2 Memory Inhibit {Ml) .. 5-7
5.5 Arbitration Signals ... 5-8
5.5.1 Bus Request (BR) .. 5-8
5.5.2 Bus Grant (BG) .. 5-8
5.5.3 Bus Busy (BB) .. 5-8
5.6 Processor Control Signals ... 5-8
5.6.1 Cache Disable {CDIS) .. 5-8
5.6.2 Reset In (RSTI) .. 5-8
5.6.3 Reset Out (RSTO) .. 5-9
5.7 Interrupt Control Signals .. 5-9
5. 7.1 Interrupt Priority Level {IPL2-IPLO) .. 5-9
5.7.2 Interrupt Pending Status {IPEND) .. 5-9
5.7.3 Autovector (AVEC) ... 5-9
5.8 Status And Clock Signals .. 5-9
5.8.1 Processor Status (PST3-PSTO) .. 5-9
5.8.2 Bus Clock (BCLK) .. 5-11
5.9 Test Signals .. 5-11
5.9.1 Test Clock {TCK) ... 5-11
5.9.2 Test Mode Select (TMS) , , 5-12
5.9.3 Test Data In (TOI) .. 5-12
5.9.4 Test Data Out (TOO) ... 5-12
5.9.5 Waiter Pin .. 5-12
5.9.6 System Clock Disable (SCD) Signal .. 5-12
5.9.7 ZSignal ... 5-12
5.10 Power Supply Connections ... 5-12
5.11 Signal Summary .. 5-12

Section 6
IEEE 1149.1 Test Access Port (JTAG)

6.1 Instruction Shift Register ... 6-2
6.1.1 EXTEST ... 6-3

MOTOROLA MCF5102 USER'S MANUAL vii

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title
Page

Number

6.1.2 HighZ ... 6-3
6.1 .3 Sample/Preload ... 6-3
6.1.4 Clamp .. 6-4
6.1.5 Bypass ... 6-4
6.2 Boundary Scan Register ... 6-4
6.3 Restrictions ... 6-7
6.4 Disabling The IEEE Standard 1149.1A Operation 6-7
6.5 MCF5102 JTAG Electrical Characteristics .. 6-8
6.6 JTAGPinouts .. 6-10
6. 7 BSDL Description .. 6-10

7.1
7.2
7.3
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.5
7.5.1
7.5.1.1
7.5.1.2
7.5.1.3
7.5.2
7.6
7.6.1
7.6.2
7.6.3
7.7
7.8
7.9
7.9.1
7.9.2
7.9.3
7.9.4
7.10

viii

Section 7
Bus Operation

Bus Characteristics ... 7-1
Data Transfer Mechanism ... 7-1
Misaligned Operands .. 7-4
Processor Data Transfers ... 7-6

Byte, Word, and Long-Word Read Transfers 7-6
Line Read Transfer .. 7-8
Byte, Word, and Long-Word Write Transfers 7-11
Line Write Transfers .. 7-13
Read-Modify-Write Transfers (Locked Transfers) 7-14

Acknowledge Bus Cycles .. 7-15
Interrupt Acknowledge Bus Cycles .. 7-15

Interrupt Acknowledge BUS Cycle (Terminated Normally) 7-15
Autovector Interrupt Acknowledge bus Cycle 7-16
Spurious Interrupt Acknowledge Bus Cycle 7-16

Breakpoint Interrupt Acknowledge Bus Cycle 7-16
Bus Exception Control Cycles ... 7-17

Bus Errors ... 7-17
Retry Operation ... 7-18
Double Bus Fault ... 7-18

Bus Synchronization ... 7-19
Bus Arbitration .. 7-20
Bus Snooping Operation ... 7-28

Snoop-Inhibited Cycle ... 7-29
Snoop-Enabled Cycle (No Intervention Required) 7-30
Snoop Read Cycle (Intervention Required) 7-31
Snoop Write Cycle (Intervention Required) 7-32

Reset Operation .. 7-34

MCF5102 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph

Number Title
Page

Number

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.5.1
8.4.5.2
8.4.5.3
8.4.5.4
8.4.5.5
8.4.5.6
8.4.5.7

Section 8
Exception Processing

Exception Processing Overview .. 8-1
Execution Unit Exceptions ... 8-5

Access Fault Exception ... 8-6
Address Error Exception .. 8-7
Instruction Trap Exception ... 8-8
Illegal Instruction and Unimplemented Instruction 8-8
Privilege Violation Exception ... 8-9
Trace Exception ... 8-9
Format Error Exception ... 8-11
Breakpoint Instruction Exception ... 8-11
Interrupt Exception .. 8-11
Reset Exception ... 8-16

Exception Priorities ... 8-18
Return From Exceptions .. 8-19

Four-Word Stack Frame (Format $0) .. 8-19
Four-Word Throwaway Stack Frame (Format $1) 8-20
Six-Word Stack Frame (Format $2) ... 8-21
Eight-Word Stack Frame .. 8-22
Access Error Stack Frame (Format $7) ... 8-22

Effective Address ... 8-23
Special Status Word (SSW) ... 8-23
Write-Back Status .. 8-25
Fault Address ... 8-25
Write-Back Address and Write-Back Data 8-25
Push Data .. 8-26
Access Error Stack Frame Return From Exception 8-26

Section 9
Instruction Timings

9.1 Overview ... 9-3
9.2 Instruction Timing Examples ... 9-5
9.3 CINV and CPUSH Instruction Timing .. 9-8
9.4 MOVE Instruction Timing .. 9-9
9.5 Miscellaneous Integer Unit Instruction Timings 9-11
9.6 Integer Unit Instruction Timings .. 9-13

MOTOROLA MCF5102 USER'S MANUAL ix

Paragraph
Number

TABLE OF CONTENTS (Continued)

Title

Section 10
Electrical and Thermal Characteristics

Page
Number

10.1 Maximum Ratings ... 10-1
10.2 Thermal Characteristics .. 10-1
10.3 DC Electrical Specifications .. 10-2
10.4 Power Dissipation ... 10-2
10.5 Clock AC Timing Specifications .. 10-3
10.6 Miltiplexed Timing Specifications .. 10-3
10. 7 Output AC Timing Specifications .. 10-5
10.8 Input AC Timing Specifications ... 10-6

Section 11
Ordering Information and Mechanical Data

11.1 Ordering Information ... 11-1
11.2 Pin Assignments ... 11-1
11.3 Mechanical Data ... 11-3

Appendix A
Address, TIP, and LOCKE Generation

A. 1 Definitions ... A-1
A.2 Address Latching .. A-2
A.2.1 Using Clock-Enable Flip-Flops .. A-2
A.2.2 Using Transparent Latches ... A-3
A.2.3 Using PCLK with Transparent Latches .. A-4
A.3 Properties of TIP Signal .. A-5
A.4 Generating TIP .. A-6
A.4.1 Synchronous TIP Generation .. A-6
A.4.2 Asynchronous TIP Generation .. A-7
A.5 Generating LOCKE ... A-8
A.6 Synchronous TIP Generation Code .. A-10
A.7 Asynchronous TIP Generation Code .. A-21

Appendix B
MCF5102 Evaluation Socket

B.1 Scope .. B-1
B.2 Documentation .. B-2
B.3 In port Considerations .. B-2
B.4 Output AC Timing Spectifications ... B-4
B.5 PAL Coding ... B-9

x MCF5102 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS
Figure

Number Title
Page

Number

1-1 Block Diagram .. 1-3
1-2 Programming Model ... 1-6

2-1 Execution Pipeline .. 2-2
2-2 User Programming Model .. 2-4
2-3 Supervisor Programming Model ... 2-5
2-4 Status Register ... 2-7

3-1 Access Control Register Format .. 3-2

4-1 Cache Line Formats ... 4-2
4-2 Caching Operation ... 4-3
4-3 Cache Control Register .. 4-4

4-4 Instruction-Cache Line State Diagram ... 4-12
4-5 Data-Cache Line State Diagram .. 4-14

5-1 Functional Signal Groups ... 5-3

6-1 MCF5102 Test Logic Block Diagram ... 6-2
6-2 Bypass Register ... 6-4
6-3 Output Latch Cell (O.Latch) ... 6-5
6-4 Input Pin Cell (I.Pin) ... 6-5
6-5 Output Control Cells (10.Ctl) .. 6-6
6-6 General Arrangement of Bidirectional Pins .. 6-6
6-7 Circuit Disabling IEEE Standard 1149.1A .. 6-8
6-8 Drive Levels and Test Points fro AC Specifications 6-9
6-9 JTAG Pin Out ... 6-10

MOTOROLA MCF5102 USER'S MANUAL xi

Figure
Number

LIST OF ILLUSTRATIONS (Continued)

Title
Page

Number

7-1 Internal Operand Representation ... 7-2
7-2 Byte Enable Signal Generation and PAL Equation 7-3
7-3 Example of a Misaligned Long-Word Transfer ... 7-5
7-4 Example of a Misaligned Word Transfer .. 7-5
7-5 Byte, Word, and Long-Word Read Transfer Timing 7-7
7-6 Line Read Transfer Timing .. 7-9
7-7 Burst-Inhibited Line Read Transfer Timing .. 7-11
7-8 Byte, Word, and Long-Word Write Transfer Timing 7-12
7-9 Line Write Transfer Flowchart .. 7-13
7-10 MCF5102 Internal Interpretation State Diagram ... 7-23
7-11 Lock Violation Example .. 7-25
7-12 Processor Bus Request Timing .. 7-26
7-13 Arbitration During Relinquish and Retry Timing ... 7-27
7-14 Implicit Bus Ownership Arbitration Timing ... 7-28
7-15 Snoop-Inhibited Bus Cycle ... 7-30
7-16 Snoop Access with Memory Response .. 7-31
7-17 Snooped Line Read, Memory Inhibited .. 7-33
7-18 Snooped Long-Word Write, Memory Inhibited ... 7-34
7-19 Initial Power-On Reset Timing ... 7-35
7-20 Normal Reset Timing ... 7-36

8-1 General Exception Processing Flowchart .. 8-3
8-2 General Form of Exception Stack Frame ... 8-4
8-3 Interrupt Recognition Examples ... 8-13
8-4 Interrupt Exception Processing Flowchart ... 8-15
8-5 Reset Exception Processing Flowchart .. 8-17
8-6 Flowchart of RTE Instruction for Throwaway Four-Word Frame 8-21
8-7 Special Status Word Format .. 8-23
8-8 Write-Back Status Format .. 8-25

9-1 Simple Instruction Timing Example .. 9-5
9-2 Instruction Overlap with Multiple Clocks .. 9-6
9-3 Interlocked Stages ... 9-7

xii MCF5102 USER'S MANUAL MOTOROLA

Figure
Number

LIST OF ILLUSTRATIONS (Continued)

Title
Page

Number

10-1 Overshoot Diagram .. 10-2
10-2 Clock Input Timing Diagram ... 10-3
10-3 Read/Write Timing .. 10-4
10-4 Bus Arbitration Timing .. 10-7
10-5 Snoop Hit Timing .. 10-8
10-6 Snoop Miss Timing ... 10-9
10-7 Other Signal Timing ... 10-10
10-8 Going Into LPSTOP With Arbtration ... 10-11
10-9 LPSTOP no Arbitration, CPU is Master ... 10-12
10-10 Exiting LP STOP with Interrupt.. .. 10-13
10-11 Exiting LP STOP with RESET ... 10-13

11-1 MCF5102 Pin Out .. 11-2
11-2 TQFP Package Dimensions , ... 11-4

A-1 Clock-Enable Flip-Flop Address Latching .. A-3
A-2 Normally-Closed Latch-Enable Circuit ... A-4
A-3 Timing Hazard in Normally-Closed Latch-Enable Circuit A-4
A-4 Negating Latch-Enable Hold-BLCK after End of Bus Transaction A-5
A-5 Synchronous TIP Generation State Diagram ... A-7
A-6 Address Phase States .. A-8
A-7 Asynchronous TIP and LOCKE State Diagram .. A-9

B-1 MCF5102 Evaluation Socket.. .. B-1
8-2 Read/Write Timing .. B-6
B-3 Arbitration Timing ... 8-7
B-4 Other Timing ... B-8

MOTOROLA MCF5102 USER'S MANUAL xiii

Table
Number

LIST OF TABLES

Title
Page

Number

1-1 Coldfire MCF5102 Data Formats ... 1-7
1-2 MCF5102 Extended Data Formats .. 1-7
1-3 Coldfire MCF5102 Effective Addressing Modes .. 1-8
1-4 MCF5102 Extended Effective Addressing Modes 1-8
1-5 Notational Conventions .. 1-9
1-7 Instruction Set Summary .. 1-12
1-7 MCF5102 Instruction Set Extensions ... 1-15

4-1 Snoop Control Encoding .. 4-8
4-2 · TLNx Encoding .. 4-9
4-3 Instruction-Cache Line State Transitions ... 4-13
4-4 Data-Cache Line State Transitions .. 4-15

5-1 Signal Index , ... 5-2
5-2 Transfer-Type Encoding .. 5-4
5-3 Normal and MOVE 16 Access Transfer Modifier Encoding 5-5
5-4 Alternate Access Transfer Modifier Encoding .. 5-5
5-5 Processor Status Encoding .. 5-1 O
5-6 Signal Summary ... 5-13

6-1 IEEE Standard 1149.1A Instructions ... 6-3
6-2 JT AG DC Electrical Specitications ... 6-8

7-1 Data Bus Requirements for Read and Write Cycles 7-2
7-2 Summary of Access Types versus Bus Signal Encodings 7-4
7-3 Memory Alignment Influence on Noncachable and

Write-Through Bus Cycles ... 7-6
7-4 Interrupt Acknowledge Termination Summary ... 7-15
7-5 TA and TEA Assertion Results ... 7-17
7-6 MCF5102 Bus Arbitration States ... 7-24

8-1 Exception Vector Assignments .. 8-5
8-2 Tracing Control .. 8-11
8-3 Interrupt Levels and Mask Values .. 8-12
8-4 Exception Priority Groups .. 8-19

xiv MCF5102 USER'S MANUAL MOTOROLA

LIST OF TABLES {Continued)

Table
Number Title

Page
Number

8-5 Write-Back Data Alignment .. 8-26
8-6 Access Error Stack Frame Combinations .. 8-30

9-1 Instruction Timing Index ... 9-1
9-2 Number of Memory Accesses .. 9-3
9-3 CINV Timing ... 9-8
9-4 CPU SH Best and Worst Case Timing .. 9-8

MOTOROLA MCF5102 USER'S MANUAL xv

xvi MCF5102 USER'S MANUAL MOTOROLA

SECTION 1
INTRODUCTION

ColdFire™ represents a revolutionary new microprocessor architecture that has been
optimized for embedded processing applications. It brings new levels of price and
performance to cost-sensitive high-volume markets. Based on the concept of Variable
Length RISC technology, ColdFire combines the architectural simplicity of conventional
32-bit fixed length RISC with a memory-saving variable-length instruction set.

The ColdFire RISC processors are tuned to offer embedded processor designers
significant system-level advantages over conventional fixed length RISC architectures.
Binary code for ColdFire processors is denser and therefore takes up less program
memory than 32-bit fixed-length machines. This improved code density results in systems
which require less memory for a given application and also allows the use of slower and
less costly memory to achieve a given performance level.

The first ColdFire Family member to be announced, the MCF5102 is fully ColdFire code
compatible. As the first chip in the family, it has been designed with special capabilities
which allow it to also execute the M68000 code which exists today. These extensions to
the Cold Fire instruction set allow Motorola customers to utilize the MCF5102 as a bridge
to future ColdFire processors for applications requiring the advantages of a variable-length
RISC architecture.

By providing compatibility with the M68000 Family this enables designers to take full
advantage of industry leading software and hardware tools. Compatibility with existing
development tools such as compilers, debuggers, real-time operating systems and
adapted hardware tools offers MCF5102 developers access to a broad range of mature
tool support; enabling an accelerated product development cycle, lower development
costs and critical time-to-market advantages for Motorola customers.

1.1 FEATURES

The primary features of the MCF5102 are as follows:
• Very Low Cost ColdFire Compatible Integer Core

- Optimized Variable-Length Instruction Set for Embedded Applications

- Extended Instruction Support For M68040 Code Compatibility

- 16 User Visible 32 Bit Wide Registers

• High Integer Performance

- 1 instruction Per Clock Peak Performance

MOTOROLA MCF5102 USER'S MANUAL 1-1

• On Chip Caches

- 2K bytes Instruction Cache, 4-way set associative
- 1 K bytes Data Cache, 4-way set associative
- Data Cache supports bus snooping

• 4 Separate Access Control Registers

• Supervisor I User Modes For System Protection

• Low Interrupt Latency

• Multiplexed 32-Bit Address and 32-Bit Data Bus To Minimize Board Space And
Interconnections

• Full Static Design Allows Operation Down To DC To Minimize Power Consumption

• 3.3-Volt Operation

• 5-Volt TTL Compatible, 5-Volt CMOS Tolerant

• JTAG IEEE 1149.1 Test Interface

• Single Bus Clock Input

• Fast Locking Internal PLL

1.2 FUNCTIONAL BLOCKS

Figure 1-1 illustrates a simplified block diagram of the MCF5102. The MCF5102 consists
to two tightly coupled multi-stage pipelines. The Instruction Fetch Pipeline (IFP) is
responsible for instruction address calculation, instruction prefetch, and instruction
decode. The Operand Execution Pipeline (OEP) includes stages for effective address
calculation, operand fetch, instruction execute and writeback. Conditional branches are
optimized for the more common case of the branch taken, and both execution paths of the
branch are fetched and decoded to minimize refilling of the instruction pipeline.

1-2 MCF5102 USER'S MANUAL MOTOROLA

IFP

INSTRUCTION FETCH

DECODE AND INSTRUCTION
ADDRESS CALCULATE

CACHE UNIT

INSTRUCTION AND DATA B

OEP
CONTROL u

5 DDRESS/DATA
BUS

EFFECTIVE ADDRESS
c
0

CALCULATE
INSTRUCTION N

CACHE T
(2 KBVTES) R CONTROL 0

OPERAND FETCH L
L
E
R

INSTRUCTION OPERAND CACHE
EXECUTE (1 KBVTE)

WRITE BACK

Figure 1-1. Block Diagram

Separate on-chip instruction and data caches operate independently. The caches improve
the overall performance of the system by reducing the number of bus transfers required
by the processor to fetch information from slower external memory and by increasing the
bus bandwidth available for alternate bus masters in the system. Both caches are
organized as four-way set associative. Each line contains four long words for a storage
capability of 2 Kbytes of instruction and 1 Kbyte for data cache (3 Kbytes total). Each
cache is allocated separate internal address and data buses, allowing simultaneous
access to both. The data cache provides write-through or copyback write modes. The
caches are physically mapped, reducing software support for multitasking operating
systems, and support external bus snooping to maintain cache coherency in multimaster
systems.

The bus controller executes bus transfers on the external bus and prioritizes external
memory requests from each cache. The MCF5102 bus controller supports a high-speed,
multiplexed, synchronous, external bus interface supporting burst accesses for both reads
and writes to provide high data transfer rates to and from the internal caches. Additional
bus signals support bus snooping and external cache tag maintenance.

1.3 PROCESSING STATES

The processor is always in one of four states: normal processing, exception processing,
low-power, or halted. It is in the normal processing state when executing instructions,
fetching instructions and operands, and storing instruction results.

MOTOROLA MCF5102 USER'S MANUAL 1-3

Exception processing is the transition from program processing to system, interrupt, and
exception handling. Exception processing includes fetching the exception vector, stacking
operations, and refilling the instruction pipe caused after an exception. The processor
enters exception processing when an exceptional internal condition arises such as tracing
an instruction, an instruction results in a trap, or executing specific instructions. External
conditions, such as interrupts and access errors, also cause exceptions. Exception
processing ends when the first instruction of the exception handler begins to execute.

The low-power stop mode is a reduced power mode of operation, that causes the
processor to remain quiescent until either a reset or non-masked interrupt occurs. This
mode of operation has four phases of operation and is triggered by the low-power stop
(LPSTOP) instruction.

The processor halts when it receives an access error or generates an address error while
in the exception processing state. For example, if during exception processing of one
access error another access error occurs, the MCF5102 is unable to complete the
transition to normal processing and cannot save the internal state of the machine. The
processor assumes that the system is not operational and halts. Only an external reset
can restart a halted processor. Note that when the processor executes a STOP
instruction, it is in a special type of normal processing state, one without bus cycles. The
processor stops, but it does not halt.

1.4 PROGRAMMING MODEL

The ColdFire programming model is separated into two privilege modes: supervisor and
user. The S-bit in the status register (SR) indicates the privilege mode that the processor
uses. The processor identifies a logical address by accessing either the supervisor or user
address space, maintaining the differentiation between supervisor and user modes.

Programs access registers based on the indicated mode. User programs can only access
registers specific to the user mode; whereas, system software executing in the supervisor
mode can access all registers, using the control registers to perform supervisory functions.
User programs are thus restricted from accessing privileged information, and the
operating system performs management and service tasks for the user programs by
coordinating their activities. This difference allows the supervisor mode to protect system
resources from uncontrolled accesses.

Most instructions execute in either mode, but some instructions that have important
system effects are privileged and can only execute in the supervisor mode. For instance,
user programs cannot execute the STOP or RESET instructions. To prevent a user
program from entering the supervisor mode, except in a controlled manner, instructions
that can alter the S-bit in the SR are privileged. The TRAP instructions provide controlled
access to operating system services for user programs.

If the S-bit in the SR is set, the processor executes instructions in the supervisor mode.
Because the processor performs all exception processing in the supervisor mode, all bus
cycles generated during exception processing are supervisor references, and all stack
accesses use the active supervisor stack pointer. If the S-bit of the SR is clear, the

1-4 MCF5102 USER'S MANUAL MOTOROLA

processor executes instructions in the user mode. The bus cycles for an instruction
executed in the user mode are user references. The values on the transfer modifier pins
indicate either supervisor or user accesses.

The processor utilizes the user mode and the user programming model when it is in
normal processing. During exception processing, the processor changes from user to
supervisor mode. Exception processing saves the current value of the SR on the active
supervisor stack and then sets the S-bit, forcing the processor into the supervisor mode.
To return to the user mode, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE, which execute in
the supervisor mode, modifying the S-bit of the SR. After these instructions execute, the
instruction pipeline is flushed and is refilled from the appropriate address space.

The registers depicted in the programming model (see Figure 1-2) provide operand
storage and control for these three units. The registers are partitioned into two levels of
privilege modes: user and supervisor. The user programming model consists of 16,
general-purpose, 32-bit registers and two control registers.

Only system programmers can use the supervisor programming model to implement
operating system functions, and 1/0 control. This supervisor/user distinction allows for the
coding of application software, which if confined to the ColdFire instruction set rather than
the extended instruction set of the MCF5102, will run without modification on any ColdFire
family processor. The supervisor programming model contains the control features that
system designers would not want user code to erroneously access because this might
effect normal operation of the system. Furthermore, the supervisor programming model
may need to change slightly from ColdFire generation to generation to add features or
improve performance as the architecture evolves.

MOTOROLA MCF5102 USER'S MANUAL 1-5

31 0

DO
D1
D2

DATA -- D3
REGISTERS~ D4

D5
D6
D7

AO

-----I
A1
A2

ADDRESS --------1 A3
REGISTERS -----I A4

--------1 AS
A6
A?IUSP USER STACK POINTER
PC PROGRAM COUNTER

: ______ -:c=:J CCR CONDITION CODE REGISTER

USER PROGRAMMING MODEL

31 0

A?'llSP INTERRUPT STACK POINTER
A?''lMSP MASTER STACK POINTER

I ,]ccR[SR STATUS REGISTER
VBR VECTOR BASE REGISTER
SFC SOURCE FUNCTION CODE
DFC DESTINATION FUNCTION CODE
CACR CACHE CONTROL REGISTER
DACRO DATA ACCESS CONTROL REGISTER o
DACR1 DATA ACCESS CONTROL REGISTER 1
IACRO INSTRUCTION ACCESS CONTROL REGISTER 0
IACR1 INSTRUCTION ACCESS CONTROL REGISTER 1

SUPERVISOR PROGRAMMING MODEL

Figure 1-2. Programming Model

The user programming model includes eight data registers, seven address registers, and
a stack pointer register. The address registers and stack pointer can be used as base
address registers or software stack pointers, and any of the 16 registers can be used as
index registers. Two control registers are available in the user mode-the program
counter (PC), which usually contains the address of the instruction that the MCF5102 is
executing, and the lower byte of the SR, which is accessible as the condition code register
(CCR). The CCR contains the condition codes that reflect the results of a previous
operation and can be used for conditional instruction execution in a program.

The supervisor programming model includes the upper byte of the SR, which contains
operation control information. The vector base register (VBR) contains the base address
of the exception vector table, which is used in exception processing. The source function
code (SFC) and destination function code (DFC) registers contain 3-bit function codes.
These function codes can be considered extensions to the 32-bit logical address. The
processor automatically generates function codes to select address spaces for data and

1-6 MCF5102 USER'S MANUAL MOTOROLA

program accesses in the user and supervisor modes. Some instructions use the alternate
function code registers to specify the function codes for various operations.

The cache control register (CACR) controls enabling of the on-chip instruction and data
caches of the MCF5102. There are four transparent translation registers, two for
instruction accesses and two for data accesses. These registers allow portions of the
logical address space to be transparently mapped to specify cachability.

1.5 DATA FORMAT SUMMARY

The MCF5102 provides support for the basic data formats of the ColdFire architecture and
also provides extended support for all the data formats of the M68000 family. The
instruction set supports operations on other data formats such as memory addresses, bit,
bit field, binary-coded decimal (BCD), byte, word, long word, quad word and 16-byte.

The operand data formats supported are standard twos-complement data. Registers,
memory, or instructions themselves can contain operands. The operand size for each
instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation. Table 1-1 lists a summary of the data formats for the MCF5102
which are ColdFire compatible. Table 1-2 lists the extended data formats supported
exclusively by the MCF5102 which provide compatibility for existing M68000 code.

Table 1-1. ColdFire MCF5102 Data Formats

Operand Data Format Size Notes

Bit 1 Bit -

Byte Integer 8 Bits -
Word Integer 16 Bits -
Long-Word Integer 32 Bits -
Quad-Word Integer 64 Bits Any Two Data Registers

Table 1-2. MCF5102 Extended Data Formats

Operand Data Format Size Notes

Bit Field 1-32 Bits Field of Consecutive Bits

Binary-Coded Decimal (BCD) a Bits Packed: 2 Digits/Byte; Unpacked: 1 Digit/Byte

16-Byte 128 Bits Memory Only, Aligned to 16-Byte Boundary

1.6 ADDRESSING CAPABILITIES SUMMARY

The MCF5102 supports the basic addressing modes of the ColdFire family and also
provides extended support for all the addressing modes of the M68000 family. The
register indirect addressing modes support postincrement, predecrement, offset, and

MOTOROLA MCF5102 USER'S MANUAL 1-7

indexing, which are particularly useful for handling data structures common to
sophisticated embedded applications and high-level languages. The program counter
indirect mode also has indexing and offset capabilities. This addressing mode is typically
required to support position-independent software. Besides these addressing modes, the
MCF5102 provides index sizing and scaling features.

An instruction's addressing mode can specify the value of an operand, a register
containing the operand, or how to derive the effective address of an operand in memory.
Each addressing mode has an assembler syntax. Some instructions imply the addressing
mode for an operand. These instructions include the appropriate fields for operands that
use only one addressing mode. Table 1-3 lists a summary of the effective addressing
modes for the MCF5102 which are ColdFire compatible. Table 1-4 lists the extended
addressing modes supported exclusively by the MCF5102 which provide compatibility for
existing M68000 code.

Table 1-3. ColdFire MCF5102 Effective Addressing Modes

Addressing Modes Syntax

Register Direct
Data Dn
Address An

Register Indirect
Address {An)
Address with Postincrement {An)+
Address with Predecrement -{An)
Address with Displacement {d16,An)

Address Register Indirect with Index
8-Bit Displacement {d8,An,Xn)
Base Displacement {bd,An,Xn)

Program Counter Indirect
with Displacement {d15,PC)

Program Counter Indirect with Index
8-Bit Displacement {d9,PC,Xn)
Base Displacement {bd,PC,Xn)

Absolute Data Addressing
Short {xxx).W
Long {xxx).L

Immediate #<XXX>

Table 1-4. MCF5102 Extended Effective Addressing Modes

Addressing Modes Syntax

Memory Indirect
Postindexed {[bd,An],Xn,od)
Preindexed {[bd,An,Xn],od)

Program Counter Memory Indirect
Postindexed {[bd, PC],Xn,od)
Preindexed ([bd,PC,Xn],od)

1-8 MCF5102 USER'S MANUAL MOTOROLA

1.7 NOTATIONAL CONVENTIONS

Table 1-5 lists the notation conventions used throughout this manual unless otherwise
specified.

Table 1-5. Notational Conventions

Single- And Double-Operand Operations

+ Arithmetic addition or postincrement indicator.

- Arithmetic subtraction or predecrement indicator.

¥ Arithmetic multiplication.

- Arithmetic division or conjunction symbol.

- Invert; operand is logically complemented.

L Logical AND

v Logical OR

~ Logical exclusive OR

• Source operand is moved to destination operand .

H Two operands are exchanged.

<OP> Any double-operand operation.

<Operand>tested Operand is compared to zero and the condition codes are set appropriately.

sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion.

Other Operations

TRAP Equivalent to Format+ Offset Word• (SSP); SSP - 2 • SSP; PC• (SSP); SSP - 4 • SSP; SR
• (SSP); SSP - 2 • SSP; (Vector)• PC

STOP Enter the stopped state, waiting for interrupts.

<operand> 1 o The operand is BCD; operations are performed in decimal.

If <condition> Test the condition. If true, the operations after '1hen" are performed. If the condition is false
then <operations> and the optional "else" clause is present, the operations after "else" are performed. If the

else <operations> condition is false and else is omitted, the instruction performs no operation. Refer to the Bee
instruction description as an example.

Register Specification

An Any Address Register n (example: A3 is address register 3)

Ax,Ay Source and destination address registers, respectively.

BR Base Register-An, PC, or suppressed.

De Data register D7-DO, used during compare.

Dh, DI Data registers high- or low-order 32 bits of product.

Dn Any Data Register n (example: D5 is data register 5)

Dr, Dq Data register's remainder or quotient of divide.

Du Data register D7-DO, used during update.

Dx, Dy Source and destination data registers, respectively.

MRn Any Memory Register n.

Rn Any Address or Data Register

Rx, Ry Any source and destination registers, respectively.

Xn Index Register-An, Dn, or suppressed.

MOTOROLA MCF5102 USER'S MANUAL 1-9

Table 1-5. Notational Conventions (Continued)

Data Format And Type

+inf Positive Infinity

<fmt> Operand Data Format: Byte (B), Word (W), Long (L), Single (S), Double (D), Extended (X), or
Packed (P).

B, W,L Specifies a signed integer data type (twos complement) of byte, word, or long word.

D Double-precision real data format (64 bits).

k A twos complement signed integer (-64 to + 17) specifying a number's format to be stored in
the packed decimal format.

p Packed BCD real data format (96 bits, 12 bytes).

s Single-precision real data format (32 bits).

x Extended-precision real data format (96 bits, 16 bits unused).

-inf Negative Infinity

Subfields and Qualifiers

#<XXX> or #<data> Immediate data following the instruction word(s).

() Identifies an indirect address in a register.

[] Identifies an indirect address in memory.

bd Base Displacement

CCC Index into the MC68881/MC68882 Constant ROM

dn Displacement Value, n Bits Wide (example: d15 is a 16-bit displacement).

LSB Least Significant Bit

LSW Least Significant Word

MSB Most Significant Bit

MSW Most Significant Word

od Outer Displacement

SCALE A scale factor (1, 2, 4, or 8, for no-word, word, long-word, or quad-word scaling, respectively).

SIZE The index register's size (W for word, L for long word).

{offset:width} Bit field selection.

Register Names

CCR Condition Code Register (lower byte of status register)

DFC Destination Function Code Register

IC, DC, IC/DC Instruction, Data, or Both Caches

PC Program Counter

Re Any Non Floating-Point Control Register

SFC Source Function Code Register

SR Status Register

1-10 MCF5102 USER'S MANUAL MOTOROLA

Table 1-5. Notational Conventions (Concluded)

Register Codes . General Case .

c Carry Bit in CCR

cc Condition Codes from CCR

FC Function Code

N Negative Bit in CCR

u Undefined, Reserved for Motorola Use.

v Overflow Bit in CCR

x Extend Bit in CCR

z Zero Bit in CCR

- Not Affected or Applicable.

Stack Pointers

ISP Supervisor/Interrupt Stack Pointer

MSP Supervisor/Master Stack Pointer

SP Active Stack Pointer

SSP Supervisor (Master or Interrupt) Stack Pointer

USP User Stack Pointer

Miscellaneous

<ea> Effective Address

<label> Assemble Program Label

<list> List of registers, for example 03-DO.

LB Lower Bound

m Bit m of an Operand

m-n Bits m through n of Operand

us Upper Bound

MOTOROLA MCF5102 USER'S MANUAL 1-11

1.8 INSTRUCTION SET OVERVIEW

The instruction set is tailored to support high-level languages and is optimized for those
instructions most commonly executed by embedded code. Table 1-7 provides an
alphabetized listing of the ColdFire instruction set's opcode, operation, and syntax. Table
1-8 lists the extended instructions supported exclusively by the MCF5102 which provide
compatibility for existing M68000 code. Refer to Table 1-5 for notations used in Tables 1-
7 and 1-8. The left operand in the syntax is always the source operand, and the right
operand is the destination operand.

Table 1-7. ColdFire MCF5102 Instruction Set Summary

Opcode Operation Syntax

ADD Source + Destination •Destination ADD <ea>,Dn
ADD Dn,<ea>

ADDA Source + Destination •Destination ADDA <ea>,An

ADDI Immediate Data+ Destination• Destination ADDI #<data>,<ea>

ADDO Immediate Data+ Destination• Destination ADDO #<data>,<ea>

ADDX Source + Destination + X • Destination ADDX Dy,Dx
ADDX -(Ay),-(Ax)

AND Source L Destination •Destination AND <ea>,Dn
AND Dn,<ea>

ANDI Immediate Data L Destination• Destination ANDI #<data>,<ea>

ANDI to CCR Source L CCR • CCR ANDI #<data>,CCR

ANDI to SR If supervisor state ANDI #<data>,SR
then Source L SR• SR

else TRAP

ASL, ASA Destination Shifted by count• Destination ASd Dx,Dy1
ASd #<data>, Dy 1
ASd <ea>1

Bee If condition true Bee <label>
then PC+ dn • PC

BCHG -(bit number of Destination)• Z; BCHG Dn,<ea>
-(bit number of Destination) • (bit number) of BCHG #<data>,<ea>
Destination

BCLR -(bit number of Destination) • Z; BCLR Dn,<ea>
0 •bit number of Destination BCLR #<data>,<ea>

BRA pc+ DN• pc bra <LABEL>

BSET -(bit number of Destination)• Z; BSET Dn,<ea>
1 •bit number of Destination BSET #<data>,<ea>

BSA SP - 4 •SP; PC• (SP); PC+ dn •PC BSA <label>

BTST -(bit number of Destination) • Z; BTST Dn,<ea>
BTST #<data>,<ea>

CLR O •Destination CLR <ea>

CMP Destination - Source •cc CMP <Ba>,Dn

CMPA Destination - Source CMPA <ea>,An

CMPI Destination - Immediate Data CMPI #<data>,<ea>

EOR Source ~ Destination • Destination EOR Dn,<ea>

1-12 MCF5102 USER'S MANUAL MOTOROLA

EORI Immediate Data~ Destination •Destination EORI #<data>,<ea>

EXT Destination Sign - Extended t Destination EXT.WDn extend byte to word
EXTB EXT.LL Dn extend word to long word

EXTB.L Dn extend byte to long word

JMP Destination Address t PC JMP <ea>

JSR SP -4 t SP; PCt(SP) JSR <ea>
Destination Address• PC

LEA <ea>• An LEA<ea>.An

LINK SP - 4 t SP; Ant (SP) LINK An,dn
SP t An, SP+dt SP

LSL, LSR Destination Shifted by count • Destination LSd Dx,Dy1
LSd #<data>,Dy 1
LSd <ea> 1

MOVE Source • Destination MOVE <ea>,<ea>

MO VEA Source • Destination MOVEA <ea>,An

MOVE CCR • Destination MOVE CCR,<ea>
from CCR

MOVE to CCR Source•CCR MOVE <ea>,CCR

MOVE from SR If supervisor state MOVE SR,<ea>
then SR• Destination

else TRAP

MOVE to SR If supervisor state MOVE <ea>,SR
then Source • SR

else TRAP

MOVEC If supervisor state MOVEC Rc,Rn
then Re • Rn or Rn •Re MOVEC Rn,Rc

else TRAP

MOVEM Registers • Destination MOVEM <list>,<ea>2
Source • Registers MOVEM <8a>,<list>2

MOVEQ Immediate Data• Destination MOVEQ #<data>,Dn

MULS Source¥ Destination •Destination MULS.W <ea>,Dn 16¥16•32
MULS.L <ea>,DI 32 ¥ 32•32

MULU Source ¥ Destination • Destination MULU.W <ea>,Dn 16¥16 •32
MULU.L <ea>,DI 32 ¥ 32•32

NEG 0 - (Destination) t Destination NEG <ea>

NEGX 0 - (Destination) - X •Destination NEGX <Sa>

NOP None NOP

NOT - Destination •Destination NOT <ea>

OR Source V Destination• Destination OR <ea>,Dn
OR Dn,<ea>

ORI Immediate Data V Destination• Destination ORI #<data>,<ea>

PEA SP - 4 t SP; <ea> t (SP) PEA <ea>

RTE If supervisor state RTE
then (SP) t SR; SP+ 2• SP; (SP) t PC;
SP + 4 • SP; restore state and deallocate
stack according to (SP)

else TRAP

ATS (SP)• PC; SP+ 4 t SP ATS

MOTOROLA MCF5102 USER'S MANUAL 1-13

Sec If condition true Sec <ea>
then 1 s • Destination

else Os • Destination

STOP If supervisor state STOP #<data>
then Immediate Data• SR; STOP

else TRAP

SUB Destination - Source• Destination SUB <ea>,Dn
SUB Dn,<ea>

SUSA Destination - Source• Destination SUSA <ea>,An

SUSI Destination - Immediate Data• Destination SUSI #<data>,<ea>

SUBQ Destination - Immediate Data• Destination SUBQ #<data>,<ea>

SUBX Destination - Source - X •Destination SUBXDx,Dy
SUBX-(Ax),-(Ay)

SWAP Register 31-16 - • Register 15-0 SWAP Dn

TRAP SSP - 2 • SSP; Format+ Offset• (SSP); TRAP #<vector>
SSP - 4 • SSP; PC• (SSP); SSP - 2 • SSP;
SR• (SSP); Vector Address• PC

TRAPF If never TRAPF
then TRAP TRAPF.W #<data>

TRAPF.L #<data>

TST Destination Tested• Condition Codes TST <ea>

UNLK An• SP; (SP)• An; SP+ 4 •SP UNLKAn

NOTES:
1. Where dis direction, left or right.
2. List refers to register.

1-14 MCF5102 USER'S MANUAL MOTOROLA

Table 1-8. MCF5102 Instruction Set Extensions

Opcode Operation Syntax

ABCD BCD Source+ BCD Destination + X • Destination ABCD Dy,Dx
ABCD -(Ay),-(Ax)

BFCHG -(bit field of Destination)• bit field of Destination BFCHG <ea>{offset:width}

BFCLR O •bit field of Destination BFCLR <ea>{offset:width}

BFEXTS bit field of Source• Dn BFEXTS <ea>{offset:width},Dn

BFEXTU bit offset of Source • Dn BFEXTU <ea>{offset:width},Dn

BFFFO bit offset of Source Bit Scan • Dn BFFFO <ea>{offset:width},Dn

BFINS Dn •bit field of Destination BFINS Dn,<ea>{offset:width}

BFSET 1 s •bit field of Destination BFSET <ea>{offset:width}

BFTST bit field of Destination BFTST <ea>{offset:width}

BKPT Run breakpoint acknowledge cycle; BKPT #<data>
TRAP as illegal instruction

CAS CAS Destination - Compare Operand + cc; CAS Dc,Du,<ea>
if Z, Update Operand • Destination
else Destination • Compare Operand

CAS2 CAS2 Destination 1 - Compare 1 •cc; CAS2 Dc1-Dc2,Du1-Du2,(Rn1)-(Rn2)
if Z, Destination 2 - Compare •cc;
if Z, Update 1 • Destination 1;

Update 2 • Destination 2
else Destination 1 •Compare 1;

Destination 2 • Compare 2

CHK If Dn < O or Dn > Source CHK <ea>,Dn
then TRAP

CHK2 If Rn < LB or If Rn > UB CHK2 <ea>, Rn
then TRAP

CINV If supervisor state CINVL <caches>, (An)
then invalidate selected cache lines CINVP <caches>, (An)

else TRAP CINVA <Caches>

CMPM Destination - Source• cc CMPM (Ay)+,(Ax)+

CMP2 Compare Rn < LB or Rn > UB CMP2 <ea>,Rn
and Set Condition Codes

CPU SH If supervisor state CPUSHL <caches>, (An)
then tt data cache push selected dirty data CPUSHP <Caches>, (An)
cache lines; invalidate selected cache lines CPUSHA <Caches>

else TRAP

DBcc If condition false DBcc Dn,<label>
then (Dn-1 • Dn;

lfDn ;t-1
then PC+ dn + PC)

DIVS, DIVSL Destination +Source •Destination DIVS.W <ea>,Dn 32 + 16 +16r:16q
DIVS.L <ea>,Dq 32+ 32t32q
DIVS.L <ea>,Dr:Dq 64 + 32 • 32r:32q
DIVSL.L <ea>,Dr:Dq 32 + 32 • 32r:32q

DIVU, DIVUL Destination+ Source t Destination DIVU.W <ea>,Dn 32 + 16 t 16r:16q
DIVU.L <ea>,Dq 32 + 32 • 32q
DIVU.L <ea>,Dr:Dq 64 + 32 • 32r:32q
DIVUL.L <ea>,Dr:Dq 32 + 32 • 32r:32q

MOTOROLA MCF5102 USER'S MANUAL 1-15

Table 1-8. MCF5102 Instruction Set Extensions (Continued)

EORlto CCR Source = CCR • CCR EORI #<data>,CCR

EORI to SR If supervisor state !;ORI #<data>,SR
then Source= SR •SR

else TRAP

EXG Rx• •Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx

ILLEGAL SSP - 2 • SSP; Vector Offset• (SSP); ILLEGAL
SSP - 4 • SSP; PC• (SSP);
SSp - 2 • SSP; SR • (SSP);
Illegal Instruction Vector Address• PC

LP STOP If supervisor state LPSTOP #<data>
immediate data• SR
SR •broadcast cycle
STOP

else TRAP

MOVE USP If supervisor state MOVE USP,An
then USP •An or An• USP MOVEAn,USP

else TRAP

MOVE16 Source block• Destination block MOVE16 (Ax)+, (Ay)+2
MOVE16 (xxx).L, (An)
MOVE16 (An), (xxx).L
MOVE16 (An)+, (xxx).L

MOVEP Source• Destination MOVEP Dx,(dn,AY)
MOVEP (dn,Ay),Dx

MOVES If supervisor state MOVES Rn,<ea>
then Rn• Destination [DFC] or MOVES <ea>,Rn
Source [SFC] • Rn

else TRAP

MULS Source¥ Destination •Destination MULS.L <ea>,Dh-DI 32¥32H4

MULU Source¥ Destination • Destination MULU.L <ea>,Dh-DI 32¥32H4

NBCD 0 - (Destination10)- X •Destination NBCD <ea>

ORI to CCR Source V CCR• CCR ORI #<data>,CCR

ORI to SR If supervisor state ORI #<data>,SR
then Source V SR• SR

else TRAP

PACK Source (Unpacked BCD) + adjustment• PACK -(Ax),-(Ay),#(adjustment)
Destination (Packed BCD) PACK Dx,Dy,#(adjustment)

RESET If supervisor state RESET
then Assert RSTO Line

else TRAP

ROL, ROR Destination Rotated by count.• Destination ROd Rx,Dy1
ROd #<data>,Dy 1

ROXL, ROXR Destination Rotated with X by count• Destination ROXd Dx,Dy1
ROXd #<data>, Dy 1
ROXd <ea> 1

RTD (SP)• PC; SP+ 4+ dn• SP RTD#(dn)

1-16 MCF5102 USER'S MANUAL MOTOROLA

Table 1-8. MCF5102 Instruction Set Extensions {Continued)

RTR (SP) •CCR; SP + 2 • SP; RTR
(SP)• PC; SP+ 4 •SP

SBCD Destination10- Source1 o- X •Destination SBCD Dx,Dy
SBCD -(Ax),-(Ay)

TAS Destination Tested• Condition Codes; TAS <ea>
1 •bit 7 of Destination

TRAP cc If cc TRAPcc
then TRAP TRAPcc.W #<data>

TRAPcc.L #<data>

TRAPV lfV TRAPV
then TRAP

UNPK Source (Packed BCD)+ adjustment• Destination UNPACK -(Ax),-(Ay),#(adjustment)
(Unpacked BCD) UNPACK Dx,Dy,#(adjustment)

NOTES:
1. Where d is direction, left or right.
2. MOVE16 (ax)+,(ay)+ is functionally the same as MOVE16 (ax),(ay)+ when ax= ay. The address register is only

incremented once, and the line is copied over itself rather than to the next line.

MOTOROLA MCF5102 USER'S MANUAL 1-17

1-18 MCF5102 USER'S MANUAL MOTOROLA

SECTION 2
EXECUTION PIPELINES

This section describes the organization of the MCF5102 instruction and operand
execution pipelines and a brief description of the associated registers.

2.1 PIPELINES

The MCF5102 is comprised of two tightly coupled execution pipelines. The instruction
fetch pipeline (IFP) is a 2-stage pipeline which prefetches and decodes instructions. The
decoded instruction stream is then gated into the 4-stage operand execution pipeline
(OEP), which calculates any needed effective addresses, fetches the required operands
and then executes the required function. Since the IFP and OEP operate semi
autonomously, the IFP is able to prefetch instructions in advance of their actual use by the
OEP thereby minimizing time stalled waiting for instructions. Figure 2-1 illustrates the
MCF5102 pipeline structure.

The I FP consists of two stages:

• Instruction Fetch

• Instruction Decode and next Instruction Address Calculate

The OEP is implemented using a four-stage pipeline featuring a traditional RISC datapath
with a register file feeding an arithmetic/logic unit. In this design, each pipeline stage has a
specific function:

• Effective Address Calculate

• Operand Fetch

• Instruction Execute

• Write-back

MOTOROLA MCF5102 USER'S MANUAL 2-1

IFP

INSTRUCTION FETCH

DECODE AND INSTRUCTION
ADDRESS CALCULATE

OEP

EFFECTIVE ADDRESS
CALCULATE

OPERAND FETCH

INSTRUCTION
EXECUTE

WRITE BACK

Figure 2-1. Execution Pipeline

The IFP contains special shadow registers that can begin processing future instructions
for conditional branches while the OEP is processing current instructions. An instruction
stream is fetched from the instruction cache and decoded on an instruction-by-instruction
basis in the decode stage. Multiple instructions are fetched to keep the pipeline stages full
to minimize pipeline stalls.

The effective address calculate stage eliminates pipeline blockage for instructions with
postincrement, postdecrement, or immediate add and load to address register for updates
that occur in the effective address calculate stage.

The resulting effective address is passed to the operand fetch stage, which initiates an
operand fetch from the data cache if the effective address is for a source operand. The
fetched operand is returned to the Instruction execute stage, which completes execution
of the instruction and writes any result to either a data register, memory, or back to the
effective address calculate stage for storage in an address register. For a memory
destination, the operand fetch stage passes the operand to the instruction execute stage.

The previously described sequence of effective address calculation and fetch can occur
multiple times for an instruction, depending on the source and/or destination addressing
modes. For memory indirect addressing modes, the effective address calculate stage
initiates an operand fetch from the intermediate indirect memory address, then calculates
the final effective address. Also, some instructions access multiple memory operands and
initiate fetches for each operand.

2-2 MCF5102 USER'S MANUAL MOTOROLA

The instruction finishes execution in the instruction execute stage. Instructions with write
back operands to memory generate pending write accesses that are passed to the write
back stage.

The write-back stage holds the operand until an opportune moment when no data fetches
are required. The write-back can defer writes indefinitely until either the data cache is free
or another write is pending from the execution stage. Holding the data in the write-back
stage maximizes system performance by not interrupting the incoming instruction or data
stream.

2.2 PROGRAMMING MODEL REGISTERS

The following paragraphs describe the registers in the user and supervisor programming
models.

2.2.1 User Programming Model

Figure 2-2 illustrates the user programming model which consist of the following registers.

• 16 General-Purpose 32-Bit Registers (07-DO, A7-AO)

• 32-Bit Program Counter (PC)

• 8-Bit Condition Code Register (CCR)

2.2.1.1 DATA REGISTERS (D7-DO). These registers are used as data registers for bit
and bit field (1 to 32 bits), byte (8 bit), word (16 bit), long-word (32 bit), and quad-word (64
bit) operations. These registers may also be used as index registers.

2.2.1.2 ADDRESS REGISTERS (A6-AO). These registers can be used as software stack
pointers, index registers, or base address registers. The address registers may be used
for word· and long-word operations.

MOTOROLA MCF5102 USER'S MANUAL 2-3

-

I ..

31 15 0
DO
D1
D2
D3 DATA
D4 REGISTERS

D5
D6
D7

31 15 0
AO
A1
A2 ADDRESS
A3 REGISTERS
A4
A5
A6

31 15 0 } USER
A? STACK

31
(USP) POINTER

PC
} PROGRAM

COUNTER
15 7 0 } CONDITION r· -- -- -- --

CCR CODE -· -· -· -· -· REGISTER

Figure 2-2. User Programming Model

2.2.1.3 SYSTEM STACK POINTER (A7). A7 is used as a hardware stack pointer during
stacking for subroutine calls and exception handling. The register designation A7 refers to
three different uses of the register: the user stack pointer (USP) (A7) in the user
programming model and either the interrupt stack pointer (ISP) or master stack pointer
(MSP) (A7' or A7", respectively) in the supervisor programming model. When the S-bit in
the status register (SR) is clear, the USP is the active stack pointer. Explicit references to
the system stack pointer (SSP) refer to the USP while the processor is operating in the
user mode.

A subroutine call saves the program counter (PC) on the active system stack, and the
return restores it from the active system stack. Both the PC and the SR are saved on the
supervisor stack (either ISP or MSP) during the processing of exceptions and interrupts.
Thus, the execution of supervisor level code is independent of user code and condition of
the user stack. Conversely, user programs use the USP independently of supervisor stack
requirements.

2.2.1.4 PROGRAM COUNTER. The PC contains the address of the currently executing
instruction. During instruction execution and exception processing, the processor
automatically increments the contents of the PC or places a new value in the PC, as
appropriate. For some addressing modes, the PC can be used as a pointer for PC-relative
addressing.

2.2.1.5 CONDITION CODE REGISTER. The CCR consists of five bits of the SR least
significant byte. The first four bits represent a condition of the result generated by a
processor operation. The fifth bit, the extend bit (X-bit), is an operand for multiprecision

2-4 MCF5102 USER'S MANUAL MOTOROLA

computations. The carry bit (C-bit) and the X-bit are separate in the M68000 family to
simplify programming techniques that use them.

2.2.2 Supervisor Programming Model

Only system programmers use the supervisor programming model (see Figure 2-3) to
implement sensitive operating system functions, and 1/0 control. All accesses that affect
the control features of the MCF5102 are in the supervisor programming model. Thus, all
application software is written to run in the user mode and migrates to the MCF5102 from
any M68000 platform without modification.

31 15

~~~~~~~~~~~~~~~~ 

A7 '(ISP) } INTERRUPT STACK POINTER 

31 15 

'----~~~~~~~-'---~~~~~~--' 
A7 "(MSP) } MASTER STACK POINTER 

15 7 0 
I (CCR) I SR } STATUS REGISTER 

31 

31 

31 

31 

31 

VBR } VECTOR BASE REGISTER 

} ALTERNATE SOURCE AND DESTINATION 
FUNCTION CODE REGISTERS 

} CACHE CONTROL REGISTER 

ACCESS CONTROL REGISTERS 

Figure 2-3. Supervisor Programming Model 

The supervisor programming model consists of the registers available to the user as well 
as the following control registers: 

• Two 32-Bit Supervisor Stack Pointers (ISP, MSP) 

• 16-Bit Status Register (SR) 

• 32-Bit Vector Base Register (VBR) 

• Two 32-Bit Alternate Function Code Registers: Source Function Code (SFC) and 
Destination Function Code (DFC) 

• 32-Bit Cache Control Register (CACR) 

• Four 32-bit Access Control Registers (DACRO, DACR1, IACRO, IACR1) 

MOTOROLA MCF5102 USER'S MANUAL 2-5 



The following paragraphs describe the supervisor programming model registers. 
Additional information on the ISP, MSP, SR, and VBR registers can be found in Section 8 
Exception Processing. 

2.2.2.1 INTERRUPT AND MASTER STACK POINTERS. In a multitasking operating 
system, it is more efficient to have a supervisor stack pointer associated with each user 
task and a separate stack pointer for interrupt-associated tasks. The MCF5102 provides 
two supervisor stack pointers, master and interrupt. Explicit references to the SSP refer to 
either the MSP or ISP while the processor is operating in the supervisor mode. All 
instructions that use the SSP implicitly reference the active stack pointer. The ISP and 
MSP are general-purpose registers and can be used as software stack pointers, index 
registers, or base address registers. The ISP and MSP can be used for word and long
word operations. 

The M-bit of the SR selects whether the ISP or MSP is active. SSP references access the 
ISP when the M-bit is clear, putting the processor into the interrupt mode. It an exception 
being processed is an interrupt and the M-bit is set, the M-bit is cleared, putting the 
processor into the interrupt mode. The interrupt mode is the default condition after reset, 
and all SSP references access the ISP. The ISP can be used for interrupt control 
information and for workspace area as interrupt exception handling requires. 

SSP references access the MSP when the M-bit is set. The operating system uses the 
MSP tor each task pointing to a task-related area of supervisor data space. This 
procedure separates task-related supervisor activity from asynchronous, 1/0-related 
supervisor tasks that can only be coincidental to the currently executing task. The MSP 
can separately maintain task control information for each currently executing user task, 
and the software updates the MSP when a task switch is performed, providing an efficient 
means tor transferring task-related stack items. The value of the M-bit does not affect 
execution of privileged instructions. Instructions that affect the M-bit are MOVE to SR, 
ANDI to SR, EORI to SR, ORI to SR, and RTE. The processor automatically saves the M
bit value and clears it in the SR as part of the exception processing for interrupts. 

2.2.2.2 STATUS REGISTER. The SR (see Figure 2-4) stores the processor status. In the 
supervisor mode, software can access the full SR, including the CCR available in user 
mode (see 2.2.1.5 Condition Code Register) and the interrupt priority mask and 
additional control bits available only in the supervisor mode. These bits indicate the 
following states for the processor: one of two trace modes (T1, TO), supervisor or user 
mode (S), and master or interrupt mode (M). 

The term SSP refers to the ISP and MSP. The Mand S bits of the SR decide which SSP 
to use. When the S-bit is one and the M-bit is zero, the ISP is the active stack pointer; 
when the S-bit is one and the M-bit is one, the MSP is the active stack pointer. The ISP is 
the default stack pointer after reset. 

2-6 MCF5102 USER'S MANUAL MOTOROLA 



SYSTEM BYTE 

15 14 13 12 11 10 

T1 TO S M 0 12 11 10 0 

TRACE 
ENABLE 

SUPERVISOR/USER STATE 

MASTER/INTERRUPT STATE--~ 

INTERRUPT 
PRIORITY MASK 

USER BYTE 
(CONDITION CODE REGISTER) 

4 3 2 

X N Z V 

CARRY 

OVERFLOW 

~---ZERO 

~---- NEGATIVE 

'-------- EXTEND 

Figure 2-4. Status Register 

2.2.2.3 VECTOR BASE REGISTER. The VBR contains the base address of the exception 
vector table in memory. The displacement of an exception vector is added to the value in 
this register to access the vector table. Refer to Section 8 Exception Processing for 
information on exception vectors. 

2.2.2.4 ALTERNATE FUNCTION CODE REGISTERS. The alternate function code 
registers contain 3-bit function codes. Function codes can be considered extensions of the 
32-bit logical address that optionally provides as many as eight 4-Gbyte address spaces. 
The processor automatically generates function codes to select address spaces for data 
and programs at the user and supervisor modes. Certain instructions use the SFC and 
DFC registers to specify the function codes for operations. 

2.2.2.5 CACHE CONTROL REGISTER. The CACR contains two enable bits that allow 
the instruction and data caches to be independently enabled or disabled. Setting an 
enable bit enables the associated cache without affecting the state of any lines within the 
cache. A hardware reset clears the CACR, disabling both caches. 

MOTOROLA MCF5102 USER'S MANUAL 2-7 



2-8 MCF5102 USER'S MANUAL MOTOROLA 



SECTION 3 
ACCESS CONTROL UNITS 

The MCF5102 contains two independent ACUs, one for instructions and one for data. 
Each ACU allows memory selections to be made requiring attributes particular to ~ 
peripherals, shared memory, or other special memory requirements. The following ~ 
paragraphs describe the ACUs and the access control registers contained in them. 

3.1 ACCESS CONTROL REGISTERS 

Each ACU has two independent access control registers (ACRs). The instruction ACU 
contains the instruction access control registers (IACRO and IACR 1 ). The data ACU 
contains the data access control registers (DACRO and DACR1). Both ACRs provide and 
control status information for access control of memory in the MCF5102. Only programs 
that execute in the supervisor mode using the MOVEC instruction can directly access the 
AC Rs. 

The 32-bit ACRs each define blocks of address space for access control. These blocks of 
address space can overlap or be separate, and are a minimum of 16 Mbytes. Three 
blocks are used with two user-defined attributes, cachability control and optional write 
protection. The ACRs specify a block of address space as serialized noncachable for 
peripheral selections and as write-through for shared blocks of address space in multi
processing applications. The ACRs can be configured to support many embedded control 
applications while maintaining cache integrity. Refer to Section 4 Instruction and Data 
Caches for details concerning cachability. Figure 3-1 illustrates the ACR format. 

MOTOROLA MCF5102 USER'S MANUAL 3-1 



I 

-

31 

LOGICAL ADDRESS 
BASE 

24 23 16 15 14 13 12 11 10 9 s 7 6 5 4 3 2 1 0 

LOGICALADDRESS E S O O O U1 UO o CM o o W o o 
MASK 

Figure 3-1. Access Control Register Format 

ADDRESS BASE 

This 8-bit field is compared with physical address bits A31-A24. Addresses that match 
in this comparison (and are otherwise eligible) are accessible. 

ADDRESS MASK 

This 8-bit field contains a mask for the ADDRESS BASE field. Setting a bit in the 
ADDRESS MASK field causes the processor to ignore the corresponding bit in the 
ADDRESS BASE field. Setting some of the ADDRESS MASK bits to ones obtains 
blocks of memory larger than 16 Mbytes. The low-order bits of this field are normally set 
to define contiguous blocks larger than 16 Mbytes, although contiguous blocks are not 
required. 

E-Enable 

This bit enables and disables transparent translation of the block defined by this 
register. 

0 = Access control disabled. 
1 = Access control enabled. 

$-Supervisor/User Mode 

This field specifies the way FC2 is used in matching an address: 

00 = Match only if FC2 = 0 (user mode access). 
01 = Match only if FC2 = 1 (supervisor mode access). 

10, 11 = Ignore FC2 when matching. 

CM-Cache Mode 

This field selects the cache mode and access serialization for a page as follows: 

00 = Cachable, Write-through 
01 = Cachable, Copyback 
10 = Noncachable, Serialized 
11 = Noncachable 

Detailed information on caching modes is available in Section 4 Instruction and Data 
Caches, and information on serialization is available in Section 7 Bus Operation. 

W-Write Protect 
This bit indicates if the transparent block is write protected. If set, write and read-modify
write accesses to the protected block. 

3·2 

0 = Read and write accesses permitted. 
1 = Write accesses not permitted. 

MCF5102 USER'S MANUAL MOTOROLA 



3.2 ADDRESS COMPARISON 

The following description of address comparison assumes that the ACRs are enabled. 
Clearing the E-bit in each ACR independently disables access control, causing the 
processor to ignore it. 

When an ACU receives an address, the privilege mode and the eight high-order bits of the 
address are compared to the block of addresses defined by the two ACRs for the 
corresponding ACU. Each block of address space for an ACR contains an S-field, a BASE 
ADDRESS field, and an ADDRESS MASK field. The S-field allows for matching either 
user or supervisor accesses (or both). Setting a bit in the ADDRESS MASK field causes 
the corresponding bit of the ADDRESS BASE to be ignored in the address comparison 
and privilege mode. Setting successively higher order bits in the ADDRESS MASK field 
increases the size of the block of address space. 

The address for the current bus cycle and an ACR address match when the privilege 
mode and address bits for each (not including the masked bits) are equal. Each ACR 
specifies write protection for the block of address space. Enabling write protection for a 
block of address space causes the abortion of write or read-modify-write accesses to the 
block, and an access error exception occurs. 

By appropriately configuring an ACR, flexible mappings can be specified. For example, to 
control access to the user address space, the S-field equals $0, and the ADDRESS MASK 
field equals $FF in all four ACRs. To control access to the supervisor address space 
($00000000-$0FFFFFFF) with write protection, the BASE ADDRESS field = $OX, the 
ADDRESS MASK field equals $OF, the W-bit is set to one, and the S-field = $1. The 
inclusion of independent ACRs in both the instruction ACU (IACU) and data ACU (DACU 
provides an exception to the merged instruction and data address space, allowing 
different access control for instruction and operand accesses. Also, since the instruction 
memory unit is only used for instruction prefetches, different instruction and data ACRs 
can cause PC relative operand fetches to be controlled differently from instruction 
pref etches. 

3.3 EFFECT OF RSTI ON THE ACU 

When the assertion of the reset input (RSTI) signal resets the MCF5102, the E-bits of the 
ACR's are cleared, disabling address access control. 

MOTOROLA MCF5102 USER'S MANUAL 3-3 



3-4 MCF5102 USER'S MANUAL MOTOROLA 



SECTION 4 
INSTRUCTION AND DATA CACHES 

The MCF5102 contains two independent on-chip caches located in the physical address 
space. Accessing instruction words and data simultaneously through separate caches 
increases instruction throughput. The MCF5102 caches improve system performance by 
providing cached data to the on-chip execution unit with very low latency. Systems with an 
alternate bus master receive increased bus availability. 

Cache coherency in the MCF5102 is optimized for multimaster applications in which the 
MCF5102 is the caching master sharing memory with one or more noncaching masters 
(such as OMA controllers). The MCF5102 implements a bus snooper that maintains cache 
coherency by monitoring an alternate bus master's access and performing cache 
maintenance operations as requested by the alternate bus master. Matching cache entries 
can be invalidated during the alternate bus master's access to memory, or memory can be 
inhibited to allow the MCF5102 to respond to the access as a slave. For an external write 
operation, the processor can intervene in the access and update its internal caches (sink 
data). For an external read operation, the processor supplies cached data to the alternate 
bus muster (source data). This prevents the MCF5102 caches from accumulating old or 
invalid copies of data (stale data). Alternate bus masters are allowed access to locally 
modified data within the caches that is no longer consistent with external memory (dirty 
data). Allowing memory to be specified as write-through instead of copyback also supports 
cache coherency. When a processor writes to the write-through cache, external memory is 
always updated through an external bus access after updating the cache, keeping 
memory and cached data consistent. 

4.1 CACHE OPERATION 

The instruction cache is four-way set-associative that has 32 sets of four 16-byte lines for 
a total of 2 Kbytes. The data cache is also four-way set-associative that has 16 sets of 
four 16-byte lines for a total of 1 Kbyte. There are two formats that define each cache line, 
an instruction cache line format and a data cache line format. Each format contains an 
address tag consisting of the upper 23 bits of the physical address for the instruction 
cache and 24 bits for the physical address data cache., status information, and four long 
words (128 bits) of data. The status information for the instruction cache line address tag 
consists of a single valid bit for the entire line. The status information for the data cache 
line address tag contains a valid bit and four additional bits to indicate dirty status for each 
long word in the line. Note that only the data cache supports dirty cache lines. Figure 4-1 
illustrates the instruction cache line format (a) and the data cache line format (b). 

MOTOROLA MCF5102 USER'S MANUAL 4-1 



TAG v I LW3 LW2 LW1 

(a) Instruction Cache Line 

TAG v I LW3 I D3 I 
TAG - 23 Bit Physical Address Tag for instruction 

24 Bit Physical Address Tag for data 
V - Line VALID Bit 

LW - Long Word n (32-Bit) Data Entry 
Dn - DIRTY Bit for Long Word n 

LW2 

(b) Data Cache Line 

LW1 

Figure 4-1. Cache Line Formats 

LWO 

I D1 LWO I DO I 

The cache stores an entire line, providing validity on a line-by-line basis. Only burst mode 
accesses that successfully read four long words can be cached. Memory devices unable 
to support bursting can respond to a cache line read or write access by asserting the 
transfer burst inhibit (TBI) signal, forcing the processor to complete the access as a 
sequence of three long-word accesses. The cache recognizes burst accesses as if the 
access were never inhibited, detecting no difference. 

A cache line is always in one of three states: invalid, valid, or dirty. For invalid lines, the V
bit is clear, causing the cache line to be ignored during lookups. Valid lines have their V-bit 
set and D-bits cleared, indicating all four long words in the line contain valid data 
consistent with memory. Dirty cache lines have the V-bit and one or more D-bits set, 
indicating that the line has valid long-word entries that have not been written to memory 
(long words whose D-bit is set). A cache line changes from valid to invalid if the execution 
of the CINV or CPUSH instruction explicitly invalidates the cache line; if a snooped write 
access hits the cache line and the line is not dirty; or if the SCx signals for a snooped read 
access invalidates the line. Both caches should be explicitly cleared after a hardware reset 
of the processor since reset does not invalidate the cache lines. 

Figure 4-2 illustrates the general flow of a caching operation. To minimize latency of the 
requested data the physical address bits and are used to access a set of cache lines. 
Physical address bits, 8-4 for the instruction cache and 7-4 for the data cache, are used 
to index into the cache and select one of the sets of four cache lines. The four tags from 
the selected cache set are compared with the translated physical address bits 31-12 and 
bits 11 and 1 O of the address offset. If any one of the four tags matches and the tag status 
ls either valid or dirty, then the cache has a hit. During read accesses, a half-line (two long 
words) is accessed at a time, requiring two cache accesses for reads that are greater than 
a half-line or two long words. Write accesses within a cache line require a single cache 
access. 

4-2 MCF5102 USER'S MANUAL MOTOROLA 



31 

PHYSICAL ADDRESS 

12 

: : 
PAGE OFFSET I PAGE FRAME 

I 

I 
LA31-LA12 

PHYSICAL 
ET SELECT s 

PAS-IN 
PA7-D 

PA9-PA4 

ATA ST t 

1 F 
INS 

DAT 
T-SET 31 
A-SET 15 

D TRANSLATE 
PHYSICAL 

<------ ADDRESS 
INS-PA31-P 

DATA-PA31-P 
A9 
A08 

l 
l r 

l l 
TAG 

. . 
TAG 

l 
l 

COMPARATOR 

LINE 3 

LINE 2 

LINE 1 

LINED 

l 

l 

l 

STATUS DO 01 D2 D3 

: : ~ . . . . µ 
STATUS DO D1 D2 D3 ~ 

.JL 
; 

( ! 
! ' 

! ' i 
l 

MUX 

DATA OR 
CTION INST RU 

3 LINE SELECT 

~ I 
2 t--' 

1 1--
HIT 2_,, 

HIT 

HIT1 
LOGICAL OR ~ 

0 !----' 
HITO 

Figure 4-2. Caching Operation 

Both caches contain circuitry to automatically determine which cache line in a set to use 
for a new line. The cache controller locates the first invalid line and uses it; if no invalid 
lines exist, then a pseudo-random replacement algorithm is used to select a valid line, 
replacing it with the new line. Each cache contains a 2-bit counter, which is incremented 
for each access to the cache. The instruction cache counter is incremented for each half
line accessed in the instruction cache. The data cache counter is incremented for each 
half-line accessed during reads, for each full line accessed during writes in copyback 
mode, and for each bus transfer resulting from a write in write-through mode. When a 
miss occurs and all four lines in the set are valid, the line pointed to by the current counter 
value is replaced, after which the counter is incremented. 

MOTOROLA MCF5102 USER'S MANUAL 4-3 



42CACHEMANAGEMENT 
Using the MOVEC instruction, the caches are individually enabled to access the 32-bit 
cache control register (CACR) illustrated in Figure 4-3. The CACR contains two enable 
bits that allow the instruction and data caches to be independently enabled or disabled. 
Setting one of these bits enables the associated cache without affecting the state of any 
lines within the cache. A hardware reset clears the CACR, disabling both caches; 
however, reset does not affect the tags, state information, and data within the caches. The 
CINV instruction must clear the caches before enabling them. 

31 30 16 15 14 0 

UNDEFINED UNDEFINED 

DE = Enable Data Cache 
IE = Enable Instruction Cache 

Figure 4-3. Cache Control Register 

System hardware can assert the cache disable (CDIS) signal to dynamically disable both 
caches, regardless of the state of the enable bits in the CACR. The caches are disabled 
immediately after the current access completes. If CDIS is asserted during the access for 
the first half of a misaligned operand spanning two cache lines, the data cache is disabled 
for the second half of the operand. Accesses by the execution units bypass the caches 
while they are disabled and do not affect their contents (with the exception of CINV and 
CPUSH instructions). Disabling the caches with CDIS does not affect snoop operations. 
CDIS is intended primarily for use by in-circuit emulators to allow swapping between the 
tags and emulator memories. 

Even if the instruction cache is disabled, the MCF5102 can cache instructions because of 
an internal cache line register. This happens for instruction loops that are completely 
resident within the first six bytes of a half-line. Thus, the cache line holding register can 
operate as a small cache. If a loop fits anywhere within the first three words of a half-line, 
then it becomes cached. 

The CINV and CPUSH instructions support cache management in the supervisor mode. 
CINV allows selective invalidation of cache entries. CPUSH performs two operations: 1) 
any selected data cache lines containing dirty data are pushed to memory; 2) all selected 
cache lines are invalidated. 

4.3 CACHING MODES 
Every IU access to the cache has an associated caching mode that determines how the 
cache handles the access. An access can be cachable in either the write-through or 
copyback modes, or it can be cache inhibited in nonserialized or serialized modes. The 
CM field in the Access Control register, ACR, corresponding to the logical address of the 
access normally specifies one of these caching modes. The default memory access 
caching mode is nonserialized. When the cache is enabled the default caching mode is 
write-through. The ACR registers allow the defaults to be overridden. In addition, some 
instructions and IU operations perform data accesses that have an implicit caching mode 

4-4 MCF5102 USER'S MANUAL MOTOROLA 



associated with them. The following paragraphs discuss the different caching accesses 
and their related cache modes. 

4.3.1 Cachable Accesses 

If the CM field indicates write-through or copyback, then the access is cachable. A read 
access to a write-through or copyback is read from the cache if matching data is found. 
Otherwise, the data is read from memory and used to update the cache. Since instruction 
cache accesses are always reads, the selection of write-through or copyback modes do 
not affected them. The following paragraphs describe the write-through and copyback 
modes in detail. 

4.3.1.1 WRITE-THROUGH MODE. Accesses to memory specified as write-through are 
always written to the external address, although the cycle can be buffered, keeping 
memory and cache data consistent. Writes in write-through mode are handled with a no
write-allocate policy-Le., writes that miss in a data cache are written to memory but do 
not cause the corresponding line in memory to be loaded into the cache. Write accesses 
always write through to memory and update matching cache lines. Specifying write
through mode for the shared pages maintains cache coherency for shared memory areas 
in a multiprocessing environment. The cache supplies data to instruction or data read 
accesses that hit in the appropriate cache; misses cause a new cache line to be loaded 
into the cache, replacing a valid cache line if there are no invalid lines. 

4.3.1.2 COPYBACK MODE. Copyback memory is typically used for local data structures 
or stacks to minimize external bus usage and reduce write access latency. Write accesses 
specified as copyback that hit in the data cache update the cache line and set the 
corresponding D-bits without an external bus access. The dirty cached data is only written 
to memory if 1) the line is replaced due to a miss, 2) a cache inhibited access matches the 
line, or 3) the CPUSH instruction explicitly pushes the line. 

4.3.2 Cache-Inhibited Accesses 

Address space regions containing targets such as 1/0 devices and shared data structures 
in multiprocessing systems can be designated cache inhibited. If the ACR's CM field 
indicates nonserialized or serialized, then the access is cache inhibited. The caching 
operation is identical for both cache-inhibited modes. If the CM field of a matching address 
indicates either nonserialized or serialized modes, the cache controller bypasses the 
cache and performs an external bus transfer. The data associated with the access is not 
cached internally, and the cache inhibited out (CIOUT) signal is asserted during the bus 
transfer to indicate to external memory that the access should not be cached. If the data 
cache line is already resident in an internal cache, then the data cache line is pushed from 
the cache if it is dirty or the data cache line is invalidated if it is valid. 

If the CM field indicates serialized, then the sequence of read and write accesses to 
memory is guaranteed to match the sequence of the instruction order. Without 
serialization, the IU pipeline allows read accesses to occur before completion of a write
back for a previous instruction. Serialization forces operand read accesses for an 
instruction to occur only once by preventing the instruction from being interrupted after the 
operand fetch stage. Otherwise, the instruction is aborted, and the operand is accessed 

MOTOROLA MCF5102 USER'S MANUAL 4-5 



when the instruction is restarted. These guarantees apply only when the CM field 
indicates the serialized mode and the accesses are aligned. Regardless of the selected 
cache mode, locked accesses are implicitly serialized. The T AS, CAS, and CAS2 
instructions use locked accesses for operands in memory and for updating translation 
table entries during table search operations. 

4.3.3 Special Accesses 

Several other processor operations result in accesses that have special caching 
characteristics besides those with an implied cache-inhibited access in the serialized 
mode. Exception stack accesses, and exception vector fetches, that miss in the cache do 
not allocate cache lines in the data cache, preventing replacement of a cache line. Cache 
hits by these accesses are handled in the normal manner according to the caching mode 
specified for the accessed address. 

Accesses by the MOVE 16 instruction also do not allocate cache lines in the data cache for 
either read or write misses. Read hits on either valid or dirty cache lines are read from the 
cache. Write hits invalidate a matching line and perform an external access. Interacting 
with the cache in this manner prevents a large block move or block initialization 
implemented with a MOVE16 from being cached, since the data may not be needed 
immediately. 

If the data cache is re-enabled after a locked access has hit and the data cache was 
disabled, the next non-locked access that results in a data cache miss will not be cached. 

4.4 CACHE PROTOCOL 

The cache protocol for processor and snooped accesses is described in the following 
paragraphs. In all cases, an external bus transfer will cause a cache line state to change 
only if the bus transfer is marked as snoopable on the bus. The protocols described in the 
following paragraphs assume that the data is cachable (i.e., write-through and copyback). 

4.4.1 Read Miss 

A processor read that misses in the cache causes the cache controller to request a bus 
transaction that reads the needed line from memory and supplies the required data to the 
IU. The line is placed in the cache in the valid state. Snooped external reads that miss in 
the cache have no affect on the cache. 

4.4.2 Write Miss 

The cache controller handles processor writes that miss in the cache differently for write
through and copyback. Write misses to copyback memory cause the processor to perform 
a bus transaction that writes the needed cache line into its cache from memory in the 
same manner as for a read miss. The new cache line is then updated with the write data, 
and the D-bits are set for each long word that has been modified, leaving the cache line in 
the dirty state. Write misses to write-through memory write directly to memory without 

4-6 MCF5102 USER'S MANUAL MOTOROLA 



loading the corresponding cache line in the cache. Snooped external writes that miss in 
the cache have no affect on the cache. 

4.4.3 Read Hit 

The cache controller handles processor reads that hit in the cache differently for write
through and copyback modes. No bus transaction is performed, and the state of the cache 
line does not change. Physical address bit 3 selects either the upper or lower half-line 
containing the required operand. This half-line is driven onto the internal bus. If the 
required data is allocated entirely within the half-line, only one access into the cache is 
required. Because the organization ofthe cache does not allow selection of more than one 
half-line at a time, misalignment across a half-line boundary requires two accesses into 
the cache. 

A snooped external read that hits in the cache is ignored if the cache line is valid. If the 
snooped access hits a dirty line, memory is inhibited from responding, and the data is 
sourced from the cache directly to the alternate bus master. A snooped read hit does not 
change the state of the cache line unless the snooped access also indicates mark invalid, 
which causes the line to be invalidated after the access, even if it is dirty. Alternate bus 
masters should indicate mark invalid only for line reads to ensure the entire line is 
transferred before invalidating. 

4.4.4 Write Hit 

The cache controller handles processor writes that hit in the cache differently for write
through and copyback modes. For write-through accesses, a processor write hit causes 
the cache controller to update the affected long-word entries in the cache line and to 
request an external memory write transfer to update memory. The cache line state does 
not change. A write-through access to a line containing dirty data constitutes a system 
programming error even if the D-bits for the line are unchanged. This situation can be 
avoided by pushing cache lines when a ACR is changed and ensuring that alternate bus 
masters indicate the appropriate snoop operation for writes to corresponding memory (i.e., 
mark invalid for write-through and sink data for copyback ). If the access is copyback, the 
cache controller updates the cache line and sets the D-bit for of the appropriate long 
words in the cache line. An external write is not performed, and the cache line state 
changes to, or remains in, the dirty state. 

An alternate bus master can drive the SCx signals for a write access with an encoding that 
indicates to the MCF5102 that it should sink the data, inhibit memory, and respond as a 
slave if the access hits in the cache. The cache operation depends on the access size and 
current line state. A snooped line write that hits a valid line always causes the 
corresponding cache line to be invalidated. For snooped writes of byte, word, or long-word 
size that hit a dirty line, the processor inhibits memory and responds to the alternate bus 
master as a slave, sinking the data. Data received from the alternate bus master is written 
to the appropriate long word in the cache line, and the D-bit is set for that entry. The cache 
controller invalidates a cache line if the snoop control pins have indicated that a matching 
cache line is marked invalid for a snoop write. 

MOTOROLA MCF5102 USER'S MANUAL 4-7 



4.5 CACHE COHERENCY 

The MCF5102 provides several different mechanisms to assist in maintaining cache 
coherency in multimaster systems. Both write-through and copyback memory update 
techniques are supported to maintain coherency between the data cache and memory. 

Alternate bus master accesses can reference data that the MCF5102 caches, causing 
coherency problems if the accesses are not handled properly. The MCF5102 snoops the 
bus during alternate bus master transfers. If a write access hits in the cache, the 
MCF5102 can update its internal caches, or if a read access hits, it can intervene in the 
access to supply dirty data. Caches can be snooped even if they are disabled. The 
alternate bus master controls snooping through the snoop control signals, indicating which 
access can be snooped and the required operation for snoop hits. Table 4-1 lists the 
requested snoop operation for each encoding of the snoop control signals. Since the 
processor and the bus snooper must both access the caches, the snoop controller has 
priority over the processor for snoopable accesses to maintain cache coherency. 

Table 4-1. Snoop Control Encoding 

Requested Snoop Operation 

SC1 sco Alternate Bus Master Read Access Alternate Bus Master Write Access 

0 0 Inhibit Snooping Inhibit Snooping 

0 1 Supply Dirty Data and Leave Dirty Data Sink Byte/Word/Long/Long Word 

1 0 Supply Dirty Data and Mark Line Invalid Invalidate Line 

1 1 Reserved (Snoop Inhibited) Reserved (Snoop Inhibited) 

The snooping protocol and caching mechanism supported by the MCF5102 are optimized 
to support multimaster systems with the MCF5102 as the single caching master. In 
systems implementing multiple MC68040s as bus masters, shared data should be stored 
in write-through memory. This procedure allows each processor to cache shared data for 
read access while forcing a processor write to shared data to appear as an external write 
to memory, which the other processors can snoop. 

If shared data is stored in copyback memory, only one processor at a time can cache the 
data since writes to copyback memory do not access the external bus. If a processor 
accesses shared data cached by another processor, the slave can source the data to the 
master without invalidating its own copy only if the transfer to the master is cache 
inhibited. For the master processor to cache the data, it must force invalidation of the 
slave processor's copy of the data {by specifying mark invalid for the snoop operation), 
dnd the ACR must monitor the data transfer between the processors and update memory 
with the transferred data. The memory update is required since the master processor is 
unaware of the sourced data (valid data from memory or dirty data from a snooping 
processor) and initially creates a valid cache line, losing dirty status if a snooping 
processor supplies the data. 

Coherency between the instruction cache and the data cache must be maintained in 
software since the instruction cache does not monitor data accesses. Processor writes 

4-8 MCF5102 USER'S MANUAL MOTOROLA 



that modify code segments access memory through the ACR. Because the instruction 
cache does not monitor these data accesses, stale data occurs in the instruction cache if 
the corresponding data in memory is modified. Invalidating instruction cache lines before 
writing to the corresponding memory lines can prevent this coherency problem, but only if 
the data cache line is in write-through mode and is marked serialized. A cache coherency 
problem could arise if the data cache line is configured as copyback and no serialization is 
done. 

To fully support self-modifying code in any situation, it is imperative that a CPUSHA 
instruction be executed before the execution of the first self-modified instruction. The 
CPUSHA instruction has the effect of ensuring that there is no stale data in memory, the 
pipeline is flushed, and instruction prefetches are repeated and taken from external 
memory. 

4.6 MEMORY ACCESSES FOR CACHE MAINTENANCE 

The cache controller in each ACR performs all maintenance activities that supply data 
from the cache to the execution units. The activities include requesting accesses to the 
bus interface unit for reading new cache lines and writing dirty cache lines to memory. The 
following paragraphs describe the memory accesses resulting from cache fill operations 
(by both caches) and push operations (by the data cache). Refer to Section 7 Bus 
Operation for detailed information about the bus cycles required. 

4.6.1 Cache Filling 

When a new cache line is required, the cache controller requests a line read from the bus 
controller. The bus controller requests a burst read transfer by indicating a line access 
with the size signals (SIZ1, SIZO) and indicates which line in the set is being loaded with 
the transfer line number signals (TLN 1, TLNO). TLN 1 and TLNO are undefined for the 
instruction cache. These pins indicate the appropriate line numbers for data cache 
transfers only. Table 4-2 lists the definition of the TLNx encoding. 

Table 4-2. TLNx Encoding 

TLN1 TLNO Line 

0 0 Zero 

0 1 One 

1 0 Two 

1 1 Three 

The responding device sequentially supplies four long words of data and can assert the 
transfer cache inhibit signal (TCI) if the line is not cachable. If the responding device does 
not support the burst mode, it should assert the TBI signal for the first long word of the line 
access. The bus controller responds by terminating the line access and completes the 
remainder of the line read as three, sequential, long-word reads. 

MOTOROLA MCF5102 USER'S MANUAL 4-9 



Bus controller line accesses implicitly request burst mode operations from external 
memory. To operate in the burst mode, the device or external hardware must be able to 
increment the low-order address bits as described in Section 7 Bus Operation. The 
device indicates its ability to support the burst access by acknowledging the initial long
word transfer with transfer acknowledge (TA) asserted and TBI negated. This procedure 
causes the processor to continue to drive the address and bus control signals and to latch 
a new data value for the cache line at the completion of each subsequent cycle (as 
defined by TA) for a total of four cycles. The bursting mechanism requires addresses to 
wrap around so that the entire four long words in the cache line are filled in a single 
operation. 

When a cache line read is initiated, the first cycle attempts to load the line entry 
corresponding to the instruction half-line or data item requested by the IU. Subsequent 
transfers are for the remaining entries in the cache line. In the case of a misaligned 
access in which the operand spans two line entries, the first cycle corresponds to the line 
entry containing the portion of the operand at the lower address. 

The cache controller temporarily stores the data from each cycle in a line read buffer, 
where it is immediately available to the IU. If a misaligned access spans two entries in the 
line, the second portion of the operand is available to the IU as soon as the second 
memory cycle completes. A new IU access that hits the cache line being filled is also 
supplied data as soon as the required long word has been received from the bus 
controller. During the period required to fill the buffer, other IU accesses that hit in the 
cache are supplied data. This is vertical for a short cache-inhibited code loop that is less 
than eight bytes in length. Subsequent interactions of the loop hit in the buffer, but appear 
to hit in the cache since there is no external bus activity associated with the reads. 

The assertion of TCI during the first cycle of a burst read operation inhibits loading of the 
buffered line into the cache, but it does not cause the burst transfer (or pseudo-burst 
transfer if TBI is asserted with TCI) to be terminated early. The data placed in the buffer is 
accessible by the IU until the last long word of the burst is transferred from the bus 
controller, after which the contents of the buffer are invalidated without being copied into 
the cache. The assertion of TCI is ignored during the second, third, or fourth cycle of a 
burst operation and is ignored for write operations. 

A bus error occurring during a burst operation causes the burst operation to abort. If the 
bus error occurs during the first cycle of a burst, the data from the bus is ignored. If the 
access is a data cycle, exception processing proceeds immediately. If the cycle is for an 
instruction prefetch, a bus error exception is pending. The bus error is processed only if 
the IU attempts to use either instruction word. Refer to Section 7 Bus Operation for more 
information about pipeline operation. 

r:or either cache, when a bus error occurs on the second cycle or later, the burst operation 
is aborted and the line buffer is invalidated. The processor may or may not take an 
exception, depending on the status of the pending data request. If the bus error cycle 
contains a portion of a data operand that the processor is specifically waiting for (e.g., the 
second half of a misaligned operand), the processor immediately takes an exception. 
Otherwise, no exception occurs, and the cache line fill is repeated the next time data 

4-10 MCF5102 USER'S MANUAL MOTOROLA 



within the line is required. In the case of an instruction cache line fill, the data from the 
aborted cycle is completely ignored. 

On the initial access of a line read, a retry (indicated by the assertion of TA and TEA) 
causes the bus controller to retry the bus cycle. However, a retry signaled during the 
remaining cycles of the line access (either burst or pseudo-burst) is recognized as a bus 
error, and the processor handles it as described in the previous paragraphs. 

A cache inhibit or bus error on a line read can change the state of the line being replaced, 
even though the new line is not copied into the cache. Before loading a new line, the 
cache line being replaced is copied to the push buffer; if it is dirty, the cache line is 
invalidated. If a cache inhibit or bus error occurs on a replacement line read, a dirty line is 
restored to the cache from the push buffer. However, the line being replaced is not 
restored in the cache if it was originally valid and the cache line remains invalid. If the line 
read resulting from a write miss in copyback mode is cache inhibited, the write access 
misses in the cache and writes through to memory. 

4.6.2 Cache Pushes 

When the cache controller selects a dirty data cache line for replacement, memory must 
be updated with the dirty data before the line is replaced. This occurs when a CPUSH 
instruction execution explicitly selects the cache and when a cache inhibit access hits in 
the cache. To reduce the requested data's latency in the new line, the dirty line being 
replaced is temporarily placed in a push buffer while the new line is fetched from memory. 
When a line is allocated to the push buffer, an alternate bus master can snoop it, but the 
execution units cannot access it. After the bus transfer for the new line successfully 
completes, the dirty cache line is copied back to memory, and the push buffer is 
invalidated. If the operation to access the replacement line is abnormally terminated or 
signaled as cache inhibited, the line in the push buffer is copied back into its original 
position in the cache, and the processor continues operation as described in the previous 
paragraphs. 

The number of dirty long words in the line to be pushed determines the size of the push 
transfer on the bus, minimizing bus bandwidth required for the push. A single long word is 
written to memory using a long-word push transfer if it is dirty. A push transfer is 
distinguished from a normal write transfer by an encoding of 000 on the transfer modifier 
signals (TM2-TMO) for the push. Asserting TA and TEA retries the transfer; a bus-error
asserted TEA terminates it. If a bus error terminates a push transfer, the processor 
immediately takes an exception. 

A line containing two or more dirty long words is copied back to memory, using a line push 
transfer. For a line push, the bus controller requests a burst write transfer by indicating a 
line access with SIZ1 and SIZO. The responding device sequentially accepts four long 
words of data. If the responding device does not support the burst mode, it should assert 
TBI for the first long word of the line access. The bus controller responds by terminating 
the line access and completes the remainder of the line push as three, sequential, long
word writes. The first cycle of the burst can be retried, but the bus controller interprets a 

MOTOROLA MCF5102 USER'S MANUAL 4-11 



retry for any of the three remaining cycles as a bus error. If a bus error occurs in any cycle 
in the line push transfer, the processor immediately takes an exception. 

A dirty cache line hit by a cache-inhibited access is pushed before the external bus access 
occurs. If the access is part of a locked transfer sequence for TAS, CAS, or CAS2 
operand accesses or translation table updates, the LOCK signal is also asserted for the 
push access. 

4.7 CACHE OPERATION SUMMARY 

The instruction and data caches function independently when servicing access requests 
from the IU. The following paragraphs discuss the operational details for the caches and 
present state diagrams depicting the cache line state transitions. 

.. 4.7.1 Instruction Cache 

The IU uses the instruction cache to store instruction prefetches as it requests them. 
Instruction prefetches are normally requested from sequential memory locations except 
when a change of program flow occurs (e.g., a branch taken) or when an instruction that 
can modify the status register (SR) is executed, in which case the instruction pipe is 
automatically flushed and refilled. The instruction cache supports a line-based protocol 
that allows individual cache lines to be in either the invalid or valid states. 

For instruction prefetch requests that hit in the cache, the half-line selected by physical 
address bit 3 is multiplexed onto the internal instruction data bus. When an access misses 
in the cache, the cache controller requests the line containing the required data from 
memory and places it in the cache. If available, an invalid line is selected and updated 
with the tag and data from memory. The line state then changes from invalid to valid by 
setting the V-bit. If all lines in the set are already valid, a pseudo-random replacement 
algorithm is used to select one of the four cache lines replacing the tag and data contents 
of the line with the new line information. Figure 4-4 illustrates the instruction-cache line 
state transitions resulting from processor and snoop controller accesses. Transitions are 
labeled with a capital letter, indicating the previous state, followed by a number indicating 
the specific case listed in Table 4-3. 

4-12 

13-CINV/CPUSH 

11-CPU READ MISS 

V3-CINV/CPUSH 
VS-SNOOP READ HIT 
VB-SNOOP WRITE HIT 

V1-CPU READ MISS 
V2-CPU READ HIT 

Figure 4-4. Instruction-Cache Line State Diagram 

MCF5102 USER'S MANUAL MOTOROLA 



Table 4-3. Instruction-Cache Line State Transitions 

Current State 

Cache Operation Invalid Cases Valid Cases 

CPU Read Miss 11 Read line from memory; V1 Read line from memory; supply 
supply data to CPU and data to CPU and update cache 
update cache; go to valid (replacing old line); remain in 
state. current state. 

CPU Read Hit 12 Not Possible V2 Supply data to CPU; remain in 
current state. 

Cache Invalidate or Push 13 No action; remain in V3 No action; go to invalid state. 
(CINV or CPUSH) current state 

Alternate Master Read Hit 14 Not possible; not snooped. V4 Not possible; not snooped. 
(Snoop Control= 01 - Leave Dirty) 

Alternate Master Read Hit 15 Not Possible vs No action; go to invalid state. 
(Snoop Control= 1 O - Invalidate) 

Alternate Master Write Hit 16 Not Possible V6 No action; go to invalid state. 
(Snoop Control= 01 - Leave Dirty or 

Snoop Control= 10 - Invalidate) 

4.7.2 Data Cache 

The IU uses the data cache to store operand data as it generates the data. The data 
cache supports a line-based protocol allowing individual cache lines to be in one of three 
states: invalid, valid, or dirty. To maintain coherency with memory, the data cache 
supports both write-through and copyback modes, specified by the CM field. 

Read misses and write misses to copyback memory cause the cache controller to read a 
new cache line from memory into the cache. If available, an invalid line in the selected set 
is updated with the tag and data from memory. The line state then changes from invalid to 
valid by setting the V-bit for the line. If all lines in the set are already valid or dirty, the 
pseudo-random replacement algorithm is used to select one of the four lines and replace 
the tag and data contents of the line with the new line information. Before replacement, 
dirty lines are temporarily buffered and later copied back to memory after the new line has 
been read from memory. If a snoop access occurs before the buffered line is written to 
memory, the snoop controller snoops the buffer and the caches. Figure 4-5 illustrates the 
three possible states for a data cache line, with the possible transitions caused by either 
the processor or snooped accesses. Transitions are labeled with a capital letter, indicating 
the previous state, followed by a number indicating the specific case listed in Table 4-4. 

MOTOROLA MCF5102 USER'S MANUAL 4-13 



4-14 

V7-CINV 
Va-CPU SH 
V10-SNOOP READ HIT/INVALIDATE 
V11-SNOOP WRITE HIT/INVALIDATE 
V12-SNOOP WRITE HIT/SINK DATA & 

SIZE" LINE 
V13-SNOOP WRITE HIT/SINK DATA & 

SIZE= LINE 

V1-CPU READ MISS 
V2-CPU READ HIT 
V4-CPU WRITE MISS/WT 
V6-CPU WRITE HIT/WT c V9-SNOOP READ HIT/LEAVE DIRTY 

11-CPU READ MISS 

13-CPU WRITE MISS/CB V3-CPU WRITE MISS/CB 
VS-CPU WRITE HIT/CB 

D7-CINV 
DB-CPUSH 
D10-SNOOP READ 

HIT/INVALIDATE 
D11-SNOOP WRITE HIT/ 

INVALIDATE 
D13-SNOOP WRITE HIT/SINK 

DATA & SIZE= LINE 

ABBREVIATIONS: 
WT-WRITE-THROUGH MODE 
CB-COPYBACK MODE 

SNOOP OPERATION INDICATES: 
READ OR WRITE/ SNOOP CONTROL 
ENCODING 

D1-CPU READ MISS 

D2-CPU READ HIT 
D3-CPU WRITE MISS/CB 
D4-CPU WRITE MISS/WT 
D5-CPU WRITE HIT/CB 
DB-CPU WRITE HIT/WT 
D9-SNOOP READ HIT/LEAVE DIRTY 
D12-SNOOPWRITE HIT/SINK DATA 

& SIZE"LINE 

Figure 4-5. Data-Cache Line State Diagram 

MCF5102 USER'S MANUAL MOTOROLA 



Table 4-4. Data-Cache Line State Transitions 

Current State 

Cache Operation Invalid Cases Valid Cases Dirty Cases 

CPU Read Miss 11 Read line from V1 Read line from D1 Buffer dirty cache line; 
memory; supply data memory; supply data read new line from 
to CPU and update to CPU and update memory; supply data 
cache; go to valid cache (replacing old to CPU and update 
state. line); remain in current cache; write buffered 

state. dirty data to memory; 
go to valid state. 

CPU Read Hit 12 Not Possible V2 Supply data to CPU; D2 Supply data to CPU; 
remain in current state. remain in current state. 

CPU Write Miss 13 Read line from V3 Read line from D3 Buffer dirty cache line; 
(Copyback) memory into cache; memory into cache read new line from 

write data to cache; (replacing old line); memory; write data to 
set Dn bits of modified write data to cache cache and set Dn bits; 
long words; go to dirty and set Dn bits; go to write buffered dirty 
state. dirty state. data to memory; 

remain in current state. 

CPU Write Miss 14 Write data to memory; V4 Write data to memory; D4 Write data to memory; 
(Write-through) remain in current state. remain in current state. remain in current state 

(see note). 

CPU Write Hit 15 Not Possible vs Write data into cache; D5 Write data in cache; 
(Copyback) set Dn bits of modified set Dn bits of modified 

long words; go to dirty long words; remain in 
state. current state. 

CPU Write Hit 16 Not Possible V6 Write data to cache; D6 Write data into cache 
(Write-through) write data to memory; (no change to Dn bits); 

remain in current state. write data to memory; 
remain in current state 
(see note). 

Cache Invalidate 17 No action; remain in V7 No action; go to invalid D7 No action (dirty data 
(CINV) current state. state. lost); go to invalid 

state. 

Cache Push 18 No action; remain in vs No action; go to invalid DB Write dirty data to 
(CPUSH) current state. state. memory; go to invalid 

state. 

Alternate Master Read Hit 19 Not Possible V9 No action; remain in D9 Inhibit memory and 
(Snoop Control= 01 current state. source data; remain in 
- Leave Dirty) current state. 

NOTE: Dirty state transitions D4 and D6 are the result of a system programming error and should be avoided even 
though they are technically valid. 

MOTOROLA MCF5102 USER'S MANUAL 4-15 



Table 4-4. Data-Cache Line State Transitions (Continued) 

Current State 

Cache Operation Invalid Cases Valid Cases Dirty Cases 

Alternate Master Read Hit 110 Not Possible V10 No action; go to invalid 010 Inhibit memory and 
(Snoop Control= 10 state. source data; go to 
- Invalidate) invalid state 

Alternate Master Write Hit 111 Not Possible V11 No action; go to invalid 011 No action; go to invalid 
(Snoop Control= 10 state. state. 
-Invalidate) 

Alternate Master Write Hit 112 Not Possible V12 No action; go to invalid 012 Inhibit memory and 
(Snoop Control = 01 state. sink data; set On bits 
- Sink Data and of modified long 
Size P Line) words; remain in 

current state. 

Alternate Master Write Hit 113 Not Possible V13 No action; go to invalid 013 No action; go to invalid 
(Snoop Control = 01 state. state. 
- Sink Data and 
Size= Line) 

4-16 MCF5102 USER'S MANUAL MOTOROLA 



SECTION 5 
SIGNAL DESCRIPTION 

This section contains brief descriptions of the input and output signals in their functional 
groups (see Figure 5-1 ). Each signal's function is briefly explained, referencing other 
sections that contain detailed information about the signal and related operations. Table 
5-1 lists the signal names, mnemonics, and functional descriptions of the input and output 
signals for the MCF5102. Timing specifications for these signals can be found in Section 
10 MCF5102 Electrical and Thermal Characteristics. 

MOTOROLA 

NOTES 

Assertion and negation are used to specify forcing a signal to a 
particular state. Assertion and assert refer to a signal that is 
active or true. Negation and negate refer to a signal that is 
inactive or false. These terms are used independent of the 
voltage level (high or low) that they represent. 

MCF5102 USER'S MANUAL 5-1 



Table 5-1. Signal Index 

Signal Name Mnemonic Function 

Address/Data Bus A31/D31- 32-bit address/data bus used to address 4-Gbytes of memory and 32-bit data 
AO/DO bus used to transfer up to 32 bits of data per bus transfer. 

Transfer Type TT1,TTO Indicates the general transfer type: normal, MOVE16, alternate logical 
function code, and acknowledge. 

Transfer Modifier TM2-TMO Indicates supplemental information about the access. 

Transfer Line Number TLN1,TLNO Indicates which cache line in a set is being pushed or loaded by the current 
line transfer. 

Read/Write R/W Identifies the transfer as a read or write. 

Transfer Size SIZ1,SIZO Indicates the data transfer size. These signals, together with AO and A 1, 
define the active sections of the data bus. 

Bus Lock LOCK Indicates a bus transfer is part of a read-modify-write operation, and the 
sequence of transfers should not be interrupted. 

Cache Inhibit Out CIOUT Indicates the processor will not cache the current bus transfer. 

Transfer Start TS Indicates the beginning of a bus transfer. 

Transfer Acknowledge TA Asserted to acknowledge a bus transfer. 

Transfer Error TEA Indicates an error condition exists for a bus transfer. 
Acknowledge 

Transfer Cache Inhibit TCI Indicates the current bus transfer should not be cached. 

Transfer Burst Inhibit TBI Indicates the slave cannot handle a line burst access. 

Snoop Control SC1,SCO Indicates the snooping operation required during an alternate master access. 

Memory Inhibit MT Inhibits memory devices from responding to an alternate master access 
during snooping operations. 

Bus Request BR Asserted by the processor to request bus mastership. 

Bus Grant BG Asserted by an arbiter to grant bus mastership to the processor. 

Bus Busy BB Asserted by the current bus master to indicate it has assumed ownership of 
the bus. 

Cache Disable CDIS Dynamically disables the internal caches to assist emulator support. 

Reset In RS'Fi Processor reset. 

Reset Out RSTO Asserted during execution of a RESET instruction to reset external devices. 

Interrupt Priority Level iPC2-IPLO Provides an encoded interrupt level to the processor. 

Interrupt Pending IPEND Indicates an interrupt is pending. 

Autovector AVEC Used during an interrupt acknowledge transfer to request internal generation 
of the vector number. 

Processor Status PST3-PSTO Indicates internal processor status. 

Bus Clock BCLK Clock input used to derive all bus signal timing. 

5-2 MCF5102 USER'S MANUAL MOTOROLA 



Table 5-1. Signal Index (Continued) 

Signal Name Mnemonic Function 

Test Clock TCK Clock signal for the IEEE 1149.1 Test Access Port (TAP). 

Test Mode Select TMS Selects the principle operations of the test-support circuitry. 

Test Data Input TOI Serial data input for the TAP. 

Test Data Output TOO Serial data output for the TAP. 

Wait State Pin WAITER Delays Transfer Start by One BCLK after read bus cycle. 

Three-State Control z Three-State Control Pin Three-States all Signal Pins. 

System CLK Disable SCD System Clock Disable 

Power Supply Vee Power supply. 

Ground GND Ground connection. 

ADDRESS/DATA { ~ :~ BUS A31/D31-AO/~ Ml 
} 

BUS SNOOP CONTROL 
AND RESPONSE 

MOTOROLA 

TRANSFER 
ATIRIBUTES 

MASTER { 
TRANSFER 
CONTROL 

SLAVE { 
TRANSFER 
CONTROL 

..,. no .,. 
: m _: 
: TMO ,. 

:::_ TM1 
_: TM2 

.:_ TLNO 
:.: TLN1 
,;_ RNJ --"" 
.:_ SIZO _: 

: SIZ1 : 

:: LOCK 

:- ClOOf 
-. WAITER 

..,. TA " 
-. TEA _: 

TCI 
TBI _: 

MCF5102 

..,. BB 

oL_ CDIS 

-- RSfl -..- RSTO _,,,, 
'"7' 

..,. IPLO 
~ IPL1 
; IPL2 

--- fPENlj > 
< AVEC 

PSTO --"' 
PST1 .,. 
PST2 ,.. 

PST3 _: 
--_ BCLK "' 
- SCD > 

..,. TCK 
oL_ TMS 
.:_ TOI 

- TOO 
"' z , -.. 

,,,, Vee 
:::_ GND 

} BUS ARBITRATION 

} 
PROCESSOR 
CONTROL 

} 
INTERRUPT 
CONTROL 

} 
STATUSAND 
CLOCKS 

} POWER SUPPLY 

Figure 5-1. Functional Signal Groups 

MCF5102 USER'S MANUAL 5-3 



5.1 ADDRESS/DATA BUS (A31/D31-AO/DO) 

These multiplexed three-state bidirectional signals provide the address of the first item of 
a bus transfer (except for acknowledge transfers) when the MCF5102 is the bus master. 
When an alternate bus master is controlling the bus, the processor examines (snoops) 
these signals to determine whether the processor should intervene in the access to 
maintain cache coherency. These signals also provide the general-purpose data path 
between the MCF5102 and all other devices. The data bus can transfer 8, 16, or 32 bits of 
data per bus transfer. During a burst transfer, the data lines are time-multiplexed to carry 
all 128 bits of the burst request using four 32-bit transfers. 

5.2 TRANSFER ATTRIBUTE SIGNALS 

The following paragraphs describe the transfer attribute signals, which provide additional 
information about the bus transfer. 

5.2.1 Transfer Type (TT1, TIO) 

The processor drives these three-state bidirectional signals to indicate the type of access 
for the current bus transfer. During bus transfers by an alternate bus master, the 
processor samples these signals to determine if it should snoop the transfer; only normal 
and MOVE 16 accesses can be snooped. Table 5-2 lists the definition of the transfer-type 
encoding. The acknowledge access (TT1 = 1 and no = 1) is used for both interrupt and 
breakpoint acknowledge transfers, and for LPSTOP broadcast cycles. 

Table 5-2. Transfer-Type Encoding 

TT1 ITO Transfer Type 

0 0 Normal Access 

0 1 MOVE16 Access 

1 0 Alternate Logical Function Code Access 

1 1 Acknowledge Access 

5.2.2 Transfer Modifier {TM2-TMO) 

These three-state outputs provide supplemental information for each transfer type. Table 
5-3 lists the encoding for normal and MOVE16 transfers, and Table 5-4 lists the encoding 
for alternate access transfers. For interrupt acknowledge transfers, the TMx signals carry 
the interrupt level being acknowledged; for breakpoint acknowledge transfers and 
LPSTOP broadcast cycles, the TMx signals are low. When the MCF5102 is not the bus 
master, the TMx signals are set to a high-impedance state. 

5-4 MCF5102 USER'S MANUAL MOTOROLA 



TM2 

0 

0 

0 

0 

1 

1 

1 

1 

Table 5-3. Normal and MOVE16 Access 
Transfer Modifier Encoding 

TM1 TMO Transfer Modifier 

0 0 Data Cache Push Access 

0 1 User Data Access• 

1 0 User Code Access 

1 1 Reserved 

0 0 Reserved 

0 1 Supervisor Data Access• 

1 0 Supervisor Code Access 

1 1 Reserved 

• MOVE16 accesses use only these encodings. 

Table 5-4. Alternate Access Transfer Modifier Encoding 

TM2 TM1 TMO Transfer Modifier 

0 0 0 Logical Function Code O 

0 0 1 Reserved 

0 1 0 Reserved 

0 1 1 Logical Function Code 3 

1 0 0 Logical Function Code 4 

1 0 1 Reserved 

1 1 0 Reserved 

1 1 1 Logical Function Code 7 

5.2.3 Transfer Line Number (TLN1, TLNO) 

These three-state outputs indicate which line in the set of four data cache lines is being 
accessed for normal push and line data read accesses. TLNx signals are undefined for all 
other accesses to instruction space and are placed in a high-impedance state when the 
processor relinquishes the bus. 

The TLNx signals can be used in high-performance systems to build an external snoop 
filter with a duplicate set of cache tags. The TLNx signals and address bus provide a 
direct indication of the state of the data caches and can be used to help maintain the 
duplicate tag store. The TLNx pins do not indicate the correct TLN number when an 
instruction cache burst fill occurs. Refer to Section 4 Instruction and Data Caches Table 
4-2. 

5.2.4 Read/Write (R/W) 

This bidirectional three-state signal defines the data transfer direction for the current bus 
cycle. A high level indicates a read cycle, and a low level indicates a write cycle. The bus 
snoop controller examines this signal when the processor is not the bus master. 

MOTOROLA MCF5102 USER'S MANUAL 5-5 



5.2.5 Transfer Size (SIZ1, SIZO) 

These bidirectional three-state signals indicate the data size for the bus transfer. The bus 
snoop controller examines this signal when the processor is not the bus master. Refer to 
Section 5 Signal Description for settings. 

5.2.6 Lock (LOCK) 

This three-state output indicates that the current transfer is part of a sequence of locked 
transfers for a read-modify-write operation. The external arbiter can use LOCK to prevent 
an alternate bus master from gaining control of the bus and accessing the same operand 
between processor accesses for the locked sequence of transfers. Although LOCK 
indicates that the processor requests the bus be locked, the processor will give up the bus 
if the external arbiter negates the BG signal. When the MCF5102 is not the bus master, 
the LOCK signal is set to a high-impedance state. LOCK drives high before three-stating. 

5.2.7 Cache Inhibit Out (CIOUT) 

This three-state output reflects the state of the cache mode field in one of the ACR's and 
is asserted for accesses to noncachable memory to indicate that an external cache should 
ignore the bus transfer. When the MCF5102 is not the bus master, the CIOUT signal is set 
to a high impedance state. 

5.3 BUS TRANSFER CONTROL SIGNALS 

The following signals provide control functions for bus transfers. 

5.3.1 Transfer Start (TS) 

The processor asserts this three-state bidirectional signal for one clock period to indicate 
the start of each transfer. During alternate bus master accesses, the processor monitors 
this signal to detect the start of each transfer to be snooped. 

5.3.2 Transfer Acknowledge (TA) 

This three-state bidirectional signal indicates the completion of a requested data transfer 
operation. During transfers by the MCF5102, TA is an input signal from the referenced 
slave device indicating completion of the transfer. During alternate bus master accesses, 
TA is normally three-stated to allow the referenced slave device to respond, and the 
MCF5102 samples it to detect the completion of each bus transfer. The MCF5102 can 
inhibit memory and intervene in the access to source or sink data in its internal caches by 
asserting TA to acknowledge the data transfer. This capability applies to alternate bus 
master accesses that reference modified (dirty) data in the MCF5102 caches. 

5.3.3 Transfer Error Acknowledge (TEA) 

The current slave asserts this input signal to indicate an error condition for the bus 
transaction. When asserted with TA, this signal indicates that the processor should retry 

5-6 MCF5102 USER'S MANUAL MOTOROLA 



the access. During alternate bus master accesses, the MCF5102 samples TEA to detect 
completion of each bus transfer. 

5.3.4 Transfer Cache Inhibit (TCI) 

This input signal inhibits read data from being loaded into the MCF5102 instruction or data 
caches. TCI is ignored during all writes and after the first data transfer for both burst line 
reads and burst-inhibited line reads. TCI is also ignored during all alternate bus master 
transfers. 

5.3.5 Transfer Burst Inhibit (TBI) 

This input signal indicates to the processor that the accessed device cannot support burst 
mode accesses and that the requested line transfer should be divided into individual long
word transfers. Asserting TBI with TA terminates the first data transfer of a line access, 
which causes the processor to terminate the burst and access the remaining data for the 
line as three successive long-word transfers. During alternate bus master accesses, the 
MCF5102 samples the TBI to detect completion of each bus transfer. 

5.4 SNOOP CONTROL SIGNALS 

The following signals control the operation of the MCF5102 on-chip snoop logic. Section 
4 Instruction and Data Caches provides information about the relationship of the snoop 
control signals to the caches. 

5.4.1 Snoop Control (SC1, SCO) 

These input signals specify the snoop operation to be performed by the MCF5102 for an 
alternate bus master transfer. If the MCF5102 is allowed to snoop an alternate bus master 
read transfer, it can intervene in the access to supply data from its data cache when the 
memory copy is stale, ensuring that the alternate bus master receives valid data. Writes 
by an alternate bus master can also be snooped to either update the MCF5102 internal 
data cache with the new data or invalidate the matching cache lines, ensuring that 
subsequent MCF5102 reads access valid data. These signals are ignored when the 
processor is the bus master. 

5.4.2 Memory Inhibit (Ml) 

This output signal prevents an alternate bus master from accessing possibly stale data in 
memory while the MCF5102 is unable to respond. MT is asserted during reset preventing 
external memory from responding. When the SCx signals indicate an access should be 
snooped, the MCF5102 keeps Ml asserted until it determines if intervention in the access 
is required. If no intervention is required, Ml is negated and memory is allowed to respond 
to complete the access. Otherwise, Ml remains asserted and the MCF5102 completes the 
transfer as a slave. It updates its caches on a write or supplies data to the alternate bus 
master on a read. MT is negated when the MCF5102 is the bus master. During a snoop 
cycle, the MCF5102 ignores all TA and TEA assertions while Ml is asserted; when RSTI is 
asserted, MT is asserted. 

MOTOROLA MCF5102 USER'S MANUAL 5-7 

-



5.5 ARBITRATION SIGNALS 

The following control signals support requests to an external arbiter to become the bus 
master. 

5.5.1 Bus Request (BR) 

This output signal indicates to the external arbiter that the processor needs to become bus 
master for one or more bus transfers. BR is negated when the MCF5102 begins an 
access to the external bus with no other accesses pending, and BR remains negated until 
another access is required. There are some situations in which the MCF5102 asserts BR 
and then negates it without having run bus transfers; this is a disregard request condition. 

5.5.2 Bus Grant (BG) 

This input signal from an external arbiter indicates that the bus is available to the 
MCF5102 as soon as the current bus access completes. BG must be asserted and BB 
must be negated (indicating the bus is free) before the MCF5102 assumes ownership of 
the bus. 

5.5.3 Bus Busy (BB) 

This three-state bidirectional signal indicates that the bus is currently owned. BB is 
monitored as a processor input to determine when a alternate bus master has released 
control of the bus. BG must be asserted and BB must be negated (indicating the bus is 
free) before the MCF5102 asserts BB as an output to assume ownership of the bus. The 
processor keeps BB asserted until the external arbiter negates BG and the processor 
completes the bus transfer in progress. When releasing the bus, the processor negates 
BB, then sets it to a high-impedance state for use again as an input. 

5.6 PROCESSOR CONTROL SIGNALS 

The following signals control disabling caches and access control units (ACUs) and 
support processor and external device initialization. 

5.6.1 Cache Disable (CDIS) 
CDIS dynamically disables the on-chip caches on the next internal cache access 
boundary. CDIS does not flush the data and instruction caches; entries remain unaltered 
and become available after CDIS is negated. The assertion of CDIS does not affect 
snooping. During a processor reset, the level on CDIS is latched and used to select the 
normal bus mode (CDIS high) or multiplexed bus mode (CDIS low). Refer to Section 4 
Instruction and Data Caches for information about the caches and to Section 7 Bus 
Operation for information about the multiplexed bus mode. 

5.6.2 Reset In (RSTI) 

This input signal causes the MCF5102 to enter reset exception processing. The RSTI 
signal is an asynchronous input that is internally synchronized to the next rising edge of 

5-8 MCF5102 USER'S MANUAL MOTOROLA 



the BCLK signal. All three-state signals are set to the high-impedance state, and all 
outputs, except Ml, are negated when RSTI is recognized. The assertion of RSTI does not 
affect the test pins. Refer to Section 7 Bus Operation for a description of reset operation 
and to Section 8 Exception Processing for information about the reset exception. 

5.6.3 Reset Out (RSTO) 

The MCF5102 asserts this output during execution of the RESET instruction to initialize 
external devices. Refer to Section 7 Bus Operation for a description of reset out bus 
operation. 

5.7 INTERRUPT CONTROL SIGNALS 

The following signals control the interrupt functions. 

5.7.1 Interrupt Priority Level (IPL2-IPLO) 

These input signals provide an indication of an interrupt condition and the encoding of the -
interrupt level from a peripheral or external prioritizing circuitry. IPL2 is the most significant 
bit of the level number. 

5.7.2 Interrupt Pending Status (IPEND) 

This output signal indicates that an interrupt request has been recognized internally and 
exceeds the current interrupt priority mask in the status register (SR). External devices 
(other bus masters) can use IPEND to predict processor operation on the next instruction 
boundaries. I PEND is not intended for use as an interrupt acknowledge to external 
peripheral devices. 

5.7.3 Autovector (AVEC) 

This input signal is asserted with TA during an interrupt acknowledge transfer to request 
internal generation of the vector number. 

5.8 STATUS AND CLOCK SIGNALS 

The following paragraphs explain the signals that provide timing, test control, and the 
internal processor status. 

5.8.1 Processor Status (PST3-PSTO) 

These outputs indicate the internal execution unit's status. The timing is synchronous with 
BCLK, and the status may have nothing to do with the current bus transfer. The PSTx 
signal is updated depending on the type of PSTx encoding. There are two classes of 
PSTx encodings. The first class is associated with instruction boundaries, and the second 
class indicates the processor's present status. Table 5-6 lists the definition of the 
encodings. 

MOTOROLA MCF5102 USER'S MANUAL 5-9 



The encodings 0, 8, 4, 5, C, D, E, and F indicate the present status and do not reflect a 
specific stage of the pipe. These encodings persist as long as the processor stays in the 
indicated state. The default encoding O (user) or 8 (supervisor) is indicated if none of the 
above conditions apply. The encodings 1, 2, 3, 9, A, and B belong to the first class of 
PSTx encoding. This class indicates that the instruction is in its last instruction execution 
stage. These encodings exist for only one BCLK period per instruction and are mutually 
exclusive. 

Table 5-5. Processor Status Encoding 

Hex PST3 PST2 PST1 PSTO Internal Status 

0 0 0 0 0 User, Start/Continue Current Instruction 

1 0 0 0 1 User, End Current Instruction 

2 0 0 1 0 User, Branch Not Taken/End Current Instruction 

3 0 0 1 1 User, Branch Taken/End Current Instruction 

4 0 1 0 0 User, Table Search 

5 0 1 0 1 Halted State (Double Bus Fault) 

6 0 1 1 0 Low-Power Stop Mode (Supervisor Instruction) 

7 0 1 1 1 Reserved 

8 1 0 0 0 Supervisor, Start/Continue Current Instruction 

9 1 0 0 1 Supervisor, End Current Instruction 

A 1 0 1 0 Supervisor, Branch Not Taken/End Current Instruction 

B 1 0 1 1 Supervisor, Branch Taken/End Current Instruction 

c 1 1 0 0 Supervisor, Table Search 

D 1 1 0 1 Stopped State (Supervisor Instruction) 

E 1 1 1 0 RTE Executing 

F 1 1 1 1 Exception Stacking 

When a 'branch taken/end current instruction' is indicated, it means that a change of 
instruction flow is pending. Along with the following instructions, an exception stacking 
(encoding F) sequence is ended with the 'supervisor, branch taken/end current instruction' 
encoding as though it were a virtual JMP instruction. This includes all the possible 
exceptions listed in the processor's vector table. Instructions that cause a 'branch 
taken/end current instruction' encoding when they are executed are as follows: 

ANDI to SR DBee (Taken) ORI to SR 

Bee (Taken) JMP RTD 

BRA JSR RTE 

BSR MOVE to SR RTR 

CAS MOVE USP RTS 

CAS2 MOVEC STOP 

CINV MOVES TAS 

CPUSH NOP 

5-10 MCF5102 USER'S MANUAL MOTOROLA 



The Bee (not taken) and DBcc (not taken) are the only instructions that cause a 'branch 
not taken/end current instruction' encoding. All instructions and conditions end with the 
'end current instruction' encoding. For instance, if the processor is running back-to-back 
single clock instructions, the encoding 'end current instruction' remains asserted for as 
many clock cycles as instructions. 

The following examples are for PSTx encodings: 

1. An access error terminates an instruction such that the instruction execution stage is 
not reached. In this case, an 'end current instruction' is not indicated. Exception 
processing starts, the exception stacking status is indicated, and then the virtual 
JMP causes the 'supervisor, branch taken/end current instruction' encoding. 

2. Two simultaneous interrupt exception processing sequences follow an ADD 
instruction. The ADD instruction ends with 'end current instruction', followed by 
exception stacking, followed by 'branch taken/end current instruction', followed by 
exception stacking, followed by 'branch taken/end current instruction'. 

3. An RTE instruction follows an ADD instruction. The 'end current instruction' is 
followed by RTE executing followed by a branch taken/end current instruction. 

5.8.2 Bus Clock (BCLK) 

This input signal is used as a reference for all bus timing. It is a TTL-compatible signal and 
cannot be gated off. 

5.9 TEST SIGNALS 

The MCF5102 includes dedicated user-accessible test logic that is fully compatible with 
the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems 
associated with testing high-density circuit boards have led to the development of this 
standard under the IEEE Test Technology Committee and Joint Test Action Group (JTAG) 
sponsorship. The MCF5102 implementation supports circuit board test strategies based 
on this standard. However, the JTAG interface is not intended to provide an in-circuit test 
to verify MCF5102 operations; therefore, it is impossible to test MCF5102 operations 
using this interface. Section 6 IEEE 1149.1 Test Access Port (JTAG) describes the 
MCF5102 implementation of the IEEE 1149.1 and is intended to be used with the 
supporting IEEE document. 

5.9.1 Test Clock (TCK) 

This input signal is used as a dedicated clock for the test logic. Since clocking of the test 
logic is independent of the normal operation of the MCF5102, several other components 
on a board can share a common test clock with the processor even though each 
component may operate from a different system clock. The design of the test logic allows 
the test clock to run at low frequencies, or to be gated off entirely as required for test 
purposes. 

MOTOROLA MCF5102 USER'S MANUAL 5-11 

-



5.9.2 Test Mode Select (TMS) 

This input signal is decoded by the TAP controller and distinguishes the principle 
operationas of the test support circuitry. 

5.9.3 Test Data In (TOI) 

This input signal provides a serial data input to the TAP. 

5.9.4 Test Data Out (TOO) 

This three-state output signal provides a serial data output from the TAP. The TOO output 
can be placed in a high-impedance mode to allow parallel connection of board-level test 
data paths. 

5.9.5 Wait State Pin (WAITER) 

While the WAITER pin is asserted (active high}, transfer starts and the address phase of 
the multiplexed bus cycle is delayed one BCLK after a read bus cycle. This provides the 
user additional setup time to decode this information (see timing specifications). In this 
mode all transfers following read bus cycles will have a minimum of one idle clock added. 

5.9.6 System Clock Disable (SCD) Signal 

When system clock disable is asserted this output signal indicates that the BCLK input 
can be disabled or changed in frequency. SCD is asserted upon termination of the 
LPSTOP broadcast cycle. BCLK levels and timing must be within specification when SCD 
is negated. SCD is negated with a valid interrupt or reset. 

5.9.7 Z Signal 

Z (Active Low) three-state control pin. When asserted, all input/outputs pins will be placed 
in a three-stated condition. 

5.10 POWER SUPPLY CONNECTIONS 

The MCF5102 requires connection to a Vee power supply, positive with respect to 
ground. The V cc and ground connections are grouped to supply adequate current to the 
various sections of the processor. 

5.11 SIGNAL SUMMARY 

Table 5-7 provides a summary of the electrical characteristics of the signals discussed in 
this section. 

5-12 MCF5102 USER'S MANUAL MOTOROLA 



Table 5-6. Signal Summary 

Signal Name Mnemonic Type Active Th ree·State 

Address/Data Bus A31/D31-AO/DO Input/Output High Yes 

Autovector AVEC Input Low -

Bus Busy BB Input/Output Low Yes 

Bus Clock BCLK Input - -

Bus Grant BG Input Low -
Bus Request BR Output Low No 

Cache Disable CDIS Input Low -

Cache Inhibit Out CIOUT Output Low Yes 

Interrupt Pending IPEND Output Low No 

Interrupt Priority Level IPL2-IPLO Input Low -
Bus Lock LOCK Output Low Yes 

Memory Inhibit MT Output Low No 

Processor Status PST3-PSTO Output High No 

Read/Write R/W Input/Output High/Low Yes -Reset In RSTI Input Low -
Reset Out RSTO Output Low No 

Snoop Control SC1, SCO Input High -
Transfer Acknowledge TA Input/Output Low Yes 

Transfer Burst Inhibit TBI Input Low -
Transfer Cache Inhibit TCI Input Low -
Transfer Error Acknowledge TEA Input Low -
Transfer Line Number TLN1, TLNO Output High Yes 

Transfer Modifier TM2-TMO Output High Yes 

Transfer Size SIZ1, SIZO Input/Output High Yes 

Transfer Start TS Input/Output Low Yes 

Transfer Type TT1, TTO Input/Output High Yes 

Test Clock TCK Input - -

Test Data Input TDI Input High -
Test Data Output TDO Output High Yes 

Test Mode Select TMS Input High -
Three-State Control Pin z Input Low -
Wait State Pin WAITER Input High -
Syatem Clock Disable sco Output Low -
Ground GND Ground - -
Power Supply Vee Power - -

MOTOROLA MCF5102 USER'S MANUAL 5-13 



5-14 MCF5102 USER'S MANUAL MOTOROLA 



SECTION 6 
IEEE 1149.1 A TEST ACCESS PORT (JTAG) 

The MCF5102 includes dedicated user-accessible test logic that is fully compatible with 
the IEEE standard 1149.1 A Standard Test Access Port and Boundary Scan Architecture, 
Problems associated with testing high-density circuit boards have led to the standard's 
development under the sponsorship of the IEEE Test Technology Committee and the 
Joint Test Action Group (JTAG). 

The following paragraphs are to be used in conjunction with the supporting IEEE 
document and includes those chip-specific items that the IEEE standard requires to be 
defined and additional information specific to the MCF5102 implementations. For details 
and application information regarding the standard, refer to the IEEE standard 1149.1 A 
document. 

The MCF5102 implementations support circuit board test based on the standard. The test 
logic utilizes static logic design and is system logic independent of the device. The 
MCF5102 implementations provide capabilities to: 

a. Perform boundary scan operations to test circuit board electrical continuity, 

b. Bypass the MCF5102 by reducing the shift register path to a single cell, 

c. Sample the MCF5102 system pins during operation and transparently shift out the 
result, 

d. Disable the output drive to output-only pins during circuit board testing. 

NOTE 

The IEEE standard 1149.1A test logic cannot be considered 
completely benign to those planning not to use this capability. 
Certain precautions must be observed to ensure that this logic 
does not interfere with system operation. Refer to 6.4 
Disabling The IEEE Standard 1149.1A Operation. 

Figure 6-1 illustrates a block diagram of the MCF5102 implementations of IEEE standard 
1149.1 A. The test logic includes a 16-state dedicated TAP controller. These 16 controller 
states are defined in detail in the IEEE standard 1149.1 A, but only 8 are included in this 
section. 

Test-Logic-Reset 
Capture-IR 
Update-IR 
Shift-IR 

Run-Test/Idle 
Capture-DR 
Update-DR 
Shift-DR 

Four dedicated signal pins provides access to the TAP controller: 

MOTOROLA MCF5102 USER'S MANUAL 6-1 



TCK-A test clock input that synchronizes the test logic. 

TMS-A test mode select input with an internal pullup resistor sampled on the rising 
edge of TCK to sequence the TAP controller. 

TOI-A test data input with an internal pullup resistor sampled on the rising edge of 
TCK. 

TDO-A three-state test data output actively driven only in the shift-IR and shift-DR 
controller states that changes on the falling edge of TCK. 

The test logic also includes an instruction shift register and two test data registers, a 
boundary scan register and a bypass register. The boundary scan register links all device 
signal pins into a chain that can be controlled by the 3-bit instruction shift register. 

TOI -~-i 

a: 
w 
:::l 

TEST DATA REGISTERS 

3-BIT INSTRUCTION SHIFT REGISTER 

D-Q>-----~ 

~~1--------------~ TCK ---l z 
g1---------------~ 

Figure 6-1. MCF5102 Test Logic Block Diagram 

6.1 INSTRUCTION SHIFT REGISTER 

TOO 

The MCF5102 IEEE standard 1149.1A implementations include a 3-bit instruction shift 
register without parity. The register shifts one of six instructi_ons, which can either select 
the test to be performed or access a test data register, or both. Data is transferred from 
the instruction shift register to latched decoded outputs during the update-IR state. The 
instruction shift register is reset to all ones in the TAP controller test-logic-reset state, 
which is equivalent to selecting the BYPASS instruction. During the capture-IR state, the 
binary value 001 is loaded into the parallel inputs of the instruction shift register. 

The MCF5102 IEEE standard 1149.1A implementations include three mandatory standard 
public instructions (BYPASS, SAMPLE/PRELOAD, and EXTEST), two optional public 
standard instructions, and one manufacturer's private instruction. The five public 
instructions provide the capability to disable all device output drivers, operate the device in 
a BYPASS configuration, and conduct boundary scan test operations. Table 6-1 lists the 
three bits used in the instruction shift register to decode the instructions and 

6-2 MCF5102 USER'S MANUAL MOTOROLA 



their related encodings. Note that the least significant bit of the instruction (bit O) is the first 
bit to be shifted into the instruction shift register. 

Table 6-1. IEEE Standard 1149.1A Instructions 

Bit 2 Bit 1 Bit 0 Instruction Selected Test Data Register Accessed 

0 0 0 EXTEST Boundary Scan 

0 0 1 HIGHZ Bypass 

0 1 0 SAMPLE/PRELOAD Boundary Scan 

1 0 0 CLAMP Bypass 

1 1 0 PRIVATE -
1 1 1 BYPASS Bypass 

6.1.1 EXTEST. 

The external test instruction (EXTEST) selects the boundary scan register. This instruction 
also activates one internal function that is intended to protect the device from potential 
damage while performing boundary scan operations. EXTEST asserts internal reset for 
the MCF5102 system logic to force a predictable benign internal state. 

6.1.2 HIGHZ. 

The HIGHZ instruction is an optional instruction provided as a Motorola public instruction 
to anticipate the need to backdrive output pins during circuit board testing. The HIGHZ 
instruction asserts internal system reset, selects the bypass register, and forces all output 
and bidirectional pins to the high-impedance state. 

Holding TMS high and clocking TCK for at least five rising edges causes the TAP 
controller to enter the test-logic-reset state. Using only the TMS and TCK pins and the 
capture-IR and update-IR states invokes the HIGHZ instruction. This scheme works 
because the value captured by the instruction shift register during the capture-IR state is 
identical to the HIGHZ opcode. 

6.1.3 Sample/Preload. 

The SAMPLE/PRELOAD instruction provides two separate functions. First, it provides a 
means to obtain a sample system data and control signal. Sampling occurs on the rising 
edge of TCK in the capture-DR state. The user can observe the data by shifting it through 
the boundary scan register to output TOO using the shift-DR state. Both the data capture 
and the shift operations are transparent to system operation. The user must provide some 
form of external synchronization to achieve meaningful results since there is no internal 
synchronization between TCK and BCLK. 

The second function of the SAMPLE/PRELOAD instruction is to initialize the boundary 
scan register output cells before selecting EXTEST or CLAMP, which is accomplished by 
ignoring data being shifted out of TOO while shifting in initialization data. The update-DR 
state can then be used to initialize the boundary scan register and ensure that known data 

MOTOROLA MCF5102 USER'S MANUAL 6-3 



and output state will occur on the outputs after entering the EXTEST or CLAMP 
instruction. 

6.1.4 CLAMP. 

The CLAMP instruction allows the state of the signals driven from the MCF5102 pins to be 
determined from the boundary scan register, while the bypass register is selected as the 
serial path between TDI and TDO. The signals driven from the MCF5102 pins do not 
change while the CLAMP instruction is selected. 

6.1.5 BYPASS 

The BYPASS instruction selects the single-bit bypass register, creating a single-bit shift
register path from TDI to the bypass register to TDO. The instruction enhances test 
efficiency when a component other than the MCF5102 becomes the device under test. 
When the bypass register is initially selected, the instruction shift register stage is set to a 
logic zero on the rising edge of TCK following entry into the capture-DR state. Therefore, 
the first bit to be shifted out after selecting the bypass register is always a logic zero. 
Figure 6-2 illustrates the bypass register. 

SHIFT DR 

MUX 
FROMTDI TOTDO 

CLOCK DR ----~ 

Figure 6-2. Bypass Register 

6.2 BOUNDARY SCAN REGISTER 

The 117-bit boundary scan register uses the TAP controller to scan user-defined values 
into the output buffers, capture values presented to input pins, and control the direction of 
bidirectional pins. The instruction shift register cell nearest TDO (i.e., first to be shifted out) 
is defined as bit zero. The last bit to be shifted out is bit 116. This register includes cells 
for all device signal pins and clock pins along with associated control signals. 

The MCF5102 boundary scan register consists of three cell structure types, O.Latch, I.Pin, 
and 10.Ctl, that are associated with a boundary scan register bit. All boundary scan output 
cells capture the logic level of the device output latch during the capture-DR state. Figures 
6-3 through 6-6 illustrate these three cell types. Figure 6-3 illustrates the general 
arrangement of these cells. 

6-4 MCF5102 USER'S MANUAL MOTOROLA 



MOTOROLA 

1 = EXT EST AND CLAMP 
o =OTHERWISE SHIFT DR 

FROM 
LAST 
CELL 

TO NEXT CELL 

CLOCK DR UPDATEBSR 

Figure 6-3. Output Latch Cell {O.Latch) 

TO NEXT CELL 
TO 

SYSTEM..---!------------,----
LOGIC 

CLOCK DR FROM SHIFT DR 
LAST 
CELL 

Figure 6-4. Input Pin Cell {I.Pin) 

MCF5102 USER'S MANUAL 

TO OUTPUT 
BUFFER 

6-5 

Cll 



.. 

6-6 

1 = EXTEST AND CLAMP 
O =OTHERWISE SHIFT DR TO NEXT CELL 

L~G-1-~ 
OUTPUT CONTROL 

FROM SYSTEM LOGIC 
TO OUTPUT 

1--r--1----------+------- BUFFER 

FROM CLOCK DR RESET 
LAST 
CELL UPDATE BSA 

Figure 6-5. Output Control Cells (10.Ctl) 

OUTPUT 
ENABLE 

OUTPUT 
DATA 

INPUT 
DATA 

TO NEXT CELL 

FROM TO NEXT 
LAST CELL PIN PAIR 

Figure 6-6. General Arrangement of Bidirectional Pins 

MCF5102 USER'S MANUAL 

(1 =DRIVE) 

MOTOROLA 



All MCF5102 bidirectional pins include two boundary scan data cells, an input, and an 
output. One of five associated boundary scan control cells controls each bidirectional pin. 
If these cells contain a logic one, the associated bidirectional or three-state pin will be 
configured as an output and enabled. The cell captures the current value during the 
capture-DR state. 

6.3 RESTRICTIONS 

Control over the output enable signals using the boundary scan register and the EXTEST 
and HIGHZ instructions requires a compatible circuit-board test environment to avoid 
destructive configurations. The user is responsible for avoiding situations in which the 
MCF5102 output drivers are enabled into actively driven networks. 

The MCF5102 include on-chip circuitry to detect the initial application of power to the 
device. Power-on reset (POR, which is an internal signal), the output of this circuitry, is 
used to reset both the system and the IEEE 1149.1 A logic. The purpose of applying POR 
to the IEEE 1149.1 A circuitry is to avoid the possibility of bus contention during power-on. 
The time required to complete device power-on is power supply dependent. However, the 
TAP controller remains in the test-logic-reset state while POR is asserted. The TAP 
controller does not respond to user commands until POR is negated. ~ 
The following restrictions apply: .... 

1. Leaving the TAP controller test-logic-reset state negates the ability to achieve the 
lowest power consumption during the LPSTOP instruction, but does not otherwise 
affect device functionality. 

2. The TCK input is not blocked in LPSTOP mode. To consume minimal power, the 
TCK input should be externally connected to Vee. 

3. The TOI and TMS pins have on-chip pull-up resisters. To achive minimal power 
consumption in LPSTOP mode, these pins should be connected to Vee. 

4. The external system must assert RSTI within eight bus clocks of exiting from the 
EXTEST JTAG instruction or else on the tenth bus clock, the MCF5102 will begin 
normal reset processing. 

5. Pins JTAG and Z are defined to be compliance-enable inputs per section 3.8 of the 
IEEE standard 1149.1 a-1993. Subordination of this standard within a higher level 
test strategy. The compliance-enable pattern is (O, 1) respectively. 

6. Pins TYL01-TYL03 are used for Factory test and require a connection to ground for 
proper system operation. Boundary-scan cells are provided for these pins to 
facilitate diagnostics of PCB defects. 

6.4 DISABLING THE IEEE STANDARD 1149.1A OPERATION 

There are two considerations for non-IEEE standard 1149.1 A operation. First, TCK does 
not include an internal pullup resistor and should not be left unconnected to preclude mid
level inputs. The second consideration is to ensure that the IEEE standard 1149.1 A test 
logic remains transparent to the system logic by providing the ability to force the test-logic-

MOTOROLA MCF5102 USER'S MANUAL 6-7 



reset state. Figure 6-7 illustrates a circuit to disable the IEEE standard 1149.1 A test logic 
for the MCF5102. 

+5V 

1K 

TOI 

TMS 

TCLK 

~ 
TOO NO CONNECTION 

Figure 6-7. Circuit Disabling IEEE Standard 1149.1A 

6.5 MCF5102 JTAG ELECTRICAL CHARACTERISTICS 

The following paragraphs provide information on JTAG electrical and timing specifications 
This section is subject to change. For the most recent specifications, contact a Motorola 
sales office or complete the registration card at the beginning of this manual. Table 6-2 
and Figure 6-8 provide the JTAG DC electrical spectifications. 

Table 6-2. JTAG DC Electrical Specifications 

Characteristic Symbol Min Max Unit 

Input High Voltage V1H 2 5.5 v 
Input Low Voltage V1L GND 0.8 v 
Overshoot - - TBD v 
TCK Input Leakage Current @ 0.5-2.4 V lin TBD TBD mA 

TDO Hi-Z (Off-State) Leakage Current @ 0.5-2.4 V ITST TBD TBD mA 

Signal Low Input Current, V1L = 0.8 V IL TBD TBD mA 
TMS, TDI 

Signal High Input Current, V1H = 2.0 V IH TBD TBD mA 
TMS, TDI 

TOO Output High Voltage loH = 5ma VoH 2.4 - v 
TDO Output Low Voltage loL = 5ma VoL - 0.5 v 
Capacitance*, Vin= O V, f = 1 MHz Cin - TBD pF 

*Capacitance is periodically sampled rather than 100% tested. 

6-8 MCF5102 USER'S MANUAL MOTOROLA 



MOTOROLA 

BCLK 

VALID 
2.aV 

OUTPUTS(1) OUTPUT n a.av 

DRIVE TO 
2.4 v 

INPUTS(2) 

DRIVE TO 
a.5 v 

NOTES: 

DRIVE 
TO 2.4 V 

2.aV 

a.av 

VALID 
OUTPUT 

VALID 
INPUT 

n + 1 

2.aV 

a.av 

1. This output timing is applicable to all parameters specified relative to the rising edge of the clock. 
2. This input timing is applicable to all parameters specified relative to the rising edge of the clock. 

LEGEND: 

A. Maximum output delay specification. 
B. Minimum output hold time. 
C. Minimum input setup time specification. 
D. Minimum input hold time specification. 

Figure 6-8. Drive Levels and Test Points for AC Specifications 

MCF5102 USER'S MANUAL 

GI 

6-9 



6.6 JTAG PINOUT 

Figure 6-9 shows the pinout for JTAG. The JTAG pin are show in bold face. 

VDD 
BG 
BR 

VDD 
GND 

BEl 
LOCK 
VDD 
GND 
fl5Lo 
IPL1 
fJ5I2 
VDD 
GND 

IPEND 
Aw=.c 

TYL03 
VDD 
GND 

TYL01 
SCD 
VDD 
GND 
TDO 
TCK 
TMS 
TDI 

.mm 
VDD 

BCLK 
GND 

NC 
NC 

RSTO 
RSTI 
VDD 

6.7 BSDL DESCRIPTION. 

MCF5102 
(TOP VIEW) 

Figure 6-9. JTAG Pinout 

VDD 
AIDS 
AID? 
VDD 
GND 
A/DB 
A/D9 
VDD 
GND 
A/D10 
A/D11 
VDD 
GND 
A/D12 
A/D13 
VDD 
GND 
A/D14 
A/D15 
VDD 
GND 
A/D16 
A/D17 
VDD 
GND 
A/D18 
A/D19 
VDD 
GND 
A/D20 
A/D21 
VDD 
GND 
A/D22 
A/D23 
GND 

The coding for BSDL can be downloaded from AESOP, our on-line BBS and Internet 
Server. Refer to the Preface for information on accessing AESOP. 

6-10 MCF5102 USER'S MANUAL MOTOROLA 



SECTION 7 
BUS OPERATION 

The MCF5102 bus interface supports synchronous data transfers between the processor 
and other devices in the system. This section provides a functional description of the bus, 
the signals that control the bus, and the bus cycles provided for data transfer operations. 
Operation of the bus is defined for transfers initiated by the processor as a bus master and 
for transfers initiated by an alternate bus master, which the processor snoops as a slave 
device. Descriptions of the error and halt conditions, bus arbitration, and the reset 
operation are also included. For timing specifications, refer to Section 10 MCF5102 
Electrical and Thermal Characteristics. 

7.1 BUS CHARACTERISTICS 

The MCF5102 uses a multiplexed address and data bus (A31/D31-AO/DO) to specify the 
address and the data for a bus cycle on a time-multiplexed basis. Transfer attribute 
signals indicate the type of bus cycle, and the Transfer Start (TS) signal indicate the ~ 
beginning of a bus cycle. The system then controls the length of the cycle by terminating it ~ 
using the termination signals TA and/or TEA. The rising edge of BCLK is used as the 
reference point all timing specifications. 

For the sake of brevity, the following paragraphs contain several references to the address 
bus or the data bus as though they were non-multiplexed. This is done to separate the 
physical implementation of the bus architecture from the abstract concept of "the address" 
and "the data" when describing a bus cycle. 

7.2 DATA TRANSFER MECHANISM 

Figure 7-1 illustrates how the bus designates operands for transfers on a byte boundary 
system. These designations are used in the figures and descriptions that follow. 

MOTOROLA MCF5102 USER'S MANUAL 7-1 



31 Most Significant Byte 24 23 16 15 a 7 Least Significant Byte o 

l.__ __ B_YT_E_3 __ _..l ___ B_YT_E_2 __ _.__ __ B_YT_E~1 __ .__ __ B_YT_E_O _ __. LONG WORD OPERAND 

15 Most Significant Byte 8 7 Least Significant Byte 0 

BYTE1 BYTEO WORD OPERAND 

7 0 

~' __ B_Y_TE_o_~I BYTE OPERAND 

Figure 7-1. Internal Operand Representation 

The MCF5102 does not support dynamic bus sizing and expects the referenced device to 
accept the requested access width. Hence, memory devices must be 32 bits wide. 1/0 
devices that can supply their own vectors must drive the least significant byte (D7-DO). 
Therefore, it is recommended that byte- and word-sized 1/0 ports must be mapped into the 
low-order 8 or 16 bits, respectively, of the data bus. 

Table 7-1 lists the combinations of the SIZx, A 1, and AO signals, collectively called byte 
enable signals. In the table, BYTEn indicates the data bus section that is active, the 
portion of the requested operand that is read or written during that bus transfer. For line 
transfers, all bytes are valid as listed and can correspond to portions of the requested 
operand or to data required to fill the remainder of the cache line. The bytes labeled with a 
dash are not required; they are ignored on read transfers and driven with undefined data 
on write transfers. Not selecting these bytes prevents incorrect accesses in sensitive 
areas such as 1/0 devices. Figure 7-2 illustrates a logic diagram for one method for 
generating byte enable signals from the SIZx, A 1, and AO and the associated PAL 
equation. These byte enable signals can be combined with the address decode logic. 

Table 7-1. Data Bus Requirements for Read and Write Cycles 

Transfer Signal Encodings Active Data Bus Sections 

Size SIZ1 SIZO A1 AO 031-024 023-016 015-08 07-DO 

Byte 0 1 0 0 BYTEO - - -
0 1 0 1 - BYTEO - -
0 1 1 0 - - BYTEO -
0 1 1 1 - - - BYTEO 

Word 1 0 0 0 BYTE1 BYTEO - -
1 0 1 0 - - BYTE1 BYTEO 

Long Word 0 0 x x BYTE3 BYTE2 BYTE1 BYTEO 

Line 1 1 x x BYTE3 BYTE2 BYTE1 BYTEO 

7-2 MCF5102 USER'S MANUAL MOTOROLA 



AO 
A1 

SIZO ----' 
SIZ1 

PAL16L8 
U1 

UPPER UPPER DATA SELECT 
D31-D24 

UPPER MIDDLE DATA SELECT 
D23-D16 

LOWER MIDDLE DATA SELECT 
D15--D8 

LOWER LOWER DATA SELECT 
D7-DO 

MCF5102 Byte Data Select Generation. 
Motorola Worldwide Marketing Training Organization 
AO A1 SIZO SIZ1 NC NC NC NC NC GND NC UUD UMD LMD LLD 
NC NC NC NC VCC 

/UUD = /AO• /A1 
+ /SIZ1 • /SIZO 
+ SIZ1 • SIZO 

/UMD = AO• tA1 
+ /A1 • /SIZ1 
+ SIZ1 • SIZO 
+ /SIZ1 • /SIZO 

/LMD = /AO• /A1 
+ /SIZ1 • /SIZO 
+ SIZ1 'SIZO 

/LLD= AO' /A1 
+ /A1 '/SIZ1 
+ SIZ1 'SIZO 
+ /SIZ1 '/SIZO 

; directly addressed, any size 
; enable every byte for long word size 
; enable every byte for line size 
; directly addressed, any size 
; word aligned, size is word or line 
; enable every byte for long word size 
; enable every byte for line size 
; directly addressed, any size 
; enable every byte for long word size 
; enable every byte for line size 
; directly addressed, any size 
; word aligned, word or line size 
; enable every byte for long word size 
; enable every byte for line size 

Figure 7-2. Byte Enable Signal Generation and PAL Equation 

A brief summary of the bus signal encodings for each access type is listed in Table 7-2. 
Additional information on the encodings for the MCF5102 signals can be found in Section 
5 Signal Description. 

MOTOROLA MCF5102 USER'S MANUAL 7-3 



Table 7-2. Summary of Access Types versus Bus Signal Encodings 

Data Cache Normal 
Bus Push Data/Code MOVE16 Alternate Interrupt Breakpoint 

Signal Access Access Access Access Acknowledge Acknowledge 

A31-AO Access Access Access Access $FFFFFFFF $00000000 
Address Address Address Address 

SIZ1, SIZO Uline B/W/Uline Line B/W/L Byte Byte 

TT1, TTO $0 $0 $1 $2 $3 $3 

TM4-TM2 $0 $1,2,5, or 6 $1or5 Function Int. Level $1-7 $0 
Code 

TLN1, TLNO Cache Set Undefined2 Undefined Undefined Undefined Undefined 
Entry 

R/W Write Read/Write Read/Write Read/Write Read Read 

LOCK Negated Asserted/ Negated Negated Negated Negated 
Negated3 

CIOUT Negated MMU MMU Asserted Negated Negated 
Source 1 Source 1 

NOTES 
1. CIOUT signals are determined by the U1, UO data and CM bit fields, respectively, 

corresponding to the access address. 
2. The TLNx signals are defined only for normal push accesses and normal data line read accesses. 
3. The LOCK signal is asserted during TAS, CAS, and CAS2 operand accesses. 
4. Refer to Section 5 Signal Description for definitions of the TMx signal encodings for normal, MOVE16, 

and alternate accesses. 

.. 7.3 MISALIGNED OPERANDS 

All MCF5102 data formats can be located in memory on any byte boundary. A byte 
operand is properly aligned at any address; a word operand is misaligned at an odd 
address; and a long word is misaligned at an address that is not evenly divisible by 4. 
However, since operands can reside at any byte boundary, they can be misaligned. 
Although the MCF5102 does not enforce any alignment restrictions for data operands 
(including PC relative data addressing), some performance degradation occurs when 
additional bus cycles are required for long-word or word operands that are misaligned. For 
maximum performance, data items should be aligned on their natural boundaries. All 
instruction words and extension words must reside on word boundaries. Attempting to 
prefetch an instruction word at an odd address causes an address error exception. 

The MCF5102 data ACU converts misaligned operand accesses that are noncachable to 
a sequence of aligned acce-sses. These aligned accesses are then sent to the bus 
controller for completion, always resulting in aligned bus transfers. Misaligned operand 
accesses that miss in the data cache are cachable and are not aligned before line filling. 

Figure 7-3 illustrates the transfer of a long-word operand from an odd address requiring 
more than one bus cycle. For the first transfer or bus cycle, the SIZX signals specify a byte 
transfer, and the byte offset is $1. The slave device supplies the byte and acknowledges 
the data transfer. When the processor starts the second cycle, the SIZx signals specify a 
word transfer with a byte offset of $2. The next two bytes are transferred during this cycle. 
The processor then initiates the third cycle, with the SIZEx signals indicating a byte 
transfer. The byte offset is now $0; the port supplies the final byte and the operation is 

7-4 MCF5102 USER'S MANUAL MOTOROLA 



complete. This example is similar to the one illustrated in Figure 7-4 except that the 
operand is word sized and the transfer requires only two bus cycles. 

DATA BUS 
S1 24 2S 16 15 8 7 0 

x BYTES x x I ]- TRANSFER 1 

x x BYTE2 BYTE 1 I ]- TRANSFER 2 

BYTEO x x x I ]- TRANSFER s 

MEMORY 
S1 24 2S 16 15 8 7 

xxx BYTES BYTE2 BYTE 1 

BYTEO xxx xxx xxx 

Figure 7-3. Example of a Misaligned Long-Word Transfer 

DATA BUS 
S1 24 2S 16 15 8 7 0 

BYTE 1 I ]- TRANSFER 1 

BYTEO I ]- TRANSFER 2 

MEMORY 
31 24 23 16 15 8 7 

xxx xxx xxx BYTE 1 

BYTEO xxx xxx xxx 

Figure 7-4. Example of a Misaligned Word Transfer 

The combination of operand size and alignment determines the number of bus cycles 
required to perform a particular memory access. Table 7-3 lists the number of bus cycles 
required for different operand sizes with all possible alignment conditions for read and 
write cycles. The table confirms that alignment significantly affects bus cycle throughput 
for noncachable accesses. For example, in Figure 7-3 the misaligned long-word operand 
took three bus cycles because the byte offset = $1. If the byte offset = $0, then it would 
have taken one bus cycle. The MCF5102 system designer and programmer should 
account for these effects, particularly in time-critical applications. 

MOTOROLA MCF5102 USER'S MANUAL 7.5 



Table 7-3. Memory Alignment Influence on 
Noncachable and Write-Through Bus Cycles 

Number of Bus Cycles 

Transfer Size $0. $1. $2. $3. 

Instruction 1 N/A N/A NIA 

Byte Operand 1 1 1 1 

Word Operand 1 2 1 2 

Long-Word Operand 1 3 2 3 

*Where the byte offset (A 1 and AO} equals this encoding. 

The processor always prefetches instructions by reading a long word from a half-line 
address (A2-AO = $0), regardless of alignment. When the required instruction begins at 
the second long word, the processor attempts to fetch the entire half-line (two long words) 
although the second long word contains the required instruction. 

7.4 PROCESSOR DATA TRANSFERS 

The transfer of data between the processor and other devices involves the mulitplexed 
address/bus, and control signals. The address/data buses are parallel, multiplexed buses, 
supporting byte, word, long-word, and line (16-byte) bus cycles. Une transfers are 
normally performed using an efficient burst transfer, which provides an initial address and 
time-multiplexes the data bus to transfer four long words of information to or from the 
slave device. Slave devices that do not support bursting can burst-inhibit the first long 
word of a line transfer, forcing the bus master to complete the access using three 
additional long-word bus cycles. All bus input and output signals are synchronous to the 
rising edge of the BCLK signal. The MCF5102 moves data on the bus by issuing control 
signals and using a handshake protocol to ensure correct data movement. The following 
paragraphs describe the bus cycles for byte, word, long-word, and line read, write, and 
read-modify-write transfers. 

7.4.1 Byte, Word, and Long-Word Read Transfers 

During a read transfer, the processor receives data from a memory or peripheral device. 
Since the data read for a byte, word, or long-word access is not placed in either of the 
internal caches by definition, the processor ignores the level on the transfer cache inhibit 
(TCI) signal when latching the data. The bus controller performs byte, word, and long-word 
read transfers for the following cases: 

• Accesses to a disabled cache. 

• Accesses to memory that is specified noncachable. 

• Accesses that are implicitly noncachable (read-modify-write accesses and accesses 
to an alternate logical address space via the MOVES instruction). 

• Accesses that do not allocate in the data cache on a read miss (table searches, 
exception vector fetches, and exception stack deallocation for an RTE instruction). 

7-6 MCF5102 USER'S MANUAL MOTOROLA 



• The first transfer of a line read is terminated with transfer burst inhibit (TBI), forcing 
completion of the line access using three additional long-word read transfers. 

Figure 7-5 is a functional timing diagram for byte, word, and long-word read transfers. 

I C1 cw C2 

BCLK 

I 

TS G 
OTHER ATTRIBUTES 

I I 

MUXED ADDRESS DATA ~~...__~__..._--<~~__,~~~~__,'---~-'-~-

RN/ 

I 

TA \JJ 

TBI 

Figure 7-5. Byte, Word, and Long-Word Read Transfer Timing 

Clock 1 (C1) 

The read cycle starts in C1. During C1, the processor drives the address on the 
multiplexed bus. It also drives the appropriate values on the transfer attributes. 

The processor asserts transfer start (TS) during C1 to indicate the beginning of a bus 
cycle. 

After the C1 state, the processor negates TS, and the multiplexed bus no longer drives 
the address. If the next cycle is a wait state, proceed to CW, otherwise, proceed to C2. 

ClockW (CW) 

On a wait state, the system does not assert TA. The processor ignores any data on the 
multiplexed bus and the processor continues to sample TA on successive rising edges 
of BCLK until TA is recognized asserted. If the next cycle is not a wait state, proceed to 
C2. 

MOTOROLA MCF5102 USER'S MANUAL 7-7 



Clock 2 (C2) 
The system asserts the transfer acknowledge (TA) signal and latches the current value 
on the data bus; the bus cycle terminates. 

7 .4.2 Line Read Transfer 

The processor uses line read transfers to access a 16-byte operand for a MOVE16 
instruction and to support cache line filling. A line read accesses a block of four long 
words, aligned to a 16-byte memory boundary, by supplying a starting address that points 
to one of the long words and requiring the memory device to sequentially drive each long 
word on the data bus. The system must internally increment A3 and A2 of the supplied 
address for each transfer, causing the address to wrap around at the end of the block. The 
system terminates each long word transfer by driving the long word on the data bus and 
asserting TA. A line transfer performed in this manner with a single address is also 
referred to as a line burst transfer. 

The MCF5102 also supports burst-inhibited line transfers for memory devices that are 
unable to support bursting. For this type of bus cycle, the system supplies the first long 
word pointed to by the processor address and asserts transfer burst inhibit (TBI) with TA 
for the first transfer of the line access. The processor responds by terminating the line 
burst transfer and accessing the remainder of the line, using three individual, separate 
long-word read bus cycles. Although the line transfer results in four, independent, long
word bus cycles, the processor still handles these four transfers as a single line transfer 
and does not allow bus arbitration to intervene between the transfers. TBI is ignored after 
the first long-word transfer. 

Line reads to support cache line filling can be cache inhibited by asserting transfer cache 
inhibit (TCI) with TA for the first long-word transfer of the line. The assertion of TCI does 
not affect completion of the line transfer, but the bus controller latches and passes it to the 
ACU for use. TCI is ignored after the first long-word transfer of a line burst transfer and 
during the three long-word bus cycles for a burst-inhibited line transfer. 

The system should ignore A 1 and AO for long-word and line read transfers. 

The address of an instruction fetch will always be aligned to a half-line boundary 
($XXXXXXXO or $XXXXXXX8); therefore, compilers should attempt to locate branch 
targets on half-line boundaries to minimize branch stalls. For example, if the target of a 
branch is a two-word instruction located at $1 OOOOOOC, the following burst sequence will 
occur upon a cache miss: $10000008, $1000000C, $10000000, then $10000004. The 
internal pipeline of the MCF5102 stalls until the second access of the burst (the address of 
the instruction to be executed) has completed. Figures 7-6 illustrates a functional timing 
diagram for a line read bus transfer. 

7-8 MCF5102 USER'S MANUAL MOTOROLA 



I 
C1 C2 C3 C4 cs 

BCLK 

I 

rs \_j_J \__ 

RiW J \__ 

OTHER ATIRIBUTES ~ 'C 
SIZ1, SIZO J c 

MUXED ADDR & DATA 

Ti\ _j \ I 
TEA 7 \__ 

TBI 

TCI 

Figure 7-6. Line Read Transfer Timing 

Clock 1 (C1) 
The line read cycle starts in C1. During C1, the processor places valid values on the 
transfer attributes and drives the address onto the multiplexed bus. The size signals 
(SIZx) indicate line size. 

After C1, the processor negates TS and the multiplexed bus no longer drives the 
address. The system is responsible for driving data onto the multiplexed bus. The first 
transfer must supply the long word at the corresponding long-word boundary. 

Clock 2 (C2) 
At C2, the processor samples the level of TA, TBI, and TCI and latches the current value 
on the data bus. If TA is asserted, the transfer terminates and the data is passed to the 
appropriate ACU. Otherwise, if TA is negated, the processor ignores the data and 
inserts wait states instead of terminating the transfer. The processor continues to 
sample TA, TBI, and TCI on successive rising edges of BCLK until TA is recognized 
asserted. The latched data and the level on TCI are then passed to the appropriate 
ACU. 

MOTOROLA MCF5102 USER'S MANUAL 7-9 



If TBT is sampled negated with TA; the processor continues the cycle with C3. 
Otherwise, if TBI is asserted, the line transfer is burst inhibited, and the processor reads 
the remaining three long words using long-word read bus cycles. The processor 
increments A3 and A2 for each read, and the new address is placed on the address bus 
for each bus cycle. Refer to 7.4.1 Byte, Word, and Long-Word Read Transfers for 
information on long-word reads. 

Clock 3 {C3) 

The processor holds the transfer attribute signals constant during C3. The system must 
increment A3 and A2 to reference the next long word to transfer, place the data on the 
multiplexed bus, and assert TA. At the end of C3, the processor samples the level of TA 
and latches the current value on the data bus. If TA is asserted, the transfer terminates, 
and the second long word of data is taken by the processor. If TA is not recognized as 
asserted, the processor ignores the latched data and inserts wait states instead of 
terminating the transfer. The processor continues to sample TA on successive rising 
edges of BCLK until it is recognized. The latched data is then passed to the processor. 

Clock 4 (C4) 

This clock is identical to C3 except that once TA is recognized as asserted, the latched 
value corresponds to the third long word of data for the burst. 

Clock 5 {C5) 

This clock is identical to C3 except that once TA is recognized, the latched value 
corresponds to the third long word of data for the burst. After the processor recognizes 
the last TA assertion and terminates the line read bus cycle. 

Figures 7-7 illustrate a functional timing diagram for a burst-inhibited line read bus cycle. 

7-10 MCF5102 USER'S MANUAL MOTOROLA 



C1 C2 C3 C4 C5 C6 C7 ca 

BCLK 

fS 

OTHER ATIRIBUTES ~ c 
RiW _} c 

SIZ1, SIZO J LINE \ LONG LONG LONG ~ \ I 

MUXED ADDA & DATA 

TA 

TBI 

TCI 

TEA 

I._ INHIBITED _.I~ LONG-WORD~1._LONG-WORD ~1._LONG-WORD ~1 
LINE READ I READ READ READ 

Figure 7-7. Burst-Inhibited Line Read Transfer Timing 

7.4.3 Byte, Word, and Long-Word Write Transfers 

During a write transfer, the processor transfers data to a memory or peripheral device. 
The level on the TCI signal is ignored by the processor during all write cycles. The bus 
controller performs byte, word, and long-word write transfers for the following cases: 

• Accesses to a disabled cache. 

• Accesses to memory that is specified noncachable. 

• Accesses that are implicitly noncachable (read-modify-write accesses and accesses 
to an alternate logical address space via the MOVES instruction). 

• Writes to write-through memory. 

• Accesses that do not allocate in the data cache on a write miss (exception stacking). 

• The first transfer of a line write is terminated with TBI, forcing completion of the line 
access using three additional long-word write transfers. 

• Cache line pushes for lines containing a single dirty long word. 

Figures 7-8 illustrates a functional timing diagram for byte, word, and long-word write bus 
transfers. 

MOTOROLA MCF5102 USER'S MANUAL 7-11 



-

I C1 cw C2 

BCLK 

I 

\j_J 
OTHER ATTRIBUTES 

MUXED ADDRESS DATA 

RiiJ 
I 

TA w 

TBI 

Figure 7-8. Byte, Word, and Long-Word Write Transfer Timing 

Clock 1 (C1) 
The write cycle starts in C1. During this time, the processor places valid values on the 
transfer attributes and drives the address onto the multiplexed bus. The processor 
asserts TS during C1 to indicate the beginning of a bus cycle. 

After C1, the processor negates TS, drives the appropriate bytes of the data bus with 
the data to be written on the multiplexed bus. All other byte lanes of the multiplexed bus 
are driven with undefined values. 

Clock 2 (C2) 

The system uses R/W, SIZ1, SIZO, A 1, AO, and CIOUT to identify the valid byte lanes on 
the multiplexed bus. If C2 is not a wait state, then the system asserts the TA signal. 

At the end of C2, the processor samples the level of TA, terminating the bus cycle if TA 
is asserted. If TA is not recognized as asserted at the end of the clock cycle, the 
processor inserts a wait state instead of terminating the transfer. The processor 
continues to sample TA on successive rising edges of BCLK until TA is recognized as 
asserted. The multiplexed bus is then tri-stated and the bus cycle ends. 

7-12 MCF5102 USER'S MANUAL MOTOROLA 



7 .4.4 Line Write Transfers 

The processor uses line write bus cycles to access a 16-byte operand for a MOVE16 
instruction and to support cache line pushes. Both burst and burst-inhibited transfers are 
supported. Figures 7-9 illustrates a functional timing diagram for a line write bus cycle. 

I C1 C2 C3 C4 cs 

BCLK 

I 

TS \_j_) c 
RiN ____,~.__.____...___...___...__-.L-.L.-C_ 

OTHER ATIRIBUTES ~~~~----C 
SIZ1, SIZO J I I ,C 

I I I I I 

MUXEDADDR&DATA J-88888-
TA J \ I 
TEA 7 \__ 

TBI 

TCI 

Figure 7-9. Line Write Transfer Timing 

Clock 1. (C 1) 
The line write cycle starts in C1. During C1, the processor places valid values on the 
transfer attributes and drives the multiplexed bus with the address. The SIZ1 and SIZO 
indicate line size. The processor asserts TS to indicate the beginning of the bus cycle. 

After C 1, the processor negates TS and drives the multiplexed bus with the data to be 
written. All byte lanes are valid. 

Clock 2 (C2) 

During C2, the system asserts TA and either negates or asserts TBI to indicate it can or 
cannot support a burst transfer. At the end of C2, the processor samples the level of TA 
and TBI. If TA is asserted, the transfer terminates. If TA is not recognized asserted, the 

MOTOROLA MCF5102 USER'S MANUAL 7-13 

-



-

processor inserts wait states instead of terminating the transfer. The processor 
continues to sample TA and TBI on successive rising edges of BCLK until TA is 
recognized asserted. 

If TBI is negated with TA, the processor continues the cycle with C3. Otherwise, if TBI is 
asserted, the line transfer is burst inhibited, and the processor writes the remaining 
three long words using long-word write bus cycles. Only in this case does the processor 
increment A3 and A2 for each write, and the new address is placed on the address bus 
for each bus cycle. Refer to 7.4.3 Byte, Word, and Long-Word Write Transfers for 
information on long-word writes. 

Clock 3 (C3) 
The processor drives the second long word of data on the multiplexed bus and holds 
the transfer attribute signals constant during C3. The system references the next long 
word, latches this data from the data bus, and asserts TA. At the end of C3, the 
processor samples the level of TA; if TA is asserted, the transfer terminates. If TA is not 
recognized asserted at the end of C3, the processor inserts wait states instead of 
terminating the transfer. The processor continues to sample TA on successive rising 
edges of BCLK until TA is recognized as asserted. 

Clock 4 (C4) 
This clock is identical to C3 except that the value driven on the data bus corresponds to 
the third long word of data for the burst. 

Clock 5 (C5) 
This clock is identical to C3 except that the value driven on the data bus corresponds to 
the fourth long word of data for the burst. 

7.4.5 Read-Modify-Write Transfers (Locked Transfers) 

The read-modify-write transfer performs a read, conditionally modifies the data in the 
processor, and writes the data out to memory. In the MCF5102, this operation can be 
indivisible, providing semaphore capabilities for multiprocessor systems. During the entire 
read-modify-write sequence, the MCF5102 asserts the LOCK signal to indicate that an 
indivisible operation is occurring. The external arbiter can use the LOCK signals to prevent 
arbitration of the bus during locked processor sequences. A read-modify-write operation 
is treated as noncachable. If the access hits in the data cache, it invalidates a matching 
valid entry and pushes a matching dirty entry. The read-modify-write transfer begins after 
the line push (if required) is complete; however, LOCK may assert during the line push bus 
cycle. 

The T AS, CAS, and CAS2 instructions are the only instructions that utilize read-modify
write transfers. 

7-14 MCF5102 USER'S MANUAL MOTOROLA 



7.5 ACKNOWLEDGE BUS CYCLES 

Bus transfers with transfer type signals TT1 and TTO = $3 are classified as acknowledge 
bus cycles. The following paragraphs describe interrupt acknowledge and breakpoint 
acknowledge bus cycles that use this encoding. 

7.5.1 Interrupt Acknowledge Bus Cycles 

When a peripheral device requires the services of the MCF5102 or is ready to send 
information that the processor requires, it can signal the processor to take an interrupt 
exception. The interrupt exception transfers control to a routine that responds 
appropriately. The peripheral device uses the active-low interrupt priority level signals 
(IPL2-IPLO) to signal an interrupt condition to the processor and to specify the priority level 
for the condition. 

The status register (SR) contains an interrupt priority mask (12-10 bits). The value in the 
interrupt mask is the highest priority level that the processor ignores. When an interrupt 
request has a priority higher than the value in the mask, the processor makes the request 
a pending interrupt. IPL2-IPLO must maintain the interrupt request level until the MCF5102 
acknowledges the interrupt to guarantee that the interrupt is recognized. The MCF5102 
continuously samples IPL2-IPLO on consecutive rising edges of BCLK to synchronize and 
debounce these signals. An interrupt request that is held asserted for as little as two 
consecutive clock periods may signal an interrupt, although the protocol requires that the 
request remain until the processor runs an interrupt acknowledge cycle for that interrupt ~ 
value. ~ 

The MCF5102 asserts IPEND when an interrupt request is pending. IPEND indicates that 
an interrupt exception will be taken at an upcoming instruction boundary (following any 
higher priority exception). However, IPEND must not be used instead of the interrupt 
acknowledge cycle. 

Table 7-4 provides a summary of the possible interrupt acknowledge terminations and the 
exception processing results. 

Table 7-4. Interrupt Acknowledge Termination Summary 

TA TEA AVEC Termination Condition 

High High Don't Care Insert Waits 

High Low Don't Care Take Spurious Interrupt Exception 

Low High High Latch Vector Number on D7-DO and Take Interrupt 
Exception 

Low High Low Take Autovectored Interrupt Exception 

Low Low Don't Care Retry Interrupt Acknowledge Cycle 

7.5.1.1 INTERRUPT ACKNOWLEDGE BUS CYCLE (TERMINATED NORMALLY). 
When the MCF5102 processes an interrupt exception, it performs an interrupt 
acknowledge bus cycle to obtain the vector number that contains the starting location of 

MOTOROLA MCF5102 USER'S MANUAL 7-15 



the interrupt exception handler. Some interrupting devices have programmable vector 
registers that contain the interrupt vectors for the exception handlers they use. Other 
interrupting conditions or devices cannot supply a vector number and use the autovector 
bus cycle described in 7.5.1.2 Autovector Interrupt Acknowledge Bus Cycle. 

The interrupt acknowledge bus cycle is a read bus cycle. It differs from a normal read 
cycle in the following respects: 

1. TI1 and TIO = $3 to indicate an acknowledged bus cycle. 

2. The Address bus is set to all ones ($FFFFFFFF). 

3. TM2-TMO are set to the interrupt request level (the inverted values of IPL2-IPLO). 

The system must place the vector number on the multiplexed bus (07-DO during the data 
phase) when the interrupt acknowledge cycle is terminated normally with TA. 

7.5.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE BUS CYCLE. When the system 
chooses not to supply a vector number, it may request an automatically generated vector 
(autovector) instead of placing a vector number on the data bus. This is done by and 
asserting the AVEC signal with TA to terminate the cycle. AVEC is significant with TA 
asserted only during interrupt acknowledge cycles. AVEC can be grounded if all interrupt 
requests are autovectored. 

The vector number supplied in an autovector operation is derived from the interrupt priority 
level of the current interrupt. When the AVEC signal is asserted with TA during an interrupt 
acknowledge bus cycle, the MCF5102 ignores the data on the multiplexed bus and 
internally generates the vector number. The vector used is the sum of the interrupt priority 
level plus 24 ($18). There are seven distinct autovectors that can be used, corresponding 
to the seven levels of interrupts available with IPL2-IPLO signals. 

7.5.1.3 SPURIOUS INTERRUPT ACKNOWLEDGE BUS CYCLE. When an interrupt 
acknowledge bus cycle is terminated with a bus error (TEA asserted without TA, AVEC is 
insignificant), the MCF5102 automatically generates the spurious interrupt vector number 
24 ($18) instead of the interrupt vector number or autovector. If TA and TEA are both 
asserted, the processor retries the cycle. 

7 .5.2 Breakpoint Interrupt Acknowledge Bus Cycle 

The execution of a breakpoint instruction (BKPT) generates the breakpoint interrupt 
acknowledge bus cycle. An acknowledged access is a read bus cycle, although no data is 
required, and is indicated with TI1 and TIO= $3. The breakpoint interrupt acknowledge 
bus cycle differs from the interrupt acknowledge cycle in that the the address bus 
indicates $00000000, and TM2-TMO = $0. When this bus cycle is terminated with either 
TA or TEA (as long as it is not a retry termination), the processor takes an illegal 
instruction exception. 

7-16 MCF5102 USER'S MANUAL MOTOROLA 



7.6 BUS EXCEPTION CONTROL CYCLES 

The MCF5102 bus architecture requires assertion of TA from an external device to signal 
that a bus cycle is complete. TA is not asserted in the following cases: 

• The external device does not respond. 

• No interrupt vector is provided. 

• Various other application-dependent errors occur. 

External circuitry can provide TEA when no device responds by asserting TA within an 
appropriate period of time after the processor begins the bus cycle. This allows the cycle 
to terminate and the processor to enter exception processing for the error condition. TEA 
can also be asserted in combination with TA to cause a retry of a bus cycle in error. 

Table 7-5 lists the control signal combinations and the resulting bus cycle terminations. 
Bus error and retry terminations during burst cycles operate as described in 7.4.2 Line 
Read Transfers and 7.4.4 Line Write Transfers. 

Table 7-5. TA and TEA Assertion Results 

Case No. iA TEA Result 

1 High Low Bus Error-Terminate and Take Bus Error Exception, 
Possibly Deferred 

2 Low Low Retry Operation-Terminate and Retry 

3 Low High Normal Cycle Terminate and Continue 

4 High High Insert Wait States 

7.6.1 Bus Errors 

The system hardware can use the TEA signal to abort the current bus cycle when a fault 
is detected. A bus error is recognized during a bus cycle when TA is negated and TEA is 
asserted. When the processor recognizes a bus error condition for an access, the access 
is terminated immediately. A line access that has TEA asserted for one of the four long
word transfers aborts without completing the remaining transfers, regardless of whether 
the line transfer uses a burst or burst-inhibited access. 

When TEA is asserted to terminate a bus cycle, the MCF5102 can enter access error 
exception processing immediately following the bus cycle, or it can defer processing the 
exception. The instruction prefetch mechanism requests instruction words from the 
instruction ACU before it is ready to execute them. If a bus error occurs on an instruction 
fetch, the processor does not take the exception until it attempts to use the instruction. 
Should an intervening instruction cause a branch or should a task switch occur, the 
access error exception for the unused access does not occur. Similarly, if a bus error is 
detected on the second, third, or fourth long-word transfer for a line read access, an 
access error exception is taken only if the execution unit is specifically requesting that long 
word. Otherwise, the line is not placed in the cache, and the processor repeats the line 
access when another access references the line. If a misaligned operand spans two long 

MOTOROLA MCF5102 USER'S MANUAL 7-17 

-



-

words in a line, a bus error on either the first or second transfer for the line causes 
exception processing to begin immediately. A bus error termination for any write accesses 
or for read accesses that reference data specifically requested by the execution unit 
causes the processor to begin exception processing immediately. Refer to Section 8 
Exception Processing for details of access error exception processing. 

When a bus error terminates an access, the contents of the corresponding cache can be 
affected in different ways, depending on the type of access. For a cache line read to 
replace a valid instruction or data cache line, the cache line being filled is invalidated 
before the bus cycle begins and remains invalid if the replacement line access is 
terminated with a bus error. If a dirty data cache line is being replaced and a bus error 
occurs during the replacement line read, the dirty line is restored from an internal push 
buffer into the cache to eliminate an unnecessary push access. If a bus error occurs 
during a data cache push, the corresponding cache line remains valid (with the new line 
data) if the line push follows a replacement line read, or is invalidated if a CPUSH 
instruction explicitly forces the push. Write accesses to memory specified as write-through 
by the data ACU update the corresponding cache line before accessing memory. If a bus 
error occurs during a memory access, the cache line remains valid with the new data. 

7.6.2 Retry Operation 

When an external device asserts both the TA and TEA signals during a bus cycle, the 
processor enters the retry sequence. The processor terminates the bus cycle and 
immediately retries the cycle using the same access information (address and transfer 
attributes). However, if the bus cycle was a cache push operation, the bus is arbitrated 
away from the MCF5102 before the retry operation, and a snoop during the arbitration 
invalidates the cache push, then the processor does not use the same access information. 

The processor retries any read or write cycles of a read-modify-write transfer separately; 
LOCK remains asserted during the entire retry sequence. 

On the first longword of a line transfer, a retry causes the processor to retry the bus cycle. 
However, the processor recognizes a retry signaled during the second, third, or fourth 
cycle of a line as a bus error and causes the processor to abort the line transfer. A burst
inhibited line transfer can only be retried on the initial transfer. A burst-inhibited line 
transfer aborts if a retry is signaled for any of the t.hree long-word transfers used to 
complete the line transfer. Negating the bus grant (BG) signal on the MCF5102 while 
asserting both TA and TEA provides a relinquish and retry operation for any bus cycle that 
can be retried. 

7.6.3 Double Bus Fault 

A double bus fault occurs when an access or address error occurs during the exception 
processing sequence-e.g., the processor attempts to stack several words containing 
information about the state of the machine while processing an access error exception. If 
a bus error occurs during the stacking operation, the second error is considered a double 
bus fault. 

7-18 MCF5102 USER'S MANUAL MOTOROLA 



The MCF5102 indicates a double bus fault condition by continuously driving PST3-PSTO 
with an encoded value of $5 until the processor is reset. Only an external reset operation 
can restart a halted processor. While the processor is halted, negating BG and forcing all 
outputs to a high-impedance state releases the external bus. 

A second access or address error that occurs during execution of an exception handler or 
later, does not cause a double bus fault. A bus cycle that is retried does not constitute a 
bus error or contribute to a double bus fault. The processor continues to retry the same 
bus cycle as long as external hardware requests it. 

7.7 BUS SYNCHRONIZATION 

The integer unit generates access requests to the instruction and data ACU's to support 
integer operations. Both the <ea> fetch and write-back stages of the integer unit pipeline 
perform accesses to the data ACU with effective address fetches assigned a higher 
priority. This priority allows data read and write accesses to occur out of order, with a 
memory write access potentially delayed for many clocks while allowing read accesses 
generated by later instructions to complete. The processor detects a read access that 
references earlier data waiting to be written (address collisions) and allows the 
corresponding write access to complete. A given sequence of read accesses or write 
accesses is completed in order, and reordering only occurs with writes relative to reads. 

Besides address collisions, the instruction restart model used for exception processing -
causes another potential problem. After the operand fetch for an instruction, an exception 
that causes the instruction to be aborted can occur, resulting in another access for the 
operand after the instruction restarts. For example, an exception could occur after a read 
access of an 1/0 device's status register. The exception causes the instruction to be 
aborted and the register to be read again. If the first read accesses clears the status bits, 
the status information is lost, and the instruction obtains incorrect data. 

Designating the memory containing the address of the device as serialized noncachable 
prevents multiple out-of-order accesses to devices sensitive to such accesses. When the 
data ACU detects an attempt to read an operand from memory designated as serialized 
noncachable, it allows all pending write accesses to complete before beginning the 
external read access. The definition of memory as noncachable versus serialized 
noncachable only affects read accesses. When a write operation reaches the integer 
unit's write-back stage, all previous instructions have completed. When a read access to a 
serialized noncachable memory begins, only a bus error exception on the operand read 
itself can cause the instruction to be aborted, preventing multiple reads. 

Since write cycles can be deferred indefinitely, many subsequent instructions can be 
executed, resulting in seemingly nonsequential instruction execution. When this action is 
not desired and the system depends on sequential execution following bus activity, the 
NOP instruction can be used. The NOP instruction forces instruction and bus 
synchronization because it freezes instruction execution until all pending bus cycles have 
completed. 

MOTOROLA MCF5102 USER'S MANUAL 7-19 



.. 
I 

A write operation of control information to an external register in which the external 
hardware attempts to control program execution based on the data that is written with the 
conditional assertion of TEA is one situation where the NOP instruction can be used to 
prevent multiple executions. If the data cache is enabled and the write cycle results in a hit 
in the data cache, the cache is updated. That data, in turn, may be used in a subsequent 
instruction before the external write cycle completes. Since the MCF5102 cannot process 
the bus error until the end of the bus cycle, the external hardware cannot successfully 
interrupt program execution. To prevent a subsequent instruction from executing until the 
external cycle completes, the NOP instruction can be inserted after the instruction causing 
the write. In this case, access error exception processing proceeds immediately after the 
write before subsequent instructions are executed. This is an irregular situation, and the 
use of the NOP instruction for this purpose is not required by most systems. 

Note that the NOP instruction can also be used to force access serialization by placing 
NOP before the instruction that reads an 1/0 device. This practice eliminates the need to 
specify memory as serialized noncachable but does not prevent the instruction from being 
aborted by an exception condition. 

7.8 BUS ARBITRATION 

The bus design of the MCF5102 provides for one bus master at a time, either the 
MCF5102 or an external device. More than one device having the capability to control the 
bus can be attached to the bus. An external arbiter prioritizes requests and determines 
which device is granted access to the bus. Bus arbitration is the protocol by which the 
processor or an external device becomes the bus master. When the MCF5102 is the bus 
master, it uses the bus to read instructions and data not contained in its internal caches 
from memory and to write data to memory. When an alternate bus master owns the bus, 
the MCF5102 is able to monitor the alternate bus master's transfer and intervene when 
necessary to maintain cache coherency. 

The MCF5102 implements an arbitration method in which an external arbiter controls bus 
arbitration and the processor acts as a slave device requesting ownership of the bus from 
the arbiter. Since the user defines the functionality of the external arbiter, it can be 
configured to support any desired priority scheme. For systems in which the processor is 
the only possible bus master, the bus can be continuously granted to the processor, and 
no arbiter is needed. Systems that include several devices that can become bus masters 
require an arbiter to assign priorities to these devices so that, when two or more devices 
simultaneously attempt to become the bus master, the one having the highest priority 
becomes the bus master first. 

The MCF5102 bus controller generates bus requests to the external arbiter in response to 
internal requests from the instruction and data ACU's. The MCF5102 performs bus 
arbitration using the bus request (BR), bus grant (BG), and bus busy (BB) signals. The 
arbitration protocol, which allows arbitration to overlap with bus activity, requires a single 
idle clock to prevent bus contention when transferring bus ownership between bus 
masters. The bus arbitration unit in the MCF5102 operates synchronously and transitions 
between states on the rising edge of BLCK. 

7-20 MCF5102 USER'S MANUAL MOTOROLA 



The MCF5102 requests the bus from the external bus arbiter by asserting BR whenever 
an internal bus request is pending. The processor continues to assert BR for as long as it 
requires the bus. The processor negates BR at any time without regard to the status of BG 
and BB. If the bus is granted to the processor when an internal bus request is generated, 
BR is asserted simultaneously with transfer start (TS), allowing the access to begin 
immediately. The processor always drives BR, and BR cannot be wire-ORed with other 
devices. 

The external arbiter asserts BG to indicate to the processor that it has been granted the 
bus. If BG is negated while a bus cycle is in progress, the processor relinquishes the bus 
at the completion of the bus cycle. To guarantee that the bus is relinquished, BG must be 
negated prior to the rising edge of the BCLK in which the last TA or TEA is asserted. Note 
that the bus controller considers the four bus transfers for a burst-inhibited line transfer to 
be a single bus cycle and does not relinquish the bus until completion of the fourth 
transfer. The read and write portions of a locked read-modify-write sequence are divisible 
in the MCF5102, allowing the bus to be arbitrated away during the locked sequence. For 
system applications that do not allow locked sequences to be broken, the arbiter can use 
LOCK to detect locked accesses and prevent the negation of BG to the processor during 
these sequences. 

When the bus has been granted to the processor in response to the assertion of BR, one 
of two situations can occur. In the first situation, the processor monitors BB to determine 
when the bus cycle of the alternate bus master is complete. After the alternate bus master -
negates BB, the processor asserts BB to indicate explicit bus ownership and begins the 
bus cycle by asserting TS. The processor continues to assert BB until the external arbiter 
negates BG, after which BB is first negated at the completion of the bus cycle, then forced 
to a high-impedance state. As long as BG is asserted, BB remains asserted to indicate the 
bus is owned, and the processor continuously drives the bus signals. The processor 
negates BR when there are no pending accesses to allow the external arbiter to grant the 
bus to the alternate bus master if necessary. 

In the second situation, the processor samples BB until the external bus arbiter negates 
BB. The processor drives its output pins with undetermined values and three-states BB, 
but does not perform a bus cycle. This procedure, called implicit ownership of the bus, 
occurs when the processor is granted the bus but there are no pending bus cycles. If an 
internal access request is generated, the processor assumes explicit ownership of the bus 
and immediately begins an access, simultaneously asserting BB, BR, and TS. If the 
external arbiter keeps BG asserted after completion of the bus cycle, the processor keeps 
BB asserted and drives the bus with undefined values, causing the processor to park. In 
this case, because BB remains asserted until the external arbiter negates BG, the 
processor must assert BR, and TS simultaneously to enter an active bus cycle. When it 
completes the active bus cycle and the external arbiter has not negated BG, the processor 
goes back into park, negating BR, and TS. As long as BG is asserted, the processor 
oscillates between park and active bus cycles. 

The MCF5102 can be in any one of five bus arbitration states during bus operation: idle, 
snoop, implicit ownership, park, and active bus cycle. There are two characteristics that 
determine these five states: whether the three-state logic determines if the MCF5102 

MOTOROLA MCF5102 USER'S MANUAL 7-21 



drives the bus and how the MCF5102 drives BB. If neither the processor nor the external 
bus arbiter asserts BB, then an external pullup resistor drives BB high to negate it. Note 
that the relationship between the internal BR and the external BR is best described as a 
synchronous delay off BCLK. 

The idle state occurs when the MCF5102 does not have ownership of the bus and is not in 
the process of snooping an access. In the idle state, BB is negated and the MCF5102 
does not drive the bus. The snoop state is similar to the idle state in that the MCF5102 
does not have ownership of ttie bus. The snoop state differs from the idle state in that the 
MCF5102 is ready to service snooped transfers. Otherwise, the status of BB and the bus 
is identical. 

The implicit ownership state indicates that the MCF5102 owns the bus. The MCF5102 
explicitly owns the bus when it runs a bus cycle immediately after being granted the bus. If 
the processor has completed at least one bus cycle and no internal transfers are pending, 
the processor drives the bus with undefined values, entering the park state. In either case, 
BG remains asserted. The simultaneous assertion of BR, and TS allows the processor to 
leave the park state and enter the active bus cycle state. 

Figure 7-10 is a bus arbitration state diagram illustrating the relationship of these five 
states with an example of an external bus arbiter circuit. Table 7-6 lists the five states and 
the conditions that indicate them. 

7-22 MCF5102 USER'S MANUAL MOTOROLA 



MOTOROLA 

BG(N) & TIP(A) & 
ENDCYCLE(N) 

~ g,~ .. ~ 
~ ~<;j 

~· !$'~ .. (/} 
~ 

CJ.!/) 
~4: 

(ff 

IBR = Internal bus request signal. 
BR = Ex1ernal Bus Request pin. 
BBi = Internal Bus Busy driven by another master, sampled as an input by the processor. 
BBQ TRI = Tristate logic for BBQ. BBQ is driven if asserted not driven when negated, 

but is actively driven high before negating 
BBQ = Internal Bus Busy driven by the processor 
TSI = Internal Transfer Start driven by another master 
BB = External Bus Busy pin. 
BCLK = Clock 
T = Tristate controller for the bus. If asserted, external busses are driven. 

ENDCYCLE= Indicates last TA or TEA of an atomic bus tenure. 
(A) and (N) = means 'asserted' and 'negated' respectively. 
Note X =May or may not occur if bus cycle tennlnated with bus error, bus granted to processor 

Figure 7-10. MCF5102 Internal Interpretation State Diagram 
and External Bus Arbiter Circuit 

MCF5102 USER'S MANUAL 7-23 

-



Table 7-6. MCF5102 Bus Arbitration States 

State Conditions 

Idle MCF5102 three-states BB; arbiter negates 
BG; bus is not driven. 

Implicit Ownership MCF5102 three-states BB; arbiter asserts 
BG; bus is driven with undefined values. 

Active Bus Cycle or Park 
MCF5102 asserts BB; arbiter asserts BG; 
bus is driven with defined values 

Park 
MCF5102 asserts BB; arbiter asserts BG; 
bus is driven with undefined values 

Alternate Bus Master Ownership MCF5102 three-states Im; arbiter asserts 
and Snooped BG; MCF5102 does not drive the bus. 

The MCF5102 can be in the active bus cycle, park, or implicit ownership states when BG 
is negated. Depending on the state the processor is in when BG is negated, uncertain 
conditions can occur. The only guaranteed time that the processor relinquishes the bus is 
when BG is negated prior to the rising edge of BCLK in which the last TA or TEA is 
asserted and the processor is in the active bus cycle state. However, if the processor is in 
either the active bus cycle, park, or implicit ownership states and BG is negated at the 
same time or after the last TA or TEA is asserted, then from the standpoint of the external 
bus arbiter, the next action that the processor takes is undetermined because the 
processor can internally decide to perform another active bus cycle (indeterminate 
condition). 

External bus arbiters must consider this indeterminate condition when negating BG and 
must be designed to examine the state of BB immediately after negating BG to determine 
whether or not the processor will run another bus cycle. A somewhat dangerous situation 
exists when the processor begins a locked transfer after the bus has been granted to the 
alternate bus master, causing the alternate bus master to perform a bus transfer during a 
locked sequence. To correct this situation, the external bus arbiter must be able to 
recognize the possible indeterminate condition and reassert BG to the processor when the 
processor begins a locked sequence. The indeterminate condition is most significant when 
dealing with systems that cannot allow locked transfers to be broken. Figure 7-11 
illustrates an example of an error condition that is a consequence of the interaction 
between the indeterminate condition and a locked transfer. External bus arbiters must be 
designed so that all bus grants to all bus masters be nagated for at least one rising edge 
of BCLK between bus tenures; preventing bus conflicts resulting from the above 
conditions. 

7-24 MCF5102 USER'S MANUAL MOTOROLA 



5102._BG 

5102_BB 

5102_TS 

5102_TA 

5102_LOCK 

ONE OF j 
THREE 

POSSIBLE 
BOUNDARY 
CONDITION 

\_} 
\_} 

THE 5102 
ACTIVELY 

OWNS THE 
BUS HERE 

*AM indicates the alternate bus master. 

LOCK IS 
VIOLATED 

Figure 7-11. Lock Violation Example 

In addition to the indeterminate condition, the external arbiter's design needs to include 
the function of BR. For example, in certain cases associated with conditional branches, 
the MCF5102 can assert BR to request the bus from an alternate bus master, then negate 
BR without using the bus, regardless of whether or not the external arbiter eventually 
asserts BG. This situation happens when the MCF5102 attempts to prefetch an instruction 
for a conditional branch. To achieve maximum performance, the processor prefetches the 
instructions of both paths for a conditional branch. If the conditional branch results in a 
branch-not-taken, the previously issued branch-taken prefetch is then terminated since the 
prefetch is no longer needed. In an attempt to save time, the MCF5102 negates BR. If BG 
takes too long to assert, the MCF5102 enters a disregard request condition. 

The BR signal can be reasserted immediately for a different pending bus request, or it can 
stay negated indefinitely. If an external bus arbiter is designed to wait for the MCF5102 to 
assert BB before proceeding, then the system experiences an extended period of time in 
which bus arbitration is locked. Motorola recommends that an external bus arbiter not 
assume that there is a direct relationship between BR and BB or BR and BG signals. 

Figure 7-12 illustrates an example of the processor requesting the bus from the external 
bus arbiter. During C 1, the MCF5102 asserts BR to request the bus from the arbiter, which 
negates the alternate bus master's BG signal and grants the bus to the processor by 
asserting BG during C3. During C3, the alternate bus master completes its current access 
and relinquishes the bus by three-stating all bus signals. Typically, the BB signal require a 
pullup resistor to maintain a logic-one level between bus master tenures. The alternate 

MOTOROLA MCF5102 USER'S MANUAL 7-25 

-



bus master should negate these signals before three-stating to minimize rise time of the 
signals and ensure thatthe processor recognizes the correct level on the next BCLK rising 
edge. At the end of C3, the processor recognizes the bus grant and bus idle conditions 
(BG asserted and BB negated) and assumes ownership of the bus by asserting BB and 
immediately beginning a bus cycle during C4. During CS, the processor begins the second 
bus cycle for the misaligned operand and negates BR since no other accesses are 
pending. During C7, the external bus arbiter grants the bus back to the alternate bus 
master that is waiting for the processor to relinquish the bus. The processor negates BB 
before three-stating these and all other bus signals during CB. Finally, the alternate bus 
master recognizes the bus grant and idle conditions at the end of CB and is able to 
resume bus activity during C9. 

MUXED ADDA & DATA 

TRANSFER 
ATTRIBUTES 

TA 

BG 

I C1 C2 C3 C4 cs C6 C7 ca C9 C10 

\.__....._____..____.___............,/ 
__._~f'-h~~~~l'-h~_.__ 

ALTERNATi:;__j 
MASTERj 

I .... Co-----+'PROCESSOA,,,____....., ... _, ~LTERNATE 
JMASTER 

*AM indicates the alternate bus master. 

Figure 7-12. Processor Bus Request Timing 

7-26 MCF5102 USER'S MANUAL MOTOROLA 



Figure 7-13 illustrates a functional timing diagram for an arbitration of a relinquish and 
retry operation. Figure 7-14 is a functional timing diagram for implicit ownership of the bus. 
In Figure 7-13, the processor read access that begins in C1 is terminated at the end of C2 
with a retry request and BG negated, forcing the processor to relinquish the bus and allow 
the alternate master to access the bus. Note that the processor reasserts BR during C3 
since the original access is pending again. After alternate bus master ownership, the bus 
is granted to the processor to allow it to retry the access beginning in C7. 

BCLK 

MUXED ADDR & DATA 

TRANSFER 
ATIRIBUTES 

TEA 

BR 

BG 

BB 

I I 

~---c~-,.-~~:\_j_J: 

I I 
I 

PROCESSOR--->-1 L ...... ALTERNATE~! I MASTER 

*AM indicates the alternate bus master. 

I.._ PROCESSOR 

Figure 7-13. Arbitration During Relinquish and Retry Timing 

MOTOROLA MCF5102 USER'S MANUAL 7-27 



BCLK 

MUXED ADDA & DATA 

TRANSFER 
ATIRIBUTES 

TS 

TA 

BR 

BG 

BB 

I C1 C2 

I 

\jJ 

ALTERNATE I 
MASTER I 

*AM indicates the alternate bus master. 

C3 C4 cs C6 C7 C8 C9 

I 

\jJ 

w 

BUS I BUS OWNED I BUS OWNED 
IMPLICITLY~~ANDACTIV~~ AND IDLE~ 

OWNED 
,__ _____ PROCESSOR ____ ____,_ 

Figure 7-14. Implicit Bus Ownership Arbitration Timing 

7.9 BUS SNOOPING OPERATION 

When required, the MeF5102 can monitor alternate bus master transfers and intervene in 
the access to maintain cache coherency. The encoding of the sex signals generated by 
the alternate bus master for each bus cycle controls the process of bus monitoring and 
intervention called snooping. Only byte, word, long-word, and line bus transfers can be 
snooped. Refer to Section 4 Instruction and Data Caches for sex encodings. 

When the MeF5102 recognizes that an alternate bus master has asserted TS, the 
processor latches the level on the byte offset, SIZX, TMx, and R/W signals during the 
rising edge of BeLK for which TS is first asserted. The processor then evaluates the sex 
and TTx signals to determine the type of access (TTx = $0 or $1 ), if it is snoopable, and, if 
so, how it should be snooped. If snooping is enabled for the access, the processor inhibits 
memory from responding by continuing to assert the memory inhibit signal (Ml) while 
checking the internal caches for matching lines. During the snooped bus cycle, the 
MeF5102 ignores all TA assertions while MT is asserted. Unless the data cache contains a 
dirty line corresponding to the access and the requested snoop operation indicates sink 
data for a write or source data for a read, MT is negated, and memory is allowed to 
respond and complete the access. Otherwise, the processor continues to intervene in the 

7-28 MCF5102 USER'S MANUAL MOTOROLA 



access by keeping MT asserted and responding to the alternate bus master as a slave 
device. The processor monitors the levels of TA, TEA, and TBI to detect normal, bus error, 
retry, and burst-inhibited terminations. Note that for alternate bus master burst-inhibited 
line transfers, the MCF5102 snoops each of the four resulting long-word transfers. If 
snooping is disabled, MT is negated, and the MeF5102 counts the appropriate number of 
TA or TEA assertions before proceeding. For example, if the SIZx signals are pulled high, 
the MCF5102 requires four TA assertions, one TEA assertion, or one retry termination 
before proceeding. 

In a system with multiple bus masters, the memory unit must wait for each snooping bus 
master to negate MT before responding to an access. A termination signal asserted before 
the negation of MT leads to undefined operation and must be avoided at all costs. Also, if 
the system contains multiple caching masters, then each master must access shared data 
using write-through memory that allow writes to the data to be snooped by other masters. 
The copyback caching mode is typically used for data local to a processor because in a 
multimaster caching system only one master at a time can access a given memory section 
of copyback data. The copyback caching mode also prevents multiple snooping 
processors from intervening in a specific access. 

7.9.1 Snoop-Inhibited Cycle 

For alternate bus master accesses in which the sex signal encodings indicate that 
snooping is inhibited (Sex = $0), the MeF5102 immediately negates MT and allows 
memory to respond to the access. Snoop-inhibited alternate bus master accesses do not 
affect performance of the processor since no cache lookups are required. Figure 7-15 
illustrates an example of a snoop-inhibited operation in which an alternate bus master is 
granted the bus for an access. No matter what the values are on the sex and TTx signals, 
MT is asserted between bus cycles. Because MT is asserted while a cache lookup is 
performed, snooping inherently degrades system performance. 

Ml is asserted from the last TA of the current bus cycle if the MCF5102 owns the bus and 
loses it (see Figure 7-15). If an alternate bus master has the bus and loses it, there are 
two different resulting cases. Usually, an idle clock occurs between the alternate bus 
master's cycle and the MeF5102's cycle. If so, Ml is asserted during the idle clock and 
negated from the same edge that the MeF5102 asserts the TS signal (see Figure 7-15). If 
there is no idle clock, MT is not asserted. Ml is asserted during and after reset until the first 
bus cycle of the MeF5102. Even though snoop is inhibited, all TA or TEA assertions while 
MT is asserted are ignored. If a line snoop is started, the MeF5102 still requires four TA 
assertions. 

MOTOROLA MCF5102 USER'S MANUAL 7-29 



BCLK 

SC1-SCO 

MUXED ADDR & DATA 

OTHER ATIRIBUTES 

Ml 

TA J 
BR 

BG 

BB 

C1 C2 C3 C4 C5 

l"""""IE---- ALTERNATE ----'J·~I 
MASTER 

*AM indicates the alternate bus master. 

rnrnrnrn Undefined 

C6 

Figure 7-15. Snoop-Inhibited Bus Cycle 

~PROCESSOR 

7.9.2 Snoop-Enabled Cycle (No Intervention Required) 

For alternate bus master accesses in which SCx = $1 or $2, indicating that snooping is 
enabled, the MCF5102 continues to assert Ml while checking for a matching cache line. If 
intervention in the alternate bus master access is not required, MT is then negated, and 
memory is allowed to respond and complete the access. Figure 7-16 illustrates an 
example of snooping in which memory is allowed to respond. Best-case timing is 
illustrated, which results in a memory access having the equivalent of two wait states. 
Variations in the timing required by snooping logic to access the caches can delay the 
negation of MT by up to two additional clocks. External logic must ensure that the 
termination signals as negated at all rising BCLK edges in which MT is asserted. 
Otherwise, if one of the termination signals is asserted, either the MCF5102 ignores all 
termination signals, reading them as negated, or the MCF5102 exhibits improper 
operation. 

7-30 MCF5102 USER'S MANUAL MOTOROLA 



BCLK 

SC1-SCO 

MUXED ADDA & DATA 

SIZ1, SIZO 

n1,no 

RNJ 

TS 

TA J 
BR 

BG 

BB 

Cl C2 C3 C4 cs 

~Ol(E---- ALTERNATE ----1>~1 
MASTER 

*AM indicates the alternate bus master. 

l@I@il Undefined 

C6 

~PROCESSOR 

Figure 7-16. Snoop Access with Memory Response 

7.9.3 Snoop Read Cycle (Intervention Required) 

If snooping is enabled for a reac;l access and the corresponding data cache line contains 
dirty data, the MCF5102 inhibits memory and responds to the access as a slave device to 
supply the requested read data. Intervention in a byte, word, or long-word access is 
independent of which long-word entry in the cache line is dirty. Figure 7-17 illustrates an 
alternate bus master line read that hits a dirty line in the MCF5102 data cache. The 
processor asserts TA to acknowledge the transfer of data to the alternate bus master, and 
the data bus is driven with the four long words of data for the line. The timing illustrated is 

MOTOROLA MCF5102 USER'S MANUAL 7-31 



for a best-case response time. Variations in the timing required by snooping logic to 
access the caches can delay the assertion of TA by up to two additional clocks. 

7.9.4 Snoop Write Cycle (Intervention Required) 

If snooping with sink data is enabled for a byte, word, or long-word write access and the 
corresponding data cache line contains dirty data, the MCF5102 inhibits memory and 
responds to the access as a slave device to read the data from the bus and update the 
data cache line. The dirty bit is set for the long word changed in the cache line. Figure 7-
18 illustrates a long-word write by an alternate bus master that hits a dirty line in the 
MCF5102 data cache. The processor asserts TA to acknowledge the transfer of data from 
the alternate master, and the processor reads the value on the data bus. The timing 
illustrated is for a best-case response time. Variations in the timing required by snooping 
logic to access the caches can delay the assertion of TA by up to two additional clocks. 

7-32 MCF5102 USER'S MANUAL MOTOROLA 



C3 C4 cs cs C7 ca C9 

I I 

MEMORY INHIBITED FROM RESPONDING 
I 
I 

'-..---~--~--~,~ _ _,_T_A_D_Rl_VE~N_B_Y_P_Ro_c~E_ss_o_R_,__,~c...;_---

--------- ALTERNATE MASTER 
LINE READ 

*AM indicates the alternate bus master. 

Figure 7-17. Snooped Line Read, Memory Inhibited 

MOTOROLA MCF5102 USER'S MANUAL 

f.- PROCESSOR 

7·33 



I C1 C2 C3 C4 cs C6 

BCLK 

SC1, SCO 

DATA DRIVEN BY ALTERNATE BUS MASTER 

MUXED ADDA & DATA 

SIZ1, SIZO 

TTt, TTO 

TA 

_,__,! 

I 
I 
I 

I I 
I I I 

MEM.ORY INHIBITED FROM flESPONDl~G 

I 

·I 
I 
I 
I 

L_____.u TERNATE MASTEc________,,,,,J 
iloNG-WORD WRITEl 

*AM indicates the alternate bus master. 

f.- PROCESSOR 

Figure 7·18. Snooped Long-Word Write, Memory Inhibited 

7.10 RESET OPERATION 

An external device asserts the reset input signal (RSTI) to reset the processor. When 
power is applied to the system, external circuitry should assert RSTI for a minimum of 10 
BCLK cycles after Vee is within tolerance. Figure 7-19 is a functional timing diagram of 
the power-on reset operation, illustrating the relationships among Vee, RSTI, mode 
selects, and bus signals. The BCLK clock signal is required to be stable by the time Vee 
reaches the minimum operating specification. The V1H levels of the clocks should not 
exceed V cc while it is ramping up. RSTI is internally synchronized for two BCLKS before 
being used and must meet the specified setup and hold times to BCLK (specifications #51 

7-34 MCF5102 USER'S MANUAL MOTOROLA 



and #52 in Section 1 o Electrical and Thermal Characteristics) only if recognition by a 
specific BCLK rising edge is required. Ml is asserted while the MCF5102 is in reset. 

BCLK 

+5 v 
Vee 

av 

RSTI 

e~MDIS, 
IPL2-IPLO 

BUS 
SIGNALS 

TS 

BR 

BG 

BB 

Ml 

~ .. ____ t ~ 10------·~1 ..... ~2___,_J~ 128_____,,_J 
CLOCKS CLOcKSi CLOCKS -1 

I I I I 

~ 'I ~ : ~,----'-~---~-".,.......-'--'---~ 

----'---'--'-----'--1~:--"'J--i--,-----i--"'J 

--------,..---' 

I I I Undefined 

Figure 7-19. Initial Power-On Reset Timing 

:\_ 
I 
I 

:\_ 
I 

Once RSTI negates, the processor is internally held in reset for another 128 clock cycles. 
During the reset period, all signals that can be, are three-stated, and the rest are driven to 
their inactive state. Once the internal reset signal negates, all bus signals continue to 
remain in a high-impedance state until the processor is granted the bus. Afterwards, the 
first bus cycle for reset exception processing begins. In Figure 7-19 the processor 
assumes implicit bus ownership before the first bus cycle begins. 

For processor resets after the initial power-on reset, RSTI should be asserted for at least 
1 O clock periods. Figure 7-20 illustrates timings associated with a reset when the 
processor is executing bus cycles. Note that BB (and TA if driven during a snooped 
access) are negated before transitioning to a three-state level. 

MOTOROLA MCF5102 USER'S MANUAL 7-35 



BCLK 

C~DIS, 
IPL2-IPLO 

BUS 
SIGNALS 

TS 

BR 

BB 

Ml 

r .... --. ----t~ 10 ---~>-r<rE-----2 > I< 128----1 
CLOCKS CLOCKS CLOCKS ~ I 

I 
I I 

~~-'--J.-_.___,~,_..__~~-~~-.--~~~ 

I 

_______ __,~--------~-,----.----,----,---,----
___ ___./ ~,.....----~"v !L 

I 

Figure 7-20. Normal Reset Timing 

Resetting the processor causes any bus cycle in progress to terminate as if TA or TEA 
had been asserted. In addition, the processor initializes registers appropriately for a reset 
exception. Section 8 Exception Processing describes exception processing. When a 
RESET instruction is executed, the processor drives the reset out (RSTO) signal for 512 
BCLK cycles. In this case, the processor resets the external devices of the system, and 
the internal registers of the processor are unaffected. The external devices connected to 
the RSTO signal are reset at the completion of the RESET instruction. An RSTI signal that 
is asserted to the processor during execution of a RESET instruction immediately resets 
the processor and causes the RSTO signal to negate. RSTO can be logically ANDed with 
the external signal driving RSTI to derive a system reset signal that is asserted for both an 
external processor reset and execution of a RESET instruction. 

7-36 MCF5102 USER'S MANUAL MOTOROLA 



SECTION 8 
EXCEPTION PROCESSING 

Exception processing is the activity performed by the processor in preparing to execute a 
special routine for any condition that causes an exception. In particular, exception 
processing does not include execution of the routine itself. This section describes the 
processing for each type of integer unit exception, exception priorities, the return from an 
exception, and bus fault recovery. This section also describes the formats of the exception 
stack frames. 

8.1 EXCEPTION PROCESSING OVERVIEW 

Exception processing is the transition from the normal processing of a program to the 
processing required for any special internal or external condition that preempts normal 
processing. External conditions that cause exceptions are interrupts from external 
devices, bus errors, and resets. Internal conditions that cause exceptions are instructions, 
address errors, and tracing. For example, the TRAP, TRAPcc, CHK, RTE, and DIV 
instructions can generate exceptions as part of their normal execution. In addition, illegal 
instructions and data types, and privilege violations cause exceptions. Exception 
processing uses an exception vector table and an exception stack frame. The following 
paragraphs describe the vector table and a generalized exception stack frame. 

The MCF5102 uses a restart exception processing model to minimize interrupt and 
instruction latency and to reduce the size of the stack frame (compared to the frame 
required for a continuation model). Exceptions are recognized at each instruction 
boundary in the execute stage of the integer pipeline and force later instructions that have 
not yet reached the execute stage to be aborted. Instructions that cannot be interrupted, 
such as those that generate locked bus transfers or access serialized memory, are 
allowed to complete before exception processing begins. 

Exception processing occurs in four functional steps. However, all individual bus cycles 
associated with exception processing (vector acquisition, stacking, etc.) are not 
guaranteed to occur in the order in which they are described in this section. Figure 8-1 
illustrates a general flowchart for the steps taken by the processor during exception 
processing. 

During the first step, the processor makes an internal copy of the status register (SR). 
Then the processor changes to the supervisor mode by setting the S-bit and inhibits 
tracing of the exception handler by clearing the trace enable (T1 and TO) bits in the SR. 
For the reset and interrupt exceptions, the processor also updates the interrupt priority 
mask in the SR. 

MOTOROLA MCF5102 USER'S MANUAL 8·1 



During the second step, the processor determines the vector number for the exception. 
For interrupts, the processor performs an interrupt acknowledge bus cycle to obtain the 
vector number. For all other exceptions, internal logic provides the vector number. This 
vector number is used in the last step to calculate the address of the exception vector. 
Throughout this section, vector numbers are given in decimal notation. 

8-2 MCF5102 USER'S MANUAL MOTOROLA 



MOTOROLA 

ENTRY 

SAYE INTERNAL 
COPY OFSR 

st 1 
T1, Toto 

(SEE NOTE) 

FETCH VECTOR 
NUMBER 

OTHERWISE 

SAYE CONTENTS 
TO STACK FRAME 

(SEE NOTE) 

EXECUTE EXCEPTION 
HANDLER 

PREFETCH 4 
LONGWORDS 

OTHERWISE 
BEG IN INSTRUCTION 

EXECUTION 

~ 

BUS ERROR 

(DOUBLE BUS FAULT) 

BUS ERROR 

(DOUBLE BUS FAULT) 

BUS ERROR OR 
ADDRESS ERROR 

(DOUBLE BUS FAULT) 

HAL TED ST ATE 
(PST3-PSTO = $5) 

EXIT 

NOTE: These blocks vary for reset and interrupt exceptions. 

Figure 8-1. General Exception Processing Flowchart 

MCF5102 USER'S MANUAL 8-3 



The third step is to save the current processor contents for all exceptions other than reset. 
The processor creates one of five exception stack frame formats on the active supervisor 
stack and fills it with information appropriate for the type of exception. Other information 
can also be stacked, depending on which exception is being processed and the state of 
the processor prior to the exception. If the exception is an interrupt and the M-bit of the 
SR is set, the processor clears the M-bit and builds a second stack frame on the interrupt 
stack. Figure 8-2 illustrates the general form of the exception stack frame. 

15 12 0 

SP ~ STATUS REGISTER 

PROGRAM COUNTER 

FORMAT l VECTOR OFFSET 

ADDITIONAL PROCESSOR STATE INFORMATION 
(2 OR 26 WORDS, IF NEEDED} 

Figure 8-2. General Form of Exception Stack Frame 

The last step initiates execution of the exception handler. The processor multiplies the 
vector number by four to determine the exception vector offset. It adds the offset to the 
value stored in the vector base register (VBR) to obtain the memory address of the 
exception vector. Next, the processor loads the program counter (PC) (and the interrupt 
stack pointer (ISP) for the reset exception) from the exception vector table entry. After 
prefetching the first four long words to fill the instruction pipe, the processor resumes 
normal processing at the address in the PC. When the processor executes an RTE 
instruction, it examines the stack frame on top of the active supervisor stack to determine 
if it is a valid frame and what type of context restoration it requires. 

All exception vectors are located in the supervisor address space and are accessed using 
data references. Only the initial reset vector is fixed in the processor's memory map; once 
initialization is complete, there are no fixed assignments. Since the VBR provides the base 
address of the exception vector table, the exception vector table can be located anywhere 
in memory it can even be dynamically relocated for each task that an operating system 
executes. 

The MCF5102 supports a 1024-byte vector table containing 256 exception vectors (see 
Table 8-1 ). Motorola defines the first 64 vectors and reserves the other 192 vectors for 
user-defined interrupt vectors. External devices can use vectors reserved for internal 
purposes at the discretion of the system designer. External devices can also supply vector 
numbers for some exceptions. External devices that cannot supply vector numbers use 
the autovector capability, which allows the MCF5102 to automatically generate a vector 
number. 

8-4 MCF5102 USER'S MANUAL MOTOROLA 



Table 8-1. Exception Vector Assignments 

Vector Vector Offset 
Number(s) (Hex) Assignment 

0 000 Reset Initial Interrupt Stack Pointer 
1 004 Reset Initial Program Counter 
2 008 Access Fault 
3 ooc Address Error 

4 010 Illegal Instruction 
5 014 Integer Divide by Zero 
6 018 CHK, CHK2 Instruction 
7 01C TRAPcc, TRAPV Instructions 

8 020 Privilege Violation 
9 024 Trace 
10 028 Line 1010 Emulator (Unimplemented A-Line Opcode) 
11 02C Line 1111 Emulator (Unimplemented F-Line Opcode) 

12 030 (Unassigned, Reserved) 
13 034 Unassigned, Reserved) 
14 038 Format Error 
15 03C Uninitialized Interrupt 

16-23 040--05C (Unassigned, Reserved) 

24 060 Spurious Interrupt 
25 064 Level 1 Interrupt Autovector 
26 068 Level 2 Interrupt Autovector 
27 06C Level 3 Interrupt Autovector 

28 070 Level 4 Interrupt Autovector 
29 074 Level 5 Interrupt Autovector 
30 078 Level 6 Interrupt Autovector 
31 07C Level 7 Interrupt Autovector 

32-47 080-0BC TRAP #0-15 Instruction Vectors 

48-55 OCO--ODC (Unassigned, Reserved) 

56 OEO (Unassigned, Reserved) 
57 OE4 (Unassigned, Reserved) 
58 OE8 (Unassigned, Reserved) 

59-63 OEC-OFC (Unassigned, Reserved) 

64-255 100--3FC User Defined Vectors {192) 

8.2 INTEGER UNIT EXCEPTIONS 

The following paragraphs describe the external interrupt exceptions and the different types 
of exceptions generated internally by the MCF5102 integer unit. The following exceptions 
are discussed: 

• Access Fault 

• Address Error 

• Instruction Trap 

• Illegal and Unimplemented Instructions 

• Privilege Violation (PV) 

MOTOROLA MCF5102 USER'S MANUAL 8-5 



• Trace 

• Format Error 

• Breakpoint Instruction 

• Interrupt 

• Reset 

8.2.1 Access Fault Exception 

An access fault exception occurs when a data or instruction prefetch access faults due to 
either an external bus error or an internal access fault. Both types of access faults are 
treated identically and the access fault exception handler or a status bit in the access fault 
stack frame distinguishes them. An access fault exception may or may not be taken 
immediately, depending on whether the faulted access specifically references data 
required by the execution unit or whether there are any other exceptions that can occur, 
allowing the execution pipeline to idle. 

An external access fault (bus error) occurs when external logic aborts a bus cycle and 
asserts the TEA input signal. A bus error on a data write access always results in an 
access fault exception, causing the processor to begin exception processing immediately. 
A bus error on a data read also causes exception processing to begin immediately if the 
access is a byte, word, or long-word access or if the bus error occurs on the first transfer 
of a line read. Bus errors on the second, third, or fourth transfers for a data line read 
cause the transfer to be aborted, but result in a bus error only if the execution unit is 
specifically requesting the long word being transferred. For example, if a misaligned 
operand spans the first two long words in the line being read, a bus error on the second 
transfer causes an exception, but a bus error on the third or last transfer does not, unless 
the execution unit has generated another operand access that references data in these 
transfers. 

Bus errors that occur during instruction prefetches are deferred until the processor 
attempts to use the information. For instance, if a bus error occurs while prefetching other 
instructions after a change-of-flow instruction (BRA, JMP, JSR, TRAP#n, etc.), BRA, JMP, 
JSR, TRAP#n execution of the new instruction flow clears the exception condition. This 
also applies to the not-taken branch for a conditional branch instruction, even though both 
sides of the branch are decoded. 

Processor accesses for either data or instructions can result in internal access faults. 
Internal access faults must be corrected to complete execution of the current context. Four 
types of internal access faults can occur: 

1. Push transfer faults occur when the execution unit is idle, the integer unit pipeline is 
frozen, the instruction and data cache requests are canceled (however, writes are 
not lost), and pending writes are stacked. 

2. Data access faults occur when the bus controller and the execution unit are idle. A 
data access fault freezes the pipeline and cancels any pending instruction cache 
accesses. Pending writes are stacked because the data cache is deadlocked until 
stacking transfers are initiated. 

8-6 MCF5102 USER'S MANUAL MOTOROLA 



3. Instruction access faults occur when the PC section is deadlocked because of the 
faulted data or another prefetch is required, the copyback stage is empty, and the 
data cache and bus controller are idle. Since instruction access faults are reset, they 
can be ignored. 

When an exception is detected, all parts of the execution unit either remain or are forced 
to idle, at which time the highest priority exception is taken. Restarting the instruction or a 
user-defined supervisor cleanup exception handler routine regenerates lower priority 
exceptions on the return from exception handling. Internal access faults and bus errors 
are reported after all other pending integer instructions complete execution. If an 
exception is generated during completion of the earlier instructions, the pending 
instruction fault is cleared, and the new exception is serviced first. The processor restarts 
the pending prefetch after completing exception handling for the earlier instructions and 
takes a bus error exception if the access faults again. For data access faults, the 
processor aborts current instruction execution. If a data access fault is detected, the 
processor waits for the current instruction prefetch bus cycle to complete, then begins 
exception processing immediately. 

As illustrated in Figure 8-1, the processor begins exception processing for an access fault 
by making an internal copy of the current SR. The processor then enters the supervisor 
mode and clears T1 and TO. The processor generates exception vector number 2 for the 
access fault vector. It saves the vector offset, PC, and internal copy of the SR on the 
stack. The saved PC value is the address of the instruction executing at the time the fault 
was detected. This instruction is not necessarily the one that initiated the bus cycle since 
the processor overlaps execution of instructions. It also saves information to allow 
continuation after a fault during a MOVEM instruction and to support other pending 
exceptions. The faulted address and pending write-back information is saved. The ~ 
information saved on the stack is sufficient to identify the cause of the bus error, complete ,..;. 
pending write-backs, and recover from the error. The exception handler must complete the 
pending write-backs. Up to three write-backs can be pending for push errors and data 
access errors. 

If a bus error occurs during the exception processing for an access fault, address error, or 
reset or while the processor is loading internal state information from the stack during the 
execution of an RTE instruction, a double bus fault occurs, and the processor enters the 
halted state as indicated by the PST3-PSTO encoding $5. In this case, the processor 
does not attempt to alter the current state of memory. Only an external reset can restart a 
processor halted by a double bus fault. 

The supervisor stack has special requirements to ensure that exceptions can be stacked. 
The stack must be resident with correct protection in the direction of growth to ensure that 
exception stacking never has a bus error or internal access fault. Memory allocated to the 
stack that are higher in memory than the current stack pointer can be nonresident since 
an RTE instruction can check for residency and trap before restoring the state. 

8.2.2 Address Error Exception 

An address error exception occurs when the processor attempts to prefetch an instruction 
from an odd address. This includes the case of a conditional branch instruction with an 

MOTOROLA MCF5102 USER'S MANUAL 8-7 



-

odd branch offset that is not taken. A prefetch bus cycle is not executed, and the 
processor begins exception processing after the currently executing instructions have 
completed. If the completion of these instructions generates another exception, the 
address error exception is deferred, and the new exception is serviced. After exception 
processing for the address error exception commences, the sequence is the same as an 
access fault exception, except that the vector number is 3 and the vector offset in the 
stack frame refers to the address error vector. The stack frame is generated containing 
the address of the instruction that caused the address error and the address itself (AO is 
cleared). If an address error occurs during the exception processing for a bus error, 
address error, or reset, a double bus fault occurs. 

8.2.3 Instruction Trap Exception 
Certain instructions are used to explicitly cause trap exceptions. The TRAP#n instruction 
always forces an exception and is useful for implementing system calls in user programs. 
The TRAPcc, TRAPV, CHK, and CHK2 instructions force exceptions if the user program 
detects an error, which can be an arithmetic overflow or a subscript value that is out of 
bounds. The DIVS and DIVU instructions force exceptions if a division operation is 
attempted with a divisor of zero. 

As illustrated in Figure 8-1, when a trap exception occurs, the processor internally copies 
the SR, enters the supervisor mode, and clears T1 and TO. The processor generates a 
vector number according to the instruction being executed. Vector 5 is for DIVx, vector 6 is 
for CHK and CHK2, and vector 7 is for TRAPcc, and TRAPV instructions. For the TRAP#n 
instruction, the vector number is 32 plus n. The stack frame saves the trap vector offset, 
the PC, and the internal copy of the SR on the supervisor stack. The saved value of the 
PC is the address of the instruction following the instruction that caused the trap. For all 
instruction traps other than TRAP#n, a pointer to the instruction that caused the trap is 
also saved. Instruction execution resumes at the address in the exception vector after the 
required instruction is prefetched. 

8.2.4 Illegal Instruction and Unimplemented Instruction 

An illegal instruction exception corresponds to vector number 4, and occurs when the 
processor attempts to execute an illegal instruction. An illegal instruction is an instruction 
that contains any bit pattern that does not correspond to the bit pattern of a valid 
MCF5102 instruction. An illegal instruction exception is also taken after a breakpoint 
acknowledge bus cycle is terminated, either by the assertion of the transfer acknowledge 
(TA) or the transfer error acknowledge (TEA) signal. An illegal instruction exception can 
also be a MOVEC instruction with an undefined register specification field in the first 
extension word. 

Instruction word patterns with bits 15-12 equal to $A do not correspond to legal 
instructions for the MCF5102 and are treated as unimplemented instructions. $A word 
patterns are referred to as an unimplemented instruction with A-line opcodes. When the 
processor attempts to execute an unimplemented instruction with an A-line opcode, an 
exception is generated with vector number 10, permitting efficient emulation of 
unimplemented instructions. 

8-8 MCF5102 USER'S MANUAL MOTOROLA 



Exception processing for illegal and unimplemented instructions is similar to that for 
instruction traps. When the processor has identified an illegal or unimplemented 
instruction, it initiates exception processing instead of attempting to execute the 
instruction. The processor copies the SR, enters the supervisor mode, and clears T1 and 
TO, disabling further tracing. The processor generates the vector number, either 4 or 10, 
according to the exception type. The illegal or unimplemented instruction vector offset, 
current PC, and copy of the SR are saved on the supervisor stack, with the saved value of 
the PC being the address of the illegal or unimplemented instruction. Instruction execution 
resumes at the address contained in the exception vector. It is the responsibility of the 
exception handling routine to adjust the stacked PC if the instruction is emulated in 
software or is to be skipped on return from the exception handler. 

8.2.5 Privilege Violation Exception 

To provide system security, some instructions are privileged. An attempt to execute one of 
the following privileged instructions while in the user mode causes a privilege violation 
exception: 

ANDI to SR 

CINV 

CPU SH 

EORI to SR 

MOVE from SR 

MOVE to SR 

MOVE USP 

MOVEC 

MOVES 

ORI to SR 

PFLUSH 

PTEST 

RESET 

RTE 

STOP 

Exception processing for privilege violations is similar to that for illegal instructions. When 
the processor identifies a privilege violation, it begins exception processing before 
executing the instruction. As illustrated in Figure 8-1, the processor copies the SR, enters 
the supervisor mode, and clears the trace bits. The processor generates vector number 8, ~ 
saves the privilege violation vector offset, the current PC value, and the internal copy of ~ 
the SR on the supervisor stack. The saved value of the PC is the address of the first word 
of the instruction that caused the privilege violation. Instruction execution resumes after 
the required prefetches from the address in the privilege violation exception vector. 

8.2.6 Trace Exception 

The MCF5102 can be programmed to trace all instructions or only instructions that change 
program flow. In the trace mode, an instruction generates a trace exception after the 
instruction completes execution, allowing a debugging program to monitor execution of a 
program. 

In general terms, a trace exception is an extension to the function of any traced 
instruction. The execution of a traced instruction is not complete until trace exception 
processing is complete. If an instruction does not complete due to an access fault or 
address error exception, trace exception processing is deferred until after execution of the 
suspended instruction is resumed. If an interrupt is pending at the completion of an 
instruction, trace exception processing occurs before interrupt exception processing starts. 
If an instruction forces an exception as part of its normal execution, the forced exception 
processing occurs before the trace exception is processed. 

MOTOROLA MCF5102 USER'S MANUAL 8-9 



The T1 and TO bits in the supervisor portion of the SR control tracing. The state of these 
bits when an instruction begins execution determines whether the instruction generates a 
trace exception after the instruction completes. T1 and TO bit = $1 causes an instruction 
that forces a change of flow to take a trace exception. The following instructions cause a 
trace exception to be taken when trace on change of flow is enabled. 

ANDI to SR 
Bee (Taken) 
BRA 
BSR 
CAS 

CAS2 
CINV 
CPU SH 
DBcc (Taken) 
EORI to SR 

JMP 
JSR 
MOVEC 
MOVES 
MOVE to SR 

MOVE USP 
NOP 
ORI to SR 
RTR 
RTD 

RTE 
RTS 
STOP 

Instructions that increment the PC normally do not take the trace exception. This mode 
also includes SR manipulations because the processor must prefetch instruction words 
again to fill the pipeline any time an instruction that modifies the SR is executed. Table 8-2 
lists the different trace modes. 

Table 8-2. Tracing Control 

T1 TO Tracing Function 

0 0 No Tracing 

0 1 Trace on Change of Flow 

1 0 Trace on Instruction Execution (Any Instruction) 

1 1 Undefined, Reserved 

When the processor is in the trace mode and attempts to execute an illegal or 
unimplemented instruction, that instruction does not cause a trace exception since the 
instruction is not executed. This is of particular importance to an instruction emulation 
routine that performs the instruction function, adjusts the stacked PC to skip the 
unimplemented instruction, and returns. Before returning, the trace bits of the SR on the 
stack should be checked. If tracing is enabled, the trace exception processing should also 
be emulated for the trace exception handler to account for the emulated instruction. 

Trace exception processing starts at the end of normal processing for the traced 
instruction and before the start of the next instruction. As illustrated in Figure 8-1, the 
processor makes an internal copy of the SR, and enters the supervisor mode. It also 
clears the T1 and TO bits of the SR, disabling further tracing. The processor supplies 
vector number 9 for the trace exception and saves the trace exception vector offset, PC 
value, and the internal copy of the SR on the supervisor stack. The saved value of the PC 
is the address of the next instruction to be executed. Instruction execution resumes after 
the required prefetches from the address in the trace exception vector. 

When the STOP instruction is traced, the processor never enters the stopped condition. A 
STOP instruction that begins execution with the trace bits equal to $3 forces a trace 
exception after it loads the SR. Upon return from the trace exception handler, execution 
continues with the instruction following the STOP instruction, and the processor never 
enters the stopped condition. · 

8-10 MCF5102 USER'S MANUAL MOTOROLA 



8.2.7 Format Error Exception 

Just as the processor checks for valid prefetched instructions, it also performs some 
checks of data values for control operations. The RTE instruction checks the validity of the 
stack format code. If any of these checks determine that the format of the data is 
improper, the instruction generates a format error exception. This exception saves a stack 
frame, generates exception vector number 14, and continues execution at the address in 
the format exception vector. The stacked PC value is the address of the instruction that 
detected the format. 

8.2.8 Breakpoint Instruction Exception 

To use the MCF5102 in a hardware emulator, the processor must provide a means of 
inserting breakpoints in the emulator code and performing appropriate operations at each 
breakpoint. Inserting an illegal instruction at the breakpoint and detecting the illegal 
instruction exception from its vector location can achieve this. However, since the VBR 
allows arbitrary relocation of exception vectors, the exception address cannot reliably 
identify a breakpoint. Consequently, the processor provides a breakpoint capability with a 
set of breakpoint exceptions, $4848-$484F. 

When the MCF5102 executes a breakpoint instruction, it performs a breakpoint 
acknowledge cycle (read cycle) with an acknowledge transfer type and transfer modifier 
value of $0. Refer to Section 7 Bus Operation for a description of the breakpoint 
acknowledge cycle. After external hardware terminates the bus cycle with either TA or 
TEA, the processor performs illegal instruction exception processing. 

8.2.9 Interrupt Exception 

When a peripheral device requires the services of the MCF5102 or is ready to send 
information that the processor requires, it can signal the processor to take an interrupt 
exception using the active-low IPL2-IPLO signals. The three signals encode a value of 0-7 
(IPLO is the least significant bit). High levels on all three signals correspond to no interrupt 
requested (level O). Values 1-7 specify one of seven levels of interrupts, with level 7 
having the highest priority. Table 8-3 lists the interrupt levels, the states of IPL2-IPLO that 
define each level, and the SR interrupt mask value that allows an interrupt at each level. 

MOTOROLA MCF5102 USER'S MANUAL 8-11 



-

Table 8-3. Interrupt Levels and Mask Values 

Requested Control Line Status Interrupt Mask Level 

Interrupt Level iJ5[2 iJSIT iJ5[Q Required for Recognition 

0 High High High No Interrupt Requested 

1 High High Low 0 

2 High Low High 0-1 

3 High Low Low 0-2 

4 Low High High 0-3 

5 Low High Low 0-4 

6 Low Low High 0-5 

7 Low Low Low 0-7 

When an interrupt request has a priority higher than the value in the interrupt priority mask 
of the SR (bi.ts 10-8), the processor makes the request a pending interrupt. Priority level 
7, the nonmaskable interrupt, is a special case. Level 7 interrupts cannot be masked by 
the interrupt priority mask, and they are transition sensitive. The processor recognizes an 
interrupt request each time the external interrupt request level changes from some lower 
level to level 7, regardless of the value in the mask. Figure 8-3 shows two examples of 
interrupt recognition, one for level 6 and one for level 7. When the MCF5102 processes a 
level 6 interrupt, the SR mask is automatically updated with a value of 6 before entering 
the handler routine so that subsequent level 6 interrupts and lower level interrupts are 
masked. Provided no instruction that lowers the mask value is executed, the external 
request can be lowered to level 3 and then raised back to level 6 and a second level 6 
interrupt is not processed. However, if the MCF5102 is handling a level 7 interrupt (SR 
mask set to level 7) and the external request is lowered to level 3 and than raised back to 
level 7, a second level 7 interrupt is processed. The second level 7 interrupt is processed 
because the level 7 interrupt is transition sensitive. A level comparison also generates a 
level 7 interrupt if the request level and mask level are at 7 and the priority mask is then 
set to a lower level (with the MOVE to SR or RTE instruction, for example). The level 6 
interrupt request and mask level example in Figure 8-3 is the same as for all interrupt 
levels except 7. 

8-12 MCF5102 USER'S MANUAL MOTOROLA 



w 

~ ,._ _, 
w 
a; _, 

EXTERNAL INTERRUPT PRIORITY 
IPL2-IPLO MASK (12-10) ACTION 

.__ ____ 1_00_($_3) ___ ~ ____ 1_01_($_5) _________ _.I (INITIAL CONDITIONS) 

' IF 001 ($6) THEN 110($6) AND LEVEL 6 INTERRUPT (LEVEL COMPARISON) 

IF 100 ($3) AND STILL 110 ($6) THEN NO ACTION 

IF 001 ($6) AND STILL 110 ($6) THEN NO ACTION 

IF STILL 001 ($6) AND RTE SO THAT 101 ($5) THEN LEVEL 6 INTERRUPT (LEVEL COMPARISON) 

100 ($3) 101 ($5) (INITIAL CONDITIONS) 
~--------~--------------~ 

IF 000 ($7) THEN 111 ($7) AND LEVEL 7 INTERRUPT (TRANSITION) 

IF 100 ($3) AND STILL 111 ($7) THEN NO ACTION 

IF 000 ($7) AND STILL 111 ($7) THEN NO ACTION (TRANSITION) 

IF STILL 000 ($7) AND RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT (LEVEL COMPARISON) 

Figure 8-3. Interrupt Recognition Examples 

Note that a mask value of 6 and a mask value of 7 both inhibit request levels of 1-6 from 
being recognized. In addition, neither masks a transition to an interrupt request level of 7. 
The only difference between mask values of 6 and 7 occurs when the interrupt request 
level is 7 and the mask value is 7. If the mask value is lowered to 6, a second level 7 
interrupt is recognized. 

External circuitry can chain or otherwise merge signals from devices at each level, 
allowing an unlimited number of devices to interrupt the processor. When several devices 
are connected to the same interrupt level, each device should hold its interrupt priority 
level constant until its corresponding interrupt acknowledge bus cycle ensures that all 
requests are processed. Refer to Section 7 Bus Operation for details on the interrupt 
acknowledge cycle. 

MOTOROLA MCF5102 USER'S MANUAL 8-13 



-

Figure 8-4 illustrates a flowchart for interrupt exception processing. When processing an 
interrupt exception, the processor first makes an internal copy of the SR, sets the mode to 
supervisor, suppresses tracing, and sets the processor interrupt mask level to the level of 
the interrupt being serviced. The processor attempts to obtain a vector number from the 
interrupting device using an interrupt acknowledge bus cycle with the interrupt level 
number output on the transfer modifier signals. For a device that cannot supply an 
interrupt vector, the autovector signal (AVEC) must be asserted. In this case, the 
MCF5102 uses an internally generated autovector, which is one of vector numbers 25-31, 
that corresponds to the interrupt level number (see Table 8-1 ). If external logic indicates a 
bus error during the interrupt acknowledge cycle, the interrupt is considered spurious, and 
the processor generates the spurious interrupt vector number, 24. 

Once the vector number is obtained, the processor saves the exception, PC value, and 
the internal copy of the SR on the active supervisor stack. The saved value of the PC is 
the address of the instruction that would have been executed had the interrupt not 
occurred. 

If the M-bit of the SR is set, the processor clears the M-bit and creates a throwaway 
exception stack frame on top of the interrupt stack as part of interrupt exception 
processing. This second frame contains the same PC value and vector offset as the frame 
created on top of the master stack, but has a format number of $1. The copy of the SR 
saved on the throwaway frame has the S-bit set, the M-bit clear, and the interrupt mask 
level set to the new interrupt level. It may or may not be set in the copy saved on the 
master stack. The resulting SR (after exception processing) has the S-bit set and the M-bit 
cleared. The processor loads the address in the exception vector into the PC, and normal 
instruction execution resumes after the required prefetches for the interrupt handler 
routine. 

Most M68000 family peripherals use programmable interrupt vector numbers as part of 
the interrupt acknowledge operation for the system. If this vector number is not initialized 
after reset and the peripheral must acknowledge an interrupt request, the peripheral 
usually returns the vector number for the Uninitialized interrupt vector, 15. 

8-14 MCF5102 USER'S MANUAL MOTOROLA 



MOTOROLA 

ENTRY 

SAVE INTERNAL 
COPY OF SR 

s = 1 
T1, TO = 00 

12-10 = LEVEL OF 
INTERUPT 

FETCH VECTOR 
FROM INTERRUPTING 

DEVICE 

BUS ERROR 

SPURIOUS INTERRUPT 
VECTOR #24 

IFM =0 
THEN VECTOR OFFSET, 
PC, AND SR t ACTIVE 
STACK FRAME 

OTHERWISE 

M. O; VECTOR 
OFFSET, PC, AND SR 
•THROWAWAY 
STACK FRAME ON ISP 

VECTORt PC 
BUS ERR~ 

PREFETCH FOUR 
LONGWORDS 

OTHERWISE 
BEGIN INSTRUCTION 

EXECUTION 

~ 

BUS ERROR OR 
ADDRESS ERROR 

(DOUBLE BUS FAULT} 

HALTED STATE 
(PST3-PSTO = $5) 

EXIT 

Figure 8-4. Interrupt Exception Processing Flowchart 

MCF5102 USER'S MANUAL 

Cl 

8-15 



-

8.2.10 Reset Exception 

Asserting the reset in input signal causes a reset exception. The reset exception has the 
highest priority of any exception it provides for system initialization and recovery from 
catastrophic failure. Reset also aborts any processing in progress when RSTI is 
recognized processing cannot be recovered. Figure 8-5 is a flowchart of the reset 
exception processing. 

The reset exception places the processor in the interrupt mode of the supervisor privilege 
mode by setting the S-bit and clearing the M-bit and disables tracing by clearing the T1 
and TO bits in the SR. This exception also sets the processor's interrupt priority mask in 
the SR to the highest level, level 7. Next the VBR is initialized to zero ($00000000), and 
the enable bits in the cache control register (CACR) for the on-chip caches are cleared. 
The reset exception also clears the enable bit in the .access control registers. An interrupt 
acknowledge bus cycle is begun to generate a vector number. This vector number 
references the reset exception vector (two long words, vector numbers 0 and 1) at offset 
zero in the supervisor address space. The first long word is loaded into the interrupt stack 
pointer, and the second long word is loaded into the PC. Reset exception processing 
concludes with the prefetch of the first four long words beginning at the memory location 
pointed to by the PC. 

8-16 MCF5102 USER'S MANUAL MOTOROLA 



ENTRY 

s = 1 
M = 0 

T1,TO = 0 
12:10 = $7 
VBR = $0 

CACR = $0 
DTin[E·bit] = 0 
ITin[E-bit] = 0 

FETCH VECTOR #0 

VECTOR #0 tsP 

FETCH VECTOR #1 

VECTOR #1 • PC 

PREFETCH 4 
LONGWORDS 

OTHERWISE 
BEGIN INSTRUCTION 

EXECUTION 

EXIT 

BUS ERROR 

(DOUBLE BUS FAULT) 

(DOUBLE BUS FAULT) 

BUS ERROR OR 
ADDRESS ERROR 

(DOUBLE BUS FAULT) 

HALTED STATE 
(PST3-PSTO = $5) 

EXIT 

Figure 8-5. Reset Exception Processing Flowchart 

After the initial instruction is prefetched, program execution begins at the address in the 
PC. The reset exception does not flush the PVs or invalidate entries in the instruction or 
data caches it does not save the value of either the PC or the SR. If an access fault or 
address error occurs during the exception processing sequence for a reset, a double bus 
fault is generated. The processor halts, and the processor statl!S (PST3-PSTO} signals 
indicate $5. Execution of the reset instruction does not cause a reset exception, or affect 

MOTOROLA MCF5102 USER'S MANUAL 8-17 



any internal registers, but it does cause the MCF5102 to assert the reset out (RSTO) 
signal, resetting all external devices. 

8.3 EXCEPTION PRIORITIES 

When several exceptions occur simultaneously, they are processed according to a fixed 
priority. Table 8-4 lists the exceptions, grouped by characteristics. Each group has a 
priority, from 0-6, with 0 as the highest priority. 

Table 8-4. Exception Priority Groups 

Group/ Exception and Relative Priority Characteristics 
Priority 

0 Reset Aborts all processing (instruction or exception) and does not 
save.old context. 

1 Data Access Error Aborts current instructions 
(PV Fault or Bus Error) 

2 BKPT #n, CHK, CHK2, Divide by Zero, Exception processing is part of instruction execution. 
RTE,TRAP#n,TRAPV 

Illegal Instruction, Unimplemented A- Line, Exception processing begins before instruction is executed. 
Privilege Violation 

3 Address Error Reported after all previous instructions and associated 
exceptions have completed. 

4 Trace Exception processing begins when current instruction or 
previous exception processing has completed. 

5 Instruction Access Error Reported after all previous instructions and associated 
(PV Fault or Bus Error) exceptions have completed. 

6 Interrupt Exception processing begins when current instruction or 
previous exception processing has completed. 

The method used to process exceptions in the MCF5102 is significantly different from that 
used in earlier members of the M68000 processor family due to the restart exception 
model. In general, when multiple exceptions are pending, the exception with the highest 
priority is processed first, and the remaining exceptions are regenerated when the current 
instruction restarts. Note that the reset operatior:i clears all other exceptions except in the 
following circumstances: 

• As soon as the MCFS 102 has completed exception processing for a condition when 
an interrupt exception is pending, it begins exception processing for the interrupt 
exception instead of executing the exception handler for the original exception 
condition. For example, if simultaneous interrupt and trap exceptions are pending, the 
exception processing for the trap exception occurs first, followed immediately by 
exception processing for the interrupt. When the processor resumes normal 
instruction execution, it is in the interrupt handler, which returns to the trap exception 
handler. 

8-18 MCF5102 USER'S MANUAL MOTOROLA 



• Exception processing for access error exceptions creates a format $7 stack frame 
that contains status information that can indicate a pending trace. The RTE instruction 
used to return from the access error exception handler checks the status bits for one 
of these pending exceptions. If one is indicated, the RTE changes the access error 
stack frame to match the pending exception and fetches the vector for the exception. 
Instruction execution then resumes in the new exception handler. 

• If a trace exception is pending at the same time an exception priority level 2, the trace 
exception is not reported, and the exception handler for the other exception condition 
must check for the trace condition. 

8.4 RETURN FROM EXCEPTIONS 

After the processor has completed executing the exception handlers for all pending 
exceptions, the processor resumes normal instruction execution at the address in the 
processor's vector table for the last exception processed. Once the exception handler has 
completed execution, if possible the processor must return the system context as it was 
prior to the exception using the RTE instruction. (If the internal data of the exception stack 
frames are manipulated, MCF5102 may enter into an undefined state this applies 
specifically to the SSW on the access error stack frame.) 

When the processor executes an RTE instruction, it examines the stack frame on top of 
the active supervisor stack to determine if it is a valid frame and what type of context 
restoration it requires. If during restoration, a stack frame has an odd address PC and an 
SR that indicates user trace mode enabled, then an address error is taken. The SR 
stacked for the address error has the SR S-bit set. When the MCF5102 writes or reads a 
stack frame, it uses long-word operand transfers wherever possible. Using a long-word- ~ 
aligned stack pointer greatly enhances exception processing performance. The processor ~ 
does not necessarily read or write the stack frame data in sequential order. The system 
software should not depend on a particular exception generating a particular stack frame. 
For compatibility with future devices, the software should be able to handle any format of 
stack frame for any type of exception. The following paragraphs discuss in detail each 
stack frame format. 

8.4.1 Four-Word Stack Frame (Format $0) 

If a four-word stack frame is on the active stack and an RTE instruction is encountered, 
the processor updates the SR and PC with the data read from the stack, increments the 
stack pointer by eight, and resumes normal instruction execution. 

MOTOROLA MCF5102 USER'S MANUAL 8-19 



-

Stack Frames Exception Types Stacked PC Points To . Interrupt . Next Instruction 
• Format Error . RTE or RESTORE 

15 0 Instruction 
SP_. STATUS REGISTE:R . TRAP #N . Next Instruction 

+$02 • Illegal Instruction • Illegal Instruction 
PROGRAM COUNTER • A-Line Instruction . A-Line Instruction 

+$06 0000 l VECTOR OFFSET . Privilege Violation . First Word of Instruction 

FOUR-WORD STACK FRAME-FORMAT$0 
Causing Privilege Violation 

8.4.2 Four-Word Throwaway Stack Frame (Format $1) 

If a four-word throwaway stack frame is on the active stack and an RTE instruction is 
encountered, the processor increments the active stack pointer by eight, updates the SR 
with the value read from the stack, and then begins RTE processing again, as illustrated in 
Figure 8-6. The processor reads a new format word from the stack frame on top of the 
active stack (which may or may not be the same stack used for the previous operation) 
and performs the proper operations corresponding to that format. In most cases, the 
throwaway frame is on the interrupt stack, and when the SR value is read from the stack, 
the S-bit and M-bit are set. In that case, there is a normal four-word frame on the master 
stack. However, the second frame can be any format (even another throwaway frame) 
and can reside on any of the three system stacks. 

Stack Frames Exception Types Stacked PC Points To 

15 0 . Created on interrupt stack . Next Instruction: same as 
SP->! STATUS REGISTER during interrupt exception on master stack. 

+$02 
PROGRAM COUNTER 

processing when transition 
from master state to 

+$06 0001 l VECTOR OFFSET interrupt state occurs. 

THROWAWAY FOUR-WORD STACK FRAME-FORMAT$1 

8-20 MCF5102 USER'S MANUAL MOTOROLA 



INVALID FORMAT 
WORD 

TAKE FORMAT 
ERROR EXCEPTION 

ENTRY 

TEMP • (SP)+ 
READ FORMAT WORD 

OTHERWISE t- FORMAT CODE= $1 
(THROWAWAY 

FRAME) 
OTHERWISE 

?----.. MAT CODE·~ 
OTHERWISE (4-WORD FRAME) 

SR • TEMP 
SP • SP+ 6 

OTHER FORMATS PC • (SP)+ 
SP • SP+S 
SR • TEMP 

EXIT 

Figure 8-6. Flowchart of RTE Instruction for Throwaway Four-Word Frame 

8.4.3 Six-Word Stack Frame (Format $2) 

If a six-word throwaway stack frame is on the active stack and an RTE instruction is 
encountered, the processor restores the SR and PC values from the stack, increments the 
active supervisor stack pointer by $C, and resumes normal instruction execution. 

Stack Frames Exception Types Stacked PC Points To 

15 0 . CHK, CHK2, TRAPcc, . Next Instruction: address is 
SP- STATUS REGISTER TRAPV, Trace, or Zero the address of the 

+$02 Divide instruction that caused the 
PROGRAM COUNTER exception. 

+$06 0010 l VECTOR OFFSET . Address Error . Instruction that caused the 

+$08 address error, address is 
ADDRESS the reference address - 1. 

SIX-WORD STACK FRAME-FORMAT $2 

MOTOROLA MCF5102 USER'S MANUAL 8·21 



-

8.4.4 Eight-Word Stack Frames 

If an eight-word throwaway stack frame is on the active stack and an RTE is encountered, 
the processor restores the SR and PC values from the stack, increments the active 
supervisor stack pointer by $10, and resumes normal execution. 

Eight-Word Stack Frame (Format $4) 

Stack Frames Exception Types Stacked PC Points To 

15 0 . Unimplemented floating- . Effective address field is 

SP-> STATUS REGISTER point instruction the address of the faulted 

+$02 PROGRAM COUNTER 
instruction operand. 

+$06 0100 1 VECTOR OFFSET 

+$08 EFFECTIVE ADDRESS 

+$0C 
PC OF FAULTED 
INSTRUCTION 

When the MCF5102 writes or reads a stack frame, it uses long-word operand transfers 
wherever possible. Using a long-word-aligned stack pointer greatly enhances exception 
processing performance. The processor does not necessarily read or write the stack 
frame data in sequential order. The system software should not depend on a particular 
exception generating a particular stack frame. 

8.4.5 Access Error Stack Frame (Format $7) 

A 30-word access error stack frame is created for data and instruction access faults other 
than instruction address errors. In addition to information about the current processor 
status and the faulted access, the stack frame also contains pending write-backs that the 
access error exception handler must complete. The following paragraphs describe in 
detail the format for this frame and how the processor uses it when returning from 
exception processing. 

8-22 MCF5102 USER'S MANUAL MOTOROLA 



Stack Frames Exception Types Stacked PC Points To 
15 0 . Data or Instruction Access . Next Instruction 

SP- STATUS REGISTER Fault (PV Fault or Bus 
+$02 PROGRAM COUNTER 

Error) 

+$06 0111 I VECTOR OFFSET 
+$08 EFFECTIVE ADDRESS (EA) -
+$0A 
+$0C SPECIAL STATUS WORD]sswI 
+$OE $00 I WRITE-BACK 3 STATUS (WB3S) 
+$10 $00 I WRITE-BACK 2 STATUS~2@ 
+$12 $00 }WRITE-BACK 1 STATUs:Iws1§I 
+$14 

FAULT ADDRESS (FA) 

+$18 
!---WRITE-BACK 3 ADDRESS (WB3A)-

+$1C 
!----WRITE-BACK 3 DATA (WB3D) 

+$20 
r---WRITE-BACK 2 ADDRESS (WB2A)-

+$24 r---- WRITE-BACK 2 DATA (WB2D)-

+$28 
r---WRITE-BACK 1 ADDRESS (WB1A)-

+$2C 
WRITE-BACK 1 DATNPUSH DATALWO (WB1D/PDO) 

+$30 
PUSH DATA LW 1 (PD1) 

+$34 
PUSH DATA LW 2 (PD2) 

+$38 
PUSH DATA LW 3 (PD3) 

ACCESS ERROR STACK FRAME 
(30 WORDS)-FORMAT $7 

8.4.5.1 Effective Address. The effective address contains address information when one 
of the continuation flags CM, CT, CU, or CP in the SSW is set. 

8.4.5.2 Special Status Word (SSW). The SSW information indicates whether an access 
to the instruction stream or the data stream (or both) caused the fault and contains status 
information for the faulted access. Figure 8-7 illustrates the SSW format. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I a 0 I CT CM MA PV LK RW x SIZE TT TM 

Figure 8-7. Special Status Word Format 

CT-Continuation of Trace Exception Pending 
CT is set for an access error with a pending trace exception. When RTE is executed 
with CT set, the MCF5102 will move the words on the stack an offset of $00-$08 from 
the current SP to offset $30-$38, adjusting the stack pointer by +$30. The MCF5102 

MOTOROLA MCF5102 USER'S MANUAL 8-23 

-



changes the stack frame format to $2 before fetching the trace exception vector and 
jumping directly to trace exception handling. This stack adjustment creates the stack 
frame that normally would have been created for the trace exception had the pending 
access not encountered a bus error. 

CM-Continuation of MOVEM Instruction Execution Pending 
CM is set if a data access encounters a bus error for a MOVEM. Since the MOVEM 
operation can write over the memory location or registers used to calculate the effective 
address, the MCF5102 internally saves the effective address after calculation. When 
MOVEM encounters a bus error, a stack frame is created with CM set, and the effective 
address field contains the calculated effective address for the instruction. When RTE is 
executed, MOVEM restarts using the effective address on the stack (instead of 
repeating the effective address calculate operation) if the address mode is PC relative 
(mode = 111, register= 01 O or 011) or indirect with index (mode = 11 O). 

MA-Misaligned Access 
MA is set if an Privilege violation occurs for second-ACR access that crosses two ACR's 
in memory. 

PY-Privileged Violation Fault 
This bit is set. WHEN A WRITE OR SUPERVISOR PRIVILEGE VIOLATION IS 
REPORTED BY THE ACR. It is cleared for a bus-error instruction, data, or cache line
push access. 

LK-Locked Transfer (Read-Modify-Write) 
This bit is set if a fault occurred on a locked transfer it is cleared otherwise. 

RW-Read/Write 
This bit is set if a fault occurred on a read transfer it is cleared otherwise. 

X-Undefined 

SIZE-Transfer Size 
The SIZE field corresponds to the original access size. If a data cache line read results 
from a read miss and the line read encounters a bus error, the SIZE field in the resulting 
stack frame indicates the size of the original read generated by the execution unit. 

TT-Transfer Type 
This field defines the TT1-TTO signal encodings for the faulted transfer. 

TM-Transfer Modifier 

This field defines the TM2-TMO signal encodings for the faulted transfer. 

8-24 MCF5102 USER'S MANUAL MOTOROLA 



8.4.5.3 Write-Back Status. These fields contain status information for the three possible 
write-backs that could be pending after the faulted access (see Figure 8-8). For a data 
cache line-push fault or a MOVE16 write fault, WB1 S is zero (invalid). 

7 6 5 

I v I SIZE 

TM-Transfer Modifier 
TT-Transfer Type 
SIZE-Transfer Size 

4 3 2 1 0 

TT TM 

V-Valid Write (write-back pending if set) 

Figure 8-8. Write-Back Status Format 

8.4.5.4 Fault Address. The fault address (FA) is the initial address for the access that 
faulted. For a misaligned access that faults, the FA field contains the address of the first 
byte of the transfer, regardless of which of the two or three bus transfers for the 
misaligned access was faulted. 

8.4.5.5 Write-Back Address and Write-Back Data. Write-back addresses (WB3A, 
WB2A, and WB1A) are memory pointers that indicate where to place the write-back data 
(WB3D, WB2D, and WB1 D). WB3A and WB3D correspond to the temporary holding 
register in the integer unit (WB3). WB2A and WB2D correspond to the temporary holding 
register in the data ACU (WB2) prior to address translation. WB1A and WB1D correspond 
to the temporary holding register in the bus controller (WB1), which determines the 
external address and data bus bit patterns. Refer to Section 2 Integer Unit for details on 
the operation of the integer unit pipeline. 

The write-back data in WB3D and WB2D is register aligned with byte and word data 
contained in the least significant byte and word, respectively, of the field. Write-back data 
in WB1 D is memory aligned and resides in the byte positions corresponding to the data 
bus lanes used in writing each byte to memory. Table 8-5 lists the data alignment for each 
combination of data format and A1 and AO. 

MOTOROLA MCF5102 USER'S MANUAL 8-25 

-



Table 8-5. Write-Back Data Alignment 

Address Data Alignment 

Data Format A1 AO WB1D WB2D, WB3D 

Byte 0 0 31-24 7-0 
0 1 23-16 7-0 
1 0 15-8 7-0 
1 1 7-0 7-0 

Word 0 0 31-16 15-0 
0 1 23-8 15-0 
1 0 15-Q 15-0 
1 1 7-0,31-24 15-0 

Long Word 0 0 31-0 31-0 
0 1 23-0,31-24 31-0 
1 0 15-0, 31-16 31-0 
1 1 7-0,31-8 31-0 

NOTE: For a line transfer fault, the four long words of data in PD3-
PDO are already aligned with memory. Bits 31-0 of each field 
correspond to bits 31-0 of the memory location to be written to, 
regardless of the value of the address bits A 1 and AO for the 
write-back address. 

8.4.5.6 Push Data. The push data field contains an image of the cache line that needs to 
be pushed to memory. 

8.4.5.7 Access Error Stack Frame Return From Exception. For the access error stack 
frame (format $7), the processor restores the SR and PC values from the stack and 
checks the four continuation status bits in the SSW on the stack. If these bits are not set, 
the processor increments the active supervisor stack pointer by 30 words and resumes 
normal instruction execution. If the MOVEM continuation bit is set, the processor restores 
the calculated effective address from the stack frame, increments the active supervisor 
stack pointer by 30 words, and restarts the MOVEM instruction at a point after the 
effective address calculation. All operand accesses for the MOVEM that occurred before 
the faulted access are repeated. If a continuation bit is set for a pending trace, 
unimplemented floating-point instruction, or floating-point post-instruction exception, the 
processor restores the calculated effective address from the stack frame, increments the 
active supervisor stack pointer by 30 words, and immediately begins exception processing 
for the pending exception. The processor sets only one of the continuation bits when the 
access error stack frame is created. If the access error exception handler sets multiple 
bits, operation of the RTE instruction is undefined. 

If the frame format field in the stack frame contains an illegal format code, a format 
exception occurs. If a format error or access fault exception occurs during the frame 
validation sequence of the RTE instruction, the processor creates a normal four-word or 
an access error stack frame below the frame that it was attempting to use. The illegal 
stack frame remains intact, so that the exception handler can examine or repair the illegal 
frame. In a multiprocessor system, the illegal frame can be left so that, when appropriate, 
another processor of a different type can use it. 

8-26 MCF5102 USER'S MANUAL MOTOROLA 



The bus error exception handler can identify bus error exceptions due to instruction faults 
by examining the TM field in the SSW of the access error stack frame. For user and 
supervisor instruction faults, the TM field contains $2 and $6, respectively (see Figure 
8-7). Since the processor allows all pending accesses to complete before reporting an 
instruction fault, the stack frame for an instruction fault will not contain any pending write
backs. The PV bit of the SSW is used to distinguish between PV faults and bus errors, 
and the FA field contains the address of the instruction prefetch. 

For an address error fault, the processor saves a format $2 exception stack frame on the 
stack. This stack frame contains the PC pointing to the instruction that caused the address 
error as well as the actual address referenced by the instruction. Note that bit 0 of the 
referenced address is cleared on the stack frame. Address error faults must be repaired in 
software. 

For a fault due to a Privileged violation or bus error, pending write-backs are also saved 
on the access error stack frame and must be completed by the exception handler. For the 
faulted access, the fault address in the FA field combined with the transfer attribute 
information from the SSW can be used to identify the cause of the fault. In identifying the 
fault, the system programmer should be aware that the ACU considers the read portion of 
read-modify-write transfers 

All accesses other than instruction prefetches go through the data ACU, and the 
MCF5102 treats the instruction and data address spaces as a single merged address 
space (the exception is the presence of separate transparent translation registers). The 
function codes for accesses such as PC relative operand addressing and MOVES 
transfers to function codes $2 and $6 are converted to data references to go through the 
ACU, and appear in the TM field of the access error stack frame as data references. 

After the fault is corrected, any pending write-backs on the stack frame must be 
completed. The write-back status fields should be checked for possible write-backs, which 
the exception handler should complete in the following order: write-back 1, write-back 2, 
and write-back 3. For a push fault, the push must be completed first, followed by two 
potential write-backs. Completion of write-back 1 should not generate another access 
error since this write-back corresponds to the faulted access that has been corrected by 
the handler. However, write-backs 2 and 3 can cause another bus error exception when 
the handler attempts to write to memory and should be checked before attempting the 
write to prevent nesting of exceptions if required by the operating system. The following 
general bus fault examples indicate the resulting contents of the access error stack frame 
fields: 

1. All Read Access Errors (SSW-RW = $1, TT= $0, TM= $1 or $5)-The FA field 
contains the address of the fault. The WB1S and WB2S fields are zero, and only 
WB3S can indicate an additional write-back. 

2. Cache Push Bus Error (SSW-RW = $0, TT = $0, TM = $0)-The assertion of TEA 
causes this error when a cache push bus cycle is in progress. The FA field contains 
the address of the fault, and the WB1 S field is ignored. All four long words of the 
data for a push are contained in LW3-LWO regardless of the size of the transfer. 
The size of the transfer is indicated in the SIZE field of the SSW and can be either a 
line or long word. If a line is indicated, all four long words need to be pushed out. If a 

MOTOROLA MCF5102 USER'S MANUAL B-27 



long word is indicated, all four long words can be written out, or bits 3 and 2 of the 
FA field can be evaluated to indicate which long words need to be written out to 
memory ($3, $2, $1, and $0 indicate LW3, LW2, LW1, and LWO, respectively). The 
WB2S and WB3S fields indicate up to two additional write-backs. If WB2S is valid 
and if it indicates a MOVE16 instruction, no data should be written out for that write
back slot. 

3. Normal Write Bus Error (SSW-RW = $0, TT= $0, TM = $1 or $5)-The assertion of 
TEA causes this error when a normal write bus cycle is in progress. The FA field 
contains the address of the fault, and the WB1 S field indicates that it is valid. The FA 
and WB1A are equivalent. The WB2S and WB3S fields indicate up to two additional 
write-backs. 

4. MOVE 16 Write Bus Error (SSW-RW = $0, TT= $1 )-The assertion of TEA causes 
this error during the write portion of a MOVE16 instruction. The FA field contains the 
address of the fault, and the WB 1 S field indicates that it is valid. All four long words 
are contained in LW3-LWO and must be written out before using FA. Software must 
ensure that address bits 1 and 0 are both clear if regular move instruction are to be 
used to write out to the destination. 

5. ACR Privileged Violation(SSW-RW = $0, WB1S-V = $0)-The FA field contains the 
address of the faulted instruction, WB1 S = 0, and WB2S indicates that it is valid. 
Only WB3S can indicate an additional write-back. If WB2S indicates a MOVE16 
instruction and if the MOVE16 instruction is used to read from a peripheral that 
cannot tolerate double reads, then software must write the data contained in PD3-
PDO out to memory and increment the stacked PC to take it beyond the MOVE16 
instruction that caused the fault. Otherwise, if the MOVE 16 instruction is allowed to 
be restarted, another read from the peripheral would occur. If double reads can be 
tolerated, simply do no write-backs and allow instruction to restart. This is the only 
case in which the action to be taken depends on whether or not a double read can 
be tolerated. 

Table 8-6 lists the possible combinations of write-backs and the proper way to handle 
them. The SSW_RW column indicates a read or write cycle; the SSW_PUSH column 
indicates whether the fault is for a push (TT= 00 and TM = 000). The WB1 S, WB2S, and 
WB3S columns list the respective field's V-bit and indicate a MOVE16 transfer type (TT= 
01 ). The easy cleanup data written column lists the stack's field to be written out to 
memory if the user is not concerned with retouching peripherals. The hard cleanup action 
column lists the action to be taken if the peripherals cannot be retouched by MOVE16 (if 
different from easy cleanup). Note that if a push access error is reported and the size is 
long word, all four long words, PDO-PD3, are still valid for the line. The exception handler 
can either write PDO-PD3 using the fault address with bits 3-0 cleared or write the PD 
corresponding to bits 3-2 of the address (e.g., address $OOOOOOOC corresponds to PD3). 
Note that a MOVE16 is never reported in the WB3S. The SIZE field of WB3S is never a 
line. 

After the bus error exception handler completes all pending operations and executes an 
RTE to return, the RTE reads only the stack information from offset $0-$0 in the access 
error stack frame. For a pending trace exception, the RTE adjusts the stack to match the 
pending exception and immediately begins exception processing, without requiring the 
exception to reoccur. 

8-28 MCF5102 USER'S MANUAL MOTOROLA 



Table 8-6. Access Error Stack Frame Combinations 

WB1S WB2S WB3S Easy Cleanup Hard Cleanup 
Main Case SSW_RW SSW_PUSH 1V 1M16 2V 2M16 3V Data Written Action 

All Read 1a No 0 x 0 x 0 None 
Access Errors 1a No 0 x 0 x 1 WB3D 

All other read cases are not possible. 

Cache Push 0 Yes 0 x 0 x 0 PD3-0 
Bus Errorc 0 Yes 0 x 0 x 1 PD3-0, WB3D 

0 Yes 0 x 1 0 0 PD3-0, WB2D 
0 Yes 0 x 1 0 1 PD3-0, WB2D, WB3D 
0 Yes 0 x 1 1 0 PD3-0, -WB2Dd 

(Note b) 
(Note b) 

Normal Write 0 No 1 0 0 x 0 WB1D 
bus Error 0 No 1 0 0 x 1 WB1D, WB3D 

0 No 1 0 1 0 0 WB1D, WB2D 
0 No 1 0 1 0 1 WB1 D, WB2D, WB3D 
0 No 1 0 1 1 0 WB1 D, -WB2Dd 

(Note b) 
(Note b) 

MOVE16 0 No 1 1 0 x 1 PD3-0, WB3D 
Write Bus 0 No 1 1 0 x 0 PD3-0 
Error 0 No 1 1 1 0 0 PD3-0, WB2D 

0 No 1 1 1 0 1 PD3-0, WB2D, WB3D 
0 No 1 1 1 1 0 PD3-0, -WB2Dd 

(Note b) 
(Note b) 

Write Fault 0 No 0 x 1 0 0 WB2D 
0 No 0 x 1 0 1 WB2D, WB3D Write PD3-0 
0 No 0 x 1 1 0 -WB2Dd and skips. 

Impossible 0 Yes 1 x x x x (Note f) -
Write Cases 0 Don't Care x x x 1 1 (Note g) 

NOTES: 
a. The data ACU stage is tied up until the bus controller passes the read back through the data memory 

unit and to the execution stage in the integer unit. Therefore, no pending write is possible in WB1 or WB2. 
WB3 could hold a pending write that was deferred due to operand read or was generated after the read. 

b. If any kind of access error is reported and if a MOVE16 write is pending in the WB2 stage, then that MOVE16 
read must hit in the cache so the MOVE16 can be safely restarted since it has not caused bus cycles that could 
retouch peripherals. 

c. A cache push bus error is normally considered a fatal error. 
d. Indicates that the data should not be written even though the V-bit for it is set (WB2 corresponds to a MOVE16 

write). 
e. The exception handler must alter the stacked PC to point past the MOVE16 and predecrement and 

postincrement address registers. 
f. 1 V must be O for push exceptions. 
g. The execution stage does not post a write until the MOVE16 is in the integer unit. 

MOTOROLA MCF5102 USER'S MANUAL 8-29 

-



8-30 MCF5102 USER'S MANUAL MOTOROLA 



SECTION 9 
INSTRUCTION TIMINGS 

This section summarizes instruction timings for the MCF5102. Table 9-1 alphabetically 
lists instruction timings and their location in this section. 

Table 9-1. Instruction Timing Index 

Instruction Page Instruction Page Instruction Page 

ABCD 9-11 BRA 9-11 EOR 9-13 

ADD 9-13 BSET 9-15 EORI 9-13 

ADDA 9-13 BSR <offset> 9-11 EORI #<XXX>,CCR 9-11 

ADDI 9-13 BTST 9-17 EORI #<XXX>,SR 9-11 

ADDQ 9-14 GAS 9-17 EXG 9-11 

ADDX 9-11 CAS2 9-11 EXT 9-11 

AND 9-13 CHK <ea>, On 9-17 EXTB 9-11 

ANDI 9-13 CHK2 <ea>, Rn 9-18 ILLEGAL 9-11 

ANDI #<XXX>,CCR 9-11 CLR 9-18 JMP 9-20 

ANDI #<XXX>,SR 9-11 CINV 9-8 JSR 9-21 

ASL 9-14 CMP 9-18 LEA 9-21 

ASR 9-14 CMP2 9-19 LINK 9-11 

Bee 9-11 CMPA.L 9-19 LSL 9-14 

BCHG 9-15 CMPI 9-19 LSR 9-14 

BCLR 9-15 CMPM 9-11 MOVE 9-9, 10 

BF CHG 9-15 CPU SH 9-8 MOVE from CCR 9-21 

BFCLR 9-15 DBcc 9-11 MOVE from SR 9-22 

BFEXTS 9-15 DIVS.L 9-20 MOVE to CCR 9-22 

BFEXTU 9-15 DIVS.W 9-20 MOVE to SR 9-22 

BFFFO 9-16 DIVSL.L 9-20 MOVE USP 9-11 

BFINS 9-16 DIVU.L 9-20 MOVE16 9-11 

BFSET 9-15 DIVU.W 9-20 MOVEA.L 9-23 

BFTST 9-16 DIVUL.L 9-20 MOVEC 9-11 

MOTOROLA MCF5102 USER'S MANUAL 9-1 



Table 9-1. Instruction Timing Index (Continued) 

Instruction Page Instruction Page Instruction Page 

MOVEM <lisl>,<ea> 9-23 ORI #<XXX>,SR 9-11 RTS 9-11 

MOVEM.L <ea>,<lis1> 9-23 PACK 9-11 SBCD 9-11 

MOVEP 9-11 PEA 9-26 Sec 9-27 

MOVEQ 9-11 PFLUSH 9-11 SUB 9-13 

MOVES <ea>,An 9-24 PFLUSHA 9-11 SUBA 9-27 

MOVES <ea>,Dn 9-24 PFLUSHAN 9-11 SUBI 9-13 

MOVES Rn,<ea> 9-24 PFLUSHN (An) 9-11 SUBQ 9-14 

MULS.W/L 9-25 PTESTR, PTESTW 9-11 SUBX 9-11 

MULU.W/L 9-25 RESET 9-11 SWAP 9-11 

NBCD 9-25 ROL 9-26 TAS 9-28 

NEG 9-26 ROR 9-26 TRAP# 9-11 

NEGX 9-26 ROXL 9-27 TRAPcc 9-11 

NOP 9-11 ROXR 9-27 TRAPV 9-11 

NOT 9-26 RTD 9-11 TST 9-13 

OR 9-13 RTE 9-11 UNLK 9-11 

ORI 9-13 RTR 9-11 UNPK 9-11 

ORI #<XXX>,CCR 9-11 

9-2 MCF5102 USER'S MANUAL MOTOROLA 



9.1 OVERVIEW 

Refer to Section 2 Integer Unit for information on the integer unit pipeline. The <ea> 
fetch timing is not listed in the following tables because most instructions require one clock 
in the <ea> fetch stage for each memory access to obtain an operand. An instruction 
requires one clock to pass through the <ea> fetch stage even if no operand is fetched. 
Table 9-2 summarizes the number of memory fetches required to access an operand 
using each addressing mode for long-word aligned accesses. The user must perform his 
own calculations for <ea> fetch timing for misaligned accesses. 

Table 9-2. Number of Memory Accesses 

Evaluate <ea> Evaluate <ea> 
And Fetch And Send To 

Addressing Mode Operand Execution Stage 

Dn 0 0 

An 0 0 

(An) 1 0 

(An)+ 1 0 

-(An) 1 0 

(d15,An) 1 0 

(d15,PC) 1 0 

(xxx).W, (xxx).L 1 0 

#<XXX> 0 0 

(da.An,Xn) 1 0 

(da,PC,Xn) 1 0 

(BR,Xn) 1 0 

(bd,BR,Xn) 1 0 

([bd,BR,Xn]) 2 1 

([bd,BR,Xn],od) 2 1 

([bd,BR],Xn) 2 1 

([bd,BR],Xn,od) 2 1 

In the instruction timing tables, the <ea> calculate column lists the number of clocks 
required for the instruction to execute in the <ea> calculate stage of the integer unit 
pipeline. Dual effective address instructions such as ABCD -(Ay),-(Ax) require two 
calculations in the <ea> calculate stage and two memory fetches. Due to pipelining, the 
fetch of the first operand occurs in the same clock as the <ea> calculation for the second 
operand. 

The execute column lists the number of clocks required for the instruction to execute in 
the execute stage of the integer unit pipeline. This number is presented as a lead time and 
a base time. The lead time is the number of clocks the instruction can stall when entering 
the execution stage without delaying the instruction execution. If the previous instruction is 
still executing in the execution stage when the current instruction is ready to move from 
the <ea> fetch stage, the current instruction stalls until the previous one completes. For 

MOTOROLA MCF5102 USER'S MANUAL 9-3 



example, if an execution time is listed as 2L + 1, the lead time is two clocks and the base 
time is one for a total execution time of three. The instruction can stall for two clocks 
without delaying the instruction execution time. 

The <ea> calculate and execute stages operate in an interlocked manner for all 
instructions using the brief and full extension word formats. If an instruction using one of 
these formats is stalled for more than NL clocks waiting to begin execution in the execute 
stage, a similar increase in the <ea> calculate time will result. For example, if the 
execution time listed is 2L + 1 and the instruction stalls for three clocks, then the <ea> 
calculate time increases by one clock (3 - 1 = 2L). Write-back times are not listed because 
they are system dependent and do not affect either <ea> calculate or execute stages of 
the pipeline. 

Not all addressing modes listed in the following tables for an instruction are valid for all 
variations of the instruction. For example, the table for the integer ADD instruction lists 
times for both ADD <ea>,Dn and ADD Dn,<ea>. All addressing modes listed are valid for 
ADD <ea>,Dn. For ADD Dn,<ea> the following invalid modes should be ignored: An, 
(d 16,PC), #<xxx>, (d8,PC,Xn), and modes with BR = PC. Refer to the M68000PM/AD, 
M68000 Family Programmer's Reference Manual for a complete summary of valid 
instruction and addressing mode combinations. The instruction timings are based on the 
following suppositions unless otherwise noted: 

1. All timings are related to BCLK cycles and are for BR= An or suppressed. For BR= 
PC, 1 and 1 L clocks to the <ea> calculate and execution times unless otherwise 
noted. For memory indirect postindexed with suppressed index - ([bd,BR],Xn) or 
([bd,BR],Xn,od) with Xn suppressed - times are the same as for memory indirect 
preindexed with suppressed index - ([bd,BR,Xn]) or ([bd,BR,Xn],od) with Xn 
suppressed. 

2. All memory accesses hit in the caches. It is assumed that external memory has a 
zero-wait state in this case and that the bus is granted to the MCF5102. 

The result increases access time equal to the number of clocks for the memory 
access (first bus cycle if the operand access results in a line memory access) if 
aligned accesses miss in the data cache. As an approximation, this time should be 
added to the execution time for each operand fetch generated by the instruction. 

3. All accesses are aligned to a byte boundary that is a multiple of the operand size. 

9-4 

For instance, the timing for all long-word accesses assumes that the operands are 
on long-word boundaries. 

MCF5102 USER'S MANUAL MOTOROLA 



9.2 INSTRUCTION TIMING EXAMPLES 

The following examples utilize the instruction timing information given in this section. 
Figure 9-1 illustrates the integer unit pipeline flow for the simple code sequence listed. The 
three instructions in the code sequence require only a single clock in each pipeline stage. 
The TRAPF instructions are also single-clock instructions that function as 
nonsynchronizing NOPs. 

<ea> 
LABEL INSTRUCTION CALCULATE EXECUTE 

P1 TRAPF 1 
A MOVE.L $1000,00 1 
B AOOQ.L #1,00 1 
c MOVE.L 00,$1000 1 

N1 TRAPF 1 
N2 TRAPF 1 

C1 C2 ~ ~ ~ ~ C7 

<ea> CALCULATE [ill [TI [TI [£] l]I) ~ 

<ea> FETCH [ill [TI [TI [£] l]I) ~ 

EXECUTE [ill 0 CTI [£] CED 
WRITE-BACK [£] 

Figure 9-1. Simple Instruction Timing Example 

C 1 The previous instruction (P1) finishes in the <ea> calculate. 

C2 MOVE.L (A) starts in the <ea> calculate and requests an immediate extension 
word for its effective address. 

C3 MOVE.L (A) starts in the <ea> fetch, which fetches the operand at $1000. ADDQ.L 
(8) starts in the <ea> calculate stage with the operand encoded in the instruction. 

C4 MOVE.L (A) executes in the execute stage, storing the fetched operand in register 
DO. ADDQ.L (8) starts in the <ea> fetch with no operation performed. MOVE.L (C) 
starts in the <ea> calculate requesting an immediate extension word for its effective 
address. 

C5 ADDQ.L (8) executes in the execution stage, incrementing DO by 1. MOVE.L (C) 
passes through the <ea> fetch with no operation performed. The next instruction 
starts in the <ea> calculate stage. 

C6 MOVE.L (C) executes in the execution stage generating a write of DO to the 
effective address. 

C7 The write to memory by MOVE.L (C) occurs to the data memory unit if it is not 
busy. If the second TRAPF instruction (N2) in the <ea> fetch stage requires an 
operand fetch, the write-back for MOVE.L (C) stalls in the write-back stage since it 
is a lower priority. 

MOTOROLA MCF5102 USER'S MANUAL 9-5 



The separation of calculation and execution in the <ea> calculate and execute stages 
allows instruction reordering during compile time to take advantage of potential instruction 
overlap. Figure 9-2 illustrates this overlap for an instruction requiring multiple clocks in the 
execute stage and with an instruction with a long lead time. The execution time for LEA 
(3L + 1) indicates that the instruction can be stalled three clocks without affecting 
execution. 

When the LEA (A) instruction precedes the ABCD (8) instruction, the execution stalls 
during C4-C6 (equivalent to the LEA lead time) while the instruction completes in the 
<ea> calculate and <ea> fetch stages. The resulting execution time for the LEA (A) and 
ABCD (B) sequence is eight clocks. 

However, if the LEA (C) instruction follows the ABCD (B) instruction, the LEA stalls in the 
<ea> fetch instead, during C9-C11. The LEA then executes in a single clock in the 
execution stage. The resulting execution time for the LEA (C) and ABCD (8) sequence is 
five clocks. 

9-6 

<Sil> 
LABEL INSTRUCTION CALCULATE EXECUTE 

P1 TRAPF 1 
A LEA $24(PC),A1 3L + 1 
B ABCD D0,01 3 
c LEA $24(PC),A1 3L + 1 

N1 TRAPF 1 
N2 TR A PF 1 

C1 C2 C3 C4 C5 C6 C7 ca C9 C10 C11 C12 C13 

<Sa> CALCULATE ~ IT] IT] ITJ ITJ m ITJ ITJ IT] 0 ~ ~ 
<Sa> FETCH 

EXECUTE 

~ IT] IT] IT] IT] ITJ IT] @W ~ @W ~ ~ 

[ill Ci] Ci] Ci] IT] []] []] ITJ @] IT] [EiJ 

WRITE-BACK 

NOTE: *Possible stalls in this stage. 

Figure 9-2. Instruction Overlap with Multiple Clocks 

MCF5102 USER'S MANUAL MOTOROLA 



Instructions using the brief and full extension word format addressing modes cause the 
<ea> calculate and execute stages to operate in an interlocked manner. When these 
instructions wait to begin execution in the execution stage, there is a similar increase in 
the <ea> calculate time. Figure 9-3 illustrates this effect for an ADD instruction using a 
brief format extension word. The ADD instruction stalls for two clocks waiting to enter the 
execution stage. Since this time exceeds by one clock the ADD lead time, the ADD 
instruction remains in the <ea> calculate stage for one additional clock. If the ADD 
instruction was in the execution stage for two clocks, the ABCD instruction would not have 
stalled in the <ea> calculate stage. 

<9i!> 

LABEL INSTRUCTION CALCULATE EXECUTE 

P1 TRAPF 1 
A ABCD D0,01 3 
B ADD.L 4(AO,D3),D2 1L +4 

N1 TRAPF 1 
N2 TRAPF 1 

C1 C2 C3 C4 CS CS C7 C6 C9 C10 C11 C12 

<ea> CALCULATE CE] IT] W W W 0 W W [EjJ [§] 

<ea> FETCH [ill ITJ W W W W W W [EjJ ~ 

EXECUTE CE) ITJ ITJ ITJ W W W W ~ [§] 

WRITE-BACK 

NOTE: *Possible stalls in this stage. 

Figure 9-3. Interlocked Stages 

MOTOROLA MCF5102 USER'S MANUAL 9-7 



9.3 CINV AND CPUSH INSTRUCTION TIMING 

The following details the execution time for the CINV and CPUSH instructions used to 
perform maintenance of the instruction and data caches. These two instructions sample 
interrupt request (IPLx) signals on every clock instead of at instruction boundaries. While 
performing the actual cache invalidate operation, the execution unit stalls to allow previous 
write-backs and any pending instruction prefetches to complete. The total time required to 
execute a cache invalidate instruction is dependent on the previous instruction stream. 
Execution time for this instruction is independent of the selected cache combination. The 
CINV instructions interlock operation of the <ea> calculate and execution stages to 
prevent a previous instruction from accessing the caches until the invalidate operation is 
complete. Idle refers to the number of clocks required for all pending writes and instruction 
prefetches to complete. Table 9-3 list the CINV timings. 

Table 9-3. CINV Timing 

Instruction Execution Time 

CINVL 9+ Idle 

CINVP 266 +Idle 

CINVA 9+ Idle 

Execution time for the CPUSH instruction is dependent on several factors, such as the 
number of dirty cache lines and the size of the resulting push (either long-word or line); the 
overlapping operations within the data cache and the bus controller; the distribution of 
dirty cache lines; and the number of wait states in the push access on the bus. The 
interaction of these factors determines the total time required to execute a CPUSH 
instruction. 

Since the distribution of dirty data within the cache is entirely dependent on the nature of 
the user's code, it is impossible to provide an equation for execution time that works for all 
code sequences. Table 9-4 provides baseline information indicating best and worst case 
execution times for the three CPUSH instruction variants. Best case corresponds to a 
cache containing no dirty entries, while the worst case corresponds to all lines dirty and 
requiring line pushes. In Table 9-4, line refers to the number of clocks required in the 
user's system for a line transfer. Idle refers to the number of clocks required for all 
pending writes and instruction prefetches to complete. 

Table 9-4. CPUSH Best and Worst Case Timing 

Execution Time 

Instruction Best Case Worst Case 

CPUSHL 6 6 + Line + Idle 

CPUSHP 
CPUSHA 

267 11 + 256 ¥ Line + Idle 

9-8 MCF5102 USER'S MANUAL MOTOROLA 



9.4 MOVE INSTRUCTION TIMING 

DESTINATION 

Dn (An) (An)+ 

<ea> Execute <ea> Execute <ea> Execute 
SOURCE Calculate Calculate Calculate 

Dn 1 1 1 1 1 1 

(An) 1 1 1 1 2 1L+1 

(An)+ 1 1 2 1L+1 2 1L+1 

-(An) 1 1 2 1L + 1 2 1L+1 

(d1s.An) 1 1 2 1L + 1 2 1L + 1 

(d15,PC) 3 2L + 1 3 2L + 1 3 2L + 1 

(xxx).W, (xxx).L 1 1 1 1 2 1L + 1 

#<XXX> 1 1 1 1 2 1L + 1 

(ds,An,Xn) 3 3 4 4 5 5 

(ds,PC,Xn) 5 1L + 4 5 1L + 4 6 1L + 5 

(b15,BR,Xn) 7 1L + 6 7 1L + 6 8 1L + 7 

([bd,BR,Xn]) 10 1L + 9 10 1L + 9 11 1L + 10 

([bd,BR,Xn],od) 11 1L + 10 11 1L + 10 12 1L + 11 

([bd,BR],Xn) 11 3L+8 11 3L+8 12 3L+ 9 

((bd,BR],Xn,od) 12 3L +9 12 3L +9 13 3L + 10 

-(An) (d15,An) (xxx).W, (xxx).L 

Dn 1 1 1 1 1 1 

(An) 2 1L + 1 2 1L + 1 1 1 

(An)+ 2 1L + 1 2 1L+1 2 1L+1 

-(An) 2 1L + 1 2 1L+1 2 1L + 1 

(d15,An) 2 1L+1 2 1L+1 2 1L + 1 -(d15,PC) 3 2L + 1 4 3L + 1 4 3L + 1 

(xxx).W, (xxx).L 2 1L+1 2 1L + 1 2 1L + 1 

#<XXX> 2 1L+1 2 1L+1 2 1L + 1 

(ds,An,Xn) 5 5 5 5 5 5 

(ds,PC,Xn) 6 1L + 5 6 1L + 5 6 1L + 5 

(b15,BR,Xn) 8 1L + 7 8 1L + 7 8 1L + 7 

([bd,BR,Xn]) 11 1L + 10 11 1L + 10 11 1L + 10 

([bd,BR,Xn],od) 12 1L + 11 12 1L + 11 12 1L + 11 

([bd,BR],Xn) 12 3L + 9 12 3L+9 12 3L +9 

([bd,BR],Xn,od) 13 3L + 10 13 3L + 10 13 3L + 10 

MOTOROLA MCF5102 USER'S MANUAL 9-9 



9.4 MOVE INSTRUCTION TIMING (Continued) 

DESTINATION 

(ds,An,Xn) (b16,An,Xn) ([bd,An,Xn]) 

<ea> Execute <ea> Execute <ea> Execute 
SOURCE Calculate Calculate Calculate 

On 3 3 7 1L + 6 10 1L + 9 

(An) 4 4 7 1L + 6 10 1L + 9 

(An)+ 4 4 7 1L + 6 10 1L + 9 

-(An) 4 4 7 1L + 6 10 1L + 9 

(d15,An) 4 4 7 1L+ 6 10 1L + 9 

(d15,PC) 8 4L + 4 10 4L + 6 13 4L + 9 

(xxx).W, (xxx).L 4 4 7 1L + 6 10 1L + 9 

#<XXX> 3 3 7 1L + 6 10 1L + 9 

(ds,An,Xn) 8 8 10 10 13 13 

(ds,PC,Xn) 9 1L + 8 11 1L + 10 14 1L + 13 

(b15,BR,Xn) 11 1L + 10 13 1L + 12 16 1L + 15 

([bd,BR,Xn]) 14 1L + 13 16 1L + 15 19 1L + 18 

([bd,BR,Xn],od) 15 1L + 14 17 1L + 16 20 1L + 19 

([bd,BR],Xn) 15 3L + 12 17 3L + 14 20 3L + 17 

([bd,BR],Xn,od) 16 3L + 13 18 3L + 15 21 3L + 18 

([bd,An,Xn],od) ([bd,An],Xn) ([bd,An],Xn,od) 

Dn 11 1L + 10 11 3L + 8 12 3L +9 

(An) 11 1L + 10 11 3L + 8 12 3L + 9 

(An)+ 11 1L + 10 11 3L + 8 12 3L + 9 

-(An) 11 1L + 10 11 3L +8 12 3L + 9 

(d15,An) 11 1L + 10 11 3L +8 12 3L + 9 

(d15,PC) 14 4L + 10 14 6L +8 15 6L+ 9 

(xxx).W, (xxx).L 11 1L + 10 11 3L + 8 12 3L + 9 

#<XXX> 11 1L + 10 11 3L + 8 12 3L + 9 

(d3,An,Xn) 14 14 14 14 15 15 

(d3,PC,Xn) 15 1L + 14 15 1L + 14 16 1L + 15 

(b15,BR,Xn) 17 1L + 16 17 1L + 16 18 1L + 17 

([bd,BR,Xn]) 20 1L + 19 20 1L + 19 21 1L + 20 

([bd,BR,Xn],od) 21 1L + 20 21 1L + 20 22 1L + 21 

([bd, B R],Xn) 21 3L + 18 21 3L + 18 22 3L + 19 

([bd,BR],Xn,od) 22 3L + 19 22 3L + 19 23 3L + 20 

9-10 MCF5102USER'S MANUAL MOTOROLA 



9.5 MISCELLANEOUS INTEGER UNIT INSTRUCTION TIMINGS 

Instruction Condition <ea> Calculate Execute 

ABCD Dy,Dx 1 3 
-(Ay),-(Ax) 3 1L + 3 

ADDX Dy,Dx 1 1 
-(Ay),-(Ax) 3 1L + 2 

ANDI #<XXX>,CCR - 1 4 

ANDI #<XXX>,SRa - 9 1L + 8 

Bee Branch Taken 2 2 
Branch Not Taken 3 3 

BRA Branch Taken 2 2 
Branch Not Taken 3 3 

BS R <offset> - 2 1L+1 

CAS2b True 56 6L + 49 
False 51 6L+ 44 

CMPM - 3 1L + 2 

DBccc False, Count > -1 3 3 
False, Count = -1 4 4 
True 4 4 

EORI #<XXX>,CCR - 1 4 

EORI #<XXX>,SRa - 9 1L + 8 

EXG Dy,Dx 1 1 
Ay,Ax 2 1L + 1 
Dy,Ax 1 1 

EXT Word 1 2 
Long Word 1 1 

EXTB Long Word 1 1 

ILLEGAL a A-Line Unimplemented 16 16 
F-Line Unimplemented 16 16 

LINK - 3 2L + 1 
Cl 

MOVE USP USP,An 3 2L + 1 
An,uspa 7 1L + 6 

MOVE15c,d (Ax)+,(Ay)+ 6 1L+ 7 
xxx.L,(An) 4 7 
xxx.L,(An)+ 5 8 
(An),xxx.L 4 7 
(An)+,xxx.L 4 7 

MOVE Cb Rn,Rc 7 1L + 6 
Re, Rn 11 1L + 10 

MOVE Pc MOVEP.W Dn,d16(An) 11 2L + 9 
MOVEP.L Dn,d16(An) 13 2L + 11 
MOVEP.W d16(An),Dn 4 2L + 5 
MOVEP.L d16(An),Dn 8 2L + s 

MOVEQ - 1 1 

No Pa - 8 1L + 7 

MOTOROLA MCF5102 USER'S MANUAL 9-11 



9.5 MISCELLANEOUS INTEGER UNIT INSTRUCTION TIMINGS 
(Continued) 

9-12 

Instruction Condition <ea> Calculate Execute 

ORI #<XXX>,CCR - 1 4 

ORI #<XXX>,SRa - 9 1L + 8 

PACK Dx,Dy,#<XXX> 1 3 
-(Ay),-(Ax),#<XXX> 3 2L +3 

PFLUSHb - 11 1L + 10 

PFLUSHAb - 11 1L + 10 

PFLUSHANb - 27 1L + 26 

PFLUSHN (An)b - 11 1L + 10 

PTESTR, PTESTWe - 25 11L+14 

RESETa - 521 521 

RTDC - 6 1L + 5 

RTEa Stack Format $0 2 13 
Stack Format $1 4 23 
Stack Format $2 2 14 
Stack Format $3 3 20 
Stack Format $4 2 15 
Stack Format $7 4 23 

RTRC - 7 1L + 6 

RTSC - 5 5 

SBCD Dy,Dx 1 3 
-(Ay),-(Ax) 3 1L + 3 

SUBX Dy,Dx 1 1 
-(Ay),-(Ax) 3 1L + 2 

SWAP - 1 2 

TRAP#a - 16 16 

TRAPccf Taken 19 19 
Not Taken 5 5 

TRAP Vt Taken 19 19 
Not Taken 5 5 

UNLK - 2 1L+1 

UNPK Dx,Dy,# 1 4 
-(Ay),-(Ax),# 3 2L + 4 

NOTES: 
a. Times listed are minimum. This instruction interlocks the <ea> calculate and execute 

stages and synchronizes some portions of the processor before execution. 
b. Times listed are typical. This instruction interlocks the <ea> calculate and execute stages 

and synchronizes some portions of the processor before execution. 
c. This instruction interlocks the <ea> calculate and execute stages. 
d. Successive in-line MOVE16 instructions each add eight clocks to the <ea> calculate and 

execute times. 
e. Typical measurement for three-level table search with no descriptor writes, no entries 

cached, and four-clock memory access times. 
f. This instruction interlocks the <ea> calculate and execute stages. For the exception taken, 

this instruction also synchronizes some portions of the processor before execution; times 
listed are minimum in this case. 

MCF5102 USER'S MANUAL MOTOROLA 



9.6 INTEGER UNIT INSTRUCTION TIMINGS 

ADD, AND, EOR, OR, ADDA ADDI, ANDI, EORI, 
SUB, TST ORl,SUBI 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn 1 1 1 2 1 1 

An 1 1 1 1 - -
(An) 1 1 1 2 1 1 

(An)+ 1 1 2 1L + 2 2 1L + 1 

-(An) 1 1 2 1L + 2 2 1L+1 

(d16.An) 1 1 2 1L + 2 2 1L + 1 

(d16,PC) 3 2L + 1 3 2L +2 - -
(xxx).W, (xxx).L 1 1 1 2 2 1L + 1 

#<XXX> 1 1 1 1 - -
(ds,An,Xn) 3 3 4 5 3 3 

(ds,PC,Xn) 5 1L + 4 5 1L + 5 - -
(BR,Xn) 6 1 L + 5 6 1L + 6 7 1L + 6 

(bd,BR,Xn) 7 1L+6 7 1L + 7 8 1L + 7 

([bd,BR,Xn]) 10 1L + 9 10 1L + 10 10 1L + 10 

([bd,BR,Xn],od) 11 1L+11 11 1L + 12 11 1L + 11 

([bd,BR],Xn) 11 3L + 8 11 3L + 9 11 3L +9 

([bd,BR],Xn,od) 12 3L + 10 12 3L + 11 12 3L + 10 

MOTOROLA MCF5102 USER'S MANUAL 9-13 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

ADDQ,SUBQ ASL ASR, LSL, LSR 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

On 1 1 1 3;4* 1 213* 

An 1 1 - - - -
(An) 1 1 1 3 1 2 

(An)+ 2 1L + 1 1 3 1 2 

-(An) 2 1L + 1 1 3 1 2 

(d15,An) 2 1L + 1 1 3 1 2 

(d15,PC) - - - - - -

(xxx).W, (xxx).L 1 1 1 3 1 2 

#<XXX> - - - - - -

(da,An,Xn) 3 3 3 5 3 4 

(da,PC,Xn) - - - - - -
(BR,Xn) 7 1L + 6 7 1L + 8 7 1L + 7 

(bd,BR,Xn) 8 1L + 7 8 1L + 9 8 1L + 8 

([bd,BR,Xn]) 10 1L + 9 10 1L + 11 10 1L + 10 

([bd,BR,Xn],od) 11 1L + 11 11 1L + 12 11 1L+11 

([bd,BR],Xn) 11 3L + 8 11 3L + 10 11 3L + 9 

([bd,BR],Xn,od) 12 3L + 10 12 3L + 11 12 3L + 10 

*Immediate count specified for shift count/shift count specified in register, respectively. 

9-14 MCF5102 USER'S MANUAL MOTOROLA 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

BCHG, BCLR, BSETa BFCHG, BFCLR, BFSETb,c BFEXTS, BFExrub,d 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

On 1 3/4 3/48 6/7 8 1/28 4/5 8 

An - - - - - -
(An) 1 3/4 9 2L + 8 9 2L + 7 

(An)+ 1 3/4 - - - -
-(An) 1 3/4 - - - -
(d15,An) 211 1 L + 3/4 9 2L+ 8 9 2L+ 7 

(d15,PC) - - - - 10 3L + 7 

(xxx).W, (xxx).L 211 1 L + 3/4 9 2L + 8 9 2L + 7 

#<XXX> - - - - - -
(d8,An,Xn) 3 5/6 10 11 10 10 

(d8,PC,Xn) - - - - 11 1L + 10 

(BR,Xn) 7 1 L + 8/1 L + 9 13 1L + 13 13 1L + 12 

(bd,BR,Xn) 8 1L+9/1L+10 14 1L + 14 14 1L + 13 

([bd,BR,Xn]) 10 1 L + 11 /1 L + 12 16 1L + 16 16 1L + 15 

([bd,BR,Xn],od) 11 1 L + 1211 L + 13 17 1L + 17 17 1L + 16 

([bd,BR],Xn) 11 3L + 10/3L + 11 17 3L + 15 17 3L + 14 

([bd,BR],Xn,od) 12 3L+11/3L+12 18 3L + 16 18 3L + 15 

NOTES: 
a. Bit instruction <ea> calculate and execute times T1/T2 apply to #<XXX>/Dn bit numbers. 
b. This instruction interlocks the <ea> calculate and execute stages. 
c. If the bit field spans a long-word boundary, add ten and nine clocks to the <ea> calculate and execute times, 

respectively. Two memory addresses are accessed in this case. 
d. If the bit field spans a long-word boundary, add two clocks to the execute time. Two memory addresses are 

accessed in this case. 
e. Immediate count specified for both width and offset and width and/or offset specified in register, respectively. 

MOTOROLA MCF5102 USER'S MANUAL 9-15 



9.6 INTEGER UNIT INSTRUCTION TIMINGS {Continued) 
BFFF()ll,b BFINSa,c BFTSTa 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn 314d 517d 213d 5/6d 112d 314d 

An - - - - - -
(An) 9 2L+9 9 2L+ 7 9 2L+ 7 

(An)+ - - - - - -
-(An) - - - - - -
(d15,An) 9 2L+9 9 2L+ 7 9 2L+ 7 

(d15,PC) 10 3L +9 - - 10 3L+ 7 

(xxx).W, (xxx).L 9 2L+9 9 2L+ 7 9 2L+ 7 

#<XXX> - - - - - -
(d9,An,Xn) 10 12 10 10 10 10 

(d9,PC,Xn) 11 1L + 12 - - 11 1L + 10 

(BR,Xn) 13 1L + 14 13 1L + 12 13 1L + 12 

(bd,BR,Xn) 14 1L + 15 14 1L + 13 14 1L + 13 

([bd,BR,Xn]) 16 1L + 17 16 1L + 15 16 1L + 15 

([bd,BR,Xn],od) 17 1L + 18 17 1L + 16 17 1L + 16 

([bd,BR],Xn) 17 3L + 16 17 3L + 14 17 3L + 14 

([bd,BR],Xn,od) 18 3L + 17 18 3L + 15 18 3L + 15 

NOTES: 
a. This instruction interlocks the <Ba> calculate and execute stages. 
b. If the bit field spans a long-word boundary, add two clocks to the execute time. Two memory addresses are 

accessed in this case. 
c. If the bit field spans a long-word boundary, add seven clocks to both the <Ba> calculate and execute times. 

Two memory addresses are accessed in this case. 
d. If the bit field spans a long-word boundary, add ten and nine clocks to both the <ea> calculate and execute 

times, respectively. Two memory addresses are accessed in this case. 

g.15 MCF5102 USER'S MANUAL MOTOROLA 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

BTST CA Sb CHKc,d (<ea>, On) 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn 1 112a - - 8 1L + 7 

An - - - - - -
(An) 1 1/2 36 6L + 31 9 2L + 7 

(An)+ 1 1/2 37 5L + 31 9 2L + 7 

-(An) 1 1/2 37 5L+31 9 2L+ 7 

(d15,An) 211 1L+1/2 37 5L + 31 9 2L + 7 

(d15,PC) 3 2L + 112L + 2 - - 10 3L + 7 

(xxx).W, (xxx).L 2/1 1L+1/2 36 5L +31 9 2L + 7 

#<XXX> - - - - 8 1L+ 7 

(d9,An,Xn) 3 3/4 36 36 10 10 

(d9,PC,Xn) 5 1L + 4/1 L + 5 - - 11 1L + 10 

(BR,Xn) 7/6 1L + 6/1 L + 7 36 1L + 35 12 1L + 11 

(bd,BR,Xn) 8/7 1 L + 7/1 L + 8 37 1L + 36 13 1L + 12 

([bd,BR,Xn]) 10/9 1L+9/1L+10 42 40 16 1L + 15 

([bd,BR,Xn],od) 11/10 1 L + 10/1 L + 11 42 1L + 41 17 1L + 16 

([bd,BR],Xn) 11/10 3L + 8/3L + 9 42 3L +38 17 3L + 14 

([bd,BR],Xn,od) 12/11 3L + 9/3L + 1 O 42 3L + 39 18 3L + 15 

NOTES: 
a. Bit instruction <ea> calculate and execute times T1/T2 apply to #<XXX>/Dn bit numbers. 
b. Times listed are typical. This instruction interlocks the <ea> calculate and execute stages and synchronizes 

some portions of the processor before execution. 
c. This instruction interlocks the <ea> calculate and execute stages. 
d. Times listed are for Dn within bounds. This instruction interlocks the <Sa> calculate and execute stages. 

MOTOROLA MCF5102 USER'S MANUAL 9-17 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

CHK2* (<ea>, Rn) CLR CMP 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn - - 1 1 1 1 

An - - - - 1 1 

(An) 11 2L+ 9 1 1 1 1 

(An)+ - - 1 1 1 1 

-(An) - - 1 1 1 1 

(d15,An) 11 2L + 9 1 1 1 1 

(d15,PC) 12 3L +9 - - 3 2L + 1 

(xxx).W, (xxx).L 11 2L +9 1 1 1 1 

#<XXX> - - - - 1 1 

(da,An,Xn) 13 1L + 12 3 3 3 3 

(da,PC,Xn) 14 2L + 12 - - 5 1L + 4 

(BR,Xn) 15 2L + 13 6 1L + 5 6 1L + 5 

(bd,BR,Xn) 16 2L + 14 7 1L + 6 7 1L + 6 

([bd,BR,Xn]) 19 2L + 17 9 1L + 8 9 1L+8 

([bd,BR,Xn],od) 20 2L + 18 10 1L + 9 10 1L + 9 

([bd,BR],Xn) 20 4L + 16 10 3L + 7 10 3L + 7 

([bd,BR],Xn,od) 21 4L + 17 11 3L + 8 11 3L + 8 

*This instruction interlocks the <Ba> calculate and execute stages. Timing for Dn within bounds, UB > LB. For US < 
LB, add three clocks to <Ba> calculate and execute times. For Rn = An, add one clock to <Ba> calculate and execute 
times. 

9-18 MCF5102 USER'S MANUAL MOTOROLA 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

CMPA.L CMPI CMP2* 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn 1 1 1 1 - -
An 1 1 - - - -

(An) 1 1 1 1 13 2L + 11 

(An)+ 2 1L+1 2 1L+1 0 0 

-(An) 2 1L+1 2 1L+1 0 0 

(d16,An) 2 1L + 1 2 1L + 1 13 2L + 11 

(d15,PC) 3 2L + 1 3 2L + 1 14 3L + 11 

(xxx).W, (xxx).L 1 1 2 1L+1 13 2L + 11 

#<XXX> 1 1 - - - -
(d3,An,Xn) 3 3 3 3 15 1L + 14 

(d3,PC,Xn) 5 1L + 4 5 2L+4 16 2L + 14 

(BR,Xn) 6 1L+5 6 2L+ 5 17 2L + 15 

(bd,BR,Xn) 7 1L+6 7 2L + 6 18 2L + 16 

([bd,BR,Xn]) 9 1L + 8 9 2L + 8 21 2L + 19 

([bd,BR,Xn].od) 10 1L + 9 10 2L+9 22 2L +20 

([bd,BR],Xn) 10 3L+ 7 10 4L + 7 22 4L + 18 

([bd,BR].Xn,od) 11 3L + 8 11 4L+ 8 23 4L + 19 

*Times listed are typical. 

MOTOROLA MCF5102 USER'S MANUAL 9-19 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

DIVS.W, 01vu.w* D~~~:t: ~:~~j_~j_* JMP 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn 8 27 9 44 - -
An - - - - - -

(An) 8 27 9 44 3 2L + 1 

(An)+ 8 27 9 44 - -
-(An) 8 27 9 44 - -
{d15,An) 8 27 11 2L +44 4 3L + 1 

(d15,PC) 11 3L +27 12 3L +44 6 5L + 1 

(xxx).W, (xxx).L 8 27 11 2L +44 3 2L + 1 

#<XXX> 8 27 10 1L + 44 - -
{d8,An,Xn) 11 30 12 47 6 6 

(d8,PC,Xn) 12 1L + 30 13 1L + 47 7 1L + 6 

(BR,Xn) 13 1L + 31 14 1L +48 8 1L + 7 

(bd,BR,Xn) 14 1L + 32 15 1L + 49 9 1L + 8 

([bd,BR,Xn]) 17 1L + 35 18 1L + 52 12 1L + 11 

([bd,BR,Xn],od) 18 1L + 36 19 1L + 53 12 1L + 11 

([bd,BR],Xn) 18 3L +34 19 3L + 51 13 3L + 10 

([bd,BR],Xn,od) 19 3L + 35 20 3L + 52 14 3L + 11 

*This instruction inte,rlocks the <ea> calculate and execute stages. Execution time for a DIV/O exception taken and 
exception processing is approximately 16 +<ea> calculate clocks. For example, DIV.W #0,Dn takes approximately 
24 clocks in both the <ea> calculate and execute times to execute the divide instruction, perform exception stacking, 
fetch the exception vector, and prefetch the next instruction. 

9-20 MCF5102 USER'S MANUAL MOTOROLA 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

JSR LEA MOVE from CCR 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn - - - - 1 2 

An - - - - - -
(An) 3 2L + 1 1 1 1 2 

(An)+ - - - - 1 2 

-(An) - - - - 1 2 

(d15,An) 4 3L + 1 2 1L + 1 1 2 

(d15,PC) 6 5L + 1 4 3L + 1 - -

(xxx).W, (xxx).L 3 2L + 1 1 1 1 2 

#<XXX> - - - - - -
(da,An,Xn) 6 6 4 4 3 4 

(da,PC,Xn) 7 1L + 6 5 1L + 4 - -
(BR,Xn) 8 1L+ 7 6 1L+ 5 6 1L + 6 

(bd,BR,Xn) 9 1L + 8 7 1L + 6 7 1L + 7 

([bd,BR,Xn]) 12 1L+11 9 1L + 8 10 1L + 10 

([bd,BR,Xn],od) 13 1L + 12 10 1L + 9 11 1L + 11 

([bd,BR],Xn) 13 3L + 10 10 3L + 7 11 3L + 9 

([bd,BR],Xn,od) 14 3L + 11 11 3L+ 8 12 3L + 10 

MOTOROLA MCF5102 USER'S MANUAL 9-21 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

MOVE to CCR MOVE from SRa MOVEtosRb 

Addressing <ea> Execute <ea> Execute <ea> 
Mode Calculate Calculate Calculate 

On 1 2 2 1L + 2 9 

An - - - - -
(An) 1 2 2 1L + 2 10 

(An)+ 1 2 2 1L + 2 10 

-(An) 1 2 2 1L +2 10 

(d15,An) 1 2 2 1L + 2 10 

(d15,PC) 3 2L +2 - - 11 

(xxx).W, (xxx).L 1 2 2 1L +2 10 

#<XXX> 1 2 - - 9 

(ds,An,Xn) 3 4 4 5 11 

(d9,PC,Xn) 4 1L + 4 - - 12 

(BR,Xn) 6 1L + 6 6 1L + 6 -
(bd,BR,Xn) 7 1L + 7 7 1L + 7 14 

([bd,BR,Xn)) 10 1L + 10 10 1L + 10 17 

([bd,BR,Xn],od) 11 1L+11 11 1L + 11 18 

([bd,BR],Xn) 11 3L + 9 11 3L +9 18 

{[bd,BR],Xn,od) 12 3L + 10 12 3L + 10 19 

NOTES: 
a. This instruction interlocks the <Sa> calculate and execute stages. 
b. Times listed are minimum. This instruction interlocks the <ea> calculate and execute 

stages and synchronizes some portions of the processor before execution. 

9-22 MCF5102 USER'S MANUAL 

Execute 

1L + 8 

-
2L+ 8 

2L + 8 

2L + 8 

2L+ 8 

3L + 8 

2L + 8 

1L + 8 

11 

1L+11 

-
1L + 13 

1L + 16 

1L + 17 

3L + 15 

3L + 16 

MOTOROLA 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

MCVEA.La MOVEM <list>,<ea>b,c MOVEM.L <ea>,<list>b,c 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn 1 1 - - - -

An 1 1 - - - -
(An) 1 1 2+ D'+A' 1L + 1 + D' +A' 3+ D' +A 1L + 2 + D' +A' 

(An)+ 1 1 - - 3 + D' +A 1L+2+D'+A' 

-(An) 1 1 2+ D' +A' 1L + 1 + D' +A' - -
(d15,An) 1 1 2+ D'+ A' 1L + 1 + D' +A' 3+D"+A 1L + 2 + D' +A' 

(d15,PC) 3 2L + 1 - - 4+D'+A 2L + 2 + D' +A' 

(xxx).W, (xxx).L 1 1 2+ D'+A' 1L+1 + D' +A' 3+ D'+ A 1L + 2 + D' +A' 

#<XXX> 1 1 - - - -
(dg,An,Xn) 4 4 9 + D' +A' 2L + 7 + D' +A' 10 + D' +A 2L + 8 + D' +A' 

(dg,PC,Xn) 5 1L + 4 - - 11 + D' +A 3L + 8 + D' +A' 

(BR,Xn) 6 1L + 5 11 + D' +A' 3L + 8 + D' +A' 12 + D' +A 3L + 9 + D' +A' 

(bd,BR,Xn) 7 1L + 6 12 + D' +A' 3L + 9 + D' +A' 13 + D' +A 3L + 1 0 + D' + A' 

([bd,BR,Xn]) 10 1L + 9 15 + D'+ A' 3L + 12 + D' + A' 16 + D' +A 3L + 13 + D' + A' 

([bd, BR,Xn],od) 11 1L + 10 16+D'+A' 3L + 13 + D' +A' 17+ D'+ A 3L + 14 + D' + A' 

([bd,BR],Xn) 11 3L + 8 16 + D' +A' 5L + 11 + D' + A' 17 + D' +A 5L + 12 + D' +A' 

([bd,BR],Xn,od) 12 3L + 9 17 + D'+ A' 5L + 12 + D' + A' 18+ D'+ A 5L + 13 + D' + A' 
NOTES: 

a. Except for Dn and #<XXX> cases, add one clock to execute times for MOEA.W. 
b. This instruction interlocks the <ea> calculate and execute stages. 
c. D' and A' indicate the number of data and address registers, respectively (if no data registers specified the 

number one). For MOVEM.W <ea>,<list>, add N - 2 and N clocks to <ea> calculate and execute times, 
respectively, for N address registers specified. 

MOTOROLA MCF5102 USER'S MANUAL 9-23 

Cl 



-

9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

MOVES <ea>,An • MOVES <ea>,Dn • MOVES Rn,<ea> 
. 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn - - - - - -
An - - - - - -

(An) 28 4L +24 20 4L + 19 13 4L + 9 

(An)+ 28 4L +24 20 4L + 19 13 4L + 9 

-(An) 17 2L + 15 11 12 11 2L +9 

(d15,An) 29 4L +24 21 4L + 19 14 4L +9 

(d15,PC) - - - - - -
(xxx).W, (xxx).L 17 2L + 15 11 4L + 10 11 2L + 9 

#<XXX> - - - - - -
(d8,An,Xn) 29 1L +27 21 1L +22 14 1L + 12 

(d8,PC,Xn) - - - - - -
(BR,Xn) 21 2L + 19 15 2L + 14 15 2L + 13 

(bd,BR,Xn) 22 2L +20 16 2L + 15 16 2L + 14 

([bd,BR,Xn]) 35 2L +32 26 2L +27 21 2L + 17 

([bd,BR,Xn],od) 31 2L +29 23 2L +24 20 2L + 18 

([bd,BR],Xn) 36 4L + 31 27 4L +26 21 4L + 16 

([bd,BR],Xn,od) 32 4L +28 24 4L +23 21 4L + 17 

*Times listed are typical. This instruction interlocks the <ea> calculate and execute stages and synchronizes some 
portions of the processor before execution. 

9-24 MCF5102 USER'S MANUAL MOTOROLA 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

MULS.W/L* MULU.W/L* NBCD 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn 1 16/20 1 14/20 1 3 

An - - - - - -

(An) 1 16/20 1 14/20 1 2 

(An)+ 1 16/20 1 14/20 1 2 

-(An) 1 16/20 1 14/20 1 2 

(d15,An) 1/2 16/20 1/2 14/20 1 2 

(d15,PC) 3 2L + 16/2L + 20 3 14/20 - -

(xxx).W, (xxx).L 1/2 16/20 1/2 14/20 1 2 

#<XXX> 1 16/20 1 14/20 - -
(d8,An,Xn) 3 18/22 3 16/22 3 4 

(d8,PC,Xn) 5 1 L + 19/1 L + 23 5 1L + 1711L + 23 - -

(BR,Xn) 6 1 L + 20/1 L + 24 6 1 L + 18/1 L + 24 6 1L +6 

(bd,BR,Xn) 7 1L + 2111L + 25 7 1 L + 19/1 L + 25 7 1L + 7 

([bd,BR,Xn]) 9 1 L + 23/1 L + 27 9 1L+21/1 L + 27 9 1L +9 

([bd,BR,Xn],od) 10 1 L + 24/1 L + 28 10 1 L + 2211 L + 28 10 1L + 10 

([bd,BR],Xn) 10 3L + 2213L + 26 10 3L + 20/3L + 26 10 3L +8 

([bd,BR],Xn,od) 11 3L + 23/3L + 27 11 3L + 21/3L + 27 11 3L + 9 

*Multiply <ea> calculate and execute times; T1ff2 apply to word/long-word operand size. 

MOTOROLA MCF5102 USER'S MANUAL 9-25 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

NEG, NEGX, NOT PEA ROL, ROR 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate . 

Dn 1 1 - - 1 3/4 

An - - - - - -
(An) 1 1 2 1L + 1 1 3 

(An)+ 1 1 - - 1 3 

-(An) 1 1 - - 1 3 

(d16,An) 1 1 2 1L + 1 1 3 

(d16,PC) - - 4 3L + 1 - -
(xxx).W, (xxx).L 1 1 2 1L+1 1 3 

#<XXX> - - - - - -

(ds,An,Xn) 3 3 4 1L +3 3 5 

(ds,PC,Xn) - - 6 2L +4 - -
(BR,Xn) 6 1L + 5 7 2L +5 6 1L + 7 

(bd,BR,Xn) 7 1L + 6 8 2L + 6 7 1L +a 

([bd,BR,Xn]) 9 1L + 8 10 2L+ a 9 1L + 10 

([bd,BR,Xn],od) 10 1L + 9 11 2L +9 10 1L+11 

([bd,BR].Xn) 10 3L + 7 11 4L + 7 10 3L + 9 

([bd,BR],Xn,od) 11 3L + 8 12 4L + 8 11 3L + 10 

*Immediate count specified for shift counVshift count specified in register, respectively. 

9-26 MCF5102 USER'S MANUAL MOTOROLA 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued) 

ROXL,ROXR Sec SUBA 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn 1 5/6* 1 2 1 1 

An - - - - 1 2 

(An) 1 2 1 2 1 2 

(An)+ 1 2 1 2 2 1L +2 

-(An) 1 2 1 2 2 1L + 2 

(d15,An) 1 2 1 2 2 1L +2 

(d15,PC) - - - - 3 2L +2 

(xxx).W, (xxx).L 1 2 1 2 1 2 

#<XXX> - - - - 1 2 

(ds,An,Xn) 3 4 4 5 4 5 

(ds,PC,Xn) - - - - 5 1L +5 

(BR,Xn) 6 1L+6 6 1L +6 6 1L + 6 

(bd,BR,Xn) 7 1L + 7 7 1L + 7 7 1L + 7 

([bd,BR,Xn]) 9 1L+9 10 1L + 10 9 1L+9 

([bd,BR,Xn],od) 10 1L + 10 11 1L + 11 10 1L + 10 

([bd,BR],Xn) 10 3L +8 11 3L + 9 10 3L + 8 

([bd,BR],Xn,od) 11 3L+9 12 3L + 10 11 3L +9 

*Immediate count specttied for shift count/shift count specified in register, respectively. 

-

MOTOROLA MCF5102 USER'S MANUAL 9-27 



9.6 INTEGER UNIT INSTRUCTION TIMINGS (Concluded) 
TAS• 

Addressing <ea> Execute <ea> Execute <ea> Execute 
Mode Calculate Calculate Calculate 

Dn 1 2 

An - -
(An) 26 2L+24 

(An)+ 26 2L +24 

-(An) 26 2L +24 

(d15,An) 26 2L+24 

(d15,PC) - -
(xxx).W, (xxx).L 26 2L+24 

#<XXX> - -
(ds,An,Xn) 27 27 

(ds,PC,Xn) - -
(BR,Xn) 30 1L +28 

(bd,BR,Xn) 31 1L + 29 

([bd,BR,Xn]) 33 33 

([bd,BR,Xn],od) 35 34 

([bd,BR],Xn) 34 3L + 31 

([bd,BR],Xn,od) 36 3L+32 

*Times listed are typical. This instruction interlocks the <ea> calculate and execute stages and synchronizes some 
portions of the processor before execution. 

9-28 MCF5102 USER'S MANUAL MOTOROLA 



SECTION 10 
ELECTRICAL AND THERMAL CHARACTERISTICS 

The following paragraphs provide information on the maximum rating for the MCF5102. 

10.1 Maximum Ratings 

Characteristic Symbol Value Unit 

Supply Voltage Vee --0.3 to +4.0 v 
Maximum Operating Voltage Vee +3.6 v 
Minimum Operating Voltage 3.0 v 
Input Voltage Vin -0.5 to Vee +4 oe 

Maximum Operating Junction Temperature TJ 110 oe 

Storage Temperature Range Tstg_ -55 to 150 oe 

10.2 Thermal Characteristics 

Characteristic Symbol Value 

Thermal Resistance, Junction to Ambient- qJA 49 
Thin Plastic Surface Mount Package PV 

MOTOROLA MCF5102 USER'S MANUAL 

This device contains protective 
circuitry against damage due to high 
static voltages or electrical fields; 
however, it is advised that normal 
precautions be taken to avoid 
application of any voltages higher 
than maximum-rated voltages to this 
high-impedance circuit. Reliability of 
operation is enhanced if unused 
inputs are tied to an appropriate logic 
voltage level (e.g., either GND or 
Vee). 

Rating 

oe/W 

10-1 



10.3 DC Electrical Specifications (Vee = 3.3 Vdc ± o.3 Vdc) 

Characteristic Symbol Min Max Unit 

Input High Voltage V1H 2 5.5 v 
Input Low Voltage V1L GND o.a v 
Input Low Voltage (BCLK) V1L -0.5 o.a v 
Overshoot See Figure 10-1 v 
Input Leakage Current @ 0.5/2.4 V During Normal Operation Only 

lin 20 µA AVEC, BCLK, BG, CDIS, IPLx, RSTI, SCx, -
'i'Bi, TLNx, TCI, TCK, TEA 

Hi-Z (Off-State) Leakage Current @ 0.5/2.4 V During Normal Operation 
A/On, BB, CIOUT, LOCK, R/W, SIZX, TA, TOO, ITSI - 20 µA 
TMx, TLNx, TS, TTx, 

Signal Low Input Current, (estimated) V1L = o.a V l1L 0 1 mA 
TMS, TOI 

Signal High Input Current, (estimated) V1H = 2.0 V llH 0 1 mA 
TMS, TOI 

Output High Voltage loH = 5ma VoH 2.4 - v 
Output Low Voltage IOL = 5ma VOL - 0.5 v 
Capacitance2, Vin = 0 V, f = 1 MHz Cin - 15 pF 

NOTES: 
1. Capacitance is periodically sampled rather than 100% tested. 

GND 

Figure 10-1. Overshoot Diagram 

10.4 Power Dissipation 

I 16 MHZ I 20 MHz I 25 MHz J 33 MHz 

Worst Case (Vee = 3.6 V , Ta= 0°C) 

MCF5102 I .aw I 1w J 1.25w J 
LPSTOP Mode· No output loads, not driving bus 

MCF5102 I 1 mW J 1 mW J 1mW J 
Typical Values (Vee= 3.3 V, TJ = 25°C)* - Normal Operation 

MCF5102 I .64W l .awl .9W l 
*This information is for system reliability purposes. 

10-2 MCF5102 USER'S MANUAL MOTOROLA 



10.5 Clock AC Timing Specifications (See Figure 10-2) 

16.67 MHz 20MHz 25MHz 33MHz 

Num Characteristic Min Max Min Max Min Max Unit 

Frequency of Operation 0 16.67 0 20 0 25 MHz 

5 BCLK Cycle Time 60 - 50 - 40 - ns 

6,71 BCLK Rise and Fall Time - 2 - 2 - 2 ns 

s BCLK Duty Cycle Measured at 1.5 V 40 60 40 60 40 60 % 

Sa BCLK Pulse Width High Measured at 1.5 V 24 36 20 30 16 24 ns 

Sb BCLK Pulse Width Low Measured at 1.5 V 24 36 20 30 16 24 ns 

9 BCLK edge to edge jitter - 125 - 125 - 125 ps 

NOTES: 
1. Rising and falling edges of BCLK must be monotonic. 

± 125 pSec 

1·®1 ·I 
1~ ~ 4/ J 

VIH 
VM BCLK 

VIL 

@ @ l 
Figure 10-2. Clock Input Timing Diagram 

10.6 Multiplexed Timing Specifications (see Figures 10-3) 

Num Characteristic 16.67 MHz 20MHz 25MHz 33MHz Unit 

Min Max Min Max Min Max Min Max 

12 BCLK to Output Invalid (Output Hold) 15 - 11.5 - 9 - 6.5 - ns 

13 BCLK to TS Valid 15 40 11.5 35 9 30 6.5 25 ns 

15 Data-In Valid to BCLK (Setup) 6 - 6 - 5 - 4 - ns 

16 BCLK to Data-In Invalid (Hold) 5 - 5 - 4 - 4 - ns 

17 BCLK to Data-In High Impedance 5 19 5 19 4 19 4 13 ns 

17W2 BCLK to Data-In High Impedance 5 75 5 62.5 4 50 4 36.5 ns 

19 BCLK to Data-Out Invalid (Output Hold) 15 - 11.5 - 9 - 6.5 - ns 

211 BCLK to Data-Out High Impedance 15 30 11.5 25 9 20 6.5 17 ns 

26 BCLK to Multiplexed Address Valid 30 50 25 45 20 403 14 33 ns 

26W2 BCLK to Multiplexed Address Valid 15 40 12.5 35 10 30 7.5 25 ns 

27 BCLK to Multiplexed Address Driven 30 - 25 - 20 - 14 - ns 

27W2 BCLK to Multiplexed Address Driven 15 - 11.5 - 9 - 6.5 - ns 

2S BCLK to Multiplexed Address High 15 30 11.5 25 10 20 6.5 15 ns 
Impedance 

29 BCLK to Multiplexed Data Driven 15 - 11.5 - 9 - 6.5 - ns 

30 BCLK to Multiplexed Data-Out Valid 15 40 11.5 37 9 32 6.5 27 ns 

NOTES: 
1. Following a loss of bus ownership. 
2. WAITER pin asserted. 
3. 35 ns typical. 

MOTOROLA MCF5102 USER'S MANUAL 10·3 



BCLK 

TRANSFER 
ATIRIBUTES 

PJW 

AID 

TA 

BCLK 

TRANSFER 
ATIRIBUTES 

PJW 

AID 

TA 

to-4 

Normal Mux Bus Timing 

Walt Mux Bus Timing 

Figure 1.0·3. Read/Write Timing 

MCF5102 USER'S MANUAL MOTOROLA 



10.7 Output AC Timing Specifications (see Figures 10-4 to 10-11) 

16.67 MHz 20MHz 25MHz 33 MHz 

Num Characteristic Min Max Min Max Min Max Min Max Unit 

BCLK to CIOUT, LOCK, 15 40 11.5 35 11 PSTx, R/W, SIZX, TLNx, TMx, TTx, Valid 9 30 6.5 25 ns 

12 BCLK to Output Invalid (Output Hold) 15 - 11.5 - 9 - 6.5 - ns 

19 BCLK to Data-Out Invalid (Output Hold) 15 - 11.5 - 9 - 6.5 - ns 

BCLK to CIOUT, LOCK, R/VV, SIZX, TS, 
38 TMx, TTx, High Impedance 15 30 11.5 23 9 18 6.5 15 ns 

39 BCLK to BB, TA, High Impedance 15 40 23 33 19 28 14 25 ns 

40 BCLK to BR, BB Valid 15 40 11.5 35 9 30 6.5 23 ns 

43 BCLK to Ml Valid 15 40 11.5 35 9 30 6.5 25 ns 

48 BCLK to TA Valid 15 40 11.5 35 9 30 6.5 25 ns 

50 BCLK to IPEND, PSTx, RSTO, SCD Valid 15 40 11.5 35 9 30 6.5 25 ns 

w RSTI active to SCD inactive. 8 100 8 100 8 100 8 100 ns 

A IPLx to SCD invalid 8 100 8 100 8 100 8 100 ns 

NOTE: Output timing is specified for a valid signal measured at the pin. Timing is specified 
driving a 50pl capactive load. 

MOTOROLA MCF5102 USER'S MANUAL 10-5 

.. 



10.8 Input AC Timing Specifications (see Figures 10-4to 10-11) 

16.67 MHz 20MHz 25MHz 33MHz 

Num Characteristic Min Max Min Max Min Max Min Max Unit 

22a TA Valid to BCLK (Setup) 15 - 12.5 - 10 - 10 - ns 

22b TEA Valid to BCLK (Setup) 15 - 12.5 - 10 - 10 - ns 

22c TCI Valid to BCLK (Setup) 15 - 12.5 - 10 - 10 - ns 

22d TBI Valid to BCLK (Setup) 15 - 14 - 11 - 10 - ns 

23 BCLK to TA, TEA, TCI, TBI Invalid (Hold) 3.0 - 2.5 - 2 - 2 - ns 

24 AVEC Valid to BCLK (Setup) 7.5 - 6 - 5 - 5 - ns 

25 BCLK to AVEC .Invalid (Hold) 3.0 - 2.5 - 2 - 2 - ns 

41a BB Valid to BCLK (Setup) 10 - 8 - 7 - 7 - ns 

41b BG Valid to BCLK (Setup) 15 - 10 - 8 - 7 - ns 

41c CDIS Valid to BCLK (Setup) 15 - 12.5 - 10 - 8 - ns 

41d IPLx Valid to BCLK (Setup) 7.5 - 5 - 4 - 3 - ns 

42 BCLK to BB, BG, CDIS, IPLx Invalid (Hold) 3.0 - 2.5 - 2 - 2 - ns 

44a Address Valid to BCLK (Setup) 15 - 10 - 8 - 7 - ns 

44b SIZxValid to BCLK (Setup) 15 - 15 - 12 - 8 - ns 

44c TTx Valid to BCLK (Setup) 15 - 7.5 - 6 - 8.5 - ns 

44d RiW Valid to BCLK (Setup) 15 - 7.7 - 6 - 5 - ns 

44e SCx Valid to BCLK (Setup) 15 - 12.5 - 10 - 11 - ns 

45 BCLK to Address SIZx ,TTx, R/W, SCx 3.0 - 2.5 - 2 - 2 - ns 
Invalid (Hold) 

46 TS Valid to BCLK (Setup) 7.5 - 6 - 5 - 9 - ns 

47 BCLK to TS Invalid (Hold) 3.0 - 2.5 - 2 - 2 - ns 

49 BCLK to BB High Impedance 
(Processor Assumes Bus Mastership) 

- 15 - 11 - 9 - 9 ns 

51 RSTI Valid to BCLK 7.5 - 6 - 5 - 4 - ns 

52 BCLK to RSTI Invalid 3.0 - 2.5 - 2 - 2 - ns 

D IPEND valid to IPLx invalid (Hold) 0 - 0 - 0 - 0 - ns 

v RSTI pulse width, leaving LPSTOP mode 10 - 10 - 10 - 10 - ns 

10-6 MCF5102 USER'S MANUAL MOTOROLA 



MOTOROLA 

BCLK 

A31-AO 
031-DOOUT 

(WRITE) 

TRANSFER 
ATIRIBUTES 

BB OUT 

NOTE: Transfer Attribute Signals= SIZ:x, TTx, TMx, TLNx, Rflil, CIOUT 

Figure 10-4. Bus Arbitration Timing 

MCF5102 USER'S MANUAL 10-7 



BCLK 

SIZX, TTx, 
RIWIN 

TSIN 

MUXEDADDR&DATA 
(ALT. MASTER WRITE) 

TA OUT 

BBIN 

10-8 

Figure 10-5. Snoop Hit Timing 

MCF5102 USER'S MANUAL MOTOROLA 



BCLK 

A31-AO IN 

SIZx,JTx, 
A/WIN 

SC1,SCO SNOOP 

TS IN 

Ml 

TA 

TEA 

fBj 

BBIN 

Figure 10-6. Snoop Miss Timing 

MOTOROLA MCF5102 USER'S MANUAL 10·9 



Figure 10-7. Other Signal Timing 

10-10 MCF5102 USER'S MANUAL MOTOROLA 



BCLK 

TI1-TIO $3 

TM2-TMO $0 

SIZ1-SIZO $2 

R/W 

LOCK 

BR 

BG 

BB OUT 

MULTIPLEXED 
A31-AO = 

ADDRESS & DATA $FFFFFFF 

PST3-PSTO 

SCD -
TA 

BB IN 

Figure 10-8. Going into LP STOP with Arbitration 

MOTOROLA MCF5102 USER'S MANUAL 10-11 



BCLK 

TT1-TTO $3 

TM2-TMO $0 

SIZ1-SIZO $2 

ww 

MULTIPLEXED 
ADDRESS AND DATA 

TA 

PST3-PSTO 

SCD 

BB OUT 

BG 

BR @ 

Figure 10-9. LPSTOP no Arbitration, CPU is Master 

10-12 MCF5102 USER'S MANUAL MOTOROLA 



BCLK 

Figure 10-10. Exiting LPSTOP with Interrupt 

BCLK J\ 

->® -
Figure 10-11. Exiting of LPSTOP with RESET 

MOTOROLA MCF5102 USER'S MANUAL 10-13 



10-14 MCF5102 USER'S MANUAL MOTOROLA 



SECTION 11 
ORDERING INFORMATION AND 
MECHANICAL DATA 

This section contains the ordering information, pin assignments, and package dimensions 
FOR the MCF5102 

11.1 ORDERING INFORMATION 

The following table provides ordering information pertaining to package types, 
frequencies, temperatures, and Motorola order numbers. 

Package Type Frequency Maximum Junction Minimum Ambient Order Number 
Temperature Temperature 

Thin Plastic Quad- 16.67 MHz XCF5102PV16A 
Flat Pack 20 MHz 110 °C 0°C XCF5102PV20A 

PV Suffix 25MHZ XCF5102PV25A 

11.2 PIN ASSIGNMENTS 

Figure 11-1 shows the pin assignments for the MCF5102. 

MOTOROLA MCF 5102 USER'S MANUAL 11-1 

-



11-2 

VDD 
BG 
m 

VDO 
GND 
88 

ma< 
VDO 
GND 
jj5[Q 
f15CT 
IPL2 
VDD 
GND 
~ 
AVEC 
GND 
VDD 
GND 
GND scrr 
VDD 
GND 
TDO 
TCK 
TMS 
TDI 

GNO 
VDD 

BCLK 
GNO 

NC 
NC 

RSTO 
rmTT 
VOD 

MCF5102 
(TOP VIEW) 

Figure 11-1. MCF5102 Pinout 

MCF5102 USER'S MANUAL 

VDD 
A/D6 
A/D7 
VDD 
GND 
AIDS 
A/09 
VDD 
GND 
A/010 
AID11 
VDD 
GND 
A/D12 
A/D13 
VDO 
GNO 
A/014 
A/015 
VOD 
GNO 
A/016 
A/017 
VOO 
GND 
A/018 
A/019 
VOD 
GND 
A/020 
A/021 
VOO 
GNO 
A/022 
A/023 
GNO 

MOTOROLA 



11.3 MECHANICAL DATA 

Figure 11-2 illustrates the MCF5102 TQFP package dimensions. 

MOTOROLA MCF 5102 USER'S MANUAL 11-3 



11-4 

+ 0.20 0.008 H L- M N + 0.20 0.008 H L- M N 

\.". (ROTATED 90') . 
• ••• 144P!,.. .. / 

I+ lo.o8(o.oo31@r I L-M@ IN 
A1---~ 

~'----- S1 ----
NOTES: 

1. DIMENSIONING AND TOLERANCING PER ANSI 
Y14.5M, 1982. A -------~I s ___________ , 

DETAIL 'B' 
a 0.08 (0.003) 

SEATING 
PLANE 

2. CONTROLLING DIMENSION: MILLIMETER. 
3. DATUM PLANE ·H·IS LOCATED AT BOTIOM OF 

LEAD AND COINCIDENT WrTH THE LEAD WHERE 
THE LEAD EXITS THE PLASTIC BODY AT THE 
BOTIOM OF THE PARTING LINE. 

4. DATUMS ·L·, ·M·, AND ·N· TO BE DETERMINED AT 
DATUM PLANE -H·. 

5. DIMENSIONS SAND VTO BE DETERMINED AT SEATING 
PLANE ·T·. 

6. DIMENSIONS AAND B DO NOT INCLUDE MOLD PROTRUSION. 
ALLOWABLEPROTRUSION IS 0.25 (0.010 PER SIDE. 
DIMENSIONS A AND B DO NOT INCLUDE MOLD 
MISMATCH AND ARE DETERMINED AT DATUM LINE -H·. 

7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. 
ALLOWABLEDAMBAR PROTRUSION SHALL NOT CAUSE 
THE D DIMENSION TO EXCEED 0.35 (0.014). 

MILLIMETERS_ INCHES 
DIM MIN MAX MIN MAX 

A 20.00 BSC 0.790 BSC 
A1 10.00 BSC 0.394 BSC 
B 20.00 BSC 0.790 BSC 

B1 10.00 BSC 0.394 BSC 
c 1.40 1.60 0.055 0.063 

C1 0.05 0.15 0.002 0.006 
C2 1.35 1.45 0.053 0.057 
D 0.17 0.27 0.007 0.011 
E 0.45 0.75 w 0.030 
F 0.17 0.23 0.007 0.009 
G 0.50 BSC. 0.20 BSC. 
J 0.09 l 0.20 0.004 0.008 
K 0.50 REF 0.020 REF 
p 0.25 BSC 0.010 BSC 
R1 0.13 :r 0.20 0.005 :r 0.008 
R2 0.13 0.20 0.005 J_ 0.008 
s 22.00 BSC 0.866 BSC 
S1 11.00 BSC 0.433 BSC 
v ~~" U."bb "~L 

V1 ~b~-. ~·~" 
..Q12..HoF ..M.J..QJlli. 

z 1.00 REF ~ 
M_ Q,!)~ _U.lb_ ... £8119 
I[ Jl": JP': 

~ FIR: F- ~ 

Figure 11-2. TQFP Package Dimensions 

MCF5102 USER'S MANUAL MOTOROLA 



APPENDIX A 
ADDRESS, TIP, AND LOCKE GENERATION 

The MCF5102's bus is similar with the MC68040's bus in multiplexed-bus mode. That 
bus definition includes TIP (transfer in progress) and LOCKE (locked-sequence ending) 
signals, which are useful in some applications. The MCF5102's bus, while similar in 
other respects, omits these signals. This application presents considerations for 
generating these signals externally, and for latching address from the AID pins. 

TIP and LOCKE are easier to generate with a wait-state inserted into the address phase 
of every bus transaction. In that case, these signals can be generated from a 
synchronous output of a PAL. Without injecting the wait-state, it must be generated 
asynchronously. 

Sample PAL programs are included for synchronous and asynchronous 
implementations. 

A.1 DEFINITIONS 

BCLK Cycle: The period of time between two adjacent rising edges of the BCLK 
signal. 

BERR: Abbreviation for "bus error''. 

Bus Transaction: Any action over the MCF5102's bus-interface signals carried out 
according to the databook specifications, notably: any data or instruction read or 
write, an interrupt or breakpoint acknowledge, a snooped bus action, or an 
LPSTOP broadcast. 

Locked Sequence: A sequence of bus transactions during which the LOCK signal ~ 
continuously is asserted to prevent an alternate master from disturbing the data ~ 
being manipulated. 

Address Phase: The first BCLK cycle of a bus transaction, during which time the 
address is presented on the AID pins. 

Data Phase: The BCLK cycle(s) following the address phase of bus transaction, 
including any wait-states. A single data phase nominally results in a single data 
transfer, but could also end in a BERR or retry. 

MOTOROLA MCF5102 USER'S MANUAL A-1 



Wait-State: A data-phase BCLK cycle during which neither TA nor TEA are asserted. 

Data Transfer: A single data movement over the AID pins. 

Burst Transaction: A bus transaction consisting of an address phase followed directly 
by four data phases (provided that no bus errors nor retries occur). A SERR or retry 
aborts a bus transaction. An inhibited burst (SIZ=11 and TBl=O) produces nonburst 
cycles, normally a total of four. 

Nonburst Transaction: A bus transaction consisting of an address phase followed by 
exactly one data phase. 

Open vs. Closed latch: A transparent latch is "closed" when its latch enable pin is low 
- when its outputs reflect stored data. It is "open" when it is transparent or acting like 
a buffer. 

A.2 ADDRESS LATCHING 

A.2.1 Using Clock-Enabled Flip-Flops 
Using clock-enabled flip-flops provides a clean way to demultiplex address from the AID 
pins. See Figure A-1. 

This provides usable timing for a single-bus-master, 20MHz system with a wait-state 
injected into to the address phase of every bus transaction. Because of the wait-state 
injected in the TS path, TIP can be generated from a simple synchronous state machine 
implemented in an inexpensive PAL. (The cache hit rates are high enough to make the 
impact of this additional wait-state small.) 

Latching addresses with 74F377s has several disadvantages. One is that setup time on 
the 74F377s is difficult to satisfy. Because many memory devices have slow output
disable times, the MCF5102 drives address onto the AID pins late in the address phase 
of the bus transaction (if WAITER is negated). Operating at 20MHz, spec#26 guarantees 
only 5ns of setup time to the next BCLK, and at 25MHz no setup time at all is 
guaranteed. 

Additionally, the clock-enabled flip-flops add additional BCLK loads, and may limit 
choices of available parts in a multiple-master system. The 74F377 does not provide an 
output disable, a multimaster system will require additional buffers or a more specialized 
part type that provides both clock enable and output enable. 

A-2 MCF5102 USER'S MANUAL MOTOROLA 



MCF5102 

BCLK 

TS 

ND 

74 x 74 (or PAL} 

D Q 

!'>elk 

p-cik 

clkEn 

D Q 

74F377 
(clock-enabled 

flip-flop) 

--. 

_... 
~ 

TS TO REST 
OF DESIGN 

ADDRESS 

Figure A-1. Clock -Enabled Flip-Flop Address Latching 

A.2.2 Using Transparent Latches 
Transparent latches are the most efficient way to demultiplex addresses in a 
performance-sensitive environment, but doing so presents some timing considerations. 
With latches address setup compared with address hold requirements are critical. This 
affects whether or not to hold the latches open or closed between bus transactions, and 
whether to assert the WAITER pin. 

With the address latches opened at the end of each bus transaction, the next bus cycle's 
address will come valid only one D-to-Q propagation delay time after they come valid on 
the address/data (ND) pins. With WAITER asserted, address will be valid during the 
entire address phase, giving ample setup time for address decoders and memory 
devices. With WAITER negated, however, address is guaranteed valid, at the earliest, 
only a few nanoseconds before the beginning of the first data phase. 

Address access time is often the critical timing path for memory accesses. If satisfying 
these critical paths requires adding a wait-state, then use WAITER to insert one wait
state. Asserting waiter improves other bus timings as well as setup. 

Although opening the latch at the end of each bus transaction (with WAITER asserted) -
provides ample address setup time to the next bus transaction, it provides very short 
address hold times. Spec #12w guarantees only 5ns of hold time after BCLK on a 
25MHz part. To drive the latch enable low and satisfy the latch's hold time within 5ns, 
requires a 5ns PAL and fast latches. Designing to the (maximum) specifications of such 
fast devices in order to satisfy this very short hold time, also guarantees an even shorter 
(closer to typical) hold time after the bus transaction ends. If this hold time is not 
sufficient, then consider raising latch enable only during the BCLK-low time when which 
TS goes active (see figure 3 below): 

MOTOROLA MCF5102 USER'S MANUAL A-3 



This circuit provides ample address hold time at the end of a bus transaction, and with 
WAITER asserted, provides address setup times roughly comparable with MC68040 
interfaces. With WAITER negated, it provides the best address setup times possible. 

This circuit has a glitch hazard on the latch-enable under worst-case conditions. 

MCF5102 

ND 

74F02 
(or PAL) 

74F373 
latch) 

1-----1LE 

Q ADDRESS 

Figure A-2. Normally-Closed Latch-Enable Circuit 

Systems that require a TIP signal will need a state-machine to count data transfers of a 
burst cycle. That state-machine will know when the address phase has ended, and can 
provide an additional qualifier to mask this potential glitch. Alternatively, TS passed 
through a 1-clock delay flip-flop can provide this qualifier. 

BCLK _j 

AID ~-A_D_D_RE_s_s __ _,X~~~~-DA_T_A~~~~~~~~ 

LE +--GLITCH 

Figure A-3. Timing Hazard in Normally-Closed Latch-Enable Circuit 

A.2.3 Using PCLK with Transparent Latches 

With WAITER asserted, there will always be at least one bus-inactive BCLK cycle 
between adjacent bus transactions. In this scenario, opening the latches half a BCLK 
after the end of the bus transaction. 

A-4 MCF5102 USER'S MANUAL MOTOROLA 



Resampled TA 

BCLK 

\ \ \ \ 
-
~ I/ I \ 'I I TS 9 I ? I 

/~ 
I I I 

AID ~ A D I x A , I x DI 
I I I I 

I I I I 
I \ /I I 

I 

// TA 
( ( I I 
~ ~ ~ 

\.. .. ~ LE \.~ \.,~ '-~\ 

Figure A-4. Negating Latch-Enable Half-BCLK After End of Bus Transaction 

If the system has access to a clock running at twice BCLK frequency (like the 68040's 
PCLK) then this effect can be obtained by: 

1. Clocking the PAL on PCLK, and ... 

2. Qualifying all signal value changes that occur on the rising edge of BCLK, on BCLK 
being low. Since (unlike the rest) the rising edge of LE needs to occur on a BCLK 
falling edge, then that transition should be qualified on BCLK being high. 

In this case, TA may or may not have negated on the following BCLK falling edge. 
Therefore, resample TA on the BCLK rising edge, then raise LE when that resampled TA 
is low. 

There are two important caveats to this: 

1. BCLK must setup to PCLK; BCLK transitions must occur a few nanoseconds after 
PCLK rising edges. The MCF5102 timing specifications require only that BCLK 
transitions occur within 9ns, before or after PCLK rising edges. 

2. To avoid a metastable condition, all signals used in the PAL must transition within a 
hatf-BCLK-time period after the rising edge (minus skew), or be clearly gated on 
BCLK being low in the reduced PAL equations. 

A.3 PROPERTIES OF TIP SIGNAL 
1. TIP asserts approximately simultaneously with TS, and remains asserted throughout 

the bus transaction. 

2. TIP does not necessarily negate after the completion of a bus transaction. It will 
negate during any bus-inactive time between the end of that transaction and the 
beginning of the next. If the next bus transaction directly follows the current one, 
then there will be no intervening bus-inactive time, so it will stay asserted 
throughout both bus transactions. 

MOTOROLA MCF5102 USER'S MANUAL A-5 



-

3. Asserting WAITER ensures that there will always be at least one bus-inactive BCLK 
cycle between adjacent bus transactions. 

4. TIP stays asserted throughout all data phases of a burst transaction. 

5. As with the MC68040, the MCF5102 initiates a burst transaction with the intention of 
transferring always exactly four longwords. A burst transfer will never transfer more 
than four longwords, and only externally visible exceptional circumstances (TEA, 
TBI, or RSTI) can cause it to transfer fewer than four. 

6. TIP must go high impedance when the processor relinquishes the bus. 

7. A retry on the second, third, or last transfers of a burst transaction are treated as 
though they were bus errors. 

8. The state of the WAITER pin slightly changes the nanosecond-level timing of TS; 
this could affect the timing of TIP if generated asynchronously from it. 

A.4 GENERATING TIP 
There are two ways generate TIP: 

Synchronously: As a synchronous state-machine output. This requires injecting a wait
state into the addressing phase of every bus transaction. 

Asynchronously: As an asynchronous state-machine output. This asynchronous state 
machine is much more complex, but does not force a wait-state. 

Note that this wait-state is not related to the wait-state that the WAITER pin injects. Using 
the synchronous approach with WAITER asserted injects two wait-states in the 
addressing phase of each bus transaction. 

A.4.1 Synchronous TIP Generation 
Using the synchronous approach, TS from the MCF5102 must also be delayed by one 
BCLK to match the one-BCLK delay in generating TIP. This delay provides greater 
address setup time, and allows a synchronous state machine (clocked on BCLK) to drive 
TIP. In the processor's view, this delay looks like a wait-state, but to the rest of the board 
this delay looks like a bus-inactive BCLK cycle between bus transactions. 

Here is the state-machine to produce TIP synchronously. 

A-6 MCF5102 USER'S MANUAL MOTOROLA 



SIZ=11& 
&!TBI 

Figure A-5. Synchronous TIP Generation State Diagram 

A more complex state machine may be needed if LOCKE is to be generated as well. 
(Note that the names inside the state ovals in this diagram are outputs instead of state 
names. In Figure A-6 they are state names.) 

A.4.2 Asynchronous Tl P Generation 

If injecting a wait-state in every address phase is not acceptable, then TIP must be 
generated asynchronously. 

1. The assertion of TS itself must cause TIP to assert. 

2. A state machine is still needed to track each of the four data phases of a burst 
transaction. Minimally, TIP must be asserted when TS is asserted or when that 
state machine indicates that the bus transaction is in a data phase. 

3. Depending on clock skews, loading, and PAL speeds, TS could negate before your 
state machine transitions t~ data-phase state. To make this unproblematic, create 
a signal that asserts when TS asserts, and negates when TA (or TEA) asserts: 

tHold = !rsti "force inactive during reset 

& ( ts & bg "assert with TS 

# tHold & !ta & !tea "retain until TA (or TEA) asserts 

); 

4. If all circuitry examines TIP only on BCLK edges, then this becomes a lesser 
concern. 

5. TIP must go high-impedance when the processor relinquishes control of the bus. 

MOTOROLA MCF5102 USER'S MANUAL A·7 



-

A.5 GENERATING LOCKE 

The MCF5102 does not generate this signal, and it turns out to be virtually impossible to 
generate it for all possible cases solely from externally-visible signals. 

A fair means of detecting the last bus transaction in a locked sequence is to count the 
total number of reads that occur in the locked sequence, and assert LOCKE during the 
last of the same number of writes. Counting reads is important, since operands can 
aligned or misaligned, and of various data sizes. The PAL listings in Appendices A and 
B, use this technique to generate LOCKE. It will not operate correctly: 

1. For a CAS2 instruction: If CAS2 does not update its destination operands, it rewrites 
unchanged data only to the first of them. Since it does not write to both, the write
count will mismatch the read-count. 

2. For a CAS instruction where the memory operand is cached in copyback mode. 
This is not an interesting case anyway, since it is not meaningful unless that 
operand were snooped, and this PAL does not support snooping. The case where 
this does not work is actually more specific: The operand must be cacheable, 
cached in copyback mode, nonbyte, misaligned, straddling between two cache 
lines, and the second of those two lines must actually be dirty. This design will work 
if the first line only is dirty. 

The asynchronous PAL state-machine has three types of states: 

Address-Phase States: The machine is in these states when it is waiting for, or during, 
an address phase. "reset" (waiting for the address phase of the first bus transaction), and 
the address phases of the locked bus transactions are of this type. Other than "reset", 
these states and the nonburst data-phase states are named in the form. See 

Example: 1~3~ 

"l"ocked~ / 1 "' 
bus trans. "Rd" for Read, "A" for address-phase 

"Wr" for Write "D" for data-phase 

Operand access# (counts up 
for reads then down for writes) 

Figure A-6. Address Phase States 

(These namings only apply to the asynchronous PAL.) 

Nonburst Data-Phase States: The machine is in these states when it is waiting for the 
data phase to complete (see the naming convention above). 

Burst Data-Phase States: The machine sequences through these states to keep track 
of the four data transfers of a burst cycle. They are named cycD (which also forms the 
data-phase state of a non-burst, non-locked bus transaction), cycD1, cycD2, and cycD3, 
(which track each of the additional three data transfers of a burst bus transaction). 

A-8 MCF5102 USER'S MANUAL MOTOROLA 



Disregarding provisions for BERR, retry, and loss of LOCK, the state-diagram simplifies 
as stated in Figure A-7. 

(reset) 

BURST BUS 
- TRANSACTION 

TRACKING 
STATES 

LOCKED BUS 
TRANSACTION 
TRACKING 
STATES 

Figure A-7. Asynchronous TIP and LOCKE State Diagram 

Note that the names inside the state ovals as shown in Figure A-7 are state names rather 
than output names as they are in Figure A-5. 

MOTOROLA MCF5102 USER'S MANUAL A-9 

-



A.6 SYNCHRONOUS TIP GENERATION 

A-10 

ABEL Source for Synchronous TIP Generation and Other Functions 
module letip1 ws 
leTip1ws device 'P22V10C'; 

"'letip1 ws', with the aid of a 32-bit-wide tristate latch (e.g., 74xx373), 
"converts MCF5102 bus protocol to regular '040 bus protocol. This involves 
"four underlying tasks: 
" 1. Recreate the address bus by telling the latches to hold contents of 
" the AID bus right after the rising clock edge during which TS is asserted. 
"2. Tristate off the address lines when the processor loses grant and 
" completes any cycles that might be in progress at the time it loses grant 

(including locked sequences). 
"3. Regenerate TIP. This version of this PAL forces a dead-clock between 
" bus cycles as seen from the test card, or an extra wait-state as seen 

from the MCF5102. In this scenario, it also regenerates TS one clock later 
than it comes out of the MCF5102 itself. TIP and TS are generated as regis
tered outputs from this PAL. 

"4. Regenerate LOCKE. As with TIP, this version of this PAL can generate 
" LOCKE as a registered output. 

" Timing considerations: 
"TIP: This PAL uses TIPx bidirectionally, other sources driving TIP must meet 
" PAL setups to the rising edge of BCLK. 
" General: Because this version injects a dead-clock between bus cycles, it 
" operates as a synchronous machine, with clocked outputs. Since the clock 

to output on most PALs is faster than on most '040s, these 

"Note that this PAL program makes very little provison for bed-of-nails testing. 
" Note also that this version does not take inhibited bursts into account 

"Inputs: Note: active-high vs. active-low orientation is defined here - equations use assertion and 
negation 

bclk pin 2; "'040 BCLK 
!tea pin 3; 
!ta pin 4; 
!bg pin 5; 
!rsti pin 7; 

"'040TEAx 
"'040 TAx 
"(take a guess) 

!tsln pin 9; "TS from the chip 
!wr pin 1 O; "'040 R/W line (i.e. negative-logic write signal) 
siz1 pin 11; 
sizO pin 12; 
!lock pin 13; 
"!tip pin 25; TIP is used bidirectionally 

"Outputs: 

!tsOut pin 27 istype 'neg.reg'; "TS to the outside world 
!locke pin 26 istype 'neg.reg'; "regenerated 'lock end' signal 
!tip pin 25 istype 'neg.reg'; "regenerated 'Transfer In Progress' signal 
!aoe pin 18 istype 'neg, reg'; "output enable for address latches 
ale pin 17 istype 'buffer'; "latch enable forthe address latches 

MCF5102 USER'S MANUAL MOTOROLA 



"Internally Used Pins: 
''----------------
sv3 pin 23 istype 'pos,reg'; "high-order internal state variable 
sv2 pin 21 istype 'pos,reg'; 
sv1 pin 20 istype 'pos,reg'; 
svO pin 19 istype 'pos,reg'; "low-order internal state variable 

"Unused: 
" .......... .. 
nc1 pin 6; 
nc2 pin 16; 
nc3 pin 24; 

"Shorthand: 
"--------
sv = [sv3, sv2, sv1, svO]; " D·inputs 
svp = [sv3.fb, sv2.fb, sv1 .fb, svO.fb]; " a-outputs 
siz = [siz1, sizO]; 
c, X, z = .C., .x., .Z.; 

"Signal Value Names for Test Vectors (easier to read vectors): 
" -----------------------
"Inputs·············· 
''bclk - just use 0, 1, and c. 
"!tea" ber = O; 
"!ta" ack = O; 
"!bg" grt = O; 
"!rsti" rs!, run = 0, 1; 
"!ts'' tGo = O; 
"!wr" red, wrt = 1, O; 
"!lock" lck = O; 
"Outputs·············· 
"!tip" iPg, ded = 0, 1; 
"!locke" lkE = O; 
"!aoe" dvA = O; 
"ale" tra, lch = 1, O; 
'\Hold" hid = 1; 

"State Names: 
" ---~---
reset = "bOOOO; 
lkRdO = "b0001 ; 
lkRd1 = "b0011; 
lkRd2 = "b001 O; 
lkRd3 = "b011 O; 
lkRd4 = "b0111 ; 
lkRdS = "b0101 ; 
lkWr5 = "b0100; 
lkWr4 = "b1100; 
lkWr3 = "b1101; 
lkWr2 = "b1111; 
lkWr1 = "b111 O; 
brstO = "b101 O; 
brst1 = "b1011 ; 
brst2 = "b1001 ; 

MOTOROLA 

"inactive bus 
"locked read cycle 1 
"locked read cycle 2 
"locked read cycle 3 
"locked read cycle 4 
"locked read cycle 5 
"locked write cycle 5 
"locked write cycle 4 
"locked write cycle 3 
"locked write cycle 2 
"locked write cycle 1 
"locked write cycle O 
''burst read or write cycle, L. W. addr. 1 
'burst read or write cycle, L.W. addr. 2 
'burst read or write cycle, L.W. addr. 3 

MCF5102 USER'S MANUAL 

-

A-11 



A-12 

" This state machine makes state transitions only on cycle ends. During a CAS with 
"aligned operands, it will be in 'reset' during the read, and 'lkRd1' during the 
"write cycle. At the end of the write cycle, it will transition back to reset. 
"Always being in the state named after what the previous bus cycle was about sounds 
"a odd at first, but it's the best approach since: 
"1. This PAL chooses behavior based on the previous and current bus cycle types and 
"2. The processor's cycle-status lines tell the type of the current cycle. 
"3. It makes the subsequent data transfers of burst transactions easier to work with, 
" since they have a cycle end but no cycle start. 
"This makes provision for 6 reads and writes, but CAS2 on odd address won't always work anyway. 

''Transfer Size Codes: 
lword = "bOO; 
byte = "b01; 
word ="b10; 
burst= "b11; isBurst = (siz ==burst); 

Equations "Note that equations are written in terms of assertion and negation 
" See pin definitions for active level definitions. 

sv3.oe "' 1; sv2.oe = 1; sv1 .oe = 1; svO.oe = 1; 
sv3.ar = rsti; sv2.ar = rsti; sv1 .ar = rsti; svO.ar = rsti; 
sv3.clk = bclk; sv2.clk = bclk; sv1 .elk= bclk; svO.clk = bclk; 

tsOut.oe = !rsti & aoe; "enable TS when we're not reset and address is enabled 
tsOut.clk = bclk; 
tsOut := !rsti & tsln & bg; "need one-clock delay to allow address to setup to next BCLK edge 

tip.oe = !rsti & aoe; "enable TIP when we're not reset and address is enabled 
tip.elk = bclk; 
tip:= !rsti & ( tsln & bg "assert on TS 

); 

# (siz==burst) & (svp!=brst2) & ta & !tea 
"hold active through state-transition to 'brsto' 

# (svp==brstO) # (svp==brst1) "hold through second two bus cycles of a burst 
# (svp==brst2) & !ta & !tea "hold through all but final clock of final bus cycle 
# (!tsln & !ta & !tea) & tip "hold when no cycle start or end 

locke.oe = !rsti & aoe; "same idea as TIP 
locke.clk = bclk; 
locke := !rsti & lock 

& ( (svp==lkRdO) & lock & wr & tsln 

); 

"assert after a locked read if this cycle is write 
# (svp==lkWr1) & lock & wr & tsln "assert after next-to-last locked write 
# (!tsln & !ta & !tea) & locke & ((svp==lkRdO) # (svp==lkWr1)) 

"maintain previous state when no cycle start or end 

ale.oe = 1; "always drive address latch enable and address output enable 
ale= !rsti & tsln & bg & !bclk; 

"this equation tells when the latch is transparent, not when it is latching 

aoe.oe = 1; 
aoe.clk = bclk; 

MCF5102 USER'S MANUAL MOTOROLA 



aoe := !rsti & ( !tip & bg "reflect state of BG if no cycle in progress 
# tip & aoe "maintain previous state while cycle in progress 

); 

state_diagram sv "(See note after state definitions) 

state reset: "inactive bus or completing first cycle 
case 

(!ta & tea): reset; "BERR - abort 
(ta & tea): reset; "retry - stay put 
(!ta & !tea): reset; "keep waiting for a cycle to complete 
(ta & !tea & lock & !wr): lkRdO; "remember that we just did a locked read 
(ta & !tea & lock & wr): reset; "can't theoretically happen 
(ta & !tea & !lock & isBurst): brsto; "just did first cycle of burst 
(ta & !tea & !lock & !isBurst): reset; "just completed an individual bus cycle 

endcase; 
state lkRdO: "completed locked read cycle O 

case 
(!ta & tea): reset; "BERR - abort 
(ta & tea): lkRdO; "retry - stay put 
(!ta & !tea): lkRdO; "keep waiting for cycle to complete 
(ta & !tea & !lock): reset; "processor aborted locked transaction 
(ta & !tea & lock & !wr): lkRd1; "rack up another read 
(ta & !tea & lock & wr): reset; "locked sequence done 

endcase; 
state lkRd1: "completed locked read cycle 1 

case 
(!ta & tea): reset; "BERR - abort 
(ta & tea): lkRd1; "retry - stay put 
(!ta & !tea): lkRd1; "keep waiting for cycle to complete 
(ta & !tea & !lock): reset; "processor aborted locked transaction 
(ta & !tea & lock & !wr): lkRd2; "rack up another read 
(ta & !tea & lock & wr): lkWr1; "pretend like we just finished write #1 

endcase; 
state lkRd2: "completed locked read cycle 2 

case 
(!ta & tea): reset; "BERR - abort 
(ta & tea): lkRd2; ''retry - stay put 
(!ta & !tea): lkRd2; "keep waiting for cycle to complete 
(ta & !tea & !lock): reset; ''processor aborted locked transaction 
(ta & !tea & lock & !wr): lkRd3; "rack up another read 
(ta & !tea & lock & wr): lkWr2; "pretend like we just finished write #2 

endcase; 
state lkRd3: "completed locked read cycle 3 

case 
(!ta & tea): reset; "BERR - abort 
(ta & tea): lkRd3; "retry - stay put 
(!ta & !tea): lkRd3; "keep waiting for cycle to complete 
(ta & !tea & !lock): reset; "processor aborted locked transaction 
(ta & !tea & lock & !wr): lkRd4; "rack up another read 
(ta & !tea & lock & wr): lkWr3; "pretend like we just finished write #3 

endcase; 
state lkRd4: "completed locked read cycle 4 

case 

MOTOROLA MCF5102 USER'S MANUAL A-13 



A-14 

(!ta & tea): reset; "BERA - abort 
(ta & tea): lkRd4; ''retry - stay put 
(!ta & !tea): lkRd4; "keep waiting for cycle to complete 
(ta & !tea & !lock): reset; ''processor aborted locked transaction 
(ta & !tea & lock & !wr): lkRd5; "rack up another read 
(ta & !tea & lock & wr): lkWr4; "pretend like we just finished write #4 

endcase; 
state lkRd5: "completed locked read cycle 5 

case 
(!ta & tea): reset; "BEAR - abort 
(ta & tea): lkRd5; "retry - stay put 
(!ta & !tea): lkRd5; "keep waiting for cycle to complete 
(ta & !tea & !lock): reset; "processor aborted locked transaction 
(ta & !tea & lock & !wr): reset; "can't theoretically happen 
(ta & !tea & lock & wr): lkWr5; "note that we're done with all reads 

endcase; 
state lkWr5: "completed locked write cycle 5 

case 
(!ta & tea): reset; "BEAR - abort 
(ta & tea): lkWr5; "retry - stay put 
(!ta & !tea): lkWr5; "keep waiting for cycle to complete 
(ta & !tea & !wr): reset; "processor is confused - start over 
{la & !tea & wr & !lock): reset; "processor aborted locked transaction 
(ta & !tea & wr & lock): lkWr4; "count down another write 

endcase; 
state lkWr4: "completed locked write cycle 4 

case 
(!ta & tea): reset; "BEAR - abort 
(ta & tea): lkWr4; "retry - stay put 
(!ta & !tea): lkWr4; "keep waiting for cycle to complete 
{la & !tea & !wr): reset; "processor is confused - start over 
(ta & !tea & wr & !lock): reset; "processor aborted locked transaction 
(ta & !tea & wr & lock): lkWr3; "count down another write 

endcase; 
slate lkWr3: "completed locked write cycle 3 

case 
(!ta & tea): reset; "BEAR - abort 
(ta & tea): lkWr3; "retry - stay put 
(!ta & !tea): lkWr3; "keep waiting for cycle to complete 
{la & !tea & !wr): reset; "processor is confused - start over 
(ta & !tea & wr & !lock): reset; "processor aborted locked transaction 
(ta & !tea & wr & lock): lkWr2; "count down another write 

endcase; 
state lkWr2: "completed locked write cycle 2 

case 
(!ta & tea): reset; "BEAR- abort 
(ta & tea): lkWr2; ''retry - stay put 
(!ta & !tea): lkWr2; "keep waiting for cycle to complete 
(ta & !tea & !wr): reset; "processor is confused - start over 
(ta & !tea & wr & !lock): reset; "processor aborted locked transaction 
(ta & !tea & wr & lock): lkWr1; "count down another write 

endcase; 
state lkWr1: "completed locked write cycle 1 

case 
(!ta & tea): reset; "BEAR - abort 

MCF5102 USER'S MANUAL MOTOROLA 



(ta & tea): lkWr1; "retry - stay put 
(!ta & !tea): lkWr1; "keep waiting for cycle to complete 
(ta & !tea & !wr): reset; "processor is confused - start over 
(ta & !tea & wr & !lock): reset; "processor aborted locked transaction 
(ta & !tea & wr & lock): reset; "locked transaction completed 

endcase; 
state brstO: "completed burst read or write cycle, L.W. addr. 0 

case 
(!ta & tea): 
(ta& tea): 
(!ta & !tea): 
(ta & !tea): 

endcase; 

reset; "SERR - abort 
reset; ''retry - abort 
brstO; "keep waiting for cycle to complete 
brst1 ; "move on to next cycle in burst 

state brst1: "completed burst read or write cycle, L.W. addr. 1 
case 

(!ta&tea): 
(ta & tea): 
(!ta & !tea): 
(ta & !tea): 

endcase; 

reset; "BERA - abort 
reset; "retry - abort 
brst1; "keep waiting for cycle to complete 
brst2; "move on to next cycle in burst 

state brst2: "completed burst read or write cycle, L.W. addr. 2 
case 

(!ta & tea): 
(ta & tea): 
(!ta & !tea): 
(ta & !tea): 

endcase; 

test_ vectors 

reset; "BERA - abort 
reset; ''retry - abort 
brst2; "keep waiting for cycle to complete 
reset; "burst complete 

([bclk, !rsti, !tsln, !tip, !wr, siz, !lock, !tea, !ta, !bg]-> 
[!tsOut, !tip, !locke, !aoe, ale, sv]) 

" Make sure that it stays reset: 
[c,rst, x, 1, X, X, x, x, X, x ]->[Z, Z, Z, !dvA,x, reset]; "1 
[c,rst, x, 1, x, x, x, x, x, x ]->[z, z, z, !dvA,x, reset]; "2 
[c,run, tGo, 1, x, x, x, x, x, !grt]->[z, z, z, !dvA,x, reset]; "3 
[c,run,!tGo,1, x, x, x, x, x, grt]->[!tGo,ded,!lkE, dvA,x, reset]; "4 

"Take bus away in middle of a single cycle: 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "5 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "6 
[O,run, tGo,z, red,lword,!lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,tra,reset]; "7 
[1,run, tGo,z, red,lword,!lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,lch,reset]; "8 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,reset]; "9 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,reset]; "10 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[!tGo,iPg,!lkE, dvA,lch,reset]; "11 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[!tGo,iPg,!lkE, dvA,lch,reset]; "12 
[O,run,!tGo,z, red,lword,!lck,!ber, ack,!grt]->[!tGo,iPg,!lkE, dvA,lch,reset]; "13 
[c,run,!tGo,z, red,lword,!lck,!ber, ack,!grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "14 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[z, z, z, !dvA,lch,reset]; "15 

"Take bus away in middle of a burst cycle: 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "16 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "17 

MOTOROLA MCF5102 USER'S MANUAL 

Cll 

A-15 



A-16 

[c,run, tGo,z, red,burst,!lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,reset]; "18 
[c,run,!tGo,z, red,burst,!lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,reset]; "19 
[c,run,!tGo,z, red,burst,!lck,!ber, ack, grt]->[!tGo,iPg,!lkE, dvA,lch,brstO]; "20 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[!tGo,iPg,!lkE, dvA,lch,brsto]; "21 
[c,run,!tGo,z, red,lword,!lck,!ber, ack,!grt]->[!tGo,iPg,!lkE, dvA,lch,brst1]; "22 
(c,run,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[!tGo,iPg,!lkE, dvA,lch,brst1]; "23 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[!tGo,iPg,!lkE, dvA,lch,brst1]; "24 
[c,run,!tGo,z, red,lword,!lck,!ber, ack,!grt]->[!tGo,iPg,!lkE, dvA,lch,brst2]; "25 
[c,run,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[!tGo,iPg,!lkE, dvA,lch,brst2]; "26 
[c,run,!tGo,iPg,red,lword,!lck,!ber, ack,!grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "27 
[c,run,!tGo,ded,red,burst,!lck,!ber,!ack,!grt]->[z, z, z, !dvA,lch,reset]; "28 

" Alternate master runs single cycle; grant comes active during cycle: 
[c,run,!tGo,ded,red,lword,!lck,!ber,!ack,!grt]->[Z, z, z, !dvA,lch,reset]; "29 
(c,run,!tGo,ded,red,lword,!lck,!ber,!ack,!grt]->[z, z, z, !dvA,lch,reset]; "30 
(O,run, tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[z, z, z, !dvA,lch,reset]; "31 
[c,run, tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[Z, z, z, !dvA,lch,reset]; "32 
[c,run,!tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[z, z, z, !dvA,lch,reset]; "33 
[c,run,!tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[z, z, z, !dvA,lch,reset]; "34 
"(Vectors 35-37 fail JEDSIM because they don't see the pull-up on TIP) 
[c,run,!tGo,iPg,red,lword,!lck,!ber,!ack, grt]->[z, z, z, !dvA,lch,reset]; "35 
(O,run,!tGo,iPg,red,lword,!lck,!ber, ack, grt]->[z, z, z, !dvA,lch,reset]; "36 
[c,run,!tGo,iPg,red,lword,!lck,!ber, ack, grt]->[z, z, z, ldvA,lch,reset]; "37 

"Locked sequence for TAS with aligned operand - one read then one write: 
[c,run,!tGo,ded,red,lword, lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "38 
[c,run,!tGo,z, red,lword, lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "39-
[c,run, tGo,z, red,lword, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,reset]; "40 
[c,run,!tGo,z, red,lword, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,reset]; "41 
[c,run,!tGo,z, red,lword, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkRdO]; "42 
[c,run,!tGo,z, x, lword, lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkRdO]; "43 
[O,run, tGo,z, wrt,lword, lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,tra,lkRdO]; "44 
[c,run, tGo,z, wrt,lword, lck,!ber,!ack, grt]->[ tGo,iPg, lkE, dvA,tra,lkRdO]; "45 
[c,run,!tGo,z, wrt,lword, lck,!ber,!ack, grt]->[!tGo,iPg, lkE, dvA,lch,lkRdO]; "46 
[c,run,!tGo,z, wrt,lword, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "47 

" Locked sequence for CAS2 with aligned operands - two reads then two writes: 
[c,run,!tGo,ded,red,lword, lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "48 
[c,run,!tGo,z, red,lword, lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "49 
[c,run, tGo,z, red,lword, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,reset]; "50 
[c,run,!tGo,z, red,lword, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,reset]; "51 
[c,run,!tGo,z, red,lword, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkRdO]; "52 
[c,run, tGo,z, red,lword, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkRdO]; "53 
[c,run,!tGo,z, red,lword, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,lkRdO]; "54 
[c,run,!tGo,z, red,lword, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkRd1]; "55 
[c,run, tGo,z, wrt,lword, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkRd1 ]; "56 
[c,run,!tGo,z, wrt,lword, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,lkRd1]; "57 
[c,run,!tGo,z, wrt,lword, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkWr1]; "58 
[c,run, tGo,z, wrt,lword, lck,!ber,!ack, grt]->[ tGo,iPg, lkE, dvA,tra,lkWr1]; "59 
[c,run,!tGo,z, wrt,lword, lck,!ber,!ack, grt]->[!tGo,iPg, lkE, dvA,lch,lkWr1]; ''60 
[c,run,!tGo,z, wrt,lword, .lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "61 

"Locked sequence for CAS2 with addr-1-aligned LW data - six reads then sixwrites: 
[c,run,!tGo,ded,red,x, lck,!ber;!ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "62 
[c,run,!tGo,z, red,x, lck,!ber,!ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "63 

MCF5102 USER'S MANUAL MOTOROLA 



[c,run, tGo,z, red,byte, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,reset]; "64 
[c,run,!tGo,z, red.byte, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,reset]; "65 
[c,run,!tGo,z, red,byte, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkRdO]; "66 
[c,run, tGo,z, red,word, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkRdO]; "67 
[c,run,!tGo,z, red.word, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,lkRdO]; "68 
[c,run,!tGo,z, red, word, lck,!ber, ack, grt)->[!tGo,ded,!lkE, dvA,lch,lkRd1); "69 
[c,run, tGo,z, red,byte, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkRd1]; "70 
[c,run,!tGo,z, red,byte, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,lkRd1 ); "71 
[c,run,!tGo,z, red,byte, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkRd2]; "72 
[c,run, tGo,z, red,byte, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkRd2]; "73 
[c,run,!tGo,z, red,byte, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,lkRd2]; "74 
[c,run,!tGo,z, red,byte, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkRd3]; "75 
[c,run, tGo,z, red,word, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkRd3]; "76 
[c,run,!tGo,z, red.word, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,lkRd3]; "77 
[c,run,!tGo,z, red.word, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkRd4]; "78 
[c,run, tGo,z, red,byte, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkRd4]; "79 
[c,run,!tGo,z, red,byte, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,lkRd4]; "80 
[c,run,!tGo,z, red,byte, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkRd5]; "81 
[c,run, tGo,z, wrt,byte, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkRd5]; "82 
[c,run,!tGo,z, wrt,byte, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,lkRd5]; "83 
[c,run,!tGo,z, wrt,byte, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkWr5]; "84 
[c,run, tGo,z, wrt,word, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkWr5]; "85 
[c,run,!tGo,z, wrt,word, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,lkWr5]; "86 
[c,run,!tGo,z, wrt,word, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkWr4]; "87 
[c,run, tGo,z, wrt,byte, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkWr4]; "88 
[c,run,!tGo,z, wrt,byte, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,lkWr4]; "89 
[c,run,!tGo,z, wrt,byte, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkWr3]; "90 
[c,run, tGo,z, wrt,byte, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkWr3]; "91 
[c,run,!tGo,z, wrt,byte, lck,!ber,!ack, grt]->[!tGo,iPg,!lkE, dvA,lch,lkWr3]; "92 
[c,run,!tGo,z, wrt,byte, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkWr2]; "93 
[c,run, tGo,z, wrt,word, lck,!ber,!ack, grt]->[ tGo,iPg,!lkE, dvA,tra,lkWr2]; "94 
[c,run,!tGo,z, wrt,word, lck,!ber,!ack, gr:t]->[!tGo,iPg,!lkE, dvA,lch,lkWr2]; "95 
[c,run,!tGo,z, wrt,word, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,lkWr1]; "96 
[c,run, tGo,z, wrt,byte, lck,!ber,!ack, grt]->[ tGo,iPg, lkE, dvA,tra,lkWr1 ]; "97 
[c,run,!tGo,z, wrt,byte, lck,!ber,!ack, grt]->[!tGo,iPg, lkE, dvA,lch,lkWr1]; "98 
[c,run,!tGo,z, wrt,byte, lck,!ber, ack, grt]->[!tGo,ded,!lkE, dvA,lch,reset]; "99 

end letip1ws; 

MOTOROLA MCF5102 USER'S MANUAL A-17 



A.7 ASYNCHRONOUS TIP GENERATION 
ABEL Source for Asynchronous TIP Generation and Other Functions 
module mod flag '-r3' ''(ABEL 3 won't let you name module same as device) 

retroOws device 'P22V10'; 

"'retroOws', with the aid of a 32-bit-wide tristate latch (e.g., 74xx373), 
"converts MCF5102 bus protocol to regular '040 bus protocol. This involves 
" four underlying tasks: 
" 1 . Recreate the address bus by telling the latches to hold contents of 

the AID bus right after the rising clock edge during which TS is asserted. 
"2. Tristate off the address lines when the processor loses grant and 
" completes any cycles that might be in progress at the time it loses grant 

(including locked sequences). 
"3. Regenerate TIP. This signal has to be generated combinationally from 
" TS, so it inherently incurs a combinational propagation delay after TS 

which the real '040 does not have. 
"4. Regenerate LOCKE. As with TIP, this signal must be generated combina
" tionally, triggered by LOCK and several other indicators. The real '040 

asserts LOCKE in the same timing spec as LOCK and R/W. 
" Note that this part generates TIP and LOCKE asynchronously based partly on 
"the state of a state machine. To prevent glitches or unexpected deassertions, 
"certain state transitions must be kept unidistant (only a single state variable 
"changing during the state transition). These are called out below the state-
" definitions; use caution in changing the state assignment. 
" (Because the '040 bus is synchronous, TIP and LOCKE should only be evaluated on 
" rising BCLK edges. Nevertheless, preventing them from glitching is desirable.) 
" 
" Timing considerations: 
"TIP: 'retroOws' uses TIPx bidirectionally, other sources driving TIP must meet 
" PAL setups to the rising edge of BCLK. When the PAL drives TIP, here are 

its timings: 
Assertion: TIPx asserts 1 PAL tpd after TS asserts. This increases 

spec.#14 from 35ns max to 40ns max with a 5ns PAL. That 
leaves 1 Ons setup time at 20MHz and 5ns setup time at 25MHz. 

Negation: Tl Px negates 1 clock-to-feedback plus one tpd after the rising 
BCLK edge on which TA or TEA is recognized. This decreases 
spec.#12 from 11.5ns min to approximately 3ns min. 

Address: Addresses are latched in external latches, such as 74FCT573DT. 
this part adds an additional 4ns max, 1.Sns min, to spec.#26. They 
therefore go valid, at the latest, 1 ns before the BCLK rising edge 
that terminates the address phase. This is 14ns max in addition to 
the EC/LC spec.#11. This is obviously a big board-design-level 
difference, over 2/3s of which is due to how the MCF5102 works. Note 
that the address latches are transparent only during the second half 
(BCLK low) of the clock period during which TS is active. This mimics 
the 68K family's behavior of holding the previous address on the bus 
during periods of bus inactivity. 

"LOCKE: As with TIP, LOCKE asserts 1 PAL tpd after TS asserts. That increases 
" spec.#11 (for that signal) to 40ns max with a Sns PAL. That leaves 

1 Ons setup time at 20MHz and 5ns setup time at 25MHz. It negates 1 
clock-to-feedback plus one tpd after the rising BCLK edge in which 
TA or TEA is asserted. For a Sns PAL, that produces a negation time 
of 9ns max and approximately 4ns min. The EC/LC spec.#11 guarantees a 

MCF5102 USER'S MANUAL MOTOROLA 



larger minimum hold time of 11.5ns. 

"Note that this PAL program makes very little provison for bed-of-nails testing. 
"This is ABEL 3 code. ABEL 4 could not fit this PAL into 22V10. This is a very dense PAL 

"Inputs: Note: active-high vs. active-low orientation is defined here - equations use assertion and 
negation 

"2" bclk pin 1; "'040 BCLK 
"3" !tea pin 2; "'040 TEAx 
"4" !ta pin 3; "'040 TAx 
"5" !bg pin 4; "(take a guess) 
"6" !bb pin 5; 
"7" !rsti pin 6; 
"9" !ts pin 7; 
"1 O" !wr pin 8; "MCF5102 R/W line (i.e. negative-logic write signal) 
"11" siz1 pin 9; 
"12" sizO pin 10; 
"13" !lock pin 11; 
"16" !tbi pin 13; 
"25" !tipln pin 21; "TIP is used bidirectionally in this PAL 

tipln istype 'feed_pin'; "use pin value (that's all a 22V1 O will do) 
"tipln is same as tipOut - two names are used to get around an ABEL quirk 

"Outputs: 

"26" !locke pin 22; "regenerated 'lock end' signal 
"25" !tipOut pin 21; "regenerated 'Transfer In Progress' signal 
"18" ale pin 15; "latch enable for the address latches 
"17" !aoe pin 14; "output enable for address latches 

tipOut istype 'neg'; locke istype 'neg'; 
aoe istype 'neg'; ale istype 'pos'; 

"Internally Used Pins: 
" --------------------
"27" tHold pin 23; "holds TIP active from negation of TS to PAL state-transition 
"24" sv4 pin 20; "high-order internal state variable 
"23" sv2 pin 19; 
"21" sv1 pin 18; 
"20" svO pin 17; "low-order internal state variable 
"19" sv3 pin 16; 

svO istype 'pos,reg'; sv1 istype 'pos,reg'; sv2 istype 'pos,reg'; 
sv3 istype 'pos,reg'; sv4 istype 'pos,reg'; 

"Unused: (none) 

"Shorthand: 

sv = [sv4, sv3, sv2, sv1, svO); "D-inputs 
siz = [siz1, sizO, !tbi]; " Q-outputs 
c, x, z = .C., .X., .Z.; 

"Signal Value Names for Test Vectors (easier to read without signal names): 
" ---------------------------------

MOTOROLA MCF5102 USER'S MANUAL A-19 



A-20 

"lnputs--------------
'bclk - just use 0, 1 , and c. 
"!tea" ber = O; 
"!ta" ack =0; 
"!bg" grt = O; 
"!bb" bsy = O; 
"!rsti" rst, run = O, 1; 
"!ts" tGo = O; 
"!wr'' red, wrt = 1, O; 
"!lock" lck = O; 
"!tbi" bst, inh = 1 , O; 
"Outputs-------------
"!tip" iPg, ded = o, 1; 
"!locke" lkE = O; 
"!aoe" dvA = O; 
"ale" tra, lch = 1, O; 
'1Hold" hid = 1 ; 

"State Names: 

reset = "bOOOOO; 
1Rd1 D = "1>00001; 
1Rd2A = "1>0001 O; 
1Rd2D = "b01001 ; 
1Rd3A ="1>01000; 
1Rd3D = "1>01011; 
rNr3A = "b11000; 
rNr3D = "b10001 ; 
rNr2A = "b10000; 
1Wr2D = "b00101 ; 
1Wr1A = "b00111; 
1Wr1 D = "1>00011 ; 
cycD = "b10100; 
cycD1 = "b10101; 
cycD2 = "b10111; 
cycD3 = "1>10110; 

"have bus; waiting for a bus cycle to begin 
"locked read cycle 1, data phase (addr phase occurs in reset) 
"lock still active, so read cycle 2, address phase 
"locked read cycle 2, data phase 
"lock still active, so read cycle 3, address phase 
"locked read cycle 3, data phase 
"locked write cycle 3, address phase 
"locked write cycle 3, data phase 
"locked write cycle 2, address phase 
"locked write cycle 2, data phase 
"locked write cycle 1, address phase 
"locked write cycle 1, data phase 
"unlocked read or write cycle, data phase 
"burst read or write cycle, data phase L.W. addr. 1 
"burst read or write cycle, data phase L.W. addr. 2 
'burst read or write cycle, data phase L.W. addr. 3 

"The following state transitions must be unidistant: 
" 1Rd2A -> 1Wr1 D: LOCKE asserts on falling edge of R/W during 1Rd2A; should 
" stay asserted through transition. 
" 1Wr1 A -> 1Wr1 D: LOCKE is asserted by detection of these two states; should 
" stay asserted through transition. 
"cycD -> cycD1 -> cycD2 -> cycD3: tHold prevents TIP from negating between 
" any address phase and the following data phase, but not 

during transitions between data phases. 
"1Wr2D -> 1Wr1A: Desirable but not required: LOCKE is asserted by detection 
" of the above-mentioned states; should prevent any momentary 

false assertions before it asserts for real. 
"See also the state-assignment dependency described under the equation for TIPx. 

''Transfer Size Codes: 
lword = "b001 ; 
byte = Ab011 ; 
word = "b101 ; 
burst = "b111; 

MCF5102 USER'S MANUAL MOTOROLA 



bslnh = "b11 O; 

Equations "All equations are written in terms of assertion and negation; 
" see pin definttions for active-levels. 

sv4.oe = 1; sv3.oe = 1; sv2.oe = 1; sv1 .oe = 1; svO.oe = 1; 
sv4.ar = rsti; sv3.ar = rsti; sv2.ar = rsti; sv1 .ar = rsti; svO.ar = rsti; 
" Note that 22V1 O has only 1 .AR for all output macrocells, but it's worth specifying 
" all just in case this ever migrates to a different PLO type. 

tipOut.oe = !rsti & aoe; "enable TIP when we're not reset and address is enabled 
tipOut = !rsti ''force inactive during reset 

& ( ts & aoe "assert wtth ts 
#!Hold "hold up to data phase 
# svO & (sv!=IWr1 A) "hold through any locked data phase 
# (sv==eycD) # (sv==cycD1) "or through burst cycle data phase 
# (sv==eycD2) # (sv==eycD3) 

); ''TIPx will negate in clk->out +internal feedback time 
"This equation, notably the term 'svO & (sv!=IWr1A)', is state-assignment
" dependent. Its purpose is to call out all of the data-phase states. 
"Unfortunately, ORing up all of them blew ABEL's mind (too complex an 
" expression). There are some complex interdependencies between tipOut.oe and aoe, 
"including the requirement of an external PU. 

tHold.oe = 1 ; 
!Hold = !rsti ''force inactive during reset 

& ( ts & aoe "assert wtth TS 
# !Hold & !ta & !tea "retain until TA asserts and renegates 

); 

locke.oe = !rsti & aoe; "same idea as TIP 
locke = !rsti "deactivate on reset 

& ( (SV==IRd2A) & (!Hold# ts) & wr 
# (sv==IWr1A) & (!Hold# ts) 
# (sv=IWr1 D) 

); 

ale.oe = 1; "always drive address latch enable and address output enable 
ale = ts & aoe & !bclk 

& ( (sv==reset) # (sV==IRd2A) # (sv==IRd3A) 
# (sv==IWr3A) # (sv=IWr2A) # (sv==IWr1A) 

); 

"Note: this equation tells when the latch is transparent, not when it is latching 

aoe.oe = 1; 
aoe := !bb & bg "reflect state of BG while bus not in use 

# bb & aoe; "maintain previous state while bus in use 

state_diagram sv 

state reset: ''waiting for first TSx - initial address phase 
if !(ts & aoe) then 

MOTOROLA MCF5102 USER'S MANUAL A-21 



A-22 

reset "dead-time between cycles 
else if (lock & !wr & (siz!=burst)) then 

1Rd1 D ''proceed to locked sequence handling - rack up one read 
else cycD; "single memory cycle, burst memory cycle, or CPU space access 

state 1Rd1 D: "locked read cycle 1, data phase (addr phase occurs in reset) 
case 

(ta & tea): reset; "retry 
(ta & !tea): 1Rd2A; ''proceed to next address phase 
(!ta & tea): reset; ''bus error 
(!ta & !tea): 1Rd1D; ''wait-state 

endcase; 

state 1Rd2A: "lock still active, so read cycle 2, address phase 
if !ts then 

1Rd2A ''dead-time between cycles 
else if wr then 

1Wr1 D "count down 1 write 
else 1Rd2D; "rack up a 2nd locked read 
"Note: if wr asserts during this state, LOCKE will assert combinationally 

state 1Rd2.D: "locked read cycle 2, data phase 
case 

(ta & tea): 1Rd2A; "retry 
(ta & !tea): 1Rd3A; "proceed to next address phase 
(!ta & tea): reset; ''bus error 
(!ta & !tea): 1Rd2D; ''wait-state 

endcase; 

state 1Rd3A: "lock still active, so read cycle 3, address phase 
if !ts then 

1Rd3A 
else if wr then 

1Wr2D 
else1Rd3D; 

"dead-time between cycles 

"count down 2 writes 
''rack up a 3rd locked read 

state 1Rd3D: "locked read cycle 3, data phase 
case 

(ta & tea): 1Rd3A; "retry 
(ta & !tea): 1Wr3A; "proceed to next address phase 
(!ta & tea): reset; ''bus error 
(!ta & !tea): 1Rd3D; ''wait-state 

endcase; 
state 1Wr3A: "locked write cycle 3, address phase 

if !ts then 
rNr3A "dead-time between cycles 

else if !wr then 
reset 

else 
rNr3D; 

"still trying to read; possibly misaligned CAS2 
''from reset it will run as if no lock 

"go to data phase of write cycle 3 

state 1Wr3D: '1ocked write cycle 3, data phase 
case 

(ta & tea): 1Wr3A; "retry 

MCF5102 USER'S MANUAL MOTOROLA 



(ta & !tea): 1Wr2A; "proceed to next address phase 
(!ta & tea): reset; "bus error 
(!ta & !tea): 1Wr3D; ''wait-state 

endcase; 

state 1Wr2A: "locked write cycle 2, address phase 
if !ts then 

1Wr2A 
else 1Wr2D; 

"dead-time between cycles 
"go to data phase of write cycle 2 

state 1Wr2D: "locked write cycle 2, data phase 
case 

(ta & tea): 1Wr2A; "retry 
(ta & !tea): 1Wr1 A; "proceed to next address phase 
(!ta & tea): reset; 'bus error 
(!ta & !tea): 1Wr2D; ''wait-state 

endcase; 

state 1Wr1A: "locked write cycle 1, address phase 
if !ts then 

1Wr1A 
else 1Wr1D; 

"dead-time between cycles 
"go to data phase of write cycle 1 

state 1Wr1 D: "locked write cycle 1, data phase 
case 

(ta & tea): 1Wr1A; "retry 
(ta & !tea): reset; "proceed to next address phase 
(!ta & tea): reset; 'bus error 
(!ta & !tea): 1Wr1 D; ''wait-state 

endcase; 

state cycD: "unlocked read or write cycle, data phase 
case 

(ta & tea): reset; "retry 
( ta& !tea 

& siz==burst ): cycD1; "proceed to next transfer of burst 
( ta& !tea 

& siz!=burst ): reset; "cycle done 
(!ta & tea): reset; "bus error 
(!ta & !tea): cycD; ''wait-state 

endcase; 

state cycD1: "burst read or write cycle, data phase L.W. addr. 1 
case 

(ta & tea): reset; "retry 
(ta & !tea): cycD2; "proceed to next address phase 
(!ta & tea): reset; "bus error 
(!ta & !tea): cycD1; ''wait-state 

endcase; 

state cycD2: "burst read or write cycle, data phase L.W. addr. 2 

MOTOROLA 

case 
(ta & tea): reset; "retry 
(ta & !tea): cycD3; "proceed to next address phase 
(!ta & tea): reset; "bus error 

MCF5102 USER'S MANUAL A-23 



A-24 

(!ta & !tea): cycD2; "wait-state 
endcase; 

state cycD3: 'burst read or write cycle, data phase L. W. addr. 3 
if ta 

then reset "retry or operation all done - back to reset either case 
else if tea 

then reset "bus error 
else cycD3; ''wait-state 

test_ vectors 
([bclk,!rsti,!bb,!ts,!tipln,!wr,siz,!lock,!tea,!ta,!bg]-> 
[!tipOut,!locke,!aoe,ale,tHold,sv]) 

" Make sure that it stays reset: 
[c,rst, x, x, X, X, X, X, X, X, x ]->[Z, Z, !dvA,x, !hid.reset]; "1 
[c,rst,!bsy, x, x, x, x, x, x, x, x ]->[z, z, !dvA,x, !hld,reset]; ''2 
[c,run,!bsy, tGo,x, x, x, x, x, x, !grt]->[z, z, !dvA,x, !hid.reset]; "3 
[c,run,!bsy,!tGo,z, x, x, x, x, x, grt]->[ded,!lkE, dvA,x, !hld,reset]; "4 

"Take bus away in middle of a single cycle: 
[c,run,!bsy,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[ded,!lkE, dvA,lch,!hld,reset]; "5 
[c,run, bsy,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[ded,!lkE, dvA,lch,!hld,reset]; "6 
[O,run, bsy, tGo,z, red,lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,tra, hld,reset]; "7 
[1,run, bsy, tGo,z, red,lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "8 
[c,run, bsy,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "9 
[c,run, bsy,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "10 
[c,run, bsy,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "11 
[c,run, bsy,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "12 
[O,run, bsy,!tGo,z, red,lword,!lck,!ber, ack,!grt]->[iPg,!lkE, dvA,lch,!hld,cycD ]; "13 
[c,run, bsy,!tGo,z, red,lword,!lck,!ber, ack,!grt]->[ded,!lkE, dvA,lch,!hld,reset]; "14 
[c,run,!bsy,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[z, z, !dvA,lch,!hld,reset]; "15 

"Take bus away in middle of a burst cycle: 
[c,run,!bsy,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[ded,!lkE, dvA,lch,!hld,reset]; "16 
[c,run,!bsy,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[ded,!lkE, dvA,lch,!hld,reset]; "17 
[c,run, bsy, tGo,z, red,burst,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "18 
[c,run, bsy,!tGo,z, red,burst,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "19 
[c,run, bsy,!tGo,z, red,burst,!lck,!ber, ack, grt]->[iPg,!lkE, dvA,lch,!hld,cycD1]; "20 
[c,run, bsy,!tGo,z, red,burst,!lck,!ber,!ack,!grt]->[iPg,!lkE, dvA,lch,!hld,cycD1]; "21 
[c,run, bsy,!tGo,z, red,burst,!lck,!ber, ack,!grt]->[iPg,!lkE, dvA,lch,!hld,cycD2]; "22 
[c,run, bsy,!tGo,z, red,burst,!lck,!ber,!ack,!grt]->[iPg,!lkE, dvA,lch,!hld,cycD2]; "23 
[c,run, bsy,!tGo,z, red,burst,!lck,!ber,!ack,!grt]->[iPg,!lkE, dvA,lch,!hld,cycD2]; "24 
[c,run, bsy,!tGo,z, red,burst,!lck,!ber, ack,!grt]->[iPg,!lkE, dvA,lch,!hld,cycD3]; "25 
[c,run, bsy,!tGo,z, red,burst,!lck,!ber,!ack,!grt]->[iPg,!lkE, dvA,lch,!hld,cycD3]; "26 
[c,run, bsy,!tGo,iPg,red,burst,!lck,!ber, ack,!grt]->[ded,!lkE, dvA,lch,!hld,reset]; "27 
[c,run,!bsy,!tGo,iPg,red,burst,!lck,!ber,!ack,!grt]->[z, z, !dvA,lch,!hld,reset]; "28 

" Alternate master runs single cycle; grant comes active during cycle: 
[c,run,!bsy,!tGo,ded,red,lword,!lck,!ber,!ack,!grt]->[z, z, !dvA,lch,!hld,reset]; "29 
[c,run, bsy,!tGo,ded,red,lword,!lck,!ber,!ack,!grt]->[z, z, !dvA,lch,!hld,reset]; "30 
[O,run, bsy, tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[z, z, !dvA,lch,!hld,reset]; "31 
[c,run, bsy, tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[z, z, !dvA,lch,!hld,reset]; "32 
[c,run, bsy,!tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[z, z, !dvA,lch,!hld,reset]; "33 

MCF5102 USER'S MANUAL MOTOROLA 



[c,run, bsy,!tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[Z, z, !dvA,lch,!hld,reset]; "34 
[c,run, bsy,!tGo,iPg,red,lword,!lck,!ber,!ack, grt]->[z, z, !dvA,lch,!hld,resetJ; "35 
[O,run, bsy,!tGo,iPg,red,lword,!lck,!ber, ack, grt]->[Z, z, !dvA,lch,!hld,resetJ; "36 
[c,run, bsy,!tGo,iPg,red,lword,!lck,!ber, ack, grtJ->[Z, z, !dvA,lch,!hld,resetJ; "37 

" Locked sequence for T AS or CAS - one read then one write: 
[c,run, bsy,!tGo,ded,red,lword,!lck,!ber,!ack, grtJ->[z, z, !dvA,lch,!hld,resetJ; "38 
[c,run,!bsy,!tGo,z, red,lword, lck,!ber,!ack, grtJ->[ded,!lkE, dvA,lch,!hld,resetJ; "39 
[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, hld,1Rd1DJ; "40 
[c,run, bsy,!tGo,z, red,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, hld,1Rd1DJ; "41 
[c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,IRd2AJ; "42 
[c,run, bsy,!tGo,z, x. lword, lck,!ber,!ack, grt]->[ded,!lkE, dvA,lch,!hld,IRd2AJ; "43 
[O,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grt]->[iPg, lkE, dvA,tra, hld,1Rd2A]; "44 
[c,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grtJ->[iPg, lkE, dvA,lch, hld,1Wr1DJ; "45 
[c,run,!bsy,!tGo,z, wrt,lword, lck,!ber,!ack, grtJ->[iPg, lkE, dvA,lch, hld,1Wr1D]; "46 
[c,run,!bsy,!tGo,z, wrt,lword,!lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,resetJ; "47 

" Locked sequence for T AS or CAS: 2-aligned operand: 
[c,run, bsy,!tGo,ded,red,lword,!lck,!ber,!ack, grtJ->[ded,!lkE, dvA,lch,!hld,resetJ; "48 
[c,run,!bsy,!tGo,z, red,lword, lck,!ber,!ack, grtJ->[ded,!lkE, dvA,lch,!hld,resetJ; "49 
[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, hld,1Rd1DJ; "50 
[c,run, bsy,!tGo,z, red,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, hld,1Rd1D]; "51 
[c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,IRd2AJ; "52 
[c,run, bsy,!tGo,z, x, lword, lck,!ber,!ack, grtJ->[ded,!lkE, dvA,lch,!hld,IRd2AJ; "53 
[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, hld,1Rd2DJ; "54 
[c,run, bsy,!tGo,z, red,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, hld,1Rd2DJ; "55 
[c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,IRd3AJ; "56 
[c,run, bsy,!tGo,z, x, lword, lck,!ber,!ack, grtJ->[ded,!lkE, dvA,lch,!hld,IRd3AJ; "57 
[c,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, hld,1Wr2DJ; "58 
[c,run, bsy,!tGo,z, wrt,lword, lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,IWr1AJ; "59 
[c,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grtJ->[iPg, lkE, dvA,lch, hld,1Wr1DJ; "60 
[c,run,!bsy,!tGo,z, wrt,lword,!lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,resetJ; "61 

" Locked sequence for T AS or CAS: 1-aligned operand: 
[c,run, bsy,!tGo,ded,red,lword,!lck,!ber,!ack, grtJ->[ded,!lkE, dvA,lch,!hld,resetJ; "62 
[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, hld,1Rd1 DJ; "63 
[c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,1Rd2AJ; "64 
[c,run, bsy,!tGo,z, x, lword, lck,!ber,!ack, grtJ->[ded,!lkE, dvA,lch,!hld,IRd2AJ; "65 
[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, hld,1Rd2DJ; "66 
[c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,1Rd3AJ; "67 
[c,run, bsy,!tGo,z, x, !word, lck,!ber,!ack, grtJ->[ded,!lkE, dvA,lch,!hld,IRd3A]; "68 
[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, hld,1Rd3D]; "69 
[c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,IWr3AJ; "70 
[c,run, bsy,!tGo,z, x, lword, lck,!ber,!ack, grt]->[ded,!lkE, dvA,lch,!hld,IWr3AJ; "71 
[c,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,1Wr3DJ; ''72 
[c,run, bsy,!tGo,z, wrt,lword, lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,IWr2AJ; "73 
[c,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, hld,1Wr2DJ; "74 
[c,run, bsy,!tGo,z, wrt,lword, lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,IWr1AJ; "75 
[c,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grtJ->[iPg, lkE, dvA,lch, hld,1Wr1 DJ; "76 
[c,run,!bsy,!tGo,z, wrt,lword,!lck,!ber, ack, grtJ->[ded,!lkE, dvA,lch,!hld,resetJ; "78 

"Make sure that PAL treats burst-inhibited transaction as four separate cycles: 
[c,run,!bsy,!tGo,ded,x, bslnh,!lck,!ber,!ack, grtJ->[ded,!lkE, dvA,lch,!hld,reset]; "79 
[c,run,!bsy,!tGo,z, x, bslnh,!lck,!ber,!ack, grt]->[ded,!lkE, dvA,lch,!hld,resetJ; "BO 
[c,run, bsy, tGo,z, x, bslnh,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD J; "81 

MOTOROLA MCF5102 USER'S MANUAL A-25 



-

A-26 

[c,run, bsy,!tGo,z, x, bslnh,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "82 
(c,run, bsy,!tGo,z, x, bslnh,!lck,!ber, ack, grt]->[ded,!lkE, dvA,lch,!hld,reset]; "83 
[c,run, bsy, tGo,z, x, lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ); "84 
[c,run, bsy,!tGo,z, x, lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "85 
[c,run, bsy,!tGo,z, x, lword,!lck,!ber, ack, grt]->[ded,!lkE, dvA,lch,!hld,reset]; "86 
[c,run, bsy, tGo,z, x, lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "87 
[c,run, bsy,!tGo,z, x, lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "88 
[c,run, bsy,!tGo,z, x, lword,!lck,!ber, ack, grt]->[ded,!lkE, dvA,lch,!hld,reset]; "89 
[c,run, bsy, tGo,z, x, lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ); "90 
[c,run,!bsy,!tGo,z, x, lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, hld,cycD ]; "91 
(c,run,!bsy,!tGo,z, x, lword,!lck,!ber, ack, grt]->[ded,!lkE, dvA,lch,!hld,reset]; "92 

end mod; 

MCF5102 USER'S MANUAL MOTOROLA 



APPENDIX 8 
MCF5102 EVALUATION SOCKET 

The MCF5102 Evaluation Socket is designed as a drop-in replacement for a 
MC68EC040 running at 20/25 MHz for evaluation of the MCF5102 in specific 
applications. Designers may plug the Evaluation Socket directly into a existing 
MC68EC040 PGA socket of a target system or Motorola's MC68EC040 Integrated 
Development Platform. 

Latches 

Surface-Mounted Pins 

Figure B-1. MCF5102 Evaluation Socket 

B.1 SCOPE 

The following paragraphs describes the differences between the MCF5102 elavuation 
socket and the M68EC040, important considerations, hardware timing specifications, 
PAL equations to generate M68040 bus protocol, TIP and LOCKE. 

The Evaluation Socket demultiplexes the address and data bus in addition to generating ~ 
TIP and LOCKE. All componets, including the MCF5102, are directly soldered to a ~ 
printed circuit board that maps the MCF5102 directly to an M68EC040 PGA footprint. A 
linear regulator generates the 3.3 volts required by the MCF5102. 

MOTOROLA MCF5102 USER'S MANUAL B-1 



NOTE 

Evaluation Sockets are functional, however they have not 
been tested over temperature or other stress conditions. The 
evaluation socket is not intended to be used in end products. 
The voltage regulator supplies only the MCF5102 and its 
decoupling capacitors. The remaining circuitry operates at 5V 
as supplied at the pins of the PGA footprint. 

B.2 DOCUMENTATION 
M68040 User's Manual M68040UM/AD 
M68000 Family Programmers Reference Manual M68000PM/AD 
The 6Bk Source, BR729/D 
3.3 Volt Logic And Interface Circuits BR1335/D 

B.3 IMPORTANT CONSIDERATIONS: 
1. It is recommend plugging the evaluation socket board into a zero-insertion-force 

(ZIF) socket, but most industry-standard sockets are acceptable. It is not 
recommend soldering it directly to your board. 

2. If you need to extract the evaluation socket from a non-ZIF socket we recommend 
using an extraction tool specifically designed for removing pin-grid-array (PGA) 
components. In this scenario, be certain to pull from the white pin-carrier board, 
which is designed to withstand demating force. Pulling on the upper (green) board 
will place undue stress on the solder joints by which the pin-carrier board is 
attached. 

3. Frequency of operation is less than or equal to 25MHz. 

4. The evaluation socket does not support the following MC68EC040 features: 

a. Bus snooping. Ignores SC1 and SCO from the target board. Ml* is driven from 
the MCF5102's Ml line to mimic its normally-asserted behavior while it is not in 
control of its bus. 

b. UPA signals. No-connects. 

c. The CAS2 instruction. CAS2 does not execute correctly, but CAS and TAS 
instructions behave as specified, with one exception: Do not cache the 
destination (memory) operand of a CAS instruction. 

d. JTAG. 

5. MC68EC040 characteristics that are slightly different. 

B-2 

a. The evaluation socket assumes that the target board removes read data from 
the data bus in response to the end of the read cycle. The target should not 
drive read data between bus cycles or, at the beginning of the following bus 
cycle. The MCF5102's address/data lines are connected to the target board's 
data lines. 

b. The evaluation socket inserts a dead-clock (TIP high) between every bus cycle. 

c. Bus timings are slightly changed. 

MCF5102 USER'S MANUAL MOTOROLA 



d. The evaluation socket places 10K ohm pull-ups to 5V on the LOCKE, TIP, and 
TS signals. 

e. Specified VOL and VOH values are the same, but because most outputs are 
driven from a 3.3V part, typical levels will be lower. This may have an effect on 
noise margin. 

f. LOCKE and TIP have about 3 times the MC68EC040's 5mA DC drive strength, 
and a correspondingly lower output impedance. This is important with regard to 
transmission-line-, and undershoot-related signal quality issues on the target 
board. 

g. Address lines have between 10 and 36 times the drive strength of the 
MC68EC040's specified 5mA DC drive strength. They are driven through 
balanced drivers with edge-rate control. 

h. The BCLK trace was kept to a minimum, however it could not be kept as short 
as that inside the package of the MC68EC040 it replaces. The evaluation 
socket hardware was implementated by placeing a stub on that transmission 
line approximately 0.9 inches in length, including the length of that PGA pin, but 
excluding lengths of bond-wires inside the ICs. The target board's termination 
scheme may need to be adjusted to minimize this effect. The evaluation socket 
has pads for pull-up and pull-down termination. 

i. Power consumption will differ. 

6. SCD (System Clock Disable) signal is not accessible however the LPSTOP 
instruction can be executed. 

MOTOROLA MCF5102 USER'S MANUAL 8-3 

-



B.4 OUTPUT AC TIMING SPECIFICATIONS (see Figures 0-2 to 8-4) 

20 MHz 25 MHz 

Num Characteristic Min Max Min Max Unit 

11 1 BCLK to Address, CIOUT, LOCK, PSTx, Rf#, SIZlc, 
TLNx,TMx, TTx Valid 11.5 35 9 30 ns 

11a2 BCLK to Address 23 40.5 19 34.5 ns 

122 BCLK to Output Invalid (Output Hold) 11.5 - 9 - ns 

13 BCLK to TS Valid 11.5 35 9 30 ns 

14 BCLK to TIP Valid 11.5 35 9 30 ns 

18 BCLK to Data-Out Valid 11.5 37 9 32 ns 

19 BCLK to Data-Out Invalid (Output Hold) 11.5 - 9 - ns 

202 BCLK to Output Low Impedance 11.5 - 9 - ns 

21 BCLK to Data-Out High Impedance 11.5 25 9 20 ns 

38 BCLK to Address, CIOUT, LOCK, 
Rf#, SIZlc, TS, TLNx, TMx, TTx High 11.5 23 9 18 ns 
Impedance 

39 BCLK to BB, TA, TIP High Impedance 23 33 19 28 ns 

40 BCLK to BR, BB Valid 11.5 35 9 30 ns 

43 BCLK to MT Valid 11.5 35 9 30 ns 

48 BCLKtoTA Valid 11.5 35 9 30 ns 

50 BCLK to IPEND, PSTx, RSTo Valid 11.5 35 9 30 ns 

Notes 1. These signals are generated in response to the previous rising edge of BCLK, and are therefore valid the 
specified time before the indicated BCLK rising edge. 

8-4 

2. This timing is really given by 3ns min, 10.5ns max, from the falling edge of BCLK following the rising edge 
shown in the timing diagram. 

MCF5102 USER'S MANUAL MOTOROLA 



20 MHz 25 MHz 

Num Characteristic Min Max Min Max Unit 

15 Data-In Valid to BCLK (Setup) 6 - 5 - ns 

153 BCLK to Data-In Invalid (Hold) 5 - 4 - ns 

174,5 BCLK to Data-In High Impedance 
(Read Followed by Write) 

- 61 - 49 ns 

22a TA Valid to BCLK (Setup) 12.5 - 10 - ns 

22b TEA Valid to BCLK (Setup) 12.5 - 10 - ns 

22c TCI Valid to BCLK (Setup) 12.5 - 10 - ns 

22d TB! Valid to BCLK (Setup) 14 - 11 - ns 

23 BCLK to TA, TEA, TC!, TB! Invalid (Hold) 2.5 - 2 - ns 

24 AVEC Valid to BCLK (Setup) 6 - 5 - ns 

25 BCLK to AVEC Invalid (Hold) 2.5 - 2 - ns 

41a BB Valid to BCLK (Setup) 8 - 7 - ns 

41b BG Valid to BCLK (Setup) 10 - 8 - ns 

41c CDIS Valid to BCLK (Setup) 12.5 - 10 - ns 

41d IPLx Valid to BCLK (Setup) 5 - 4 - ns 

42 BCLK to BB, BG, CDIS, IPLx Invalid (Hold) 2.5 - 2 - ns 

44a6 Address Valid to BCLK (Setup) 10 - 8 - ns 

44b6 SIZx Valid to BCLK (Setup) 15 - 12 - ns 

44c6 TTx Valid to BCLK (Setup) 7.5 - 6 - ns 

44d6 R/VJ Valid to BCLK (Setup) 7.7 - 6 - ns 

44e6 SCx Valid to BCLK (Setup) 12.5 - 10 - ns 

456 BCLK to Address SIZX, TTx, R/VJ, SCx 2.5 - 2 - ns 
Invalid (Hold) 

456 TS Valid to BCLK (Setup) 6 - 5 - ns 

476 BCLK to TS Invalid (Hold) 2.5 - 2 - ns 

496 BCLK to BB High Impedance - 11 - 9 ns 
(MCF5102 Assumes Bus Mastership) 

51 RSTI Valid to BCLK 6 - 5 - ns 

52 BCLK to RSTI Invalid 2.5 - 2 - ns 

Notes 3. The evaluation socket assumes that read data will be removed from the data bus in response to the end 
of the read cycle. The target board must not drive a default bus slave between cycles, or any device 
during the addressing phase. 

4. The MCF5102 drives address onto the data pins during the first BCLK cycle of the bus cycle. On a write 
cycle, the data pins will already be low impedance. 

5. The MCf5102 drives address onto the data bus as early as spec 16 (max) when any bus cycle (not just 
writes) directly follows a read (or write). 

6. The evaluation socket does not support bus snooping. 

MOTOROLA MCF5102 USER'S MANUAL 8-5 



8-6 

BCLK 

A31-AO 

TRANSFER 
ATIRIBUTES 

TS 

031-DO IN 
(READ) 

031-DOOUT 
(WRITE) 

TA 

TEA 

TBI 

AVEC 

NOTE: Transfer Attribute Signals= UPAx, SIZx, Tix, TMx, TLNx, RNV, LOCK, 
LOCKE, CIOUT 

Figure B-2. Read/Write Timing 

MCF5102 USER'S MANUAL MOTOROLA 



MOTOROLA 

BCLK 

A31-AO 

TRANSFER 
ATIRIBUTES 

LOCK, LOCKE 

TS 

D31-DOOUT 
(WRITE) 

BR 

BG 

BB OUT 

Ml 

NOTE: Transfer Attribute Signals= UPAx, SIZlc, TTx, TMx, TLNx, RfW, CIOUT 

Figure B-3. Arbitration Timing 

MCF5102 USER'S MANUAL B-7 



RSTI ----®1 ____ _,~ 
Figure B-4. Other Timing 

MCF5102 USER'S MANUAL MOTOROLA 



B.5 PAL CODING 
module mod flag '-r3' 

retroOws device 'P22V1 O'; 

" 'retroOws', with the aid of a 32-bit-wide tristate latch (e.g., 74xx373), " converts MCF5102 bus protocol 
to regular 68EC040 bus protocol. This involves " four tasks: 

" 1. Recreate the address bus by telling the latches to hold contents of 
" the A/D bus right after the rising clock edge during which TS is asserted. 
" 2. Tristate off the address lines when the processor loses grant and 
" completes any cycles that might be in progress at the time it loses grant 

(including locked sequences). 
"3. Regenerate TIP. This signal has to be generated combinationally from 
" TS, so it inherently incurs a combinational propagation delay after TS "which the 68EC040 does not 

have. 
" 4. Regenerate LOCKE. This signal must be generated combina-
" tionally, triggered by LOCK and several indicators. The 68EC040 

asserts LOCKE in the same timing spec as LOCK and R/W. 
"Note that this part generates TIP and LOCKE asynchronously based partly on the state of a state 

machine. To prevent glitches or unexpected deassertions,certain state transitions must be kept 
unidistant (only a single state variable changing during the state transition). These are called out 
below the state-definitions; use caution in changing the state assignment.(Because the 
68EC040 bus is synchronous, TIP and LOCKE should only be evaluated on rising BCLK 
edges. Nevertheless, preventing them from gtitching is desirable.) 

" Timing considerations: 
"TIP: 'retroOws' uses TIPx bidirectionally, other sources driving TIP must meet PAL setups to the rising 

edge of BCLK. When the PAL drives TIP, here are its timings: 
"Assertion: TIPx asserts 1 PAL tpd after TS asserts. This increases 
" spec.#14 from 35ns max to 40ns max with a 5ns PAL. That 
" leaves 1 Ons setup time at 20MHz and 5ns setup time at 25MHz. 
" Negation: TIPx negates 1 clock-to-feedback plus one tpd after the 
rising 

BCLK edge on which TA or TEA is recognized. This decreases 
spec.#12 from 11.Sns min to approximately 3ns min. 

"Address: Addresses are latched in external latches, specifically 74FCT5730T. 
" this part adds an addttionat 4ns max, 1.5ns min, to spec.#26. 

They therefore go valid, at the latest, 1 ns before the BCLK rising edge that terminates the 
address phase. This is 14ns max in addition to 

the EC/LC spec.#11. This is a board-design-level 
difference, over 2/3s of which is due to how the MCF5102 works. Note 

that the address latches are transparent only during the second half 
(BCLK low) of the clock period during which TS is active. This mimics 
the 68K family's behavior of holding the previous address on the bus 

during periods of bus inactivfy. 
"LOCKE: As with TIP, LOCKE asserts 1 PAL tpd after TS asserts. That 
increases 

a 

spec.#11 (for that signal) to 40ns max with a 5ns PAL. That leaves 
1 Ons setup time at 20MHz and 5ns setup time at 25MHz. It negates 1 
clock-to-feedback plus one tpd after the rising BCLK edge in which 
TA or TEA is asserted. For a 5ns PAL, that produces a negation time 
of 9ns max and approximately 4ns min. The EC/LC spec.#11 guarantees 

larger minimum hold time of 11.Sns. 

MOTOROLA MCF5102 USER'S MANUAL 8-9 

-



-
8-10 

"Inputs: 
" 
"2" bclk pin 1; 
"3" !tea pin 2; 
"4" !ta pin 3; 
"5" !bg pin 4; 
"6" !bb pin 5; 
"7" !rsti pin 6; 
"9" !ts pin 7; 

"68EC040 BCLK 
"68EC040 TEAx 

"68EC040 TAx 
"(take a guess) 

"1 O" !wr pin 8; 
"11" siz1 pin 9; 
"12" sizO pin 1 O; 

"68EC040 R/W line (i.e. negative-logic write signal) 

"13" !lock pin 11; 
"16" !tbi pin 13; 
"25" !tipln pin 21; "TIP is used bidirectionally in this PAL 

tip In istype 'feed_pin'; "use pin value (that's all a 22V10 will do) 

"Outputs: 
11 .............. .. 

"26" !locke pin 22; "regenerated 'lock end' signal 
"25" !tipOut pin 21; "regenerated 'Transfer In Progress' signal 
"18" ale pin 15; "latch enable for the address latches 
"17" !aoe pin 14; "output enable for address latches 

tipOut istype 'neg'; locke istype 'neg'; 
aoe istype 'neg'; ale istype 'pos'; 

"Internally Used Pins: 
" ............................................ 
"27" tHold pin 23; "holds TIP active from negation of TS to PAL 
state-transition 
"24" sv4 pin 20; "high-order internal state variable 
"23" sv2 pin 19; 
"21" sv1 pin 18; 
"20" svO pin 17; "low-order internal state variable 
"19" sv3 pin 16; 

svO istype 'pos,reg'; sv1 istype 'pos,reg'; sv2 istype 'pos,reg'; 
sv3 istype 'pos,reg'; sv4 istype 'pos,reg'; 

"Unused: (none) 
" 

"Shorthand: 

sv = [sv4, sv3, sv2, sv1, svO]; 
siz = [siz1, sizO, !tbi]; 
c, x, z = .C., .X., .Z.; 

"Signal Value Names for Test Vectors: 
" 
______________________ ......................... .. 

"Inputs--------------
"bclk - just use 0, 1, and c. 
"!tea" ber = O; 
"!ta" ack = O; 
"!bg" grt = O; 

MCF5102 USER'S MANUAL MOTOROLA 



"!bb" bsy = O; 
"!rsti" rst, run = 0, 1; 
"!ts" tGo = O; 
"!wr" red, wrt = 1, O; 
"!lock" lck = O; 
"!tbi" bst, inh = 1, O; 
"Outputs-------------
"!tip" iPg, ded = 0, 1; 
"!locke" lkE = O; 
"!aoe" dvA = O; 
"ale" tra, lch = 1, O; 
"tHold" hid = 1; 

"State Names: 

reset = "bOOOOO; 
1Rd1 D = "b00001; 
reset) 

1Rd2A = "b0001 O; 
1Rd2D = "b01001; 
1Rd3A = "b01000; 
1Rd3D = "b01011; 
1Wr3A = "b11000; 
1Wr3D = "b10001; 
1Wr2A = "b10000; 
1Wr2D = "b00101; 
1Wr1 A = "b00111; 
1Wr1 D = "b00011; 
cycD = "b10100; 
cycD1 = "b10101; 
cycD2 = "b10111; 
cycD3 = "b10110; 

"have bus; waiting for a bus cycle to begin 
"locked read cycle 1, data phase (addr phase occurs in 

"lock still active, so read cycle 2, address phase 
"locked read cycle 2, data phase 
"lock still active, so read cycle 3, address phase 
"locked read cycle 3, data phase 
"locked write cycle 3, address phase 
"locked write cycle 3, data phase 
"locked write cycle 2, address phase 
"locked write cycle 2, data phase 
"locked write cycle 1, address phase 
"locked write cycle 1, data phase 
"unlocked read or write cycle, data phase 
"burst read or write cycle, data phase L.W. addr. 1 
"burst read or write cycle, data phase L.W. addr. 2 
"burst read or write cycle, data phase L.W. addr. 3 

" The following state transitions must be unidistant: 
" 1Rd2A -> 1Wr1 D: LOCKE asserts on falling edge of R/W during 1Rd2A; should 
" stay asserted through transition. 
" 1Wr1 A -> 1Wr1 D: LOCKE is asserted by detection of these two states; should 
" stay asserted through transition. 
"cycD -> cycD1 -> cycD2 -> cycD3: tHold prevents TIP from negating between 
" any address phase and the following data phase, but not 

during transitions between data phases. 
"1Wr2D -> 1Wr1A: Desirable but not required: LOCKE is asserted by detection 
" of the above-mentioned states; should prevent any momentary 

false assertions before it asserts for real. 
" See also the state-assignment dependency described under the equation for 
TIPx. 

"Transfer Size Codes: 
lword = "b001; 
byte = "b011 ; 
word = "b101; 
burst = "b111; 
bslnh = "b11 O; 

MOTOROLA MCF5102 USER'S MANUAL 8-11 



B-12 

Equations 

sv4.oe = 1; sv3.oe = 1 ; sv2.oe = 1; sv1 .oe = 1 ; svO.oe = 1 ; 
sv4.ar = rsti; sv3.ar = rsti; sv2.ar = rsti; sv1 .ar = rsti; svO.ar = rsti; 

tipOut.oe = !rsti & aoe; "enable TIP when we're not reset and address is 
enabled 

tipOut = !rsti ''force inactive during reset 
& ( ts & aoe "assert with ts 

# tHold "hold up to data phase 
# svO & (sv!=1Wr1A) "hold through any locked data phase 
# (sv=cycD) # (sv==cycD1) "or through burst cycle data phase 
#(sv==eycD2)#{sv=::eycD3) 

) ; "Tl Px will negate in clk->out + internal feedback time 
" This equation, notably the term 'svo & (sv!=IWr1 A)', is state-assignment
" dependent. Its purpose is to call out all of the data-phase states. 
" Unfortunately, ORing up all of them blew ABEL's mind (too complex an 
" expression). 

tHold.oe = 1; "enable TIP when we're not reset and address is enabled 
!Hold = !rsti ''force inactive during reset 

& ( ts & aoe "assert with TS 
#!Hold & !ta & !tea "retain until TA asserts and renegates 

); 

locke.oe = !rsti & aoe; "same idea as TIP 
locke = !rsti "deactivate on reset 

& ( (sv=IRd2A) & (tHold #ts) & wr 
# {SV==IWr1 A) & (tHold #ts) 
# (sv=IWr1 D) 

); 

ale.oe = 1; "always drive address latch enable and address output enable 
ale.ar = rsti; "reset it to latched (doesn't really matter, but make it 
predictable) 
ale = ts & aoe & !bclk 

& ( {SV==reset) # {SV==IRd2A) # (sv=IRd3A) 
# {SV==IWr3A) # {sV==IWr2A) # (sv=1Wr1A) 

); 

"Note: this equation tells when the latch is transparent, not when it is 
latching 

aoe.oe = 1; 
aoe := !bb & bg "reflect state of BG while bus not in use 

# bb & aoe; "maintain previous state while bus in use 

state_diagram sv 

state reset: "waiting for first TSx - initial address phase 
if !(ts & aoe) then 

reset "dead-time between cycles 
else if (lock & !wr & (siz!=burst)) then 

MCF5102 USER'S MANUAL MOTOROLA 



access 

1Rd1D 
elsecycD; 

"proceed to locked sequence handling - rack up one read 
"single memory cycle, burst memory cycle, or CPU space 

state 1Rd1 D: "locked read cycle 1, data phase (addr phase occurs in reset) 
case 

(ta & tea): reset; "retry 
(ta & !tea): 1Rd2A; "proceed to next address phase 
(!ta & tea): reset; "bus error 
(!ta & !tea): 1Rd1 D; "wait-state 

endcase; 

state 1Rd2A: "lock still active, so read cycle 2, address phase 
if !ts then 

1Rd2A "dead-time between cycles 
else if wr then 

1Wr1 D "count down 1 write 
else 1Rd2D; "rack up a 2nd locked read 
"Note: if wr asserts during this state, LOCKE will assert combinationally 

state 1Rd2D: "locked read cycle 2, data phase 
case 

(ta & tea): 1Rd2A; "retry 
(ta & !tea): 1Rd3A; "proceed to next address phase 
(!ta & tea): reset; "bus error 
(!ta & !tea): 1Rd2D; "wait-state 

endcase; 

state 1Rd3A: "lock still active, so read cycle 3, address phase 
if !ts then 

1Rd3A "dead-time between cycles 
else if wr then 

1Wr2D 
else1Rd3D; 

"count down 2 writes 
"rack up a 3rd locked read 

state 1Rd3D: "locked read cycle 3, data phase 
case 

(ta & tea): 1Rd3A; "retry 
(ta & !tea): 1Wr3A; "proceed to next address phase 
(!ta & tea): reset; "bus error 
(!ta & !tea): 1Rd3D; "wait-state 

endcase; 
state 1Wr3A: "locked write cycle 3, address phase 

if !ts then 
rNr3A "dead-time between cycles 

else if !wr then 
reset "still trying to read; possibly misaligned CAS2 

else 
rNr3D; 

'1rom reset It will run as if no lock 

"go to data phase of write cycle 3 

state 1Wr3D: "locked write cycle 3, data phase 
case 

(ta & tea): 1Wr3A; "retry 
(ta & !tea): 1Wr2A; "proceed to next address phase 

MOTOROLA MCF5102 USER'S MANUAL 8-13 



-
B-14 

(!ta & tea): reset; "bus error 
(!ta & !tea): 1Wr3D; "wait-state 

endcase; 

state 1Wr2A: "locked write cycle 2, address phase 
if !ts then 

1Wr2A 
else 1Wr2D; 

"dead-time between cycles 
"go to data phase of wrtte cycle 2 

state 1Wr2D: "locked write cycle 2, data phase 
case 

(ta & tea): 1Wr2A; "retry 
(ta & !tea): 1Wr1A; "proceed to next address phase 
(!ta & tea): reset; "bus error 
(!ta & !tea): 1Wr2D; "wait-state 

endcase; 

state 1Wr1A: "locked write cycle 1, address phase 
if !ts then 

1Wr1A 
else1Wr1D; 

"dead-time between cycles 
"go to data phase of wrtte cycle 1 

state 1Wr1 D: "locked write cycle 1, data phase 
case 

(ta & tea): 1Wr1A; "retry 
(ta & !tea): reset; "proceed to next address phase 
(!ta & tea): reset; "bus error 
(!ta & !tea): 1Wr1 D; "wait-state 

endcase; 

state cycD: "unlocked read or write cycle, data phase 
case 

(ta & tea): reset; "retry 
( ta& !tea 

& siz==burst ): cycD1; "proceed to next transfer of burst 
( ta & !tea 

& siz!=burst ): reset; "cycle done 
(!ta & tea): reset; "bus error 
(!ta & !tea): cycD; "watt-state 

endcase; 

state cycD1: "burst read or write cycle, data phase L.W. addr. 1 
case 

(ta & tea): reset; "retry 
(ta & !tea): cycD2; "proceed to next address phase 
(!ta & tea): reset; "bus error 
(!ta & !tea): cycD1; "wait-state 

endcase; 

state cycD2: "burst read or write cycle, data phase L.W. addr. 2 
case 

(ta & tea): reset; "retry 
(ta & !tea): cycD3; "proceed to next address phase 
(!ta & tea): reset; "bus error 
(!ta & !tea): cycD2; "wait-state 

MCF5102 USER'S MANUAL MOTOROLA 



endcase; 

state cycD3: "burst read or write cycle, data phase L.W. addr. 3 
if ta 

then reset "retry or operation all done - back to reset either case 
else iftea 

then reset "bus error 
else cyc03; "wait-state 

test_ vectors 
([bclk.!rsti,!bb,!ts,!tipln,!wr,siz,!lock,!tea,!ta,!bg)-> 
[!tipOut,!locke,!aoe,ale,tHold,sv]) 

" Make sure that it stays reset: 
[c,rst, x, x, X, x, x, x, X, X, x )->[Z, Z, !dvA,x, 
!hld,reset]; "1 

[c,rst,!bsy, x, x, x, x, x, x, x, x )->[Z, z, !dvA,x, 
!hld,reset]; "2 

[c,run,!bsy, tGo,x, x, x, x, x, x, !grt]->[z, z, !dvA,x, 
!hld,reset]; "3 

[c,run,!bsy,!tGo,z, x, x, x, x, x, grt]->[ded,!lkE, dvA,x, 
!hid.reset]; "4 

" Take bus away in middle of a single cycle: 
[c,run, !bsy, !tGo,z, red, lword, lick, !ber, lack, grt]->[ded, !lkE, 
dvA,lch,!hld,reset]; "5 

[c,run, bsy,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "6 

[O,run, bsy, tGo,z, red,lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,tra, 
hld,reset]; "7 

[1,run, bsy, tGo,z, red,lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ]; "8 
[c,run, bsy,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ]; "9 
[c,run, bsy,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ]; "1 O 
[c,run, bsy,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ]; "11 
[c,run, bsy,!tGo,z, red,lword,!lck,!ber,!ack,!grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ]; "12 
[O,run, bsy,!tGo,z, red,lword,!lck,!ber, ack,!grt]->[iPg,!lkE, 
dvA,lch,!hld,cycD ]; "13 

[c,run, bsy,!tGo,z, red,lword,!lck,!ber, ack,!grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "14 

[c,run, !bsy,!tGo,z, red,lword,!lck,!ber, !ack,!grt]->[z, z, 
!dvA,lch, !hid.reset]; "15 

"Take bus away in middle of a burst cycle: 
[c,run,!bsy,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "16 

[c,run,!bsy,!tGo,z, red,lword,!lck,!ber,!ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "17 

[c,run, bsy, tGo,z, red,burst,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ]; "18 

MOTOROLA MCF5102 USER'S MANUAL 

-
8-15 



B-16 

[c,run, bsy,!tGo,z, red,burst,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ]; "19 
(c,run, bsy,!!Go,z, red,burst,!lck,!ber, ack, grt]->[iPg,!lkE, 
dvA,lch,!hld,cycD1]; "20 

[c,run, bsy,!!Go,z, red,burst,!lck,!ber,!ack,!grt]->[iPg,!lkE, 
dvA,lch,!hld,cycD1]; "21 

(c,run, bsy,!!Go,z, red,burst,!lck,!ber, ack,!grt]->[iPg,!lkE, 
dvA,lch,!hld,cycD2]; "22 

[c,run, bsy,!!Go,z, red,burst,!lck,!ber,!ack,!grt]->[iPg,!lkE, 
dvA,lch,!hld,cycD2]; "23 

[c,run, bsy,!tGo,z, red,burst,!lck,!ber,!ack,!grt]->[iPg,!lkE, 
dvA,lch,!hld,cycD2]; "24 

[c,run, bsy,!!Go,z, red,burst,!lck,!ber, ack,!grt]->[iPg,!lkE, 
dvA,lch,!hld,cycD3]; "25 

(c,run, bsy,!tGo,z, red,burst,!lck,!ber,!ack,!grt]->[iPg,!lkE, 
dvA,lch,!hld,cycD3]; "26 

(c,run, bsy,!tGo,iPg,red,burst,!lck,!ber, ack,!grt]->(ded,!lkE, 
dvA,lch,!hld,reset]; "27 

[c,run,!bsy,!tGo,iPg,red,burst,!lck,!ber,!ack,!grt]->[z, z, 
!dvA,lch,!hld,reset]; "28 

" Alternate master runs single cycle; grant comes active during cycle: 
(c,run,!bsy,!tGo,ded,red,lword,!lck,!ber,!ack,!grt]->[Z, z, 
!dvA,lch,!hld,reset]; "29 

[c,run, bsy,!tGo,ded,red,lword,!lck,!ber,!ack,!grt]->[Z, z, 
!dvA,lch,!hld,reset]; "30 

(O,run, bsy, tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[Z, z, 
!dvA,lch,!hld,reset]; "31 

(c,run, bsy, tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[Z, z, 
!dvA,lch,!hld,reset]; "32 

(c,run, bsy,!tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[z, z, 
!dvA,lch,!hld,reset]; "33 

[c,run, bsy,!tGo,iPg,red,lword,!lck,!ber,!ack,!grt]->[z, z, 
!dvA,lch,!hld,reset]; "34 

(c,run, bsy,!tGo,iPg,red,lword,!lck,!ber,!1ck, grt]->[Z, z, 
!dvA,lch,!hld,reset]; "35 

[O,run, bsy,!tGo,iPg,red,lword,!lck,!ber, ack, grt]->[z, z, 
!dvA,lch,!hld,reset]; "36 

[c,run, bsy,!tGo,iPg,red,lword,!lck,!ber, ack, grt]->[z, z, 
!dvA,lch,!hld,reset]; "37 

"Locked sequence for TAS or CAS - one read then one write: 
[c,run, bsy,!tGo,ded,red,lword,!lck,!ber,!ack, grt]->[z, z, 
!dvA,lch,!hld,reset]; "38 

[c,run,!bsy,!tGo,z, red,lword, lck,!ber,!ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "39 

[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,1Rd1D]; "40 

[c,run, bsy,!tGo,z, red,lword, lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,1Rd1D]; "41 

[c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grt]->[ded,!lkE, 
dvA,lch,!hld,IRd2A]; "42 

(c,run, bsy,!tGo,z, x, lword, lck,!ber,!ack, grt]->[ded,!lkE, 
dvA,lch,!hld,IRd2A]; "43 

(O,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grt]->[iPg, lkE, dvA,tra, 

MCF5102 USER'S MANUAL MOTOROLA 



hld,1Rd2AJ; "44 
[c,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grtJ->[iPg, lkE, dvA,lch, 
hld,1Wr1 DJ; "45 

[c,run,!bsy,!tGo,z, wrt,lword, lck,!ber,!ack, grtJ->[iPg, lkE, dvA,lch, 
hld,1Wr1 DJ; "46 

[c,run,!bsy,!tGo,z, wrt,lword,!lck,!ber, ack, grtJ->[ded,!lkE, 
dvA,lch,!hld,resetJ; "47 

" Locked sequence for TAS or CAS: 2-aligned operand: 
(c,run, bsy,!tGo,ded,red,lword,!lck,!ber,!ack, grtJ->(ded,!lkE, 
dvA,lch,!hld,resetJ; "48 

[c,run,!bsy,!tGo,z, red,lword, lck,!ber,!ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "49 

[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,1Rd1DJ; "50 

[c,run, bsy,!tGo,z, red,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, 
hld,1Rd1 DJ; "51 

[c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grtJ->[ded,!lkE, 
dvA,lch,!hld,IRd2AJ; "52 

[c,run, bsy,!tGo,z, x, lword, lck,!ber,!ack, grtJ->[ded,!lkE, 
dvA,lch,!hld,IRd2AJ; "53 

[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,1Rd2DJ; "54 

(c,run, bsy,!tGo,z, red,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, 
hld,1Rd2DJ; "55 

(c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grtJ->[ded,!lkE, 
dvA,lch,!hld,IRd3A]; "56 

[c,run, bsy,!tGo,z, x, lword, lck,!ber,!ack, grt]->[ded,!lkE, 
dvA,lch,!hld,1Rd3A]; "57 

(c,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grtJ->[iPg,!lkE, dvA,lch, 
hld,1Wr2DJ; "58 
[c,run, bsy,!tGo,z, wrt,lword, lck,!ber, ack, grt]->[ded,!lkE, 
dvA,lch,!hld,IWr1A]; "59 

[c,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grt]->[iPg, lkE, dvA,lch, 
hld,1Wr1 DJ; "60 

[c,run,!bsy,!tGo,z, wrt,lword,!lck,!ber, ack, grtJ->[ded,!lkE, 
dvA,lch,!hld,resetJ; "61 

" Locked sequence for TAS or CAS: 1-aligned operand: 
[c,run, bsy,!tGo,ded,red,lword,!lck,!ber,!ack, grtJ->[ded,!lkE, 
dvA,lch,!hld,resetJ; "62 

[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,1Rd1 DJ; "63 

[c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grt]->[ded,!lkE, 
dvA,lch,!hld,IRd2A]; "64 

[c,run, bsy,!tGo,z, x, lword, lck,!ber,!ack, grt]->[ded,!lkE, 
dvA,lch,!hld,1Rd2A]; "65 

[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grt]->(iPg,!lkE, dvA,lch, 
hld,1Rd2D]; "66 

[c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grtJ->[ded,!lkE, 
dvA,lch,!hld,IRd3AJ; "67 

[c,run, bsy,!tGo,z, x, lword, lck,!ber,!ack, grtJ->[ded,!lkE, 
dvA,lch,!hld,IRd3A]; "68 

[c,run, bsy, tGo,z, red,lword, lck,!ber,!ack, grt]->(iPg,!lkE, dvA,lch, 
hld,1Rd3D]; "69 

MOTOROLA MCF5102 USER'S MANUAL B-17 



8-18 

[c,run, bsy,!tGo,z, red,lword, lck,!ber, ack, grt]->[ded,!lkE, 
dvA,lch,!hld,IWr3A); "70 

[c,run, bsy,!tGo,z, x, lword, lck,!ber,!ack, grt]->[ded,!lkE, 
dvA,lch,!hld,IWr3A]; "71 

[c,run, bsy, tGo,z, wrt,lword, fck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,1Wr3D); "72 

[c,run, bsy,!tGo,z, wrt,lword, lck,!ber, ack, grt]->[ded,!lkE, 
dvA,lch,!hld,IWr2A]; "73 

[c,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,1Wr2D]; "74 

[c,run, bsy,!tGo,z, wrt,lword, lck,!ber, ack, grt]->[ded,!lkE, 
dvA,lch,!hld,IWr1A]; "75 

[c,run, bsy, tGo,z, wrt,lword, lck,!ber,!ack, grt]->[iPg, lkE, dvA,lch, 
hld,1Wr1 DJ; "76 

[c,run,!bsy,!tGo,z, wrt,lword,!lck,!ber, ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "78 

" Make sure that PAL treats burst-inhibited transaction as four separate 
cycles: 
[c,run,!bsy,!tGo,ded,x, bslnh,!lck,!ber,!ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "79 

[c,run,!bsy,!tGo,z, x, bslnh,!lck,!ber,!ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "80 

[c,run, bsy, tGo,z, x, bslnh,!lck,!ber,!ack, grt]->[iPg,!lkE. dvA,lch, 
hld,cycD ]; "81 
[c,run, bsy,!tGo,z, x, bslnh,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ); "82 
[c,run, bsy,!tGo,z, x, bslnh,!lck,!ber, ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "83 

[c,run, bsy, tGo,z, x, lword,!lck,!ber,!ack, grl]·>[iPg,!lkE, dvA,lch, 
hld,cycD ]; "84 
[c,run, bsy,!tGo,z, x, lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ); "85 
[c,run, bsy,!tGo,z, x, lword,!lck,!ber, ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "86 

[c,run, bsy, tGo,z, x, lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ]; "87 
(c,run, bsy,!tGo,z, x, lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ); "88 
[c,run, bsy,!tGo,z, x, lword,!lck,!ber, ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "89 

[c,run, bsy, tGo,z, x, lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ]; "90 
[c,run,!bsy,!tGo,z, x, lword,!lck,!ber,!ack, grt]->[iPg,!lkE, dvA,lch, 
hld,cycD ]; "91 

[c,run,!bsy,!tGo,z, x, lword,!lck,!ber, ack, grt]->[ded,!lkE, 
dvA,lch,!hld,reset]; "92 

end mod; 

MCF5102 USER'S MANUAL MOTOROLA 



MOTOROLA MCF5102 USER'S MANUAL B-19 



I . 



INDEX 

-A-

Access Control Register 3-1 

Access Control Unit 3-1 

Access Error 7-17 

Access Faults 8-6 

Access Or Address Error 7-18 

Access Serialization 7-20 
ACU, Access Control Registers (See Registers) 

7-8 

Address Bus, Data Bus 7-1 

Address Collisions 7-19 

Address Registers 2-3 

Address Space 3-1 

Address Translation Caches 8-17 

Addressing Modes 2-4, 9-3, 9-4 

Addressing Modes 

PC relative Data Addressing 7-4 

Alternate Function Code Registers 2-7 

Alternate Bus Master 4-1, 4-7,5-4, 5-6, 5-7 

Acknowledge Bus Cycles 7-15 

Active Bus Cycle (See Bus Arbitration) 
Autovector 7-16 

-B-

Boundary Scan 6-4 

Breakpoint Operations 

Breakpoint Acknowledge Bus Cycles 7-15 

Breakpoint Interrupt Acknowledge Bus Cycle, 

Bkpt 7-16 

Burst Accesses (See Bus Operation) 
Burst-Inhibited 7-8 

Burst Mode Accesses 5-7 

Burst Mode Operations 4-1 O 

Burst Transfer 7-6 

Bus Arbitration 7-20 
BB, BG, BR, LOCK 7-20 

Disregard Request Condition 7-25 

Indeterminate Condition 7-24 

Bus Controller 7-4, 7-6, 7-11, 7-20, 8-6, 9-8 

Bus Error7-17, 7-18 

Bus Operations 

BB, BG, BR, LOCK 7-20 

BCLK 7-1 

BKPT 7-16 

Burst Accesses 4-2 

Burst Mode Accesses 5-7 

Burst Mode Operations 4-10 

Conditional Branch 7-25 

Interrupt Exceptions 7-15 

Misaligned Access 4-10, 9-3 

MOVE16 7-8, 7-13 

MOVES7-6 

NOP, Access Serialization, Bus 

Synchronization, Data Cache 7-20 

Retry 4-11 

RSTI, reset 7-34 

SIZX7-5 

Snoop Operation 5-7 

States 7-21-7-24 

TBI, MOVES 7-11 

Bus Signals 

SCx4-2 

Bus Snoop Controller 5-5 

Bus Snooper 4-1 

Bus Snooping 
Coherency 4-8 

SCx Encodings 4-8 

SCx, TS, TA, TEA, TBI, Ml 7-29 

Snooped External Read 4-7 

Snoop-Inhibited Operation 7-29 

Bus Synchronization 7-19 

Byte Enable Signals 7-2 

PAL Equation 7-2 

-C-

Cache Control Register 2-7 

Cache Controller 4-3, 4-6, 4-11 

MOTOROLA MCF5102 USER'S MANUAL INDEX-1 



Cache Invalidate 9-8 
Cache Line 4-2 

D-Bits4-5 
· States 

Invalid, Valid, Dirty 4-2 
V-bit 4-2 

Caches 2-7,4-2, 4-5, 4-7, 4-9, 4-10,4-11, 8-6 
Caches 

CDIS 5-8 
CINV, CPUSH 4-2 
CIOUT, TAS, CAS, CAS2, MOVE16 4-5 
CPUSH 4-11 
CPUSHA4-9 
Data Cache 7-20 
Instruction And Data Cache 8-6 
Instruction Prefetches 4-12 
Misaligned Accesses 4-1 O 
MOVEC, CINV, Page Descriptors, CDIS, 

CPUSH 4-4 
Retry Operation, TA, TEA4-11 
sex 4-2, 4-7 
i'ID4-2 
ro. m 4-10 
TCI, Tm, TA, Burst Mode Operations 4-9 
TLNx,Encodings 4-9 
TMx, TA, TEA, SIZX, [5CK, TAS, CAS, 

CAS2, Tm 4-11 
Cache Mode Field 5-6 
Cache Shared Data 4-8 
Caching Mode 4-4 
Caching Modes 

Cache Inhibited 4-5 
Copyback 4-4, 7-29 
Default 4-4 
Nonserialized Or Serialized 4-5 
Nonserialized Or Serialized Modes 4-4 
Page Descriptor 4-5 
Write-Through 4-4 

Caching Operation 4-2 
Calculate Stage 2-1, 2-2 
Carry Bit 2-5 
Control Signals 7-6 

-0-

Data Caches 2-7 
Data Cache Line Format 4-1 

Dirty Data 4-1 
Data Registers 2-3 
Decode Stage 2-2 
Decoded Instruction 2-2 
Double Bus Fault 7-18 
Dynamic Bus Sizing 7-2 

-E-

Effective Address 2-1 , 2-3 
Exception Handler 8-4 
Exception Processing 2-4, 7-17, 7-18 
Exception Priority 8-18 
Exception Vector 2-7 
Exception Vector Table 8-1, 8-4 
Exceptions 

Access Error 5-12, 7-14 
Autovector 7-16 
Bus Error 4-10 
Interrupt Exception Processing 5-12 
Reset Exception Processing 5-8, 7-35, 7-36 
SR 

M-bit 8-4 
TEA 8-6 

Execute Stage 2-2 
Execution Unit 5-10 
Explicit Bus Ownership 7-21 
External Arbiter 5-6, 5-8, 7-20 
External Bus Arbiter 7-22, 7-25 
Exceptions 8-2 

Fetch Stage 2-2 
Fetch Stage, 2-3 

-F-

-1-

Instruction And Operand Execution Pipelines 2-1 
Instruction Cache Line Format 4-1 
Instruction Prefetches 4-12 
Instructions 

ADD 5-12 
BKPT7-16 
CINV 4-2, 4-4 
CPUSH 4-2, 4-4, 4-5, 4-11, 7-18 
CPUSHA4-9 

INDEX-2 MCF5102 USER'S MANUAL MOTOROLA 



JTAG 
BYPASS, SAMPLE/PRELOAD, and 
EXTEST6-2 

MOVE to SR or RTE 8-12 

MOVE16 4-6, 5-4, 7-8, 7-13 
MOVEC4-4 

MOVES 7-6, 7-11 

NOP 7-20 
RESET 5-9, 7-36 

RTE 5-12, 8-11 
STOP 8-10 

TLNx 5-5 
TAS, CAS, and CAS2 4-6, 4-12, 7-14 

TRAP, TRAPcc, CHK, RTE, and DIV 8-1 
Instruction Execution 2-4 
Instruction Fetch 2-1 
Instruction Fetch Pipeline 2-1 

Instructions 

Integer Unit 

Execution Unit 5-10 
Interrupt Acknowledge Transfer 5-1 O 

Interrupts 

Interrupt Acknowledge Bus Cycles 7-15,8-2 

Interrupt Acknowledge Transfer 5-1 O 

Interrupt Exception Processing 5-12, 7-15 

Interrupt Priority Mask 7-15, 8-1 
!PEND 5-10 

Integer Unit 7-19 

Pipeline 
<ea> Calculate 9-3, 9-4 
<ea> Calculate And Execute Stages 9-6 

<ea> Fetch Stage 9-3 
<ea> Fetch And Write-Back 7-19 
Execute Stages 9-4 

Execution Stage 9-3 
Execute Stage 8-1 

Execution Unit 8-6 

Write-back 9-4 

Interrupt Acknowledge And Breakpoint 

Acknowledge Bus Cycles 7-15 

Interrupt Acknowledge Bus Cycle 7-16 

Interrupt Exception 7-15 

Interrupt Priority Mask 7-15 

Implicit Bus Ownership (See Bus Arbitration), 7-

35 

-J-

JTAG 5-12, 6-1 

Disabling 6-8 
Instructions (See Instructions, JTAG) 

Registers (See Registers, JTAG) 
TAP Controller 6-1 

TAP Controller State 

Capture-DR 6-3 
Capture-IA state 6-3 
Test-Logic-Reset 6-2 
Update-DR 6-3 
Update-IA 6-3 

TMS, TCK6-3 

-L-

Line Burst Transfer 7-8 
Line Filling 7-4, 7-8 
Line Read Transfers 7-8 

Line Transfers 7-2, 7-6 
Logical Address 2-7 
Locked Transfers 5-6 

-M-

M-Bit 2-6 
Master Or Interrupt Mode 2-6 

Memory Indirect Addressing 2-3 

Memory Management Unit 

Memory Controller 7-8 
Misaligned Operand 7-4, 7-17 

MOVEC 3-1 

-0-

Operand Fetch 2-1 
Operand Execution Pipeline 2-1 

-P-

Park (See Bus Arbitration) 

Pipe ling 
Decode Stage 2-2 

Privilege Violation Exception 8-9 
Program Counter 2-4 

Pseudo-Random Replacement Algorithm 4-3 

Push Buffer 4-11, 7-18 

MOTOROLA MCF5102 USER'S MANUAL INDEX-3 



Push Transfer 4-11 

-R-

Read Transfer 7-2, 7-6 

Read-Modify-Write (See Transfers) 

Registers 

ACR Registers 4-4 

Cache Control 2-7, 4-4 

Data 2-3 

Interrupt Stack Pointer (ISP) 8-4 

JTAG 

Boundary Scan Control 6-7 

Boundary Scan Register 6-2, 6-3, 6-7 

Bypass Register 6-2 
Instruction Shift Register 6-2, 6-3, 6-4 

Test Data Register 6-2 

Test Data Registers 6-2 

Program Counter (PC) 8-4 

Shadow 2-2 
Status Register 8-1 

Stack Pointer 2-4, 2-5 

Vector Base 2-7, 8-4 

Register Bits 

Carry 2-5 

M-Bit 2-6 

Reset 2-7, 4-2, 4-4, 5-7, 5-9, 7-34 

Retry 7-18 

-S-

Self-Modifying Code 4-9 

Shadow Registers 2-1, 2-2 

Signals 

Address And Data Bus 7-1 

BB, LOCK, BG, BR 7-20 
CDIS 4-4 

CIOUT 4-5 

IPEND, IPLx 7-15 

IPLx 9-8 

sex 4-7, 4-8 

sex, TS, TA, TEA,TBI, Ml 7-29 

SIZX 4-9, 7-2, 7-4 

SIZX, TBI, LOCK 4-11 

TA 4-10 

TA and TEA 4-11 

TBI 4-2, 9, 4-10, 7-7, 7-11 

TCI 4-9, 4-10 

TLNx 4-9 

TMx, TA, TEA 4-11, 5-4, 8-6, 8-11 

TMS, TCK6-3 
RSTI 7-34 

Sink4-7 

Sink Data 4-1, 5-6 

Snooped External Read 4-7 

Snooping 5-7 

Source DatA 4-1, 4-7, 4-8, 5-6 

Stack Frame 8-4 

Stack Pointer 2-4, 2-5 

Stale Data 4-1, 5-7 

Status Register 

M-Bit 2-6, 8-1, 8-4 

Supervisor Address Space 8-4 

Supervisor Mode 4-4 

Supervisor Or User Mode 2-6 

Supervisor Programming Model 2-5 

Supervisor Stack Pointers 2-5, 2-6 

-T-

Trace Modes 2-6 

TAP Controller5-12, 6-4 

Test-Logic-Reset State, JTAG 6-2 

Transfers 

Burst 7-8 

Burst And Burst-Inhibited 7-13 

Burst Inhibited 7-8 

Burst-Inhibited 7-2, 7-9 

Burst-Inhibited Line 7-18, 7-21 

Line 7-6, 7-8 

Line Read 7-18 

Line Transfer 7-17, 7-18 
Line, Burst 7-6 

Line, Read, Write 7-2 

Locked 7-24 

Read Bus Cycle 7-16 

Read-Modify-Write 7-14, 7-18, 7-21 

Write 7-11, 7-13 

-U-

User Programming Model 2-3 

-V-

INDEX-4 MCF5102 USER'S MANUAL MOTOROLA 



Vector Base Register 2-7 

Vector Number 7-15, 7-16, 8-2 

-W-

Write Cycle 

Write-Back 2-1, 2-3 

Write-Back 2-1, 2-3 
Write-through, Copyback, Cache Inhibited (See 

Caching Modes) 

Write Transfers 7-2, 7-11 

-X-

X-bit 2-5 

MOTOROLA MCF5102 USER'S MANUAL INDEX-5 



INDEX-6 MCF5102 USER'S MANUAL MOTOROLA 



Introduction 

Execution Pipelines .. 

Memory Management Unit~ 

Instruction and Data Caches ~ 

Signal Description 

IEEE 1149.1 Test Access Port (JTAG) ... 

Bus Operation .. 

Exception Processing cm 
Instruction Timings cm 

MCS 1 02 Electrical and Thermal Characteristics 4:D11 
Ordering Information and Mechanical Data 4i1 

Address, TIP, and LOCKE Generation Cll 
MCF5102 Evaluation Socket~ 

Index 



~Introduction 

, .. Execution Pipelines 

·~Memory Management Unit 

.. Instruction and Data Caches 

.. Signal Description 

.. IEEE 1149.1 Test Access Port (JTAG) 
! If» Bus Operation 

.. Exception Processing 

.. Instruction Timings 

.. MCS 102 Electrical and Thermal Characteristics 

.. Ordering Information and Mechanical Data 

.. Address, TIP, and LOCKE Generation 

I» MCFS 102 Evaluation Socket 

Index 

1ATX31948-0 Printed in USA 4/95 COURIER UM 24754 12,000 MPU YGASAA 



MCF5102UM/AD 

I llllllll llll l!lll llll lllll lllll lllll 111111111111111111111111111111111 


