MC68330UM/AD

INTEGRATED
CPU32 PROCESSOR
USER'S MANUAL

@ MOTOROLA

MC68330

Integrated CPU32 Processor
User’s Manual

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and the ®)are registered trademarks of Motorola, Inc. Motorola, Inc. is an
Equal Opportunity/Affirmative Action Employer.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

© MOTOROLA INC.,1991

PREFACE

The complete documentation package for the MC68330 consists of the MC68330
Integrated CPU32 Processor User’s Manual (MC68330UM/AD) and the MC68330

Integrated CPU32 Processor Technical Summary (MC68330/D).

The MC68330 Integrated CPU32 Processor User's Manual describes the programming,
capabilities, registers, and operation of the MC68330. The MC68330 Integrated CPU32
Processor Technical Summary provides a description of the MC68330 capabilities and

detailed electrical specifications.

This user's manual is organized as follows:

Section 1
Section 2
Section 3
Section 4
Section 5
Section 6
Section 7
Section 8
Section 9

MOTOROLA

Device Overview

Signal Descriptions

Bus Operation

System Integration Module

CPU32

IEEE 1149.1 Test Access Port
Applications

Electrical Characteristics

Ordering Information and Mechanical Data

MC68330 USER’S MANUAL

Paragraph

Number

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4

2.1
2.2
2.21
2.2.2
2.3
24
2.5
2.6
2.7
271
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6
2.8
2.8.1
2.8.2
2.8.3
284
2.8.5
2.9
2.9.1

MOTOROLA

TABLE OF CONTENTS

Page
Title Number
Section 1
Device Overview
Central ProcesSor Utccooeeeeinininieininieeerene e essesnes 1-2
System Integration Module...........ccooviiiiiniiin e 1-2
System Configuration and Protection Submodule...........cccocvvriiviiiiennnnnn. 1-2
ClOCK SYNhESIZEN ...ttt 1-3
Chip SEIECES ...ttt ses s s 1-3
External Bus INtErface. ..ot 1-3
Section 2
Signal Descriptions

SIGNAIINAEX.....cevieiiiiririe ettt 2-1
AdAress BUS........ccooiiiiiiiic e e 2-1
Address Bus (A23—A0)......ccccorrierrireierercereeree e st sansenens 2-1
Address Bus (A31—A24) ...ttt 2-1
Data BUS (D15—D0)ceiirirrierrreeirineere e 2-4
Function Codes (FC3—FCO)ccccurrrrrrnenninieinieerencines s seseressssesenenes 2-4
Chip Selects (CS3—CS0) .c.cerrrrrrrrrrrrerinrinssec s sssssssessessessessessessesans 2-4
Interrupt Request Level (IRQ7, IRQ8, IRQ5, IRQ3)cccevevveerrerreecrercreennns 2-5
Bus Control Signalsccc.coeineneninirnnin e enens 2-5
Data and Size Acknowledge (DSACK1, DSACKO)......cccceceercuervirereesurnnennn 2-5
AULOVECIOr (AVEC)oeceeveieeceeceeeeeteee sttt st s e st tene e 2-5
Address Strobe (AS)cccceeeeeerrerernerereeesssseese st seses s s s s s sessseses s snens 2-5
Data StrODE (DS)....eevuereerrieirreriirsinesssessesssessssessssessses s ssssssesssassssssssssssssensenns 2-5
Transfer Size (S1Z1, SIZ0) ...ccccovererrrrccrerrrerrere e 2-6
REAA/WIILE (R/W)......veveieeriecre ettt es s s s b asaes 2-6
Bus Arbitration Signals ..o s 2-6
BUS REQUESE (BR).......oorvrucericicieeteie ettt st s esas st s s s eneas 2-6
BUS Grant (BG) ...c.ccuvuerereeresinsssssssesesisssissessesssssssssssesssssssssessessssasssssssssssassns 2-6
Bus Grant Acknowledge (BGACK)........c.ccovereriirienieninieesteeie e aesene e 2-6
Read-Modify-Write Cycle (RMC).........cccceuerererieeeeieeeeeeeeeresesereeseseseere e 2-6
Byte Write Enable (UWE, LWE)ccccoueerreeeeeieeeesse s sssssssssssessssesesenns 2-7
Exception Control Signals ... easssessssens 2-7
RESEE (RESET).....co ittt sttt resa et e e 2-7

MC68330 USER’'S MANUAL iii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
2.9.2 HEIE (HALT) c.ovverueceeeereeeisessinsessssess s tsessssssssssssessesssssssssssssssassssssssessssesssesssaess 2-7
293 BUS Error (BERR)cccvueuiureeirieeieistsisssessssssssssssessssssssssssssssessssessssssssssessssns 2-7
2.10 ClOCK SIGNAIS ...ttt 2-7
2.10.1 System ClIock (CLKOUT)....c.ceveiriiiiieieicrieeeeseeesese et sesessesssenens 2-7
2.10.2 Crystal Oscillator (EXTAL, XTAL)....ccccoviiirerinenrerinerieeseesesesisseseesessesessnnens 2-8
2.10.3 External Filter Capacitor (XFC)cccucevrvireieneiernereseesresessreesee e essesesanaes 2-8
2.10.4 Clock Mode Select (MODCK)........cccoeirirenineninieenesesesesressese e essesseeneenas 2-8
2.11 Instrumentation and Emulation Signalsc.ccccoceeevveinieneienensieceeseceeen 2-8
2.11.1 Instruction Fetch (IFETCH).......cccoooiviiiiiicce e 2-8
2.11.2 INStruction Pipe (IPTPE)c.oceuerercereisniseissinssssssessesesssssssessssssssssssssessssssssens 2-8
2.11.3 Breakpoint (BKPT) ..o ssssesessssessssssssssssssssssesssssssssssssases 2-8
2.11.4 Freeze (FREEZE) ... iiiecseenrsessestes st es e sas e ssetesessse e ssessesnesesnnas 2-8
212 TSt SIGNAIS...ccooiriiiiiici s 2-9
2.12.1 Test ClOCK (TCK)coiriiiiirieiceitirceee et es 2-9
2.12.2 Test Mode Select (TMS).....cccoieirereeeeee e 2-9
2.12.3 Test Data In (TDI) c..cccoeeeeeerrccrceeee et sae e ras s ebennes 2-9
2.12.4 Test Data Out (TDO) ..o sesse s sesse s s e snans 2-9
2.13 Synthesizer POWEr (VCCSYN) - ererrerrerererrnererisesesesesesssessssssessnsssssesssessssssssens 2-9
2.14 System Power and Gound (VCC and GND).........cccecvevrieeenieenieesciecceeene, 2-9
2.15 Signal SUMMATY ...t seaenees 2-9
Section 3
Bus Operation
3.1 Bus Transfer Signals..........ccocvereiiiene e 3-1
3.1.1 Bus Control SignalScccoeevvrecenrrcernse e 3-2
3.1.2 FUNCHION COUBScvieiiicerieereeee ettt 3-3
3.1.3 Address Bus (A31—AD).......coeveriirireiriirie et ae e sae e e 3-3
3.1.4 AQAress StroDE (AS)cccveerueereerereereirsnsisssessssessssssse s sessessessssesassessesens 3-3
3.1.5 Data BUS (D15—D0)cooeeeririrercrrreereresee sttt 3-4
3.1.6 Data SroDE (DS).....ceveeeeerererererieeeeeeeere e sttt s ettt seee e 3-4
3.1.7 Byte Write Enable (UWE, LWE)ccoouvevueueeeeeeeiee s ssessesssesssens 3-4
3.1.8 Bus Cycle Termination Signals..........c.cocceviiiinineninincnie e 3-4
3.1.8.1 Data Transfer and Size Acknowledge Signals (DSACK1 and DSACKO)3-4
3.1.8.2 BUS Error (BERR)ccovueuerieeierctesessetssiesesssses e sesssesssessssss st sssesssssssessssnssons 3-5
3.1.8.3 AULOVECTIOr (AVEC)cviveeicreererieietre st sssss s sssssse s sssssseesseeens 3-5
3.2 Data Transfer MeChaniSmc.cccccrnniienienisineeesseresese e 3-5
3.21 Dynamic Bus SiziNg.......cccocouiriiiiiiicccc et 3-5
3.2.2 Misaligned Operands..........cccccccvvenirereeienicnnnnn. et 3-7
3.23 Operand Transfer CaseS........coevrrrrverrreeins e sene s 3-8
3.2.3.1 Byte Operand to 8-Bit Port, Even (A0=0)ccccocverrerecereeeeeeeeeeeerenevevnens 3-8

iv MC68330 USER’S MANUAL MOTOROLA

Paragraph
Number

3.2.3.2
3.2.33
3.2.34
3.235
3.2.36
3.23.7
3.24
3.25
3.2.6
3.3
3.3.1
3.3.2
3.3.3
3.4
3.41
3.4.2
3.4.3
3.4.4
3.4.4.1
3.4.4.2
3.443
3.5
3.5.1
3.5.2
3.5.3
3.54
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.7

4.1
42
4.2.1
4272

MOTOROLA

TABLE OF CONTENTS (Continued)

Pa
Title Num
Byte Operand to 16-Bit Port, Even (A0=0).........cccceviririiineineerieesieneeee 3-8
Byte Operand to 16-Bit Port, Odd (A0=1)ccccoericiiniiiiiccccce, 3-9
Word Operand to 8-Bit Port, Aligned..........ccccooveinnnncennnecnre e, 3-9
Word Operand to 16-Bit Port, Aligned.............cccoveiiiiiiiiicincniineceeee 3-10
Long-Word Operand to 8-Bit Port, Aligned ... 3-10
Long-Word Operand to 16-Bit Port, Aligned.........ccccooeveecrninncniccenenns 3-12
BUS OPEration.......c.cociirrimieriiirerreeereresee et et ettt en e 3-14
Synchronous Operation with DSACKX.........cccceoieneeniinienienieneee e 3-14
Fast-Termination CYCIES...........ccoruerreiirennerce e 3-15
Data Transfer CyCles..... ..ot s 3-16
REAA CYCIE....eiieceeeee ettt sttt ne 3-17
WG CYCI@ e et 3-18
Read-Modify-WIite CYCle.........coeverrerirrcrcecrcer e 3-19
CPU Space CYCleS........ccrrireirieieieiiceeer e s 3-22
Breakpoint Acknowledge CyCle.......ccccveivernneciniennnerreeree e 3-22
LPSTOP Broadcast CYCle......cccvrmieireiereereee e sesesessssesenns 3-26
Module Base Address Register ACCESS.........cvcvrrrveeriiirienieenesee e 3-27
Interrupt Acknowledge Bus Cycles.........cccovrervenininiriee e 3-27
Interrupt Acknowledge Cycle — Terminated Normally........................... 3-27
Autovector Interrupt Acknowledge Cycle ..., 3-30
Spurious INterrupt CYCIE..........ociriirereecee e 3-32
Bus Exception Control CYCIES........ccviivercirnineerneneersee s 3-33
BUS EITOTS....cuciireeeeieteeeree st ss st st st sttt na e s en e 3-35
Retry Operation ... 3-37
Halt Operation ... e 3-38
Double BUS Fault ... 3-40
BUS Arbitration.......c.ccovirre s 3-40
BUS REAUESTE......cueieeiirtec ittt ettt r e sreees 3-43
BUS Grant.......cocieiiieeceteeccre et e st e 3-43
Bus Grant ACKNOWIEAQGE.........c.coureriireriereieecne e 3-43
Bus Arbitration COontrol..........c..ceevreeiienininicr e 3-43
SOW CYCIES.....oeieeiereeei ettt 3-45
ReSEt OPETrationcoccevereiriiirieiniie ettt s res e sre e sreeen 3-47
Section 4
System Integration Module
MOdUIE OVEIVIEW ...t s senes 4-1
Module OPEration ...t res s senens 4-2°
Module Base Address RegiSter............covvviviiiniiiineniinnee e 4-2
System Configuration and Protection Function ... 4-3
MC68330 USER’'S MANUAL v

Paragraph

Number

vi

4221
4222
4223
4224
4225
4226
42261
42.26.2
4227
423
4231
4.23.2
4233
424
4.2.41
4242
425
4.25.1
425.2
426
4.2.7
4.3
4.3.1
4.3.2
43.2.1
4322
4323
4324
4325
43.2.6
4327
4.3.2.8
4.3.3
4.3.4.
4.3.4.1
4.3.4.2
4343
4.3.5
4.35.1
4.3.5.2

TABLE OF CONTENTS (Continued)

Page
Title Number
System Configuration ... 4-5
Internal Bus MORNItOr ... 4-5
Double Bus Fault MONIOT...........coeiviiiiiciir e 4-5
Spurious INterrupt MONILOTcocvrieicee e 4-5
Software WatChdog ..o s 4-6
Periodic INterrupt TIMEr ..ot 4-6
Periodic Timer Period Calculation...........c..cceveeerieninennenieieecesee e 4-7
Using the Periodic Timer as a Real-Time Clockccccceccevnninccnincnnen. 4-8
Simultaneous Interrupts by Sources in the SIM40..............cccviviiiieennnen. 4-8
Clock SYNthESIZEN..........ccciiiiiec e 4-8
Phase Comparator and Filter ... 4-11
FrequenCy DiVIET ..o 4-11
ClOCK CONMIOL ...t be s st b st 4-12
Chip-Select FUNCHON ..ot 4-12
Programmable Features...........ccooevviiiiinininiicineneecee 4-13
Global Chip-Select Operation..........ccoovnrrnnnncrnenrsrs s 4-13
External Bus Interface.........cccovevivnrnnceciececce e 4-14
PO A ettt et 4-14
PO B 4-14
LOW-POWET STOPcvcveiieiriecireecreii i e 4-15
FrEEZE ... 4-15
Programmer's Model.............cccoiiiiniiiinc e 4-16
Module Base Address REgISter.............ccvuvvirinririninnnenieinreseeseresesaenens 4-17
System Configuration and Protection Registers........c.ccvvievverneninnene 4-18
Module Configuration Register (MCR).........ccceeveveneninree e 4-18
Autovector Register (AVR).........coeivrcnriininierinssiesieesssse e saevens 4-20
Reset Status Register (RSR)........cccceceeieiiiinineneiceseeese s 4-20
Software Interrupt Vector Register (SWIV)......ccccccevcvveniniccesieeieeseeee 4-21
System Protection Control Register (SYPCR)........ccccccevevivenienesennennnens 4-21
Periodic Interrupt Control Register (PICR)ccceccevvvivevnvnecrerreeeeen 4-23
Periodic Interrupt Timer Register (PITR)ccccocvrrrnrenevenniinireeseresnnnns 4-24
Software Service Register (SWSR)cccocvvrnernnnicrnnenrsreeereeens 4-24
Clock Synthesizer Control Register (SYNCR)cccccovvevineeeececeierennns 4-25
Chip-Select REGIStErScoiveeeiiiirrerree e 4-26
Base Address ReQIStErS ..ot saese s 4-26
Address Mask RegiSters.......ccirinneiinincnsce e 4-27
Chip-Select Registers Programming Exampleccccooeevceeeevieerennen. 4-29
External Bus Interface Control............cccoevurerminincennerreseeesceeesennens 4-29
Port A Pin Assignment Register 1 (PPARAT)......cccovvvnvniinieniereceeee 4-29
Port A Pin Assignment Register 2 (PPARA2)........cccccccvenvrieirinienceseee 4-30

MC68330 USER’'S MANUAL MOTOROLA

Paragraph
Number

4353
4.3.5.4
4355
4.3.5.6
4357

5.1

51.1
51.2
51.3
5.1.4
5.1.5
5.1.6
51.7
5.1.7.1
5.1.7.2
5.1.8
5.1.9
5.2

5.2.1
5.2.2
5.2.3
5.2.3.1
5.2.3.1.1
5.23.1.2
5.23.1.3
5.2.3.2
5.3

5.3.1
5.3.2
5.3.3
5.3.4
5.3.4.1
5.3.4.1.1
5.3.4.1.2
5.3.4.2
5.3.4.2.1
5.3.4.2.2

MOTOROLA

TABLE OF CONTENTS (Continued)

Page
Title Number
Port A Data Direction Register (DDRA).........cccceeieevrviceiieeee et 4-30
Port A Data Register (PORTA)ccoreerirccnirieiecsirie e 4-30
Port B Pin Assignment Register (PPARB)ccccoonrenninnenecreeeens 4-31
Port B Data Direction Register (DDRB).......ccccccccvviiviiiinirrireceeeee e 4-31
Port B Data Register (PORTB, PORTB1)ccccoveiinnninnseseseesieneens 4-31
Section 5
CPU32

OVEBIVIBW.......eireeie ettt ettt 5-1
FRAIUIES......ce e e st 5-2
VirtUal MEMOTY ..ttt 5-2
Loop Mode Instruction EXecution ... 5-3
Vector Base RegISter........c.ooiieiiiiecreccreeree e 5-4
Exception Handling.........cociiccccce e 5-4
Addressing MOdES..........coiiiiiiiiiiii e 5-5
INSEIUCHION SBL......eoiieiiece e 5-5
Table Lookup and Interpolate Instructions............ccocveeviininnceniencccieeen, 5-5
Low-Power Stop INStruCtioN..........ocoiiiiiireee e 5-7
Processing States.......cocevriieririiriercee e 5-7
Privilege States ... e 5-7
Architecture SUMMArY ... e 5-8
Programming MOGEL.........c.covueriimiiniieercer et se e 5-8
REQISIENS.....c.ceeee e e 5-10
Data TYPES...cociiiiiiiiiicct et e e e 5-11
Organization in RegiSters..........cccovirincnincnesersee e 5-11
Data REGISIErSccoriiereieerecceree ettt st etene 5-11
Address ReGISter ... 5-12
Control REGISTEIS ..ot 5-13
Organization in MEMOTY ..o 5-13
Data Organization and Addressing Capabilitiescccocecevverirecrcnnnne 5-13
Program and Data References............cccovrreneicnencnnencnenscecenenescene 5-15
Notation CONVENIONSccouiiirrireerre et 5-15
IMPIiCit RETEIENCE ...ttt 5-16
EffeCtive AdAreSScouiieee ettt 5-16
Register DireCt MOde..........coooeeiiieeiineccri e 5-17
Data Register DIreCt ... 5-17
Address Register Dir€Ct...........coiienrinecinnireeeinsenssseesesesesssssesssssesseesseaes 5-17
Memory Addressing MOAEScccccveirerrinreiereeersesee s e s sse s 5-17
Address Register INAIreCtcooviieirnereerecec s 5-17
Address Register Indirect with Postincrement..........cccccoevivccnnnicenne. 5-17

MC68330 USER’S MANUAL vii

Paragraph

Number

viii

5.3.4.2.3
5.3.4.24
5.3.4.25
5.3.4.2.6
5.3.4.3
5.3.4.3.1
5.3.4.3.2
5.3.4.3.3
5.3.4.3.4
5.3.43.5
5.3.4.3.6
534.4
5.3.5
5.3.5.1
5.3.6.2
5.3.6
5.3.7
5.3.7.1
5.3.7.2
5.3.7.3
5.4

5.4.1
5.4.1.1
541141
54.1.1.2
5.4.1.2
54.2
5.4.3
5.4.3.1
5.4.3.2
5.4.3.3
5.43.4
5.43.5
5.4.3.6
5.4.3.7
5.4.3.8
5.4.3.9
5.4.3.10
544
5.4.4.1

TABLE OF CONTENTS (Continued)

Pa

Title Num
Address Register Indirect with Predecrement ..o 5-18
Address Register Indirect with Displacement.........cc.cocovivnnnicininncnnee 5-18
Address Register Indirect with Index (8-Bit Displacement)..................... 5-19
Address Register Indirect with Index (Base Displacement).................... 5-20
Special Addressing MOdES........c.coeverrieirriinneeeeeer et 5-20
Program Counter Indirect with Displacement...............ccccovniivnnnninennne. 5-20
Program Counter Indirect with Index (8-Bit Displacement).................... 5-21
Program Counter Indirect with Index (Base Displacement)................... 5-21
AbSOlute Short AQArESS........ccvverieiririiereere et seenene 5-22
Absolute LoNG AdAressoccvvrierrreteer e e 5-22
Immediate Data.........ccooniiiiiii 5-23
Effective Address Encoding SumMmarycccocccvieennernneenenennenenneenens 5-23
Programming View of Addressing Modes............cccoviiniiiniiciinienns 5-25
Addressing Capabilitiesc.cccovverrrrrnircr e 5-25
General Addressing Mode SUMMArY ... 5-28
M68000 Family Addressing Capability...........ccoceevirienceiieeceeeee, 5-28
Other Data StrUCTUIES ..ot 5-29
SYSIEM SEACK.eveveveiirieeiricetre ettt st n e e 5-29
USEI SEACKS....cuouiirrriereeee ettt be et seen s 5-30
QUEBUES ... et e st 5-31
INSEUCHON SEL.......ciieieeee e 5-32
M68000 Family Compatibility...........cceerererereririerireesernseresee e 5-32
NEW INSITUCHONS.cieiiiirieerecerieee et nrae 5-33
Low-Power Stop (LPSTOP)........oi ettt 5-33
Table Lookup and Interpolate (TBL)ccoeieeniiinnicrcereciecne 5-33
Unimplemented INStrUCHIONSccoveeerniinrecrre e 5-33
Instruction Format and Notation ... 5-33
INSErUCHION SUMMANY ..ot 5-36
Condition Code ReGISIErccvviirrrcereierec s 5-40
Data Movement INStrUCIONSooeeiveiicrn e 5-42
Integer Arithmetic Operations..........ccccoccvvnicniccc 5-43
Logical INStrUCHONS.cccuviriiiiiriiinie s 5-45
Shift and Rotate INStruCtions..........cccceevciriecnrc e 5-45
Bit Manipulation INStruCtions...........ccccovvereiiiinie e 5-46
Binary-Coded Decimal (BCD) Instructionsccoovvnninnnncncncinnen 5-47
Program Control INStructions.........coeeeeereecnesrc e 5-47
System Control INStructions..........coinniin s 5-48
CoNdition TESES ..veuvierrercereee e e 5-50
Using the Table Lookup and Interpolate Instructioncccoovervennnee. 5-50
Table Example 1: Standard USage..........coevereeiiccneninnnceeeeeseceeeeenes 5-51

MC68330 USER’S MANUAL MOTOROLA

Paragraph
Number

5.4.4.2
5.4.4.3
5.4.4.4
5.4.4.5
5.4.5
5.4.6
5.5

5.5.1
5.5.2
5.5.2.1
55.2.2
5.5.2.3
5.6

5.6.1
5.6.1.1
5.6.1.2
5.6.1.3
5.6.1.4
5.6.2
5.6.2.1
5.6.2.2
5.6.2.3
5.6.2.4
5.6.2.5
5.6.2.6
5.6.2.7
5.6.2.8
5.6.2.9
5.6.2.10
5.6.2.11
5.6.2.12
5.6.3
5.6.3.1
5.6.3.1.1
5.6.3.1.2
5.6.3.1.3
5.6.3.1.4
5.6.3.2
5.6.3.2.1
5.6.3.2.2

MOTOROLA

TABLE OF CONTENTS (Continued)

Page
Title Number

Table Example 2: Compressed Tableccocoovvrrinnnnnnnnenenesinennene 5-52
Table Example 3: 8-Bit Independent Variableccoveicnccnnincnnnnne. 5-53
Table Example 4: Maintaining Precision..........cc.ccoooveveeieeeeveeneneeeeseene 5-55
Table Example 5: Surface Interpolations..........c.ccccocvmvcinnnnncneccnene, 5-56
Nested Subrouting CallS.......c..ccccceeuieieencinniiereecree s 5-57
Pipeline Synchronization with the NOP Instruction...............ccccccovenne 5-57
Processing States..........cccviiiiiiin s 5-57
State TransSitioNS ..o 5-57
Privilege LEVEIS. ..o 5-58
Supervisor Privilege Level...........ccooiiiieecaeeennce e 5-58
User Privilege LeVel..........cccieccercerre s 5-59
Changing Privilege Level.............cocoiiiecc 5-59
Exception ProCeSSiNg ..ot eesnees 5-59
EXCEPLON VECIOIS ...ttt 5-60
Types Of EXCEPHONS ..o 5-61
Exception Processing SEQUENCEccceevreeieieniecner e se e 5-61
Exception Stack Frame........c.coevvivnnerenscrrsresiss s seseesessensens 5-62
Multiple EXCEPLONS ..ottt s 5-62
Processing of Specific EXCEPLONSc.cccvvivnerneninnere e 5-63
RESEL ...ttt st 5-63
BUS EFTOT......ceieieee ettt ns 5-65
AAAIESS EITON ..ottt et 5-65
INSITUCHON TraPS.....ccviieeeeectitirccee et 5-66
Software Breakpoints..........covvireiiineiiieeeiiee e e 5-66
Hardware BreakpointS.......cciiieiiniierenciinensesnesesesssessessessesssesesnees 5-67
FOrMat EFTOr ..ottt ettt b e nenn 5-67
lllegal or Unimplemented Instructions ... 5-67
Privilege VioIatioNns...........c.oieereeirnireeeeesses s 5-68
LI 5= 1114 T F OO SOOI OSSO 5-69
INEEITUDES. ..t 5-70
Return from EXCEPLON........cccoviiirieecenrcerc e 5-72
Fault RECOVENY ...t 5-72
TYPES Of FAUIS ... 5-75
Type |: Released Write FaultS.........cccocoveeniencecicereee e 5-75
Type lI: Prefetch, Operand, RMW, and MOVEP Faults..........c.cccccverueeneen. 5-75
Type lll: Faults during MOVEM Operand Transfer........ccccooccoeniveccrrenenene 5-76
Type IV: Faults during Exception Processing..........cocccoveiviriciniiscnnnnnans 5-77
Correcting @ FaUt ...t 5-77
Type | — Completing Released Writes via Softwarecccccccevevvenenee. 5-77
Type | — Completing Released Writes via RTE..........cccocvevninnccinenenenn 5-78

MC68330 USER’S MANUAL ix

Paragraph
Number

5.6.3.2.3
5.6.3.2.4
5.6.3.2.5
5.6.3.2.6
5.6.3.2.7
5.6.4
5.6.4.1
5.6.4.2
5.6.4.3
5.7

5.7.1
5711
5.7.1.2
5.7.1.3
5.7.2
5.7.2.1
5.7.2.2
5.7.2.2.1
5.7.2.2.2
57223
5.7.2.3
5.7.2.4
5.7.25
5.7.2.5.1
5.7.25.2
5.7.25.3
5.7.2.6
5.7.2.7
5.7.2.7.1
5.7.2.7.2
5.7.2.8
5.7.2.8.1
5.7.2.8.2
5.7.2.8.3
5.7.2.8.4
5.7.2.8.5
5.7.2.8.6
5.7.2.8.7
5.7.2.8.8
5.7.2.8.9

TABLE OF CONTENTS (Continued)

Page
Title Number
Type Il — Correcting Faults via RTE..........ccccocovvivenniininicicins 5-78
Type lll — Correcting Faults via Software........c.cccocevrveceecevccinncnnes 5-78
Type Ill — Correcting Faults by Conversion and Restart........................ 5-79
Type Il — Correcting Faults via RTE.........cccooeeiiiiniinne e 5-79
Type IV — Correcting Faults via Softwarec.cccevvceenincnerennnenns 5-80
CPUB2 Stack Framesco.oooeeiiireiereeeeee ettt 5-80
Four-Word Stack Frame ... sseesesesens 5-80
Six-Word Stack Frame...........coceeveinineiennenereeeesese e seeneste e e sesessns 5-81
BERR Stack Frame........ccccoiiiiiiniinecree e s 5-81
Development SUPPOH..........cccoveirineiiii e 5-84
CPU32 Integrated Development SUPPOHt........cccceverererereenerereerercresenenenens 5-84
Background Debug Mode (BDM) OVErVIEWccoeevereenrenenesineenenens 5-84
Deterministic Opcode Tracking OVerview..........ccccccvnnnrrrnessensesenens 5-85
On-Chip Hardware Breakpoint OVEerview...........ccccoveeiernieeceenenieesinennene 5-85
Background Debug Mode (BDM)cccoeriennnnenneceienerenesnsesesesisseneens 5-85
Enabling BDM ...t 5-86
BDM SOUICES ...eoueeeiicncinieirt sttt st st s e sens 5-87
External BKPT Signalooceviiieineecrreeeceereec e 5-87
BGIND INSIUCHONueveeieiicrereernerieire sttt ssae e sen 5-87
Double BUS Faultcoeieeeecrcc e 5-87
Entering BDM ... 5-87
Command EXECULON.......c.coeoiiireieireeneese et see e 5-88
Background Mode Registers ... 5-88
Fault Address Register (FAR)cccccorrrmiennncenreeeenee e sansesenens 5-88
Return Program Counter (RPC)cccoeeminnniinneenneseseeenesseeseesienes 5-88
Current Instruction Program Counter (PCC)........cccovvevrciiniinicinnieesineenne 5-88
Returning from BDM........cooiiiiceneresne e e 5-89
Serial INterfaceo 5-89
CPUB2 Serial LOGICcoverrierieeireieeeeeereerereenes e e sees 5-90
Development System Serial LOGIC.........ccceveviririinieienieneenercieeeenns 5-92
CommMaANd Set ... s 5-94
Command FOrmMat........cccooueereininrerecneneee s s 5-94
Command Sequence Diagrams........ccveenrerneneniniereneenesi e sesesesesnens 5-95
Command Set SUMMANY.........cooiiiiiiiiee e e 5-96
Read A/D Register (RAREG/RDREG)ccoceoverurerrrinnesnenereniseesenesaseesenns 5-97
Write A/D Register (WAREG/WDREG)ccoceviiimireneseseserennessesenenenens 5-98
Read System Register (RSREG)..........cccoevrrvennrmnrenereeene e 5-98
Write System Register (WSREG)cccoiiiiiinccicnninncne s 5-99
Read Memory Location (READ).......ccccceoeirreiiienireerere e eevevenas 5-100
Write Memory Location (WRITE)cocoveiinnneireereeeeceseeneeenas 5-100

MC68330 USER’S MANUAL MOTOROLA

Paragraph
Numgber

5.7.2.8.10
5.7.2.8.11
5.7.2.8.12
5.7.2.8.13
5.7.2.8.14
5.7.2.8.15
5.7.2.8.16
5.7.3
5.7.3.1
5.7.3.2
5.7.3.3
5.8

5.8.1
5.8.1.1
5.8.1.2
5.8.1.3
5.8.1.3.1
5.8.1.3.2
5.8.1.3.3
5.8.1.4
5.8.1.5
5.8.1.6
5.8.1.7
5.8.2
5.8.2.1
5.8.2.2
5.8.2.3
5.8.3
5.8.3.1
5.8.3.2
5.8.3.3
5.8.3.4
5.8.3.5
5.8.3.6
5.8.3.7
5.8.3.8
5.8.3.9
5.8.3.10
5.8.3.11
5.8.3.12

MOTOROLA

TABLE OF CONTENTS (Continued)

Title

Dump Memory BIOCk (DUMP) ..o
Fill Memory BIOCK (FILL)ccoorreirireeeiceerereeeeeeee et
Resume Execution (GO).......ccceeeeircrermnenernerinnesiseres s sesesesesesassesaeens
Call User Code (CALL).....ccoeruireeierieieeeeteeeeeteete et
Reset Peripherals (RST)....cccooiererinineeeereeceneserence e
NO Operation (NOP)cccoviiiirrieerinecerreeeesi ettt et saenees
Future CoOmMMANGAS.......cooveiriieieiiee e
Deterministic Opcode Tracking.......cccoeeerneeeienincnceiesee e
Instruction FEtCh (IFETCH)......c.ovvieveeereveceereeeeeee et
INStruction PIPE (IPTPE)c.oivurvenieereeiseseseessisssessssesiessssssssssssssssassssassans
Opcode Tracking during Loop Modecccccoeiennnencecinenenseesienne
Instruction Execution Timing.........cccoeireinennenninnreeece e
Resource Scheduling ..o
MICTOSEQUENCET ...ttt
INStruction Pipeling........cveeeieieeee et
Bus Controller RESOUICESccoeeirereiereeeeeceieesteeee st
Prefetch COontroller..........coo et
Write-Pending BUFfer.........co e
Microbus Controller..........corievriccireeece e
Instruction Execution OVErIap..........coeceoirernecenrericnninescnieesesienesnesennens
Effects of Wait States..........cccoereireniireeeece e
Instruction Execution Time Calculationccccenvcennnnnnsneccneninnns
Effects of Negative TailSccoverieirriieeiccc s
Instruction Stream Timing Examplecccocoeiinininiinesenennrreeieens
Timing Example 1: Execution Overlap...........c.ccooeeervinenierseniieneenenneens
Timing Example 2: Branch INStructionscccovvvevccccnnnnnnrcncenens
Timing Example 3: Negative TailS.......cc.cccccorrrennrnenniresceneneceneneens
Instruction Timing TabIes ..o
Fetch Effective ADAress ... e
Calculate Effective Address..........cooeceineeeneininceescrereseeereeeesesesaneenns
MOVE INSIIUCHION ...t e
Special-Purpose MOVE INStrUCHON..........ccecerereerieierineniniesirsiesesseesennns
Arithmetic/Logical INStructions...........cccoeeeeverienenenesieeseeecsese e
Immediate Arithmetic/Logical Instructions...........cccovveveninieeinneniennenns
Binary-Coded Decimal and Extended Instructionscccccoceeueueunne.
Single Operand INStrUCONSoccueurieerirecceree e
Shift/Rotate INStrUCoNS........ccouvvriiir e
Bit Manipulation INStruCtioNS..........cccoiiiiiiiieieeee e
Conditional Branch INStruCtions...........ccceueueeveeneennencnennecenennens
Control INSHUCHONS........ccouiirieereere e

MC68330 USER’S MANUAL

Xi

Paragraph

Number

Xii

5.8.3.13
5.8.3.14

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.5

71

711
71.2
713
7.1.4
71.5
7.2

7.21
7.2.2
7.3

7.3.1
7.3.2
7.3.3

8.1
8.2

TABLE OF CONTENTS (Continued)

- Pa
Title Num
Exception-Related Instructions and Operations............ccccccevvereveennnnen. 5-131
Save and Restore Operations..........c.ccverrerccvennienevereereescee s 5-132

Section 6

IEEE 1149.1 Test Access Port

OVEIVIEW.....eee ettt etee et ee st s s sa e st e e se s e e saeeeasssesssse st essnesnanasnns 6-1
Boundary Scan RegiSterccirrrinnreeeee et s 6-2
Instruction REGISter ..o 6-8
EXIEST (000) ...cueeemeeiirerreiertie et eeb et e 6-8
Sample/Preload (0071) ..ot 6-9
Bypass (X1X, T101) .o 6-9
HI-Z (100) oot sie ettt ss e sae et se e es et se s s e nenan 6-9
MCB8330 RESICHONS......cveeeeriieieiririieesietee ettt nsens 6-10
NORN-IEEE 1149.1 Operation.........cocooeeireimiiieeeeeereseceseserceee e senneas 6-10

Section 7

Applications

Minimum System Configuration.............cccoceverrininninincre e 7-1
Processor ClOCK CirCUITYccou ettt 7-1
RESEE CITCUITY .ottt 7-3
SRAM INEIACE ...ttt ean 7-3
ROM INtEMACE ...ttt ettt ss st tne 7-3
Serial INtErfaCEovirereee et 7-4
MC68330 Initialization SeqUENCE.......ccccccvvveerieirerccerresee e 7-5
S €= U (0] o 1O OO OO 7-5
SIM Module Configuration............coceeerriennennncreecerereee e 7-5
Memory Interface Information ... 7-6
Using @ 8-Bit BOOt ROM ..o e 7-7
Access Time Calculations..........ccoveereieiennrcrreee e 7-7
Calculating Frequency-Adjusted Outputccccccieecnnieiecieseeerenens 7-9

Section 8

Electrical Characteristics

Maximum Ratingsc.coviiiiniccicte et 8-1
Thermal CharacteristiCs.........ccvcvvireririnenirecerrecere e 8-1

MC68330 USER’S MANUAL MOTOROLA

Paragraph
Numgbel?

9.1
9.2
9.2
9.3
9.4
9.5

MOTOROLA

TABLE OF CONTENTS (Concluded)

Page
Title Number
Section 9
Ordering Information and Mechanical Data
Standard MC68330 Ordering Informationccoeveenineciniennincecenes 9-1
Pin Assignment — 132-Lead Quad Flat Pack (Top View)cccceceeenene. 9-2
Pin Assignment — 132-Lead Quad Flat Pack (Bottom View)................... 9-3
VCC and GND FUNctional GroUPS.........ccceirerrriennineeneeneneenessee s seesee e e 9-4
Alphabetized Signal List........ccooiiiiiiiiicc 9-5
Package Dimensions FC SUffiX ... 9-6
Index

MC68330 USER’S MANUAL xiii

Figure
Number

3-4

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
4-1

4-2

4-3

4-4

4-5

4-6

5-1
5-2

Xiv

LIST OF FIGURES

Page
Title Number
BIOCK Diagramcccoeeueeririeerineeeereeeseeesrese e esne e et es e se e 1-1
Functional Signal GrOUPSccccrurerririreseererrisesertes e ssesesess s ssssesssssesssssessenes 2-2
Input SamMPle WINAOW.........c.coiiiiiiiiiircc e 3-1
MC68330 Interface to Various Port Sizes.......ccccveveeerverieneceerennererrseneens 3-7
Long-Word Operand Read Timing from 8-Bit Port............ccccocneneiiiencnne 3-11
Long-Word Operand Write Timing to 8-Bit Port...........ccccovoiiiiiiiiniiene 3-12
Long-Word Operand and Word Read and Write Timing — 16-Bit Port 3-13
Fast Termination Timingcccoceoinecinecinincneeesesesr e e 3-16
Word Read Cycle FIOWChart ...t 3-17
Write Cycle Flowchart ... 3-18
Read-Modify-Write Cycle Timingccoeveernreirneineeresee et 3-20
CPU Space Address Encoding.........cccccveurerneeinenennenesseseseseesesse s 3-22
Breakpoint Operation FIOWChartcccoorivvirnienneenceececsess e 3-24
Breakpoint Acknowledge Cycle Timing (Opcode Returned)..................... 3-25
Breakpoint Acknowledge Cycle Timing (Exception Signaled) 3-26
Interrupt Acknowledge Cycle Flowchart...........ccoovrenenennneccrneneeeeene 3-29
Interrupt Acknowledge Cycle Timingc..occceereerinneneenenesereeseseseesiens 3-30
Autovector Operation TiMING ...t 3-32
Bus Error Without DSACK ...t enene 3-36
BUS Error With DSACK ...ttt sae e seeseanans 3-36
Retry SEQUENCE ...t 3-37
Late Retry SEQUENCE ...t 3-38
HALT TIMING...urtirenierineesesesessssessssessessssessesssssssssssssssssssssssssssssssssssssssessssssssesas 3-39
Bus Arbitration Flowchart for Single Request...........cccoocoviiiiiicnnieniccee 3-41
Bus Arbitration Timing Diagram — Idle Bus Case...........c.cceceeierenerieneenens 3-42
Bus Arbitration Timing Diagram — Active Bus Casecccocevvrvverirnene 3-42
Bus Arbitration State Diagram..........c.ccoceeevenininineeee e 3-45
Show Cycle Timing Diagram...........coeeueerirrerreneisnerienesssnreseees e e eseens 3-47
Timing for External Devices Driving RESET ... 3-48
Initial Reset Operation Timingcccoeeevirreinnneneesrre s 3-49
SIM40 Module Register BIOCK..........cccccuiviciiiinr s 4-2
System Configuration and Protection FUnctionc.cccccvvevneeneninncnnnenenne 4-4
Software Watchdog Block Diagramccccvecrererccesereeesenece e ene s 4-6
Clock Block Diagram for Crystal Operatoncccccveevnreinnecesenenesnenes 4-9
MC68330 Crystal OSCIllator..........cccvueveirerirreririereseee e 4-10
Clock Block Diagram for External Oscillator Operation........c.cccccccveviuennne. 4-10
SIM40 Programing Model ... 4-16
CPUS32 BIOCK Dia@ram..........coceviiviiirieenieseeescsee et e s ness 5-3
Loop Mode Instruction SEQUENCEccovreiiierccicreece s 5-3
User Programming MOdel...........cccooiineeceerseense e 5-9

MC68330 USER’S MANUAL MOTOROLA

Figure
Number

5-4

5-5

5-6

5-7

5-8

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43

MOTOROLA

LIST OF FIGURES (Continued)

Pa

Title Num

Supervisor Programming Model Supplementcccoooeovveinnincnecenennnenes 5-9
Status Register.....o s 5-10
Data Organization in Data Registers............ccccoviiiiiii i 5-12
Address Organization in Address Registers..........ccccovevniiennccnnnnenennnes 5-12
Memory Operand AdAresSingcccveireniririniinnenns crereniereeseseesesesaeessenns 5-14
Single Effective-Address-Instruction Operation Worc 5-15
EA Specification FOrmats ... 5-24
Using SIZE in the Index Selection...........cccoveieviinnciniieree e 5-26
Using Absolute Address with INdEXESc.cccveiiecciiiccrereeenas 5-26
Addressing Array HEMS........ooeiieiriecererc e 5-27
M68000 Family Address Extension WOrds...........cccuerernevenreecnenenencncnenens 5-29
Instruction Word General Format..........cocoeviniincninenenecree e 5-34
Table EXAMPIE T ..ottt 5-51
Table EXAMPIE 2.ttt 5-52
Table EXamMPIE ...ttt e 5-54
Exception Stack Frame........ccocceieerieinieeeeees et 5-62
Reset Operation FIOWChar............ccoiiiiiiiinece e 5-64
Format $0 — Four-Word Stack Frame..........cccccvervresurinsnnescrensesensenene 5-81
Format $2 — Six-Word Stack Framec.cccovvvveinccnnnceeneneeseeneeeeinans 5-81
Internal Transfer Count RegiSter.........ccoveiiricinnicncee e 5-82
Format $C — BERR Stack for Prefetches and Operands..............c........... 5-83
Format $C — BERR Stack on MOVEM Operand...........ccccoceeverreeererenennen. 5-83
Format $C — Four-and Six-Word BERR Stackc.cccccoiennnvnneneenns 5-83
In-Circuit Emulator Configuration ... 5-85
Bus State Analyzer Configurationcccoevinrernnnn e 5-85
BDM Block Diagram ... sensseenes 5-86
BDM Command Execution Flowchart ... 5-89
Debug Serial /0 BIOCK Diagramcoccecererierereeentreeieieseneeeseeesee e sesee s 5-91
Serial Interface Timing Diagram ... 5-92
BKPT Timing for Single BuS CYCIEcccvvrueerrirerrerecerceeirreeeeessseeeensesnne 5-93
BKPT Timing for FOrcing BDM..........c.ccvuririirirnireeisee s snsesssnes 5-93
BKPT/DSCLK LOGIC DIagram.........cceeeeererererereneseeeieseseiesesesesesessssssssssssssnnes 5-93
Command-Sequence-Diagram EXamplecccccovvvvmnnvenierennennneeseneenns 5-96
Functional Model of Instruction Pipelineccccoveieieiecvccieneeeceeeee, 5-109
Instruction Pipeline Timing Diagram ... 5-109
Block Diagram of Independent RESOUICEScccvevmenierrerncereeneneneenen 5-111
Simultaneous Instruction EXECULION.........c.ccoceiiiiiiiieiiiiicne e 5-113
Attributed InStruction TIMEeS........ccccveiriiciieeccer s 5-113
Example 1 — Instruction Streamcccoceveviccenneieccseescesee e 5-116
Example 2 — Branch TaKenccccccerierninicineeeieine e sese s 5-117
MC68330 USER’S MANUAL xv

er

Figure
Number

5-44
5-45
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12

LIST OF FIGURES (Concluded)

Page
Title Number
Example 2 — Branch NoOt Taken..........ccccoveiiiriienineeneneceeeeeeeeeee 5-117
Example 3 — Branch Negative Talilccocoeuvrniinnnnicicnen, 5-118
Test Access Port Block Diagram.........ccnicncscsssissseencssnnns 6-2
Output Latch Cell (O.LatCh)......c..coeeerirerietiecrecenteetcere e 6-5
INPUE PiN Cell ... 6-5
Active-High Output Control Cell (I0.Ctl1) ... 6-6
Active-Low Output Control Cell (I0.CH0)cccoeveiirieeeeeeeeeeeereeereene 6-6
Bidirectional Data Cell (I0.Cell)ccevvrnrreerrrieece e 6-7
General Arrangement for Bidirectional Pins.........cccooviiniienncnccncnneene, 6-7
Bypass REGISTEN ..o s 6-9
Minimum System Configuration Block Diagram..........cccecvveeineienenninnnennee 7-1
Sample Crystal CirCUit.......c.oeivriereerre et 7-2
XFC and VCCSYN Capacitor Connections...........ccccecceerieiinecniieecieenieeeee. 7-2
SRAM INEEITACE ...ttt 7-3
EPROM INtEIACE. ..ottt a et sttt 7-4
Serial INtErACEccoue e 7-4
External Circuitry for 8-Bit Boot ROM ..o 7-7
8-Bit BOOt ROM TimMIiNG......coeeeirieeeeieneeeie e s sn e nnes 7-7
Access Time Computation Diagram.........c..cccevieniiineninnnesicceenene 7-8
Signal Relationships t0 CLKOUT ..o e e 7-9
Signal Width SpecifiCations..........ccuevreriecirirnirieiereie et 7-10
Skew between TWO OULPULS ... e 7-11

MC68330 USER’S MANUAL MOTOROLA

Table
Number

2-1
2-2
2-3
2-4
2-5
3-1
3-2
3-3
3-4
3-5
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19

MOTOROLA

LIST OF TABLES

Page
Title Number

SiIGNAL INAEX.... et e e 2-3
FUNCHON COAES ...ttt 2-4
DSACKX Codes and RESUILScvureeirrerereceeinsireieesessssssssssssssssssssesssssesssssens 2-5
Size Signal ENCOAINGcoeirrrierrreerree ettt 2-6
Signal SUMMATY ... 2-10
Size Signal ENCoding........ccoviiiiininninii e 3-2
Address Space Encoding ... 3-3
DSACKX ENCOTINGviururiiirinierieisssesiesissessessesssssssesssssssstsssssssssssssessssessssessssanes 3-5
DSACKYx, BERR, and HALT Assertion ResultS...........ccoevvveereeiiesieee e 3-34
Reset SOUIrCe SUMMANYccciieieieiicessete sttt s s 3-48
Clock Operating Modes..........ccooeiiininiirt e 4-8
System Frequencies from 32.768-kHz Reference.........cccccceevviviecnicnnneens 4-12
Clock CoNtrol SIgNalScccooerrinirireeeeinieirieieser ettt s es 4-12
Port A pin Assignment Register Function...........cccoooveiiicncinnnncccnne 4-14
Port B pin Assignment REgISIEr.........c.oeciverieiiececceee e 4-15
Show Cycle Control BtS.........ccocvieveeriirerienene e ereneene 4-19
Deriving Software Watchdog Timeout...........ciiinccccnincceees 4-22
BMT ENCOING ..ottt 4-23
PHRQL ENCOAING......coiiiriienierie ettt riese s saase st sesneaseseesaeseessessssssesnassenes 4-23
DD ENCOQING ..ttt st eb et s s st e 4-29
PS ENCOMING. ..ottt 4-29
Instruction Set SUMMArY ..., 5-6
Implicit Reference INStructions...........c.coceeieviiicniiicee e 5-16
Effective Addressing Mode Categoriesccoecvrrrvnrinenrecenieececrennneeenens 5-25
INStruction Set SUMMATYcoiiiirre e 5-36
Condition Code Computations...........ccceveriiinnererenere e 5-41
Data Movement Operations........cccccevriirereiinne e 5-42
Integer Arithmetic Operations...........ccccerceeeiicienincee e 5-44
LOGIC OPEIatiONS.....cccovevieeriirieiriiesteee s sesssne et saees s e e sese e eneseseenenens 5-45
Shift and Rotate Operations............cvieirerrrnine e 5-46
Bit Manipulation Operationsccocevvneeinnnenne e 5-47
Binary-Coded Decimal Operations ... 5-47
Program Control Operations..........c.ccveeviniiiiiiiini s 5-48
System Control Operations............ccccurmrerrieceern e 5-49
CoNItION TESES c.cevererirerieieeee e et 5-50
Standard Usage ENntries ... 5-51
Compressed Table ENtries ...t 5-53
8-Bit Independent Variable EnNtries ... 5-54
Exception Vector ASSIGNMENtS..........ceveririnininiccieieniesne st 5-60
Exception Priority GroUPS..........ccceeeeeirirnienneniieiesiereese s esse e ssessenens 5-63

MC68330 USER’S MANUAL xvii

Table
Number

5-20
5-21
5-22
5-23
5-24
5-25
5-26
6-1
6-2
6-3
7-1

xviii

LIST OF TABLES (Concluded)

Page
Title Number
Tracing Control........couevcieieiiicc e 5-69
BDM S0UrCe SUMMANY.......cccciiiiiiiiiiieiii e 5-87
Polling the BDM Entry SOUICE........ccceciimieriiiiiiirercee e 5-88
CPU Generated Message Encoding.........c.ccccoviminineneinnnnnncnnineeeenne 5-90
Size Field ENCOAINGccirirrciiieei ettt s s 5-94
BDM Command SUMMATYccccvrirreninieieineeeseesessessesesesiesesessssesssesesssseses 5-97
Register Field for RSREG and WSREG.........ccocoruerieiencnnenerereneesneeeens 5-99
Boundary Scan Control Bitsc.coevicennnnnninennncneesenereseseseecse s 6-3
Boundary Scan Bit Definitionscccooeeinnnininnereeee s 6-4
INSIFUCHIONS ...ttt 6-8
Memory Access Times at 16.768 MHz............ccccocrivininencnene e 7-9

MC68330 USER’S MANUAL MOTOROLA

SECTION 1
DEVICE OVERVIEW

The MC68330 is a 32-bit integrated processor unit, combining high-performance data
manipulation capabilities with a variety of circuits typically used to integrate a processor
into the overall computer system. The MC68330 is a member of the M68300 Family of
modular devices featuring fully static, high-speed complementary metal-oxide
semiconductor (HCMOS) technology. Based on the powerful MC68020, the CPU32
central processing module of the MC68330 provides enhanced system performance and
uses the extensive software base of the M68000 Family. Figure 1-1 shows the major
components of the MC68330.

[INTERMODULE BUS > Sikto
SYSTEM CONFIGURATION

{} L AND PROTECTION

CHIP SELECTS

AND WAIT STATES
cu2 L - =]

CORE PROCESSOR EXTERNAL BUS
INTERFACE

IEEE TEST

Figure 1-1. Block Diagram

The MC68330 system integration module (SIM40) provides four chip selects that
enhance system integration for easy external memory or peripheral access. The CPU32
and SIM40 modules are connected on-chip via an intermodule bus (IMB).

The major features of the MC68330 are as follows:

+ Integrated System Functions in a Single Chip
+ 32-Bit M68000 Family Central Processor
— Upward User-Object-Code Compatible with the MC68000 and MC68010

MOTOROLA MC68330 USER’S MANUAL 1-1

— New Instructions for Embedded Control Applications
— Higher Performance Execution
» Four Programmable Chip-Select Signals
+ System Failure Protection:
— Software Watchdog Timer
— Periodic Interrupt Timer
— Spurious Interrupt, Double Bus Fault, and Bus Timeout Monitors
— Automatic Programmable Bus Termination
» Up to 16 Discrete I/O Pins
» Low-Power Operation:
— HCMOS Technology Reduces Power in Normal Operation
— LPSTOP Mode Provides Static State for Lower Standby Drain
» Frequency: 0-25 MHz at 5-V Supply, Software Programmable
+ Package: 132-Pin Plastic Quad Flat Pack (PQFP)

1.1 CENTRAL PROCESSOR UNIT

The central processing unit of the MC68330 is the CPU32, an upward-compatible
M68000 Family member that excels in processing calculation-intensive algorithms and
supporting high-level languages. All MC68010 and most MC68020 enhancements, such
as virtual memory support, loop mode operation, instruction pipeline, and 32-bit
mathematical operations, are supported. Powerful addressing modes provide
compatibility with existing software programs and increase the efficiency of high-level
language compilers. New instructions, such as table lookup and interpolate and low
power stop, support the specific requirements for embedded control applications. Most
instructions can execute in half the number of clocks required by an MC68000, yielding
an overall 1.6 times performance of the same-speed MC68000.

1.2 SYSTEM INTEGRATION MODULE

The SIMA40 includes an external interface and various functions that reduce the need for
external glue logic. The SIM40 contains system configuration and protection, the clock
synthesizer, four chip selects, and the external bus interface (EBI).

1.2.1 System Configuration and Protection

The system configuration and protection function controls system configuration and
provides maximum system safeguards. System protection is provided on the MC68330
by various monitors and timers, including the bus monitor, double bus fault monitor,
spurious interrupt monitor, software watchdog timer, and the periodic interrupt timer.

1-2 MC68330 USER’S MANUAL MOTOROLA

These system functions are integrated on the MC68330 to reduce board size and the
cost incurred with external components.

1.2.2 Clock Synthesizer

The system clock can be generated by an on-chip phase-locked loop (PLL) circuit to run
the device from a 32.768-kHz watch crystal. An external clock can also be used. The
system speed can be changed dynamically with the PLL, providing either high
performance or low power consumption under software control. With its fully static
HCMOS design, it is possible to completely stop the system clock in software while still
preserving the contents of the registers.

1.2.3 Chip Selects

Four independent chip selects can enable external memory and peripheral circuits,
providing all handshaking and timing signals with up to 265-ns access times. Block size
is programmable in 256-byte increments up to the 4-Gbyte address capability. Accesses
can be preselected for either 8- or 16-bit transfers and up to three wait states.

1.2.4 External Bus Interface

Based on the MC68020 bus, the external bus provides 32 address lines and a 16-bit
data bus. The data bus allows dynamic sizing between 8- and 16-bit data accesses.
External bus arbitration is accomplished by a four-line handshaking interface. Strobe

signals provide easy byte-write capability. Transfers can be made in as little as two clock
cycles.

MOTOROLA MC68330 USER’S MANUAL 1-3

1-4

MC68330 USER’S MANUAL

MOTOROLA

SECTION 2
SIGNAL DESCRIPTIONS

This section contains brief descriptions of the MC68330 input and output signals in their
functional groups as shown in Figure 2-1.

2.1 SIGNAL INDEX

The input and output signals for the MC68330 are listed in Table 2-1. The name,
mnemonic, and brief functional description are presented. For more detail on each signal,
refer to the paragraph named for the signal. Guaranteed timing specifications for the
signals listed in Table 2-1 can be found in MC68330/D, MC68330 Technical Summary.

2.2 ADDRESS BUS

The address bus consists of the following two groups. Refer to 3.1.3 Address Bus for
information on the address bus and its relationship to bus operation.

2.2.1 Address Bus (A23-A0)

These three-state outputs (along with A31—A24) provide the address for the current bus
cycle, except in the CPU address space. Refer to 3.4 CPU Space Cycles for more
information on the CPU address space. A23 is the most significant address signal in this

group.

2.2.2 Address Bus (A31-A24)

These pins can be programmed as the most significant eight address bits, port A parallel
I/O, or interrupt acknowledge strobes. These pins can be used for more than one of their
multiplexed functions as long as the external demultiplexing circuit properly resolves
collisions between the different functions.

A31-A24. These pins can function as the most significant eight address bits. A31 is the
most significant address signal in this group.

Port A7—-Port AO. These eight pins can serve as a dedicated parallel I/O port. See 4.2.5.1
Port A for more information on programming these pins.

TACK7-TACK{T. The MC68330 asserts one of these pins to indicate the level of an external
interrupt during an interrupt acknowledge (IACK) cycle. Peripherals can use the IACK
strobes instead of monitoring the address bus and function codes to determine that an

MOTOROLA MC68330 USER’S MANUAL 2-1

IACK cycle is in progress and to obtain the current interrupt level. See 3.4.4 Interrupt
Acknowledge Bus Cycles for more information. Only seven of these eight pins are used
as IACK strobe outputs since there is no TACKO strobe.

A31/PORT A7/IACK7 ~&—>»1
A30/PORT A6/IACKS ~—
A29/PORT AS/TACKS ~a—-1
A28/PORT A4/TACKE ~ac—
A27/PORT A3/TACK3 ~—>»| PORTA
A26/PORT A2/TACK? ~—>|
A25/PORT A1/IACK] ~c—1

A24/PORT A0 ~&—-1

—> |FETCH

—> TPIPE

—> FREEZE

lac— BKPT

A23-A0 € ‘ < TCK
D15—DO<:> TEST [ms

FC2-FC0 < —> TDO

RESET ~—>»
BERR —>|
HAL_T]

AS ~<—— EXTERNAL
DS -—
W INTERFACE

SIZ1 —— SYSTEM CcPUS2
S120 ~&—— INTEGRATION ﬁ CORE
DSACK] ——> MODULE PROCESSOR
"DSACK) ——=1
UWE ~=—|
(WE ~&——

088 <—

CS2~c—] CHIP
__ CSi-<—— SELECT
AVEC/CS0 ~=&—>

B — L > CLKOUT
BG ~—oI > XTAL

BUS cLock
BGACK ——>1 ARBITRATION lc— EXTAL
RMC ~&—— L XFC

TRQ7/PORT B7 ~—>»-1
IRQB/PORT B6 ~a—>
TRQ5/PORT B5 ~e—=1
TRQ4/PORT B4 ~&—>1
RQ3/PORT B3 ~&—>»
IRQ2/PORT B2 ~&—>
TRQ1/PORT Bl ~c—>»}
MODCK/PORT B0 ~ag—=

PORTB

Figure 2-1. Functional Signal Groups

2-2 MC68330 USER’S MANUAL MOTOROLA

Table 2-1. Signal Index

Signal Name Mnemonic Function

Address Bus A23-A0 Lower 24 bits of address bus

Address Bus/ Port A7-A0/ TACK7- A31-A24 Upper eight bits of address bus, parallel I/O port, or interrupt

IACK1 acknowledge lines

Data Bus D15-D0 16-bit data bus used to transfer byte or word data

Function Codes FC2-FCo Identifies the processor state and the address space of the
current bus cycle

Chip Select /AVEC CS3-CS0 Enables peripherals at programmed addresses or provides
automatic vector request (CS0) during an interrupt
acknowledge cycle

Bus Request BR Indicates that an external device requires bus mastership

Bus Grant BG Indicates that current bus cycle is complete and the
MC68330 has relinquished the bus

Bus Grant Acknowledge BGACK Indicates that an external device has assumed bus
mastership

Data and Size Acknowledge DSACK{1, Provides asynchronous data transfers and dynamic bus

DSACKO sizing

Byte Write Enable UWE, LWE Provides an enable signal for byte writes to external devices,
when using a 16-bit port

Read-Modify-Write Cycle RMC Identifies the bus cycle as part of an indivisible read-modify-
write operation

Address Strobe AS Indicates that a valid address is on the address bus

Data Strobe DS During a read cycle, DS indicates that an external device
should place valid data on the data bus. During a write cycle,
DS indicates that valid data is on the data bus.

Size SiZ1, SizZo Indicates the number of bytes remaining to be transferred for
this cycle

Read/Write RW Indicates the direction of data transfer on the bus

Interrupt Request Level/ TRQ7 -TRQT | Provides an interrupt priority level to the CPU32 or provides

Port B7 — B1 parallel 11O

Reset RESET System reset

Halt HALT Suspend external bus activity

Bus Error BERR Indicates an erroneous bus operation is being attempted

System Clock Out CLKOUT Internal system clock output

Crystal Oscillator EXTAL, XTAL | Connections for an external crystal to the internal oscillator
circuit

External Filter Capacitor XFC Connection pin for an external capacitor to filter the circuit of
the phase-locked loop

Clock Mode Select/Port BO MODCK Selects the source of the internal system clock or furnishes a
parallel I/0O bit

Instruction Fetch TFETCH Indicates when the CPU32 is performing an instruction word
prefetch and when the instruction pipeline has been flushed

Instruction Pipe IPIPE Tracks movement of words through the instruction pipeline

Breakpoint BKPT Signals a hardware breakpoint to the CPU32

Freeze FREEZE Indicates that the CPU32 has entered background debug
mode

Test Clock TCK Provides a clock for IEEE 1149.1 test logic

Test Mode Select T™MS Controls test mode operations

Test Data In TDI Shifts in test instructions and test data

Test Data Out TDO Shifts out test instructions and test data

Synchronizer Power VCeSYN Quiet power supply to VCO; also used to control synthesizer
mode after reset.

System Power Supply and Return Ve, GND Power supply and return to the MC68330

MOTOROLA

MC68330 USER’S MANUAL

2-3

2.3 DATA BUS (D15-D0)

These three-state bidirectional signals provide the general-purpose data path between the
MC68330 and all other devices. Although the data path is a maximum of 16 bits wide, it
can be dynamically sized to support 8- or 16-bit transfers. D15 is the most significant bit of
the data bus. Refer to 3.1.5 Data Bus for information on the data bus and its relationship
to bus operation.

2.4 FUNCTION CODES (FC2-FC0)

These three-state outputs identify the processor state and the address space of the
current bus cycle, as listed in Table 2-2. Refer to 3.1.2 Function Codes and 3.4 CPU
Space Cycles for more information.

NOTE

Since FC3 is not implemented, the programmer must set
FC3 and FCM3 to zero in the chip-select base address
and address mask registers.

Table 2-2. Function Codes

Function Code Bits Address Spaces
3 2 1 0
0 0 0 0 Reserved (Motorola)
0 0 0 1 User Data Space
0 0 1 0 User Program Space
0 0 1 1 Reserved (User)
0 1 0 0 Reserved (Motorola)
0 1 0 1 Supervisor Data Space
0 1 1 0 Supervisor Program Space
0 1 1 1 Supervisor CPU Space

2.5 CHIP SELECTS (CS3-CS0)

These pins are chip-select output signals. The CS0 pin can also be programmed as an
autovector input.

CS3-CS0. The chip-select output signals enable peripherals at programmed addresses.
CS0 is the chip select for a ROM containing the user's reset vector and initialization
program; therefore, it functions as the boot chip select immediately after reset. Refer to
4.2.4 Chip-Select Submodule for more information on chip selects.

AVEC. This signal requests an automatic vector during an interrupt acknowledge cycle.
Refer to 3.4.4.2 Autovector Interrupt Acknowledge Cycle and 4.3.2.2 Autovector
Register for more information on the autovector function.

2-4 MC68330 USER’S MANUAL MOTOROLA

2.6 INTERRUPT REQUEST LEVEL (IRQ7 - IRQ1)

These pins can be programmed to be either prioritized interrupt request lines or port B
parallel 1/0.

IRQ7 - IRQ1. IRQ7, the highest priority, is nonmaskable. IRQ6-IRQ1 are internally
maskable interrupts. Refer to Section 5 CPU32 for more information on interrupt request
lines.

Port B7 — BO. These pins can be used as port B parallel /0. Refer to 4.2.5.2 Port B
registers for more information on parallel I/O signals.

2.7 BUS CONTROL SIGNALS

These signals control the bus transfer operations of the MC68330.

2.7.1 Data and Size Acknowledge (DSACK1, DSACKO)

These two active-low input signals allow asynchronous data transfers and dynamic data
bus sizing between the MC68330 and external devices as listed in Table 2-3. Refer to
3.1.7 Bus Cycle Termination Signals for more information on these signals and their
relationship to dynamic bus sizing.

Table 2-3. DSACKx Codes and Results

DSACK1 | DSACKO Result

1 1 Insert Wait States in Current Bus Cycle
(Negated) | (Negated)

1 0 Complete Cycle — Data Bus Port Size Is 8 Bits
(Negated) | (Asserted)

0 1 Complete Cycle ~Data Bus Port Size Is 16 Bits
(Asserted) | (Negated)

0 0 Reserved —Defaults to 16 Bit Port Size

(Asserted) | (Asserted)

2.7.2 Autovector (AVEC)
See 2.5 Chip Selects (CS3-CS0)

2.7.3 Address Strobe (AS)

This output signal is driven by the bus master to indicate a valid address on the address
bus. The function code, size, and read/write signals are also valid when AS is asserted.
Refer to 3.1.4 Address Strobe for information about the relationship of AS to bus
operation.

2.7.4 Data Strobe (DS)

During a read cycle, this output signal is driven by the bus master to indicate that an
external device should place valid data on the data bus. During a write cycle, the data

MOTOROLA MC68330 USER’S MANUAL 25

strobe indicates that valid data is on the data bus. Refer to 3.1.6 Data Strobe for
information about the relationship of DS to bus operation.

2.7.5 Transfer Size (SIZ1, SIZ0)

These output signals are driven by the bus master to indicate the number of operand
bytes remaining to be transferred in the current bus cycle (see Table 2-4). Refer to 3.2.1
Dynamic Bus Sizing for more information.

Table 2-4. Size Signal

Encoding
Slz1 SIZ0 | Transfer Size
0 1 Byte
1 0 Word
1 1 3 Byte
0 0 Long Word

2.7.6 Read/Write (R/W)

This active-high output signal is driven by the bus master to indicate the direction of data
transfer on the bus. A logic one indicates a read from a slave device; a logic zero indicates
a write to a slave device. Refer to 3.1.1 Bus Control Signals for more information.

2.8 BUS ARBITRATION SIGNALS

The following signals are the four bus arbitration control signals used to determine the bus
master.

2.8.1 Bus Request (BR)

This active-low input signal indicates that an external device needs to become the bus
master. This input is typically wire-ORed. Refer to 3.6 Bus Arbitration for more
information.

2.8.2 Bus Grant (BG)

Assertion of this active-low output signal indicates that the bus master has relinquished
the bus. Refer to 3.6.2 Bus Grant for more information.

2.8.3 Bus Grant Acknowledge (BGACK)

Assertion of this active-low input indicates that an external device has become the bus
master. Refer to 3.6.3 Bus Grant Acknowledge for more information.

2.8.4 Read-Modify-Write Cycle (RMC)

This output signal identifies the bus cycle as part of an indivisible read-modify-write
operation; it remains asserted during all bus cycles of the read-modify-write operation to

2-6 MC68330 USER’S MANUAL MOTOROLA

indicate that bus ownership cannot be transferred. Refer to 3.3.3 Read-Modify-Write
Cycle for additional information.

2.8.5 Byte Write Enable (UWE, LWE)

On a write cycle to a 16-bit port, these active-low output signals indicate when the upper
or lower eight bits of the data bus contain valid data. See 3.1.7 Byte Write Enable for a
description of byte write enable operation.

2.9 EXCEPTION CONTROL SIGNALS

These signals are used by the integrated processor unit to recover from an exception.

2.9.1 Reset (RESET)

This active-low, open-drain, bidirectional signal is used to initiate a system reset. An
external reset signal (as well as a reset from the SIM) resets the MC68330 as well as all
external devices. A reset signal from the CPU32 (asserted as part of the RESET
instruction) resets external devices only — the internal state of the CPU32 is not affected,
other on-chip modules are reset, but the configuration is not altered. When asserted by the
MC68330, this signal is guaranteed to be asserted for a minimum of 512 clock cycles.
Refer to 3.7 Reset Operation for a description of bus reset operation and Section 5
CPU32 for information about the reset exception.

2.9.2 Halt (HALT)

This active-low, open-drain, bidirectional signal is asserted to suspend external bus
activity, to request a retry when used with BERR, or to perform a single-step operation. As
an output, HALT indicates a double bus fault by the CPU32. Refer to 3.5 Bus Exception
Control Cycles for a description of the effects of HALT on bus operation.

2.9.3 Bus Error (BERR)

This active-low input signal indicates that an invalid bus operation is being attempted or,
when used with HALT, that the processor should retry the current cycle. Refer to 3.5 Bus
Exception Control Cycles for a description of the effects of BERR on bus operation.

2.10 CLOCK SIGNALS

These signals are used by the MC68330 for controlling or generating the system clocks.
Refer to 4.2.3 Clock Synthesizer for more information on the various clock signals.

2.10.1 System Clock (CLKOUT)

This output signal is the system clock and is used as the bus timing reference by external
devices. CLKOUT can be slowed in low-power stop mode. See 4.3.3 Clock Synthesizer
Control Register (SYNCR) for more information.

MOTOROLA MC68330 USER’S MANUAL 2-7

2.10.2 Crystal Oscillator (EXTAL, XTAL)

These two pins are the connections for an external crystal to the internal oscillator circuit.
If an external oscillator is used, it should be connected to EXTAL, with XTAL left open.
See 4.2.3 Clock Synthesizer for more information.

2.10.3 External Filter Capacitor (XFC)

This pin is used to add an external capacitor to the filter circuit of the phase-locked loop.
The capacitor should be connected between XFC and VCCSYN-

2.10.4 Clock Mode Select (MODCK)

This pin selects the source of the internal system clock during reset. After reset, it can be
programmed to be port B parallel I/0.

MODCK. The state of this active-high input signal during reset selects the source of the
internal system clock. If MODCK is high during reset, the internal voltage-controlled
oscillator (VCO) furnishes the system clock. If MODCK is low during reset, an external
frequency appearing at the EXTAL pin furnishes the system clock.

Port BO. This pin can be used as port B parallel I/O. Refer to 4.2.5.2 PORT B for more
information on parallel I/O signals.

2.11 INSTRUMENTATION AND EMULATION SIGNALS
These signals are used for test or software debugging.

2.11.1 Instruction Fetch (IFETCH)

This active-low output signal indicates when the CPU32 is performing an instruction word
prefetch and when the instruction pipeline has been flushed. Refer to Section 5 CPU32
for information about IFETCH.

2.11.2 Instruction Pipe (IPIPE)

This active-low output signal is used to track movement of words through the instruction
pipeline. Refer to Section 5 CPU32 for information about IPIPE.

2.11.3 Breakpoint (BKPT)

This active-low input signal is used to signal a hardware breakpoint to the CPU32. Refer to
Section 5 CPU32 for information about BKPT.

2.11.4 Freeze (FREEZE)

Assertion of this active-high output signal indicates the CPU32 has acknowledged a
breakpoint and has initiated background mode operation. See Section 5 CPU32 for more
information about FREEZE and background mode.

2-8 MC68330 USER’S MANUAL MOTOROLA

2.12 TEST SIGNALS

The following signals are used with the onboard test logic defined by the IEEE 1149.1
standard. See Section 6 IEEE 1149.1 Test Access Port for more information on the use
of these signals.

2.12.1 Test Clock (TCK)
This input provides a clock for onboard test logic defined by the IEEE 1149.1 standard.

2.12.2 Test Mode Select (TMS)

This input controls test mode operations for onboard test logic defined by the IEEE 1149.1
standard.

2.12.3 Test Data In (TDI)

This input is used for serial test instructions and test data for onboard test logic defined by
the IEEE 1149.1 standard.

2.12.4 Test Data Out (TDO)

This output is used for serial test instructions and test data for onboard test logic defined
by the IEEE 1149.1 standard.

2.13 SYNTHESIZER POWER (VCCSYN)

This pin supplies a quiet power source to the VCO to provide greater frequency stability
and is also used to select clock modes (see Section 4 System Integration Module).

2.14 SYSTEM POWER AND GROUND (Vcc AND GND)

These pins provide system power and return to the MC68330. Multiple pins are provided
for adequate current capability. All power supply pins must have adequate bypass
capacitance for high-frequency noise suppression.

2.15 SIGNAL SUMMARY

Table 2-5 presents a summary of all the signals discussed in the preceding paragraphs.

MOTOROLA MC68330 USER’S MANUAL 2-9

Table 2-5. Signal Summary

Signal Name Mnemonic Input/ Active | Three-
Output | State | State
Address Bus A23-A0 Out - Yes
Address Bus/ Port A7-A0/ A31-A24 Out/i/O/ | —/-/Low Yes
IACK7-IACK1 Out
Data Bus D15-D0 1/0 — Yes
Function Codes FC3-FCO Out - Yes
Chip Select/ AVEC CS3-CS0 Out/ Low/ No
In Low
Bus Request BR In Low —
Bus Grant BG Out Low No
Bus Grant Acknowledge BGACK In Low -
Data and Size Acknowledge DSACKT, DSACKO In Low -
Read-Modify-Write Cycle RMC Qut Low Yes
Address Strobe AS Qut Low Yes
Data Strobe DS QOut Low Yes
Byte Write Enable UWE, LTWE Qut Low Yes
Size S1Z1, SI1Z20 Qut - Yes
Read/Write RW Out High/Low | Yes
Interrupt Request Level/Port B7 — B1 1RQ7 - IRQT In/l/O Low/— —
Reset RESET 110 Low No
Halt HALT 110 Low No
Bus Error BERR In Low -
System Clock Out CLKOUT Out - No
Crystal Oscillator EXTAL In — —
Crystal Oscillator XTAL Out - -
External Filter Capacitor XFC In — —
Clock Mode Select/Port B0 MODCK In/l/O —/— —
Instruction Fetch IFETCH Out Low Yes
Instruction Pipe IPIPE Out Low No
Breakpoint BKPT In Low —
Freeze FREEZE Out High No
Test Clock TCK In — —
Test Mode Select T™MS In High —
Test Data In TDI In High -
Test Data Out TDO Out High —
Synchronizer Power VCCSYN — - -
System Power Supply and Return Vce, GND - - =
MC68330 USER’S MANUAL MOTOROLA

SECTION 3
BUS OPERATION

This section provides a functional description of the bus, the signals that control it, and the
bus cycles provided for data transfer operations. It also describes the error and halt
conditions, bus arbitration, and reset operation. Operation of the external bus is the same
whether the MC68330 or an external device is the bus master; the names and
descriptions of bus cycles are from the viewpoint of the bus master. For exact timing
specifications, refer to MC68330/D, MC68330 Technical Summatry.

The MC68330 architecture supports byte, word, and long-word operands allowing access
to 8- and 16-bit data ports through the use of asynchronous cycles controlled by the size
outputs (SI1Z1, SIZ0) and data size acknowledge inputs (DSACK1, DSACKO). The
MC68330 requires word and long-word operands to be located in memory on word
boundaries. The only type of transfer that can be performed to an odd address is a single-
byte transfer, referred to as an odd-byte transfer. For an 8-bit port, multiple bus cycles
may be required for an operand transfer due to either misalignment or a word or long-word
operand.

3.1 BUS TRANSFER SIGNALS

The bus transfers information between the MC68330 and external memory or a peripheral
device. External devices can accept or provide 8 bits or 16 bits in parallel and must follow
the handshake protocol described in this section. The maximum number of bits accepted
or provided during a bus transfer is defined as the port width. The MC68330 contains an
address bus that specifies the address for the transfer and a data bus that transfers the
data. Control signals indicate the beginning and type of the cycle as well as the address
space and size of the transfer. The selected device then controls the length of the cycle
with the signal(s) used to terminate the cycle. Strobe signals, one for the address bus and
another for the data bus, indicate the validity of the address and provide timing information
for the data. Both asynchronous and synchronous operation is possible for any port width.
In asynchronous operation, the bus and control input signals are internally synchronized to
the MC68330 clock, introducing a delay. This delay is the time required for the MC68330
to sample an input signal, synchronize the input to the internal clocks, and determine
whether it is high or low. In synchronous mode, the bus and control input signals must be
timed to setup and hold times. Since no synchronization is needed, bus cycles can be
completed in three clock cycles in this mode. Additionally, using the fast-termination option
of the chip-select signals, two-clock operation is possible.

MOTOROLA MC68330 USER’S MANUAL

Furthermore, for all inputs, the MC68330 latches the level of the input during a sample
window around the falling edge of the clock signal. This window is illustrated in Figure 3-1,
where tgy and th are the input setup and hold times, respectively. To ensure that an input
signal is recognized on a specific falling edge of the clock, that input must be stable during
the sample window. If an input makes a transition during the window time period, the level
recognized by the MC68330 is not predictable; however, the MC68330 always resolves
the latched level to either a logic high or low before using it. In addition to meeting input
setup and hold times for deterministic operation, all input signals must obey the protocols
described in this section.

tsu

th

CLKOUT

o1 JXRRKKIKIXXXXXXX] XXXXXXRXKRKKIXXX

—
SAMPLE WINDOW

Figure 3-1. Input Sample Window

3.1.1 Bus Control Signals

The MC68330 initiates a bus cycle by driving the address, size, function code and
read/write outputs. At the beginning of a bus cycle, SiZ1 and SI1Z0 are driven with the
function code signals. SIZ1 and SIZ0 indicate the number of bytes remaining to be
transferred during an operand cycle (consisting of one or more bus cycles). Table 3-1 lists
the encoding of SIZ1 and SIZ0. These signals are valid while address strobe (AS) is
asserted. The read/write (R/W) signal determines the direction of the transfer during a bus
cycle. Driven at the beginning of a bus cycle, R/W is valid while AS is asserted. R/W only
transitions when a write cycle is preceded by a read cycle or vice versa. The signal may
remain low for consecutive write cycles. The read-modify-write cycle (RMC) signal is
asserted at the beginning of the first bus cycle of a read-modify-write operation and
remains asserted until completion of the final bus cycle of the operation.

Table 3-1. Size Signal Encoding

| siz1 Sizo Transfer Size |
| 0 1 Byte

| 1 0 Word

| 1 1 3 Byte

| 0 I 0 Long-word

3-2 MC68330 USER’S MANUAL MOTOROLA

3.1.2 Function Codes

The function code signals (FC2-FCO0) are outputs that indicate one of eight address
spaces to which the address applies. Seven of these spaces are designated as either user
or supervisor, and program or data spaces. One other address space is designated as
CPU space to allow the CPU32 to acquire specific control information not normally
associated with read or write bus cycles. The function code signals are valid while AS is
asserted.

Function codes (see Table 3-2) can be considered as extensions of the 32-bit address that
can provide up to eight different 4-Gbyte address spaces. Function codes are
automatically generated by the CPU32 to select address spaces for data and program at
both user and supervisor privilege levels, and a CPU address space for processor
functions. User programs access only their own program and data areas to increase
protection of system integrity and can be restricted from accessing other information. The
S-bit in the CPU32 status register is set for supervisor accesses and cleared for user
accesses to provide differentiation. Refer to 3.4 CPU Space Cycles for more information.

Table 3-2. Address Space Encoding

Function Code Bits Address Spaces

Reserved (Motorola)

User Data Space

User Program Space

Reserved (User)

Reserved (Motorola)

Supervisor Data Space

Supervisor Program Space

2 1
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

~lol=]ol=]o]|=]o|e

Supervisor CPU Space

3.1.3 Address Bus (A31-A0)

The address bus signals are outputs that define the address of the byte (or the most
significant byte) to be transferred during a bus cycle. The MC68330 places the address on
the bus at the beginning of a bus cycle. The address is valid while AS is asserted.

3.1.4 Address Strobe (AS)

AS is an output timing signal that indicates the validity of an address on the address bus
and of many control signals. AS is asserted approximately one-half clock cycle after the
beginning of a bus cycle.

MOTOROLA MC68330 USER’S MANUAL

3-3

3.1.5 Data Bus (D15-D0)

The data bus is a bidirectional, nonmultiplexed, parallel bus that contains the data being
transferred to or from the MC68330. A read or write operation may transfer 8 or 16 bits of
data (one or two bytes) in one bus cycle. During a read cycle, the data is latched by the
MC68330 on the last falling edge of the clock for that bus cycle. For a write cycle, all 16
bits of the data bus are driven, regardless of the port width or operand size. The MC68330
places the data on the data bus approximately one-half clock cycle after AS is asserted in
a write cycle.

3.1.6 Data Strobe (DS)

The data strobe is an output timing signal that applies to the data bus. For a read cycle,
the MC68330 asserts DS and AS simultaneously to signal the external device to place
data on the bus. For a write cycle, DS signals to the external device that the data to be
written is valid on the bus. The MC68330 asserts DS approximately one clock cycle after
the assertion of AS during a write cycle.

3.1.7 Byte Write Enable (UWE, LWE)

The upper write enable (UWE) indicates that the upper eight bits of the data bus contains
valid data during a write cycle. The lower write enable (LWE) indicates that the lower eight
bits of the data bus contains valid ‘data during a write cycle. The equations of the byte
write enables are as follows:

WE = R/W + AS + A0

LWE = RW + AS + (A0 x SIZ0)

C|

These signals have the same timing as AS, and are only valid when writing to a 16-bit port.

3.1.8 Bus Cycle Termination Signals

The following signals can terminate a bus cycle.

3.1.8.1 DATA TRANSFER AND SIZE ACKNOWLEDGE SIGNALS (DSACKT AND
DSACKO). During bus cycles, external devices assert DSACK1 and/or DSACKO as part of
the bus protocol. During a read cycle, this signals the MC68330 to terminate the bus cycle
and to latch the data. During a write cycle, this indicates that the external device has
successfully stored the data and that the cycle may terminate. These signals also indicate
to the MC68330 the size of the port for the bus cycle just completed (see Table 3-3). Refer
to 3.3.1 Read Cycle for timing relationships of DSACK1 and DSACKO.

Additionally, the system integration module (SIM40) can be programmed to internally
generate DSACK1 and DSACKO for external accesses, eliminating logic required to
generate these signals. The SIM40 can alternatively be programmed to generate a fast
termination, providing a two-cycle external access. Refer to 3.2.6 Fast-Termination
Cycles for additional information on these cycles.

3-4 MC68330 USER’S MANUAL MOTOROLA

3.1.8.2 BUS ERROR (BERR). This signal is also a bus cycle termination indicator and can
be used in the absence of DSACKXx to indicate a bus error condition. BERR can also be
asserted in conjunction with DSACKXx to indicate a bus error condition, provided it meets
the appropriate timing described in this section and in MC68330/D, MC68330 Technical
Summary. Additionally, BERR and HALT can be asserted together to indicate a retry
termination. Refer to 3.5 Bus Exception Control Cycles for additional information on the
use of these signals.

The internal bus monitor can be used to generate the BERR signal for internal and
internal-to-external transfers in all the following descriptions. If the bus cycles of an
external bus master are to be monitored, external BERR generation must be provided
since the internal BERR monitor has no information about transfers initiated by an external
bus master.

3.1.8.3 AUTOVECTOR (AVEC). This signal can be used to terminate interrupt
acknowledge cycles, indicating that the MC68330 should internally generate a vector
(autovector) number to locate an interrupt handler routine. AVEC can be generated either
externally or internally by the SIM40 (refer to Section 4 System Integration Module for
additional information). AVEC is ignored during all other bus cycles.

3.2 DATA TRANSFER MECHANISM

The MC68330 supports byte, word, and long-word operands, allowing access to 8- and
16-bit data ports through the use of asynchronous cycles controlled by DSACKT and
DSACKO. The MC68330 also supports byte, word, and long-word operands, allowing
access to 8- and 16-bit data ports through the use of synchronous cycles controlled by the
fast-termination capability of the SIM40.

3.2.1 Dynamic Bus Sizing

The MC68330 dynamically interprets the port size of the addressed device during each
bus cycle, allowing operand transfers to or from 8- and 16-bit ports. During an operand
transfer cycle, the slave device signals its port size (byte or word) and indicates
completion of the bus cycle to the MC68330 through the use of the DSACKX inputs. Refer
to Table 3-3 for DSACKx encodings.

Table 3-3. DSACKx Encodings

DSACKT | DSACKO Result

1 1 Insert Wait States in Current Bus Cycle
(Negated) (Negated)

1 0 Complete Cycle — Data Bus Port Size Is 8 Bits
(Negated) (Asserted)

0 1 Complete Cycle — Data Bus Port Size is 16 Bits
(Asserted) (Negated)

0 0 Reserved — Defaults to 16-Bit Port Size
(Asserted) (Asserted)

MOTOROLA MC68330 USER’S MANUAL

For example, if the MC68330 is executing an instruction that reads a long-word operand
from a 16-bit port, the MC68330 latches the 16 bits of valid data and runs another bus
cycle to obtain the other 16 bits. The operation from an 8-bit port is similar, but requires
four read cycles. The addressed device uses DSACKXx to indicate the port width. For
instance, a 16-bit device always returns DSACKXx for a 16-bit port (regardless of whether
the bus cycle is a byte or word operation).

Dynamic bus sizing requires that the portion of the data bus used for a transfer to or from
a particular port size be fixed. A 16-bit port must reside on data bus bits 15-0, and an 8-bit
port must reside on data bus bits 15-8. This requirement minimizes the number of bus
cycles needed to transfer data to 8- and 16-bit ports and ensures that the MC68330
correctly transfers valid data.

The UWE/LWE signals are only valid for a 16-bit port width. Since an 8-bit port must reside
on data bus bits 15-8, the UWE/LWE signals are not required. AS or CS should be used for
an 8-bit port.

The MC68330 always attempts to transfer the maximum amount of data on all bus cycles;
for a word operation, it always assumes that the port is 16 bits wide when beginning the
bus cycle. The bytes of operands are designated as shown in Figure 3-2. The most
significant byte of a long-word operand is OPQ, and OP3 is the least significant byte. The
two bytes of a word-length operand are OP0 (most significant) and OP1. The single byte
of a byte-length operand is OPO. These designations are used in the figures and
descriptions that follow.

Figure 3-2 shows the required organization of data ports on the MC68330 bus for both 8-
and 16-bit devices. The four bytes shown in Figure 3-2 are connected through the internal
data bus and data multiplexer to the external data bus. The data multiplexer establishes
the necessary connections for different combinations of address and data sizes. The
multiplexer takes the two bytes of the 16-bit bus and routes them to their required
positions. The positioning of bytes is determined by the size (SIZ1 and SIZ0) and address
(AO) outputs. The SIZ1 and SIZ0 outputs indicate the number of bytes to be transferred
during the current bus cycle, as listed in Table 3-1. The number of bytes transferred during
a write or read bus cycle is equal to or less than the size indicated by the SIZ1 and SIZ0
outputs, depending on port width. For example, during the first bus cycle of a long-word
transfer to a word port, the size outputs indicate that four bytes are to be transferred
although only two bytes are moved on that bus cycle.

The address line AO also affects the operation of the data multiplexer. During an operand
transfer, A31—-A1 indicate the word base address of that portion of the operand to be
accessed, and A0 indicates the byte offset from the base (i.e., either odd or even byte).
Figure 3-2 lists the bytes required on the data bus for read cycles. The entries shown as
OPn are portions of the requested operand that are read or written during that bus cycle
and are defined by SiZ1, SIZ0, and A0 for the bus cycle. The transfer cases marked
misaligned are not generated by the MC68330.

3-6 MC68330 USER’S MANUAL MOTOROLA

OPERAND | OPO OP1 OP2 OP3
31 OP0 OP1 OoP2
23 OPO OP1
15 OPO
; 7 0
Case Transfer Case . Data Bus
SIZ1 SIZo A0 DSACK1 DSACKO D15 D8 D7 DO
(a) BytetoByte 0 1 X 1 0 OPO (OP0)
(b) Byte to Word (Even) 0 1 0 0 X OPO (OPO)
() Byte to Word (Odd) 0 1 1 0 X (OPO) OP0
(d) Word to Byte (Aligned) 1 0 0 1 0 OP0 (OP1)
() Word to Byte (Misaligned)* 1 0 1 1 0 OP0 (OPO)
() Word to Word (Aligned) 1 0 0 0 X OP0 OP1
(@) Word to Word (Misaligned)* 1 0 1 0 X (OPO) OPO
(h) 3 Byte to Byte (Aligned)* 1 1 0 1 0 OPO (OP1)
(i) 3 Byte to Byte (Misaligned)* 1 1 1 1 0 OP0 (OPO)
[0} 3 Byte to Word (Aligned)* 1 1 0 0 X OP0 OP1
(k} 3Byte to Word (Misaligned)* 1 1 1 0 X (OPO) OPO
() Long Word to Byte (Aligned) 0 0 0 1 0 OP0 (OP1)
(m) Long Word to Byte (Misaligned)* 0 0 1 1 0 OP0 (OPO)
(n) Long Word to Word (Aligned) 0 0 0 0 X OP0 OP1
(o) Long Word to Word (Misaligned)* 0 0 1 0 X (OPO) OPO

NOTES:
1. Operands in parentheses are ignored by the MC68330 during read cycles.
2. Misaligned and 3 byte transfer cases, identified by an asterisk, are not supported by the MC68330.
3. A 3-byte to byte transfer does occur as the second byte transfer of a long-word to byte port transfer.

Figure 3-2. MC68330 Interface to Various Port Sizes

3.2.2 Misaligned Operands

In this architecture, the basic operand size is 16 bits. Operand misalignment refers to
whether an operand is aligned on a word boundary or overlaps the word boundary,
determined by address line A0. When A0 is low, the address is even and is a word and
byte boundary. When AOQ is high, the address is odd and is a byte boundary only. A byte
operand is properly aligned at any address; a word or long-word operand is misaligned at
an odd address.

At most, each bus cycle can transfer a word of data aligned on a word boundary. If the
MC68330 transfers a long-word operand over a 16-bit port, the most significant operand
word is transferred on the first bus cycle, and the least significant operand word is
transferred on a following bus cycle.

The CPU32 restricts all operands (both data and instructions) to be aligned. That is, word
and long-word operands must be located on a word or long-word boundary, respectively.
The only type of transfer that can be performed to an odd address is a single-byte transfer,

MOTOROLA MC68330 USER’S MANUAL

3-7

referred to as an odd-byte transfer. If a misaligned access is attempted, the CPU32
generates an address error exception, and enters exception processing. Refer to Section
5 CPU32 for more information on exception processing.

3.2.3 Operand Transfer Cases
The following cases are examples of the allowable alignments of operands to ports.
3.2.3.1 BYTE OPERAND TO 8-BIT PORT, ODD OR EVEN (A0 = X). The MC68330

drives the address bus with the desired address and the size pins to indicate a single-byte
operand.

BYTEOPERAND [OP0 |

7 0

DATABUS DIs D8p7 DO szt SiZo A0 DSACKi DSACKO
CYCLE1 [OP0_ | (0P0)] 0 1 X 1 0

For a read operation, the slave responds by placing data on bits 15-8 of the data bus,
asserting DSACKO and negating DSACK1 to indicate an 8-bit port. The MC68330 then
reads the operand byte from bits 15-8 and ignores bits 7-0.

For a write operation, the MC68330 drives the single-byte operand on both bytes of the
data bus because it does not know the port size until the DSACKXx signals are read. The
slave device reads the byte operand from bits 15-8 and places the operand in the
specified location. The slave then asserts DSACKO to terminate the bus cycle.

3.2.3.2 BYTE OPERAND TO 16-BIT PORT, EVEN (A0 = 0). The MC68330 drives the
address bus with the desired address and the size pins to indicate a single-byte operand.

BYTEOPERAND [OPO |

7 0

DATABUS DIs D8D7 DO SIZi SIZ0 A0 DSACKI DSACKO
CYCLE1 [0P0]| (0P0)] 0 1 0 0 X

For a read operation, the slave responds by placing data on bits 15-8 of the data bus and
asserting DSACK1 to indicate a 16-bit port. The MC68330 then reads the operand byte
from bits 15-8 and ignores bits 7-0.

For a write operation, the MC68330 asserts UWE and drives the single-byte operand on
both bytes of the data bus because it does not know the port size until the DSACKXx signals
are read. The slave device reads the operand from bits 15-8 of the data bus and uses the

3-8 MC68330 USER’S MANUAL MOTOROLA

address to place the operand in the specified location. The slave then asserts DSACK1 to
terminate the bus cycle.

3.2.3.3 BYTE OPERAND TO 16-BIT PORT, ODD (A0 = 1). The MC68330 drives the
address bus with the desired address and the size pins to indicate a single-byte operand.

BYTE OPERAND [0P0_|
7 0
DATABUS DI5 D8 D7 DO SIZi SiZ0 A0 DSACKi DSACKO
CYCLEY [(OP0) | OP0] 0 1 1 0 X

For a read operation, the slave responds by placing data on bits 7-0 of the data bus and
asserting DSACK]1 to indicate a 16-bit port. The MC68330 then reads the operand byte
from bits 7-0 and ignores bits 15-8.

For a write operation, the MC68330 asserts LWE and drives the single-byte operand on
both bytes of the data bus because it does not know the port size until the DSACKx signals
are read. The slave device reads the operand from bits 7—0 of the data bus and uses the
address to place the operand in the specified location. The slave then asserts DSACK1 to
terminate the bus cycle.

3.2.3.4 WORD OPERAND TO 8-BIT PORT, ALIGNED. The MC68330 drives the address
bus with the desired address and the size pins to indicate a word operand.

WORD OPERAND [OP0 | _OP1]
15 ¢ 87 0
DATABUS DI5 D8D7 DO SIZi SIZ0 A0 DSACKi DSACKO
CYCLE 1 OP0 [OP1) 1 0 0 1 0
CYCLE 2 OP1 (OP1) 0 1 1 1 0

For a read operation, the slave responds by placing the most significant byte of the
operand on bits 15-8 of the data bus and asserting DSACKO to indicate an 8-bit port. The
MC68330 reads the most significant byte of the operand from bits 15-8 and ignores bits 7-
0. The MC68330 then decrements the transfer size counter, increments the address, and
reads the least significant byte of the operand from bits 15-8 of the data bus.

For a write operation, the MC68330 drives the word operand on bits 15-0 of the data bus.
The slave device then reads the most significant byte of the operand from bits 15-8 of the
data bus and asserts DSACKO to indicate that it received the data, but is an 8-bit port. The
MC68330 then decrements the transfer size counter, increments the address, and writes
the least significant byte of the operand to bits 158 of the data bus.

MOTOROLA MC68330 USER’S MANUAL

3-9

3.2.3.5 WORD OPERAND TO 16-BIT PORT, ALIGNED. The MC68330 drives the
address bus with the desired address and the size pins to indicate a word operand.

WORD OPERAND [OPO | OP1 |
15 1 7 e
DATABUS DI5 D8D7 DO Szt SIZ0 A0 DSACK1 DSACKO
CYCLE1 [op0] OP1] 1 0 0 0 X

For a read operation, the slave responds by placing the data on bits 15-0 of the data bus
and asserting DSACK1 to indicate a 16-bit port. When DSACK1 is asserted, the MC68330
reads the data on the data bus and terminates the cycle.

For a write operation, the MC68330 asserts UWE and LWE, and drives the word operand
on bits 15-0 of the data bus. The slave device then reads the entire operand from bits 15-0
of the data bus and asserts DSACK1 to terminate the bus cycle.

3.2.3.6 LONG-WORD OPERAND TO 8-BIT PORT, ALIGNED. The MC68330 drives the
address bus with the desired address and the size pins to indicate a long-word operand.

LONG-WORD OPERAND[OP0 | _OP1 | OP2 | OP3 |
31 VF 3 15 7 0
DATA BUS D5 D8D7 DO SIZt SiZ0 A0 DSACKI DSACKO
CYCLE1 [OPO (©OP1) 0 0 0 1 0
CYCLE2 [OPi (OP1) 1 1 1 1 0
CYCLE3 [op2 (OP3) 1 0 0 1 0
CYCLE4 | OP3 (OP3) 0 1 1 1 0

For a read operation, shown in Figure 3-3, the slave responds by placing the most
significant byte of the operand on bits 15-8 of the data bus and asserting DSACKO to
indicate an 8-bit port. The MC68330 reads the most significant byte of the operand (byte
0) from bits 15-8 and ignores bits 7-0. The MC68330 then decrements the transfer size
counter, increments the address, initiates a new cycle, and reads byte 1 of the operand
from bits 15-8 of the data bus. The MC68330 repeats the process of decrementing the
transfer size counter, incrementing the address, initiating a new cycle, and reading a byte
to transfer the remaining two bytes.

For a write operation, shown in Figure 3-4, the MC68330 drives the two most significant
bytes of the operand on bits 15-0 of the data bus. The slave device then reads only the
most significant byte of the operand (byte 0) from bits 15-8 of the data bus and asserts
DSACKO to indicate reception and an 8-bit port. The MC68330 then decrements the
transfer size counter, increments the address, and writes byte 1 of the operand to bits 15-
8 of the data bus. The MC68330 continues to decrement the transfer size counter,

3-10 MC68330 USER’S MANUAL MOTOROLA

increment the address, and write a byte to transfer the remaining two bytes to the slave
device.

§2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4

JEpEREREREREREREREEERENE)

CLKOUT

A31-A0

FG2-FCO

))'\XXPQ

o /NN
= - Y\ e\ I e\ B B\
sizo |

4BYTES 3 BYTES 2BYTES 1BYTE B
szt | au

e VN Ve N Ve N Ve N B Vo

DSAGKT | /

D15-D8 _oT_o_ oP1 0oP2 " 0P3

D7-D0
D 4 e e e

LONG-WORD OPERAND READ FROM 8-BIT BUS

Figure 3-3. Long-Word Operand Read Timing from 8-Bit Port

MOTOROLA MC68330 USER’S MANUAL

wor L LU LU L L L Ly
oo X
X
RAW "\
ss T\ /L /L /L

0 N/ L/ N/ N/

siZ0 _\

4BYTES 3 BYTES ZBYTES 1BYTE |
sizi 7| T
o6 1/ N / N\ /N\ /N a
bsicki | /
D15-D8 ({ OPO

OP1)_.(OP2 < OP3 L

>_
D7-D0 /_-‘_,(om) >_ (OP1) >_.< (('|)P3) — (cl>P3) 1

WRITE > WRITE WRITE WRITE

LONG-WORD OPERAND WRITE TO 8-BIT BUS

Figure 3-4. Long-Word Write Operand Timing to 8-Bit Port

3.2.3.7 Long-Word Operand to 16-Bit Port, Aligned. Figure 3-5 shows both long-word
and word read and write timing to a 16-bit port.

LONG-WORDOPERAND| OP0 | OP1 [oP2 T oP3 |
31 ¢ 23 ¢ 15 7 0
DATABUS D15 D8 D7 Do siz1 sizo A0 DSACK1 DSACKo
CYCLE 1 OPO OP1 0 0 0 0 X
CYCLE2 OP2 OP3 1 0 0 0 X

3-12 MC68330 USER’S MANUAL MOTOROLA

S0 |s2 |s4 |so |s2 |s4 |so |s2 |s4 |so [s2 |s4 [so [s2 [s4 |so |s2 |s4
wor MUYy yyyy
A31-A0 X
FC2-FCO K

w \ /

ss N/ AL AL

/N LML

s [\ /] \ /I\ / \L_/ _/ L/

sizo | B
2BYTES 2BYTES 2BYTES 2BYTES

A 4BYTES 4BYTES

siz1

DSACKO |

DSACK] — —

D15-D8 OPO OP2) { OPo { op2 { opo

| |
D7-D0 OP OP3 OP1 { opt K ops {__opt |-
1 T
l&—— LONG-WORD READ ——»l«c_ WORD READ _3»lec— LONG-WORD WRITE TO .-—_><—-w¥av|?§ ?o —>

FROM 16-BIT BUS FROM 16-BIT BU3 16-BIT BUS 16-BIT BUS

Figure 3-5. Long-Word and Word Read and Write Timing — 16-Bit Port

The MC68330 drives the address bus with the desired address and drives the size pins to
indicate a long-word operand. For a read operation, the slave responds by placing the two
most significant bytes of the operand on bits 15-0 of the data bus and asserting DSACK1
to indicate a 16-bit port. The MC68330 reads the two most significant bytes of the operand
(bytes 0 and 1) from bits 15-0. The MC68330 then decrements the transfer size counter,
increments the address, initiates a new cycle, and reads bytes 2 and 3 of the operand
from bits 15-0 of the data bus.

For a write operation, the MC68330 asserts UWE and LWE, and drives the two most
significant bytes of the operand on bits 15-0 of the data bus. The slave device then reads
the two most significant bytes of the operand (bytes 0 and 1) from bits 15-0 of the data bus
and asserts DSACKT to indicate reception and a 16-bit port. The MC68330 then

MOTOROLA MC68330 USER’S MANUAL

3-13

decrements the transfer size counter by 2, increments the address by 2, asserts UWE and
LWE, and writes bytes 2 and 3 of the operand to bits 15-0 of the data bus.

3.2.4 Bus Operation

The MC68330 bus is asynchronous, allowing external devices connected to the bus to
operate at clock frequencies different from the clock for the MC68330. Bus operation uses
the handshake lines (AS, DS, DSACK1, DSACKO, BERR, and HALT) to control data
transfers. AS signals a valid address on the address bus, and DS is used as a condition for
valid data on a write cycle. Decoding the size outputs and lower address line AO provides
strobes that select the active portion of the data bus. The slave device (memory or
peripheral) responds by placing the requested data on the correct portion of the data bus
for a read cycle or by latching the data on a write cycle; the slave asserts the
DSACK1/DSACKO combination that corresponds to the port size to terminate the cycle.
Alternatively, the SIM40 can be programmed to assert the DSACK1/DSACKO combination
internally and respond for the slave. If no slave responds or the access is invalid, external
control logic may assert BERR, or BERR with HALT to abort or retry the bus cycle,
respectively. DSACKx can be asserted before the data from a slave device is valid on a
read cycle. The length of time that DSACKx may precede data must not exceed a specified
value in any asynchronous system to ensure that valid data is latched into the MC68330.
(See MC68330/D, MC68330 Technical Summary for timing parameters.) Note that no
maximum time is specified from the assertion of AS to the assertion of DSACKx. Although
the MC68330 can transfer data in a minimum of three clock cycles when the cycle is
terminated with DSACKXx, the MC68330 inserts wait cycles in clock-period increments until
DSACKX is recognized. BERR and/or HALT can be asserted after DSACKXx is asserted.
BERR and/or HALT must be asserted within the time specified after DSACKXx is asserted in
any asynchronous system. if this maximum delay time is violated, the MC68330 may
exhibit erratic behavior.

3.2.5 Synchronous Operation with DSACKXx

terminated with DSACKx can also operate synchronously in that signals are interpreted
relative to clock edges. The devices that use these cycles must synchronize the response
to the MC68330 clock (CLKOUT) to be synchronous. Since the devices terminate bus
cycles with DSACKX, the dynamic bus sizing capabilities of the MC68330 are available.
The minimum cycle time for these cycles is also three clocks. To support systems that use
the system clock to generate DSACKXx and other asynchronous inputs, the asynchronous
input setup time and the asynchronous input hold time are given. If the setup and hold
times are met for the assertion or negation of a signal, such as DSACKx, the MC68330 is
guaranteed to recognize that signal level on that specific falling edge of the system clock.
If the assertion of DSACKX is recognized on a particular falling edge of the clock, valid data
is latched into the MC68330 (for a read cycle) on the next falling clock edge if the data
meets the data setup time. In this case, the parameter for asynchronous operation can be

3-14 MC68330 USER’S MANUAL MOTOROLA

ignored. The timing parameters are described in MC68330/D, MC68330 Technical
Summary.

If a system asserts DSACKXx for the required window around the falling edge of S2 and
obeys the proper bus protocol by maintaining DSACKx (and/or BERR/HALT) until and
throughout the clock edge that negates AS (with the appropriate asynchronous input hold
time), no wait states are inserted. The bus cycle runs at its maximum speed for bus cycles
terminated with DSACKX (three clocks per cycle). When BERR (or BERR and HALT) is
asserted after DSACKx, BERR (and HALT) must meet the appropriate setup time prior to
the falling clock edge one clock cycle after DSACKx is recognized. This setup time is
critical, and the MC68330 may exhibit erratic behavior if it is violated. When operating
synchronously, the data-in setup and hold times for synchronous cycles may be used
instead of the timing requirements for data relative to DS.

3.2.6 Fast-Termination Cycles

With an external device that has a fast access time, the chip-select circuit fast-termination
enable (FTE) can provide a two-clock external bus transfer. Since the chip-select circuits
are driven from the system clock, the bus cycle termination is inherently synchronized with
the system clock. When fast-termination is selected, the DD bits of the corresponding
address mask register are overridden. Refer to Section 4 System Integration Module for
more information on chip selects. Fast-termination can only be used with zero wait states.
To use the fast-termination option, an external device should be fast enough to have data
ready, within the specified setup time, by the falling edge of S4. Figure 3-6 shows the
DSACKXx timing for a read with two wait states, followed by a fast-termination read and
write. When using the fast-termination option, DS is asserted only in a read cycle, not in a
write cycle.

Refer to Section 4 System Integration Module for more information on chip selects.

MOTOROLA MC68330 USER’S MANUAL

3-15

S0 S1 S2 S3 SW SW S4 S5 SO S1 S4 S5 SO S1 84 S5 SO

wor LU L LT LY 1
-
—

&l
Iz
&l

/ -

UWE,LWE

3

q¢ 1qcs

DSACKx /

§q | |5

{
D15-DO <
[<<—— TWO WAIT STATES IN READ FAST- FAST-—>~
TERMINATION TERMINATION
READ * WRITE *

* DSACKXx only internally asserted for fast-termination cycles

Figure 3-6. Fast Termination Timing

3.3 DATA TRANSFER CYCLES

The transfer of data between the MC68330 and other devices involves the following
signals:

* Address Bus A31-A0
+ Data Bus D15-D0
+ Control Signals

The address and data buses are both parallel, nonmultiplexed buses. The bus master
moves data on the bus by issuing control signals, and the bus uses a handshake protocol
to ensure correct movement of the data. In all bus cycles, the bus master is responsible
for deskewing all signals it issues at both the start and end of the cycle. In addition, the
bus master is responsible for deskewing the acknowledge and data signals from the slave
devices. The following paragraphs define read, write, and read-modify-write cycle
operations. Each bus cycle is defined as a succession of states that apply to the bus
operation. These states are different from the MC68330 states described for the CPU32.
The clock cycles used in the descriptions and timing diagrams of data transfer cycles are
independent of the clock frequency. Bus operations are described in terms of external bus
states.

3-16 MC68330 USER’S MANUAL MOTOROLA

3.3.1 Read Cycle

During a read cycle, the MC68330 receives data from a memory or peripheral device. If
the instruction specifies a long-word or word operation, the MC68330 attempts to read two
bytes at once. For a byte operation, the MC68330 reads one byte. The section of the data
bus from which each byte is read depends on the operand size, address signal A0, and
the port size. Refer to 3.2.1 Dynamic Bus Sizing and 3.2.2 Misaligned Operands for
more information. Figure 3-7 is a flowchart of a word read cycle.

BUS MASTER SLAVE

ADDRESS DEVICE

1. SET R/W TO READ

2. DRIVE ADDRESS ON A31-A0

3. DRIVE FUNCTION CODE ON FC2-FCO
4. DRIVE SIZE PINS FOR OPERAND SIZE

5. ASSERT AS AND DS > PRESENT DATA
1 DECODE ADDRESS
2 PLACE DATAON D15-D0

ACQUIRE DATA 3 DRIVE DSACKx SIGNALS
1 LATCHDATA
2 NEGATE AS AND DS - TERMINATE CYCLE
J 1 REMOVE DATA FROM D15-D0
2 NEGATE DSACKX
I START NEXT GYCLE

Figure 3-7. Word Read Cycle Flowchart

State 0 — The read cycle starts in state 0 (S0). During S0, the MC68330 places a valid
address on A31-A0 and valid function codes on FC2-FCO. The function codes
select the address space for the cycle. The MC68330 drives R/W high for a read

cycle. SIZ1 and SIZ0 become valid, indicating the number of bytes requested for
transfer.

State 1 — One-half clock later, in state 1 (S1), the MC68330 asserts AS indicating a
valid address on the address bus. The MC68330 also asserts DS during S1. The
selected device uses R/W, SIZ1 or SIZ0, A0, and DS to place its information on the
data bus. One or both of the bytes (D15-D8, and D7-D0) are selected by SIZ1,
S1Z0, and A0. Concurrently, the selected device asserts DSACKx.

State 2 — As long as at least one of the DSACKXx signals is recognized on the falling
edge of S2 (meeting the asynchronous input setup time requirement), data is
latched on the falling edge of S4, and the cycle terminates.

State 3 — If DSACKX is not recognized by the start of state 3 (S3), the MC68330
inserts wait states instead of proceeding to states 4 and 5. To ensure that wait

MOTOROLA MC68330 USER’S MANUAL

3-17

states are inserted, both DSACK1 and DSACKO must remain negated throughout
the asynchronous input setup and hold times around the end of S2. If wait states
are added, the MC68330 continues to sample DSACKXx on the falling edges of the
clock until one is recognized.

State 4 — At the falling edge of state 4 (S4), the MC68330 latches the incoming data
and samples DSACKXx to get the port size.

State 5 — The MC68330 negates AS and DS during state 5 (S5). It holds the address
valid during S5 to provide address hold time for memory systems. RW, SIZ1 and
S1Z0, and FC2-FCO also remain valid throughout S5. The external device keeps its
data and DSACKx signals asserted until it detects the negation of AS or DS
(whichever it detects first). The device must remove its data and negate DSACKx
within approximately one clock period after sensing the negation of AS or DS.

detected for the next bus cycle.

3.3.2 Write Cycle

During a write cycle, the MC68330 transfers data to memory or a peripheral device. Figure
3-8 is a flowchart of a write cycle operation for a word transfer.

BUS MASTER SLAVE
ADDRESS DEVICE
1. SET RW TO WRITE
2. DRIVE ADDRESS ON A31-A0
3. DRIVE FUNCTION CODE ON FC2-FCO
4. DRIVE SIZE PINS FOR OPERAND SIZE
5. ASSERT AS AND UWE/LWE ACCEPT DATA
6. PLACE DATA ON D15-D0
7. ASSERT DS 1 DECODE ADDRESS
2 LATCH DATA FROM D15-D0
TERMINATE OUTPUT TRANSFER 3 ASSERT DSACKx SIGNALS

. NEGATE DS, AS, AND UWE/LWE
2 REMOVE DATA FROM D15-D0 TERMINATE CYCLE

1 NEGATE DSACKx

START NEXT CYCLE ‘]

Figure 3-8. Write Cycle Flowchart

State 0 — The write cycle starts in S0. During S0, the MC68330 places a valid address
on A31-A0 and valid function codes on FC2-FCO. The function codes select the
address space for the cycle. The MC68330 drives R/W low for a write cycle. SIZ1
and S1Z0 become valid, indicating the number of bytes to be transferred.

3-18 MC68330 USER’S MANUAL MOTOROLA

State 1 — One-half clock later, in S1, the MC68330 asserts AS, indicating a valid
address on the address bus. During this state UWE and/or LWE is asserted
simultaneously with AS.

State 2 — During S2, the MC68330 places the data to be written onto D15-D0, and
samples DSACKXx at the end of S2.

State 3 — The MC68330 asserts DS during S3, indicating that data is stable on the
data bus. As long as at least one of the DSACKXx signals is recognized by the end of
S2 (meeting the asynchronous input setup time requirement), the cycle terminates
one clock later. If DSACKX is not recognized by the start of S3, the MC68330 inserts
wait states instead of proceeding to S4 and S5. To ensure that wait states are
inserted, both DSACK1 and DSACKO must remain negated throughout the
asynchronous input setup and hold times around the end of S2. If wait states are
added, the MC68330 continues to sample DSACKXx on the falling edges of the clock
until one is recognized. The selected device uses R/W, SIZ1, SIZ0, and A0 to latch
data from the appropriate byte(s) of D15-D8, and D7-D0. SIZ1, SIZ0, and AO select
the bytes of the data bus. If it has not already done so, the device asserts DSACKx
to signal that it has successfully stored the data.

State 4 — The MC68330 issues no new control signals during S4.

State 5 — The MC68330 negates AS and DS during S5. It holds the address and data
valid during S5 to provide address hold time for memory systems. R/W, SIZ1, SIZ0,
and FC2-FCO also remain valid throughout S5. The external device must keep
DSACKXx asserted until it detects the negation of AS or DS (whichever it detects
first). The device must negate DSACKx within approximately one clock period after
sensing the negation of AS or DS. DSACKXx signals that remain asserted beyond
this limit may be prematurely detected for the next bus cycle.

3.3.3 Read-Modify-Write Cycle

The read-modify-write cycle performs a read, conditionally modifies the data in the
arithmetic logic unit, and may write the data out to memory. In the MC68330, this
operation is indivisible, providing semaphore capabilities for multiprocessor systems.
During the entire read-modify-write sequence, the MC68330 asserts RMC to indicate that
an indivisible operation is occurring. The MC68330 does not issue a bus grant (BG) signal
in response to a bus request (BR) signal during this operation. Figure 3-9 is an example of
a functional timing diagram of a read-modify-write instruction specified in terms of clock
periods.

MOTOROLA MC68330 USER’S MANUAL

3-19

S N I A U I
A31-A30 :X
Feoke0 X
szr-szo X

R |/ \

e\ o
mE T\ / \ T\
TWEVE \ /

o5 | / /] \
N VAR A / \

I D—

CYCLE

Figure 3-9. Read-Modify-Write Cycle Timing

State 0 — The MC68330 asserts RMC in SO to identify a read-modify-write cycle. The
MC68330 places a valid address on A31-A0 and valid function codes on FC2-FCO.
The function codes select the address space for the operation. SIZ1 and SIZ0
become valid in SO to indicate the operand size. The MC68330 drives R/W high for
the read cycle.

State 1 — One-half clock later, in S1, the MC68330 asserts AS indicating a valid
address on the address bus. The MC68330 also asserts DS during S1.

State 2 — The selected device uses RW, SIZ1, SIZ0, A0, and DS to place information
on the data bus. Either or both of the bytes (D15-D8 and D7-D0) are selected by
SlZ1, SIZ0, and AQ. Concurrently, the selected device may assert DSACKXx.

State 3 — As long as at least one of the DSACKXx signals is recognized by the end of
S2 (meeting the asynchronous input setup time requirement), data is latched on the
next falling edge of the clock, and the cycle terminates. If DSACKXx is not recognized
by the start of S3, the MC68330 inserts wait states instead of proceeding to S4 and

3-20 MC68330 USER’S MANUAL MOTOROLA

S5. To ensure that wait states are inserted, both DSACK1 and DSACKO must
remain negated throughout the asynchronous input setup and hold times around
the end of S2. If wait states are added, the MC68330 continues to sample DSACKXx
on the falling edges of the clock until one is recognized.

State 4 — At the end of S4, the MC68330 latches the incoming data.

State 5 — The MC68330 negates AS and DS during S5. If more than one read cycle is
required to read in the operand(s), S0-S5 are repeated for each read cycle. When
finished reading, the MC68330 holds the address, R/W, and FC2-FCO valid in
preparation for the write portion of the cycle. The external device keeps its data and
DSACKXx signals asserted until it detects the negation of AS or DS (whichever it
detects first). The device must remove the data and negate DSACKx within
approximately one clock period after sensing the negation of AS or DS. DSACKx
signals that remain asserted beyond this limit may be prematurely detected for the
next portion of the operation.

Idle States — The MC68330 does not assert any new control signals during the idle
states, but it may internally begin the modify portion of the cycle at this time. S0-S5
are omitted if no write cycle is required. If a write cycle is required, R/W remains in
the read mode until SO to prevent bus conflicts with the preceding read portion of
the cycle; the data bus is not driven until S2.

State 0 — The MC68330 drives R/W low for a write cycle. Depending on the write
operation to be performed, the address lines may change during SO0.

State 1 — In S1, the MC68330 asserts AS, indicating a valid address on the address
bus. During this state, UWE and/or LWE is asserted simultaneously with AS.

State 2 - During S2, the MC68330 places the data to be written onto D15-DO.

State 3 — The MC68330 asserts DS during S3, indicating stable data on the data bus.
As long as at least one of the DSACKXx signals is recognized by the end of S2
(meeting the asynchronous input setup time requirement), the cycle terminates one
clock later. If DSACKXx is not recognized by the start of S3, the MC68330 inserts
wait states instead of proceeding to S4 and S5. To ensure that wait states are
inserted, both DSACKT and DSACKO must remain negated throughout the
asynchronous input setup and hold times around the end of S2. If wait states are
added, the MC68330 continues to sample DSACKx on the falling edges of the clock
until one is recognized. The selected device uses R/W, DS, SIZ1, SIZ0, and A0 to
latch data from the appropriate section(s) of D15-D8 and D7-D0. SIZ1, S1Z0, and
A0 select the data bus sections. If it has not already done so, the device asserts
DSACKXx when it has successfully stored the data.

State 4 — The MC68330 issues no new control signals during S4.

State 5 — The MC68330 negates AS and DS during S5. It holds the address and data
valid during S5 to provide address hold time for memory systems. RW and FC2-
FCO also remain valid throughout S5. If more than one write cycle is required,

MOTOROLA MC68330 USER’S MANUAL 3-21

states SO-S5 are repeated for each write cycle. The external device keeps DSACKx
asserted until it detects the negation of AS or DS (whichever it detects first). The
device must remove its data and negate DSACKx within approximately one clock
period after sensing the negation of AS or DS.

3.4 CPU SPACE CYCLES

FC2-FCO select user and supervisor program and data areas. The area selected by
function code FC2-FC0=$7 is classified as the CPU space. The breakpoint acknowledge,
LPSTOP broadcast, module base address register access, and interrupt acknowledge
cycles described in the following paragraphs use CPU space. The CPU space type, which
is encoded on A19-A16 during a CPU space operation, indicates the function that the
MC68330 is performing. On the MC68330, four of the encodings are implemented as
shown in Figure 3-10. All unused values are reserved by Motorola for additional CPU
space types.

CPU SPACE CYCLES
FUNCTION ADDRESS BUS
CODE
BREAKPOINT el o 1o :
ackNowiepee L1 1] [000o000000000foooofoooo00000o0ofekeTe[r 0]
2 0 38 19 16 0
ST&S‘ng‘%‘;‘g’EﬁST 111] [ooooooo0o00000fo0o1ift111111111111110]
2 0 3 Le 1s| 0
MO;?S&,%?@S%@?SRSESS {111] [oooo0oo0o0o0o0o0o000f00 it 111111100000000]
INTERRUPT - 1 218 :
AcKNowlepge Lt 1] [t 1ttt A4 a1 111111111 1]LEVEL[1]
(S
CPU SPACE
TYPE FIELD

Figure 3-10. CPU Space Address Encoding

3.4.1 Breakpoint Acknowledge Cycle

The breakpoint acknowledge cycle allows external hardware to insert an instruction
directly into the instruction pipeline as the program executes. The breakpoint acknowledge
cycle is generated by the execution of a breakpoint instruction (BKPT) or the assertion of
the breakpoint pin. The T-bit state (shown in Figure 3-10) differentiates a software
breakpoint cycle (T=0) from a hardware breakpoint cycle (T=1).

When a BKPT is executed (software breakpoint), the MC68330 performs a word read from
CPU space, type 0, at an address corresponding to the breakpoint number (bits [2-0] of

3-22 MC68330 USER’S MANUAL MOTOROLA

the BKPT opcode) on A4-A2, and the T-bit (A1) is cleared. If this bus cycle is terminated
with BERR (i.e., no instruction word is available), the MC68330 then performs illegal
instruction exception processing. If the bus cycle is terminated by DSACKX, the MC68330
uses the data on D15-DO0 (for 16-bit ports) or two reads from D15-D8 (for 8-bit ports) to
replace the BKPT instruction in the internal instruction pipeline and then begins execution
of that instruction.

When the CPU32 acknowledges breakpoint pin assertion (hardware breakpoint) with
background mode disabled, the CPU32 performs a word read from CPU space, type 0, at
an address corresponding to all ones on A4-A2 (BKPT#7) and the T-bit (A1) set. If this bus
cycle is terminated by BERR, the MC68330 performs hardware breakpoint exception
processing. If this bus cycle is terminated by DSACKx, the MC68330 ignores data on the
data bus and continues execution of the next instruction.

NOTE

The BKPT pin is sampled on the same clock phase as
data and is latched with data as it enters the CPU32
pipeline. If BKPT is asserted for only one bus cycle and a
pipeline flush occurs before BKPT is detected by the
CPU32, BKPT is ignored. To ensure detection of BKPT
by the CPU32, BKPT can be asserted until a breakpoint
acknowledge cycle is recognized.

The breakpoint operation flowchart is shown in Figure 3-11. Figures 3-12 and 3-13 show
the timing diagrams for the breakpoint acknowledge cycle with instruction opcodes
supplied on the cycle and with an exception signaled, respectively.

MOTOROLA MC68330 USER’S MANUAL 3-23

3-24

BREAKPOINT OPERATION FLOW

PROCESSOR

ACKNOWLEDGE BREAKPOINT

IF BREAKPOINT INSTRUCTION EXECUTED:

. SETRMW TO READ

2. SET FUNCTION CODE TO CPU SPACE

3. PLACE CPU SPACE TYPE 0 ON A19-A16
4. PLACE BREAKPOINT NUMBER ON A2-A4
5
6
7

-

. CLEAR T-BIT (A1)
. SET SIZE TO WORD
. ASSERT AS AND DS

IF BKPT PIN ASSERTED.

. SETRW TO READ

2. SETFUNCTION CODE TO CPU SPACE
3. PLAGE CPU SPACE TYPE 0 ON A19-A16
4. PLACE ALL ONE'S ON A4-A2

5. SET T-BIT (A-1) TO ONE
6
7

—_

. SET SIZE TO WORD
. ASSERT AS AND DS

EXTERNAL DEVICE

IF BREAKPOINT INSTRUCTION EXECUTED"
1. PLACE REPLACEMENT OPCODE ON DATA BUS

IF BEAKPOINT INSTRUCTION EXECUTED AND
DSACKx IS ASSERTED-
1. LATCHDATA
2. NEGATE AS AND DS
3. GOTO (A)

IF BKPT PIN ASSERTED AND DSACKx IS ASSERTED"
1. NEGATE AS AND DS
2. GOTO (A)

IFBERRASSERTED:
1. NEGATE AS AND DS
2 GOTO(B)

(A ®)

2. ASSERT DSACKx
OR-
1. ASSERT BERR TO INITIATE EXCEPTION PROCESSING

IF BKPT PIN ASSERTED:
1. ASSERT DSACKx

-OR-

1. ASSERT BERR TO INITIATE EXCEPTION PROCESSING

\

i

IF BREAKPOINT INSTRUCTION EXECUTED
1. PLACE LATCHED DATA IN INSTRUCTION PIPELINE
2. CONTINUE PROCESSING

IF BKPT PIN ASSERTED:
1. CONTINUE PROCESSING

1. NEGATE DSACKx or BERR

IF BREAKPOINT INSTRUCTION EXECUTED
1. INITIATE ILLEGAL INSTRUCTION PROCESSING

IF BKPT PIN ASSERTED:
1. INITIATE HARDWARE BREAKPOINT PROCESSING

Figure 3-11. Breakpoint Operation Flowchart

MC68330 USER’S MANUAL

MOTOROLA

S0 St S2 S3 S84 S5 SO ST S2 S3 S4 S5 SO St 82 S3 S84 S5 S0

A N
A31-A20 :X "v:'X ’:_\ . —
mo-ns X :___X BREAKPOINT ENCODING &kﬁ\ s
Ad-A1 :X U BREAKPOINTNUMBER/‘[.&E[':X k:_X
-
A15-A5, AO —\ k h r
A N
FC2-FCO :X ::X ::X U SPAGE 2:)(
N N —
- X a .
N N '\
siz1 x :j(v—/ ‘
3 N \

A A

&l
&l

E
|

E]
L

\r \r

o
m
el
I\

DSACKx \ N 7 \ /k‘ \ / A
D7-D0 /_J\"'\,) — }-ﬂ { N—
D15-D8 —{ > { >-f\ { N

N N
'-l‘ 7 N v
N

N FETCHED
INSTRU(;,_TION
BREAKPOINT EXECUTION
BREAKPOINT READ ACKNOWLEDGE
OCCURS INSTRUCTION WORD FETCH

Figure 3-12. Breakpoint Acknowledge Cycle Timing (Opcode Returned)

;

T

MOTOROLA MC68330 USER’S MANUAL 3-25

S0 S1 S2 S3 S4 S5 SO St S2 S3 sS4 S5 S0 St S2 S3 S4 S5 SO

i
Il
|

N— A} N

o Y o . -
—

A
A19-At6 x BREAKPOINT ENCODING Qc‘m)\

\N—
Ad-A1 x I BREAKPOINT NUMBER/T- BIT X x

P
P

4
>
>

=
L
3
LQ‘A\l

A
FC2-FC0 N N x N x CPU SPACE
k‘
sz X ! .

—
Szt :X U :‘ J v __

D7-D0

D15-D8

= |

HALT j Y
k
BKPT S \ /
N EXCEPTION
BREAKPOINT STACKING
B“&ééﬁﬁ'm ~<————READ ACKNOWLEDGE
BUS ERROR ASSERTED

Figure 3-13. Breakpoint Acknowledge Cycle Timing (Exception Signaled)

N
DSACKx \ N / \ [
mal
[S—
[\
NS
N

3.4.2 LPSTOP Broadcast Cycle

The LPSTOP broadcast cycle is generated by the CPU32 executing the LPSTOP
instruction. The external bus interface must get a copy of the interrupt mask level from the

3-26 MC68330 USER’S MANUAL MOTOROLA

CPU32, so the CPU32 performs a CPU space type 3 write with the mask level encoded on
the data bus, as shown in the following figure. The CPU space type 3 cycle waits for the
bus to be available, and is shown externally to indicate to external devices that the
MC68330 is going into low-power stop mode. If an external device requires additional time
to prepare for entry into low-power stop mode, entry can be delayed by assertingf HALT.
The SIM40 provides internal DSACKXx response to this cycle. For more information on how
the SIM40 responds to low-power stop mode, see Section 4 System Integration
Module.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
LT - -T-T-T-T-T=-T=-T=-T-T=-T-TP® W [®]
RESET

0o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12-10 — Interrupt Mask Level
The interrupt mask level is encoded on bits 2 — 0 of the data bus during an
LPSTOP broadcast.

3.4.3 Module Base Address Register Access

All internal module registers, including the SIM40, occupy a single 4K-byte block that is
relocatable along 4K-byte boundaries. The location is fixed by writing the desired base
address of the SIM40 block to the module base address register using the MOVES
instruction. The module base address register is only accessible in CPU space at address
$0003FF00. The SFC or DFC register must indicate CPU space (FC2:0=$7), using the
MOVEC instruction, before accessing MBAR. Refer to Section 4 System Integration
Module for additional information on the module base address register.

3.4.4 Interrupt Acknowledge Bus Cycles

The CPU32 makes an interrupt pending in three cases. The first case occurs when a
peripheral device signals the CPU32 (with the TRQ7-TRQT signals) that the device requires
service and the internally synchronized value on these signals indicates a higher priority
than the interrupt mask in the status register. The second case occurs when a transition
has occurred in the case of a level 7 interrupt. A recognized level 7 interrupt must be
removed for one clock cycle before a second level 7 can be recognized. The third case
occurs if, upon returning from servicing a level 7 interrupt, the request level stays at 7 and
the processor mask level changes from 7 to a lower level, a second level 7 is recognized.
The CPU32 takes an interrupt exception for a pending interrupt within one instruction
boundary (after processing any other pending exception with a higher priority). The
following paragraphs describe the various kinds of interrupt acknowledge bus cycles that
can be executed as part of interrupt exception processing.

3.4.4.1 INTERRUPT ACKNOWLEDGE CYCLE — TERMINATED NORMALLY. When the
CPU32 processes an interrupt exception, it performs an interrupt acknowledge cycle to
obtain the number of the vector that contains the starting location of the interrupt service
routine. Some interrupting devices have programmable vector registers that contain the
interrupt vectors for the routines they use. The following paragraphs describe the interrupt

MOTOROLA MC68330 USER’S MANUAL 3-27

acknowledge cycle for these devices. Other interrupting conditions or devices cannot
supply a vector number and use the autovector cycle described in 3.4.4.2 Autovector
Interrupt Acknowledge Cycle.

The interrupt acknowledge cycle is a read cycle. It differs from the read cycle described in
3.3.1 Read Cycle in that it accesses the CPU address space. Specifically, the differences
are as follows:

1. FC2-FCO are set to $7 (FC2/FC1/FC0O=111) for CPU address space.

2. A3, A2, and A1 are set to the interrupt request level, and the IACKx strobe
corresponding to the current interrupt level is asserted. (Either the function codes
and address signals or the TACKx strobes can be monitored to determine that an
interrupt acknowledge cycle is in progress and the current interrupt level.)

3. The CPU32 space type field (A19-A16) is set to $F (interrupt acknowledge).
4. Other address signals (A31-A20, A15-A4, and A0) are set to one.

5. The SIZ0, SIZ1, and R/W signals are driven to indicate a single-byte read cycle.
The responding device places the vector number on the least significant byte of its
data port (for an 8-bit port, the vector number must be on D15-D8; for a 16-bit port,
the vector must be on D7-D0) during the interrupt acknowledge cycle. Beyond this,
the cycle is terminated normally with DSACKXx.

Figure 3-14 is a flowchart of the interrupt acknowledge cycle; Figure 3-15 shows the timing
for an interrupt acknowledge cycle terminated with DSACKXx.

3-28 MC68330 USER’S MANUAL MOTOROLA

INTERRUPTING DEVICE

MC68330

REQUEST INTERRUPT

GRANT INTERRUPT

—_

. SYNCHRONIZE TRQi-IRQ7

2. COMPARE IRQ1—IRQ7 TO MASK LEVEL AND

w

[3RS

WAIT FOR INSTRUCTION TO COMPLETE

. PLACE INTERRUPT LEVEL ON A3-A1,

TYPE FIELD (A19-A16) = $F

. SETRW TOREAD
. SETFC2-FCO TO 111
. DRIVE SIZE PINS TO INDICATE A ONE-BYTE

TRANSFER
PROVIDE VECTOR NUMBER f- ASSERTAS ANDDS
1. PLACE VECTOR NUMBER ON LEAST
SIGNIFICANT BYTE OF DATA BUS
2. ASSERT DSACKx (OR AVEC IF NO VECTOR
NUMBER) ACQUIRE VECTOR NUMBER
1. LATCH VECTOR NUMBER
RELEASE 2 NEGATE DS AND AS

1. NEGATE DSACKx

START NEXT CYCLE

MOTOROLA

Figure 3-14. Interrupt Acknowledge Cycle Flowchart

MC68330 USER’S MANUAL

3-29

S2 S4 0-2CLOCKS |st 82 S4 S0 S2

I N I I I

CLKOUT

J:l
P
g

S0
nsi-ps X
e ‘V——
aa X INTERRUPT LEVEL R
_JX N—i
0
— k\p—- st
Foa-Fco |X CPU SPACE
—1
— kr
sI20 X
1BYTE
sizi X
— k‘
— A
RW / N _
[/ \ /N
= -
0s \ / ___/ \
N
DSACKx / \ / \ VAR \
VECTOR FROM 16-BIT PORT
M o S e
VECTOR FROM 8-BIT PORT
D15-D8 < >"\« /_
A
RO-RQ |\ VANV 4
TACK7-TACK] A 7N
< READ > le——— WRITE
cYCLE T ARBITRATION * STACK

< IACKCYCLE ————— >

* Internal Arbitration may take between 0 to 2 clock cycles.

Figure 3-15. Interrupt Acknowledge Cycle Timing

3.4.4.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting
device cannot supply a vector number, it requests an automatically generated vector
(autovector). Instead of placing a vector number on the data bus and asserting DSACKX,
the device asserts AVEC to terminate the cycle. The DSACKXx signals may not be asserted
during an interrupt acknowledge cycle terminated by AVEC. The vector number supplied in
an autovector operation is derived from the interrupt level of the current interrupt. When
the AVEC signal is asserted instead of DSACKXx during an interrupt acknowledge cycle, the

3-30 MC68330 USER’S MANUAL MOTOROLA

MC68330 ignores the state of the data bus and internally generates the vector number
(the sum of the interrupt level plus 24 ($18)).

AVEC is multiplexed with CS0. The AVEC bit in the module configuration register (MCR)
controls whether the AVEC/CSO pin is used as an autovector input or as CS0 (refer to
Section 4 System Integration Module for additional information). AVEC is only sampled
during an interrupt acknowledge cycle. During all other cycles, AVEC is ignored.
Additionally, AVEC can be internally generated for external devices by programming the
autovector register. Seven distinct autovectors can be used, corresponding to the seven
levels of interrupt available with signals TRQ7-TRQT. Figure 3-16 shows the timing for an
autovector operation.

MOTOROLA MC68330 USER’S MANUAL 3-31

S0 82 S4 S0| 0-2CLOCKS |S1 S2 S4 S0 S2
oL I T I I I I I I N R O O
wat-as X N L
— N
wh X INTERRUPT LEVEL :
0 X A
Fezroo X CPUSPACE N
szo X N
: 1BVIE :
szt X .
- N
N
A |/ N
BT\ / /T T\
5\ / \
wsack |/ I\ / N \
D15-DO \r <
S NN
worRar |\ 77777
TACK7-1ACK1 < N
SeE [T Sk
IACK
CYCLE

* Internal Arbitration may take between 0 to 2 clock cycles

Figure 3-16. Autovector Operation Timing

3.4.4.3 SPURIOUS INTERRUPT CYCLE. Requested interrupts, whether internal or
external, are arbitrated internally. When no internal module (including the SIM40, which
responds for external requests) responds during an interrupt acknowledge cycle by
arbitrating for the interrupt acknowledge cycle internally, the spurious interrupt monitor
generates an internal bus error signal to terminate the vector acquisition. The MC68330
automatically generates the spurious interrupt vector number, 24, instead of the interrupt
vector number in this case. When an external device does not respond to an interrupt

3-32 MC68330 USER’S MANUAL MOTOROLA

acknowledge cycle with AVEC or DSACKX, a bus monitor must assert BERR, which results
in the CPU32 taking the spurious interrupt vector. If HALT is also asserted, the MC68330
retries the interrupt acknowledge cycle instead of using the spurious interrupt vector.

3.5 BUS EXCEPTION CONTROL CYCLES

The bus architecture requires assertion of DSACKx from an external device to signal that a
bus cycle is complete. Neither DSACKx nor AVEC is asserted in the following cases:

* DSACKXx /AVEC is programmed to respond internally.
* The external device does not respond.
« Various other application-dependent errors occur.

The MC68330 provides BERR when no device responds by asserting DSACKx/AVEC
within an appropriate period of time after the MC68330 asserts AS. This mechanism
allows the cycle to terminate and the MC68330 to enter exception processing for the error
condition. HALT is also used for bus exception control. This signal can be asserted by an
external device for debugging purposes to cause single bus cycle operation, or, in
combination with BERR, a retry of a bus cycle in error. To properly control termination of a
bus cycle for a retry or a bus error condition, DSACKX, BERR, and HALT can be asserted
and negated with the rising edge of the MC68330 clock. This assures that when two
signals are asserted simultaneously, the required setup and hold time for both is met for
the same falling edge of the MC68330 clock. This or an equivalent precaution should be
designed into the external circuitry to provide these signals. Alternatively, the internal bus
monitor could be used. The acceptable bus cycle terminations for asynchronous cycles
are summarized in relation to DSACKXx assertion as follows (case numbers refer to Table
3-4):

» Normal Termination: DSACKXx is asserted; BERR and HALT remain negated
(case 1).

+ Halt Termination: HALT is asserted at the same time, or before DSACKXx, and BERR
remains negated (case 2).

» Bus Error Termination: BERR is asserted in lieu of, at the same time, or before
DSACKX (case 3) or after DSACKX (case 4), and HALT remains negated; BERR is
negated at the same time or after DSACKx

* Retry Termination: HALT and BERR are asserted in lieu of, at the same time, or
before DSACKX (case 5) or after DSACKXx (case 6); BERR is negated at the same
time or after DSACKx, and HALT may be negated at the same time or after BERR.

Table 3-4 shows various combinations of control signal sequences and the resulting bus
cycle terminations. To ensure predictable operation, BERR and HALT should be negated
according to the specifications in the MC68330/D, MC68330 Technical Summary.
DSACKX, BERR, and HALT may be negated after AS. If DSACKx or BERR remain asserted
into S2 of the next bus cycle, that cycle may be terminated prematurely.

MOTOROLA MC68330 USER’S MANUAL 3-33

EXAMPLE A: A system uses a bus monitor timer to terminate accesses to an unpopulated
address space. The timer asserts BERR after timeout (case 3).

EXAMPLE B: A system uses error detection and correction on RAM contents. The
designer may:

1. Delay DSACKXx until data is verified and assert BERR and HALT simultaneously to
indicate to the MC68330 to automatically retry the error cycle (case 5), or, if data is
valid, assert DSACKXx (case 1).

2. Delay DSACKXx until data is verified and assert BERR with or without DSACKX if data
is in error (case 3). This initiates exception processing for software handling of the
condition.

3. Return DSACKX prior to data verification; if data is invalid, BERR is asserted on the
next clock cycle (case 4). This initiates exception processing for software handling
of the condition.

4. Return DSACKX prior to data verification; if data is invalid, assert BERR and HALT
on the next clock cycle (case 6). The memory controller can then correct the RAM
prior to or during the automatic retry.

Table 3-4. DSACKx, BERR, and HALT Assertion Results

Asserted on Rising
Case Control
Edge of State Result
Num Signal N N+2

1 DSACKx A S Normal cycle terminate and
BERR NA NA continue
HALT NA X

2 DSACKx A S Normal cycle terminate and
BERR NA NA halt, continue when HALT
HALT AS S negated

3 DSACKXx NA/A X Terminate and take bus error
BERR A S exception, possibly deferred
HALT NA X

4 DSACKx A X Terminate and take bus error
BERR NA A exception, possibly deferred
HAL NA NA

5 DSACKx NA/A X Terminate and retry when
BERR A S HALT negated
HALT A/S S

6 DSACKx A X Terminate and retry when
BERR NA A HALT negated
HAL NA A

NOTE:

N — The number of current even bus state (e.g., S2, S4, etc.)
A — Signal is asserted in this bus state
NA — Signal is not asserted in this state
X — Don't care
S — Signal was asserted in previous state and remains asserted in this state

3-34 MC68330 USER’S MANUAL MOTOROLA

3.5.1 Bus Errors

BERR can be used to abort the bus cycle and the instruction being executed. BERR takes
precedence over DSACKx provided it meets the timing constraints described in
MC68330/D, MC68330 Technical Summary. If BERR does not meet these constraints, it
may cause unpredictable operation of the MC68330. If BERR remains asserted into the
next bus cycle, it may cause incorrect operation of that cycle. When BERR is issued to
terminate a bus cycle, the MC68330 may enter exception processing immediately
following the bus cycle, or it may defer processing the exception.

The instruction prefetch mechanism requests instruction words from the bus controller
before it is ready to execute them. If a bus error occurs on an instruction fetch, the
MC68330 does not take the exception until it attempts to use that instruction word. Should
an intervening instruction cause a branch or should a task switch occur, the bus error
exception does not occur. The bus error condition is recognized during a bus cycle in any
of the following cases:

+ DSACKXx and HALT are negated, and BERR is asserted.

+ HALT and BERR are negated, and DSACKXx is asserted. BERR is then asserted
within one clock cycle (HALT remains negated).

» BERR and HALT are asserted together, indicating a retry.

When the MC68330 recognizes a bus error condition, it terminates the current bus cycle in
the normal way. Figure 3-17 shows the timing of a bus error for the case in which DSACKx
is not asserted. Figure 3-18 shows the timing for a bus error that is asserted after
DSACKx. Exceptions are taken in both cases. (Refer to Section 5 CPU32 for details of
bus error exception processing.)

MOTOROLA MC68330 USER’S MANUAL

3-35

S0 S2 SW SW S4 S2 $4

CLKOUT

A3I-AO |

FC2-FCQ,
SIZ1-8120

RW

1
X
X
/
B T\ /T]
— .
/

| e,

DS Vi \ /T
DSACKX - \ /
D15-D0 { _— (

BERR T
l«— READCYCLEWITHBUS — 3.l INTERNAL .3l STACK 5|
ERROR PROCESSING WRITE
Figure 3-17. Bus Error without DSACKx
S0 S2 S4 S0 s2 S4
oot [L LU L L L L
w0 X K
Srezs X _
I\ TN
& |\ /T T\ /T
= T N\
DSACKx \ - \ /'
D15-D0 { —_—— >__._
= /T
<— WRITE ————»1&— INTERNAL —5»1€——— STACK ———>

CYCLE PROCESSING WRITE

Figure 3-18. Late Bus Error with DSACKx

3-36 MC68330 USER’S MANUAL MOTOROLA

In the second case, in which BERR is asserted after DSACKXx is asserted, BERR must be
asserted within the time specified for purely asynchronous operation, or it must be
asserted and remain stable during the sample window around the next falling edge of the
clock after DSACKXx is recognized. If BERR is not stable at this time, the MC68330 may
exhibit erratic behavior. BERR has priority over DSACKXx. In this case, data may be present
on the bus but may not be valid. This sequence can be used by systems that have
memory error detection and correction logic and by external cache memories.

3.5.2 Retry Operation

When both BERR and HALT are asserted by an external device during a bus cycle, the
MC68330 enters the retry sequence shown in Figure 3-19. A delayed retry, which is
similar to the delayed bus error signal described previously, can also occur (see Figure 3-
20). The MC68330 terminates the bus cycle, places the control signals in their inactive
state, and does not begin another bus cycle until the BERR and HALT signals are negated
by external logic. After a synchronization delay, the MC68330 retries the previous cycle
using the same access information (address, function code, size, etc.). BERR should be
negated before S2 of the retried cycle to ensure correct operation of the retried cycle.

S0 $2 SW SW S4 S0 S2 S4

JERERERERENEREREREE

CLKOUT

FI

A31-A0 >(
FC2-FCO, T -
SIZ1-siz6 _| e

X
X
/
B |\ /T N /T
T\
/

5] TN
o Rans s N Y.
D15-00 X ienore - 4)
. —

FALT 4

e ReADCYCLEWITH HALT READ RERUN —>

RETRY

Figure 3-19. Retry Sequence

MOTOROLA MC68330 USER’S MANUAL 3-37

The MC68330 retries any read or write cycle of a read-modify-write operation separately;
RMC remains asserted during the entire retry sequence. Asserting BR along with BERR
and HALT provides a relinquish and retry operation. The MC68330 does not relinquish the
bus during a read-modify-write operation. Any device that requires the MC68330 to give
up the bus and retry a bus cycle during a read-modify-write cycle must assert BERR and
BR only (HALT must not be included). The bus error handler software should examine the
read-modify-write bit in the special status word (refer to Section 5 CPU32) and take the
appropriate action to resolve this type of fault when it occurs.

S0 S2 $4

JEpEpEEEEn
A31-A30 _x T

X

N

S2 S4

(L LI

CLKOUT J

FC2-FCO,
SIZ1-8120

)/xng

DSACKx \

D15-D10 ————
8RR [/
ks |\ —

WRITE WRITE
CYCLE HALT RERUN

Figure 3-20. Late Retry Sequence

3.5.3 Halt Operation

When HALT is asserted and BERR is not asserted, the MC68330 halts external bus activity
at the next bus cycle boundary (see Figure 3-21). HALT by itself does not terminate a bus
cycle. Negating and reasserting HALT in accordance with the correct timing requirements
provides a single step (bus cycle to bus cycle) operation. HALT affects external bus cycles
only, thus a program that does not require use of the external bus may continue executing.
The single-cycle mode allows the user to proceed through (and debug) external MC68330
operations, one bus cycle at a time. Since the occurrence of a bus error while HALT is

3-38 MC68330 USER’S MANUAL MOTOROLA

asserted causes a retry operation, the user must anticipate retry cycles while debugging in
the single-cycle mode. The single-step operation and the software trace capability allow
the system debugger to trace single bus cycles, single instructions, or changes in program
flow.

When the MC68330 completes a bus cycle with HALT asserted, D15-DO is placed in the
high-impedance state, and bus control signals are driven inactive (not high-impedance
state); the address, function code, size, and read/write signals remain in the same state.
The halt operation has no effect on bus arbitration (refer to 3.6 Bus Arbitration). When
bus arbitration occurs while the MC68330 is halted, the address and control signals are
also placed in the high-impedance state. Once bus mastership is returned to the
MC68330, if HALT is still asserted, the address, function code, size, and read/write signals
are again driven to their previous states. The MC68330 does not service interrupt requests
while it is halted.

S2 S4 SO S2 S4 S0

JEpSRERERERERERNE

CLKOUT

\><><F]<g

A31-A0 :>_______
FC2-FCO,]
SiZi-8iz6 _| }-—
RAW N

= /TN ——N\ /[
™\

s TN T —— /T
7 N \
D15-D10 :__< —_——— (

RALT NN
g _/
& —

_/

[€—— READ ——>»<«€——— HALT——>><«€—— READ —>>
(ARBITRATION PERMITTED
WHILE THE PROCESSOR IS

HALTED)

Figure 3-21. HALT Timing

MOTOROLA MC68330 USER’S MANUAL

3-39

3.5.4 Double Bus Fault

A double bus fault results when a bus error or an address error occurs during the
exception processing sequence for any of the following:

* A previous bus error
* A previous address error
* A reset

For example, the MC68330 attempts to stack several words containing information about
the state of the machine while processing a bus error exception. If a bus error exception
occurs during the stacking operation, the second error is considered a double bus fault.
When a double bus fault occurs, the MC68330 halts and drives the HALT line low. Only a
reset operation can restart a halted MC68330. However, bus arbitration can still occur
(refer to 3.6 Bus Arbitration). A second bus error or address error that occurs after
exception processing has completed (during the execution of the exception handler
routine, or later) does not cause a double bus fault. A bus cycle that is retried does not
constitute a bus error or contribute to a double bus fault. The MC68330 continues to retry
the same bus cycle as long as the external hardware requests it.

Reset can also be generated internally by the halt monitor (see Section 5 CPU32).

3.6 BUS ARBITRATION

The bus design of the MC68330 provides for a single bus master at any one time, either
the MC68330 or an external device. One or more of the external devices on the bus can
have the capability of becoming bus master for the external bus, but not the MC68330
internal bus. Bus arbitration is the protocol by which an external device becomes bus
master; the bus controller in the MC68330 manages the bus arbitration signals so that the
MC68330 has the lowest priority. External devices that need to obtain the bus must assert
the bus arbitration signals in the sequences described in the following paragraphs.
Systems that include several devices that can become bus master require external
circuitry to assign priorities to the devices, so that when two or more external devices
attempt to become bus master at the same time, the one having the highest priority
becomes bus master first. The sequence of the protocol is as follows:

1. An external device asserts BR.
2. The MC68330 asserts BG to indicate that the bus is available.

3. The external device asserts BGACK to indicate that it has assumed bus mastership.

BR may be issued any time during a bus cycle or between cycles. BG is asserted in
response to BR. To guarantee operand coherency, BG is only asserted at the end of an
operand transfer. Additionally, BG is not asserted until the end of a read-modify-write
operation (when RMC is negated) in response to a BR signal. When the requesting device
receives BG and more than one external device can be bus master, the requesting device
should begin whatever arbitration is required. When it assumes bus mastership, the

3-40 MC68330 USER’S MANUAL MOTOROLA

external device asserts BGACK and maintains BGACK during the entire bus cycle (or
cycles) for which it is bus master. The following conditions must be met for an external
device to assume mastership of the bus through the normal bus arbitration procedure: 1) It
must have received BG through the arbitration process, and 2) BGACK must be inactive,
indicating that no other bus master has claimed ownership of the bus.

Figure 3-22 is a flowchart showing the detail involved in bus arbitration for a single device.
This technique allows processing of bus requests during data transfer cycles. Refer to
Figures 3-23 and 3-24 for the bus arbitration timing diagram.

BR is negated at the time that BGACK is asserted. This type of operation applies to a
system consisting of the MC68330 and one device capable of bus mastership. In a system
having a number of devices capable of bus mastership, BR from each device can be wire-
ORed to the MC68330. In such a system, more than one bus request could be asserted
simultaneously. BG is negated a few clock cycles after the transition of BGACK. However,
if bus requests are still pending after the negation of BG, the MC68330 asserts another BG
within a few clock cycles after it was negated. This additional assertion of BG allows
external arbitration circuitry to select the next bus master before the current bus master
has finished using the bus. The following paragraphs provide additional information about
the three steps in the arbitration process. Bus arbitration requests are recognized during
normal processing, HALT assertion, and when the CPU32 has halted due to a double bus
fault.

PROCESSOR REQUESTING DEVICE
REQUEST THE BUS
GRANT BUS ARBITRATION 1. ASSERT BR
1. ASSERTBG -
ACKNOWLEDGE BUS MASTERSHIP
1. EXTERNAL ARBITRATION DETERMINES
NEXT BUS MASTER
2. NEXT BUS MASTER WAITS FOR BGACK
TO BE NEGATED
3. NEXT BUS MASTER ASSERTS BGACK
TERMINATE ARBITRATION TO BECOME NEW MASTER
— 4. BUS MASTER NEGATES BR
1. NEGATE BG (AND WAIT FOR
BGACK TO BE NEGATED)
> OPERATE AS BUS MASTER
1. PERFORM DATA TRANSFERS (READ AND
WRITE CYCLES) ACCORDING TO THE
SAME RULES THE PROCESSOR USES
RELEASE BUS MASTERSHIP
RE-ARBITRATE OR RESUME ‘BGACK
PROCESSOR OPERATION 1. NEGATE BGACK

Figure 3-22. Bus Arbitration Flowchart for Single Request

MOTOROLA MC68330 USER’S MANUAL

3-41

A0 AS AS A2 A3 A0

aeout __/__/__/—_/____/___/—__

A31-A0 N (X

AS,CS \ / \

FEACK \ /

Figure 3-23. Bus Arbitration Timing Diagram — Idle Bus Case

S S|

wor - SN S S S S S

A31-A0 X)
D15-D0 \ { \

= \ e
s \

Figure 3-24. Bus Arbitration Timing Diagram— Active Bus Case

3-42 MC68330 USER’S MANUAL MOTOROLA

3.6.1 Bus Request

External devices capable of becoming bus masters request the bus by asserting BR. This
signal can be wire-ORed to indicate to the MC68330 that some external device requires
control of the bus. The MC68330 is effectively at a lower bus priority level than the
external device and relinquishes the bus after it has completed the current bus cycle (if
one has started). If no BGACK is received while the BR is active, the MC68330 remains
bus master once BR is negated. This prevents unnecessary interference with ordinary
processing if the arbitration circuitry inadvertently responds to noise or if an external
device determines that it no longer requires use of the bus before it has been granted
mastership.

3.6.2 Bus Grant

The MC68330 supports operand coherency, thus, if an operand transfer requires multiple
bus cycles, the MC68330 does not release the bus until the entire transfer is complete.
The assertion of BG is, therefore, subject to the following constraints:

+ The minimum time for BG assertion after BR is asserted depends on internal
synchronization (see MC68330/D, MC68330 Technical Summary).

« During an external operand transfer, the MC68330 does not assert BG until after the last
cycle of the transfer (determined by S1Zx and DSACKX).

« During an external operand transfer, the MC68330 does not assert BG as long as RMC
is asserted.

« If the show cycle bits SHEN1-0 = 01, the MC68330 does not assert BG to an external
master.

Externally, the BG signal can be routed through a daisy-chained network or a priority-
encoded network. The MC68330 is not affected by the method of arbitration as long as the
protocol is obeyed.

3.6.3 Bus Grant Acknowledge

An external device cannot request and be granted the external bus while another device is
the active bus master. A device that asserts BGACK remains the bus master until it
negates BGACK. BGACK should not be negated until all required bus cycles are
completed. Bus mastership is terminated at the negation of BGACK.

Once an external device receives the bus and asserts BGACK, it should negate BR. If BR
remains asserted after BGACK is asserted, the MC68330 assumes that another device is
requesting the bus and prepares to issue another BG.

3.6.4 Bus Arbitration Control

The bus arbitration control unit in the MC68330 is implemented with a finite state machine.
As discussed previously, all asynchronous inputs to the MC68330 are internally
synchronized in a maximum of two cycles of the clock. As shown in Figure 3-25 input

MOTOROLA MC68330 USER’S MANUAL 3-43

signals labeled R and A are internally synchronized versions of BR and BGACK
respectively. The BG output is labeled G, and the internal high-impedance control signal is
labeled T. If T is true, the address, data, and control buses are placed in the high-
impedance state after the next rising edge following the negation of AS and RMC. All
signals are shown in positive logic (active high) regardless of their true active voltage
level. The state machine shown in Figure 3-25 does not have a state 1 or state 4.

State changes occur on the next rising edge of the clock after the internal signal is valid.
The BG signal transitions on the falling edge of the clock after a state is reached during
which G changes. The bus control signals (controlled by T) are driven by the MC68330
immediately following a state change, when bus mastership is returned to the MC68330.
State 0, in which G and T are both negated, is the state of the bus arbiter while the
MC68330 is bus master. R and A keep the arbiter in state 0 as long as they are both
negated.

The MC68330 does not allow arbitration of the external bus during the RMC sequence. For
the duration of this sequence, the MC68330 ignores the BR input. If mastership of the bus
is required during an RMC operation, BERR must be used to abort the RMC sequence.

3-44 MC68330 USER’S MANUAL MOTOROLA

R - BUS REQUEST G - BUS GRANT
A - BUS GRANT ACKNOWLEDGE T- THREE-STATE SIGNAL TO BUS CONTROL
B - BUS CYCLE IN PROGRESS V- BUS AVAILABLE TO BUS CONTROL

Figure 3-25. Bus Arbitration State Diagram

3.6.5 Show Cycles

The MC68330 can perform data transfers with its internal modules without using the
external bus, but, when debugging, it is desirable to have address and data information
appear on the external bus. These external bus cycles, called show cycles, are
distinguished by the fact that AS is not asserted externally. DS is used to signal address
strobe timing in show cycles.

MOTOROLA MC68330 USER’S MANUAL

3-45

After reset, show cycles are disabled and must be enabled by writing to the SHEN bits in
the module configuration register (see 4.3.2.1 Module Configuration Register (MCR)).
When show cycles are disabled, the address bus, function codes, size, and read/write
signals continue to reflect internal bus activity. However, AS and DS are not asserted
externally and the external data bus remains in a high impedance state. When show
cycles are enabled, DS indicates address strobe timing and the external data bus contains
data. The following paragraphs are a state-by-state description of show cycles, and Figure
3-26 illustrates a show cycle timing diagram. Refer to MC68330/D, MC68330 Technical
Summary for specific timing information.

State 0 — During state 0, the address and function codes become valid, R/W is driven
to indicate a show read or write cycle, and the size pins indicate the number of
bytes to transfer. During a read, the addressed peripheral is driving the data bus,
and the user must take care to avoid bus conflicts.

State 41 — One-half clock cycle later DS (rather than AS) is asserted to indicate that
address information is valid.

State 42— No action occurs in state 42. The bus controller remains in state 42 (wait
states will be inserted) until the internal read cycle is complete.

State 43— When DS is negated, show data is valid on the next falling edge of the
system clock. The external data bus drivers are enabled so that data becomes valid
on the external bus as soon as it is available on the internal bus.

State 0 — The address, function codes, read/write, and size pins change to begin the
next cycle. Data from the preceding cycle is valid through state 0.

3-46 MC68330 USER’S MANUAL MOTOROLA

S0 S41 $42 $43 S0 St S2

oot _/_—_/___/—__/___
A31-A0,

FG2FCs X X
RW X X

N

BKPT \ /
I‘——SHOW CYCLE-——>“<— START OF EXTERNAL CYCLE —>

Figure 3-26. Show Cycle Timing Diagram

3.7 RESET OPERATION

The MC68330 has reset control logic to determine the cause of reset, synchronize it if
necessary, and assert the appropriate reset lines. The reset control logic can
independently drive three different lines:

1. EXTRST (external reset) drives the external RESET pin.
2. CLKRST (clock reset) resets the clock module.
3. INTRST (internal reset) goes to all other internal circuits.

Table 3-5 summarizes the result of each reset source. Synchronous reset sources are not
asserted until the end of the current bus cycle, whether or not RMC is asserted. The
internal bus monitor is automatically enabled for synchronous resets; therefore if the
current bus cycle does not terminate normally, the bus monitor terminates it. Only single-
byte or word transfers are guaranteed valid for synchronous resets. Asynchronous reset
sources indicate a catastrophic failure, and the reset controller logic immediately resets
the system. Resetting the MC68330 causes any bus cycle in progress to terminate as if
DSACKXx, or BERR had been asserted. In addition, the MC68330 appropriately initializes
registers for a reset exception.

MOTOROLA MC68330 USER’S MANUAL 3-47

Table 3-5 Reset Source Summary

Type Source Timing Reset Lines Asserted by Controller
External External Synchronous INTRST CLKRST EXTRST
Power-up EBI Asynchronous INTRST CLKRST EXTRST
Software Watchdog Sys Prot Asynchronous INTRST CLKRST EXTRST
Double Bus Fault Sys Prot Asynchronous INTRST CLKRST EXTRST
Loss of Clock Clock Synchronous INTRST CLKRST EXTRST
Reset Instruction CPU32 Asynchronous - - EXTRST

If an external device drives RESET low, RESET should be asserted for at least 590 clock
periods to ensure that the MC68330 resets. The reset control logic holds reset asserted
internally until the external RESET is released. When the reset control logic detects that
external RESET is no longer being driven, it drives both internal and external reset low for
an additional 512 cycles to guarantee this length of reset to the entire system. Figure 3-27
shows the RESET timing.

i— 1 CLOCK

RESET 1 ‘
€& 2 590 CLOCKS————>»| j&&————512 CLOCKS——>

}(—— PULLED EXTERNALLY—)‘ \(—DRIVEN BY MCG&SSO——P\

Figure 3-27. Timing for External Devices Driving RESET

If reset is asserted from any other source, the reset control logic asserts RESET for a
minimum of 512 cycles, and until the source of reset is negated.

After any internal reset occurs, a 14-cycle rise time is allowed before testing for the

presence of an external reset. If no external reset is detected, the CPU32 begins its vector
fetch.

Figure 3-28 is a timing diagram of the power-up reset operation, showing the relationships
between RESET, VCC, and bus signals. During the reset period, the entire bus three-
states (except for non-three-statable signals, which are driven to their inactive state). Once
RESET negates, all control signals are driven to their inactive state, the data bus is in read
mode, and the address bus is driven. After this, the first bus cycle for RESET exception
processing begins.

3-48 MC68330 USER’S MANUAL MOTOROLA

VCo
LOCK

Ve ___/

[€—— 512 CLOCKS ———>»«~ <14 CLOCKS—>|

RESET Vg
BUS
CYCLES
ADDRESS AND * >‘<)
BUS STATE CONTROL SIGNALS 1 23—
UNKNOWN THREE-STATED
NOTES:

1. Internal start-up time.

2. SSP read here

3. PC read here

4. First instruction fetched here.

Figure 3-27. Initial Reset Operation Timing

When a reset instruction is executed, the MC68330 drives the RESET signal for 512 clock
cycles. In this case, the MC68330 resets the external devices of the system, and the
internal registers of the MC68330 are unaffected.

MOTOROLA MC68330 USER’S MANUAL 3-49

3-50 MC68330 USER’S MANUAL MOTOROLA

SECTION 4
SYSTEM INTEGRATION MODULE

The MC68330 system integration module (SIM40) consists of several functions that
control the system startup, initialization, configuration, and the external bus with a
minimum of external devices. It also provides the IEEE 1149.1 boundary scan
capabilities. The SIM40 functions include the following:

» System Configuration and Protection
+ Clock Synthesizer

+ Chip Selects and Wait States

+ External Bus Interface

*» Bus Arbitration

» Dynamic Bus Sizing

+ IEEE 1149.1 Test Access Port

4.1 MODULE OVERVIEW

The system configuration and protection function controls system configuration and
provides various monitors and timers, including the internal bus monitor, double bus fault
monitor, spurious interrupt monitor, software watchdog timer, and the periodic interrupt
timer.

The clock synthesizer generates the clock signals used by the SIM40 and the CPU32, as
well as the CLKOUT used by external devices.

The programmable chip-select function provides four chip-select signals that can enable
external memory and peripheral circuits, providing all handshaking and timing signals.
Each chip-select signal has an associated base address register and an address mask
register that contain the programmable characteristics of that chip select. Up to three wait
states can be programmed by bits in the address mask register.

The external bus interface (EBI) handles the transfer of information between the internal
CPU32 and memory, peripherals, or other processing elements in the external address
space. See Section 3 Bus Operation for further information.

The MC68330 dynamically interprets the port size of an addressed device during each
bus cycle, allowing operand transfers to or from 8- and 16-bit ports. The device signals

its port size and indicates completion of the bus cycle through the use of the DSACKXx

MOTOROLA MC68330 USER'S MANUAL

4-1

inputs. Dynamic bus sizing allows a programmer to write code that is not bus-width
specific. For a discussion on dynamic bus sizing see Section 3 Bus Operation.

The MC68330 includes dedicated user-accessible test logic that is fully compliant with
the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems
associated with testing high-density circuit boards have led to the development of this
standard under the sponsorship of the IEEE Test Technology Committee and Joint Test
Action Group (JTAG). The MC68330 implementation supports circuit-board test
strategies based on this standard. Refer to Section 6 IEEE 1149.1 Test Access
Port for additional information.

4.2 MODULE OPERATION

The following paragraphs describe the operation of the module base address register,
system configuration and protection, clock synthesizer, and chip-select functions, and the
external bus interface.

4.2.1 Module Base Address Register Operation

The module base address register (MBAR) controls the location of all module registers
(see 4.3.1 Module Base Address Register). The address stored in this register is
the base address (starting location) for the internal module registers. The internal
module registers are contained in a single 4K-byte block (see Figure 4-1) that is
relocatable along 4K-byte boundaries.

$FFFFFFFF

$FFF

$XXXXX000 % SO7F

SIM40

$000

MBAR
(80008FF00 ——
FC=111)

RAM
(TYPICAL)

$00000000 NOTE: $XXXXX IS THE VALUE CONTAINED IN MBAR BITS BA31-BA12

Figure 4-1. SIM40 Module Register Block

4-2 MC68330 USER'S MANUAL MOTOROLA

The location of the internal registers is fixed by writing the desired base address of the
4K-byte block to the MBAR using the MOVES instruction to address $0003FF00 in CPU
space. The SFC and DFC registers contain the address space values (FC2-FCO0) for the
read or write operand of the MOVES instruction (see Section 5 CPU32 or
M68000PM/AD, Programmer’s Reference Manual). Therefore, the SFC or DFC register
must indicate CPU space (FC2-FC0=$7), using the MOVEC instruction, before
accessing MBAR. The offset from the base address is shown above each register
diagram. The SIM40 address range, fixed within the relocatable 4K-byte memory block,
is $000-$07F.

4.2.2 System Configuration and Protection Function

The SIM40 allows the user to control certain features of system configuration by writing
bits in the module configuration register (MCR). This register also contains read-only
status bits that show the state of the SIM40.

All M68000 Family members are designed to provide maximum system safeguards. As
an extension of the family, the MC68330 promotes the same basic concepts of
safeguarded design present in all M68000 members. In addition, many functions that
normally must be provided by external circuits are incorporated in this device. The
following features are provided in the system configuration and protection function:

SIM40 Configuration
The SIM40 allows the user to configure the system to the particular requirements.
The functions include control of FREEZE and show cycle operation, the function of
the CS3-CS0 signals, the access privilege of the supervisor/user registers, the
level of interrupt arbitration, and automatic autovectoring for external interrupts.

Reset Status
The reset status register provides the user with information on the cause of the
most recent reset. The possible causes include: external, power-up, software
watchdog, double bus fault, loss of clock, and reset instruction.

Internal Bus Monitor

The SIM40 provides an internal bus monitor to monitor the data and size
acknowledge (DSACK) response time for all internal bus accesses. An option
allows the monitoring of external bus accesses. For external bus accesses, four
selectable response times are provided to allow for variations in response speed
of memory and peripherals used in the system. A bus error signal is asserted in-
ternally if the DSACK response limit is exceeded. BERR is not asserted externally.
This monitor can be disabled for external bus cyles only.

Double Bus Fault Monitor k
The double bus fault monitor causes a reset to occur if the internal HALT is
asserted by the CPU32, indicating a double bus fault. A double bus fault results
when a bus or address error occurs during the exception processing sequence for

MOTOROLA MC68330 USER'S MANUAL

4-3

a previous bus or address error, a reset, or while the CPU is loading information
from a bus error stack frame during an RTE instruction. This function can be
disabled. See Section 3 Bus Operation for more information.

Spurious Interrupt Monitor

If no interrupt arbitration occurs during an interrupt acknowledge cycle (IACK), the
bus error signal is asserted internally.

Software Watchdog
The software watchdog asserts reset or a level 7 interrupt (as selected by the
system protection and control register) if the software fails to service the software
watchdog for a designated period of time (i.e., because it is trapped in a loop or
lost). There are eight selectable timeout periods. This function can be disabled.

Periodic Interrupt Timer
The SIM40 provides a timer to generate periodic interrupts. The periodic interrupt
time period can vary from 122 us to 15.94 s (with a 32.768-kHz crystal used to
generate the system clock). This function can be disabled.

Figure 4-2 shows a block diagram of the system configuration and protection function.

MODULE
CONFIGURATION

RESET
STATUS

DOUBLE BUS
-
FAULT MONITOR EES{EJEST

BUS T
MONITOR > BERR

SPURIOUS
INTERRUPT MONITOR

SOFTWARE
SOFTWARE >
CLOCK —> 1 REaut
WATCHDOG REQUEST or
9 Ra7
PRESCALER
PERIODIC TRQ7IRQ
— INTERRUPT TIMER > IRA7IRAT

Figure 4-2. System Configuration and Protection Function

4-4 MC68330 USER'S MANUAL MOTOROLA

4.2.2.1 SYSTEM CONFIGURATION. Aspects of the system configuration are
controlled by the MCR and the autovector register (AVR). The AVEC bit in the MCR
controls whether the AVEC/CSO pin is used as an autovector input or as CSO.

For debug purposes, internal bus accesses can be shown on the external bus. This
function is called show cycles. The SHEN1, SHENO bits in the MCR control show cycles.

Arbitration for servicing interrupts is controlled by the value programmed into the
interrupt arbitration (IARB) field of the MCR. The SIM40 arbitrates for both its own
interrupts and externally generated interrupts. The SIM40 IARB must contain a value
other than $0 (interrupts with IARB=0 are discarded as extraneous).

The AVR contains bits that correspond to external interrupt levels that require an
autovector response. The SIM40 supports up to seven discrete external interrupt
requests. If the bit corresponding to an interrupt level is set in the AVR, the SIM40 returns
an autovector in response to the IACK cycle servicing that external interrupt request.
Otherwise, external circuitry must either return an interrupt vector or assert the external
AVEC signal.

4.2.2.2 INTERNAL BUS MONITOR. The internal bus monitor continually checks for

the bus cycle termination response time by checking the DSACKx, BERR, and HALT
status or the AVEC status during an IACK cycle. The monitor initiates a bus error if the
response time is excessive. The bus monitor feature cannot be disabled for internal
accesses to an internal module. The internal bus monitor cannot check the DSACKx
response on the external bus unless the MC68330 is the bus master. The BME bit in the
system protection control register (SYPCR) enables the internal bus monitor for internal-
to-external bus cycles. If the system contains external bus masters whose bus cycles
must be monitored, an external bus monitor must be implemented. In this case, the
internal-to-external bus monitor option must be disabled.

The bus cycle termination response time is measured in clock cycles, and the maximum-
allowable response time is programmable. The bus monitor response time period
ranges from 8 to 64 system clocks (see Table 4-8). These options are provided to allow
for different response times of peripherals that might be used in the system.

4.2.2.3 DOUBLE BUS FAULT MONITOR. A double bus fault is caused by a bus
error or address error during the exception processing sequence. The double bus fault
monitor responds to an assertion of HALT on the internal bus. Refer to Section 3 Bus
Operation for more information. The DBF bit in the reset status register indicates that
the last reset was caused by the double bus fault monitor. The double bus fault monitor
reset can be enabled by the DBFE bit in the SYPCR.

4.2.2.4 SPURIOUS INTERRUPT MONITOR. The spurious interrupt monitor issues
BERR if no interrupt arbitration occurs during an IACK cycle. Normally, during an IACK
cycle, the SIM40 recognizes that the CPU32 is responding to interrupt request(s) and

MOTOROLA MC68330 USER'S MANUAL

4-5

arbitrates for the privilege of returning a vector or asserting AVEC. (The SIM40 reports
and arbitrates for externally generated interrupts.) This feature cannot be disabled.

4.2.2.5 SOFTWARE WATCHDOG. The SIM40 provides a software watchdog option
to prevent system lock-up in case the software becomes trapped in loops with no
controlled exit. Once enabled by the SWE bit in the SYPCR, the software watchdog
requires a special service sequence to be executed on a periodic basis. If this periodic
servicing action does not occur, the software watchdog times out and issues a reset or a
level 7 interrupt (as programmed by the SWRI bit in the SYPCR). The address of the
interrupt service routine for the software watchdog interrupt is stored in the software
interrupt vector register (SWIV). Figure 4-3 shows a block diagram of the software
watchdog as well as the clock control circuits for the periodic interrupt timer.

The watchdog clock rate is determined by the SWP bit in the periodic interrupt timer
register (PITR) and the SWT bits in the SYPCR. See Table 4-7 for a list of watchdog
timeout periods.

The software watchdog service sequence consists of the following two steps: write $55 to
the software service register (SWSR) and write $AA to the SWSR. Both writes must occur
in the order listed prior to the watchdog timeout, but any number of instructions or
accesses to the SWSR can be executed between the two writes.

PITR
SWP

PTP
FREEZE ¢ \

—1PITCLK pIT
Y 31 CLOCK | MODULUS COUNTER =R oo on
o Mux

CLOCK > 9
EXTAL —> DISABLE > PRESCALER (27) PRECLK
|———>RESET
SWCLK

15
LPSTOP 27| 15 STAGE DIVIDER CHAIN (215)

A

ol 213 215

Figure 4-3. Software Watchdog Block Diagram

4.2.2.6 PERIODIC INTERRUPT TIMER. The periodic interrupt timer consists of an
8-bit modulus counter that is loaded with the value contained in the PITR (see Figure
4-3). The modulus counter is clocked by a signal derived from the buffered crystal
oscillator (EXTAL) input pin unless an external frequency source is used. When an
external frequency source is used (MODCK low during reset), the default state of the
prescaler control bits (SWP and PTP) in the PITR is changed to enable both prescalers.

4-6 MC68330 USER'S MANUAL MOTOROLA

Either clock source (EXTAL or EXTAL+512) is divided by four before driving the modulus
counter (PITCLK). When the modulus counter value reaches zero, an interrupt is
generated. The level of the generated interrupt is programmed into the PIRQL bits in the
periodic interrupt control register (PICR). During the IACK cycle, the SIM40 places the
periodic interrupt vector, programmed into the PIV bits in the PICR, onto the internal bus.
The value of bits 7-0 in the PITR is then loaded again into the modulus counter, and the
counting process starts over. If a new value is written to the PITR, this value is loaded into
the modulus counter when the current count is completed.

4.2.2.6.1 Periodic Timer Period Calculation. The period of the periodic timer can
be calculated using the following equation:

PITR count value
periodic interrupt timer period = EXTAL frequency/prescaler value
22

Solving the equation using a crystal frequency of 32.768-kHz with the prescaler disabled
gives:

PITR count value

32768/1
22

periodic interrupt timer period

PITR count value
8192

periodic interrupt timer period

]

This gives a range from 122 ps, with a PITR value of $01 (00000001 binary), to 31.128
ms, with a PITR value of $FF (11111111 binary).

Solving the equation with the prescaler enabled (PTP=1) gives the following values:

PITR count value
32768/512
22

periodic interrupt timer period

PITR count value
16

periodic interrupt timer period

This gives a range from 62.5 ms, with a PITR value of $01, to 15.94 s, with a PITR value
of $FF.

For fast calculation of periodic timer period using a 32.768-kHz crystal, the following
equations can be used:
With prescaler disabled:

programmable interrupt timer period = PITR (122 ps)

MOTOROLA MC68330 USER'S MANUAL

With prescaler enabled:
programmable interrupt timer period = PITR (62.5 ms)

4.2.2.6.2 Using the Periodic Timer as a Real-Time Clock. The periodic
interrupt timer can be used as a real-time clock interrupt by setting it up to generate an
interrupt with a one-second period. Rearranging the periodic timer period equation to
solve for the desired count value:

PITR count value (PIT period) (EXTAL frequency)

(Prescaler value) (22)

PITR count value = (1) (32768)
(512) (22)

PITR count value 16 (decimal)

Therefore, when using a 32.768-kHz crystal, the PITR should be loaded with a value of
$10 with the prescaler enabled to generate interrupts at a one-second rate.

4.2.2.7 SIMULTANEOUS INTERRUPTS BY SOURCES IN THE SIMA40. If the
possible level 7 interrupt sources in the SIM40 are simultaneously asserted, the SIM40
will prioritize and service the interrupts in the following order: 1) software watchdog, 2)
periodic interrupt timer, and 3) external interrupts.

4.2.3 Clock Synthesizer

The clock synthesizer can operate with either an external crystal or an external oscillator
for reference, using the internal phase-locked loop (PLL) and voltage-controlled
oscillator (VCO), or an external clock can drive the clock signal directly, at the operating
frequency. There are four modes of clock operation, listed in Table 4-1.

Table 4-1. Clock Operating Modes

MODCK | VCCSYN

Mode Description Reset |Qperating
Value Value
External crystal used with the on-chip PLL and VCO to
Crystal Mode generate a system clock and CLKOUT of programmable >V >V
rates.
External Clock The desired operating frequency is driven into EXTAL ov oV*

resulting in a system clock and CLKOUT of the same
frequency, not tightly coupled (XFC=0V).
The desired operating frequency is driven into EXTAL,
,'\E,l’ggg"&,‘i,%'%ikL resulting in a system clock and CLKOUT of the same oV 5V
frequency, with a tight skew between input and output
signals.
Limp Mode Upon input signal loss for either clock mode using the PLL, X 5V
operation continues at approximately one-half maximum
speed (affected by the value of the X-bit in SYNCR).

* For external clock mode, XFC should be tied to GND.

4-8 MC68330 USER'S MANUAL MOTOROLA

In crystal mode (see Figure 4-4), the clock synthesizer can operate from the on-chip PLL
and VCO, using a parallel resonant crystal connected between the EXTAL and XTAL
pins as a reference frequency source. The oscillator circuit is shown in Figure 4-5. A
32.768-kHz watch crystal provides an inexpensive reference, but the reference crystal
frequency can be any frequency in the range specified in MC68330/D, MC68330
Technical Summary. When using a 32.768-kHz crystal, the system clock frequency is
programmable (using the W, X, and Y bits in the SYNCR) over the range specified in
MC68330/D, MC68330 Technical Summary.

20 MQ VeesyN

xrc! T 01pF
1

T

XFCPIN _VocsyN_ - OfpF ;

CRYSTAL
> PHASE || LOW-PASS || -
OSCILLATOR COMPARATOR FILTER veo

CLOCK CONTROL —-——|:I]—>CLKOUT

—> SYSTEM
CLOCK

1
1
I
I
1
I
I
: FEEDBACK DIVIDER
1
I
|
I
I
I
I

NOTE 1 Must be low-leakage capacitor

Figure 4-4. Clock Block Diagram for Crystal Operation

A separate power pin (VCCSYN) is used to allow the clock circuits to run with the rest of
the device powered down and to provide increased noise immunity for the clock circuits.
The source for VCCSYN should be a quiet power supply with adequate external bypass
capacitors placed as close as possible to the VCCSYN pin to ensure a stable operating
frequency. Figure 4-4 shows typical values for the bypass and PLL external capacitors.
The crystal manufacturer's documentation should be consulted for specific
recommendations for external components.

MOTOROLA MC68330 USER'S MANUAL

4-9

EXTAL XTAL

60 kQ

Figure 4-5. MC68330 Crystal Oscillator

To use an external clock source (see Figure 4-6), the operating clock frequency can be
driven directly into the EXTAL pin (the XTAL pin must be left floating for this case). This
results in a system clock and CLKOUT that are the same as the input signal frequency,
but not tightly coupled to it. To enable this mode, MODCK must be held low during reset,
and VCCSYN and XFC held at OV while the chip is in operation.

VeesyN
xrc!

EXTERNAL
CLOCK

- EXTAL _?XTAL XFC PIN Veesyn 01 uF
A U A o XFEPN - SON O]

CRYSTAL
>
OSCILLA PHASE || LOW-PASS || -
TOR COMPARATOR FILTER veo

2 [FEEDBACK DIVIDER
.
>

CLOCK CONTROL -—————E::}—)cLKOUT

|—> SYSTEM
CLOCK

NOTES:
1. Must be low-leakage capacitor.
2. External mode uses this path only.

Figure 4-6. Clock Block Diagram for External Oscillator Operation

Alternatively, an external clock signal can be directly driven into EXTAL (with XTAL left
floating) using the on-chip PLL. This results in an internal clock and CLKOUT signal of

4-10 MC68330 USER'S MANUAL MOTOROLA

the same frequency as the input signal, with a tight skew between the external clock and
the internal clock and CLKOUT signals. To enable this mode, MODCK must be held low
during reset, and VCCSYN connected to a quiet 5 V source.

If an input signal loss for either of the clock modes utilizing the PLL occurs, chip
operation can continue in limp mode with the VCO running at approximately one-half the
maximum speed (affected by the value of the X-bit in the SYNCR register), using an
internal voltage reference. The limp mode bit (SLIMP) in the SYNCR indicates that a loss
of input signal reference has been detected. The reset enable (RSTEN) bit controls
whether an input signal loss causes a system reset or causes the device to operate in
limp mode. The synthesizer lock bit (SLOCK) in the SYNCR indicates when the VCO has
locked onto the desired frequency, or if an external clock is being used.

4.2.3.1 PHASE COMPARATOR AND FILTER. The phase comparator takes the
output of the frequency divider and compares it to an external input signal reference. The
result of this compare is low-pass filtered and used to control the VCO. The comparator
also detects when the external crystal or oscillator stops running to initiate the limp mode
for the system clock.

The PLL requires an external low-leakage filter capacitor, typically in the range from 0.01
to 0.1 uF, connected between the XFC and VCCSYN pins. The XFC capacitor should
provide 50 MQ insulation, and should not be electrolytic. Smaller values of the external
filter capacitor provide a faster response time for the PLL, and larger values provide
greater frequency stability.

4.2.3.2 FREQUENCY DIVIDER. The frequency divider circuits divide the VCO
frequency down to the reference frequency for the phase comparator. The frequency
divider consists of the following: 1) a 2-bit prescaler controlled by the W bit in the SYNCR
and 2) a 6-bit modulo downcounter controlled by the Y bits in the SYNCR.

Several factors are important to the design of the system clock. The resulting system
clock frequency must be within the limits specified for the device. The frequency of the
system clock is given by the following equation:

FSYSTEM = FCRYSTAL (4(Y+1)22W+X)
The maximum VCO frequency limit must also be observed. The VCO frequency is given
by the following equation:
FvCO = FSYSTEM®@X)

Since clearing the X-bit causes the VCO to run at twice the system frequency, the VCO
upper frequency limit must be considered when programming the SYNCR. Both the
system clock and VCO frequency limits are given in the MC68330/D, MC68330
Technical Summary. Table 4-2 lists some the frequencies available from various
combinations of SYNCR bits with a reference frequency of 32.768-kHz.

MOTOROLA MC68330 USER'S MANUAL

Table 4-2. System Frequencies from 32.768-kHz Reference

Y W=0; X=0 W=0; X=1 W=1; X=0 W=1; X=1
000000 131 262 524 1049
000101 786 1573 3146 6291
001010 1442 2884 5767 11534
001111 2097 4194 8389 16777
010100 2753 5505 11010 22020
011001 3408 6816 13631 =
011111 4194 8389 16777 -
100011 4719 9437 18874 -
101000 5374 10748 20972 =
101101 6029 12059 23593 -
110010 6685 13369 - -
110111 7340 14680 - -
111100 7995 15991 = -
111111 8389 16777 - -

NOTE: System frequencies are in kHz.

4.2.3.3 CLOCK CONTROL. The clock control circuits determine the source used for
both internal and external clocks during special circumstances, such as low-power stop
(LPSTOP) execution.

Table 4-3 summarizes the clock activity during LPSTOP, in crystal mode operation. Any
clock in the off state is held low. Two bits in the SYNCR (STEXT and STSIM) control
clock activity during LPSTOP. Refer to 4.2.6 Low-Power Stop for additional
information.

Table 4-3. Clock Control Signals

Control Bits Clock Outputs
STSIM STEXT SIMCLK CLKOUT
0 0 EXTAL Off
0 1 EXTAL EXTAL

1 0 VCO Off
1 1 VCO VCO

NOTE: SIMCLK runs the periodic interrupt RESET and TRQx pin synchronizers
in LPSTOP mode.

4.2.4 Chip-Select Function

Typical microprocessor systems require external hardware to provide select signals to
external memory and peripherals. This device integrates these functions on-chip to
provide the cost, speed, and reliability benefits of a higher level of integration. The chip-
select function contains register pairs for each external chip-select signal. The pair
consists of a base address register and an address mask register that define the
characteristics of a single chip select. The register pair provides flexibility for a wide
variety of chip-select functions.

4-12 MC68330 USER'S MANUAL MOTOROLA

4.2.4.1 PROGRAMMABLE FEATURES. The chip-select function supports the
following programmable features:

Four Programmable Chip-Select Circuits

All four chip-select circuits are independently programmable from the same list of
selectable features. Each chip-select circuit has an individual base address
register and address mask register that contain the programmed characteristics of
that chip select. The base address register selects the starting address for the
address block in 256-byte increments. The address mask register specifies the
size of the address block range. The valid (V) bit of the base address register
indicates that the register information for that chip select is valid. A global chip
select allows address decode for a boot ROM before system initialization occurs.

Variable Block Sizes
The block size, starting from the specified base address, can vary in size from 256
bytes up to 4 Gbytes in 2N increments. This size is specified in the address mask
register.

Both 8- and 16-Bit Ports Supported
The 8-bit ports are accessible on both odd and even addresses when connected
to data bus bits 15-8; the 16-bit ports can be accessed as odd bytes, even bytes,
or even words. The port size is specified by the PS bits in the address mask
register.

Write Protect Capability
The WP bit in each base address register can restrict write access to its range of
addresses.

Fast-Termination Option
Programming the FTE bit in the base address register for the fast-termination
option causes the chip-select function to terminate the cycle by asserting the
internal DSACKXx early, providing a two-cycle external access.

Internal DSACKx Generation for External Accesses with Programmable Wait States
DSACKXx can be generated internally with up to three wait states for a particular
device using the DD bits in the address mask register.

Full 32-Bit Address Decode with Address Space Checking
The FC bits in the base address register and FCM bits in the address mask
register are used to select address spaces for which the chip selects will be
asserted.

4.2.4.2 GLOBAL CHIP-SELECT OPERATION. Global chip-select operation allows
address decode for a boot ROM before system initialization occurs. CSO0 is the global
chip-select output, and its operation differs from the other external chip-select outputs
following reset. When the CPU32 begins fetching after reset, CS0 is asserted for every
address until the V-bit in the module address base register (MBAR) is set.

MOTOROLA MC68330 USER'S MANUAL 4-13

Global chip select provides a 16-bit port with three wait states, which allows a boot ROM
to be located in any address space and still provide the stack pointer and program
counter values at $00000000 and $00000004, respectively. Global chip select does not
provide write protection and responds to all function codes. CS0 operates in this manner
until the V-bit is set in the CS0 base address register. CS0 can be programmed to
continue decode for a range of addresses after the V-bit is set, provided the desired
address range is first loaded into base address register 0. After the V-bit is set for CS0,
global chip select can only be restarted with a system reset.

A system can use an 8-bit boot ROM if an external 8-bit DSACK is generated which
responds in two wait states or less. See Section 7 Applications for a discussion.

4.2.5 External Bus Interface

This section describes port A and port B functions. Refer to Section 3 Bus Operation
for more information about the external bus interface.

4.2.5.1 PORT A. Port A pins can be independently programmed to be either
addresses A31-A24, discrete I/O pins, or TACKx pins. The port A pin assignment
registers (PPARA1 and PPARA2) control the function of the port A pins as shown in
Table 4-4. Upon reset, port A is configured as input pins. If the system uses these signals
as addresses, pulldowns should be put on these signals to avoid indeterminate values
until the port A registers can be programmed.

Table 4-4. Port A Pin Assignment Register Function

Pin Function
Signal PPARA1 BIT = 0 PPARA1 BIT = 1 PPARA1 BIT = 0
PPARA2 BIT = 0 PPARA2 BIT = X PPARA2 BIT = 1
A31 A31 PORT A7 IACK7
A30 A30 PORT A6 TACK6
A29 A29 PORT AS TACKS
A28 A28 PORT A4 TACK4
A27 A27 PORT A3 TACK3
A26 A26 PORT A2 TACK2
A25 A25 PORT A1 TACKT
A24 A24 PORT A0 —

4.2.5.2 PORT B. Port B pins can be independently programmed to be TRQx and
MODCK pins, or discrete /O pins. The port B pin assignment register (PPARB) controls
the function of the port B pins as shown in Table 4-5. Upon reset, port B is configured to
provide for interrupt request inputs and MODCK.

4-14 MC68330 USER'S MANUAL MOTOROLA

Table 4-5. Port B Pin Assignment

Register
Pin Function
Signal PPARB BIT = 0 | PPARB BIT = 1
RQ7 PORT B7 RQ7
TRQ6 PORT B6 TRQ6
TRQ5 PORT B5 TRQ5
TRQ4 PORT B4 R4
TRQ3 PORT B3 TRQ3
TRQ2 PORT B2 TRQ2
TRQT PORT B1 TRQT
MODCK PORT BO MODCK

NOTE: MODCK has no function after reset.

4.2.6 Low-Power Stop

Executing the LPSTOP instruction provides reduced power consumption when the
MC68330 is idle, with only the SIM40 remaining active. Operation of the SIM40 clock
and CLKOUT during LPSTOP is controlied by the STSIM and STEXT bits in the SYNCR
(see Table 4-3). LPSTOP disables the clock to the software watchdog in the low state.
The software watchdog remains stopped until the LPSTOP mode is ended and begins to
run again on the next rising clock edge.

NOTE

When the CPU32 executes the STOP instruction (as
opposed to LPSTOP), the software watchdog continues
to run. If the software watchdog is enabled, it issues a
reset or interrupt when timeout occurs.

The periodic interrupt timer does not respond to an LPSTOP instruction; thus, it can be
used to exit LPSTOP as long as the interrupt request level is higher than the CPU32
interrupt mask level. To stop the periodic interrupt timer while in LPSTOP, the PITR must
be loaded with a zero value before LPSTOP is executed. The bus monitor, double bus
fault monitor, and spurious interrupt monitor are all inactive during LPSTOP.

If an external device requires additional time to prepare for entry into LPSTOP mode,
entry can be delayed by asserting HALT (see 3.4.2 LPSTOP Broadcast Cycle).

4.2.7 Freeze

FREEZE is asserted by the CPU32 if a breakpoint is encountered with background mode
enabled. Refer to Section 5 CPU32 for more information on the background mode.
When FREEZE is asserted, the double bus fault monitor and spurious interrupt monitor
continue to operate normally. However, the software watchdog and the periodic interrupt
timer may be affected. Setting the FRZ1 bit in the MCR disables the software watchdog

MOTOROLA MC68330 USER'S MANUAL

when FREEZE is asserted, and setting the FRZO0 bit in the MCR disables the periodic
interrupt timer when FREEZE is asserted.

4.3 PROGRAMMER'S MODEL

Figure 4-7 is a programmer's model (register map) of all registers in the SIM40. For more
information about a particular register, refer to the description of the module or function
indicated in the right column. The ADDR (address) column indicates the offset of the
register from the address stored in the base address register. The FC (function code)
column indicates whether a register is restricted to supervisor access (S) or
programmable to exist in either supervisor or user space (S/U).

ADDR
000

004
006

010
012
014
016
018
01A
01C
01E
020

022

024

026

040
042
044
046
048
04A
04C
04E
050
052
054
056
058
05A
05C
05E

w

DOOOOOOOOOOOnnnon

15

8 7 0

MODULE CONFIGURATION REGISTER (MCR)

CLOCK SYNTHESIZER CONTROL REGISTER (SYNCR)

AUTOVECTOR REGISTER (AVR)

RESET STATUS REGISTER (RSR)

RESERVED PORT A DATA (PORTA)
RESERVED PORT A DATA DIRECTION (DDRA)
RESERVED PORT A PIN ASSIGNMENT 1 (PPRA1)
RESERVED PORT A PIN ASSIGNMENT 2 (PPRA2)
RESERVED PORT B DATA (PORTB)
RESERVED PORT B DATA (PORTB1)
RESERVED PORT B DATA DIRECTION (DDRB)
RESERVED PORT B PIN ASSIGNMENT (PPARB)

SW INTERRUPT VECTOR (SWIV)

SYSTEM PROTECTION CONTROL (SYPCR)

PERIODIC INTERRUPT CONTROL REGISTER (PICR)

PERIODIC INTERRUPT TIMING REGISTER (PITR)

RESERVED

SOFTWARE SERVICE (SWSR)

ADDRESS MASK 1 CS0

ADDRESS MASK 2 CS0

BASE ADDRESS 1 CS0

BASE ADDRESS 2 CS0

ADDRESS MASK 1 CS1

ADDRESS MASK 2 CSt

BASE ADDRESS 1 CSt1

BASE ADDRESS 2 CSt1

ADDRESS MASK 1 CS2

ADDRESS MASK 2 CS2

BASE ADDRESS 1 CS2

BASE ADDRESS 2 CS2

ADDRESS MASK 1 CS3

ADDRESS MASK 2 CS3

BASE ADDRESS 1 CS3

BASE ADDRESS 2 CS3

Figure 4-7. SIM40 Programming Model

MC68330 USER'S MANUAL

SYSTEM
PROTECTION

CLOCK
SYSTEM
PROTECTION

EBI

EBI

EBI

EBI

EBI

EBI

EBI

EBI

SYSTEM
PROTECTION
SYSTEM
PROTECTION
SYSTEM
PROTECTION
SYSTEM
PROTECTION

CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT
CHIP SELECT

MOTOROLA

In the registers discussed in the following pages, the number in the upper right-hand
corner indicates the offset of the register from the address stored in the module base
address register. The numbers on the top line of the register represent the bit position in
the register. The second line contains the mnemonic for the bit. The numbers below the
register represent the bit values after reset. The access privilege is indicated in the lower
right-hand corner.

4.3.1 Module Base Address Register

Module Base Address Register 1 $0003FF00
3 3 29 28 27 26 25 24 28 22 2 20 19 18 17 16
BA31 | BA3 | BA29 | BA2s | BA27 | BA2s | BA2s [BA24 | BA23 | BA22 | BA21 [BA20 [BAI9 [BAUS | BA17 | BAl6 |

RESET
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CPU Space Only

Module Base Address Register 2 $0003FF02
5 14 13 2 n 1 9 8 7 6 5 4 3 2 1 0
[(Bas [Bata [Bats [a2 | o [o [o [as7 [ase [ass | ase | ass [as2 [ast [aso | v |

S o o o o o o o o o o o o o o o

CPU Space Only

BA31-BA12 — Base Address Bits 31-12
The base address field is the upper 20 bits of the module base address register,
providing for block starting locations in increments of 4K-bytes.

AS7-AS0O — Address Space Bits 8—1
The address space field allows particular address spaces to be masked, placing
the 4K module block into a particular address space(s). If an address space is
masked, an access to the register block location in that address space becomes
an external access. The module block is not accessed. The address space bits

are:
AS7 — mask CPU space address space (FC2-FC0=111)
AS6 — mask supervisor program address space (FC2-FC0=110)
AS5 — mask supervisor data address space (FC2-FC0=101)
AS4 — mask [Motorola reserved)] address space (FC2-FC0=100)
AS3 — mask [user reserved] address space (FC2-FC0=011)
AS2 — mask user program address space (FC2-FC0=010)
AS1 — mask user data address space (FC2-FC0=001)
ASO — mask [Motorola reserved] address space (FC2-FC0=000)

For each address space bit:
1=Mask this address space from the internal module selection. The bus cycle
goes external.
0=Decode for the internal module block.

V — Valid Bit

MOTOROLA MC68330 USER'S MANUAL

This bit indicates when the contents of the module base address register are valid.
The base address value is not used; therefore, all internal module registers are
not accessible until the V-bit is set.
1=Contents valid
0=Contents not valid
NOTE

An access to this register does not affect external
space, since the cycle is not run externally.

The following is example code for accessing the module base address register (MBAR).

MBAR can be read using the following code: (Register DO will contain the value of
MBAR.)

MOVE #7,D0 load DO with the CPU space function code
MOVEC DO0,SFC load SFC to indicate CPU space

LEA $3FF00,A0 load AO with the address of MBAR
MOVES.L (A0),DO load DO with the contents of MBAR

MBAR can be written to using the following code: (Address $0003FF00 in CPU
space (MBAR) will be loaded with the value $FFFF FO01. This will set the base
address of the internal registers to $FFFFF.)

MOVE #7,D0 load DO with the CPU space function code
MOVEC Do,DFC load SFC to indicate CPU space

LEA $3FF00,A0 load AO with the address of MBAR

MOVE.L #$FFFFF001,D0 load DO with the value to be written into MBAR
MOVES.L DO0,(A0) write the vaiue contained in DO into MBAR

4.3.2 System Configuration and Protection Registers

The following paragraphs provide descriptions of the system configuration and
protection registers.

4.3.2.1 MODULE CONFIGURATION REGISTER (MCR). The MCR, which controls
the SIM40 configuration, can be read or written at any time.

MCR $000
5 14 13 12 1t 1 9 8 7 6 5 4 3 2 4 0
[o [rrzt [rmz2] avec] o | o [swent[sweno] surv] o [o | o [1ares] are2] iaret] inmeo]
ESET:
- 1t o o o 0o o 1 0o 0o 0 f TR

Supervisor Only

4-18 MC68330 USER'S MANUAL MOTOROLA

FRZ1 — Freeze Software Watchdog Enable
1=When FREEZE is asserted, the software watchdog counters are disabled,
preventing interrupts from occurring during software debug.
0=When FREEZE is asserted, the software watchdog counters continue to run. See
4.2.7 Freeze for more information.

FRZ0 — Freeze Periodic Interrupt Timer Enable
1=When FREEZE is asserted, the periodic interrupt timer counters are disabled.
0=When FREEZE is asserted, the periodic interrupt timer counters continue to
operate as programmed.

AVEC — Autovector
1=Chip select 0 will be disabled, and this pin will fuction as an autovector input to
the device.
0=The device will be configured with chip select 0 enabled.

SHEN1, SHENO — Show Cycle Enable

These two control bits determine what the EBI does with the external bus during
internal transfer operations (See Table 4-6). A show cycle allows internal transfers
to be externally monitored. The address, data, and control signals (except for AS)
are driven externally. DS is used to signal address strobe timing for show cycles.
Data is valid on the next falling clock edge after DS is negated. However, data is
not driven externally and AS and DS are not asserted externally for internal
accesses unless show cycles are enabled.

If external bus arbitration is disabled, the EBI will not recognize an external bus
request until arbitration is enabled again. When SHEN1 is set, an external bus
request causes an internal master to stop its current cycle and relinquish the
internal bus. The internal master resumes running cycles on the bus after BR and
BGACK are negated. To prevent bus conflicts, external peripherals must not
attempt to initiate cycles during show cycles with arbitration disabled.

Table 4-6. Show Cycle Control Bits

SHENH1 SHENO ACTION
0 0 Show cycles disabled, external arbitration enabled
0 1 Show cycles enabled, external arbitration disabled
1 X Show cycles enabled, external arbitration enabled

SUPV — Supervisor/User Data Space
The SUPV bit defines the SIM40 global registers as either supervisor data space or
user (unrestricted) data space.

MOTOROLA MC68330 USER'S MANUAL 4-19

1=The SIM40 registers defined as supervisor/user are restricted to supervisor data
access (FC2-FC0=%$5). An attempted user-space write is ignored and returns
BERR.

0=The SIM40 registers defined as supervisor/user data are unrestricted (FC2 is a
don't care).

IARB3 — IARBO — Interrupt Arbitration Bits 3—-0
The reset value of IARB is $F, éllowing the SIM40 to arbitrate during an IACK
cycle immediately after reset. The system software should initialize the IARB field
to a value from $F (highest priority) to $1 (lowest priority). A value of $0 prevents
arbitration and causes all SIM40 interrupts, including external interrupts, to be
discarded as extraneous.

4.3.2.2 AUTOVECTOR REGISTER (AVR). The AVR contains bits that correspond to
external interrupt levels that require an autovector response. Setting a bit allows the
SIM40 to assert an internal AVEC during the IACK cycle in response to the specified
interrupt request level. This register can be read and written at any time.

AVR $006
7 6 5 4 3 2 1 0
[avr]ave [avs [aa]as[a2 avi| o]

RESET.
o o 0o 0 0 0 0 0

Supervisor Only

NOTE:

The IARB field in the MCR must contain a value other
than $0 for the SIM40 to autovector for external
interrupts.

4.3.2.3 RESET STATUS REGISTER (RSR). The RSR contains a bit for each reset
source to the SIM40. A set bit indicates the last type of reset that occurred, and only one
bit can be set in the register. The RSR is updated by the reset control logic when the
SIM40 comes out of reset. This register can be read at any time; a write has no effect. For
more information, see Section 3 Bus Operation.

RSR $007
7 6 5 4 3 2 1 0
rEXTlPOWiSWIDBFl o [oc| sys] o |

Supervisor Only

EXT — External Reset
1=The last reset was caused by an external signal driving RESET.

POW — Power-Up Reset
1=The last reset was caused by the power-up reset circuit.

4-20 MC68330 USER'S MANUAL MOTOROLA

SW — Software Watchdog Reset
1=The last reset was caused by the software watchdog circuit.

DBF — Double Bus Fault Monitor Reset
1=The last reset was caused by the double bus fault monitor.

LOC — Loss of Clock Reset
1=The last reset was caused by a loss of frequency reference to the clock function.
This reset can only occur if the RSTEN bit in the clock function is set and the VCO
is enabled.

SYS — System Reset
1=The last reset was caused by the CPU32 executing a reset instruction. The
system reset does not load a reset vector or affect any internal CPU32 registers or
SIM40 configuration registers, but does reset external devices.

4.3.2.4 SOFTWARE INTERRUPT VECTOR REGISTER (SWIV). The SWIV
contains the 8-bit vector that is returned by the SIM40 during an IACK cycle in response
to an interrupt generated by the software watchdog. This register can be read or written
at any time. This register is set to the uninitialized vector, $0F, at reset.

SWIV $020
7 6 5 4 3 2 1 0
swiv7| swive | swivs] swiva [swiva| swivz [swivi | swivo]
RESET"
o 0o 0o 0o 1 1 1 1

Supervisor Only

4.3.2.5 SYSTEM PROTECTION CONTROL REGISTER (SYPCR). The SYPCR
controls the system monitors, the prescaler for the software watchdog, and the bus
monitor timing. This register can be read at any time, but can be written only once after
reset.

SYPCR $021
7 6 5 4 3 2 1 0
swe | swri| swri| swro| pere | e | BuTi | BuTO|
RESET
0 0 0 0 0 0 0

Supervisor Only

SWE — Software Watchdog Enable

1=Software watchdog enabled

0=Software watchdog disabled
See 4.2.2.5 Software Watchdog for more information.

SWRI — Software Watchdog Reset/Interrupt Select
1=Software watchdog causes a system reset.
0=Software watchdog causes a level 7 interrupt to the CPU32.

MOTOROLA MC68330 USER'S MANUAL 4-21

SWT1, SWT0 — Software Watchdog Timing
These bits, along with the SWP bit in the PITR, control the divide ratio used to
establish the timeout period for the software watchdog. The software watchdog
timeout period is given by the following formula:

1
EXTAL frequency/divide count

or

divide count
EXTAL frequency

The software watchdog timeout period, listed in Table 4-7, gives the formula to derive the
software watchdog timeout for any clock frequency. The timeout periods are listed for a
32.768-kHz crystal used with the VCO, and for a 16.777-MHz external oscillator.

Table 4-7. Deriving Software Watchdog Timeout

SWP |SWT1|SWTo| Software Timeout Period | 32-768-kHz 116.777-MHz External
Crystal Period Clock Period

o 0 0 29/EXTAL Input Frequency 156ms 30us

0 0 ! 211/EXTAL Input Frequency 62.5 ms 122 ps
0 1 0 218 /EXTAL Input Frequency 250 ms 488 s
0 1 1 215 /EXTAL Input Frequency 1s 1.45 s
! ° ° 218 /EXTAL Input Frequency 8s 156 ps
L 0 1 22 /EXTAL Input Frequency 32s 62.5 us
! 1 0 22 /EXTAL Input Frequency 128s 250 ps
! i 1 224 /EXTAL Input Frequency 512s 1us

NOTE

When the SWP and SWT bits are modified to select a
software timeout other than the default, the software
service sequence ($55 followed by $AA written to the
software service register) must be performed before the
new timeout period takes effect.

Refer to 4.2.2.5 Software Watchdog for more information.

DBFE — Double Bus Fault Monitor Enable
1=Enable double bus fault monitor function
0=Disable double bus fault monitor function
For more information, see 4.2.2.3 Double Bus Fault Monitor and Section 5
CPU32.

4-22 MC68330 USER'S MANUAL MOTOROLA

BME — Bus Monitor External Enable
1=Enable bus monitor function for an internal-to-external bus cycle.
0=Disable bus monitor function for an internal-to-external bus cycle.
For more information see 4.2.2.2 Internal Bus Monitor.

BMT — Bus Monitor Timing.
These bits select the timeout period for the bus monitor (see Table 4-8).

Table 4-8. BMT Encoding

BMT1 | BMTO Bus Monitor Timeout Period
0 0 64 system clocks (CLKOUT)
0 1 32 system clocks
1 0 16 system clocks
1 1 8 system clocks

4.3.2.6 PERIODIC INTERRUPT CONTROL REGISTER (PICR). The PICR
contains the interrupt level and the vector number for the periodic interrupt request. This
register can be read or written at any time. Bits 15-11 are unimplemented and always
return zero; a write to these bits has no effect.

PICR $022
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[o [o] o[o o [prafrraLi]rirato] pvz [pive [Pvs [piva [piva [Piv2 [Pvi | Pivo |

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
Supervisor Only
PIRQL2-PIRQLO — Periodic Interrupt Request Level
These bits contain the periodic interrupt request level. Table 4-9 lists which

interrupt request level is asserted during an IACK cycle when a periodic interrupt
is generated. The periodic timer continues to run when the interrupt is disabled.

Table 4-9. PIRQL Encoding

PIRQL2| PIRQL1| PIRQLO| Interrupt Request Level

0 0 0 Periodic Interrupt Disabled
0 0 1 Interrupt Request Level 1

0 1 0 Interrupt Request Level 2
0 1 1 Interrupt Request Level 3
1 0 0 Interrupt Request Level 4
1 0 1 Interrupt Request Level 5
1 1 0. Interrupt Request Level 6
1 1 1 Interrupt Request Level 7

MOTOROLA MC68330 USER'S MANUAL

4-23

NOTE:

Use caution with a level 7 interrupt encoding due to the
SIM40's interrupt servicing order. See 4.2.2.7
Simultaneous Interrupts by Sources in the
SIM40 for the servicing order.

PIV7-PIVO — Periodic Interrupt Vector Bits 7-0
These bits contain the value of the vector generated during an IACK cycle in
response to an interrupt from the periodic timer. When the SIM40 responds to the
IACK cycle, the periodic interrupt vector from the PICR is placed on the bus. This
vector number is multiplied by four to form the vector offset, which is added to the
vector base register to obtain the address of the vector.

4.3.2.7 PERIODIC INTERRUPT TIMER REGISTER (PITR). The PITR contains
control for prescaling the software watchdog and periodic timer as well as the count
value for the periodic timer. This register can be read or written at any time. Bits 15-10
are not implemented and always return zero when read. A write does not affect these
bits.

PITR $024
5 14 18 12 10 e 8 7 & 5 4 8 2 1 0
[[oT o T o of o o [swe[e [rar]emrs]epmrs]pire | pias | pire [pirmi | pirro |
RESS 0 0 0 0 MODCKMODCK o 0 0 0 0 0 0 0

Supervisor Only

SWP — Software Watchdog Prescale
This bit controls the software watchdog clock source as shown in 4.3.2.5 System
Protection Control Register (SYPCR).
1=Software watchdog clock prescaled by a value of 512
0=Software watchdog clock not prescaled
The SWP reset value is the inverse of the MODCK bit state on the rising edge of reset.

PTP — Periodic Timer Prescaler Control
This bit contains the prescaler control for the periodic timer.
1=Periodic timer clock prescaled by a value of 512
0=Periodic timer clock not prescaled
The PTP reset value is the inverse of the MODCK bit state on the rising edge of reset.

PITR7-PITRO — Periodic Interrupt Timer Register Bits 7—0
The remaining bits of the PITR contain the count value for the periodic timer. A
zero value turns off the periodic timer.

4.3.2.8 SOFTWARE SERVICE REGISTER (SWSR). The SWSR is the location to
which the software watchdog servicing sequence is written. The software watchdog can
be enabled or disabled by the SWE bit in the SYPCR. SWSR can be written at any time
but returns all zeros when read.

4-24 MC68330 USER'S MANUAL MOTOROLA

SWSR $027
0

7 6 5 4 3 2 1
SWSR7] SWSRs| sWsRs| SwWsRe[swsRa| swsRz| swsRi] swsRo|
RESoET' 0 0 0 0 0 0 0

Supervisor Only

4.3.3 Clock Synthesizer Control Register (SYNCR)

The SYNCR can be read or written only in supervisor mode. The reset state of SYNCR
produces an operating frequency of 8.38-MHz, when the PLL is referenced to a 32.768-
kHz reference signal. The system frequency is controlled by the frequency control bits in
the upper byte of the SYNCR as follows:

FSYSTEM = FCRYSTAL (4(Y+1)22W+X)

SYNCR $004
5 14 18 2 1 9 8 7 6 5 4 3 2 1 9
[w] x[w] vl vw[v] vi] v rw[o] o [sumr]stock]rsten]stsm[stexr]
RESET
0 1 1 1 11 o o o U U o 0 0
U = Unaffected by reset Supervisor Only

W — Frequency Control Bit
This bit controls the prescaler tap in the synthesizer feedback loop. Setting the bit
increases the VCO speed by a factor of four, requiring a time delay for the VCO to
relock (see equation for determining system frequency).

X — Frequency Control Bit
This bit controls a divide-by-two prescaler, which is not in the synthesizer
feedback loop. Setting the bit doubles the system clock speed without changing
the VCO speed, as specified in the equation for determining system frequency;
therefore, no delay is incurred to relock the VCO.

Y5-Y0 — Frequency Control Bits
The Y-bits, with a value from 0-63, control the modulus downcounter in the
synthesizer feedback loop, causing it to divide by the value of Y+1 (see the
equation for determining system frequency). Changing these bits requires a time
delay for the VCO to relock.

RSVD — Reserved
This bit is reserved for factory testing.

SLIMP — Limp Mode
1=A loss of input signal reference has been detected, and the VCO is running at
approximately one-half the maximum speed (affected by the X-bit in the SYNCR
register), determined from an internal voltage reference.
O=External input signal frequency is at VCO reference.

MOTOROLA MC68330 USER'S MANUAL 4-25

SLOCK — Synthesizer Lock

1=VCO has locked onto the desired frequency (or system clock is driven externally).

0=VCO is enabled, but has not yet locked.

RSTEN — Reset Enable
1=Loss of input signal causes a system reset.
O=Loss of input signal causes the VCO to operate at a nominal speed without

external reference (limp mode), and the device continues to operate at that speed.

STSIM — Stop Mode System Integration Clock
1=When LPSTOP is executed, the SIM40 clock is driven from the VCO.
0=When LPSTOP is executed, the SIM40 clock is driven from an external crystal or
oscillator, and the VCO is turned off to conserve power.

STEXT — Stop Mode External Clock
1=When the LPSTOP instruction is executed, the external clock pin (CLKOUT) is
driven from the SIM40 clock as determined by the STSIM bit.
0=When the LPSTOP instruction is executed, the external clock is held low to
conserve power.

4.3.4 Chip-Select Registers

The following paragraphs provide descriptions of the registers in the chip-select function,
and an example of how to program the registers.

4.3.4.1 BASE ADDRESS REGISTERS. There are four 32-bit base address
registers in the chip-select function, one for each chip-select signal.

Base Address 1 $044, $04C, $054, $05C
8 30 29 28 27 26 2% 4 23 2 A 20 19 18 17 1
| BA31 | Baso | Ba2o | Ba2s [BAc7| Ba2s [BA25 | BA24 | BA23[BA22 | BA21 | BA20 [Bat9 | BAt8 | BAI7 [BAIG |

RESET
U U U U U U U U U U U U U U U

Supervisor Only

Base Address 2 $046, $04E, $056, $05E
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[Bats | Bata | Bata [Bar2 [Batt [eato [Bas | eas | Fos [Fo2 | Fot [Foo [we [FTE [Nes | v |
ESET.

S U u U U U U U U U U U U o0 0

U = Unaffected by reset Supervisor Only

BA31-BA8 — Base Address Bits 31-8
The base address field, the upper 24 bits of each base address register, selects
the starting address for the chip select. The corresponding bits in AM31 — AM8 in
the address mask register define the size of the block specified by the chip select.
The base address field (and the function code field) is compared to the address
on the address bus to determine if a chip select should be generated.

4-26 MC68330 USER'S MANUAL MOTOROLA

FC3-FCO0 — Function Code Bits 3-0

The value programmed in this field causes a chip select to be asserted for a
certain address space type. There are eight address spaces specified as either
user or supervisor, program or data, and CPU. These bits should be used to allow
access to one type of address space in the user program. If access to more than
one type of address space is desired, the function code mask bits should be used
in addition to the function code bits. To prevent access to CPU space, set the NCS
bit.

NOTE:

Since FC3 is not implemented in the MC68330, the
programmer must set FC3 to zero in this register.

WP — Write Protect
This bit can restrict write accesses to the address range in a base address
register. An attempt to write to the range of addresses specified in a base address
register that has this bit set returns BERR.
1=0Only read accesses allowed
O=Either read or write allowed

FTE — Fast-Termination Enable
This bit causes the cycle to terminate early with an internal DSACKX, giving a fast
two-clock external access. When clear, all external cycles are at least three clocks.
If fast termination is enabled, the DD bits of the corresponding address mask
register are overridden (see Section 3 Bus Operation).
1=Fast-termination cycle enabled (termination determined by PS bits)
O=Fast-termination cycle disabled (termination determined by DD and PS bits)

NCS — No CPU Space
This bit specifies whether or not a chip select will assert on a CPU space access
cycle. If both supervisor data and program accesses are desired, while ignoring
CPU space accesses, then this bit should be set. The NCS bit is cleared at reset.
1=Suppress the chip select when accessing CPU space
0=Asserts the chip select on CPU space accesses

V — Valid Bit
This bit indicates that the contents of its base address register and address mask

register pair are valid. The programmed chip selects do not assert until the V-bit is
set.

1=Contents valid
0=Contents not valid

4.3.4.2 ADDRESS MASK REGISTERS. There are four 32-bit address mask
registers in the chip-select function, one for each chip-select signal.

MOTOROLA MC68330 USER'S MANUAL 4-27

Address Mask 1 $040, $048, $050, $058
3 30 29 28 25 24 23 22 2 20 19 18 17
[awe1 [amso [ameo | awzs [amer | awzs [ames | awes | awzs [amez | aver | ameo | awio [aiws [aviz | A |
RESET:
U U U U U U U U U U U U U U u U

Supervisor Only

Address Mask 2 $042, $04A, $052, $05A
15 14 13 1 9 8 7 6 5 4 3 2 1 0

[Avrs | amia | amia [avn2 [awnt Jawio [amo | ams [Foms [Fome [rowr [Fomo [oo1 | boo | pst | pso |

il U U VU U U U U U U U U U u U

U = Unaffected by reset Supetrvisor Only

AM31-AM8 — Address Mask Bits 31-8
The address mask field, the upper 24 bits of each address mask register, defines
the chip select block size. The block size is equal to 2N, where

n = (number of 1's in the address mask register bits 31-8) + 8.

Any set bit masks the corresponding base address register bit (base address
register bit becomes a don’t care). By masking the address bits independently,
external devices of different size address ranges can be used. Address mask bits
can be set or cleared in any order in the field, allowing a resource to reside in
more than one area of the address map. This field can be read or written at any
time.

FCM3-FCMO — Function Code Mask Bits 3—0
This field can be used to mask certain function code bits, allowing more than one
address space type to be assigned to a chip select. Any set bit masks the
corresponding function code bit.

NOTE:

Since FC3 is not implemented in the MC68330, the
programmer must set FCM3 to zero in this register.

DD1, DDO — DSACK Delay Bits 1 and 0
This field determines the number of wait states added before DSACKXx is returned
for that entry. Table 4-10 lists the encoding for the DD bits.

NOTE:

The port size field must be programmed for a DSACKx
response, or the DD bits have no significance.

4-28 MC68330 USER'S MANUAL MOTOROLA

Table 4-10. DD Encoding

DD1 DDO Response
0 0 Zero Wait State
1 One Wait State
1 0 Two Wait States
1 1 Three Wait States

PS1, PSO — Port Size Bits 1 and 0
This field determines whether a given chip select responds with DSACKx and, if
s0, what port size is returned. Table 4-11 lists the encoding for the PS bits.

Table 4-11. PS Encoding

PS1 PSO Mode
0 0 Reserved
0 1 16-Bit Port
1 0 8-Bit Port
1 1 External DSACKx Response

To use the external DSACKXx pin, PS1-0 = 11 should be selected. The DD bits
then have no significance.

4.3.4.3 CHIP SELECT REGISTERS PROGRAMMING EXAMPLE. The following
is an example of programming a chip select at starting address $40000, for a block size
of 256K-bytes, accessing supervisor and user data spaces with a 16-bit port requiring
two wait states. There will be no write protection, no fast termination, and no CPU space
accesses.

base address 1 = $0004
base address 2 = $0013

address mask 1 = $0003
address mask 2 = $FF49

4.3.5 External Bus Interface Control

The following paragraphs describe the registers that control the 1/O pins used with the
external bus interface. Refer to the Section 3 Bus Operation for more information
about the external bus interface. For a list of pin numbers used with port A and port B,
see the pinout diagram in Section 9 Ordering Information and Mechanical
Data. Section 2 Signal Descriptions shows a block diagram of the port control
circuits.

4.3.5.1 PORT A PIN ASSIGNMENT REGISTER 1 (PPARA1). PPARA1 selects
between an address and discrete 1/0 function for the port A pins. Any set bit defines the
corresponding pin to be an I/O pin, controlled by the port A data and data direction
registers. Any cleared bit defines the corresponding pin to be an address bit as defined
in the following register diagram. Bits set in this register override the configuration setting

MOTOROLA MC68330 USER'S MANUAL 4-29

of PPARA2. The all-ones reset value of PPARA1 configures it as an input port. This
register can be read or written at any time.

PPARAT1 $01 5

7 6 5 4 3
PRTA7 | PRTAG | PRTA5| PRTA4| PRIA3 PRTA2 PRTA1 PRTAO
(a3t) | (as0) | (a20) | (a2g) | (A27) | (A26) | (A25)| (A24)
RESET:
1 1 1 1 1 1 1

Supervisor Only

4.3.5.2 PORT A PIN ASSIGNMENT REGISTER 2 (PPARA2). PPARA2 selects
between an address and TACKXx function for the port A pins. Any set bit defines the
corresponding pin to be an TACKx output pin. Any cleared bit defines the corresponding
pin to be an address bit as defined in the register diagram. Any set bits in PPARAT
override the configuration set in PPARA2. Bit 0 has no function in this register because
there is no level-zero interrupt. This register can be read or written at any time.

PPARAZ $017

4 3 2 1 0
LIACK7 IACKS IACK5 TACK4 | TACK3 | TACK2 | TACKT | | J
A31) | (A30) | (A29) | (A28) | (A27) | (A26) | (A25)
RESET

0 0 0 0 0 0
Supervisor Only

The TACKx signals are asserted if a bit in PPARA2 is set and the CPU32 services an
external interrupt at the corresponding level. JACKx signals have the same timing as
address strobes.

NOTE:
Upon reset, port A is configured as an input port.

4.3.5.3 PORT A DATA DIRECTION REGISTER (DDRA). DDRA controls the
direction of the pin drivers when the pins are configured as I/O. Any set bit configures the
corresponding pin as an output. Any cleared bit configures the corresponding pin as an
input. This register affects only pins configured as discrete I/O. This register can be read
or written at any time.

DDRA $013
7 6 5 4 3 2 1 0
[oo7 [oos [pos [ppa [ops [pb2 [ot [Doo |
RESET:
0 0 0 0 0 0 0 0

Supervisor/User

4.3.5.4 PORT A DATA REGISTER (PORTA). PORTA affects only pins configured
as discrete I/0. A write to the port A data register is stored in the internal data latch, and, if
any port A pin is configured as an output, the value stored for that bit is driven on the pin.
A read of the port A data register returns the value at the pin only if the pin is configured

4-30 MC68330 USER'S MANUAL MOTOROLA

as discrete input. Otherwise, the value read is the value stored in the internal data latch.
This register can be read or written at any time.

PORTA $011
7 6 5 4 3 2 1 0
[Pz [pe [Ps [P4 [P3s [P2 Pt [P]

RESET:
U U U u U U] U

Supervisor/User

4.3.5.5 PORT B PIN ASSIGNMENT REGISTER (PPARB). PPARB is used to
select between the interrupts and MODCK, and a discrete 1/O port. Any set bit defines the
corresponding pin to be an IRQ input. Any cleared bit defines the corresponding pin to
be a discrete /O pin. The MODCK signal has no function after reset. The PPARB is
configured to all-ones at reset to provide for interrupt request inputs and MODCK. This
register can be read or written at any time.

PPARB $01F
7 6 5 4 3 2 1 0
PPARB7 | PPARBG | PPARB 5| PPARB4 | PPARB3 | PPARB2 | PPARB1| PPARBO
(RQ7) | (IRae) | (RQs) | (RA4) | (IRQ3) | (RQ2) | (RQ1) |MODCK

RESET:
1 1 1 1 1 1 1 1

Supervisor Only

4.3.5.6 PORT B DATA DIRECTION REGISTER (DDRB). DDRB controls the
direction of the pin drivers when the pins are configured as 1/0. Any set bit configures the
corresponding pin as an output. Any cleared bit configures the corresponding pin as an
input. This register affects only pins configured as discrete /0. This register can be read
or written at any time.

DDRB $01 D

7 6 5 4 3 2
[oo7 | oos [pps | Dp4 [DD3 | DD2 [001 Lonﬂ
RESET

0 0 0 0 0 0 0 0

Supervisor/User

4.3.5.7 PORT B DATA REGISTER (PORTB, PORTB1). This is a single register
that can be accessed at two different addresses. The port B data register affects only
those pins configured as discrete 1/O. A write is stored in the internal data latch, and, if
any port B pin is configured as an output, the value stored for that bit is driven on the pin.
A read of this register returns the value stored in the register only if the pin is configured
as a discrete output. Otherwise, the value read is the value of the pin. This register can
be read or written at any time.

PORTB PORTB1 $019 01B
|P7|Pe|Ps[P4[P3[P2[P1[J
RESET.

U] u]]] 1] u

Supervisor/User

MOTOROLA MC68330 USER'S MANUAL

4-31

4-32 MC68330 USER'S MANUAL MOTOROLA

SECTION 5
CPU32

The CPU32, the first-generation instruction processing module of the M68300 Family, is
based on the industry-standard MC68000 core processor. It has many features of the
MC68010 and MC68020 as well as unique features suited for high-performance processor
applications. The CPU32 provides a significant performance increase over the MC68000
CPU, yet maintains source-code and binary-code compatibility with the M68000 Family.

5.1 OVERVIEW

The CPU32 is designed to interface to the intermodule bus (IMB), allowing interaction with
other IMB submodules. In this manner, integrated processors can be developed that
contain useful peripherals on-chip. This integration provides high-speed accesses among
the IMB submodules, increasing system performance.

Another advantage of the CPU32 is low power consumption. The CPU32 is implemented
in high-speed complementary metal-oxide semiconductor (HCMOQOS) technology, providing
low power use during normal operation. During periods of inactivity, the low-power stop
(LPSTOP) instruction can be executed, shutting down the CPU32 and other IMB modules,
greatly reducing power consumption.

Ease of programming is an important consideration when using an integrated processor.
The CPU32 instruction format reflects a predominate register-memory interaction
philosophy. All data resources are available to all operations that require them. The
programming model includes eight multifunction data registers and seven general-purpose
addressing registers. The data registers readily support 8-bit (byte), 16-bit (word), and 32-
bit (long-word) operand lengths for all operations. Address manipulation is supported by
word and long-word operations. Although the program counter (PC) and stack pointers
(SP) are special-purpose registers, they are also available for most data addressing
activities. Ease of program checking and diagnosis is enhanced by trace and trap
capabilities at the instruction level.

As processor applications become more complex and programs become larger, high-level
language (HLL) will become the system designer's choice in programming languages. HLL
aids in the rapid development of complex algorithms with less error, and is readily
portable. The CPU32 instruction set will efficiently support HLL.

MOTOROLA MC68330 USER'S MANUAL 5-1

5.1.1 Features
Features of the CPU32 are as follows:

+ Fully Upward-Object-Code Compatible with M68000 Family

+ Virtual Memory Implementation

» Loop Mode of Instruction Execution

+ Fast Multiply, Divide, and Shift Instructions

+ Fast Bus Interface with Dynamic Bus Port Sizing

+ Improved Exception Handling for Embedded Control Applications

» Additional Addressing Modes
— Scaled Index
— Address Register Indirect with Base Displacement and Index
— Expanded PC Relative Modes
— 32-Bit Branch Displacements

* Instruction Set Additions

— High-Precision Multiply and Divide
— Trap On Condition Codes
— Upper and Lower Bounds Checking

+ Enhanced Breakpoint Instruction

» Trace on Change of Flow

+ Table Lookup and Interpolate Instruction

* LPSTORP Instruction

» Hardware Breakpoint Signal, Background Mode
+ Fully Static Implementation

A block diagram of the CPU32 is shown in Figure 5-1. The major blocks depicted operate
in a highly independent fashion that maximizes concurrences of operation while managing
the essential synchronization of instruction execution and bus operation. The bus
controller loads instructions from the data bus into the decode unit. The sequencer and
control unit provide overall chip control, managing the internal buses, registers, and
functions of the execution unit.

5.1.2 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed physical
memory that can be accessed directly by the processor and maintains an image of a much
larger "virtual" memory on a secondary storage device. When the processor attempts to
access a location in the virtual memory map that is not resident in physical memory, a
page fault occurs. The access to that location is temporarily suspended while the
necessary data is fetched from secondary storage and placed in physical memory. The

5-2 MC68330 USER'S MANUAL MOTOROLA

CPU32 uses instruction restart, which requires that only a small portion of the internal
machine state be saved. After correcting the page fault, the machine state is restored, and
the instruction is refetched and restarted. This process is completely transparent to the
application program.

SEQUENCER l

CONTROL INSTRUCTION
UNIT PREFETCH
AND
DECODE

DATABUS D
° BUS BUS CONTROL
EXE&L‘J}'ON CONTROL

ADDRESS BUS 32

Figure 5-1. CPU32 Block Diagram

5.1.3 Loop Mode Instruction Execution

The CPU32 has several features that provide efficient execution of program loops. One of
these features is the DBcc looping primitive instruction. To increase the performance of
the CPU32, a loop mode has been added to the processor. The loop mode is used by any
single-word instruction that does not change the program flow. Loop mode is implemented
in conjunction with the DBcc instruction. Figure 5-2 shows the required form of an
instruction loop for the processor to enter loop mode.

ONE-WORD INSTRUCTION

DBcc

DBec DISPLACEMENT
SFFF

Figure 5-2. Loop Mode Instruction Sequence

The loop mode is entered when the DBcc instruction is executed and the loop
displacement is —4. Once in loop mode, the processor performs only the data cycles
associated with the instruction and suppresses all instruction fetches. The termination

MOTOROLA MC68330 USER'S MANUAL 5-3

condition and count are checked after each execution of the data operations of the looped
instruction. The CPU32 automatically exits the loop mode on interrupts or other
exceptions.

5.1.4 Vector Base Register

The vector base register (VBR) contains the base address of the 1024-byte exception
vector table, which consists of 256 exception vectors. Exception vectors contain the
memory addresses of routines that begin execution at the completion of exception
processing. These routines perform a series of operations appropriate for the
corresponding exceptions. Because the exception vectors contain memory addresses,
each consists of one long word, except for the reset vector. The reset vector consists of
two long words: the address used to initialize the SSP and the address used to initialize
the PC.

The address of an interrupt exception vector is derived from an 8-bit vector number and
the VBR. The vector numbers for some exceptions are obtained from an external device;
other numbers are supplied automatically by the processor. The processor multiplies the
vector number by four to calculate the vector offset, which is added to the VBR. The sum
is the memory address of the vector. All exception vectors are located in supervisor data
space, except the reset vector, which is located in supervisor program space. Only the
initial reset vector is fixed in the processor's memory map; once initialization is complete,
there are no fixed assignments. Since the VBR provides the base address of the vector
table, the vector table can be located anywhere in memory; it can even be dynamically
relocated for each task that is executed by an operating system. Refer to 5.6 Exception
Processing for additional details.

31 0
[VECTOR BASE REGISTER (VBR) |

5.1.5 Exception Handling

The processing of an exception occurs in four steps, with variations for different exception
causes. During the first step, a temporary internal copy of the status register (SR) is made,
and the SR is set for exception processing. During the second step, the exception vector
is determined. During the third step, the current processor context is saved. During the
fourth step, a new context is obtained, and the processor then proceeds with instruction
processing.

Exception processing saves the most volatile portion of the current context by pushing it
on the supervisor stack. This context is organized in a format called the exception stack
frame. This information always includes the SR and PC context of the processor when the
exception occurred. To support generic handlers, the processor places the vector offset in
the exception stack frame. The processor also marks the frame with a frame format. The

5-4 MC68330 USER'S MANUAL MOTOROLA

format field allows the return-from-exception (RTE) instruction to identify what information
is on the stack so that it may be properly restored.

5.1.6 Addressing Modes

Addressing in the CPU32 is register oriented. Most instructions allow the results of the
specified operation to be placed either in a register or directly in memory; this flexibility
eliminates the need for extra instructions to store register contents in memory.

The seven basic addressing modes are as follows:

. Register Direct

. Register Indirect

. Register Indirect with Index

. Program Counter Indirect with Displacement
. Program Counter Indirect with Index

. Absolute

. Immediate

Included in the register indirect addressing modes are the capabilities to postincrement,
predecrement, and offset. The PC relative mode also has index and offset capabilities. In
addition to these addressing modes, many instructions implicitly specify the use of the SR,
SP and/or PC. Addressing is explained fully in 5.3 Data Organization and Addressing
Capabilities.

5.1.7 Instruction Set

The instruction set of the CPU32 is very similar to that of the MC68020 (see Table 5-1).
Two new instructions have been added to facilitate embedded control applications:
LPSTOP and table lookup and interpolate (TBL). The following M68020 instructions are
not implemented on the CPU32:

BFxxx — Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU, BFFFO, BFINS,
BFSET, BFTST)

CALLM, RTM — Call Module, Return Module

CAS, CAS2 — Compare and Set (Read-Modify-Write Instructions)

cpxxx — Coprocessor Instructions (cpBcc, cpDBcc, cpGEN, cpRESTORE, cpSAVE,
cpScc, cpTRAPCcc)

PACK, UNPK — Pack, Unpack BCD Instructions

The CPU32 traps on unimplemented instructions or illegal effective addressing modes,
allowing user-supplied code to emulate unimplemented capabilities or to define special-
purpose functions. However, Motorola reserves the right to use all currently
unimplemented instruction operation codes for future M68000 core enhancements.

5.1.7.1 TABLE LOOKUP AND INTERPOLATE INSTRUCTIONS. To maximize
throughput for real-time applications, reference data is often "particulated" and stored in
memory for quick access. The storage of each data point would require an inordinate

MOTOROLA MC68330 USER'S MANUAL 5-5

amount of memory. The table instruction requires only a sample of data points stored in
the array, thus reducing memory requirements. Intermediate values are recovered with
this instruction via linear interpolation. The results may be rounded by a round-to-nearest

algorithm.
Table 5-1. Instruction Set Summary
Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend MOVEA Move Address
ADD Add MOVE CCR Move Condition Code Register
ADDA Add Address MOVE SR Move to/from Status Register
ADDI Add Immediate MOVE USP Move User Stack Pointer
ADDQ Add Quick MOVEC Move Control Register
AND Logical AND MOVEM Move Multiple Registers
ANDI Logical AND Immediate MOVEP Move Peripheral Data
ASL Arithmetic Shift Left MOVEQ Move Quick
ASR Arithmetic Shift Right MOVES Move Alternate Address Space
Bce Branch Conditionally (16 Tests) MULS Signed Multiply
BCHG Bit Test and Change MULU Unsigned Multiply
BCLR Bit Test and Clear NBCD Negate Decimal with Extend
BGND Enter Background Mode NEG Negate
BKPT Breakpoint NEGX Negate with Extend
BRA Branch Always NOP No Operation
BSET Bit Test and Set NOT Ones Complement
BSR Branch to Subroutine OR Logical Inclusive OR
BTST Bit Test ORI Logical Inclusive OR Immediate
CHK Check Register against Bounds PEA Push Effective Address
CHK2 Check Register against Upper and RESET Reset External Devices
Lower Bounds ROL, ROR Rotate Left and Right
CLR Clear Operand ROXL, ROXR | Rotate with Extend Left and Right
CMP Compare RTD Return and Deallocate
CMPA Compare Address RTE Return from Exception
CMPI Compare Immediate RTR Return and Restore
CMPM Compare Memory RTS Return from Subroutine
CMP2 Compare Register against Upper SBCD Subtract Decimal with Extend
and Lower Bounds Scc Set Conditionally
DBcc Test Condition, Decrement and STOP Stop
Branch (16 Tests) SuB Subtract
DIVS, DIVSL Signed Divide SUBA Subtract Address
DIVU, DIVUL | Unsigned Divide SUBI Subtract Inmediate
EOR Logical Exclusive OR SUBQ Subtract Quick
EORI Logical Exclusive OR Immediate SUBX Subtract with Extend
EXG Exchange Registers SWAP Swap Data Register Halves
EXT, EXTB Sign Extend TAS Test and Set Operand
ILLEGAL Take lllegal Instruction Trap TBLS, TBLSN | Table Lookup and Interpolate,
JMP Jump Signed
JSR Jump to Subroutine TBLU, TBLUN | Table Lookup and Interpolate,
LEA Load Effective Address Unsigned
LINK Link and Allocate TRAPcc Trap Conditionally (16 Tests)
LPSTOP Low-Power Stop TRAPV Trap on Overflow
LSL, LSR Logical Shift Left and Right TST Test
MOVE Move UNLK Unlink
5-6 MC68330 USER'S MANUAL MOTOROLA

5.1.7.2 LOW-POWER STOP INSTRUCTION. In applications where power consumption is
a consideration, the CPU32 forces the device into a low-power standby mode when
immediate processing is not required. The low-power stop mode is entered by executing
the LPSTOP instruction. The processor will remain in this mode until a user-specified (or
higher) interrupt level or reset occurs.

5.1.8 Processing States

The processor is always in one of four processing states: normal, exception, halted, or
background. The normal processing state is that associated with instruction execution; the
bus is used to fetch instructions and operands and to store results. The exception
processing state is associated with interrupts, trap instructions, tracing, and other
exception conditions. The exception may be internally generated explicitly by an
instruction or by an unusual condition arising during the execution of an instruction.
Externally, exception processing can be forced by an interrupt, a bus error, or a reset. The
halted processing state is an indication of catastrophic hardware failure. For example, if
during the exception processing of a bus error another bus error occurs, the processor
assumes that the system is unusable and halts. The background processing state is
initiated by breakpoints, execution of special instructions, or a double bus fault.
Background processing allows interactive debugging of the system via a simple serial
interface. Refer to 5.5 Processing States for details.

5.1.9 Privilege States

The processor operates at one of two levels of privilege — supervisor or user. The
supervisor level has higher privileges than the user level. Not all instructions are permitted
to execute in the lower privileged user level, but all instructions are available at the
supervisor level. This scheme allows the supervisor to protect system resources from
uncontrolled access. The processor uses the privilege level indicated by the S-bit in the
status register to select either the user or supervisor privilege level and either the user
stack pointer (USP) or supervisor stack pointer (SSP) for stack operations.

MOTOROLA MC68330 USER'S MANUAL 5-7

5.2 ARCHITECTURE SUMMARY

The CPU32 is upward source- and object-code compatible with the MC68000 and
MC68010. It is downward source- and object-code compatible with the MC68020. Within
the M68000 Family, architectural differences are limited to the supervisory operating state.
User state programs can be executed unchanged on upward-compatible devices.
The major CPU32 features are as follows:

+ 32-Bit Internal Data Path and Arithmetic Hardware

+ 32-Bit Address Bus Supported by 32-Bit Calculations

+ Rich Instruction Set

+ Eight 32-Bit General-Purpose Data Registers

+ Seven 32-Bit General-Purpose Address Registers

+ Separate User and Supervisor Stack Pointers

+ Separate User and Supervisor State Address Spaces

+ Separate Program and Data Address Spaces

» Many Data Types

» Flexible Addressing Modes

+ Full Interrupt Processing

+ Expansion Capability
5.2.1 Programming Model

The CPU32 programming model consists of two groups of registers that correspond to the
user and supervisor privilege levels. User programs can only use the registers of the user
model. The supervisor programming model, which supplements the user programming
model, is used by CPU32 system programmers who wish to protect sensitive operating
system functions. The supervisor model is identical to that of MC68010 and later
processors.

The CPU32 has eight 32-bit data registers, seven 32-bit address registers, a 32-bit PC,
separate 32-bit SSP and USP, a 16-bit SR, two alternate function code registers, and a
32-bit VBR (see Figures 5-3 and 5-4).

5-8 MC68330 USER'S MANUAL MOTOROLA

31

16 15

Do

D1

D2

D3

D4

D5

De

D7

31

16 15

A0

Al

A2

A3

Ad

A5

A6

31

16 15

| A7 wsp)

31

| pc

31

15

0 [| ccr

Figure 5-3. User Programming Model

16 15

| a7 ssp)

15 8 7 0
[(ccrR) | sm

31 0
| pc

31 32 o0
SFC
DFC

MOTOROLA

DATA REGISTERS

ADDRESS REGISTERS

USER STACK POINTER

PROGRAM COUNTER

CONDITION CODE
REGISTER

SUPERVISOR STACK
POINTER

STATUS REGISTER

PROGRAM COUNTER

ALTERNATE FUNCTION
CODE REGISTERS

Figure 5-4. Supervisor Programming Model Supplement

MC68330 USER'S MANUAL

5.2.2 Registers

Registers D7 to DO are used as data registers for bit, byte (8-bit), word (16-bit), long-word
(32-bit), and quad-word (64-bit) operations. Registers A6 to A0 and the USP and SSP are
address registers that may be used as software SPs or base address registers. Register
A7 (shown as A7 and A7' in Figures 5-3 and 5-4) is a register designation that applies to
the USP in the user privilege level and to the SSP in the supervisor privilege level. In
addition, address registers may be used for word and long-word operations. All of the 16
general-purpose registers (D7 to DO, A7 to A0) may be used as index registers.

The PC contains the address of the next instruction to be executed by the CPU32. During
instruction execution and exception processing, the processor automatically increments
the contents of the PC or places a new value in the PC, as appropriate.

The SR (see Figure 5-5) contains condition codes, an interrupt priority mask (three bits),
and three control bits. Condition codes reflect the results of a previous operation. The
codes are contained in the low byte (CCR) of the SR. The interrupt priority mask
determines the level of priority an interrupt must have in order to be acknowledged. The
control bits determine trace mode and privilege level. At user privilege level, only the CCR
is available. At supervisor privilege level, software can access the full SR.

The VBR contains the base address of the exception vector table in memory. The
displacement of an exception vector is added to the value in this register to access the
vector table.

Alternate function code registers (SFC and DFC) contain 3-bit function codes. The CPU32
generates a function code each time it accesses an address. Specific codes are assigned
to each type of access. The codes can be used to select eight dedicated 4G-byte address
spaces. The MOVE instructions can use registers SFC and DFC to specify the function
code of a memory address.

USER BYTE
SYSTEMBYTE (CONDITION CODE REGISTER)

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[n[To[s[o]o||2||1[|o[o[o]o[x|N|z|v|c]
— NS—

TRACE INTERRUPT

ENABLE PRIORITY MASK EXTEND

NEGATIVE
SUPERVISORIUSER ZERO
STATE
OVERFLOW

CARRY
Figure 5-5. Status Register

5-10 MC68330 USER'S MANUAL MOTOROLA

5.2.3 Data Types
Six basic data types are supported:
* Bits
+ Binary-Coded Decimal (BCD) Digits
+ Byte Integers (8 bits)
» Word Integers (16 bits)
* Long-Word Integers (32 bits)
+ Quad-Word Integers (64 bits)

5.2.3.1 ORGANIZATION IN REGISTERS. The eight data registers can store data
operands of 1, 8, 16, 32, and 64 bits and addresses of 16 or 32 bits. The seven address
registers and the two SPs are used for address operands of 16 or 32 bits. The PC is 32
bits wide.

5.2.3.1.1 Data Registers. Each data register is 32 bits wide. Byte operands occupy the
low-order 8 bits, word operands, the low-order 16 bits, and long-word operands, the entire
32 bits. When a data register is used as either a source or destination operand, only the
appropriate low-order byte or word (in byte or word operations, respectively) is used or
changed — the remaining high-order portion is neither used nor changed. The least
significant bit (LSB) of a long-word integer is addressed as bit zero, and the most
significant bit (MSB) is addressed as bit 31. Figure 5-6 shows the organization of various
types of data in the data registers.

Quad-word data consists of two long words: for example, the product of 32-bit multiply or
the quotient of 32-bit divide operations (signed and unsigned). Quad words may be
organized in any two data registers without restrictions on order or pairing. There are no
explicit instructions for the management of this data type; however, the MOVEM
instruction can be used to move a quad word into or out of the registers.

BCD data represents decimal numbers in binary form. CPU32 BCD instructions use a
format in which a byte contains two digits — the four LSB contain the low digit, and the
four MSB contain the high digit. The ABCD, SBCD, and NBCD instructions operate on two
BCD digits packed into a single byte.

MOTOROLA MC68330 USER'S MANUAL 5-11

31 30 1 0

= | s8]
BYTE
31 24 23 16 15 8 7 0
| HIGH-ORDER BYTE MIDDLE HIGH BYTE MIDDLE LOW BYTE LOW-ORDER BYTE _ |
WORD
31 16 15 0
[HIGH-ORDER WORD [LOW-ORDER WORD
LONG WORD
31 0
| LONG WORD |
QUAD WORD
63 62 32
[mss | HIGH-ORDER LONG WORD |
31 1 0
| LOW-ORDER LONG WORD [ss]

Figure 5-6. Data Organization in Data Registers

5.2.3.1.2 Address Registers. Each address register and SP holds a 32-bit address.
Address registers cannot be used for byte-sized operands. When an address register is
used as a source operand, either the low-order word or the entire long-word operand is
used, depending upon the operation size. When an address register is used as a
destination operand, the entire register is affected, regardless of operation size. If the
source operand is a word, it is first sign extended to 32 bits, and then used in the
operation. Address registers can be used to support address computation. The instruction
set includes instructions that add to, subtract from, compare, and move the contents of
address registers. Figure 5-7 shows the organization of addresses in address registers.

31 16 15 0
l SIGN EXTENDED ’ 16-BIT ADDRESS OPERAND l

31 0
I FULL 32-BIT ADDRESS OPERAND l

Figure 5-7. Address Organization in Address Registers

5-12 MC68330 USER'S MANUAL MOTOROLA

5.2.3.1.3 Control Registers. The control registers contain control information for
supervisor functions. The registers vary in size. With the exception of the user portion of
the SR (CCR), they are accessed only by instructions at the supervisor privilege level.

The SR shown in Figure 5-5 is 16 bits wide. Only 11 bits of the SR are defined, and all
undefined values are reserved by Motorola for future definition. The undefined bits are
read as zeros and should be written as zeros for future compatibility. The lower byte of the
SR is the CCR. Operations to the CCR can be performed at the supervisor or user
privilege level. All operations to the SR and CCR are word-size operations. For all CCR
operations, the upper byte is read as all zeros and is ignored when written, regardless of
privilege level.

The alternate function code registers (SFC and DFC) are 32-bit registers with only bits 2—
0 implemented. These bits contain address space values (FC2 to FCO0) for the read or
write operand of the MOVES instruction. The MOVEC instruction is used to transfer values
to and from the alternate function code registers. These are long-word transfers — the
upper 29 bits are read as zeros and are ignored when written.

5.2.3.2 ORGANIZATION IN MEMORY. Memory is organized on a byte-addressable basis.
An address corresponds to a high-order byte. For example, the address (N) of a long-word
data item is the address of the most significant byte of the high-order word. The address of
the most significant byte of the low-order word is (N + 2), and the address of the least

significant byte of the long word is (N + 3). The CPU32 requires data words and long
words, as well as instruction words, to be aligned on word boundaries. Data misalignment
is not supported. Figure 5-8 shows how operands and instructions are organized in
memory. Note that (N + X) is below (N) — that is, address value increases as one moves
down the page.

5.3 DATA ORGANIZATION AND ADDRESSING CAPABILITIES

The addressing mode of an instruction can specify the value of an operand (an immediate
operand), a register that contains the operand (register direct addressing mode), or how
the effective address of an operand in memory is derived. An assembler syntax has been
defined for each addressing mode.

Figure 5-9 shows the general format of the single effective-address-instruction operation
word. The effective address field specifies the addressing mode for an operand that can
use one of the numerous defined modes. The designation is composed of two 3-bit fields,
the mode field and the register field. The value in the mode field selects a mode or a set of
modes. The register field specifies a register for the mode or a submode for modes that do
not use registers.

Many instructions imply the addressing mode for only one of the operands. The formats of
these instructions include appropriate fields for operands that use only a single addressing
mode.

MOTOROLA MC68330 USER'S MANUAL 5-13

5-14

BIT DATA

1 BYTE =8 BITS
7 6 5 4 3 2 1 0
BYTE DATA
(8 BITS)
15 87 0
MSB BYTE O LSB BYTE 1
BYTE 2 BYTE 3
WORD DATA / INSTRUCTION
15 (16 BITS) 0
MSB WORD 0 T LSB
WORD 1
WORD 2
LONG-WORD DATA /INSTRUCTION
15 (32 BITS) 0
MSB_ _ LONGWORD — — — _HIGHORDER ~__~__ _ _ — —
0 LOW ORDER LsSB
— — — LONGWORD1— —_—_——— = —_= — - — —_ —
— — — LONGWORD2— —_—_—— — —_— — = — - —_ —
DECIMAL DATA
2BCDDIGITS = 1 BYTE
15 12 11 87 43 0
MsD BCD 0 Bcp1 LSD BCD 2 BCD 3
BCD 4 BCD 5 BCD6 BCD 7
MSD = Most Significant Digit
LSD = Least Significant Digit
ADDRESS
(32 BITS)
15 0
MSB
I~ — — ADDRESSO — — IGHORRER L —_—
LOW ORDER LSB
— — — ADDRESS1 —_—_—— e — — —_— — - - —_ —
— — ADDRESS2 _—_— = — = = - = = - _——

MSB = Most Significant Bit
LSB = Least Significant Bit

Figure 5-8. Memory Operand Addressing

MC68330 USER'S MANUAL

MOTOROLA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EFFECTIVE ADDRESS

MODE | REGISTER

Figure 5-9. Single Effective-Address-Instruction Operation Word

Additional information may be needed to specify an operand address. This information is
contained in an additional word or words called the effective address extension, and is
considered part of an instruction. Address extension formats are discussed in 5.3.4.4
Effective Address Encoding Summary.

When an addressing mode uses a register, the register is specified by the register field of
the operation word. Other fields within the instruction specify whether the selected register
is an address or data register and how the register is to be used.

5.3.1 Program and Data References

An M68000 Family processor makes two classes of memory references, each of which
has a complete, separate logical address space.

References to opcodes and extension words are program space references.

Operand reads and writes are primarily data space references. Operand reads are from
data space in all but two cases — immediate operands embedded in the instruction
stream and operands addressed relative to the current PC are program space references.
All operand writes are to data space.

5.3.2 Notation Conventions

EA — Effective address
An — Address register n
Example: A3 is address register 3
Dn — Data registern
Example: D5 is data register 5
Rn — Any register, data or address
Xn.SIZE*SCALE — Index register n (data or address),

Index size (W for word, L for long word),
Scale factor (1, 2, 4, or 8 for byte, word, long-word or
quad-word scaling)

PC — Program counter

SR — Status register

SP — Stack pointer
CCR — Condition code register
USP — User stack pointer
SSP — Supervisor stack pointer

MOTOROLA MC68330 USER'S MANUAL 5-15

dn

w8

(An

~

5.3.3 Implicit Reference

— Displacement value, n bits wide

— Base displacement

— Long-word size

— Word size

— Byte size

— Identifies an indirect address in a register

Some instructions make implicit reference to the PC, the system SP, the USP, the SSP, or
the SR. Table 5-2 shows the instructions and the registers involved:

5.3.4 Effective Address

Table 5-2. Implicit Reference

Instructions

Instruction Implicit Registers
ANDI to CCR SR
ANDI to SR SR
BRA PC
BSR PC, SP
CHK (exception) PC, SP
CHK2 (exception) SSP, SR
DBcc PC
DIVS (exception) SSP, SR
DIVU (exception) SSP, SR
EORI to CCR SR
EORI to SR SR
JMP PC
JSR PC, SP
LINK SP
LPSTOP SR
MOVE CCR SR
MOVE SR SR
MOVE USP UsP
ORI to CCR SR
ORI to SR SR
PEA SP
RTD PC, SP
RTE PC, SP, SR
RTR PC, SP, SR
RTS PC, SP
STOP SR
TRAP (exception) | SSP, SR
TRAPV (exception) | SSP, SR
UNLK SP

Most instructions specify the location of an operand by a field in the operation word called
an effective address field or an effective address ((EA)). An EA is composed of two 3-bit

MC68330 USER'S MANUAL

5-16

MOTOROLA

subfields: mode specification field and register specification field. Each of the address
modes is selected by a particular value in the mode specification subfield of the EA. The
EA field may require further information to fully specify the operand. This information,
called the EA extension, is in a following word or words and is considered part of the
instruction (see 5.3.1 Program and Data References).

5.3.4.1 REGISTER DIRECT MODE. These EA modes specify that the operand is in one of
the 16 multifunction registers.

5.3.4.1.1 Data Register Direct. In the data register direct mode, the operand is in the data
register specified by the EA register field.

GENERATION EA=Dn
ASSEMBLER SYNTAX Dn
MODE" 000 31 0
DATA REGISTER -
: D> PERAND
NUMBER OF EXTENSION WORDS 0 OPER

5.3.4.1.2 Address Register Direct. In the address register direct mode, the operand is in
the address register specified by the EA register field.

GENERATION- EA=An
ASSEMBLER SYNTAX An
MODE 001 » 0
DATAREGISTER A
A
NUMBER OF EXTENSIONWORDS o OPERAND

5.3.4.2 MEMORY ADDRESSING MODES. These EA modes specify the address of the
memory operand.

5.3.4.2.1 Address Register Indirect. In the address register indirect mode, the operand is
in memory, and the address of the operand is in the address register specified by the
register field.

GENERATION EA= (An)

ASSEMBLER SYNTAX (An)

MODE 010 3 0
REGISTER. n

ADDRESS REGISTER] MEMORY ADDRESS]
MEMORY ADDRESS - :
NUMBER OF EXTENSION WORDS 0 I OPERAND]

5.3.4.2.2 Address Register Indirect with Postincrement. In the address register indirect
with postincrement mode, the operand is in memory, and the address of the operand is in
the address register specified by the register field. After the operand address is used, it is

MOTOROLA MC68330 USER'S MANUAL 5-17

incremented by one, two, or four, depending on the size of the operand: byte, word, or
long word. If the address register is the SP and the operand size is byte, the address is
incremented by two rather than one to keep the SP aligned to a word boundary.

GENERATION: EA = (An)
An = An + SIZE

ASSEMBLER SYNTAX: (An) +
MODE: 011 0
REGISTER: n El
ADDRESS REGISTER. | MEMORY ADDRESS |
OPERAND LENGTH (1, 2, OR 4). A/E\‘U‘

3 0
MEMORY ADDRESS: [OPERAND |
NUMBER OF EXTENSION WORDS* 0

5.3.4.2.3 Address Register Indirect with Predecrement. In the address register indirect
with predecrement mode, the operand is in memory, and the address of the operand is in
the address register specified by the register field. Before the operand address is used, it
is decremented by one, two, or four, depending on the operand size: byte, word, or long
word. If the address register is the SP and the operand size is byte, the address is
decremented by two rather than one to keep the SP aligned to a word boundary.

GENERATION: An = An- SIZE
EA - (An)

ASSEMBLER SYNTAX' Z (An)

MODE: 100

REGISTER:- n 31 0

ADDRESS REGISTER A 3 MEMORY ADDRESS J

OPERAND LENGTH (1, 2, OR 4) ‘C{.L

MEMORY ADDRESS & \r .

NUMBER OF EXTENSION WORDS 0 | OPERAND]

5.3.4.2.4 Address Register Indirect with Displacement. In the address register indirect
with displacement mode, the operand is in memory. The address of the operand is the
sum of the address in the address register plus the sign-extended 16-bit displacement
integer in the extension word. Displacements are always sign extended to 32 bits before
being used in EA calculations.

5-18

MC68330 USER'S MANUAL MOTOROLA

GENERATION: EA=(An) +d1p

ASSEMBLER SYNTAX (d16, An)
MODE. 101 a 0
REGISTER. n
ADDRESS REGISTER" M5 MEMORY ADDRESS]
wn 0
DISPLACEMENT: [SGNEXTENDED _ | INTEGER
31 0
MEMORY ADDRESS'
NUMBER OF EXTENSION WORDS 1 l OPERAND]

5.3.4.2.5 Address Register Indirect with Index (8-Bit Displacement). This mode
requires one extension word that contains the index register indicator and an 8-bit
displacement. The index register indicator includes size and scale information. In this
mode, the operand is in memory. The address of the operand is the sum of the contents of
the address register, the sign-extended displacement value in the low-order eight bits of
the extension word, and the sign-extended contents of the index register (possibly scaled).
The user must specify displacement, address register, and index register.

GENERATION: EA = (An) + (Xn"SCALE) + dg

ASSEMBLER SYNTAX" (dg, An. SIZE*SCALE)

MODE: 110

REGISTER: n 31 0
ADDRESS REGISTER- M MEMORY ADDRESS |
DISPLACEMENT:

INDEX REGISTER:

SCALE-

MEMORY ADDRESS
NUMBER OF EXTENSION WORDS 1 l OPERAND J

This address mode can have either of two different formats of extension. The brief format
(8-bit displacement) requires one word of extension and provides fast indexed addressing.
The full format (16- and 32-bit displacement) provides optional displacement size. Both
forms use an index operand.

For brief format addressing, the address of the operand is the sum of the address in the
address register, the sign-extended displacement integer in the low-order eight bits of the
extension word, and the index operand. The reference is classed as a data reference,
except for the JMP and JSR instructions. The index operand is specified "Ri.sz*scl".

"Ri" specifies a general data or address register used as an index register. The index
operand is derived from the index register. The index register is a data register if bit [15] =
0 in the first extension word and an address register if bit [15] = 1. The index register
number is given by extension word bits [14-12].

MOTOROLA MC68330 USER'S MANUAL 5-19

Index size is referred to as "sz". It may be either "W" or "L". Index size is given by bit [11]
of the extension word. If bit [11] = 0, the index value is the sign-extended low-order word
integer of the index register (W). If bit [11] = 1, the index value is the long integer in the
index register (L).

The term "scl" refers to index scale selection and may be 1, 2, 4, or 8. The index value is
scaled according to bits [10-9]. Codes 00, 01, 10, or 11 select index scaling of 1, 2, 4, or 8,
respectively.

5.3.4.2.6 Address Register Indirect with Index (Base Displacement). The full format
indexed addressing mode requires an index register indicator and an optional 16- or 32-bit
sign-extended base displacement. The index register indicator includes size and scale
information. In this mode, the operand is in memory. The address of the operand is the
sum of the contents of the address register, the scaled contents of the sign-extended
index register, and the base displacement.

GENERATION EA = (An) + (Xn'SCALE) + db

ASSEMBLER SYNTAX (bd, An, Xn SIZE*SCALE)

MODE: 110

REGISTER: n 31 0

ADDRESS REGISTER: O — MEMORY ADDRESS |
31 0

BASE DISPLACEMENT: | SIGN-EXTENDED VALUE
31 0

INDEX REGISTER:] SIGN-EXTENDED VALUE

SCALE

MEMORY ADDRESS.
NUMBER OF EXTENSION WORDS 1,2,0R3 I

OPERAND |

5.3.4.3 SPECIAL ADDRESSING MODES. These special addressing modes do not use
the register field to specify a register number but rather to specify a submode.

5.3.4.3.1 Program Counter Indirect with Displacement. In this mode, the operand is in
memory. The address of the operand is the sum of the address in the PC and the sign-
extended 16-bit displacement integer in the extension word. The value in the PC is the
address of the extension word. The reference is a program space reference and is only
allowed for read accesses.

5-20 MC68330 USER'S MANUAL MOTOROLA

GENERATION: EA= £9 +¢1e
ASSEMBLER SYNTAX: (d16 PC)
MODE 1
REGISTER 010 31 0
PROGRAM COUNTER. [ADDRESS OF EXTENSION WORD]
A___ 15 0
DISPLACEMENT T " SIGN EXTENDED _ INTEGER —
3 0
MEMORY ADDRESS | OPERAND]

NUMBER OF EXTENSION WORDS 1

5.3.4.3.2 Program Counter Indirect with Index (8-Bit Displacement). This mode is
similar to the address register indirect with index (8-bit displacement) mode described in
5.3.4.2.5 Address Register Indirect with Index (8-Bit Displacement), but the PC is
used as the base register.

GENERATION EA = (PC) + (Xn) + ¢
ASSEMBLER SYNTAX: (dg, PC, Xn SIZE*SCALE)
MODE T .
REGISTER o1 31
PROGRAM COUNTER. —] ADDRESS OF EXTENSION WORD
s 7 0
DISPLACEMENT: E SIGN EXTENDED INTEGER
31 0
INDEX REGISTER: SIGN-EXTENDED VALUE —-
SCALE SCALE VALUE ?
MEMORY ADDRESS 31 0
NUMBER OF EXTENSION WORDS 1 l OPERAND |

The operand is in memory. The address of the operand is the sum of the address in the
PC, the sign-extended displacement integer in the lower eight bits of the extension word,
and the sized, scaled, and sign-extended index operand. The value in the PC is the
address of the extension word. This reference is a program space reference and is only
allowed for reads. The user must include the displacement, the PC, and the index register
when specifying this addressing mode.

5.3.4.3.3 Program Counter Indirect with Index (Base Displacement). This mode is
similar to the address register indirect with index (base displacement) mode described in
3.4.2.6 Address Register Indirect With Index (Base Displacement), but the PC is used
as the base register. It requires an index register indicator and an optional 16- or 32-bit
sign-extended base displacement.

The operand is in memory. The address of the operand is the sum of the contents of the
PC, the scaled contents of the sign-extended index register, and the base displacement.
The value of the PC is the address of the first extension word. The reference is a program
space reference and is only allowed for read accesses.

MOTOROLA MC68330 USER'S MANUAL 5-21

In this mode, the PC, the index register, and the displacement are all optional. However,
the user must supply the assembler notation "ZPC" (zero value is taken for the PC) to
indicate that the PC is not used. This scheme allows the user to access the program
space without using the PC in calculating the EA. The user can access the program space
with a data register indirect access by placing ZPC in the instruction and specifying a data
register (Dn) as the index register.

GENERATION: EA = (PC) + (Xn) + bd

ASSEMBLER SYNTAX. (bd, PC, Xn. SIZE*SCALE)

MODE: 111 2t 0

REGISTER: ot

PROGRAM COUNTER ADDRESS OF EXTENSION WORD 1
31 0

BASE DISPLACEMENT: [SIGN-EXTENDED VALUE
31 0

INDEX REGISTER: [SIGN-EXTENDED VALUE

SCALE:

MEMORY ADDRESS: °

NUMBER OF EXTENSION WORDS: 1,2,0R3 l OPERAND I

5.3.4.3.4 Absolute Short Address. In this addressing mode, the operand is in memory,

and the address of the operand is in the extension word. The 16-bit address is sign
extended to 32 bits before it is used.

GENERATION: EA GIVEN

ASSEMBLER SYNTAX: (00X W

MODE: et 15 0
REGISTER: 000 r31_ _____

EXTENSION WORD: ———————>|___SIGNEXTENDED MEMORY ADDRESS |
MEMORY ADDRESS: 3 0

NUMBER OF EXTENSION WORDS" 1 l OPERAND |

5.3.4.3.5 Absolute Long Address. In this mode, the operand is in memory, and the
address of the operand occupies the two extension words following the instruction word in
memory. The first extension word contains the high-order part of the address; the low-
order part of the address is the second extension word.

5-22 MC68330 USER'S MANUAL MOTOROLA

GENERATION: EA GIVEN

ASSEMBLER SYNTAX. (xoq) L
MODE: 111 " 0
REGISTER: 001
FIRST EXTENSION WORD: ————>] ADDRESSHGH |
15 0
SECOND EXTENSION WORD: > ADDRESsLOW |
31 l 0
l CONCATENATION]
31 0
MEMORY ADDRESS: [OPERAND]

NUMBER OF EXTENSION WORDS. 2

5.3.4.3.6 Immediate Data. In this addressing mode, the operand is in one or two
extension words:

Byte Operation
The operand is in the low-order byte of the extension word.

Word Operation
The operand is in the extension word.

Long-Word Operation

The high-order 16 bits of the operand are in the first extension word; thelow-order
16 bits are in the second extension word.

GENERATION: OPERAND GIVEN
ASSEMBLER SYNTAX: #XXX
MODE: i

REGISTER: 100
NUMBER OF EXTENSION WORDS. 10R2

5.3.4.4 EFFECTIVE ADDRESS ENCODING SUMMARY. Most addressing modes use
one of the three formats shown in Figure 5-10. The single EA instruction is in the format of
the instruction word. The mode field of this word selects the addressing mode. The
register field contains the general register number or a value that selects the addressing
mode when the mode field contains "111".

Some indexed or indirect modes use the instruction word followed by the brief format
extension word. Other indexed or indirect modes consist of the instruction word and the
full format of extension words. The longest instruction for the CPU32 contains six
extension words. It is a MOVE instruction with full format extension words for both source
and destination EA and a 32-bit base displacement for both addresses.

MOTOROLA MC68330 USER'S MANUAL 5-23

SINGLE EA INSTRUCTION FORMAT

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1
EFFECTIVE ADDRESS
X X X X X X X X X X
MODE | REGISTER
BRIEF FORMAT EXTENSION WORD
15 14 12 1 10 9 8 7
| oa| meaisteR [wa | scale | o | DISPLACEMENT
FULL FORMAT EXTENSION WORD(S)
15 14 12 11 10 9 8 7 6 5 4 3 2
DA REGISTER | Wi | scale | 1 | Bs | 1s | BosizE | o | s
BASE DISPLACEMENT (0, 1, OR 2 WORDS)
Field Definition Field Definition
Instruction Register General Register Number BS Base Register Suppress
Extensions Register Index Register Number 0 = Base Register Added
D/A Index Register Type 1 = Base Register Suppressed
0 =Dn IS Index Suppressed
1=An 0 = Evaluate and Add Index Operand
WiL Word/Long-Word Index Size 1 = Suppress Index Operand
0 = Sign-Extended Word Base Displacement Size
1 = Long Word BD SIZE 00 = Reserved
Scale Scale Factor 01 = Null Displacement
00=1 10 = Word Displacement
01=2 11 = Long-Word Displacement
10=4 1S * Index/Indirect Selection
11=8 Indirect and Indexing

Operand Determined in Conjunction
with Bit 6, Index Suppress

*Memory indirect addressing will cause illegal instruction trap; must be = 000 if IS = 1

EA modes can be classified as follows:

Data
Memory
Alterable
Control

Categories are sometimes combined, forming new, more restrictive categories. Two
examples are alterable memory or alterable data. The former refers to addressing modes
that are both alterable and memory addresses; the latter refers to addressing modes that
are both alterable and data addresses. Table 5-3 lists the categories to which each of the

EA modes belong.

5-24

MC68330 USER'S MANUAL

Figure 5-10. EA Specification Formats

A data addressing EA mode refers to data operands.

A memory addressing EA mode refers to memory operands.
An alterable addressing EA mode refers to writable operands.
A control addressing EA mode refers to unsized memory operands

MOTOROLA

Table 5-3. Effective Addressing Mode Categotries

Addressing Modes Code | Register | Data| Memory | Control | Alterable Syntax
Data Register Direct 000 reg. no X — — X Dn
Address Register Direct 001 reg no — — — X An
Address Register Indirect 010 reg no X X X X (An)
Address Register Indirect with 011 reg no X X — X (An) +
Postincrement
Address Register Indirect with 100 reg no X X — X - (An)
Predecrement
Address Register Indirect with 101 reg no X X X X (d1g, An)
Displacement
Address Register Indirect with Index 110 reg no X X X X (dg, An, Xn)
(8-Bit Displacemment)
Address Register Indirect with Index 110 reg no X X X X (bd, An, Xn)
(Base Displacement)
Absolute Short i1 000 X X X X (xxx) W
Absolute Long 111 001 X X X X (xxx).L
Program Counter Indirect with 11 010 X — X X (d16. PC)
Displacement
Program Counter Indirect with Index 111 011 X — X X (dg, PC, Xn)
(8-Bit Displacement)
Program Counter Indirect with Index 111 o1 X — X X (bd, PC, Xn)

(Base Displacement)

Immediate 111 100 X X — — #(data)

5.3.5 Programming View of Addressing Modes

Extensions to indexed addressing modes, indirection, and full 32-bit displacements
provide additional programming capabilities for the CPU32. The following paragraphs
describe addressing techniques and summarize addressing modes from a programming
point of view.

5.3.5.1 ADDRESSING CAPABILITIES. In the CPU32, setting the base register suppress
(BS) bit in the full format extension word (see Figure 5-10) suppresses use of the base
address register in calculating the EA, allowing any index register to be used in place of
the base register. Because any data register can be an index register, this provides a data
register indirect form (Dn). This mode could also be called register indirect (Rn) because
either a data register or an address register can be used to address memory — an
extension of M68000 Family addressing capability.

The ability to specify the size and scale of an index register (Xn.SIZE * SCALE) in these
modes provides additional addressing flexibility. When using the SIZE parameter, either
the entire contents of the index register can be used, or the least significant word can be
sign extended to provide a 32-bit index value (see Figure 5-11).

MOTOROLA MC68330 USER'S MANUAL 5-25

31

o] B N N N R N R NN

USED IN ADDRESS CALCULATION

Figure 5-11. Using SIZE in the Index Selection

For the CPU32, the register indirect modes can be extended further. Because
displacements can be 32 bits wide, they can represent absolute addresses or the results
of expressions that contain absolute addresses. This scheme allows the general register
indirect form to be (bd, Rn) or (bd, An, Rn) when the base register is not suppressed.
Thus, an absolute address can be directly indexed by one or two registers (see Figure 5-
12).

SYNTAX: (bd,An,Rn)

bd ——>1]
An

Y
|

Rn

Y
AMIMIIINNNINY

/[/

Figure 5-12. Using Absolute Address with Indexes

Setting the index register suppress bit (IS) in the full format extension word suppresses
the index operand. The indirect suppressed index register mode uses the contents of
register An as an index to the pointer located at the address specified by the
displacement. The actual data item is at the address in the selected pointer.

An optional scaling function supports direct array subscripting. An index register can be
left shifted by zero, one, two, or three bits before use in an EA calculation to scale for an
array of elements of corresponding size. This method is much more efficient than using an
arithmetic value in one of the general-purpose registers to multiply the index register by
one, two, four, or eight .

Scaling does not add to the EA calculation time. However, when combined with the
appropriate derived modes, scaling produces additional capabilities. Arrayed structures

can be addressed absolutely and then subscripted; for example, (bd, Rn * SCALE).
Optionally, an address register that contains a dynamic displacement can be included in

5-26 MC68330 USER'S MANUAL MOTOROLA

the address calculation (bd, An, Rn * SCALE). Another variation that can be derived is

(An, Rn = SCALE). In the first case, the array address is the sum of the contents of a
register and a displacement (see Figure 5-13). In the second example, An contains the

address of an array and Rn contains a subscript.

SYNTAX: MOVE.W (A5,A6.L*SCALE),(A7)
WHERE:

A5 = ADDRESS OF ARRAY STRUCTURE

A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER

SIMPLE ARRAY
(SCALE = 1)

7 0

Ro=1 ———> L
g SNNNNNNNNN

33—
4 ———>

/ /

RECORD OF 2 WORDS
(SCALE = 4)

15 0

=
=

NOTE: Regardless of array structure,
software increments index to
point to next record.

2_>\\\\\\\

A6=1 ——>

2 ———»

RECORD OF 1 WORD
(SCALE=2)

o

Ny
N

o)
m
Q
o
]
o
o
g}
ma
=
8
o
(2]

—_
o
o

N
N

Figure 5-13. Addressing Array ltems

MOTOROLA MC68330 USER'S MANUAL

5-27

5.3.5.2 GENERAL ADDRESSING MODE SUMMARY. The addressing modes described
in the previous paragraphs are derived from specific combinations of options in the
indexing mode or a selection of two alternate addressing modes. For example, the
addressing mode called register indirect (Rn) assembles as address register indirect if the
register is an address register. If Rn is a data register, the assembler uses address
register indirect with index mode, with a data register as the indirect register, and
suppresses the address register by setting the base suppress bit in the EA specification.

Assigning an address register as Rn provides higher performance than using a data
register as Rn. Another case is (bd, An), which selects an addressing mode based on the
size of the displacement. If the displacement is 16 bits or less, the address register indirect
with displacement mode (d16, An) is used. When a 32-bit displacement is required, the
address register indirect with index (bd, An, Xn) is used with the index register
suppressed.

It is useful to examine the derived addressing modes available to a programmer (without
regard to the CPU32 EA mode actually encoded) because the programmer need not be
concerned about these decisions. The assembler can choose the more efficient
addressing mode to encode.

5.3.6 M68000 Family Addressing Capability

Programs can be easily transported from one member of the M68000 Family to another.
The user object code of earlier members of the family is upwardly compatible with later
members and can be executed without change. The address extension word(s) are
encoded with information that allows the CPU32 to distinguish new additions to the basic
M68000 Family architecture.

Earlier microprocessors have no knowledge of extension word formats implemented in
later processors, and, while they do detect illegal instructions, they do not decode invalid
encodings of the extension words as exceptions.

Address extension words for the early MC68000, MC68008, MC68010, and MC68020
microprocessors are shown in Figure 5-14.

The encoding for SCALE used by the CPU32 and the MC68020 is a compatible extension
of the M68000 architecture. A value of zero for SCALE is the same encoding for both
extension words; thus, software that uses this encoding is both upward and downward
compatible across all processors in the product line. However, the other values of SCALE
are not found in both extension formats; therefore, while software can be easily migrated
in an upward-compatible direction, only nonscaled addressing is supported in a downward
fashion. If the MC68000 were to execute an instruction that encoded a scaling factor, the
scaling factor would be ignored and would not access the desired memory address.

5-28 MC68330 USER'S MANUAL MOTOROLA

MC68000/MC68008/MC68010

ADDRESS EXTENSION WORD
15 14 12 11 10 9 8 7 0
[oa] measteR [wi] o[o [o] DISPLACEMENT INTEGER
D/A 0 = Data Register Select
1 = Address Register Select
Wit 0 = Word-Sized Operation
1 = Long-Word-Sized Operation
CPU32/MC68020
EXTENSION WORD
15 14 12 1 10 9 8 7 0
|oa] meaisteR [wa] scae [o [DISPLACEMENT INTEGER
D/A- 0 = Data Register Select
1 = Address Register Select
WiL 0 = Word-Sized Operation
1 = Long-Word-Sized Operation
SCALE: 00 = Scale Factor 1 (Compatible with MC68000)

01 = Scale Factor 2 (Extension to MC68000)
10 = Scale Factor 4 (Extension to MC68000)
11 = Scale Factor 8 (Extension to MC68000)

Figure 5-14. M68000 Family Address Extension Words

5.3.7 Other Data Structures

In addition to supporting the array data structure with the index addressing mode, M68000
processors also support stack and queue data structures with the address register indirect
postincrement and predecrement addressing modes. A stack is a last-in-first-out (LIFO)
list; a queue is a first-in-first-out (FIFO) list. When data is added to a stack or queue, it is
pushed onto the structure; when it is removed, it is " popped" or pulled from the structure.
The system stack is used implicitly by many instructions; user stacks and queues may be
created and maintained through use of addressing modes.

5.3.7.1 SYSTEM STACK. Address register 7 (A7) is the system SP. The SP is either the
SSP or the USP, depending on the state of the S-bit in the SR. If the S-bit indicates the
supervisor state, the SSP is the SP, and the USP cannot be referenced as an address
register. If the S-bit indicates the user state, the USP is the active SP, and the SSP cannot
be referenced. Each system stack fills from high memory to low memory. The address
mode —(SP) creates a new item on the active system stack, and the address mode (SP)+
deletes an item from the active system stack.

The PC is saved on the active system stack on subroutine calls and is restored from the
active system stack on returns. On the other hand, both the PC and the SR are saved on

MOTOROLA MC68330 USER'S MANUAL 5-29

the supervisor stack during the processing of traps and interrupts. Thus, the correct
execution of the supervisor state code is not dependent on the behavior of user code, and
user programs may use the USP arbitrarily.

To keep data on the system stack aligned properly, data entry on the stack is restricted so
that data is always put in the stack on a word boundary. Thus, byte data is pushed on or
pulled from the system stack in the high-order half of the word; the low-order half is
unchanged.

5.3.7.2 USER STACKS. The user can implement stacks with the address register indirect
with postincrement and predecrement addressing modes. With address register An (n =0
to 6), the user can implement a stack that is filled either from high to low memory or from
low to high memory. Important considerations are as follows:

* Use the predecrement mode to decrement the register before its contents are used as the
pointer to the stack.

* Use the postincrement mode to increment the register after its contents are used as the
pointer to the stack.

* Maintain the SP correctly when byte, word, and long-word items are mixed in these
stacks.

To implement stack growth from high to low memory, use —(An) to push data on the stack,
(An)+ to pull data from the stack.

For this type of stack, after either a push or a pull operation, register An points to the top
item on the stack. This scheme is illustrated as follows

LOW MEMORY
(FREE)
An—> TOP OF STACK
®
[. [
BOTTOM OF STACK
HIGH MEMORY

To implement stack growth from low to high memory, use (An) +to push data on the stack,
—(An) to pull data from the stack.

In this case, after either a push or pull operation, register An points to the next available
space on the stack. This scheme is illustrated as follows:

5-30 MC68330 USER'S MANUAL MOTOROLA

LOW MEMORY
BOTTOM OF STACK
L]

[. /
.

TOP OF STACK

An—>] (FREE)

HIGH MEMORY

5.3.7.3 QUEUES. Queues can be implemented using the address register indirect with
postincrement or predecrement addressing modes. Queues are pushed from one end and
pulled from the other, and use two registers. A queue filled either from high to low memory
or from low to high memory can be implemented with a pair (two of AO to A6) of address
registers. (An) is the "put" pointer and (Am) is the " get" pointer.

To implement growth of the queue from low to high memory, use (An)+ to put data into the
queue, (Am)+ to get data from the queue.

After a "put” operation, the "put" register points to the next available queue space, and the
unchanged "get" register points to the next item to be removed from the queue. After a
"get" operation, the "get" register points to the next item to be removed from the queue,
and the unchanged "put" register points to the next available queue space, which is
illustrated as follows:

LOW MEMORY
LAST GET (FREE)
GET (Am) + —> NEXT GET

L]
: /[
L]

LASTPUT

PUT (An) + —> (FREE)
HIGH MEMORY

To implement a queue as a circular buffer, the relevant address register should be
checked and (if necessary) adjusted before performing a "put" or "get" operation. The
address register is adjusted by subtracting the buffer length (in bytes) from the register
contents.

To implement growth of the queue from high to low memory, use —(An) to put data into the
queue, —(Am) to get data from the queue.

After a "put" operation, the "put" register points to the last item placed in the queue, and
the unchanged "get" address register points to the last item removed from the queue. After
a "get" operation, the "get" register points to the last item removed from the queue, and

the unchanged "put" register points to the last item placed in the queue, which is illustrated
as follows:

MOTOROLA MC68330 USER'S MANUAL 5-31

LOW MEMORY
(FREE)
PUT - (An) ——> LAST PUT

.
[: [
L]

NEXT GET

GET-(Am)——>| _ LAST GET (FREE)
HIGH MEMORY

To implement the queue as a circular buffer, the "get" or "put" operation should be
performed first, and then the relevant address register should be checked and (if
necessary) adjusted. The address register is adjusted by adding the buffer length (in
bytes) to the register contents.

5.4 INSTRUCTION SET

This section describes the set of instructions provided in the CPU32 and demonstrates
their use. Descriptions of the instruction format and the operands used by instructions are
included. After a summary of the instructions by category, a detailed description of each
instruction is listed in alphabetical order. Complete programming information is provided,
as well as a description of condition code computation and an instruction format summary.

The CPU32 instructions include machine functions for all the following operations:

» Data Movement

+ Arithmetic Operations
» Logical Operations
Shifts and Rotates

+ Bit Manipulation

.

« Conditionals and Branches
+ System Control

The large instruction set encompasses a complete range of capabilities and, combined
with the enhanced addressing modes, provides a flexible base for program development.

5.4.1 M68000 Family Compatibility

It is the philosophy of the M68000 Family that all user-mode programs can execute
unchanged on a more advanced processor and that supervisor-mode programs and
exception handlers should require only minimal alteration.

The CPU32 can be thought of as an intermediate member of the M68000 Family. Object
code from an MC68000 or MC68010 may be executed on the CPU32, and many of the
instruction and addressing mode extensions of the MC68020 are also supported.

5-32 MC68330 USER'S MANUAL MOTOROLA

5.4.1.1 NEW INSTRUCTIONS. Two instructions have been added to the M68000
instruction set for use in embedded control applications. These are the low-power stop
(LPSTOP) and the table lookup and interpolation (TBL) commands.

5.4.1.1.1 Low-Power Stop (LPSTOP). In applications where power consumption is a
consideration, the CPU32 can force the device into a low-power standby mode when
immediate processing is not required. The low-power mode is entered by executing the
LPSTOP instruction. The processor remains in this mode until a user-specified or higher
level interrupt, or a reset, occurs.

5.4.1.1.2 Table Lookup and Interpolation (TBL). To maximize throughput for real-time
applications, reference data is often precalculated and stored in memory for quick access.
The storage of sufficient data points can require an inordinate amount of memory. The
TBL instruction uses linear interpolation to recover intermediate values from a sample of
data points, and thus conserves memory.

When the TBL instruction is executed, the CPU32 looks up two table entries bounding the
desired result and performs a linear interpolation between them. Byte, word, and long-
word operand sizes are supported. The result can be rounded according to a round-to-
nearest algorithm or returned unrounded along with the fractional portion of the calculated
result (byte and word results only). This extra precision can be used to reduce cumulative
error in complex calculations. See 5.4.4 Using the Table Lookup and Interpolation
Instructions for examples.

5.4.1.2 UNIMPLEMENTED INSTRUCTIONS. The ability to trap on unimplemented
instructions allows user-supplied code to emulate unimplemented capabilities or to define
special-purpose functions. However, Motorola reserves the right to use all currently
unimplemented instruction operation codes for future M68000 enhancements. See 5.6.2.8
lllegal or Unimplemented Instructions for more details.

5.4.2 Instruction Format and Notation

All instructions consist of at least one word. Some instructions can have as many as seven
words, as shown in Figure 5-15. The first word of the instruction, called the operation
word, specifies instruction length and the operation to be performed. The remaining words,
called extension words, further specify the instruction and operands. These words may be
immediate operands, extensions to the effective address mode specified in the operation
word, branch displacements, bit number, special register specifications, trap operands, or
argument counts.

MOTOROLA MC68330 USER'S MANUAL 5-33

OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MODES)
SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE ADDRESS EXTENSION
(IF ANY, ONE TO THREE WORDS)
DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO THREE WORDS)

Figure 5-15. Instruction Word General Format

Besides the operation code, which specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in one of three ways:

+ Register Specification A register field of the instruction contains the number of the

register.

» Effective Address An effective address field of the instruction contains address
mode information.

* Implicit Reference The definition of an instruction implies the use of specific
registers.

The register field within an instruction specifies the register to be used. Other fields within
the instruction specify whether the register is an address or data register and how it is to
be used. 5.3 Data Organization and Addressing Capabilities contains detailed register
information.

Except where noted, the following notation is used in this section:

Data Immediate data from an instruction

Destination Destination contents

Source Source contents

Vector Location of exception vector

An Any address register (A7 to A0)

Ax, Ay Address registers used in computation

Dn Any data register (D7 to D0)

Rc Control register (VBR, SFC, DFC)

Rn Any address or data register

Dh, DI Data registers, high- and low-order 32 bits of product
Dr, Dq Data registers, division remainder, division quotient
Dx, Dy Data registers, used in computation

Dym, Dyn Data registers, table interpolation values

Xn Index register

[An] Address extension

5-34 MC68330 USER'S MANUAL MOTOROLA

CcC
d#

(ea)
#(data)
label
list

]

(..)
CCR

PC
SP
SR
SSP
USP

X >~ 4+ »nmwoUmm
Mo
(o Ne@)

e <> IANANV H

o
O
o}

MOTOROLA

Condition code
Displacement

Example: d1g is a 16-bit displacement
Effective address
Immediate data; a literal integer
Assembly program label
List of registers

Example: D3-D0O
Bits of an operand

Examples: [7] is bit 7; [31:24] are bits 31 to 24
Contents of a referenced location

Example: (Rn) refers to the contents of Rn
Condition code register (lower byte of SR)

X — extend bit
N — negative bit
Z — zero bit

V — overflow bit
C — carry bit

Program counter

Active stack pointer

Status register

Supervisor stack pointer

User stack pointer

Function code

Destination function code register

Source function code register

Arithmetic addition or postincrement

Arithmetic subtraction or predecrement

Arithmetic division or conjunction symbol

Arithmetic multiplication

Equal to

Not equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Logical AND

Logical OR

Logical exclusive OR

Invert; operand is logically complemented

Binary coded decimal, indicated by subscript
Example: Source1g is a BCD source ‘operand.

MC68330 USER'S MANUAL 5-35

LSw
MSW
{RW}

Least significant word
Most significant word
Read/write indicator

In description of an operation, a destination operand is placed to the right of source
operands, and is indicated by an arrow (=).

5.4.3 Instruction Summary

The instructions form a set of tools to perform the following operations:

Data movement
Integer arithmetic

Logic

Shift and rotate

Bit manipulation

Program control
System control

Binary-coded decimal arithmetic

The complete range of instruction capabilities combined with the addressing modes
described previously provide flexibility for program development. All CPU32 instructions
are summarized in Table 5-4.

Table 5-4. Instruction Set Summary

Opcode Operation Syntax
ABCD Sourceqg + Destination{g + X = Destination ABCD Dy,Dx
ABCD —(Ay),—~(Ax)
ADD Source + Destination = Destination ADD (ea),Dn
ADD Dn,(ea)
ADDA Source + Destination = Destination ADDA (ea),An
ADDI Immediate Data + Destination = Destination ADDI #(data),(ea)
ADDQ Immediate Data + Destination = Destination ADDQ #(data),(ea)
ADDX Source + Destination + X = Destination ADDX Dy,Dx
ADDX —(Ay),—(Ax)
AND Source A Destination = Destination AND (ea),Dn
AND Dn,(ea)
ANDI Immediate Data A Destination = Destination ANDI #(data),(ea)
ANDI Source A CCR = CCR ANDI #(data),CCR
to CCR
ANDI If supervisor state ANDI #(data), SR
to SR the Source A SR = SR
else TRAP

5-36

MC68330 USER'S MANUAL

MOTOROLA

Table 5-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
ASL,ASR Destination Shifted by (count) = Destination ASd Dx,Dy
ASd #(data),Dy
ASd (ea)
Bee If (condition true) then PC +d = PC Bec (label
BCHG ~({number) of Destination) = Z, BCHG Dn,{ea)
~({number) of Destination) = (bit number) of Destination BCHG #(data),(ea)
BCLR ~({number) of Destination) = Z, BCLR Dn,(ea)
0 = (bit number) of Destination BCLR #(data),(ea)
BGND If (background mode enabled) then BGND
enter background mode
else Format/Vector offset == —(SSP)
PC = —(SSP)
SR = —(SSP)
(Vector) = PC
BKPT Run breakpoint acknowledge cycle, BKPT #(data)
TRAP as lllegal instruction
BRA PC+d=PC BRA (label)
BSET ~({number) of Destination) = Z, BSET Dn,(ea)
1 = (bit number) of Destination BSET #(data),{ea)
BSR SP-4=SP,PC = (SP); PC +d= PC BSR (label)
BTST — ((number) of Destination) = Z; BTST Dn,ea)
BTST #(data),(ea)
CHK 1f Dn < 0 or Dn > Source then TRAP CHK (ea),Dn
CHK2 If Rn < lower bound or CHK2 (ea),Rn
If Rn > upper bound
then TRAP
CLR 0 = Destination CLR (ea)
CMmP Destination — Source = cc CMP (ea),Dn
CMPA Destination — Source CMPA (ea),An
CMPI Destination — Immediate Data CMPI #(data),(ea)
CMPM Destination — Source = cc CMPM (Ay)+,(Ax)+
CMP2 Compare Rn < lower-bound or CMP2 (ea),Rn
Rn > upper-bound
and Set Condition Codes
DBcc If condition false then (Dn — 1 = Dn; DBcc Dn,(label)
If Dn # —1 then PC + d = PC)
'S Destination/Source = Destination DIVS.W (ea),Dn 32/16 = 16r.16q
DIvsL DIVS.L {ea),Dq 32/32 = 32q
DIVS L (ea),Dr:Dq 64/32 = 32r'32q
DIVSL.L (ea),Dr.Dq 32/32 = 32r'32q
DIVU Destination/Source = Destination DIVU.W (ea),Dn 32/16 = 161169
DivuL DIVU.L (ea),Dq 32/32 = 32q
DIVU.L (ea),Dr:Dq 64/32 = 32r.32q
DIVUL L (ea),Dr:Dq 32/32 = 32r:32q
EOR Source @ Destination = Destination EOR Dn,(ea)
EORI Immediate Data @ Destination = Destination EORI #(data),(ea)
MOTOROLA MC68330 USER'S MANUAL 5-37

5-38

Table 5-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
EORI Source ® CCR = CCR EORI #(data),CCR
to CCR
EORI If supervisor state EORI #(data),SR
to SR the Source ® SR = SR
else TRAP
EXG Rx < Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx
EXT Destination Sign-Extended => Destination EXT.WDn extend byte to word
EXTB EXT.L Dn extend word to long word
EXTB.L Dn extend byte to long word
LLEGAL SSP -2 = SSP; Vector Offset = (SSP); ILLEGAL
SSP -4 = SSP; PC = (SSP);
SSp -2 = SSP; SR = (SSP);
lllegal Instruction Vector Address = PC
JMP Destination Address = PC JMP (ea)
JSR SP-4 = SP, PC = (SP) JSR (ea)
Destination Address = PC
LEA {ea)= An LEA {(ea),An
LINK SP -4 = SP; An = (SP) LINK An,#(displacement)
SP = An, SP +d = SP
LPSTOP If supervisor state LPSTOP #(data)
Immediate Data = SR
Interrupt Mask = External Bus Interface (EBI)
STOP
else TRAP
LSLLSR Destination Shifted by {count) = Destination Lsd'! Dx,Dy
LSd! #(data),Dy
LSd' (ea)
MOVE Source = Destination MOVE (ea),(ea)
MOVEA Source = Destination MOVEA (ea),An
MOVE CCR = Destination MOVE CCR (ea)
from CCR
MOVE Source = CCR MOVE (ea),CCR
to CCR
MOVE If supervisor state MOVE SR ({ea)
from SR then SR = Destination
else TRAP
MOVE If supervisor state MOVE (ea),SR
to SR then Source = SR
else TRAP
MOVE If supervisor state MOVE USP,An
usp then USP = An or An = USP MOVE An,USP
else TRAP
MOVEC If supervisor state MOVEC Rc,Rn
then Re = Rnor Rn = Rec MOVEC Rn,Rc
else TRAP
MOVEM Registers = Destination

Source = Registers

MOVEM register list,(ea)
MOVEM (ea),register list

MC68330 USER'S MANUAL

MOTOROLA

Table 5-4. Instruction Set Summary (Continued)

Opcode Operation Syntax
MOVEP Source = Destination MOVEP Dx,(d,Ay)
MOVEP (d,Ay),Dx
MOVEQ Immediate Data = Destination MOVEQ #(data),Dn
MOVES If supervisor state MOVES Rn,(ea)
then Rn = Destination [DFC] or Source [SFC] = Rn MOVES (ea),Rn
else TRAP
MULS Source x Destination = Destination MULS W (ea),Dn 16x16 = 32
MULS.L {ea),DI 32x32 = 32
MULS.L (ea),Dh DI 32x32 = 64
MuULU Source x Destination = Destination MULU.W (ea),Dn 16x16 = 32
MULU.L (ea),DI 32x32 = 32
MULU L (ea),Dh:Dl 32x32 = 64
NBCD 0 - (Destination{g) — X = Destination NBCD (ea)
NEG 0 — (Destination) = Destination NEG (ea)
NEGX 0 — (Destination) — X = Destination NEGX (ea)
NOP None NOP
NOT ~Destination = Destination NOT (ea)
OR Source V Destination = Destination OR (ea),Dn
OR Dn,(ea)
ORI Immediate Data V Destination => Destination ORI #(data)(ea)
ORI Source V CCR = CCR ORI #(data),CCR
to CCR
ORI If supervisor state ORI #(data),SR
to SR then Source V SR = SR
else TRAP
PEA Sp —4 = SP; (ea) = (SP) PEA (ea)
RESET If supervisor state RESET
then Assert RESET
else TRAP
ROL,ROR Destination Rotated by {count)= Destination ROd! Rx,Dy
ROd! #data), Dy
ROd! (ea)
ROXL,ROXR Destination Rotated with X by (count) = Destination ROXd! Rx,Dy
ROXd"! #(data),Dy
ROXd (ea)
RTD (SP)=PC;SP +4+d=SP RTD #(displacement)
RTE If supervisor state RTE
the (SP) = SR; SP + 2= SP, (SP) = PC;
SP +4 = SP;
restore state and deallocate stack according to (SP)
else TRAP
RTR (SP) = CCR, SP +2 = SP; RTR
(SP)=PC;SP +4=SP
RTS (SP) = PC;SP + 4= SP RTS
MOTOROLA MC68330 USER'S MANUAL 5-39

Table 5-4. Instruction Set Summary (Concluded)

Opcode Operation Syntax
SBCD Destination{q — Sourceqq — X = Destination SBCD Dx,Dy
SBCD —{(Ax),—(Ay)
Scc If Condition True Scc (ea)
then 1s = Destination
else 0s = Destination
STOP If supervisor state STOP #(data)
then Immediate Data = SR, STOP
else TRAP
SuB Destination — Source = Destination SUB {ea),Dn
SUB Dn,{ea)
SUBA Destination — Source = Destination SUBA (ea),An
sSuBl Destination — Immediate Data = Destination SUBI #data),(ea)
SuUBQ Destination — Immediate Data = Destination SUBQ #(data){ea)
SUBX Destination — Source — X = Destination SUBX Dx,Dy
SUBX —(Ax),~Ay)
SWAP Register [31 16] < Register [15 0] SWAP Dn
TAS Destination Tested = Condition Codes, TAS (ea)
1 = bit 7 of Destination
TBLS ENTRY(n)+{(ENTRY(n+1)-ENTRY(n))*Dx[7.0]}/256 = Dx | TBLS (size) (ea), Dx
TBLS (size) Dym'Dyn, Dx
TBLSN ENTRY/(n)*256+{(ENTRY(n+1)-ENTRY(n))*Dx[7 0]} = Dx | TBLSN (size) (ea),Dx
TBLSN (size) Dym Dyn, Dx
TBLU ENTRY(n)+{(ENTRY(n+1)-ENTRY(n))*Dx[7.0]}/256 = Dx | TBLU (size) (ea),Dx
TBLU (size) Dym:Dyn, Dx
TBLUN ENTRY/(n)+256+{(ENTRY(n+1)-ENTRY(n))*Dx[7 O]} = Dx | TBLUN (size) (ea),Dx
TBLUN (size) Dym.Dyn,Dx
TRAP SSP — 2 = SSP; Format/Offset = (SSP), TRAP #(vector)
SSP -4 = SSP, PC = (SSP), SSP - 2 = SSP,
SR = (SSP); Vector Address = PC
TRAPcc If cc then TRAP TRAPcc
TRAPcc W #(data)
TRAPcc L #(data)
TRAPV If V then TRAP TRAPV
TST Destination Tested = Condition Codes TST(ea)
UNLK An = SP; (SP) = An,SP +4= SP UNLK An

NOTE 1:d is direction, L or R.

5.4.3.1 CONDITION CODE REGISTER. The CCR portion of the SR contains five bits that
indicate the result of a processor operation. Table 5-5 lists the effect of each instruction on
these bits. The carry bit and the multiprecision extend bit are separate in the M68000
Family to simplify programming techniques that use them. Refer to Table 5-9 as an

example.

5-40

MC68330 USER'S MANUAL

MOTOROLA

Table 5-5. Condition Code Computations

Operations 4 \' Cc Special Definition

ABCD U ? C = Decimal Carry
Z=ZARmA..ARO

ADD, ADDI, ADDQ * ? ? | V=SmADmARmMVSm ADmA Rm
C=SmA Dm VRmADm V SmA Rm

ADDX ? ? ? | V=SmADmARmMVSm ADmA Rm
C =SmA DmVRmA DmV Sm A Rm
Z=ZARmA..ARO

AND, ANDI, EOR, EORI, * 0 o]

MOVEQ, MOVE, OR, ORI,

CLR, EXT, NOT, TAS, TST

CHK u U

CHK2, CMP2 ? ? |Z=(R=LB)V(R=UB)
C=(LB<UB)A (IR<LB)V(R>UB)V

(UB<LB)A(R>UB)A (R<LB)

SUB, SUBI, SUBQ * ? ? | V=SmADmARmV SmADmA Rm
C =SmADmVRmADmVSmA Rm

SUBX ? ? ? | V=SmADmMARmYV SmADmA Rm
C=SmADmVRmADmVSm ARm
Z=ZARmA..ARO0

CMP, CMPI, CMPM * ? ? |V=SmADmARmMV SmADmA Rm
C=SmADmVRmADmVSm ARm

DIVS, DIVU * ? 0 V = Division Overflow

MULS, MULU * ? 0 V = Multiplication Overflow

SBCD, NBCD ? U ? C = Decimal Borrow
Z=ZARmA..ARO

NEG * ? ? | V=DmARm
C=Dm VRm

NEGX ? ? ? | V=DmARm
C =Dm VRm
Z=ZARmA..ARO

ASL * ? ? |V=DmA(DOmM-TV..VDm-)VDmaA

(Dm-1 V.. +Dm—r)

C=Dm-r+71

ASL (r =0) * 0 0

LSL, ROXL * 0 ? |C=Dm-r+1

LSR (r =0) * 0 0

ROXL (r = 0) * 0 ? |C=X

ROL * 0 ? | C=Dm-r+1

ROL (r = 0) * 0 0

ASR, LSR, ROXR * 0 ? | C=Dr-1

ASR, LSR (r =0) * 0 0

ROXR (r = 0) * 0 ? [C=X

MOTOROLA MC68330 USER'S MANUAL

5-41

Table 5-5. Condition Code Computations (Continued)

Operations X N z v C Special Definition

ROR — * * 0 ? |C=Dr-1
ROR (r=0) — * * 0 0
NOTE: The following notations apply to this table only.

— = Not affected Sm = Source operand MSB

U = Undefined Dm = Destination operand MSB

? = See special definition Rm = Result operand MSB

* = General case R = Register tested

X = C n = Bit Number

N = Rm r = Shift count

Z = RmA..AR0 LB = Lowerbound

A = Boolean AND UB = Upper bound

V = Boolean OR Rm = NOTRm

5.4.3.2 DATA MOVEMENT INSTRUCTIONS. The MOVE instruction is the basic means of
transferring and storing address and data. MOVE instructions transfer byte, word, and
long-word operands from memory to memory, memory to register, register to memory, and
register to register. Address movement instructions (MOVE or MOVEA) transfer word and
long-word operands and ensure that only valid address manipulations are executed.

In addition to the general MOVE instructions, there are several special data movement
instructions — move multiple registers (MOVEM), move peripheral data (MOVEP), move
quick (MOVEQ), exchange registers (EXG), load effective address (LEA), push effective
address (PEA), link stack (LINK), and unlink stack (UNLK). Table 5-6 is a summary of the
data movement operations.

Table 5-6. Data Movement Operations

Instruction Operand Operand Size Operation
Syntax
EXG Rn, Rn 32 Rn =Rn
LEA (ea), An 32 (ea)= An
LINK An, #(d) 16,32 SP -4 = SP, An = (SP); SP = An, SP +d =SP
MOVE (ea), (ea) 8,16, 32 Source = Destination
MOVEA (ea), An 16,32 =32 | Source => Destination
MOVEM list, (ea) 16, 32 Listed registers = Destination
(ea), list 16,32 = 32 Source = Listed registers
MOVEP Dn, (d16, An) 16, 32 Dn [31:24] = (An +d); Dn [23 : 16] = (An + d + 2);
Dn[15:8] = (An +d +4);Dn[7:0} = (An + d + 6)
(d16. An), Dn (An +d) = Dn [31:24]; (An + d + 2) = Dn [23 : 16];
(An +d +4)=Dn[15:8];(An +d + 6) = Dn [7 : 0]
MOVEQ #(data), Dn 8 =32 Immediate Data =» Destination
PEA (ea) 32 SP —4 = SP; (ea) = SP
UNLK An 32 An = SP; (SP) = An, SP + 4 = SP

5-42 MC68330 USER'S MANUAL MOTOROLA

5.4.3.3 INTEGER ARITHMETIC OPERATIONS. The arithmetic operations include the
four basic operations of add (ADD), subtract (SUB), multiply (MUL), and divide (DIV) as
well as arithmetic compare (CMP, CMPM, CMP2), clear (CLR), and negate (NEG). The
instruction set includes ADD, CMP, and SUB instructions for both address and data
operations with all operand sizes valid for data operations. Address operands consist of 16
or 32 bits. The clear and negate instructions apply to all sizes of data operands.

Signed and unsigned MUL and DIV instructions include:

» Word multiply to produce a long-word product
+ Long-word multiply to produce a long-word or quad-word product
+ Division of a long-word dividend by a word divisor (word quotient and word remainder)

+ Division of a long-word or quad-word dividend by a long-word divisor (long-word quotient
and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arithmetic. These
instructions are add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and
negate binary with extend (NEGX). Refer to Table 5-7 for a summary of the integer
arithmetic operations.

MOTOROLA MC68330 USER'S MANUAL 5-43

Table 5-7. Integer Arithmetic Operations

Operand

Operand Size

Instruction Operation
Syntax P
ADD Dn, (ea) 8, 16, 32 Source + Destination = Destination
(ea), Dn 8, 16, 32
ADDA (ea), An 16, 32 Source + Destination = Destination
ADDI #(data), (ea) 8, 16,32 Immediate Data + Destination = Destination
ADDQ #(data), (ea) 8,16, 32 Immediate Data + Destination = Destination
ADDX Dn, Dn 8, 16,32 Source + Destination + X = Destination
— (An), - (An) 8, 16, 32
CLR ({ea) 8, 16,32 0 = Destination
CMmP (ea), Dn 8, 16, 32 (Destination — Source), CCR shows results
CMPA (ea), An 16, 32 (Destination — Source), CCR shows results
CMPI #(data), (ea) 8,16, 32 (Destination — Immediate Data), CCR shows results
CMPM (An) +, (An) + 8, 16, 32 (Destination — Source), CCR shows results
CMP2 (ea), Rn 8, 16,32 Lower bound < Rn < Upper Bound, CCR shows results
DIVS/DIVU (ea), Dn 32/16 = 16 : 16 | Destination / Source => Destination (signed or unsigned)
(ea), Dr:Dq 64/32 = 32:32
(ea), Dq 32/32 = 32
DIVSL/DIVUL (ea),Dr:Dq | 32/32=32:32
EXT Dn 8=16 Sign Extended Destination => Destination
Dn 16 =32
EXTB Dn 8 =32 Sign Extended Destination = Destination
MULS/MULU {ea), Dn 16 x 16 = 32 | Source * Destination = Destination (signed or unsigned)
(ea), DI 32x 32 = 32
(ea), Dh : DI 32x32=64
NEG (ea) 8, 16,32 0 — Destination => Destination
NEGX (ea) 8, 16,32 0 — Destination — X = Destination
SuB (ea), Dn 8, 16, 32 Destination — Source = Destination
Dn, (ea)
SUBA (ea), An 16, 32 Destination — Source = Destination
SuBI #(data), (ea) 8, 16, 32 Destination — Immediate Data = Destination
SuBQ #(data), (ea) 8, 16, 32 Destination — Immediate Data = Destination
SUBX Dn, Dn 8, 16, 32 Destination — Source — X = Destination
~ (An), — (An) 8, 16, 32
TBLS/TBLU (ea), Dn 8,16, 32 Dyn — Dym = Temp
Dym * Dyn, Dn (Temp * Dn [7 : 0]) = Temp
(Dym * 256) + Temp = Dn
TBLSN/TBLUN (ea), Dn 8,16, 32 Dyn - Dym = Temp
Dym * Dyn, Dn (Temp * Dn [7 : 0]) / 256 = Temp

Dym + Temp = Dn

MC68330 USER'S MANUAL

MOTOROLA

5.4.3.4 LOGIC INSTRUCTIONS. The logical operation instructions (AND, OR, EOR, and
NOT) perform logical operations with all sizes of integer data operands. A similar set of
immediate instructions (ANDI, ORI, and EORI) provide these logical operations with all
sizes of immediate data. The TST instruction arithmetically compares the operand with
zero, placing the result in the CCR. Table 5-8 summarizes the logical operations.

Table 5-8. Logic Operations

Instruction Operand Operand Size Operation
Syntax
AND (ea), Dn 8,16, 32 Source A Destination = Destination
Dn, (ea) 8, 16, 32
ANDI #(data), (ea) 8, 16, 32 Immediate Data A Destination = Destination
EOR Dn, {ea) 8,16, 32 Source ® Destination = Destination
EORI #(data), (ea) 8, 16, 32 Immediate Data @ Destination = Destination
NOT (ea) 8, 16, 32 Destination = Destination
OR (ea), Dn 8,16, 32 Source V Destination = Destination
Dn, ({ea) 8,16, 32
ORI #(data), (ea) 8, 16,32 Immediate Data V Destination = Destination
TST (ea) 8, 16, 32 Source - 0,to set condition codes

5.4.3.5 SHIFT AND ROTATE INSTRUCTIONS. The arithmetic shift instructions, ASR and
ASL, and logical shift instructions, LSR and LSL, provide shift operations in both
directions. The ROR, ROL, ROXR, and ROXL instructions perform rotate (circular shift)
operations, with and without the extend bit. All shift and rotate operations can be
performed on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count may be
specified in the instruction operation word (to shift from 1 to 8 places) or in a register
(modulo 64 shift count).

Memory shift and rotate operations shift word-length operands one bit position only. The
SWAP instruction exchanges the 16-bit halves of a register. Performance of shift/rotate
instructions is enhanced so that use of the ROR and ROL instructions with a shift count of
eight allows fast byte swapping. Table 5-9 is a summary of the shift and rotate operations.

MOTOROLA MC68330 USER'S MANUAL 5-45

Table 5-9. Shift and Rotate Operations

Instruction Operand Operand Size Operation
Syntax
ASL Dn, Dn 8, 16, 32 X/C |‘__| - I‘_ 0
#data), Dn 8, 16, 32 l
(ea) 16
ASR Dn, Dn 8, 16, 32 —]__>| X/C
#(data), Dn 8,16, 32 I l
(ea) 16
LsL Dn, Dn 8, 16, 32 XC] ———— k0
#data), Dn 8, 16, 32 L
(ea) 16
LSR Dn, Dn 8, 16, 32 0—>——}—[xc
#(data), Dn 8, 16,32 I —I
(ea) 16
ROL Dn, Dn 8, 16,32]
#data), Dn 8, 16, 32 C - |(_.
(ea) 16 [
ROR Dn, Dn 8, 16,32
#(data), Dn 8, 16, 32 — T
(ea) 16
ROXL Dn, Dn 8, 16, 32
#(data), Dn 8, 16, 32 C —} X
(ea) 16 I r
ROXR Dn, Dn 8,16, 32
#(data), Dn 8, 16, 32 g I pe— S
(ea) 16]
SWAP Dn 16 IR

5.4.3.6 BIT MANIPULATION INSTRUCTIONS. Bit manipulation operations are
accomplished using the following instructions: bit test (BTST), bit test and set (BSET), bit
test and clear (BCLR), and bit test and change (BCHG). All bit manipulation operations
can be performed on either registers or memory. The bit number is specified as immediate
data or in a data register. Register operands are 32 bits long, and memory operands are 8
bits long. Table 5-10 is a summary of bit manipulation instructions.

5-46

MC68330 USER'S MANUAL MOTOROLA

Table 5-10. Bit Manipulation Operations

Operand

Operand Size

S Operation
Instruction Syntax P

BCHG Dn, (ea) 8,32 ~((bit number) of destination) = Z = bit of destination
#(data), (ea) 8,32

BCLR Dn, (ea) 8,32 ~((bit number) of destination) = Z, 0 = bit of destination
#(data), (ea) 8 32

BSET Dn, (ea) 8,32 ~({bit number) of destination) = Z; 1 = bit of destination
#(data), (ea) 8,32

BTST Dn, (ea) 8,32 ~({bit number) of destination) = Z

8, 32

#(data), (ea)

5.4.3.7 BINARY-CODED DECIMAL (BCD) INSTRUCTIONS. Five instructions support
operations on BCD numbers. The arithmetic operations on packed BCD numbers are add
decimal with extend (ABCD), subtract decimal with extend (SBCD), and negate decimal
with extend (NBCD). Table 5-11 is a summary of the BCD operations.

Table 5-11. Binary-Coded Decimal Operations

Instruction Operand Operand Size Operation
Syntax
ABCD Dn, Dn 8 Sourceqg + Destinationg+ X = Destination
= (An), - (An) 8
NBCD (ea) 8 0 — Destination1g— X = Destination
8
SBCD Dn, Dn 8 Destinationq(— Source1g — X = Destination
- (An), - (An) 8

MOTOROLA

MC68330 USER'S MANUAL

5.4.3.8 PROGRAM CONTROL INSTRUCTIONS. A set of subroutine call and return
instructions and conditional and unconditional branch instructions perform program control
operations. Table 5-12 summarizes these instructions.

Table 5-12. Program Control Operations

Instruction Operand Operand Size Operation
Syntax
Conditional
Bee (labely 8, 16,32 If condition true, then PC +d = PC
DBcc Dn, (label) 16 If condition false, then Dn — 1 = PC,
ifDn#(—1),then PC+d=PC
Scc (ea) 8 If condition true, then destination bits are set to 1,
else destination bits are cleared to 0
Unconditional
BRA (label) 8, 16, 32 PC+d= PC
BSR (label) 8, 16,32 SP -4 = SP; PC = (SP); PC +d = PC
JMP (ea) none Destination = PC
JSR (ea) none SP -4 = SP, PC = (SP); destination = PC
NOP none none PC+2=PC
Returns
RTD #d) 16 (SP)=PC;SP+4+d=SP
RTR none none (SP) = CCR, SP + 2 = SP; (SP) = PC, SP + 4 = SP
RTS none none (SP) = PC,SP +4 = SP

To specify conditions for change in program control, condition codes must be substituted
for the letters "cc" in conditional program control opcodes. Condition test mnemonics are
given below. Refer to 5.4.3.10 Condition Tests for detailed information on condition
codes.

CC — Carry clear LS — Low or same
CS — Carry set LT — Less than

EQ — Equal MI — Minus

F — False* NE — Not equal

GE — Greater or equal PL — Plus

GT — Greater than T— True

HI — High VC — Overflow clear
LE — Less or equal VS — Overflow set

*Not applicable to the Bcc instruction

5.4.3.9 SYSTEM CONTROL INSTRUCTIONS. Privileged instructions, trapping
instructions, and instructions that use or modify the CCR provide system control
operations. All of these instructions cause the processor to flush the instruction pipeline.
Table 5-13 summarizes the instructions. The preceding list of condition tests also applies
to the TRAPcc instruction. Refer to 5.4.3.10 Condition Tests for detailed information on
condition codes.

5-48 MC68330 USER'S MANUAL MOTOROLA

Table 5-13. System Control Operations

Instruction Operand Operand Size Operation
Syntax
Privileged
ANDI #data), SR 16 Immediate Data A SR = SR
EORI #(data), SR 16 Immediate Data ® SR = SR
MOVE (ea), SR 16 Source = SR
SR, (ea) 16 SR = Destination
MOVEA USP, An 32 USP = An
An, USP 32 An = USP
MOVEC Re, Rn 32 Rc = Rn
Rn, Re 32 Rn = Rc
MOVES Rn, (ea) 8,16, 32 Rn = Destination using DFC
(ea), Rn Source using SFC = Rn
ORI #(data), SR 16 Immediate Data V SR = SR
RESET none none Assert RESET line
RTE none none (SP) = SR, SP + 2= SP, (SP) = PC, SP + 4 = SP,
restore stack according to format
STOP #(data) 16 Immediate Data = SR; STOP
LPSTOP #data) none Immediate Data = SR; interrupt mask = EBI, STOP
Trap Generating
BKPT #(data) none If breakpoint cycle acknowledged, then execute
returned operation word, else trap as illegal instruction
BGND none none If background mode enabled, then enter
background mode, else format/vector offset = — (SSP),
PC = - (SSP), SR = — (SSP); (vector) = PC
CHK (ea), Dn 16, 32 If Dn <0 or Dn < (ea), then CHK exception
CHK2 (ea), Rn 8,16, 32 If Rn < lower bound or Rn > upper bound, then
CHK exception
ILLEGAL none none SSP -2 = SSP, vector offset = (SSP);
SSP -4 = SSP, PC = (SSP);
SSP -2 = SSP, SR = (SSP);
llegal instruction vector address = PC
TRAP #data) none SSP — 2 = SSP; format/vector offset = (SSP),
SSP -4 = SSP, PC = (SSP); SR = (SSP),
vector address = PC
TRAPcc none none If cc true, then TRAP exception
#(data) 18, 32
TRAPV none none If V set, then overflow TRAP exception
Condition Code Register
ANDI #(data), CCR 8 Immediate Data A CCR = CCR
EORI #(data), CCR 8 Immediate Data ® CCR = CCR
MOVE (ea), CCR 16 Source = CCR
CCR, (ea) 16 CCR = Destination
ORI #(data), CCR 8 Immediate Data V CCR = CCR

MOTOROLA

MC68330 USER'S MANUAL

5-49

5.4.3.10 CONDITION TESTS. Conditional program control instructions and the TRAPcc
instruction execute on the basis of condition tests. A condition test is the evaluation of a
logical expression related to the state of the CCR bits. If the result is 1, the condition is
true. If the result is 0, the condition is false. For example, the T condition is always true,
and the EQ condition is true only if the Z-bit condition code is true. Table 5-14 lists each
condition test.

Table 5-14. Condition Tests

Mnemonic Condition Encoding Test
T True 0000 1
F* False 0001 0
HI High 0010 CTeZ
LS Low or Same 0011 T+Z
cc Carry Clear 0100 [
Ccs Carry Set 0101 Cc
NE Not Equal 0110 z
EQ Equal o111 z
vC Overflow Clear 1000 \
'S Overflow Set 1001 \
PL Plus 1010 N
Mi Minus 1011 N
GE Greater or Equal 1100 NeV+NeV
LT Less Than 1101 NeV+NeV
GT Greater Than 1110 NeVeZiNeVeZ
LE Less or Equal 1111 Z+NeV+NeV
* Not available for the Bec instruction.
« = Boolean AND
= Boolean OR

"
N Boolean NOT N

5.4.4 Using the Table Lookup and Interpolation Instructions.

There are four table lookup and interpolate instructions. TBLS returns a signed, rounded
byte, word, or long-word result. TBLSN returns a signed, unrounded byte, word, or long-
word result. TBLU returns an unsigned, rounded byte, word, or long-word result. TBLUN
returns an unsigned, unrounded byte, word, or long-word result. All four instructions
support two types of interpolation data: an n-element table stored in memory, and a two-
element range stored in a pair of data registers. The latter form provides a means of
performing surface (3D) interpolation between two previously calculated linear
interpolations.

The following examples show how to compress tables and use fewer interpolation levels
between table entries. Example 1 (see Figure 5-16) demonstrates table lookup and
interpolation for a 257-entry table, allowing up to 256 interpolation levels between entries.

5-50 MC68330 USER'S MANUAL MOTOROLA

Example 2 (see Figure 5-17) reduces table length for the same data to four entries.
Example 3 (see Figure 5-18) demonstrates use of an 8-bit independent variable with an
instruction.

Two additional examples show how TBLSN can reduce cumulative error when multiple
table lookup and interpolation operations are used in a calculation. Example 4
demonstrates addition of the results of three table interpolations. Example 5 illustrates use
of TBLSN in surface interpolation.

5.4.4.1 TABLE EXAMPLE 1: STANDARD USAGE. The table consists of 257 word
entries. As shown in Figure 5-16, the function is linear within the range 32768 < X <
49152. Table entries within this range are as given in Table 5-15..

Table 5-15. Standard Usage Entries

Entry Number X Y
Value Value
128* 32768 1311
162 41472 1659
163 41728 1669
164 41984 1679
165 42240 1690
192* 49152 1966

*These values are the end points of the range.
All entries between these points fall on the line.

DEPENDENT VARIABLE

A
I b T T >
16384 32768 \ 49152 65536
X
INDEPENDENT VARIABLE

Figure 5-16. Table Example 1

MOTOROLA MC68330 USER'S MANUAL 5-51

The table instruction is executed with the following bit pattern in Dx:

31 16 15 0
NOT USED it o0 10001 11000 00

Table Entry Offset = Dx [8:15] = $A3 = 163
Interpolation Fraction = Dx [0:7] = $80 = 128

Using this information, the table instruction calculates dependent variable Y:
Y = 1669 + (128 (1679 — 1669)) / 256 = 1674

5.4.4.2 TABLE EXAMPLE 2: COMPRESSED TABLE. In Example 2 (see Figure 5-17),
the data from Example 1 has been compressed by limiting the maximum value of the
independent variable. Instead of the range 0 < X = 65535, X is limited to 0 < X < 1023. The

table has been compressed to only five entries, but up to 256 levels of interpolation are
allowed between entries.

DEPENDENT VARIABLE

Y

l
I
|
I
l
I
!
I
|
256 512 !

| |
786 1024
X

INDEPENDENT VARIABLE

Figure 5-17. Table Example 2

NOTE

Extreme table compression with many levels of
interpolation is possible only with highly linear functions.
The table entries within the range of interest are listed in
Table 5-16 .

5-52 MC68330 USER'S MANUAL MOTOROLA

Table 5-16 . Compressed Table Entries

Entry Number X Y
Value Value
2 512 1311
3 786 1966

Since the table is reduced from 257 to 5 entries, independent variable X must be scaled
appropriately. In this case the scaling factor is 64, and the scaling is done by a single
instruction:

LSR.W #6,Dx
Thus, Dx now contains the following bit pattern:
31 16 15 0

NOT USED 0o 0 0 000 tOoO1O0O0OO0O 1 1
1 0

Table Entry Offset = Dx [8:15] = $02 = 2
Interpolation Fraction = Dx [0:7] = $8E = 142

Using this information, the table instruction calculates dependent variable Y:
Y = 1331 + (142 (1966 — 1311)) / 256 = 1674

The function chosen for Examples 1 and 2 is linear between data points. If another
function been been used, interpolated values might not have been identical.

5.4.4.3 TABLE EXAMPLE 3: 8-BIT INDEPENDENT VARIABLE. This example shows
how to use a table instruction within an interpolation subroutine. Independent variable X is
calculated as an 8-bit value, allowing 16 levels of interpolation on a 17-entry table. X is
passed to the subroutine, which returns an 8-bit result. The subroutine uses the data listed
in Table 5-17, based on the function shown in Figure 5-18.

MOTOROLA MC68330 USER'S MANUAL 5-53

INDEPENDENT VARIABLE

\

1 I
1024 2048

INDEPENDENT VARIABLE

Figure 5-18. Table Example 3

Table 5-17. 8-Bit Independent

Variable Entries

X X Y
(Subroutine) (Instruction)
0 0 0
256 16
2 512 32
3 768 48
4 1024 64
5 1280 80
6 1536 96
7 1792 112
8 2048 128
9 2304 112
10 2560 96
11 2816 80
12 3072 64
13 3328 48
14 3584 32
15 3840 16
16 4096 0

The first column is the value passed to the subroutine, the second column is the value
expected by the table instruction, and the third column is the result returned by the

subroutine.

The following value has been calculated for independent variable X:

5-54

MC68330 USER'S MANUAL

MOTOROLA

31 16 15 0

NOT USED 0o 0 0 0 00O0OT1TOT®T 1T 1 1
o 1

Since X is an 8-bit value, the upper four bits are used as a table offset and the lower four
bits are used as an interpolation fraction. The following results are obtained from the
subroutine:

Table Entry Offset = Dx [4:7] = $B = 11
Interpolation Fraction = Dx [0:3] = $D = 13

Thus, Y is calculated as follows:
Y =80+ (13 (64 —80))/ 16 =67

If the 8-bit value for X were used directly by the table instruction, interpolation would be
incorrectly performed between entries 0 and 1. Data must be shifted to the left four places
before use:

LSL.W #4, Dx

The new range for X is 0 < X < 4096; however, since a left shift fills the least significant
digits of the word with zeros, the interpolation fraction can only have one of 16 values.

After the shift operation, Dx contains the following value:

31 16 15 0
NOT USED o000 1o011t11o01 0 00
0

Execution of the table instruction using the new value in Dx yields:

Table Entry Offset = Dx [8:15] = $0B = 11
Interpolation Fraction = Dx [0:7] = $D0 = 208

Thus, Y is calculated as follows:
Y =80 + (208 (64 — 80)) / 256 = 67

5.4.4.4 TABLE EXAMPLE 4: MAINTAINING PRECISION. In this example, three table
lookup and interpolation (TLI) operations are performed and the results are summed. The
calculation is done once with the result of each TLI rounded before addition and once with
only the final result rounded. Assume that the result of the three interpolations are as
follows (a "." indicates the binary radix point).

TLI# 1 0010 0000.0111 0000
TLI#2 0011 1111.0111 0000
TLI#3 0000 0001 .0111 0000

MOTOROLA MC68330 USER'S MANUAL 5-55

First, the results of each TLI are rounded with the TBLS round-to-nearest-even algorithm.
The following values would be returned by TBLS:

TLI#1
TLI#2
TLI#3

0010 0000 .
0011 1111.
0000 0001 .

Summing, the following result is obtained:

0010 0000 .
0011 1111.
0000 0001 .
0110 0000 .

Now, using the same TLI results, the sum is first calculated and then rounded according to
the same algorithm:

0010 0000 .
.0111 0000
. 0111 0000

0011 1111
0000 0001

0111 0000

0110 0001

. 0101 0000

Rounding yields:
0110 0001 .

The second result is preferred. The following code sequence illustrates how addition of a
series of table interpolations can be performed without loss of precision in the intermediate
results:

LO:
TBLSN.B (ea), Dx
TBLSN.B (ea), Dx
TBLSN.B (ea), DI
ADD.L Dx, Dm Long addition avoids problems with carry
ADD.L Dm, DI
ASR.L #8, DI Move radix point
BCC.B L1 Fraction MSB in carry
ADDQ.B #1, DI
L1:...

5.4.4.5 TABLE EXAMPLE 5: SURFACE INTERPOLATIONS. The various forms of table
can be used to perform surface (3D) TLIs. However, since the calculation must be split
into a series of 2D TLIs, the possibility of losing precision in the intermediate results is
possible. The following code sequence, incorporating both TBLS and TBLSN, eliminates
this possibility.

5-56 MC68330 USER'S MANUAL MOTOROLA

LO:
MOVE.W Dx, DI Copy entry number and fraction number

TBLSN.B (ea), Dx
TBLSN.B (ea), DI

TBLS.W Dx:DI, Dm Surface interpolation, with round
ASR.L #8, Dm Read just the result

BCC.B L1 No round necessary

ADDQ.B #1, DI Half round up

Li:...

Before execution of this code sequence, Dx must contain fraction and entry numbers for
the two TLI, and Dm must contain the fraction for surface interpolation. The (ea) fields in
the TBLSN instructions point to consecutive columns in a 3D table. The TBLS size
parameter must be word if the TBLSN size parameter is byte, and must be long word if
TBLSN is word. Increased size is necessary because a larger number of significant digits
is needed to accommodate the scaled fractional results of the 2D TLI.

5.4.5 Nested Subroutine Calls

The LINK instruction pushes an address onto the stack, saves the stack address at which
the address is stored, and reserves an area of the stack for use. Using this instruction in a
series of subroutine calls will generate a linked list of stack frames.

The UNLK instruction removes a stack frame from the end of the list by loading an
address into the SP and pulling the value at that address from the stack. When the
instruction operand is the address of the link address at the bottom of a stack frame, the
effect is to remove the stack frame from both the stack and the linked list.

5.4.6 Pipeline Synchronization with the NOP Instruction

Although the no operation (NOP) instruction performs no visible operation, it does force
synchronization of the instruction pipeline, since all previous instructions must complete
execution before the NOP begins.

5.5 PROCESSING STATES

This section describes the processing states of the CPU32. It includes a functional
description of the bits in the supervisor portion of the SR and an overview of actions taken
by the processor in response to exception conditions.

5.5.1 State Transitions
The processor is in normal, background, or exception state unless halted.

When the processor fetches instructions and operands or executes instructions, it is in the
normal processing state. The stopped condition, which the processor enters when a STOP

MOTOROLA MC68330 USER'S MANUAL 5-57

or LPSTOP instruction is executed, is a variation of the normal state in which no further
bus cycles are generated.

Background state is an alternate operational mode used for system debugging. Refer to
5.7 Development Support for more information.

Exception processing refers specifically to the transition from normal processing of a
program to normal processing of system routines, interrupt routines, and other exception
handlers. Exception processing includes the stack operations, the exception vector fetch,
and the filling of the instruction pipeline caused by an exception. Exception processing
ends when execution of an exception handler routine begins. Refer to 5.6 Exception
Processing for comprehensive information.

A catastrophic system failure occurs if the processor detects a bus error or generates an
address error while in the exception processing state. This type of failure halts the
processor. For example, if a bus error occurs during exception processing caused by a
bus error, the CPU32 assumes that the system is not operational and halts.

The halted condition should not be confused with the stopped condition. After the
processor executes a STOP or LPSTOP instruction, execution of instructions can resume
when a trace, interrupt, or reset exception occurs.

5.5.2 Privilege Levels

To protect system resources, the processor can operate with either of two levels of access
— user or supervisor. Supervisor level is more privileged than user level. All instructions
are available at the supervisor level, but execution of some instructions is not permitted at
the user level. There are separate SPs for each level. The S-bit in the SR indicates
privilege level and determines which SP is used for stack operations. The processor
identifies each bus access (supervisor or user mode) via function codes to enforce
supervisor and user access levels.

In a typical system, most programs execute at the user level. User programs can access
only their own code and data areas and are restricted from accessing other information.
The operating system executes at the supervisor privilege level, has access to all
resources, performs the overhead tasks for the user level programs, and coordinates their
activities.

5.5.2.1 SUPERVISOR PRIVILEGE LEVEL. If the S-bit in the SR is set, supervisor
privilege level applies, and all instructions are executable. The bus cycles generated for
instructions executed in supervisor level are normally classified as supervisor references,
and the values of the function codes on FC2—FCO refer to supervisor address spaces.

All exception processing is performed at the supervisor level. All bus cycles generated
during exception processing are supervisor references, and all stack accesses use the
SSP.

5-58 MC68330 USER'S MANUAL MOTOROLA

Instructions that have important system effects can only be executed at supervisor level.
For instance, user programs are not permitted to execute STOP, LPSTOP, or RESET
instructions. To prevent a user program from gaining privileged access, except in a
controlled manner, instructions that can alter the S-bit in the SR are privileged. The TRAP
#n instruction provides controlled user access to operating system services.

5.5.2.2 USER PRIVILEGE LEVEL. If the S-bit in the SR is cleared, the processor
executes instructions at the user privilege level. The bus cycles for an instruction executed
at the user privilege level are classified as user references, and the values of the function
codes on FC2—FCO specify user address spaces. While the processor is at the user level,
implicit references to the system SP and explicit references to address register seven (A7)
refer to the USP.

5.5.2.3 CHANGING PRIVILEGE LEVEL. To change from user privilege level to supervisor
privilege level, a condition that causes exception processing must occur. When exception
processing begins, the current values in the SR, including the S-bit, are saved on the
supervisor stack, and then the S-bit is set, enabling supervisory access. Execution
continues at supervisor level until exception processing is complete.

To return to user access level, a system routine must execute one of the following
instructions: MOVE to SR, ANDI! to SR, EORI to SR, ORI to SR, or RTE. These
instructions execute only at supervisor privilege level and can modify the S-bit of the SR.
After these instructions execute, the instruction pipeline is flushed, then refilled from the
appropriate address space.

The RTE instruction causes a return to a program that was executing when an exception
occurred. When RTE is executed, the exception stack frame saved on the supervisor
stack can be restored in either of two ways.

If the frame was generated by an interrupt, breakpoint, trap, or instruction exception, the
SR and PC are restored to the values saved on the supervisor stack, and execution
resumes at the restored PC address, with access level determined by the S-bit of the
restored SR.

If the frame was generated by a bus error or an address error exception, the entire
processor state is restored from the stack.

5.6 EXCEPTION PROCESSING

An exception is a special condition that pre-empts normal processing. Exception
processing is the transition from normal mode program execution to execution of a routine
that deals with an exception. The following paragraphs discuss system resources related
to exception handling, exception processing sequence, and specific features of individual
exception processing routines.

MOTOROLA MC68330 USER'S MANUAL 5-59

5.6.1 Exception Vectors

An exception vector is the address of a routine that handles an exception. The VBR
contains the base address of a 1024-byte exception vector table, which consists of 256
exception vectors. Sixty-four vectors are defined by the processor, and 192 vectors are
reserved for user definition as interrupt vectors. Except for the reset vector, each vector in
the table is one long word in length. The reset vector is two long words in length. Refer to
Table 5-18 for information on vector assignment.

Table 5-18. Exception Vector Assignments

Vector Vector Offset Assignment
Number Dec Hex Space
0 0 000 SP Reset: Initial Stack Pointer
1 4 004 SP Reset: Initial Program Counter
2 8 008 SD Bus Error
3 12 00C SD Address Error
4 16 010 SD lllegal Instruction
5 20 014 SD Zero Division
(] 24 018 SD CHK, CHK2 Instructions
7 28 01C SD TRAPcc, TRAPV Instructions
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
11 44 02C SD Line 1111 Emulator
12 48 030 SD Hardware Breakpoint
13 52 034 SD (Reserved for Coprocessor Protocol Violation)
14 56 038 SD Format Error
15 60 03C SD Uninitialized Interrupt
16-23 64 040 SD (Unassigned, Reserved)
92 05C —
24 96 060 SD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector
3247 128 080 SD Trap Instruction Vectors (0-15)
188 0BC —
48-58 192 0Co SD (Reserved for Coprocessor)
232 OE8 —
59-63 236 OEC sD (Unassigned, Reserved)
252 OFC —
64-255 256 100 SD User-Defined Vectors (192)
1020 3FC
CAUTION

Because there is