MONSANTO ELECTRONIC SPECIAL PRODUCTS

DIRECTORY

PRODUCTS

INTRODUCTION

The following information describes in detail our complete line of opto-electronic devices.

All of Monsanto's opto-electronic devices have been designed with your needs in mind, and offer you the easiest to use, and available products on the market today. Using this directory, you should be able to meet virtually any requirement you will have for visible and infrared light-emitting diodes, alpha- and numeric-displays, opto-isolators, detectors and CO_2 laser modulator components. If you are unable to find a device in this directory to meet your requirements, please call our plant at Cupertino, California (408) 257-2140 and talk to any of our application engineers. They will do their best to guide you toward an existing product or put you in touch with someone capable to design a product to meet your needs.

In addition to the information contained on the following pages, we have available a series of GaAsLITE Tips with detailed applications information covering all aspects of our product line. If you do not have copies of these booklets, please write to the address below and request a complete set of Monsanto GaAsLITE Tips.

This directory will be issued periodically with new information on Monsanto's growing line of opto-electronic devices. To make sure you get a revised edition when printed, please send your name and address to Monsanto Company, 10131 Bubb Road, Cupertino, California 95014. If there is a reply card attached to this directory, use it. If not, just send a postcard or brief note asking to be placed on Monsanto's ESP mailing list.

Thanks for your interest in our product line and in the field of opto-electronics.

MONSANTO ELECTRONIC SPECIAL PRODUCTS' DIRECTORY OF GAAS LITE PRODUCTS

INDEX	PAGE NUMBERS
	ITTING DIODES
MV1	Amber TO-18 header
MV2 MV3	Green TO-18 header
MV4	Red low lens TO-5 header
MV4H	Red collimating lens TO-5 header
MV5	Red flat lens coaxial header
MV10A	Red .10" coaxial header (500 ft-L)
MV10A3	Red .10" coaxial header (1000 ft-L)
MV10B	Red TO-18 header (500 ft-L)
MV10B3	Red TO-18 header (1000 ft-L)
MV50	Red two lead .10" lead frame package
MV5020 Series MV5040	Red snap-in panel indicators
MV9000 Series	
	Red, green, & amber cartridge lamps
MAN1	Red seven segment .27" character
MAN1A/B	Red seven segment with red epoxy lens
MAN1001	Red polarity and overrange display
MAN2	Red Alpha/Numeric 35 diode display
MAN3	Red seven segment monolithic
MAN3A	Red seven segment with red epoxy lens
MPC1-3	MAN3A's mounted on PC boards for easy use
MAN4	Red seven segment hybrid .190" character
VISIBLE DISPLAY MO	
MDA100	MAN1 in verticle mount with resistors
MDA101	MAN1 in PC mount with decoder/driver
MDA301 MDA111	3 MAN1's on PC board with decoder/drivers
	AND ACCESSORIES
MDK100	BCD decade counter
MQL105	Four bit latch storage unit
MSD047	BCD to 7 segment decoder/driver
MSD101	BCD to 7 segment decoder/driver
MSD102	BCD to 7 segment decoder/driver
INFRARED EMITTER	s ————————————————————————————————————
ME1	1.5 mW .10" coaxial header
ME2 & 2A	9 mW TO-5 stud header, disspersive lens
ME3	.8 mW .10" coaxial header
ME4 ME5 & 5A	1.0 mW TO-46 header
ME6	500µW TO-46 header, flat lens
ME7	50 μ W .10" coaxial header, flat lens
MI20C	2 mW TO-46 header
ME60	550 μ W twin lead, epoxy lens
OPTO-ISOLATORS -	
MCD1	Photodiode coupled pair, 4 lead pack
MCD2	Photodiode coupled pair, DIP
MCD4	Photodiode coupled pair, Hermetic TO-18
MCT1	Phototransistor coupled pair, 4 lead pack
MCT2 MCT4	Phototransistor coupled pair, DIP
MCS1	Phototransistor coupled pair, Hermetic TO-18
MCS2	Photo SCR coupled pair, DIP
PHOTO DETECTORS	
MD1	Silicon PIN photodiode, flat lens
MD2	Silicon PIN photodiode, domed lens
MT1	Phototransistor, flat lens
MT2	Phototransistor, domed lens
CO2 LASER COMPON	ENTS ————————————————————————————————————
MM1	10.6 micron window
MM2	Polarizer
MM3	Quarter waveplate
MM4	Analyzer
MM7	Brewster Angle Window

AMBER LED

MVI

PRODUCT DESCRIPTION

The MV1 is a gallium arsenide phosphide light-emitting diode mounted on a standard TO18 header with epoxy lens.

NOTE: LEAD 2 OMITTED

FEATURES & APPLICATIONS

Monsanto's leadership in compound semi-conductor materials and opto-electronic devices has now been translated into a high brightness (500 ft-L) amber emitting diode. This gallium arsenide phosphide light source when used with the red or green diodes, allows the design engineer flexibility in selecting a specific light source for his equipment.

Some applications include:

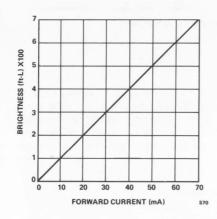
- Film annotation
- Card and tape reader light source
- Visual displays
- Character recognition

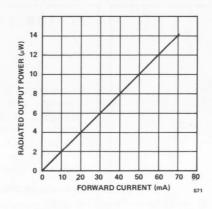
ABSOLUTE MAXIMUM RATINGS

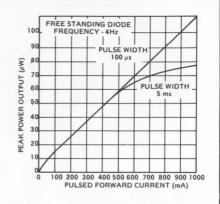
Power dissipation @ 25°C ambient																
Derate linearly from 25°C																
Storage and operating temperature																
Continuous forward current	 									 				70) m	Α
Reverse voltage																
Peak forward current (1µsec pulse; 300 pps)															.3	Α

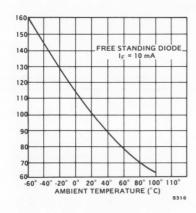
ELECTRO-OPTICAL CHARACTERISTICS

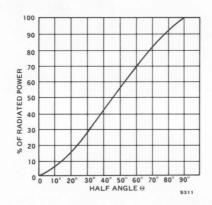
(25°C Ambient Temperature Unless Otherwise Specified)

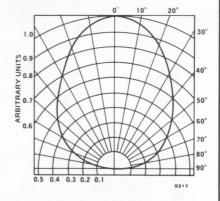

1-0			o months ope		
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Brightness (see note 1)	200	200		ft-L	I _F =50 mA
Radiated power (see note 2)		10		μ W	I _F =50 mA
Peak wavelength	5900	6100	6300	Å	
Spectral line half-width		400		Â	
Forward voltage		2	2.8	V	I _F =50 mA
Capacitance		150		pF	V=0, f=1 MHz
Dynamic resistance		6		Ω	I _F =50 mA
Light rise time and fall time		35		ns	50 Ω system
Reverse current		0.02		μΑ	V _R =3.0 V



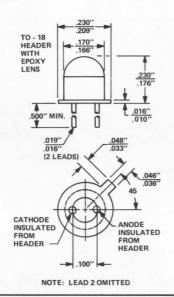

TYPICAL THERMAL CHARACTERISTICS


TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES


(25°C Free Air Temperature Unless Otherwise Specified)



- 1. As measured with a Photo Research Spectra Spot Brightness Meter with "SPECTAR" L-175 lens in the brightest region of the emitting surface.
- 2. The total external power output measurements are made with a Centralab 110C solar cell terminated into a 100 ohm impedance.


GREEN LED

MV2

PRODUCT DESCRIPTION

The MV2 is a gallium phosphide green visible light-emitting diode. It is mounted in a TO18 header with epoxy lens.

PACKAGE DIMENSIONS

FEATURES

Monsanto's leadership in compound semi-conductor materials and opto-electronic devices has now been translated into a high brightness (300 ft-L.) green emitting diode. This light source when used with the red or amber diodes, allows the design engineer flexibility in selecting a specific light source for his equipment. Some applications include:

- Film annotation
- Card and tape reader light source
- Visual displays
- Character recognition

ABSOLUTE MAXIMUM RATINGS

Power dissipation @ 25°C ambient	 		200 mW
Derate linearly from 25°C	 		. 2.67 mW/°C
Storage and operating temperature	 	5	55°C to 100°C
Continuous forward current	 		50 mA
Reverse voltage			
Peak forward current (1 µsec pulse; 300 pps)	 		2 A

ELECTRO-OPTICAL CHARACTERISTICS

(25°C Ambient Temperature Unless Otherwise Specified)

CHARACTERISTICS	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Brightness (see note 1)	100	300		ft-L	I _F =50 mA
Radiated power (see note 2)		3		μ W	I _E =50 mA
Peak wavelength		5600		Å	
Spectral line half-width		400		Å	
Forward voltage		4	4.5	V	$I_F=50 \text{ mA}$
Capacitance		150		pF	V=0, f=1 MHz
Dynamic Resistance		20		Ω	I _F =50 mA
Light rise time and fall time		50		ns	50 Ω system
Reverse current		0.3		μ A	V _R =3.0 V

TYPICAL THERMAL CHARACTERISTICS

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (25°C Free Air Temperature Unless Otherwise Specified) FREE STANDING DIODE FREQUENCY = 4 Hz (M7) POWER OUTPUT (µW) 22 22 09 09 PULSE WIDTH 100 µ BRIGHTNESS (FT-L) RADIATED OUTPUT PULSE WIDTH 100 ns PEAK P 10 15 20 25 30 35 4 (mA) FORWARD CURRENT 100 200 300 400 500 600 700 800 900 1000 (mA) s309 20 30 40 (mA) FORWARD CURRENT Figure 1 Figure 2 Figure 3 % RELATIVE POWER OUTPUT (NOTE 2) FREE STANDING DIODE 1TRARY UNITS 8.0 0.1 70 RADIATED POWER 120 0 20 80 10 30° 40° 50° 60° HALF ANGLE Θ °-20° 0° 20° 40° 60° 80° 100° AMBIENT TEMPERATURE (°C)

NOTES

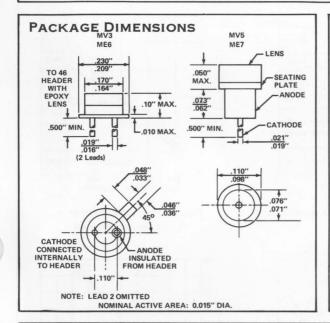
Figure 4

1. As measured with a Photo Research Spectra Spot Brightness Meter with "SPECTAR" L-175 lens in the brightest region of the emitting surface.

Figure 5

2. The total external power output measurements are made with a Centralab 110C solar cell terminated into a 100 ohm impedance.

Figure 6


LOW LENS LED's

MV3 ME6 MV5 ME7

PRODUCT DESCRIPTION

The MV3 and MV5 are gallium arsenide phosphide, visible light-emitting diodes. The ME6 and ME7 are gallium arsenide infrared light-emitting diodes.

The MV3 and ME6 are mounted on a TO46 header with a flat epoxy lens. The MV5 and ME7 are mounted in a .110-inch coaxial pack with a flat epoxy lens.

FEATURES & APPLICATIONS

- The low lens allows easy interfaceability with external optics and fiber optics and the LEDs.
- The low lens also allows contact annotation of film.
- The narrow spectral bandwidth offers a monochromatic light source for controlled detector/film sensitivity matching.
- The nanosecond switching of the LEDs allows an extremely fast rate of annotation. They are LIGHT QUICK.
- Low driving power is required. The LEDs are compatible with ICs
- They are solid state rugged and reliable. The life is 1,000,000 hrs.
- Their small size offers space savings.
- The low lens, red visible and infrared, light emitting diodes are designed specifically for:

Film annotation Character recognition Visual displays Optical encoders Card and tape reader light source. Calibrating high-speed detectors. Electrical isolation

(when coupled to detectors.)

ABSOLUTE MAXIMUM RATINGS

Power Dissipation @ 25°C Ambient Temperature Derate linearly from 25°C Storage and Operating Temperature Lead Solder Time @ 260°C (See Note 1) Continuous Forward Current Peak Forward Current (1µsec pulse, 300 pps) Reverse Voltage

ME7 - MV5 ME6 - MV3 130 mW 250 mW 1.73 mW/°C 3.33 mW/°C -55°C to 100°C -55°C to 100°C 7.0 sec 7.0 sec 70 mA 120 mA 0.5 A 3.0 A 3.0 V 3.0 V

ELECTRO-OPTICAL CHARACTERISTICS

(25°C Free Air Temperature Unless Otherwise Specified)

	VISIBLE	REDM	V3-MV5	INFRA	RED ME	6-ME7		
CHARACTERISTICS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Total external radiated power (see note 2)	30	50		300	500		μW	I _F =50 mA
Brightness (see note 3)		150					ft-L	I _E =50 mA
Peak emission wave length	6700	6850	7000		9000		Å	
Spectral line half width		400			400		Å	
Forward voltage		1.65	2.0		1.3	1.5	V	I _E =50 mA
Forward dynamic resistance		2.0			1.2		Ω	I _E =50 mA
Capacitance		150			150		pF	V=0
Light turn on and turn off		1.0			1.0		μs	
Reverse current			100			100	μΑ	V _R =3.0 V

MV3 MV5 ME6 ME7

	TYPE	VALUE
Thermal Resistance Junction to Free Air (Θ_{JA})	MV5, ME7 MV5, ME6	350°C/W 300°C/W
Thermal Resistance Junction to Case (Θ_{JC})	MV5, ME7 MV3, ME6	170°C/W 90°C/W
Wavelength Temperature Coefficient (Case Temperature)	MV3, MV5 ME6, ME7	3.0 Å/°C 2.8 Å/°C
Forward Voltage Temperature Coefficient	MV3, MV5 ME6, ME7	-2.0 mV/°C -1.8 mV/°C

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

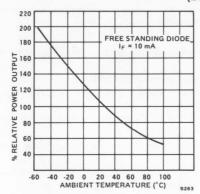


Figure 1 Power Output vs. Temperature

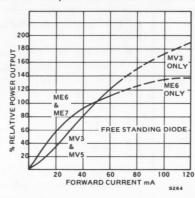


Figure 2 Power Output vs. Forward Current

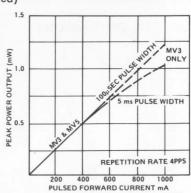


Figure 3 Peak Output Power vs.
Pulsed Forward Current

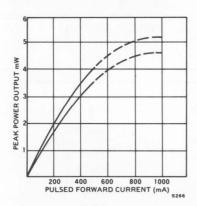


Figure 4 Peak Output Power vs.
Pulsed Forward Current

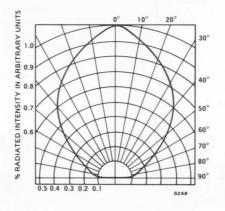


Figure 5 Spacial Distribution

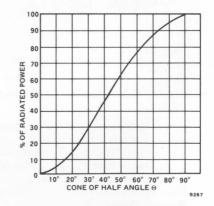


Figure 6 Percent of Radiated Power into Cone of Half Angle ⊕

- 1. The leads of the MV3 and ME6 were immersed in molten solder, heated to 260°C, at a point 1/16 inch from the body of the device.
 - Suggested mounting procedures for MV5 and ME7 are:
 - (a) When soldering use wet sponge to heat sink lens.
 - (b) Use conductive epoxy.
 - (c) Press fit
- 2. The total external power output measurements are made with a Centralab 110C solar cell terminated into a 100 ohm impedance.
- 3. As measured with a Photo Research Spectra Spot Brightness Meter with "SPECTAR" L-175 lens in the brightest region of the emitting surface.

HIGH POWER VISIBLE LED's

MV4 MV4H

PRODUCT DESCRIPTION

The MV4 is a high-brightness, diffused planar gallium arsenide phosphide diode mounted on a standard TO5 stud header with an epoxy dispursive lens.

The MV4H is the same as the MV4 except for a high-collimating epoxy lens.

ANODE AN

FEATURES

- Illuminator for dark adapted area
- Bright red light
- Large emitting area
- 5000 ft-L @ I_F = 1.0A
- · Choice of lambertian or collimated light
- Long life -- solid state reliability

The MV4 and MV4H are large area GaAsLites recommended especially for such military and industrial applications as reading illuminators in dark adapted areas and lighting in photographic dark rooms. They are also ideal as indicator lights where visibility at greater than average distances is required.

Recommended "BIG RED" applications include:

- Night Vision Illuminators
- High Intensity Indicators
- Alarm Signals
- Electrical Isolators
- Warning Flashers

ABSOLUTE MAXIMUM RATINGS

Power Dissipation	
@25°C Case Temperature	
Derate Linearly From 25°C	mW/°C
Storage and Operating Temp	100°C
Continuous Forward Current (Note 2)	1 A
Peak Forward Current (Note 2) (1μs Pulse	
width 300 pps)	. 25 A
Reverse Voltage	3 volts

ELECTRO-OPTICAL CHARACTERISTICS

(25°C Case Temperature Unless Otherwise Specified)

CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Total external radiated power					
MV4 (see note 1)	.75	1		mW	I _F =.5 A
MV4H (see note 1)		2		mW	$I_{\rm F}$ =1.0 A, λ =6700 Å
Brightness					
MV4		2500		ft-L	I _F =.5 A
MV4H		5000		ft-L	I _E =1.0 A
Peak Emission Wavelength	6500	6700	7000	Å	Note that let
Spectral Line Half Width		400		Å	
Forward Voltage		1.7	2.0	V	I _E =.5 A
Capacitance		750		pF	V=0
Light Rise Time or Fall Time		10		ns	
Reverse Voltage	3.0			V	$I_R = 100 \mu A$

THERMAL CHARACTERISTICS

Wavelength Temperature Coefficient (Case																
Temperature)											 	•		2.8	Å/	0
Forward Voltage Temperture Coefficient											 		. 1	.8 n	nV/	00

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

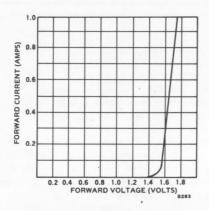


Figure 1 Forward Current vs. Forward Voltage

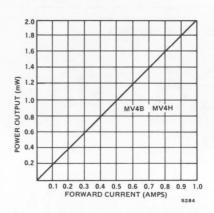


Figure 2 Power Output vs. Forward Current

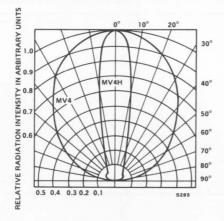


Figure 3 Spacial Distribution

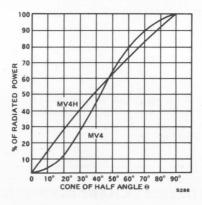


Figure 4 Percent of Radiated Power into Cone of Half Angle ⊕

NOTES

- 1. The total external radiated power output measurements are made a centralab 2A solar cell terminated into a 10Ω impedance.
- 2. Units must be sufficiently heat sunk above 150mA input current.

3/1

VISIBLE LED's

MVIOA MVIOB MVIOA3 MVIOB3

PRODUCT DESCRIPTION

The MV10A and MV10B series of visible light emitting diodes are made of Diffused GaAsP. The A series is mounted on .110" coaxial headers with a protective epoxy lens. The B series is mounted in a TO18 header with a protective epoxy lens.

PACKAGE DIMENSIONS TO 18 230" HEADER 2707 HEADER 2707

See note 3

MV10B3

FEATURES

- High Efficiency--5mA max. to produce 50 ft-L.
- Ultra High Brightness--Typ. 1000 ft-L @50mA.
- Long Life--Solid State Reliability.
- Low Power Requirements--Typ. 10mW for 50 ft-L.
- Compatible with Integrated Circuits--DTL, RTL, T² L.
- Compact, Rugged, Lightweight.

ABSOLUTE MAXIMUM RATINGS

MV10A3

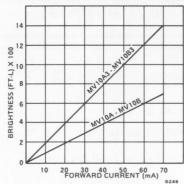
MV10A-MV10A3 MV10B-MV10B3 Maximum Power Dissipation @25°C Ambient Temperature 150mW 175mW 2.33mW/°C Derate Linearly from 25°C 2.0mW/°C Maximum Storage & Operating Temperature -55°C to +100°C -55°C to +100°C Maximum Lead Solder Time @260°C (see note 4) 7.0 s 7.0 s 70mA Maximum Currents and Voltages Continuous Forward Current 70mA Peak Forward Current (1µsec. pulse, 300 pps) 3.0A 3.0A Reverse Voltage 3.0V 3.0V

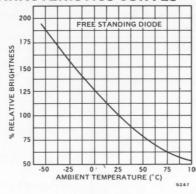
	MV	IOA MV	10B	MV10	A3 MV	10B3		
CHARACTERISTICS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Brightness (see note 1)		500			1000		ft-L	I _F =50mA
Current to produce 50 ft-L								
(see note 1)			10			5.0	mA	
Total external radiated power								
(see note 2)		50			100		μΑ	I _F =50 mA, λ=6750 Å
Peak emission wave length	6300		7000	6300		7000	Å	
Spectral line half width		400			400		Å	
Forward voltage		1.65	2.0		1.65	2.0	V	I _E =50 mA
Forward dynamic resistance		2.0			2.0		Ω	I _E =50 mA
Capacitance		135			135		pF	V=0
Light turn on and turn off		1.0			1.0		ns	
Reverse current		0.3			0.3		μΑ	V _R =3.0 V

MVIOA MVIOB MVIOA3 MVIOB3

TYPICAL THERMAL CHARACTERISTICS

MV10A-MV10A3


MV10B-MV10B3


Thermal Resistance Junction to Free Air (Θ_{JA}) Thermal Resistance Junction to Case (Θ_{JC}) Wavelength Temperature Coefficient (case temperature) Forward Voltage Temperature Coefficient

350° C/W 170° C/W 3.0 Å/°C -2.0 mV/°C

320° C/W 155° C/W 3.0 Å/°C -2.0 mW/°C

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS CURVES

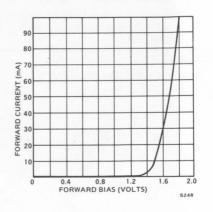
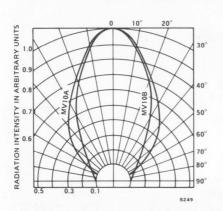



Figure 1 Brightness vs. Forward Current

Figure 2 Brightness vs. Temperature

Figure 3 Forward Current vs. Forward Voltage

(25°C Free Air Temperature Unless Otherwise Specified)

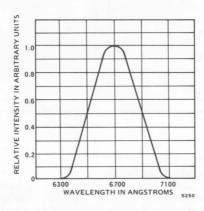


Figure 5 Spectral Distribution

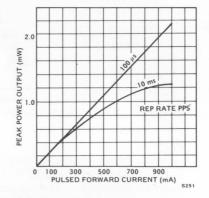
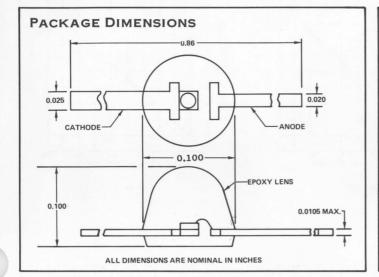


Figure 6 Peak Power Output vs. Pulsed Forward Current

NOTES

- 1. As measured with a Photo Research Spectra Spot Brightness Meter with "Spectar" L-175 lens in the brightest region of the emitting surface.
- 2. The total external power output measurements are made with a Centralab 100C solar cell terminated into a 100
- 3. The apparent spot size diameter for the MV10A, MV10A3, and MV10B, MV10B3 are 0.025-inch minimum to 0.048-inch maximum and 0.025-inch minimum to 0.066-inch maximum respectively.
- 4. The leads of the MV10B and MV10B3 were immersed in molten solder, heated to 260°C, to a point 1/16-inch from the body of the device per MIL-S-750. Suggested mounting procedures for MV10A and MV10A3: (a) Use wet sponge to heat sink lens when soldering (b) Use conductive epoxy (c) Press fit.

LITHO IN USA


50K

VISIBLE LED

MV50

PRODUCT DESCRIPTION

The MV50 is a diffused Gallium Arsenide Phosphide diode mounted in a two lead epoxy package.

FEATURES

The MV50 is intended for high volume indicator light applications where low cost, high reliability, and top performance are required. Major usage is expected in applications such as diagnostic lights on printed circuit boards and panel lights. The MV50 can be used to displace subminiature lamps as small as T3/4 size.

- Low cost
- Bright
- Compatible with integrated circuits
- Long life, rugged
- Small size T3/4
- Easily assembled in arrays

BSOLUTE MAXIMUM RATING	S																		
Power dissipation @ 25°C ambient						 												. 80 mV	Ν
Derate linearly from 50°C																			
Storage temperature						 									-5	5°	C	to 100°	С
Operating temperature																			
Lead solder time @ 260°C (note 1)																		3.0	S
Continuous forward current						 												. 40 m	Α
Reverse voltage				 		 												3.0 vol	ts

ECTRO-OPTICAL CHARACTE	RISTICS				
	MINIMUM	TYPICAL	MAXIMUM	UNITS	TEST CONDITIONS
Brightness (note 2)		750		ftL	I _F =20 mA
Current to produce 50 ft-L		1.0	10	mA	
Total external radiated power		38		μ W	I _F =20 mA
Peak emission wavelength	6300	6500		Å	I _F =20 mA
Spectral line halfwidth		400		Å	I _F =20 mA
Forward voltage		1.65	2.0	V	I _F =20 mA
Capacitance		80		pF	V=0
Light turn on & turn off		1.0		ns	
Reverse current		5.0		nA	V _R =3.0 V

TYPICAL THERMAL CHARACTERISTICS

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

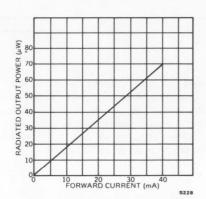


Figure 1

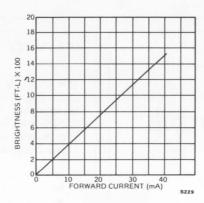


Figure 2

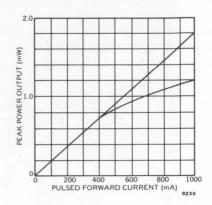


Figure 3

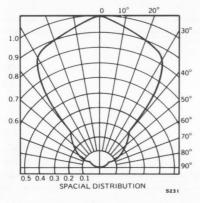


Figure 4

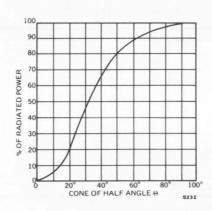


Figure 5

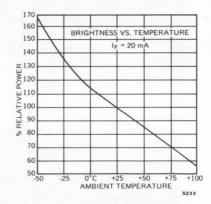
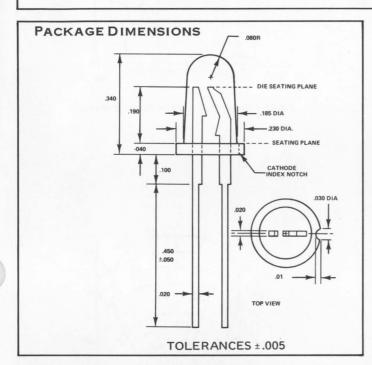


Figure 6

NOTES

- 1. The leads of the device were immersed in molten solder at 260°C to a point 1/16 inch from the body of the device per MIL-S-750.
- 2. As measured with a photo Research Spectra Spot Brightness Meter with "Spectar" L-175 lens in the brightest region of the emitting surface.

ESP61


50K

RED SOLID STATE LAMP

MV5020 SERIES

PRODUCT DESCRIPTION

The MV5020 series are gallium arsenide phosphide light-emitting diodes mounted in epoxy snap-in packages for both .062- and .125-inch panels. A black snap-in clip is provided with each solid-state lamp.

FEATURES

The MV5020 series solid state lamps are designed as panel indicator lights. They are intended for mounting in standard 0.062-inch to 0.125-inch panels using a plastic snap-in dip. The MV5020 provides a high intensity, wide angle light for good visibility under all normal ambient conditions.

A number of lens options are available as standards.

- MV5020 clear
- MV5021 diffused
- MV5022 red-clear
- MV5023 red-diffused

A black, snap-in clip is provided with each solid state lamp for small quantity orders. For orders over 1,000 units, the clip should be specified separately.

ABSOLUTE MAXIMUM RATINGS

Maximum power dissipation @ 25°C ambient
Thermal resistance junction to free air (Q _{JA})
Maximum storage & operating temperature
Maximum lead solder time @ 260°C (see note 2)
Maximum currents and voltages
Continuous forward current
Peak forward current (1µsec pulse width; 300 pps)
Reverse voltage

ELECTRO-OPTICAL CHARACTERISTICS

(25°C Ambient Temperature Unless Otherwise Specified)

CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST
Brightness MV5020 (see note 1)	100	750		ft-L	I _F =20 mA
Current to produce 50 ft-L (see note 1)		2	10	mA	
Luminous Flux		1.4		mLumen	I _F =20 mA
Peak wave length	6300	6500	7000	Å	I _F =20 mA
Spectral line half width		400		Å	I _F =20 mA
Forward voltage		1.6	2.0	V	I _F =20 mA
Reverse current			100	μΑ	V _R =3.0 V
Capacitance		80		pF	V=0
Light rise and fall time		50		ns	50 Ω system

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

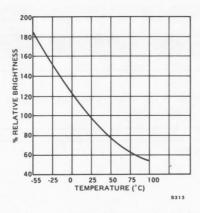


Figure 1 Relative Brightness vs. Ambient Temperature

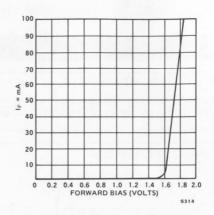


Figure 2 Forward Current vs. Forward Voltage

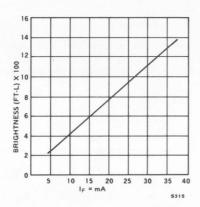


Figure 3 Brightness vs. Forward Current

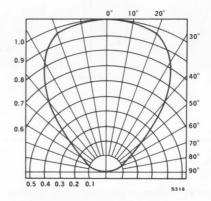


Figure 4 Spacial Distribution

NOTES

- 1. As measured with a Photo Research Spectra Brightness Spot Meter with "SPECTAR" L-175 lens in the brightness region of the emitted surface.
- 2. The leads of the device were immersed in molten solder at 280°C to a point 1/16-inch from the body of the device per MIL-S-750.

50K

VISIBLE LED ARRAY

MV5040

PRODUCT DESCRIPTION

The MV5040 consists of four gallium arsenide phosphide diodes mounted in a single, five-lead epoxy package.

PACKAGE DIMENSIONS -389*-010 -150 -.005 -

FEATURES

The MV5040 is intended for high volume indicator light applications where multiple indicators are required. Major usage is expected in applications such as diagnostic lights on printed circuit boards and panel lights. The MV5040 is ideal for edge card lighting on PC boards.

- Low cost
- Bright 750 ft-L
- Compatible with integrated circuits
- Long life, rugged
- Small size
- Easily assembled in arrays. Stack end-to-end on 0.100 inch center line between diodes.

ABSOLUTE MAXIMUM RATINGS

Power dissipation @ 25°C ambient																	. 7	70m	w
Derate linearly from 25°C																			
Storage temperature																			
Operating temperature																			
Lead solder time @ 260°C (Note 1) .																. :	3.09	ec
Continuous forward current																			
Reverse voltage			 														3.0	vo	Its

ELECTRO-OPTICAL CHARACTERISTICS

(25°C Free Air Temperature Unless Otherwise Specified)

CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Brightness (notes 2 & 3)		1000		ft-L	I _F =20 mA
Current to produce 50 ft-L		2	10	mA	
Peak emission wavelength	6300	6500		Å	I _F =20 mA
Spectral line halfwidth		400		Å	I _F =20 mA
Forward voltage		1.60	2.0	V	I _F =20 mA
Capacitance		100		pF	V=0
Light turn on and turn off		25		ns	50 Ω system
Reverse current		0.3		μ A	V _R =3.0 V

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

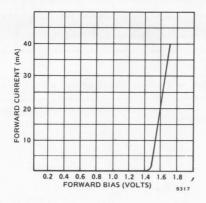


Figure 1 Forward Current vs. Forward Voltage

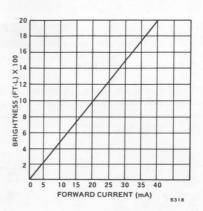


Figure 2 Brightness vs. Forward Current

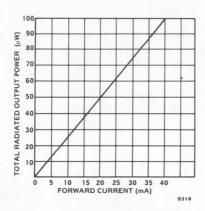


Figure 3 Radiated Output Power vs. Forward Current

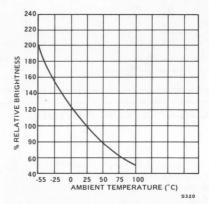
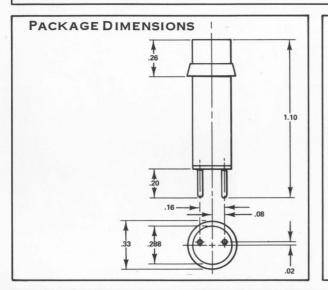


Figure 4 Relative Brightness vs. Ambient Temperature


- 1. The leads of the device were immersed in molten solder, at 260°C, to a point 1/16 inch from the body of the device per MIL-S-750.
- 2. As measured with a Photo Research Spectra Spot Brightness Meter with "SPECTAR" L-175 lens in the brightness region of the emitting surface.
- 3. Brightness match between diodes kept within ±25% of each array.

CARTRIDGE INDICATORS

MV9000 SERIES

PRODUCT DESCRIPTION

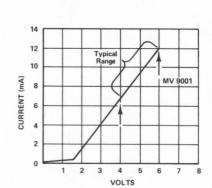
The MV9000 series cartridge lamps are red, amber, or green light-emitting diodes mounted in a black anodized aluminum case with stainless steel pins. They are protected by a clear transparent lens. These cartridges fit into a standard cartridge holder.

FEATURES

The Monsanto cartridge lamps use a high brightness LED as the lamp. The LED offers long life (10^6 hours) and solid-state reliability with low power requirements. These can be used to replace present cartridges that use incandescent lamps.

These cartridge lamps are available in red, amber, and green with a clear (transparent) lens.

The MV 9000 series cartridge lamps are manufactured under conditions conforming to MIL-L-3661.


Long Life - 10⁶ + hr Low Power High Brightness Cool Operation Direct Replacement in Sockets Never Replace Replacement 3 Lamps Fit Any Voltage Up to 30V (Starting at 4.0V)

LED

SPECIFICATIONS

PART NUMBER	VOLTAGE (VOLTS)	CURRENT (MA)	COLOR	RESISTOR (OHMS)
MV9001	4 - 6	10	Red	330
MV9002	7 - 14	10	Red	1000
MV9003	15 - 30	10	Red	2700
MV9004	4 - 6	20	Amber	180
MV9005	7 - 14	20	Amber	470
MV9006	15 - 30	20	Amber	1000
MV9007	4 - 6	50	Green	56
MV9008	7 - 14	50	Green	220
MV9009	15 - 30	40	Green	680

Rated life for red and amber is 10^6 hours for typical operating conditions. Correlating life data on the green diode is being accumulated.

NOTES

- 1. Other voltage and current ratings (both AC and DC) and lens configurations are available on special order.
- 2. Voltages available: 1.7 through 30
- 3. Currents available: 10 mA through 70 mA
- 4. Up to 50% over voltage without seriously affecting life.


3/1

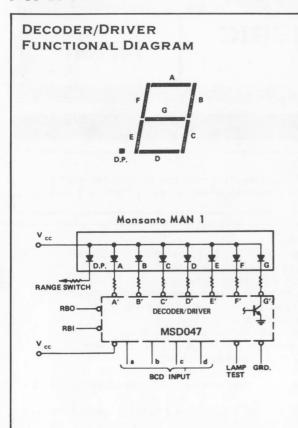
ALPHA-NUMERIC DISPLAY

MANI

PRODUCT DESCRIPTION

The MAN1 is a seven segment diffused planar GaAsP light emitting diode array. It is mounted on a dual in-line 14 pin substrate and then encapsulated in clear epoxy for protection. It is capable of displaying all digits and nine distinct letters.

FEATURES


- High brightness . . . Typically 350 ft-L @ 20 mA
- Single plane, wide angle viewing . . . 150°
- Unobstructed emitting surface
- Standard 14 pin dual-in-line package configuration
- Long operating life . . . solid state reliability
- Shock resistant
- Operates with IC voltage requirements
- Small size; offering unique styling advantages
- All numbers plus 9 distinct letters
- Usable for wide viewing angle requirements
- Usable in vibrating environment, impervious to vibration

The MAN 1 is for industrial and military applications such as:

- Digital readout displays
- Cockpit readout displays
- Directly compatible with integrated circuits

BSOLUTE MAXIMUM Power dissipation @ 25°(
Derate linearly from 25°	С	 	 				 									10	mW/°
Storage and operating ter	np	 	 											-5!	5°(C t	o 100°0
Continuous forward curr	ent																
Total		 			 /.												240 m/
Per segment																	
Decimal point		 	 														. 30 mA
Reverse Voltage																	
Per segment		 														. (6.0 volt
Decimal point																	

	(25°C	Ambient	Temperature	Unless	Otherv	vise Specified)
CHARACTERISTICS		MIN.	TYP.	MA	X.	UNITS	TEST CONDITIONS
Brightness (note 1)							
Segment		100	350			ft-L	$I_{\rm F}$ =20 mA, λ =6500 Å
Decimal point		100	350			ft-L	$I_{\rm F}$ =20 mA, λ =6500 Å
Peak emission wave length		6300		70	00	Å	
Spectral line half width			400			Å	
Forward voltage							
Segment			3.4	4.	.0	V	I _F =20 mA
Decimal point			1.6	2.	.0	V	I _F =20 mA
Dynamic resistance							
Segment			11			Ω	I _F =20 mA
Decimal point			5.5			Ω	I _F =20 mA
Capacitance							
Segment			80			pF	V=0
Decimal point			135			pF	V=0
Reverse Current							
Segment				10	00	μ A	V _R =6.0 volts
Decimal point				10	00	μΑ	V _R =3.0 volts

TYPICAL TRUTH TABLE DISPLAY INPUT CODE **OUTPUT STATE** B' G' A' d C b a

TYPICAL CURVES

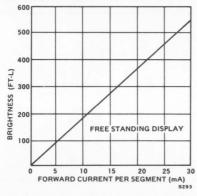


Figure 1 Brightness vs. Forward Current

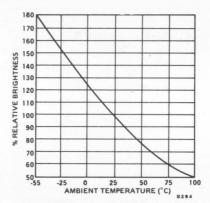
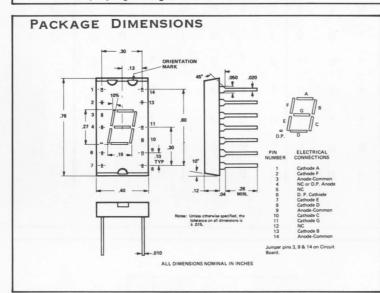


Figure 2 Brightness vs. Temperature

TYPICAL THERMAL CHARACTERISTICS Thermal Resistance (note 4) Junction to free air ⊕ JA			 							 .440°C/W
Wavelength Temperature Coefficient (case temp)										
Forward Voltage Temperature Coefficient	 									 3.0 mV/°C

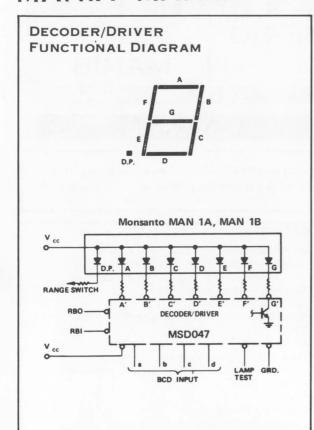

- 1. As measured with a Photo Research Spectra Microcandela Meter corrected for wavelength error. Brightness cannot vary more than ±50% between all segments.
- 2. The curve in Figure 2 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature range.
- 3. For contrast improvement Polaroid HRCP7 circular polarizer filter can be used. Non-glare circular polarizer filter will provide further enhancement in display visibility.
- 4. Thermal resistance (junction to ambient) value of any one segment with all segments in operation.

ALPHA-NUMERIC DISPLAY

MANIA MANIB

PRODUCT DESCRIPTION

The MAN1A/B is a seven segment diffused planar gallium arsenide phosphide light emitting diode array. It is mounted on a dual in-line 14 pin substrate and then encapsulated in red epoxy for protection. It is capable of displaying IO digits and 9 distinct letters.


FEATURES

- 0.270 inch high LED 7-segment display
- High brightness 350ft-L at 20mA
- Wide viewing angle, single plane display
- Red lens for improved contrast ratio
- Standard 14 pin DIP
- Solid state reliability for long operating life
- Shock
- Compatible with standard digital IC's
- Pulse tested for multiplexing applications
- Common (1A) or separate (1B) anode decimal point versions
- Digital readout displays
- Cockpit readout displays
- Directly compatible with integrated circuits
- All numbers plus 9 distinct letters
- Usable for wide viewing angle requirements
- Usable in vibrating environment, impervious to vibration

ABSOLUTE MAXIMUM RATIN	GS														
Power dissipation @ 25°C ambient		 										 			750 mV
Derate linearly from 25°C		 										 		. 1	0 mW/(
Storage and operating temp		 										 	55°	°C	to 100°
Continuous forward current															
Total		 										 			240 m/
Per segment		 							 			 			. 30 mA
Decimal point		 										 			. 30 m/
Reverse Voltage															
Per segment		 										 			6.0 volt
Decimal point		 										 			3.0 volt

(2	25°C Ambient 7	Temperature Ui	nless Otherwise	Specified)	
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Brightness (note 1)					
Segment	100	350		ft-L	$I_F = 20 \text{ mA}, \lambda = 6550 \text{ Å}$
Decimal point	100	350		ft-L	$I_{\rm F}$ =20 mA, λ =6550 Å
Peak emission wave length	6300		7000	Å	
Spectral line half width		400		Å	
Forward voltage					
Segment		3.4	4.0	V	I _E =20 mA
Decimal point		1.6	2.0	V	I _E =20 mA
Dynamic resistance					
Segment		11		Ω	I _E =20 mA
Decimal point		5.5		Ω	I _E =20 mA
Capacitance					
Segment		80		pF	V=0
Decimal point		135		pF	V=0
Reverse current					
Segment			100	μΑ	V _R =6.0 V
Decimal point			100	μΑ	V _R =3.0 V

MANIA MANIB

IN	IPUT	COD	E		(DUTP	UT S	TATE			DISPLAY
d	С	b	а	A'	B'	C'	D'	E'	F'	G'	
0	0	0	0	0	0	0	0	0	0	1	
0	0	0	1	1	0	0	1	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0	2
0	0	1	1	0	0	0	0	1	1	0	3
0	1	0	0	1	0	0	1	1	0	0	<i>'-</i> /
0	1	0	1	0	1	0	0	1	0	0	5
0	1	1	0	1	1	0	0	0	0	0	5
0	1	1	1	0	0	0	1	1	1	1	7
1	0	0	0	0	0	0	0	0	0	0	8
1	0	0	1	0	0	0	1	1	0	0	9

TYPICAL CURVES

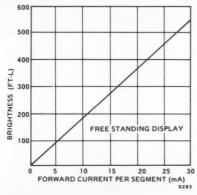


Figure 1 Brightness vs. Forward Current

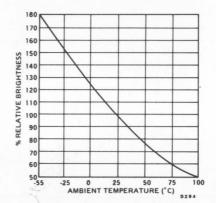
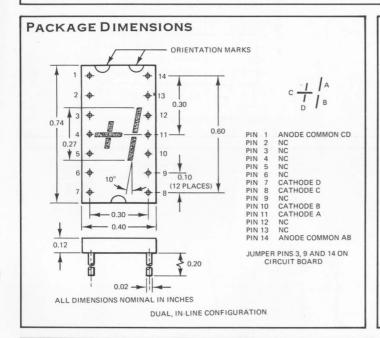


Figure 2 Brightness vs. Temperature

TYPICAL THERMAL CHARACTERISTICS Thermal Resistance (note 4) Junction to free air Θ_{JA}	Δ
Wavelength Temperature Coefficient (case temp)	
Forward Voltage Temperature Coefficient	

NOTES

- 1. As measured with a Photo Research Spectra Microcandela Meter corrected for wavelength error. Brightness cannot vary more than ±50% between all segments.
- 2. The curve in Figure 2 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature range:
- 3. For contrast improvement Polaroid HRCP7 circular polarizer filter can be used. Non-glare circular polarizer filter will provide further enhancement in display visibility.
- 4. Thermal resistance (junction to ambient) value of any one segment with all segments in operation.


3/1

POLARITY & OVERFLOW DISPLAY

MANIOOI

PRODUCT DESCRIPTION

The MAN1001 is a visible, monochromatic red, polarity and overflow display made of diffused planar gallium arsenide phosphide. It is epoxy encapsulated and plug-into a standard DIP socket.

FEATURES & APPLICATIONS

- High brightness typically 350 ft-L @ 20 mA
- Single plane, wide angle viewing 150°
- Unobstructed emitting surface
- Standard 14 pin dual-in-line package configuration
- Long operating life solid state reliability
- Shock resistant
- Operates with IC voltage requirements
- Small size offering unique styling advantages

It is ideal for industrial and military applications such as:

- Digital readout displays
- Cockpit readout displays
- Directly compatible with integrated circuits
- Usable for wide viewing angle requirements
- Usable in vibrating environment, impervious to vibration

ABSOLUTE MAXIMUM RATINGS

Derate linearly fro	m 25°C ting temperature	 	 	 	480 mW 6.4 mW/°C 55°C to 100°C
Total					120 mA 30 mA
		 	 	 	6.0 volts

ELECTRO-OPTICAL CHARACTERISTICS

(25°C Ambient Temperature Unless Otherwise Specified)

CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Brightness (note 1) segment	100	350		ft-L	I_F =20 mA, λ =6550 Å
Peak emission wave length	6300		7000	Å	
Spectral line half width		400		Å	
Forward voltage segment		3.4	4.0	V	I _F =20 mA
Dynamic resistance		11		Ω	I _F =20 mA
Capacitance segment		80		pF	V=0
Reverse current segment			100	μ A	V _R =6.0 V

TYPICAL THERMAL CHARACTERISTICS

Figure 1 Brightness vs. Forward Current

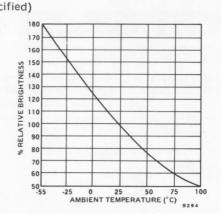
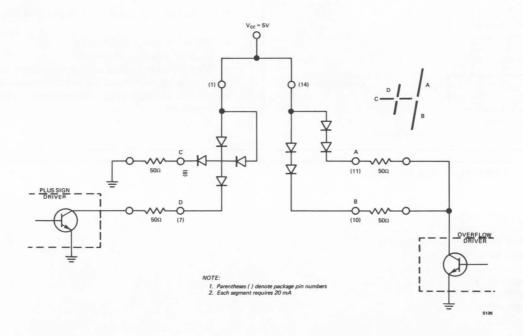
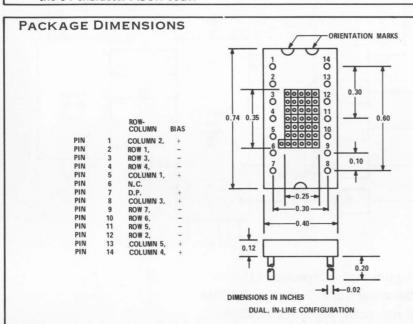



Figure 2 Brightness vs. Temperature

DRIVING CIRCUITRY FOR THE MAN1001

NOTES

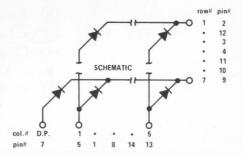
- 1. As measured with a Photo Research Spectra Microcandela Meter corrected for wavelength error. Brightness cannot vary more than $\pm 50\%$ between all segments.
- 2. The curve in Figure 2 is normalized to the brightness at 25°C to indicate the relative efficiency over the operating temperature range.
- 3. For contrast improvement Polaroid HRCO7 circular polarizer filter can be used. Non-glare circular polarizer filter will provide further enhancement is display visibility.
- 4. Thermal resistance (junction to ambient) value of any one segment with all segments in operation.


3/1

ALPHA-NUMERIC DISPLAY

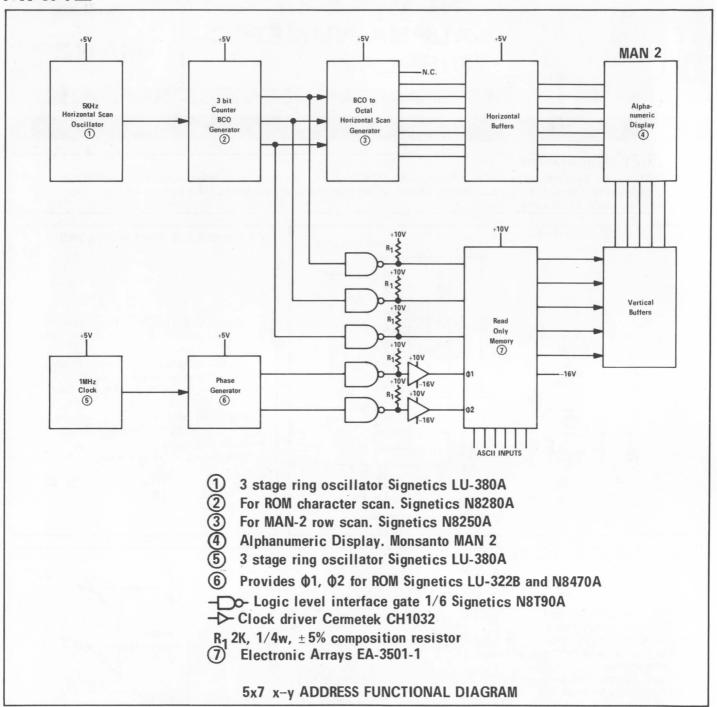
MAN₂

PRODUCT DESCRIPTION


The MAN2 is a 35 diode alpha-numeric display with decimal point. It is made of diffused planar gallium arsenide phosphide diodes mounted on a dual in-line, 14 pin substrate with a clear epoxy lens. It is capable of displaying the 64 character ASCII code.

FEATURES & APPLICATIONS

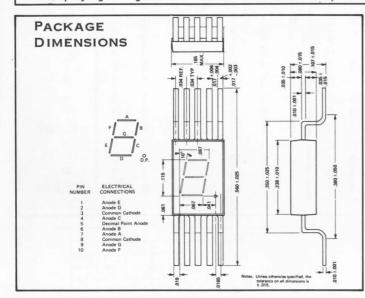
- Visible, bright red, high contrast display
- 36 light emitting diodes including decimal point
- Capable of displaying 64 ASCII characters
- Single plane, wide angle viewing
- Long life, shock resistant, small size
- Keyboard verifier
- Film annotation 2³⁶ bits available
- Avionics display
- Computer peripheral displays


ABSOLUTE MAXIMUM RATINGS

ELECTRO-OPTICAL CHARACTERISTICS (PER DIODE)

(25° C Ambient Temperature Unless Otherwise Specified)

CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITION
Brightness		300		ft-L	$I_F=10 \text{ mA}$
Peak emission wavelength	6300	6500		Å	
Spectral line half width		400		Å	
Forward voltage		1.7		V	$I_F=10 \text{ mA}$
Capacitance		200		pF	V=0
Reverse current			100	μΑ	V _R =3 V



ALPHA-NUMERIC DISPLAY

MAN3

PRODUCT DESCRIPTION

The MAN3 is a monolithic seven-segment diffused planar gallium arsenide phosphide readout. It is capable of displaying 10 digits and 9 distinct letters and is encapsulated in clear epoxy.

FEATURES & APPLICATIONS

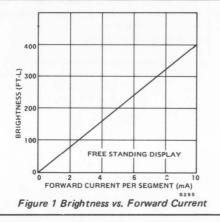
- Bright red, 400 ft-L at 10 mA per segment
- Visible as low as 1 mA, 1.65 V per segment
- Compact spacing (16 digits in 3 inches width)
- Wide angle (150°), single plane viewing
- Compatible with IC's
- Planar monolithic, frame lead construction
- Long operating life solid state reliability
- Shock resistant
- Displays 0 to 9 plus A,C,E,F,H,J,L,P, & U
- Low Cost

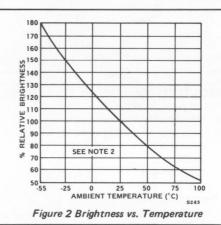
Applications for the MAN 3 in computer, industrial, avionic and military markets are:

- Digital displays for desk calculators
- Instruments and portable equipment
- Film annotation
- All digital displays

ABSOLUTE MAXIMUM RATING Power dissipation @ 25°C ambient	5				-	-											
Power dissipation @ 25°C ambient .		 	 	 												1	60 mW
Derate linearly from 25°C			 	 											2.6	57	mW/°C
Storage and operating temp		 	 	 										-5	5°(C t	o 85°C
Continuous Forward Current																	
Total			 	 													80 mA
Per segment			 	 													10 mA
Decimal point			 	 													10 mA
Reverse Voltage																	
Per segment			 									 					3 volts
Decimal point			 	 													3 volts

					TEST
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Brightness (note 1)					
Segment	100	200		ft-L	$I_F = 5 \text{ mA}$
Decimal Point	100	200		ft-L	$I_F = 5 \text{ mA}$
Peak Emission Wave Length	6300		7000	Å	
Spectral Line Half Width		400		Å	
Forward Voltage					
Segment		1.7	2.0		$I_F = 5 \text{ mA}$
Decimal Point		1.7	2.0		$I_F = 5 \text{ mA}$
Dynamic Resistance					
Segment		30		Ω	$I_F = 5 \text{ mA}$
Decimal Point		15		Ω	$I_F = 5 \text{ mA}$
Capacitance					
Segment		25		pF	V = 0, f = 1 MHz
Decimal point		25		pF	V = 0, f = 1 MHz
Reverse Current					
Segment			100	μΑ	$V_R = 3.0 \text{ volts}$
Decimal Point			100	μΑ	$V_R = 3.0 \text{ volts}$



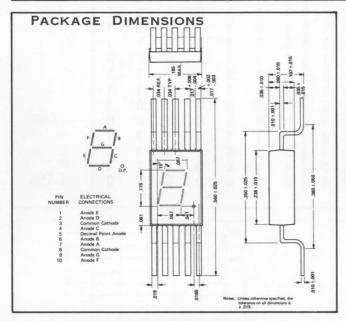

TRUTH TABLE

TRUTH TABLE FOR MONSANTO MSD 101

	INP	UT	COL	DE	L		OUT	PUT	STA	ΓE		DISPLAY
-	d	С	b	a	A	' B	C'	D'	E'	F'	G'	
	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1	0 0 0 0 1 1 1 1 0 0 0 0 1 1 1	0 0 1 1 0 0 0 1 1 1 0 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0	1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0	1 1 1 1 1 0 0 1 1 1 0 0 1	1 1 0 1 1 1 1 1 0 0 1 0	1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0	1 0 1 0 0 0 1 0 0 0 1 1	1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1	0 0 1 1 1 1 1 0 1 1 0 1	ロールボイの Ar Bで BLANK
A	1	1	1	0	1 0	1	0	0	0	1 0	1	BLANK

TYPICAL CURVES

TYPICAL CHARACTERISTICS

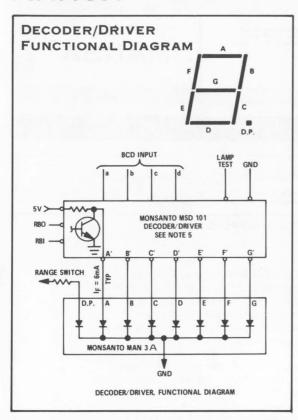

- 1. As measured with a Photo Research Spectra Microcandela Meter corrected for wavelength error. Brightness cannot vary more than $\pm 50\%$ between all segments.
- 2. The curve in Figure 2 is normalized to the brightness of 25°C to indicate the relative efficiency over the operating temperature range.
- 3. For contrast improvement Polaroid HRCP7 circular polarizer filter can be used. Non-glare circular polarizer filter will provide further enhancement in display visibility.
- 4. Thermal resistance (junction to ambient) value of any one segment with all segments in operation.
- 5. Refer to product data sheet for more detailed information on the Monsanto MSD 101 decoder/driver.

ALPHA-NUMERIC DISPLAY

MAN3A

PRODUCT DESCRIPTION

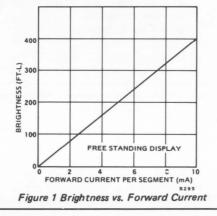
The MAN3A is a hybrid monolithic, seven segment diffused planar gallium arsenide phosphide readout. It is capable of displaying 10 digits and 9 distinct letters and is encapsulated in a red epoxy package.


FEATURES & APPLICATIONS

- 0.115 high LED 7-segment display
- Bright red 400 ft-L at 10mA per segment
- Red lens for improved contrast ratio
- Compact spacing 5 digits per inch
- Wide viewing angle, single plane display
- Compatible with standard digital IC's
- Solid state reliability for long operating life
- Displays all numbers and nine letters
- Displays all numbers and nine letters
 Pulse tested for multiplexing applications
- Low cost
- Digital displays for desk calculators
- Instruments and portable equipment
- Film annotation
- All digital displays

BSOLUTE MAXIMU	IVI	140	33						*								100
Power dissipation @ 25°	c ambien					 				 •						*	160 mv
Derate linearly from 25°																	
Storage and operating te	mp					 									-55	°C	to 85° (
Continuous forward curr	ent																
Total						 											. 80 mA
Per segment						 											. 10 m/
Decimal point						 											. 10 mA
Reverse voltage																	
Per segment						 											. 3 volt
Decimal point						 											. 3 volt

LECTRO-OPTICAL CHARA	ACTERISTICS	(25°C Ar	mbient Tempe	erature Unless O	therwise Specified)
			v i i		TEST
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Brightness (note 1)					
Segment	100	200		ft-L	$I_F = 5 \text{ mA}$
Decimal point	100	200		ft-L	I _F =5 mA
Peak emission wave length	6300		7000	Å	
Spectral line half width		400		Å	
Forward voltage					
Segment		1.7	2.0		I _F =5 mA
Decimal point		1.7	2.0		I _F =5 mA
Dynamic resistance					
Segment		30		Ω	I _F =5 mA
Decimal point		15		Ω	I _F =5 mA
Capacitance					
Segment		25		pF	V=0, f=1 MHz
Decimal point		25		pF	V=0, f=1 MHz
Reverse current					
Segment			100	μΑ	V _R =3.0 V
Decimal point			100	μΑ	V _R =3.0 V


MAN3A

TRUTH TABLE FOR MONSANTO MSD 101

INPUT	COI	DE		(OUTP	UT S	TAT	E		DISPLAY
d c	b	a	A'	B'	C'	D'	E'	F'	G'	
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1	0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 1 1 1 0 0 0 0 0 0	1 1 1 1 0 0 1 1 1 0 0 1 0 1 0	1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0	1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0	1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0	1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1	0 0 1 1 1 1 0 1 1 0 1 0 1 0	ローである。 DIT ではない BLANK HLANK BLANK

TYPICAL CURVES

TYPICAL CHARACTERISTICS

- 1. As measured with a Photo Research Spectra Microcandela Meter corrected for wavelength error. Brightness cannot vary more than $\pm 50\%$ between all segments.
- 2. The curve in Figure 2 is normalized to the brightness of 25°C to indicate the relative efficiency over the operating temperature range.
- 3. For contrast improvement Polaroid HRCP7 circular polarizer filter can be used. Non-glare circular polarizer filter will provide further enhancement in display visibility.
- 4. Thermal resistance (junction to ambient) value of any one segment with all segments in operation.
- 5. Refer to product data sheet for more detailed information on the Monsanto MSD 101 decoder/driver.

ALPHA-NUMERIC DISPLAYS

MPC1 MPC2 MPC3

PRODUCT DESCRIPTION

The MPC1 and MPC2 are individually addressable circuit boards specifically designed to adapt the MAN3 for mounting and connection to other circuit components. Each segment of the numeric can be addressed independently.

The MPC3 contains 6 MAN3 and is X-Y addressable. The corresponding segments of each numeric are connected in parallel for multiplexing the numerics. Individual cathodes and decimal connections are provided for each numeric.

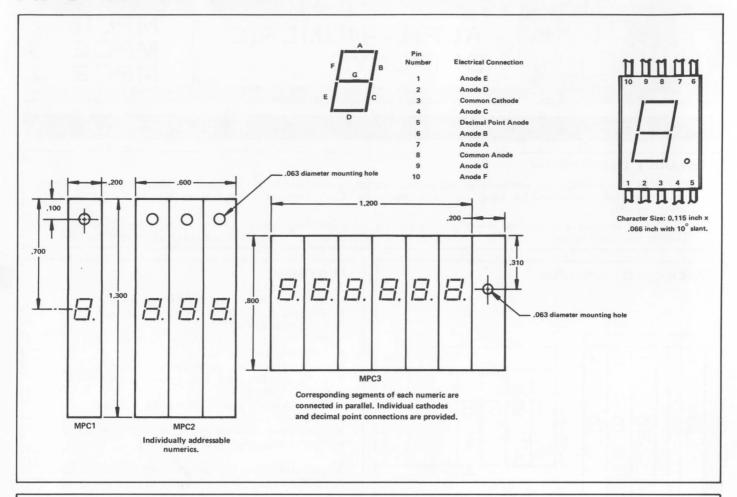
PACKAGE DIMENSIONS 1.200 1.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 APC3 Character Size: 0.155 inch x 0.066 inch with 10° slant. S175

ABSOLUTE MAXIMUM RATINGS

FEATURES

- Bright red, 200 ft-L at 5.0 mA per segment
- Visible as low as 1 mA, 1.65 V per segment
- Uniform brightness
- Wide angle (150°) single plane viewing
- Compatible with IC's
- Planar monolithic, frame lead construction
- Long operating life . . . solid state reliability
- Shock resistant
- Displays 0 to 9 plus A,C,E,F,H,J,L,P, and U
- Low Cost
- Printed circuit board pads with 0.100 inch centers
- Compact spacing (5 digits per inch)

Applications for the MPC1, MPC2 and MPC3 in computer, industrial avionic and military markets are:


- Digital displays for desk calculators
- Instruments and portable equipment
- Film annotation
- All digital displays
- MPC 1 Individually addressable printed circuit & boards are specifically designed to adapt the
- MPC 2 MAN-3 for mounting and connection to other circuit components. Each segment of the numeric can be addressed independently.
- MPC 3 X-Y addressable printed circuit board are specifically designed to adapt the MAN-3 for mounting and connection to other circuit components. The corresponding segments of each numeric are connected in parallel for multiplexing the numerics. Individual cathodes and decimal connections are provided for each numeric.

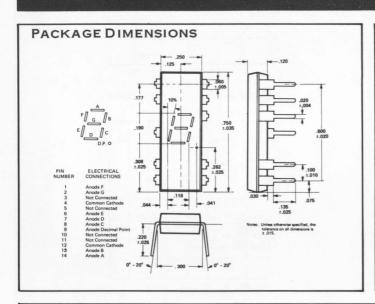
ELECTRO-OPTICAL CHARACTERISTICS

(25°C Ambient Temperature Unless Otherwise Specified)

CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Brightness (note 1) segment or decimal point	100	200		ft-L	I _F =5 mA
Peak emission wave length	6300	6500	7000	Å	
Spectral line half width		400		Å	
Forward voltage segment or decimal point		1.7	2.0	V	I _F =5 mA
Dynamic resistance segment or decimal point		30		Ω	I _F =5 mA
Capacitance segment or decimal point		25		pF	V=0, f=1 MHz
Reverse current segment or decimal point			100	μΑ	V _R =3.0 V

MPCI MPC2 MPC3

SUBSTRATE DESCRIPTION


All MPC 1, MPC 2, and MPC 3 are made of Nema Grade G-10 copper clad glass/epoxy laminates.

Peel strength
Volume resistivity
Surface resistance
Water absorption
Dielectric breakdown, s/s parallel
Dielectric constant
Dissipation factor
Flexural Strength
Maximum Thickness
Copper cladding weight
Color

- 1. As measured with a Photo Research Spectra Microcandela Meter corrected for wavelength error.
- 2. When soldering wires to MPC 1 and MPC 2 care must be taken not to re-melt the tin-lead solder (60/40, melting point 183°C) that connects the leads of the MAN 3 display to the printed circuit board.

ALPHA-NUMERIC DISPLAY

MAN4

FEATURES & APPLICATIONS

- 0.190 inch height LED, 7-segment display
- Low cost
- Bright red 400 ft-L at 10 mA per segment
- Red lens for improved contrast ratio
- Compact spacing 0.35 inch center-to-center
- Wide viewing angle
- Compatible with standard digital IC's
- Solid state reliability for long operating life
- Shock resistant
- Display 0 through 9 and nine letters
- Pulse tested for multiplexing application
- Digital displays for desk calculators
- Instruments and portable equipment
- Film annotation
- All digital displays

ABSOLUTE MAXIMUM RATINGS
Power dissipation @ 25 C ambient
Derate linearly from 25 C
Storage and operating temp
Continuous forward current
Total
Per segment
Decimal point
Reverse Voltage
Per segment
Decimal point

ELECTRO-OPTICAL CHARACTERISTICS

(25° C Ambient	Temperature	Unless	Otherwise	Specified)	١
----------------	-------------	--------	-----------	------------	---

CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Brightness (note 1)					
Segment	100	200		ft-L	$I_{F}=5 \text{ mA}$
Decimal point	100	200		ft-L	I _E =5 mA
Segment	200	400		ft-L	I _E =10 mA
Decimal point	200	400		ft-L	I _E =10 mA
Peak emission wave length	6300		7000		
Spectral line half width		400		Å Å	
Forward voltage					
Segment		1.7	2.0		I _F =5 mA
Decimal point		1.7	2.0		I _E =5 mA
Dynamic resistance					
Segment		7		Ω	I _E =10 mA
Decimal point		7		Ω	I _E =10 mA
Capacitance					15 10 1171
Segment		50		pF	V=0, f=1 MHz
Decimal point		50		pF	V=0, f=1 MHz
Reverse current				P	V 0,1 1 WH12
Segment			100	μΑ	V _R =3.0 V
Decimal point			100	μΑ	V _R =3.0 V

TYPICAL CURVES (25°C Free Air Temperature Unless Otherwise Specified)

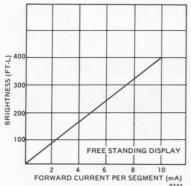


Figure 1 Brightness vs Forward Current

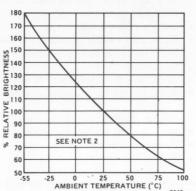


Figure 3 Typical Dynamic Resistance (R_D)
vs Forward Current (I_F)

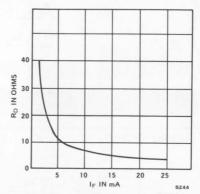


Figure 2 Brightness vs Temperature

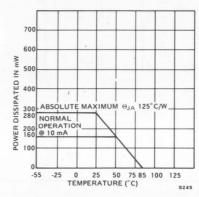
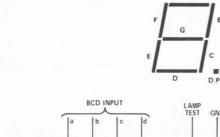
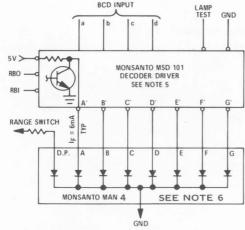




Figure 4 Power Dissipation vs Ambient Temperature

DECORDER/DRIVER FUNCTIONAL DIAGRAM

DECODER/DRIVER, FUNCTIONAL DIAGRAM

TYPICAL CHARACTERISTICS

Thermal Resistance (note 4) Junction to free air Θ_{JA} . 125°C/W Wavelength Temperature Coefficient (case temp) 3.0 Å/°C Forward Voltage Temperature coefficient -2.0 mV/°C

- As measured with a Photo Research spectra microcandela meter corrected for wavelength error. Brightness cannot vary more than 25% between all segments.
- The curve in Figure 2 is normalized to the brightness of 25°C to indicate the relative efficiency over the operating temperature range.
- For contrast improvement Polaroid HRCP7 circular polarizer filter can be used. Non-glare circular polarizer filter will provide further enhancement in display visibility.
- 4. Thermal resistance (junction to ambient) value of any one segment with all segments in operation.
- 5. Refer to product data sheet for more detailed information on the Monsanto MSD 101 decoder/driver.
- 6. For high ambient light level applications, external resistors may be added in parallel with the MSD101 internal drive resistors. For example current may be increased from 5 mA to 10 mA by adding 650 Ω segment resistors from V_{CC} to the MAN 4 segment contacts.

ALPHA-NUMERIC Monsanto Module Displays

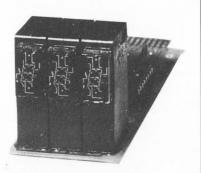
MDAIOO MDAIOI MDA301

MDA100

FEATURES

- High brightness . . . typically 350 ft-L @ 5 V
- Single plane, wide angle viewing..150°
- Standard 14 pin dual-in-line socket module
- Built-in resistors
- Long operating life . . . solid state reliability
- Shock resistant
- Compatible with IC logic
- Small size; offering unique styling advantages
- Can be mounted on 0.5" centers

PRODUCT DESCRIPTION


The MDA100 is a compact single digit display module that requires minimum space when installed. The Monsanto MSD047 four-line BCD decoder/driver is recommended to be used with MDA100.

MDA101

- Single digit display
- Built in decoder/driver
- BCD inputs are compatible with DTL and TTL logic
- Compatible with IC voltage requirements
- High brightness . . . typically 350
- Unobstructed emitting surface
- Shock resistant
- Small size; offering unique styling advantages
- Can be mounted on 0.5" centers
- Single plane, wide angle viewing...150°
- Lamp test
- Long operating life . . . solid state reliability

The MDA101 is a single-digit display module that requires minimum space when installed. The decoder/driver is designed to accept four input BCD (8, 4, 2, 1) code and provides visual readout of decimal numbers. The MDA101 provides a decimal point input and has ripple-blanking input and blanking input/ripple-blanking output terminals for zero suppression and intensity control.

MDA301

- Multi-digit display
- Built in decoder/driver
- BCD inputs are compatible with DTL and TTL logic
- Compatible with IC voltage requirements
- High brightness . . . typically 350 ft-L @ 5 V
- Unobstructed emitting surface
- Shock resistant
- Small size; offering unique styling advantages
- Single plane, wide angle viewing ... 150°
- Lamp test
- Long operating life . . solid state reliability

The MDA301 is a multi-digit display module that requires minimum space when installed. The decoder/drivers are designed to accept four input BCD (8, 4, 2, 1) code and provides visual readout of decimal numbers

APPLICATIONS

The MDA series modular assemblies utilize the MAN1 seven segment alpha-numeric display having a character height of 0.270 inches. These modules are intended for industrial, computer, avionic and military system applications requiring:

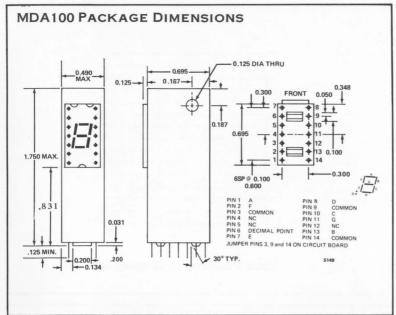
- Digital readout displays
- Cockpit readout displays
- Directly compatible with integrated circuits
- All numbers plus 9 distinct letters
- Usable for wide viewing angle requirements
- Usable in vibrating environment, impervious to vibration
- Save time and money
- Design work and assembly already done

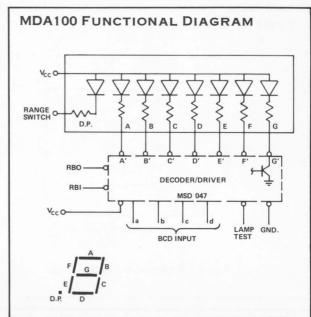
ELECTRICAL CHARACTERISTICS (MDA101 & MDA301)

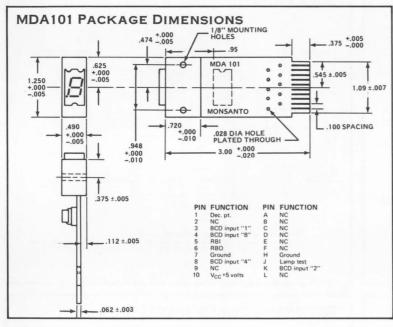
PAR	RAMETER	MIN.	MAX.	UNITS	TEST CONDITIONS
VIH	Input voltage required to ensure logical 1 at any input	2		V	$V_{CC} = 4.75$
VIL	Input voltage required to ensure logical 0 at any input except BI/RBO		0.8	V	$V_{CC} = 4.75$
I _{IL}	Logical 0 level input current at any input except BI/RBO		-1.6	mA	V _{CC} =5.25, V _{IN} =0.4 V
*IL(RBO)	Logical 0 level input current at BI/RBO		-4.2	mA	$V_{CC} = 5.25, V_{IN} = 0.4 V$
I _{IH}	Logical 1 level input current at any input except BI/RBO		1	mA	V_{CC} =5.25, V_{IN} =5.5 V

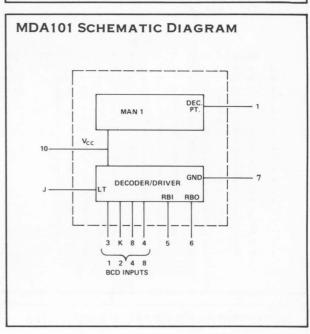
^{*} applicable for MDA101 only

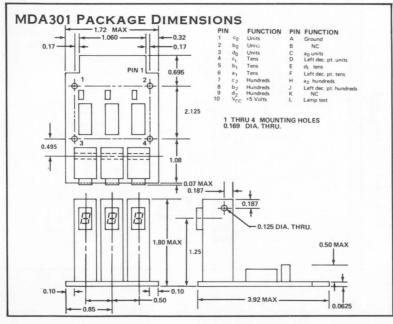
ABSOLUTE MAXIMUM RATINGS

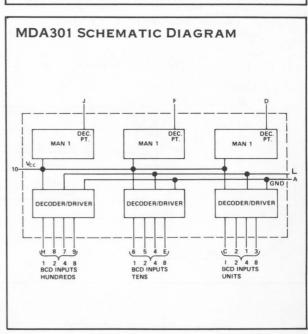

Supply voltage, V _{CC} (MDA 100, MDA 101, MDA 301)
Logic input voltage, V _{IN} (MDA 101, MDA 301)
Operating temperature (MDA 100)
Operating temperature (MDA 101, MDA 301)
Storage temperature (MDA 100, MDA 101, MDA 301)
Reverse voltage (MDA 100)
Per segment
Decimal point

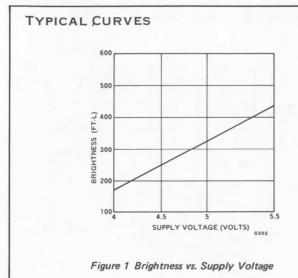

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (MDA100, MDA101, & MDA301)


(25°C Free Air Temperature Unless Otherwise Specified)


Brightness																									
Segment 350 ft-L																٠.١	Vo	C	= !	5\	1,7	\ =	6500	λC	
Decimal point 350 ft-L																٠.١	Vc	C	= !	5\	1,7	\ =	6500	λ	
Peak emission wavelength																							.6500	λC	
Spectral line half width				 				0.0								1040				100			400) Å	


MDAIOO MDAIOI MDA30I





MDAIOO MDAIOI MDA30I

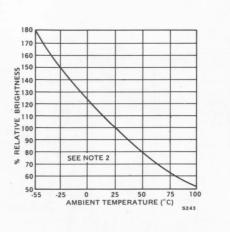
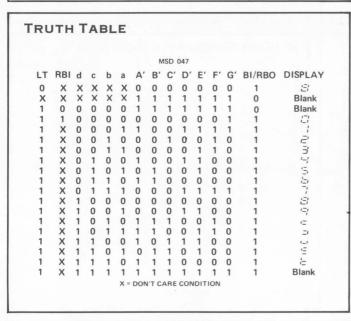
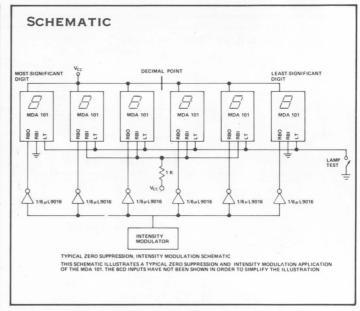
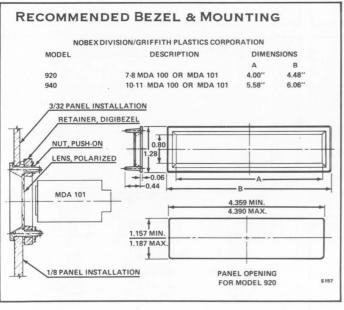
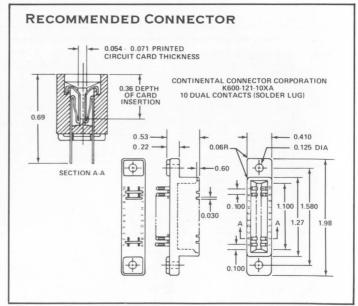






Figure 2 Brightness vs. Temperature

ALPHA-NUMERIC Monsanto DISPLAY ASSEMBLY

MDAIII

PRODUCT DESCRIPTION

The MDA 111 is a 5 x 7 dot matrix alpha-numeric display module which contains its own character generator capable of displaying 64 ASCII characters. Character selection is achieved by presenting a six-bit binary word at the module input. The display is a 5 x 7 array of light emitting diodes having a character height of 0.350 inches.

FEATURES & APPLICATIONS

Reliable LED single plane display Self-contained character generator, including clock Six-line TTL/DTL compatible inputs Sixty-four ASCII encoded characters Low voltage system - +5 volts and -12 volts Convenient blanking capability Easy to mount modular design

Computer terminal readout Avionic display Keyboard verifier Portable instrument display Mobile equipment readout Film annotation system

ABSOLUTE MAXIMUM RATINGS

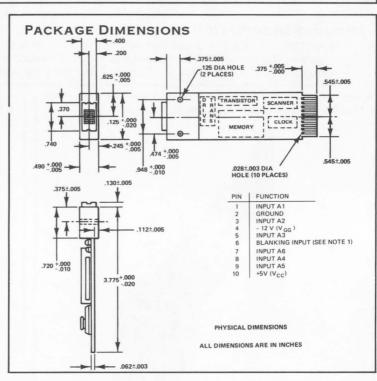
Storage Temperature .																	55	°C t	o 10	0°0	
Operating Temperature																		0°C	to 7	0°0	
Voltage on V _{GG} terminal																					
Voltage on V_{CC} terminal	(see i	note	3)													. () volt	s to !	5.3 v	olt	S

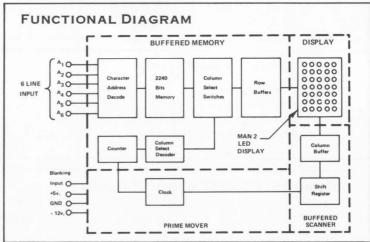
RECOMMENDED OPERATING CONDITIONS

	$(T_A = 0^{\circ}C \text{ to } 70^{\circ}C)$		
	MINIMUM	MAXIMUM	UNITS
V _{CC} supply voltage (see note 3)	+ 4.75	+ 5.25	volts
V _{GG} supply voltage (see note 3)	- 12.60	-11.40	volts
VIL input voltage required to ensure logic 0		+ 0.60	volts
VIH input voltage required to ensure logic 1	+ 3.50		volts

ELECTRICAL CHARACTERISTICS

$(V_{CC} = +5.0 \text{ volts} \pm 0.25 \text{ volts}$	$V_{GG} = -12.0 \text{ volts} \pm 0.6 \text{ volts}$	$T_{\Delta} = 0$	°C to 70°	C)
---	--	------------------	-----------	----


	TYPICAL	MAXIMUM	UNITS
I _{CC} supply current	200	250	mA
IGG supply current	30	40	mA
I _{IN} input current @ any logic level		10	μΑ


TYPICAL ELECTRO-OPTICAL CHARACTERISTICS

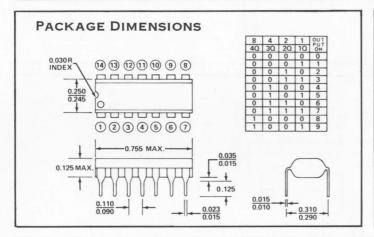
 $(V_{CC} = +5.0 \text{ volts } \pm 0.25 \text{ volts}, V_{GG} = -12.0 \text{ volts } \pm 0.6 \text{ volts}, T_A = 25^{\circ}C)$

Brightness, each diode	 300 ft-L
Peak emission wavelength	 . 6500Å
Spectral line half width	 400Å

	TRUTH	TABLE		A ₅	10	11	00	01
A ₄	A ₃	A ₂	Α1	COL	2	3	4	5
				ROW	*****			:::::
0	0	0	0	0				
0	0	0	1	1				
0	0	1	0	2				
0	0	1	1	3				
0	1	0	0	4				
							1	
0	1	0	1	5			•	
					: .* . :			
0	1	1	0	6				
0	1	1	1	7				
					11111			
1	0	0	0	8				
112						::::		: :
1	0	0	1	9		****		
1	0	1	0	10		**		
						**		
1	0	1	1	11	••••			
1	1	0	0	12	11111			
•				12	1.			
1	1	0	1	13	••••	:::::		
1	1	1	0	14				·
1	1	1	1	15				
				1 1	•	11111	****	

NOTES

- 1. If not used, blanking input must be connected to +5.0 volts.
- 2. Recommended connectors = Viking No. 2VH10/1JN-5, Cinch No. 251-10-30-410, Continental No. K600-1Z1-10XA.
- 3. Ratings and conditions for Pin No. 2 = GND. Supply voltages shown are for TTL/DTL operation.


BCD DECADE COUNTER

MDKIOO

PRODUCT DESCRIPTION

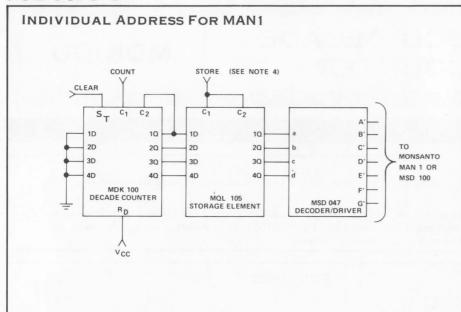
The MDK100 is a monolithic decade counter consisting of four internally interconnected flip-flops providing a wide variety of counter applications.

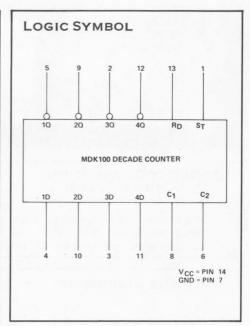
This device is recommended for use as the counter/storage element for digital display systems such as those using Monsanto's MAN1 and MAN3 seven segment LED displays. The MDK100 is completely compatible with the MQL105 quadruple latch and the MSD047 or MSD101 decoder/driver.

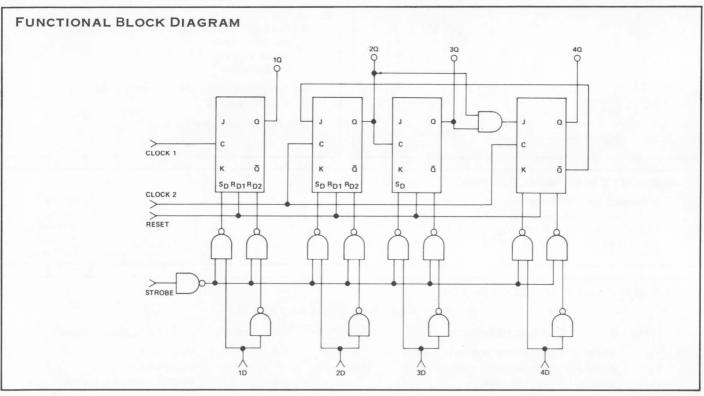
FEATURES

- Device has both serial and strobed parallel-entry capability
- The MDK100 can be connected in the BCD counting mode divide-by-two divide-by-five
- Completely compatible with all popular TTL or DTL families
- 14 pin dual-in-line package

ABSOLUTE MAXIMUM RATINGS


Maximum Storage Temperature
Maximum Operating Temperature
Maximum Supply Voltage V _{CC} (see note 1)
Input Voltage (see note 1 and 2)
Current into any input ±1.0 mA


ELECTRICAL CHARACTERISTICS


 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5.0 \pm 5\% \text{ volts})$

SYMBO	LS CHARACTERISTICS	MIN	TYP	MAX	UNIT	TEST CONDITIONS
V_{IL}	Input voltage required to ensure logic 0			8.0	V	V _{CC} =4.75 V
V_{IH}	Input voltage required to ensure logic 1	2.6			V	V _{CC} =4.75 V
VoL	Logical 0 output voltage			0.5	V	V_{CC} =4.75 V, I_{OL} =4.8 mA
VOH	Logical 1 output voltage	2.6			V	V_{CC} =4.75 V, I_{OL} =200 μ A
I _{IL}	Logical 0 level input current					V _{CC} =5.25 V
		-0.1		-1.6	mA	data/strobe=0.4 V
		-0.1		-1.2	mA	data input=0.4 V
		-0.1		-5.0	mA	reset=0.4 V
		-0.1		-3.2	mA	clock 1=0.4 V
		-0.1		-3.2	mA	clock 2=0.4 V
I _{IH}	Logical 1 level input current					V _{CC} =5.0 V
				25	μΑ	data/strobe=2.6 V
				25	μΑ	data/input=2.6 V
				100	μΑ	reset=2.6 V
				75	μ A	clock 1=2.6 V
				100	μ A	clock 2=2.6 V
los	Short-circuit output current(note 3)		-10		mA	V_{CC} =5.0 V, V_{OUT} =0
Icc	Supply current			37	mA	V _{CC} =5.25 V, All outputs open

MDKIOO

NOTES

- 1. These voltage values are with respect to network ground terminal.
- 2. Input signals must be zero or positive with respect to network ground terminal.
- 3. Not more than one output should be shorted at a time.
- 4. Information present at a data (D) input is transferred to the Q output when the clock is high, and the Q output will follow the data input as long as the clock remains high. When the clock goes low, the information [at (D) input] is retained at the Q output until the clock is permitted to go high.

3/1

MQL 105

Monsanto

FOUR-BIT BISTABLE LATCH

PRODUCT DESCRIPTION

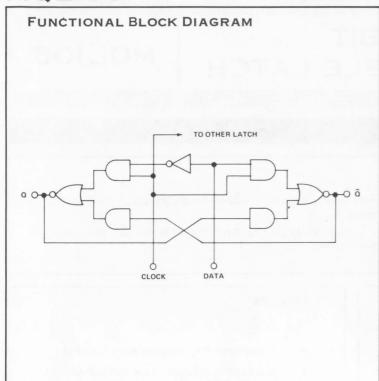
The MQL105 is a monolithic quadruple bistable latch to be used as temporary storage for binary-coded decimal data between processing units and input/output or indicator units.

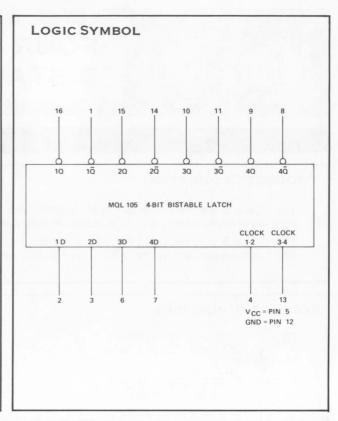
This device is recommended for use as the temporary storage for BCD data, from the MDK100 decade counter, which is to be decoded by the MSD047 or MSD101 decoder/driver.

FEATURES

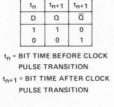
- Complementary outputs, both Q and Q
- MQL105 is completely compatible with all popular TTL or DTL families
- Ideally suited for use as storage element for binary information
- 16 pin dual-in-line package

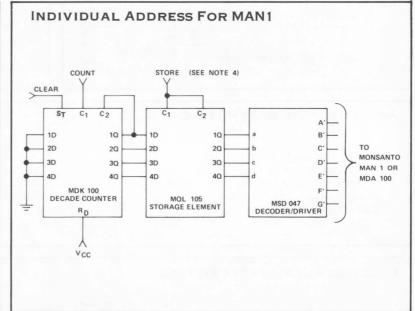
ABSOLUTE MAXIMUM RATINGS


ELECTRICAL CHARACTERISTICS


 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5.0 \pm 5\% \text{ volts})$

SYMBOL	CHARACTERISTICS	MIN	TYP	MAX	UNITS	TEST CONDITIONS
VIL	Input voltage required to ensure logic 0			0.8	V	V _{CC} =4.75 V
VIH	Input voltage required to ensure logic 1	2.0			V	V _{CC} =4.75 V
VoL	Logical 0 output voltage			0.4	V	V_{CC} =4.75 V, I_{OL} =12 mA
VOH	Logical 1 output voltage	2.6			V	V_{CC} =4.75 V, I_{OH} =400 μ A
I _{IL}	Logical 0 level input current at D			-3.2	mA	V_{CC} =5.25 V, V_{IN} =0.4 V
I _{IL(C)}	Logical O level input current at clock			-6.4	mA	V_{CC} =5.25 V, V_{IN} =0.4 V
I _{IH}	Logical 1 level input current at D			50	μΑ	V_{CC} =5.25 V, V_{IN} =2.4 V
I _{IH(C)}	Logical 1 level input current at clock			100	μ A	V_{CC} =5.25 V, V_{IN} =2.4 V
los	Short circuit output current (note 3)	-18		-75	mA	V_{CC} =5.25 V, V_{OUT} =0
Icc	Supply Current		35		mA	V _{CC} =5.25 V, All outputs open

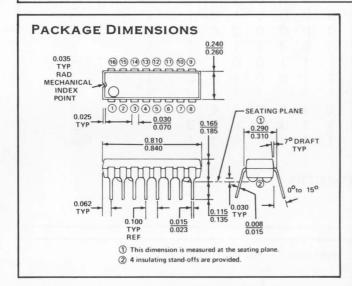

45


MQLI05

TRUTH TABLE (EACH LATCH)

NOTES

- 1. These voltage values are with respect to network ground terminal.
- Input signals must be zero or positive with respect to network ground terminal. 2.
- 3. Not more than one output should be shorted at a time.
- Information present at a data (D) input is transferred to the Q output when the clock is high, and the Q output will follow the data input as long as the clock remains high. When the clock goes low, the information [at (D) input] is retained at the Q output until the clock is permitted to go high.


LITHO IN USA

50K

Monsanto SEVEN SEGMENT DECODER DRIVER

PRODUCT DESCRIPTION

The MSD 047 is a monolithic BCD to seven segment active low decoder/driver providing high-sink current outputs for driving indicators directly.

FEATURES

Automatic blanking of leading and/or trailing edge zeros

MSD047

- Lamp Test
- Intensity Control
- BCD inputs are compatible with DTL and TTL
- Sink current per output 20 mA
- 16 PIN dual in line package

This device is recommended for use as the four line BCD decoder and driver for Monsanto's MAN 1 seven segment LED display. The MSD 047 is completely compatible with the MDK 100 decade counter and the MQL 105 quadruple latch.

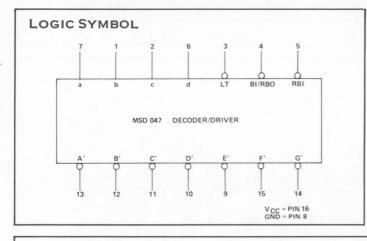
ABSOLUTE MAXIMUM RATINGS

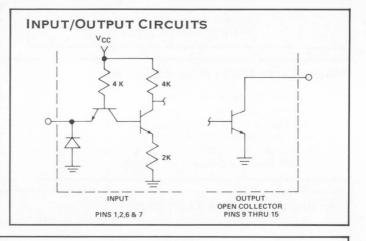
Maximum Storage Temperature	55°C to 135°C
Maximum Operating Temperature	0°C to 70°C
Maximum Supply Voltage V _{CC} (See Note 1	7.0 volts
Input Voltage (See Note 1 and 2)	5.5 volts
Current into any Input	20 mA
Current into any output (See note 3)	1.0 mA

ELECTRICAL CHARACTERISTICS

 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5.0 \pm 5\% \text{ volts})$

SYMBOL	CHARACTERISTICS	MIN	TYP	MAX	UNITS	TEST CONDITIONS
VIL	Input voltage required to ensure logic 0			0.8	V	V _{CC} =4.75 V
VIH	Input voltage required to ensure logic 1	2.0			V	V _{CC} =4.75 V
VoL	On-state output voltage (a thru g)		0.27	0.4	V	V_{CC} =4.75 V, I_{OL} =20 mA
VOL(RBO)	Logical 0 output voltage at B1/RBO Node		0.30	0.4	V	V _{CC} =4.75 V, I _{OL} =8 mA
VoH	Logical 1 output voltage at B1/RBO Node	2.4	3.70		V	V_{CC} =4.75 V, I_{LOAD} =-20 μA
Voff	Off-state output voltage at a thru g	15			V	$V_{CC} = 5.25 \text{ V, } I_{OFF} = 250 \mu A$
I _{IL}	Logical 0 level input; current at any input except B1/RBO Node			-1.6	mA	V_{CC} =5.25 V, V_{IN} =0.4 V
I _{IL(RBO)}	Logical 0 level input current at B1/RBO Node			-4.2	mA	V_{CC} =5.25 V, V_{IN} =0.4 V
I _{IH}	Logical 1 level input current at any input except B1/RBO Node			1	mA	V_{CC} =5.25 V, V_{IN} =5.5 V
IOL	Output sink current			20	mA	V _{CC} =4.75 V
los	Short circuit output current at B1/RBO Node			-4	mA	V _{CC} =5.25 V AII inputs open
Icc	Supply current		25	55	mA	V _{CC} =5.25 V All outputs open


MSD047


FUNCTIONAL DIAGRAM MONSANTO MAN SEE NOTE 4 Vcc CURRENT LIMITING RESISTORS RANGE SWITCH BI/RBO MONSANTO MSD 047 DECODER/DRIVER VCC LT GND BCD INPUT MONSANTO MDA 100 RANGE SWITCH BI/RBO MONSANTO MSD 047 DECODER/DRIVER V_CC LT GND BCD INPUT

TRUTH TABLE

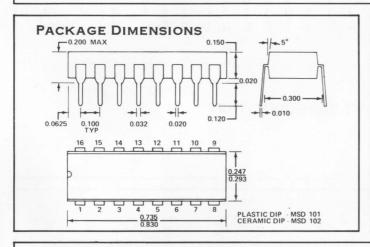
RBI B' C D' E F' G' BI/RBO DISPLAY LT A b a X X X X X 1 NOTE 6 E X X X X X O NOTE 7 Blank X NOTE 8 Blank X X X X X X X E X '=! X X := X =, X Έ X X **Blank**

X = DON'T CARE CONDITIONS

NOTES

- 1. These voltage values are with respect to network ground terminal.
- 2. Input voltage must be zero or positive with respect to network ground terminal.
- 3. This rating applies when the output is off.
- 4. Refer to Product Data Sheet for more detailed information on the Monsanto MAN1 Alpha-Numeric Display.
- 5. The MDA 100 is a compact module display that features built-in resistors. See the product data sheet for more detailed information.
- 6. When blanking input/ripple-blanking output is open or held at a logic "1", and a logic "0" is applied to lamp-test input, all segment outputs go to a logic "0".
- 7. When a logic "0" is applied to the blanking input (forced condition) all segment outputs go to a logic "1" regardless of the state of any other input condition.
- 8. When ripple-blanking input (RB1) is at a logic "O" and A=B=C=D=logic "O", all segment outputs go to a logic "1" and the ripple-blanking output goes to a logic "O" (response condition).

50K


SEVEN SEGMENT Monsanto DECODER DRIVERS

MSDIOI MSDI02

PRODUCT DESCRIPTION

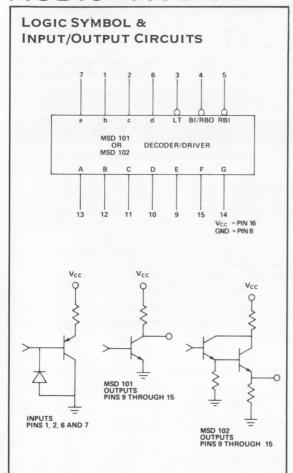
The MSD 101 is a monolithic BCD to seven segment active high decoder/driver providing current outputs for driving indicators directly. The MSD101 is designed to provide source currents of 5.0 mA for an output of 1.7 volts. This device is recommended for use as the four line BCD decoder and driver for the Monsanto MAN3 seven-segment LED display. The MSD101 features built-in resistors and is compatible with the MDK100 decade counter and the MQL105 quadruple latch.

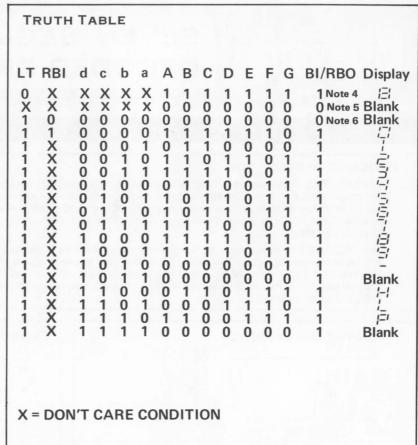
The MSD102 is a monolithic BCD to seven segment active high decoder/driver providing high current outputs for driving indicators directly. The MSD102 is designed to provide source currents of 50 mA for an output of 2.3 volts. This device is recommended for use as the four line BCD decoder and driver for the Monsanto MAN3 in multiplexing applications. The MSD102 features built-in resistors and is compatible with the MDK100 decade counter and the MQL105 quadruple latch.

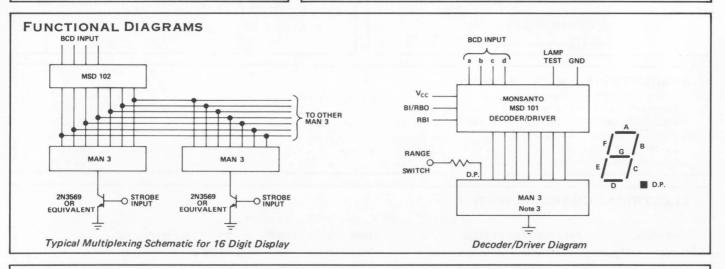
FEATURES

- Designed specifically to drive the MAN3
- All circuit interfacing components included in the IC-resistors built in
- BCD inputs are compatible with DTL and TTL devices
- Intensity control
- Automatic blanking of leading AND/OR trailing edge zeroes
- Lamp Test

BSOLUTE MAXIMUM RATINGS
Maximum storage temperature
Maximum operating temperature
Maximum supply voltage V _{CC} (see note 1)
nput voltage (see note 1 and 2)
Current into any input
Current into any output
1


ELECTRICAL CHARACTERISTICS


 $(T_A = 0^{\circ} C \text{ to } 85^{\circ} C, V_{CC} = 5.0 \pm 5\% \text{ volts})$

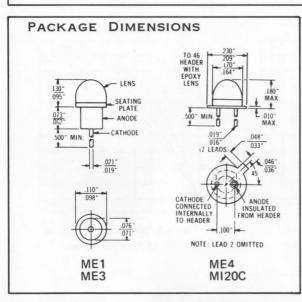

SYMBOL	CHARACTERISTICS	MIN	MAX	UNIT	TEST CONDITIONS
VIL	Input voltage required to ensure logic 0		0.85	V	V _{CC} =4.75 V
VIH	Input voltage required to ensure logic 1	2.0		V	V _{CC} =4.75 V
IIL	Logical 0 level input current except lamp test		-125	μ A	V_{CC} =5.25 V, V_{IN} =0.45 V, V_{LT} =2.5 V
IIL(LT)	Logical 0 level input current for lamp test		-500	μA	V _{CC} =5.25 V, V _{IN} =0.45 V
I _{IH}	Logical 1 level input current except lamp test		40	μA	V _{CC} =5.25 V, V _{IN} =5.25 V
I _{IH(LT)}	Logical 1 level input current for lamp test		160	Α	V _{CC} =5.25 V, V _{IN} =5.25 V
Vc	Input clamp voltage		-1.0	V	V_{CC} =4.75 V, I_{C} =5.0 mA
Іон	Output source current (MSD101)	-5.0	-7.5	mA	V_{CC} =5.0 V, V_{OUT} =1.7 V, V_{LT} =0.45 V
	Output source current (85°C) (MSD101)	-4.7	-7.2	mA	V_{CC} =5.0 V, V_{OUT} =1.7 V, V_{LT} =0.45 V
*IOH	Output source current (MSD102)	-40	-60	mA	V_{CC} =5.0 V, V_{OUT} = 2.3 V, V_{LT} =0.45 V
VOL(RBO)	Logical 0 output voltage at RBO		0.45	· V	V _{CC} =4.75 V, I _{RBO} =6 mA
Icc	Supply current		60	mA	V _{CC} =5.25 V, All outputs high

^{*} Outputs A through G of the MSD 102 should never be short circuited while under operation. An equivalent load resistance of \geq 50 Ω is required to prevent excessive source current to flow.

MSDIOI MSDIO2

NOTES

- 1. These voltage values are with respect to network ground terminal.
- 2. Input voltage must be zero or positive with respect to network ground terminal.
- 3. Refer to product data sheet for more detailed information on the Monsanto MAN 3 Alpha-Numeric Display.
- 4. When blanking input/ripple-blanking output is open or held at a logic "1", and a logic "0" is applied to lamp-test input, all segment outputs go to a logic "0".
- 5. When a logic "0" is applied to the blanking input (forced condition) all segment outputs go to a logic "1" regardless of the state of any other input condition.
- 6. When ripple-blanking input (RB1) is at a logic "O" and A=B=C=D=logic "O", all segment outputs go to a logic "1" and the ripple-blanking output goes to a logic "O" (response condition).


3/1

INFRARED EMITTERS

ME3 MEI ME4 MI2OC

PRODUCT DESCRIPTION

These infrared diodes are diffused planar Gallium Arsenide. The ME 1 & 3 are mounted in .10" coaxial packages. The ME 4 & MI20C are mounted in TO-18 headers. All four types have clear epoxy lenses.

FEATURES

- High Output Power--1.5mW min. @ 100 mA with Low Power Requirements--0.15 watts (maximum).
- Fast Switching Time--Typically 1.0 nsec
- Long Life--Solid State Reliability
- Small, Rugged, Lightweight
- IR Source for Silicon and Cadmium Sensors

ABSOLUTE MAXIMUM RATINGS	ME3 ME1	ME4 MI20C	
Maximum Power Dissipation @25°C Ambient Temperature	130mW	250mW	
Derate Linearly from 25°C	1.73mW/°C	3.33mW/°C	
Maximum Storage and Operating Temperature	-55°C to 100°C	-55°C to 100°C	
Maximum Lead Solder Time @260°C	7.0 s	7.0 s	
Maximum Currents and Voltages			
Continuous Forward Current	100mA	150mA	
Peak Forward Current (1µs pulse, 300 pps)	0.5A	3.0A	
Reverse Voltage	3.0V	3.0V	

ELECTRO-OPTICAL CHARACTERISTICS (25° C Free Air Temperature Unless Otherwise Specified) TEST CHARACTERISTICS MIN. UNIT CONDITION TYP. MAX. Total external radiated power (see note 2) ME3 0.5 8.0 mW $I_F = 50 \text{ mA}$ ME1 1.0 1.5 I_F=50 mA mW ME4 0.5 IF=100 mA 1.0 mW MI20C 1.5 2.0 mW I_F=100 mA Å Peak emission wave length 9000 Å Spectral line half width 400 Forward voltage I_F=50 mA ME3, ME1 1.3 1.5 ME4, MI20C 1.3 1.5 I_F=100 mA Forward dynamic resistance ME3, ME1 2.5 Ω $I_F=50 \text{ mA}$ ME4, MI20C 1.2 Ω $I_F=50 \text{ mA}$ V_R=3.0 V Reverse current 10 .15 μΑ Capacitance ME3, ME1 100 pF V=0 ME4, MI20C 150 pF V=0Light turn on and turn off 1.0

ME3 ME4 MEI MI2OC

TYPICAL THERMAL CHARACTERISTICS

ME3

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

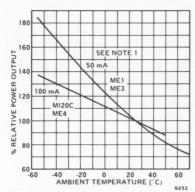


Figure 1 Power Output vs.
Temperature Free Standing Diode

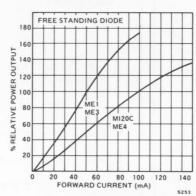
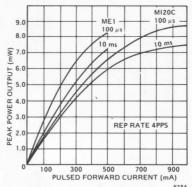



Figure 2 % Relative Power Output vs. Forward Current

ME4

Figure 3 Peak Output Power vs.

Pulsed Forward Current

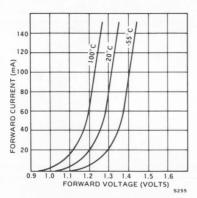


Figure 4 Forward Current vs.
Forward Voltage

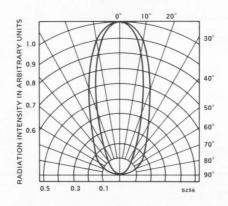


Figure 5 Spacial Distribution

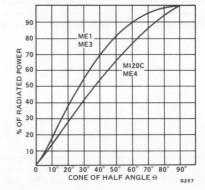
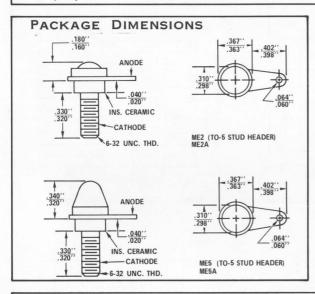


Figure 6 % Of Radiated Power Into Cone Of Half Angle

NOTES


- 1. The curves in figure 1 are normalized to the power output at 25°C to indicate the relative efficiency over the operating temperature range.
- 2. The total external radiated power output measurements are made with a Centralab 110C solar cell terminated into a 100Ω impedance.
- 3. The leads of the ME4 and MI20C were immersed in molten solder, heated to 260°C, to a point 1/16 inch from the body of the device, per MIL-S-750. Suggested mounting procedures for ME1 and ME3: (a) Use wet sponge to heat sink lens when soldering (b) Use conductive epoxy (c) Press fit.

Monsanto HIGH POWER INFRARED EMITTERS

ME2 ME5 ME2A ME5A

PRODUCT DESCRIPTION

The ME2 and 2A are diffused planar gallium arsenide diodes mounted on a TO-5 stud header with a low , dispersive epoxy lens. The ME5 and 5A are identical diodes in the same mount, but with a high collimating lens.

FEATURES & APPLICATIONS

- Top value in mW/\$
- Ultra high output power
- Fast switching time
- Choice of lambertian or collimated radiation pattern
- Long life--solid state reliability
- Rugged, compact and lightweight

The ME2 and ME5 series are large area illuminator sources of IR for industrial and military applications such as:

- Card or tape readers
- Silicon detector companion source
- Intrusion alarm
- Electrical isolator
- Optical shaft encoder
- Optical counters and sorters
- AGC

MAXIMUM RATINGS **ABSOLUTE**

Power dissipation @25°C case temperature
Derate linearly from 25°C
Storage and operating temp
Continuous forward current (note 3)
Peak forward current (note 3) (1μs pulse width 300 pps)
Reverse voltage

ELECTRO-OPTICAL CHARACTERISTICS

(25° C Case Temperature Unless Otherwise Specified)

					IESI
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Total external radiated power (see note 1)					
ME2A	7.5	9.0		mW	I _F =1.0 A
ME5A		14		mW	I _F =2.0 A
ME2	10	12		mW	I _F =1.0 A
ME5		18		mW	I _F =2.0 A
Peak emission wavelength		9000		Å	
Spectral line half width		400		Å	
Forward voltage		1.3	1.5	V	I _F =1.0 A
Capacitance		750		pF	V=0
Light rise time or fall time		10		ns	
Reverse voltage	3.0			V	$I_R = 30 \mu A$

ME2 ME2A ME5 ME5A

TYPICAL THERMAL CHARACTERISTICS

25°C/W Thermal resistance junction to case (⊕ JA) Wavelength temperature coefficient (case temperature) Forward voltage temperature coefficient

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

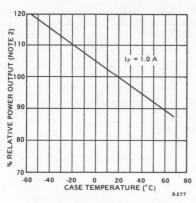


Figure 1 % Relative Power Output vs. Case Temperature

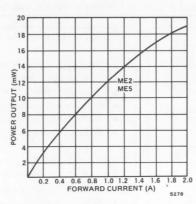


Figure 2 Power Output vs. Forward Current

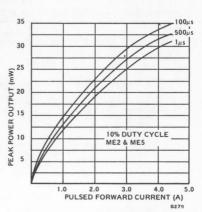


Figure 3 Peak Output Power vs. **Pulsed Forward Current**

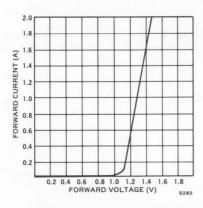


Figure 4 Forward Current vs. Forward Voltage

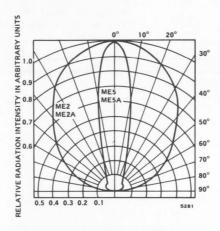


Figure 5 Spacial Distribution

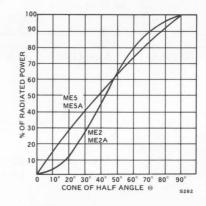
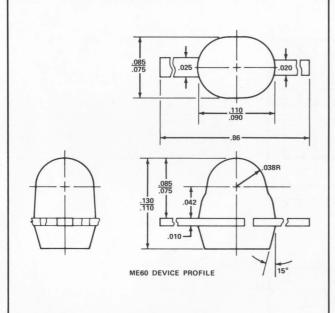


Figure 6 Percent of Radiated Power into Cone of Half Angle ⊕

NOTES

- 1. The total external radiated power output measurements are made with a Centralab 2A solar cell terminated into a 10 Ω impedance.
- 2. The curves in Figure 1 are normalized to the power output at 25°C to indicate the relative efficiency over the operating temperature range.
- 3. Units must be sufficiently heat sunk above 150mA input current.


50K

INFRARED EMITTER

PRODUCT DESCRIPTION

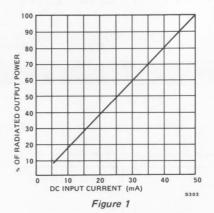
The ME60 is a diffused planar gallium arsenide infrared diode. The lead-frame construction is encapsulated in an epoxy case and lens.

PACKAGE DIMENSIONS

FEATURES

The ME60 is intended for high volume infrared source application where low cost, high reliability and high density packaging are required.

- Low Cost
- Compatible with integrated circuits
- Long life, rugged
- Small Size
- Easily assembled in linear arrays
- Card & tape reader sources
- High on-axis power

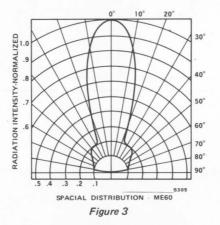

ABSOLUTE MAXIMUM RATINGS

ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)

CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Total external radiated power (see note 2)	400	550		μW	$I_F = 50 \text{ mA}$
Peak emission wave length		9000		Å	
Spectral line half-width		400		Å	
Forward voltage		1.3	1.5	V	$I_F = 50 \text{ mA}$
Reverse current		.15	10	μΑ	$V_R = 3.0 \text{ volts}$
Light turn-on and turn-off		1		ns	
Capacitance		80		pF	V=0

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)



90
80
70
80
70
80
40
PERCENT OF RADIATED POWER, INTO CONE OF HALF ANGLE 9

Figure 2

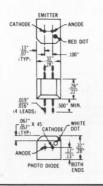
20° 30° 40° 50° 60° 70° 80° 90° CONE OF HALF ANGLE Θ

5304

NOTES

- 1. The leads of the device were immersed in molten solder, heated to a temperature of 260°C, to a point 1/16 inch from the body of the device per MIL-S-750.
- 2. The total external radiated power output measurements are made with a Centralab 110C solar cell terminated into a 100Ω impedance.

3/1


PHOTODIODE COUPLED PAIR

MCDI

PRODUCT DESCRIPTION

The MCD1 is a photodiode coupled pair consisting of a diffused planar GaAs diode emitter and a diffused planar silicon PIN photodiode. It is encapsulated in clear epoxy for light transmission and then opaque black epoxy for protection.

PACKAGE DIMENSIONS

FEATURES

- Ultra fast switching time--typically 5 nanoseconds
- Very high isolation resistance; $10^{11}\Omega$
- 2,500 volt emitter-to-detector isolation
- Excellent performance in linear and digital circuits.
- Long life--solid state reliability.
- Compact, rugged, and lightweight.

ABSOLUTE MAXIMUM RATINGS

Storing and Operating Temperature - -55° to 100°C

EMITTER (GaAs diode)

Power Dissipation @ 25°C Ambient

DETECTOR (Silicon PIN photodiode)
Power Dissipation @ 25°C Ambient

ELECTRO-OPTICAL CHARACTERISTICS

(25°C Free Air Temperature Unless Otherwise Specified)

			,	,	TEST
CHARACTERISTICS	MIN.	.TYP.	MAX.	UNITS	CONDITIONS
Emitter					
Forward voltage		1.3	1.5	V	I _F =100 mA
Reverse current		0.15	10	μ A	V _R =3.0 V
Capacitance		150		pF	V=0
Detector					
Breakdown voltage	50	75		V	$I_R=10 \mu A$
Dark current		15	50	nA	V _R =20 V
Capacitance		40		pF	V=0
Capacitance		10		pF	V _R =20 V
Coupled Pair					
DC current transfer ratio	0.15	0.2		%	Note 1
Bandwidth (see figure 6)		8.5		MHz	Note 2
Capacitance		3		pF	
Resistance		1011		Ω	
Breakdown voltage	2500			V	
Rise and fall time		5		ns	

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

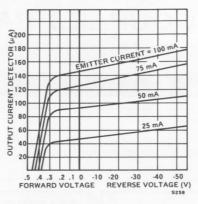


Figure 1 Output Current vs. Voltage

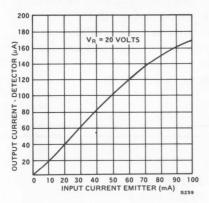


Figure 2 Output Current vs. Input Current

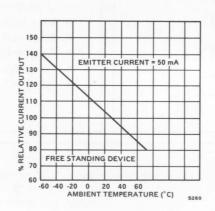


Figure 3 Current vs. Temperature

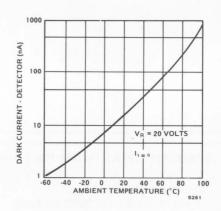


Figure 4 Dark Current vs. Temperature

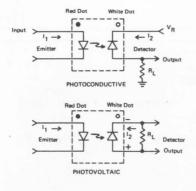


Figure 5 Typical Operating Schematics

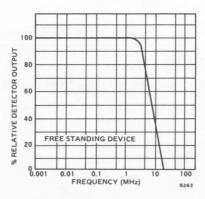


Figure 6 Output vs. Frequency

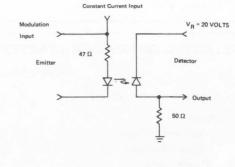


Figure 7 Modulation Circuit Used to Obtain Figure 6

50K

NOTES

- 1. The current transfer ratio (I_2/I_1) is the ratio of detector output current @ V_R = 20 volts, to the emitter input current. This ratio is linear to within $\pm 5\%$ for an emitter input from 20 mA to 80 mA.
- 2. The frequency at which the time-averaged sinusoidal current ratio is half the DC current value.

3/1

PHOTODIODE COUPLED PAIR

MCD2

PRODUCT DESCRIPTION

The MCD2 is a diffused planar silicon PIN photodiode optically coupled to a diffused planar gailium arsenide light-emitting diode. It is mounted in a six-lead plastic DIP.

PACKAGE DIMENSIONS

FEATURES & APPLICATIONS

- Ultra fast switching time typically 5 nanoseconds
- Very high isolation resistance $10^{11} \Omega$
- 1500 volt isolation emitter to detector
- Plastic dual-in-line package
- Long life solid state reliability
- Excellent performance in linear and digital circuits
- Compact, rugged, light weight
- Low coupling capacitance 1.3pF

The MCD2 is intended for applications where a high degree of input to output isolation is required to provide unilateral signal transfer with ultra fast speed of response such as in:

- High speed isolated amplifiers
- High speed pulse transformers
- High frequency opto-electronic feedback circuits
- High speed isolated logic switch

ABSOLUTE MAXIMUM RATINGS Storage temperature - 55°C to 150°C

Operating temperature - -55°C to 100°C Lead soldering time @ 260°C - 7.0 seconds

LED (GaAs Diode) Derate linearly from 25°C 2.0mW/°C

Peak forward current (1µsec pulse,

DETECTOR (Silicon PIN Photo Diode)

Derate linearly from 25°C 1.33mW/°C Reverse voltage 50 volts

ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)

CHARACTERISTICS	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Emitter					
Forward voltage		1.3	1.5	V	I _F =100 mA
Reverse current		0.15	10	μΑ	V _R =3.0 V
Capacitance		150		pF	V=0
Detector					
Reverse breakdown voltage	50	75		V	$I_R = 10 \mu A$
Dark current (IR)		15	50	nA	V _R =20 V
Capacitance		10		pF	V _R =20 V
Capacitance		40		pF	V=0
Coupled					
DC current transfer ratio	0.15	0.2		%	note 1
Breakdown voltage	1500			V	
Resistance emitter-detector		1011		Ω	$V_{E-D} = 500 V$
Capacitance LED detector		1.3		pF	
Bandwidth (see figure 6)		8.5		MHz	note 2
Rise and fall time		5		ns	

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

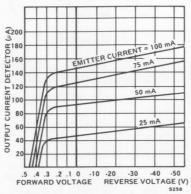


Figure 1 Output Current vs. Voltage

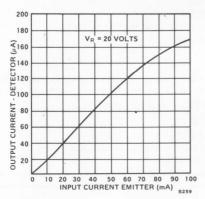


Figure 2 Output Current vs. Input Current

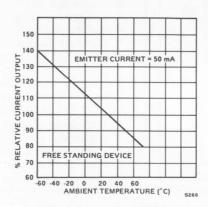


Figure 3 Current vs. Temperature

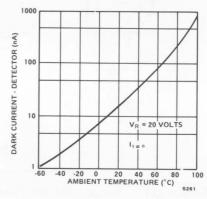


Figure 4 Dark Current vs. Temperature

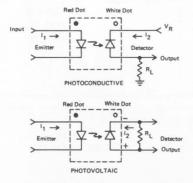


Figure 5 Typical Operating Schematics

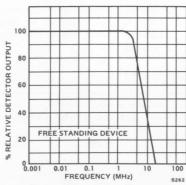
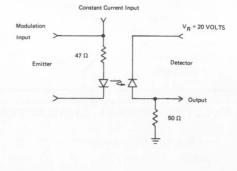
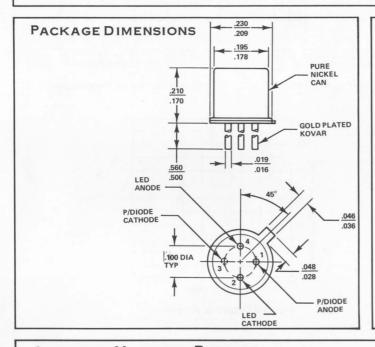


Figure 6 Output vs. Frequency




Figure 7 Modulation Circuit Used to Obtain Figure 6

NOTES

- 1. The current transfer ratio (I_2/I_1) is the ratio of detector output current @ V_R = 20 volts, to the emitter input current. This ratio is linear to within $\pm 5\%$ for an emitter input from 20 mA to 80 mA.
- 2. The frequency at which the time-averaged sinusoidal current ratio is half the DC current value.

PRODUCT DESCRIPTION

The MCD4 is a standard four-lead, TO18 package containing a gallium arsenide light-emitting diode optically coupled to a silicon planar PIN photodiode. It is hermetically sealed for Military Applications.

FEATURES & APPLICATIONS

- Ultra fast switching time
- Very high isolation resistance 10¹¹ Ω
- 1500 volt isolation emitter to detector
- Hermetic package
- Long life solid state reliability
- Excellent performance in linear and digital circuits
- Compact, rugged, light weight
- Low coupling capacitance 1.8 pF

The MCD4 is intended for applications where a high degree of input to output isolation is required to provide unilateral signal transfer with ultra fast speed of response such as in:

- High speed isolated amplifier
- High speed pulse transfers
- High frequency opto-electronic feedback circuits
- High speed isolated logic switch

ABSOLUTE MAXIMUM RATINGS Storage temperature -65°C to 150°C

Operating temperature -55°C to 125°C Lead soldering time @260°C - 10.0 seconds

LED (GaAs Diode)

Power dissipation @ 25°C ambient 150 mW

Derate Linearly from 25°C 1.5 mW/°C

Continuous forward current 100 mA

 DETECTOR (PIN photodiode)

Power dissipation @25°C ambient 100 mW

Derate linearly from 25°C 1.0 mW/°C

Reverse voltage 50 V

ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)

					TEST	
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS	
Emitter						
Forward voltage		1.3	1.5	V	I _F =100 mA	
Reverse current		0.15	10	μΑ	V _R =3.0 V	
Capacitance		150		pF	V=0	
Detector						
Reverse breakdown voltage	50	75		V	$I_R = 10 \mu A$	
Dark current		5	25	nA	V _R =20 V	
Capacitance		10		pF	V _R =20 V	
Capacitance		40		pF	V=0	
Coupled						
DC current transfer ratio	0.10	0.15		%	V _R =20 V	
Breakdown voltage	1000			V		
Resistance emitter-detector		1011		Ω	$V_{E-D} = 500 \text{ V}$	
Capacitance LED to detector		1.8		pF		
Bandwidth (see figure 6)		8.5		MHz	note 2	
Rise time and fall time		20		ns	50 Ω system	

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

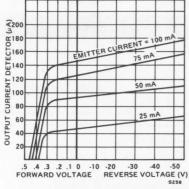


Figure 1 Output Current vs. Voltage

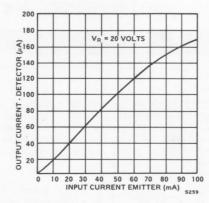


Figure 2 Output Current vs. Input Current

Figure 3 Current vs. Temperature

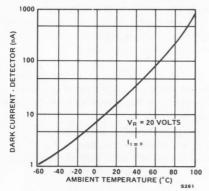


Figure 4 Dark Current vs. Temperature

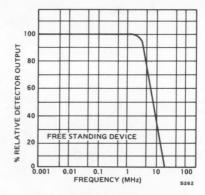


Figure 6 Output vs. Frequency

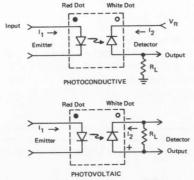


Figure 5 Typical Operating Schematics

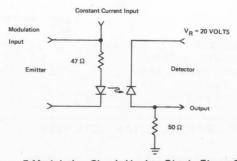


Figure 7 Modulation Circuit Used to Obtain Figure 6

NOTES

- 1. The current transfer ratio (I_2/I_1) is the ratio of detector output current @ $V_R = 20$ volts, to the emitter input current. This ratio is linear to within $\pm 5\%$ for an emitter input from 20 mA to 80 mA.
- 2. The frequency at which the time-averaged sinusoidal current ratio is half the DC current value.

PHOTOTRANSISTOR COUPLED PAIR

MCTI

PRODUCT DESCRIPTION

The MCT1 is a phototransistor coupled pair consisting of a diffused planar GaAs diode emitter and a NPN silicon planar phototransistor. It is encapsulated in clear epoxy for light transmission and then in black opaque epoxy for protection.

PACKAGE DIMENSIONS INFRARED LED O.13 O.07 RED DOT O.100 O.32 O.28 O.26 O.22 O.067 (TYP) 45 O.067 (TYP) 45 O.28 ENDS O.32 BOTH O.28 ENDS O.32 BOTH O.28 ENDS O.31 O.32 BOTH O.28 ENDS O.31 O.32 BOTH O.32 BOTH O.32 BOTH O.33 ENDS O.34 ENDS O.35 ENDS O.36 O.37 O.37 O.38 ENDS O.39 ENDS O.31 O.31

FEATURES

- High-speed, solid-state switch
- Very high current transfer ratio . . . typically 35%
- Input and output compatible with integrated circuits
- Very high isolation resistance . . . 10¹¹ ohms
- 2500 volt isolation emitter to detector
- Long life; solid-state relability

Storing and operating temperature -55°C to 100°C ABSOLUTE MAXIMUM RATINGS Lead soldering time @ 260°C - 7.0 seconds LED (GaAs diode) **DETECTOR** (Silicon phototransistor) Power dissipation @ 25°C ambient 150 mW Power dissipation @ 25°C ambient 200 mW Derate linearly from 25°C 2.0 mW°C Derate linearly from 25°C 2.67 mW/°C Continuous forward current 60 mA Collector - emitter breakdown voltage Peak forward current (1µsec pulse, 300 pps) Emitter - collector breakdown voltage

ELECTRO-OPTICAL CHARACTERISTICS	(25°C	ess Otherwise Specified)			
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
LED					
Forward voltage		1.3	1.5	V	I _F =100 mA
Reverse current		0.15	10	μΑ	V _R =3.0 V
Capacitance		150		pF	V=0
Detector					
Breakdown voltage collector to emitter	30			V	I _C =1.0 mA, I _F =0
Breakdown voltage emitter to collector	7	12		V	$I_{E}=100 \mu A, I_{F}=0$
Collector dark current		2	75	nA	V _{CE} =10 V
Capacitance collector to emitter		10		pF	V _{CE} =10V
Coupled					
DC current transfer ratio	20	35		%	I _F =10 mA, V _{CF} =10 V(note 1)
Bandwidth (see figure 5)		300		kHz	I _C =2 mA (note 2)
Saturation voltage collector to emitter		0.1		V	$I_{C}=500 \mu A, I_{F}=10 \text{mA}$
		0.2	0.5	V	I _C =4 mA, I _F =100 mA
Resistance LED to detector		1011		Ω	
Breakdown voltage	2500			V	
Rise and fall time (see operating schematics)		2		μs	I _C =2 mA, V _{CE} =10 V (note 3)
Capacitance LED to detector		2.0		pF	

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

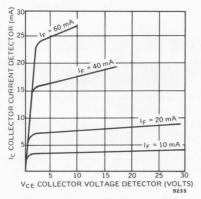


Figure 1 Detector Output Characteristics

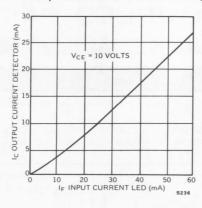


Figure 2 Input Current vs. Output Current

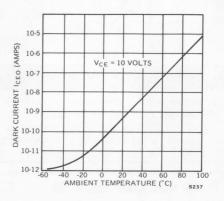


Figure 3 Dark Current vs. Temperature (°C)

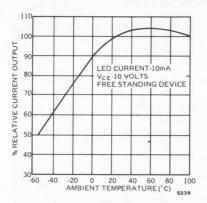


Figure 4 Current Output vs. Temperature

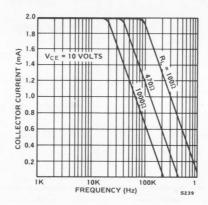


Figure 5 Output vs. Frequency

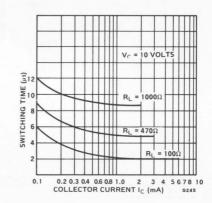
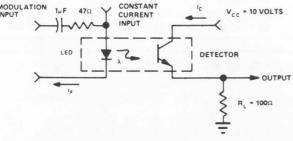
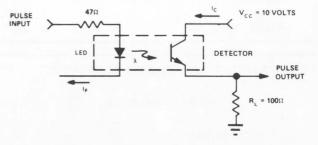




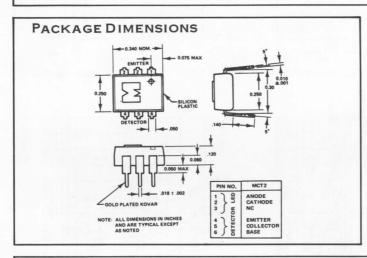
Figure 6 Switching Time vs. Collector Current

OPERATING SCHEMATICS

Modulation Circuit Used to Obtain Output vs Frequency Plot

Circuit Used to Obtain Switching Time vs Collector Current Plot

NOTES


- 1. The current transfer ratio (I_C/I_F) is the ratio of the detector collector current to the LED input current with V_{CE} at 10 Volts.
- 2. The frequency at which the time averaged sinusoidal current ratio is half the direct current value.
- 3. Rise time (t_r) is the time required for the collector current to increase from 10% of its final value, to 90%. Fall time (t_f) is the time required for the collector current to decrease from 90% of its initial value, to 10%.

PHOTOTRANSISTOR OPTO-ISOLATOR

MCT2

PRODUCT DESCRIPTION

The MCT2 is a NPN silicon planar phototransistor coupled to a diffused planar gallium arsenide diode. It is mounted in a six-lead plastic DIP.

FEATURES & APPLICATIONS

- High current transfer ratio . . . typically 35%
- lacksquare High isolation resistance . . . $10^{11}~\Omega$
- 1500 volt isolation emitter to detector
- Plastic dual-in-line package
- Long life-solid state reliability
- Compact, rugged, light weight
- Low coupling capacitance . . . 1.3 pF is typical

printy cupacitance :

- Typical applications would be:

 Systems isolation
- Chassis isolation
- General purpose switching
- High voltage power supply control
- Phase control

Storage temperature -55°C to 150°C ABSOLUTE MAXIMUM RATINGS Operating temperature -55°C to 100°C Lead soldering time @ 260°C 7.0 seconds **DETECTOR** (Silicon phototransistor) LED (GaAs Diode) Power dissipation @25°C ambient 100 mW Power dissipation @25°C ambient 150 mW Derate linearly from 25°C 1.33 mW/°C Derate linearly from 25°C 2.0 mW/°C Collector-emitter breakdown voltage (BVCEO). 30V Continuous Forward Current 60 mA Emitter-collector breakdown voltage (BV_{ECO}) . 7.0V Collector-base breakdown voltage (BVCBO) . . 70V Peak forward current (1 µs pulse, 300 pps) . . 3.0A

ELECTRO-OPTICAL CHARAC	TERISTICS	(25° C F	ree Air Tem	perature Uni	ess Otherwise Specified)
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Emitter					
Forward voltage		1.3	1.5	V	I _F =100 mA
Reverse current		.15	10	μΑ	V _R =3.0 V
Capacitance		150		pF	V=0
Detector					
h _{FE}	100	150			$V_{CE} = 5 \text{ V, } I_{C} = 100 \mu \text{A}$
BV _{CEO}	30			V	I _C =1.0 mA, I _F =0
BV _{ECO}	7	12		V	I _C =100 μA, I _F =0
I _{CEO} (dark)		5	50	nA	$V_{CE} = 10 \text{ V, } I_{F} = 0$
Capacitance Collector-emitter		2		pF	V _{CF} =0
BV _{CBO}	70			V	Ι _C =10 μΑ
I _{CBO} (Dark)			20	nA	$V_{CB} = 10 \text{ V, } I_{F} = 0$
Coupled					
DC current transfer ratio	20	35	100	%	V _{CE} =10 V, Note 1
Breakdown voltage	1500			V	
Resistance emitter-detector		1011		Ω	V _{E-D} =500 V
V _{CE} (sat)		0.1		V	$I_{C} = 500 \mu A, I_{F} = 10 \text{mA}$
		0.2	0.5	V	$I_C=2 \text{ mA}, I_F=50 \text{ mA}$
Capacitance LED to detector		1.3		pF	
Bandwidth (see figure 5)		300		kHz	I _C =2 mA, note 2
Rise time and fall time		2		μ s	$I_C=2$ mA, $V_{CE}=10$ V, note 3
(see operating schematics)					

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

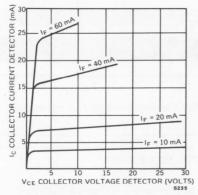


Figure 1 Detector Output Characteristics

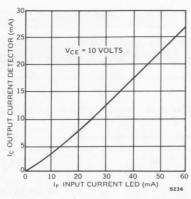


Figure 2 Input Current vs. Output Current

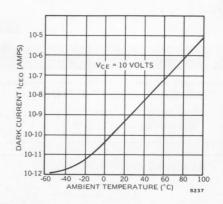


Figure 3 Dark Current vs. Temperature (°C)

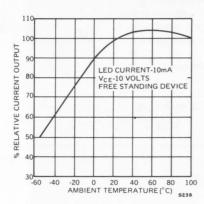


Figure 4 Current Output vs. Temperature

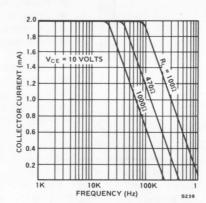


Figure 5 Output vs. Frequency

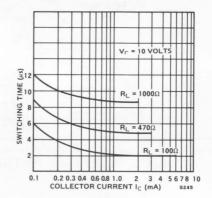
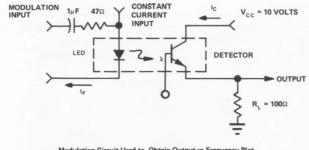
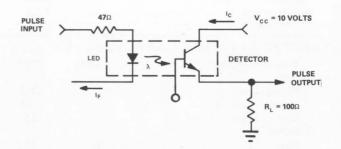




Figure 6 Switching Time vs. Collector Current

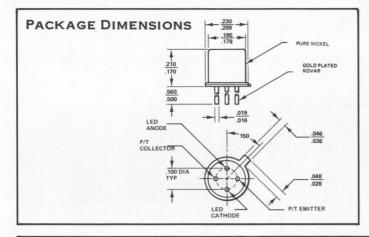
OPERATING SCHEMATICS

Modulation Circuit Used to Obtain Output vs Frequency Plot

Circuit Used to Obtain Switching Time vs Collector Current Plot

NOTES

- 1. The current transfer ratio (I_C/I_F) is the ratio of the detector collector current to the LED input current with V_{CE} at 10 volts.
- 2. The frequency at which the time averaged sinusoidal current ratio is half the direct current value.
- 3. Rise time (t_r) is the time required for the collector current to increase from 10% of its final value, to 90%. Fall time (t_f) is the time required for the collector current to decrease from 90% of its initial value to 10%.


3/1

PHOTOTRANSISTOR COUPLED PAIR

MCT4

PRODUCT DESCRIPTION

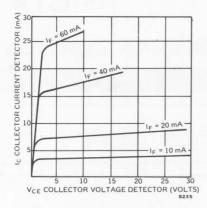
The MCT4 is a standard four-lead, TO-18 package containing a GaAs light emitting diode optically coupled to a silicon planar phototransistor. It is a diffused planar GaAs diode and n-p-n silicon planar phototransistor.

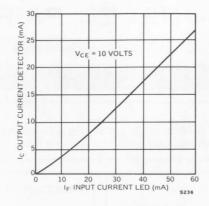
FEATURES

- Hermetic package
- High current transfer ratio; typically 35%
- High isolation resistance; 10¹¹ ohms at 500 volts
- High voltage isolation emitter to detector

ABSOLUTE MAXIMUM RATINGS

Storage temperature - -65°C to 150°C Operating temperature - -55°C to 125°C Lead soldering time @ 260°C - 10.Q seconds


LED(GaAs Diode)			
Power dissipation=25°C ambient			
Derate linearly from 25°C			. 0.6 mW/°C
Continuous forward current			40 mA
Reverse voltage			
Peak forward current			3.0 A
(1 μs pulse, 300 pps)			


DETECTOR (Silicon phototransistor)
Power dissipation=25°C ambient 190 mW
Derate linearly from 25°C 1.9 mW/°C
Collector-emitter breakdown voltage
(BV _{CEO}) 30 volts
Emitter-collector breakdown voltage
(BV _{ECO}) 7.0 volts

LECTRO-OPTICAL CHARACTE	RISTICS				
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Emitter					
Forward voltage		1.3	1.5	V	I _F =40 mA
Reverse current		.15	10	μΑ	V _R =3.0 V
Capacitance		150		pF	V=0
Detector					
BV _{CEO}	30			V	$I_C=1.0$ mA, $I_F=0$
BVECO	7	12		V	$I_{C} = 100 \mu A, I_{F} = 0$
ICEO (Dark)		5	50	nA	$V_{CE}=10 V, I_{F}=0$
Capacitance collector-emitter		2		pF	V _{CE} =0
Coupled					
DC current transfer ratio	15	35		%	I _F =10 mA, V _{CE} =10 V
Breakdown voltage	1000	1500		V	
Resistance emitter-detector		1011		ohms	V _{E-D} =500 V
V _{CE(SAT)}		0.1		V	$I_{C} = 500 \mu A$, $I_{F} = 10 \text{ mA}$
		0.2	0.5	V	I _C =2 mA, I _F =50 mA
Capacitance LED to detector		1.8		pF	
Bandwidth (see figure 5)		300		kHz	Note 2
Rise time and fall time (see operating schematic)		2		μs	$I_C=2$ mA, $V_{CE}=10$ V Note 3

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

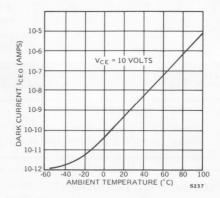


Figure 1 Detector Output Characteristics

Figure 2 Input Current vs. Output Current

Figure 3 Dark Current vs. Temperature (°C)

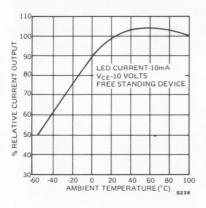


Figure 4 Current Output vs. Temperature

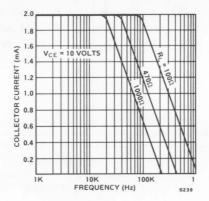


Figure 5 Output vs. Frequency

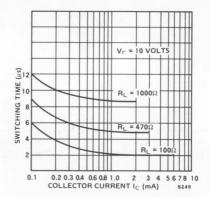
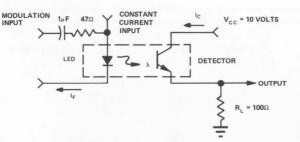
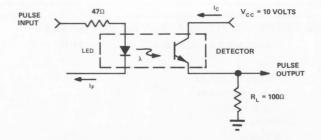




Figure 6 Switching Time vs. Collector Current

OPERATING SCHEMATICS

Modulation Circuit Used to Obtain Output vs. Frequency Plot

Circuit Used to Obtain Switching Time vs. Collector Current Plot

NOTES

- 1. The current transfer ratio (I_C/I_F) is the ratio of the detector collector current to the LED input current with V_{CE} at 10 volts.
- 2. The frequency at which the time averaged sinusoidal current ratio is half the direct current value.
- 3. Rise time (t_r) is the time required for the collector current to increase from 10% of its final value, to 90%. Fall time (t_f) is the time required for the collector current to decrease from 90% of its initial value to 10%.

PRODUCT DESCRIPTION

The MCS1 is a photo SCR coupled pair consisting of a diffused planar GaAs diode emitter and a PNPN planar photo SCR. It is encapsulated in clear epoxy for light transmission and then in black opaque epoxy for protection.

PACKAGE DIMENSIONS INFRARED CATHODE 0.34 MAX. RED DOT -0.30 MAX. 0.019 (5 LEADS) 0.500 MIN. -0.067 (TYP) 450 ANODE РНОТО 0.32 MAX **BOTH ENDS** ALL DIMENSIONS IN INCHES CATHODE

FEATURES

- Built-In Memory
- A-C Switch (SPST)
- High Current Carrying Capability (Pulsed Condition)
- High Isolation Resistance 10¹¹ Ω
- 2500 Voltage Isolation

The Photo SCR coupled pair is intended for applications where complete electrical isolation is required between low power circuitry such as integrated circuits and AC line voltages providing high speed switching or relay functions. Its bi-stable characteristics lends itself for use as a latching relay in direct-current circuits.

ABSOLUTE MAXIMUM RATINGS

Storage and Operating Temperature -55°C to 100°C

Lead Soldering Time @ 260°C 7.0 seconds
LED (GaAs Diode) DETECTOR (Photo
Power Dissipation @ 25°C 150 mW Power Dissipation @

Derate Linearly from 25°C 2.0 mW/°C Continuous Forward Current 60 mA Peak Forward Current (1µs Pulse,

 DETECTOR (Photo SCR)
Power Dissipation @ 25°C ... 250 mW
Derate Linearly from 25°C ... 3.3 mW/°C
Continuous Forward Current ... 200 mA
Surge Current, 8 ms (See Note 1) ... 5 A
Peak Gate Current ... 250 mA
Average Gate Current ... 25 mA
Reverse Gate Voltage ... 5 V
Anode Voltage (DC or Peak AC) ... 200 V

ELECTRO-OPTICAL CHARACTERISTICS

(25°C Free Air Temperature Unless Otherwise Specified)

C Free F	Air Temperatu	ire Onless Othe	rwise Specified)
MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
	1.3	1.5	V	I _F =50 mA
	.15	10	μΑ	V _R =3.0 V
	150		pF	V=0
200			V	$R_{GK}=27 K\Omega$
	.6		μΑ	V_{CC} =50 V, R_{GK} =27 K Ω
	.9	1.5	V	I _A =200 mA
	.1		mA	V_{CC} =50 V, R_{GK} =27 K Ω
	4		mA	V_{CC} =50 V, R_{GK} = 27K Ω
	1.5		μΑ	$I_F=100$ mA, $R_{GK}=27K\Omega$ $V_{CC}=50$ V
	10 ^{1 1}		Ω	
2500			V	
	2.0		pF	
	MIN. 200	MIN. TYP. 1.3 .15 150 200 .6 .9 .1 4 1.5 10 ¹¹ 2500	MIN. TYP. MAX. 1.3 1.5 10 150 200 .6 .9 1.5 .1 4 1.5 .1 2500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TYPICAL ELECTRO-OPTICAL CHARACTERISTICS CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

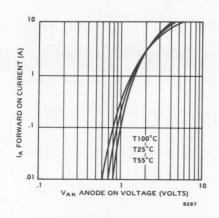


Figure 1 IA vs. VAK

Figure 2 IH vs. RGK - IF vs. RGK

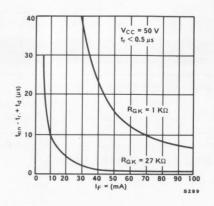


Figure 3 ton vs IF

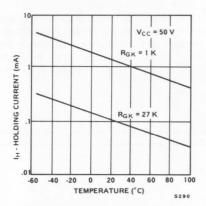


Figure 4 IH vs. Temperature

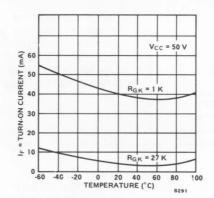
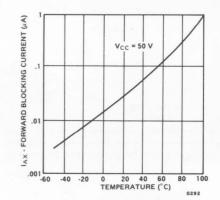
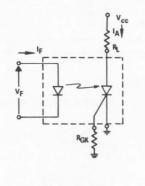
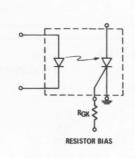
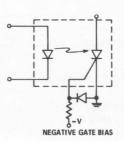


Figure 5 IF vs. Temperature


Figure 6 IAX vs. Temperature

OPERATING SCHEMATICS

GATE BIAS CONSIDERATIONS

NOTES

- 1. The maximum peak current depends on the duty cycle so as to stay within the average power of the device.
- 2. The rise time of the SCR is less than 500 nanoseconds.
- 3. For design information send for GaAs Lite Tip No. 4.

PRODUCT DESCRIPTION

The MCS2 is a PNPN planar photo SCR coupled to a diffused planar gallium arsenide infrared diode. It is mounted in a six-lead plastic DIP.

PACKAGE DIMENSIONS -0.340 NOM. -0.340 NOM

FEATURES & APPLICATIONS

- Built-in memory
- AC switch (SPST)
- High current carrying capability (pulsed condition)
- Plastic dual-in-line package
- High isolation resistance 10¹ Ω
- 1500 volt isolation, emitter to detector
- Compact, rugged, light-weight
- Low coupling capacitance . . . 1.3pF typical

The Photo SCR coupled pair is intended for applications where complete electrical isolation is required between low power circuitry such as integrated circuits and AC line voltages providing high speed switching or relay functions. Its bi-stable characteristics lends itself for use as a latching relay in direct-current circuits. (See note 3).

ABSOLUTE MAXIMUM RATINGS

Storage temperature -55°C to 150°C Operating temperature -55°C to 100°C Lead soldering time @260°C 7.0 seconds

DETECTOR (Photo SCR)

Power dissipation @ 25°C ambient ... 200 mW

Derate linearly from 25°C ... 2.67 mW/°C

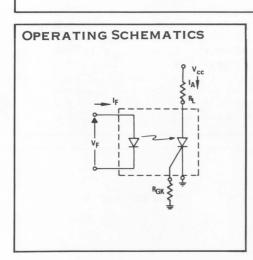
Continuous forward current ... 140 mA

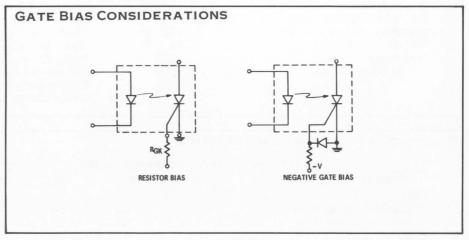
Surge current, rms (See note 1) ... 5 A

Peak gate current ... 200 mA

Average gate current ... 25 mA

Reverse gate current ... 5 V


Anode voltage (DC or peak AC) ... 200 V


ELECTRO-OPTICAL CHARACTERISTICS

(25° C Free Air Temperature Unless Otherwise Specified)

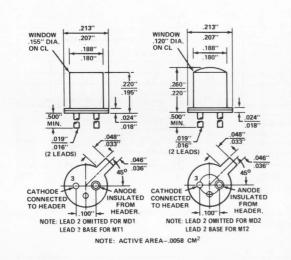
(23 0116	e All Tellip	erature Office	533 Other Wis	e specified)	
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
LED					
Forward voltage (V _F)		1.3	1.5	V	I _F =40 mA
Reverse current (IR)		1.5	10	μΑ	V _R =3.0 V
Capacitance			150	pF	V=0
Detector					
Forward blocking voltage (VAX)	200			V	$R_{GK}=27 K\Omega$
Forward blocking current (IAX)		.6		μ A	$R_{GK}=27 K\Omega$, $V_{CC}=50 V$
Anode on voltage (VAK)		.9	.15	V	$I_A=140$ mA, $V_{CC}=50$ V
Holding current (I _H)		.1		mA	$R_{GK}=27 K\Omega$
Coupled					
Turn on current (I _F)		6	14	mA	V_{CC} =50 V, R_{GK} =27 K Ω
t_{on} (t_r and t_d) (see note 2)		1.5		μs	$R_{GK}=27 K\Omega$, $V_{CC}=50 V$
Resistance LED to SCR		1011		Ω	V _{E-D} =500 V
Breakdown voltage LED to SCR	1500			V	
Capacitance LED to SCR		1.3		pF	

ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified) 10 V_{CC} = 50 V $V_{CC} = 50 \text{ V}$ $t_r < 0.5 \,\mu\text{s}$ FORWARD ON CURRENT (A) HOLDING CURRENT (mA) 30 TURN-ON CURRENT · t_r.+ t_d (μs) T25°C .01 .01 102 40 50 60 I_F = (mA) 40 VAK ANODE ON VOLTAGE (VOLTS) RGK (OHMS) S288 Figure 2 Figure 3 Figure 1 FORWARD BLOCKING CURRENT (µA) V_{CC} = 50 V V_{CC} = 50 V RGK = 1 K (Am) HOLDING CURRENT (mA) 1-ON CURRENT (r 00 05 05 RGK = 1 K RGK = 27 K .01 <u>"</u> 10 R_{GK} = 27 K .001_60 -40 -20 -20 0 20 40 60 TEMPERATURE (°C) -60 -40 -20 20 40 0 20 40 60 TEMPERATURE (°C) TEMPERATURE (°C) Figure 5 Figure 6 Figure 4

NOTES

- 1. The maximum peak current depends on the duty cycle so as to stay within the average power of the device.
- 2. The rise time of the SCR is less than 500 nanoseconds.
- 3. For design information send for GaAs Lite Tip No. 4.

3/1


SILICON PIN PHOTODIODE

MDI MD2

PRODUCT DESCRIPTION

The MD1 and MD2 are diffused planar silicon PIN photodiodes. Both are mounted on a standard TO46 header. The MD1 has a flat window at the top of a metal shielding can. The MD2 has a domed lens in the window position for optical gain.

PACKAGE DIMENSIONS

FEATURES

- Fast Response 0.5 nsec
- Responsive To GaAs Sources 4.0 μA/mW/cm²
- Responsive To Tungsten Sources 1.6 μA/mW/cm²
- Optional Flat Lens or Built-in Optics
- Standard Transistor Package For Easy Handling and Mounting.

These devices are recommended for applications in:

- high speed optical switching
- laser detecting
- optical encoding
- intrusion alarm or warning
- process control
- industrial control

ABSOLUTE MAXIMUM RATINGS

Maximum Storage and Operating Temperature .	 	 -55°C to 150°C
Maximum Lead Solder Time @ 260°C (See Note 1)	 	 7.0 sec
Power Dissipation @ 25°C Ambient Temperature		
Derate Linearly From 25°C	 	 2.4 mW/°C
Reverse Voltage		

ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)

CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Breakdown voltage	50			V	Ι _R =10 μΑ
Dark current (see note 2)		2.5	10	nA	V _R =20 V
Dark current at 100°C		200		nA	V _R =20 V
Capacitance		8		pF	$V_R=20 V$, $f=1.0 MHz$
Sensitivity					
MD1 (see note 3)	.6	.8		$\mu A/mW/cm^2$	2875°K, V _R =20 V
MD2 (see note 3)	1.2	1.6		$\mu A/mW/cm^2$	2875°K, V _R =20 V
MD1 (see note 4)	1.5	2.0		$\mu A/mW/cm^2$	λ =.9 microns, V_R =20V
MD2 (see note 4)	3.0	4.0		$\mu A/mW/cm^2$	λ =.9 microns, V_R =20V
Rise time		0.5		ns	$V_R = 20 \text{ V}, R_L = 50 \Omega$

TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

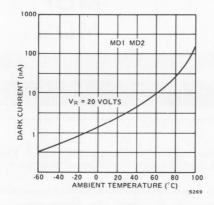


Figure 1 Dark Current vs. Temperature

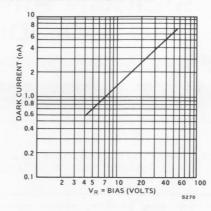


Figure 2 Dark Current vs. Bias Voltage

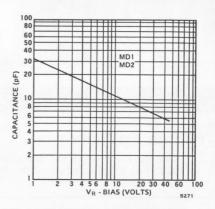


Figure 3 Capacitance vs. Bias Voltage

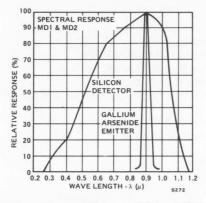


Figure 4 Spectral Response MD1 and MD2

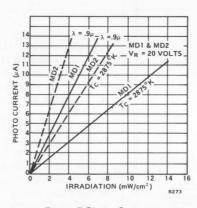


Figure 5 Photo Current vs. Irradiation MD1 and MD2

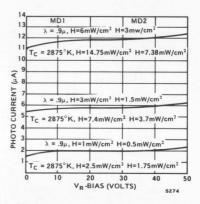


Figure 6 Photo Current vs. Bias Voltage

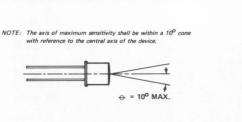


Figure 7 Angular Alignment

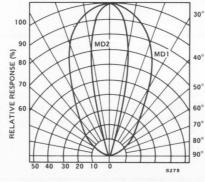


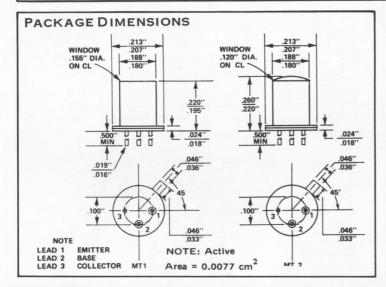
Figure 8 Angular Response

10 FREQUENCY (Hz) 10 10 $I_C = \frac{1}{2\pi R_L C_D}$ IC-CUTOFF 10 C - 8P FARADS 10 R_L -LOAD RESISTANCE (Ω)

Figure 9 Cut-off Frequency vs. Load Resistance

(25°C Free Air Temperature Unless Otherwise Specified)

NOTES


- 1. The leads of the device were immersed in molten solder, heated to a temperature of 260°C, to a point 1/16 inch from the body of the device per MIL-S-750.
- 2. Measured under dark conditions H≤1.0µW/cm².
- 3. Radiation flux intensity (H) of 5.0 mWatt/cm2 as emitted from tungsten filament lamp operated at a color temperature of 2875°K.
- 4. Measured with a GaAs light source at .9 microns with a radiation flux density of 3 mWatt/cm².
- 5. Rise time the time required for the current pulse to rise from 10% to 90% of its maximum amplitude.

SILICON PHOTOTRANSISTOR

MTI MT2

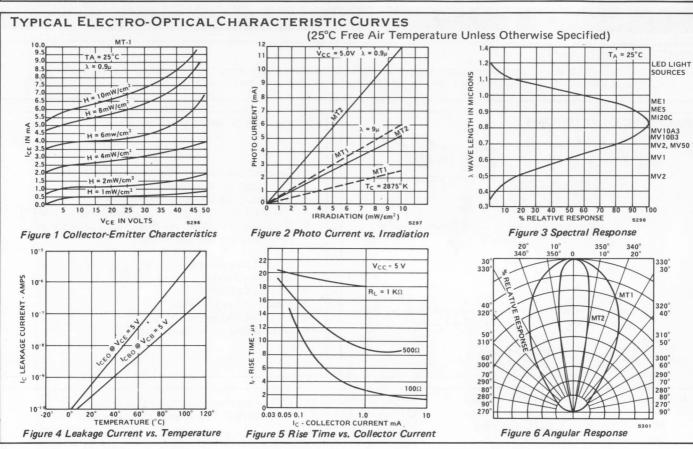
PRODUCT DESCRIPTION

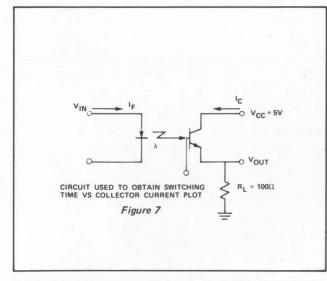
The MT1 and MT2 silicon phototransistors are mounted on a standard TO header. The MT1 features a flat window mounted at the top of a protective metal can. The MT2 has a lens in the same position for optical gain.

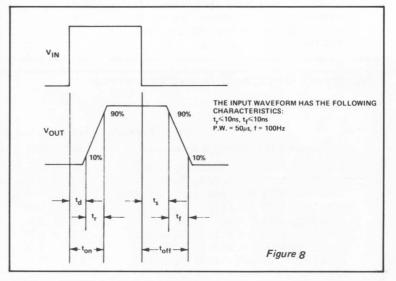
FEATURES & APPLICATIONS

- Low leakage current 1 nA
- Wide Spectral Response
- Responsive to GaAs 1.40 mA/mW/cm²
- Optional flat lens (MT1) or built-in optics (MT2)
- Standard Transistor (Hermetic Seal) package for easy handling and mounting
- Optical switching & encoding
- Intrusion Alarm
- Process Control
- Tape and Card Reader
- Level & Industrial Control
- Optical Character Recognition

ABSOLUTE MAXIMUM RATINGS	Storage and Operating Temperature -55°C to 125°C
- 0	Maximum Lead Solder Time @ 260°C (See Note 1) 70 and
Power Dissipation @ 25 C Ambient	
Derate Linearly from 25°C	2.0 mW/°
Collector-Emitter Breakdown Voltage (BV	(CEO)
Emitter-Collector Breakdown Voltage (BV _E	FCO)
Collector-Base Breakdown Voltage (BV _{CBC}	0)
Collector Current (I _C)	· · · · · · · · · · · · · · · · · · ·


ELECTRO-OPTICALCHARACTERISTICS


(25° C Free Air Temperature Unless Otherwise Specified)


CHARACTERISTICS & SYMBOLS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Sensitivity MT1 (see note 3) (S _{CEO})	200	560		$\mu A/mW/cm^2$	λ =0.9 Ω , V_{CE} =5.0 V
Sensitivity MT2 (see note 3) (Sceo)	500	1400		$\mu A/mW/cm^2$	λ =0.9 Ω , V_{CE} =5.0 V
Sensitivity MT1 (see note 4) (SCEO)	80	260		$\mu A/mW/cm^2$	2875° K, $V_{CE} = 5.0$ V
Sensitivity MT2 (see note 4) (Sceo)	200	650		$\mu A/mW/cm^2$	2875° K, $V_{CE} = 5.0$ V
Sensitivity MT1 (see note 3) (S _{CBO})	1.4	2.5		$\mu A/mW/cm^2$	λ =0.9 Ω , V_{CB} =5.0 V
Sensitivity MT2 (see note 3) (S _{CBO})	3.5	6.2		$\mu A/mW/cm^2$	λ =0.9 Ω , V_{CB} =5.0 V
Sensitivity MT1 (see note 4) (SCBO)	0.6	1.0		$\mu A/mW/cm^2$	2875° K, V _{CB} =5.0 V
Sensitivity MT2 (see note 4) (S _{CBO})	1.5	2.5		$\mu A/mW/cm^2$	2875° K, V _{CB} =5.0 V
Collector-emitter saturation voltage (VCE(sat))		0.2	0.5	V	I _C =2.0 mA, H=10mW/cm ²
Light current rise time (see figure 8) (t _r)		2.0		μs	$V_{CC} = 5.0 \text{V}, I_{C} = 2.0 \text{mA}, R_{L} = 100 \Omega$
Light current fall time (see figure 8) (t _r)		2.0		μs	$V_{CC} = 5.0 \text{V}, I_{C} = 2.0 \text{mA}, R_{L} = 100 \Omega$
Delay time (see figure 8) (t _d)		1.2		μs	$V_{CC} = 5.0 \text{V}, I_{C} = 2.0 \text{mA}, R_{L} = 100 \Omega$
Frequency response		300		kHz	V_{CC} =5.0 V, I_{C} =2.0 mA, R_{L} =100 Ω

MTI MT2

ELECTRICAL CHARACTERISTICS (25	TEST					
CHARACTERISTICS	SYMBOLS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Collector dark current (see note 2)	ICEO		1	20	nA	$V_{CE}=5.0 V$
Collector dark current (see note 2)	I _{CBO}		0.15	10	nA	V _{CB} =5.0 V
Collector base breakdown voltage (see note 2)		80			V	$I_{C} = 100 \mu A$
Collector emitter breakdown voltage (see note		30			V	$I_{C} = 100 \mu A$
Emitter collector breakdown voltage (see note	2) BV _{ECO}	7	12		V	$I_E = 100 \mu A$

NOTES

- 1. The leads of the device were immersed in molten solder, heated to a temperature of 260°C, to a point 1/16-inch from the body of the device per MIL-S-750.
- 2. Measured under dark conditions H≤1.0µW/cm².
- 3. Measured with a GaAs light source at 0.9 microns with a radiation flux density of 3 mW/cm².
- Measured with a tungsten filament lamp operated at a color temperature of 2875°K with a radiation flux density of 5 mW/cm².

3/1

CO2 LASER MODULATOR

MMI MM4 MM2 MM7 MM3

FEATURES

The MM series is a new line of components using GaAs and CdS material specially developed for use with $\rm CO_2$ laser communication systems. The MM1 window is useful for all $\rm CO_2$ laser applications.

- Single crystal material giving constant absorption coefficient over a wide range of power density
- Low absorption 1.2%/cm typically
- Thermally stable to 800°K. No room temperature thermal runaway. No thermal distortion.
- Not attacked by humidity
- No plastic deformation
- Ground to excellent optical finish
- Resistant to thermal fracture
- High power handling capability
- Physically durable
- No crosshatched distortion

SCHEMATIC OF LASER MODULATOR SYSTEM MM2 POLARIZER WHEN BEAM IS NOT POLARIZER WHEN BEAM IS NOT POLARIZED MM40 MM41 MM42 MM43 MM7 BREWSTER ANGLE WINDOW MM7 BREWSTER ANGLE WINDOW

MMI MM2 MM3 MM4 MM7

MM 1 10.6 MICRON WINDOW

Material: Gallium Arsenide, single crystal, semiinsulating, $\rho > 10^8 \Omega$ cm.

Dimensions: Diameter: 26.3 ± 0.2 mm, Thickness: 2.8 ± 0.3 mm Parallelism: better than 10^{-3} radians.

Flatness: better than 0.1 λ of CO₂ laser radiation over a diameter of 24mm.

Finish: Both sides polished to 10-1 surface quality.

Both sides antireflection coated with maximum reflectivity of 5% per side at 10.6 μ.

Optical Absorption: Less than 0.5% (total).

MM 2/ MM 4 POLARIZER-ANALYZER FOR 10.6 MICRON LASER RADIATION

Active Element: Gallium Arsenide, semiinsulating, single crystal, $\rho > 10^8 \Omega$ cm. Two plates set at

opposing Brewster angles so that there is no net translation of the beam path.

Optical Aperture: 0.5 cm, Absorption: <1%. (Total)

Characteristics: Polarization purity of output beam > 0.98
Maximum power handling: 20 watts rejection.*

Mount External Cylinder 1.250'' \pm 0.002'' diameter \times 2.490'' \pm 0.005'' long. Indices are provided

Dimensions: locating accurately the plane of polarization and a direction 90° from it.

*EXAMPLE: The polarizer can handle 40 watts of randomly polarized input, 20 watts of polarization crossed to

the polarizer, and more than 200 watts of input polarized parallel to the polarizer. In the latter

case, power is limited by absorption losses.

MM 3 WAVEPLATE. FOR 10.6 MICRON WAVELENGTH

Active Element: Cadmium Sulfide

Optical

Characteristics:

Phase Shift: At 10.6 \(\mu\) wavelength the element produces net 90° phase shift in time between

light traversing it with polarization along its fast and slow axes.

Operating 10.6 µ

Wavelength:

Aperture: 0.5 cm.

Absorption: <5% (Total)

Mechanical: Mounted on a disc 1.250" ± 0.002" diameter and 0.160" ± 0.005". The disc is

supplied with indices locating an optical axis and a direction 45° from it.

MM 7 BREWSTER ANGLE WINDOW

Material: Gallium Arsenide, polycrystalline/semi-insulating $\rho > 10^8 \Omega$ cm.

Dimensions: $64 \pm 2 \text{ mm} \times 18 \pm 1 \text{mm} \times 3 \pm 0.2 \text{mm}$. Intended for use on a 12mm ID tube, and

other applications.

Parallelism: better than 2×10^{-3} radians.

Flatness: within better than 0.15λ of CO_2 laser radiation.

Both parallelism and flatness limits are over the central 58 x 12mm².

Finish: Both sides polished to 30-20 surface quality.

Optical Absorption: Probably less than 1% (accurate absorption measurements on polycrystalline

material are not available).

MODULATOR Monsanto CRYSTAL

MM40 MM4I MM42 MM43

PRODUCT DESCRIPTION

The MM series of electro-optic modulator crystals operate at a wavelength of 10.6 microns, which corresponds to the frequency emitted by CO2 lasers.

These modulators are all rectangular parallelepipeds of single-crystal, semi-insulating gallium arsenide (See figure 1 and table 1).

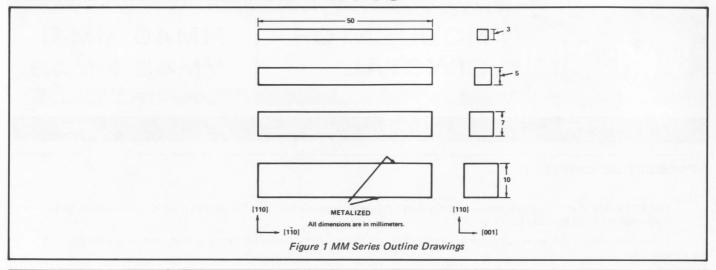
The two ends (110) are parallel to better than 0.003 mm and polished flat to within one wavelength of sodium light. An anti-reflection coating on these flat surfaces yields a maximum reflectance of 10% per face (typically, 5% per face) at a wavelength of 10.6 microns.

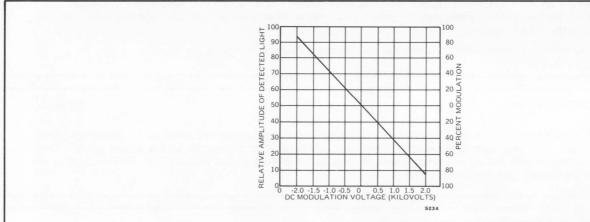
The two (110) faces have a low resistivity coating for connecting pressure contacts.

THEORY OF OPERATION

GaAs becomes bi-refringent when an electric field is applied along appropriate crystallographic directions. This means that linearily polarized light will become elliptically polarized after passing through a biased crystal. This characteristic, combined with the correct arrangement of polarizers and wave plates, allows the modulator crystals to modulate either amplitude, phase, or polarization.

TABLE OF MODULATOR DIMENSIONS


Modulator Dimensions (millimeters) ±5%


TYPE	LENGTH (110)	WIDTH (001)	DEPTH (110)
MM40	50	3	3
MM41	50	5	5
MM42	50	7	7
MM43	50	10	10

ELECTRO-OPTICAL CHARACTERISTICS (25°C Free Air Temperature Unless Otherwise Specified)

Resistivity minimum 10 ⁷ ohms-c
Breakdown field
Absorption coefficient @ 10.6μ
Electro-optic coefficient @ 10.6μ
Extinction coefficient of crystal between crossed polarizers @10.6 μ minimum 0.5
Capacitance typically 6 picofara

MM40 MM41 MM42 MM43

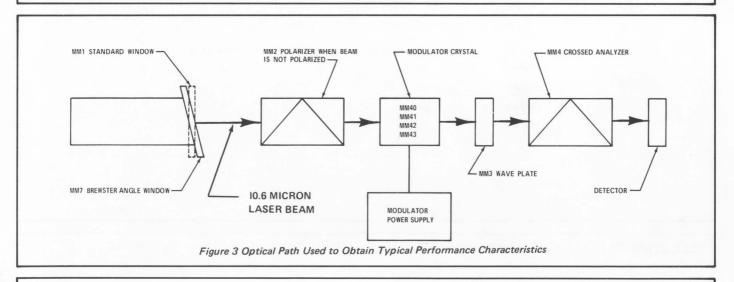
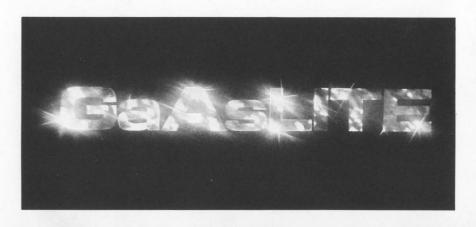



Figure 2 Typical Performance Characteristic of MM40 Crystal Used as an Amplitude Modulator¹

NOTES

1. The sign of this slope may be reversed if the other face of the crystal is presented to the beam; that is, if the crystal is rotated 180° around [110]. The curve is non-linear above 2000 volts. The characteristics shown are for the MM40; characteristics for the other modulators are similar, and they all modulate the same amount for the same amount of field strength (kV/cm).

50K

Electronic Special Products 10131 Bubb Road - Cupertino, California, 95014 (408) 257-2140 - TWX (910) 338-0206

Specifications Subject to Change Litho in USA

© Monsanto Company