
LOGIC

This document is preliminary. As such, it contains data derived from functional simulations and perfor
mance estimates. LSI Logic has not verified the functional descriptions, or electrical and mechanical
specifications using production parts.

Publications are stocked at the address given below. Requests should be addressed to:

LSI Logic Corporation
1551 McCarthy Boulevard

Milpitas, CA 95035
Fax (408) 433-6802

LSI Logic Corporation reserves the right to make changes to any products herein at any time without
notice. LSI Logic does not assume any responsibility or liability arising out of the application or use of
any product described herein, except as expressly agreed to in writing by LSI Logic, nor does the pur
chase or use of a product from LSI Logic convey a license under any patent rights, copyrights, trademark
rights, or any other of the intellectual property rights of LSI Logic or third parties.

©LSI Logic Corporation 1990
All rights reserved.

This document is derived in part from documents created by Sun Microsystems and thus constitutes a
derivative work.

©Sun Microsystems, Inc. 1988, 1989

TRADEMARK ACKNOWLEDGMENT

LSI Logic logo design is a registered trademark of LSI Logic Corporation.

Sun and SPARC are trademarks of Sun Microsystems, Inc. WEITEK is a registered trademark of
WEITEK Corporation.

ii MD70-000104-99 A Preliminary

Preface

This Technical Manual describes the L64814 Floating Point Unit (FPU) from LSI Logic Corporation.
The FPU is the single-chip floating-point processor in the high-performance LSI Logic SPARC (Scal
able Processor Architecture) microprocessor family. The FPU provides fast floating-point arithmetic
operations, compares, and format conversions, as well as efficient data loads, stores, and moves.

Audience

The L64814 FPU Technical Manual provides the information required by system-level programmers
and hardware designers to design software and hardware systems that use the FPU. Note that the manual
assumes a familiarity with computer architectures, in particular SPARC, and with hardware design and
implementation. This manual also assumes that the designer has access to information on other compo
nents of the SPARC CPU core.

For the system-level programmer, this document describes how the FPU implements the SPARC
floating-point processor functionality and instruction set, as outlined in the SP ARC Architecture
Manual. The functional description is at the bit-level.

For the hardware designer, this document provides the electrical, logical and physical data necessary to
integrate the FPU into a particular implementation of a SPARC microprocessor-based design.

Organization

This manual consists of these chapters:

1. Introduction: This chapter provides an overview of the FPU's functionality and its fea
tures. It also describes the FPU's conformance with the SPARC computer architecture.

2. FPU Architecture and Operation: This chapter presents the basic architecture and
operation of the FPU.

3. Internal Operation and Organization: This chapter discusses how the FPU executes
floating-point instruction. It provides a detailed description of the FPU internal architec
ture, and illustrates the FPU timing.

4. External Interface: This chapter describes the FPU in a system context. It discusses
the IU, memory, and coprocessor interface configurations and describes the interface
signals and their associated protocols. The chapter also presents the FPU's electrical
requirements and AC timing, and it provides pinout and packaging information.

Related Publications

For additional information on various related topics, refer to the following documents:

L64811 SPARC 1nteger Unit (IU) Technical Manual, MD70-000102-99
LSI Logic Corporation, 1551 McCarthy Boulevard, Milpitas, CA 95035
Fax (408) 433-6802

MD70-000104-99 A Preliminary III

L64815 Memory Management, Cache Control, and Cache Tags Unit (MCT) Technical Manual,
MD70-000 10 1-99
LSI Logic Corporation, 1551 McCarthy Boulevard, Milpitas, CA 95035
Fax (408) 433-6802

L64853 SBus DMA Controller Technical Manual, MD70-000109-99
LSI Logic Corporation, 1551 McCarthy Boulevard, Milpitas, CA 95035
Fax (408) 433-6802

SPARC Architecture Manual, MD70-000111-99
LSI Logic Corporation, 1551 McCarthy Boulevard, Milpitas, CA 95035
Fax (408) 433-6802

iv MD70-000104-99 A Preliminary

Contents

Chapter 1: Introduction ... 1-1
1.1 FPU Features ... 1-1
1.2 SPARC Architecture Conformance .. 1-2

1.2.1 Instruction Set .. 1-2
1.2.2 Modes of Operation ... 1-3
1.2.3 Floating-Point Register File ... 1-3
1.2.4 Floating-Point Status Register (FSR) .. 1-5

Chapter 2: FPU Architecture and Operation ... 2-1
2.1 Functional Overview ... 2-1
2.2 Basic Instruction Execution .. 2-3

2.2.1 Floating-Point Load and Store Instructions ... 2-3
• Load Instructions ... 2-4
• Store Instructions ... 2-5

2.2.2 Floating-Point Operate Instructions (FPops) ... 2-6

Chapter 3: Internal Operation and Organization ... 3-1
3.1 Instruction Set ... 3-1
3.2 Internal Organization .. 3-6

3.2.1 Instruction Pipeline .. 3-8
3.2.2 Datapath ... 3-10

3.3 Instruction Execution .. 3-12
3.3.1 Fetch ... 3-12
3.3.2 Decode ... 3-14
3.3.3 Execute ... 3-15

• FPops ... 3-15
• Floating-Point Load and Store Instructions ... 3-16
• Floating-Point Compare Instructions ... 3-19

3.4 Exception Handling .. 3-19
3.4.1 FPU Modes of Operation ... 3-20
3.4.2 Flushing Floating-Point Instructions ... 3-22

• Floating-Point Load Instructions ... 3-22
• Floating-Point Store Instructions ... 3-23
• FPops ... 3-23
• Floating-Point Compare (FCMP) Instructions .. 3-24

3.5 Halting Instruction Execution ... 3-24
3.5.1 Freezing the FPU Pipeline ... 3-25
3.5.2 Interlocking the IV Pipeline ... 3-25

Chapter 4: External Interface .. 4-1
4.1 Interface Overview ... 4-1
4.2 Pin Summary ... 4-2
4.3 Pin Description ... 4-3

MD70-000104-99 A Preliminary v

4.4 AC Timing .. 4-6
4.5 Electrical Requirements .. 4-11
4.6 Packaging .. 4-12

Figures

Figure 1.1 Floating-Point Register File .. 1-4
Figure 1.2 Floating-Point Status Register Addressing .. 1-4
Figure 1.3 Floating-Point Status Register (FSR) .. 1-5

Figure 2.1 L64814 FPU Functional Block Diagram ... 2-2

Figure 3.1 L64814 FPU Register-Level Block Diagram .. 3-7
Figure 3.2 FPU Instruction Pipeline ... 3-9
Figure 3.3 FPU Datapath Detailed Diagram ... 3-11
Figure 3.4 Instruction Fetch Timing (Cache Hit) .. 3-13
Figure 3.5 Instruction Fetch (Cache Miss on 12) .. 3-14
Figure 3.6 Dispatching Floating-Point Instructions .. 3-15
Figure 3.7 Double-Precision Load (Cache Hit on Both Words) ... 3-17
Figure 3.8 Double-Precision Load (Cache Miss on Both Words) .. 3-17
Figure 3.9 Double-Precision Store (Cache Hit on Both Words) ... 3-18
Figure 3.10 Double-Precision Store (Cache Miss on Instruction Fetch Preceding Store) 3-18
Figure 3.11 Double-Precision Store (Cache Hit on MSW) .. 3-18
Figure 3.12 Floating-Point Compare Instruction Timing ... 3-19
Figure 3.13 FPU Modes of Operation ... 3-20
Figure 3.14 FPU Instruction Pipeline during a Trap ... 3-21
Figure 3.15 FPU/IU Exception Handshaking Sequence ... 3-22
Figure 3.16 Effect of FLUSH on a Floating-Point Load Instruction .. 3-23
Figure 3.17 Effect of FLUSH on a Floating-Point Store Instruction .. 3-23
Figure 3.18 Effect of FLUSH on an FPop Instruction .. 3-24
Figure 3.19 Effect of FLUSH on a Floating-Point Compare Instruction and FCCV 3-24
Figure 3.20 FNULL Timing .. 3-25
Figure 3.21 Effect of FEXC on FHOLD and FCCV .. 3-27

Figure 4.1 FPU-IV-MCT Interconnect Diagram .. 4-1
Figure 4.2 AC Timing Parameters: IV and Coprocessor Signals ... 4-9
Figure 4.3 AC Timing: System/Memory Interface Signals .. 4-10
Figure 4.4 143-Pin Cavity-Up Pin Grid Array Pin List.. .. 4-13
Figure 4.5 143-Pin Cavity-Up Pin Grid Array Pin Diagram - Bottom View 4-14
Figure 4.6 143-Pin Cavity-Up Pin Grid Array Package Outline .. 4-15

vi MD70-000104-99 A Preliminary

Tables

Table 1.1

Table 2.1
Table 2.2
Table 2.3

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8

Floating-Point Status Register (FSR) Summary ... 1-6

Execution of Load Instructions ... 2-4
Execution of Store Instructions ... 2-5
Execution of Floating-Point Operate Instructions .. 2-6

FPU Instruction Set. .. 3-2
FPU Instruction Latencies .. 3-4
Linpack Performance Summary ... 3-6
Peak Performance Summary ... 3-6
Operand Dependencies which Halt the IU Instruction Pipeline 3-26

IU/Coprocessor Interface Signals ... 4-2
System/Memory Interface Signals .. 4-3
AC Timing: Clock Input Specification ... 4-6
AC Timing: IU and Coprocessor Signals ... 4-7
AC Timing: System/Memory Interface Signals .. 4-8
Absolute Maximum Ratings ... 4-11
Recommended Operating Conditions ... 4-11
DC Characteristics .. 4-12

Table 4.9 Capacitance ... 4-12
Table 4.10 Packaging Options .. 4-13

MD70-000104-99 A Preliminary vii

viii MD70-000104-99 A Preliminary

Chapter 1: Introduction

This Technical Manual describes the L64814 Floating-Point Unit (FPU) from LSI Logic Corporation.
The FPU is a high-performance, CMOS implementation of the SPARC (Scalable Processor ARChi
tecture) floating-point unit. SPARC is the 32-bit RISC (Reduced Instruction Set Computer) system
architecture from Sun Microsystems.

The LSI Logic L64800 Family of devices which implement and support SPARC-system development
includes the L64811 Integer Unit (IU), the L64815 Memory Management, Cache Control, and Cache
Tags Unit (MCT), and the L64853 DMA Controller, in addition to the L64814 FPU. The FPU com
bines a floating-point controller with a high-throughput floating-point processor to, provide a single
chip floating-point processor solution for SPARC-based systems.

This manual includes these four chapters:

Introduction

FPU Architecture and Operation

Internal Operation and Organization

External Interface

This chapter, Introduction, presents an overview of the FPU. The chapter has this organization.

1.1 FPU Features lists the most important features of the FPU.

1.2 SPARe Architecture Conformance summarizes how the FPU conforms with the
SPARC floating-point processor architecture as outlined in the SPARe Architecture
manual.

1.1 FPU Features

The L64814 provides the following features.

High-performance operation

Provides double-precision Unpack floating-point operation at up to:

L64814-25 MHz 3.8 MFlops

L64814-33 MHz 5.0 MFlops

L64814-40 MHz 6.0 MFlops

Low-cost solution

Integrates a floating-point controller and floating-point processor on a single
chip for cost-efficient system implementation.

Wide range of operating frequencies

25, 33, and 40 MHz versions.

MD70-000104-99 A Preliminary 1-1

SPARC Architecture Conformance

Implements IEEE exception handling directly in hardware.

64-bit wide internal datapath for all floating-point operations provides highly efficient
double-precision performance.

Connects directly to the L64811 Integer Unit (IU) and L64815 Memory Management,
Cache Control, and Cache Tags Unit (MCT).

Pin-compatible with the WEITEK Abacus 3171 and Texas Instruments TMS390C602
Floating Point Units.

Available in the advanced 143-pin, plastic or ceramic cavity-up pin grid array packages.

1.2 SPARC Architecture Conformance

This section discusses how the L64814 implementation conforms with the SPARC floating-point unit
architecture as outlined in the SPARe Architecture Manual. The discussion has this organization:

1.2.1 Instruction Set

1.2.2 Modes of Operation

1.2.3 Floating.Point Register File

1.2.4 Floating.Point Status Register (FSR)

1.2.1 Instruction Set

The FPU implements the ANSI/IEEE 754-1985 standard for floating-point arithmetic. It operates
concurrently with the IU to execute single- and double-precision floating-point operations, as well as
register-to-register move instructions, floating-point loads and stores, and floating-point queue and
state register instructions. Supported floating-point operations (FPops) are: add, subtract, multiply,
divide, square root, compare, and convert. All instructions not currently implemented in the L64814
hardware generate an instruction trap, so that the instructions can be emulated in software. Note that
the FPU handles all IEEE exceptions in hardware, except for denormals in the floating-point multi
plier unit.

The FPU provides hardware support for integer, single-precision, and double-precision operations.
Because it does not provide direct hardware-support for extended-precision operations, the FPU traps
extended-precision instructions and the operating system emulates them in software. Refer to Chapter
3 for more specific information on the FPU instruction set and internal operation.

Instruction traps can occur due to unfinished floating-point operate instructions, unimplemented
instructions, IEEE exceptions, or sequence errors. In any case, the state of the FPU must remain unal
tered, except for the Floating-Point Status Register (FSR) fields which describe the exception. This
freeze allows the trap handler to examine both the FSR and the source registers for the operation, so it
can properly emulate the instruction.

1-2 MD70-000 1 04-99 A Preliminary

SPARC Architecture Conformance

1.2.2 Modes of Operation

The FPU operates in one of three modes:

execution

pending exception

exception

Following a reset, the FPU enters execution mode; execution mode is the nonnal operating mode for
the FPU. When the FPU signals the IV to take a floating-point exception trap, then the FPU enters
pending exception mode. The IU takes the trap when it decodes the next floating-point instruction; at
this time, the FPU enters exception mode.

In exception mode, the trap handler empties the floating-point queue of instructions and instruction
addresses. As soon as the queue is empty, the FPU returns to execution mode. Refer to Chapter 3 for
additional information on FPU operating modes and exception trap handling.

1.2.3 Floating-Point Register File

The FPU contains a floating-point register file, also referred to as the f-registers, which holds the oper
ands for all floating-point operations. Floating-point load instructions read data from memory to the
f-registers; floating-point store instructions write data from the f-registers to memory.

The register file contains 32, 32-bit registers, configured as eight rows of four registers each. Figure
1.1 shows the register file organization. Figure 1.1 also illustrates the data representation in the register
file. Because integer and single-precision data require 32 bits, any f-register can store an integer or
single-precision operand. Double-precision data is 64 bits wide, so one adjacent even-odd pair of
f-registers, either the left or right half of a row, can store one double-precision operand. Note that the
even (left-most) f-register of the pair stores the most-significant word (MSW) of the operand, while
the odd (right-most) f-register of the pair stores the least-significant word (LSW).

MD70-000 1 04-99 A Preliminary 1-3

SP ARC Architecture Conformance

Register File Organization:

f-registers to f1

f4 f5

f8 f9

f12 f13

f16 f17

f20 f21

f24 f25

f28 f29

Data Representation In the I-registers:

single-precision or
integer data

double-precision
data

W

MSW

W

LSW

f2 f3

f6 f7

f10 f11

f14 f15

f18 f19

f22 f23

f26 f27

f30 f31

W W

MSW LSW

Figure 1.1 Floating-Point Register File

Figure 1.2 illustrates how the floating-point instructions address the f-registers. Integer and single
precision data require a full five-bit address to access one of the 32 registers. Because double-precision
data can reside in any of 16 register-pairs, accessing double-precision data requires only a four-bit
address; the least-significant bit (LSB) is ignored.

Data Type Address (rd, rs1, or rs2 lield) in Instruction

single-precision or I I I I I I five-bit register file address integer data

double-precision data I I I I ~ four-bit register file address;
LSB is ignored

Figure 1.2 Floating-Point Status Register Addressing

1-4 MD70-000 1 04-99 A Preliminary

SPARC Architecture Conformance

1.2.4 Floating-Point Status Register (FSR)

The FSR is a 32-bit register which holds FPop status information as well as attributes which the FPU
uses during operation. When the system resets the FPU, only the version field and the reserved bits in
the FSR retain their values, because they are tied high or low; all other fields are undefined.

Figure 1.3 shows theFSR with all fields labeled. The fields are summarized in Table 1.1, and explained
further following the table.

RO res.* NS res.* Version

~QNE

FTT • f ~e~~

• reserved bits

1:TEM 2: AEXC 3: CEXC

27 -NVM 9 -NVA 4 - NVC
26 -OFM 8 -OFA 3 -OFC

25 -UFM 7 - UFA 2 - UFC

24 - OZM 6 - OZA 1 - OZC
23 -NXM 5 - NXA 0 - NXC

Rgure 1.3 Floating-Point Status Register (FSR)

MD70-000104-99 A Preliminary 1-5

SPARC Architecture Conformance

Field FSR Bits Description Value(s) Loadable1

RD 31:30 Rounding Direction 00 - Round to nearest (tie is even) Yes
01 - Round to 0
10 - Round to +00
11 - Round to _00

reserved 29:28 00 No

TEM 27:23 Trap Enable Mask o -Disable individual trap Yes
1 - Enable individual trap

NVM 27 Invalid Operation Trap Mask
OFM 26 Overflow Trap Mask
UFM 25 Underflow Trap Mask
DZM 24 Divide-by-zero Trap Mask
NXM 23 Inexact Trap Mask

NS 22 Nonstandard Floating-Point o -Disable nonstandard mode Yes
1 - Enable nonstandard mode

reserved 21:20 00 No

Version 19:17 Version Number for FPU 001 No

FTT 16:14 Floating-Point Trap Type 000 - None No
001 - IEEE Exception
010 - Unfinished FPop
011 - Unimplemented FPop
100 - Sequence Error

QNE 13 Queue Not Empty o -Queue empty No

1 - Queue not empty

reserved 12 0 No

FCC 11:10 Floating-Point Condition Code 00 - = Yes
01 - <
10 - >
11 - ? (unordered)

AEXC 9:5 Accrued Exception Bits Yes

NVA 9 Accrued Invalid Exception
OFA 8 Accrued Overflow Exception
UFA 7 Accrued Underflow Exception
DZA 6 Accrued Divide-by-zero Exception
NXA 5 Accrued Inexact Exception

CEXC 4:0 Current Exception Bits Yes

NVC 4 Current Invalid Exception
OPC 3 Current Overflow Exception
UFC 2 Current Underflow Exception
DZC 1 Current Divide-by-zero Exception
NXC 0 Current Inexact Exception

Note 1. The entries in this column indicate whether the LDFSR instruction can load this field.

Table 1.1 Floating-Point Status Register (FSR) Summary

1-6 MD70-000104-99 A Preliminary

SPARC Architecture Conformance

RD: The RD field state determines the rounding direction for operations in the FPU. Software may
load this field via the LDFSR (Load Floating-Point Status Register) command.

TEM, AEXC, and CEXC: The configuration of these fields determines how the FPU handles traps.
Software may load all three fields via the LDFSR command. The TEM field specifies which traps are
enabled. When an exception occurs, the CEXC field status changes to reflect the current exception.
Each bit of the TEM field is logically ANDed with its corresponding bit in the CEXC field, and if the
resulting value is nonzero, then an IEEE exception trap occurs. If an exception occurs but is masked
by the state ofTEM, then it is logically ORed into the corresponding AEXC files. Note that results of
FPops whose exceptions are masked are written into the register file, whereas any FPop that causes a
trap does not write its results to the register file.

NS: The NS bit, when set via LDFSR, affects any subsequent floating-point multiply, divide, or square
root operations. The impact is basically that if any input operand is subnormal, then the operand
becomes zero, and if any result is subnormal, then the result is set to zero. These conditions are referred
to as abrupt underflow. For example, on a multiply instruction, if one or both of the inputs is subnor
mal, then the result is set to zero and no exception occurs. If, however, the input operands are not
subnormal but the result is, then the result is set to zero and an underflow exception occurs.

With a divide instruction, if the dividend is subnormal and the divisor is neither subnormal nor zero,
then the result is zero and no exception occurs. If the dividend is neither subnormal nor zero and the
divisor is subnormal, then the result goes to infinity and a divide-by-zero exception occurs. If both the
divisor and dividend are either subnormal or zero, then the result is a NaN (Not a Number) and an
invalid exception occurs. Finally, if only the result is subnormal, then it becomes zero and an under
flow exception occurs.

For a square root instruction, if the operand is subnormal, then the result is zero and no exception
occurs.

In typical usage, if NS is set, then AEXC and CEXC are ignored. Note that in situations where many
underflows could occur, the programmer may not care about following the IEEE floating-point arith
metic standard mentioned earlier. In this case, he or she can achieve a significant improvement in
program execution speed by setting NS; the amount of improvement depends on the density of instruc
tions which would cause exceptions in the program.

Version: The version field contains a number, assigned by Sun Microsystems, which denotes the ver
sion on the FPU. This number is 001 for the current FPU.

FTT: The FTT field is updated at the completion of every FPop. If the FPop completes in a normal
fashion, then the FPU writes a zero at the end of the FPop. If, however, a trap occurs, then the FPU
writes the correct trap type into the FTT field.

QNE: The trap handler reads the QNE bit to determine when the handler has stored the entire floating
point queue and the queue is empty. During execution mode in the FPU, the QNE bit always returns
zero to an STFSR (store floating-point status register) instruction, because all FPops complete execu
tion prior to execution of an STFSR.

FCC: The FCC field holds the floating-point condition code bits which compare operations use to
determine the results of comparisons.

MD70-000104-99 A Preliminary 1-7

SPARC Architecture Confonnance

1-8 MD70-000104-99 A Preliminary

Chapter 2: FPU Architecture and Operation

This chapter provides an overview of the basic architecture and operation of the FPU. The chapter has
the following organization.

2.1 Functional Overview presents a functional block diagram and block-level descrip
tion for the FPU.

2.2 Basic Instruction Execution discusses the instruction cycles which comprise
floating-point load/store instructions and floating-point operate instructions (FPops).

Note that Chapter 3 expands on the topics introduced in Chapter 2, to provide a more detailed descrip
tion of the FPU, its instruction set, and its internal operation.

2.1 Functional Overview

This section introduces the functional blocks which comprise the L64814 FPU and briefly describes
their basic operation.

During normal instruction execution, the FPU accesses the Data and Address buses for instructions and
instruction addresses, and then decodes the instructions. When a floating-point instruction occurs, the
FPU performs the specified operation. Figure 2.1 shows a simplified block diagram of the FPU.

In the diagram, the Fetch Unit captures each instruction and its address from the Data and Address
buses, respectively. The Decode Unit decodes the instruction opcodes and makes them available to the
Execution Unit.

The Execution Unit and Floating-Point Queue handles floating-point instruction execution. When
the L64811 Integer Unit (IU) decodes a valid floating-point operate (FPop) or floating-point load/store
instruction, it signals the FPU. The FPU latches the instruction and address from the Decode Unit and
starts execution. The Execution Unit includes the two-deep floating-point queue (FQ), which holds the
instructions and addresses for the currently executing instructions.

The Dependency Checker determines whether the instruction depends on the results or the resources
required by other floating-point instructions ahead of it in the queue. If a dependency exists, then the
Dependency Checker freezes the instruction pipeline until the dependency is cleared.

The Load Unit holds data fetched from memory until the FPU writes it to the Register File. The Reg
ister File, also referred to as the f-registers, consists of 32, 32-bit registers. These registers store data
(operands) for FPops and floating-point load/store instructions.

MD70-000104-99 A Preliminary 2-1

Functional Overview

INST

Depen
dency

Checker

Address Bus Data Bus

Load Unit

Decode Unit

Figure 2.1 L64814 FPU Functional Block Diagram

:0]

Register File

Floating-Point
Multiplier/
Unit

The Floating-Point Multiplier/Adder Unit contains the 32-bit adder and 32-bit multiplier which
FPops use to operate on data in the Register File. Because the FPU includes a separate multiplier and
adder, it supports parallel execution of FPops.

The Exceptions/FSR Unit maintains the status of FPops completing execution, as well as that of the
operating mode of the FPU. The Floating-Point Status Register (FSR) is a 32-bit register whose fields
store the status and operating mode information.

The Store Unit holds data which the FPU drives onto the Data bus during execution of a floating-point
store instruction.

2-2 MD70-000l04-99 A Preliminary

Basic Instruction Execution

The next section provides more information on the execution of floating-point load/store instructions
and FPops.

2.2 Basic Instruction Execution

This section discusses the instruction cycles which execute the two basic types of floating-point
instructions: floating-point load/store instructions and FPops.

Basic instruction execution in the FPU consists of four stages:

F: Fetch

D: Decode

E: Execute

W: Write

Note that the F or Fetch stage precedes the Decode stage, but not in a predictable fashion. For example,
load instructions cause the FPU to perform the Fetch one or more cycles ahead of the Decode. For this
reason, the Fetch does not always occur in the cycle immediately preceding the Decode; the only cer
tainty is that the Fetch does precede the Decode. Also, as explained below, some instructions require
extra W stages to complete execution. These extra W stages are referred to as W -help or Wh stages.
For more detailed information on instruction execution, refer to Chapter 3.

This section has the following organization:

2.2.1 Floating-Point Load and Store Instructions

2.2.2 Floating-Point Operate Instructions (FPops)

2.2.1 Floating-Point Load and Store Instructions

Floating-point load and store instructions handle three types of transactions:

transfers to and from memory

transfers to and from the floating-point status register (FSR)

transfers from the floating-point queue

More specifically, in the first type of transaction floating-point load and store instructions can either
access data in memory and load the data into the FPU or store the data from the FPU into memory. In
the second type of transaction, they can also load the FSR or read and store the FSR value; recall from
Section 2.1 that the FSR maintains status and operating-mode information for the FPU. In the third
transaction type, which occurs during exception handling, floating-point store instructions clear the
floating-point queue (FQ) of all instructions and addresses; the exception (trap) handler performs the
instructions in software, along with the instruction which caused the trap. Load and store instructions
are discussed below.

MD70-000104-99 A Preliminary 2-3

Basic Instruction Execution

Load Instructions

The floating-point load instructions are:

LDF: load single-precision or integer data

LDDF: load double-precision data

LDFSR: load the FSR

The FPU executes these instructions as shown in Table 2.1 below. Where the instructions differ in the
action performed during a particular cycle, the appropriate action for each instruction is called out
explicitly.

Instruction Action
Cycle

D-Stage Decode instruction and check operand and resource
dependencies.

E-St?ge Hold execution of this instruction if a dependency exists;
otherwise, start execution.

W-Stage LDF or LDFSR: capture data from the Data bus.
LDDF: capture most-significant word (MSW) of data from

the Data bus.

Whl-stage LDF or LFFSR: write data into the Register File (LDF) or
FSR (LSFSR).

LDDF: capture least-significant word (LSW) of data from
the Data bus.

Wh2-stage LDDF: write data into the Register File.

Table 2.1 Execution of Load Instructions

Note that during load instruction execution, the D- and E-stages of an FPop or store instruction may
overlap the W - and Wh-stages of a previous load instruction, even if the FPop or store has an operand
dependency on the load instruction. Also, the FPU waits until the load instruction reaches the end of
the last Wh-stage (Wh 1 for an LDF or LDFSR, and Wh2 for an LDDF) to actually write the data into
the register file, so that if a FLUSH occurs the load does not change the state of the register file. This
approach requires a technique called operand forwarding to make data available for use in an early
stage of execution of the following FPop. Operand forwarding works this way.

Two situations can occur which require operand forwarding for efficient operation; when a floating
point load to an f-register in the Register File is followed immediately either by an FPop which uses
the contents of that f-register or by a floating-point store of the f-register. In either of these cases, the
FPU has only one and one-half cycles from the time when data is captured in the FPU until that same
data must be either available in the FPU datapath (for an FPop) or driven onto the Data bus (for a
store). Operand forwarding utilizes special logic which forwards data from the Data bus directly to the

2-4 MD70-000104-99 A Preliminary

Basic Instruction Execution

execution path of the FPop or the store, without going through the Register File. The write to the Reg
ister File occurs in parallel with the execution of the FPop or store instruction.

If the IU takes a trap during the floating-point load instruction, then the FPU aborts the load and does
not write the load data into the Register File. The FPU flushes the load instruction out of the floating
point queue (FQ) and with it flushes the FPop or store which was to use the data; the trap handler per
forms both the load and the succeeding instruction, to ensure that the instruction does not use invalid
data.

Store Instructions

The floating-point store instructions are:

STF: store single-precision or integer data

STDF: store double-precision data

STFSR: store the FSR

STDFQ: store the floating-point queue (FQ)

The FPU executes these instructions as shown in Table 2.2 below. Again, where the instruction actions
differ in a particular cycle, the appropriate action for each instruction is called out explicitly.

Instruction Action
Cycle

D-Stage Decode instruction and check operand and resource
dependencies.

E-Stage Hold execution of this instruction if a dependency exists.
Otherwise, read data from the Register File, FSR, or FQ

W-Stage STF or STFSR: drive data onto the Data bus.

(mid-cycle) STDF: drive most-significant word (MSW) of data onto
the Data bus.

STDFQ:drive the FQ instruction address onto the Data bus.

Whl-stage STF or STFSR: write data into the Register File (LDF) or
(mid-cycle) FSR (LSFSR).

STDF: capture least-significant word (LSW) of data from
the Data bus.

STDFQ:drive the FQ instruction onto the Data bus.

Wh2-stage STDF or STDFQ: stop driving the Data bus.
(mid-cycle)

Table 2.2 Execution of Store Instructions

MD70-000104-99 A Preliminary 2-5

Basic Instruction Execution

Note that the D- and E-stages of a store instruction may overlap with the W- and Wh- stages of other
load or store instructions.

For more detailed information on load and store instruction execution, including sample timing dia
grams, refer to Chapter 3.

2.2.2 Floating-Point Operate Instructions (FPops)

The FPU can perform a wide variety of integer, single-precision, and double-precision FPops includ
ing: add, subtract, multiply, divide, square root, compare, and convert. Note that the IU executes
floating-point branch instructions, and that these instructions are fundamentally transparent to the
FPU.

The FPU executes FPops as shown in Table 2.3.

Instruction Action
Cycle

D-Stage Decode FPop and check operand and resource
dependencies.

E-Stage Hold execution of this instruction if a dependency exists.
Otherwise, read operand from the Register File.

W-Stage Read any additional operand from the Register File; start
computing results.

Queue Compute; FPop is in FQ.

Queue Check exception status.

Queue Update FSR; write results, or signal a floating-point
exception trap if necessary.

Table 2.3 Execution of Floating-Point Operate Instructions

Note that the number of cycles that an FPop takes to read operands depends on the type of FPop. Table
3.2 in Chapter 3 summarizes the instruction cycle counts for floating-point instructions.

2-6 MD70-000104-99 A Preliminary

Chapter 3: Internal Operation and Organization

This chapter discusses in detail how the FPU executes floating-point instructions. First it presents the
SPARC floating-point instruction set. Then it describes the FPU architecture at the register level, and
provides timing diagrams which illustrate the instruction execution cycles. The chapter has this
organization.

3.1 Instruction Set introduces the FPU instruction set and provides performance
information.

3.2 Internal Organization presents a more detailed version of the FPU Architecture.

3.3 Instruction Execution discusses the Fetch, Decode, and Execute stages introduced
in Chapter 2.

3.4 Exception Handling explains how the FPU handles operand dependencies, unim
plemented instructions, and other conditions which cause exceptions.

3.5 Halting Instruction Execution describes the signals and conditions which stop
instruction execution in the FPU and in the IU.

3.1 Instruction Set

The SPARe Architecture Manual specifies a complete set of instructions for a SPARC-compatible
floating-point processor unit. The processor may either perform all of these instructions in hardware
or may perform some in hardware and emulate the rest in software.

The manual specifies two main types of instructions: floating-point load/store instructions and floating
point operate instructions (FPops). Note that, as mentioned in the previous chapter, the FPU does not
perform floating-point branch instructions; instead, the IV executes these instructions, and the execu
tion is transparent to the FPU.

Table 3.1 lists the FPU instruction set. The list includes load instructions, store instructions, and four
classes of FPops.

The FPU performs three load and four store instructions. LDF and LDDF transfer data from memory
to the FPU Register File 32 or 64 bits at a time, respectively. STF and STDF transfer data from the
Register File to memory, also 32 (STF) or 64 (STDF) bits at a time. LDFSR and STFSR write to and
read from the floating-point status register (FSR). STDFQ is a privileged instruction which reads the
entries from the floating-point queue (FQ).

The four classes of FPops are: basic arithmetic operations, compares, format conversions, and register
to-register moves. Note that these move operations do not cause exceptions; exceptions are discussed
later, in Section 3.4. The convert, move, and square root instructions use only one source operand, and
the compare instructions do not produce a result.

MD70-000104-99 A Preliminary 3-1

Instruction Set

Mnemonic Instruction

LDF Load floating-point operand

LDDF Load double-precision floating-point operand

LDFSR Load floating-point status register (FSR)

STF Store floating point operand

STDF Store double-precision floating-point operand

STFSR Store floating-point status register (FSR)

STDFQ Store double-precision floating-point queue (FQ)

FiTO(s,d,x1) Convert integer to (single, double, extended1)-precision
floating point

F(s,d,x1)TOi Convert (single, double, extended1)-precision floating-point
to integer

FsTO(d,x1) Convert single-precision floating-point to (double, extended1)-

precision floating-point

FdTO(s,x1) Convert double-precision floating-point to (single, extended1)-

precision floating-point

FxTO(s,d)l Convert extended-precision floating-point to (single, double)-
precision floating-point1

FMOVs Move a word from one f-register to another

FNEGs Negate the operand (invert the sign bit)

FABSs Take the absolute value (clear the sign bit)

FSQRT(s,d,x1) Calculate the (single, double, extended1)-precision square root

FADD(s,d,x1) Add the (single, double, extended1)-precision operands

FSUB(s,d,x1) Subtract the (single, double, extended1)-precision operands

FMUL(s,d,x1) Multiply the (single, double, extended1)-precision operands

FDIV(s,d,x1) Divide the (single, double, extended1)-precision operands

FCMP(s,d,x1) Compare the (single, double, extended1)-precision operands

FCMPE(s,d,x1) Compare the (single, double, extended1)-precision
operands and cause an exception if unordered (that is, if
at least one is a NaN, i.e. Not a Number)

Note 1. Trapped instruction

Table 3.1 FPU Instruction Set

As discussed in the SPARe Architecture Manual and mentioned above, an FPU which executes the
floating-point instruction set may implement a subset of the instructions in hardware. The FPU then
traps the unimplemented instructions, and the system software actually performs these trapped
instructions. The trap handler emulates the unimplemented instructions by reading the appropriate

3-2 MD70-000104-99 A Preliminary

Instruction Set

operands from the Register File (via store floating-point instructions), emulating the FPop in integer
only calculations, and writing the result back to the Register File (via load floating-point instructions).
The trap handler also updates the FSR. The L64814 implements in hardware all SPARe floating-point
instructions which operate on integer, single-precision, and double-precision data. It traps all extended
precision floating-point instructions for execution in software.

Understanding instruction latency is crucial for optimal compiler design. The latency for an instruction
is defined here as the number of cycles from the end of the instruction's W-stage until the result of the
instruction is available to be stored. In other words, if in the instruction stream the instruction of inter
est is directly followed by a store of its result, then the instruction latency is the number of extra
E-cycles which the store instruction experiences until the result is available. For example, a multiply
followed by a store of the multiply's result looks like this:

FMULs

STF

latency

FOE wi· ·1
FOE E E E E W Wh1 Wh2

In this situation, the four cycles of the latency period are wasted. A far more efficient way to handle
instruction latency is for the compiler to insert four other non-dependent instructions between the mul
tiply and its store. Because of the parallel paths through the multiplier and adder in the FPU, one of
these instructions can even be an FPop which uses the adder-portion of the datapath, like this:

FMULs

non-floating-point instruction

FADDs

non-floating-point instruction

non-floating-point instruction

STF (stores result of FMULs above)

Table 3.2 shows the instruction latency for each floating-point instruction which the FPU implements
in hardware. Note that the table has two parts, to differentiate between instructions which use the
floating-point multiplier and those which use the floating-point adder. This differentiation is useful
because, as mentioned above, the compiler can successfully interleave these two classes of
instructions.

MD70-000 1 04-99 A Preliminary 3-3

Instruction Set

a) Instructions which use
the FPU Multiplier:

b) Instructions which use
the FPU Adder:

Instruction

FMULs.d

FDIVs,d

FSQRTs.d

Instruction

FADDs.d

FSUBs,d*

FiTOs,d

FsTOi,d

FdTOi,s

FMOVs

FNEGs

FABSs

FCMPs,d

FCMPEs,d

Latency

4

33

45

Latency

4

4

4

4

4

2

2

2

3

3

Table 3.2 FPU Instruction Latencies

The following partial listing illustrates the standard Linpack benchmark loop used to estimate FPU
performance.

3-4 MD70-000 1 04-99 A Preliminary

Instruction Set

Idd [%i1]. %f6
fmuld %f30. %f6. %f6
Idd [%iO]. %f10
Idd [%i1 +8]. %f14
fadd %f1 O. %f6. %f10
fmuld %f30. %f14. %f14
Idd [%iO+8]. %f18
std %f10. [%iO]
fadd %f18. %f14. %f18
Idd [%i1+ 16]. %f22
fmuld %f30. %f22. %f22
Idd [%iO+ 16]. %f26
std %f18. [%iO+8]
faddd %f26. %f22. %f26
Idd [%i1 +24]. %fO
fmuld %f30. %fO. %fO
Idd [%iO+24]. %f4
std %f26. [%iO+ 16]
faddd %f4. %fO. %f4
inc -4. %i5
add %i5. -3. %11
tst %11
inc 32. %i1
std %f4. [%iO+24]
bge LOOP
inc 32. %iO

Notice that the loop includes eight FPops, stores, loads, and a few other instructions. To detennine the
perfonnance predicted by this loop, assume the following cycle counts:

store instructions: 4 cycles

load instructions: 3 cycles

other instructions: 1 cycle

With regard to these other (that is, not load or store) instructions, both because FPops go into the
floating-point queue and because instructions dependent upon the results of loads and stores are spaced
far enough apart in the loop, these instructions take effectively one cycle to execute.

Based on these cycle counts, the floating-point instructions constitute eight cycles out of the loop total
of 54 cycles. To determine FPU perfonnance, use this equation:

Performance = 8/54 x clock frequency(MHz)

MD70-000104-99 A Preliminary 3-5

Internal Organization

Table 3.3 summarizes the Linpack performance for the FPU.

Linpack Performance

Condition 33 MHz 40 MHz

No Cache Miss 4.98 Mflops 6.04 Mflops

25% Degradation due to: 3.76 Mflops 4.53 Mflops
Overhead
Cache Misses
System Effects

Table 3.3 Linpack Performance Summary

Although the above Linpack benchmark is widely used to estimate floating-point performance, the
inner loop of the benchmark is limited by the performance of load and store instructions in this L64814
implementation. An alternate performance measure is peak MFlops. The following sequence of FPops,
repeated indefinitely, results in a sustained performance of two FPops every five cycles:

fadd %fO,%f2,%f4
fmuld %f6,%f8,%f10

Using the performance equation from above results in:

Performance = 2/5 x clock frequency (MHz).

Table 3.4 summarizes the peak performance for the FPU.

Peak Performance

33 MHz 16.0 Mflops

40 MHz 13.2 Mflops

Table 3.4 Peak Performance Summary

3.2 Internal Organization

This section describes the L64814 FPU architecture in more detail. It introduces the instruction pipe
line which fetches, decodes, and controls execution of floating-point instructions. It also presents the
datapath through the floating-point multiplier and adder. Figure 3.1 shows a detailed block diagram of
the FPU with the instruction pipeline and datapath called out.

This section has the following organization.

3.2.1 Instruction Pipeline

3.2.2 Datapath

3.2.1 Instruction Pipeline describes the left side of Figure 3.1; 3.2.2 Datapath describes the right
side.

3-6 MD70-000104-99 A Preliminary

Data Bus
D[31 :0)

Instruction

Instruction Pipeline ...

Data

32

Internal Organization

32

Register File

64

Multiplexers

Multiplexers

Figure 3.1 L64814 FPU Register-Level Block Diagram

MD70-000104-99 A Preliminary 3-7

Internal Organization

3.2.1 Instruction Pipeline

The instruction pipeline controls floating-point instruction execution in the FPU. It accesses and
decodes all instructions from the Data bus and all addresses from the Address bus. When a f1oating
point instruction occurs, the pipeline prepares it for execution and holds it during execution. It directs
operands and manages the resources in the datapath.

Figure 3.2 isolates the instruction pipeline from Figure 3.1. The register naming conventions indicate
which registers are involved in various stages of instruction execution. For example, registers Dl and
DAI hold one instruction and instruction address pair, respectively, for decoding. Registers D2 and
DA2 hold a second instruction and instruction address pair for decoding. Similarly, E and EA hold an
instruction and address for execution, and the registers with the Q prefix hold instructions and
addresses in the floating-point queue. The L/SW (load/store word) register is a parallel path to the FQ;
it is used for load and store instruction execution. The stages are discussed in more detail in Section 3.3.

3-8 MD70-000104-99 A Preliminary

Data Bus
0[31:0]

Data Bus
0[31 :0]

Instruction

Figure 3.2 FPU Instruction Pipeline

Internal Organization

MD70-000l04-99 A Preliminary 3-9

Internal Organization

3.2.2 Datapath

The FPU datapath includes not only the adder and multiplier, but also the Register File and a variety
of multiplexers and registers. Figure 3.3 shows a more detailed block diagram of the FPU datapath. In
the figure, the LD-prefix registers are used during load instructions to latch data from memory; for
double-precision data, LDL latches the least-significant word (LSW), while LDH latches the most
significant word (MSW). Also, the Register File is shown partitioned into even and odd halves. Recall
from Chapter 2 that double-precision data is stored in an even-odd pair of f-registers, with the MSW
in the even register and the LSW in the odd register.

Figure 3.3 clearly illustrates that the FPU supports true double-precision calculations with a 64-bit
wide datapath. It also shows the adder (FAU) and multiplier (FMU) as distinct units which can operate
in parallel for more efficient instruction execution. Note that the FPU can write data from the Data bus
into the Register File and provide it to the multiplier or adder in the same clock cycle; Section 2.2 dis
cusses this capability, called operand forwarding, in more detail.

3-10 MD70-000104-99 A Preliminary

Data Bus
0[31 :0]

Instruction

Instruction Pipeline ..

FMU

32

Datapath ...
Figure 3.3 FPU Datapath Detailed Diagram

Internal Organization

FAU

MD70-000104-99 A Preliminary 3-11

Instruction Execution

3.3 Instruction Execution

This section discusses in detail the various stages of floating-point instruction execution. It also
describes the signals which control instruction execution, in particular those from the Integer Unit (IU).

This section has the following organization.

3.3.1 Fetch

3.3.2 Decode

3.3.3 Execute

3.3.1 Fetch

When the IU fetches an instruction, the FPU captures it from the Data bus at the same time. The FPU
has already captured the address corresponding to the instruction during the previous cycle. Specifi
cally, the IU asserts the INST signal when a valid instruction is present on the Data bus and a valid
address was fetched from the Address bus on the previous cycle; the FPU uses INST and the clock to
determine when to capture the next instruction.

In any given cycle, the FPU saves the two most recent instruction/address pairs in the D and DA reg
isters. The IU can select either of the two instructions for execution.

Figure 3.4a illustrates the fetch and decode stages of instruction execution in the FPU pipeline. When
the IU decodes a valid floating-point instruction, it asserts either FINS 1 or FlNS2 to signal the FPU to
start executing the instruction in D 1 or D2, respectively. Figure 3.4b shows the timing for an instruction
fetch, 12, which experiences a cache hit. The timing diagram illustrates the flow of data and addresses
through each register. The actual transactions pictured on the Data and Address buses show the instruc
tion fetches for II and 12, where II is not a floating-point instruction but 12 is and, as mentioned above,
experiences a cache hit. Note that for this example, all signals which may hold or freeze the pipeline
are inactive.

a) Register Configuration

A[31:2]

3-12

D[31 0]

±
[±J

MD70-000 1 04-99 A Preliminary

Instruction Execution

b) Timing

eLK

INST~ \'---~/
D[3l

Dl ~A< X II X 12 x==
D2 ~A@(X X II x==
A[3l:0] Al X A2 X Data Address X A3 X X
ABUF~A< Al X A2 X Data Address X A3 x==
DAl ~ X Al X A2 x==
DA2 ~~ X X Al x==

Figure 3.4 Instruction Fetch Timing (Cache Hit)

In the figure, INST stays high as long as valid instructions are available on the Data bus. INST goes
low when data is available on the bus, to prevent the FPU from overwriting the instructions in Dl and
D2 and their addresses in DAI and DA2. Note, however, that because instruction II is not a floating
point instruction, both that instruction and its address are eventually written over in registers D2 and
DA2.

When a cache miss occurs, the system drives low one of the memory hold signals, MHOLDA,
MHOLDB, or BHOLD, in the cycle following the instruction fetch. The instruction, which the FPU
captured from the Data bus, is invalid and the FPU replaces it when the system returns the valid instruc
tion on the Data bus.

The memory hold signal remains active for several cycles, during which the system asserts MDS to
notify the FPU that the valid instruction is available on the Data bus. On load instructions which expe
rience a data cache miss, the system also asserts MDS to ensure that the instruction is reloaded only if
an instruction cache miss occurred (and, therefore, INST was asserted) in the last non-hold cycle.

Figure 3.5 shows the same sequence of Data and Address bus transactions as Figure 3.4 except that the
floating-point instruction 12 experiences an instruction cache miss. The HOLD signal in the figure rep
resents one of the possible memory hold signals mentioned above; it goes low after the instruction
cache miss. When MDS goes low, a valid instruction is available on the Data bus. Note that the data
address which appears on the Address bus in the cycle following A2 reappears on that bus when the
valid 12 becomes available.

MD70-000104-99 A Preliminary 3-13

Instruction Execution

eLK

INST ~ ~~

\ /

D[31:0]~ ~~<JJ.I

Dl ~,-_I1_-J~ ~,-_I2 __ _

D2 ~~ __ I1_______ _ ____________________ __

A[31:0] AI X A2 X Data Address ~ ~ Data Address X x=
ABUF X AI X A2 X Data Address ~ ~ Data Address x:=
DAI ~ AI X A2

DA2 ~~ __ A_I _________________________ _

Figure 3.5 Instruction Fetch (Cache Miss on 12)

3.3.2 Decode

As mentioned previously, the FPU latches all valid instructions off the Data bus, not just floating-point
instructions. The FPU then decodes part of the instruction to check for dependencies and to determine
the instruction type. The FPU performs the remainder of the instruction decoding during the execute
stage.

The instruction decoding which occurs prior to the execution stage makes the execution in the pipeline
more efficient. Note that any non-floating-point instructions are over-written in the decode registers by
succeeding instructions.

The FPU decodes instructions as specified in the SPARe Architecture Manual. Any FPop which is
unimplemented, for example an extended-precision operation, and any opcode which is undefined are
decoded as unimplemented. The IU handles all other illegal instructions, such as those with illegal
opcodes which look like floating-point load or store instructions.

3-14 MD70-000104-99 A Preliminary

Instruction Execution

3.3.3 Execute

This section discusses floating-point instruction execution for these types of instructions:

FPops

Floating-Point Load and Store Instructions

Floating-Point Compare Instructions

FPops

The signals FINS 1 and FINS2 from the IV notify the FPV when to start executing a floating-point
instruction; at this time, the selected instruction is in one of the decode registers, either D 1 or D2.
Figure 3.6 illustrates an example where both Dl and D2 contain valid FPops, so the IU asserts both
FINSl and FINS2. A load instruction (11) immediately precedes the two FPops, so both are fetched
while the load instruction executes. Because the load instruction requires more than one cycle to exe
cute, however, the IV defers starting execution on the FPops, as indicated by the help stages for the
decode, execute, and write of 11. During these help stages, the FPV holds the FPops in the D registers.

When the first FPop (12) enters its D-stage, the IU asserts FINS2 to start execution. Similarly, when
the second FPop (13), held in the register D 1, enters the D-stage, the IU asserts FINS 1 to start the FPV
executing 13.

Load(Il)
FI Dl EI WI

FPop(I2)
F2 Dlh EIh WIh

FPop(I3)
F3 D2 E2 W2

D3 E3 W3

eLK

D[31:0]

FINS I

=~s=
\\ ~Sl"~""

FINS2

FINS2 starts 12

Figure 3.6 Dispatching Floating-Point Instructions

MD70-000104-99 A Preliminary 3-15

Instruction Execution

If an FPop passes the first cycle in its W-stage and the IV has not asserted FLUSH, then the instruction
enters the floating-point queue (FQ). After an FPop enters the FQ, it executes until completion, even
if a FLUSH occurs or a memory hold or other condition freezes the FPU pipeline, unless a trap occurs.
Note that the W-stage of an FPop may extend to more than one cycle if a hold condition exists. When
an FPop completes execution successfully and writes results to the Register File, then the FPop is
removed from the FQ. The Ql and QAl registers always contain the instruction/address pair of the
oldest FPop which the FPU is still executing.

Note that the IV never asserts FINS 1 and FINS2 in the same cycle. Also, the FPU ignores FINS 1 and
FINS2 during any of these conditions:

FLUSH is asserted

MHOLDA, MHOLDB, BHOLD, CHOLD, or FHOLD is asserted

FCCV or CCCV is asserted

Floating-Point Load and Store Instructions

Floating-point load and store instruction execution timing varies depending on whether or not the
instructions and data are in the cache. Another factor which affects timing is whether the load or store
data is integer or single-precision, or is double-precision.

The FPU convention is that double-precision load and store instructions present the most-significant
word (MSW) first, followed by the least-significant word (LSW). This convention corresponds to the
even-numbered f-register's data preceding the odd-numbered register's data, for an even-odd f-register
pair which stores double-precision data.

Figure 3.7 and Figure 3.8 illustrate two examples of double-precision load instruction execution.
Figure 3.7 shows a cache hit on both the MSW and LSW, while Figure 3.8 shows a cache miss on both
words. Note that for both double-precision load and store instructions, cache misses may occur on
either or both halves of the double-precision data. Also, single-precision and integer loads and stores
obey the same cache hit and miss timing as the first word of the double-precision load or store.

3-16 MD70-000104-99 A Preliminary

CLK

D

Instruction Execution

o E W Whl Wh2

CLK

FINS1(2~ \ \~~--~~~~~~~~~~ FINS signal starts Load instruction

lNST ~ \'-----___ ---'1 ~

D[31:0]
LLLLLL..<LLLLLL.

Figure 3.7 Double-Precision Load (Cache Hit on Both Words)

E W Whl (Whl-stage is held) Wh2 (Wh2-stage is held) I
-----+------~----4----- ---------------r---- ---------------

~

FINS1(2lliW \ \'-----___ --"'LLoi§; _ ~
FINS signal starts Load instruction

INST \'----------'~= ~ ~~

L _____ I L ____ ~I
\~ __ I ~

D[31:0]~~~

Figure 3.8 Double-Precision Load (Cache Miss on Both Words)

Store instructions drive data onto the Data bus referenced to the falling edge of the clock signal. The
FPU drives the Data bus starting from the middle of the W-stage (that is, at the falling edge of the
clock) in the store instruction. If the IU asserts FLUSH, then the FPU stops driving the Data bus by the
middle of the next cycle.

The next three figures illustrate three examples of double-precision store instruction execution. Figure
3.9 shows a cache hit on both words, Figure 3.10 a cache miss on the instruction fetch preceding the
store, and Figure 3.11 a cache miss on the MSW. Note in Figure 3.10 that D[31:0] represents data
which the FPU puts out onto the Data bus.

MD70-000104-99 A Preliminary 3-l7

Instruction Execution

W Whl Wh2 Wh3

eLK

0[31:0] ---~(MSW X LSW)..------------

MHOLOA_*

Figure 3.9 Double-Precision Store (Cache Hit on Both Words)

0[31:0] ---- -----------« MSW X LSW)r-----

Figure 3.10 Double-Precision Store (Cache Miss on Instruction Fetch Preceding Store)

W Whl Whl Whl Wh2 Wh3

0[31:0] -----«~ ____ M_S_W ____ --'X LSW)>------

MHOLOA_*

Figure 3.11 Double-Precision Store (Cache Hit on MSW)

3-18 MD70-000104-99 A Preliminary

Exception Handling

Floating-point load and store instructions do not follow the same path as FPops through the floating
point queue. As mentioned previously, load and store instructions do not enter the FQ. Instead, to allow
the FPU to perform load/store instructions and FPops in parallel, load and store instructions move from
the E-registers directly into the L/SW (load/store word) register, a path parallel to the FQ, to complete
execution. Refer to Figure 3.1 to see the FQ and L/SW register paths.

Floating-Point Compare Instructions

When a floating-point compare instruction occurs, the FPU deasserts the FCCV (floating-point condi
tion code valid) signal to freeze the instruction pipeline, starting in the E-stage of the instruction fol
lowing the compare instruction. This instruction holds in its E-stage, FCCV remains deasserted, and
the instruction pipeline stays frozen until the floating-point condition codes (FCC[1:0]) become valid.
One cycle later, the FPU reasserts FCCV.

All floating-point compare instructions cause this behavior, whether implemented or unimplemented.
For unimplemented compare instructions, the FPU freezes the instruction pipeline and causes an unim
plemented FPop trap which the IU immediately takes. For more information about trap handling, refer
to Section 3.3.

Figure 3.12 illustrates the FCCV timing relative to the floating-point compare instruction (FCMP in
the figure) and the condition codes, FCC[1:0].

FCMP
D(FCMP) E(FCMP) W(FCMP)

next IDE (E-stage is held)
instruction f------If------f------ ------------+---

W

CLK

FINS 1/2 -FCCV
'------ -----------'/ ~

FCCfI:O]
~Uli~~~~UlihZUli~~~~ua~~~

~~V_AL __ ID __________ _

FINS signal corresponding
to FCMP instruction

Figure 3.12 Floating-Point Compare Instruction Timing

3.4 Exception Handling

This section discusses how the FPU handles exceptions, also referred to as traps. It describes the FPU
modes of operation and what causes the FPU to change operating modes. It also provides details on
flushing the floating-point queue during trap handling.

MD70-000104-99 A Preliminary 3-19

Exception Handling

The section has this organization:

3.4.1 FPU Modes of Operation

3.4.2 Flushing Floating-Point Instructions

3.4.1 FPU Modes of Operation

The FPU has three possible modes of operation:

execution

pending exception

exception

Figure 3.13 shows the FPU operating modes and the transitions between modes.

Figure 3. 13 FPU Modes of Operation

During normal instruction execution, the FPU operates in execution mode. When a floating-point
exception occurs, the FPU asserts FEXC to notify the IU about the exception and to direct the IU to
take the trap. The FPU then enters pending exception mode.

When the IU encounters the next floating-point.instruction in the instruction stream, it takes the trap
and asserts FXACK to notify the FPU. The FPU then enters exception mode.

When the IU takes a trap, it halts normal program execution and transfers control to the trap handler.
The FPU aborts the instruction in the E-stage of the floating-point pipeline and any instructions after
it; the IU restarts these instructions after the trap handler is done. Any FPops which entered the pipeline
prior to this instruction and which are in the floating-point queue complete execution.

3-20 MD70-000104-99 A Preliminary

Exception Handling

Figure 3.14 shows the instruction pipeline during a trap. Note that the IU asserts the FLUSH signal in
the W-stage of the aborted instruction.

D E w

o E w

trap occurs in E-stage o E(TRAP) w
of this instruction ---~.~ f-----+------f-----f

D E

eLK

FLUSH /
---------------~

All instructions previous to

this point on are completed

w

All instructions from

this point on are aborted

Figure 3.14 FPU Instruction Pipeline during a Trap

In exception mode, the FPU performs store instructions from the trap handler to empty or flush the
FQ; flushing is discussed later in this section. The trap handler then performs the appropriate actions
to handle the particular type of trap. For example, if an unimplemented instruction causes the trap, then
the trap handler emulates the instructions from the queue as well as the unimplemented instruction.

Note that when the FPU is in exception mode, if the IU issues a floating-point load instruction or FPop,
a sequence error occurs. The FPU can only perform store floating-point queue (STDFQ) instructions
until it empties the queue and the trap handler is done.

Figure 3.15 summarizes the handshake which the IU and FPU perform when a floating-point exception
occurs.

MD70-000104-99 A Preliminary 3-21

Exception Handling

CLK~

qne

-------Jzr5
__ ~f=7 ~~ ____ __ FXACK

FLUSH

Floating-point
exception occurs
FEXC_=O
Pending Exception
Mode ofFPU

~ U· FP Integer mt executes

instruction, takes FP trap
FXACK = I, FLUSH = 1

Exception mode of FPU

\~------
STDFQ instructions
are executed and queue
is cleared
qne field of FSR = 0

Return to Execution mode
ofFPU

Figure 3.15 FPUI/u Exception Handshaking Sequence

3.4.2 Flushing Floating-Point Instructions

This discussion explains and illustrates the effect which a flush has on these types of floating-point
instructions:

Floating-Point Load Instructions

Floating-Point Store Instructions

FPops

Floating-Point Compare (FCMP) Instructions

Floating-Point Load Instructions

If the IV asserts the FLUSH signal any time before or during the last Wh-stage of a load instruction,
then the load aborts and leaves the contents of the Register File unchanged. Figure 3.16 shows the
effect of FLUSH on a floating-point load (LDF) instruction.

3-22 MD70-000104-99 A Preliminary

Exception Handling

D

CLK

D[31:0]

FINSl(2 ~

E W Wh

-
I

Figure 3. 16 Effect of FLUSH on a Floating-Point Load Instruction

Floating-Point Store Instructions

If the IV asserts FLUSH any time before or during the last Wh-stage of a floating-point store (STF)
instruction, then the store aborts and the FPU stops driving the Data bus by the middle of the next clock
cycle. Figure 3.17 illustrates the effect of FLUSH on a floating-point store instruction.

FPops

D E W Wh1 Wh2

CLK

D[31:0]~StoreData~

FINS1/2~ -
I

Figure 3.17 Effect of FLUSH on a Floating-Point Store Instruction

If the IV asserts FLUSH any time before or during the W-stage of an FPop, then the FPop aborts, leav
ing the contents of the Register File and FSR unchanged. Figure 3.18 shows the effect of FLUSH on
FPop instruction execution.

MD70-000104-99 A Preliminary 3-23

Halting Instruction Execution

D

CLK

D[31:0]
<LL.LLLL..rLLLLLL.<CLLJ

FINS1!2~

..

E W

~

I
Figure 3.18 Effect of FLUSH on an FPop Instruction

Floating-Point Compare (FCMP) Instructions

If the IU asserts FLUSH before or during the W-stage of an FCMP instruction, then the FCMP aborts
and leaves the FSR unchanged. The FPU reasserts FCCV on the next clock cycle. Figure 3.19 illus
trates the effect of FLUSH on FCMP instruction execution and on FCCV.

CLK

FCMP

next
instruction

FINS 1/2

FCCV

FLUSH

D(FCMP) E(FCMP) W(FCMP) I
o

FINS signal corresponding
to FCMP instruction

E (E·stage is held) W

Figure 3.19 Effect of FLUSH on a Floating-Point Compare Instruction and FCCV

3.5 Halting Instruction Execution

This section discusses the signals and conditions which can halt instruction execution in both the FPU
and the IU. The section is organized this way.

3-24

3.5.1 Freezing the FPU Pipeline describes the various memory hold and other signal
associated with halting floating-point instruction execution.

MD70-000104-99 A Preliminary

Halting Instruction Execution

3.5.2 Interlocking the IU Pipeline explains the situations which cause the FPU to halt
IU instruction execution.

3.5.1 Freezing the FPU Pipeline

These signals can all freeze the FPU instruction pipeline and halt instruction execution:

MHOLDA, MHOLDB, BHOLD from the memory subsystem

CHOLD or CCCV from a coprocessor

FHOLD or FCCV from the FPU itself

A pipeline freeze stops execution of allloadlstore instructions, and of all FPops which are in the F-,
D-, or E-stages of the pipeline. These instructions may continue execution when all of the hold signals
(MHOLDA, MHOLDB, BHOLD, CHOLD, and FHOLD) are inactive and all the condition code valid
signals (CCCV, FCCV) are active. Note that a pipeline freeze does not affect FPops already in the
queue; they continue execution.

The system needs to know when the FPU is freezing the instruction pipeline, so that it stops issuing
instructions to the IV. Instead of looking at both FHOLD and FCCV, the two FPU signals which may
hold the floating-point pipeline, the system simply examines the FNULL signal.

The FPU asserts FNULL whenever it freezes the pipeline; specifically, the FPU asserts FNULL when
ever it asserts FHOLD or deasserts FCCV. Figure 3.20 shows the FNULL timing relative to FHOLD
and FCCV. Note in the figure that although FHOLD and FCCV are referenced to the falling edge of
the clock, FNULL is referenced to the rising edge of the clock.

eLK

tD(FNULL)

Figure 3.20 FNULL Timing

3.5.2 Interlocking the IU Pipeline

In two types of situations, the FPU must halt the IU instruction pipeline: first, when the FPU must hold
a load/store instruction due to an operand dependency, and second, when the FPU cannot accept any

MD70-000104-99 A Preliminary 3-25

Halting Instruction Execution

more instructions due to a resource dependency. In either case, the FPU asserts FHOLD to freeze the
IU instruction pipeline.

Table 3.5 shows the operand dependency conditions under which the FPU must assert FHOLD.

Instruction Action Operand Dependency

LDF,LDDF Load Load instruction may not overwrite any source or destina-
memory to tion register of any FPop which has not completed execu-
Register File tion. Specifically, the rd (destination register) field in any

load instruction cannot refer to the same f-register as any
valid rsl or rs2 (source register) or rd (destination regis-
ter) field in any outstanding FPop. The source registers
must remain unaltered in case a floating-point exception
occurs where the trap handler would require the original
source register values.

STF, STDF Store data from A store instruction may not access an f-register that is the
the f-register to destination register of an FPop which has not yet finished
memory execution. In this case, the store instruction must hold

until all outstanding FPops with that register as a destina-
tion complete execution.

LDFSR, STFSR Load/Store data The FPU cannot perform an LDFSR or STFSR while the
between memo- FPU is executing any other instruction, because that
ry and the FSR instruction may need to utilize or change some value in

the FSR. Therefore, if the FPU is executing any instruc-
tion when the IV issues a LDFSR or STFSR, the FPU
holds until all instructions in the queue complete execu-
tion and the queue is empty.

Table 3.5 Operand Dependencies which Halt the IU Instruction Pipeline

The operand dependencies of Table 3.5 apply to all FPops which are defined in the SPARe Architecture
Manual, including those which are unimplemented in the FPU. For example, suppose that an unimple
mented FPop is in the FQ, waiting to cause an exception. If the next instruction is a floating-point store
instruction which needs to store the contents of the unimplemented FPop's destination register, then
the store must cause an FHOLD so that it does not store the incorrect data. The unimplemented FPop
eventually causes a trap, which the IV takes during the E-stage of the store instruction.

With regard to resource dependencies, when the FQ is full the FPU cannot accommodate any addi
tional FPops. The FPU asserts FHOLD when the FQ is full and the IV tries to signal an additional
FPop, to stop the IV from issuing any more instructions to the FPU. Specifically, when the FQ is full
the FPU asserts FHOLD if the IV asserts either FINS 1 or FINS2 and the incoming instruction is an
FPop.

If the FPU goes into exception mode, it deasserts FHOLD. In exception mode, the only case where the
FPU asserts FHOLD is if a sequence error occurs. In this case, the FPU asserts FHOLD for one cycle.

3-26 MD70-000104-99 A Preliminary

Halting Instruction Execution

If a floating-point exception occurs while the FPU is asserting FHOLD, then the FPU deasserts
FHOLD at least one cycle after it asserts FEXC. In this case only, the ru takes the floating-point trap
on the instruction which triggered the FHOLD. Note that if asserting FEXC did not remove the hold,
then a deadlock would occur.

Figure 3.21 shows the interaction of FEXC with FHOLD and FCCV. Note that FHOLD is referenced
to the falling edge of the clock.

CLK~~
FHOLDJFCCV \

FEXC_ ~

Figure 3.21 Effect of FEXC on FHOLD and FCCV

MD70-000104-99 A Preliminary 3-27

Halting Instruction Execution

3-28 MD70-000104-99 A Preliminary

Chapter 4: External Interface

This chapter discusses the L64814 FPU in a system context. It shows the interface configurations and
describes the interface signals. The chapter has the following organization.

4.1 Interface Overview illustrates how the FPU interfaces with the other members of
the SPARC family.

4.2 Pin Summary classifies the interface signals between the FPU and the IU, memory
subsystem, and coprocessor.

4.3 Pin Description provides a complete pin list and description.

4.4 AC Timing illustrates the AC timing characteristics for the FPU.

4.5 Electrical Requirements lists the electrical specifications for the FPU.

4.6 Packaging explains the package options for the FPU.

4.1 Interface Overview

Figurc 4.1 shows how to connect the FPU with the L64811 IV and L64815 MCT in a system config
uration. These interfaces are very simple because the devices can directly interconnect. For more spe
cific information on the interconnect signals, refer to the next two sections in this chapter.

L64811

IU

Local Bus

L64815

MCT

Control Control

L64814 Cache

FPU

Figure 4.1 FPU-IU-MCT Interconnect Diagram

Main
Memory

MD70-000104-99 A Preliminary 4-1

Pin Summary

4.2 Pin Summary

This section lists and classifies the FPV signals according to pin function and pin type.

The FPV has 83 signal pins, in these I/O categories:

• 44 input signals

• 7 output signals

32 bidirectional signals

These signals can be further classified according to use:

13 signals between the FPV and the IV/coprocessor

70 signals between the FPV and the system/memory

Of these 83 signals, a maximum of 39 may be driving at the same time.

Table 4.1 summarizes the pin function and pin type for the IV and coprocessor interface signals; Table
4.2 does the same for the system/memory interface.

Pin Name Pin Description/Function Pin Type

FCCV Floating-point condition code valid Outputl2-state

FCC[1:0] Floating-point condition code bits Outputl2-state

FEXC Floating-point exception Outputl2-state

FHOLD Floating-point hold Outputl2-state

FP Floating-point unit present Outputl2-state

FINS 1 Floating-point instruction fetched Inputl2-state

FINS2 Floating-point instruction fetched Inputl2-state

INST Instruction fetch cycle Inputl2-state

FLVSH Flush the FPV instruction pipeline Inputl2-state

FXACK Floating-point exception acknowledge Inputl2-state

CCCV Coprocessor condition valid Inputl2-state

CHOLD Coprocessor hold Inputl2-state

Table 4.1 IUlCoprocessor Interface Signals

4-2 MD70-000104-99 A Preliminary

Pin Description

Pin Name Pin Description/Function Pin Type

D[31:0] Data bus Bidir/3-state

A[31:2] Address bus Input!2-state

MHOLDA Hold signal from memory Input!2-state

MHOLDB Hold signal from memory Input!2-state

BHOLD Hold signal from memory Input!2-state

MDS Memory data strobe Input!2-state

DOE Disable Data bus output drivers Input!2-state

FNULL Signal FPU hold of instruction pipeline Output!2-state

TOE Test output enable Input!2-state

RESET System reset Input!2-state

CLOCK FPU clock Input!2-state

Table 4.2 System/Memory Interface Signals

4.3 Pin Description

This section lists and describes the FPU signals.

A[31:2]

CCCV

CHOLD

Address Bus[31:2]

A[31 :0] comprise the Address bus common to the FPU, IV, and memory sub
system. From this bus, the FPU latches the instruction address for each instruc
tion fetched. Because instructions are stored on 32-bit boundaries, it is
unnecessary to fetch the two lowest-order bits of the address, A[l :0],

Coprocessor Condition Codes Valid

The coprocessor uses this signal to notify the IU and FPU when the coprocessor
condition codes are valid. When CCCV is deasserted, the instruction pipeline
freezes until the instruction that generates the coprocessor condition codes com
pletes execution and the codes become valid.

Coprocessor Hold

When the coprocessor detects a condition where it cannot accept any more
instructions, it asserts this signal to freeze the instruction pipeline. This signal
is similar to the FHOLD signal generated by the FPU.

MD70-000104-99 A Preliminary 4-3

Pin Description

4-4

CLK Clock

This signal provides the system clock to the FPU.

DOE Data Bus Driver Output Enable

D[31:0]

FCCV

FCC[1:0]

FEXC

FHOLD

FINS1

FINS2

Deasserting this signal turns off the FPU Data bus drivers. The system deasserts
this signal when another bus master needs to use the Data bus.

Instruction/Data Bus [31:0]

D[31 :0] comprise the instruction/data bus common to the FPU, lU, and memory
subsystem. The FPU fetches all instructions from this bus. In addition, on
floating-point load/store instructions, the FPU receives/sends data from/to
memory on this bus.

Floating-Point Condition Codes Valid

The FPU asserts this signal when the floating-point condition codes, FCC[I :0],
become valid. When the FPU deasserts this signal, the instruction pipeline
freezes.

Floating-Point Condition Codes [1:0]

These signals are the FPU condition code; they are valid only when FCCV is
asserted. During the execution of a Branch on floating-point condition code
(Bfcc) instruction, the lU uses these bits to make branching decisions. These
signals are the same as the FCC field of the FSR.

Floating-Point Exception

The FPU asserts this signal to notify the IU that a floating-point exception has
occurred and that the IU should take the trap. The signal remains asserted until
the lU acknowledges that it has taken the trap by asserting FXACK.

Floating-Point Hold

The FPU asserts this signal when it cannot accept any more floating-point
instructions due to resource or data dependencies. The FPU deasserts the signal
when the dependency is removed.

Floating-Point Instruction Select 1

The lU asserts this signal during the decode stage of a floating-point instruction
to notify the FPU that it should start executing the last instruction fetched.

Floating-Point Instruction Select 2

The IU asserts this signal during the decode stage of a floating-point instruction
to notify the FPU that it should start executing the second-to-Iast instruction
fetched.

MD70-000104-99 A Preliminary

FLUSH

FNULL

FXACK

INST

Pin Description

FPU Instruction Pipeline Flush

The IU asserts this signal to notify the FPU to abort the floating-point instruc
tions that are still in the pipeline and have not yet entered the queue. The IU typ
ically asserts this signal when it takes a trap, and it restarts the aborted
instructions after the trap handler completes execution. Instructions which are
already in the queue complete execution.

Floating-Point Null

The FPU asserts this signal to notify the memory subsystem that the FPU is
freezing the instruction pipeline. It asserts FNULL whenever it asserts FHOLD
or deasserts FCCV. The memory system uses FNULL in the same fashion as the
IU's NULL_CYC signal; it needs the additional signal because NULL_CYC
does not take into account FPU holds.

Floating-Point Unit

This signal tells the IU that a floating-point unit is present in the system. The
signal typically has a pullup resistor holding it high at the IU input; when the
FPU is plugged into the board, the FPU pulls the signal low.

Floating-Point Exception Acknowledge

The IU asserts FXACK to signal the FPU that is has taken the requested
floating-point exception trap. In response, the FPU deasserts FEXC.

Instruction

The IU asserts this signal when it is fetching a new instruction; it signals the
FPU to copy the instruction being fetched.

MHOLDA, MHOLDB, BHOLD

RESET

Memory Hold

The memory subsystem asserts these signals to freeze the instruction pipeline.

Memory Data Strobe

The memory subsystem asserts this signal to strobe an instruction or data into
the FPU during a cache miss situation. One or more memory hold signals are
active at the same time.

System Reset

The system asserts this pin to reset the FPU.

TOE Test Output Enable

For chip and board test, tying this pin HIGH three-states all of the FPU output
drivers, including the D bus.

MD70-000104-99 A Preliminary 4-5

i
I.
,

ACTiming

4.4 AC Timing

This section provides the AC timing characteristics for the FPU. It includes timing tables for the lUi
coprocessor interface signals, the system/memory interface and miscellaneous signals, and the clock
input specification. Following the timing tables are timing diagrams which illustrate the timing param
eters in the tables.

This section uses the following notation.

• Tdo: propagation delay time of an output referenced to a given clock edge

Tho: hold time of an output referenced to the given clock edge

• Tsi: setup time of an input referenced to the given clock edge

Thi: hold time of an input referenced to the given clock edge

Toff: turn-off time for a 3-state output driver after the rising edge of DOE

Ton: turn-on time for a 3-state output driver after the falling edge of DOE

• CLK +: rising edge of the clock signal CLK

CLK-: falling edge of the clock signal CLK

Please also note the following information:

All times are in ns.

Output loading is assumed to be 50 pF for signals driving to the system and 25pF for
signals driving to the IU.

Minimum output loading (for minimum time calculations) is assumed to be 15 pF.

Clock references are made with respect to the 1.5 V level of the clock.

Pin Name Parameter Parameter MinIMax 25 MHz 33 MHz 40 MHz
Number

Clock Period Tcyl 1 Min 40 30 25

Clock High Time Tclh 2 Min 18 13 11

Clock Low Time Tcll 3 Min 18 13 11

Clock Rise Time Tcrt - Max 1 1 1

Clock Fall Time Tcft - Max 1 1 1

Table 4.3 AC Timing: Clock Input Specification

Units

ns

ns

ns

V/ns

V/ns

4-6 MD70-000104-99 A Preliminary

ACTiming

Pin Name Parameter Parameter Reference MinIMax 25 MHz 33 MHz 40 MHz
Number Edge (ns) (ns) (ns)

FHOLD, Tdo 4 CLK- Max 30 24 20
FCCV Tho 5 CLK- Min 6 6 4

FCC[I:0], Tdo 6 CLK+ Max 27 21 18
FEXC Tho 7 CLK+ Min 5 5 2

FINSl, Tsi 8 CLK+ Min 10 10 9
FINS2 Thi 9 CLK+ Min 3.5 3.5 3

FXACK, Tsi 10 CLK+ Min 17 14 11

FLUSH, Thi 11 CLK+ Min 3 3 3
INST

CCCV, Tsi 12 CLK- Min 7 5 4
CHOLD Thi 13 CLK- Min 7 5 4

Table 4.4 AC Timing: IU and Coprocessor Signals

MD70-000104-99 A Preliminary 4-7

AC Timing

Pin Name Parameter Parameter Reference MiniMax 25 MHz 33 MHz 40 MHz
Number Edge (ns) (ns) (ns)

FNULL Tdo 14 CLK+ Max 20 15 13

Tho 15 CLK+ Min 4 4 3

D[[31 :0] out Tdo 16 CLK- Max 20 15 13
Tho 17 CLK- Min 4 4 3

D[[31:0] in Tsi 18 CLK+ Min 3 3 2

Thi 19 CLK+ Min 5 5 4

A[31:2] Tsi 20 CLK+ Min 5 3 3
Thi 21 CLK+ Min 7 7 7

MHOLDA, Tsi 22 CLK- Min 7 5 4

MHOLDB, Thi 23 CLK- Min 7 5 4

BHOLD

MDS Tsi 24 CLK- Min 5 5 4

Thi 25 CLK- Min 7 5 4

RESET Tsi 26 CLK- Min 15 10 8
Thi 27 CLK- Min 3 3 2

DOE Ton 28 CLK+ Min 20 17 15

Toff 29 CLK+ Min 20 17 15

Table 4.5 AC Timing: System/Memory Interface Signals

4-8 MD70-000 1 04-99 A Preliminary

ClK

FHOlD,
FCCV

r.--- 1 _I_ 2 _I_ 3 -I
_----II L-I ------AI I i-I-

: ; !

i4H;it'
----'.c----;.---;-..J '-----

~6-H =1 ~7
~~~g :O), ___ -.:,..J/ I \'----

FINS1, 
FINS2 

FXACK, 
FLUSH, 
INST 

CCCV, 
CHOLD 

Figure 4.2 

~ ~i8 ~~9i 
_~/. \1----;-. __ _ 

: ! [ j 

-1 10 H- -1 ~11! 
____ ~/rl--~\'-~·-------

-1 ~12 -1 ~13 
------~/ \~----
AC Timing Parameters: IU and Coprocessor Signals 

MD70-000104-99 A Preliminary 

AC Timing 

4-9 



ACTiming 

4-10 

elK 

FNUll 

D[31 :Ojout 

-1 ~15' 
\ . 

__ .~16-1 -1 ~17 

~~18. ~~19i 
D[31:0jin =~='"': ~ 

i ! : : 

~~20 i -1 ~21. 
7777:~~ . ~ A[31:2j 

MHOlDA, --1 ~221 -1 ~23 
~~gCgB, ----;-~i\ ! V 

~~24i ~~25 
_--'-~V . \'---_ 

r- 26 ~ ~~27 
---i-----!-·---+.i \ i / 

1 L-..J/ 
1 ~ 

DOE ~H 
i r--29~ 
r-- 28 -l 

D[31:0jOut~ 

Figure 4.3 AC Timing: System/Memory Interface Signals 

MD70-000104-99 A Preliminary 



4.5 Electrical Requirements 

This section includes the following specifications for the L64814: 

Absolute Maximum Ratings (Table 4.6) 

Recommended Operating Conditions (Table 4.7) 

DC Characteristics (Table 4.8) 

Capacitance (Table 4.9) 

Symbol Parameter 

VDD DC Supply 

Limits! 

-0.3 to +7 

VIN Input Voltage -0.3 to VDD +0.3 

lIN DC Input Current ±1O 

TSTG Storage Temperature -40 to + 125 
Range (Plastic) 

TSTG Storage Temperature -65 to + 150 
Range (Ceramic) 

Note 1. Referenced to V ss 

Table 4.6 Absolute Maximum Ratings 

Symbol Parameter Limits 

VDD DC Supply +4.75 to +5.25 

TA Ambient Temperature -0 to +70 

Table 4.7 Recommended Operating Conditions 

Electrical Requirements 

Unit 

V 

V 

rnA 

°C 

°C 

Unit 

V 

°C 

MD70-000104-99 A Preliminary 4-11 



Packaging 

Symbol Parameter Condition! Min Typ Max Units 

VIL Voltage Input LOW O.S V 

Vrn Voltage Input HIGH 2.0 V 

VOH Voltage Output HIGH IoH = -S.OmA 2.4 4.5 V 

VOL Voltage Output LOW IoL = S.OmA 0.2 0.4 V 

IIH Current Input HIGH VIN = VDD 10 IlA 

IlL Current Input LOW VIN = VSS -10 IlA 

IOH Current Output HIGH VOH =2.4 V -4.0 rnA 

IOL Current Output LOW VOL =0.4 V 4.0 rnA 

loz Current 3-State Output Leakage VOH = VDD or VSS -10 ±1 10 IlA 

lOS Current Output Short Circuit VDD = Max, output 15 50 130 rnA 
shorted to V DD 

VDD = Max, output -5 -25 -150 rnA 
shorted to V ss 

IDD Quiescent Supply Current VIN=VDDorVSS 10 rnA 

Icc Dynamic Supply Current f = 10 MHz at 5.25 V 90 rnA 
f = 33 MHz at 5.25 V 300 rnA 
f = 40 MHz at 5.25 V 380 rnA 

Note 1. Specified at VDD equals 5V ±5%; ambient temperature over the specified range. 

Table 4.8 DC Characteristics 

Symbol Parameter Condition Min Typ Max Units 

CIN Input Capacitance VIN = 5.0 V, TA = 25" C, f= 1 MHz 10 pF 

COUT Output Capacitance VIN = 5.0 V, TA = 25" C, f= 1 MHz 12 pF 

Table 4.9 Capacitance 

4.6 Packaging 

The L648l4 FPU is available in a 143-pin, cavity-up ceramic or plastic pin grid array package.This 
section provides information including the packaging options, pin diagram, pin list, and package out
line drawing for these packages. 

4-12 MD70-000104-99 A Preliminary 



Packaging 

Order Number Description 
L64814CG-25 25 MHz, 143-pin CPGA (Commercial Range) 
L64814NC-25 25 MHz, 143-pin PPGA (Commercial Range) 
L64814CG-33 33 MHz, 143-pin CPGA (Commercial Range) 
L64814NC-33 33 MHz, 143-pin PPGA (Commercial Range) 
L64814CG-40 40 MHz, 143-pin CPGA (Commercial Range) 
L64814NC-40 40 MHz, 143-pin PPGA (Commercial Range) 

Table 4.10 Packaging Options 

Signal Pin Signal Pin Signal Pin Signal Pin 
Name Number Name Number Name Number Name Number 
ADO Hi 000 H3 FINS2 N15 VCC N2 
A01 H2 001 J1 VCC N14 
A02 L1 002 K1 FLUSH l13 VCC P2 
A03 M1 003 l2 VCC P5 
A04 Pi 004 N1 FNUll G15 VCC P7 
A05 R1 005 M3 VCC P10 
A06 P4 006 R3 FP R15 VCC P11 
A07 R4 007 R5 VCC P12 
A08 P6 008 N6 FXACK E15 VCC P14 
A09 R6 009 R7 VCC P15 
AiD R8 010 N8 INST M15 VCC R2 
A11 P8 011 R9 
A12 RiO 012 P9 MOS K14 GNO A15 
A13 R11 013 R12 GNO C3 
A14 R13 014 N11 Mt::IQl.QA J14 GNO C4 
A15 R14 015 P13 MHOLOB K15 GNO C6 
A16 F1 016 G1 GNO C9 
A17 G2 017 F2 RESET F13 GNO C10 
A18 E1 018 F3 GNO C11 
A19 E2 019 01 TOE N9 GNO C12 
A20 E3 020 C1 GNO C13 
A21 C2 021 B1 missing pin Ai GNO 03 
A22 A3 022 A2 reserved C7 GNO 013 
A23 B4 023 B5 reserved J3 GNO 014 
A24 A5 024 A4 GNO F14 
A25 A6 025 B7 VCC B2 GNO G3 
A26 A8 026 A7 VCC 83 GNO G14 
A27 A9 027 B9 VCC B6 GNO H13 
A28 AiD 028 BiD VCC B8 GNO K3 
A29 A11 029 B11 VCC B13 GNO l3 
A30 A12 030 B12 VCC B14 GNO M13 
A31 A13 031 A14 VCC B15 GNO N3 

VCC C5 GNO N4 
BHOLD J15 FCCV C15 VCC C8 GNO N5 

FCCO E14 VCC C14 GNO N7 
CCCV E13 FCC1 015 VCC 02 GNO N10 

VCC J13 GNO N12 
CHOLD H14 FEXC F15 VCC K2 GNO N13 

VCC K13 GNO P3 
ClK G13 FHOlO H15 VCC l14 

VCC l15 
OOE J2 FINS1 M14 VCC M2 

Figure 4.4 143-Pin Cavity-Up Pin Grid Array Pin List 

MD70-000104-99 A Preliminary 4-13 



Packaging 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A mi,*!ing 022 A22 024 A24 A25 026 A26 A27 A28 A29 A30 A31 031 GNO pin 

B 021 vee vee A23 023 vee 025 vee 027 028 029 030 vee vee vec 

c 020 A21 GNO GNO VCC GNO * vee GNO GNO GNO GNO GNO VCC FCCV 

D 019 vee GNO GNO GNO FCC1 

E A18 A19 A20 eecv FCCO FXACK 

F A16 017 018 ~ GNO ITXC 

G 016 A17 GNO ClK GNO FNULL 

H AOO A01 DOD GNO CHOLD FHOLO 

J 001 DOE * vcc 1MRi.5IT5A BHOLD 

K 002 vee GNO vee MDS 1MH5iJ5§ 

L A02 003 GNO FLUSH vee VCC 

M A03 vee 005 GNO FINS1 INST 

N 004 vee GNO GNO GNO 008 GNO 010 ~ GNO 014 GNO GNO vee FINS2 

p A04 vee GNO A06 vee A08 vee A11 012 vee vee vee 015 vee vee 

R A05 vee DOS A07 007 A09 D09 A10 D11 A12 A13 013 A14 A15 j:p 

* Reserved Pins 

Figure 4.5 143-Pin Cavity-Up Pin Grid Array Pin Diagram - Top View 

4-14 MD70-000104-99 A Preliminary 



1-------- A ---------1 
I B ,I 

J20EXMARK 

1-------1.400REF-----""--! 
.100TYP 

R @@@@@@@@@@@ 

P@@@@@@@@@@@@@~@ 

N @@@@@@@@@@@@@@@ 
M @@@ @@@ 
L @@@ @@@ 
K @@@ @@@ 
J @@@ @@@ 
H @@@ @@@ 
G @@@ @@@ 
F @@@ 
E @@@ 
o @@@ @@ 

LID 

Dimensions 
CPGA PPGA 

A 1.575 ± .016 S 
B .863 SqMax 

C .080± .010 .093± .003 

D .115 Max .136 Ref 

0.070 DIA TYP 

C@@@@@@@@@@@@@@,@."",.-+-_ 
.r STANDOFF PIN 

B@O@@@@@@@@@@@ @ ~~~ 

A @@@@@@@@@@@@@@ 
Note: Controlling dimension - inch. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 4.6 143-Pin Cavity-Up Pin Grid Array Package Outline 

MD70-000104-99 A Preliminary 

Packaging 

4-15 



Packaging 

4-16 MD70-000104-99 A Preliminary 





Sales Offices 
and Design 
Resource Centers 

LSI Logic Corporation 
Headquarters 

• 1551 McCarthy Blvd 
Milpitas CA 95035 
Tel: 408.433.8000 
Telex: 171 092 
FAX: 408.434.6457 

Alabama 
• 600 80ulevard South 

Suite 104P 
Huntsville, AL 35802 
Tel: 205.883.3527 
FAX: 205.883.3513 

Arizona 
8283 N Hayden Rd 
Suite 270 
Scottsdale AZ 85258 
Tel: 602.951.4560 
FAX: 602.951.4580 

California 
• 2540 N. 1 st Street 

Suite 201 
San Jose CA 95131 
Te(: 408.954.1561 
FAX: 408.954.1565 

• Two Park Plaza 
Suite 1000 
Irvine CA 92714 
Tel: 714.553.5600 
FAX: 714.474.8101 

5625 Ruffin Rd 
Suite 200 
San Diego CA 92123 
Tel: 619.541.7092 
FAX: 619.541.2758 

• 15281 Ventura Blvd 
Suite 275 
Encino CA 91436 
Tel: 818.379.2400 
FAX: 818.783.5548 

Colorado 
3801 E Florida Ave 
Suite 400 
Denver CO 80210 
Tel: 303.756.8800 
FAX: 303.759.3486 

Florida 
201 Park Place 
Suite 300 
Altamonte Springs Fl32701 
Tel: 407.339.2242 
FAX: 407.831.3919 

• 1900 Glades Rd 
Suite 201 
Boca Raton Fl 33431 
Tel: 407.395.6200 
FAX: 407.394.2865 

Georgia 
6525 The Corners Parkway 
Suite 400 
Norcross GA 30092 
Tel: 404.448.4898 
FAX: 404.449.9236 

• Sales Offices with 
Design Resource Centers 

Printed in USA 
129.B302.6537.5K.IM.W 

Illinois Pennsylvania 
• One Pierce Place Three Neshaminy Interplex 

Suite 400 East Suite 301 
Itasca IL 60143 Trevose PA 19047 
Tel: 708.773.0111 Tel: 215.638.3010 
FAX: 708.773.4631 FAX: 215.245.4705 

Maryland Texas 
• 6903 Rockledge Or 6034 W Courtyard 

Suite 230 Suite 305 
Bethesda MO 20817 Austin TX 78730 
Tel: 301.897.5800 Tel: 512.338.2140 
FAX: 301.897.8389 FAX: 512.343.2612 

10480 Little Patuxent Pkwy • 5080 Spectrum Drive 
Suite 500 Suite 1010 West 
Columbia MD 21044 Dallas TX 75248 
Tel: 301.740.5664 Tel: 214.788.2966 
FAX: 301.740.2048 FAX: 214.233.9234 

Massachusetts Washington 
• 1601 Trapelo Rd • 3015112th Avenue NE 

Waltham MA 02154 Suite 205 
Tel: 617.890.0180 iOesign Ctrl Bellevue WA 98004 
Tel: 617.890.0161 (Sales OIcl Tel: 206.822.4384 
FAX: 617.890.6158 FAX: 206.827.2884 

Michigan Austria 
455 E Eisenhower Parkway LSI Logic/lng. Ernst Steiner 
Suite 108 • Hummelgasse 14 
Ann Arbor MI48108 A·1130 Wien 
Tel: 313.930.6975 Tel: 43.222.827474.0 
Telex: 706456 TWX: 135026 es a 
FAX: 313.930.6978 FAX: 43.222.8285617 

Minnesota LSI Logic Corporation 
• 8300 Norman Center Drive of Canada, Inc. 

Suite 730 Headquarters 
Minneapolis MN 55437 • Petro· Canada Centre 
Tel: 612.921.8300 #3410 150·6th Avenue SW 
FAX: 612.921.8399 Calgary AB T2P 3Y7 

Tel: 403.262.9292 
New Jersey FAX: 403.262.9494 

• 379 Thornall St 
Edison NJ 08837 • 150 Karl Clark Road 
Tel: 201.549.4500 Edmonton AB T6N 1 E2 
FAX: 201.549.4802 Tel: 403.450.4400 

New York 
FAX: 403.450.4411 

1065 Route 82 • #220 4259 Canada Way 
Hopewell Junction Burnaby BC V5G lHl 
New York NY 12533 Tel: 604.433.5705 
Tel: 914.226.1620 FAX: 604.433.8443 
FAX: 914.226.1315 

• #400 260 Hearst Way 
North Carolina Kanata ON K2l3Hl 

• 4601 Six Forks Rd Tel: 613.592.1263 
Suite 528, Phase 2 Telex: 053.3849 
Raleigh NC 27609 FAX: 613.592.3253 
Tel: 919.872.8400 

• #1110 401 The West Mall FAX: 919.783.8909 
Etobicoke ON M9C5J5 

Oregon Tel: 416.620.7400 
15455 NW Greenbrier Pkwy FAX: 416.620.5005 
Suite 210A 

• #600 755 St Jean Boulevard Beaverton OR 97006 
Tel: 503.645.9882 Pointe Claire PO H9S 5M9 
FAX: 503.645.6612 Tel: 514.694.2417 

FAX: 514.694.2699 

lSI logic logo design and LOS are registered trademarks and eDE. Co·Designer. 
ChanneHree. ChipSizer. Compacted Array, Compacted Array Plus. Direct Drive. 
EasyASIC. Embedded Array, FloorPlanner, logic Integrator, MOE, Modular 
Design Environment, RighHirst·Time, Silicon Integrator and System Integrator 
are trademarks of LSI Logic Corporation. 

France Sweden 
LSI Logic S.A. LSI Logic Export AB 

• Tour Chenonceaux TorShamnsgatan 39 
204 Rond·point du Pont de Sevres S·16440 Kista 
92516 Boulogne Billancourt Tel: 46.8.703.4680 
Tel: 33.1.46212525 FAX: 46.8.7506647 
Telex: 631475 

Switzerland FAX: 33.1.46203138 
LSI Logic/Sulzer Gmbh 

Israel • Mittelstr. 24 
LSI Logic Limited CH·2560 Nidau/Biel 

• 40 Sokolov St Tel: 41.32.515441 
Ramat Hasharon 47235 FAX: 41.32.516507 
Tel: 972.3.5403741/4 

Taiwan Telex: 371662 
FAX: 972.3.5403747 LSI Logic Corporation 

• 678 Tun Hua S. Rd 
Italy 3rd Floor·2 
LSI Logic SPA Taipei, Taiwan R.O.C. 

• Centro Direzionale Colleoni Tel: 02.755.3433 
Palazzo Orione, Ing. 1 FAX: 02.755.5176 
20041 Agrate Brianza (Mil 
Tel: 39.39.6056881 United Kingdom 
FAX: 39.39.653564 LSI Logic Limited 

• Grenville Place 
Japan The Ring 
LSI Logic K. K. Bracknell 

• Kokusai·Shin Akasaka Berkshire RG121 BP 
West Wing 13th Floor Tel: 44.344.426544 
6·1·20 Akasaka, Minato·Ku Telex: 848679 
Tokyo 108 FAX: 44.344.481.039 
Tel: 81.3.589.2711 
FAX: 81.3.589.2740 West Germany 

LSI Logic GmbH 
• 2·10·1 Kashuga Headquarters 

Tsukuba·Shi, Ibaraki 305 • Arabella Strasse 33 
Tel: 81.298.52.8371 8000 Munich 81 
FAX: 81.298.52.8376 Tel: 49.89.926903.0 

• Twin 21 MID Tower 31st Floor 
FAX: 49.89.917096 

2·1·61 Shiromi, Higashi·Ku • Niederkasseler lohweg 8 
Osaka 540 4000 Dusseldorf 11 
Tel: 81.6.947.5281 Tel: 49.211.5961066 
FAX: 81.6.947.5287 TWX: 8587248 

LSI Logic Corporation 
FAX: 49.211.592130 

of Korea Limited • Buechsenstrasse 15 
• 7th Floor 1304·3 7000 Stuttgart 1 

Namseoul Building Tel: 49.711.2262151 
Seocho·Dong TWX: 723813 
Seocho·Ku FAX: 49.711.2261124 
Tel: 82.2.561.2921 
FAX: 82.2.554.9327 AE Advanced Electronics 

• Stefan·George·Ring 19 
Netherlands 8000 Munich 81 
LSI LogiclArcobel B.V. Tel: 49.89/93009855 

• Griekenweg 25 FAX: 49.89/93009866 
Postbox 344 
Nl·5340 AH Oss AE Advanced Electronics 
Tel: 31.4120.30335 • Theatrestr. 14 

3000 Hannover 1 TWX: 37489 
Tel: 49.511/3681756 FAX: 31.4120.30635 
FAX: 49.511/3681759 

Scotland 
LSI Logic Limited 

• lomond House 
Beveridge Square 
Livingstone EH54 60S 
Tel: 44.506.416767 
FAX: 44.506.414836 

LSI Logic Corporation reserves the right to make changes to any products and 
services herein at any time without notice. lSI logic does not assume any reo 
sponsibility or liability arising out of the application or use of any product or 
service described herein, except as expressly agreed to in writir1{l by LSI Logic; 
nor does the purchase, lease, or use of a product or service from LSI Logic 
convey a license under any patent rights, copyrights. trademark rights, or any 
other of the intellectual property rights of lSI logic or of third parties. All rights 
reserved. 



Orde~ No. L6481411 Rev A 
Part No. MD70-000l04-99 A 


