
~ GENERAL
INSfRUMENf

PIC SERIES
MICROCOMPUTER

DATA MANUAL

Microelectronics Division
General Instrument Corporation

GENERAL
INSfRUMENT

PIC SERIES
MICROCOMPUTER

DATA MANUAL

ARCHITECTURE

INSTRUCTION SET

PRODUCTION CYCLE

ROUTINES

APPLICATIONS

I TABLE OF CONTENTS-PAGE 2 I
APRIL 1983

(OCopyright 1983 GENERAL INSTRUMENT CORPORATION
The information in this publication, including schematics, is

suggestive only. General Instrument Corporation does not warrant,
nor will it be responsible or liable for,(a) the accuracy of such

information, (b) its use or (c) any infringement of patents or other
rights of third parties.

Table of
Contents

1. INTRODUCTION
1.1 Description .. 5
1.2 Features... 5
1.3 Support ... 6
1.4 Microcomputer Fundamentals 6

1.4.1 Basic Microcomputer Architecture. 7
1.4.2 CPU Functional Description. 8
1.4.3 The Program ... 11

1.5 Development Cycle .. 13
1.5.1 Software Development. .. 14
1.5.2 Hardware Development .. 19
1.5.3 In-Circuit Emulation. .. 19
1.5.4 Field Demonstration .. 19

2. ARCHITECTURE
2.1 PIC Basic Functional Blocks. .. 20

2.1.1 Instruction Decode and Control Unit. 23
2.1.2 Program Counter (F2) 23
2.1.3 Stack... 23
2.1.4 File Select Register (F4) 24
2.1.5 Arithmetic Logic Unit (ALU). .. 25
2.1.6 Working Register (W) .. 25
2.1.7 Status Word Register (F3) .. 25
2.1.8 Real-Time Clock Counter Register..................... 26
2.1.9 I/O Register ... 27
2.1.10 Program Memory (ROM) 28
2.1.11 Data Memory (RAM) 28
2.1.12 Clock Generator 31

2.2 PIC1650A 34
2.3 PIC1654 ... 34
2.4 PIC1655A .. 34
2.5 PIC16C58.. 34
2.6 PIC1656 .. 35

2.6.1 Interrupt Logic. .. 35
2.6.2 Status Register. .. 36
2.6.3 Stack.... .. 38
2.6.4 RTCC Register. .. 38
2.6.5 I/O Registers (F5-F7) 38
2.6.6 Clock Generator 38

2.7 PIC1670 ... 39
2.7.1 Interrupt System 39
2.7.2 External Interrupt 39
2.7.3 Real-Time Clock Interrupt. .. 39
2.7.4 Input/Output Capability. .. 41

2.8 Pin Assignments ... 43

3. INSTRUCTION SET
3.1 General I nstruction Format. .. 46
3.2 General File Register Operations. .. 49

3.2.1 Data Transfer Operations 50
3.2.2 Arithmetic Operations 51
3.2.3 Logical Operations -. .. 55
3.2.4 Rotate Operations. .. 57

2

3.3 Bit Level File Register Operations ~ 59
3.3.1 Bit Manipulations. .. 59
3.3.2 Conditional Skips on Bit Test. .. 60

3.4 Literal and Control Operations. .. 61
3.4.1 Literal Operations .. 61
3.4.2 Control Operations. .. 63

3.5 Special Instruction Mnemonics 65
3.5.1 Move File To W Register............................... 65
3.5.2 Test File. .. 65
3.5.3 Two's Complement Register Contents................... 66
3.5.4 Unconditional Branch 66
3.5.5 Status Bit Manipulations. .. 66
3.5.6 Conditional Skips on Status Bit Test. 68
3.5.7 Conditional Branches on Status Bit Test. 69
3.5.8 Carry and Digit Carry Arithmetic 71

3.6 PIC1670 Series Instruction Set. .. 74
3.6.1 Additionall Instructions. .. 75

3.7 I/O Programming Caution................................... 79
3.8 Sample Program ... 81

4. PRODUCTION CYCLE
4.1 Hardware Support. .. 91

4.1.1 ROMless Development PIC '.' .. 91
4.1.2 PICES II-PIC In-Circuit Emulation System. 92
4.1.3 PFD-PIC Field Demo System. .. 94

4.2 Software Support. .. 95
4.2.1 PICAL-PIC Macroassembler .. 95

5. MATH ROUTINES
5.1a Unsigned BCD Addition 96
5.1 b Unsigned BCD Addition of 2 Digits 98
5.2 Unsigned BCD Subtraction. .. 100
5.3 Signed BCD Addition 102
5.4 Signed BCD Subtraction 106
5.5 Two Digit BCD Multiply 109
5.6 Four Digit BCD Divide 112
5.7a Binary To BCD Conversion Method I 120
5.7b Binary To BCD Conversion (2 digits) Method" 123
5.8 BCD To Binary Conversion 125
5.9 Double Precision Signed Integer Math Package 128
5.10 Floating-Point Double Precision Math Package 134
5.11 Square Root Algorithm Using Newton's Method 143

6. MISCELLANEOUS ROUTINES
6.1 Keyboard Scan Program Reads And Debounces 16 Keys And

Stores Key Closures in Two Files 146
6.2 Eight Digit Seven-Segment Display Refreshing Program 146
6.3 Pseudo Random Number Generator 152

6.3.1 7 Bit Pseudo Random Number Generator 152
6.3.2 16 Bit Pseudo Random Number Generator 153

6.4 Potentiometer AID Conversion Routine 154
6.5 Analog To Digital Conversion 154

6.5.1 How The Program Works .. 155
6.5.2 Conclusion ... 158

3

6.6 Time Delay Routine ... 158
6.7 A Digital Clock Subroutine Using the PIC Microcomputer 159

6.7.1 Theory ... 159
6.7.2 Time Counting .. 160
6.7.3 Use in Program 161
6.7.4 Use of TIMADD as Time Set 161

7. APPLICATION NOTES
7.1 Serial Data Transmission with a PIC Microcomputer 162
7.2 PIC Microcomputer as a Keyboard Encoder 166
7.3 Sound Generation Using a PIC Microcomputer 175
7.4 Frequency Locked Loop Tuning with a PIC Microcomputer 188
7.5 PIC Microcomputers in Subscriber End Equipment 194
7.6 PIC Microcomputer-Based Control Smoothes Universal

Motor Performance .. 202
7.7 Interfacing a PIC Microcomputer with the ER1400 EAROM 211
7.8 Interfacing the PIC Microcomputer with the ER2055 EAROM ... 220

4

1 INTRODUCTION

1.1
Dt~scription

1.2
Features

The General Instrument PIC Family is a series of MOS/LSI8-bit micro
computers manufactured to meet the requirements of the cost
competitive controller market. The PIC microcomputer contains
RAM, I/O and a central processing unit, as well as customer-defined
ROM on a Single chip. The 8-bit input/output registers provide latched
lines for interfacing to a limitless variety of applications including:

o Industrial timing
o RadiolTV Tuning
o Consumer appliances
o Motor control
o Display control
o Repertory dialers
o Vending machines
o Security devices
o Automotive dashboard

The architecture of each device in the PIC Family is based on a register
file concept with a concise yet powerful instruction set designed to
perform bit, byte and register transfer operations. The architectural
features of the PIC family are outlined below:

1/0 INSTR.
PART ROM RAM LINES SPEED INTERRUPT PACKAGE

PIC1650A 512 x 12 32 x 8 32 4/lsec NO 40 PIN
PIC1654 512 x 12 32 x 8 12 2/lsec NO 18 PIN
PIC1655A 512 x 12 32 x 8 20 4/lsec NO 28 PIN
PIC16C58 512 x 12 32 x 8 20 4.5/lsec NO 28 PIN
PIC1656 512 x 12 32 x 8 20 4/lsec YES 28 PIN
PIC1670 1024 x 13 64 x 8 32 2/lsec YES 40 PIN
PIC1672 2048 x 13 64 x 8 32 2/lsec YES 40 PIN

The PIC microcomputer was designed to be an efficient control pro
cessor as well as an arithmetic processor. It has an instruction set which
allows the user to directly set, reset and to test and skip on the status of
any RAM bit, including 1/0 lines. The "wide" instruction word (12 or 13
bits) gives the PIC Family capabilities which are not found in other8-bit
microcomputers:

o All Instructions Single Word
o All Registers Directly Addressable
o Registers Indirectly Addressable
o Set, Clear any Bit in any Register
o Test and Skip on Bit Status
o 2 Destinations for ALU Operations
o More Than 20 1/0 Instructions

5

1.3
Support

1.4
Microcomputer

Fundamentals

These added capabilities allow the user to produce compact and effi
cient code. In other words, many functions requiring a 1024 x8 bit ROM
may very well be programmed into a 512 x 12 bit ROM resident in the
PIC1650 and at a lower cost.

Hardware and software development support is provided by a wide
range of products available from General Instrument. These support
products include the ROMless development microcomputer, the PIC
In-Circuit Emulation System (PICES II), the PIC Field Demo System
(PFD), and the PIC Cross-Assembler (PICAL).

• The PIC1664 DEVELOPMENT MICROCOMPUTER is designed as a
useful tool for engineering prototyping and f.ield trial demonstration.
The contents of the program counter (ROM address) and the instruc
tion word lines (ROM data) are brought out to pins for connection to
external RAM or EPROM. The addition of a HALT pin enables single
stepping of the development program.

• The PIC IN-CIRCUIT EMULATION SYSTEM allows the userto load
his PIC program into RAM and test it in the actual environment of his
hardware application. A powerful interactive debugging program (PIC
BUG) is provided for easy troubleshooting and program corrections.
The PICES system is provided complete with its own enclosure and
power supply for stand-alone or peripheral applications.
• The PICAL CROSS-ASSEMBLER PROGRAM converts symbolic
source programs into object code for the PIC family of microcomputers.
PICAL, coded in FORTRAN TIl or BASIC, is intended for use on mini
computer, larger main-frame computers, and time-sharing systems.

A microcomputer provides, on a single-chip, all of the functional
elements of a minicomputer or a large main-frame computer. Basi
cally, these functional elements include a central processing unit
(CPU), program memory (ROM), data memory (RAM), and an input!
output interface (I/O). It also provides the means for implementing
many combinations of arithmetic and logical operations. By select
ing the proper combinations of operations relevant to a particular
application, a microcomputer can be used to perform logical pro
cessing, basic code conversions, formatting, and to generate funda
mental timing and control Signals for I/O devices.

A microcomputer is best suited for applications in which the cost of
developing and manufacturing customized controller hardware
would exceed the cost and/or space requirements of a general
purpose microcomputer with a specially-designed control program.

6

1.4.1 BASIC MICROCOMPUTER ARCHITECTURE
Figure 1 is a, functional block diagram of a typical microcomputer,
including the CPU, ROM, RAM, and liD .
• Central Processing Unit. The CPU performs the processing and
control functions of the microcomputer. The CPU fetches instruction
words from memory, decodes them, and generates the appropriate
signals that cause the instruction to be executed. The CPU implements
its various arithmetic and logical operations on operands obtained
from memory. It also tests the results of arithmetic and logical opera
tions, and as a result of these tests, chooses between alternate
branches in the program .

• Program Memory. The instructions for the CPU to execute are
stored in a Read-Only Memory (ROM). The ROM provides perma
nent non-volatile storage of the program. Power interruptions or
equipment shutdown will not alter the contents of the ROM.

Program memory size is defined by the number of addressable
locations available for program storage and by the size of the word
(number of bits) stored in each location.

1 TYPICAL MICROCOMPUTER BLOCK DIAGRAM ------

INSTRUCTION WORD

v
PROGRAM ADDRESS PROGRAM

~ __ (~S_EQ~U~E_N~CE~C~O~N~T~RO~L~) __ ~,~ MEMORY

, (ROM)

EXTERNAL Vt ___ IN_T_E_RN_A_L_D_AT_A_B_U_S ----1\ 110 vtt CONNECTIONS ~

CENTRAL ~ ~ ~ INTERFACE \f i>
PROCESSING

UNIT ~~/~
(CPU)

DATA
MEMORY

(RAM)

1---___ 11 t
1 ADDRESS BUS

READ/WRITE CONTROL SIGNAL

7

For example, the notation 512 x 12 specifies that there are 512
addressable locations for program words and each word has 12 bits.

Each instruction word is selected from the program memory (ROM)
by a combination of 1's and D's on the address bus. Each unique
combination of 1's and D's addresses a unique location in program
memory; the number of locations that can be addressed is therefore
determined by the number of combinations of 1's and D's available.
This, of course, is a function of the number of address lines (i.e., the
number of bits in the program counter) .

• Data Memory. The data memory provides temporary storage for
data processed by the CPU. Data memory is usually a Random
Access Memory (RAM). Any data stored can be obtained from the
same location (address) in which it was stored. RAM is volatile, which
means that after equipment shutdown or a power interruption, valid
data is no longer present. Since the information stored is usually of a
temporary nature anyway, volatility is not a serious consideration.
The size of data memory (RAM) is defined using the same notation
described in the program memory (ROM) discussion.

The same address is used with RAM to both read data from and write
data to a particular memory location. A readlwrite signal determines
the direction of data transfer .
• 1/0 Interface. The liD interface permits the microcomputer to
communicate with external devices. A typical interface consists of
one or more liD registers communicating with an external 110 bus or
individual liD lines. The CPU can address these liD registers and
either input data from an external device or output the result of its
processing to an external device. In order for information to be
transferred between the liD ports and the external devices at
appropriate times, the program logic must be written so as to
anticipate significant external events.

For example, to determine if data is present, one or more bits of an
input port can be tested periodically. When data from a particular
input device is made available, the corresponding "flag" bit can be set
by the external device. This "flag" bit could then be reset via an output
port once the input data has been stored.

In some microcomputers, "interrupt" logic is incorporated in the
CPU to direct the control function when an external device signals for
service by activating an external interrupt line.

1.4.2 CPU FUNCTIONAL DESCRIPTION
Figure 2 is a functional block diagram of a typical CPU. The typical
CPU consists of an instruction decode and control unit, an arithmetic
logic unit (ALU), and several special purpose registers. These
registers usually include at least an accumulator, a status register, a
program counter, and a stack or stack pointer .

• Instruction Decode and Control Unit.The instruction decode and
control unit fetches an instruction word from the program memory,
decodes it, and generates the appropriate signals that cause the
desired operations to take place. The instruction decode and control
unit also controls the program counter.

8

2

• Program Counter .. The program counter is a register that holds the
address of the next instruction to be fetched out of program memory.
Since a program is usually executed in the order in which it is written,
the program counter is automatically incremented by one after the
execution of every instruction, except for the following operations:

-A conditional jump instruction whose criteria have been met
-An unconditional jump instruction
-A jump to subroutine (call) instruction
-A return from subroutine instruction
-An interrupt

• Stack. The stack is a group of registers used for temporary storage
of program addresses required for returns from subroutines. A
subroutine is a frequently used group of instructions that, for
convenience and for program economy, is written once and is
located in a separate part of program memory. Whenever this group
of instructions is to be executed, the subroutine is called. This is
accomplished by storing the contents of the program counter
plus one (PC+1) in the top element of the stack and placing the
starting address of the subroutine into the program counter. When
the subroutine has been executed, the program must return to the
next instruction following that which called the subroutine. This is
accomplished by transferring the contents of the top element of the
stack (PC+1) back into the program counter.

INSTRUCTION WORD

... STACK .,

,II ~
SEQUENCE PROGRAM
CONTROL ... PROGRAM ADDRESS PROGRAM -'" COUNTER

, MEMORY

INSTRUCTION
DECODE READIWRITE TO REGISTERS

AND CONTROL AND DATA

CONTROL .. MEMORY
UNIT DATA

ADDRESS DATA
ADDRESS' MEMORY

BUS

L " ~

'll EXTERNAL

"I: ~
CONNECTIONS

.AIAI DATA BUS .AI ...
ACCUMU- ALU 1/0

LATOR ... I" ... I" REGISTERS " v

~
STATUS

REGISTER

CPU

9

It is not uncommon for one subroutine to call a second subroutine,
and perhaps the second subroutine to call a third subroutine, and so
forth, in a process called nesting. To provide for the proper execution
of nested subroutines and the subsequent return to the main
program, the last subroutine, after it has executed, must return to the
preceding subroutine from which it had been called. After the
preceding subroutine has finished executing, it in turn must return to
the subroutine from which it had been called. This sequence
continues until the first subroutine has executed fully and the
program counter is returned to the main program.

In order for this sequence to be implemented, there must be enough
elements in the stack to accommodate each of the return addresses.
As each subroutine is called, its return address is pushed onto the
stack.The previous return addresses can be pushed down to accom
modate each new address until the stack is filled. The stack is a LIFO
(last-in, first-out) storage device. As each nested subroutine is exe-

. cuted, the last return address at the top of the stack is popped off and
placed into the program counter. The next to last return address pops
to the top of the stack ready to be transferred to the program counter
when the next to last subroutine is finished executing. This process
continues until the first return address is at the top of the stack and is
finally transferred to the program counter.
If the CPU architecture does not provide a stack for return addresses,
the programmer must allocate a block of data memory to serve as a
stack. When the stack is part of memory, it must be addressed when
data is to be pushed on or popped off. Therefore, a register is
provided that points to the stack location in the same manner that the
program counter points to the location in program memory of the
next instruction word. This register is known as the stack pointer. The
stack pOinter points to the next stack location at which a return
address will be pushed or popped.

If no stack or stack pointer is provided in the CPU and the program
must be written with nested subroutines, a portion of memory may be
allocated for a stack pointer and stack (software stack).

• Arithmetic Logic Unit (ALU). The ALU implements various binary
arithmetic and logical operations utilizing one or two operands. The
arithmetic operations include binary addition and subtraction.
Boolean logic operations include AND, OR, Complement and
Exclusive OR.

• Accumulator. The accumulator is a register that provides tempo
rary storage for one of the operands to be manipulated by the ALU.
The other operand is usually located in memory. The results of the
operations may be stored in the accumulator.

• Status Register. A status register is provided to store the condition
of the most recent ALU operation. Conditions such as a zero or non
zero result, carry or digit-carry will be stored. The contents of the status
register can be interrogated under program control to determine the
program sequence to be performed next. Depending upon the con
tents of the status register, a jump, skip, or subroutine call may be
executed.

10

1.4.3 THE PROGRAM
The microcomputer has the capability of performing many different
data manipulations and transactions. However, it requires a program
to direct it to perform even the simplest of operations.
The program is a series of instruction words that direct internal
processing functions and the transfer of data between the external
devices and the CPU.
The instruction word for any CPU contains a fixed number of bits that
is determined by the instruction format of the particular CPU. Some of
these bits are used for an OP Code (operation). The OP Code is a
description of the operation to be performed. The remaining bits fol
lowing the OP Code are the operand(s) and contain either a literal, an
address from which data can be obtained, or the address of the next
instruction.
The complete sequence of operations required to carry out a single
instruction is referred to as an instruction cycle. Each instruction
cycle consists of two parts: a fetch cycle and an execute cycle. I n the
fetch cycle, the address in the program counter accesses a location
in program memory. The program memory releases the instruction
word stored in the addressed location. The CPU stores this instruc
tion in an instruction word register. During the execute cycle, this
word is decoded and control signals are generated to direct activities
during the remainder of the execute cycle.
The program becomes operational when power is turned on. The
program counter is set to an address that holds the first line
(instruction word) of the program. This first instruction word is
fetched and is executed by the instruction decode and control unit.
The program counter is then incremented by one count and the next
instruction word is fetched from memory. This orderly progression
through the program continues until an instruction is fetched or an
interrupt occurs that causes a jump or a branch to another location in
program memory.

An instruction may specify an unconditional jump or branch to
another address, in which case the contents of the program counter
are changed. The instruction may specify that a particular bit in the
status register be interrogated for a particular condition. Based upon
the results of the status bit interrogation, the program counter may be
incremented to the next instruction, it may skip the next instruction,
or it may be changed to the address of a different area of the program.

If an instruction calls a subroutine, the contents of the program
counter plus one (PC+1) are placed on the stack, and the starting
address of the subroutine is loaded into the program counter. If the
contents of the accumulator, status register, or other registers are
needed later and cannot be kept in their present locations while the
subroutine is being executed, these contents will have to be tempo
rarily stored elsewhere. This may be accomplished as part of the
subroutine, or other subroutines may be called to store and then
replace the contents of these registers.

11

Depending upon the nature of the data to be processed and the
number of alternate branches and subroutines available to the pro
gram, a program may rarely repeat the same sequence of instructions,
or it may rarely deviate from the same sequence of instructions. The
complexity of the program is dependent upon the application in which
the microcomputer is being used.

12

1.5
Development

Cycle

3

As a prerequisite to the development of a product utilizing micro
computer control and/or processing, a product specification provid
ing functional details of the product and its hardware and software
requirements must be generated.

Once a microcomputer has been selected that can satisfy the soft
ware requirements and interface successfully with the hardware, the
development process can be undertaken.
As shown in Figure 3, the development cycle consists of hardware
and software development, in-circuit emulation and debugging, and
field demonstration. The final objective of the development cycle is to
generate an application program in a binary format (PIC object code)
on paper tape that can be used to directly mask program the PIC
microcomputer chips during the production cycle. This program is
also known as the object program.

13

SOFTWARE
DEVELOP

MENT

MACHINE
CODE

YES

PRODUCT
SPECIFI
CATIONS

HARDWARE
- - - ~ DEVELOP-

IN CIRCUIT
EMULATION
AND DEBUG

FIELD
DEMONSTRA

TION

MENT

NO

RELEASE CODE
TO PRODUCTION
CYCLE

1.5.1 SOFTWARE DEVELOPMENT
Before proceeding with any coding, the hardware and software
specifications must be analyzed. Once the programmer fully under
stands the software requirements of the particular application, he
can then proceed to develop his application program by performing
the following steps:

a. Flow charting
b. Code writing
c. Assembling
d. Editing (debugging).

Flow charting enables the programmer to list the major logical
sequences of his program and to graphically depict input/output
operations, decision points, branches, and instruction modifications
to change the program and initialize a routine.

Basic symbols used in flow charting are:

C ____)

14

START, STOP, HALT,
INTERRUPT

INTERNAL
PROCESSING
FUNCTION

INPUT OR
OUTPUT
OPERATION

DECISION

PREPARATION
(SET FLAG,
INITIALIZE FILE
SELECT REGISTER,
INITIALIZE A
ROUTINE, ETC.)

ONE OR MORE NAMED
PROGRAM STEPS
SPECIFIED IN A SUB
ROUTINE OR ANOTHER
SET OF FLOW CHARTS

An example of a flow chart utilizing these symbols is shown in Figure 4.

The program that is written by the programmer to eventually be
translated into the object program is known as the source program.
There are many different ways to write a source program. One way is
to write the program ~n binary code and directly punch this code onto
paper tape. Although this method is direct, it is virtually impossible to
implement. Writing a program in object code makes it exceedingly
difficult to locate and correct mistakes. It is very difficult to analyze
the program logic and make changes mandated by application
updates.

Another way to write the source program is to code in octal or
hexadecimal notation. An octal or hexadecimal loader program can
be used to convert the octal or hexadecimal coding into the binary
equivalents. This method is a little easier to read and requires less
writing (4 octal or 3 hexadecimal digits as compared to 12 binary
bits). However, it is still very error prone and the program logic
remains inscrutable.

The most common method of writing a source program for a micro
computer is in assembly language. Assembly language provides a
compromise between the symbolic notation understood by humans
and the machine code understood by the microcomputer. Assembly
language is the closest link to the actual machine code that still
retains some speaking language characteristics.

An assembler program is required to assemble and convert the
source program written in assembly language into the object pro
gram. The assembler program also provides many program develop
ment and debugging aides.

Each type of computer has its own individual assembly language and
assembler. This is because the assembly language and assembler are
designed to interface directly with the CPU's unique architecture and
processing modes.

It is understood that in assembly language, there is a simple relation
ship between each line of source code and each line of object code.
In higher level languages such as FORTRAN, PASCAL, COBAl,
RPG, BASIC, etc., there is no such simple relationship between
source code and object code. One line of code in a higher level
language can accomplish the equivalent of many lines of code in an
assembly language. This is known as a macro-instruction and when
executed, results in a specified sequence of machine instructions.
The program responsible for converting a source program written in
a higher level language into an object program is known as a
compiler.

Whereas in an assembler operation, there is a direct conversion of the
assembled source program into an object program, in a compiler
operation, one extra conversion is required. The source code written
in high level language must be converted into the equivalent ,assem
bly-type codes (macro-conversion). Then the source program is
assembled and converted to object code.

15

Fig. 4 FLOW CHART OF PROGRAM TO MOVE DATA
FROM ONE EXTERNAL DEVICE TO ANOTHER ,,~~,,~.,tt_ ... A@]1

NO

16

START

WAIT
16ps

The object code for the PIC microcomputer must be generated on
another computer via a process known as cross-assembling. This
process is enabled by loading a program known as a Cross-Assem
bler into the host computer. The Cross-Assembler is written in the
language of the host computer's resident assembler or compiler. The
Cross-Assembler enables the host computer to translate the PIC
assembly language source instructions and provide object code
formatted for PIC applications rather than object code for the host
computer's internal CPU.

The PIC Cross-Assembler, PICAL, executes on any minicomputer or
large scale computer having a resident editor and FORTRAN TIl com
piler or BASIC interpreter. PICAL enables the host computer to
assemble the PIC source program and provide an object program that
can execute on the PICES in-circuit emulation system.

After the source program has been loaded and assembled, a program
listing may be printed out. Each line of the source program is listed
exactly as coded. This includes the label, OP Code, operand(s) and
comment fields. In addition, three other columns are provided: the
first column is the line number; the second column is the program
location (address) expressed in octal; the third column is the object
code, also expressed in octal.

If there are syntax errors in any of the assembly statements or any
illegal operations, the Cross-Assembler will flag the statements in
which these errors are found and generate an error message. The
programmer, once he analyzes the error messages has the option of
correcting and re-assembling the source program, or entering Simple
corrections directly to the object program.

17

FORMAT OF PIC ASSEMBLER LISTING _____ IiIIIlIIlII~~n

l..INE AD DR Bl B2 PIC MACF(O I~SSEMBLEI~ VEF(LO PAGE

000020 LOINFO Eau .16 ,TeITAL NUMliU(OF DATA l:<ITb
000310 LOL.TIM [QU .200 ;MAX LOOP TIME

3 000003 LODELY ECHJ • :5 ; INTER··I::'ULSF liEl ... AY
4 000034 L.OOLOW Eau .28 ;0 Hn PULSE COUNT

000044 L.OOHI Eau ,,36 ;t/··· 4
II OOOO~)4 L01LOW Eau .44 ;1. [<IT PULSE COUNT
/ OO()O64 L01HI ECHJ " ~,)~~ iI-I·· 4
n 000010 LOEND Eau .El ;8 BITS IN COMMAND WORD

10 00001.l. FOCMD EQU 1.1
11 0OOOl~.' FOCMP LOU :1.2
12 00001.3 FOINFO Eau :1.:1
1.3 00000:1. FORTCC EOU :1.
14 000014 FOL TIM EClLI 1.4
1. ~:j 000015 FOCSAV FUll 1 :,,'
:1.6 0000:1.6 FODEL Y Et1U 1.6
"1.7 O()0004 "'·OFGR EOlJ .. 4
:1.0 ,
19 ;GMDF(EC: RECIEVE conEn COMMAND FROM IR TI~ANSMITTEI~

:,~, 0 DECODE AND l,iTORE IN FoeMD
;:.':1.
~:.~2 000000 CMItI:::EC 1:<Eb ()
;:.'3 000000 01~jl CLHF FOCMD ;CLEAR COMMAND WOfm
24 O()OOO:l. 0152 CL.RF FOCMF' ,AND COMMAND COMPLIMENT
;:.~~5 00000::.' 6011 MUVL.W FOCMn iCDMMAND wmm IN INDEX
:'.6 00000;\ 0044 MOVWF FOFl3n
27 000004 1.011-11 I:~E ~) 0

*** DUPLICATE 1..Al'<EL
20 000004 60~~0 MOVL.W L.OINFO ; 16 INFOHMATHlN BITS
:?<l OOOOO:'j OO:.';:S MUVWF FOINFO
:~o OOOOOb CMD100 fd:S ()

;1:1. 000006 0141 CLF(F FOfncc ;PULSE COUNT '''0
:y,~ 000007 6310 MOVLI.~ I ... OLTIM ;MAX LOOP TI~\F
33 000010 0054 MOVWF FOL.TIM • ~4 000011. 0155 CL.F!F FOCSAV ;SAVFD PULSE COUNT "··0
:5'::; OOOO:l2 CMD:l.O:l I::': En 0
:·V, OOOO:l2 1041 nnf' FOF~TCC ;ANY DATA"
;?)',/ OOOO:L3 004~:' MDVWF ~:}

;~B 0000:1.4 :3103 SI,PNZ
.~? 00001:'j ';'j01.2 [;DTD CMD:l.Ol ;NO, WAIT FDI'(D(,TA
40 000016 CMIHO::.' FiE:] ()

4:1. 000016 100l MOVF FOFncc,W jANY MOHF [lATA
4:? OOOO:l? 02~::;~:1 ";UOWF FOCl:;AV
43 0OO02() 0000 0000 GI<I<PZ

;~ OPCODE ERfWf'~

44 0()()0:'2 3103 !:l1<F'NL
4~"j 0000::.>:3 '':;0:33 GUTO CMDI04 ,NU, PR()CE~:;B INFO ftTT
46 0000::.'4 OO~.:j5 MOVWF FOCSAV ;YFG, GAVE PULSE COUNT
47 000025 1240 INCF n

*** [NWH.H< FILE REGISTEr;'
4U 000026 600:3 MDVL.W I...') [IE!.. '(,WAIT [<EFOI~E CHECKING
49 O()OO;U OO~j6 MOVWF FODEL.Y ;F'UI...BE COUNT AGAIN
'...,0 000030 CMDl.03 fiES 0
"j:1 O()OO:IO 1:3:;6 DLCF·~:;l FODFI..Y

18

1.5.2 HARDWARE DEVELOPMENT
During the hardware development phase, a circuit is developed that
interfaces with the programmed PIC microcomputer and performs in
accordance with the product specifications. During this phase, the
operating voltage requirements of the PIC chip and input/output
loading requirements are analyzed. The number of inputs and outputs
and input/output timing requirements are also analyzed and I/O lines
allocated. Interrupts, I/O flag and real-time clock counter functions are
worked out and I/O specifications provided for software development.
Design of the external clock circuit (RC or crystal driver) is imple
mented, based upon the timing requirements of the application hard
ware and use of the real time clock generator.

1.5.3 IN-CIRCUIT EMULATION
In-circuit emulation allows the user to integrate the hardware and
software functions and debug the system. PICES II (PIC In-Circuit
Emulation System) is a low cost development tool consisting of:
o A 16 bit control processor to execute the debug facilities
o A "personality" module containing a ROMless development PIC

microcomputer configured to emulate one of the processors in the
PIC Family

o An optional EPROM programmer

The PICES II system enables the user to execute an application pro
gram in real time or in the trace mode. In addition, the contents of all the
PIC registers can be displayed and modified. Refer to the PICES II
user's manual for a detailed description of the system's capabilities.

1.5.4 FIELD DEMONSTRATION
Once the hardware and software are functioning correctly within the
in-circuit emulation setup, field demonstrations can be performed
using the PIC Field Demo System. The PFD modules consist of a
ROMless PIC microcomputer that can emulate the entire PIC family,
sockets for erasable PROMs, and a 40- or 28-lead cable for connection
to the applications hardware. The E/PROMs hold the application pro
gram. This unit, when connected to the application hardware, provides
field demonstration of the integrated hardware/software system.

19

2 ARCHITECTURE

2.1
PIC Basic
Functional

Blocks

The various members of the PIC family of microcomputers have the
same basic architecture and almost identical instruction sets. Major
differences are in the I/O port arrangement and in interrupt handling.
Therefore the following description is of PIC functional blocks in
general terms. Each PIC microcomputer will be described in terms of
differences in the following sections.

Figure 5 is a functional block diagram of a PIC microcomputer. The PIC
microcomputer consists of the following functional elements:
o Instruction Decode and Control Unit
o Program Counter
o Hardware Stack
o File Select Register (for indirect addressing)
o Arithmetic Logic Unit (ALU)
o Accumulator (W register)
o Status Word Register
o Real-Time Clock Counter Register
o Program ROM
o Data RAM
o a-Bit I/O Registers
o Interrupt Logic

Internally, the functional elements of a PIC microcomputer are tied
together by a bidirectional data bus. The transfer of data via the bus is
controlled by the instruction decode and control logic which decodes
the instruction to provide an address and/or control signals to each
location that is to receive, transmit, and/or manipulate data transferred
via the bus.

The special registers (RTCC register, PC, status word register and file
select register), the four I/O registers, and the data RAM are organized
as a RAM file. Each register has its own unique RAM file address.

20

1---- a BITS ---I

FO
F1
F2
F3
F4
F5

~
Fa

J
F31

SERIES---------

SPECIFIES INDIRECT ADDRESSING
REAL TIME CLOCK COUNTER
PROGRAM COUNTER
STATUS WORD REGISTER
FILE SELECT REGISTER
1/0 PORTS

GENERAL REGISTERS

ORGANIZATION-PIC1670 SERIES---------

1---- a BITS ---I

21

FO
F1
F2
F3
F4
F5
F6
F7

I
F15

SPECIFIES INDIRECT ADDRESSING
WORK REGISTER
PROGRAM COUNTER
STATUS WORD REGISTER
FILE SELECT REGISTER
INTERRUPT STATUS
REAL TIME CLOCK COUNTER A
REAL TIME CLOCK COUNTER B
1/0 PORTS

F16 GENERAL REGISTERS

1
F63

I\)
I\)

5

File registers can be directly addressed by the instruction word, or
indirectly addressed by specifying FO when the contents of the file
select register (FSR) is to be used as the file address.

The purpose of each of the functional elements of the PIC1650A is
described in the following paragraphs.

2.1.1 INSTRUCTION DECODE AND CONTROL UNIT
The instruction decode and control unit receives the 12-bit instruc
tion word from program memory, decodes it, and issues the appro
priate control signals to cause the desired operations to take place.
At the same time, the instruction decode and control unit, depending
upon the instruction type, issues a file address, a literal OPERAND, or
a program address that vectors a call or GOTO operation. ,

2.1.2 PROGRAM COUNTER (F2)
The program counter is an addressable register that points to the
address of the next instruction to be fetched out of program memory.
The PC provides for direct addressing of all memory locations.

The program counter is incremented by one under control of the
instruction decode and control unit after the execution of every
instruction. Exceptions are conditional and unconditional skips and
branches and subroutine calls and returns.

When performing a skip operation, the program counter is incre
mented by one, but a NOP instruction replaces the next instruction
from the main program. When a GOTO operation is performed, the
program counter is vectored to the specified address. When a sub
routine is called, the contents of the program counter plus one
(PC+1) are pushed onto the stack and the value in the program
counter is vectored to the specified address. When there is a return
from the subroutine, the contents of the top level of the stack are
transferred to the program counter, also, the contents of the second
level of the stack move to the top.
Bits 0 through 7 (but not bit 8) of the program counter may be read and
transferred to a data location to construct a software stack pointer and
stack in data memory. The program counter may be used as the
destination of any operand, but bit 8 will always be zero.

2.1.3 STACK
A hardware stack is provided to accommodate two return addresses.
This facilitates execution of nested subroutines.
When executing a nested subroutine, the contents of the stack are as
follows:

STACK

CALL 1: LEVEL 1
(PC+1)-Stack Level 1 CALL 1 RETURN ADDRESS

LEVEL 2

23

STACK

CALL 2: LEVEL 1
Call 1 RA-Stack Level 2 CALL 2 RETURN ADDRESS

(PC+1)-Stack Level 1 LEVEL2
CALL 1 RETURN ADDRESS

When returning from a nested subroutine, the contents of the stack are
as follows:

RETURN FROM CALL 2:
PC-Call 2 RA

f
Call 1 RA

RETURN FROM CALL 1:
PC-Call 1 RA

STACK

LEVEL 1
CALL 2 RETURN ADDRESS

LEVEL 2
CALL 1 RETURN ADDRESS

STACK

LEVEL 1
CALL 1 RETURN ADD'RESS

LEVEL 2

STACK

LEVEL 1

LEVEL 2

2.1.4 FILE SELECT REGISTER (F4)
The FSR is an addressable five-bit register used to indirectly address
the register file.
An address can be written into the FSR via the eight-bit internal data
bus. Only the lower order of the eight-bit word is relevant.
When the indirect address mode (FO) is indicated, the contents of the
register pointed to by the FSR will be accessed. For example, the
expression ADDWF 0, W specifies that the contents of the W register
and the contents of the register pointed to by the FSR will be added and
the result will be placed in the W register.
The contents of the file select register can be stored in another location
by directly addressing the FSR (F4), and moving its contents to the
accumulator. From the accumulator, the contents can be moved to
another register. However, the three high order bits are read as 111 if
the FSR is specified in an instruction. For example:

MOVF 4, W (F4)-W
MOVWF 23 (W)-F23

The contents of the FSR can be restored by reversing the procedure:
MOVF 23 W (F23)-W
MOVWF 4 (W)-F4

24

2.1.5 ARITHMETIC LOGIC UNIT (ALU)
The ALU implements various binary arithmetic and Boolean logic
operations utilizing one or two a-bit operands. One operand is fetched
from any of the file locations or is a literal in the instruction itself. The
other operand (if applicable) is held in the accumulator. Operations
performed by the ALU are as follows:
o Add/Subtract
o I ncrementiDecrement
o AND, OR, Exclusive OR
o Complement, Clear
o Rotate Left/Right, Swap Half-Bytes

By using one or a combination of these operations, the ALU performs
binary addition, subtraction, multiplication, and division on a-bit
operands. When 16-bit operands are required, double-precision
arithmetic operations can be implemented. BCD, mask operations,
and bit and field manipulations can also be performed.

2.1.6 WORKING RE:GISTER (W)
The W register serves as the accumulator for the ALU. The W register
holds one of the operands operated on during an arithmetic or logical
operation and may store the result.

2.1.7 STATUS WORD REGISTER (F3)
The status word register is an addressable register that stores the
condition of the most recent ALU operation. Bits 0 through 2 of the
status register are used to store the carry, digit carry, and zero status.
The bits in the status register can be set or cleared by bit level program
instructions, or by the MOVW F3 instruction. Only file register opera
tions which do not affect any status bit can be used on the status
register.

C (Carry):

DC (Digit Carry):

Z (Zero):

OV (Overflow):

25

7-4 3 2 0

I Not used I ov I z I DC I C

Stores the carry out of arithmetic opera
tions and acts as a bit link in rotate opera
tions. This bit is also set to a one during a
subtract operation if the absolute value in
the file register is greater than the absolute
value in the W register.

Stores the carry out of the low order digit (4
LSB's) in an arithmetic operation. This bit is
also set to a one during a subtract operation
if the absolute value of the four LSB's in the
file register is greater than the absolute
value of the four LSB's in the W register.

Set if the result of the arithmetic operation
is zero.
Set if the carry out from the MSB is opposite
to the carry out from MSB-1.

2.1.8 REAL-TIME CLOCK/COUNTER REGISTER
The RTCC register is an addressable eight-bit up-counter that is used
to time or to count external events. The RTCC register can be preset
under program control to any eight-bit binary value. The count input to
the RTCC register is applied via the external RTCC pin. The counter
increments on the falling edge of RTCC. When it reaches 377a, it keeps
on counting through OOOa but does not set the carry flag.

The RTCC register can be used to count up to 256 external events via
the RTCC line. The program requirement may be to count a
predetermined number of events, or the program requirement may be
to count an undetermined number of events occurring within a
particular pr~gram sequence.
If an unknown number of events is to be counted, the RTCC register
will first be set to zero under program control. The counter will then
increment on each event input at the RTCC pin. The contents of the
RTCC register (number of events counted) are interrogated under
prog ram control.
If a count of more than 256 is required, a number of bits in a data
register can be appropriated to accumUlate and store the carry bits
from the RTCC register. In this way, the magnitude of the event count
can be increased.
Figure 6 is a flow chart of program logic that can be used to implement
this operation. Assume that the four low order bits of a data register
(F23) are assigned to accumulate the carries from the RTCC register
and that its high order bit is used as a flag to signal when RTCC bit 7
sets. When the RTCC register subsequently attains a full count and
then resets (RTCC bit 7 resets), the carry register will be incremented
and the flag bit reset.

The following is a sample program illustrating the coding required to
implement the logic illustrated in Figure 6. (Refer to Section 3 for an
explanation of the coding.)

Program Steps

BTFSC 1, 7
GOTONOTO
BTFSS 23, 7
INCF 23
BCF 23,7
GOTOB

Description

Skip if RTCC (7) is zero
Jump if RTCC (7) is not zero
Skip if FLAG is set
Increment Carry Register
Reset FLAG
EXIT

NOTO: BSF 23, 7 Set FLAG
GOTO B EXIT

When the RTCC register is used to count a predetermined number of
events, the number of events is subtracted from zero (two's
complement) and this number is preset into the counter. When the
counter increments to zero, the required number of events has
occurred. Similar logic to that shown in Figure 6 can be used to
determine when the counter has reset on a full count.

26

6

INCREMENT
CARRY

REGISTER

YES

YES

NO

NO

NOTE:
FLAG BIT IS SET
ON RTCC (7)
TRANSITION FROM
o TO 1.

The RTCC register can also be used to time events or the interval
between events. These events may be input via the input/output ports
or may be generated by the program.

The timing clock may be a real-time clock (e.g. 60 Hz) applied to the
RTCC input, the external clock generated by the PIC1650A, or any
other clock applied to the RTCC input that is within the RTCC timing
specifications.

2.1.9 I/O REGISTERS
The PIC has up to four a-bit bidirectional input/output registers (A
through D) providing a total of 32 bidirectional input/output lines for
interfacing with external devices.
The equivalent circuit for an individual bit of an I/O port is shown in
Figure 7 as it would interface with input and output TTL devices. As
shown in Figure 7, data written to a port for outputting is strobed into
the I/O port latch from the internal data bus by a WRITE command.
This data remains unchanged until rewritten. Data applied to the port
for inputting is not latched.

27

Fig.7 TYPICAL INTERFACE, BIDIRECTIONAL 1/0 LINE ------
- - - - - - - - - -piCiiOan:-,

VDD

On
(INTERNAL --e~---I
DATA BUS)

WRITE
(INTERNAL

SIGNAL)

READ
(INTERNAL

SIGNAL)

* Pull-up resistor may be deleted via a mask option.

,---
Vee

Input data is available on the I/O line for a period of time determined by
the input device. The input data is transferred to the accumulator via
the internal data bus when the READ line is high.

Each I/O line is pulled up to Voo through pullup transistor 01 which
provides sufficient source current for a TTL high level, yet can still be
pulled down by a TTL low level. When inputting data through an I/O
port, the latch must be set to a logic 1 level under program control. This
turns off Q2 which allows the TTL open collector device to drive the
pin, pulled up by 01.

The bidirectional interface illustrated in Figure 7 is only one of many
possible input/output configurations.
Any of the bits in an I/O register can be used as an individual dedicated
input or output line. I/O lines are normally grouped together into I/O
files to minimize software servicing.

An input operation is performed when an external input device has
valid input data for the PIC. This input data may be available at pre
determined intervals during the program or at intervals monitored by
the RTCC register. At these intervals, the program will set the output
latches to logical 1 's and execute an input instruction that loads the
input data into the W register, from where it may be transferred or
manipulated.

2.1.10 PROGRAM MEMORY (ROM)
The ROM contains the customer-defined operational program. Since
the instruction word is wider than 8 bits, instructions are all single
word, more versatile, and usually require only one machine cycle to
execute.

2.1.11 DATA MEMORY (RAM)
Data memory consists of special purpose registers and general pur
pose registers. Data memory can be directly addressed via the internal
address bus or indirectly addressed via the FSR.

28

Input data may be available from more than one input device and may
be asynchronous. With this type of input arrangement, the program
must determine when valid input data is available and which external
device is inputting before it executes an input operation. Moreover, if
more than one device has input data available at the same time,
priorities must be assigned to determine which set of inputs will be
serviced first.

In order for each input device to signal that it has data available, an I/O
register, or a portion thereof, may be utilized as a "flag" register. Each
flag bit is assigned to an associated input device which, when it has
data ready, causes its associated flag bit to set. The program
periodically interrogates the flag bits to determine which devices have
input data and then performs the necessary input operations.

Figure 8 illustrates program logic that could be utilized for this type of
input operation.

Assume that there are four input devices and that bits 0 through 3 of liD
register F7 are used as flags for each of the devices. Bit 0 is associated
with the highest priority device (A); bit 3 with the lowest priority device
(D). When a bit is set, it means that the associated device has data for
the PIC. If more than one bit is set, it means that more than one device
has data available. Data will be input in the order of highest priority.
Figure 8 is a flow chart of the bit interrogation logic.

The following is a sample program illustrating the coding required to
implement the logic illustrated in Figure 8. (Refer to Section 3 for an
explanation of the coding.)

Program Steps

BTFSZ 7, 0
CALL INPUT A
BTFSZ 7,1
CALL INPUT B
BTFSZ7,2
CALL INPUTC

Description

Skip if bit 0 is zero
Call INPUT A subroutine
Skip if bit 1 is zero
Call INPUT B subroutine
Skip if bit 2 is zero
Call INPUT C subroutine

BTFSZ 7,3 Skip if bit 3 is zero
CALL INPUT 0 Call INPUT 0 subroutine
GOTO B EXIT

When a port is dedicated to output operations only, data can be written
to that port at any time, and the output latch can be used for data
manipulations.

When an liD port is used for bidirectional transfer of data, caution must
be exercised when performing output operations. Bit manipulations
performed on output data stored in the output latch can be affected by
data input by an external device at the same time the output data in the
latch is accessed. Extraneous input bits having logical 0 values may be
introduced. To avoid this possibility, output data can be stored in a data

29

Fig. 8 INPUT FLAG INTERROGATION FLOW CHART

INPUT A

m· J

30

register where it can be accessed for bit manipulation without being
affected by input operations. When the data is ready for output, it is
transferred to the output port.

NOTE: Any output line sinking more than SmA could be read as a logic 1.

Each I/O port can be individually time-multip"'exed between input and
output functions under software control. For information on 1/0 timing
refer to PI C data sheets.

2.1.12 CLOCK GENERATOR
The clock generator generates the internal clocks from which the
microprocessor machine cycle is derived. It also generates an external
clock at the instruction cycle rate. The clock generator frequency is
controlled externally for the devices which do not directly support a
crystal oscillator (PIC1650A, PIC1655A). Frequency control may be
established by an RC network connected to the OSC input pin, or in
applications where more precise timing is required, by a buffered
crystal driver.

The PIC1650A and PIC1655A clock generator divides by four the fre
quency measured at the OSC pin. Therefore, a 1 MHz frequency at the
OSC pin results in a machine cycle of 4J1s (O.25MHz). The minimum
machine cycle time is 4J1s; the maximum is 20Jls. Therefore, the fre
quency at the OSC pin must range between 1 MHz and 200KHz.

Figure 9 is a timing diagram that illustrates the relationship between
OSC, MClR, and ClK OUT, assuming a frequency at the OSC pin of
1 MHz. Figure 10 illustrates resistance values required to obtain instruc
tion execution speeds of 50 to 250KHz, where the external capacitance
is 47pf and the value of R is selected within the range of 14K to 28K.

The oscillator itself consists of 7 inverters connected in a ring fashion
as shown in Figure 11 A. The diagram in Figure 11 B describes the
technique for supplying an external clock.

31

Fig. 9 CLOCK GENERATOR TIMING DIAGRAM ill fuiii%i!!j it

OSC

i i

: ~
: ~1 .. __ --3.0Jls-_ ~ i 1.0Jls i

CLKOUT ____________ -J~ ~~ ______________ _

Note: PIC1650A, PIC1655A only.

Fig. 10 TYPICAL OSCILLATOR RC CHART !lIIW i'

30KO

26KO

22KO
REXT

18KO

14KO

\ \ \
\ i\ \
~ '\ r\
\

,
\

~ r'\.

~ " "
'\ ~ ~

" ." J

TYPICAL /

40 60 80 100 120 140 160 180 200 220 240 260

INSTRUCTION CYCLE TIME (kHz)
Oscillator Frequency With Typical Unit To Unit Variance

Voo = S.OV
C = 47pF
TA = 2SoC

Unit to Unit Variation at Voo = S.OV, TA = 2SoC is ±2S%
Variation from Voo = 4.5V -7.0V referenced to SV is -3%, +9%
Variation from TA = 0° C -70° C referenced to 2SO C is +3%, -S%

Note: PIC1650A, PIC1655A only.

W-UIii!!i!! .. J n iJJS! 1.

32

fig. 118

R

Vee r -- -- -- -- -- -- - -- -- --

INTERNAL
CLOCK

C I
II

I
L ----------------

* Q1 may be deleted via a mask option when an external clock drive is desired.

The first inverter from the ase pin is a high gain Schmitt trigger to
provide trip paint control, while Q1 in combination with the external
resistor serves to form the 7th inverter in the ring.

When driving the oscillator directly from a buffer, it is necessary that the buffer
be capable of pulling the input to a level of Voo -1 Volts driving 100K ohms.
When the positive threshold of the input (Schmitt trigger) is reached, Q1 turns
on pulling the input to ground. The buffer must then be capable of sourcing
sufficient current to keep the input above 2.0V driving 120 ohms (Q1 on
resistance) during the remaining positive half cycle. During the negative half
cycle the input must be driven below 0.8 Volts. The oscillator duty cycle should
be between 20 and 60%.

EXTERNAL ~ TO OSC PIN
CLOCK SOURCE ~ . ,

7404/06 OR
EQUIVALENT

An alternate external buffer circuit which consumes much less power is as shown.

+5V

47pf

EXTERNAL >--~
CLOCK SOURCE ~ --- 1 ~-""------f TO OSC PIN

7404/06 OR
EQUIVALENT

However, when an external clock is to be used, it is recommended that the
options which remove Q 1 (Fig. 11A) be specified.

33

2.2
PIC 1650A

2.3
PIC 1654

2.4
PIC 1655A

2.5
PIC16C58

ROM

512 x 12

RAM

32x 8

I/O

32

Stack
Interrupt (Levels) Timer Package Process

No 2 Yes 40 Pin NMOS

Four 8-bit I/O registers are provided. These registers (A, B, C and 0) are
addressable as F5 through F8.

ROM RAM

512 x 12 32 x 8

I/O

12

Stack
Interrupt (Levels) Timer Package Process

No 2 Yes 18 Pin NMOS

The PIC1654 provides the same architectural features of the PIC1650A in
an 18-pin package. The PIC1654 has 12 I/O lines compared to the
PIC1650's 32 lines.

One 4 bit and one 8 bit bidirectional I/O registers are provided. These
registers (A and B) are addressable as F5 and F6. F7 and F8 are general
purpose registers.

ROM

512 x 12

RAM

32 x 8

I/O

20

Stack
Interrupt (Levels) Timer Package Process

No 2 Yes 28 Pin NMOS

The PIC1655A provides the same architectural features of the
PIC1650A in a 28-pin package. The major difference is that the
PIC1655A has 20 I/O lines rather than the 32 I/O lines of the PIC1650A.

One 4-bit and two 8-bit I/O registers are provided. These registers (A,
B, and C) are addressable as F5 through F7, respectively. Register A
(F5) controls four dedicated non-latching input lines; register B (F6),
which cannot be read internally, controls eight dedicated latched out
put lines; and register C (F7) controls eight bidirectional input/output
lines. Register file F10, which in the PIC1650A was I/O register 0, is an
additional general purpose data register in the PIC1655A.

The PIC1655A utilizes the same instruction set as the PIC1650A.

Stack
ROM RAM I/O Interrupt (Levels) Timer Package Process

512 x 12 32 x 8 20 No 2 Yes 28 Pin CMOS

The PIC16C58 is the low power CMOS version of the PIC1655A. The
PIC16C58 has an additional architectural feature in that all I/O lines can
be put in the tri-state mode. It also has an ultra-low power standby mode,
wherein the oscillator is stopped and the chip draws only leakage current
while the RAM contents are retained. Refer to the PIC16C58 data sheet
for complete description.

34

2.6
PIC1656

Stack
ROM RAM I/O Interrupt (Levels) Timer Package Process

512 x 12 32 x 8 20 Yes 3 Yes 28 Pin NMOS

The PIC1656 employs the same basic architecture as the PIC1655A
with the addition of an interrupt system (Fig. 12). To accommodate the
interrupt logic, five status bits have been added to the status register.
The interrupt logic operates in conjunction with the RT input pin, the
RTCC register and the status register.

The RT pin can be used to provide a clock input for the RTCC register
or it can be used as an external interrupt input. The function of this pin
is controlled by the contents of the status register. When the RT pin is
used as an external interrupt pin, a high-to-Iow transition initiates a
vectored interrupt (external interrupt mode) if IE is:set.

The status word also controls the count function of the RTCC register.
It enables the RTCC register to increment on the internal clock (same
clock as ClK OUT) or on the input at the RT pin. When the RTCC
register overflows, it initiates a vectored interrupt (RTCC interrupt
mode), if interrupts are enabled (RTCE set.)

2.6.1 INTERRUPT LOGIC
The interrupt logic generates an interrupt request to the control unitto
initiate a vectored interrupt. One of two possible interrupt requests
(external interrupt request or RTCC interrupt request) can be gener
ated. Only one interrupt at a time can be serviced. Nested interrupts
are not possible since additional interrupts are disabled by an internal
latch.

The contents of the status register indicate whether any interrupts are
pending. If only one interrupt is pending, it is serviced immediately
providing the interrupt is enabled (i.e., I E or RTCE is set) and the
processor is not already servicing another interrupt. If both external
and RTCC interrupts are pending and enabled, the external interrupt
has priority. If an external interrupt is input on the RT pin while another
external interrupt is being serviced, a new external interrupt request
will be generated to the processor which will reinterrupt immediately
upon its return from the current interrupt.

CAUTION
A return from an interrupt routine must not be executed using any other
instruction but RETURN. If any other instruction is executed to restore the return
address to the program counter, the interrupt logic will not be enabled. This
effectively prevents any other interrupts from being serviced. If the interrupt
routine contains subroutines, returns from the subroutines should be made
using the RETLW instruction. If the RETURN instruction is used mistakenly,
additional interrupts that occur while the first interrupt routine is in process will
be enabled and can corrupt the interrupt routine in process.

35

2.6.2 STATUS REGISTER
The Status register (F3) of the PIC1656 is provided with additional
status bits that control the interrupt logic and the count function of the
RTCC register. The status register is configured as follows:

7 S 5 4 3 2 o
I CNT I RTCR I IR I RTCE I IE I z I DC I C

• BITS 0-2: Carry, digit carry and zero status bits. Same function as
PIC1650A.

• BIT 3: Interrupt Enable (IE) status bit. When set to a one, this bit
enables the external interrupt to occur when and if the interrupt
request (IR) status bit (btt 5) is also set. When reset to a zero, the
external interrupt is disabled.
• BIT 4: Real-Time Clock Enable (RTCE) status bit. When set to a one,
this bit enables the real-time clock/counter interrupt to occur when
and if the real-time clock interrupt request (RTCR) status bit (bit 6) is
also set. When reset to a zero, the interrupt is disabled.
• BIT 5: Interrupt Re~st (IR) status bit. This bit is set by a high-to
low transition on the RT pin, generating an interrupt request. If and
when the interrupt enable (IE) bit (bit 3) is also set, an interrupt will
occur. This causes the current PC address to be pushed onto the stack
and the processor to execute the instruction at location 7608. The IR bit
is then immediately cleared. Note that the IR bit can be set regardless of
the state of the I E bit, thus requesting an interrupt which can be
serviced or not at the programmer's option.
• BIT 6: Real-Time Clock/Counter Interrupt Request (RTCR) status
bit. This bit is set when the RTCC register (File 1) transitions from a full
count (3778) to a zero count (000s). If and when the RTCE bit is also set,
an interrupt will occur. This causes the current PC address to be
pushed onto the stack and the processor to execute the instruction at
location 740s. The RTCR bit is then immediately cleared. Note that the
RTCR bit can be set regardless of the state of the RTCE bit, thus
requesting an interrupt which can be serviced or not, at the pro
grammer's option.

NOTE: Although the processor cannot be interrupted during an interrupt
(i.e., until the RETFI instruction is executed), (an}other interrupt(s)
can be requested (status bits 5 and/orS can be set). This will cause the
processor to reinterrupt immediately upon its return from the current
interrupt assuming the interrupt(s} is (are) enabled. (Pending external
interrupts have priority overpending real-time clock/counter interrupts.)

• Bit 7: Count Select (CNT) status bit. When the CNT bit is set to a
one, the RTCC register will increment on each high-to-Iow transition at
the RT pin. If the CNT bit is reset to a zero, the RTCC register will in
crement at the internal clock rate (1/16 of the frequency at the asc pins).

36

MCLR

Fig. 12 INTERRUPT SYSTEM

INTERRUPT
CONTROL
FLIP FLOP

INTERNAL
CLOCK

74U!

2.6.3 STACK
A three-level stack is provided to accommodate three return ad
dresses. One level of the stack should be reserved to store the return
address of an interrupt. The other two levels provide storage for two
return addresses from a nested subroutine.

NOTE: One level of the stack must always be available to accommodate an
interrupt return address. When an interrupt occurs, the firmware
automatically pushes the return address onto the stack. Should three
subroutines be nested, the return addressofthecurrentsubroutinewill
be destroyed. Only if the PIC1656 is not programmed for interrupts is it
permissible to use all three levels of the stack.

2.6.4 RTCC REGISTER
The RTCC register (F1), in conjunction with the status register, is
programmable for internal clock or RT clock operation.

Bit 7 of the status register, when set to a one, selects the RT pin as the
clocking source and, when reset to a zero, selects the internal clock as
the clocking source. When the RTCC register transitions from a count
of 3778 to a count of 000s, bit 6 (RTCR) of the status register sets to a
one, requesting a real-time clock interrupt. An interrupt to 740s is
generated if RTCE (bit 4) is set.

The RTCC register can be preset and read under program control at
any time. If the RTCC register is not used as a counter, it can be used as
a general-purpose data register provided the RT pin is tied low and
CNT is set to a one. (Note MCLR resets CNT.)

2.6.5 1/0 REGISTERS (F5-F7)
The 1/0 interface consists of three I/O registers controlling 20
input/output lines. These registers (A, B, and C) are addressable as
F5 through F7, respectively. Register A (F5) controls four dedicated
non-latching input lines. Register B (F6) controls eight dedicated
latched output lines, and register C (F7) controls eight bidirectional
input/output lines. As with the PIC1655A, register file F10, which in the
PIC1650A was I/O register 0, is an additional general purpose register
in the PIC1656.

2.6.6 CLOCK GENERATOR
The internal timing rate of the PIC1656 is controlled by an external
control source connected across two input pins, OSC 1 and OSC 2.
This may be established by an RC network (RC control) connected
across the OSC 1 and OSC 2 pins or by a non-buffered external crystal
connected across the OSC 1 and OSC 2 pins.

The PIC1656 clock generator divides the frequency at the OSC 1 and
OSC 2 pins by 16 to derive the internal machine cycle rate. A 4MHz
frequency at the OSC 1 and OSC 2 pins will result in a 4J1s (0.25MHz)
instruction cycle. This enables the use of a low-cost standard
3.58MHz crystal to provide a machine cycle of approximately 4J15.

38

2.7
PIC1670

Stack
ROM RAM UO Interrupt (Levels) Timer Package Process

1024 x 13 64 x 8 32 Yes 6 Yes 40 Pin NMOS

The PIC1670 has several distinct differences from the PIC1650 series.
The 13 bit wide ROM enables the PIC1670 to directly address all 64
registers in addition to enhancing the PIC1650 series instruction set.
The interrupt system (Fig. 12) is similarto the PIC1656 interrupt system
(a separate interrupt status register is added).

2.7.1 INTERRUPT SYSTEM
The interrupt system of the PIC1670 is comprised of an external inter
rupt and a real-time clock counter interrupt. These have different
interrupt vectors, enable bits and status bits. Both interrupts are con
trolled by the status register (F5) ** shown below.

I NOT USED I CNTE I AlB I CNTS RTCIR XIR RTCIE XIE

7* 6 5 4 3 2 0

* Bit 7 is unused and is read as zero.
* * Register 5 will power up to all zeroes.

2.7.2 EXTERNAL INTERRUPT·
On any high to low transition of the RT pin the external interrupt
request (XIR) bit will be set. This request will be serviced if the external
interrupt enable (XIE) bit is set or if it is set at a later point in the
program. The latter allows the processor to store a request (without
interrupting) while a critical timing routine is being executed. Once
external interrupt service is initiated, the processor will clear the XIR
bit, push the current program counter on to the stack and execute the
instruction at location 17608. This program setup requires two instruc
tion cycles and no new interrupts can be serviced until a return from
interrupt (RETFI) instruction has been executed.

2.7.3 REAL-TIME CLOCK INTERRUPT
The real-time clock counter (RTCCA & RTCCB, file registers F6 and
F7) have a similar mechanism of interrupt service. The RTCCA register
will increment if the count enable (CNTE) bit is set. If this bit is not set
the RTCCA & RTCCB will maintain their present contents and can
therefore be used as general purpose RAM registers. The count source
(CNTS) bit selects the clocking source for RTCCA. If CNTS is cleared
to a '0', then RTCCA will use the internal instruction clock and incre
ment at 1/8 the frequency present on the OSC pins. If CNTS is set to a
'1', then RTCCA will increment on each high to low transition of the RT
pin. RTCCB can only be incremented when RTCCA makes a transition
from 3778 to 0 and the AlB status bit is set. This condition links the two
eight bit registers together to form one sixteen bit counter. An interrupt
request under these conditions will occur when the combined registers
make a transition from 1777778 to O. If, however, the AlB bit is not set,
then RTCCA will be the only incrementing register and an interrupt
request will occur when RTCCA makes a transition from 3778 to O. (In
this setup the RTCCB register will not increment and can be used as a

39

~
o

XIE
(BIT 0)

INTERRUPT SYSTEM BLOCK DIAGRAM, PIC1670

EDGE TO SYNC
PULSE GEN

CARRY OUT 'B'

r-----~I~R_T_CC __ A ____ ~

INTERNAL
CLOCK

-I1-

1740.

general purpose RAM register). Once a request has come from the
real-time clock counter, the real-time clock interrupt request (RTCIR)
bit will be set. At this point, the request can either be serviced imme
diately if the real-time clock interrupt enable (RTCIE) bit is set or be
stored if RTCI E is not set. The latter allows the processor to store a
real-time clock interrupt while a critical timing routine is being exe
cuted. Once interrupt service is initiated, the processor will clear the
RTCIR bit, push the present program counter onto the stack and
execute the instruction at location 17408. This setup requires two
instruction cycles and no new interrupts can be serviced until a RETFI
instruction has been executed.

The RETFI instruction (000028) must be used to return from any inter
rupt service routine if any pending interrupts are to be serviced. Exter
nal interrupts have priority over RTCC driven interrupt in the event
both types occur simultaneously. Interrupts cannot be nested but will
be serviced sequentially. The existence of any pending interrupts can
be tested via the state of the XIR (bit 2) and RTCIR (bit 3) in the status
word F5.

2.7.4 INPUTIOUTPUT CAPABILITY
The PIC1670 provides four complete quasi-bidirectional input/output
ports. A simplified schematic of an I/O pin is shown below. The ports
occupy address locations in the register file space of the PIC1670.
Thus, any instruction than can operate on a general purpose register
can operate on an liD port. Two locations in the register file space are
allocated for each liD port. Port RAO-7 is addressable as either F10 or
F11. Port RBO-7 is addressable as either F12 or F13. Port RCO-7 is
addressable as either F14 or F15 and Port RDO-7 is addressable as
either F16 or F17. An liD port READ on its odd-numbered location will
interrogate the chip pins while an liD port READ on its even-numbered
location will interrogate the internal latch in that liD port. This simpli
fies programming in cases where a portion of a single port is used for
inputting only, while the remainder is used for outputting as illustrated
in the following example:

... RAO

... RA1

... RA2

PIC
.. RA3

""II RA4 .. RA5

""II RA6 .. RA7

41

Here, the low 3 bits of port RA are used as output-only, while the high 5
bits are used as input-only. During power on reset (MCLR low), the
latches in the I/O ports will be set high, turning off all pull down
transistors as represented by O2 in Figure 13. During program execu
tion if we wish to interrogate an input pin, then, for example,

BTFSS 11,6
will test pin RA6 and skip the next instruction if that pin is set. If we wish
to modify a single output, then, for example,

BCF 10,2
will force RA2 to zero because its internal latch will be cleared to zero.
This will turn on A2 and pull the pin to zero.

The way this instruction operates internally is the CPU reads file 10 into
the A. L. U., modifies the bit and re-outputs the data to file 10. 'If the pins
were read instead, any input which was grounded externally would
cause a zero to be read on that bit. When the CPU re-outputted the data
to the file, that bit would be cleared to zero, no longer useful as an input
until set high again.

During program execution, the latches in bits 3-7 should remain in the
high state. This will keep A2 off, allowing external circuitry full control
of pins RA3-RA7, which are being used here as input.

Fig. 13 BIDIRECTIONAL INPUT-OUTPUT PORT---------

INTERNAL
BUS

S
I-----~ 0 Q t-----4

WRITE

READ EVEN. I/O FILE #

READ ODD. 110 FILE #

42

Vee

Vss

Vee

Vss

I/O
PIN

2.8
Pin

Assignments
14

The PIC family is supplied in dual in-line packages with the pin
assignments as shown in Figs. 14-19, respectively.

PIN

Top View

Vss Vxx
RAO Voo

RA1 RTCC

RA2 MClR

TEST OSC

RA3 ClK OUT

RA4 RD?

RAS RD6

RA6 RDS

RA? RD4

RBO RD3

RB1 RD2

RB2 RD1

RB3 RDO

RB4 RC?

RBS RC6

RB6 RCS

RB? RC4

RCO RC3

RC1 RC2

Top View

RA2 RA1

RA3 RAO

RTCC OSC1

MClR OSC2

Vss Voo

RBO RB?

RB1 RB6

RB2 RBS

RB3 RB4

43

Fig. 16 PIC1655A PIN ASSIGNMENTS SLUII!,

Top View

RTCC MClR

VDD OSC

Vxx ClKOUT

Vss RC7

TEST RC6

RAO RC5

RA1 RC4

RA2 RC3

RA3 RC2

RBO RC1

RB1 RCO

RB2 RB7

RB3 RB6

RB4 RB5

XX c ... 3iii£L .. k UG

Fig. 11 PIC16C58 PIN ASSIGNMENTS

Top View

OSC SBY

Voo MClR

RTCC ClK OUT

Vss RC7

TEST RC6

RAO RC5

RA1 RC4

RA2 RC3

RA3 RC2

RBO RC1

RB1 RCO

RB2 RB7

RB3 RB6

RB4 RB5

~·I~I

44

18

Top View

OSC 1 OSC 2

Voo MClR

RT ClK OUT

Vss RC?

TEST RCG

RAO RCS

RA1 RC4

RA2 RC3

RA3 RC2

RBO RC1

RB1 RCO

RB2 RB?

RB3 RBG

RB4 RBS

1.11111' ! ", 11ft WtFD1i1lfr

19 PIN

Top View

OSC1 Voo

OSC2 MClR

RAO RT

RA1 RD?

RA2 RDG

RA3 RDS

ClKOUT RD4

RA4 RD3

RAS RD2

RAG RD1

RA? RDO

RBO RC?

RB1 RCG

RB2 RCS

RB3 RC4

RB4 RC3

RBS RC2

RBG RC1

RB? RCO

Vss TEST

45

3 INSTRUCTION SET

3.1
General

Instruction
Format

The PIC1650 series instructian set has a basic repertaire af 30 instruc
tian wards. These instructions fall into. three general categaries:
• General file register aperatians (byte-ariented)
• Bit level file register aperatians
• Literal and cantral aperatians.
Each instructian ward cansists af 12 binary bits. The instructian
ward, when expressed in binary, is also. knawn as a machine cade ar
abject cade. A certain number af bits in the instructian ward are
allacated as an aperatar (OP Cade). An OP Cade specifies the type af
aperatian to. be performed. The balance af the instructian ward
includes ane ar mare aperands which further specify the aperatian af
the instructian.

In general file register aperatians, six bits are allacated far the OP
Cade. In bit level file register aperatians, faur bits are allacated; and
in cantral and literal aperatians, three ar faur bits are allacated far the
OP Cade.

The aperand field can pravide the fallawing infarmatian:
• File address af the register fram which data is to. be abtained.
• File address af the register into. which data fram the W register

is to. be written.
• Destinatian (file register ar W register) af the results af an

aperatian.
• Bit number af the bit affected by a bit level file register

aperatian.
• I nstructian address to. which the pragram caunter will be

vectared.
• Literal value stared in the pragram memary (ROM).
An example af a PIC instructian, in abject cade, to. mave a numeric
literal, actal 26, to. the W register is 110000010110, with the OP Co. de
and aperand as fallaws:

OP Code Operand

11 1 a a I a a a 1 a 1 1~
OP Cade 1100 specifies that a literal shall be placed in the W register.
The aperand is the binary equivalent af the literal 268 . The camplete
12-bit binary abject cade is used by the pracessar to. execute the
instructian.

It is narmally very difficult far the pragrammer to. read ar write mare
than a few lines af this type af cade. Therefare pragrams are usually
written in a symbalic language that is easily understaad by the
pragrammer and is also. executable by the PIC Crass Assembler.

Using symbalic natatian, the OP Cade is expressed as a mnemonic.
The operand(s) can be expressed in octal, binary, hexadecimal,
decimal, ar symbolic notation. However, unless otherwise specified,
all operands are considered actal.

46

The PIC object code instruction

11 1 0 010 0 0 1 0 1 1 0 I
just described can be expressed as:

OP Code Operand

MOVLW 26

Other examples of the same instruction with the operand expressed
in different notations include:

MOVLW 800010110
where: the 8 preceding 800010110 specifies binary

notation for Octal 26
MOVLW X16
where: the X preceding 16 specifies hexadecimal nota

tion for Octal 26
MOVLW.22
where: the period preceding 22 specifies decimal nota

tion for Octal 26
MOVLW SAMPLE
where: SAM PLE is the sym bol ic notation for Octal 26.

This symbol must be defined in an appropriate
place in the program so the assembler can
substitute the correct binary value when the
notation "SAMPLE" occurs ..

The use of an Assembler enables an instruction or group of instruc
tions to be identified by a label. In branch and call instructions, which
. provide the address of an instruction to be branched to as an
operand, the label may be substituted for the address as the operand.
This label must exactly match the label of the instruction to which a
branch is specified. The Assembler will substitute the proper address
in the operand field containing the label.

The instruction to branch to program location 4728 can be expressed
as:

GOTO 472
or
GOTO OVFLO, where OVFLO is the label or symbolic name
for the address of the referenced instruction.

In PIC object code, this instruction would be written as:

110111001110101

The Assembler also provides a comments field. This field is for the
convenience of the programmer in documenting his program. A
typical assembly language line therefore consists of the following:

I Label I OP Code I Operand I Comments I
The label and comments fields are not always used.

All instructions, except for subroutine calls and conditional skips and
branches, are executed during one machine cycle. The exceptions
are executed in two machine cycles.

47

PIC1650 SERIES INSTRUCTION SET

BYTE-ORIENTED (11-6) (5) (4-0) FILE REGISTER
OPERATIONS OP CODE I d I f (FILE #)

For d = 0, 1-W (pICAL accepts d = 0 or d = W in the mnemonic)
d = 1, 1- 1 (11 d is omitted, assembler assigns d = 1.)

Instruction-Binary (Octal) Name Mnemonic, Operands Operation StatuI Affected

000 000 000 000 (0000) No Operation NOP None
000 000 1 1 1 111 (0040) Move W to 1 (Note 1) MOVWF W-f None
000 001 000 000 (0100) Clear W CLRW O-W Z
000 001 1 1 1 111 (0140) Clear 1 CLRF f O-f Z
000 010 d 11 f 1 1 (0200) Subtract W 1rom f SUBWF f, d f - W-d [f+W+1-d] C,DC,Z
000 01 1 d f f f 1 f (0300) Decrement f DECF f, d f - 1-d Z
000 100 d f f f f f (0400) Inclusive OR Wand f IORWF f, d WVf-d Z
000 1 01 d f f f f f (0500) AND Wand f ANDWF f, d W·f-d Z
000 1 10 d f f f 1 1 (0600) Exclusive OR Wand 1 XORWF f, d W@f-d Z
000 1 1 1 d 1 f f f f (0700) Add Wand f ADDWF f, d W+f-d C,DC,Z
001 000 d f f f f f (1000) Move f MOVF f, d f-d Z
001 001 d f f f f f (1100) Complement f COMF f, d f-d Z
001 0'10 d f f f f f (1200) Increment 1 INCF f, d f+1-d Z
001 01 1 d f f f f f (1300) Decrement f, Skip if Zero DECFSZ f, d f - 1-d, skip if Zero None
001 100 d f f f f f (1400) Rotate Right f RRF f, d f(n)-d(n-1), f(O)-C, C-d(7) C
001 1 01 d 11 1 1 1 (1500) Rotate Left f RLF f, d f(n)-d(n+1), f(7)-C, C-d(O) C
001 1 1 0 d 1 f f f f (1600) Swap halves f SWAPF f, d f(0-3)~f(4-7)-d None
001 1 1 1 d 1 f f f f (1700) Increment f, Skip if Zero INCFSZ f, d f+1-d, skip if zero None

BIT -ORIENTED (11-8) (7-5) (4-0)
FILE REGISTER

OP CODe I b (BIT #) I f (FILE #) OPERATIONS

Instruction-Binary (Octal) Name Mnemonic, Operands Operation StatuI Affected

010 Obb b f 1 1 1 f (2000) Bit Clear f BCF f, b O-f(b) None
010 1bb b f f 1 f f (2400) Bit Set 1 BSF f, b 1-f(b) None
01 1 Obb b f f 1 f f (3000) Bit Test f, Skip i1 Clear BTFSC f, b Bit Test f(b): skip if clear None
01 1 1bb b f f f 1 f (3400) Bit Test f, Skip if Set BTFSS f, b Bit Test f(b): skip is set None

(11-8) (7-0)
LITERAL AND CONTROL

OP CODE k (LITERAL)
OPERATIONS

Instruction-Binary (Octal) Name Mnemonic, Operands Operation Status Affected

100 Okk kkk kkk (4000) Return and place Literal in W RETLW k k-W, Stack-PC None
100 1 k k kkk kkk (4400) Call subroutine (Note 1) CALL k PC+1 - Stack, k - PC None
1 01 kkk kkk kkk (5000) Go To address (k is 9 bits) GOTO k k-PC None
1 1 0 Okk kkk kkk (6000) Move Literal to W MOVLW k k-W None
1 1 0 1 k k kkk kkk (6400} Inclusive OR Literal and W IORLW k kVW-W Z
1 1 1 Okk kkk kkk (7000) AND Literal and W ANDLW k k·W-W Z
1 1 1 1 k k kkk kkk (7400) Exclusive OR Literal and W XORLW k k@W-W Z

48

3~2
General File

Register
Operations

This group of instructions is used to operate on data located in any of
the file registers including the 1/0 registers.

Operations performed using general file register instructions include:

o Two data transfer operations
o Six arithmetic operations
o Six logical operations
o Three rotate operations.
One of two different address modes (direct address or indirect
address) is used in a general file register instruction. The most
commonly used address mode is direct addressing.

The direct address mode is specified by any file address of one through
378 in the operand field. The operation called for by the OP Code will be
performed on the data stored in the specified file location.

The indirect address mode is specified by a file address of zero in the
operand field. The operation called for by the OP Code will be
performed on the data in the file location pointed to by the five LS8's
of the file select register, F4. Since the file select register must be
loaded under program control, an instruction must be executed to
load the FSR with an appropriate file address prior to using the
indirect address mode.
For example: Assume that file address F23 has been previously
loaded into the FSR. When the indirect address instruction MOVF
O,W is issued, the file select register is pOinting at file register F23.
The contents of file register 23 are read and transferred to the W
register.
The format of the general file register instructions is as follows:

(11-6) 5 (4-0)

I OP Code I d I f I
f = file register address (normally expressed in octal notation)
d = destination of result where: O=W register

1 =file register

The instruction may be expressed symbolically as:
OP Code f,d
where: f may be expressed in octal (ASSUMED), or

may be expressed in binary, hexadecimal,
decimal, or symbolic notation. d may be
expressed as a ° or W for the W register, or
as a 1 or a blank for the file register.

Note that if no destination is specified (d operand position left blank),
a default value of 1 is assumed (the file register becomes the destina
tion).
Examples: Increment File

INCF 6,0 }(F6)+1-.W
INCF 6,W
INCF 6,1 I (F6)+1 F6
INCF 6

49

3.2.1 DATA TRANSFER OPERATIONS
Two move instructions are provided in the PIC instruction set. One
instruction (MOVWF) moves data from the W register to a file register
(W -- f). The other instruction (MOVF) moves data from a file register to
the W register (f -+ W). A variation of the MOVWF instruction (NOP) is
also provided. This instruction is a do-nothing instruction that uses up
a period of time equal to one machine cycle.

MOVWF f Move Contents of W register to File Register

OP Code d File

1000 0 0 0111f f f f}]

Status Bits affected: None

Example: MOVWF 11

1000000111010011

(W) -- f

(W) -- F11

The contents of the W register are moved to file register 118.

NOP No Operation

OP Code Operand

10 0 0 0 0 01010 0 0 0 01

Status bits affected: None

MOVF f,d Move Contents of File Register

OP Code File

10 0 1 0 0 Oldlf f f ~ (f) -+ d

Status bits affected: Zero

Example: MOVF 22,W

10 0 1 0 0 01011 0 0 1 01 • (F22) -+ W

The contents of file register 228 are moved to the W register. If the
contents of the register are zero, the Zero status bit will be set.

Example: MOVF 22

1001000111100!"YJ (F22) -+ F22

The contents of file register 22a are moved to the ALU and back to File
22. This instruction can be used to examine the contents of a file regiS
ter since, if the contents of the register are zero, the Zero status bit
will be set.

50

3.2.2 ARITHMETIC OPERATIONS
Six arithmetic instructions are provided in the PIC instruction set:
ADD (ADDWF), Subtract (SUBWF), Increment (INCF), Increment
and skip if zero (INCFSZ), Decrement (DECF), and Decrement and
skip if zero (DECFSZ). The result of each operation can be placed in
the W register or the file register. All arithmetic operations affect the
status register. In addition to performing a subtract operation, the
SUBWF instruction, when combined with interrogation of the status
register, can be used to perform a compare operation. The INCFSZ
and DECFSZ instructions are commonly used in loop operations.

ADDWF f,d Add Contents of W Register to Contents of File Register

OP Code File

10 a 011 11dlf f f f fl (f) + (W) --+ d

Status bits affected: Carry, Digit Carry, Zero

Example: ADDWF 6,W

10 a 01111010 01101 (F6) + (W) --+ W

The contents of the W register are added to the contents of file
register 6. The result is placed in the W register (d=O). The contents
of F6 are not affected.

Example: ADDWF 6

/0 a 01111110 01101 (F6) + (W) --+ F6

The contents of the W register are added to the contents of file
register 6. The result is placed in F6 (d=1). The contents of the W
register are not affected.

Assume 2428 in F6 and 1178 in the W register to see the effect of the
ADDWF instruction on the status bits:

10100010

+01001111

1111 000 1 --+ F6

STATUS

~
~

The Carry bit is reset, indicating no overflow (sum of a-bit values in W
register and file register ~255). The Digit Carry bit is set indicating a
digit overflow (sum of 4 LSB's in W register and file register>15). The
Zero bit is reset, indicating that the result of the addition has not
provided an a-bit value of zero.

51

SUBWF f,d Subtract Contents of W Register from Contents of File
Register

OP Code File

10 0 0 0 1 0 Id Iff f f j
Status bits affected: Carry, Digit Carry, Zero

(f) - (W) - d
[in detail,
(f) + (W) + 1 - d]

Example: SUBWF 17,W

I 0 0 0 0 1 0 10 I 0 1 1 1 1J (F17) - (W) - W

The contents of the W register are subtracted from the contents of file
register 178 (using two's complement addition). The result is placed in
the W register (d=O). The contents of F17 are not affected.
Assume 1048 in F17 and 508 in the W register to see the effect of the
SUBWF instruction on the status bits:

01000100

-00101000

00011100 - W

STATUS

fClOCTZl
~

The Carry bit is set, indicating no overflow (absolute value in W
register not greater than absolute value in F17). The Digit Carry bit is
reset, indicating a digit-overflow (absolute value of 4 LSB's of F17
greater than absolute value of 4 LSB's of W Register).
Assume 508 in F17 and 1048 in the W register:

00101000 STATUS

-01000100 ~
11100100 -W ~

The Carry bit is reset, indicating an overflow (absolute value in the W
register is greater than absolute value in F17). The Digit Carry bit is set,
indicating no digit overflow.
Note that the result obtained when a higher absolute value is sub
tracted from a lower absolute value is the two's complement of the
correct result. In this case 3448 was obtained which is the two's com
plement of the actual difference between the two values (348, or
000111000). Thus, C = 0 indicates a negative result and it is in two's
complement form. Assume 508 in F17 and 508 in the W register:

00101000 STATUS

-00101000

00000000 - W

52

~
~

The SUBWF instruction can be used to compare two values; one in
the W register, the other in the file register. After the SUBWF
instruction is implemented, it can be determined if the value in W is >,
< or = to the value jin a file register by testing the status bits as follows:

Condition True False
W>F C=O C=1
W~F C=1 C=O
W=F Z=1 Z=O

INCF f,d Increment Contents of File Register

OP Code File

1001 0 1 oldlf f f f fl

Status bits affected: Zero

Example: INCF 32

1001010111110101

(f) + 1 - f

(F32) + 1 -- F32

The contents of file register 328 are incremented. The result is placed
in F32 (d=1). The contents of the W register are not affected.

Assume that the contents of F32 are 01010111 before the I NCF
instruction. After the INCF instruction, the contents of F32 are
01011000.

INCFSZ f,d Increment Contents of File Register, Skip If Zero

OP Code File

100111 11dlf f f f fl

Status bits affected: None

Example: INCFSZ 17

1001111111011111

(f) + 1 - d, skip if zero

(F17) + 1 - F17, skip if zero

Assume that a table is to be accessed seven times to perform an
update operation. The file select register F4 will be loaded with the
starting address of the table. The two's complement of the number of
passes to be made (loops) will be loaded into F17a.

Aside from the table update, two operations will be performed during
each loop: (1) The table address will be incremented; (2) The pass
count will be incremented.

53

MOVLW TABLE
MOVWF 4
MOVLW 371
MOVWF 17

LOOP: ADDWF 0

INCF 4
INCFSZ 17
GOTO LOOP
EXIT

; Load starting address into W
; Move starting address into F4 (FSR)
; Two's complement (octal) of 7
; Move number of passes into F17

; Add contents of W register to
contents of table at location
referenced by FSR.

; Increment table address.
; Increment count, skip if zero.

At the end of the end of the seventh loop, F17 increments to zero and
a skip past the GOTO LOOP instruction is made.

OECF f,d Decrement Contents of File Register

OP Code File

10 0 0 0 1 11dlf f f f fl (f) - 1 - d

Status bits affected: Zero

Example: DECF 6,W

10 0 001110\0 0 1101 (F6) - 1- W

The contents of file register 6 are decremented. The result is placed in
the W register (d=O). The contents of F6 are not affected.

Assume that the contents of F6 are 00000001 before DECF. When the
contents are decremented, the result is 00000000 and the Zero status
bit is set.

OECFSZ f,d Decrement File Register, Skip If Zero

OP Code File

100101 11dlf f f f-y]

Status bits affected: None

Example: DECFSZ 17,W

1001011101011111

(f) - 1 - d, skip if zero

(F17) - 1 - F17, skip if zero

This instruction operates similarly to the INCFSZ instruction in the
table update example except that the actual loop count is loaded into
the loop register rather than the two's complement of the loop count.
On the last loop count, the register decrements to zero and skips the
next instruction.

54

3.2.3 LOGICAL OPERATIONS
Six logical instructions are provided in the PIC instruction set: Clear
Contents of W register (CLRW), Clear Contents of File Register
(CLRF), AND Contents of W Register and Contents of File Register
(ANDWF), Inclusive OR Contents of W Register and Contents of File
Register (IORWF), Exclusive OR Contents of W register and Con
tents of File Register (XORWF) and Complement Contents of File
Register (COMF).

CLRW Clear Contents of W Register

OP Code d File

10 0 0 0 0 11010 0 0001
Status bits affected: Zero

CLRF f Clear Contents of File Register

OP Code d File

1000001111f f f f fl
Status bits affected: Zero

Example: CLRF 12

1000001111f f f f fl

o-w

o -f

0- F12

ANDWF f,d AND contents of W Register and Contents of File
Register

OP Code File

100010 11dlf f f f fl·
Status bits affected: Zero·

Example: ANDWF 27,W

1000101101101111

(W) • (f) - d

(W) • (F27) - W

The contents of the W register are ANDed with the contents of file
register 278 . The result is placed in the W register (d=O). The contents
of F27 are not affected.
Assume that it is required to pack two bytes of BCD data into one
register. The high order bits in the W register and the low order bits in
F27 are packed with 1's. When the two registers are ANDed:

11 11 11 11 1 : B9o:J
I :B~D': 11111~

The resu It is:

"--'1 :,.........,.B~---.D' :--'-1--'-: B-"-? OJ

55

W
•

F27

-W

IORWF f,d I nclusive OR Contents of W Register and Contents of
File Register

OP Code File

1000 1 0 Oldlf f f f ~ (W) V (f) - d

Status bits affected: Zero

Example: IORWF 27

1000 1 0 01111 0 1 12] (W) V (F27) - F27

The contents of file register 278 are inclusive ORed with the contents
of the W register. The result is placed in F27 (d=1). The contents ofW
are not affected.

Assume that it is required to pack two bytes of BCD data into one
register. The high order bits in the W register and the low order bits in
F27 are packed with D's. When the two registers are ORed:

I 0 I 0 I 0 I 0 I : s90 : I

I :s~o': 1 01 0 I 0 I 0 ,

The result is:

W
V

F27

'---1 :l""""'""'Is9'--'0 :'--'I'---':---'s9----ro :--.., -+ W

XORWF f,d Exclusive OR Contents of W Register and Contents of
File Register

OP Code File

100010 Oldlf f f f fl (W) <+> (f) -+ d

Status bits affected: Zero

Example: XORWF 37

1000 1 1 01111 1 1 1 11 (W) <+> (F37) -+ F37

The contents of the W register are exclusive ORed with the contents
of file register 378. The result is placed in F37 (d=1). The contents of
the W register are not affected.

Assume that it is required to compare the contents of the W register
with the contents of F37. If the contents are the same, the result of the
Exclusive OR will be zero and the Zero status bit will be se~.

56

COMF f,d Complement Contents of File Register

OP Code File

100100 11dlf f f (f) - d

Status bits affected: Zero

Example: COMF 27

10 0 1 0 0 11111 0 1 1 11 (F27) -- F27

The contents of file register 278 are complemented. The result is
placed in F27 (d=1). The contents of the W register are not affected.
Assume that the contents of F27 are 01110110 before the COMF
instruction. After the COMF instruction is executed, the contents of
F27 are 10001001.

3.2.4 ROTATE OPERATIONS
Three rotate instructions are provided in the PIC instruction set.
These instructions permit data in any file register to be rotated left or
right. These operations are useful in a wide range of applications,
including serial output operations and binary multiplication and
division. A special rotate instruction allows two halves within a
register to be swapped. This instruction is useful in packing and
unpacking data and also aids in BCD arithmetic.

RLF f,d Rotate Contents of File Register L.eft Through Carry

Status bits affected: Carry C f(7) f(O)
C -- d(O), f(6-0) -- d(7-1), f(7) --C

Example: RLF 20

Assume the value stored in file register 208 is to be doubled, and that
the Carry bit has been reset:

@] I 0 I 0 11 11 I 0 11 I 0 11 I Before Rotate Left

LEH O l1 j11 0 111 o111ofJ After Rotate Left

The value stored in F20 has been doubled from 658 to 1528.

57

RRF f,d Rotate Contents of File Register Right Through Carry

OP Code File

1001 10 OHt t t t t] lD=i I I II II I ~
Status bits affected: Carry C f(7) f(O)

C - d(7), f(7-1) - d(6-0), f(O) - C

Example: RRF 20

Assume the contents of file register 20a are to be serially shifted out,
using the Carry bit as the link:

o 10/0/1/110/1/0/11

~01010111110111o ~
Before Rotate Right

After Rotate Right

The Carry bit can be interrogated and its contents output after each
rotate instruction.

SWAPF f,d Swap halves of File Register

OP Code File

1001 1 1 O/d/f f 1 f 1/ -d

Status bits affected: None

Example: SWAPF 7,W

10 0 1 1 1 01010 0 1 1. 1 I [F7(3-0) :; F7(7-4)] - W

Assume that it is required to pack two bytes of BCD data into one
register. One byte of BCD data is located in F7. Another byte is
located in F10a. Each register contains the BCD byte in the four low
order bits. Zeros are packed into the four high order bits.

7 0

1 0 : 0: 0 : 0 I : B90 : I

The instruction SWAPF 7,W swaps the BCD byte and the zeros and
places the result in the W register:

7 0

I : B~O: I 0 : 0 : 0 : 0 1

By inclusive ~Ring the contents of the W register and F10 using the
instruction

IORWF 10 the two BCD bytes are packed into F10.

1 :B?O: 1 : B?O': 1- F10

58

3.3
Biit Level File

Register
Operations

This group of instructions provides the ability to manipulate and test
individual bits in any addressable register. These instructions use
the same address modes (direct and indirect) as the general register
instructions.

The format of the bit level file register instructions is:

(11-8) (7-5) (4-0)

OP Code I b I
f = file register address
b = bit number

The instruction may be expressed symbolically as:
OP Code f,b .

where: f and b are expressed in octal (AS
SUMED), binary, hexadecimal, deci
mal, or symbolic notation.

3.3.1 BIT MANIPULATIONS
Two instructions are included in the PIC instruction set to manipulate
individual bits in the register file. One instruction (BCF) clears a bit;
the other instruction (BSF) sets a bit.

BCF f,b Clear Bit in File Register

OP Code Bit File

1010 olb b blf f f f fl o - 'f(b)

Status bits affected: None

Example: BCF 7,2

10 1 0 010 1 010 0 1 1 11 o - F7(2)

Assume that contents of F7 are 11111111 before the BCF instruction.
After the BCF instruction, the contents of F7 are 11111011.

BSF f,b Set Bit in File Register

OP Code Bit File

1010 11b b blf f f f fl 1 - f(b)

Status bits affected: None

Example: BSF 7,2

10 1 0 1 10 1 010 0 1 1 1 1 1 - F7(2)

Assume that contents of F7 are 11111011 before the BSF instruction.
After the BSF instruction, the contents of F7 are 11111111.

59

3.3.2 CONDITIONAL SKIPS ON BIT TEST
Two instructions are provided in the PIC instruction set to test an
individual bit. One instruction (BTFSC) skips the next instruction if the
bit tested is clear (is a zero). The other instruction (BTFSS) skips the
next instruction if the bit tested is set (is a one). These instructions are
used to interrogate status and flag bits and, based upon the result of
the interrogation, go to different points in the program.

BTFSC f,b Test Bit in File Register, Skip If Clear

OP Code Bit Fi Ie

1011 Olbbbif f f f!l Test F(b), skip if clear

Status bits affected: None

Example: BTFSC 37,0

10 1 1 010 0 011 1 1 1 1 I Test F37(0), skip if clear

The content of bit 0 of file register 378 is tested. If bit 0 is a zero, the
next instruction is skipped.

Assuming that bit 0 of F37 is an overflow bit, coding might be written
as follows:

BTFSC 37,0
INCF 23
GOTO SCAN

If there is an overflow, F23 is incremented before going to SCAN
routine. If there is no overflow, F23 is not incremented.

BTFSS f,b Test Bit in File Register, Skip if Set

OP Code Bit File

10 1 1 11 b b b 1 f f f f-y]

Status bits affected: None

Example: BTFSS 7,1

1011110011001111

Test F(b), skip if set

Test F7(1), skip if set

The contents of bit 1 of file register 78 is tested. If bit 1 is a one, the
next instruction is skipped.

Assuming that bit 1 of F7 is an input flag bit, coding might be written
as follows:

BTFSS 7,1
GOTO CALC
GOTOINPUT

If bit 1 is set, the program will jump to the INPUT routine. If bit 1 is
clear, the program will jump to the CALC routine.

60

3.4
Literal and

Control
Operations

This group of instructions is used to operate on literals located in
program memory or to branch to or call instructions located in
program memory.

Operations performed using literal instructions are:
o Move I iteral to W
o Logical operations on literals
Operations performed using control instructions are:
o Jump
o Calls and Returns
The literal and control instructions employ immediate addressing.
The instruction word consists of an OP Code (three or four high order
bits) immediately followed by an 8 or 9-bit literal (constant). This
literal can be used as an operand in arithmetic and logical operations.

3.4.1 LITERAL OPERATIONS
Four literal instructions are provided in the PIC instruction set. One
instruction (MOVLW) moves a literal to the W register. The other
three instructions (IORLW, XORLW, and ANDLW) perform a logical
operation between the literal and the contents of the W register.
The format of the literal instructions is as follows:

11-8 7-0

OP Code k

The instruction may be expressed symbolically as:

OP Code k

where: k is expressed in octal (ASSUMED), binary,
hexadecimal, decimal, or symbolic notation.

MOVLW k Move Literal k to W Register

OP Code Literal

11 1 0 olk k k k k k k kl

Status bits affected: None

Example: MOVLW 377

11 1 0 011 1 1 1 1 1 1 1 I

61

k-W

3778 - W

ANDLW k AND Literal k and Contents of W Register

OP Code Literal

11 1 1 01 k k k k k k ~
Status bits affected: Zero

Example: ANDLW 17

1111010 a a 011111

ke(W) - W

178e (W) - W

The four MSBs in the W register are masked by ANDing them with the
zeros in the four MSBs of the literal. The four LSBs of the W register
are not affected.

Assume that the contents of the W register are 01001001 before the
ANDLW 17 instruction. After the ANDLW 17 instruction, the contents
of the W register are 00001001.

IORLW k Inclusive OR Literal k and Contents of W Register

OP Code Literal

11101lkkkkkk~
Status bits affected: Zero

Example: IORLW 200

1110 111 OOOOoiOiJ

k V (W) - W

2008 V (W) - W

Assume that it is required to change the sign bit from positive to
negative during an arithmetic operation. By inclusive ~Ring 2008

(1000000) with the contents of the W register, the sign bit (MSB) will
be set to 1 (negative sign).

Assume that contents of W register are 01101110 before the IORLW
200 instruction. After the IORLW 200 instruction, the contents of the
W register are 11101110.

XORLW k Exclusive OR Literal k and Contents of W Register

OP Code Literal

11111lkkkkkk~
Status bits affected: Zero

Example: XORLW 307

11111111000 1iiJ

k ® (W) - W

3078 ® (W) - W

3078 is Exclusive ORed with the contents of the W register. If the
contents are the same, the result of the Exclusive OR will be zero and
the Zero status bit will be set to a one.

62

3.4.2 CONTROL OPERATIONS
Four control instructions are provided in the PIC instruction set for
jumps, calls, and returns. One instruction (GOTO) is an unconditional
jump (branch). The address of the instruction to be branched to is
loaded into the program counter.
The call and return instructions are provided for calling subroutines
and returning to the main program. The CALL instruction pushes the
address of the location immediately following the CALL instruction
(PC + 1) onto the stack before the address of the subroutine is loaded
into the program counter.
Two return instructions are provided. One of these, RETURN, is a
special instruction for the PIC1656 that provides for a return from
interrupt. The other return instruction, RETLW, is a return from
subroutine instruction. All return instructions pop the return address
off the Stack and into the program counter. In addition, RETLW
moves a literal that is specified by the operand into the W register,
and RETURN allows any pending interrupt request to proceed.

In the PIC1656, the RETURN instruction (return from interrupt) can
also be used as a return from subroutine, with the W register unaf
fected. This instruction must not be used instead of RETLW as a
return from subroutine during an interrupt service routine since only
RETURN enables further interrupts.

GOTO k Go to address k (Note that k for this instruction is 9 bits)

OP Code Address

11 0 11k k k k k k k k kl

Status bits affected: None

Example: GOTO 677

\10111101111111

CALL k Call Subroutine at Address k

OP Code Address

1100 11k k k k k k k k\

Status bits affected: None

63

k - PC

6778 - PC

(PC) + 1 - Stack

k - PC

This instruction increments the contents of the program counter by
one and places the result (PC + 1) into the stack. Then the subroutine
address specified in the program is placed in the program counter.
The program executes at this location.

NOTE: Any instruction address up to 3778 can be represented by an 8-bit
binary number (3778 = 11111111). Any address past 3778 requires a
ninth bit. The ninth bit of the program counter is a zero for a CALL or
MOVWF F2 instruction. THEREFORE, SUBROUTINES MUST BE
LOCATED IN PROGRAM MEMORY LOCATIONS 0-37780 However,
subroutines can be called from anywhere in the program memory
since the Stack is 9 bits wide (Not a restriction in PIC1670).

Example: CALL 256

11 0 0 111 0 1 0 1 1 ~

Assume program is at location 417: 417 + 1 - Stack
256 - PC

RETLW k Return and Place Literal k in W Register

OP Code Literal

11 0 0 olk k k k k k ~
Status bits affected: None

k-W
(Stack) - PC

This command is used at the end of a subroutine to return to the
address immediately following the CALL instruction. The contents
of the top level of the Stack are popped off and placed in the program
counter. The literal value is placed in the W register.

RETFI Return From Interrupt (PIC1656 only)

OP Code Operand

10 0 0 010 0 0 0 0 0 1 0 I
Status bits affected: None

(Stack) -- PC

This command is used at the end of an interrupt routine to return to
the address immediately following the interrupt. The contents of the
top level of the Stack are popped off and placed in the program
counter. The contents of the W register are not affected. Any pending
interrupt is enabled.

64

3.5
Special

Instruction
Mnemonics

Frequently used operations such as conditional skips and branches
on status bit test, two's complement register contents, carry and digit
carry addition can all be performed using file, bit, literal and control
instructions in combination with the specific operands required.

These operations can be performed using special mnemonics that
are recognized by the PIC Assembler. These mnemonics do not
imply that there are additional instruction words. Each of these
special mnemonics calls up one or more or the PIC instructions. The
Assembler inserts the proper operands required for specific loca
tions and destinations.

Special instruction mnemonics are provided for the following opera
tions:
o Move file to W register
o Test file
o Two's complement file register contents
o Unconditional branch
o Six status bit manipulations
o Six conditional skips on status bit test
o Six conditional branches on status bit test
o Four Carry and Digit Carry arithmetic operations.

3.5.1 MOVE FILE TO W REGISTER
A special instruction mnemonic is provided to move the contents of
file register to the W register.

MOVFW f Move Contents of File Register to W

OP Code d File

10 0 1 0 0 01011 1 1 1 1 I
Status bits affected: Zero

Equivalent file operation: MOVF f,O

3.5.2 TEST FILE

(1) - w

One special instruction mnemonic is provided to test the contents of
a file register for zero. This instruction moves the contents of a file
register back into itself. In the process, the Zero status bit is set to a
one if the contents of the fi Ie are zero.

TSTF f Test Contents of File Register

OP Code d File

10 0 1 0 0 011 If 1 f f f I
Status bits affected: Zero

Equivalent file operation: MOVF f,1

65

(1) - f

3.5.3 TWO's COMPLEMENT REGISTER CONTENTS
A special instruction mnemonic is provided to obtain the two's
complement of the contents of a file register. This mnemonic calls up
two instructions. The first instruction complements the contents of
the addressed file register. The second instruction adds binary 1 to
the least significant bit.

NEGF f,d Negate File Register Contents

OP Code d File

1
0 o 1 o 0 1 11 1 f f f f~ (ij - f

OP Code File

1
0 o 1 o 1 Oldlf f f f f 1 (f) + 1 - d

Status bits affected: Zero

Equivalent file operations: COMF f,1
INCF 'f,d

3.5.4 UNCONDITIONAL BRANCH
A special instruction mnemonic is provided for an unconditional
branch instruction.

B k Branch to Address k (Note that k for this instruction is 9 bits)

OP Code Address

110 11k k k k k k k kiJ k - PC

The 9-bit instruction address is placed into the program counter,
causing the program to jump to that location.

Equivalent control operation: GOTO k

3.5.5 STATUS BIT MANIPULATIONS
Six special instruction mnemonics are provided to set and clear the
Carry, Digit Carry, and Zero status bits.

CLRC Clear Carry

OP Code Bit File

10 1 0 010 0 010 0 0 1~ o - F3(0)

Bit 0 (Carry bit) of status register F3 is cleared to a zero.

Equivalent bit operation: BCF 3,0

66

SETC Set Carry

OP Code Bit File

10 1 0 110 0 010 0 0 1 1 I "I - F3(0)

Bit 0 (Carry bit) of status register F3 is set to a one.

Equivalent bit operation: BSF 3,0

CLRDC Clear Digit Carry

OP Code Biit File

10 1 0 010 0 010 0 0 1 11 o - F3(1)

Bit 1 (Digit Carry bit) of status register F3 is cleared to a zero.

Equivalent bit operation: BCF 3,1

SETDC Set Dig it Carry

OP Code Bit File

1 -+ F3(1)

Bit 1 (Digit Carry bit) of status register F3 is set to a one.

Equivalent bit operation: BSF 3,1

CLRZ Clear Zero

OP Code Bit File

10 1 0 010 1 010 001 1 I o -+ F3(2)

Bit 2 (Zero bit) of status register F3 is cleared to a zero.

Equivalent bit operation: BCF 3,2

SETZ Set Zero

OP Code BU File

10 1 0 110 1 010 0 0 1 1 I 1 -+ F3(2)

Bit 2 (Zero bit) of status register F3 is set to a one.

Equivalent bit operation: BCF 3,2

67

3.5.6 CONDITIONAL SKIPS ON STATUS BIT TEST
Six special instruction mnemonics are provided for a skip operation
that is conditional on the result of a status bit test.

SKPC Skip On Carry

OP Code Bit File

10 1 1 110 0 010 0 0 1 11 Test Carry, skip if set

Bit 0 (Carry bit) of the status register F3 is tested. If it is a one, the next
instruction is skipped.

Equivalent bit operation: BTFSS 3,0

SKPNC Skip On No Carry

OP Code Bit File

10 1 1 010 0 010 0 0 1 11 Test Carry, skip if reset

Bit 0 (Carry bit) of status register F3 is tested. If it is a zero, the next
instruction is skipped.
Equivalent bit operation: BTFSC 3,0

SKPDC Skip On Digit Carry

OP Code Bit File

1011110011000111 Test Digit Carry, skip if set

Bit 1 (Digit Carry bit) of status register F3 is tested. If it is a one, the
next instruction is skipped.
Equivalent bit operation: BTFSS 3,1

SKPNDC Skip On No Digit Carry

OP Code Bit File

10 1 1010 0 110 0 0 1 11 Test Digit Carry, skip if reset

Bit 1 (Digit Carry bit) of status register F3 is tested. If it is a zero, the
next instruction is skipped.

Equivalent bit operation: BTFSC 3,1

68

SKPZ Skip On Zero

OP Code Bit File

1011110101000111 Test Zero bit, skip if set

Bit 2 (Zero bit) of status register F3 is tested. If it is a one, the next
instruction is skipped.

Equivalent bit operation: BTFSS 3,2

SKPNZ Skip On No Zero

OP Code Bit File

10 1 1 010 1 0 10 0 0 1 1 1 Test Zero bit, skip if reset

Bit 1 (Zero bit) of status register F3 is tested. If it is a zero, the next
instruction is skipped.

Equivalent Bit operation: BTFSC 3,2

3.5.7 CONDITIONAL BRANCHES ON STATUS BIT TEST
Six special instruction mnemonics are provided for branch opera
tions conditional on the result of a status bit test. Each of these
mnemonics calls two instructions. The first instruction tests the
status bit. If the required condition is present, the second instruction
places the specified 9-bit program address in the program counter,
causing a program jump to this address. If the required status
condition is not present, the jump instruction (GOTO) is skipped and
the program continues.

BC k Branch On Carry to Address k

OP Code Bit File

10 1 1 010 0 010 0 0 1 11 Skip if Carry is clear

OP Code Address

k -+ PC

The Carry bit is tested. If it is a zero, the GOTO instruction is skipped.
If it is one, the 9-bit instruction address (k) is placed in the program
counter, causing the program to jump to that location.
Equivalent bit and control operations: BTFSC 3,0

GOTO k

69

BNC k Branch On No Carry to Address k

OP Code Bit File

10 1 1 1 10 a 010 a a 11l Skip if Carry is set

OP Code Address

11 a 11k k k k k k k kkl k - PC

The Carry status bit is tested. If it is a one, the GOTO instruction is
skipped. If it is a zero, the 9-bit instruction address (k) is placed in the
program counter, causing the program to jump to that location.

Equivalent bit and control operations: BTFSS 3,0
GOTO k

BOC k Branch On Digit Carry to Address k

OP Code Bit File

10 1 1 010 a 1 10 a a GJ Skip if Digit Carry is clear

OP Code Address

110 11k k k k k k k k kl k - PC

The Digit Carry status bit is tested. If it is zero, the GOTO instruction
is skipped. If it is a one, the 9-bit instruction address (k) is placed in
the program counter, causing the program to jump to that location.
Equivalent bit and control operations: BTFSC 3,1

GOTO k

BNOC k Branch On No Digit Carry to Address k

OP Code Bit File

10 110100 11000 111 Skip If Digit Carry is set

o P Code Add ress

11 a 1 I k k k k k k k k3 k - PC

The Digit Carry status bit is tested. If it is a one, the GOTO instruction
is skipped. If it is a zero, the 9-bit instruction address (k) is placed in
the program counter, causing the program to jump to that location.

Equivalent bit and control operations: BTFSS 3,1
GOTO k

70

BZ k Branch On Zero to Address k

OP Code Bit File

10 1 1 010 1 010 0 0 1 11 Skip if Zero bit is reset

OP Code Address

k -+ PC

The Zero status bit is tested. If it is a zero, the GOTO instruction is
skipped. If it is a one, the 9-bit instruction address (k) is placed in the
program counter, causing the program to jump to that location.

Equivalent bit and control operations: BTFSC 3,2
GOTO k

BNZ k Branch On No Zero to Address

OP Code Bit File

10 1 1 110 1 010 0 0 1 11 Skip if Zero bit is set

OP Code Address

k -+ PC

The Zero status bit is tested. If it is a one, the GOTO instruction is
skipped. If it is to zero, the 9-bit instruction address (k) is placed in the
program counter, causing the program to jump to that location.

Equivalent bit and control operations: BTFSS 3,2
GOTO k

3.5.8 CARRY AND DIGIT CARRY ARITHMETIC
Four special instruction mnemonics are provided to add the Carry or
Digit Carry bits to a file register or to subtract the Carry or Digit Carry
bits from a file register. Each of these mnemonics calls up two
instructions. The first instruction tests the content of the Carry or
Digit Carry bit. If the content is a one, the second instruction
increments or decrements the file register. If the content is a zero, the
second instruction is skipped.

ADDCF f,d Add Carry to Contents of Fi Ie Register

OP Code Bit File

10 110 10 0 010 00111 Skip if Carry is clear

OP Code File

100101 oldlf f f f f\ (f) + 1 -+ d

Status bits affected: Zero

The Carry status bit is tested. If it is a zero, the increment instruction
is skipped. If it is a one, the file register is incremented.

Equivalent bit and file operations: BTFSC 3,0
INCF f,d

71

SUBCF f,d Subtract Carry From Contents of File Register

OP Code Bit File

10 1 1 010 0 010 0 0 1~ Skip if Carry is clear

OP Code File

10 0 0 0 1 11d If f f f 7J (f) -1 -+ d

Status bits affected: Zero

The Carry status bit is tested. If it is a zero, the decrement instruction
is skipped. If it is a one, the file register is decremented.

Equivalent bit and file operations: BTFSC 3,0
DECF f,d

ADDDCF f,d Add Digit Carry to Contents of File Register

OP Code Bit File

10110100110001}] Skip if Digit Carry is clear

OP Code File

100101 oldlf f f (f) +1 -+ d

Status bits affected: Zero

The Digit Carry status bit is tested. If it is a zero, the increment
instruction is skipped. If it is a one, the file register is incremented.

Equivalent bit and file operations: BTFSC 3,1
INCF f,d

SUBDCF f,d Subtract Digit Carry From Contents of File Register

OP Code Bit File

10 1 1 010 0 110 0 0 1}] Skip if Digit Carry is clear

OP Code File

10000 111 d lf f f f!l (f) -1 -+ d

Status bits affected: Zero

The Digit Carry status bit is tested. If it is a zero, the decrement
instruction is skipped. If it is a one, the file register is incremented.

Equivalent bit and file operations: BTFSC 3,1
DECF f,d

72

SUPPLEMENTAL INS1'RUCTION SET SUMMARY

The following supplemental instructions summarized below
represent specific applications of the basic PIC instructions, For
example. the "CLEAR CARRY" supplemental instruction is equiv-

Instruction-Binary (Octal) Name

010 000 000 01 1 (2003) Clear Carry

010 100 000 011 (2403) Set Carry

010 000 100 01 1 (2043) Clear Digit Carry

010 100 100 01 1 (2443) Set Digit Carry

010 001 000 01 1 (2103) Clear Zero

010 101 000 01 1 (2503) Set Zero

01 1 100 000 01 1 (3403) Skip on Carry

01 1 000 000 01 1 (3003) Skip on No Carry

011 100 100 01 1 (3443) Skip on Digit Carry

01 1 000 100 01 1 (3043) Skip on No Digit Carry

01 1 101 000 011 (3503) Skip on Zero

01 1 001 000 01 1 (3103) Skip on No Zero

001 000 1 f f f f f (1040) Test File

001 000 Off f f f (1000) Move File to W

001 001 1 f f f f f (1140) Negate File
001 010 d f f f f f (1200)

01 1 000 000 01 1 (3003) Add Carry to File
001 010 d f f f f f (1200)

01 1 000 000 011 (3003) Subtract Carry from File
000 011 d f f f f f (0300)

01 1 000 100 01 1 (3043) Add Digit Carry to File
001 010 d ff f f f (1200)

alent to the basic instruction BCF 3,0 ("Bit Clear, File 3, Bit 0"),
These instruction mnemonics are recognized by the PIC Cross
Assembler (PICAL).

Mnemonic, Equivalent Status
Operands Operatlon(s) Affected

CLRC BCF 3,0 -

SETC BSF 3, 0 -
CLRDC BCF 3,1 -

SETDC BSF 3,1 -

CLRZ BCF 3,2 -

SETZ BSF 3,2 -

SKPC BTFSS 3, 0 -

SKPNC BTFSC 3, 0 -
SKPDC BTFSS 3,1 -

SKPNDC BTFSC 3,1 -

SKPZ BTFSS 3,2 -

SKPNZ BTFSC 3,2 -

TSTF 1 MOVF 1,1 Z

MOVFW f MOVF f, 0 Z

NEGF f,d COMF 1,1
INCF f, d Z

ADDCF f, d BTFSC 3,0
INCF 1, d Z

SUBCF f,d BTFSC 3,0
DECF f, d Z

ADDDCF f,d BTFSG 3,1
INCF f,d Z

01 1 000 100 01 1 (3043) Subtract Digit Carry from File SUBDCF f,d BTFSC 3,1
000 011 d f f f f f (0300) DECF f,d Z

101 kkk kkk kkk (5000) Branch Bk GOTOk -

01 1 000 000 01 1 (3003) Branch on Carry BC k BTFSC 3,0
101 kkk kkk kkk (5000) GOTOk -

011 100 000 011 (3403) Branch on No Carry BNC k BTFSS 3,0
101 kkk kkk kkk (5000) GOTOk -

01 1 100 100 01 1 (3043) Branch on Digit Carry BDC k BTFSC 3,1
101 kkk kkk kkk (5000) GOTOk -

011 001 000 01 1 (3443) Branch on No Digit Carry BNDC k BTFSS 3,1
101 kkk kkk kkk (5000) GOTOk -

01 1 101 000 01 1 (3103) Branch on Zero BZ k BTFSC 3,2
1 0 1 kkk kkk kkk (5000) GOTOk -

01 1 101 000 01 1 (3503) Branch on No Zero BNZ k BTFSS 3,2
101 kkk kkk kkk (5000) GOTOk -

73

3.6 The PIC1670 series instruction set is a superset of the PIC1650 series

PIC1670 Series
instruction set - the software is upwardly compatible.

Instruction
Set

BYTE ORIENTED (12-7) (8) (5-0)
FILE REGISTER

OP CODE I d I f (FILE It) OPERATIONS

Inltructlon-Blnlry (Octll) Nlme Mnemonic, Operlndl Operltlon Stitul Affected

0 000 000 000 1 00 (00004) Decimal adjust W DAW (Note 1) C
0 000 001 I I I I I I (00100) Move W to Ii Ie MOVWF I W-I
0 000 1 d I I I I I I (00200) Subtract W Irom file w/borrow SUBBWF I.d f+W+c -d OV,C.DC,Z
0 000 1 0 d I I I I I I (00400) Subtract W Irom lile SUBWF I.d f+W + l-d OV,C,DC,Z
0 000 1 1 d I I I I I I (00600) Decrement lile DECF I.d I -'l-d OV,C,DC,Z
0 001 00 d I I I I I I (01000) Inclusive or W with file IORWF I.d WVI-d Z
0 001 Old I I I I I I (01200) And W with lile ANDWF I.d W.I-d Z
0 001 1 0 d I I I I I I (01400) Exclusive OR W with Ii Ie XORWF I.d We,-d Z
0 001 1 1 d I I I I I I (01600) Add W with Ii Ie ADDWF I.d W+I-d OV,C,DC,Z
0 o 1 0 00 d I I I I I I (02000) Add W to lile with carry ADCWF I.d W+f+c-d OV,C,DC,Z
0 o 1 0 Old I I I I I I (02200) Complement Ii Ie COMPF I.d f-d Z
0 o 1 0 1 0 d I I I I I (02400) Increment file INCF I.d f+l-d OV,C.DC,Z
0 o 1 0 1 1 d I I I I I (02600) Decrement lile. skip il zero DECFSZ I.d I - 1- d. skip il zero
0 o 1 1 OOd I I I I I (03000) Rotate lile right thru carry RRCF I.d I(n)-d(n-l). c-d(7). I(O)-c C
0 o 1 1 Old I I I I I (03200) Rotate lile lelt thru carry RLCF I.d I(n)-d(n+l). c-d(O). 1(7)-c C
0 o 1 1 1 0 d I I I I I (03400) Swap upper and lower nibble 01 Iile SWAPF I.d 1(0-3);=0 (4-7)-d
0 o 1 1 1 1 d I I I I I (03600) Increment lile. skip il zero INCFSZ I.d f+l-d. skip il zero

(12-6) (5-0)

I OP CODE f (FILE #)

Inltructlon-Binary (Octal) Name Mnemonic, Operands Operltlon StltUI Affected

000 000 I I I (10000) Move 'Ile to W MOVFW I-W Z
000 001 I I I (10100) Clear Ille CLRF 0-1 Z
000 010 I I I (10200) Rotate lile right/no carry RRNCF I(n)-d(n-l). 1(0). -1(7)
000 o 1 1 I I I (10300) Rotate lile left/no carry RLNCF I(n)-d(n+l). 1(7), -1(0)
000 100 I I I (10400) qompare lile to W. skip il F < W CPFSLT I - W. Skip il C = 0
000 101 I I I (10500) Compare lile to W. skip il F = W CPFSEQ I - W. Skip il ~ = 1
000 1 1 0 I I I (10600) Compare Iile to W. skip il F> W CPFSGT I - W, Skip il Z. C = 1
000 111 I I I (10700) Move lile to itself TESTF I-I Z

BIT ORIENTED (12-9) (8-6) (5-0)
FILE REGISTER OP CODE b (BIT #) f (FILE #)
OPERATIONS

Inltructlon-Blnary (Octal) Name Mnemonic, Operandi Operation Slitul Affected

0 100 bbb I I I (04000) Bit clear lile BCF I.b O-I(b)
0 101 bbb I I I (05000) Bit set lile BSF I.b l-I(b)
0 1 1 0 b b b I I I (06000) Bit test. skip II clear BTFSC I.b Bit Test fIb): skip if clear
0 111 b b b I I I (07000) Bit test. Skip if set BTFSS I.b Bit Test fIb): skip if set

(12-8) (7-0)
LITERAL AND CONTROL OP CODE k (LITERAL)
OPERATIONS

Inltructlon-Blnary (Octal) Name Mnemonic. Operandi Operation Slitul Affected

0 000 000 000 000 (00000) No Operation NOP
0 000 000 000 001 (00001) Hall in PIC1665 HALT
0 000 000 000 o 1 0 (00002) Return Irom Interrupt RETFI Stack - PC
0 000 000 000 o 1 1 (00003) Return Irom Subroutine RETFS Stack - PC

001 a k k k k k k k k (11000) Move Literal to W MOVLW k k"":'W
001 1 k k k k k k k k (11400) Add Literal to W ADDLW k k+W-W OV.C,DC,Z
010 a k k k k k k k k (12000) Inclusive OR literal to W IORLW k kVW-W Z
010 1 k k k k k k k k (12400) And Literal and W ANDLW k k·W-W Z o 1 1 a k k k k k k k k (13000) Exclusive OR Literal and W XORLW k keW-W Z o 1 1 1 k k k k k k k k (13400) Return and load literal in W RETLW k k-W, Stack -PC

(12-10) (9-0)

OP CODE k (LITERAL)

Inatructlon-Blnlry (OCIII) Name Mnemonic, Operandi Operltlon Slitul Affected

10k k k k k k k k k k (14000) Go to address GO TO k k-PC
11k k k k k k k k"k k (16000) Call Subroutine CALL' k PC+l-Stack, k-PC

NOTE: If the lower nibble is greater than 9 or the digit carry flag (DC) is set, 06 is added to the W register.

74

3.6.1 ADDITIONAL INSTRUCTIONS
ADCWF f,d Add with carry

OP Code FK

100 1 0 0 oldlf f f f f fl

Status bits affected: OV, C, DC, Z

Example: ADDWF 6

100100 01110 0 0 1101

(f) + (W) + C - d

(F6) + (W) + C - F6

The contents of the W register and carry flag are added to the contents
of file register 6. The contents of the W register are not affected.

SUBBWF, f,d Subtract with borrow

OP Code File

10 0 0 0 0 1\dlf f f f f fl

Status bits affected: OV, C, DC, Z

Example: SUBBWF 17, W

100000 11 0 100 11111

(F17) + (W) + C d

The contents of the W register are complemented, added with the carry
flag and register 178 . The result is placed in the W register (d = O).

ADDLW K Add literal to W Register

OP Code Literal

1100111K KKK KKK KI K + (W) W

Status bits affected: OV, C, DC, Z

Example: ADDLW 200 200+ (W) W

11 0 0 1 1 11 0 0 0 0 0 0 0 I
The 8 bit literal 2008 is added to the contents of the W register.

CPFSL T f Compare File to W, Skip is f W

OP Code File

1-100010 olf f f f f fl

Status bits affected: None

Example: CPSL T 27

11 0 0 0 1 0 0 10 1 0 1 1 11

(f) - (W), Skip if C = 0

(F27) - (W), Skip if C = 0

If the contents of register 278 are less than the contents of the W
register, the next instruction is skipped.

75

CPFSEQ f Compare File to W, Skip if F = W

OP Code File

1100 10 11f f f f f f

Status bits affected: None

Example: CPSEQ 27

11 0 0 0 1 0 0 10 1 0 1 1 1 ,

(f) - (W), Skip if Z = 1

(F27) - (W), Skip if Z = 1

If the contents of register 278 equals the contents of the W register, the
next instruction is skipped.

CPFSGT f Compare File to W, Skip if F > W

OP Code File

110011 Olf f f f-y]
Status bits affected: None

Example: CPFSGT 27

11 0 0 0 1 1 0 10 1 0 1 1 1 I (F27) - (W), Skip ifZ·C= 1

If the contents of register 278 are greater than the contents of the W
register, the next instruction is skipped.

RLNCF f Rotate Contents of File Register Left

OP Code File /I II
I~ 1_0_0_0_0 _1 ---I11_f _f_f_f~ ~ 1 1 1 I I 1 [~
Status bits affected: None f(1)-d(0), F(6-0)-d(7-1)

Example: RLNCF 20

Assume the value stored in file register 208 is to be doubled:

1010111110111011\

101111\1101111\01

Before Rotate Left

After Rotate Left

The value stored in F20 has been doubled from 658 to 1528

76

RRNCF f Rotate Contents of File Register Right

OP Code File II If
'1--.1_0_0_0_0_1_0--,-' f __ f _f _f ---If I ~ , I I I I I I ~
Status bits affected: None f(0)-d(7). f(7-1)-d(6-0)

Example: RRNCF 20

10 1011 11 10 11m
10101011111011101

TESTF f Test Contents of File Register

OP Code File

11 0 0 0 1 1 1 1 f f f f f I
Status bits affected: Zero

Before Rotate Right

After Rotate Right

(f) - f

This instruction moves the contents of a file register back into itself. In
the process, the Zero status bit is set to a one if the contents of the file
are zero.

RETFS Return From Subroutine

OP Code

10 0 0 0 0 0 0 0 0 0 0 1 1 I
Status bits affected: Zero

Stack -+ PC

This command is used at the end of a subroutine to return to the
address immediately following the CALL instruction. The contents of
the top of the Stack are popped off and placed in the program counter.
The W register is unaffected.

DAW Decimal Adjust W

OP Code

10 0 0 0 0 0 0 0 0 0 1 0 1 I
This instruction adjusts the eightbit number in the W register to form
two valid BCD (binary coded decimal digits, one in the lower and one in
the upper nibble). (The results will only be meaningful if the number in
W to be adjusted is the result of adding together two valid two digit
BCD numbers.)

77

The adjustment obeys the following two step algorithm:
1. If the lower nibble is greater than 9 or the digit carry flag (DC) is set,

06 is added to the W register.
2. Then, if the upper nibble is greater than 9 or the carry from the

original or step 1 addition is set, 60 is added to the W register. The
carry bit is set if there is a carry from the original, step 1 or step 2
addition.

Example: Assume the W register contains 1011 1010 (the result of
adding 65 + 55 = 1201°' for instance).

C DC W
0 0 1011 1010

0110 Add 6to W
0 1 1100 0000

0110 0000 Add 60 to W
1 0 0010 000 Result (20) left in W, with C set

78

3.7
lID

Programming
Caution

The use of the bidirectional I/O ports and the dedicated input or
output ports are subject to certain rules of operation. These rules
must be carefully followed in the instruction sequences written for
I/O operation.

Bidirectional I/O Ports
The bidirectional ports may be used for both input and output
operations. For input operations these ports are non-latching. Any
input must be present until read by an input instruction. The outputs
are latched and remain unchanged until the output latch is rewritten.
For use as an input port the output latch must be set in the high state.
Thus the external device inputs to the PIC circuit by forcing the
latched output line to the low state or keeping the latched output
high. This principle is the same whether operating on individual bits
or the enti re port.

Some instructions operate internally as input followed by output
operations. The BCF and BSF instructions, for example, read the entire
port into the CPU, execute the bit operation, and re-output the result.
Caution must be used when using these instructions. As an example a
BSF operation on bit 5 of F7 (Port C-PIC1650) will cause all eight bits of
F7 to be read into the CPU. Then the BSF operation takes place on bit 5
and F7 is re-output to the output latches. If another bit of F7 is used as
an input (say bit 0) then bit 0 must be latched high. If during the BSF
instruction on bit 5 an external device is forcing bit 0 to the low state
then the input/output nature of the BSF instruction will leave bit 0
latched low after execution. In this state bit 0 cannot be used as an
input until it is again latched high by the programmer.

Successive Operations on Bidirectional I/O Ports
Care must be exercised if successive instructions operate on the same
I/O port. The sequence of instructions should be such to allow the pin
voltage to stabilize (load dependent) before the next instruction which
causes that file to be read into the CPU (MOVF, BIT SET, BIT CLEAR,
and BIT TEST) is executed. Otherwise, the previous state of that pin
may be read into the CPU rather than the new state. This will happen if
tpd (See I/O Timing Diagram) is greater than %tcy (min). When in doubt,
it is better to separate these instructions with a NOP or other
instruction.

Input Only Ports
The input only port of the PIC1655A and PIC1656 consists of the four
LSBs of F5 (port RA). An internal pull-up device is provided so that
external pull-ups on open collector logic are unnecessary. The four
MSBs of this port are always read as zeroes. Operations whose results
are placed in F5 are not defined. File register instructions whose results
are placed in W can be used. Note that the BTFSC and BTFSS instruc
tions are input only operations and so can be used with F5.

79

Output Only Ports
The output only port contains no input circuitry and is therefore not
capable of instructions requiring an input followed by output opera
tion. The only instructions which can validly use F6 are MOVWF and
CLRF.

EXAMPLE 1:

F7

v
OUTPUT

v
INPUT

What is thought to be happening:

BSF 7,5
Read into CPU: 00001111
Set bit 5: 00101111
Write to F7: 00101111

If no inputs were low during the instruction execution,
there would be no problem.

EXAMPLE 2:

F7

.......... __ vy.-_rfII''''

OUTPUT INPUT

What could happen:

BSF 7,5
Read into CPU: 00001110
Set bit 5: 00101110
Write to F7: 00101110

In this case bit 0 is now latched low and is no longer
useful as an input until set high again.

80

3.8
Sample

Program

Example 1: Generate a 3ms pulse on I/O line C5 (F7, bit 5).

NO

81

START

MOVE
DECIMAL

250 TO
LOOP

COUNTER

A

DECREMENT
LOOP

COUNTER

YES

RESET
C (5)

Program Steps

MOVLW.250
MOVWF 11
BSF 7,5

A: DECFSZ 11,1
GOTOA

BCF 7,5

Description

LOAD decimal 250 into W.
Transfer 250 to F11
Set output file 7, bit 5 high.
Decrement F11, skip if zero.
This GOTO instruction will cause F11 to be
decremented 250 times. The decrement exe
cutes in 4tJs while the GOTO takes 8tJs.
Therefore the loop executes in (4 + 8) tJs x
250 = 3ms.
Reset output file 7, bit 5 low.

NOTE: For precise timing generation, an external crystal oscillator must be
used. Otherwise the actual timing is dependent on the tolerances of
the external RC components.

82

Example 2: Compare contents of F37 to a constant, if equal GOTO
OK; if not equal GOTO NO.

Program Steps

MOVF 37,W

YES

XORLW CONST

BTFSS 3,2

GOTO NO
GOTO OK

83

START

F37-W

COMPARE
DATA
AND

LITERAL

NO

Description

Move the contents of F37 to the working
register W.
Exclusive OR the contents of Wand the
literal CONST. If they are equal, all zero bits
will result in Wand bit 2 in the status register
(F3) will be set to a one. Although the
SUBWF instruction could be used, it would
also alter the Carry status bit.
If bit 2 in F3 is a one, skip the next step. (Bit
2 is the Zero status bit.)
They are not equal.
They are equal.

Example 3: Serially output the 8 bits in a file register. In this example,
file register F24's contents are outputted via I/O CO (F7, bit 0). I/O line
C1 (F7, bit 1) is used to synchronize the output using the rising edge.

NO

84

LOAD 8
INTO
LOOP

COUNTER

ROTATE
DATA

ONE BIT
RIGHT

Program

MOVLW.8
MOVW 11

LOOP: BCF 7,1
RRF 24,1
BTFSS 3,0
GOTOA
BSF 7,0
GOTO B

A:
B:

BCF 7,0
BSF 7,1
DECFSZ 11
GOTO LOOP
BCF 7,1
END

Description

LOAD the decimal 8 into working register W.
Put decimal 8 into F11 (General Purpose
register).
Clear the sync output.
Rotate F24 one bit right. Bit ° to Carry.
Test Carry (F3, bit 0), skip if set to a one.
Carry clear, go to A.
Carry set, set CO; i.e., output positive signal
Go to B.
Carry clear, clear CO; i.e., output negative signal
Raise sync line.
Have output all eight bits?
No, output next bit.
Yes, clear sync output to a zero.

If File Register F24 contains 153 (octal), then the output will be as
follows:

C(1) SYNC CLOCK

I I I I I
C(O) DATA OUT I ~

I I I
BIT# I 0 I 1 2 3 I 4 5 6 7

85

Example 4: Convert a BCD held in a 4 LSBs of F24 (the 4 MSBs are
assumed zero) to a 7-segment code. The 7-segment code is output
via liD port F7. Th is prog ram ill ustrates the use of a computed GOTO
instruction.

START

MOVE BCD
NUMBER TO
W REGISTER

CONVRT
ROUTINE

OUTPUT THE
7-SEGMENT

CODE VIA 1/0
PORT F7

a

CALL
CONVRT

ADD THE
BCD OFFSET

ADDRESS
TO PC

RETURN
WITH LITERAL

INW

CONVRT
ROUTINE

f[lb
eDc

Typical 7-Segment bar position. The PIC Assembler recognizes
the format B'bbbbbbbb' as an eight-bit binary data word where
b is 0 or 1. The LED bar positions are thus B'Oabcdefg'.

d

86

Program Steps

MOVF 24, W

CALL CONVRT

MOVWF 7

END
CONVRT: ADDWF, PC

RETLW 8'00000001'

RETLW 8'01001111'

RETLW 8'00010010'

RETLW 8'00000110'

RETLW 8'01001100'

RETLW 8'00100100'

RETLW 8'01100000'

RETLW 8'00001111'

RETLW 8'00000000'

RETLW 8'00001100'

Description

Starting address of table
Move 8CD number as offset into
the W register.
Call the conversion subroutine.
The program counter executes
the next instruction at CONVRT.
Output the 7-segment code via
110 port F7. The 7-segment
display will now show the 8CD
number and this output will
remain stable until F7 is set to a
new value.

Add the 8CD offset to the PC.
This is a computed GOTO.
8ecause the ninth bit of PC is set to
zero by a ADDWF 2 the CONVRT
routine must be located within 000
to 3778.
complement of 0 in 7-segment
code
complement of 1 in 7-segment
code
complement of 2 in 7-segment
code
complement of 3 in 7-segment
code
complement of 4 in 7-segment
code
complement of 5 in 7-segment
code
complement of 6 in 7-segment
code
complement of 7 in 7-segment
code
complement of 8 in 7-segment
code
complement of 9 in 7-segment
code

NOTE: The RETLW instruction loads the W register with the specified
literal value and returns to the instruction following the CALL
instruction (MOVWF 7). The complement of the 7-segment code is
used when the LED display unit is common anode (a bar is
activated when the output is set low).

87

Example 5: Move one of two literals to W depending on the condition of
a flag bit. This example illustrates a more efficient way (Method 2) of
implementing the code.

W - LITERAL 1 W - LITERAL 2

Method 1

1. BTFSC FLAG, BIT ; TEST FLAT
2. GOTOA
3. MOVLW LITERAL 1 ; FLAG = 0
4. GOTO CONTINUE
5. MOVLW LITERAL 2 ; FLAG = 1

Method 2

1. MOVLWLlTERAL 1
2. BTFSS FLAG, BIT ; TEST FLAG
3. MOVLW LITERAL 2 ; FLAG = 1

88

Example 6: Output the file pointed to by F37 via I/O register C (F7).
Assume octal 24 in F37 and octal 100 in F24. Therefore, the following
program will output 1008 via F7.

Program Steps

MOVF 37,W

MOVWF 4

MOVF O,W

MOVWF 7

Description

Move the contents of F37 to W.
After execution, W contains 248.
Move the contents of W to FSR
(F4). After execution, F4 contains
248 .

Move the contents of the file
poi nted to by the FSR (the
contents of F24) to W. Thus, W
contains 1008 after execution.
Move the contents of W to F7
where 1008 will be latched.

Example 7: Clear files F5 to F37. This program illustrates the use of the
File Select Register (F4) and the indirect addressing mode using FO.

Program Steps

MOVLW 5

MOVWF4

LOOP: CLRF 0

INCFSZ 4,1*

GOTO LOOP

END

Description

Move the literal 5 to the working
register W.
Move the literal 5 to ,-.the File
Select Register (F4}.-These two
steps initialize the FSR to 5.
Clear the contents of the file
pointed to by the FSR.
I ncrement the FSR. The PC
counter will skip after File 37 is
cleared.
Repeat the steps beginning at
loop to clear the next file.
Files F5 to F37 are cleared.

*The upper three bits of the FSR are always read as ones. When the FSR points
to F37 all bits of the FSR are ones. The INCFSZ instruction reads this value into
the ALU and increments it. The result of this incrementequalling zero causes a
skip. If the FSR is read after this operation, however, the result will be 3408.

89

4 PRODUCTION CYCLE

Figure 20 is a flow chart of the production cycle. During the produc
tion cycle, the customer developed application program is verified, a
prototype is masked and verified, and then production of mask
programmed PIC microcomputers for the customer is initiated.

fig. 20 PRODUCTION CYCLE 1IiIIIIIIIIIIII_1IIIIIIIIIIIIII1IIIIIIIIIIIIII1IIIIIIIIIIIIII1IIIIIIIIIIIIII1IIIIIIIIIIIIII1IIIIIIIIIIIIII1IIIIIIIIIIIIII1IIIIIIIIIIIIII1IIIIIIIIIIIIII1IIIIIIIIIIIIII~ __

90

FROM
SYSTEM

DEVELOPMENT

CUSTOMER
DEFINED

APPLICATION
PROGRAM

SUBMITTED TO
GENERAL INSTRUMENT

GENERAL INSTRUMENT
PROVIDES

VERIFICATION
LISTING OF ROM

CODING TO
CUSTOMER

CUSTOMER
VERIFICATION

OF ROM CODING

GENERAL INSTRUMENT
PROVIDES
MASKED

PROTOTYPE OF
PIC CHIPS

CUSTOMER
VERIFIES

PROTOTYPE

PRODUCTION
BEGINS

4. 1
Hardware

SUllport

Hardware support available from General Instrument includes:
o ROMless Development Microcomputer
o PICES PIC In-Circuit Emulation System
o PFD Field Demo System

The ROMless PIC microcomputers can emulate the operation of the
entire PIC family. Pins are provided for connection to an external RAM
or E/PROM that hold the application program.

The ROMless PIC is used as part of the PICES II In-Circuit Emulation
System and the PFD Field Demo System. The ROMless PIC can also be
used as part of a customer designed in-circuit emulation system.

The PICES II is an in-circuit emulation system than can be used in a
stand-alone mode with a teletypewriter terminal or can be used as a
peripheral in a large computer system. When the PICES II is used as a
peripheral, the user's computer facility becomes a one-station total
development system.

The PFD is a field demo system that demonstrates the integrated
hardware/software application.

4.1.1 ROMless DEVELOPMENT PIC
• Description and Features. The ROMless PIC MOS/LSI circuit array
employs the same basic architecture as the PIC microcomputers
except that the ROM is removed and the ROM address and data lines
are brought out to pins, resulting in a 64-pin package. Basic features
are:

PIC ROM can be replaced with RAM or E/PROM
HALT pin for single stepping or stopping program execution
TTL-compatible input/output lines
4.5 to 7.0V power supply operation
Same instruction set as that of PIC microcomputer being
emulated.
One additional instruction, HALT (00018) is provided.

Note: Refer to Data Sheets for additional information.

91

4.1.2 PICES II-PIC IN-CIRCUIT EMULATION SYSTEM

• Features.
o Complete in-circuit emulation and debug capability
o Multiple system configurations to match user requirements
o Standard serial interface for system integration
o Powerful 16-bit microprocessor for system control
o Multiple breakpoints, single step, program trace and editing

capabilities
o On-board diagnostics for system hardware troubleshooting

The PICES II system is an in-circuit emulation and debug facility
designed to provide the user with a complete tool for testing, trouble
shooting, and modifying both the software program for the PIC
circuit as well as the total system application. The PICES II is a
self-contained unit which can operate in a stand-alone configuration
or as a peripheral device to a host computer.

• Architecture. The PICES II system contains two processors. The
user processor is a ROMless PIC microcomputer with external RAM.
With the RAM loaded with the user's application program, the ROMless
PIC emulates the operation of the entire PIC family. A 40- or 28-pin
in-circuit emulation cable attaches from the ROMless to the applica
tion system. The control processor is a CP1600 16-bit microprocessor
with 12K words of program ROM and 2K words of RAM. This processor
controls the functions of the PICES II including I/O interfacing,
manipulation of the user processor and interpretation and execution
of the PICES II command set.

• Operation. The PICES II operates in several configurations:
STAND-ALONE MODE. The PICESII is attached directly to a serial I/O
device; typically a teletype. The user program is entered either using
the paper tape reader/punch unit on the teletype or by manually setting
each location in the PIC program memory to the desired value. Once
the program memory is loaded, all PICES II emulation and debug
commands can be issued on the teletype keyboard and PICES II
responses are returned on the teletype printer. The serial interface can
be either RS232C or current loop and the baud rate is switch selectable.

PERIPHERAL MODE. The PICES II can be configured such that the
unit itself is a serial peripheral device attached to another computer
system. The PICES II can be attached as an additional peripheral
device or in series with the system TTY or CRT device. In this mode, the
user's computer facility can become a one station total development
system. The computer text editor is used to develop the PIC source
code. The PIC Cross Assembler (PICAL) will translate this source code
into PIC object code; the object code is then downloaded into the
PICES II. All PICES II commands are entered through the system
terminal. Minor modifications can be done directly on the PICES II.
Major changes require re-editing the source code, re-assembling, and
re-Ioading of the PICES II.

92

• Reference Manual. A detailed PICES II Data Manual is available.
This manual describes the installation and operation of the PICES II
system. Included in the manual are explanations of the PICES II com
mand set with examples for illustration.

Fig. 21 PICES CONFIGURATIONS -------------

STAND ALONE MODE

TELETYPE ~

PICES

MODULE

PERIPHERAL CONFIGURATION B

PICES

MODULE

93

PERIPHERAL CONFIGURATION A

PICES

MODULE

PERIPHERAL CONFIGURATION C

MAIN
COMPUTER

FACILITY

MODULE

4.1.3 PFD-PIC FIELD DEMO SYSTEM

• Features.
o 5 Volt, single supply, operation
o Low power -55 mA maximum
o Optional external clock
o Optional external power-on-clear
o Dimensions: 4" x 4%"
o Cable length: 14"

• Description. The PIC Field Demo System provides the user with a
compact and portable method of evaluating and demonstrating appli
cation performance before the commitment is made to ROM masking
of the PIC circuit.

The PFD module contains a ROMless PIC microcomputer, sockets for
two ultraviolet-erasable PROMs, an on-board oscillator and power-on
clear circuitry. A cable is provided to interface the PFD to the user's
system.

• Reference Manual. A complete description of the PFD systems is
contained in the PIC Field Demo Systems Data Manual.

Fig. 22 DEVELOPMENT SYSTEMS _____ IIl!III!IIIIII' ______ _

TARGET ROMle.. DEVELOPMENT
MICROCOMPUTER MICROCOMPUTER SYSTEM

PIC1650
PIC1654
PIC1655
PIC1656
PIC16C58
PIC1670

94

PIC1664
PIC1664
PIC1664
PIC1664
PIC16C63
PIC1665

PICEsn
PICEsn
PICEsn
PICEsn
PICEsn
PICEsn

PFD BOARD

PFD1000
PFD1007
PFD1000
PFD1010
PFD2010
PFD1020

4.2
Software

Support

Software support avaiilable from General Instrument includes the PIC
cross-assembler, PICAL.

4.2.1 PICAL-PIC MACROASSEMBLER

• Features.
o Symbolic representation of instructions
o User defined six character symbols
o Octal, decimal, hexadecimal, ASCII, and EBCDIC literals
o Expression evaluation
o Extensive assembly directives
o Full program and sorted symbol listing
o Extensive error detection
o User-defined macro generation.

• Description. PICAL is loaded into any minicomputer or large-scale
computer having an editor and FORTRAN IV compiler. PICAL, written
in FORTRAN IV, enables the host computer to assemble the PIC
source programs and provide object programs that can execute on the
PICES emulation system. The PICAL Cross-Assembler also enables
the generation of user-defined macro-instructions. PICAL also gener
ates a program listing, in which any syntax errors, illegal operations, or
ROM overflow are flagged. An object program cannot be generated
until all errors are corrected.

• Reference Manual. A complete description of PICAL, its installation
and operation is provided in the PICAL Users Manual.

95

5 MATH ROUTINES

5.1a
Unsigned BCD

Addition

This section describes commonly used math routines. It is intended to
be a guide to the programmer and engineer, who can use the routines
as is or modify them appropriately for their particular application. Also,
coding techniques can be learned by studying the descriptions, flow
charts and listings, and then applying them to other tasks.

Doing straight binary addition of BCD Numbers necessitates adjust
ment of the result for it to be interpreted as BCD digits.

This routine uses two steps to accomplish this:
1. If the least significant four bits of the result represent a number

> 9, or if the DC bit is set to 1, 6 is added to the result (DC
must propagate) otherwise no addition occurs.

2. After completion of Step 1-if the most significant four bits of the
result represent a number> 9, or if the CY bit from the original or
Step 1 addition is set to 1, 60 is added to the result (or 6 added to
MSD) otherwise no addition is done.

NOTE: To extend routine to more than two digits, all additions must be
performed with carry (or DC). Otherwise same rules as above apply to
each digit. A carry from any of the three additions (Original, Step 1 or
Step 2) constitutes an overflow to the next digit, if any.

DC = DIGIT CARRY
CY = CARRY
LSD = LEAST SIGNIFICANT DIGIT (LS 4 BITS)
MSD = MOST SIGNIFICANT DIGIT (MS 4 BITS)

96

LINE ADDR Bl B2 UNSIGNED BCD ADDITION PAGE 1

1 TITLE 'UNSIGNED BCD ADDITION'
2 ;PERFORHS 2 DIGIT UNSIGNED BCD ADDITION.
3 ; ROUTINE ASSUHES THE AUGEND IN F12 ,
4 ;THE ADDUEND IN Fll.ROUTINE RETURNS
5 ;WITH THE SUH IN F12 AND OVERFLOW
6 ;CARRY IN F11.
7 . ,
8
9 ;

10 000000 1011 UBCDAD HOUF 11,W ;DO BINARY ADDITION
11 000001 0752 ADDWF 12
12 000002 0151 CLRF 11 ;
13 000003 1555 RLF 15 ;SAUE CY.
14 000004 3043 SKPNDC ;DC=I?
15 000005 5014 GOTO ADJSTl ;YES! ADJUST LSD OF RESULT
16 000006 6006 HOUUI .6 ; TEST FOR LSD)CX ADD 6-
17 000007 0752 ADDWF 12 ;IF DC=1 THEN LSD)9).
18 000010 3443 SKPDC ;
19 000011 0252 SUBWF 12 ; DC=O(LSD(9) SO RESTORE RESIL T •
20 000012 2003 CLRC
21 000013 5016 GOTO OUR 1 j

22 000014 6006 ADJSTl MOULW 6 ;ADJUST-ADD 6 TO LSD
23 000015 0752 ADDWF 12 ;
24 000016 1551 OVRI RLF 11 ;SAVE CY.
25 000017 6140 HOULY 140 ;ADD 6 TO HSD.
26 000020 0752 ADDWF 12 " ,
27 000021 3003 5033 BC OUR-2 ;TEST FOR HSD)9 (CY=1 AFTER ADDING 6).
28 000023 3411 BTFSS 11,0 ;TEST SAVED CY.
29 000024 3015 BTFSC 15,0 ; DITTO.
30 000025 5030 GOTO OVR-5 ;CY'S=I--KEEP ADJUST.
31 000026 0252 SUBWF 12 ;CY'S=O--NO ADJUST.
32 000027 5035 GOTO OUR ;
33 000030 6001 HDULY 1 ;SAUE OUERFLOW.
34 000031 0051 HOVWF 11
35 000032 5035 GOTO OVR ;
36 000033 0151 CLRF 11 ;SAUE OVERFLOW.
37 000034 1551 RlF 11
38 000035 4000 OUR RET
39 000036 END

ASSEHBLER ERRORS = 0

97

5.1b
Unsigned BCD

Addition of
2 Digits

It is often necessary to add together two a-bit registers containing 2
unsigned BCD digits in each. The following algorithm is used:

Algorithm:
1. Add augend to addend.
2. Add carry in to result of Step 1.
3. Add hexadecimal 66(146a) to result of Step 2.
4. Add the following correction factor to the result of Step 3, with carry

out (CO) set as noted:

if: C=O and DC=O, add HEX 9A (232a); CO=O
C=O and DC= 1, add H EX AD (240a); CO=O
C=1 and DC=O, add HEX FA (372a); CO=1
C= 1 and DC= 1, add HEX 00 (000 a) ; CO= 1

The flow chart and program forthe above algorithm follows. Note that
it is assumed that Step 1 has been done and the result is in the register
pOinted to by the FSR (F4) when the routine ADJ is called. Carry in is
in CIN.

98

1 ADJ MOVF CIN,W
2 ADDWF 0 ;(F4) = (F4) + CARRY IN
3 MOVLW 146
4 ADDWF 0 ; (F4) = (F4) + 1468
5 CLRF CIN ;CIN=O
6 MOVLW 240 ;DC= 1
7 BTFSS 3, 1 ;TEST DC
8 MOVLW 232 ;DC=O
9 BTFSS 3,0 ;TEST CARRY

10 GOTO ADJO
11 INCF CIN SET CARRY IN BIT
12 MOVLW 372 ;DC=O
13 BTFSS 3,1 ;TEST DC
14 ADJO ADDWF 0 ;(F4) = (F4) + CORRECTION

FACTOR
15 R'ET

NOTE: Normally one would not use an entire register to store the carry in bit
-a single bit of a register is all that is needed. In this case, the following
changes would be made:

1. ADJ BTFSCC f,O ;TEST CARRY IN BIT
2. INCF 0 ;ONE, ADD 1
5. BCF f,O ;CLEAR CARRY IN BIT

11 BSF f,O ;SET CARRY IN BIT

99

5.2
Unsigned BCD

Subtraction

Straight binary subtraction (two's complement addition) of two 2-digit
BCD numbers necessitates the adjusting of the result for it to be
interpreted as a BCD number.

This is done in two steps:
1. If the least significant 4 bits Of the result is> 9 or if DC is not set

(0) then subtract 6 from the least significant 4 bits (LSD) of the
result (DC propagated is added to next digit), otherwise no sub
traction is done.

2. After Step 1 is complete-if the most significant 4 bits (MSD) of the
result is > 9 or if CY is not set (0), subtract 6 from the most
significant 4 bits (MSD) of the result, otherwise no subtraction is
done.

NOTES: 1. To extend routine to more than two digits, same rules as above
apply to each BCD digit.

2. The CY tested (in Step 2) is that obtained after two's complement
addition.

3. When F11 has .9, result is -VE. Take ten's complement to get its
value.

100

LINE AIIDR B1 B2 UNSIGNED BCD SUBTRACTION PAGE

1 TITLE 'UNSIGNED BCD SUBTRACTION'
2 ;PERFORHS 2 DIGIT UNSIGNED BCD
3 ;SUBTRACTION. ROUTINE ASSUHES HINUENIt
4 ;IN F12 & THE SUBTRAHEND IN Fl1. THE
5 jROUTINE RETURNS WITH THE DIFFERENCE
6 ;IN F12 & THE OVERFLOW CARRY (SIGN) IN FU.
7 000000 IOU UBCItSB ,",OVF 11,W ;DO BINARY TWO'S COMPLEMENT
B 000001 0252 SUBWF 12 ; SUBTRACTION.
9 000002 0151 ClRF 11 · ,

10 000003 1551 RLF 11 ;SAVE CY.
11 000004 3443 SKPDC jDC=O?
12 000005 5014 GOTO ADJSTl ;YES! ADJUST LSD OF RESULT.
13 000006 3552 BTFSS 12,3 ;NO! TEST FOR LSD)9.
14 000007 501.6 GOTO OVRl
15 000010 311.2 BTFSC 12,2 ;
16 000011 5014 GO TO AItJSTl ; YES! AIIJUST LSD OF RESULT.
17 000012 3452 BTFSS 12,1
18 0100013 5016 GOTO OVRl ;NO! GO FOR MSII
19 000014 6006 ADJsTl HOVlW 6 ; ADJUST -SUBTRACT 6 FROM LSII
20 000015 0252 SUBWF 12 ;
21 000016 3411 OVRl BTFSS 11,0 ;CY=O?
22 000017 5027 GOTO ADJST2 ;YES! ADJUST HSD OF RESULT.
23 000020 0151 CLRF 11 ;
24 000021 3752 BTFSS 12,7 ;NO! TEST FOR HSD}9.
25 000022 5036 GOTO OVR
26 000023 3312 BTFSC 12,6 · ,
27 0100024 50~q GOTO ADJST2 ;YES! ADJUST HSD.
28 000025 3652 BTFSS 12,5 · ,
29 000026 5036 GOTO OVR ;NO! DONE-RETURN.
30 000027 6140 ADJST2 HOVLW 140 ;ADJUST-SUBTRACT 6 FROM
31 000030 0252 sUBWF 12 ;MSD OF RESULT.
32 000031 0151 CLRF 11 ;
33 0100032 3403 SKPC ;TEST tV-IF SET UNDERFLOW.
34 000033 5036 GOTO OVR ;CY=O!NO UNDERFLOW-DONE.
35 000034 6011 HOVlW 11 ;CY=1!UNDERFLOW SET -VE SIGN.
36 000035 0051 MOVWF 11
37 000036 4000 OVR RET
38 000037 END

ASSEMBLER ERRORS = 0

101

5.3
Signed BCD

Addition

This routine performs Signed BCD Addition by performing Unsigned
BCD Addition and adjusting the sign of the BCD result according to the
sign of the augend and addend. The sign nibble is set to .9 for a -VE
result and 0 for a positive result. The overflow nibble is set according to
Table 1:

TABLE 1

Sign Overflow Overflow
Nibble

+VE 0 0
+VE 1 1
-VE 0 .9
-VE 1 .8

The values in Table 1 are arrived at in accordance with ten's comple
ment arithmetic.

NOTE: In ten's complement arithmetic the sign nibble is 0 for a +VE number
and .9 for a -VE number.

102

(BOTH SIGNS + VE)

ADD AUGEND & ADDEND
(WITHOUT SIGN)

SUBTRACT SUBTRA
HEND FROM ... 999A (HEX)

TAKE 10'S COMPLEMENT
OF SUBTRAHEND

Y (SIGNS OPPOSITE)

(NO
OVFLW) Y

RETURN

103

Y

LItE ADDR Bl B2 SIGNED-BCD ADDITION PAGE 1

1 TITLE 'SIGNED-BCD ADDITION'
2
3 ;
4 ;PERFORMS 2-DIGIT SIGNED-BCD ADDITION.
5 ;THE ROUTINE ASSUMES AUGEND IN Fl1 ~ .
6 ;F12 (LSD OF Fl1 IS SIGN DIGIT), ~

7 ;THE ADDEND IN F13 ~ F14 (LSD OF F13
8 ;IS SIGN DIGIT).THE ROUTINE RETURNS
9 ;WITH RESULT IN F13 & F14 (LSD OF F13

10 ;IS OVERFLOW DIGIT ~ MSD OF F13 IS
11 ;SIGN DIGIT).
12
13
14 · ,
15 000000 1012 SBCDAD KOUF 12,W ;DO BINARY ADDITION.
16 000001 0754 ADDWF 14
17 000002 0152 CLRF 12
18 000003 1555 RLF 15 · ,
19 000004 3043 SKPNDC ;DO BCD DECIMAL ADJUST--SEE UNSIGNED
20 000005 5014 GOTO ADJSTl ;BCD ADDITION ROUTINE.
21 000006 6006 HOULW .6
22 000007 0754 ADDWF 14
23 000010 3443 SKPDC
2,4 000011 0254 SUBWF 14
25 000012 2003 CLRC
26 000013 5016 GOTO OUR 1
2.7 000014 6006 ADJSTl HOULW 6
29 000015 0754 ADDWF 14 · ,
~ 000016 1552 OURI RLF 12 ;SAUE CY.
30 000017 6140 KOULW 140
31 000020 0754 ADDWF 14
32 000021 3003 5032 BC OUR-l
33 000023 3412 BTFSS 12,0
34 000024 3015 BTFSC 15,0
35 000025 5031 GOTO OVR-2
36 000026 0254 SUBWF 14
37 000027 2003 CLRC
39 000030 5032 GOTO OUR-l
39 000031 2403 SETC
40 000032 1552 RLF 12 ;
41 000033 1011 OUR HOUF 11,W ;ADD SIGNS.
42 000034 0753 ADDWF 13 · , 43 000035 3103 SKPNZ ;RESULT=O?
44 000036 5064 GOTO BPOS ;YES!-- BOTH SIGNS +UE.
45 000037 1013 HOUF 13,W iNO! THEN RESULT=9?
46 000040 7411 XORLW 11
47 000041 3103 SKPNZ · ,
49 000042 5053 GOIO OPPSI ;YESt-- SIGNS OPPOSITE-NO OVERFLOW.

104

LINE ADDR III B2 SIGNED-BCD ADDITION PAGE ")

"

49 000043 3412 BTFSS 12,0 ·;NO!-- BOTH SIGNS -VE.
50 000044 5050 GOTC OVFLW ;TEST SAVED CY.CY=O~OVERFLOW.
51 000045 6231 HOVLW 231 iCY=l-NO OVERFLOWD
52 000046 0053 MOVWF 13 ;SET SIGN -VE.
53 000047 5073 GOTO FIN · ,
54 000050 6230 OVFLW HOVLW 230 ;OVERFLOW-SET SIGN -VE ~
55 000051 0053 MOVWF 13 ;OVERFLOW DIGIT =1.
56 000052 5073 GOTO FIN · • 57 000053 3012 OPPST BTFSC 12,0 ;TE51 SAVED CY.
58 000054 5062 GOTO POS ;CY=1!
59 000055 3052 BTFSC 12,1 ;TEST CY FROH 1ST ADJUST.
60 000056 5062 1301'0 POS ;
61 000057 6231 HOVLW 231 ;SET SIGN -VEl
62 000060 0053 HOVWF 13
63 000061 5073 GOTO FIN · ,
64 000062 015:~ POS CLRF 13 ; SET SIGN +VE.
b5 000063 5073 GOTO FIN · ,
66 000064 3012 BPOS BTFSC· 12,0 ;TEST SAVED CY.
67 000065 5071 GOTO OVFLW1 ;CY=1! OVERFLOW.
68 000066 6000 HOVLW 00 ;CY=O! NO OVERFLOW-SET SIGN
69 000067 0053 MOVWF 13 ;+VE & OVERFLOW DGT O.
70 000070 5073 GO TO FIN · ,
71 000071 6001 OVFLW1 MOVLW 1 ;SE1 SIGN +VE & OVER-
72 000072 0053 MOVWF 13 ;FLOW DGT 1.
73 000073 4000 FIN RET ;FINISHED-RETURN.
74 000074 END

ASSE.MBLER ERRORS = 0

105

5.4
Signed BCD
Subtraction

This routine performs signed BCD subtraction by taking ten's comple
ment of the subtrahend and adding the minuend with signed BCD
addition.

The routine takes ten's complement of the subtrahend by subtracting
the least significant digit (of the subtrahend) from ten and subtracting
each of the other digits (including the sign digit) from nine.

, 106

LItE ADDR Bl B2 SIGNED-BCD SUBTRACTION PAGE 1

1 TITLE 'SIGNED-BCD SUBTRACTION'
2
3 ;
4 jPERFORHS 2-DIGIT SIGNED-BCD SUBTRACTION.
5 ;THE ROUTINE ASSUHES AUGEND IN Fll ~
6 ;F12 (LSD OF Fll IS SIGN DIGIT), f,

7 ; THE ADDEND IN F13 & F14 (LSD OF F13
8 JIS SIGN DIGIT).THE ROUTINE RETURNS
9 ;WITH RESULT IN F13 & F14 (LSD OF F13

10 ;IS OVERFLOW DIGIT ~ HSD OF F13 IS
11 ;SIGN DIGIT).SUBTRACTION IS DONE BY
12 ;TAKING THE TEN'S COMPLEHENT OF THE
13 ;SUBTRAHEND & THEN DOING SIGNED BCD
14 ;ADDITION.
15
16
17
18 ;
19 000000 6011 SBCDSB HOULW 11 ;TAKE TEN'S COHPLEHENT OF THE SUBTRAHEND.
20 000001 0055 HDUWF 15 ;
21 000002 6232 HOULW 232 ;
22 000003 0056 ttOWF 16 . ,
23 000004 1013 ttOUF 13,., ;THIS IS DONE BY SUBTRACTING THE LSD
24 I~OOOO5 0215 SUBWF 15,W ,FROH .10 & EACH OF THE HORE SIGNIFICANT
25 1000006 0053 ItOUWF 13 ;DIGITS FROH .9.
26 I)()OOO7 1014 HOUF 14,W
27 1~00010 0216 SUBWF 16,"
28 ~)()()O 11 0054 ttOUWF 14 . ,
29 i)()0012 1012 HOUF 12,W ;DO BINARY ADDITION.
30 (~00013 0754 ADDWF 14
31 000014 0152 CLRF 12 ;
32 C~OOOl~ 1555 RLF 15 ;SAVE CY.
33 (~0016 3043 SKPNDC ;DO BCD DECIHAL ADJUST--SEE UNSIGNED
34 ~~0017 5026 GOTO ADJSTl ;BCD ADDITION ROUTINE.
35 000020 6006 HOULW .6
36 000021 0754 ADDWF 14
37 000022 3443 SKPDC
38 000023 0254 SUBWF 14
39 000024 2003 CLRC
40 000025 5030 GOTO OURI
41 . 000026 6006 ADJSTl HOULW 6
42 000027 0754 ADDWF 14 ;
43 000030 1552 OURI RLF 12 ;SAUE CY.
44 000031 6140 HOULW 140
45 01~0032 0754 ADDWF 14
46 0~)()033 3003 5044 BC OUR-l
47 000035 3412 BTFSS 12,0
48 000036 3015 BTFSC 15,0 ; .

107

LINE ADDR B1 B2 SIGNED-BCD SUBTRACTION PAGE 2

49 000037 5043 GoTo oVR-2
50 000040 0254 SUBWF 14
51 000041 2003 CLRC
52 000042 5044 GoTo OVR-l
53 000043 2403 SETC
54 000044 1552 RLF 12 · ,
55 000045 1011 oVR ttoUF 11,W ;ADD SIGNS.
56 000046 0753 ADDWF 13 ;
57 000047 3103 SKPNZ ;RESULT=O?
58 000050 5076 GoTo BPOS ;YES!-- BOTH SIGNS +VE.
59 000051 1013 ttOVF 13,W ;NO! THEN RESULT=9?
60 000052 7411 XORLW 11
61 000053 3103 SKPNZ ;
62 000054 5065 GOTO OPPST ;YES!-- SIGNS OPPOSITE-NO OVERFLOW.
63 000055 3412 BTFSS 12,0 ;NO!-- BOTH SIGNS -VE.
64 000056 5062 GOTO OVFLW ;TE5T SAVED CY.CY=O-OVERFLOW.
65 000057 6231 ttOVLW 231 ;CY=1-No OVERFLOW.
66 000060 0053 ttOVWF 13 ;SET SIGN -VEe
67 000061 5105 GOTO FIN · ,
68 000062 6230 OVFLW MOVLW 230 ;OVERFLOW-SET SIGN -UE l
69 000063 0053 ttOUWF 13 ;OVERFLOW DIGIT =1.
70 000064 5105 GOTO FIN ;
71 000065 3012 OPPST BTFSC 12,0 ;TEST SAVED CY.
72 000066 5074 GOTO POS ;CY=I!
73 000067 3052 BTFSC 12,1 ;TEST CY AFTER 1ST ADJUST.
74 000070 5074 GOTO PoS ;
75 000071 6231 ttOVLW 231 ;5ET SIGN -VEl
76 000072 0053 ttOVWF 13
77 000073 5105 GOTO FIN ;
78 000074 0153 POS CLRF 13 ; SET SIGN +VE.
79 000075 5105 GOTO FIN · ,
80 000076 3012 BPOS BTFSC 12,0 ;TEST SAVED CY.
81 000077 5103 GOTO OVFLW1 ;CY=l! OVERFLOW.
82 000100 6000 ttOVLW 00 ;CY=OI NO OVERFLOW-SET SIGN
83 000101 0053 ttOVWF 13 ; +VE " OVERFLOW DGT O.
B4 000102 5105 GOTO FIN ;
85 000103 6001 OVFLW1 ttOULW 1 ;SET SIGN +VE & OVER-
86 000104 0053 MOVWF 13 ;FLOW DGT 1.
87 000105 4000 FIN RET ;FINISHED-RETURN.
88 000106 END

ASSEMBlER ERRORS = 0

108

5.5
Two Digit

BCD Multiply

Program Name:

Objective:

Input Data:

Output Data:

Approach:

8CDM2D

This routine yields a 4 8CD digit product when
two 2 8CD digit numbers are input.

1. 2 digit 8CD multiplier in register A
2. 2 digit 8CD multiplicand in register 8

4 digit product in registers A, 8

The algorithm used to compute the product of
two 2 digit numbers is as follows:

if A = A1,A2 and 8 = 81,82
where A1,A2,81,82 are single 8CD digits
A,8 = A2 • 8 2 + 10 * A18 2 + 10 * A 281

+ 100 * A181
The single digit multiply is accomplished via
repeated addition.

This routine may be used to multiply two 4 digit
8CD numbers by using thesamealgorithm above
but calling 8CDM2D instead of the single digit
multiply routine as follows:

A =A1A2A3A4 8 = 818 28384
A,8 = A3A4 * 8 384 + 100(A1A2 * 8 384)

+ 100 (A3A4 * 818 2) + 10000(A1A2 * 818 2)

The multiply by powers of 10 is accomplished by
shifting left one 8CD digit (4 bits) foreach power
of 10.

NOTE: This routine uses 2 levels of subroutine nesting, so it can only be called
from the main line program in a PIC1656. For use in a PIC1650A or
PIC1655A, either do not use this routine as a subroutine, or modify it to
use only one level of subroutine nesting.

109

C BCDM2D)
I

P, = 0
P3 = 0

1
DMULT

P4 = At.. • BL

I
DMULT

P2 = AH • BL

1
PPROD

P3 • P4 =
P,.P2 +P3 .P4

I
DMULT

P2 = At.. • ~
P, = 0

1
PPROD

P3 • P4 =
P,.P2 -fP3 .P4

I
DMULT

P, = AH • BH
P2 = 0

I
DADO

P3 .P4 =
P,. P2 1 P3 • P4

I
C RETURN)

110

2x2 BCD MULTIPLY

IN: MULTIPLIER IN A
MULTIPLICAND IN B

OUT: PRODUCT IN A. B

~
~
~

C) UPDATE
. DIVUPD DIVIDEND

I B=B-A
, ,T=TH,TL

A = AH, ~
----..--.... B = ~, Bt.

UBCDSB

TL=Bt. -~

UBCDSB

TH=~-AH

N UBCDSB

TH=TH-ADJ

RETURN

(QUO~) ADD DIGIT
~IN

(~,Q)

r----'----, TO QUOTIENT

DCNT=
COUNT -1

DCNT=
SFTFAC (DCNT)
TABLE LOOK-UP

SHIFT
QH,QL

LEFT

DCNT =
DCNT -1

SHIFT
P1 , P2

LEFT ONE
DIGIT

DADO

P3 ,P4 =P1 ,P2

+ P3 , P4

FORM PARTIAL
PRODUCT

UBC DAD

P4 = P2 + P4 ,

CARRY 0

UBCDAD

P3 , P4 = P1 , P2

+ P3 , P4

P1 = P3 + CARRY 0,
CARRY 1

UBCDAD

P3 = P1 + CARRY 1

5.6
Four Digit

BCD Divide

Program Name:

Objective:

Input Data:

Output Data:

Approach:

DIVISOR = 25
DIVIDEND = 625

BCDD4D

This routine yields a 4 digit BCD quotient when
two 4 digit BCD numbers are input.

1. 4 digit BCD divisor in registers AH , AL
2. 4 digit BCD dividend in registers BH, BL

1. 4 digit quotient in registers AH , AL
2. Remainder in registers BH , BL

The algorithm used to compute the quotient is
similar to that used in long division.

The divisor is first normalized such that the most
significant digit (MSD) is in the 1000 place digit
position.

The normalized divisor is then repeatedly sub
tracted from the dividend until the result is nega
tive. The number of times that the divisor is
subtracted is the decimal digit that is stored in
the quotient. The dividend is restored to the
value it had before the negative result, the divisor
is shifted right one digit, and the above process is
repeated. This process continues until the entire
quotient is computed. An example is shown
below.

1. Divisor normalized to 2500
2. Digit count = 4 - no. of shifts necessary to normalize divisor = 2

025

-2500 DC = 2, COUNT = 0
2500~0625

-1875
0625
0250 DC = 1, COUNT = 0
0375
0250 DC = 1, COUNT = 1

0250 DC = 1, COUNT = 2 C
0125

-125
0125
0025 DC = 0, COUNT = 0
0100
0025 DC = 0, COUNT = 1
0075
0025 DC = 0, COUNT = 2
0050
0025 DC = 0, COUNT = 3
0025
0025 DC = 0, COUNT = 4

(

0000
0025 DC = 0, COUNT = 5
-25

REMAINDER

112

PLACE 0 IN POSITION 2

PLACE 2 IN POSITION 1

PLACE 5 IN POSITION 0

y

COUNT =
COUNT - 1

4 DIGIT BCD DIVIDE

113

DIVUPD

UPDATE
DIVIDEND
B=B-A

SHIFTR

SHIFT A
RIGHT

ONE DIGIT

QUOUPD

UPDATE
QUOTIENT

N

IN: DIVISOR IN A
DIVIDEND IN B

OUT: QUOTIENT IN A
REMAINDER IN B

LINE ADDR B1 B2 BCII OPERATIONS PAGE 1

1 TITLE 'BCD OPERATI~5'
2 · ,
3 ; FILE DEFINITIONS
4 ;
5 000004 FSR EQU 4 ;FILE SELECT REGISTER
6 000011 TEMPH EQU 11 ;TEMPORARY HIGH
7 000012 TEMPL EQU 12 ;TEMPORARY LOW
8 000013 A EaU 13 ;INPUT MULTIPLICAND/OUTPUT HI PRODUCT
9 000014 B EaU 14 ;INPUT MULTIPLIER/OUTPUT LO PRODUCT

10 000015 P1 EQU 15 ;FIRST PARTIAL PRODUCT
11 000016 P2 EaU 16 ; SECOND •
12 000017 P3 EQU 17 ;THIRD •
13 000020 P4 EQU 20 ; FOURTH •
14 000021 COUNT EQU 21 ,MULTIPLY COUNTER
15 000022 MULTC EQU 22 ;MULTIPLY "ULTIPLIER
16
'17 000000
18 000004 MTEN EQU 4 ;SHIFT 10
19 000360 UBHSK EaU X'FO' tUPPER DIGIT ~SK
20 000017 LBMSK EQU X'OF' ;LOWER DIGIT MASK
21 · ,
22 ; DIVIDE DEFINITIONS
23 ;
24 000013 AH EaU A ;HI DIVISOR/HI QUOTIENT
25 000014 AL Eau B ;LO DIVISOR/LO QUOTIENT
26 000015 BH EaU P1 ;HI DIVIDEND
27 000016 BL EaU P2 ;LO DIVIDEND/REMAINDER
28 000017 OH EQU P3 ;HI PARTIAL QUOTIENT
29 000020 QL EaU P4 ;LO PARTIAL QUOTIENT
30 000022 QUOTH EaU MULTC ;HI a~OTIENT(TEHP)
31 000023 QUOTL EaU 23 ;LO QUOTIENT(TEHP)
32 000011 SIGN EQU TEMPH ;SIGN INDICATOR
33 000011 DCNT EQU TEMPH ;SHIFT COUNTER
34 000024 TH EaU 24 ;TEMP DIVIDEND
35 000025 TL EQU 25 • • • ,
36 000026 ADJ EQU 26 ;CARRY ADJUST FOR SUBTRACTION
37
38
40
41 SHIFT FACTOR FOR BCD DIGITS
42
43 000000 0742 SFTFAC ADDWF 2
44 000001 0000 NOP
45 000002 4004 RETLW .4
46 000003 4010 RETLW .8
47 000004 4014 RETLW .12

114

LINE ADDR B1 B2 BCD OPERATIONS PAGE 2

49 1000005
50 . ,
51 ; 4 DIGIT DIVIDE: (BH,BL)/(AH,AL) ---) (AH,AL),BL
52
53 ~)00005 0162 BCDD4D CLRF QOOTH
S4 (~00006 0163 CLRF QUOTL
55 000007 6004 HOVLW 4
56 (~00010 0061 HOVWF COUNT
57 000011 6012 NORM MOVLW .10
58 C~0012 0213 SUBWF AH,W
59 000013 3003 SKPNC ;IF AH IS)10
60 C~00014 5021 B DIV ;DIVISOR(A) IS NORHALIZED,DO DIVIDE
61 (~00015 4507 CALL SHIFTL ;ELSE SHIFT ONE DIGIT LEFT
62 000016 1361 DECFSZ COUNT ;KEEP TRACK OF SHIFTS
63 000017 5011 B NORM
64 ~100020 5050 B EXIT ;DIVISOR=O, EXIT
65
66 0100021 6006 DIV HOVLW 6
67 000022 0261 SUBWF COUNT ;USE COUNT FOR QUOTIENT DIGIT COUNT
68 000023 1161 COMF COUNT
69 000024 0160 DLOOP CLRF QL
70 000025 0157 CLRF QH
71 000026 4451 NLOOP CALL DIVUPD ;SUBTRACT DIVISOR FROM PARTIAL DIVIDEND
72 000027 1051 TSTF SIGN
73 000030 3503 SKPZ ;IF NEGATIVE, ADD Q TO QUOTIENT
74 0100031 5040 B SAVEQ
75 01~0032 1024 MOVF TH,W
76 0100033 0055 HOVWF BH ;UPDATE DIVIDEND
77 000034 1025 HOOF TL,W
78 0100035 0056 HOVWF BL
79 0100036 1260 INCF QL
80 0~)0037 5026 B NLOOP
81 000040 4517 SAVEQ CALL SHIFTR ;SHIFT DIVISOR RIGHT ONE DIGIT
82 ~)0041 4527 CALL QUOUPD ;UPDATE QUOTIENT
83 0()o042 1361 CHKCNT DECFSZ COUNT ;UPDATE COUNT
84 000043 5024 B DLOOP
85 000044 1022 HOVF QUOTH,W ;IF COUNT=O,SAVE QUOTIENT,EXIT
B6 000045 0053 HOVWF AH
87 0(~046 1023 MOVF QUOTL,W
BB 000047 0054 MooWF AL
89 0(~0050 4000 EXIT RET
91 ;
92 ; SUBTRACT DIVISOR FROM DIVIDEND
93 ; (BH,BL)-(AH,AL) ---) SIGN,TH,TL
94
95 000051 0166 DIVUPD CLRF ADJ
96 000052 1016 HOVF BL,W
97 000053 0052 MOVWF TEMPL
9B 000054 1014 "OVF AL,W
99 00,0055 0051 MOVWF TEHPH

100 000056 4716 CALL UBCDSB ;TEMPL-TEMPH

115

LItE ADDR Bl B2 BCD OPERATIONS PAGE 3

101 000057 1012 "OVF TEHPl.,w
102 000060 0065 "OVWF TL ; RESULT
103 000061 1051 TSTF TEHPH ;
104 000062 3503 SKPZ ;IF RESULT (-),
105 000063 1266 INCF ADJ ;ADJ=l
106 000064 1015 MOVF BH,W
107 000065 0052 HOVWF TEHPL
108 000066 1013 HOVF AH,W
109 000067 0051 MOVWF TEMPH ;
110 000070 4716 CALL UBCDSB ;TEHPL-TEHPH
111 000071 1051 TSTF TEMPH
112 000072 3503 SKPZ
113 000073 5106 B EXITl ;IF RESULT NEGATIVE,EXIT
114 000074 1066 TSTF ADJ
115 000075 3103 SKPNZ ;
116 000076 5104 B SAVE ;ADJ=O,NO ADJUSTHENT
117 000077 1015 HOVF BH,W
118 000100 0052 HOVWF TEHPL
119 000101 1026 HOVF ADJ,W
120 000102 0051 HOVWF TEMPH
121· 000103 4716 CALL UBCDSB ;ADJUST HI RESULT
122 000104 1012 SAVE HOVF TEHPl.,W
123 000105 0064 HOVWF TH ;HI RESULT
124 000106 4000 EXITl RET
126 ;
127 ; SHIFT AH,AL LEFT ONE BCD DIGIT
128
129 000107 6004 SHIFTL HOVLW 4
130 000110 0051 HOVWF OCNT
131 000111 2003 SLLOOP CLRC
132 000112 1554 RLF AL
133 000113 1553 RLF AH
134 000114 1351 DECFSZ DCNT
135 000115 5111 B SLLOOP
136 000116 4000 RET
137 . ,
138 ; SHIFT AH,AL RITE ONE DIGIT
139
140 000117 6004 SHIFTR HOVLW 4
141 000120 0051 HOVWF DCNT
142 000121 2003 SRLOOP CLRC
143 000122 1453 RRF AH
144 000123 1454 RRF AL
145 000124 1351 DECFSZ DCNT
146 000125 5121 B SRLOOP
147 000126 4000 RET
148 . ,
149 ; UPDATE QUOTIENT BY SHIFTING Q AND ADDING IT TO Q

-UOTIENT
150

116

Uti: ADDR Bl B2 BCD OPERATIONS PAGE 4

151l 000127 1021 OOOUPD ttOVF COlltT,W
15~~ 000130 0051 HOV"F DCNT
153 000131 1351 DECFSZ DCNT
15~~ 000132 5U4 GOTO FNDSFT ;IF COUNT=I=1, SHIFT
IS~, 000133 5144 GOTO OROOOT ;NO SHIFT
1St, 000134 Ion FHDSFT HOW DCNT,"
157' 000135 4400 CAlL SFTFAC
158 000136 0051 tKMIF DeNT ;GET SHIFT FACTOR
159' 000137 2003 SQLOOP D.RC
160 000140 1560 RLF OL .
161 000141 1557 RlF QH
162 000142 1351 DECFSZ DCNT
163 000143 5137 B SOLOOP
164 000144 1017 ORGUOT tIOlJF QH,W
165 000145 0462 IORWF QUOTH ;ADD TO QUOTIENT
166 000146 .1020 HOUF QL,W
167 000147 0463 IORWF QUOTL
168 000150 4000 RET
170 ;
171 ; DOUBLE DIGIT BCD MULTIPLY
172 ;
173 ; INPUT: 2 DIGIT MULTIPLICAND IN REGISTER A
174 2 DIGIT HULTIPLIER IN REGISTER B
175 ;
176 ; OUTPUT: 4 DIGIT PRODUCT IN A,B
177 ;
178 000151 0157 BCDtt2D CLRF PJ ;CLEAR PARTIAL PRODUCT 3
179 000152 0155 CLRF PI ; AND PARTIAL PRODUCT 1
180 000153 6017 ttoULW LBHSK
181 000154 0513 AHDWF A,W ;AL
182 000155 0060 HOIJWF P4
183 000156 6017 ftOVLW LBHSK ,
184 000157 0514 AMDUF B,W ;BL
185 000160 0062 HOVUF HULTC
186 000161 6020 HOULW P4
187 000162 0044 ·HOVWF FSR ; FSR=P4
188 000163 4664 CALL 'DHULT jAL*BL
189 000164 6360 ttoVL" UBHSK
190 000165 0513 AMDUF A,W
191 1000166 0056 HOIJUF P2 jAH
192 IDOO167 1656 SWAPF P2
193 1000170 6016 MOVLW P2
194 1)00171 0044 KOIJWF FSR ; FSR=P2
195 ~)oo172 4664 CAlL MULT ;AH*BL
196 ()00173 6004 HOVL" HTEN
197 000174 0061 ttOWF COUNT ;SHIFT Pl,P2 BY TEN
198 ;FORM PARTIAL PRODUCT IN P3,P4
199 000175 2003 PPRDl CLRC
200 000176 1556 RLF P2
201 000177 1555 IlF P1
202 000200 1361 DECFSZ COUNT

117

LINE ADDR B1 B2 BCD OPERATIONS PAGE 5

203 000201 5175 B PPRD1
204 000202 4644 CALL DADD
205
206 000203 0155 CLRF PI
207 000204 6360 HOVLW UBHSK
208 000205 0514 ANDWF B,W JBH
209 000206 0062 HOWF HULTC
210 000207 1662 SWAPF HULTC
211 000210 6017 ttOVUI LBMSK
212 000211 0513 ANDWF A,W ;AL
213 000212 0056 HOUWF P2
214 000213 6016 HOVLW P2
215 000214 0044 HOVWF FSR jFSR=P2
216 000215 4664 CAll DHULT ; Al*BH
217 000216 6004 HOVlW MTEN
218 000217 0061 HOUWF COUNT ;SHIFT Pl,P2 BY TEN
219 ;FORM PARTIAL PRODUCT IN P3,P4
220 000220 2003 PPRD2 CLRC
221 000221 1556 RlF P2
222 000222 1555 RlF Pl
223 000223 1361 DECFSZ COONT
224 000224 5220 B PPRD2
225 000225 4644 CALL DADD
226
227 000226 0156 ClRF P2
228 000227 6360 MOVlW UBMSK
229 000230 0513 ANDWF A,W ;AH
230 000231 0055 HOVWF PI
231 000232 1655 SWAPF PI ;PRODUCT IN P1 TO SHIFT BY 100
232 000233 6015 HOULW P1
233 000234 0044 MOUWF FSR ;FSR=Pl
234 000235 4664 CAll DHUlT ;AH*BH
235 000236 4644 CALL DADD JADD Pl,P2 TO P3,P4 FOR FINAL PRODUCT
236 000237 1017 MOUF Pl,"
237 000240 0053 HOUWF A ;FINAL HIGH PRODUCT
238 000241 1020 HOVF P4,W
239 000242 0054 MOUWF B ;FINAL LO PRODUCT
240 000243 4000 RET
242 ;
243 ; ADD Pl,P2 TO P3,P4 AND STORE RESULT IN P3,P4
244
245 000244 1016 DADD MOUF P2,W
246 000245 0051 MOUWF TEMPH ;P2 IN TEMPH FOR UBCDAD
247 000246 1020 HOUF P4,W
248 000247 0052 MOWF TEMPL jP4 INU TEHPL FOR UBCDAD
249 000250 4716 CAll UBCIIAD jP2tP4
250 000251 1012 ttOUF TEMPL,W
251 000252 0060 MOUWF P4 ;lO RESULT IN P4
252 000253 1017 HOUF Pl,W
253 000254 0052 MOUWF TEMPl
254 000255 4716 CALL UBCDAD ;P2+P3fCARRY 0

118

LINE ADDR B1 B2 BCD OPERATIONS PAGE 6

255 000256 1015 KOVF Pl,W
256 000257 0051 ttOUWF TEHPH
257 000260 4716 CALL UBCDAD ;Pl+P3+CARRYO+CARRYl
258 000261 1012 HOW TEttPl.,W
259 000262 0057 tIOUWF P3 ;HI RESULT IN P3
260 000263 4000 RET
262 ;
263 ; SINGLE BCD DIGIT ~LTIPLY
264 ; INPUT- HULTC: HULTIPLIER
265 FSR: HULTIPICAND/PRODUCT
266
267 000264 1000 MULT HOW 0,11
268 000265 3103 SKPNZ
269 000266 5315 B EXITH ;FRS=FSR,EXIT
270 000267 1300 DECFSZ 0,11
271 000270 5273 B CHKH
272 000271 1022 HOUF HULTC,"
273 000272 5314 B STRF ;FSR=l,FSR=HULTC
274 000273 1022 CHKH ttOUF HULTe,W
275 000274 3503 SKPZ
276 1000275 5300 B CONT
2n (000276 0040 HOUWF 0
278 000277 5315 B EXITM ;HULTC=O,FSR=FSR,EXIT
279 000300 0061 CONT HOUWF CroNT
280 1)00301 1361 DECFSZ COUNT ;COUHT=HULTC-l
281 nOO302 5304 B HUL
282 ()OO303 5315 B EXITH ;MULTC=I,FSR=FSR,EXIT
283 ()OO304 1000 HUL HOUF 0,11
284 (~305 0052 HOUWF TEHPL
285 000306 1000 LOOP HOUF O,W
286 ~'00307 0051 tIOUWF TEHPH
287 C100310 4716 CALL UBCDAD ;ADD HULIPLICAND TO ITSELF
288 CIOO311 1361 DECFSZ COUNT ;HULTIPLIER TIMES
289 000312 5306 B LOOP
290 000313 1012 HOUF TEMPt,W ;LO RESULT IS FINAL
291 000314 0040 STRF MOUWF 0 ;ADD CARRY TO UPPER DIGIT
292 000315 4000 EXITH RET

119

5.78
Binary To

BCD Conversion
Method 1

Program Name:

Objective:

Input Data:

Output Data:

Approach:

120

BINTOB

This routine converts a 16 bit binary numbertoa5
digit BCD number.

The 16 bit binary number is input in registers SO,
S1 with SO containing the high order byte.

The 5 digit BCD number is output in registers RO,
R1, R2 with RO containing the MSD in its right
most nibble.

A very simple algorithm is used to accomplish the
conversion. The binary number is shifted left one
bit into the BCD number. If 16 shifts were per
formed, the program exits. Otherwise, each BCD
digit is checked for a value greater than 4. If this is
the case, 3 is added to the digit. The above pro
cess is then repeated.

MSD LSD MSB LSD

I BCD 1 ·~----1'--B_I_NA_R_Y---'
(5 DIGITS) (16 BITS)

BINARY TO BCD
CONVERSION ----r---

IN: BCD #IN RO, R1, R2
OUT: BINARY #IN SO, S1

COUNT = 16
RO = 0
R1 = 0
R2 = 0

SHIFT SO, S1
LEFT INTO
RO, R1, R2
(ONE BIT)

ADJBCD

ADJUST R2

ADJBCD

ADJUST R1

ADJBCD

ADJUST RO

121

BCD

MSD LSD MSB LSB

I RO R1 R2 H SO S1 I
RO = MSD; R2 = LSD
SO = HIGH ORDER BYTE
S1 = LOW ORDER BYTE

~---.., - RETURN

Y

FSR = 2 DIGIT
BCD #

LSD =
LSD + 3

Y MSD =
MSD + 3

LI~ ADDR Bl B2 PIC MACRO ASSEHBLER VER 1.0 PAGE 3

48 . ,
49 ; BINARY TO BCD CONUERSION
50 ; INPUT 16 BIT BINARY NUMBER IN 50,51
51 ; OUTPUT 5 DIGIT BCD NUHBER IN RO,R1,R2
52
53 000036 6020 BINTDB MDULY .16
54 000037 0056 HDVWF CooNT
55 000040 0151 CLRF RO ;CLEAR BCD NO.
56 000041 0152 CLRF Rl
57 000042 0153 CLRF R2
58 000043 1555 LOOPC RLF 51 ;SHIFT BINARY INTO BCD NO.
59 000044 1554 RLF SO
60 000045 1553 RLF R2
61 000046 1552 RLF Rl
62 000047 1551 RLF RO
63 000050 1356 DECFSZ COUNT
64 000051 5053 B AD.IDEC
65 000052 4000 RET ;EXIT IF 16 SHIFTS
66
67 000053 6013 ADJDEC HOULY R2
68 000054 0044 MOVYF FSR
69 000055 4465 CALL ADJBCD ;ADJUST R2
70 000056 6012 HDULY R1
71 000057 0044 HOVWF FSR
72 000060 4465 CALL ADJBCD ;ADJUST Rl
73 000061 6011 MDULY RO
74 000062 0044 HOVWF FSR
75 000063 4465 CALL ADJBCD ;ADJUST RO
76 000064 5043 B lOOPC
77
78 000065 6003 ADJBCD HOVlW X'03'
79 000066 0700 ADDWF 0,11 ;ADD 3 TO LSD
80 000067 0057 HOVYF TEMP
81 000070 3157 BTFSC TEHP,3 ;IF RESULT> 7
B2 000071 0040 HOVYF 0 ;SAUE INTO LSD
83 000072 6060 HDUlY X'30'
84 000073 0700 ADDWF O,W ;ADD 3 TO HSD
85 000074 0057 HOVWF TEttP
86 000075 3357 BTFSC TEHP,7 ;IF RESULT> 7
87 000076 0040 HOVWF 0 ;SAUE INTO HSD
88 000077 4000 RET
89 000100 END

ASSEMBLER ERRORS = 0

122

5.7b
Binary To BCD

Conversion
(2 digits)
Method II

This routine converts the 8 bit binary number in the W register to a 2
digit BCD number, which is then converted to drive 2 7-segment LED
displays from ports 6 and 7.

STEMP 1 is the temporary register which will contain the least signifi
cant digit on conversion.

STEMP 2 is the temporary register which will contain the most signifi
cant digit on conversion.

DIG 1 is the least significant digit output port.

DIG 2 is the most significant digit output port.

123

OUTPUT

GTENTH

GSEGL

AA
GSEG2

CC

CONVRT
TBSTRL

CLRF
MOVWF
MOVLW
SUBWF
SKPC
GOTO
MOVWF
INCF
GOTO
MOVLW
ADDWF
CALL
MOVWF
MOVLW
ADDWF
CALL
MOVWF
RET
MOVWF
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW

STEMP2
STEMP1
10 ; sub .10 from STEMP1

STEMP1,W
; Positive

GSEGL
STEMP1 ; Yes
STEMP2
GTENTH
TBSTRL
STEMP1,W
CONVRT
DIG1
TBSTRL
STEMP2,W
CONVRT
DIG2

2
300 ; Decimal to 7 seg. conversion table
371
244
260
231
222
202
230
200
230

The algorithm used here is to count the number of times 10 (ten) can be subtracted from the binary
number before a negative result is obtained. The count then becomes the 10's digit. The units digitis the
remainder before the last subtraction.

124

5.8
BeOTo
Binary

Conversion

Program Name:

Objective:

Input Data:

Output Data:

Approach:

125

BCDTOB

This routine converts a 5 digit BCD number to a
16 bit binary number.

The 5 digit BCD number is input in registers RO,
R1, R2 with AO containing the MSD in its right
most nibble.

The 16 bit binary number is output in registers
SO, S1 with SO containing the high order byte.

The program uses a very simple algorithm to
accomplish the conversion. The BCD number is
shifted right one bit into the binary number. If 16
shifts were performed, the program exits. Other
wise, each BCD digit is checked for a value
greater than 7. If this is the case, 3 is subtracted
from the digit. The above process is then repeated.

MSD LSD MSB LSB

1 BCD I ·1 BINARY I
(5 DIGITS) (16 BITS)

BCD TO BINARY
CONVERSION

BCDTOB

COUNT = 16
So = 0
S, = 0

SHIFT Ro, R" R2
RIGHT 1 BIT
INTO So, S,

ADJBIN

ADJUST R2

ADJBIN

ADJUST R1

ADJBIN

ADJUST RO

126

IN: BCD #IN RO, R1, R2
OUT: BINARY #IN SO, S1

BCD

MSD LSD MSB LSB

I RO R1 R2 H SO S1 I
RO = MSD; R2 = LSD
SO = HIGH ORDER BYTE
S1 = LOW ORDER BYTE

FSR = 2 DIGIT
BCD #

MSD =
MSD - 3

LINE ADDR III B2 PIC MACRO ASSEMBLER VER 1.0 PAGE 2

10 ;
11 ; BCD TO BINARY CONVERSION
12 ; 5 DIGIT BCD NUMBER INPUT IN RO,Rl,R2
13 ; 16 BIT BINARY NUMBER OUTPUT IN SO,Sl
14
15 000000 6020 BCDTOB HOVlW .16
16 000001 0056 MOVWF COUNT
17 000002 0154 CLRF SO ;ClEAR BINARY NO.
18 000003 0155 ClRF 51
19 000004 2003 lOOPD CLRC
20 000005 1451 RRF RO jSHIFT BCD INTO BINARY NO.
21 000006 1452 RRF R1
22 000007 1·453 RRF R2
23 000010 1454 RRF SO
24 000011 1455 RRF 51
25 000012 1356 DECF5Z COUNT
26 000013 5015 Ii ADJOCT
27 000014 4000 RET ;EXIT IF ~6 SHIFTS
28
29 000015 6013 ADJOCT MOVLlrJ R2
30 000016 0044 MOVWF FSR
31 000017 4427 CALL ADJBIN ;ADJUST R2
32 000020 6012 MOVlW R1
33 000021 0044 HOVWF FSR
34 000022 4427 CAll AIIJBIN ;ADJUST Rl
35 000023 6011 HOVlW RO
36 000024 0044 HOVWF FSR
37 000025 4427 CAll ADJBIN ;ADJUST RO
38 1~00026 5004 II LOOPD
39
40 l)00027 6003 ADJBIN MOVlW X'03'
41 I~OO030 3140 BTFSC 0,3 ;IF >7
42 000031 0240 SUBWF 0 ;SUBTRACT 3 FROH LSD
43 ~)00032 6060 HOVLW X'30'
44 ()00033 3340 BTFSC 0,7 ;IF)7
45 000034 0240 SUBWF 0 ; SUBTRACT 3 FROH tiSlr
46 000035 4000 RET

127

5.9
Double Precision

Signed Integer
Math Package

The following is the program listing for a double precision signed
integer math package, which does addition, subtraction, multiplication
and division.

128

LItE I'DDR Bl B2 HATHS PAGE 1

1 TITLE 'ttA THS I
2 ; DOUBLE PRECISION SIGNED INTEGER HATH PACKAGE
3 · ,
4 ; DEFINE THE FOLLOWING SYHBOLS:
5 · •
6 ; ACCA BEGINNING OF 2 REGISTER FILE FOR FIRST OPE

-RAND
7 ; ACCB BEGINNING OF 2 REGISTER FILE FOR SECOND OP

"'ERAND
8 ; ACCC 2 REGISTER FILE FOR HPYIDIV
9 ; ACCD II II

10 ; HATORG ORIGIN FOR LOAD OF PACKAGE
11 ; TEHP TEKPORARY SCRATCH REGISTER
12 ; SIGN TEMPORARY SCRATCH REGISTER
13 ;
14 ; USAGE:
15 ; LOAD ACCA AND ACCD WITH THEIR RESPECTIVE
16 ; CONTENTS, CALL THE SUBROUTINE, AND OBTAIN RESULT

17 ; IN ACCB. ACCA IS HIGH 8 BITS, ACCAfl IS LOW 8 B
-ITS.

18
19
20 000000
21 000000 HATORG EaU 0
22 000el!1 TEHP EQU 11
23 000012 ACCA EQU 12
24 0000114 ACCB EaU 14
25 000016 ACCC EaU 16
26 000020 ACeD EQU 20
27 0000:l2 SIGH EOU 22
2B 000000
29 000000
30 ORG HATORG
31 000000
32 ; *** SUB ***
33 ; ACCD - ACCA --) ACCB
34 000000
35 000000 4565 "SUB CALL NEGA
36 OOOO~ll

37 ;------) IHPORTANT (------
3B ; HADD HUST FOLLOW •••
39 ;------) IHPORTANT (------
40 000001
41 ;*** ADD ***
42 ; ACCAfACCB --) ACCB
43 000001
44 000001 1013 HADD HOOF ACCAH,W
45 000002 0755 ADDWF ACCBtl
46 00000;5 3003 BTFSC 3,0 ; ADD IN CARRY
47 000004 1254 INCF ACCD

129

LIt(ADDR B1 B2 MATHS PAGE 2

48 000005 1012 MOVF ActA,W
49 000006 0754 ADDWF ACCD
50 000007 4000 RET
51 000010
52 ,*** SHIFT RIGHT, ARITHMETIC ***
53 ; SHIFT ActB RIGHT ONE PLACE
54 ; SIGN OF OPERAND IS PRESERVED (OPTIONAL)
55 000010
56 000010 2003 MASR1 CLRC
57 000011 3354 BTFSC ACCB,7 ; ***OPTIONAL FOR SIGN
58 000012 2403 SETC ; ***SET CARRY IF < 0
59 000013 1454 RRF ACCB
60 000014 1455 RRF ACeB+!
61 000015 4000 RET
62 000016
63 ;*** SHIFT RIGHT, ARlTlmETIC, MULTIPLE PLACES
64 ; SHIFT ACCB RIGHT THE NUMBER OF PLACES IN W
65 ; CALLS ttASR1
66 000016
67 000016 0051 KASR MOVWF TEMP ; SAVE COONT
68 000017 4410 MRLOOP CALL MASRI
69 000020 1351 DECFSZ TEMP
70 000021 5017 GOTO MRLOOP
71 000022 4000 RET
72 000023
73 ;*** SHIFT LEFT, ARITHMETIC ***
74 ; SHIFT ACCB LEFT ONE PLACE
75 , SIGN OF OPERAND IS PRESERVED (OPTIONAl)
76 000023
n 000023 2003 KASLl Cl..RC
78 000024 1555 RLF ACCB+!
79 000025 1554 RLF ACCB
80 000026 2354 BCF ACCB,7 ; ***OPTIONAL FOR SIGN
81 000027 3003 SKPNC ; ***
82 000030 2754 BSF ACCB,7 ; ***CARRY ••• SET SIGN
83 000031 4000 RET
84 000032
as ;*** SHIFT LEFT, ARITHMETIC, MULTIPLE PLACES ***
86 ; SHIFT ACCB LEFT THE NUKBER OF PLACES IN W
87 ; CALLS MSl.1
B8 000032
89 000032 0051 HASL KOVWF TEMP ; SAVE CWNT
90 000033 4423 MLooP CALL KAStl
91 000034 1351 DECFSZ TEMP
92 000035 5033 GOTO KLOOP
93 000036 4000 RET
94 000037
95 ;*** INC **i
96 ; ACCB+1 --) ACCD
97 000037
98 000037 1255 KINC INCF AceD+!

130

Uti: ADDR Bl B2 HATHS PAGE 3

99 000040 3103 SKPNZ
100 000041 1254 INCF ACCB
101 000042 4000 RET
102 000043
103 ;*** DEC ***
104 ; ACCB-l --) ACCB
105 000043
106 000043 1055 HDEC TSTF ACCBil
107 000044 3103 SKPNZ
108 000045 0354 DECF ACCD
109 000046 0355 DECF ACCBil
110 000047 4000 RET
111 000050
112 ;*** HPY ***
113 ; A*B --) (B,C) , HIGH ORDER D, lOW C
114 000050
115 000050 4551 HPY CAll PSIGH
116 000051 4502 CAll SETUP
117 000052 1460 HPlOOP RRF ACCD ; ROTATE D RIGHT
118 000053 1461 RRF ACCD+1
119 000054 3003 SKPNC ; NEED TO ·ADD· 11
120 000055 4401 CAll HADD ;ADDATOB
121 000056 1454 RRF ACCB ; ROTATE (B,C) RIGHT
122 000057 1455 RRF ACCB+1
123 000060 1456 RRF ACCC
124 000061 1457 RRF ACCCH
125 000062 1351 DECFSZ TEHP ; lOOP TILL DONE
126 000063 5052 GOTO HPlOOP
127 1~00064 3762 DTFSS SIGN,7
12B 000065 4000 RET
129 ~~00066 1157 COHF ACCCH ; RESTORE THE SIGN
130 1000067 1257 INCF ACCCil
131 000070 3103 SKPNZ
132 1000071 0356 DECF ACce
133 000072 1156 COHF Aeec
134 ~)00073 3103 SKPNZ
135 000074 03155 NEGB DECF ACCBH ;*** HEGD ***
136 ~)00075 1155 COHF ACCB+1 ; A NICE WAY TO WORK THE
137 000076 3103 SKPNZ ; ROUTINE IN ••••••
13B 000077 0354 DECF ACCB
139 (~00100 1154 COHF ACCD
140 (~00101 4000 RET
141 000102
142 (,00102
143 000102 6020 SETUP HOUl" .16 ; 16 PLACE SHIFT
144 C~00103 0051 HOVWF TEHP
145 000104 1014 HOUF ACCD," ; HOUE B TO D
146 ~100105 0060 HOVWF AC.CD
147 000106 1015 HOOF ACCB+1,W
148 C~00107 0061 ttOVWF ACCD+!
149 000110 0154 ClRF ACCB ; CLEAR B

131

LINE ADDR 81 82 HATHS PAGE 4

150 000111 0155 CLRF ACCBH
151 000112 4000 RET
152 000113
153 ;*** DIU ***
154 ; ACCB/ACCA --) AceB, REHAINDER IN Acec
155 000113
156 000113 4551 DIU CALL PSIGN
157 000114 4502 CALL SETUP
158 000115 0156 CLRF Acce
159 000116 0157 CLRF ACtCH
160 000117 1561 DLOOP RLF ACCDH ; ROTATE (C,D) LEFT
161 000120 1560 RLF ACCD
162 000121 1557 RLF ACCCH
163 000122 1556 RLF ACCC
164 000123 1012 HOUF ACCA,W ; CHECK IF A) C
165 000124 0216 SUBWF ACCC,W
166 000125 3503 SKPZ
167 000126 5131 GOTO NOCHK
168 000127 1013 HOUF ACCAH,W ; HIGH'S EDUAL ••• CHECK LOWS
169 000130 0217 SUBWF ACCCH,W
170 000131 3403 NOCHl(SKPC
171 000132 5142 GOTO NOGO ; A)C, SHIFT CLEAR CARRY
172 000133 1013 HOUF ACCA+1,W ; C-A --) C
173 000134 0257 SUBWF ACCCH
174 000135 3403 BTFSS 3,0
175 000136 0356 DECF ACCC
176 000137 1012 HOUF ACeA,W
177 000140 0256 SUBWF ACCC
178 000141 2403 SETC ; SHIFT IN A ONE
179 000142 1555 NOGO RLF ACC8H ; SHIFT B LEFT
180 000143 1554 RLF ACC8
181 000144 1351 DECFSZ TEHP ; LOOP TILL DONE
182 000145 5117 GOTO DLOOP
183 000146 3762 8TFSS SIGN,7 ; FIX SIGN, IF NEG.
184 000147 4000 RET
185 000150 5074 GOTO NEGB
186 000151
187 000151 1012 PSIGN HOUF ACCA,W ; PREPARE SIGN
188 000152 0614 XORWF ACCB,W
189 000153 0062 HOUWF SIGN
190 000154 3754 BTFSS ACCB,7
191 000155 5163 GOTO TRYA
192 000156 1155 COHF ACCBH ; NEGB •••• CANT CALL SUBR
193 000157 1255 INCF ACCBH
194 000160 3103 SKPNZ
195 000161 0354 DECF ACeD
196 000162 1154 COHF ACCB
197 000163 3752 TRYA BTFSS ACeA,7
198 000164 4000 RET
199 000165
200 ;------) IHPORTANT (------

132

LINE ADDR Bl B2 HATHS PAGE 5

201 ; NEGA HUST FOLLOW •••
202 ;------> IHPORTAHT (------
203 000165
204 ;*** NEGA ***
205 ; (-ACCA) --> ACCA
206 000165
207 000165 115.1 NEGA COHF ACCAfl
208 000166 1253 INCF ACCAfl
209 000167 3103 SKPNZ
210 000170 0352 DECF ACCA
211 000171 1152 eOHF ACCA
212 000172 ·4000 RET
213 000173
214 000173 END

ASSEHBLER ERRORS = 0

133

5.10
Floating-Point

Double Precision
Math Package

Addition, Subtraction, Multiplication and Division routines for a
floating-point double precision calculations are given below. Detailed
flowcharts given below describe the algorithms used. It may be
observed that the powerful instruction of the PIC reduce the entire
package to only 152 lines of code leaving enough space for most
application programs. It is recommended that the normalize routine be
called as often as possible in order to maintain the precision of the
calculations. Also, since many subroutines are nested, they should be
called only from the mainline.

ACCA is the beginning of 3 register accumulator
ACCS is the beginning of 3 register accumulator
ACCC 2 register file for MPY/DIV
ACCD 2 register file for MPY IDIV
TEMP Temporary Scratch Register
SIGN Temporary Scratch Register

To use the math package, load ACCA and ACCS with their respective
contents, call the subroutines and obtain result in ACeS. ACCA is high
8 bits, ACCA + .1 is low 8 bits.

134

SUBTRACTION ROUTINE
ACCB - ACCA - ACCB

OBTAIN 2S COMPLEMENT
OF ACCA

(CALL NEGA)

ADDITION ROUTINE

N

SUBTRACT
EXPONENT A

FROM
EXPONENT B

SUBTRACT EXP B
FROM EXP B

EXP B REG HAS THE
DIFFERENCE

SHIFT ACCB RIGHT
PRESERVING THE

SIGN
INCREMENT EXP B

ADD THE TWO
16-BIT NOS

(CALL MADD)

CHECK AND
CORRECT FOR

OVERFLOW

135

Y SWAP THEM
(CALL FSWAP)

MULTIPLICATION ROUTINE

DETERMINE SIGN OF
FINAL ANSWER

OBTAIN 2'S COMPLEMENT
OF - VE #S

MOVE ACCB TO ACCD
CLEAR ACCB

INITIATE TEMP TO .16

N

ADD THE EXPONENTS
EXP A + EXP B - EXP B

OBTAIN 2'S
COMPLEMENT

OF ACCB

NORMALIZE ACCB
TO MAINTAIN

PRECISION

136

+VE

ADD MULTIPLICAND
TO THE PARTIAL
PRODUCT (CALL
MADD) IN ACCB

DIVISION ROUTINE

DETERMINE SIGN
OF FINAL ANSWER

OBTAIN 2'S COMPLE
MENT OF -VE #'S

MOVE ACCB TO ACCD
CLEAR ACCB; ACCC

INITIATE TEMP TO .16

137

ROTATE ACCD LEFT
ONE BIT INTO ACCC
CHECK IF ACCA IS
> =OR< ACCC

N

CLEAR CARRY

ROTATE ACCB
1 BIT LEFT TO

SHIFT IN CARRY

ADJUST ACCB IF
FINAL ANSWER
WAS TO BE -VE

Y

...
(-

LItE ADDR B1 B2 KATHF PAGE 1

1 TITLE 'MATHF'
2 ; DOUBLE PRECISION FLOATING POINT HATH PACKAGE
3 ;
4 ; DEFINE THE FOLLOWING SYMBOLS:
5 ;
6 ; ACCA BEGINNING OF 3 REGISTER ACCUMUlATOR
7 ; ACCB •• •• •• ••
8 ; ACCC 2 REGISTER FILE FOR MPY/DIV
9 ; ACCD •• ••

10 ; MATORG ORIGIN FOR LOAD OF PACKAGE
11 ; TEMP TEMPORARY SCRATCH REGISTER
12 ; SIGN TEMPORARY SCRATCH REGISTER
13 ;
14 ; USAGE:
15 ; LOAD ACCA AND ACCB WITH THEIR RESPECTIVE
16 ; CONTENTS, CALL THE SUBROUTINE, AND OBTAIN RESULT

17 ; IN ACeD. ACCA IS HIGH 8 BITS, ACCAf1 IS LOW B B
-ITS.

18 ;
19 ; NOTE: MANY SUBROUTINES ARE NESTED, SO DO NOT CA

-LL
20 ; ANY OF THE ROUTINES OTHER THAN FROM THE KAINLINE

... .
21
22 000000
23 000000 KATORG EQU 0
24 000017 TEMP EQU 17
25 000011 ACCA EQU 11
26 000013 EXPA EQU 13
27 000014 ACCD EQU 14
28 000016 EXPB EQU 16
'J!I 000020 ACCC EQU 20
30 000022 ACCD EQU 22
31 000024 SIGN EQU 24
32 000000
33 000000
34 ORG KATORG
l5 000000
36 ; *** SUB ***
37 ; ACCB - ACCA --> ACCB
38 000000
39 000000 4565 FSUB CALL NEGA
40 000001
41 ;------> IMPORTANT (------
42 ; FADD MUST FOLLOW •••
43 ;------> IMPORTANT (------
44 000001
45 ;*** ADD ***
46 ; ACCAfACCB --> ACeB
47 000001

138

LINE ADDR Bl 82 HArHF PAGE 2

48 000001 1013 FADD HOVF EXF'A,W ; SCALE MANTISSAS
49 000002 0216 SU8WF EXP8,W ; FIND GREATER EXPONENT
50 0100003 3103 SKPNZ
51 000004 5016 GOTO PAIID : EXPONENTS EQUAL ••• ADB
52 0~)0005 3003 SKPNC
53 000006 4606 CALL FSWAP : B > A , SWAP 'EH
54 000007 1013 MOVF EXPA,W ; COUNT FOR SHIFT RIGHT
55 000010 0256 SUBWF EXf'B
56 000011 4437 SCLOOP CALL MASRI
57 000012 1756 INCFSZ EXPEl
58 000013. 5011 GOTO SCLOOP
59 0010014 1013 MOVF EXPA,W
60 000015 0056 HOVWF EXPB
61 000016 1011 PADD MOVF ACCA,W ; FINII SIGN OF RESULT
62 0010017 0414 IORWF ACCB,W ; FOR OVERFLOW CHECK
63 000020 0064 HOVWF SIGN
64 00.0021 4430 CALL HADD
65 000022 3764 BTFSS SIGN,7 ; CHECK FOR OVERFLOW
66 000023 3754 BTFSS ACCD.7
67 00'0024 4000 RET
68 000025 2003 CLRC
69 000026 1256 INCF EXPB ; WE OVERFLOWED •••
70 000027 5042 GO TO ASRHCK ; SCALE TO RIGHT
71 000030
72 000030 1012 HADD HOVF ACCA+l,W
73 00()031 0755 ADIIWF ACCBtl
74 000032 3003 BTFSC 3,0 ; ADD IN CARRY
75 000033 1254 INCF ACCD
76 00~)034 1011 HOVF ACCA,W
77 000035 0754 ADDWF ACCB
78 000036 4000 RET
79 0001037
80 ;*** SHIFT RIGHT, ARITHMETIC ***
81 ; SHIFT ACCB RIGHT ONE PLACE
82 ; SIGN OF OPERAND IS PRESERVED (OPTIONAL)
BJ 000037
84 000037 2003 MASRI CLRC
85 000040 3354 BTFSC ACCB,7 ; ***OPTIONAL FOR SIGN
86 000.041 2403 SETe ; ***SET CARRY IF < 0
87 000042 1454 ASRHCI(RRF ACCB
88 000043 1455 RRF ACCD+!
89 000044 4000 RET
90 000045
91 ;*** SHIFT LEFT, ARITHHETIC ***
92 ; SHIFT ACCB LEFT ONE PLACE
93 ; SIGN OF OPERAND IS PRESERVED (OPTIONAL)
94 000045
95 000045 2003 HASLl CLRC
96 000046 1555 RLF ACCBfl
97 0001047 1554 RLF ACCB

139

LINE ADDR B1 B2 HATHF PAGE :)

98 000050 2354 BCF ACCB.7 *i*OPTIONAL FOR SIGN
99 000051 3003 SKPNC *** 100 000052 2754 BSF ACCB,7 *ttCARRY ••• SET SIGN

101 000053 4000 RET
102 000054
103 ;*** HPY ***
104 ; ACCAtACCB --) ACCD
105 000054
106 000054 4551 Ft1PY CALL PSIGN
107 000055 4501 CALL SETUP
108 000056 1462 "PLOOP RRF ACCD ; ROTATE D RIGHT
109 000057 1463 RRF ACCDt!
110 000060 3003 SKPNC ; NEED TO IADDI ??
111 000061 4430 CALL HADD ; ADD A TO B
112 000062 1454 RRF ACCB ; ROTATE BRIGHT
113 000063 1455 RRF ACCBt1
114 000064 1357 DECFSZ TEHP ; LOOP TILL DONE
115 000065 5056 GOTO HPLOOP
116 000066 1013 HOtJF EXPA,W ; ADD EXPONENTS
117 000067 0756 ADDWF EXF'B
118 000070 1256 INCF EXPB
119 000071 3764 FINUP BTFSS SIGN.7
120 000072 5173 GOTO NORH
121 000073 0355 NEGB DECr ACCB+l ;ii* HEGB ***
122 000074 1155 COHF ACCBt1 ; A NICE WAY TO WORK THE
123 000075 3103 SKPNZ ; ROUTINE IN ••••••
124 000076 0354 DECF ACCD
125 000077 1154 COHF ACCB
126 000100 5173 GOTO NORK
127 000101
128 000101
129 000101 6020 SETUP HOtJLW .16 : 16 PLACE SHIFT
130 000102 0057 HOtJWF TEMP
131 000103 1014 HOtJF ACCB,W ; HOtJE B TO D
132 000104 0062 HOtJWF ACCD
133 000105 1015 HOtJF ACCBt1,W
134 000106 0063 HOtJWF ACCD+1
135 000107 0154 CLRF ACCB ; CLEAR B
136 000110 0155 CLRF ACCBt1
137 000111 4000 RET
138 000112
139 :*** DIV *** 140 ; ACCD/ACCA --) AceD, REHAINDER IN ACCC
141 000112
142 000112 4551 DIV CALL PSIGN
143 000113 4501 CALL SETUP
144 000114 0160 CLRF ACCC
145 000115 0161 CLRF ACCCtl
146 000116 1563 DLOOP RLF ACCDtl ; ROTATE (C.D) LEFT
147 000117 1562 RLF ACCD
148 000120 1561 RLF ACCCfl

140

LINE ImDR B1 92 HATHF PAGE 4

149 000121 1560 RLF ACCC
150 000122 1011 HOVF ACCA,W ; CHECK IF A > C
151 000123 0220 SUBWF ACCC,W
152 000124 3503 SKPZ
153 000125 5130 GOTO NOCHK
154 000126 1012 HOVF ACCA+1,W ; HIGH'S EQUAL ••• CHECK LOWS
155 000127 0221 SUBWF ACCCtl,W
156 000130 3403 HOCHt< SKPC
157 0001.31 5141 GOTO NOGO ; A}C. SHIFT CLEAR CARRY
158 0001132 1012 HOUF ACCAH,W ; C-A --) C
159 000133 0261 SUBWF ACCCfl
160 OOOl34 3403 BTFSS 3,0
161 000135 0360 [lECF ACCC
162 0001.36 1011 HOUF ACCA.W
163 000137 0260 SUBWF ACCC
164 0001,40 2403 SETC ; SHIFT IN A ONE
165 000141 1555 NOGO RLF ACCD+! ; SHIFT B LEFT
166 0001,'2 1554 RlF AceD
167 000143 1357 DECFSZ TEHP ; LOOP TILL DONE
168 000H4 5116 GOTO ItLOOf'
169 000H5 6361 HOUlW -.15 ; SUBTRACT EXPONENTS
170 0001 i l6 0713 A[IDWF EXPA • W
171 000147 0256 SUBWF EXPB
172 00015iO 5071 GOTO FINUP
173 00015i1
174 0001~;1 1011 PSIGN HOUF ACCA,W ; PREPARE SIGN
175 000152 0614 XORWF ACCD,W
176 000153 0064 MOVWF SIGN
177 000154 3754 BTFSS ACCD,7
178 000155 5163 GOTO TRYA
179 00Ol51~ 1155 COMF ACCBtl : NEGD •••• CANT CALL SUBR
180 000157 1255 INCF ACCBt1
181 000160 3103 SKPNZ
182 00016:1 0354 DEeF ACCB
183 000162 1154 COHF ACCD
184 00016:5 3751 TRYA BTFSS ACCA.7
185 000164 4000 RET
186 000165
187 ;------) IMPORTANT <------
188 : NEGA HUST FOLLOW •••
189 ;------) IMPORTANT (-----
190 000165
191 ;*** NEGA ***
192 ; (-ACCA) --) ACCA
193 000165
194 000165 1152 NEG A COMF ACCA+l
195 000166 1252 INCF ACCA+l
196 000167 3103 SKPNZ
197 000170 0351 DEeF ACCA
198 000171 1151 COHF ACCA
199 000172 4000 RET

141

LINE ADDR Bl B2 ttATHF PAGE 5

200 000173
201 ;*** NORMALIZE ***
202 ; NORMALIZES AceB FOR USE IN FLOATING POINT CALCUL

-ATIONS
203 ; ----) IT IS RECOMENDED THAT ONE CALLS THIS ROUTI

-NE
204 FREQUENTLY SO AS NOT TO ALLOW LOSS OF PREC

-ISION
205 000173
206 000173 1054 NORtt TSTF ACCB
207 000174 3S03 SKPZ
208 000175 5201 GOTO CHORM
209 000176 1055 TSTF ACCB+l
210 000177 3103 SKPNZ
211 000200 4000 RET
212 000201 3314 CHORH BTFSC ACCB,6
213 000202 4000 RET
214 000203 4445 CALL ttASL1
215 000204 0356 DECF EXPB
216 000205 5201 GOTO CNORM
217 000206
218 ;*** FSWAP ***
219 ; (ACCA,EXPA) (---) (ACCB,EXPB)
220 000206
221 000206 1011 FSWAP HOUF ACCA,W
222 000207 0057 HOUWF TEHP
223 000210 1014 HOUF ACCB,W
224 000211 . 0051 tIOUWF ACCA
225 000212 1017 HOVF TEHP,W
226 000213 0054 HOVWF ACCB
227 000214 1012 HOUF ACCAtl,W
228 000215 0057 HOUWF TEHP
229 000216 1015 HOUF ACCBH,W
230 000217 0052 HOUWF ACCAH
231 000220 1017 HOUF TEHP,W
232 000221 0055 HOVWF ACCB+!
233 000222 1013 HOUF EXPA,W
234 000223 0057 HOVWF TEMP
235 000224 1016 HOVF EXPB,W
236 000225 0053 HOUWF EXPA
237 000226 1017 HOUF TEttP,W
238 000227 0056 HOVWF EXPB
239 000230 4000 RET
240 000231

142

5.11
!;quare Root

Algorithm Using
Newtoln's Method

Abstract: Newton's method is used in this program to find
the square root of a number represented by two
a-bit registers as its mantissa and one a-bit regis
ter as its exponent.

Description: The algorithm uses subroutines of the double
precision floating pOint math package and is
intended to be used only as part of the main pro
gram for processors with 2-level stacks (PIC1650
and PIC1655).

NEWTON'S METHOD

143

If N = Number and x = Square Root of N;
Then

x2 - N = 0 = f(x)

_ x/-N
- X1 - -2~X-1-

_ x/ + N
- 2X1

= %(X1 + ~), where X1 = old value
1 X2 = new value

; x = 256

; NIXl

; Xl + NIX l

1
; '2 (Xl + NIX,)

o

; Xl =~

144

Subroutines: FSUS ACCS - ACCA-ACCS
FADD ACCA + ACCS-ACCS
FMPY ACCA*ACCS-ACCS
DIV ACCB/ACCA-ACCS

Registers: MATORG EOU 0
TEMP EOU 17
ACCA EOU 11
EXPA EOU 13
ACCS EOU 14
EXPS EOU 16
ACCC EOU 20
ACCD EOU 22
SIGN EOU 24

PROGRAM

Registers: TEMP1=25 N=26 EXPN = 30

TEMP1 EOU 25

SORT MOVLW .16 ; TEMP1 = 16
MOVWF TEMP1
CLRF ACCA ; X1 = 256EO=ACCA
CLRF ACCA+1
CLRF EXPA
INCF ACCA
SSF EXPA,7

NEWTON MOVF N,W ; N = ACCS
MOVWF ACCS
MOVF N + 1,W
MOVWF ACCS + 1
MOVF EXPN,W
MOVWF EXPS

CALL DIV ; N/x1

CALL FADD ; X1 + Nix,

DECF EXPS ; Y2(X1 + N/x1)

CALL NORM ; NORMALIZE RESULT

CALL FSWAP ; ACCA-ACCS

DECFSZ TEMP1 ; 0016 ITERATIONS

GOTO NEWTON

END ; ACCA= VN

145

6 MISCELLANEOUS ROUTINES

6. 1
Keyboard Scan

Program, Reads
And Debounces

16 Keys And
Stores Key

Closures
In Two Files

6.2
Eight Digit

Seven-Segment
Display

Refreshing
Program

The display is blanked at the start of the keyboard SCAN program to
prevent corruption of the display when reading the keys. After comple
tion, the display SCAN program should be run in order to restore the
display.

The SCAN file is initialized to all ones (377) and the carry bit cleared.
The GETKEY subroutine rotates the SCAN file left once, which moves
the carry into bit O. The key column is enabled by the transfer of SCAN
to SCNOUT and the four keys are read by File 5. A key closure will be
read as a low and the complement will be stored in a temporary (TEMP)
file.

The lower 4 bits (nibble) of TEMP is swapped with the upper 4 bits and
the GETKEY subroutine is called. Eight keys are now positioned in
TEMP and compared with the key information in Debounce Reg 1
(DEBNS1).

If the results of the XOR instruction is zero, the same key closures exist
and the key data is stored in KEYREG1. If the result is not zero, key
closures have not stabilized and the key data is stored in DEBNS1.

The program is then repeated for the last two columns with the results
stored in DEBNS2 or KEYREG2.

At the start of the program File 10 (SCAN) is initialized to 376 (bit 0 low)
and the FSR REGISTER is initialized to 30. Data (in 7-segment code
format) has been stored in Files 30 through 37 by an external conver
sion program.

The FSR REGISTER is addressed indirectly by the MOVF O,W instruc
tion and the contents of File 30 is transferred to F6 (DATOUT). Next the
SCAN File contents are transferred to the SCNOUT File which in turn
enables the first digit. DIGIT1 information will now be displayed.

Before the next loop through the program, the SCAN File is rotated left
once and the FSR REGISTER is incremented. Now the program will
display the information for DIGIT2. This continues until the FSR REG
ISTER contains a zero at which time all eight digits have been scanned.
A delay loop is added to the program to control the refresh rate of the
display, but in most cases the total program delay can be set to elimi
nate this loop. To prevent the display from flickering, set the refresh
rate at 250-500Hz.

146

EIGHT DIGIT
SEVEN-SEGMENIT DISPLAY
REFRESHING PFlOGRAM

STAR-~

SETUF~ SCAN REG = 376
FSR REG =: 370

FSR REG POINTS TO
REG WITH 7 SEGMENT

DATA

OUTPUT 7 SEGMENT I
DATA TO LEOS

TURNONI~
DIGIT~

SETSCA,:-l
RATE~

SELECTNE~
LEDDIGI~

INCREMENT~
REG ~

ALl. DIGIT:D,
HAVE BEEN
UPDATED

I SAVE IN
LOUNCE REG 1

KEYBOARD SCAN PROGRAM READS
AND DEBOUNCES 16 KEYS AND STORES
KEY CLOSURES IN TWO FILES

SAVE IN
KEY REG 1

147

BLANK DISPLAY
COLUMN SCAN = 377

CLEAR CARRY

GET KEY

SWAP

GET KEY

SAVE IN
DEBOUNCE REG 2

SAVE IN
KEY REG 2

ROTATE KEY
COLUMN SCAN

READ 4 KEYS
& STORE

HARDWARE CONFIGURATION
(COMMON ANODE DISPLAY)

PIC1655A

(F6)

(F7)

(F5)

RBO~--__ JV~ _________ a~

2 I----'VVV------.: I
3 d

4 e I
5t------""".J\r--------~

6t------JV+,.J\r------~

DIGIT 1

I
I

'---...,..----
RB 7

2

3

4

5

6

RC 7

RA 0
5 1 12 9

6 2 14 10
KEYBOARD

2
7 3 15 11

RA 3
8 4 16 12

148

I
I

DIGIT 8

1-6

I
I

HARDWARE CONFIGURATION
(COMMON CATHODE DISPLAY)

+6V

PIC1655A
DIGIT 1 DIGITS

AS 0
a

2
b I I - - -- I I

(F6) 3

4 I I I I 5

6 -- -- ---
AS 7

RC 0

2

3

(F7)

4

5

6

AC 7

AA 0
5 1 12 9

6 2 14 10

(F5) KEYBOARD -
2

7 3 15 11

AA 3
8 4 16 12

149

KEY = F5
TEMP =F11
DEBNS1 = F12
KEYREG1 = F13
DEBNS2 = F14
KEYREG2 = F15

KEY #

KEY REGISTER 1 I 8 17 1 6 1 5 1 4 1 31 2 11 I

GETKEY

KEYSCN

CTSCN

LSTKEY

RLF

MOVF
MOVWF
COMF
ANDLW
IORWF
RETLW

MOVLW
*
MOVWF
BCF
CLRF
CALL
SWAPF

CALL
MOVF
BTFSC
GOTO
XORWF

BTFSC
MOVWF
MOVWF
GOTO
XORWF
BTFSC
MOVWF
MOVWF
RETLW

KEY #

SCAN

SCAN,W
SCNOUT
KEY,W
17
TEMP
377

377
DATOUT
SCAN
3,0
TEMP
GETKEY
TEMP

GETKEY
TEMP,W
SCAN,1
LSTKEY
DEBNS1

3,2
KYREG1
DEBNS1
CTSCN
DEBNS2
3,2
KEYREG2
DEBNS2
377

; This subroutine rotates file left.
; First rotate will move the carry
; bit into Bit 0 of SCAN.
; SCAN transferred to SCNOUT.
; Read complement of key into W
; Zero upper 4 bits of W
; Store in Temp. File.
; RETURN

; START
; Blank Display
; Sets up SCAN and CARRY BIT
: for rotating a zero through the file
; TEMP = 0

; Swap Key Data from lower nibble to
; upper nibble.

; Temp contains key info for 2 columns
; Test if scan has read columns 1 and 2
; Last Key read. End SCAN.
; Compare new key data with previous
; key data.
; Skip on no zero
; If same, save in Key Reg1
; If different update debounce Reg1.
; Scan last two columns.

; Same as above debounce

; RETURN TO MAIN PROGRAM

*For common anode display use "MOVWF", for common cathode use "CLRF"

150

DATOUT:= F6
SCNOUT:= F7
SCAN := F10
DISDL Y == F20
DIGIT1 == F30
DIGIT2 == F31
DIGIT3 == F32
DIGIT4 == F33
DIGITS == F34
DIGIT6 == F3S
DIG IT7 == F36
DIGIT8 == F37

STSCN

CTSCN

DLYLP

MOVLW
MOVWF
MOVLW
MOVWF
*
MOVWF
MOVF
MOVWF

DECFSZ
GOTO
MOVLW
MOVWF

BSF3,O

RLF
INCFSZ
GOTO

•
•
•

GOTO

OUTPUT REGISTER FOR SEGMENTS
OUTPUT REGISTER FOR DIGITS
SELECTS ONE OF EIGHT DIGITS
SETS SPEED OF SCAN

STORES 7-SEGMENT DATA FOR
EACH DIGIT. UPDATED BY AN
EXTERNAL CONVERSION ROUTINE.

376
SCAN
30
4

O,W
DATOUT
SCAN,W
SCNOUT

DISDLY
DLYLP
100
DISDLY

SCAN
4,F
CTSCN

STSCN

; CONFIGURES SCAN REGISTER WITH LSB
; SET TO "0"
; FSR REGISTER POINTS TO FIRST DIGIT,
; BUT W~ LL BE READ AS 370.

; MOVES CONTENTS OF THE REGISTER POINTED
; TO BY FSR TO THE SEGMENTS.
; SELECTS DIGIT THAT WILL
; DISPLAY ABOVE DATA

; PROGRAM DELAY LOOP

; DETERMINES SPEED OF SCAN

; CARRY BIT SET TO PREVENT A
; ZERO ROTATED INTO THE LSB OF SCAN.
; ZERO ROTATED LEFT TO NEXT BIT
; FSR POINTS TO NEXT DIGIT
; CONTINUE SCAN UNTIL ALL
; DIGITS HAVE BEEN REFRESHED

; OTHER PROGRAMS

; START SCAN REFRESH

*For common anode display use "COMF", for common cathode display use "MOVF".

151

6.3
Pseudo Random

Number
Generator

This polynomial generator is typically used to generate white noise for
sounds such as "bang", "screech", "breathing", as well as for "random"
sequence generation. The seed number in the generator, if necessary,
can be randomized by external events such as contact closures. This
permits, for example, games to start randomly and continue pseudo
randomly according to the output of the polynomial generator.

The algorithm used to generate a pseudo random number sequence
uses a shift register and a feedback loop in the following fashion:

.... SHIFT DIRECTION

7 BIT SHIFT REGISTER

The feedback connections vary for different length shift registers. The
chart below gives the connections for shift registers from 4 to 16 bits.

N S = 2N - 1

4 0 3 EB 0 4

5 0 3 E8 0 5

6 05EB06
7 06EB07
8 O2 E8 0 3 EB 0 4 EB 0 8

9 05EB09
10 07 E8 0 10

11 0 9 EB 0 11

12 02 EB 0 10 EB 0 11 EB 0 12

13 0 1 EB 0 11 EB 0 12 EB 0 13

14 O 2 EB 0 12 EB 0 13 EB 0 14

15 0 14 EB 0 15

16 04 EB 0 13 EB 0 15 E8 016

The two routines given here are 7 and 16 bits which generate pseudo
random numbers of non-repeating length of 127 and 65535. In either
case, there is one singularity "all zeroes" that must be avoided during
initialization.

6.3.1 7 BIT PSEUDO RANDOM NUMBER GENERATOR

The 7 bit routine aligns bits 0 6 and 0 7 in registers SEED and W. Then
the registers are exclusive-ored and the unwanted bits are masked out
leaving register W in the following state:

152

If register W equals zero, then the carry bit is cleared, otherwise it is set
(carry bit gets the value of 0 6 + 07). Then the carry is shifted into bit 0
of the register SEED.

SEED holds random number
-upon initialization set SEED to 1, avoid lockup

RAND7 RLF
XORWF
ANDLW
SETC
SKPNZ
CLRC
RLF
RETLW

SEED,W
SEED,W
100

SEED
o

; exclusive or bits 06 & 07
; mask out other bits
; set carry
; if 06 EB 07 equal 0, clear carry
; else clear carry
; shift left

Routine takes 36 psec including CALL

6.3.2 16 BIT PSEUDO RANDOM NUMBER GENERATOR

The 16 bit routine aligns the proper bits (015, 014, 012, 0 3) and performs
an exclusive or. Bit 7 of register WORK holds the result of the exclus.ive
or's of the proper bits. .

RANDH is the MSB's of the random number
RANDL is the LSB's of the random number
WORK is the temporary register

RAND16 MOVFW RANDH
MOVWF WORK
RLF WORK
XORWF WORK,W ; exclusive or 015 & 014
RLF WORK
RLF WORK
XORWF WORK ; exclusive or with 012
SWAPF RANDL,W
XORWF WORK ; exclusive or with 0 3

RLF RANDL
RLF RANDH ; shift left
BSF RANDL,O
BTFSS WORK,7 ; if the result of the exclusive or's
BCF RANDL,O; is 0, clear RANDL bit 0
RETLW 0 ; else set RANDL bit 0

Routine takes 6811sec including CALL

153

6.4
Potentiometer

AID Conversion
Routine

6.5
Analog To

Digital
Conversion

This routine shows how a potentiometer setting can be sampled by a
very simple AID conversion which utilizes the RC time constant con
cept. In the normal state transistor T1 is ON and transistorT2 is OFF. In
order to start the conversion, transistor T1 is turned OFF and transistor
T2 is turned ON. Simultaneously, the program then loops in a count
routine waiting for the input (RAO) to go low. The count obtained
reflects the setting of the pot-the greater the count, the greater is the
resistance. There is a maximum value of 255 for the count since only
one register is incremented in the count loop.
For a more precise measurement, the ratio of the count for the potenti
ometer to the count for a known resistor R should be used. In this case,
the subroutine should be called a second time with transistorT3 turned
ON to obtain a reading for R.

ADCONV MOVLW 374
MOVWF 6

LOOP BTFSS 5,0
GOTO EXIT
INCFSZ TEMP
GOTO LOOP
MOVLW 377
MOVWF TEMP

EXIT MOVLW 377
MOVWF 6
RET

+v +v

~---"'----I ~-..-.. TO PIC RAO

; Turns T1 OFF and T2 ON
; Start Conversion

; Count Loop

; Count is in Temp Register

; Overflow

; Turns T1 ON and T2 OFF

t t
START CONVERSION END CONVERSION
(T1-0FF
T2 or T3-0N)

In this example an analog signal (whose value is to be digitized) is
compared with the analog output of a ladder network. T~e output from
the comparator goes to the PIC microcomputer, and the input to the
ladder network comes from the chip. (Refer to diagram on page 61.)
The subroutine shown in this example. can be called from anywhere in
the PIC program by the statement:

CALL ATOD
and about 300ps later the file OUTPUT will contain the digital value of
the analog signal, which can then be used as necessary further in the
PIC program.

154

(FOR ON
CHIP CLOCK

+5V

i~

-'-

J

+5V

I
Voo

OV

I
Vss

FILE
OUTPUT

WITH
OPEN DRAIN

OUTPUTS

PIC1650A
MICROCOMPUTER

File 'CONTL'
7 6 5 4 3 2 1

~ 2R
R

R/2R
0 A

LADDER
R NETWORK

2R
1

R
2R

2

• R
2R

3

R
2R

4

R

2R
5

R
2R

6

~ R
2R

7 .A

0 J
TTL LEVEL OUTPUT

VCOMPAAATOA WITH

(Bit 0 of file CONTL is also known as COMPIN in this example)

6.5.1 HOW THE PROGRAM WORKS

INPUT
ANALOG
SIGNAL

The flow diagram f()r the conversion shown should be followed
through in conjunction with the program to properly understand how
the conversion works.
NOTES:

1) At 0, COMPIN is set because we wish to use COMPIN as an
input. Since the 32 I/O lines of the PIC are both inputs and
outputs it is possible to obtain a wire-AND at each pin of the
output with the current input.

2) Note how the carry is cleared by 8CF STATUS, CARRY. This is a
bit clear instruction of bit 0 in file 3, which in fact is the carry flag.

3) Note how the PIC assembler accepts literals in decimal (.9),
binary (8'10000000') or octal (by default). Hexadecimal (x 'F9')
and character ('a') are also supported.

4) The subtraction at 11 is done by exclusive OR (XORWF OUT
PUT) instead of subtraction (SU8WF OUTPUT) since the latter
would set the carry bit and necessitate an extra clear carry
instruction.

155

5) At 12 the utility register is rotated to the right through the carry
bit: r UTILITY REG I

6) The utility register always keeps just one bit set, all others clear.
The bit corresponds to the bit on OUTPUT that is currently being
worked on. When the bit drops out of the right of the utility
register into the carry bit the conversion is complete and the
subroutine terminates, restoring control to the main program
(step 15).

=0

CLEAR OUTPUT AND
CARRY FLAG

SET BIT COM PIN TO 1
SO THAT COMPIN CAN
BE USED AS AN INPUT

PUT 10000000 INTO
UTILITY REGISTER

(file 9 in this
example)

(0.1.2)

(3.4)

(5.6)

= 0 (output too high)

ROTATE UTILITY RIGHT
USING CARRY AS

LINK BIT

(12)

(13.14)

(15)

SUBTRACT
UTILITY

CONTENT FROM
OUTPUT

(THE NUMBERS IN BRACKETS SHOW THE ADDRESSES OF THE
INSTRUCTIONS WHICH PERFORM THIS STEP.)

156

(11)

INE B2 ATO[l

1
2

TITLE 'ATOIl'

3 ;8 BIT A TO [I SUCCESSIVE APPROXIMATION
4 ;ROUTINE FOR PIC MICROCOMPUTER
5 ;
6 ;OUTPUT TO LAIIIIER NETWORK IS FILE 'OUTPUT'
7 ;INPUT FROM COMPARATOR IS
8 ;BIT O(CALLEII 'COMPIN')OF FILE CONTLM
9 ;COMPARATOR GIVES LOGIC 1 IF CURRENT

10 ;VALUE OF 'OUTPUT' IS TOO lOW
11 ;UTILRG IS BIT COUNT CONTROL REGISTER ..
12 ;EXECUTION TIME IS 304 US
13 000003 STATUS - 3
14 000000 CARRY = 0
1"5 000011 UTILRG - .. 9
16 000005 OUTPUT = 5
17 000006 CONTL = 6
18 000000 COMPIN = 0
19
20 000000
21 000001
22 000002
23 000003
24 000004
25 000005
26 000006
27 000007
28 000010
29 000011
~~O 000012
3j, 000013
32 000014
33 000015
34 000016

2406
0145
2003
6200
0051
1011
0745
3006
5012
0645
1451
3403
5005
4000

157

ATon

CYCLE

ENDTST

BSF
CLRF
BCF
MOVLW
MOVWF
MOVF
AIIIIWF
BTFSC
GOTO
XORWF
RRF
BTFSS
GOTO
RE'r
END

CONTL, COHF' I N
OUTPUT
STATUS ,CARRY
B'10000000'
UTILRG
UTILRG,W
OUTF'UT
CONTL , COHF' 1. N
ENIITST
OUTPUT
UTILRG
STATUS,CARRY
CYCLE

6.6
Time Delay

Routine

6.5.2 CONCLUSION
This example brings out several important and unique features of the
PIC1650A microcomputer.
1) Hardware stack: When the CALL is made to a subroutine, the return

address is stored in a hardware stack.
2) Bit set, clear, and test: Any bit of any file, (even an output file as in

this example) can be set, cleared or tested. NO use of literals for bit
manipulation is needed as in other microprocessors claiming bit
handling capability and as a result time and ROM space is saved.

3) Outputs are just like other files: No distinction is made between a
file connected to the outside world such as OUTPUT, and internal
ones as UTILRG. This simplifies the instruction set resulting in less
ROM space per instruction (always 12 bits only ie: one word). There
are 4 output files, meaning 32 I/O lines (files 5, 6, 7 & 8).

4) Special purpose registers are just like other files: In this example
the file status (file 3) is used. This contains carry, zero, and other
flags. Likewise the real-time clock (file 1), the program counter (file
2), the indirect file pointer (file 4) and the register pointed to (file 0),
are all treated (with one exception) as normal files. This again cuts
down ROM space and program execution time.

Other important aspects of the single chip PIC microcomputer not
shown by this example are the real-time-clock and the fact that there are
a total of no less than 31 separate registers. There are 512 words of 12 bit
ROM on the chip and since no instruction takes more than one word,
this is similar to 1K words of 8 bit ROM on machines with earlier
architecture. The whole is contained in a 40 lead dual in line package,
(PIC1650A) and a version with off-chip ROM/PROM/RAM (PIC1664B).

Many applications require precision timing as in, for example, sound
generators, loop timing compensator, phase angle control, etc. Two
routines are included, one for minimum size and 12/1s resolution. The
other for the maximum resolution of 4/1s. Both the 12/1s and 4/1s resolu
tion delay routines are called with the variable number of 12/1s or 4/1s
intervals (assuming an instruction cycle time of 4 /1sec) in the W
register. There is a fixed delay associated with calling this routine and
returning from the mainline that should be accounted for when deter
mining the total delay.

158

6.7
A Digital Clock

Subroutine
Using The PIC

Microcomputer

a. 4ps Resolution Delay

; 4ps resolution time delay (1 instruction time)

VTL MOVWF
CLRC
RRF
SKPNC
GOTO

VTL1 CLRC
RRF
SKPC
GOTO
GOTO

VTL2 NOP
VTL3 DECFSZ

GOTO
RET

b. 12ps Resolution Delay

DELAY MOVWF
DECFSZ
GOTO
RET

TEMP

TEMP

VTL1

TEMP

VTL3
VTL2

TEMP
VTL2

TEMP
TEMP
DELAY + 1

; ADD 4ps
; Yes

; ADD Bps
No

; Yes

Additional sales appeal can often be added to consumer and industrial
products by adding a digital clock as a feature. This application note
describes PIC routines needed to form a digital clock.

6.7.1 THEORY

The three basic methods of keeping accurate time using microcom
puter methods are as follows:
Accurate Oscillator, fixed length instruction loop - This method allows
the part to act as its own time keeping device by executing a certain
number of machine cycles in a given amount of time. It requires no
additional time inputs, but does require a crystal controlled oscillator.
Inaccurate Oscillator, variable instruction time-This method allows
the programmer to construct routines without the need for careful
fixed-loop time writing. It only requires that the program wait for a zero
crossing or RTCC pin input before proceeding with the complete
program loop.
Inaccurate Oscillator, fixed length instruction loop-Th is method pro
vides for maintaining an instruction loop whose length is dependent
upon an external time keeping signal (ordinarily 60 cycles). It provides
for accurate time keeping and the "freezing" of current oscillator set
tings in case wall power should vanish, requiring the use of battery
back-up.

159

6.7.2 TIME COUNTING

In all methods of clock programming, it is most convenient to keep the
current (and target) times in BCD format for display. The following
routine is provided to facilitate the time BCD manipulation:

Its features include:
Constant loop length for accurate timing
Add from 1 to 59 to time in BCD
Performs "time" decimal adjust
Rolls over at midnight
Keeps time in 24 hour clock for alarm purposes
Allows use with more than one clock

;;;;;;;;;
; ROUTINE TO TIME ADD TWO FOUR DIGIT BCD NUMBERS
;;;;p;;;
; ADDEND AND RESULT IN TWO FILES POINTED

TO BY F4

ADDER IN FILE ~ PARWI, ~ (TWO BCD DIGITS MAX)
LOWER TWO BCD DIGITS IN EVEN LOCATION,
UPPER TWO BCD DIGITS IN ODD LOCATION FOLLOWING

LIMIT OF ADD = 59 BCD

RETURNS WITH Z BIT ON IF LAST ADD CAUSED HIGH ORDER BCD TO
GO TO BCD 25 (AROUND MIDNIGHT).

;;;;;;;;;;;;;;;;;0,;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
TIMADD MOVLW 246

ADDWF PARM1,W
CI...RF PAF~M:I,
ADDWF 0 ,ADD TO LOW ORDER DIGITS
BTFSC 3,0 ;SEE IF CARRY SET
INCF PARM1
MOVLW 1 :3::!
BTFSC 3,0
(lOTD A[lJM
BTFSC :'~,:I.
MOVI...W 140
GOTD ADD5 ;CAN BE REMDVED- IN FOR TIME PAD DNLY

ADDS NOP ;CAN BE REMOVED- IN FOR TIME PAD ONLY
ADDS NOP
ADD2 ADDWF 0
ADD3 BTFSS 4,0 ;SEE IF SECOND SET OF DIGITS

GOTO ADD4
INCF 4
GOTO TIMADD

ADD4 MOVLW X I 2:'5 I

XOF~WF (), W
RET

ADD6 MOVLW :'5'72
BTFSC 3,:1,
HOVt.W ()
GO TO ADD2

160

6.7.3 USE IN PROGRAM

The routine would be used in the following manner:

START INITIALIZE TIME

* * LOOP GET DIGIT 1-4

* * GET SEGMENTS
F'UT OUT

*
* CONSTANT LENGTH

PROGRAM OR LOOP

* *
LAST OF 4 DIGITS? ** NO **> TO LOOF'

* * TOO EARLY FOR 60 CYCLE **> LOOF' CONSTANT INCREMENT
*
* TOO LATE FOR 60 CYCLE **> LOOP CONSTANT DECREMENT

* * ADD TO SECONDS COUNT
(TIMAIH1)

* *
LESS THAN SECOND **> TO LOOP

* * ADD TO MINUTES/HOURS
(TIMADD)

* * TO LOOP

6.7.4 USE OF TIMADD AS TIME SET

The routine can also be used to increment the present time in the set
mode. Note that when time is being set, constant loop length is
maintained.

MOVWF 4 ;SET IN FSR FOR TIMADD
MOVLW 5 ;INCREMENT TIME BY MINUTES IF ALL CONDITIONS MET
BTFSS FLAGS, INSET ~CHECK IF IN SET MODE (SWITCH DEPRESSED)
MOVLW 0 9NOT IN SET MODE
BTFSS FLAGS, TICK 9SEE IF ONE SECOND UP FOR TICK
MOVLW 0 ;ALREADY TICKED THIS SECOND
BCF FLAGS, TICK 9SET TO SERVICED
CALL TIMADD ~ADD ZERO OR 5 FOR CONSTANT TIME

161

7 APPLICATION NOTES

7.1
Serial Data

Transmission
with a PIC

Microcomputer

Fig. 23

Fig. 24

This section contains a variety of application notes which illustrate the
versatility and performance capability of PIC microcomputers.

INTRODUCTION
Serial data transmission is becoming more common in microcomputer
applications. Even though the PIC does not contain a serial I/O port,
the PIC can transmit serial data via an 1/0 line under software control.
This application note describes the software techniques involved.

There will be two main tasks:
a) Control of the main application
b) Transmission of serial data
Since the timing of both tasks may be critical, the processor cannot
suspend its control functions while transmitting a message - the
processor must do both tasks "simultaneously." This can be accom
plished by incorporating the control functions into a subroutine which
is called by the transmit routine.
Usually, a delay subroutine is used to create the bit time:

SERIAL DATA 5l CALL DELAY ·1 CALL DELAY U
OUT CALL DELAY

OBIT 1 BIT
DEFINITIONS OF
TRANSMITTED
CODE

I I 7.78 7.78
I r

2.56 msec msec 2.56
msec msec

However, if the control section were made a subroutine, it could be
called in place of the delay subroutine.

. IF

CALL CONTROL

SERI~G~ATA ~ I~------'I.....-__ _
CALL CONTROL CALL CONTROL

162

To use the control subroutine as an accurate delay, every path must be
of equal time and padded to (in this example) 2.56 msecs.
In Figure 24, the control subroutine is called once to create the 2.56
msec delay and it is called three (3) consecutive times to create the 7.78
msec delay.

This technique was used in a PIC-controlled garage door opener. The
PIC had to operate the motor, detect heat, carbon monoxide and
intrusion, and indicate the garage status by various light and sound
patterns. In addition, the PIC had to transmit a ten bit word (five bits
address, five bits status) to a receiver in the home. The transmitted
code was of the format shown in Figure 23.

All the control functions were organized into a subroutine.

CONTROL
APPLICATION

OPERATE MOTOR

READ AND
DEBOUNCE SWITCHES

ALARM SEQUENCES

LIGHT SEQUENCES

The control subroutine was padded to 2.56 msec to create an accurate
software timer. The general flowchart is shown in Figure 24. This
scheme can be used in most applications that require serial data
transmission including:
o Keyboard encoders
o Alarm systems
o UAR/T
o Systems usi ng remote control

163

GET BIT

SET SERIAL
OUT LINE

COUNT - 3

CONTROL
APPLICATION

DECREMENT
COUNT

CLEAR SERIAL
OUT LINE

NO

COUNT - 1

164

COUNT - 1

CONTROL
APPLICATION

DECREMENT
COUNT

NO

COUNT - 3

Another way of creating the correct bit time is by utilizing the Real Time
Clock Counter (RTCC). By connecting the clockout output to the
RTCC input, the RTCC register will increment every four micro
seconds (PIC1655A) independent of program execution. Thus, by pre
setting the RTCC register and testing for zero and wide range of bit
times can be generated.
The value with which the RTCC is preset determines the interval to be
timed, e.g., RTCC preset to 151 10,

The interval would be 256 - 151 x 4 psec.
420 psec = 1 bit @ 2400 Baud

This technique was used in a PIC-controlled keyboard encoder. The
PIC had to read and debounce keys plus perform the UAR/T transmit
function.

g~~~AL ~ 420 psec i 420 psec 1 1420 psec i 420 psec L
I 420 psec I

In this example the control routine read, debound and stored key
status.

Since the RTCC register will time the interval all paths through the
control routine need not be of equal length. However, the longest path
must be less than the bit time.

Flow diagram of program steps:

165

SET/CLEAR
SERIAL DATA

OUT

PRESET
RTCC

REGISTER

CONTROL
ROUTINE

7.2
PIC

Microcomputer
as a Keyboard

Encoder

After the RTCC rolls over to zero, one bit has been transmitted.

In the previous flow diagram, the wait loop can be expressed by the
following PIC code:

WAIT BTFSC RTCC, 7 NOTE: RTCC increments at end of
GOTO WAIT instruction cycle

This is a twelve microsecond loop which checks for RTCC rollover. It is
assumed that the RTCC register will have a value of at least 12810, The
loop waits for the most significant bit to change from one to zero.
The wait loop produces twelve microsecond accuracy, if four micro
second accuracy is required, the following instructions must be added:

WAIT INCF RTCC, W One Cycle
BTFSC RTCC, 7 One/Two Cycles
GOTO WAIT Two Cycles
ADDWF PC Two Cycles
NOP One Cycle
NOP One Cycle
NOP One Cycle

The wait loop is now sixteen microseconds, however by adding the
error from the loop to the program counter the appropriate number of
NOP's will be executed to normalize the loop. This loop is exited seven
cycles after the RTCC rolls over. When presetting the RTCC register,
subtract seven from the computed value. This routine generates the
accuracy needed for higher baud rates.

CONCLUSION
This application note has shown simple techniques for implementing
serial communications under software control. Additional techniques
using the interrupt system in the PIC1656 and PIC1670 will be covered
in a future application note.

INTRODUCTION
This application note describes the use of a PIC1650A microcomputer
as a capacitive keyboard encoder. In the example explained, 128 keys
are scanned sequentially. Upon detection of a key closure, encoding of
the key position and outputting of the appropriate code is performed.

Depending upon liD needs and the number of keys to be encoded, the
software routines described may also be used with a PIC1655A or
PIC1656 microcomputer.

CIRCUIT DESCRIPTION
Figure 26 is the keyboard encoder schematic. Ports RA and RB (XO
X15) selectively scan each column of the keyboard matrix. Only one of
these scan lines will be high at any time. The CD4051 is an, eight
channel analog multiplexer, which is controlled by the liD pins VA, VB,
and VC. Row selection is obtained through control of this device. The
output of the multiplexer will therefore correspond to that produced by
the key at the junction of the column being scanned and the row
selected.

166

+ _.
_vi -..,. --I -·1 --I -- _. --I --, --I

I (Do 0, O2 03 0 4 Os Os 071 STR RC5RC6
I RC7

I
RO

i
RA RB

I I RCORC1RC2 RC3 RC4
'Xo X, X2 X3 X4 Xs Xs X7 11 Xs Xg Xm X" X'2 X'3 X'4 X'S' YA YB Yc HYS KEY

.....&.

0>

""

11 10 9 +5V +5V
~ C)

0l't'\ ~ ~~ '" 31' ",4, ~~ ~~ ~ 71' ,I} ~ 91' ~10J" ,11, ",121' 131' ~14J" '" 151' ~
A B C

13
Yo 30K

16" "'17" '" " " "'" " ,I " ~ " "'" "
,I , ,I ,

f-' " ,/ " '" , ,I "
6.BK • 510K

R
'l t'\"1' t'\ 31,.1'\. 14

Y, 10K
32" ~33"v 47''''' ..A , ..

~ -,. ~"'I't'\ 'I'I'\. 15
...

48' I-' 63"~
Y2

~
t'\. 1''' 12 9100 Al 'I' "'1'1'\ Y3 100K ~lbT 64" ~65'~ 79"'"

1 Y4
C04051 A2 "

" -I'I'\. '1'1'\. +5V
BO' 1"81"~ 95'~

5 Ys
6.8K ~

r- - ~)
'l r\ 1'1'\ "'It'\.

96' 1"97'''' 111'10' : 6.8 " ",.1'1'\. it'\. 2 Y
6 ~

112' ~1~ V ~v -, 1-\.-;. ~11 ~1~ ~161' ~1~ 11~ ~1~ K2~ ~2~ ~2$ ~2~ K2~ ~25 ~2~ t .. F~t'\. 4 Y
7

3
"I" , V ' V , V , V'V .., , 'I-' , I" 'I-' .., I-' I" IJ ,~

K

.
,j 61

7
8J

: 6.B

~ +5V

K

-'-
':"

Fig.26 PIC1650A KEYBOARD ENCODER

The detector circuit transforms this analog signal into a usable level at
the KEY input of the microcomputer. The first stage of the detector
circuit is a comparator formed by A 1. The voltage reference for the
comparator is established at the positive input by the resistor network.
This reference is approximately 2.5 volts when HYS is high and slightly
lower when HYS is low. Keys that have already been detected as being
down are scanned with the lower threshold to provide hysteresis which
prevents "teasing" of the keys. When the key being scanned is down,
the scan line is capacitively coupled to the output, producing a positive
going spike followed by a negative going spike. During the time that the
magnitude of the positive spike is greater than the reference voltage
the output will go low.

The second stage of the detector circuit serves as a one-shot to provide
a pulse of approximately 21J..1s at the KEY input of the microcomputer
when a key is down. The positive input of A2 will go low when a key is
detected as being down. This is for a very short time however, so the
RC network is used as a time delay to lengthen the low pulse at the
output of A2. The procedure used to calculate the time delay is shown
below.

V = Va (1-e-tlRC)

The voltage at which the output will switch is 0.5Va , since the voltage
divider network on the negative input establishes a reference of 0.5Va.
The equation then becomes:

0.5Va = Va (1-e-tlRC)

0.5 = (1-e-tlRC)

0.5 = e-tlRC

In 0.5 = -tiRC
t = -RC In 0.5
t= .693 RC

With R = 30KO, and C = . 00 1 J..If , t = 20.8J..1s.

This delay provides the needed time to sense the key status once the
key has been scanned.

SOFTWARE DESCRIPTION
Figure 27 shows the internal register assignments used in the PIC1650A.
F5 through F10 correspond to the I/O ports provided by the PIC1650A.
SCANR is a scan register which is used to control the column in the key
matrix to be scanned. WR is a working register used to store temporary
data. Registers F20 through F37 provide the storage area required to
record the status of each key. Each bit in the memory matrix corre
sponds to a key position. A bit equal to a one represents a key that is
down, with a zero representing a key that is up. The numbers shown in
the memory matrix registers correspond to the keys in the keyboard
matrix. However these numbers do not remain in the same bit position
within the register. During the scan routine, the data is rotated in a left
to right fashion. When key 0 is scanned, the data in F20 is rotated right.
Thus, the carry bit represents the status of key O. Knowing this status
and the result of the scan determines if key 0 has changed. The carry bit
is moved into bit seven of the F20 to retai n the status of key O. Key 1 will

168

be scanned next, with F21 being rotated as F20 was. Keys 2 through 15
will then follow in the scan sequence, with F22 through F37 containing
the respective data of each key.

The end of the memory matrix is reached after register F37, so the
pointer, which is F4, is reset to pOint at F20 and the V-select lines
change to scan the next row. The next row contains keys 16 through 31.
The same scanning routine is used now since the key status data for
these keys is in bit 0 of each memory register.

Figure 28A is a flowchart showing the major steps in the scan routine. A
listing of the program then follows with a detailed flowchart (Fig. 28B) of
each command step being shown last.
It should be noted that upon power up, F5 and F6 should be cleared,
along with the V-slelect lines and all the internal registers of the
PIC1650A. Key 0 will then be the first key scanned since VA, VB, and VC
are all low, and the memory matrix data will indicate all keys being up
as the initial condition. After the power-up routine is executed, the scan
routine is executed beginning at the ENT label.

SUMMARY
An understanding of the hardware and software described previously
will give the user a basis upon which a complete keyboard encoder can
be designed. The user will need to consider the number of keys to be
scanned, the technology of the keys being used, the input-output
configuration required, the coding requirements, and any other fea
tures desired in designing the PIC series microcomputer into a key
board encoder system.

169

Flg.27 PIC1650A KEYBOARD ENCODER REGISTER ASSIGNMENTS ______ _

7 6 543 2 1 0 7 6 543 2. 1 0

F4[I I I I I I I IRTC F22(.18)1114198182166150134118121

F5 [37 I Xe I X5 1 X4 1 X3 ! X2 1 X1 I Xo \ (RA) F23 (.19) 1115199 (83167 151 135 119 I 3 I
F61 X15 1 X14 1 X 13 1 X12 1 X11 1 X10 1 X9 I Xe 1 (RS) F24 (.20) 11161100 184168152 136 120 1 4 I
F71STRI 1 [KEYIHVSI VC I VB IVA I lOR (RC) F25(.21) 11171101185169153137121 15 I

F10 (.8) [07 1 Del 0 5 10 4 10 3 1 0 2 1 0 1 I Do I DATA (RD) F26 (.22) ~81102186170 154 138 122 1 6 I

F11 (.9) [,--'-----I----'----.L.----'---&..---..a.~1 SCANR F27 (.23) G}91103187 I 71 1551391 231 7 I
F12 (.10) I I WR F30 (.24) ~20 11041881 72)56140 1 24 I 8 I
F13 (.11) [F31 (.25) ~211105189173157141 1251 9 I

F15 (.13) 1L-----I----1----1--L---'----L..---'----I

F16 (.14) [,--'---'---L~--L--L---L---'

F17 (.15) ,--I ----'----'----'---.L.----I.---L----I.---'

F20(.16) [11219618016414813211610 IjKEV
MATRIX

F21 (.17) [113197 181 165 149133117 11 1 DATA

170

F32 (.26) 11221106190 I 74 158 142 I 26 1 10 I

F33 (.27) 11231107191 ! 75 159 1 43 1 27 111 I
F34 (.28) 1124,11081921 76160 144128112 I
F35 (.29) G2511 09193 1 77 161 1 45 1 29 1 13 1

F36 (.30) 11261110 194 1 78 162 1 46 130 114 I
F37(.31) 11271111195179163147131 115\

28A £&

[------'

171

....i.

~
I\)

2O-W
W- F4
tP - SCANR
1 -CARRY

INCREMENT MEMORY
MATRIX POINTER

TEST FOR END OF
MATRIX BLOCK

INCREMENT Y-SELECT LINES

RESTORE MEMORY
MATRIX POINTER

CLEAR SCAN REGISTER

ROTATE SCANR AND
ADJUST IF NECESSARY

PRESET HYS AND KEY

ROTATE FO

DETERMINE STATUS OF HYS

RESTORE FO IF NECESSARY

OUTPUT SCANR INFORMATION
TO PROPER 110 REGISTER

SET W ACCORDING
TO KEY DATA

CLEAR F5 and F6 (NO SCAN)

COMPARE W WITH
KEY MATRIX DATA
GOTO B IF RESULT
INDICATES KEY CHANGE

OUTPUT SCANR INFORMATION
TO PROPER 1/0 REGISTER AGAIN

0- F5
0- F6
XORWFO, 0
ANDLW200

SWAPF lOR, 0
IORLW217
ANDWF4,O
ANDLW 177
W-WR

SET W ACCORDING

TO KEY DATA

CLEAR F5 AND F6

COMPARE W WITH MATRIX DATA
IF RESULT INDICATES KEY CHANGE,
ENCODE KEY

UPDATE MATRIX DATA WITH NEW
KEY CHANGE

ENCODE KEY POSITION

USE TABLES TO
OBTAIN KEY CODE

OUTPUT KEY CODE

TITLE 'KEYBOARD ENCODER'
2 ,
3 ,PERFORMS SCANNING AND ENCODING OF
4 ,A 128 KEY CAPACITIVE KEYBOARD .
~

,
6 ,REGISTER ASSIGNMENTS
7 000007 lOR 7
8 000011 SCANR 11
9 000012 WR 12

10
11 ,BIT ASSIGNMENTS
12 000003 HYS 3
13 QOOO04 KEY 4
14
15 000000 2003 A BCF 3,0 ,CLEAR CARRY
16 000001 1744 INCFSZ 4,1 ,INCR POINTER (F4)
17 000002 5011 GO TO SC2 ,POINTER NOT AT END
18 000003 2147 BCF IOR,HYS ,CLEAR FOR OVERFLOW
19 000004 1247 INCF IOR,l 9INCR Y-SELECT LINES
20 000005 6020 ENT MOVLW 20
21 000006 0044 MOVWF 4 ,MATRIX POINTER SET TO BEGINNING
22 000007 0151 CLRF SCANR ,CLEAR SCAN REGISTER
23 000010 2403 BSF 3,0 .SET CARRY
24 000011 1551 SC2 RLF SCANR,1 ,ROTATE SCAN REGISTER
25 000012 3003 BTFSC 3,0 9TEST FOR CARRY OUT
26 000013 1551 RLF SCANR,l ,ROTATE CARRY BACK IN
27 000014 2547 BSF IOR,HYS ,PRESET HYS
28 000015 2607 BSF IOR,KEY ,PRESET KEY
29 000016 1440 RRF 0,1 ,ROTATE MATRIX REGISTER
30 000017 3003 BTFSC 3,0
31 000020 2147 BeF IOR,HYS 'HYS-)O IF SCANNING KEY THAT IS DOWN
32 000021 3003 BTFSC 3,0
33 000022 2740 BSF 0,7 ,ADJUST MATRIX REGISTER IF NECESSARY
34 000023 1011 MOVF SCANR,O ,SCANR -)W
35 000024 3544 BTFSS 4,3
36 000025 0045 MOVWF 5 ,W-)F5 IF F4 < 30
37 000026 3144 BTFSC 4,3
38 000027 0046 MOVWF 6 9W-)F6 IF F4 > OR 30
39 000030 6200 MOVLW 200 9SET W ACCORDING TO KEY
40 000031 3207 BTFSC IOR,KEY
41 000032 6000 MOVLW 0
42 000033 0145 CLRF 5 ,CLEAR F5
43 000034 0146 CLRF 6 ,CLEAR F6
44 000035 0600 XORWF 0,0 .COMPARE W WITH KEY MATRIX DATA
45 000036 7200 ANDLW 200 .LOOK AT BIT 7 ONLY
46 000037 3103 BTFSC 3,2 ,DID KEY CHANGE?
47 000040 5000 GOTO A ,NO, SCAN NEXT KEY
48 000041 1011 MOVF SCANR,O ,YES, SCAN AGAIN
49 000042 3544 BTFGS 4,3
50 000043 0045 MOVWF 5 ,W-) F5 IF F4 < 30
51 000044 3144 BTFSC 4,3
52 000045 0046 MOVWF 6 ,W-) F6 IF F4 > OR - 30
53 000046 6200 MOVLW 200 ,SET W ACCORDING TO KEY
54 000047 3207 BTFSC IOR,KEY

173

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

000050
000051
000052
000053
000054
000055
000056
000057
000060
000061
000062
000063
000064

73 000065

6000
0145
0146
0600
7200
3103
5000
0640
1607
6617
0504
7177
0052

ASSEMBLER ERRORS 0

A
KEY
KEY

EOF:88
0:>

000000
000004

ENT
SC2

MOVLW
CLRF
CLRF
XORWF
ANDLW
BTFSC
GOTO
XORWF
SWAPF
IORLW
ANDWF
ANDLW
MOVWF

END

SYMBOL TABLE

000005
000011

HYS
SCANR

0
5
6
0,0
200
3~2
A
0,1
IOR,O
217
4,0
177
WR

000003
000011

174

lOR
WR

CLEAR F5
CLEAR F6
COMPARE W WITH MATRIX DATA
LOOK AT BIT 7
KEY STILL CHANGED?
NO
YES, CHANGE KEY MATRIX DATA
ENCODE KEY POSITION
W= 1 YC YB YA 1 1 1 1
W= 1 YC YB YA (4 LSB OF F4)
BIT 7 ->0
KEY POSITION IN WR
TABLES CAN NOW BE CALLED TO GET CODES
FOR THE KEY NUMBER CONTAINED IN WR.
THE CODE CAN" THEN BE OUTPUT IN THE
FORMAT REQUIRED. EXECUTION THEN RETURNS
TO LABEL A TO CONTINUE SCANNING.

000007
000012

7.3
Sound

Generation
Using a PIC

Microcomputer

This application note describes a circuit (Figure 29) using the
PIC1655A to produce the following sounds commonly used for elec
tronic toys and games.
o Machine gun and Ricoc~et
o European Siren
o Phasor
o Racing Car Engine - Rev Up/Down
o Car Ti re Screech
o Car Crash
o Mortar Shell Whistle and Explosion
o Tune 1 - Charge

Tune 2 - Snake Charmer's Song

Each sound is created by one or more of the following techniques:
1. Pulse train of fixed frequency.
2. Periodic increase/decrease of frequency.
3. Superimposing an exponential decay (or ramp) envelope of 1 sec or

2 sec time constants on the sound.
4. Beating (mixing) together two frequencies.
5. White noise generation - Random Pulse Output.

Exponential Decay Generator
Channels 1 and 2 (Figure 29) each have an envelope generator circuit
(1 sec and 2 sec RC time constant, respectively) at the base of the
switching transistor. On Channel 1, a low on RC7 discharges the
capacitor and the transistor switches on. A high on RC7 activates the
RC circuit and the capacitor charges up exponentially to 6V. This
appears as an exponential decay at the collector of the transistor. If the
pulse train is fed to the emitter, it appears at the collector with the decay
superimposed on it. See Figure 30.

Machine Gun and Ricochet (Created on Channel 1)
A random number (created by routine RANGEN) between 1 and 15
gives the number of shots per burst of machine gun fire. Each shot is
produced by outputting random pulses (white noise) of a width of 28J.ls
for about 7ms. These are superimposed by a decay of 1 sec. Each shot
is separated by a delay of 40ms.
Each burst of machine gun fire is followed by a ricochet. This sound is
created by superimposing a decay envelope of 1 sec over a pulse train
(50% duty cycle) whose frequency is decreased slowly in 80Hz steps
(every 15 cycles) from 3KHz to 1 KHz.

175

Fig. 29 SCHEMATIC

9 8 7 6 13 12 11 10
RA3 RA2 RA1 RAO RB3 RB2 RB1 RBO

Vee
2 6V SUPPLY

Vxx
3

PIC1655A MCLR
28

.1¢ 6V

RCO RC1 RC3 RC2 RC7 270 18 19 21 20 25 80
SPEAKER

6V

2M

CHANNEL 1

3.3K J'PF

176

fig. 30 EFFECT OF ENVELOPE ON PULSE TRAIN

ENVELOPE

PULSE
TRAIN

European Siren (Created on Channel 1)
The siren is made up of two components. The higher frequency part at
500Hz and the low frequency component of 300Hz. Both components
are created by pulse trains of fixed frequency. -Starting with the high
frequencysound, the effect of the siren is obtained by switching back and
forth between the two (high and low frequency) sounds. Duration of
the high frequency sound before switching is 256ms, while that of the
low frequency is about 400ms.

Phasor (Channel 3)
The phasor finds an application as the sound of a "phasor" gun in
space war games. Starting with a frequency of about 1 KHz, the fre
quency is decreased (in steps of 40Hz every 1/2 cycle) down to 200Hz.
This is repeated for a burst of phasor fire.

Racing Car Engine - Rev Up/Down (Channel 3)
The engine sound is produced by beating (mixing) two low frequency
pulse trains together. This is simulated in software by having a fixed
frequency variable duty cycle output.
Starting with a frequency of 70Hz and 15% duty cycle, the duty cycle is
increased in steps of 14%, until it reaches about 100% (7 cycles). The
frequency is then switched to 80Hz and duty cycle is then decreased in
14% steps to O. This is then switched back to 70Hz and the procedure
repeated. The effect is to have a beat every 7th cycle (at frequencies of
10 and 11 Hz). To rev up, the higher (80Hz) beating frequency is
increased in Y2Hz steps up to 300Hz. To rev down, frequency is
decreased in V2Hz steps, back down to 80Hz

Car Tire Screech (Channel 1)
The effect of a tire screech is produced by superimposing an exponen
tial ramp followed by a decay upon a white noise output. (See Figure
31.) Each ramp and decay is separated by a random delay.

177

Fig. 31 EfFECT Of RAMP AND DECAY ON WHITE NOISE k/1J!It.J

PULSES
RANDOM DlL

(WHITE NOISE) III ~

RAMP ~~ .. -r--'-W -,--,-D --'--Lo-D -----Jd'--'--'-U~D
DECAY

21 IT .

Car Crash (Channel 2)
Superimposing a 2 second exponential decay upon a white noise
output creates this sound.

Shell Whistle and Explosion (Channel 3)
The method of creating a whistle sound is similar to that for the phasor
except that all software loops must be equal length. Starting with a
frequency of about 4KHz, the frequency of the pulse train is decreased
in 150Hz steps (every 32 cycles) down to about 900Hz. When the
frequency is at its minimum (==900Hz), the crash routine is called to
simulate an explosion.

Tunes - "Charge" and "Snake Charmer's Song" (ChanneI3)
Each tune is a collection of notes. Each note is of fixed frequency and
duration. This information is coded into a 8 bit word called "note data."
Each note has a duration of 80 cycles. The most significant bit of note
data gives the number of times the note must be repeated for that part
of the tune. The 7 least significant bits gives the frequency.

e.g. Notedata-3528 =11101010
MSB -1: The note must be repeated once, i.e. double note.
The frequency is determined by 1528 or 106 decimal.
It is a 12ps loop: T = 2 x [(12 x 106) + 24] ps

= 2592ps
f =385Hz.

Fig.32 A "NOTE DATA" OUTPUT - 3528 ___ II!lIl!!IIIim~IiIIM\!II!II"IT2I2I2IIT2I2I2II!£IBllI!!l!il!ITll!l"

(12 X 106 + 24) I1S

rJ.1

.... 1 ... -----80 CYCLES
(1 NOTE)

"'1'" 80 CYCLES ,
(REPEAT PREVIOUS NOTE)

.sr!. i S!!3JII.J¥JXlJl. : .>~

The note data is in the form of a table. The software fetches each note
data in turn, decodes it and outputs as shown in Figure32.

A computer assembly listing of the routines used follows (Figure32A).

178

TITLE 'SOUND EFFECTS'
2 LIST P=1655,E
3 ;PIC-SOUND DEMO PROGRAM
4 ;9-2-80
5 000000
6 000005 IN EaU 5
7 000006 OUT EaU 6
8 000007 10 EQU 7
9 000011 SL EQU 11

10 000012 SH EQU 12
11 000013 SFREQ EQU 13
12 000014 TEMP EQU 14
13 000015 OUTBUF EaU 15
14 000016 INBUF EQU 16
15 000017 TEMP2 EQU 17
16 000025 SWITCH EQU 25
17 000026 OFFSET EQU 26
18 000027 FREQ EaU 27
19 000030 WAY EaU 30
20 000031 TONE EaU 31
21 000032 HOLDN EQU 32
22 000033 TEMPH EQU 33
23 000034 WORK EQU 34
24 000035 WORKI EQU 35
25 000036 POINT EQU 36
26
27
28
29 000000 01551 RUMBLE RLF SL
30 000001 01552 RLF SH
31 000002 01015 MOVF OUTBUF,W
32 000003 00047 MOVWF 10
33 000004 04000 RET
34 000005
35 000005
36 ; ; ; y ; , ; ; ; ; ; ; ; , ; ; ; ; ; ; ; ; ;.; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

37
38 ; SIXTEEN BIT WHITE NOISE GENERATOR
39
40 ;;;;;;;;,;;;;;;;;;; y;;;;;;;;;; ;p; ;;;;;;
41 000005
42 000005 01011 RANGEN MOVF SL,W ; XOR BITS 2,15
43 000006 00054 MOVWF TEMP
44 000007 01654 SWAPF TEMP
45 000010 01554 RLF TEMP
46 000011 01012 MOVF SH,W
47 000012 00654 XORWF TEMP
48 000013 01554 RLF TEMP
49 000014 01551 RLF SL
50 000015 01552 RLF SH
51 000016 04000 RET
52
53
54 pi;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
55
56 ;20USEC RESOLUTION DELAY ROUTINE
57
58 ; , ; , ; ; ; ; ; ; ; ; ; ;
59
60 000017 05020 DELAY GOTO DELAY+1
61 000020 01354 DECFSZ TEMP
62 000021 05017 GO TO DELAY
63 000022 01357 DECFSZ TEMP2
64 000023 05017 GOTO DELAY
65 000024 04000 RET
66
67
68 ;;;;;;;;;;;;;;;;;;;;;;;;~9;;;;;;;;;

69
70 4USEC RESOLUTION DELAY ROUTINE
71
72 ;
73
74 000025 00057 DEL4 MOVWF TEMP2
75 000026 02003 CLRC
76 000027 01457 RRF TEMP2
77 000030 03003 SKPNC

179

78 000031 05032 GOTO VTLl
"19 000032 02003 VTL1 CLRe:
80 000033 01457 RRF TEMP2
81 000034 03403 SKPC
82 000035 05040 GOTO VTL3
83 0000~~6 05037 Gerf() VTL2
84 000037 00000 VTL2 NOP
85 000040 01357 VTL3 DECFSZ TEMP2
86 000041 0~)03"1 OOTO VTL2
87 000042 04000 RET
88
89 ;
90 f ; , ; ; ; ; ; ; , ; ; ; ; ; ; , ; ; , ; ; ; , , ; H ; ; H ;; ; ;; ; ;
91 ; ,
92 ;CHANNEL SWITCHING-ENVELOPE DECAY
93 ; ;
94 ; ; ; ; ; ; ; ; ; ; ; , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; , ; ; ; ; ; ; ; ;; ;
95
96 000043 06~r77 DECAY MDVL.W 377
97 000044 00054 MOVWF TEMP
98 000045 06100 MDVLW 100
99 000046 00057 MOVWF TEMP2

100 000047 04417 CALL DELAY
101 0000:7;0 04000 RET
102
1 0~'5 ;
104 ; ;; ; ; ; ; ;; ;; ; ; ; ;; ; ;; ;; ; ; ; ; ;; ; ; ; ;; ;; , ;;
105 ; ;
106 ; 'WILD CHAFmE' TUNE·-NOTE DATA
107 ; ;
lOB ; ; ; ; ; ; ; ; ; ; ; , ; ;; ; ; ; ; ; ; ;; ; ; ; ; ;; ; ; ; ; ; ; ; ;
109
110 000051 0074::'~ PLAY ADDWF 2
111 OOOO~;::!, 04074 RETL.W 74
112 00005~'5 0410"1 RETLW 107
113 00OO~)4 04274 F~ETLW 274
1:1.4 OOO()5~; 04107 RETLW 107
1 :L~) 000056 04131 F~ETL.W l~H
116 ;
11"1 ; ; ; ; ;; , ; ; , , ; ; ; ; , ; ; ; ; ;; ; ; ; ; ; ; ; ; ;; ; ; ; ; ;
118 ;
119 ; 'SNAKE CHAfmEF~S ' TUNE-NOTE DATA
120 ; ;
121 ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; , ; ; ; ; ; ; ; ; ; ;; ;; ; ;;
122 ;
123 000057 00742 PLAY1 ADDWF 2
124 000060 041t)7 RETLW 167
1::'~5 000061 04144 F~ETLW 144
126 00006:'~ 041. ~.';~.~ RETLW 152
127 000063 041.:W RETLW 120
12B 000064 041.44 RETLW 144
129 000065 041~)2 HETLW 1 ~52
130 000066 04167 F~ETLW 16"1
l~H 000067 04~'.J67 F~ETLW 36"1
132 o ()()() "10 04~3~52 HETLW ~3 ~:5::'~

B~3 0()0011 04344 RETLW 344
134 0000"1::'~ 041 ~:;;.~ . HETL.W 152
135
136
137
13B
139 00007~'.J 063'7'7 KEYPAD MDVLW 377
140 0000"14 00046 MOVWF OUT
141 000075 06004 MDVLW 4
14::!. 000076 00054 MDVWF TEMP
143 0000'7'7 0636"1 MDVLW 36'7
144 000100 00057 MOVWF TEMP2
145 00010t 01017 KEYl MClVF TEMP2,W
146 000102 00046 MOVWF OUT
147 OOO:LO~'5 o 100~) MClVF IN,W
14f.l OO()104 0"1()1"1 ANDLW 17
149 00010~,) 0"141"1 XClm"w 17
1 ~)() 000106 03103 SKPNZ
1:711 00010"1 05143 (JOTO RDTAT
1"'"") . UA' .. 000110 000~:.';6 MDVWF INBUF
15~3 000111 0;3156 BTFSC INBLJF,3
l:"j4 000112 0612~~ MOVL.W SNDTBL-l
155 O()O113 0~H16 BTFSC INBUF,::'~

151!! 000:L14 06126 MOVI,.W .4tSNDTBL'-1
15'7 000115 030~)6 BTFSC INBlIF,l
158 000116 06B2 MClVLW • 8tSNDTBI.. '-1

180

:L59 00011.7 0:5<>:1.6
:L60 000120 06:1.~~6
161 O()O:I. :?:I. O()714
:L6::.! ()()O12::~ OO()4~:~

16::S
164 ()0():L2:'~ 0::;07;:'; GNDTBL
16:) 000 1 ~.~4 ()~.'j7:1. :L
:/.f)6 '()O():1.2::.:j o::)::)()()
.1f)7 O()O126 0::):1. ::50
1613 ':)OO:l.~!'7 o:;jOn
169 O()Ol::S0 o::'iOn;
j,7Q O()():I.::S1 0:::;::.:j27
1.7:L O()():I.::S2 0:::;262
:I. 7~! O()O:/.3:~ ()::.',i07::S
1 7:~ 000:1.34 ()!:)()7:~

174 000:1. ~~~.:.i O::.:j6:/.0
:1.7 ~) O()O:I.:36 ():::j~::j63

t?6 ()O():I.:·~7 ()::)()7:~

:1.'77 O()():l.40 ()~:.i()7~~

.1.·?B O()O:I.4:I . O:::j634

*rn*rOEB AND GIMAII... M~E NOt,J AVAIL.ABI...E
:1.79 O()():I.4~.! ()~):~7:3

HIO
.181 ()OQ:I.4~~ ()240:':~ fWTAT
Hl~! 000:1.44 O:l.4!:P
11:1:3 O()()14!:) () 1 :~!:'i4
:l.f.14 O()O:L46 05:1.0:1.
1.n~.'i 000:1.47 O!:)() 7:3
:1.06
18/
:1.80
Hl9
190
:l9:1.
192
:L (;>:~

:L94 O()O:I.!::jO 06~.):~:I. MCGN
:L9!:) 00 () :1. ~::i 1 O()O47
:L96 O()():I.:::i2 ()()()5~.:.i

:1.97 O()O:I.~:j:~ 0444~~
:1.91:1 O()O:I.::)4 ()440:::j MCGN2
:1.99 OOO:I.:::i::.:j 0:1.01.4
:WO OO():I.!::j6 0640:1.
2():L 000:1.::)7 070:L7
20~?, O()():Lf.)O ()O()6:'~

~W:3 O()O:I.6:I. 06:377 MGGN:I.
204 O()():l.6:;~ OOOl2
20~.'j Of.)():L 6~~ 000/4
206 OOO:I.f)4 0600:1.
~!O7 000:1. 6~:.:j 0OO7f)
20B 0001.66 o :;~~'~.'i:::i
2()(;> O()():1.6/ 0440!::j GUN
~.~:1. 0 OO():I.?O O:~:~:::i4

2:L:I. O()() 1. '?:I. ()~:i:1. 7~.:j

2L? 000:1. 7:;~ O~!()O:~

2:1.:3 000:1.7:3 02:U::)
21.4 O()O:l./4 O::.'i:I. '.77
?:I.~.:i OOO:I.7!:) 024()~, GUN1.
2:1.6 O()O:1.76 O::!7:1.!:.:;
~!.1.7 OOO:I.?'l 0440() GUN2
~.~ 1 n O()()2()() ()6002
:;~ 19 OOO:;~O:I. OO()!::;4
220 O()()202 O:l.;·,:::j4 GUN:'5
2:~:L OO()::!O::~ Ot:;20:;~

22:~~ O()JO~~04 ():;!7~:;~:j

223 ()O()2()~:i O:l.~P4
2:?4 OOO:;~()6 O!:'i:l.67
~,~2~7j OOO:W7 01,;',76
226 O()O::!.:l.O O!:5:I.67
;?~.~7 OO()::.~:I. :1. OO:~/:? DL .. Y
2213 O()()~.~ :1. 2 0:3 :1. o::s
22(;> OO()2:L~~ ()~:j222

2:~() ()OO:;~:I. 4 06()()!:)
:?~~1. O()()::.!1. ~:i O()O!'.)4
2:~2 OO()21.6 ()6()(H

2~~3 ()()O:;~3. 7 O()O!:)7
2:34 OOO:;~~.~O 044:1.7
2~3~:.:j 00022:1. O~.:j21. :L
:;~:36 ()OO:;!:;~~! (>1.363 DL.YflN
:;!~~7 0OO2::!:3 O::.:jlf) 1

BTFBC INIWF~O
MDVI...W .12+SNDTBL..·-1.
I~DDWF lEMP, t~
MOVWF 2

GOTO KEYPAD
GOTCl TUNE1.
GOTD TSCI:~CH

GOlD MCGN
OOTO KEYPAD
GDTD KEYPAD
GDTO CRABH
GOTO SIf~EN

Goro I,EYPAD
GOTD KEYPI~lt

130'1'0 WInTLE
GOTO PHAGOfi:
GOlD KEYPAD
GOTO I,EYPAD
GO TO TUNE

FOF~ USE ••••
130'1'0 Al.l'n:-m

nETC
rmF rEMP~~
DECFSZ TEMP
GOTO KEY:!.
GOlU I\EYPAD

MOVI...W :~.~~~ 1.
MOVWF 10
MOVWF OUTBUF
CALI... DECAY
C(.~1...1... r~AN[';EN

NOVF TEMP,W
IORLW :L
I(~NDLW :1.7
M()VWF ~!':3
M(JVU.J ~v/
MOVWF ~~2
MOVWF 34
MOVI...W :L
MOVWF 36
lieF CH.JTHUF,7
CALI... I:~ANGEN

[(TFBe TEMP,/
GOTD GUN1.
CL.RC
HCF OUTI:iUF, f)
GOlD GUN2
BFTC
BSF OUTBUF,6
CALI... I:~UMBI...E

MCl VI... W 2
MOVWF TEMP
DECF!:lZ TEMP
GOTO GUN:3
BBF (H.JTBUF,7
DECFBl :~4

GClTO GUN
DECFSl 3,'S
I.'-IOTCl GUN
flEeF 32
SI\PNZ
GOTO DLYDN
MOVI...W ~)

MOVWF TEMP
MOVI ... W :L
MOVWF TEMP2
GALl... DELAY
GOTO DLY
DECFBZ 2:3
GOTO MCGNl

181

y,

y ; ; ; ; , ; ; 9 ; ; ; , ; ; ; , ; y ; , ; 9 9 ; ; ; , ; ; ; ; ; ; ; ,
;
~MACHINE GUN AND RICOCHET

,9;,~;9;;;;;;P;;;;;9,;,;;;;;;;;;,;;;

TURN OFF ALI... BOUND CHANNEL.S

F23 GETn RANDOM t 1-:l.5:NUMHER
OF SHOTS IN :I. M/C GUN BURST.

CREATE 1 SHOT OF M/C GUN FIRE.
RANDOM PULSES (WHITE NOISE).

1. M/C GUN SHOT OVER.

REPEAT SHOT FOR A BURST OF FIRE.

238 0002~~4 02:~5~:; BCF OUTBLJF,7 START fnCOCHET.
:';?39 000~~2:'."j 01015 MClVF C1UTBlIF,W
240 000226 00047 MDVWF 10
~!41 000227 06030 INFUCO MClVLW :30
242 0002~~O 000'7'7 MOVWF 3'7
243 O()O~~:'~:I. 00065 MOVWF ~~~5 START ENVELOPE DECAY (l13[C).
244 000232 027~,)~:; BBF (JUTBlIF,1
245 00023:3 0101 ~5 MOVF OUTBUF,W
246 OO():';?:~4 00()47 MOVWF IO
~.~4'7 0()023~j 06100 f~ICO:I. MOVI .• W 1()0 OUTPUT PULSE TRAIN.
248 0002:36 006~)5 XCIF~WF OUTBlIF
249 0002~U O:L015 MDVF OUTBUF,W
2~:;O OO()24() 00()47 MOVWF 10
:?51 0()():~41 ()1.~~77 HIC02 DECFSZ :'~'7

::'~~;2 ()OO:';~42 O:::;~?,~.'i~~ GUTU NOPl
~!'5~5 OOO:;?4:3 06();30 MDVLW ~~O
::~::.)4 OO()::,?44 OOOTJ MClVWF 37
~~5~:.:j 0OO24:~; 0:/.265 INCF 25
~!:::;6 O()()246 06:1.5() MOVLW :I.:,"jO
2:7;'7 ()0()~.~47 0()6~.!:':; XOF~WF 2::;,W
~!5B OOO;.?!:'iO 0:3~)O~~ BTFB13 ~5r ~!
2~:;9 0002:'51. 0:5~?'::.'j7 GUTO VTL
:MO ()OO~.~:::i2 O:-?i() 73 !.lOTD KEYPAD
261 O()():'~~:j~'i O!7i2~)4 NOP:L GOTO NOP1t1
262 OOO:~?:)4 O~:i:~!~55 GOTD NOP1t2
26:3 OOO:;?:::;:) 0:::j::'~56 GOTO N()F'1t~~

264 O()O:'~56 OO()OO NOP
265 000257 0:1. O::.?~) VTL MOVF 2:'."j,W
266 000260 044::.?~) CALI, .. DEL4
267 O()O::!.6:L O~.';2:3~.'j OOTO RICDl
2613
:~6(1

270 ; , ; ; ; ; ; , ; ; ; ; ; ; ; , , ; ; ; ; ; ; ; ;"; ; ;) ; ; ; ; ;
271
272 El.IfWPEAN SIF~EN

2n
::'!74 ;;;;;;;;;;;;;;;;;;;;9',;;;,;;;;;;
2n'.i
276 O()O26~~ 06LH SIF~EN MOVLW l~H

277 ()OO:'~6;3 00047 MDVWF III
~.~78 O()O264 ()6~U7 MClVLW ~~'77
;.!79 0OO26~5 000/4 MOVWF 34
280 000266 06001 MOVLW 1
2E1:L O()O:~!6'7 OOOnj M(}VWF 35
282 OOO:UO 06:33:L MOVLW :331
2E1~~ 0002/1 0OO5~.'; MOVWF OIJTBUF
2B4 ()OO:';~/2 06200 Srm::Nl MDVLW :.;!O() HI FREUUENCY PAFa OF BIF~EN.

285 O()O~U~5 OO()~):'5 MOVWF SFHEC~
2B6 0OO2l4 0202~5 HCF SWITCH,O
::~EI'J 0OO2n:i O~5~50 :L GOTO SCONT
~~8n ()()O:';~'J6 06~550 PHBf~:t. MOVL..W ~~50 L..D Ff~EnUENCY PAFa OF SmEN.
289 O()O217 OOO~):~ MOVWF BFHEC~
290 OOO:'~()O O:~42~:; B8F BWnC~hO
291 O()O~501 06300 BCClNT MOVLW ~~OO
29:;~ O()O~50~? 0065~:; XOF~WF OIJTBUF
29~~ O()O~~O:3 01015 MClVF OUTBUF,W
294 OOO:W4 0OO4'J MOVWF II)

2(1~.) O()()30~.'; OJ,OB MDVF SFF~EO ,W
296 000:306 OOO~.';4 MOVWF TEMP
29/ OOO:3()7 014:H Hf~F TEMP
2913 O()O;HO 0:t.:'5~::;4 SLOOP DECF!3Z TEMP
;~99 O()O;Ul O~::;;HO OOTO SLOOP
~500 000;'51 ~? O:l.O~·W MDVF WAY,W
:30:L O()O:3:1. ;3 OOn);3 ADDWF BFHEO
302 OOO;'5t4 06;'P~5 MDVLW :P~:i
303 OOO~H5 002:1.:'5 SUBWF SFF~EO, W
:304 0OO3:L6 O'J4~50 xClm .. w ~:;O

:305 OOO;H7 O~~40~5 SKPC
306 O()O;3~?O O:HO:~ SKPNZ
:307 00032:1. 0:':;:366 GDTD NECiWAY
30B 0003:~2 01TJ4 DECFSl ~'i4 HEPEAT GUHF~ENT BOUND (HI DF~ LO)
309 OOO~~2~5 O~;:'5:7;~5 [iOTO RPT TILL C()UNTEH HAB CDUNTED DOWN
310 OOO~'i24 01:3n:j D[CFSl ::~5 TO ZERO.
311 OOO~'i2!:'i O:;j35!:'i GlHO RPT
312 0003~!6 0600;'5 MDVLW 3
313 ()OO:~~!.7 00076 MOVWF 36
314 000:3:30 06:U7 MDVI,.W 37'7
31~j 0OO33:L OOOl"J M(}VWF :·rJ
316 0003~'i:;~ ot):n;'5 A GOTD A+1 4f.1USEC DELAY.
:'517 OOO~53:'5 053:H GOTD A+2
318 000334 0::)335 BOlO A+3

182

319 000335 05336 OOTO A+4
320 000336 05337 OOTO A+5
321 000337 05340 GO TO A+6
322 000340 01377 DECFSZ 37
323 000341 05332 OOTO A
324 000342 01376 DECFSZ 36
325 000343 05332 GOTO A
326 000344 06377 CHNOE MOVLW 377 SWITCH SOUND JUST MAr~ (HI
327 000345 00074 MOVWF 34 FREQ. TO LO FREQ. OR VICE
328 000346 06001 MOVLW 1 VERSA).
329 000347 00075 MOVWF 35
330 000350 03425 BTFSS SWITCH,O
331 000351 05276 OOTO PHSR1
332 000352 06002 MOVLW 2
333 000353 00075 MOVWF 35
334 000354 05272 OOTO SIREN1
335 000355 03025 RPT BTFSC SWITCH,O
336 000356 05276 GOTIl PHSR1
337 000357 06367 MOVLW 367
338 000360 00046 MOVWF 6
339 000361 01005 MOVF 5,W
340 000362 00056 MOVWF 16
341 000363 03116 BTFSC 16,2
342 000364 05073 GOTO KEYPAD
343 000365 05272 OOTO SIREN1
344 000366 01170 NEGWAY COMF WAY
345 000367 01270 INCF WAY
346 000370 03425 BTFSS SWITCH,O
347 000371 05276 GOTo PHSRI
348 000372 05301 GOTO ~~ONT
349
350
351 ,I;;;;;;;;;;;;;;;;;;;,;;;;;;;;;
352 ;
353 ;AUToMOBILE ENGINE REVV UP/DN
354 ;
355 ;,;;;;;;;;;;;;;;;,;;;;;;;;;;;;;
356
357 000373 06001 AUTOR MOVLW 1
358 000374 00073 MOVWF 33
359 000375 06031 MOVLW 31
360 000376 00047 MoVWF 10
361 000377 00070 MoVWF 30
362 000400 06225 MOVLW 225
363 000401 00060 MOVWF 20
364 000402 00061 MOVWF 21
365 000403 06200 MoVLW 200
366 000404 00062 MOVWF 22
367 000405 00063 MOVWF 23
368 000406 06377 MOVLW 377
369 000407 00071 MoVWF 31
370 000410 06003 MOVLW 3
371 000411 00072 MOVWF 32
372 000412 01360 ENG DECFSZ 20 LO FREQUENCY.
373 000413 05467 OoTO PAD
374 000414 01021 MOVF 21,W
375 000415 00060 MOVWF 20
376 000416 02470 BSF 30,1
377 000417 01J62 ENGI D[CFSZ 22 HI FREQUENCY. THE 2 BOUNDS ARE
378 000420 05470 GO TO PADl MIXED TOGETHER TO CREATE BEATS.
379 000421 01023 MOVF 23,W
380 000422 00062 MOVWF 22
381 000423 02470 BSF 30,1
382 000424 01030 ENG2 MOVF 30,W
383 000425 00647 XORWF 10
384 000426 00170 CLRF 30
385 000427 01371 DECFSZ 31
386 000430 05471 GO TO PAD2
387 000431 01372 DECFSZ 32
388 000432 05472 OOTo PAD2+1
389 000433 06003 MOVLW 3
390 000434 00072 MOVWF 32
391 000435 03433 BTFSS 33,0 REVV UP/DN FLAG SET?
392 000436 05460 OOTO REVDN NO!-REVV DOWN.
393 000437 00363 REVUP DECF 23 YES!-REVV UP.
394 000440 06030 MOVLW 30 DECREMENT COUNTER(INC. FREO.).
395 000441 00623 XORWF 23,W
396 000442 03503 SKPZ REVVED UP TO MAX FREQUENCY?
397 000443 05446 OOTO KEYPR NO! CHECK IF KEY PRESSED.
398 000444 06031 MoVLW 31 YES! MANTAIN MAX FREQ TILL KEY
399 000445 00063 MOVWF 23 RELEASED FOR REVV DOWN.
400 000446 06367 KEYPR MOVLW 367 LOOK FOR KEY RELEASE.

183

401 000447 00046 MOVWF OUT
402 000450 01005 MOVF IN,W
403 000451 00056 MOVWF INBUF
404 000452 03416 BTFSS INBUF,O
405 000453 05456 GOTO KEYPRl
406 000454 02033 BCF 33,0 KEY RELEASED-REVVDOWN.
407 000455 05412 GO TO ENG
408 000456 02433 KEYPRl BSF 33,0 KEY STILL PRESSED-REVV UP
409 000457 05412 GOTO ENG OR CONTINUE AT MAX FREQUENCY.
410
411 000460 01263 REVI'N INCF 23 INCREMENT COUNTER (I'ECREMENT
412 000461 06200 HOVLW 200 FREQUENCY).
413 000462 00623 XORWF 23,W
414 000463 03503 SKPZ FREQ REACHED ORIGINAL (MIN) VALUE?
415 000464 05446 GOTO KEYPR NOI-CHECK FOR KEY CLOSURE.
416 000465 00147 CLRF 10 YESI-SOUND OVER.
417 000466 05073 GOTO KEYPAD
418
419 000467 05417 PAD GO TO ENGl TIME PADS TO EQUALIZE PROG LOOPS.
420 000470 05424 PAI'l GOTO ENG2
421 000471 05472 PAD2 GOTO PAD2+1
422 000472 05473 GOTO PAD2+2
423 000473 05474 GOTO PAD2+3
424 000474 05475 GOTO PAI'2+4
425 000475 05476 GOTO PAD2+5
426 000476 05477 GOTO PAD2+6
427 000477 05412 GOTO ENG
428 ,
429 ,
430 , , f , , f " , , , , , , , , , , " f " ff , , " " , , "
431 f ,
432 'TIRE SCREECH SOUND ,
433

., ,
434 , , " , f , , , f f , , , , , , , , , , , , , , , " , , f , , ; ~

435 ,
436 000500 06121 TSCRCH MOVLW 121
437 000501 00055 MOVWF OUTBUF
438 000502 00047 MOVWF 10
439 000503 06200 SL'RGFil MOVLW 200
440 000504 00655 XORWF OUTBUF
441 000505 04405 CALL HANGEN , OUTPUT RANDOM PULSES-WHITE NOISE.
442 000506 02003 CL..RC
443 000507 03754 f.lTFSS TEMP,7
444 000510 02403 SETe
44~) 000511 04400 CALL RUMBLE
446 000:51~.! 01011 MOVF SL,W
447 00051;3 0703.7 ANnLW 17
448 000514 06440 IORLW 40
4.49 000515 ()00~)4 WAIT MOVWF TEMP . RANI.OM [lELA Y •
450 OOO::i1.6 ()1~554 WALOOP nECf-"SZ TEMP
4~1 00051'7 05516 GOTO WALOOP
452 00052() 06373 HOVLW 373 CHECK IF KEY PRESSEl'?
453 000521 00()46 MOVWF 6
454 000522 01005 MOVF 5,W
455 000523 00056 MOVWF 16
456 000524 03556 BTFSS 16,3
457 000525 0~,)503 GOTO SCRCHl ; YES! CONT I NUE SOUNI'.
458 000526 05073 GOTO KEYPAD f NO! SOUNI' I'ONE.
459 ;
460 ,
461 f""""""";,,;,,,""';'"
462 ; f
463 ;CAR CRASH/EXPLOSION SOUNn ,
464 • ,
465 ;"""";""";, .. ,,;,,,,,;;,
466 ;
467 000~)2l 06~!~!::'j CRASH MOVLW 225
468 000530 00055 MOVWF OUTBUF
469 000531 00047 MOVWF 10
470 00()532 04443 CAL.l. nECAY
4"71 000533 06~~77 MOVL.W 377
472 000534 00076 MOVWF 36
473 000535 06155 MOVLW 155
474 000536 00077 MOVWF 37
475 000537 ()~!155 BCF OUTBUF,3 DISCHARGE ENVELOPE GEN. CAP. FOR FAST R
476 000540 04405 CCDNT CALL RANGEN OUTPUT RANDOM PULSES-WHITE NOISE.
477 000541 03354 BTFSC TEMP,7
478 00054<- 05546 130TO I'OIT
479 00()543 02003 CLRC
480 00()544 02115 FCF OUTBUF,2
481 000545 05550 GOTO SOFF
482 000546 02403 non SETC

184

4K~ O()():H7 02::'jj,::) BGF OUTBlIF,2
4134 O()O::)::)() 0440(1 DOFF CALL I:~UMBL.E

48~'.) ()()O~i~):I. 060()2 MOVI .. W 2
4136 () 0 0 ::'j ::'j :;~ O()O::)4 MDVWF TEMP
4137 O()O~)~::i;~ O:/.:3:'S4 Wl..ODF' VECF'BZ TEMP :?'4UBEC DELAY.
4BB O()O~.'i~.'j4 ():'.'.i:'.'j:'.'i;·~ GOTCJ ['JI...ODP
489 OO()~)::'j::'; () .:~~ :::1 !:~ :~:; Bf:lF OUTBUF ~;3 BTAHT :I.()m~C DECAY ON BOUND OUTPUT.
490 OOO::'j::'i6 0:1.376 DECFSl ~~6

49:l OOO:'.'i:'.'i/ ():'.'j~.'.i4() GOTD CCONT
49:;~ OOO::'j60 ():I.;~:n DECFBZ ~~7
49;3 000::)6:1. 0::):'.)·40 GOTO CCONT
494 O()O~.'j62 Ol:)()7;3 GlHO KEYPAD ; DECAY DVEH SClUND DONE.
495
496
497 ;;;;;;;9;;;;;;;;;;;;;";;;;;;;;;;;'
49f.1 ;
499 ; PHAS()f~ GUN SOUND
:"jOO ; ;
~)o:I. ; , , , , , ; 9 , , ; ; ; ; , , ; , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
50:;!
503 0OO56~~ 0625~! PHASDR MOVLW ~~5~~
504 ()1:>O~'i64 00047 MOVWF 7
50~~j 00056:5 060;'50 I...:l MOVLW :W INITIAL FF~ECHJENCY •
~i06 O()O566 000~5;'5 MOVWF SFf~EO
S07 OOO~M7 ()600::.! L :;~ MrJVLW 2 nt.JF~AT ION BEF()F~E DECF~ • FF~EO. (t DF PULBE!:)
::"i08 OO()~j70 00074 MOVWF 34
509 0OO57:l 060()3 I...:~ MOVI...W 3
~HO ()()()57:;~ 00647 X()f~WF 7 OUTPUT PI.IL.SES OF FREOUENCY-)DFREO.
511 OOO~:inl 06()O:l MClVLW 1
512 ()()()~.'i74 OOO::'i7 MOVWF TEMP:;~

~il;~ 0()O~5n'i ()1,0.1,:3 MDVF SFRE(1,W
5:l4 O()O~),16 OOOt"i4 M[)VWF TEMP
51:5 O()O~.'i77 04417 CALI... rtELAY
5:l6 000600 ()1~~74 rtECFBl 34 DI.JF~ATION FOR Cl.JfmENT FHEOUENCY DVEH'~

5:l7 0()O60:l O~'i:571 GO TO L..~"'s NOt-CONTINUE AT ~lAME FHE(WENCY.
~i:lB O()0602 (H ~:!'::)3 INCF SFf~EU YES! .. , I NCf~EMENT COUNTEF~ (DEGF~EMENT FF~EOUE
5:l9 O()O60:3 06:;~()O MOVLW ~!OO
:5:W O()O604 006:l~~ X()f~WF SFHEC~,W
~5~:?' :I. 0OO60~5 ():~:"jO~"'s BKPZ ; FHElWENCY F~EACHEn MIN'r
~5 ~.~ ::~ 000606 05::'i67 GOTD l..::?' NO! CONTINUE BOUND.
5:;~~~ 000607 0507:3 1.701'0 KEYPAD YES! SCII.JND DONE.
5~!.4
:::;:~::-,

5:;~6 ;;,;;;;;9;;;;;;;;;;;;;;;;;;;;;9;;
~j~~7 ;
5:~8 ; MOHTAF~ WHISTLE & [XPLOnION
529
~)30 iii;;;;;;;;;';;;;;;;;;;;;;;;;;;;;
531
532 O()O610 ()6~!'52 WIBTLE MOVLW 2~3:~

533 0OO61:l 00047 MClVWF IO
5~~4 00061:?. 060:~O MOVLW 30
5~3~5 00061~5 OO():B MOVWF SFF~EC~

~.'i36 OO(M:l.4 Ot.d()() LU MOVLW 100
537 000615 00074 MOVWF 34
5~m 0OO6:l6 O:l()1~5 LL::.~ M[)VF SFF~El~,W

~i39 000617 04425 CALL rtEL4
54() 000620 0600:~ MOVI...W 3 OUTPUT PULSES OF FREQUENCY-)SFREO.
54:l 000621 00647 XORWF 7
542 0OO62:~ 01~574 rtECFBl 34 J)I.IF~ATION FCm FRECWENC:Y ClVER'r
543 00062:3 056~~O GOTD LL3 Nr.I! CONTINUE AT SAME FF~EWJENGY •
544 000624 01253 INCF SFREO YEB! INCREMENT GOUNTEH (DECREMENT FRE1WE
545 0OO6:;~5 O:fl:'.'i3 BTFBB SFHEO,7 FF~EOUENCY F~EACHED MINIMUM'~

546 000626 0561.4 GDTO LU NO! CONTINUE.
547 000627 O!:',527 OOTO CHASH YES! SOUND DONE.
548 000630 O()OOO Ll .. ~~ NOP TIME PADS FOR ECWAL LODP LENGTHS.
549 0006;3:1. O:7i6:32 Gl)1'O LL3t2
5:7jO 0OO6:3::.! ()~)6~~3 OOTO U.3t:3
551 0OO6~H 0561.6 GOTD LL2
5~;~~

553
554 ;;;;;;;;;;;;;;;;;;;;;;;;;;;j,,;;;;;
55!)
556 TUNES-'WILl) CHAFWE' & 'SNAKE CHAF~M

557 -EF~S SClNG'
551-3
55(J iii;;;;;;;;';;;;;;;;;;;;;;;;;;;;;;;
560
56:L 000634 06~~5~~ TUNE MOVLW ~I::")

.t .. ;:}' 'WILD CHARGE' TUNE.
562 OO()6~~5 00047 MOVWF IO
56:3 000636 OO()65 MOVWF ::.~~5

185

564 000637 02025 BCF 2~5,0 CLEAR FLAG FOF~ 'WIL.D CHAr~GE' TUNE.
565 000640 06005 MOVLW 5
566 000641 00076 MOVWF POINT POINTER TO TABLE FOR 'WILD CHRG' NOTE I:IA
567 000642 00":576 STL-OOF' DECF-· POINT
568 000643 01036 MOVF POINT,W
569 000644 03025 BTFSC 25,0 WHICH TUNE'!'
570 000645 05650 GOTO U
571 000646 04451 CALL. PL.AY GET NOTE I1ATA FROM TABLE FOR WC TUNE
572 000647 05651 GOTO U1
573 000650 04457 U CALL PLAYl GET NOTE DATA FROM TABLE FOR SCS TUNE
574 000651 00072 Ul MOVWF 32
575 000652 01572 FU.F 32 I1ECOIIE N()TE~ I1ATA.
576 000653 03465 BTFSS 25,1 CHECK IF LAST NOTE.
577 000654 05657 GOTO J1 LAST NOTE ALf~EADY I1ECODED- SKIP.
578 000655 00177 CL.RF 37
579 000656 01577 RLF 37
580 000657 02003 Jl CLRe
581 000660 01472 RRF 32 F32 HAS Nf)TE FF~ECWENCY •
582 000661 01277 INCF 37 F37 HAS NOTE DURATION.
583 000662 06240 NNl MOVl.W ~!40
584 000663 00067 MOVWF 27
585 000664 01032 NN2 MClVF 32,W
586 000665 00066 MOVWF 26
587 000666 06001 MOVLW 1
588 000667 0064'7 XORWF II)

589 000670 01366 NN3 DECFBZ 26
590 000671 05670 GOTO NN3
591 0006'72 01367 DECF8Z 27
592 000673 05664 GOTO NN2
593 000674 01377 DECFSZ :~7
594 0006'75 05662 GOTO NN1
595 000676 01076 SNDN TSTF POINT F'IJINTEF~ AT LAST NOTE'!'
596 00067'7 03103 SKF'NZ
597 000700 050'73 GOTD KEYF'AII YES! TUNE DONE.
598 000701 01036 MOVF PIJINT,W
599 000702 07401 XOFU.W 1 P()INTEF~ AT SECOND LAST NOTE'~
600 000703 03503 BKPZ
601 000704 05642 GOTD BTL.OOP NO! OUTPUT NEXT NCITE.
60~?' 000705 0600;3 MOVl.W 3 YES! LAST NOTE [ll/FMTION 3.
603 000'706 000'77 MOVWF 3'7
604 000707 O~W65 BCF 25,1 CLEAR LAST NOTE FLAG.
60S 000710 05642 GClTD 8TLClOP OUTPUT LAST NOTE.
606
607 000'711 062~j2 TI.JNE~l MOVLW 2S~! 'SNAKE C:HARMEF~S SONG'
608 000712 00047 MOVWF II)
609 000713 00065 MIJVWF 25
610 000714 0242~,:j [cSF 25,0 SET FLAG FOR 'SNAKE CHAf~MEf~ , TUNE.
611 0OO71:"j 0601;'5 MClVLW .11 SET POINTEF~ TO TABLE F()f~ 'SNKE CHMF~' NIH
612 0007.16 0~)641 Germ STL.ClIJP-.1
6:L3
614
61~5 ORG 777
616 0007T7 0507~5 GOTC} KEYPAD
6.1'7
618
619 001000 END

ASSEMBLER EFUWHS 0

186

SYMBOL TABLE

A 000332 AlITGR 000;37:3 CCONT 000540 CHNGE 000344
CRABH 000~'i27 DECAY 000043 DEL4 0000~~5 DELAY 000017
[lLY OOO:Ul DLYDN OOO:~~~=~ DOIT 000~)46 ENG 000412
ENG! 000417 ENG2 0004=~4 Ff~EO 00OO~~7 GUN 000167
GUN1 000175 GI.IN2 OOO:LTI GtJN~~ 0OO20::! HCH.DN 0OOO3~~

IN OOOOO~'i INBlJF O()()O 1. 6 INRICO OO()227 ICl 000007
.11 000657 KEYl 000101 KEYPAD 000073 KEYPF~ 000446
KEYP/U 00()456 L1 0OO56~i L~~ 000567 L3 ()00571
LL1 000614 I...l. :;~ 000616 U.3 000630 MCGN 000150
MCGN1 000161 MCGN2 000154 NEGWAY 000366 NNl 000662
NN2 000664 NN~~ 0006'70 NOPl 000253 OFFSET 000026
OUT 000006 OtJTBI.JF ()()OO15 PAD 000467 PADl 000470
F'AD2 0004'11 PHASCIf~ 000563 PHSR1 000276 PLAY OOOO~'i1

PLAYl 000057 POINT 000036 RANGEN 000005 f'<EVDN 000460
REVUF' 000437 RICOl 00023:'.'; RICO~~ 000241 ROTAT 000143
RF'T 000;355 RUMBLE 000000 SCONT 000301 SCF~CH1 00050:~

SFREU 00001:5 SH OOO()l ~~ BIREN 000262 SIRENl 000272
SL 000011 SLOOP OOO:HO SNDN 000676 SNDTBL 000123
SOFF 0005~50 STU)OF' 000642 SWITCH 000025 TEMP 000014
TEMF'=~ 000017 TEMPH OOOO:~3 TONE 000031 TSCRCH 000500
TUNE 000634 TUNEl 000711 II 000650 lI1 000651
VTL 000257 VTL1 000032 VTL2 000037 VTUS 000040
WAIT 000515 WALOOP 000516 WAY 000030 wrSTLE 000610
WLOOP 00055~'S WORK 000034 WORK1 000035

EOF:676
0:>

187

7.4
Frequency

Locked Loop
Tuning

with a PIC
Microcomputer

INTRODUCTION
Tuning of AM/FM radios and televisions has evolved in the past ten
years from manually varying inductances and capacitors to injecting a
precise DC voltage on a varactor controlled tuner. Although the
mechanics of tuning has changed, the theory of varying the RF mixer
oscillator frequency remains the same.

The varactor tuner offers the advantage over conventional tuners by
eliminating mechanical slugs, contacts and ganged condensers from
the system and replacing them with a voltage controlled oscillator,
specifically a varactor oscillator. This improves system reliability by
removing the mechanical devices and gives system flexibility by a
variety of ways to control the oscillator.
Up until now, most varactor tuners were either controlled in an open
loop configuration (via a DC voltage generated from a 0/ A conversion)
or with a closed loop Phase Locked Loop (PLL) circuitry. The open loop
system does not compensate for frequency drift in a receiver system
caused by components and by temperature changes. The closed loop
PLL system has the disadvantages of being inherently noisy due to
continuous voltage corrections (usually at a 2.5KHz rate) and costly
utilizing many components.

General Instrument has devised a way of using its standard PIC series
microcomputer as a controller for the varactor tuner in a "Frequency
Locked Loop" (FLL) configuration. Due to the unique architecture and
characteristics of the PIC, it performs the function of a frequency
comparator and adjusts the DC control voltage out of a charge pump
chip to the varactor tuner to maintain the desired frequency. The PIC,
being a programmable microcomputer, is not only capable of perform
ing FLL tuning, but can also do other tasks to further reduce system
costs. These additional tasks include keyboard decoding, direct LED
drive, band switching, remote control decoding, On/Off control, audio
amplifier muting, volume control and storage of favorite stations in
external memory. :rhe FLL program can be included with various other
program options which customize the system features to the manufac
turer's needs and requirements.

THEORY OF OPERATION
The FLL program designates two I/O pins as outputs to drive a charge
pump. The charge pump output is filtered and delivers a DC control
voltage to the varactor-controlled local oscillator in the tuner whose
frequency will vary according to the control voltage.

To close the control loop, the local oscillator frequency is divided down
to a suitable comparison frequency by a prescaler, and in input to the
PIC microcomputerthrough the Real Time Clock Counter (RTCC) pin.

Inside the PIC, the frequency on the RTCC pin is measured and
compared to the desired frequency generated by the microcomputer
program. The outputs to the charge pump adjust the DC control
voltage up or down until the local oscillator's frequency matches the
desired frequency.

The PIC microcomputer continuously checks for frequency drift and
makes corrections as necessary to hold a station locked in until
another station frequency is selected.

188

The basic concept of FLL can be used in various types of RF tuned
receivers.
The additional features that can be programmed into a television
receiver are: ;/'

1. Favorite (local) channel storage
2. Favorite channel scan up and down
3. Direct channel entry
4. Automatic volume mute during channel change
5. Remote and local On/Off control
6. Remote and local volume control
7. Remote and local channel selection

HARDWARE REQUIREMENTS OF FLL
As shown in Figure 33, the total hardware requirements consist of a
prescaler, an optional non-volatile ROM (ER2055), a PIC1650A micro
computer, and a charge pump (CT2017). The memory, microcomputer
and charge pump are all integrated circuits available from General
Instrument.
Figure 34 shows a typical hardware comparison of FLL to PLL systems.
A considerable savings can be seen here.

SOFTWARE OPERATION
In its most basic form, the PIC operates as a counter with a gate time of
128 msecs. It obtains a count of the local oscillator frequency and
compares it with an expected count for the particular station. If the
actual count is different from the expected count, it charges or dis
charges the voltage on a capacitor which corrects the frequency error
of the varactor tuned local oscillator.

In order to respond quickly to a station change requested from a local
or remote keyboard, this 128 msec loop is b"roken down into 4 loops
consisting of 16 msec, another 16 msec, 32 msec and 64 msec; ie, 1hth,
1hth, 14th, 1h and full counts will be obtained at the end of the above
loops.

For instance, in the first 16 msec loop, the count obtained is multiplied
by 8 and then compared with the expected count. If there is a signifi
cant error, it will be corrected right away. If there is no significant error,
the PIC will accumulate pulses for another 16 msec and add it to the
previous count. This total count of 32 msecs is then multiplied by 4 and
again compared with the expected count, and so on. If there is no error
at the end of 128 msec the process will start over again.

The program scans the keyboard every time it makes a correcfion, as
well as at the end of the 128 msec loop. The maximum time the
keyboard is sensed is 128 msecs and the minimum time is 16 msecs.

The display whether static or directly driven is updated every time a
station change is made. The remote control input is looked at during
the count loop. When a valid IIstart" code is received, the program
leaves the count loop and receives the rest of the code, decodes it and
takes action. It then returns to the tuning control loop.
The PIC also does the band switching, on/off control, volume control,
muting and 'memory control functions.

189

CONCLUSION
In concluding the Frequency Locked Loop configuration, the PIC
offers an economical tuning controller which can be used in TV
receivers, cablevision converters and video recorder front ends. It
offers quality performance with a minimum number of parts and a
low control system cost.

Fig. 33 BASIC Fll BLOCK DIAGRAM _~~ilIiI!IiIilIIIiillil!lilillllill1illlfll!!lii~i!llllIlimiiIM!lI!I\!iM!ll!l\!iWillM~.[.1 ffi

VARACTOR
TUNER CONTROL

VOLTAGE

CHARGE
PUMP
CT2017

CHG UP

CHG DOWN

MEMORY*
ER2055

PIC
MICRO

COMPUTER
PIC1650A

34 TYPICAL HARDWARE COMPARISON-PHASE
LOCKED LOOP VS FREQUENCY ... _"r' ... _

* NON-VOLATILE
"EAROM" MEMORY

DEVICE SUGGESTED

DIGITAL
DISPLAY

CONTROL
KEYBOARD

PLL SYSTEM FLL SYSTEM

MICROCOMPUTER
MEMORY
FREQUENCY SYNTHESIZER
CRYSTALS
TRANSISTORS
CAPACITORS
RESISTORS
DISPLAY DRIVER
KEYBOARD MULTIPLEXER
TRIMMER RESISTORS
TRIMMER CAPACITORS
EXTRA TTL

190

1
1
1
2

26
57

104
2

1 or 2
1
1

1
1

NONE
1
8
26
35

NONE
NONE
NONE
NONE

TUNING

(____ INIT)

t
SET FIRST STATION FREQUENCY
CLEAR RTGC (16 BIT COUNTER)

SET LOOP POINTER = 0
SET SM LOOP EQUAL TO VALUE

FFIOM TABLE 1

E----+-'
c~
DELAY FOR A TIME J
EQUAL TO CHKERR

AND COUNT ROUTINES

[~
+

PERFORM SYSTEM TASKS SUCH
AS SCAN KIEYBOARD, FlEFRESH
DISPLAY, STATION STORAGE IN

NON-VOLATILE MEMORY, CLOCK,
REMOTE CONTROL, ETC.

+
[DECREMENT SM LOOP

L-. __ ----I~

COUNT

INCREMENT LOOP
POINTER

LOAD SM LOOP
WITH APPROPRIATE

VALUE FROM TABLE 1

191

NO

TABLE 1

OUTPUT N 4j1SEC
PULSES ON CHARGE UP

OR CHARGE DOWN
LINE (DEPENDANT ON FLAG 0)

WHERE N IS DETERMINED
BY THE ERROR

TURN ON CHARGE UP
OR CHARGE DOWN

LINE (DEPENDENT ON FLAG 0)
FOR A PERIOD OF

TIME DETERMINED
BY THE ERROR

INCREMENT UPPER
8 BITS OF RTCC

SM LOOP LOOP POINTER

16
16
32
64

o
1
2
3

~

c.o
'"

(9~~~ 0

(10) FM 1=E.Q1jJF
OSC

R
75

.01jJF

AM

1~
(5) AM

+5A

-=
+12

.----.... --« +5A

10K ~IK

+5A

15M

4M

I :: Gf~ f'~ :~UI
+58

OSC 1

I" 31 AT
2.7K (4)

AM FM

390 (7)

TUNING) 'I

VOLTAGE
10K
~C4

H.P.
5082 .;-

7610

(6) FM
TUNING)>---_-_

VOLTAGE

1/25

J
C2

FM

(7) ~:i~~~) ~

(8) MUTE)>------------------r--
NOTES:
1. TERMINATING RESISTOR, R

DIFF WITH DIFF SYSTEM
2. CAPACITORS, Cl AND C2

DIFF WITH DIFF SYSTEM
3. ALL NPN TRANS 2N3904

ALL PNP TRANS 2N3906
4. KEYBOARD = GRAYHILL I83BBHlOl
5. TOGGLE SWITCH (SPST)
6. TWO IDENTICAL CIRCUITS A & B

-= -=

PIC1656

C6~

MCLR

27

+SA

-=

A

G

H

+SA

FM AM

+5A L...-O~

+
~O.'jJF

RADIO TUNING SYSTEM

11
dp

560

+12

+12

10K
10K

• (AM (3)

10K

L _______ -«FM (4)

£In ":' 10' '::'

) 1 8 8 Oo~ ... ----lJ-
:;f.Ol -r 7493N

[~ A

13 6 7
OA

~ ~-

U" 10K

47K

»1 "''1/\; 10K
2N:l904

.041~

22 -

20K ":' HIT
~.OIPF ":,10K

22K HIILO IVVv
.01

25 -

21~

II(r
35-)) I 7"" , .. ~ 2N3904 'VV\r---J<r ON/OFF

.1~

IN914 ~7
10

IN914 ~~
~K 7

»

30V
0---

G

1
01 10

~IPF '* 47K
----'11'\

IN914 ~ 7

IN914 ~..,

15V

:IOV

9

lK

8

til j-11
o 1-2---CHG UP

,j'" CHG DOWN

15 I

'~N3904

lK

-:::.

"OOL IT
f""'"

30~

5.6V1'hW't

*

) r
1M

20K 10K 10K 10K 1M 2M

~,W" 20K 20k 20K '"I" · " -:!::- 5V VOLUME

- :3904 -~ CONTROL

10K - LM324
10 1.4 - 3.8V

"" 1%

-~ -- 5 + 6

: 3;~ ~~
30V"

1.2K ('>lW)

~ 11'00' '* lJ:
28

101- i 30V I--pF
30V,*, ":' (IN) 38

y+5 '---

...---
38 22 21 20 19

":' 8 A 13 1
RTCC C3 C2 Cl CO C 12 2

D7 34 4 8 C
11 3

11
80 7 A D

10 4 7447N
81 12 1

8 E
9 5

82 13 2 C F 15 6
29 D2 83 14 8 0 G

14

Io~ GNO

'~ -'- -- -'-
10 A7 *" *" *" "*' _ _

-'- 01

Yl'5V ~ ~ ~.
31

10 -D4 13
A 8
8 12 9

.....i. 8 C
11 10

84
15 7 A

7447N 10 11 0
32 05 85 16 1

8 E
9 12

86 17 2 C F 15 13

87
18 6 0

14
G

I~ GND

PIC1650A '~ -'- -'- -'-
~.01

~ * ;F
-'- -'- _ 01

* ;F "* 8
27 AO

D2 4 AI
5 A2 A8 [28
8 A3 A9 Dl 7 A4

'-f-r-2- A5 MM

"'r-i
2102 GND

A8

~ A7 ~

~ 01

C4 23 DO Vee .!2....-
C5

24 3
A,.

C6 25 13
CO

-
AO 2

15
AI 3 16

A2 4 17

A3 6 18
7 T A4
8 I T

19
A5 20

+5V ~ ~ ~ll.. .l01
L.......--

14 rrI'I'I':C
36 6 5 -=":"-=-~":--=

OSC 7404
Voo V •• MCLR Vss

P40
37 -~ 7

'::" +30V
lOOK

131~ L;J -'-lpF : 10 l
,,~, r.'~ "".

r -V+ -V- GNOj

~ , ',~' I I
47pF

I HI-201-S I

lK I~14 lK IN914

L _______ J

....

193

7S
PIC

Microcomputers
in Subscriber

End Equipment

INTRODUCTION
Single chip microcomputers have become the standard circuit module
of the 1980's. In this paper, General Instrument PIC series microcom
puters will be reviewed and will be shown where and how they can be
used to provide cost effective solutions in the design of telecommunica
tions systems.

PIC Series Microcomputers
The PIC series of microcomputers are MOS/LSI circuit arrays contain
ing a central processing unit, RAM, I/O and customer defined ROM on
a single chip.

The power and versatility of the design combined with the low cost
afforded by mass production and the use of proven technology has
made this LSI family among the best selling 8 bit microcomputers.

The architecture of PIC microcomputers is register oriented optimized
to perform control oriented tasks.

Internally, PIC microcomputers contain 5 functional blocks connected
by a single 8 bit bidirectional bus:

1. Register files divided into two functional groups: Special Regis
ters and General Purpose Registers. The Special Purpose Regis
ters include:
o Real Time Clock/Counters
o Status Registers
o Program Counter
o I/O Registers
o File Select Registers (Used to indirectly address any register.)
Any bit, nibble or byte in the register files can be tested or modified
under program control.

2. Arithmetic logic unit and working register (W) that provide full
complement of arithmetic and logic operations.

3. Program ROM containing the user defined application program,
supported by an instruction decoder and instruction register.

4. Multilevel stack used for subroutine and interrupt nesting.
5. Interrupt logic allowing external and real time clock counter vec-

tored interrupts.

In addition, a PLA and on chip oscillator are used to provide instruction
decoding and generation of timing and control signals.

Overlapping of the fetch and execution cycles, or pipelining, permits
PIC to execute each of its instructions in a single clock cycle.

The instruction set of PIC microcomputers is compact, but very power
ful. Each one of the instructions is contained in a 12 bit (13-bit PIC1670)
wide single line of ROM. This width permits complete operands that
can address all PIC file registers and there is no need for a second
trailing line of code (very often required to complete the operand in
other microcomputers such as 8048 or 3870), which takes ROM space
and increases the execution time.

194

Microcomputer Controlled Voice Switched Speakerphone
and Repertory Dialer
The speakerphone is an instrument that offers hands free telephony by
means of replaci ng the usual telephone handset with separate loud
speaker and microphone. In order to compensate for the loss intro
duced by moving the handset away from the user's head, gain is
inserted in the transmitting and receiving channels. This gain, how
ever, is limited by a problem known as "singing." A signal from the
microphone reaches the loudspeaker traveling through the transmitter
channel, the sidetone path and the receiving channel. From the loud
speaker, this signal comes back to the microphone through the acoustic
coupling of the room thus creating a closed loop (Figure 35). If the total
gain within the loop is greater than or equal to OdB, oscillation ("singing")
will occur. Another unpleasant effect is caused by the acoustic coup
ling of the microphone and the loudspeaker in the form of an "echo"
noticed at the end of the distant party. Standard telephones are usually
held close to the user's head and are not affected by the acoustic
properties of the room and the ambient noise level, on the contrary the
performance of the speakerphone is severely limited by them.

The common solution for these limitations is to allow transmission in
only one direction or voice switching. Figure 36 shows a block diagram
of a voice switched speakerphone. A microphone preamplifier and a
power amplifier provide the desired gains within the transmit and the
receive channels respectively. A hybrid network interfaces the speaker
phone to the telephone line. Two variable attenuators are incorporated,
one in the transmit and one in the receive channel. The decision
making unit within the speakerphone is the control unit. It compares
the signal levels in the transmit and receive channels and by acting on
the variable attenuators, decides the transmission direction. Obviously,
the quality of the transmission through a speakerphone is a function of
the intelligence of its control circuit. There are only a few high quality
speakerphones avai~able presently and all of them use highly complex
analog type control circuits. Some ingenious circuits have been
designed in order to minimize such problems as false switching due to
high ambient noise levels, clipping due to finite switching time, etc.

With the cost of computing and control power steadily decreasing, it
becomes feasible to incorporate a single chip microcomputer in the
control circuit of a speakerphone. Figure 37 shows a block diagram of a
microcomputer controlled speakerphone. Its building blocks can be
defi ned as follows:

• Digitally Programmable Transmit and Receive Attenuators. The loss
of the attenuators is controlled by a digital binary word. For example,
five bit word can provide dynamic range of 0 to 31 dB at a 1 dB incre
ment. The advantages offered by these types of attenuators are: ease in
generation of the loss-time curves; maintenance of constant gain
within the speakerphone loop by inverse tracking of the transmit and
the receive attenuators' losses; and implementation of automatic gain
control.

195

• Level Sensing Circuit. Its role is to monitor the voltage levels at the
inputs of the transmit and receive channels and to convert them in a
digital binary form for use by the microcomputer .

• Microcomputer. It provides the necessary intelligence to the con
trol circuit of the speakerphone. Inputs from the level sensing circuit
are taken by the microcomputer and are used as a base for generating
outputs to the programmable attenuators. The amount of intelligence
packed within the microcomputer depends on the algorithm used by
the designer and is no longer a function of the circuit complexity.

The presence of a microcomputer in a speakerphone gives the
designer an opportunity to add to it repertory dialing capabilities.
Figure 38 shows a block diagram of a repertory dialer in addition to a
speakerphone. Some of the features that such an addition can provide
are as follows:
o Display showing the number being dialed
o DTMF or pulse dialing
o Non volatile repertory storage by using EAROM (General Instrument

ER3400)
o Digital clock and interval timer
o Automatic redial of busy numbers

Microcomputer Based Multiline Telephone Instruments
for Use in Electronic Key Telephone Systems
A Key Telephone System (KTS) is an arrangement of multiline tele
phone station apparatus and associated equipment which allows a
user to selectively answer, originate, or hold calls over a specific
central office, PABX or other line facilities.

Key Telephone Systems on the market, until recently, have enjoyed a
high degree of industry standardization, whereby, many subsystems
such as instruments and line cards have been interchangeable, regard
less of the origin of manufacture. During the 1970's a number of new
Key Telephone Systems using electronic and digital techniques were
introduced. These systems are of a design unique to each manufac
turer, thus digressing from the principle of standardization. The use of
advanced electronic and digital technology made possible the intro
duction of proprietary instruments with multiline capability utilizing
drastically reduced cabling, thus overcoming the inherent disadvan
tages of the old Electromechanical Key Telephone Systems which
require many wire pairs to interconnect each instrument. In addition,
the Electronic Key Systems offer many features previously provided
only by PBXs.

Figure 39 shows a block diagram of an Electronic Key System. A
common control unit interfaces a number of electronic multiline
instruments to the central office, PABX, or other line facilities. Three
wire pairs connect each instrument to the common control unit. One of
the wire pairs provides power to the instrument and the other two are
used as serial data and voice links. The common control unit scans the
instrument through the serial data links interrogating them about the
status of their keys and hook switches and supplying appropriate sets

196

with the new status of their lamp fields and ringers. The electronic
multiline instrument provides the user with a standard talking path, a
nonlocking key field used to access individual lines or features, a lamp
field indicating the status of the line or feature select keys and an
electronic tone ringer. Obviously, complex logic circuitry is required
within the electronic multiline instrument in order to perform those
functions. A cost-effective solution in this case can be provided by a
single chip microcomputer.

Figure 40 shows a single chip microcomputer based multiline tele
phone instrument. Standard 500 type speech network terminates the
voice wire pair. A power amplifier/loudspeaker is added to enable
paging and receive only conferences. Data transceivers interface the
instrument to the serial data link, thus providing data communication
over a single wire pair. Power to the instrument is supplied over a
separate wire pair. The microcomputer is the main logic component of
the instrument. The software contained in its program memory per
forms the following functions:

• LED Lamp Field Control. Part of the data memory of the micro
computer holds the status of the lamp field with binary 0 and 1 indicat
ing off/on condition for each separate lamp respectively. This informa
tion is supplied to the lamp field through the microcomputer I/O
periodically, thus saving power and improving the brightness of the
LED's.

• Key Field Scan and Encoding. The key field of the instrument is
arranged in a form of matrix and directly interfaces with the I/O of the
microcomputer. Periodic scan of the key field detects key closures and
enables key debouncing and encoding. The encoded version of each
key closure is stored in a temporary location in the data memory of the
microcomputer.

• Serial Data Communication. Asynchronous serial data communi
cation enables the multiline electronic instrument to communicate
with the common control unit. The common control unit periodically
sends commands to the instrument instructing it to change the status
of the lamp field, initiate ringing, or connect/disconnect the receive
only power amplifier/loudspeaker to the voice wire pair. The instru
ment then responds by transmitting the encoded version of any key
closure that has occurred and the status of the hook switch. Two single
bit microcomputer I/O ports are used as receive and transmit ports.
Timing, decoding, and encoding of the serial data is performed by the
microcomputer. Any command after being received and decoded is
acted upon by changing the contents of the microcomputer's data
memory allocated for lamp field status, ring generation, or by perform
ing other specified tasks.

• Ring Generation. A piezoelectric transducer can be used as a
ringer. In such case the microcomputer controls the volume, pitch, and
interruption rate of the ringer.

• Hook Switch Sense and Power Amplifier/Loudspeaker Actuation.
Two single bit microcomputer I/O ports are dedicated to sense the
status of the hook switch (up/down) and actuate the receive only
power amplifier (on/off).

Some hardware external to the microcomputer is required in order to
achieve the functions described above but will not be discussed here.

197

Conclusion
Single chip microcomputers are versatile parts and their widespread
use in telecommunication systems is imminent. The intention of this
paper was to review briefly one of the popular microcomputer families
and show a few of its many possible applications.

198

Fig.

36

31

ACCOUSTIC
COUPLING

MICROPHONE/PREAMPLI FI ER

LEVEL
SENSING
CIRCUIT

LOUDSPEAKERI AMPLI FI ER

199

LINE

HYBRID SIDETONE

ACOUSTIC COUPLING

CONTROL
CIRCUIT

TRANSMIT
DIGITALLY

PROGRAMABLE
ATTENUATOR

MICROCOMPUTER

RECEIVE
DIGITALLY

PROGRAMABLE
ATTENUATOR

HYBRID

HYBRID

LINE

HYBRID
SIDETONE

@mm&WW!

LINE

Fig. 38

.. DISPLAY

~~

~-

~Ir

KEYBOARD

Fig. 39

ELECTRONIC
MULTILINE

INSTRUMENT

ELECTRONIC
I+-MULTILINE

INSTRUMENT

ELECTRONIC
~ MULTILINE

INSTRUMENT

200

... DIALING . CIRCUIT

MICRO-
COMPUTER

L EEROM

?

.~ r MAINTENANCE I
DATA 1/0

.. TRANS-

... CEIVERS

,

CALL PROCESSING
ADMINISTRATION ~ AND MAINTENANCE

SOFTWARE

VOICE
SWITCHING
NETWORK

COMMON CONTROL UNIT

,.,.
'"
~ -
~

CO,
PBX
LINES

"

HAND SET

POWER AMPLIFIER/LOUDSPEAKER
VOICE PAIR

[>---crJ HOOK VOICE
SWITCH NETWORK

I • DATA PAIR

'" -
DAT~ TRANS-
CEIVER

... MICRO-

V
...

COMPUTER

KEY FIELD :....

POWER • PAIR

POWER LAMP FIELD
CONVERTER

rwm iIi1I 00

201

7.6
PIC

Microcomputer
Based Control

Smoothes
Universal Motor

Performance

Universal motors, so-called because they can run on either an alternat
ing or a direct current, are widely used in vacuum cleaners, blenders,
power tools, sewing machines, and other consumer appliances that
need to operate at varying speeds. These motors supply high horse
power relative to their weight and size, easy speed control, high start
ing torque, and economical operation. But they also demand high
starting current, generate a lot of noise, overheat at low speed, and
suffer from inherently poor speed regulation as well as poor efficiency
when the load is variable.

A microprocessor-based closed-loop motor controller (Figure 41)
reduces or eliminates these disadvantages. Being less costly and more
reliable than a closed loop built with discrete devices, it is practical for
a great many more consumer applications. It is also a cost-effective
means of adding several desirable operating features.

For instance, the input speed of a power tool may now be set through a
digital keypad or potentiometer. (In the latter case, the microcomputer
converts the analog input into digital form before setting tool speed.)
Moreover, microprocessor-controlled automatic current limiting en
hances the reliability and life of the universal motor, replacing the
passive components that generally keep its starting and overload cur
rents to levels that are safe for its brushes, on-off switch, and owner's
housewiring. In addition, such current limiting protects the motor from
overheating.

Open Versus Closed Loop
With a constant voltage input, the load that a universal motor must
move determines its speed. But as Figure 42 shows, the speed-torque
curve that describes this open-loop relationship (solid black line) is
highly nonlinear, and it remains just as nonlinear throughout any
change in driving current used to shift it (dashed black line) and thus
alter motor speed. Moreover, full torque is not available at lower speeds
in any case.

The operating curve for a motor with closed-loop speed control is
entirely different. Now the speed remains almost constant under a
variable load (nearly horizontal solid colored line) so long as the peak
load does not exceed the available torque.

It is worth noting at this point that a universal motor with a closed-loop
control and a variable load draws less current as a function of torque
(colored dotted and dashed line) than does one without such a control
(black dotted and dashed line). This not only saves power but also
reduces the amount of audible noise because, when a motor uses less
current, it is slower and therefore less noisy-and what is more, inter
feres less with its user's television reception.

A microcomputer-based implementation of such a closed loop requires
only a few external components, including a speed pickup, a triac, and
a power supply (see Figure 41). It assumes ac, not dc, operation of the
universal motor.
A typical speed pickup might consist of a 20-pole magnetic disk and a
Hall-effect sensor. Such an arrangement would feed back 10 pulses per

202

motor revolution to the microcomputer, since a high-resolution input is
necessary if the loop is to have refined control over its output to the
triac.

Triac Triggering
The loop triggers the triac at varying times after the ac reference
signal's zero crossing. This variable firing angle in turn varies the power
delivered to the motor by setting the average current fed to the series
windings. Typically the triac is rated at 6 to 15 amperes and drives a
motor of 0.5 to 2 horsepower.

The user's input to the loop may be made through a keypad and
display, incorporated in it with the addition of a few extra components
as shown in the figure. This keypad can be scanned and the display
multiplexed at up to a 250KHz rate by the microcomputer-a more
than-adequate rate for consumer applications.

In operation, the microprocessor continually compares the speed set
by the user with the speed measured by the Hall-effect pickup and then
adjusts the power delivered to the motor to minimize any error in
performance.

For instance, in a blender application, the desired motor speed and run
time would be entered by the user, and the microcomputer would then
send the triac the pulses appropriate for applying a steadily rising
current to the motor until it reached the desired speed. In larger
appliances, of course, this "soft" start would limit the typically very
large initial surge currents of the universal motor, thus safeguarding
switches and wiring.

Moreover, current limiting of the universal motor is readily achieved by
limiting the firing angle of the drive triac as a function of the maximum
speed desired. In essence, the maximum allowable number of pulses
from the speed pickup in a given period of time is made to determine
the maximum firing angle.

The operating characteristic of the motor is then modified to follow the
solid vertical colored line of Figure 42 in an overload condition. (It is
to be noted that * on the colored dotted and dashed current curve
corresponds to this limit.)

This principle can be extended to protect the motor from overheating
when it is being forced by heavy loading to run at low speed. A simple
timer incorporated into the control loop just rolls back the current to a
safe limit after a predetermined time (indicated by the colored dotted
line in Figure 42).

In sum, then, the operation of the universal motor is limited to the
horizontal solid colored line of Figure 42 for various loads until the
overload condition is reached. Then its speed drops while a constant
current is maintained along the vertical line. In this condition, the
motor is overheating, and after a period of time predetermined by the
microcomputer, the current rollback feature moves the load line back
to the dotted line in the fig'ure. When the load is reduced, the operating
point will move up the dotted line to the horizontal one and into the
normal region.

203

~ II

20 POLE
MAGNETIC

DISK

HALT EFFECT
SPEED
PICKUP

~

UNIVERSAL
MOTOR

~ ..L- h

+ •

+5
o
~
~

+ • IMCLR

it -----IIOSC

J
I/O

I

T

JL..rlIL
I

RTCC

- I

,y

rvv

SWITCH/KEYBOARD MATRIX

+5
o rv

I/O

PIC 1655A
MICROCOMPUTER

I-I I-I ,-,p I
, I , , , /11------.-----1

(

+5V +5V +5V

NOTE: Older feedback loops for motor control had many
parts and offered few features at a high cost. But the
microprocessor approach allows the use of just a few inex
pensive additional components and gives the user more
precise control over the motor.

Firing Angle Control
Universal motor torque is a nonlinear function of firing angle and speed
(Figure 43a). In order to linearize it, so that a speed variation produces
a corresponding change in torque, the deviation of the actual from the
set speed-the speed error-must be mapped into the phase angle,
which can then be used to adjust matters.

Done empirically, this mapping (Figure 43b) yields a curve of speed
error versus torque that is almost linear. This curve's independence of a
specific speed is assured by correlating speed error with firing angle
for each of various speeds.

x

E 12 a.
~

o
lli 8
0..
(f)

4

OPEN-LOOP /-
SPEED-TORQUE
CURVE /'

/.

T mt' .' rm

30

25

20 ::5-
I
Z
w

15 a:
a:
:::::>
()

10

CLOSED-LOOP 5
SPEED-TORQUE

o'----'--....&.. -.a.-L...---'---~O
o 0.25 0.50 0.75 1.00 1.25 ft-Ib
o 48 96 144 192 240 in.-oz

TORQUE

NOTE: The speed-torque curve of a universal motor determines the
motor's operating pOint for a constant voltage input and applied load.
Only a closed-loop controller will allow the speed to be kept relatively
constant in the face of a variable load.

205

Fig. 43 MAPPINGS

N o
I

C

w
:::>
a
II:
o
I-

(a)

0

W
.-I
(!)
Z
4:
(!)
Z
II:
u:

5,000 rpm

90°
FIRING ANGLE (0)

0°

1800~------------~~----~--__ ~~
-10

(b)

-5
PERCENT SPEED ERROR

(ACTUAL/SET SPEED x 100)

o

NOTE: Starting from no motor movement at all, the first load line of the
motor-which corresponds to a small firing angle-is followed up to the
first speed switch point, where the next firing angle takes over. This
process continues until the motor runs out of torque.

206

Speed Measurement
The speed control algorithm built into the microcomputer uses the
percentage error between the actual ~nd set speed. For relatively small
changes in speed, the percentage change in the period of revolution is
approximately the same as the percentage change in speed.

If measurements for all possible set speeds in the same length of time
are made with sufficient resolution, by picking up many pulses per
motor revolution, the percentage error difference between the set
period and actual period is approximately the negative percentage
speed error.

This is easily shown mathematically. The fractional error in speed, Es,
is of course the difference between the set speed, Ss, and the actual
speed, SA' expressed as a fraction of Ss, or:

Es = (Ss - SA)/Ss (1)
The speed in revolutions per minute is 60 times the product of the
reciprocals of N, the number of pulses per revolution, and P, the period
in seconds of those pulses. So by substitution in Eq. 1:

Es = [(60/NPs) - (60/NP A)]/(60/NPs)
= (1/Ps - 1/P A)/(1/Ps)
= 1 - [Ps/(Ps -- PE)]
= -PE/(Ps - PE)

where P A, Ps, and PE are respectively the actual, set, and error periods
in seconds. But if the error period is very much smaller than the set
period (the usual case), Es = -PE/Ps, as was stated.

For these constant or near constant measurement period approxi
mations, the error in period is proportional to the percentage speed
error and can replace it in the firing angle mapping to achieve proper
control (Figure 44). For fixed speeds, the values of Nand P can be
stored in a look-up table, and for variable speed control they can be
calculated by means of a divide routine. Both of these are stored in the
microcomputer.

Ripple Control
To refer back to Figure 43b, it is important to note the sharp change in
torque for a given change in firing angle around 90°. The resolution of
the firing angle at this point determines how much ripple there is in
motor speed. At low speed inadequate resolution can cause sputtering
where the torque change is such that it produces very noticeable jerks
in speed.
For instance, when the motor starts from zero speed, the first load line
corresponding to a small firing angle (Figure 45) is followed up to the
first speed point. There a second and larger firing angle is switched in.
This discrete control is continued until the motor runs out of torque.
From this diagram it is clear that any ripple will be determined by the
step size in measurement made by the speed pickup and the resolution
of the firing angle as set by the microcomputer.

207

•

Fig. 44 PERIOD

-~

oo~ ______________________________ ~
.1

PERIOD ERROR
(ACTUAL/SET PERIOD OF REVOLUTION)

NOTE: For small changes in speed, the change in the period of motor
revolution is the same as its change in speed. Consequently, the error in
the motor period is proportional to its speed error and can therefore
replace that variable in the firing-angle mapping.

Fig. 45 JUMPY

c
w
W
0-
f/)

25 50 75
TORQUE (in.-oz)

NOTE: Torque is a nonlinear function of both triac firing angle and motor
speed (a). For linear motor speed regulation, the speed error must be
mapped into firing angle (b). If done properly, a linear speed-error versus
torque curve is achieved.

208

Microcomputer Requirements
A microcomputer used in universal motor speed control must have an
8-bit data word and an instruction execution rate of at least 250KHz to
perform the functions discussed. And of course it should and does
consume relatively little power.

The first two requirements are important because of the relatively
complex calculations that must be performed quickly and the high
resolution required for the triac firing angle at low motor speeds.

The General Instrument NMOS PIC1655A was specifically designed to
meet these constraints. A one-chip microcomputer that uses only 35
milliamperes from a 4.5-to-7 -volt supply, it has a pipelined architecture,
12-bit instructions, and an 8-bit data path.

Pipelining, orfetching the next instruction while executing the current
one, shortens its instruction execution time to 4 microseconds. Also,
the internal functions-the arithmetic and logic unit, memory, and
input/output-need have data settling times of only 2 to 3J1s to permit a
conservative design and extended temperature ranges.

The 12-bit instruction word is long enough to eliminate the need for
multiple fetches of instructions. The instruction set includes, in addi
tion to common operations such as add, subtract, AND, OR, and
exclusive-OR, other powerful bit operations like bit set, bit clear, and
bit test. For example, the BSFSC 7, 2 instruction will skip the next
instruction when bit 2 of I/O register 7 is low.

The 8-bit data path is adequate for most control applications. However,
the PIC can handle the double precision necessary when 16-bit resolu
tion is required. Its double-precision signed-integer math routines,
including addition, subtraction, multiplication and division, are con
tained in 90 instructions.

Application Example A
What can a microcomputer do for a home vacuum cleaner? On the one
hand, the vacuum motor can have a soft start. That is, current is limited
during startup. With this feature, larger motors can be installed to allow
highervacuums and greater airflow without dimming the lights, blow
ing fuses, or exceeding Underwriters Laboratories specifications on
turn-on.

In addition, the vacuum motor can be run at maximum efficiency.
Depending on motor design, this might correspond to a constant
speed of about 15,000 revolutions per minute for about 70% to 80%
efficiency. Now the centrifugal blower can also be optimized for con
stant speed operation, further enhancing efficiency and lowering peak
noise.

Note that the term "constant speed" means speed regulation within a
certain limit, which will depend on the application. A speed decrease of
about 10% from no load to full load is actually desirable since an
increase of about 30% in vacuum pressure in fact accompanies
decreased flow.

209

Application Example B
An alternative to constant pressure control is constant torque opera
tion-allowing the speed to vary to maintain constant air flow. Further
more, it permits the use of a motor designed for very high speeds, but
one that normally draws too much current at lower speeds. Higher
available vacuum pressure than would otherwise be possible is the
result.

An improvement desirable in a vacuum cleaner is a reliable "bag full"
indication. The indication of a full bag is low air flow over a period of
time. Since the flow is most often proportional to torque in constant
speed operation, the microcomputer can digitally filter the torque input
signal and turn a lamp on. If the vacuum is run with constant torque, the
bag will be full when the average speed goes over a certain limit. And
finally, it is easy to hook up several push buttons to preset carpet beater
speed and vacuum level.

210

· 7.7
Interfacing

a PIC
Microcomputer
with the ER1400

EAROM

INTRODUCTION
Organized as 100 14-bit words, the ER1400 is an electrically erasable
and reprogrammable non-volatile memory. Individual words may be
erased and reprogrammed.

The ER1400 consists of a memory array, control circuitry, twenty bit
serial to parallel shift register for addressing, and a 14-bit serial to
parallel, parallel to serial sh ift reg ister for data I/O. I n the accept add ress
mode, the address is shifted serially into the ER1400. The address
consists of two consecutive one-of-ten codes controlling the "tens"
digit and the "units" digit respectively. The Accept Address command
may be followed by either Erase, Accept Data, Write (for reprogram
ming), or Read, and Shift Data Out (for reading).

With its serial address/data flow, the ER1400 only requires51/0 ports to
interface with the microcomputer: one for clocking, three for control,
and one for addressing and data flow. On the other hand, a 64 word x 8
bit EAROM such as the ER2055 requires 17 I/O ports: one for clocking,
two for control, six for addressing, and eight for bidirectional data flow.
However, the read cycle time for the ER2055 is much shorter than the
ER1400.

Data is transferred to or from the ER1400 by first serially inputting two
ten bit address words and then serially shifting in or out the 14-bit data
word. Control of these operations is done by three chip control lines
and 14KHz clock. It is essential that the clock is not interrupted
between Accept Address and Shift Data Out and between Accept
Address and Accept Data. Write and erase cycles require a 18 msec
delay (with clocking) before changing modes to guarantee data
retention.

HARDWARE
A PIC with open drain outputs can directly drive the 10 volt I/O lines for
the ER1400 as shown in Figure 46. The outputs of the PIC can be pulled
more positive than the chip's power supply. High level outputs are pulled
to the 10 volt supply by the 15K resistors, while low levels are pulled to
ground by the output transistors on the PIC. In Figure 46, the point C2 is
low for data or address transfers to the ER1400, and high for data
transfers to the PIC. Thus the 100K resistor provides a pull-up for data
write cycles and a 100K resistor is provided to ground when the ER1400 is
outputting. Note that a logic "0" to the EAROM is a high voltage level, and
a logic "1" is a low voltage level. According to Figure 46, a high voltage
level is +10 volt and a low voltage level is 0 volt.

211

SOFTWARE
This software package consists of five subroutines as follow:

1. READ - Before calling READ, the read address should be
stored in register LOCATN in BCD format as
shown below.

MSB

MSB LSB

LOCATN: [TENS UNITS I
,... 8 BITS ----I

The subroutine ADEAR will be called to convert
this BCD address into two 10-bit addresses in
one-of-ten code as required by the ER1400 and
transfer this address into the address register in
the EAROM. After the content of this location
has been read into the data register in the
EAROM, this 14-bit data will be shifted out
serially to two consecutive files in the PIC called
DATA1 and DATA2.

LSB

-1¢-¢-i-----·D-A-TA-2------}--i~ _______ DA_T_A_1 ______ ~

,1""'1 __-------14 BITS ------........... 1

When this is finished, the PIC will put the ER1400
into standby mode. A flowchart of the READ
operation is shown on page 5.

2. WRITE - Before calling WRITE, the write address in BCD
format should be stored in file LOCATN as de
scribed above. The 14-bit data waiting to be written
into the EAROM should be stored in files DATA1
and DATA2. By calling ADEAR, the write address
will be transferred into the EAROM. The content
of this location is erased to logic '1' before data
can be written in. After the content of DATA 1 and
DATA2 has been written into the EAROM, the PIC
will put the EAROM into standby mode. A flow
chart for the WRITE operation is shown on page 6.

3. ADEAR - According to the 2 digit BCD address in LOCATN,
this subroutine will create a 20-bit address (2 con
secutive one-of-ten codes) which is required by
the EAROM. This 20-bit address is stored in three
consecutive files called CONAD1, CONAD2 and
CONAD3 in the following configuration:

1.--. I CONAD3
~ xxxx : r---i CONAD2

CARRY I--it-- LOW ORDER .. I ..
BIT ADDRESS

H CONAD1

HIGH ORDER
ADDRESS

When this address is formed, this subroutine will
automatically call ERTRAN which will send out
the address to the EAROM.

212

4. ERTRAN - This subroutine transfers the 20-bit address to the
EAROM or the 14-bit data to/from the EAROM. On
entry, the W register should contain the EAROM
control code, file COUNT should contain the
number of clock cycles for the EAROM, and the
File Select Register (F4) should point to the start
of the information file waiting to be transferred.
This subroutine clocks the information to/from
the EAROM at a rate of 13.8KHZ. The internal
oscillator on the PIC runs at 1MHz providing an
instruction cycle time of 4 microseconds. Thus a
programming loop of 18 instruction cycle times
can be used to generate the 14KHz clock for the
ER1400. The complete software listing for the PIC
EAROM interface is given on pages 209-211.

5. WI8MS - This subroutine waits 18ms while the PIC is clock
ing the EAROM. This is required when an erase or
write operation to the EAROM is called for.

46 ER1400
+SV +10V

I
'roo

11

Vee A1~KA Vss

I vvv
6

1/00 CLOCK

15K
I 'vvv

7
1/01 - C1

15K
"AA

I ·vvv
HI = READ

1/02 8 C2 - LOW= WRITE

15K

PIC* AAA ER1400 1 'vvv

1/03 9 C3

.>

.~ 15K .

~
HI = WRITE
LOW = READ

>
~ 100K

1/04
12 DATA

I/O
+5V

t"

Vss ~~ ~~ VGG

.-L .> 15K
21 .
-25V

~~
* PIC Microcomputer with open drain 1/0 ports

-'-

213

CLOCK
CYCLES

20

14

CLOCK
CYCLES

20

14

ER1400
MODE CONTROL

C1 C2 C3

0

0 0

0

0 0 0

ER1400
MODE CONTROL

C1 C2 C3

o

o o

o

o o o

214

SEND READ
ADDRESS TO

ADDRESS REGISTER

READ FROM
MEMORY TO

DATA REGISTER

SHIFT OUT
CONTENTS

OF DATA
REGISTER

PLACE
ER1400

IN STANDBY

SEND WRITE
ADDRESS TO

ADDRESS REGISTER

WRITE CONTENTS
OF DATA

,iJQii@iU\\@Wk~

INPUT: 20 BIT READ ADDRESS
FOR ER1400

OUTPUT: 14 BIT DATA
FROM READ ADDRESS

INPUT: a) 20 BIT WRITE ADDRESS
FOR ER1400

b) 14 BIT DATA TO BE
WRITTEN INTO WRITE
ADDRESS

OUTPUT: NONE

REGISTER TO MEMORY -E
- - - -- DELAY 18ms

PLACE
ER1400

IN STANDBY

1
2:
3
4
5
6
7
8
9

10
11
12
13
14
1:5
16
17
18
19
20
21
22
23
24
2:5
26
27
28
29
30
31
32
33
34
35
36
37

.INE

0001000
0001000
000000
000000
000000
000000

000000
0001000
0001000
0001000
0001000
0001iZ100

AI)DR

39 000000
40 000(~00

B1 B2

TITLE , 1650-ER1400'
LIST E,X,P-1650

1***
'* ************************************* *
.* * * *
,* * PROJECTI PIC1650-ER1400 INTERFACE * *
'* * * *
'* * ADDRESSIGENERAL INSTRUMENT CORP. * *
'* * MICROELECTRONICS DIVISION * *
'* * 600 WEST JOHN STREET * *
.* * HICKSVILLE, NY 11802 * *
'* * PHONE I (516) 733-3000 * *
.* * * *
.* ************************************* *
.***

;***
,* *** *
1* * * *
.* * COPYRIGHT 1982 GENERAL INSTRUMENT CORPORATION * *
'* * THIS PROGRAM IS PROTECTED AS AN UNPUBLISHED * *
'* * WORK UNDER THE COPYRIGHT ACT OF 1976 AND THE * *
1* * COMPUTER SOFTWARE ACT OF 1980. * *
.* * * *
.* *** *
1***

16:50-ER1400

41 ,***********************
42 ,* *
43 ,* 1/0 FILE ASSIGNMENT *
44 1* *
45 1***********************
46 000'~00
47 000"05
48 000'~00
49 000"00
50 000,a00
51 000"00
:52
53
:54
55
:56
57
:58
59
60
61
62 000G~00
63 000000

~~ :~:i~~
66 000~~03
67 000004
68 000000
69 00011)00
70 000000
71 000000
72 000000
73 000~100

IOREG ;ADDRESS OF PORT A

.***************************************
1* *
1* 1/0 BITS ASSIGNMENT FOR PORT A (F5) *
'* * ;* A +5 VOLT ON THE CONTROL BIT MEANS *
,* LOGIC 0 FOR THE EAROM. 0 VOLT ON *
1* THE CONTROL BIT MEANS LOGIC 1 FOR *
'* THE ER1400 EAROM. *

' .
1***************************************

ERCLK
Cl
C2
C3
ERDATA

o
1
2
3
4

215

;14 KHZ CLOCK TO THE ER1400.
,EAROM CONTROL BIT 1.
I" " "2.
• 3.
;SERIAL DATA TO OR FROM EAROM.

_INE ADDR Bl

7:5 000000
76
77
78
79
80
81
82
83
84
85
86 000000
87 000004
88 000030
89
90
91 000031
92 000032
93 000033

94 000034
q15 000035

§;
98
99 000036

100
101 000037
102
103 000000

LINE ADDR Bl

105
106
107
108

109
110

111
112
113
114
11:5
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

000000
000000
000000 04446
000001 02430
000002 06375

000003 04474
000004 02630

000005 06036
000006 00044
000007 06345
000010 04474
000011 00577

000012
000012 06377

000013 00045
000014 04000

B2

B2

1650-ER1400

;***
;* *
;* FILE REGISTER ASSIGNMENTS. *

* 1* ;* THIS EAROM INTERFACE ROUTINE UTILIZES *
;* F30 TO F37 IN THE PIC1650. IT IS *
1* IMPORTANT THAT THESE EIGHT REGISTERS *
1* ARE DEDICATED TO THIS ROUTINE ONLY. *
'* *
'***
FSR
COUNT

CONAD3
CONAD2
CONADl
TEMP
LOCATN

DATAl

DATA2

1650-ER1400

4
30

31
32
33
34
3:5

36

37

,FILE SELECT REGISTER.
;EAROM ROUTINE INTERNAL COUNTER.
;THIS COUNTER IS USED TO COUNT THE
,NUMBER OF EAROM CLOCKS.
,THE LSB OF THE 20-BIT EAROM
,ADDRESS IN ONE-OUT-OF TEN
,CODE FORMAT.
,TEMPORY REGISTER USED BY EAROM.
ION ENTRY, THIS REGISTER CONTAINS
;THE BCD EAROM ADDRESS. THIS
;ROUTINE WILL CONVERT THIS BCD
;INTO THE FINAL ONE OF TEN CODE
,THIS IS THE LSB OF THE 14 BITS
IEAROM DATA.
,THIS IS THE MSB OF THE 14 BITS
IEAROM DATA.

1***
;* *
;* THIS IS THE READ EAROM ROUTINE. THE FOLLOWING *
;* PARAMETER ARE NEEDED BEFORE CALLING THIS ROUTINE: *

'* '* 1* ,*
1*
1* ,*
1*

'*

* PARAMETER. LOCATN (F35)--- THE BCD ADDRESS OF *

OUTPUT,

THE EAROM LOCATION THAT HAS TO *
BE READ. *

DATAl (F36)--- THE LSB OF THE 14
BITS EAROM DATA.

DATA2 (F37)--- THE MSB OF THE 14
BITS EAROM DATA.

*
*
*
*
* ;* *

1***
READ

t:.Xt:.HI'<

RES
CALL
BSF
MOVLW

CALL
BSF

MOVLW
MOVWF
MOVLW
CALL
ANDWF

I'<t:.b
MOVLW

MOVWF
RETLW

o
ADEAR
COUNT,0
B'11111101'

ERTRAN
COUNT,4

DATAl
FSR
B' 11100101'
ERTRAN
DATA2

10
B' 11111111'

IOREG
o

216

,READ EAROM ROUTINE ENTRY POINT.
;ADDRESS ER1400. COUNT LEFT AT ZERO
,SET COUNTER TO ONE
;CONTROL CODE FOR READ
,DATA AND CLOCK HIGH
IREAD THE DATA REGISTER, COUNT LEFT AT ZE
,SHIFT OUT 16 BITS (14 PLUS 2 TO
,NORMALIZE DATA TO LOWER
;6 BITS OF DATA2) ,
,POINT TO DATA REGISTERS
ICON CODE FOR SHIFT DATA OUT
;SHIFT DATA OUT. LEAVE 77 IN W
,ENSURE BITS 6-7 CLEAR
;
;
,CONTROL CODE FOR STANDBY
,WITH CLOCK BIT SET
,OUTPUT CONTROL CODE

LINE

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

LINE

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

ADDR 81

000015

000015
000015
000015 04446
0G~0016 063"13

000017 000L.5
000020 04436

000021 00070
000022 06036
0C!110023 00044

000025 04474

000026 06371
000027 00045
0010030 04436
0010031 05012

0012)032
001l)032

'~DDR Bl

00111032

0012~032

000032
000032 00645
000033 03030
00C!11034 04016
0001035 02430
00C!11036
0001036 00174
000037
000037 01374
000040 05042
000041 05032
000042
000042
000042 06001
000043 00645
000044 05045
0001045 05037
0001046
00012146
00012146
00012)46

B2

B2

1650-ER1400

1***
1* *
,* THIS IS THE EAROM WRITE ROUTINE. THE FOLLOWING *
;* PARAMETERS MUST BE SET UP BEFORE THIS ROUTINE *
1* IS I NVORKED. *
;* *
,* PARAMETERS. LOCATN (F55)~-- THE BCD ADDRESS OF THE *
1* EAROM LOCATION THAT NEW *
,* DATA IS GOING TO BE STORED INTO *
;* DATAl (F56)--- THE LOWER 8 BITS OF *
1* NEW DATA. *
1* DATA2 (F57)--- THE UPPER 6 BITS OF THE *
,* NEW DATA PLUS TWO DON'T CARE BITS. *
1* *
1* OUTPUT. NONE *
1* *
1***

WRITE RES
CALL
MOVLW

MOVWF
CALL

MOVWF
MOVLW
MoVWF

MoVLW

CALL

MOVLW
MoVWF
CALL
GOTo

1650-ER1400

o
ADEAR
B' 11111011'

IOREG
W18MS

COUNT
DATAl
FSR

B' 11110001'

ERTRAN

B' 11111001'
IOREG
W18MS
EXEAR

IEARoM WRITE-ENTRY POINT.
,ADDRESS THE EAROM.
ICON CODE FOR EREASE
,DATA & CLOCK HIGH ,
,DELAY 18MS. ON RETURN,
,14 IS STORED IN W.
,SEND OUT 14 CLOCK PULSES.
,STORE THE ADDRESS OF THE LOW
,BYTE OF NEW DATA INTO 'FSR'.
I
,CON CODE FOR ACCEPT DATA
;DATA & CLOCK HIGH
l~HIFT THE DATA INTO THE EAROM.
1
,CON CODE FOR WRITE
,DATA & CLOCK HIGH
,DELAY 18MS WITH CONTINOUS CLOCK.
,EXIT FROM THIS EAROM INTERFACE
,ROUTINE AND RETURN TO MAIN PROGRAM.
,THE ER1400 IS PUT INTO STANDBY MODE.

1***
1* *
1* THIS IS AN 18MS DELAY ROUTINE REQUIRED WHEN *
,* WRITING DATA INTO THE ER1400 EAROM. DURING *
1* THIS 18MS PERIOD, A 14 KHZ EAROM CLOCK MUST *
,* BE MAINTAINED. ON RETURN, THIS ROUTINE PUT *
'* A DECIMAL NUMBER 14 INTO THE W RESISTER. *
1* *
1***

WMID

W18MS

W36US

WNZYET

WPAD

RES
XORWF
BTFSC
HI:.ILW
BSF
RES
CLRF
RES
DECFSZ
GOTO
GoTO

RES
MoVLW
XORWF
GoTO
GOTo

o
IOREG
COUNT,0
• 14
COUNT, 0
o
TEMP
o
TEMP
WNZYET
WMID

o
1
IOREG
WPAD
W36US

217

,TOGGLE THE EARoM CLOCK

,RETURN TO CALLING ROUTINE •

,ENTRY POINT FOR 18 MS DELAY.

ITOGGLE THE EAROM CLOCK.

LINE ADDR B1

218 000046
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

~!~
256
257
258

LINE

260
261
262
e63
264
e65
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
2S5
286
2S7
288
289
290
291
292
293
294
295

000046 01035
000047 07017
000050 00074
000051 06012
000052 00070
000053 06001
000054 00274

000055 01573
000056 01572
000057 01571
000060 01370
000061 05054
000062 03505
000063 05067
000064 02105
000065 01635
000066 05047
000067 06033
000070 00044

~I~~~~ ~~~~~
000073 06363

ADDR Bl

000074
000074
000074 00Q145
000075 06010
000076 00074
000077
000077 02405
000100 03105
000101 05107
000102
000102 02605
000103 01440
000104 03403
000105 02205
000106 05114
000107
000107 02605
000110 02003
000111 03205
000112 02403
000113 01440
000114

B2

B2

1650-ER1400

'***
* :: THIS ROUTINE TRANSFORMS THE BCD EAROM ADDRESS *

* STORED IN REGISTER 'LOCATN' INTO THE 20-BIT *
:* ONE-OUT-OF-TEN CODE REQUIRED BY THE ER1400 EAROM. *
'* THIS ONE-OF-TEN CODE IS STORED IN 'CONAD1', *
1* 'CONAD2' AND 'CONAD3' WITH THE LSB IN 'CONAD3' *

:: WHEN THIS 20-BIT ADDRESS IS FORMED, IT IS AUTO-
1* MATICALLY SENT TO THE EAROM BY EXECUTING THE

*
*
*
* 1* 'ERTRAN' ROUTINE.

* 1*
1***

ADEAR RES
MOVFW

LOADDC ANDLW
MOVWF
MOVLW
MOVWF
MOVLW

ROT3SR SUBWF

OPADD

RLF
RLF
RLF
DECFSZ
GOTO
BTFSS
SOTO
BCF
SWAPF
GOTO
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW

1650-ER1400

o
LOCATN
17
TEMP
.10
COUNT
1
TEMP

CONAD1
CONAD2
CONAD3
COUNT
ROT3SR
IOREG,2
aPADD
IOREG,2
LOCATN,0
LOAD DC
CONAD1
FSR
.20
COUNT
B'11110011'

IENTRY POINT FOR ADDRESS TRANSFORM.
,PUT LOW NIBBLE OF ADDRESS
lIN LOW NIBBLE OF TEMP

INO OF LOOPS BEFORE
,THIS ADDRESS PART COMPLETE
,DECREMENT FOR QDDRESS
,CLRS CARRY IF THIS PART OF ADDRESS
,HAS NOW REACHED ZERO
,SHIFT THE 'SHIFT REGISTER'

,.10 SHIFTS DONE YET?
,NOT YET
,YES. WAS THIS SECOUND ADDRESS ?
,YES. NOW OUTPUT CONVERTED ADDRESS
,NO. NOW CONVERT HIGH ADDRESS
,READY FOR HIGH NIBBLW OF ADDRESS
,GO DO HIGH ADDRESS
IPT FSR TO START OF CONVERTED ADDRESS
13-REGISTER 'SHIFT REGISTER'

;SET FOR 10 BIT TRANSFER TO ER1400
,ACCEPT ADDRESS CONTROL CODE
,DATA HIGH, CLOCK HIGH
,GO INTO 1/0 ROUTINE 'ERTRAN'

.**
1* *
'* TRANSFER DATA OR ADDRESS TO OR FROM THE ER1400 *

1*
1*
'* FSR (F4)

ON ENTRY

- POINTS TO START OF INFORMATION FILE
(CONADl IF ADDRESS, DATAl IF DATA)

*
*
*
*
*

'* * '* FILE COUNT - NUMBER OF ER1400 CLOCK CYCLES OR BITS *

'* * '* W - ER1400 CONTROL CODE *
1* *
;**

ERTRAN RES
MOVWF
MOVLW
MOVWF

STLOOP RES
BSF
BTFSC
GO TO

GIVE RES
BSF
RRF
SKPC
BCF
GOTO

RECEIV RES
BSF
CLRC
BTFSC
SETC
RRF

NEXTI RES

o
IOREG
.8
TEMP
o
IOREG,.ERCLK
IOREG,C2
RECEIV
o
IOREG,ERDATA
o

IOREG,ERDATA
NEXTI
o
IOREG,ERDATA

IOREG,ERDATA

o
o

218

,OUTPUT CONTROL WORD
,OUTPUT 8 BITS BEFORE
,MOVING TO NEXT INFO FILE

;SET THE EAROM CLOCK BIT
,INPUTTING TO THE PIC?
,YES, INPUT TO PIC FROM ER1400.
;ELSE, OUTPUT DATA FROM
;PIC TO EAROM
;ROTATE INFO FILE INTO CARRY
;IS THE INFO BIT A ZERO?
;YES, SHIFT A ZERO TO EAROM.
,GET NEXT INFO BIT
,RECEIVE DATA FROM EAROM.
;ENSURE PIN NOT LATCHED AT ZERO
;READ THE INPUT FROM EAROM
,IS IT A LOGIC '1' ?
;YES
,STORE THE DATA INTO PIC.

296 000114 02005
297 0100115 01374
298 0100116 05125
299 012'10117 02574
300 012'10120 01244
301 012'10121
302 0~~0121 01"s/1b
303 0'~0122 05077
304 0'~0123 02405
305 000124 04077
306 000125
307 012)0125 05121
308 000126
309 0(z~0126

ASSEMEILER ERRORS ft

LABEL VALUE

ADEAR 000046
Cl 000001
C2 000002
C3 000003
CONADl 000033
CONAD2 000032
CONAD3 000031
COUNT 000030

DATAl 000036
DATA2 000037
ERCLK 000000
ERDATA 000004
ERTRAN 000074
EXEAR 000012
FINL? 000121
FSR 000004
GIVE 00010c:
IOREG 000005

LOADDC 000047
LOCATN 000035
NEXTI 000114
OPADD 000067
READ 000000
RECEIV 000107
ROT3SR 000054
STLOOP 000077
STPAD 000125
TEMP 000034
W18MS 000036
W36US 000037
WMID 000032
WNZYET 000042
WPAD 000045
WRITE 000015

EOFI366
01 >

FINL?

STPAD

0

BCF
DECFSZ
GOTO
BSF
INCF
RES
DECFSZ
GO TO
BSF
RETLW
RES
GO TO

END

IOREG,ERCLK
TEMP
STPAD
TEMP,3
FSR
o
COUNT
STLOOP
IOREG,ERCLK
77
o
FINL?

1650-ER1400

CROSS REFERENCE

REFERENCE

122 162 -233
-64
-65 281
-66
-93 242 252
-92 243
-91 244
-88 123 127 168 198 200
255 302
-9/3 130 169

-101 134
-63 280 296 304
-67 284 287 290 292
126 133 174 -275

-136 179
-301 307

-87 131 170 253 300
-283
-47 139 165 177 197 c:10
276 280 281 284 287 290
304

-235 251
-95 234 250
288 -295
248 -252

-121
282 -289

-240 246
-C:79 303

298 -306
-94 202 204 236 240 278
166 178 -201

-203 212
-196 206

205 -208
211 -212

-161

219

,CLEAR THE EAROM CLOCK BIT
,DONE 8 BITS YET ?
,NO, MORE TO GO
,ELSE, RESET COUNTER TO EIGTH
,INCREMENT FSR TO NEXT INFO FILE

;FINISH ALL INFO FILES ?
,NO.
,ELSE, SET EAROM CLOCK BIT HIGH
,END OF EAROM 1/0 WITH 77 IN W.

,TIMING COMPENSATION.

238 245

247 249
292 296

297 299

7.8
Interfacing the

PICl650
Microcomputer

with the
ER2055 EAROM

Fig. 41

The ER2055 is a 64 x 8 EAROM with parallel address and I/O. Seven
teen I/O pins are required in this routine to interface with the PIC1650.
Figure 47 shows the configuration of these I/O ports.

The address of the EAROM is stored in the Tower 6 bits of F6. Bit 6 and
7 of the F6 are used to store the mode control inputs C1 and C2
respectively.

On entry to READ or WRITE, the address should be stored in the W
register and the two most significant bits must be zero. Before calling
WRITE, data waiting to be written into the EAROM must be in File 5. On
return from READ, the data read from the EAROM is in File 5 and can
be transferred to another register, if desired.

Figure 48 shows the hardware connections of the I/O ports. The
ER2055 is fully TTL compatible and thus no external hardware is
needed. The EAROM has two chip select lines which are hard-wired so
that the EAROM is always selected. The controlling software will
always set the EAROM in the read mode except when writing data to
the EAROM. However, the 2-20ps clock pulse required to read the
EAROM need be generated only when the READ subroutine is called.
In orderto give the correct clock pulse, the clock bit must be initialized
to zero at the beginning of the program. Before writing data into the
EAROM, that location has to be erased first. The erase and write cycle
time is set to 22 msec by calling the DELAY subroutine. The EAROM
will again set back to the read mode when the write cycle is finished. It
takes 40 microseconds to read data from and 43.2 msec to write data to
the EAROM.

I/O PORTS ARRANGEMENT

,..- 8 BITS -"'~"'I r-- 6 BITS -+-f LSB

DATA IC21 C11 ADDRESS I 1 ____ II-C_LO_C.._KI

FILE S (FS) FILE 6 (F6) FILE 7 (F7)
r' 1 n

ER2055 VS ER1400
Since the ER2055 uses parallel addressing and I/O, seventeen I/O pins
are required to interface with PIC. There are eight bidirectional data
lines, six address lines, two mode control lines and one clock input.
Since the eight data lines are only used during read/write operations,
these data lines may also be used for some other purposes such as
7-segment display. On the other hand, it only needs six I/O lines to
interface the ER1400 with the PIC since data and address are sent
serially. However, the read cycle time for the ER1400 is much longer
than the ER2055. To read a location, the ER 1400 needs 3.4ms while the
ER2055 only takes 40 microseconds.

220

+5V

I
T6 117
Vss CS1

RAO
2 20

00

RA1
3 21

01

RA2
4 22

02
6 1

RA3 03
7 5

RA4 04

RA5
8 4

05

RA6
9 3

06

RA7
10 2

07

RBO
11 12

AO
EAROM

PIC1650A
ER2055

R81
12 11

A1

R82
13 10

A2

R83
14 9

A3

R84
15 8

A4

R85
16 7

A5
17 15

RBS C1

R87
18 16

C2

RCO
19 13 ClK

Vss Va, CS2 Vaa

~ 19 18

1
14

-
- i.- -28V

'1 8;

221

000000
2 000000
3
4 000000
5 000000
6 000005
7 000006
8 000007
9 000000

10 000006
11 000007
12 000020
13 000021
14 000000
15 000000
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55
56
57
58
59
60
61
62
63
64
65
66
67
68

000000
000000
000001
000002
000003
000004
000005
000006
000007
000007

000007
000010
000011
000012
000013
000014
000015
000016

000016
000017
000020
000021
000022
000023
000024
000025
000026
000026

000100
000101
000102
000103
000104
000104
000104

000104
000105
000106
000107
000107

06500
00046
06377
00045
02407
02007
04000

06600
00046
04416
02346
04416
02706
04000

06007
00060
00161
01361
05021
01360
05021
04000

06123
00045
06005
04407

06005
04400
01005

ASSEMBLER ERRORS

ADDR
CTRL
READ
TESTWR

EOF:84
0:>

000006
000007
000000
000100

Cl
DATA
TEMPI
WRITE

o

TITLE 'PIC1650-ER2055 INTERFACE ROUTINE'

DATA
ADDR
CTRL
CLOCK
Cl
C2
TEMPI
TEMP2

READ

WRITE

DELAY

LOOP

TESTWR

[UU
EUU
EUU
EUU
ECW
EUU
[aU
[(HI

IORLW
MOVWF
MOVLW
MOVWF
BSF
BCF
RETLW

IORLW
MOVWF
CALL
BCF
CALL
BSF
RETLW

MOVLW
MOVWF
CLRF
DECFSZ
GO TO
DECFSZ
GOTO
RETLW

ORG
MOVLW
MOVWF
MOVLW
CALL

J

6
7
0
6
7
20
21

100
ADDR
377
DATA
CTRLvCLOCK
CTRL,CLOCK
o

200
ADDR
DELAY
ADDR,C2
DELAY
ADDR,Cl
0

7
TEMPI
TEMP2
TEMP2
LOOP
TEMPi
LOOP
0

100
123
DATA
5
WRITE

TESTRD MOVLW J

CALL READ
MOVF DATApW

END

SYMBOL TABLE

000006
000005
000020
000007

C2
DELAY
TEMP2

000007
000016
000021

222

ON ENTRY, ADDRESS SHOULD BE IN THE
LOWER 6 BITS OF THE W REGISTER AND
THE MOST SIGNIFICANT 2 BITS SHOULD
BE ZERO. ON EXIT, DATA READ IS IN
THE W REGISTER

SET IN READ MODE
SET THE I/O PORT FOR INPUT

CLOCK THE READ OPERATION

ON ENTRY, ADDRESS SHOULD BE IN THE
W REGISTER. DATA IN THE DATA REGISTER.

SET IN ERASE MODE

SET IN WRITE MODE

SET IN READ MODE

THIS GIVE 22MS DELAY TIME

;TEST WRITING ROUTINE

; THIS IS THE ADDRESS OF THE EAROM

;TEST THE READING ROUTINE
ADDRESS OF THE EAROM

; STORE THE DATA INTO W REGISTER

CLOCK 000000
LOOP 000021
TESTRD 000104

.-------------------------------NOTES-------------------------~

2~

~---------------------------------------NOTES----------------------------~

224

NORTH AMERICA
UNITED STATES:
MICROELECTRONICS DIVISION
NORTHEAST -1500 West John Street
Hicksville, New York 11802
Tel: 516-733-310~r, TWX: 510-221-1866
20th Century Plaza
Daniel Webster Highway
Merrimack, New Hampshire 03054
Tel: 603-424-3303, TWX: 710-366-0676
858 Welsh Road
Maple Glen, Pennsylvania 19002
Tel: 215-643-53215

SOUTHEAST -i'901 4th Street. N., Suite 208
St. Petersburg, Florida 33702
Tel: 813-577-4024, TWX: 810-863-0398
'1616 Forest Drivo
Annapolis, Maryland 21403
Tel: 301-269-6250, TWX: 710-867-8566
4921C Professional Court
Raleigh, North Carolina 27609
Tel: 919-876-7380
408 North Cedar Bluff Road, Suite 390
t<noxville, Tennessee 37923
Tel: 615-690-223~1

SOUTH CENTRAL-5520 lBJ Frwy., Suite 330
Dallas, Texas 75240
Tel: 214-934-1654, TWX: 910-860-9259

CENTRAL-4524 S. Michigan Street
South Bend, Indiana 46614
Tel: 219-291-058S" TWX: 810-299-2518
5820 West 85th Street, Suite 10.2
Indianapolis, Indiana 46278
Tel: 317-872-7740, TWX: 810-34'1-3145
2355 S. Arlington Hts. Road, Suite 408
Arlington Heights, Illinois 60005
Tel: 312-981-0040, TWX: 910·-687-0254
32969 Hamilton Court, Suite 210
Farmington Hills, Michigan 48018
Tel: 313-553-4330, Telex: 231193
230 North River Hidge Circle, Suite 116
Burnsville, Minne·sota 55337
Tel: 612-894-1840, TWX: 910-,5760240

SOUTHWEST -201 Standard Street
EI Segundo, Calilfornia 90245
Tel: 213-322-7745, TWX: 910··348-6296

NORTHWEST -3080 Olcott Street, Suite 230C
Santa Clara, Cali1fornia 95051
Tel: 408-496-0844, TWX: 910-37!~-0010

MANUFACTURIING FACILITIES

EUROPE
NORTHERN EUROPE
Times House, Ruislip, Middlesex, HA4 8lE
Tel: (08956),35700, Telex: 23272
Sandhamnsgatan 67
S-115 28, Stockholm
Tel: (08) 67 99 25, Telex: 17779
SOUTHERN EUROPE
5-7 Rue De l'Amiral Courbet
94160 Saint Mande, Paris
Tel: (1) 365 72 50, Telex: 213073
Via Quintiliano 27,20138 Milano
Tel: (02) 5062648, Telex: 843-320348
CENTRAL EUROPE
GENERAL INSTRUMENT DEUTSCHLAND GmbH
Freischuetzstr. 96
Postfach 81' 03 29
8000 M uenchen 81
Tel: (089) 956001, Telex: 528054
6070 Langen Bei Frankfurt A Main
Wilhelm-leuschner Platz 8, Postf. 1167
Tel: (6103) 23 051, Telex: 415000

ASIA
HONG KONG:
GENERAL INSTRUMENT HONG KONG LTD.
139 Connaught Road Central, 3/F, San-Toi Building
Tel: (5) 434360, Telex: 84606
JAPAN:
GENERAL INSTRUMENT INTERNATIONAL CORP.
Fukide Bldg. 8th Floor, 1-13 Toranomon 4-Chome
Minato··ku, Tokyo 105
Tel: (03) 437-0281, Telex: 2423413
KOREA:
GENERAL INSTRUMENT MICROELECTRONICS
Dong Young Building, 903
82, 1-KA, Ulgiro, Chung Ku
Seoul, South Korea
Tel: (2) 777-3848, Telex: K 26880 DAEHO
SINGAPORE:
GENERAL INSTRUMENT HONG KONG LTD.
Suite 1714, Shaw Centre
1 Scotts Road, Singapore 0922
Tel: (65) 235-8030, Telex: GIS'PORE RS 24424
TAIWAN:
GENERAL INSTRUMENT
MICROELECTRONICS TAIWAN
77 Pao Chiao Road, Hsin Tien
Taipei, Taiwan
Tel: (02) 914-6234, Telex: 785-3111

U.S.A.-Hicksville·, New York. Chandler, Arizona. EUROPE-Glenrothes, Scotland. ASIA-Kaohsiung, Taiwan

APPLICATIONS CENTERS
U.S.A.-Hicksville, New York. Chandler, Arizona. Los Angeles, California
EUROPE-Glenrothes, Scotland. London, England. Paris, France. Munich, Germany. Stockholm, Sweden
ASIA-Kaohsiung, Taiwan. Tokyo, Japan. Hong Kong

