

Fairchild Advanced CMOS Technology Logic Data Book

Fairchild Advanced CMOS Technology Logic Data Book

© 1987 Fairchild Semiconductor Corporation, Digital and Analog Unit 333 Western Avenue, South Portland, Maine 04106 207-775-8700 • TWX 710-221-1980

FAIRCHILD

Introduction

This data book presents advanced information on Fairchild's very high-speed, low-power CMOS logic family, fabricated with Fairchild's state-of-the-art CMOS process.

FACT (Fairchild Advanced CMOS Technology) utilizes Fairchild's 1.3 μ m Isoplanar silicon gate CMOS process to attain speeds similar to that of Advanced Low Power Schottky while retaining the advantages of CMOS logic, namely, ultra low power and high noise immunity. As an added benefit, FACT offers the system designer superior line driving characteristics and excellent ESD and latch-up immunity.

The FACT family consists of devices in two categories:

- AC, standard logic functions with CMOS compatible inputs and TTL and MOS compatible outputs;
- 2. ACT, standard logic functions with TTL compatible inputs and TTL and MOS compatible outputs.

Section 1 Literature Classification, Product Index and Selection Guide

Tabulation of device numbers to assist in locating appropriate technical data.

Section 2 FACT Descriptions and Family Characteristics

Basic information on FACT performance including technologies.

Section 3 Ratings, Specifications and Waveforms

Section 4 Design Considerations

Information to assist both TTL and CMOS designers to get the most out of Fairchild's FACT family.

- Section 5 Data Sheets
- Section 6 Package Outlines and Ordering Information
- Section 7 CMOS Gate Array Family FGC Series

Section 8 CMOS Gate Array Computer Aided Design Tools

Section 9 CMOS Gate Array Packaging

Section 10 Field Sales Offices and Distributor Locations

FAIRCHILD

Table of Contents

Section 1 Literature Classification, Product Index and Selection Guide

Literature Classification	1-2
Product Index	1-3
Selection Guide	1-7
Gates	1-7
Registers	1-7
Flip-Flops	1-8
Latches	1-9
Counters	1-9
Buffers/Line Drivers	1-10
FIFOs	1-10
Decoders/Demultiplexers	1-10
Arithmetic Functions	1-10
Shift Registers	1-11
Multiplexers	1-11
Comparators	1-11
Transceivers/Registered Transceivers	1-12

Section 2 FACT Descriptions and Family Characteristics

Family Characteristics	2-3
Logic Family Characteristics	2-8
Circuit Characteristics	2-10

Section 3	Ratings, Specifications and	
	Waveforms	3-3

Section 4 Design Considerations

Interfacing	4-3
Line Driving	4-5
CMOS Bus Loading	4-7
Crosstalk	4-7
Ground Bounce	4-9
Decoupling Requirements	4-10
TTL-Compatible CMOS Designs Require	
Delta ICC Consideration	4-13
Testing Advanced CMOS Devices with	
I/O Pins	4-14
Testing Disable Times of 3-State Outputs	
in a Transmission Line Environment	4-16
Section 5 Data Sheets	5-3

Section 6 Package Outlines and Ordering Information

Ordering Info	ormation	6-3
Package Out	llines	6-4
Plastic I	Dual In-Line	6-4
Ceramic	: Dual In-Line	6-7
Side Bra	azed Dual In-Line	6-11
Small O	utline Integrated Circuit	6-12
Plastic (Chip Carrier	6-15
Ceramic	: Leadless Chip Carrier	6-18
Ceramic	: Flatpak	6-19
Section 7	FGC Series Advanced 2-Micron Gate Array Family	7-3
Section 8	FAIRCAD [™] Semicustom Design System	8-3
Section 9	CMOS Arrays Packaging Guide	9-3
Section 10	Field Sales Offices and Distributor Locations	10-3

.

,	Product Index and Selection Guide	1
	FACT Descriptions and Family Characteristics	2
	,	
	Ratings, Specifications and Waveforms	3
	Design Considerations	4
	Data Sheets	5
	Package Outlines and Ordering Information	6
	FGC Series Advanced 2-Micron CMOS Gate Array	7
	FAIRCAD [™] Semicustom Design System	8
	CMOS Arrays Packaging Guide	9
	Field Sales Offices and Distributor Locations	10

Literature Classification

Preliminary: This product is in sampling or preproduction stage. This document contains advanced information and specifications that are subject to change without notice. Fairchild reserves the right to make changes at any time in order to improve design and provide the best product possible.

FAIRCHILD

Product Index and Selection Guide

Product Index		
'ACXX Devices — CMC	DS Input Levels	
Device No.	Description	Page No.
54AC/74AC00	Quad 2-Input NAND Gate	5-3
54AC/74AC02	Quad 2-Input NOR Gate	5-5
54AC/74AC04	Hex Inverter	5-7
54AC/74AC08	Quad 2-Input AND Gate	5-9
54AC/74AC10	Triple 3-Input NAND Gate	5-11
54AC/74AC11	Triple 3-Input AND Gate	5-13
54AC/74AC14	Hex Inverter Schmitt Trigger	5-15
54AC/74AC20	Dual 4-Input NAND Gate	5-18
54AC/74AC32	Quad 2-Input OR Gate	5-20
54AC/74AC74	Dual D Flip-Flop	5-22
54AC/74AC86	Quad 2-Input Exclusive-OR Gate	5-27
54AC/74AC109	Dual JK Positive Edge-Triggered Flip-Flop	5-29
54AC/74AC138	1-of-8 Decoder/Demultiplexer	5-34
54AC/74AC139	Dual 1-of-4 Decoder/Demultiplexer	5-39
54AC/74AC151	8-Input Multiplexer	5-43
54AC/74AC153	Dual 4-Input Multiplexer	5-47
54AC/74AC157	Quad 2-Input Multiplexer	5-51
54AC/74AC158	Quad 2-Input Multiplexer	5-55
54AC/74AC160	BCD Decade Counter, Asynchronous Reset	5-59
54AC/74AC161	4-Bit Binary Counter, Asynchronous Reset	5-66
54AC/74AC162	BCD Decade Counter, Synchronous Reset	5-59
54AC/74AC163	4-Bit Binary Counter, Synchronous Reset	5-66
54AC/74AC168	4-Bit Bidirectional Binary Counter	5-77
54AC/74AC169	4-Bit Bidirectional Binary Counter	5-77
54AC/74AC174	Hex D Flip-Flop with Master Reset	5-85
54AC/74AC175	Quad D Flip-Flop with Master Reset	5-89
54AC/74AC190	Up/Down Decade Counter	5-94
54AC/74AC191	Up/Down Binary Counter	5-94
54AC/74AC192	Up/Down Decade Counter	5-102
54AC/74AC193	Up/Down Binary Counter	5-102
54AC/74AC240	Octal Buffer/Line Driver	5-109
54AC/74AC241	Octal Buffer/Line Driver	5-112
54AC/74AC244	Octal Buffer/Line Driver	5-115
54AC/74AC245	Octal Bidirectional Transceiver	5-118
54AC/74AC251	8-Input Multiplexer	5-121
54AC/74AC253	Dual 4-Input Multiplexer	5-125
		0.25

Device No.	Description	Page No.
54AC/74AC257	Quad 2-Input Multiplexer	5-129
54AC/74AC258	Quad 2-Input Multiplexer	5-133
54AC/74AC273	Octal D Flip-Flop	5-137
54AC/74AC299	Octal Shift/Storage Register	5-142
54AC/74AC323	Octal Shift/Storage Register	5-149
54AC/74AC352	Dual 4-Input Multiplexer	5-156
54AC/74AC353	Dual 4-Input Multiplexer	5-161
54AC/74AC373	Octal D Latch	5-165
54AC/74AC374	Octal D Flip-Flop	5-170
54AC/74AC377	Octal D Flip-Flop with Clock Enable	5-175
54AC/74AC378	Parallel D Register with Enable	5-180
54AC/74AC379	Quad D Flip-Flop with Enable	5-185
54AC/74AC398	Quad 2-Port Register	5-190
54AC/74AC399	Quad 2-Port Register	5-190
54AC/74AC520	8-Bit Identity Comparator with Pull-Up Resistors	5-223
54AC/74AC521	8-Bit Identity Comparator	5-223
54AC/74AC533	Octal Transparent Latch	5-228
54AC/74AC534	Octal D Flip-Flop	5-233
54AC/74AC540	Octal Buffer/Line Driver	5-238
54AC/74AC541	Octal Buffer/Line Driver	5-238
54AC/74AC563	Octal D Latch	5-241
54AC/74AC564	Octal D Flip-Flop	5-246
54AC/74AC568	4-Bit Bidirectional Decade Counter	5-251
54AC/74AC569	4-Bit Bidirectional Binary Counter	5-251
54AC/74AC573	Octal D Latch	5-260
54AC/74AC574	Octal D Flip-Flop	5-265
54AC/74AC640	Octal Transceiver	5-270
54AC/74AC643	Octal Transceiver	5-273
54AC/74AC646	Octal Bus Transceiver and Register	5-276
54AC/74AC648	Octal Bus Transceiver and Register	5-280
54AC/74AC705	DSP ALU	5-284
54AC/74AC708	64 x 9 FIFO Memory	5-296
54AC/74AC723	64 x 9 FIFO	5-314
54AC/74AC725	512 x 9 FIFO	5-330
54AC/74AC818	Diagnostic and Pipeline Register	5-346
54AC/74AC821	10-Bit D Flip-Flop	5-354
54AC/74AC822	10-Bit D Flip-Flop	5-354
54AC/74AC823	9-Bit D Flip-Flop	5-359
54AC/74AC824	9-Bit D Flip-Flop	5-359
54AC/74AC825	8-Bit D Flip-Flop	5-366

Device No.	Description	Page No.
54AC/74AC826	8-Bit D Flip-Flop	5-366
54AC/74AC841	10-Bit Transparent Latch	5-373
54AC/74AC842	10-Bit Transparent Latch	5-373
54AC/74AC843	9-Bit Transparent Latch	5-378
54AC/74AC844	9-Bit Transparent Latch	5-378
54AC/74AC845	8-Bit Transparent Latch	5-385
54AC/74AC846	8-Bit Transparent Latch	5-385
54AC/74AC1010	16 x 16 Multiplier/Accumulator	5-392
54AC/74AC1016	16 x 16 Parallel Multiplier	5-402
54AC/74AC1017	16 x 16 Parallel Multiplier with Common Clock	5-413
'ACTXX Devices — TTL Input	Levels	
54ACT/74ACT00	Quad 2-Input NAND Gate	5-3
54ACT/74ACT04	Hex Inverter	5-7
54ACT/74ACT08	Quad 2-Input AND Gate	5-9
54ACT/74ACT14	Hex Inverter Schmitt Trigger	5-15
54ACT/74ACT32	Quad 2-Input OR Gate	5-20
54ACT/74ACT74	Dual D Flip-Flop	5-22
54ACT/74ACT109	Dual JK Positive Edge-Triggered Flip-Flop	5-29
54ACT/74ACT138	1-of-8 Decoder/Demultiplexer	5-34
54ACT/74ACT139	Dual 1-of-4 Decoder/Demultiplexer	5-39
54ACT/74ACT151	8-Input Multiplexer	5-43
54ACT/74ACT153	Dual 4-Input Multiplexer	5-47
54ACT/74ACT157	Quad 2-Input Multiplexer	5-51
54ACT/74ACT158	Quad 2-Input Multiplexer	5-55
54ACT/74ACT160	BCD Decade Counter, Asynchronous Reset	5-59
54ACT/74ACT161	4-Bit Binary Counter, Asynchronous Reset	5-66
54ACT/74ACT162	BCD Decade Counter, Synchronous Reset	5-59
54ACT/74ACT163	4-Bit Binary Counter, Synchronous Reset	5-66
54ACT/74ACT174	Hex D Flip-Flop with Master Reset	5-85
54ACT/74ACT175	Quad D Flip-Flop	5-89
54ACT/74ACT240	Octal Buffer/Line Driver	5-109
54ACT/74ACT241	Octal Buffer/Line Driver	5-112
54ACT/74ACT244	Octal Buffer/Line Driver	5-115
54ACT/74ACT245	Octal Bidirectional Transceiver	5-118
54ACT/74ACT251	8-Input Multiplexer	5-121
54ACT/74ACT253	Dual 4-Bit Multiplexer	5-125
54ACT/74ACT257	Quad 2-Input Multiplexer	5-129
54ACT/74ACT258 54ACT/74ACT273	Quad 2-Input Multiplexer	5-133
J4AU1/14AU1213	Octal D Flip-Flop	5-137

1

SACT/74ACT299 SACT/74ACT323Octal Shift/Storage Register5-142 5-142SACT/74ACT323Octal Shift/Storage Register5-142 5-145SACT/74ACT323Dual 4-Input Multiplexer5-165SACT/74ACT323Dual 4-Input Multiplexer5-161SACT/74ACT373Octal D Elip-Flop5-170SACT/74ACT374Octal D Flip-Flop with Clock Enable5-175SACT/74ACT378Parallel D Flip-Flop with Clock Enable5-180SACT/74ACT379Quad D Flip-Flop with Enable5-180SACT/74ACT398Quad 2-Port Register5-190SACT/74ACT398Quad 2-Port Register5-190SACT/74ACT398Quad 2-Port Register5-190SACT/74ACT398Quad 2-Port Register5-190SACT/74ACT5208-Bit Identity Comparator with Puli-Up Resistors5-223SACT/74ACT533Octal D Flip-Flop5-233SACT/74ACT534Octal D Flip-Flop5-238SACT/74ACT540Octal Buffer/Line Driver5-238SACT/74ACT541Octal D Latch5-246SACT/74ACT543Octal D Latch5-246SACT/74ACT544Octal D Latch5-246SACT/74ACT545DSP ALU5-246SACT/74ACT544Octal D Latch5-233SACT/74ACT545DSP ALU5-246SACT/74ACT544Octal D Flip-Flop5-330SACT/74ACT545DSP ALU5-246SACT/74ACT545DSP ALU5-284SACT/74ACT6454Delit D Flip-Flop5-354SACT/74ACT6454Delit D Flip-Flop5-354<	Device No.	Description	Page No.
54ACT/7ACT323Octal ShiftStorage Register5-14954ACT/7ACT352Dual 4-Input Multiplexer5-15654ACT/7ACT353Dual 4-Input Multiplexer5-16154ACT/7ACT353Dotal D Latch5-16554ACT/7ACT374Octal D Flip-Flop with Clock Enable5-17554ACT/7ACT378Parallel D Register with Enable5-18054ACT/7ACT379Quad D Flip-Flop with Clock Enable5-18054ACT/7ACT378Quad D Polip-Flop with Enable5-18554ACT/7ACT379Quad D Polip-Flop with Enable5-18554ACT/7ACT398Quad 2-Port Register5-19054ACT/7ACT399Quad 2-Port Register5-19054ACT/7ACT488General Purpose Interface Bus (GPIB) Circuit5-19554ACT/7ACT5208-Bit Identity Comparator with Puli-Up Resistors5-22354ACT/7AACT531Octal Buffer/Line Driver5-23854ACT/7AACT540Octal Buffer/Line Driver5-23854ACT/7AACT541Octal Buffer/Line Driver5-23854ACT/7AACT543Octal D Elip-Flop5-24654ACT/7AACT544Octal D Latch5-24654ACT/7AACT545DSP ALU5-24654ACT/7AACT544Octal D Latch5-27354ACT/7AACT545DSP ALU5-24654ACT/7AACT544Octal D Flip-Flop5-33054ACT/7AACT545DSP ALU5-24654ACT/7AACT544Octal D Flip-Flop5-35454ACT/7AACT545DSP ALU5-24654ACT/7AACT545DSP ALU5-24654ACT/7AACT545Deshit D Flip-Flop5	5 4 A OT /2 4 A OT 000		•
54ACT/74ACT352Dual 4-Input Multiplexer5-16554ACT/74ACT353Dual 4-Input Multiplexer5-16154ACT/74ACT353Octal D Latch5-16554ACT/74ACT374Octal D Flip-Flop with Clock Enable5-17554ACT/74ACT377Octal D Flip-Flop with Clock Enable5-17554ACT/74ACT378Parallel D Register with Enable5-18054ACT/74ACT379Quad 2 Port Register5-18054ACT/74ACT399Quad 2 Port Register5-19054ACT/74ACT5208-Bit Identity Comparator with Pull-Up Resistors5-22354ACT/74ACT5218-Bit Identity Comparator5-23354ACT/74ACT533Octal D Flip-Flop5-23354ACT/74ACT534Octal D Enip-Flop5-23354ACT/74ACT535Octal D Enip-Flop5-23854ACT/74ACT540Octal Buffer/Line Driver5-23854ACT/74ACT541Octal D Latch5-24654ACT/74ACT543Octal D Latch5-24654ACT/74ACT544Octal D Latch5-27054ACT/74ACT573Octal D Latch5-27054ACT/74ACT574Octal D Flip-Flop5-28054ACT/74ACT573Octal D Latch5-27054ACT/74ACT644Octal D Flip-Flop5-33054ACT/74ACT645Diagnostic and Pipeline Register5-36454ACT/74ACT643Octal D Flip-Flop5-33954ACT/74ACT644Oetal D Flip-Flop5-33954ACT/74ACT645Dist D Flip-Flop5-33954ACT/74ACT644Oetal D Flip-Flop5-33954ACT/74ACT645Dist D Flip-Flop5-36			
54ACT/74ACT353Dual 4-Input Multiplexer5-16154ACT/74ACT373Octal D Latch5-18554ACT/75ACT374Octal D Filp-Flop with Clock Enable5-17554ACT775ACT377Octal D Filp-Flop with Enable5-18054ACT77AACT378Parallel D Register with Enable5-18054ACT77AACT379Quad 2-Port Register5-18054ACT77AACT389Quad 2-Port Register5-19054ACT77AACT5208-Bit Identity Comparator with Pull-Up Resistors5-22354ACT77AACT5218-Bit Intransparent Comparator5-23354ACT77AACT5218-Bit Intransparent Latch5-22854ACT77AACT540Octal D Filp-Flop5-23354ACT77AACT540Octal D Utfer/Line Driver5-23854ACT77AACT540Octal D Latch5-24154ACT77AACT540Octal D Latch5-24654ACT77AACT540Octal D Latch5-24554ACT77AACT540Octal D Latch5-22054ACT77AACT540Octal D Latch5-22054ACT77AACT541Octal D Filp-Flop5-23354ACT77AACT542DSP ALU5-24154ACT77AACT543Octal D Latch5-29654ACT77AACT544Octal D Filp-Flop5-33054ACT77AACT545DSP ALU5-28454ACT77AACT545DSP ALU5-28454ACT77AACT545DSP ALU5-33054ACT77AACT545DSP ALU5-33054ACT77AACT545DSP ALU5-33054ACT77AACT545DSP ALU5-33054ACT77AACT545DSP ALU5-33654ACT			
SAACT/74ACT373Octal D Latch5-165SAACT/74ACT374Octal D Filp-Flop with Clock Enable5-175SAACT/74ACT377Octal D Filp-Flop with Clock Enable5-175SAACT/74ACT378Parallel D Register with Enable5-180SAACT/74ACT379Quad D Filp-Flop with Clock Enable5-185SAACT/74ACT378Quad 2-Port Register5-190SAACT/74ACT388Quad 2-Port Register5-190SAACT/74ACT488General Purpose Interface Bus (GPIB) Circuit5-195SAACT/74ACT5208-Bit Identity Comparator with Pull-Up Resistors5-223SAACT/74ACT533Octal Transparent Latch5-228SAACT/74ACT534Octal D Hilp-Flop5-233S4ACT/74ACT534Octal D Latch5-246SAACT/74ACT540Octal D Filp-Flop5-246SAACT/74ACT541Octal D Filp-Flop5-246SAACT/74ACT543Octal D Latch5-226SAACT/74ACT544Octal D Filp-Flop5-273SAACT/74ACT557Octal D SP ALU5-224SAACT/74ACT545DSP ALU5-284SAACT/74ACT55S12 x 9 FIFO5-334SAACT/74ACT52S12 x 9 FIFO5-336SAACT/74ACT52S12 x 9 FIFO5-334SAACT/74ACT52S11 D Filp-Flop5-334SAACT/74ACT52S11 D Filp-Flop5-336SAACT/74ACT52S12 x 9 FIFO5-336SAACT/74ACT52S11 D Filp-Flop5-336SAACT/74ACT52S12 x 9 FIFO5-336SAACT/74ACT52S12 x 9 FIFO5-336SAACT/74ACT52<		• •	
54ACT/74ACT374Octal D Flip-Flop5-17054ACT/74ACT378Parallel D Rejister with Enable5-17554ACT/74ACT378Parallel D Rejister with Enable5-18554ACT/74ACT378Quad 2-Port Register5-18054ACT/74ACT389Quad 2-Port Register5-19054ACT/74ACT389Quad 2-Port Register5-19054ACT/74ACT389General Purpose Interface Bus (GPIB) Circuit5-19554ACT/74ACT5208-Bit Identity Comparator with Pull-Up Resistors5-22354ACT/74ACT5319-Bit Transparent Comparator5-22354ACT/74ACT5320-Ctal Buffer/Line Driver5-23354ACT/74ACT540Octal Buffer/Line Driver5-23854ACT/74ACT563Octal D Flip-Flop5-23854ACT/74ACT564Octal D Latch5-24154ACT/74ACT574Octal D Flip-Flop5-27354ACT/74ACT564Octal D Flip-Flop5-27354ACT/74ACT575DSP ALU5-28454ACT/74ACT705DSP ALU5-28454ACT/74ACT705DSP ALU5-28454ACT/74ACT725512 x 9 FIFO5-33454ACT/74ACT725512 x 9 FIFO5-34654ACT/74ACT725512 x 9 FIFO5-34654ACT/74ACT7259-Bit D Flip-Flop5-36654ACT/74ACT8249-Bit D Flip-Flop5-36654ACT/74ACT8249-Bit D Flip-Flop5-36654ACT/74ACT8249-Bit D Flip-Flop5-36654ACT/74ACT8249-Bit D Flip-Flop5-36654ACT/74ACT8249-Bit D Flip-Flop5-36654ACT/74ACT824	54ACT/74ACT353	Dual 4-Input Multiplexer	5-161
54ACT/74ACT378Octal D Flip-Flop with Clock Enable5-17554ACT/74ACT378Parallel D Register with Enable5-18054ACT/74ACT379Quad D Flip-Flop with Enable5-18054ACT/74ACT398Quad 2-Port Register5-19054ACT/74ACT488General Purpose Interface Bus (GPIB) Circuit5-19554ACT/74ACT5208-Bit Identity Comparator with Pull-Up Resistors5-22354ACT/74ACT5218-Bit Transparent Comparator522354ACT/74ACT5248-Bit Transparent Comparator5-22354ACT/74ACT534Octal D Flip-Flop5-23354ACT/74ACT541Octal Buffer/Line Driver5-23854ACT/74ACT543Octal D Latch5-24654ACT/74ACT544Octal D Latch5-24654ACT/74ACT543Octal D Flip-Flop5-26554ACT/74ACT544Octal D Flip-Flop5-26554ACT/74ACT543Octal D Flip-Flop5-26554ACT/74ACT544Octal D Flip-Flop5-26654ACT/74ACT543Octal D Flip-Flop5-26654ACT/74ACT544Octal D Flip-Flop5-26554ACT/74ACT545DSP ALU5-22454ACT/74ACT640Octal Transceiver5-27354ACT/74ACT643Octal D Flip-Flop5-33054ACT/74ACT643Octal Transceiver5-27354ACT/74ACT643Diagnostic and Pipeline Register5-34654ACT/74ACT725512 × 9 FIFO5-33654ACT/74ACT8249-Bit D Flip-Flop5-35654ACT/74ACT8249-Bit D Flip-Flop5-36654ACT/74ACT8249-Bit D Fli	54ACT/74ACT373	Octal D Latch	5-165
54ACT/74ACT378Parallel D Register with Enable5-18054ACT/74ACT379Quad D Flip-Flop with Enable5-18554ACT/74ACT388Quad 2-Port Register5-19054ACT774ACT388Quad 2-Port Register5-19054ACT774ACT488General Purpose Interface Bus (GPIB) Circuit5-19554ACT774ACT5208-Bit Identity Comparator with Pull-Up Resistors5-22354ACT774ACT5218-Bit Transparent Comparator5-22354ACT774ACT533Octal Transparent Latch5-22854ACT774ACT540Octal Buffer/Line Driver5-23854ACT774ACT541Octal D Latch5-24154ACT774ACT563Octal D Latch5-24654ACT774ACT573Octal D Latch5-27054ACT774ACT540Octal Transceiver5-27354ACT774ACT573Octal D Latch5-28054ACT774ACT574Octal Transceiver5-27354ACT774ACT573Octal D Latch5-28054ACT774ACT643Octal Transceiver5-27354ACT774ACT643Octal Transceiver5-27354ACT774ACT705DSP ALU5-28454ACT774ACT72364 x 9 FIFO5-33454ACT774ACT7239-Bit D Flip-Flop5-35654ACT774ACT8249-Bit D Flip-Flop5-35654ACT774ACT8258-Bit D Flip-Flop5-35654ACT774ACT8249-Bit D Flip-Flop5-35654ACT774ACT8249-Bit D Flip-Flop5-35654ACT774ACT8249-Bit D Flip-Flop5-35654ACT774ACT8249-Bit Transparent Latch5-37354A	54ACT/74ACT374	Octal D Flip-Flop	5-170
S4ACT/74ACT379Quad D Flip-Flop with Enable5-185S4ACT/74ACT398Quad 2-Port Register5-190S4ACT/74ACT399Quad 2-Port Register5-190S4ACT/74ACT488General Purpose Interface Bus (GPIB) Circuit5-195S4ACT/74ACT5208-Bit Identity Comparator with Pull-Up Resistors5-223S4ACT/74ACT5310-Cital D Flip-Flop5-233S4ACT/74ACT540Octal D Flip-Flop5-233S4ACT/74ACT541Octal D Flip-Flop5-238S4ACT/74ACT543Octal D Flip-Flop5-238S4ACT/74ACT544Octal D Hip-Flop5-238S4ACT/74ACT545Octal D Latch5-241S4ACT/74ACT573Octal D Latch5-246S4ACT/74ACT574Octal D Flip-Flop5-265S4ACT/74ACT573Octal D Latch5-265S4ACT/74ACT640Octal Transceiver5-273S4ACT/74ACT643Octal Transceiver5-273S4ACT/74ACT643Octal Transceiver5-273S4ACT/74ACT643Octal Transceiver5-334S4ACT/74ACT643Octal Transceiver5-330S4ACT/74ACT82D-Bit D Flip-Flop5-354S4ACT/74ACT8210-Bit D Flip-Flop5-354S4ACT/74ACT8249-Bit D Flip-Flop5-354S4ACT/74ACT8249-Bit D Flip-Flop5-356S4ACT/74ACT8249-Bit D Flip-Flop5-356S4ACT/74ACT8249-Bit D Flip-Flop5-356S4ACT/74ACT8249-Bit D Flip-Flop5-356S4ACT/74ACT8258-Bit D Flip-Flop5-356S4ACT/74ACT826	54ACT/75ACT377	Octal D Flip-Flop with Clock Enable	5-175
54ACT/74ACT388Quad 2-Port Register5-19054ACT/74ACT389General Purpols Interface Bus (GPIB) Circuit5-19054ACT774ACT5208-Bit Identity Comparator with Pull-Up Resistors5-22354ACT74ACT5218-Bit Transparent Comparator5-22354ACT74ACT533Octal Transparent Latch5-22354ACT74ACT540Octal D Flip-Flop5-23354ACT74ACT541Octal D Latch5-23354ACT74ACT543Octal D Latch5-23454ACT74ACT544Octal D Latch5-23454ACT74ACT573Octal D Latch5-24654ACT74ACT574Octal D Latch5-26554ACT74ACT574Octal D Latch5-26554ACT74ACT574Octal D Latch5-26554ACT74ACT574Octal D Latch5-27354ACT74ACT574Octal D Transceiver5-27354ACT74ACT575DSP ALU5-28454ACT74ACT705DSP ALU5-28454ACT74ACT705DSP ALU5-28454ACT74ACT725512 x 9 FIFO5-33054ACT74ACT818Diagnostic and Pipeline Register5-34654ACT74ACT8249-Bit D Flip-Flop5-35454ACT74ACT8258-Bit D Flip-Flop5-35654ACT74ACT8249-Bit D Flip-Flop5-35654ACT74ACT8258-Bit D Flip-Flop5-35654ACT74ACT8249-Bit D Flip-Flop5-35654ACT74ACT8258-Bit D Flip-Flop5-35654ACT74ACT8268-Bit D Flip-Flop5-35654ACT74ACT8268-Bit Transparent Latch5-37854ACT	54ACT/74ACT378	Parallel D Register with Enable	5-180
54ACT/74ACT388 54ACT/74ACT389Quad 2-Port Register Quad 2-Port Register5-19054ACT/74ACT389General Purgister dentrace Bus (GPIB) Circuit5-19054ACT74ACT5208-Bit Identity Comparator with Pull-Up Resistors5-22354ACT74ACT5218-Bit Transparent Comparator5-22354ACT74ACT533Octal Transparent Latch5-22354ACT74ACT540Octal D Flip-Flop5-23354ACT74ACT541Octal D Latch5-23354ACT74ACT553Octal D Latch5-23454ACT74ACT564Octal D Latch5-24654ACT74ACT573Octal D Latch5-24654ACT74ACT574Octal D Latch5-26554ACT74ACT574Octal D Latch5-26554ACT74ACT574Octal D Latch5-27354ACT74ACT574Octal D Latch5-27354ACT74ACT574Octal D Transceiver5-27354ACT74ACT575DSP ALU5-28454ACT74ACT705DSP ALU5-28454ACT74ACT705DSP ALU5-28454ACT74ACT725512 x 9 FIFO5-33054ACT74ACT818Diagnostic and Pipeline Register5-36654ACT74ACT8249-Bit D Flip-Flop5-35454ACT74ACT8258-Bit D Flip-Flop5-35654ACT74ACT8249-Bit D Flip-Flop5-35654ACT74ACT8249-Bit D Flip-Flop5-35654ACT74ACT8258-Bit D Flip-Flop5-35654ACT74ACT8249-Bit D Flip-Flop5-35654ACT74ACT8258-Bit Transparent Latch5-37854ACT74ACT8449-Bit Tran	54ACT/74ACT379	Quad D Flip-Flop with Enable	5-185
54ACT/74ACT399Quad 2-Port Register5-19054ACT/74ACT488General Purpose Interface Bus (GPIB) Circuit5-19554ACT74ACT5208-Bit Identity Comparator with Pull-Up Resistors5-22354ACT74ACT5218-Bit Transparent Comparator5-22354ACT74ACT533Octal D Flip-Flop5-23354ACT74ACT540Octal Buffer/Line Driver5-23854ACT74ACT541Octal Buffer/Line Driver5-23854ACT74ACT543Octal D Latch5-24654ACT74ACT544Octal D Latch5-24654ACT74ACT573Octal D Latch5-26554ACT74ACT574Octal D Latch5-26554ACT74ACT574Octal D Latch5-27054ACT74ACT574Octal D Latch5-27054ACT74ACT574Octal Transceiver5-27054ACT74ACT574Octal Transceiver5-27054ACT74ACT574Octal Transceiver5-27054ACT74ACT574Octal Transceiver5-27054ACT74ACT705DSP ALU5-28654ACT74ACT706DSP ALU5-28654ACT74ACT72364 x 9 FIFO5-31454ACT74ACT724512 x 9 FIFO5-33054ACT74ACT82110-Bit D Flip-Flop5-35454ACT74ACT8239-Bit D Flip-Flop5-35454ACT74ACT8249-Bit D Flip-Flop5-35654ACT74ACT8258-Bit D Flip-Flop5-36654ACT74ACT8259-Bit D Flip-Flop5-36654ACT74ACT8269-Bit D Flip-Flop5-36654ACT74ACT8269-Bit Transparent Latch5-37354	54ACT/74ACT398		5-190
54ACT/74ACT488General Purpose Interface Bus (GPIB) Circuit5-19554ACT/74ACT5208-Bit Identity Comparator with Pull-Up Resistors5-22354ACT/74ACT5218-Bit Transparent Comparator5-22354ACT/74ACT533Octal Transparent Latch5-22354ACT/74ACT540Octal Buffer/Line Driver5-23354ACT/74ACT541Octal Buffer/Line Driver5-23354ACT/74ACT543Octal D Filp-Flop5-24554ACT/74ACT544Octal D Latch5-24154ACT/74ACT573Octal D Latch5-26554ACT/74ACT574Octal D Filp-Flop5-26554ACT/74ACT574Octal D Filp-Flop5-26554ACT/74ACT640Octal Transceiver5-27054ACT/74ACT643Octal Transceiver5-27054ACT/74ACT705DSP ALU5-28454ACT/74ACT725512 x 9 FIFO5-31454ACT/74ACT725512 x 9 FIFO5-33654ACT/74ACT82110-Bit D Filp-Flop5-35454ACT/74ACT8239-Bit D Filp-Flop5-35454ACT/74ACT8239-Bit D Filp-Flop5-35454ACT/74ACT8249-Bit D Filp-Flop5-35454ACT/74ACT8258-Bit D Filp-Flop5-35454ACT/74ACT8249-Bit D Filp-Flop5-35654ACT/74ACT8258-Bit D Filp-Flop5-35654ACT/74ACT84110-Bit Transparent Latch5-37354ACT/74ACT8458-Bit Transparent Latch5-37354ACT/74ACT8468-Bit Transparent Latch5-37654ACT/74ACT8468-Bit Transparent Latch5-378 <td< td=""><td></td><td></td><td></td></td<>			
54ACT/74ACT5208-Bit Identity Comparator with Pull-Up Resistors5-22354ACT/74ACT5218-Bit Transparent Latch5-22354ACT/74ACT533Octal D Flip-Flop5-23354ACT/74ACT540Octal Buffer/Line Driver5-23854ACT/74ACT541Octal Buffer/Line Driver5-23854ACT/74ACT541Octal Buffer/Line Driver5-23854ACT7/4ACT541Octal D Latch5-24154ACT/74ACT573Octal D Latch5-24654ACT/74ACT574Octal D Flip-Flop5-26654ACT/74ACT573Octal D Latch5-26754ACT/74ACT574Octal D Flip-Flop5-26554ACT/74ACT573Octal D Flip-Flop5-26554ACT/74ACT574Octal Transceiver5-27354ACT/74ACT643Octal Transceiver5-27354ACT/74ACT705DSP ALU5-28454ACT/74ACT72364 x 9 FIFO5-33054ACT/74ACT725Diagnostic and Pipeline Register5-34654ACT/74ACT818Diagnostic and Pipeline Register5-34654ACT/74ACT8239-Bit D Flip-Flop5-35954ACT/74ACT8249-Bit D Flip-Flop5-35954ACT/74ACT8258-Bit D Flip-Flop5-36654ACT/74ACT84110-Bit Transparent Latch5-37354ACT/74ACT84210-Bit Transparent Latch5-37354ACT/74ACT8439-Bit Transparent Latch5-37854ACT/74ACT8458-Bit Transparent Latch5-37854ACT/74ACT8468-Bit Transparent Latch5-37854ACT/74ACT8468-Bit Transparent Latch5-385<			
54ACT/74ACT521 Bit Transparent Comparator 5-223 54ACT/74ACT533 Octal D Filp-Flop 5-233 54ACT/74ACT540 Octal Buffer/Line Driver 5-233 54ACT/74ACT541 Octal Buffer/Line Driver 5-238 54ACT/74ACT563 Octal D Latch 5-246 54ACT/74ACT564 Octal D Latch 5-246 54ACT/74ACT573 Octal D Latch 5-265 54ACT/74ACT574 Octal D Filp-Flop 5-265 54ACT/74ACT573 Octal D Latch 5-266 54ACT/74ACT544 Octal Transceiver 5-270 54ACT/74ACT640 Octal Transceiver 5-270 54ACT/74ACT705 DSP ALU 5-284 54ACT/74ACT725 512 x 9 FIFO 5-314 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-354 54ACT/74ACT824 9-Bit D Flip-Flop 5-356 54ACT/74ACT824 9-Bit D Flip-Flop		deneral Pulpose interface bus (dr ib) oncur	5-185
54ACT/74ACT533 Octal Transparent Latch 5-228 54ACT/74ACT534 Octal D Flip-Flop 5-233 54ACT/74ACT540 Octal Buffer/Line Driver 5-238 54ACT/74ACT561 Octal Buffer/Line Driver 5-238 54ACT7/4ACT563 Octal D Latch 5-246 54ACT7/4ACT564 Octal D Latch 5-246 54ACT7/4ACT573 Octal D Latch 5-260 54ACT/74ACT574 Octal D Flip-Flop 5-265 54ACT/74ACT574 Octal Transcelver 5-273 54ACT/74ACT643 Octal Transcelver 5-273 54ACT/74ACT655 DSP ALU 5-284 54ACT/74ACT705 DSP ALU 5-286 54ACT/74ACT723 64 x 9 FIFO 5-330 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT82 10-Bit D Flip-Flop 5-354 54ACT/74ACT82 9-Bit D Flip-Flop 5-356 54ACT/74ACT82 9-Bit D Flip-Flop 5-356 54ACT/74ACT824 9-Bit D Flip-Flop 5-36			
54ACT/74ACT534 Octal D Flip-Flop 5-233 54ACT/74ACT540 Octal Buffer/Line Driver 5-238 54ACT/74ACT541 Octal Buffer/Line Driver 5-238 54ACT/74ACT563 Octal D Latch 5-246 54ACT/74ACT564 Octal D Flip-Flop 5-266 54ACT/74ACT573 Octal D Latch 5-266 54ACT/74ACT574 Octal D Flip-Flop 5-265 54ACT/74ACT540 Octal Transcelver 5-273 54ACT/74ACT643 Octal Transcelver 5-273 54ACT/74ACT705 DSP ALU 5-284 54ACT/74ACT708 64 x 9 FIFO Memory 5-286 54ACT/74ACT723 64 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT82 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-356 54ACT/74ACT824 9-Bit D Flip-Flop 5-356 54ACT/74ACT825 8-Bit D Flip-Flop 5-356 54ACT/74ACT824 9-Bit D Flip-Flop 5-356 54ACT/74ACT825 8-Bit D Flip-Flop			
54ACT/74ACT540 Octal Buffer/Line Driver 5-238 54ACT/74ACT541 Octal Buffer/Line Driver 5-238 54ACT/74ACT563 Octal D Latch 5-241 54ACT/74ACT564 Octal D Flip-Flop 5-246 54ACT/74ACT573 Octal D Latch 5-266 54ACT/74ACT574 Octal D Flip-Flop 5-266 54ACT/74ACT574 Octal D Transceiver 5-273 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT705 DSP ALU 5-284 54ACT/74ACT723 64 × 9 FIFO Memory 5-296 54ACT/74ACT725 512 × 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-354 54ACT/74ACT82 10-Bit D Flip-Flop 5-354 54ACT/74ACT82 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-366 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT844 9-Bit Transparent Lat			
SAACT/74ACT541 Octal Buffer/Line Driver 5-238 SAACT/74ACT563 Octal D Latch 5-241 S4ACT/74ACT564 Octal D Flip-Flop 5-246 S4ACT/74ACT573 Octal D Latch 5-260 S4ACT/74ACT574 Octal D Latch 5-260 S4ACT/74ACT574 Octal Transceiver 5-265 S4ACT/74ACT643 Octal Transceiver 5-273 S4ACT/74ACT643 Octal Transceiver 5-273 S4ACT/74ACT643 Octal Transceiver 5-284 S4ACT/74ACT705 DSP ALU 5-284 S4ACT/74ACT725 DSP ALU 5-284 S4ACT/74ACT725 DSP ALU 5-284 S4ACT/74ACT725 DSP ALU 5-284 S4ACT/74ACT725 DSP ALU 5-284 S4ACT/74ACT821 10-Bit D Flip-Flop 5-314 S4ACT/74ACT821 10-Bit D Flip-Flop 5-354 S4ACT/74ACT823 9-Bit D Flip-Flop 5-356 S4ACT/74ACT824 9-Bit D Flip-Flop 5-366 S4ACT/74ACT825 8-Bit D Flip-Flop 5-366 S4ACT	54ACT/74ACT534	Octal D Flip-Flop	5-233
54ACT/74ACT563 Octal D Latch 5-241 54ACT/74ACT564 Octal D Flip-Flop 5-246 54ACT/74ACT573 Octal D Latch 5-260 54ACT/74ACT574 Octal D Latch 5-265 54ACT/74ACT640 Octal Transceiver 5-270 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT643 Octal Transceiver 5-284 54ACT/74ACT705 DSP ALU 5-284 54ACT/74ACT723 64 x 9 FIFO 5-314 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT822 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-356 54ACT/74ACT824 9-Bit D Flip-Flop 5-366 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT824 9-Bit D Flip-Flop 5-366 54ACT/74ACT824 9-Bit D Flip-Flop 5-366 54ACT/74ACT845 8-Bit Transparent Latch 5-37	54ACT/74ACT540	Octal Buffer/Line Driver	5-238
54ACT/74ACT564 Octal D Flip-Flop 5-246 54ACT/74ACT573 Octal D Latch 5-260 54ACT/74ACT574 Octal D Flip-Flop 5-265 54ACT/74ACT640 Octal Transceiver 5-270 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT705 DSP ALU 5-284 54ACT/74ACT708 64 x 9 FIFO 5-284 54ACT/74ACT723 64 x 9 FIFO 5-314 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-356 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT824 9-Bit D Flip-Flop 5-366 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT843 9-Bit Transparent Latch	54ACT/74ACT541	Octal Buffer/Line Driver	5-238
54ACT/74ACT573 Octal D Latch 5-260 54ACT/74ACT574 Octal Transceiver 5-265 54ACT/74ACT640 Octal Transceiver 5-273 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT705 DSP ALU 5-284 54ACT/74ACT705 DSP ALU 5-284 54ACT/74ACT723 64 x 9 FIFO 5-314 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT843 9-Bit Transparent Latch	54ACT/74ACT563	Octal D Latch	5-241
54ACT/74ACT574 Octal D Flip-Flop 5-265 54ACT/74ACT640 Octal Transceiver 5-270 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT705 DSP ALU 5-284 54ACT/74ACT708 64 x 9 FIFO 5-296 54ACT/74ACT723 64 x 9 FIFO 5-314 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT824 9-Bit D Flip-Flop 5-366 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT824 9-Bit D Flip-Flop 5-366 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT844 9-Bit Transparent Latch 5-373 54ACT/74ACT845 9-Bit Transparent Latch	54ACT/74ACT564	Octal D Flip-Flop	5-246
54ACT/74ACT574 Octal D Flip-Flop 5-265 54ACT/74ACT640 Octal Transceiver 5-270 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT705 DSP ALU 5-284 54ACT/74ACT708 64 x 9 FIFO 5-296 54ACT/74ACT723 64 x 9 FIFO 5-314 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-366 54ACT/74ACT844 9-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch	54ACT/74ACT573	Octal D Latch	5-260
54ACT/74ACT640 Octal Transceiver 5-270 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT643 OSP ALU 5-284 54ACT/74ACT705 DSP ALU 5-284 54ACT/74ACT708 64 x 9 FIFO Memory 5-296 54ACT/74ACT723 64 x 9 FIFO 5-314 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT822 10-Bit D Flip-Flop 5-359 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-373 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparen			
54ACT/74ACT643 Octal Transceiver 5-273 54ACT/74ACT705 DSP ALU 5-284 54ACT/74ACT708 64 x 9 FIFO 5-296 54ACT/74ACT708 64 x 9 FIFO 5-314 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT822 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-359 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit T			
54ACT/74ACT708 64 x 9 FIFO Memory 5-296 54ACT/74ACT723 64 x 9 FIFO 5-314 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT822 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-359 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-378 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 </td <td></td> <td></td> <td></td>			
54ACT/74ACT708 64 x 9 FIFO Memory 5-296 54ACT/74ACT723 64 x 9 FIFO 5-314 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT822 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-359 54ACT/74ACT826 8-Bit D Flip-Flop 5-356 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-378 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 </td <td>54ACT/74ACT705</td> <td></td> <td>5-284</td>	54ACT/74ACT705		5-284
54ACT/74ACT723 64 x 9 FIFO 5-314 54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT822 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 <td< td=""><td></td><td></td><td></td></td<>			
54ACT/74ACT725 512 x 9 FIFO 5-330 54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT822 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-366 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-378 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT		•	
54ACT/74ACT818 Diagnostic and Pipeline Register 5-346 54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT822 10-Bit D Flip-Flop 5-354 54ACT/74ACT822 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-378 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385			
54ACT/74ACT821 10-Bit D Flip-Flop 5-354 54ACT/74ACT822 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-366 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-378 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 <tr< td=""><td>54AC1//4AC1/25</td><td>512 X 9 FIFO</td><td>5-330</td></tr<>	54AC1//4AC1/25	512 X 9 FIFO	5-330
54ACT/74ACT822 10-Bit D Flip-Flop 5-354 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-378 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-392			
54ACT/74ACT823 9-Bit D Flip-Flop 5-359 54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-378 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT1010 16 x 16 Multiplier/Accumulator 5-392		• •	
54ACT/74ACT824 9-Bit D Flip-Flop 5-359 54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-373 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-378 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT1010 16 x 16 Multiplier/Accumulator 5-392 54ACT/74ACT1016 16 x 16 Parallel Multiplier 5-402 <td>54ACT/74ACT822</td> <td>10-Bit D Flip-Flop</td> <td>5-354</td>	54ACT/74ACT822	10-Bit D Flip-Flop	5-354
54ACT/74ACT825 8-Bit D Flip-Flop 5-366 54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-373 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT1010 16 x 16 Multiplier/Accumulator 5-392 54ACT/74ACT1016 16 x 16 Parallel Multiplier 5-402	54ACT/74ACT823	9-Bit D Flip-Flop	5-359
54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-373 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT1010 16 x 16 Multiplier/Accumulator 5-392 54ACT/74ACT1016 16 x 16 Parallel Multiplier 5-402	54ACT/74ACT824	9-Bit D Flip-Flop	5-359
54ACT/74ACT826 8-Bit D Flip-Flop 5-366 54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-373 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT1010 16 x 16 Multiplier/Accumulator 5-392 54ACT/74ACT1016 16 x 16 Parallel Multiplier 5-402	54ACT/74ACT825	8-Bit D Flip-Flop	5-366
54ACT/74ACT841 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-373 54ACT/74ACT842 10-Bit Transparent Latch 5-373 54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT1010 16 x 16 Multiplier/Accumulator 5-392 54ACT/74ACT1016 16 x 16 Parallel Multiplier 5-402	54ACT/74ACT826		5-366
54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT1010 16 x 16 Multiplier/Accumulator 5-392 54ACT/74ACT1016 16 x 16 Parallel Multiplier 5-402		• •	
54ACT/74ACT843 9-Bit Transparent Latch 5-378 54ACT/74ACT844 9-Bit Transparent Latch 5-378 54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT1010 16 x 16 Multiplier/Accumulator 5-392 54ACT/74ACT1016 16 x 16 Parallel Multiplier 5-402	54ACT/74ACT842	10-Bit Transparent Latch	5-373
54ACT/74ACT8449-Bit Transparent Latch5-37854ACT/74ACT8458-Bit Transparent Latch5-38554ACT/74ACT8468-Bit Transparent Latch5-38554ACT/74ACT101016 x 16 Multiplier/Accumulator5-39254ACT/74ACT101616 x 16 Parallel Multiplier5-402			
54ACT/74ACT845 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT1010 16 x 16 Multiplier/Accumulator 5-392 54ACT/74ACT1016 16 x 16 Parallel Multiplier 5-402			
54ACT/74ACT846 8-Bit Transparent Latch 5-385 54ACT/74ACT1010 16 x 16 Multiplier/Accumulator 5-392 54ACT/74ACT1016 16 x 16 Parallel Multiplier 5-402			
54ACT/74ACT1010 16 x 16 Multiplier/Accumulator 5-392 54ACT/74ACT1016 16 x 16 Parallel Multiplier 5-402	54AU1//4AU1040	o-Dit mansparent Laton	0-300
54ACT/74ACT1016 16 x 16 Parallel Multiplier 5-402			
54ACT/74ACT1017 16 x 16 Parallel Multiplier with Common Clock 5-413			
	54ACT/74ACT1017	16 x 16 Parallel Multiplier with Common Clock	5-413

Selection Guide

Gates

Function	Device	Page No.	
NAND			
Quad 2-Input	54AC/74AC00	5-3	
Quad 2-Input	54ACT/74ACT00	5-3	
Triple 3-Input	54AC/74AC10	5-11	
Dual 4-Input	54AC/74AC20	5-18	
AND			
Quad 2-Input	54AC/74AC08	5-9	
Quad 2-Input	54ACT/74ACT08	5-9	
Triple 3-Input	54AC/74AC11	5-13	
OR/NOR/Exclusive-OR			
Quad 2-Input OR	54AC/74AC32	5-20	
Quad 2-Input OR	54ACT/74ACT32	5-20	
Quad 2-Input NOR	54AC/74AC02	5-5	
Quad 2-Input Exclusive-OR	54AC/74AC86	5-27	
Invert			
Hex Inverter	54AC/74AC04	5-7	
Hex Inverter	54ACT/74ACT04	5-7	
Hex Schmitt Trigger Inverter	54AC/74AC14	5-15	
Hex Schmitt Trigger Inverter	54ACT/74ACT14	5-15	

Registers

Function	Device	Clock Inputs	Page No.
Quad 2-Port Register	54AC/74AC398	1(Г)	5-190
Quad 2-Port Register	54ACT/74ACT398	1(J)	5-190
Quad 2-Port Register	54AC/74AC399	1(J)	5-190
Quad 2-Port Register	54ACT/74ACT399	1(J)	5-190
Diagnostic and Pipeline Register	54AC/74AC818	2	5-346
Diagnostic and Pipeline Register	54ACT/74ACT818	2	5-346

Flip-Flops

Function	Device	3-State Outputs	Master Reset	Page No. 5-22	
Dual D	54AC/74AC74	No	Yes		
Dual D	54ACT/74ACT74	No	Yes	5-22	
Dual JK	54AC/74AC109	No	Yes	5-29	
Dual JK	54ACT/74ACT109	No	Yes	5-29	
Quad D	54AC/74AC175	No	Yes	5-89	
Quad D	54ACT/74ACT175	No	Yes	5-89	
Quad D	54AC/74AC379	No	No	5-185	
Quad D	54ACT/74ACT379	No	No	5-185	
Hex D	54AC/74AC174	No	Yes	5-85	
Hex D	54ACT/74ACT174	No	Yes	5-85	
Hex D	54AC/74AC378	No	No	5-180	
Hex D	54ACT/74ACT378	No	No	5-180	
Octal D	54AC/74AC273	No	Yes	5-137	
Octal D	54ACT/74ACT273	No	Yes	5-137	
Octal D	54AC/74AC374	Yes	No	5-170	
Octal D	54ACT/74ACT374	Yes	No	5-170	
Octal D	54AC/74AC377	No	No	5-175	
Octal D	54ACT/74ACT377	No	No	5-175	
Octal D	54AC/74AC534	Yes	No	5-233	
Octal D	54ACT/74ACT534	Yes	No	5-233	
Octal D	54AC/74AC564	Yes	No	5-246	
Octal D	54ACT/74ACT564	Yes	No	5-246	
Octal D	54AC/74AC574	Yes	No	5-265	
Octal D	54ACT/74ACT574	Yes	No	5-265	
Octal D	54AC/74AC825	Yes	Yes	5-366	
Octal D	54ACT/74ACT825	Yes	Yes	5-366	
Octal D	54AC/74AC826	Yes	Yes	5-366	
Octal D	54ACT/74ACT826	Yes	Yes	5-366	
9-Bit D	54AC/74AC823	Yes	Yes	5-359	
-Bit D	54ACT/74ACT823	Yes	Yes	5-359	
-Bit D	54AC/74AC824	Yes	Yes	5-359	
-Bit D	54ACT/74ACT824	Yes	Yes	5-359	
10-Bit D	54AC/74AC821	Yes	Yes	5-354	
10-Bit D	54ACT/74ACT821	Yes	Yes	5-354	
10-Bit D	54AC/74AC822	Yes	Yes	5-354	
10-Bit D	54ACT/74ACT822	Yes	Yes	5-354	

Latches

Function	Device	3-State Outputs	Broadside Pinout	Page No.	
Octal	54AC/74AC373	Yes	No	5-165	
Octal	54ACT/74ACT373	Yes	No	5-165	
Octal D	54AC/74AC563	Yes	Yes	5-241	
Octal D	54ACT/74ACT563	Yes	Yes	5-241	
Octal D	54AC/74AC573	Yes	Yes	5-260	
Octal D	54ACT/74ACT573	Yes	Yes	5-260	
Octal Transparent	54AC/74AC533	Yes	No	5-228	
Octal Transparent	54ACT/74ACT533	Yes	No	5-228	
Octal Transparent	54AC/74AC845	Yes	Yes	5-385	
Octal Transparent	54ACT/74ACT845	Yes	Yes	5-385	
Octal Transparent	54AC/74AC846	Yes	Yes	5-385	
Octal Transparent	54ACT/74ACT846	Yes	Yes	5-385	
9-Bit Transparent	54AC/74AC843	Yes	Yes	5-378	
9-Bit Transparent	54ACT/74ACT843	Yes	Yes	5-378	
9-Bit Transparent	54AC/74AC844	Yes	Yes	5-378	
9-Bit Transparent	54ACT/74ACT844	Yes	Yes	5-378	
10-Bit Transparent	54AC/74AC841	Yes	Yes	5-373	
10-Bit Transparent	54ACT/74ACT841	Yes	Yes	5-373	
10-Bit Transparent	54AC/74AC842	Yes	Yes	5-373	
10-Bit Transparent	54ACT/74ACT842	Yes	Yes	5-373	

Counters

Function	Device	Parallel Entry	Reset	U/D	3-State Outputs	Page No.	
BCD Decade	54AC/74AC160	S	Α	No	No	5-59	
BCD Decade	54ACT/74ACT160	S	Α	No	No	5-59	
BCD Decade	54AC/74AC162	S	S	No	No	5-59	
BCD Decade	54ACT/74ACT162	S	S	No	No	5-59	
4-Bit Decade	54AC/74AC190	A		Yes	No	5-94	
4-Bit Decade	54AC/74AC192	A	Α	Yes	No	5-102	
4-Bit Decade	54AC/74AC568	S	S/A	Yes	Yes	5-251	
4-Bit Binary	54AC/74AC161	S	Α	No	No	5-66	
4-Bit Binary	54ACT/74ACT161	S	Α	No	No	5-66	
4-Bit Binary	54AC/74AC163	s	S	No	No	5-66	
4-Bit Binary	54ACT/74ACT163	s	S	No	No	5-66	
4-Bit Binary	54AC/74AC168	S		Yes	No	5-77	
4-Bit Binary	54AC/74AC169	S		Yes	No	5-77	
4-Bit Binary	54AC/74AC191	A		Yes	No	5-94	
4-Bit Binary	54AC/74AC193	A	Α	Yes	No	5-102	
4-Bit Binary	54AC/74AC569	s	S/A	No	Yes	5-251	

1-9

S = Synchronous

A = Asynchronous

Buffers/Line Drivers

Function	Device	Enable Inputs (Level)	Inverting/ Non-Inverting	Broadside Pinout	Page No.
Octal	54AC/74AC240	2(L)	1	No	5-109
Octal	54ACT/74ACT240	2(L)		No	5-109
Octal	54AC/74AC241	1(H) & 1(L)	N	No	5-112
Octal	54ACT/74ACT241	1(H) & 1(L)	N	No	5-112
Octal	54AC/74AC244	2(L)	N	No	5-115
Octal	54ACT/74ACT244	2(L)	N	No	5-115
Octal	54AC/74AC540	2(L)	1	Yes	5-238
Octal	54ACT/74ACT540	2(L)	1	Yes	5-238
Octal	54AC/74AC541	1(H) & 1(L)	N	Yes	5-238
Octal	54ACT/74ACT541	1(H) & 1(L)	N	Yes	5-238

L = LOW H = HIGH

FIFOs

Function	Device	Input	Output	Output 3-State Outputs	
64 x 9 FIFO Memory	54AC/74AC708	Parallel	Parallel	Yes	5-296
64 x 9 FIFO Memory	54ACT/74ACT708	Parallel	Parallel	Yes	5-296
64 x 9 FIFO	54AC/74AC723	Parallel	Parallel	Yes	5-314
64 x 9 FIFO	54ACT/74ACT723	Parallel	Parallel	Yes	5-314
512 x 9 FIFO	54AC/74AC725	Parallel	Parallel	Yes	5-330
512 x 9 FIFO	54ACT/74ACT725	Parallel	Parallel	Yes	5-330

Decoders/Demultiplexers

Function	Device	LOW Enable	Active- HIGH Enable	Active- LOW Outputs	Active- Address Inputs	Page No.
1-of-8	54AC/74AC138	2	1	8	3	5-34
1-of-8	54ACT/74ACT138	2	1	8	3	5-34
Dual 1-of-4	54AC/74AC139	1&1	No	4 & 4	2 & 2	5-39
Dual 1-of-4	54ACT/74ACT139	1&1	No	4 & 4	2 & 2	5-39

Arithmetic Functions

Function	Device	Features	Page No.
16 x 16 Multiplier/Accumulator	54AC/74AC1010	2s Complement & Unsigned Arithmetic	5-392
16 x 16 Multiplier/Accumulator	54ACT/74ACT1010	2s Complement & Unsigned Arithmetic	5-392
16 x 16 Multiplier	54AC/74AC1016	2s Complement & Unsigned Arithmetic	5-402
16 x 16 Multiplier	54ACT/74ACT1016	2s Complement & Unsigned Arithmetic	5-402
16 x 16 Multiplier	54AC/74AC1017	Common Clock	5-413
16 x 16 Multiplier	54ACT/74ACT1017	Common Clock	5-413
Arithmetic Logic Unit for DSP	54AC/74AC705	16-Bit ALU and 8 x 8 Parallel Multiplier/ Accumulator	5-284
Arithmetic Logic Unit for DSP	54ACT/74ACT705	16-Bit ALU and 8 x 8 Parallel Multiplier/ Accumulator	5-284

Shift Registers

Function	Device	No. of Bits	Reset	Serial Inputs	3-State Outputs	Page No.
Octal Shift/Storage	54AC/74AC299	8	A	2	Yes	5-142
Octal Shift/Storage	54ACT/74ACT299	8	A	2	Yes	5-142
Octal Shift/Storage	54AC/74AC323	8	S	2	Yes	5-149
Octal Shift/Storage	54ACT/74ACT323	8	S	2	Yes	5-149

A = Asynchronous S = Synchronous

Multiplexers

Function	Device	Enable Inputs (Level)	True Output	Complement Output	Page No.
8-Input	54AC/74AC151	1(L)	Yes	Yes	5-43
8-Input	54ACT/74ACT151	1(L)	Yes	Yes	5-43
8-Input	54AC/74AC251	1(L)	Yes	Yes	5-121
8-Input	54ACT/74ACT251	1(L)	Yes	Yes	5-121
Dual 4-Input	54AC/74AC153	2(L)	Yes	No	5-47
Dual 4-Input	54ACT/74ACT153	2(L)	Yes	No	5-47
Dual 4-Input	54AC/74AC253	2(L)	Yes	No	5-125
Dual 4-Input	54ACT/74ACT253	2(L)	Yes	No	5-125
Dual 4-Input	54AC/74AC352	2(L)	No	Yes	5-156
Dual 4-Input	54ACT/74ACT352	2(L)	No	Yes	5-156
Dual 4-Input	54AC/74AC353	2(L)	No	Yes	5-161
Dual 4-Input	54ACT/74ACT353	2(L)	No	Yes	5-161
Quad 2-Input	54AC/74AC157	1(L)	Yes	No	5-51
Quad 2-Input	54ACT/74ACT157	1(L)	Yes	No	5-51
Quad 2-Input	54AC/74AC158	1(L)	No	Yes	5-55
Quad 2-Input	54ACT/74ACT158	1(L)	No	Yes	5-55
Quad 2-Input	54AC/74AC257	1(L)	Yes	No	5-129
Quad 2-Input	54ACT/74ACT257	1(L)	Yes	No	5-129
Quad 2-Input	54AC/74AC258	1(L)	No	Yes	5-133
Quad 2-Input	54ACT/74ACT258	1(L)	No	Yes	5-133

Comparators

Function	Device	Features	Page No.
Octal Identity Comparator	54AC/74AC520	Expandable	5-223
Octal Identity Comparator	54ACT/74ACT520	Expandable	5-223
Octal Identity Comparator	54AC/74AC521	Expandable	5-223
Octal Identity Comparator	54ACT/74ACT521	Expandable	5-223

1

Transceivers/Registered Transceivers

Function	Device	Registered	Enable Inputs (Level)	3-State Output	Page No.
Octal Bidirectional Transceiver	54AC/74AC245	No	1(L)	Yes	5-118
Octal Bidirectional Transceiver	54ACT/74ACT245	No	1(L)	Yes	5-118
Octal Bus Transceiver & Register	54AC/74AC646	Yes	1(L) & 1(H)	Yes	5-276
Octal Bus Transceiver & Register	54AC/74AC648	Yes	1(L) & 1(H)	Yes	5-280
Octal Bidirectional Transceiver	54AC/74AC640	No	1(L)	Yes	5-270
Octal Bidirectional Transceiver	54ACT/74ACT640	No	1(L)	Yes	5-270
Octal Bidirectional Transceiver	54AC/74AC643	No	1(L)	Yes	5-273
Octal Bidirectional Transceiver	54ACT/74ACT643	No	1(L)	Yes	5-273

			Typical Internal		pical r Delay¹			
Product	Gate Equiv.	l/O Levels	Gate Delay (ns)	Input (ns)	Output (ns)	Power (W)	Max I/O	Packaging ²
FGC0500	540	TTL/CMOS	1.1	2.1	2.3	*	40	20, 24, 28, 40 PDIP 20, 24, 28, 40 CDIP 44 PLCC 44 CLCC
FGC1200	1188	TTL/CMOS	1.1	2.0	3.8	*	73	24, 28, 40, 48 PDIP 24, 28, 40, 48 CDIP 44, 68 PLCC 44, 68, 84 CLCC 68, 84 PPGA 68, 84 CPGA
FGC2400	2625	TTL/CMOS	1.1	2.0	3.8	*	105	24, 28, 40, 48, 64 PDIP 24, 28, 40, 48, 64 CDIP 44, 68, 84 PLCC 44, 68, 84 CLCC 68, 84, 120 PPGA 68, 84, 120 CPGA
FGC4000	3960	TTL/CMOS	1.1	2.0	3.8	*	133	40, 48 PDIP 40, 48 CDIP 44, 68, 84 PLCC 44, 68, 84 CLCC 68, 84, 120, 144 PPGA 68, 84, 120, 144 CPGA 132 CFPAK
FGC6000	6000	TTL/CMOS	1.1	2.0	3.8	*	158	68, 84 PLCC 68, 84 CLCC 84, 120, 144 PPGA 84, 120, 144, 180 CPGA 132 CFPAK
FGC8000	7896	TTL/CMOS	1.1	2.0	3.8	*	181	84 PLCC 84 CLCC 144 PPGA 144, 180, 209 CPGA

FGC Series—Sub 2μ Silicon Gate CMOS

¹FGC series input buffer delays for CMOS input with fanout = 2 and statistical wirelength. FGC series output buffer delay for CL = 15 pF.

²PDIP = Plastic Dual In-Line, CDIP = Ceramic Dual In-Line Side Brazed, PLCC = Plastic Leaded Chip Carrier (J-Bend Leads), CLCC = Ceramic Leaded Chip Carrier (J-Bend Leads), CPGA = Ceramic Pin Grid Array, PPGA = Plastic Pin Grid Array, CFPAK = Ceramic Flatpak. Consult local sales office for package availability.

*Power dissipation for CMOS arrays is design/array dependent with worst case ranging from 0.25-1.0 W.

Product Index and Selection Guide	1
FACT Descriptions and Family Characteristics	2
	
Ratings, Specifications and Waveforms	3
Design Considerations	4
Data Sheets	5
Package Outlines and Ordering Information	6
FGC Series Advanced 2-Micron CMOS Gate Array	7
FAIRCAD [™] Semicustom Design System	8
CMOS Arrays Packaging Guide	9
Field Sales Offices and Distributor Locations	10

FAIRCHILD

FACT Descriptions and Family Characteristics

Fairchild Advanced CMOS Technology — FACT — Logic

Fairchild Digital introduced FACT (Fairchild Advanced CMOS Technology) logic, a family of highspeed advanced CMOS circuits, in 1985.

FACT logic offers a unique combination of high speed, low power dissipation, high noise immunity, wide fanout capability, extended power supply range and high reliability.

This data book describes the product line with device specifications as well as material discussing design considerations and comparing the FACT family to predecessor technologies.

The 1.3-micron silicon gate CMOS process utilized in this family has been proven in the field of high performance gate arrays, Fairchild's 32-Bit Microprocessor, CLIPPER, and FACT. It has been further enhanced to meet and exceed the JEDEC standards for 74ACXX logic.

For direct replacement of LS, ALS and other TTL devices, the 'ACT circuits with TTL-type input thresholds are included in the FACT family. These include the more popular bus drivers/transceivers as well as many other 54ACT/74ACTXXX devices.

Characteristics

- Full Logic Product Line
- Industry Standard Functions and Pinouts for SSI, MSI and LSI
- Meets or Exceeds JEDEC Standards for 74ACXX
 Family
- TTL Inputs on Selected Circuits
- High Performance Outputs Common Output Structure for Standard and Buffer Drivers Output Sink/Source Current of 24 mA Transmission Line Driving 50 ohm (Commercial)/75 ohm (Military) Guaranteed
- Operation from 2 6 Volts Guaranteed
- Temperature Range -40°C to +85°C (Commercial), -55°C to +125°C (Military)

- Improved ESD Protection Network
- High Current Latch-Up Immunity

Interfacing

FACT devices have a wide operating voltage range (Vcc = 2 to 6 VDC) and sufficient current drive to interface with most other logic families available today.

Device designators are as follows:

- 'AC This is a high-speed CMOS device with CMOS input switching levels and buffered CMOS outputs that can drive ± 24 mA of IOH and IOL current. Industry standard 'AC nomenclature and pinouts are used.
- 'ACT This is a high-speed CMOS device with a TTL-to-CMOS input buffer stage. These device inputs are designed to interface with TTL outputs operating with a Vcc = $5 V \pm 0.5 V$ with VoH = 2.4 V and VoL = 0.4 V, but are functional over the entire FACT operating voltage range of 2.0 to 5.5 VDC. These devices have buffered outputs that will drive CMOS or TTL devices with no additional interface circuitry. 'ACT devices have the same output structures as 'AC devices.

Low Power CMOS Operation

If there is one single characteristic that justifies the existence of CMOS, it is low power dissipation. In the quiescent state, FACT draws three orders of magnitude less power than the equivalent LS or ALS TTL device. This enhances system reliability; because costly regulated high current power supplies, heat sinks and fans are eliminated, FACT logic devices are ideal for portable systems such as laptop computers and backpack communications systems. Operating power is also very low for FACT logic. Power consumption of various technologies with a clock frequency of 1 MHz is shown below.

FACT	=	0.1 mW/Gate
ALS	=	1.2 mW/Gate
LS	=	2.0 mW/Gate
HC	=	0.1 mW/Gate

Figure 2-1: Icc vs Vcc

Figure 2-1 illustrates the effects of Icc versus power supply voltage (Vcc) for two load capacitance values: 50 pF and stray capacitance. The clock frequency was 1 MHz for the measurements.

AC Performance

In comparison to LS, ALS and HC families, FACT devices have faster internal gate delays as well as the basic gate delays. Additionally, as the level of integration increases, FACT logic leads the way to very high-speed systems.

The example below describes typical values for a 74XX138, 3-to-8 line decoder.

FACT	= 6.0 ns @ C∟ = 50 pF
ALS	= 12.0 ns @ C∟ = 50 pF
LS	= 22.0 ns @ C∟ = 15 pF
HC	= 17.5 ns @ CL = 50 pF

AC performance specifications are guaranteed at $5.0 \text{ V} \pm 0.5 \text{ V}$ and $3.3 \text{ V} \pm 0.3 \text{ V}$. For worst case design at 2.0 V Vcc on all device types, the formula below can be used to determine AC performance.

AC performance at 2.0 V Vcc = $1.9 \times AC$ specification at 3.3 V.

Multiple Output Switching

Propagation delay is affected by the number of outputs switching simultaneously. Typically, devices with more than one output will follow the rule: for each output switching, derate the databook specification by 250 ps. This effect typically is not significant on an octal device unless more than four outputs are switching simultaneously. This derating is valid for the entire temperature range and $5.0 V \pm 10\%$ Vcc.

Noise Immunity

The noise immunity of a logic family is also an important equipment cost factor in terms of decoupling components, power supply dynamic resistance and regulation as well as layout rules for PC boards and signal cables.

The comparisons shown describe the difference between the input threshold of a device and the output voltage, $|V_{IL} - V_{OL}| / |V_{IH} - V_{OH}|$ at 4.5 V Vcc.

FACT	= 1.25/1.25 V
ALS	= 0.4/0.7 V
LS	= 0.3/0.7 V @ 4.75 V Vcc
нс	= 0.8/1.25 V

Output Characteristics

All FACT outputs are buffered to ensure consistent output voltage and current specifications across the family. Both 'AC and 'ACT device types have the same output structures. Two clamp diodes are internally connected to the output pin to suppress voltage overshoot and undershoot in noisy system applications which can result from impedance mismatching. The balanced output design allows for controlled edge rates and equal rise and fall times.

All devices ('AC or 'ACT) are guaranteed to source and sink 24 mA. Commercial devices, 74AC/ACTXXX, are capable of driving 50 ohm transmission lines, while military grade devices, 54AC/ACTXXX, can drive 75 ohm transmission lines.

IOL/IOH Characteristics

FACT	= 24/-24 mA
ALS	= 24/–15 mA
LS	= 8/-0.4 mA @ 4.75 V Vcc
нс	= 4/-4 mA

Dynamic Output Drive

Traditionally, in order to predict what incident wave voltages would occur in a system, the designer was required to do an output analysis using a Bergeron diagram. Not only is this a long and time consuming operation, but the designer needed to depend upon the accuracy and reliability of the manufacturer-supplied 'typical' output I/V curve. Additionally, there was no way to guarantee that any supplied device would meet these 'typical' performance values across the operating voltage and temperature limits. Fortunately for the system designers, Fairchild has taken the necessary steps to guarantee incident wave switching on transmission lines with impedances as low as 50 ohms for the commercial temperature range and 75 ohms for the military temperature range.

Figure 2-2 shows a Bergeron diagram for switching both HIGH-to-LOW and LOW-to-HIGH. On the right side of the graph (lout > 0), are the VOH and IIH curves for FACT logic while on the left side (lout < 0), are the curves for VOL and IIL. Although we will only discuss here the LOW-to-HIGH transition, the information presented may be applied to a HIGH-to-LOW transition.

Figure 2-2: Gate Driving 50 Ohm Line Reflection Diagram

Begin analysis at the VoL (quiescent) point. This is the intersection of the Vol/IoL curve for the output and the VIN/IIN curve for the input. For CMOS inputs and outputs, this point will be approximately 100 mV. Then draw a 50 ohm load line from this intersection to the VoH/IoH curve as shown by Line 1. This intersection is the voltage that the incident wave will have. Here it occurs at approximately 3.95 V. Then draw a line with a slope of -50 ohms from this first intersection point to the VIN/IIN curve as shown by Line 2. This second intersection will be the first reflection back from the input gate. Continue this process of drawing the load lines from each intersection to the next. Lines terminating on the VoH/IOH curve should have positive slopes while lines terminating on the VIN/IIN curve should have negative slopes.

Each intersection point predicts the voltage of each reflected wave on the transmission line. Intersection points on the VoH/IOH curve will be waves travelling from the driver to the receiver while intersection points on the VIN/INN curve will be waves travelling from the receiver to the driver.

Figures 2-3a and 2-3b show the resultant waveforms. Each division on the time scale represents the propagation delay of the transmission line.

Figure 2-3a: Resultant Waveforms Driving 50 Ohm Line — Theoretical

Figure 2-3a: Resultant Waveforms Driving 50 Ohm Line — Actual

Figure 2-3b: Resultant Waveforms Driving 50 Ohm Line — Theoretical

While this exercise can be done for FACT, it is no longer necessary. FACT is guaranteed to drive an incident wave of enough voltage to switch another FACT input.

We can calculate what current is required by looking at the Bergeron diagram. The quiescent voltage on the line will be within 100 mV of either rail. We know what voltage is required to guarantee a valid voltage at the receiver. This is either 70% or 30% of Vcc. The formula for calculating the current and voltage required is | (Voq - VI)/Zo | at VI. For Voq = 100 mV, VIH = 3.85 V, Vcc = 5.5 V and Zo = 50 ohms, the required IOH at 3.85 V is 75 mA. For the HIGH-to-LOW transition, Voq = 5.4 V, VIL = 1.35 V and Zo = 50 ohms, IoL is 75 mA at 1.65 V. FACT's I/O specifications include these limits. For transmission lines with impedances greater than 50 ohms, the current requirements are less and switching is still guaranteed. It is important to note that the typical 24 mA drive specification is not adequate to guarantee incident wave switching. The only way to guarantee this is to guarantee the current required to switch a transmission line from the output quiescent point to the valid VIN level.

The following performance charts are provided in order to aid the designer in determining dynamic output current drive of FACT devices with various power supply voltages.

Figure 2-4: Output Characteristics Voh/loh, 'AC00

Figure 2-5: Output Characteristics VoL/IoL, 'AC00

Figure 2-6: Input Characteristics VIN/IIN

Choice of Voltage Specifications

To obtain better performance and higher density, semiconductor technologies are reducing the vertical and horizontal dimensions of integrated device structures. Due to a number of electrical limitations in the manufacture of VLSI devices and the need for low voltage operation in memory cards, it was decided by the JEDEC committee to establish interface standards for devices operating at 3.3 V \pm 0.3 V. To this end, Fairchild Digital guarantees all of its devices operational at 3.3 V \pm 0.3 V. Note also that AC and DC specifications are guaranteed between 3.0 and 5.5 V. Operation of FACT logic is also guaranteed from 2.0 to 6.0 V on Vcc.

Operating Voltage Ranges

= 2.0 to 6.0 V
$= 5.0 V \pm 10\%$
$= 5.0 V \pm 5\%$
= 2.0 to 6.0 V

FACT Replaces LS, ALS, HCMOS

Fairchild's Advanced CMOS family is specifically designed to outperform the LS, ALS and HCMOS families. Figure 2-7 shows the relative position of various logic families in speed/power performance. FACT exhibits 1 ns internal propagation delays while consuming 1 μ W of power.

The Logic Family Comparisons table below summarizes the key performance specifications for various competitive technology logic families.

Figure 2-8: Logic Family Comparisons General Characteristics (All Max Ratings)

					FACT		I
Characteristics	Symbol	LS	ALS	HCMOS	'AC	'ACT	Uni
Operating Voltage Range	VCC/EE/DD	5±5%	5±10%	2.0 to 6.0	2.0 to 6.0	2.0 to 6.0	v
Operating Temperature Range	TA 74 Series TA 54 Series	0 to +70 -55 to +125	0 to +70 -55 to +125	-40 to +85 -55 to +125	-40 to +85 -55 to +125	-40 to +85 -55 to +125	°C
Input Voltage (limits)	Vıн (min)	2.0	2.0	3.15	3.15	2.0	v
input voltage (initits)	Vı∟ (max)	0.8	0.8	0.9	1.35	0.8	v
Output Voltage (limits)	Voн (min)	2.7	2.7	Vcc-0.1	Vcc-0.1	Vcc-0.1	v
	Vo∟ (max)	0.5	0.5	0.1	0.1	0.1	v
Input Current	Ін	20	20	+ 1.0	+ 1.0	+ 1.0	μA
	hι	-400	-200	-1.0	-1.0	-1.0	μA
Output Current at Vo (limit)	Іон	-0.4	-0.4	-4.0@Vcc-0.8	-24@Vcc-0.8	-24@Vcc-0.8	m/
	lol	8.0	8.0	4.0 @0.4 V	24 @0.4 V	24 @ 0.4 V	m/
DC Noise Margin LOW/HIGH	DCM	0.3/0.7	0.4/0.7	0.8/1.25	1.25/1.25	0.7/2.4	v

Note: All DC parameters are specified over the commercial temperature range.

Figure 2-8: Logic Family Comparisons, cont'd.

Speed/Power Characteristics (All Typical Ratings)

Characteristics	Symbol	LS	ALS	HCMOS	FACT	Unit
Quiescent Supply Current/Gate	lg	0.4	0.2	0.0005	0.0005	mA
Power/Gate (Quiescent)	PG	2.0	1.2	0.0025	0.0025	mW
Propagation Delay	tP	7.0	5.0	8.0	5.0	ns
Speed Power Product	_	14	6.0	0.02	0.01	pJ
Clock Frequency D/FF	fmax	33	50	50	160	MHz

Propagation Delay (Commercial Temperature Range)

	Product		LS	ALS	HCMOS	FACT	Unit
тргн/тьнг	74XX00	Тур	10.0	5.0	8.0	5.0	ns
		Мах	15.0	11.0	23.0	8.5	ns
tplH/tpHL (Clock to Q)	74XX74	Тур	25.0	12.0	23.0	8.0	ns
		Мах	40.0	18.0	44.0	10.5	ns
tPLH/tPHL (Clock to Q)	74XX163	Тур	18.0	10.0	20.0	5.0	ns
		Max	27.0	17.0	52.0	10.0	ns

Conditions: (LS) Vcc = 5.0 V, CL = 15 pF, 25 °C;

(ALS/HC/FACT) Vcc = 5.0 V \pm 10%, CL = 50 pF, Typ values at 25°C, Max values at 0 to 70°C for ALS, -40 to + 85°C for HC/FACT.

Circuit Characteristics

Power Dissipation

One advantage to using CMOS logic is its extremely low power consumption. During quiescent conditions, FACT will consume several orders of magnitude less current than its bipolar counterparts. But DC power consumption is not the whole picture. Any circuit will have AC power consumption, whether it is built with CMOS or bipolar technologies.

Power consumption of a circuit can be calculated using the formula:

 $\label{eq:pd} \begin{array}{l} \mathsf{PD} \ = \ [(\mathsf{CL} \ + \ \mathsf{CPD}) \bullet \mathsf{Vcc} \bullet \mathsf{Vs} \bullet f] \ + \ [\mathsf{Iq} \bullet \mathsf{Vcc}] \\ \\ \text{where} \end{array}$

- PD = power dissipation
- CL = load capacitance
- CPD = device power capacitance
- Vcc = power supply
- Vs = output voltage swing
- f = frequency of operation
- lo = quiescent current

Power consumption for FACT is dependent on the supply voltage, frequency of operation, internal capacitance and load. Vs will be Vcc and lo can be considered negligible for CMOS. Therefore, the simplified formula for CMOS is:

 $PD = (CL + CPD) VCC^2 f$

Figure 2-9: Power Demonstration Circuit Schematic

CPD values for CMOS devices are calculated by measuring the power consumption of a device at two different frequencies. CPD is calculated in the following manner:

- 1. The power supply voltage is set to Vcc = 5.5 VDC.
- Signal inputs are set up so that as many outputs as possible are switching, giving a worst-case situation per JEDEC CPD conditions (see Section 3).
- 3. The power supply current is measured and recorded at input frequencies of 200 kHz and 1 MHz.
- 4. The power dissipation capacitance is calculated by solving the two simultaneous equations

$$P_1 = (CPD \bullet VCC^2 \bullet f_1) + (ICC \bullet VCC)$$

$$P_2 = (CPD \bullet VCC^2 \bullet f_2) + (ICC \bullet VCC)$$
giving
$$CPD = (P_1 - P_2)/VCC^2(f_1 - f_2)$$
or
$$CPD = (I_1 - I_2)/VCC(f_1 - f_2)$$
where
$$I_1 = supply current at f_1 = 200 \text{ kHz.}$$

$$I_2 = supply current at f_2 = 1 \text{ MHz.}$$

On FACT device data sheets, CPD is a typical value and is given either for the package or for the individual device (i.e., gates, flip-flops, etc.) within the package.

The circuit shown in Figure 2-9 was used to compare the power consumption of FACT versus ALS devices.

Two identical circuits were built on the same board and driven from the same input. In the circuit, the input signal was driven into four D-type flip-flops which act as divide-by-2 frequency dividers. The outputs from the flip-flops were connected to the inputs of a '138 decoder. This generated eight nonoverlapping clock pulses on the outputs of the '138, which were then connected to an '04 inverter. The input frequency was then varied and the power consumption was measured. Figure 2-10 illustrates the results of these measurements.

Figure 2-10: FACT vs. ALS Circuit Power

Below 40 MHz, the FACT circuit dissipates much less power than the ALS version. It is interesting to note that when the frequency went to zero, the FACT circuit's power consumption also went to zero; the ALS circuit continued to dissipate almost 100 mW. Another advantage of FACT is its capabilities above 40 MHz. At this frequency, the first 74ALS74 D-type flip-flop ceased to operate. Once this occurred, the entire circuit stopped working and the power consumption fell to its quiescent value. The FACT device, however, continued functioning beyond the limit of the frequency generator, which was 100 MHz. This graph shows two advantages of FACT circuits (power and speed). FACT logic delivers increased performance in addition to offering the power savings of CMOS.

Refer to Section 3 for test philosophies regarding power dissipation.

Specification Derivation

At first glance, the specifications for FACT logic might appear to be widely spread, possibly indicating wide design margins are required. However, several effects are reflected in each specification.

Figures 2-11a through 2-11e illustrate how the data from the characterization of actual devices is transformed into the specifications that appear on the data sheet. This data is taken from the 'AC245.

Figure 2-11a shows the data taken (from one part) on a typical, single path, tPHL from An to Bn, over temperature at 5.0 V; there is negligible variation in the value of tPHL. The next graph, Figure 2-11b, depicts data taken on the same device; this set of curves represents the data on all paths A to B and B to A. The data on this plot indicates only a small variation for tPHL.

The graphs in Figures 2-11a and 2-11b include data at 5.0 V; Figure 2-11c shows the variation of delay times over the standard 5.0 ± 0.5 V voltage range. Note there is only a $\pm 6\%$ variation in delay time due to voltage effects.

Now refer to Figure 2-11d which illustrates the process effects on delay time. This graph indicates that the process effects contribute to the spread in specifications more than any other factor in that the effects of the theoretical process spread can increase or decrease specification times by 30%. Because this 30% spread represents considerably more than \pm 3 standard deviations, this guarantees an increase in the manufacturability and the quality level of FACT product. To further ensure parts within specification, tester guardbands are incorporated.

With voltage and process effects added (Figure 2-11e), the full range of the specification can be seen. For reference, the data sheet values are shown on the graph.

This linear behavior with temperature and voltage is typical of CMOS. Although the graphs are drawn for a specific device, other part types have very similar graphical representations. Therefore, for performance-critical applications, where not all variables need to be taken into account at once, the user can narrow the specifications. For example, all parts in a critically timed subcircuit are together on a board, so it may be assumed the devices are at the same supply and temperature.

Figure 2-11b: tPHL, A to B, All Paths

Figure 2-11c: Voltage Effects on Delay Times

Figure 2-11d: FACT Process Effects on Delay Times

Figure 2-11e: tPHL, A to B, with Voltage and Process Variation

The same reasoning can be applied to setup and hold times. Consider the 'AC74. The setup time is 3.0 ns while the hold time is 0 ns. Theoretically, if these numbers were violated, the device would malfunction; however, in actuality, the device probably will not malfunction. Looking at the typical setup and hold times gives a better understanding of the device operation.

At 25 °C and 5.0 V, the setup time is 1.5 ns while the hold time is -1.5 ns. They are the same; a positive setup time means the control signal to be valid before the clock edge, a positive hold time indicates the control signal will be held valid after the clock edge for the specified time, and a negative hold time means the control signal can transition before the clock edge. FACT devices were designed to be as immune to metastability as possible. This is reflected in the typical specifications. The true 'critical' time where the input is actually sampled is extremely short: less than 50 ps.

By applying the same reasoning as we did to the propagation delays to the setup and hold times, it becomes obvious that the spread from setup to hold time (3 ns worst-case) really covers devices across the entire process/temperature/voltage spread. The real difference between the setup and hold times for any single device, at a specified temperature and voltage, is negligible.

Capacitive Loading Effects

In addition to temperature and power supply effects, capacitive loading effects for loads greater than 50 pF should be taken into account for propagation delays of FACT devices. Minimum delay numbers may be determined from the table below. Propagation delays are measured to the 50% point of the output waveform.

	Voltage (V			
3.0	4.5	5.5	Units	
31	22	19	ps/pF	
18	13	12.5	ps/pF	-
	3.0 31	3.0 4.5 31 22	3.0 4.5 5.5 31 22 19	3.0 4.5 5.5 Units 31 22 19 ps/pF

The two graphs following, Figures 2-12 and 2-13, describe propagation delays on FACT devices as affected by variations in power supply voltage (Vcc) and lumped load capacitance (CL). Figures 2-14 and 2-15 show the effects of lumped load capacitance on rise and fall times for FACT devices.

Figure 2-12: Propagation Delay vs. Vcc (AC00)

Figure 2-13: Propagation Delay vs. CL (AC00)

Load Capacitance (pF)

Figure 2-15: tfall vs. Capacitance

Latch-up

A major problem with CMOS has been its sensitivity to latch-up, usually attributed to high parasitic gains and high input impedance. FACT logic is guaranteed not to latch-up with dynamic currents of 100 mA forced into or out of the inputs or the outputs under worst case conditions (TA =125 °C and Vcc = 5.5 VDC). At room temperature the parts can typically withstand dynamic currents of over 450 mA. For most designs, latch-up will not be a problem, but the designer should be aware of its causes and how to prevent it.

Figure 2-16: CMOS Inverter Cross Section with Latch-up Circuit Schematic

FACT devices have been specifically designed to reduce the possibility of latch-up occurring; Fairchild accomplished this by lowering the gain of the parasitic transistors, reducing substrate and p-well resistivity to increase external drive current required to cause a parasitic to turn ON, and careful design and layout to minimize the substrate-injected current coupling to other circuit areas.

Electrostatic Discharge (ESD) Sensitivity

FACT circuits show excellent resistance to ESD-type damage. These logic devices are classified as category 'B' of MIL-STD-883C, test method 3015, and withstand 4000 V typically. FACT logic is guaranteed to have 2000 V ESD immunity on all inputs and outputs. FACT parts do not require any special handling procedures. However, normal handling precautions should be observed as in the case of any semiconductor device. Figure 2-17 shows the ESD test circuit used in the sensitivity analysis for this specification. Figure 2-18 is the pulse waveform required to perform the sensitivity test.

The test procedure is as follows: five pulses, each of 2000 V, are applied to every combination of pins with a five second cool-down period between each pulse. The polarity is then reversed and the same procedure, pulse and pin combination used for an additional five discharges. Continue until all pins have been tested. If none of the devices from the sample population fails the DC and AC test characteristics, the device shall be classified as category B of MIL-STD-883C, TM-3015. For further specifications of TM-3015, refer to the relevant standard. The voltage is increased and the testing procedure is again performed; this entire process is repeated until all pins fail. This is done to thoroughly evaluate all pins.

Figure 2-17: ESD Test Circuit

Figure 2-18: ESD Pulse Waveform

Radiation Tolerance

Semiconductors subjected to radiation environments undergo degradation in operating life as their exposure to radiation increases. As technology advances, so does the demand for radiation-tolerant devices. Fairchild is meeting this challenge by developing the FACT family into a comprehensive radiation tolerant product for present and future rad-hard needs. Such applications include:

- Space
 - Satellites Space Stations
- Airborne and Military Fighters/Bombers Missile Systems Ground Based Systems Navigation & Communications
- Commercial Power Stations Medical Food and Bacterial Control

Radiation tolerant semiconductors increase the useful life of the product in which it is incorporated. Additionally, radiation tolerant devices reduce shielding requirements and improve stabilization of parametric performance, resulting in cost reductions for shielding and weight, reduce power consumption and size.

Radiation Test Limits

Listed below are Fairchild's proposed procedures to test and guarantee FACT devices for radiation exposure limits:

Total Dose

Method 1019 per MIL-STD-883 Individual limits per FACT radiation tolerant data sheet specification No functional failures Gamma rays

- Transient Dose/Latchup Methods 1020, 1021 per MIL-STD-883 Minimum transient upset threshold specification Minimum latchup threshold specification Device burnout specification Gamma rays
- Neutron
 Test not required for CMOS product
- Single Event Upset To be announced in the future Alpha Particle Radiation

Summary of Testing

To demonstrate and verify FACT's performance in radiation environments, we have tested several of our standard device types to total dose, transient dose and latch-up parameters. Standard manufacturing techniques were used in the production of all circuits. Devices of the same type were manufactured from the same wafer.

Test results, although limited to a small one-time sampling of the FACT product line, offer an indication of how various radiation environments affect specific standard FACT product. In most instances the standard FACT devices that were exposed to varying levels of total dose radiation showed reduced power consumption over functionally similar FAST and Schottky device types in non-radiation environments. Figure 2-19 shows a typical comparison of a FACT device's (54AC241) power consumption at various dose rates compared with functionally similar FAST (54F241) and Schottky (54S241) as tested in a non-radiation environment.

For total dose testing, all devices were subjected up to a 1 Mrad(Si) limit. There were no functional failures. Yet, based on the testing, parametric changes did occur. Transient dose testing evaluated how these devices would respond to quick bursts of radiation energies. Results were varied due to biasing and input conditions. Devices were generally free of transient upset and/or latch-up up to the range of $3 \times 10^{\circ}$ to $4.4 \times 10^{\circ}$ rads(Si)/second.

All devices were also taken to 5×10^{10} rads(Si)/ second to determine if burnout would occur. There was no burnout at this level.

FACT is Radiation Tolerant

FACT logic employs the use of thin gate oxides, oxidation cycles, and annealing steps that enhance the tolerance of the standard FACT product line.

We are conducting additional testing and are evaluating further design enhancements for increased radiation tolerance levels of our FACT devices. Our current goal is a radiation tolerant FACT product line which exceeds the U.S. Government's VHSIC Phase II radiation requirements. At that time, Fairchild radiation tested products will be guaranteed at various total dose tolerance levels ranging between 50 Krads(Si) and 1 Mrad(Si).

Product Index and Selection Guide	1
FACT Descriptions and Family Characteristics	2
Ratings, Specifications and Waveforms	3
Design Considerations	4
Data Sheets	5
Package Outlines and Ordering Information	6
FGC Series Advanced 2-Micron CMOS Gate Array	7
FAIRCAD [™] Semicustom Design System	8
CMOS Arrays Packaging Guide	9

Field Sales Offices and Distributor Locations 10

FAIRCHILD

Ratings, Specifications and Waveforms

Specifying FACT Devices

Traditionally, when a semiconductor manufacturer completed a new device for introduction, specifications were based on the characterization of just a few parts. While these specifications were appealing to the designer, they were often too tight and, over time, the IC manufacturers had difficulty producing devices to the original specs. This forced the manufacturer to relax circuit specifications to reflect the actual performance of the device.

As a result, designers were required to review system designs to ensure the system would remain reliable with the new specifications. Fairchild realized and understood the problems associated with characterizing devices too aggressively.

To provide more realistic and manufacturable specs, Fairchild devised a systematic and thorough process to generate specifications. Devices are selected from multiple wafer lots to ensure process variations are taken into account. In addition, the process parameters are measured and compared to the known process limits. With more than two years of experience manufacturing FACT logic, Fairchild can accurately predict how these wafer lots compare with the best and worse case lots that can possibly be expected.

This method of characterizing parts more accurately represents the product across time, voltage, temperature and process rather than portraying the fastest possible device. FACT circuits are therefore guaranteed to be manufacturable over time without the need to respecify timing.

These specification guidelines allow designers to design systems more efficiently since the devices used will behave as documented. Unspecified guardbands no longer need to be added by the designer to ensure system reliability.

Power Dissipation — Test Philosophy

In an effort to reduce confusion about measuring CPD, a JEDEC standard test procedure (7A Appendix E) has been adopted which specifies the

test setup for each type of device. This allows a device to be exercised in a consistent manner for the purpose of specification comparison. All device measurements are made with Vcc = 5.0 V at $25 \,^{\circ}$ C, with 3-state outputs both enabled and disabled.

Gates:	Switch one input. Bias the remaining inputs such that the output switches.
Latches:	Switch the Enable and D inputs such that the latch toggles.
Flip-Flops:	Switch the clock pin while changing D (or bias J and K) such that the output(s) change each clock cycle. For parts with a common clock, exercise only one flip-flop.
Decoders:	Switch one address pin which changes two outputs.
Multiplexers:	Switch one address pin with the corresponding data inputs at opposite logic levels so that the output switches.
Counters:	Switch the clock pin with other inputs biased such that the device counts.
Shift Registers:	Switch the clock pin with other inputs biased such that the device counts.
Transceivers:	Switch one data input. For bidirectional devices enable only one direction.
Parity Generator:	Switch one input.
Priority Encoders:	Switch the lowest priority input.
Load Capacitance:	Each output which is switching should be loaded with the standard 50 pF. The equivalent

If the device is tested at a high enough frequency, the static supply current can be ignored. Thus at 1 MHz, the following formula can be used to calculate CPD:

CPD = Icc/(Vcc) (1 × 10⁶) - Equivalent Load Capacitance

Ratings and Specifications

Figure 3-1: Absolute Maximum Ratings¹

Parameter	Symbol	Conditions	Limits	Units
Supply Voltage	Vcc		-0.5 to 7.0	V
DC Input Diode Current or DC Input Voltage	lıк Vı	$V_{I} = -0.5$ $V_{I} = V_{CC} + 0.5$	-20 20 -0.5 to Vcc + 0.5	mA mA V
DC Output Diode Current or DC Output Voltage	loк Vo	Vo = -0.5 Vo = Vcc + 0.5	-20 20 -0.5 to Vcc + 0.5	mA mA V
DC Output Source or Sink Current	lo		± 50	mA
DC Vcc or Ground Current Per Output Pin	ICC or Ignd		± 50	mA
Storage Temperature	Тѕтс		-65 to 150	°C

¹Absolute maximum ratings are those values beyond which damage to the device may occur. Obviously the databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, output/input loading variables. Fairchild does not recommend operation of FACT circuits outside databook specifications.

Figure 3-2: Recommended Operating Conditions

Parameter		Symbol	Conditions	Limits	Units
Supply Voltage (unless otherwise specified)		Vcc		2.0 to 6.0	v
Input Voltage	and a star of a	Vi		0 to Vcc	v
Output Voltage	-	Vo		0 to Vcc	V
Operating Temperature	74AC/ACT 54AC/ACT	TA		-40 to +85 -55 to +125	0° ℃
Junction Temperature	CDIP PDIP	TJ		175 140	°C
Input Rise and Fall Time ² (typ (except Schmitt inputs) VIN from 30% to 70% of Vcc	•	tr, tf	Vcc @ 3.0 V Vcc @ 4.5 V Vcc @ 5.5 V	150 40 25	ns/V ns/V ns/V
Input Rise and Fall Time ² (typ (except Schmitt inputs) VIN from 0.8 to 2.0 V, V _{meas} from 0.8 to 2.0 V	ical) 'ACT devices	tr, tf	Vcc @ 4.5 V Vcc @ 5.5 V	10 8	ns/V ns/V

²See individual data sheets for those devices which differ from the typical input rise and fall times noted here.

DC Characteristics for 'AC Family Devices

				74	AC	54AC	74AC	
Symbol	Parameter	Conditions	V сс (V)	TA =	25°C	TA = -55° to +125°C Guaranteed Li	$T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}$	Units
 Viн	Minimum High Level Input Voltage	Vout = 0.1 V or Vcc-0.1 V	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	2.1 3.15 3.85	v
VIL	Maximum Low Level Input Voltage	Vout = 0.1 V or Vcc-0.1 V	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	0.9 1.35 1.65	v
	Minimum	Ιουτ = -50 μΑ	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	2.9 4.4 5.4	v
Vон	High Level Output Voltage	*VIN = VIL or VIH -12 mA Іон -24 mA -24 mA	3.0 4.5 5.5		2.56 3.86 4.86	2.4 3.7 4.7	2.46 3.76 4.76	v
	Maximum	Ιουτ = 50 μΑ	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	v
Vol	Low Level Output Voltage	*VIN = VIL or VIH 12 mA IoL 24 mA 24 mA	3.0 4.5 5.5		0.32 0.32 0.32	0.4 0.4 0.4	0.37 0.37 0.37	v
lin	Maximum Input Leakage Current	VI = Vcc, GND	5.5		±0.1	± 1.0	± 1.0	μΑ
IOZ	Maximum 3-State Current		5.5		± 0.5	± 10.0	± 5.0	μΑ
Iold	†Minimum	Vold = 1.1 V	5.5			57	86	mA
Іонр	Dynamic Output Current	Vohd = 3.85 V	5.5			-50	-75	mA

*All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 20 ms, one output loaded at a time.

				744	СТ	54ACT	74ACT	
Symbol	Parameter	Conditions	Vcc (V)	Ta =	25°C	TA = -55° to + 125°C	TA = -40° to +85°C	Units
				Тур		Guaranteed Li		
Vін	Minimum High Level Input Voltage	Vout = 0.1 V or Vcc-0.1 V	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	2.0 2.0	v
VIL	Maximum Low Level Input Voltage	Vоит = 0.1 V or Vcc-0.1 V	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	0.8 0.8	v
	Minimum	Ιουτ = -50 μΑ	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	4.4 5.4	v
Vон	High Level	*VIN = VIL or VIH Іон –24 mA –24 mA	4.5 5.5	0.0001	3.86 4.86	3.70 4.70	3.76 4.76	v
	Maximum	Ιουτ = 50 μΑ	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	0.1 0.1	v
Vol	Low Level Output Voltage	*VIN = VIL or VIH IoL 24 mA 24 mA	4.5 5.5		0.32 0.32	0.40 0.40	0.37 0.37	v
lin	Maximum Input	VI = Vcc, GND	5.5		± 0.1	± 1.0	± 1.0	μA
loz	Maximum 3-State Current	VI = VIL, VIH Vo = Vcc, GND	5.5		± 0.5	± 10.0	± 5.0	μA
Ісст	Maximum lcc/Input	VI = Vcc-2.1 V	5.5	0.6		1.6	1.5	mA
Iold	†Minimum	VOLD = 1.1 V	5.5			57	86	mA
Іонр	Dynamic Output Current	Vонр = 3.85 V	5.5			-50	-75	mA

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

Figure 3-3: AC Loading Circuit

AC Loading and Waveforms

Loading Circuit

Figure 3-3 shows the AC loading circuit used in characterizing and specifying propagation delays of all FACT devices ('AC and 'ACT) unless otherwise specified in the data sheet of a specific device.

The use of this load, which is equivalent to the FAST (Fairchild Advanced Schottky TTL) test jig. differs somewhat from previous (HCMOS) practice. provides more meaningful information and minimizes problems of instrumentation and customer correlation. In the past, +25°C propagation delays for TTL devices were specified with a load of 15 pF to ground; this required great care in building test jigs to minimize stray capacitance and implied the use of high impedance, high frequency scope probes. FAST circuits changed to 50 pF of capacitance allowing more leeway in stray capacitance and also loading the device during rising or falling output transitions. This more closely resembles the inloading to be expected in average applications and thus gives the designer more useful delay figures. We have incorporated this scheme into the FACT product line. The net effect of the change in AC load is to increase the average observed propagation delay by about 1 ns.

The 500 ohm resistor to ground can be a high frequency passive probe for a sampling oscilloscope, which costs much less than the equivalent high impedance probe. Alternately, the 500 ohm resistor to ground can simply be a 450 ohm resistor feeding into a 50 ohm coaxial cable leading to a sampling scope input connector, with the internal 50 ohm termination of the scope completing the path to ground. This is the preferred scheme for correlation. (See Figure 3-3.) With this scheme there should be a matching cable from the device input pin to the other input of the sampling scope; this also serves as a 50 ohm termination for the pulse generator that supplies the input signal.

Shown in Figure 3-3 is a second 500 ohm resistor from the device output to a switch. For most measurements this switch is open; it is closed for measuring one set of the Enable/Disable parameters (LOW-to-OFF and OFF-to-LOW) of a 3-state output. With the switch closed, the pair of 500 ohm resistors and the 2 \times Vcc supply voltage establish a quiescent HIGH level.

Figure 3-4a: Test Input Signal Levels

Figure 3-4b: Test Input Signal Levels

Test Conditions

Figures 3-4a and 3-4b describe the input signal voltage levels to be used when testing FACT circuits. The AC test conditions follow industry convention requiring VIN to range from 0 V for a logic LOW to 3.0 V for a logic HIGH for 'ACT devices and 0 V to Vcc for 'AC devices. The DC parameters are normally tested with VIN at guaranteed input levels, that is VIH to VIL (see data tables for details). Care must be taken to adequately decouple these high performance parts and to protect the test signals from electrical noise. In an electrically noisy environment, (e.g., a tester and handler not specifically designed for high speed work), DC input levels may need to be adjusted to increase the noise margin to allow for the extra noise in the tester which would not be seen in a system.

Noise immunity testing is performed by raising VIN to the nominal supply voltage of 5.0 V then dropping to a level corresponding to VIH characteristics, and then raising again to the 5.0 V level. Noise tests can also be performed on the VIL characteristics by raising VIN from 0 V to VIL, then returning to 0 V. Both VIH and VIL noise immunity tests should not induce a switch condition on the appropriate outputs of the FACT device.

Good high frequency wiring practices should be used in constructing test jigs. Leads on the load capacitor should be as short as possible to minimize ripples on the output waveform transitions and to minimize undershoot. Generous ground metal (preferably a ground plane) should be used for the same reasons. A Vcc bypass capacitor should be provided at the test socket, also with minimum lead lengths.

Rise and Fall Times

Input signals should have rise and fall times of 3.0 ns and signal swing of 0 V to 3.0 V Vcc for 'ACT devices or 0 V to Vcc for 'AC devices. Rise and fall times less than or equal to 1 ns should be used for testing fmax or pulse widths.

CMOS devices, including 4000 Series CMOS, HC, HCT and FACT families, tend to oscillate when the input rise and fall times become lengthy. As a direct result of its increased performance, FACT devices can be more sensitive to slow input rise and fall times than other lower performance technologies. It is important to understand why this oscillation occurs. Consider the outputs, where the problem is initiated. Usually, CMOS outputs drive capacitive loads with low DC leakage. When the output changes from a HIGH level to a LOW level, or from a LOW level to a HIGH level, this capacitance has to be charged or discharged. With the present high performance technologies, this charging or discharging takes place in a very short time, typically 2-3 ns. The requirement to charge or discharge the capacitive loads quickly creates a condition where the instantaneous current change through the output structure is guite high. A voltage is generated across the Vcc or ground leads inside the package due to the inductance of these leads. The internal ground of the chip will change in reference to the outside world because of this induced voltage.

Consider the input. If the internal ground changes, the input voltage level appears to change to the DUT. If the input rise time is slow enough, its level might still be in the device threshold region, or very close to it, when the output switches. If the internally-induced voltage is large enough, it is possible to shift the threshold region enough

Figure 3-5: Waveform for Inverting and Non-Inverting Functions

so that it re-crosses the input level. If the gain of the device is sufficient and the input rise or fall time is slow enough, then the device may go into oscillation. As device propagation delays become shorter, the inputs will have less time to rise or fall through the threshold region. As device gains increase, the outputs will swing more, creating more induced voltage. Instantaneous current change will be greater as outputs become quicker, generating more induced voltage.

Package-related causes of output oscillation are not entirely to blame for problems with input rise and fall time measurements. All testers have Vcc and ground leads with a finite inductance. This inductance needs to be added to the inductance in the package to determine the overall voltage which will be induced when the outputs change. As the reference for the input signals moves further away from the pin under test, the test will be more susceptible to problems caused by the inductance of the leads and stray noise. Any noise on the input signal will also cause problems. With FACT logic having gains as high as 100, it merely takes a 50 mV change in the input to generate a full 5 V swing on the output.

Figure 3-6: Propagation Delay, Pulse Width and trec Waveforms

 $V_{mi} = 50\%$ Vcc for 'AC devices; 1.5 V for 'ACT devices Vmo = 50% for 'AC/'ACT devices

Figure 3-7: 3-State Output High Enable and Disable Times

Figure 3-8: 3-State Output Low Enable and Disable Times

Figure 3-9: Setup Time, Hold Time and Recovery Time

 $V_{mi} = 50\%$ Vcc for 'AC devices; 1.5 V for 'ACT devices Vmo = 50% Vcc for 'ACI'ACT devices **Propagation Delays, fmax, Set and Hold Times** A 1.0 MHz square wave is recommended for most propagation delay tests. The repetition rate must necessarily be increased for testing fmax. A 50% duty cycle should always be used when testing fmax. Two pulse generators are usually required for testing such parameters as setup time, hold time, recovery time, etc.

Enable and Disable Times

Figures 3-7 and 3-8 show that the disable times are measured at the point where the output voltage has risen or fallen by 10% from the voltage rail level (i.e., around for tPLz or Vcc for tPHz). This change enhances the repeatability of measurements, reduces test times, and gives the system designer more realistic delay times to use in calculating minimum cycle times. Since the high impedance state rising or falling waveform is RCcontrolled, the first 10% of change is more linear and is less susceptible to external influences. More importantly, perhaps from the system designer's point of view, a change in voltage of 10% is adequate to ensure that a device output has turned OFF. Measuring to a larger change in voltage merely exaggerates the apparent Disable time and thus penalizes system performance since the designer must use the Enable and Disable times to devise worst case timing signals to ensure that the output of one device is disabled before that of another device is enabled.

Electrostatic Discharge

Precautions should be taken to prevent damage to devices by electrostatic discharge. Static charge tends to accumulate on insulated surfaces such as synthetic fabrics or carpeting, plastic sheets, trays, foam, tubes or bags, and on ungrounded electrical tools or appliances. The problem is much worse in a dry atmosphere. In general, it is recommended that individuals take the precaution of touching a known ground before handling devices. To effectively avoid electrostatic damage to FACT devices, it is recommended that individuals wear a grounded wrist strap when handling devices. More often, handling equipment, which is not properly grounded, causes damage to parts. Ensure that all plastic parts of the tester, which are near the device, are conductive and connected to ground.

Product Index and Selection Guide

1

FAIRCHILD

Design Considerations

Today's system designer is faced with the problem of keeping ahead when addressing system performance and reliability. Fairchild's Advanced CMOS helps designers achieve these goals.

FACT (Fairchild Advanced CMOS Technology) logic was designed to alleviate many of the drawbacks that are common to current technology logic circuits. FACT logic combines the low static power consumption and the high noise margins of CMOS with a high fan-out, low input loading and a 50 ohm transmission line drive capability (comparable to Fairchild's FAST bipolar technology family) to offer a complete family of 1.3-micron SSI, MSI and LSI devices.

Performance features such as advanced Schottky speeds at CMOS power levels, advanced Schottky drive, excellent noise, ESD and latch-up immunity are characteristics that designers of state-of-the-art systems require. FACT logic answers all of these concerns in one family of products. To fully utilize the advantages provided by FACT, the system designer should have an understanding of the flexibility as well as the trade-offs of CMOS design. The following section discusses common design concerns relative to the performance and requirements of FACT.

There are five items of interest which need to be evaluated when implementing FACT devices in new designs:

- Interfacing interboard and technology interfaces, battery backup and power down or live insert/extract systems require some special thought.
- Transmission Line Driving FACT has line driving capabilities superior to all CMOS families and most TTL families.
- Noise effects As edge rates increase, the probability of crosstalk and ground bounce problems increases. The enhanced noise immunity and high threshold levels improve FACT's resistance to crosstalk problems.

- Board Layout Prudent board layout will ensure that most noise effects are minimized.
- Power Supplies and Decoupling Maximize ground and Vcc traces to keep Vcc/ground impedance as low as possible; full ground/Vcc planes are best. Decouple any device driving a transmission line; otherwise add one capacitor for every package.

Interfacing

FACT devices have outputs which combine balanced CMOS outputs with high current line driving capability. Each standard output is guaranteed to source or sink 24 mA of current at worst case conditions. This allows FACT circuits to drive more loads than standard advanced Schottky parts; FACT can directly drive ALS, AS, LS, HC and HCT devices.

Figure 4-1: Interfacing FACT to NMOS, CMOS and TTL

FACT devices can be directly driven by both NMOS and CMOS families, as shown in Figure 4-1, operating at the same rail potential without special considerations. This is possible due to the low input loading of FACT product, guaranteed to be less than 1 μ A per input.

Some older technologies, including all existing TTL families, will not be able to drive FACT circuits directly; this is due to inadequate high level capability, which is guaranteed to 2.4 V. There are two simple approaches to the TTL-to-FACT interface problem. A TTL-to-CMOS converter can be

constructed employing a resistor pull-up to Vcc of approximately 4.7k ohms, which is depicted in Figure 4-2. The correct HIGH level is seen by the CMOS device while not loading down the TTL driver.

Figure 4-2: VIH Pull-Up on TTL Outputs

Unfortunately, there will be designs where including a pull-up resistor will not be acceptable. In these cases, such as a terminated TTL bus, Fairchild has designed devices which offer thresholds that are TTL-compatible (Figure 4-3). These interfaces tend to be slightly slower than their CMOS-level counterparts due to an extra buffer stage required for level conversion.

Figure 4-3: TTL Interfacing to 'ACT

ECL devices cannot directly drive FACT devices. Interfacing FACT-to-ECL can be accomplished by using TTL-to-ECL translators and 10125 ECL-to-TTL translators in addition to following the same rules on the TTL outputs to CMOS inputs (i.e., a resistor pull-up to Vcc of approximately 4.7k ohms). The translation can also be accomplished by a resistive network. A three-resistor interface between FACT and ECL logic is illustrated in Figure 4-4a. Figures 4-4b and 4-4c show the translation from ECL-to-FACT, which is somewhat more complicated. These two examples offer some possible interfaces between ECL and FACT logic. Figure 4-4a: Resistive FACT-to-ECL Translation

Figure 4-4c: Differential Output ECL-to-'AC Circuit

It should be understood that for FACT, as with other CMOS technologies, input levels that are between specified input values will cause both transistors in the CMOS structure to be conducting. This will cause a low resistive path from the supply rail to ground, increasing the power consumption by several orders of magnitude. It is important that CMOS inputs are always driven as close as possible to the rail.

Figure 4-5: Crystal Oscillator Circuit Implemented with FACT 'AC00

Line Driving

With the available high-speed logic families, designers can reach new heights in system performance. Yet, these faster devices require a closer look at transmission line effects.

Although all circuit conductors have transmission line properties, these characteristics become significant when the edge rates of the drivers are equal to or less than three times the propagation delay of the line. Significant transmission line properties may be exhibited in an example where devices have edge rates of 3 ns and lines of 8 inches or greater, assuming propagation delays of 1.7 ns/ft for an unloaded printed circuit trace.

Of the many properties of transmission lines, two are of major interest to the system designer: Z_{oe} , the effective equivalent impedance of the line, and tpde, the effective propagation delay down the line. It should be noted that the intrinsic values of line impedance and propagation delay, Z_o and t_{pd} , are geometry-dependent. Once the intrinsic values are known, the effects of gate loading can be calculated. The loaded values for Z_{oe} and t_{pde} can be calculated with:

$$Z_{\text{oe}} = \frac{Z_{\text{o}}}{\sqrt{1 + Ct/C}}$$

tpde = $tpd \sqrt{1+Ct/Ct}$

where C_I = intrinsic line capacitance and C_t = additional capacitance due to gate loading.

The formulas indicate that the loading of lines decreases the effective impedance of the line and increases the propagation delay. Lines that have a propagation delay greater than one third the rise time of the signal driver should be evaluated for transmission line effects. When performing transmission line analysis on a bus, only the longest, most heavily loaded and the shortest, least loaded lines need to be analyzed. All lines in a bus should be terminated equally; if one line requires termination, all lines in the bus should be terminated. This will ensure similar signals on all of the lines.

There are several termination schemes which may be used. Included are series, parallel, AC parallel and Thevenin terminations. AC parallel and series terminations are the most useful for low power applications since they do not consume any DC power. Parallel and Thevenin terminations experience high DC power consumption.

Termination Schemes

e: Thevenin Termination

Series Terminations

Series terminations are most useful in high-speed applications where most of the loads are at the far end of the line. Loads that are between the driver and the end of the line will receive a two-step waveform. The first wave will be the incident wave. The amplitude is dependent upon the output impedance of the driver, the value of the series resistor and the impedance of the line according to the formula

$$Vw = Vcc \bullet Zoe/(Zoe + Rs + Zs)$$

The amplitude will be one-half the voltage swing if Rs (the series resistor) plus the output impedance (Zs) of the driver is equal to the line impedance. The second step of the waveform is the reflection from the end of the line and will have an amplitude equal to that of the first step. All devices on the line will receive a valid level only after the wave has propagated down the line and returned to the driver. Therefore, all inputs will see the full voltage swing within two times the delay of the line.

Parallel Termination

Parallel terminations are not generally recommended for CMOS circuits due to their power consumption, which can exceed the power consumption of the logic itself. The power consumption of parallel terminations is a function of the resistor value and the duty cycle of the signal. In addition, parallel termination tends to bias the output levels of the driver towards either Vcc or ground. While this feature is not desirable for driving CMOS inputs, it can be useful for driving TTL inputs.

AC Parallel Termination

AC parallel terminations work well for applications where the delays caused by series terminations are unacceptable. The effects of AC parallel terminations are similar to the effects of standard parallel terminations. The major difference is that the capacitor blocks any DC current path and helps to reduce power consumption.

Thevenin Termination

Thevenin terminations are also not generally recommended due to their power consumption. Like parallel termination, a DC path to ground is created by the terminating resistors. The power consumption of a Thevenin termination, though, will generally not be a function of the signal duty cycle. Thevenin terminations are more applicable for driving CMOS inputs because they do not bias the output levels as paralleled terminations do. It should be noted that lines with Thevenin terminations should not be left floating since this will cause the input levels to float between Vcc or ground, increasing power consumption.

FACT circuits have been designed to drive 50 ohm transmission lines over the full commercial temperature range and 75 ohm transmission lines over the military temperature range. This is guaranteed by the FACT family's specified dynamic drive capability of 86 mA sink and 75 mA source current. This ensures incident wave switching on 50 ohm transmission lines and is consistent with the 3 ns rated edge transition time.

FACT devices also feature balanced output totem pole structures to allow equal source and sink current capability. This gives rise to balanced edge rates and equal rise and fall times. Balanced drive capability and transition times eliminate both the need to calculate two different delay times for each signal path and the requirement to correct signal polarity for the shortest delay time.

FACT product inputs have been created to take full advantage of high output levels to deliver the maximum noise immunity to the system designer. VIH and VIL are specified at 70% and 30% of Vcc respectively. The corresponding output levels, VoH and VoL, are specified to be within 0.1 V of the rails, of which the output is sourcing or sinking 20 μ A or less. These noise margins are outlined in Figure 4-7.

Figure 4-7: Input Threshold

CMOS Bus Loading

CMOS logic devices have clamp diodes from all inputs and outputs to Vcc and ground. While these diodes increase system reliability by damping out undershoot and overshoot noise, they can cause problems if power is lost.

Figure 4-8 exemplifies the situation when power is removed. Any input driven above the Vcc pin will forward-bias the clamp diode. Current can then flow into the device, and out Vcc or any output that is HIGH. Depending upon the system, this current, IIN, can be quite high, and may not allow the bus voltage to reach a valid HIGH state. One possible solution to eliminate this problem is to place a series resistor in the line.

Figure 4-8: Noise Effects

Noise Effects

FACT offers the best noise immunity of any competing technology available today. With input thresholds specified at 30% and 70% of Vcc and outputs that drive to within 100 mV of the rails, FACT devices offer noise margins approaching 30% of Vcc. At 5 V Vcc, FACT's specified input and output levels give almost 1.5 V of noise margin for both ground- and Vcc-born noise. With realistic input thresholds closer to 50% of Vcc, the actual margins approach 2.5 V.

However, even the most advanced technology cannot alone eliminate noise problems. Good circuit board layout techniques are essential to take full advantage of the superior performance of FACT circuits.

Well-designed circuit boards also help eliminate manufacturing and testing problems.

Another recommended practice is to segment the board into a high-speed area, a medium-speed area and a low-speed area. The circuit areas with high current requirements (i.e., buffer circuits and highspeed logic) should be as close to the power supplies as possible; low-speed circuit areas can be furthest away.

Decoupling capacitors should be adjacent to all buffer chips; they should be distributed throughout the logic: one capacitor per chip. Transmission lines need to be terminated to keep reflections minimal. To minimize crosstalk, long signal lines should not be close together.

Crosstalk

The problem of crosstalk and how to deal with it is becoming more important as system performance and board densities increase. Crosstalk is the capacitive coupling of signals from one line to another. The amplitude of the noise generated on the inactive line is directly related to the edge rates of the signal on the active line, the proximity of the two lines and the distance that the two lines are adjacent.

Crosstalk has two basic causes. Forward crosstalk, Figure 4-9a, is caused by the wavefront propagating down the printed circuit trace at two different velocities. This difference in velocities is due to the difference in the dielectric constants of air (ϵ r =1.0) and epoxy glass (ϵ r =4.7). As the wave propagates down the trace, this difference in velocities will cause one edge to reach the end before the other. This delay is the cause of forward crosstalk; it increases with longer trace length, so consequently the magnitude of forward crosstalk will increase with distance. Reverse crosstalk, Figure 4-9b, is caused by the mutual inductance and capacitance between the lines which is a transformer action. Reverse crosstalk increases linearly with distance up to a critical length. This critical length is the distance that the signal can travel during its rise or fall time.

Although crosstalk cannot be totally eliminated, there are some design techniques that can reduce system problems resulting from crosstalk. FACT's industry-leading noise margins make systems immune to crosstalk-related problems easier to design. FACT's AC noise margins, shown in Figures 4-10a and 4-10b, exemplify the outstanding immunity to everyday noise which can effect system reliability.

Figure 4-9a: Forward Crosstalk on PCB Traces

This figure shows traces taken on a test fixture designed to exaggerate the amplitude of crosstalk pulses.

Figure 4-9b: Reverse Crosstalk on PCB Traces

This figure shows traces taken on a test fixture designed to exaggerate the amplitude of crosstalk pulses.

Figure 4-10a: High Noise Margin

Figure 4-10b: Low Noise Margin

With over 2.0 V of noise margins, the FACT family offers better noise rejection than any other comparable technology.

In any design, the distance that lines run adjacent to each other should be kept as short as possible. The best situation is when the lines are perpendicular to each other. For those situations where lines must run parallel, the effects of crosstalk can be minimized by line termination. Terminating a line in its characteristic impedance reduces the amplitude of an initial crosstalk pulse by 50%. Terminating the line will also reduce the amount of ringing. Crosstalk problems can also be reduced by moving lines further apart or by inserting ground lines or planes between them.

Figure 4-11: Effects of Termination on Crosstalk

Ground Bounce

Ground bounce occurs as a result of the intrinsic characteristics of the leadframes and bondwires of the packages used to house CMOS devices. As edge rates and drive capability increase in advanced logic families, the effects of these intrinsic electrical characteristics become more pronounced.

Figure 4-12a shows a simple circuit model for a device in a leadframe driving a standard test load. The inductor L1 represents the parasitic inductance in the ground lead of the package; inductor L2 represents the parasitic inductance in the power lead of the package; inductor L3 represents the parasitic inductance in the output lead of the package; the resistor R1 represents the output impedance of the device output, and the capacitor and resistor CL and RL represent the standard test load on the output of the device.

Figure 4-12a: Output Model

Figure 4-12b: Output Voltage

The three waveforms shown in Figures 4-12b, c and d, depict how ground bounce is generated. The first waveform shows the voltage (V) across the load as it is switched from a logic HIGH to a logic LOW. The output slew rate is dependent upon the characteristics of the output transistor, the inductors L1 and L3, and CL, the load capacitance. The second waveform shows the current that is generated as the capacitor discharges [I=CL•dV/dt]. The third waveform shows the voltage that is induced across the inductance in the ground lead due to the changing currents [Vgb = -L•(dI/dt]].

There are many factors which affect the amplitude of the ground bounce. Included are:

- Number of outputs switching simultaneously: more outputs results in more ground bounce.
- Type of output load: capacitive loads generate two to three times more ground bounce than typical system traces. Increasing the capacitive load to approximately 60-70 pF increases ground bounce. Beyond 70 pF, ground bounce drops off due to the filtering effect of the load. Moving the load away from the output reduces the ground bounce.
- Location of the output pin: outputs closer to the ground pin exhibit less ground bounce than those further away.
- Voltage: lowering Vcc reduces ground bounce.
- Test fixtures: standard test fixtures generate 30 to 50% more ground bounce than a typical system since they use capacitive loads which both increase the AC load and form LCR tank circuits that oscillate.

Ground bounce produces several symptoms:

- Altered device states. FACT logic does not exhibit this symptom.
- Propagation delay degradation. FACT devices are characterized not to degrade more than 250 ps per additional output switching.
- Undershoot on active outputs. The worst-case undershoot will be approximately equal to the worst-case quiet output noise.
- Quiet output noise. FACT logic's worst-case quiet output noise has been measured to be approximately 500-1100 mV in actual system applications.

Observing either one of the following rules is sufficient to avoid running into any of the problems associated with ground bounce:

First, use caution when driving asynchronous TTLlevel inputs from CMOS octal outputs, or Second, use caution when running control lines (set, reset, load, clock, chip select) which are glitch-sensitive through the same devices that drive data or address lines.

When it is not possible to avoid the above conditions, there are simple precautions available which can minimize ground bounce noise. These are:

- Locate these outputs as close to the ground pin as possible.
- Use the lowest Vcc possible or separate the power supplies.
- Use board design practices which reduce any additive noise sources, such as crosstalk, reflections, etc.

Design Rules

The set of design rules listed below are recommended to ensure reliable system operation by providing the optimum power supply connection to the devices. Most designers will recognize these guidelines as those they have employed with advanced bipolar logic families.

- Use multi-layer boards with Vcc and ground planes, with the device power pins soldered directly to the planes to insure the lowest power line impedances possible.
- Use decoupling capacitors for every device, usually 0.10 μ F should be adequate. These capacitors should be located as close to the ground pin as possible.
- Do not use sockets or wirewrap boards whenever possible.
- Do not connect capacitors from the outputs directly to ground.

Decoupling Requirements

Fairchild Advanced CMOS, as with other highperformance, high-drive logic families, has special decoupling and printed circuit board layout requirements. Adhering to these requirements will ensure the maximum advantages are gained with FACT products.

Figure 4-13: Power Distribution Impedances

Local high frequency decoupling is required to supply power to the chip when it is transitioning from a LOW to a HIGH value. This power is necessary to charge the load capacitance or drive a line impedance. Figure 4-13 displays various Vcc and ground layout schemes along with associated impedances.

For most power distribution networks, the typical impedance is between 50 and 100 ohms. This impedance appears in series with the load

impedance and will cause a droop in the Vcc at the part. This limits the available voltage swing at the local node, unless some form of decoupling is used. This drooping of rails will cause the rise and fall times to become elongated. Consider the example described in Figure 4-14 to calculate the amount of decoupling necessary. This circuit utilizes an 'AC240 driving a 100 ohm bus from a point somewhere in the middle.

Figure 4-14: Octal Buffer Driving a 100 Ohm Bus

Worst-Case Octal Drain = 8×94 mA = 0.75 Amp.

Being in the middle of the bus, the driver will see two 100 ohm loads in parallel, or an effective impedance of 50 ohms. To switch the line from rail to rail, a drive of 94 mA is needed; more than 750 mA will be required if all eight lines switch at once. This instantaneous current requirement will generate a voltage across the impedance of the power lines, causing the actual Vcc at the chip to droop. This droop limits the voltage swing available to the driver. The net effect of the voltage droop will lengthen device rise and fall times and slow system operation. A local decoupling capacitor is required to act as a low impedance supply for the driver chip during high current conditions. It will maintain the voltage within acceptable limits and keep rise and fall times to a minimum. The necessary values for decoupling capacitors can be calculated with the formula given in Figure 4-15.

In this example, if the Vcc droop is to be kept below 0.1 V and the edge rate equals 4 ns, a 0.030 μ f capacitor is needed.

It is good practice to distribute decoupling capacitors evenly through the logic, placing one capacitor for every package.

Capacitor Types

Decoupling capacitors need to be of the high K ceramic type with low equivalent series resistance (ESR), consisting primarily of series inductance and series resistance. Capacitors using 5ZU dielectric have suitable properties and make a good choice for decoupling capacitors; they offer minimum cost and effective performance.

Figure 4-15: Formula for Calculating Decoupling Capacitors

Place one decoupling capacitor adjacent to each package driving any transmission line and distribute others evenly thoughout the logic. One capacitor per three packages.

TTL-Compatible CMOS Designs Require Delta ICC Consideration

The FACT product line is comprised of two types of advanced CMOS circuits: 'AC and 'ACT devices. 'ACT indicates an advanced CMOS device with TTL-type input thresholds for direct replacement of LS and ALS circuits. As this 'ACT series is used to replace TTL, the Delta Icct specification must be considered; this spec may be confusing and misleading to the engineer unfamiliar with CMOS.

It is important to understand the concept of Delta lcct and how to use it within a design. First, consider where Delta lcct initiates. Most CMOS input structures are of the totem pole type with an n-channel transistor in a series with a p-channel transistor as illustrated below.

Figure 4-16: CMOS Input Structure

These two transistors can be modeled as variable resistors with resistances varying according to the input voltage. The resistance of an ON transistor is approximately 50 ohms while the resistance of an OFF transistor is generally greater than 5 Mohm. When the input to this structure is at either ground or Vcc, one transistor will be ON and one will be OFF. The total series resistance of this pair will be the combination of the two individual resistances, greater than 5 Mohm. The leakage current will then be less than 1 μ A. When the input is between ground and Vcc, the resistance of the ON transistor will increase while the resistance of the OFF transistor will decrease. The net resistance will drop due to the much larger value of the OFF resistance. The total series resistance can be as low as 600 ohms. This reduction in series resistance of the input structure will cause a corresponding increase in Icc as current flows through the input structure. The following graph depicts typical Icc variance with input voltage for an 'ACT device.

Figure 4-17: Icc versus Input Voltage for 'ACT Devices

The Delta Icc specification is the increase in Icc. For each input at Vcc-2.1 V, the Delta Icc value should be added to the quiescent supply current to arrive at the circuit's worst-case static Icc value.

Fortunately, there are several factors which tend to reduce the increase in Icc per input. Most TTL devices will be able to drive FACT inputs well beyond the TTL output specification due to FACT's low input loading in a typical system. FAST logic outputs can drive 'ACT-type inputs down to 200 mV and up to 3.5 V. Additionally, the typical Icc increase per input will be less than the specified limit. As shown in the graph above, the Icc increase at Vcc-2.1 V is less than 200 μ A in the typical system. Experiments have shown that the Icc of an 'ACT240 series device typically increases only 200 μ A when all of the inputs are connected to a FAST device instead of ground or Vcc.

It is important when designing with FACT, as with any TTL-compatible CMOS technology, that the Delta lcc specification be considered. Designers should be aware of the spec's significance and that the data book specification is a worst-case value; most systems will see values that are much less.

Testing Advanced CMOS Devices with I/O Pins

There are more and more CMOS families becoming available which can replace TTL circuits. Although testing these new CMOS units with programs and fixtures which were developed for bipolar devices will yield acceptable results most of the time, there are some cases where this approach will cause the test engineer problems.

Such is the case with parts that have a bidirectional pin, exemplified by the '245 Octal Transceiver. If the proper testing methods are not followed, these types of parts may not pass those tests for Icc and input leakage currents, even when there is no fault with the devices.

CMOS circuits, unlike their bipolar counterparts, have static lcc specification orders of magnitude less than standard load currents. Most CMOS lcc specifications are usually less than 100 μ A. When conducting an lcc test, greater care must be taken so that other currents will not mask the actual lcc of the device. These currents are usually sourced from the inputs and outputs.

Since the static lcc requirements of CMOS devices are so low, output load currents must be prevented from masking the current load of the device during an lcc test. Even a standard 500 ohm load resistor will sink 10 mA at 5 V, which is more than twice the lcc level being tested. Thus, most manufacturers will specify that all outputs must be unloaded during lcc tests.

Another area of concern is identified when considering the inputs of the device. When the input is in the transition region, lcc can be several orders of magnitude greater than the specification. When the input voltage is in the transition region, both the n-channel and the p-channel transistors in the input totem-pole structure will be slightly ON, and a conduction is created from Vcc to ground. This conduction path leads to the increased lcc current seen in the lcc vs. VIN curve. When the input is at either rail, the input structure no longer conducts. Most Icc testing is done with all of the inputs tied to either Vcc or ground. If the inputs are allowed to float, they will typically float to the middle of the transition region, and the input structure will conduct an order of magnitude more current than the actual Icc of the device under test which is being measured by the tester.

Figure 4-18: Icc versus IIN

When testing the lcc of a CMOS '245, problems can arise depending upon how the test is conducted. Note the structure of the '245's I/O pins illustrated below.

Figure 4-19: '245 I/O Structure

Each I/O pin is connected to both an input device and an output device. The pin can be viewed as having three states: input, output and output disabled. However, only two states actually exist.

The pin is either an input or an output. When testing the Icc of the device, the pins selected as outputs by the T/R signal must either be enabled and left open or be disabled and tied to either rail. If the output device is disabled and allowed to float, the input

Figure 4-20: I/O Pin Internal Structure

device will also float, and an excessive amount of current will flow from Vcc to ground. A simple rule to follow is to treat any output which is disabled as an input. This will help insure the integrity of an Icc test.

Another area which might precipitate problems is the measurement of the leakages on I/O pins. The I/O pin internal structure is depicted below.

The pin is internally connected to both an input device and an output device; the limit for a leakage test must be the combined IN specification of the input and the loz specification of the output. For FACT devices, IN is specified at $\pm 1 \mu$ A while loz is specified at $\pm 5 \mu$ A. Combining these gives a limit of $\pm 6 \mu$ A for I/O pins. Usually, I/O pins will show leakages that are less than the loz specification of the output alone.

Testing CMOS circuits is no more difficult than testing their bipolar counterparts. However, there are some areas of concern that will be new to many test engineers beginning to work with CMOS. Becoming familiar with and understanding these areas of concern prior to creating a test philosophy will avert many problems that might otherwise arise later.

Testing Disable Times of 3-State Outputs in a Transmission Line Environment

Traditionally, the disable time of a 3-state buffer has been measured from the 50% point on the disable input, to the 10% or 90% point on the output. On a bench test site, the output waveform is generated by a load capacitor and a pull-up/pull-down resistor. This circuit gives an RC charge/discharge curve as shown below.

Figure 4-21: Typical Bench 3-State Waveform

ATE test sites generally are unable to duplicate the bench test structure. ATE test loads differ because they are usually programmable and are situated away from the actual device. A commonly used test load is a Wheatstone bridge. The following figure illustrates the Wheatstone bridge test structure when used on the MCT 2000 test-system to duplicate the bench load.

Figure 4-22: MCT Wheatstone Bridge Test Load

The voltage source provides a pull-up/pull-down voltage while the current sources provide IoH and IoL. When devices with slow output slew rates are tested with the ATE load, the resultant waveforms closely approximate the bench waveform, and a high degree of correlation can be achieved. However, when devices with high output slew rates are tested, different results are observed that make correlating tester results with bench results more difficult. This difference is due to the transmission line properties of the test equipment. Most disable tests are preceded by establishing a current flow through the output structure. Typically, these currents will be between 5 mA and 20 mA. The device is then disabled, and a comparator detects when the output has risen to the 10% or 90% level.

Consider the situation where the connection between the device under test (DUT) and the comparator is a transmission line. Visualize the device output as a switch; the effect is easier to see. There is current flowing through the line, and then the switch is opened. At the device end, the reflection coefficient changes from 0 to 1. This generates a current edge flowing back down the line equal to the current flowing in the line prior to the opening of the switch. This current wave will propagate down the line where it will encounter the high impedance tester load. This will cause the wave to be reflected back down the line toward the DUT. The current wave will continue to reflect in the transmission line until it reaches the voltage applied to the tester load. At this point, the current source impedance decreases and it will dissipate the current. A typical waveshape on a modern ATE is depicted in Figure 4-23.

Figure 4-23: Typical ATE 3-State Waveform

Transmission line theory states the voltage level of this current wave is equal to the current in the line times the impedance of the line. With typical currents as low as 5 mA and impedances of 50 to 60 ohms, this voltage step can be as minimal as 250 mV. If the comparator was programmed to the 10% point, it would be looking for a step of 550 mV at 5.5 V Vcc. Three reflections of the current pulse

Figure 4-24: Measurement Stepout

would be required before the comparator would detect the level. It is this added delay time caused by the transmission line environment of the ATE that may cause parts to fail customers' incoming tests, even though the device meets specifications. The figure below graphically shows this stepout.

Point A represents the typical 50% measurement point on tester driven waveforms. Point B represents the point at which the delay time would be measured on a bench test fixture. Point C represents where the delay time could be measured on ATE fixtures. The delay time measured on the ATE fixture can vary from the bench measured delay time to some greater value, depending upon the voltage level that the tester is set. If the voltage level of the tester is close to voltage levels of the plateaus, the results may become non-repeatable.

54AC/74AC00 • 54ACT/74ACT00

Quad 2-Input NAND Gate

- Outputs Source/Sink 24 mA
- 'ACT00 has TTL-Compatible Inputs

Ordering Code: See Section 6

Connection Diagrams

Pin Assignment for LCC

Pin Assignment for DIP, Flatpak and SOIC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	80	40	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	4.0	4.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_{A} = 25^{\circ}\text{C}$
Ісст	Maximum Additional Icc/Input ('ACT00)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_{A} = Worst Case$

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (∨)		.=+25 ∟=50 p	-	to +	- 55°C 125°C 50 pF	to +	-40°C 85°C 50 pF	Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay	3.3 5.0	1.0 1.0	7.0 6.0	9.5 8.0	1.0 1.0	11.0 8.5	1.0 1.0	10.0 8.5	ns	3-5
t PHL	Propagation Delay	3.3 5.0	1.0 1.0	5.5 4.5	8.0 6.5	1.0 1.0	9.0 7.0	1.0 1.0	8.5 7.0	ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V±0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

5-3

AC Characteristics

				74ACT		54	АСТ	74	АСТ		
Symbol	Parameter	Vcc* (V)	$C_{1} - b_{0} n$			TA = -55 °C to +125 °C CL = 50 pF		25°C to +85°C		Units	Fig. No.
			Min	Тур	Мах	Min	Мах	Min	Max		
tрlн	Propagation Delay	5.0	1.0	5.5	9.0	1.0	9.5	1.0	9.5	ns	3-5
t PHL	Propagation Delay	5.0	1.0	4.0	7.0	1.0	8.0	1.0	8.0	ns	3-5

*Voltage Range 5.0 is 5.0 V $\pm\,0.5$ V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
	Falameter	Тур	01113	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срд	Power Dissipation Capacitance	30.0	pF	Vcc = 5.5 V

54AC/74AC02 Quad 2-Input NOR Gate

• Outputs Source/Sink 24 mA

Ordering Code: See Section 6

Pin Assignment for LCC

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	74AC	Units	Conditions
lcc	Maximum Quiescent Supply Current	80	40	μΑ	VIN = Vcc or Ground, Vcc = 5.5 V, TA = Worst Case
lcc	Maximum Quiescent Supply Current	4.0	4.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$

AC Characteristics

Symbol	Parameter	Vcc* (V)	74AC TA = + 25°C CL = 50 pF			54AC TA = -55°C to +125°C CL = 50 pF		74AC T _A = - 40°C to +85°C CL=50 pF		Units	Fig. No.
			tplh	Propagation Delay	3.3 5.0	1.0 1.0	5.0 4.0	7.5 6.0	1.0 1.0	9.0 7.0	1.0 1.0
tphl	Propagation Delay	3.3 5.0	1.0 1.0	5.0 4.5	7.5 6.5	1.0 1.0	9.0 7.5	1.0 1.0	8.0 7.0	ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC	Units	Conditions
Gymbol		Тур	onita	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	30.0	pF	Vcc = 5.5 V

54AC/74AC04 • 54ACT/74ACT04

Hex Inverter

- Outputs Source/Sink 24 mA
- 'ACT04 has TTL-Compatible Inputs

Ordering Code: See Section 6

Pin Assignment for LCC

Pin Assignment for DIP, Flatpak and SOIC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	80	40	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	4.0	4.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT04)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

				IA = +25 °C CI = 50 pE		54AC TA = -55°C to + 125°C CL = 50 pF		74AC TA = -40°C to +85°C CL = 50 pF			
Symbol	Parameter	V cc* (V)								Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay	3.3 5.0	1.0 1.0	4.5 4.0	9.0 7.0	1.0 1.0	11.0 8.5	1.0 1.0	10.0 7.5	ns	3-5
tphl	Propagation Delay	3.3 5.0	1.0 1.0	4.5 3.5	8.5 6.5	1.0 1.0	10.0 7.5	1.0 1.0	9.5 7.0	ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V±0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Connection Diagrams

			74ACT	54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF Min Typ	$\begin{array}{c c} T_A = -55 \ ^\circ C \\ to + 125 \ ^\circ C \\ C_L = 50 \ ^\circ F \\ \hline Min & Max \end{array}$	$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ $C_L = 50 ^{\circ}pF$ Min Max	Units	Fig. No.
t PLH	Propagation Delay	5.0	4.5	$U \setminus T_i$		∕ns∖	3-6
t PHL	Propagation Delay	5.0	3.9			ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Symbol Parameter 54/74AC		Units	Conditions
	r alameter	Тур	onita	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	30.0	pF	Vcc = 5.5 V

54AC/74AC08 • 54ACT/74ACT08

Quad 2-Input AND Gate

- Outputs Source/Sink 24 mA
- 'ACT08 has TTL Compatible Inputs

Ordering Code: See Section 6

Connection Diagrams

Pin Assignment for LCC Pin Assignment for DIP, Flatpak and SOIC

5

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	80	40	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	4.0	4.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT08)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

				74AC		54AC		74	AC		
Symbol	Parameter	Vcc* (V)		$Vcc^* \begin{vmatrix} IA = +25^{\circ}C \\ CI = 50 \text{ pE} \end{vmatrix}$		$T_A = -55 \text{°C}$ to +125 °C CL = 50 pF		TA = -40 °C to +85 °C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Мах		
tplh	Propagation Delay	3.3 5.0	1.0 1.0	7.5 5.5	9.5 7.5	1.0 1.0	12.0 9.0	1.0 1.0	10.0 8.5	ns	3-5
t PHL	Propagation Delay	3.3 5.0	1.0 1.0	7.0 5.5	8.5 7.0	1.0 1.0	11.5 8.5	1.0 1.0	9.0 7.5	ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC08 • ACT08

AC Characteristics

International In			74ACT	54ACT	74ACT	
Symbol	Parameter	Vcc* (V)	Ta= + 25°G CL = 50 pF Min Max	TA = -55 °C $to + 125 °C$ $CL = 50 pF$ Min Max	$T_A = -40 \circ C$ to +85 \circ CL = 50 pF Min Max	Units Fig. No.
tplH	Propagation Delay	5.0	6.5	JUU		ns 3-5
t PHL	Propagation Delay	5.0	6.7		had had	ns 3-5

*Voltage Range 5.0 is 5.0 V $\pm\,0.5$ V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Symbol Parameter		Units	Conditions
Symbol		Тур	Onits	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	20.0	pF	Vcc = 5.5 V

54AC/74AC10 Triple 3-Input NAND Gate

• Outputs Source/Sink 24 mA

Ordering Code: See Section 6

Pin Assignment for DIP, Flatpak and SOIC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	74AC	Units	Conditions
lcc	Maximum Quiescent Supply Current	80	40	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
Icc	Maximum Quiescent Supply Current	4.0	4.0	μA	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_{A} = 25^{\circ}\text{C}$

AC Characteristics

				74AC		54AC		74	AC		
Symbol	Symbol Parameter V		Ta = + 25 °C CL = 50 pF		$T_A = -55 \text{°C}$ to +125 °C CL = 50 pF		TA = -40 °C to +85 °C CL = 50 pF		Units	Fig. No.	
			Min	Тур	Мах	Min	Max	Min	Max		
tрLH	Propagation Delay	3.3 5.0	1.0 1.0	6.0 4.5	9.5 7.0	1.0 1.0	11.0 8.5	1.0 1.0	10.5 8.0	ns	3-5
tphl	Propagation Delay	3.3 5.0	1.0 1.0	5.5 4.0	8.5 6.0	1.0 1.0	10.0 7.0	1.0 1.0	10.0 6.5	ns	3-5

*Voltage Range 3.3 is 3.3 V $\pm\,0.3$ V

Voltage Range 5.0 is 5.0 V ± 0.5 V

Symbol	Parameter	54/74АС Тур	- Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
CPD	Power Dissipation Capacitance	25.0	pF	Vcc = 5.5 V

54AC/74AC11 Triple 3-Input AND Gate

Outputs Source/Sink 24 mA

Ordering Code: See Section 6

Connection Diagrams

Pin Assignment for LCC Pin Assignment for DIP, Flatpak and SOIC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	74AC	Units	Conditions
lcc	Maximum Quiescent Supply Current	80	40	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	4.0	4.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_{A} = 25^{\circ}C$

AC Characteristics

				74AC		54	AC	74	AC		Fig. No.
Symbol	Parameter	Vcc* (V)		k = + 25 SL = 50 p		to +	– 55°C 125°C 50 pF	to +	- 40°C 85°C 50 pF	Units	
			Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay	3.3 5.0	1.0 1.0	5.5 4.0	9.5 8.0	1.0 1.0	11.0 8.5	1.0 1.0	10.0 8.5	ns	3-5
tphL	Propagation Delay	3.3 5.0	1.0 1.0	5.5 4.0	8.5 7.0	1.0 1.0	10.5 8.0	1.0 1.0	9.5 7.5	ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

Symbol	Parameter 54/74AC Typ		Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
CPD	Power Dissipation Capacitance	20.0	pF	Vcc = 5.5 V

54AC/74AC14 • 54ACT/74ACT14

Hex Inverter Schmitt Trigger

Description

The 'AC/'ACT14 contains six logic inverters which accept standard CMOS input signals (TTL levels for 'ACT14) and provide standard CMOS output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

The 'AC/'ACT14 has hysteresis between the positive-going and negative-going input thresholds (typically 1.0 V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.

- Outputs Source/Sink 24 mA
- 'ACT14 has TTL Compatible Inputs

Ordering Code: See Section 6

Function Table

Input	Output
Α	0
L H	H L

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	Vcc (V)	54AC	54ACT	74AC	74ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current		80	80	40	40	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current		4.0	4.0	4.0	4.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_{A} = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT14)			1.6		1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V$, $T_A = Worst Case$
Vt+	Maximum Positive Threshold	3.0 4.5 5.5	2.2 3.2 3.9	2.0	2.2 3.2 3.9	2.0	v	TA = Worst Case
Vt –	Minimum Negative Threshold	3.0 4.5 5.5	0.5 0.9 1.1	0.8	0.5 0.9 1.1	0.8	v	TA = Worst Case
Vh(max)	Maximum Hysteresis	3.0 4.5 5.5	1.2 1.4 1.6	1.2	1.2 1.4 1.6	1.2	v	TA = Worst Case
Vh(min)	Minimum Hysteresis	3.0 4.5 5.5	0.3 0.4 0.5	0.4	0.3 0.4 0.5	0.4	v	TA = Worst Case

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)		k = +25 6∟ = 50 p	-	to +	- 55°C 125°C 50 pF	to +	- 40°C 85°C 50 pF	Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay	3.3 5.0	1.0 1.0	9.5 7.0	13.5 10.0	1.0 1.0	16.0 12.0	1.0 1.0	15.0 11.0	ns	3-5
tph∟	Propagation Delay	3.3 5.0	1.0 1.0	7.5 6.0	11.5 8.5	1.0 1.0	14.0 10.0	1.0 1.0	13.0 9.5	ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions
	Faidiliotoi	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	25.0	pF	Vcc = 5.5 V

54AC/74AC20

Dual 4-Input NAND Gate

• Outputs Source/Sink 24 mA

Ordering Code: See Section 6

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	74AC	Units	Conditions
lcc	Maximum Quiescent Supply Current	80	40	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	4.0	4.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$

AC Characteristics

				74AC		54	AC	74	AC		Fig. No.
Symbol	Parameter	Vcc* (V)		v = + 25 s∟ = 50 p	-	to +	– 55°C 125°C 50 pF	to +	– 40 °C 85 °C 50 pF	Units	
			Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay	3.3 5.0	1.0 1.0	6.0 5.0	8.5 7.0	1.0 1.0	11.0 8.5	1.0 1.0	10.0 8.0	ns	3-5
t PHL	Propagation Delay	3.3 5.0	1.0 1.0	5.0 4.0	7.0 6.0	1.0 1.0	10.0 7.0	1.0 1.0	9.0 7.0	ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V±0.5 V

Symbol	Parameter	54/74AC	Units	Conditions
	Falalleter	Тур	011115	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Cpd	Power Dissipation Capacitance	40.0	pF	Vcc = 5.5 V

54AC/74AC32 • 54ACT/74ACT32

Quad 2-Input OR Gate

- Outputs Source/Sink 24 mA
- 'ACT32 has TTL-Compatible Inputs

Ordering Code: See Section 6

Pin Assignment for LCC

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	80	40	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	4.0	4.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT32)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)	TA = + 25 °C CL = 50 pF		TA = -55 °C to +125 °C CL = 50 pF		TA = -40°C to +85°C CL = 50 pF		Units	Fig. No.	
			Min	Тур	Max	Min	Мах	Min	Max		
t PLH	Propagation Delay	3.3 5.0	1.0 1.0	7.0 5.5	9.0 7.5	1.0 1.0	12.0 9.0	1.0 1.0	10.0 8.5	ns	3-5
t PHL	Propagation Delay	3.3 5.0	1.0 1.0	7.0 5.0	8.5 7.0	1.0 1.0	11.5 8.5	1.0 1.0	9.0 7.5	ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

	Parameter		74ACT	54ACT	74ACT		
Symbol		Vcc* (V)	Ta = + 25 °C CL=50 pF	$T_A = -55 $ °C to +125 °C C_ = 50 pF	TA = -40°C to +85°C CL = 50 pF	Units	Fig. No.
			Min Typ/Max	Min Max	Min Max		
t PLH	Propagation Delay	5.0	1 17.2	UN		C hs	3,5
t PHL	Propagation Delay	5.0	6.6	Indexe		ns	8-5

*Voltage Range 5.0 is 5.0 V $\pm\,0.5$ V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions		
Symbol		Тур	01113	Contactione		
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V		
CPD	Power Dissipation Capacitance	20.0	pF	Vcc = 5.5 V		

54AC/74AC74 • 54ACT/74ACT74

Dual D-Type Positive Edge-Triggered Flip-Flop

Description

The 'AC/'ACT74 is a dual D-type flip-flop with Asynchronous Clear and Set inputs and complementary (Q, \overline{Q}) outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input.

Asynchronous Inputs:

LOW input to \overline{S}_D (Set) sets Q to HIGH level LOW input to \overline{C}_D (Clear) sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

- Outputs Source/Sink 24 mA
- 'ACT74 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

D1, D2	Data Inputs
CP1, CP2	Clock Pulse Inputs
CD1, CD2	Direct Clear Inputs
SD1, SD2	Direct Set Inputs
Q1, Q1, Q2, Q2	Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

Truth Table (Each Half)

	<u></u>		Inputs						
SD 0	CD	СР	D	Q	Q				
HL	HLLHHH	хххг.	хгнххх	8 гттг	лтттб				

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

J = LOW-to-HIGH Clock Transition

 $Q_0(\overline{Q}_0) = Previous Q(\overline{Q})$ before

LOW-to-HIGH Transition of Clock

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	80	40	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	4.0	4.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT74)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_{A} = Worst Case$

				74AC		54AC		74AC			
Symbol	Parameter	Vcc* (V)	TA = + 25 °C CL = 50 pF		TA = - 55°C to + 125°C CL = 50 pF		TA = -40°C to +85°C CL = 50 pF		Units	Fig. No.	
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	3.3 5.0	100 140	125 160		95 95		95 125		MHz	3-3
tрLн	Propagation Delay CDn or SDn to Qn or Qn	3.3 5.0	1.0 1.0	8.0 6.0	12.0 9.0	1.0 1.0	14.5 10.5	1.0 1.0	13.0 10.0	ns	3-6
tphl	Propagation Delay CDn or SDn to Qn or Qn	3.3 5.0	1.0 1.0	10.5 8.0	12.0 9.5	1.0 1.0	20.0 14.5	1.0 1.0	13.5 10.5	ns	3-6
tр∟н	Propagation Delay CPn to Qn or Qn	3.3 5.0	1.0 1.0	8.0 6.0	13.5 10.0	1.0 1.0	17.5 11.0	1.0 1.0	16.0 10.5	ns	3-6
tPHL	Propagation Delay CPn to Qn or Qn	3.3 5.0	1.0 1.0	8.0 6.0	14.0 10.0	1.0 1.0	16.0 11.5	1.0 1.0	14.5 10.5	ns	3-6

*Voltage Range 3.3 is 3.3 V±0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74/	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF		TA = −55°C to +125°C CL = 50 pF	TA = − 40 °C to + 85 °C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Set-up Time, HIGH or LOW Dn to CPn	3.3 5.0	1.5 1.0	4.0 3.0	5.0 3.5	4.5 3.0	ns	3-9
th	Hold Time, HIGH or LOW Dn to CPn	3.3 5.0	- 2.0 - 1.5	0 0	0.5 0.5	0 0	ns	3-9
tw	CPn or CDn or SDn Pulse Width	3.3 5.0	3.0 2.5	5.5 4.5	8.0 5.5	7.0 5.0	ns	3-6
trec	Recovery Time CDn or SDn to CP	3.3 5.0	2.5 2.0	0 0	0.5 0.5	0 0	ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

				74ACT		54ACT		74ACT			
Symbol	Parameter	Vcc* (V)	$T_{A} = +25 \text{ °C}$ $C_{L} = 50 \text{ pF}$		$T_A = -55 \degree C$ to +125 °C CL = 50 pF		TA = - 40 °C to + 85 °C CL = 50 pF		Units	Fig. No.	
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	5.0	145	210		95		125		MHz	3-3
tplh	Propagation Delay CDn or SDn to Qn or Qn	5.0	1.0	5.5	9.5	1.0	11.5	1.0	10.5	ns	3-6
tphl	Propagation Delay Con or Son to Qn or Qn	5.0	1.0	6.0	10.0	1.0	12.5	1.0	11.5	ns	3-6
tplh	Propagation Delay CPn to Qn or Qn	5.0	1.0	7.5	11.0	1.0	14.0	1.0	13.0	ns	3-6
tphl	Propagation Delay CPn to Qn or $\overline{Q}n$	5.0	1.0	6.0	10.0	1.0	12.0	1.0	11.5	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

		1	74 A	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF		TA = − 55°C to + 125°C CL = 50 pF	T _A = − 40 °C to +85 °C C _L = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Set-up Time, HIGH or LOW Dn to CPn	5.0	1.0	3.0	4.0	3.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to CPn	5.0	- 0.5	1.0	1.0	1.0	ns	3-9
tw	CPn or CDn or SDn Pulse Width	5.0	3.0	5.0	6.5	6.0	ns	3-6
trec	Recovery Time CDn or SDn to CP	5.0	- 2.5	0	0	0	ns	3-9

*Voltage Range 5.0 is 5.0 V $\pm\,0.5$ V

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Cin	Input Capacitance	Тур 4.5	pF	Vcc = 5.5 V
CPD	Power Dissipation Capacitance	35.0	pF	Vcc = 5.5 V

54AC/74AC86

Quad 2-Input Exclusive-OR Gate

Outputs Source/Sink 24 mA

Ordering Code: See Section 6

Connection Diagrams

for LCC

Pin Assignment for DIP, Flatpak and SOIC

5

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54AC	74AC	Units	Conditions
lcc	Maximum Quiescent Supply Current	80	40	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	4.0	4.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$

AC Characteristics

9 4 100-7 6.10 A 10- 0 2	angente the second s		74AC	54AC	74AC	
Symbol	Parameter	V cc* (V)	TA = +25 °C $C = 50 pE$	$T_A = -55 ^{\circ}C$ to +125 ^{\circ}C C_L = 50 pF	$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units Fig. No.
Secure Provide Action of the second s		Stand Science	Min Typ Max	Min Max	Min Max	- STA Karlenga
tphl	Propagation Delay Inputs to Outputs	3.3 5.0	The second secon			ns 3-5
tplh	Propagation Delay Inputs to Outputs	3.3 5.0	6.5 4.5	Terris Same	Marcan and Contract of Contract	ns 3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

Symbol	Parameter	54/74AC/ACT	Units	Conditions
	Falameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Cpd	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC109 • 54ACT/74ACT109

Dual JK Positive Edge-Triggered Flip-Flop

Description

The 'AC/'ACT109 consists of two high-speed completely independent transition clocked J \overline{K} flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The J \overline{K} design allows operation as a D flip-flop (refer to 'AC/'ACT74 data sheet) by connecting the J and \overline{K} inputs together.

Asynchronous Inputs:

LOW input to \overline{S}_D (Set) sets Q to HIGH level LOW input to \overline{C}_D (Clear) sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

Outputs Source/Sink 24 mA

• 'ACT109 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Truth Table

		Out	puts			
SD	СD	СР	J	ĸ	Q	<u>Q</u> -
L	н	Х	Х	Х	н	L
н	L	Х	Х	х	L	н
L	L	Х	Х	х	н	н
н	н	Г	L	L	L	н
н	н	Г	н	L	Tog	ggle
н	н	Г	L	н	Qo	Q0-
н	н	Г	н	н	н	L
н	н	L	х	х	Qo	Q ₀ -

H = HIGH Voltage Level

L = LOW Voltage Level

 $\mathbf{J} = \text{LOW-to-HIGH}$ Transition

X = Immaterial

 $Q_0(\overline{Q}_0) = Previous Q_0(\overline{Q}_0)$ before LOW-to-HIGH Transition of Clock

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

Pin Names

J1, J2, K1, K2	Data Inputs
CP1, CP2	Clock Pulse Inputs
CD1, CD2	Direct Clear Inputs
SD1, SD2	Direct Set Inputs
Q1, Q2, Q1, Q2	Outputs

AC109 • ACT109

Logic Diagram (one half shown)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	80	40	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	4.0	4.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT109)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

				74AC		54	AC	74	AC		
Symbol	Parameter	V cc* (V)	T _A = + 25 °C C _L = 50 pF			TA = -55 °C to +125 °C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	3.3 5.0	125 150	150 175		90 95		100 125		MHz	3-3
tplH	Propagation Delay CPn to Qn or Qn	3.3 5.0	1.0 1.0	8.0 6.0	13.5 10.0	1.0 1.0	17.5 11.0	1.0 1.0	16.0 10.5	ns	3-6
tphL	Propagation Delay CPn to Qn or Qn	3.3 5.0	1.0 1.0	8.0 6.0	14.0 10.0	1.0 1.0	16.0 11.5	1.0 1.0	14.5 10.5	ns	3-6
tplH	Propagation Delay CDn or SDn to Qn or Qn	3.3 5.0	1.0 1.0	8.0 6.0	12.0 9.0	1.0 1.0	14.5 10.5	1.0 1.0	13.0 10.0	ns	3-6
t PHL	Propagation Delay CDn or SDn to Qn or Qn	3.3 5.0	1.0 1.0	10.0 7.5	12.0 9.5	1.0 1.0	20.0 14.5	1.0 1.0	13.5 10.5	ns	3-6

*Voltage Range 3.3 is 3.3 V ± 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

		Vcc* (V) 3.3 5.0	74	AC	54AC	74AC		
Symbol	Parameter		Ta = + Cl = \$		TA = − 55°C to + 125°C CL = 50 pF	TA = − 40 °C to +85 °C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Set-up Time, HIGH or LOW Jn or Kn to CPn		3.5 2.0	6.5 4.5	8.0 5.5	7.5 5.0	ns	3-9
th	Hold Time, HIGH or LOW Jn or Kn to CPn	3.3 5.0	- 1.5 - 0.5	0 0.5	1.0 1.0	0 0.5	ns	3-9
tw	Pulse Width CPn or CDn or SDn	3.3 5.0	2.0 2.0	4.0 3.5	8.0 5.5	4.5 3.5	ns	3-6
trec	Recovery Time CDn or SDn to CP	3.3 5.0	- 2.5 - 1.5	0 0	0 0	0 0	ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

		Vcc* (V)		74ACT	<u>10 tan</u>	54/	ACT	74	АСТ			
Symbol	Parameter		TA = + 25 °C CL = 50 pF			$T_A = -55 \degree C$ to +125 °C CL = 50 pF		TA = -40°C to +85°C CL = 50 pF		Units	Fig. No.	
			Min	Тур	Max	Min	Max	Min	Max			
fmax	Maximum Clock Frequency	5.0	145	210		95		125		MHz	3-3	
tplH	Propagation Delay CPn to Qn or \overline{Qn}	5.0	1.0	7.0	11.0	1.0	14.0	1.0	13.0	ns	3-6	
tphl	Propagation Delay CP_n to Q_n or \overline{Q}_n	5.0	1.0	6.0	10.0	1.0	12.0	1.0	11.5	ns	3-6	
tplh	Propagation Delay CDn or SDn to Qn or Qn	5.0	1.0	5.5	9.5	1.0	11.5	1.0	10.5	ns	3-6	
t PHL	Propagation Delay CDn or SDn to Qn or Qn	5.0	1.0	6.0	10.0	1.0	12.5	1.0	11.5	ns	3-6	

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

		Vcc* (V)	74A	СТ	54ACT	74ACT			
Symbol	Parameter		TA = + CL = \$		TA = -55°C to +125°C CL = 50 pF	$T_A = -40 \text{ °C}$ to +85 °C CL = 50 pF	Units	Fig. No.	
			Тур		Guaranteed Min	nimum			
ts	Set-up Time, HIGH or LOW Jn or Kn to CPn	H or LOW 5.0 0.5 2.0 2.5 2.4		2.5	ns	3-9			
th	Hold Time, HIGH or LOW Jn or Kn to CPn	5.0	0	2.0	2.0	2.0	ns	3-9	
tw	Pulse Width CPn or CDn or SDn	5.0	3.0	5.0	6.5	6.0	ns	3-6	
trec	Recovery Time Con or Son to CP	5.0	- 2.5	0	0	0	ns	3-9	

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Symbol	Parameter	54/74AC/ACT	Units	Conditions
		Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
CPD	Power Dissipation Capacitance	35.0	pF	Vcc = 5.5 V

54AC/74AC138 • 54ACT/74ACT138

1-of-8 Decoder/Demultiplexer

Description

The 'AC/'ACT138 is a high-speed 1-of-8 decoder/demultiplexer. This device is ideally suited for high-speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three 'AC/'ACT138 devices or a 1-of-32 decoder using four 'AC/'ACT138 devices and one inverter.

- Demultiplexing Capability
- Multiple Input Enable for Easy Expansion
- Active LOW Mutually Exclusive Outputs
- Outputs Source/Sink 24 mA
- 'ACT138 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

A0 - A2	Address Inputs
Ē1 - Ē2	Enable Inputs
Eз	Enable Input
<u>0</u> 0 - 07	Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

Functional Description

The 'AC/'ACT138 high-speed 1-of-8 decoder/demultiplexer accepts three binary weighted inputs (A0, A1, A2) and, when enabled, provides eight mutually exclusive active-LOW outputs ($\overline{O}_0 - \overline{O}_7$). The 'AC/'ACT138 features three Enable inputs, two active-LOW (\overline{E}_1 , \overline{E}_2) and one active-HIGH (E3). All outputs will be HIGH unless \overline{E}_1 and \overline{E}_2 are LOW and E3 is HIGH. This multiple

enabled function allows easy parallel expansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four 'AC/'ACT138 devices and one inverter (See Figure a). The 'AC/'ACT138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active-HIGH or active-LOW state.

Truth Table

		Inp	uts			Outputs							
Ē1	Ē2	E3	A0	A 1	A2	ō₀	<u></u> 01	O2	Ō ₃	Ō₄	Ō5	Ō6	07
H X X	X H X	X X L	X X X	X X X	X X X	ннн	H H H	H H H	H H H	H H H	H H H	H H H	H H H
L L L		ннн	L H L H	L L H H	L L L	L H H H	H L H H	H H L H	H H H L	H H H H	H H H H H	H H H H	H H H H
L L L	L L L	H H H H	L H L H	L L H H	н н н н	н н н н	нннн	H H H H	нттт		H L H H	H H L H	H H H L

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 5

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

AC138 • ACT138

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT138)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

Symbol	Parameter		74AC		54AC TA = -55°C to +125°C CL = 50 pF		74AC TA = -40°C to +85°C CL = 50 pF		Units	Fig. No.	
		Vcc* (V)	TA = + 25°C CL = 50 pF								
			Min	Тур	Max	Min	Max	Min	Max		
tplH	Propagation Delay A_n to \overline{O}_n	3.3 5.0	1.0 1.0	8.5 6.5	13.0 9.5	1.0 1.0	16.0 12.0	1.0 1.0	15.0 10.5	ns	3-6
tPHL.	Propagation Delay An to On	3.3 5.0	1.0 1.0	8.0 6.0	12.5 9.0	1.0 1.0	15.0 11.5	1.0 1.0	14.0 10.5	ns	3-6
tplH	Propagation Delay E1 or E2 to On	3.3 5.0	1.0 1.0	11.0 8.0	15.0 11.0	1.0 1.0	16.5 13.0	1.0 1.0	16.0 12.0	ns	3-6
tphL	Propagation Delay E1 or E2 to On	3.3 5.0	1.0 1.0	9.5 7.0	13.5 9.5	1.0 1.0	15.5 12.0	1.0 1.0	15.0 10.5	ns	3-6
tplH	Propagation Delay E3 to On	3.3 5.0	1.0 1.0	11.0 8.0	15.5 11.0	1.0 1.0	17.0 13.5	1.0 1.0	16.5 12.5	ns	3-6
tphl	Propagation Delay E3 to On	3.3 5.0	1.0 1.0	8.5 6.0	13.0 8.0	1.0 1.0	15.0 11.0	1.0 1.0	14.0 9.5	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

	Parameter		74ACT		54ACT TA = - 55°C to + 125°C CL = 50 pF		$74ACT$ $T_A = -40 °C$ $to +85 °C$ $C_L = 50 pF$				
Symbol		Vcc* (V)	Ta = + 25 °C C∟ = 50 pF							Fig. No.	
			Min	Тур	Max	Min	Max	Min	Max	1	
tplH	Propagation Delay An to On	5.0	1.0	7.0	10.5	1.0	12.5	1.0	11.5	ns	3-6
t PHL	Propagation Delay An to On	5.0	1.0	6.5	10.5	1.0	12.5	1.0	11.5	ns	3-6
t PLH	Propagation Delay E1 or E2 to On	5.0	1.0	8.0	11.5	1.0	13.5	1.0	12.5	ns	3-6
tphl	Propagation Delay E1 or E2 to On	5.0	1.0	7.5	11.5	1.0	12.5	1.0	12.5	ns	3-6
tplh	Propagation Delay E3 to On	5.0	1.0	8.0	12.0	1.0	14.0	1.0	13.0	ns	3-6
tphl	Propagation Delay E3 to On	5.0	1.0	6.5	10.5	1.0	12.0	1.0	11.5	ns	3-6

*Voltage Range 5.0 is 5.0 V $\pm\,0.5$ V

Symbol	Parameter	54/74AC/ACT Typ	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	60.0	pF	Vcc = 5.5 V

54AC/74AC139 • 54ACT/74ACT139

Dual 1-of-4 Decoder/Demultiplexer

Description

The 'AC/'ACT139 is a high-speed, dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each accepting two inputs and providing four mutually-exclusive active-LOW outputs. Each decoder has an active-LOW Enable input which can be used as a data input for a 4-output demultiplexer. Each half of the 'AC/'ACT139 can be used as a function generator providing all four minterms of two variables.

- Multifunction Capability
- Two Completely Independent 1-of-4 Decoders
- Active LOW Mutually Exclusive Outputs
- Outputs Source/Sink 24 mA
- 'ACT139 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

A0, A1	Address Inputs
Ē	Enable Inputs
<u> </u>	Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

AC139 • ACT139

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Functional Description

The 'AC/'ACT139 is a high-speed dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each of which accepts two binary weighted inputs (A0 - A1) and provides four mutually exclusive active-LOW outputs ($\overline{O}0 - \overline{O}3$). Each decoder has an active-LOW enable (\overline{E}). When \overline{E} is HIGH all outputs are forced HIGH. The enable can be used as the data input for a 4-output demultiplexer application. Each half of the 'ACI'ACT139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in Figure a, and thereby reducing the number of packages required in a logic network.

Truth Table

	Inputs			Outputs						
Ē	Ao	A 1	<u>o</u> o	<u>0</u> 1	Ō2	Ō₃				
н	Х	Х	н	Н	н	н				
L	L	L	L	н	н	н				
L	н	L	н	L	н	н				
L	L	н	н	н	L	н				
L	н	н	н	н	н	L				

H = HIGH Voltage Level

L=LOW Voltage Level

X = Immaterial

Figure a: Gate Functions (each half)

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT139)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

	Parameter	Vcc* (V)	74AC TA = + 25°C CL = 50 pF			54AC $T_A = -55 °C$ to + 125 °C $C_L = 50 ~pF$		74AC T _A = - 40°C to + 85°C C _L = 50 pF			Fig. No.
Symbol										Units	
			Min	Тур	Max	Min	Max	Min	Max		1
tр∟н	Propagation Delay An to On	3.3 5.0	1.0 1.0	8.0 6.5	11.5 8.5	1.0 1.0	14.5 11.0	1.0 1.0	13.0 9.5	ns	3-6
tрнL	Propagation Delay An to On	3.3 5.0	1.0 1.0	7.0 5.5	10.0 7.5	1.0 1.0	12.5 10.0	1.0 1.0	11.0 8.5	ns	3-6
tр∟н	Propagation Delay En to On	3.3 5.0	1.0 1.0	9.5 7.0	12.0 8.5	1.0 1.0	14.5 11.0	1.0 1.0	13.0 10.0	ns	3-6
tрнL	Propagation Delay En to On	3.3 5.0	1.0 1.0	8.0 6.0	10.0 7.5	1.0 1.0	12.5 10.0	1.0 1.0	11.0 8.5	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

				74ACT		54/	ACT	74ACT			
Symbol	Parameter	V cc* (V)	$ \begin{array}{c c} T_{A}=+25^{\circ}C \\ C_{L}=50pF \end{array} \begin{array}{c} T_{A}=-55^{\circ}C \\ to \ +125^{\circ}C \\ C_{L}=50pF \end{array} \begin{array}{c} T_{A}=-40^{\circ}C \\ to \ +85^{\circ}C \\ C_{L}=50pF \end{array} \end{array} $		85°C	Units	Fig. No.				
			Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay An to On	5.0	1.0	6.0	8.5	1.0	12.0	1.0	9.5	ns	3-6
tphl	Propagation Delay An to On	5.0	1.0	6.0	9.5	1.0	11.0	1.0	10.5	ns	3-6
tplh	Propagation Delay En to On	5.0	1.0	7.0	10.0	1.0	12.5	1.0	11.0	ns	3-6
tphl	Propagation Delay En to On	5.0	1.0	7.0	9.5	1.0	12.0	1.0	10.5	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT		Conditions	
Symbol		Тур	Units	Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Cpd	Power Dissipation Capacitance	40.0	pF	Vcc = 5.5 V	

54AC/74AC151 • 54ACT/74ACT151

1-of-8 Decoder/Demultiplexer

Description

The 'AC/'ACT151 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one line of data from up to eight sources. The 'AC/'ACT151 can be used as a universal function generator to generate any logic function of four variables. Both true and complementary outputs are provided.

Outputs Source/Sink 24 mA

• 'ACT151 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Truth Table

	Inp	uts		Out	puts
Ē	S2	S1	S0	Z	Z
H L L L L L L	X L L L I I I I	X L L H H L L H	X L H L H L H L	H 10 11 12 13 14 15 16	L 10 12 13 14 15 16
L	н	н	Н	Ī7	17

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Connection Diagrams

Pin Names

lo - I7	Data Inputs
S0 - S2	Select Inputs
Ē	Enable Input
Z	Data Output
Z	Inverted Data Output

Functional Description

The 'AC/'ACT151 is a logic implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, S0, S1, S2. Both true and complementary outputs are provided. The Enable input (\overline{E}) is active LOW. When it is not activated, the complementary output is HIGH and the true output is LOW regardless of all other inputs. The logic function provided at the output is:

The 'AC/'ACT151 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the 'AC/'ACT151 can provide any logic function of four variables and its complement.

 $Z = \overline{E} \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_2 \bullet \overline{S}_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet S_1 \bullet \overline{S}_2 + I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet S_2 + I_6 \bullet \overline{S}_0 \bullet S_1 \bullet S_2 + I_7 \bullet S_0 \bullet S_1 \bullet S_2)$

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified	DC	Characteristics	(unless	otherwise	specified
--	----	-----------------	---------	-----------	-----------

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT151)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)	TA = + 25 °C CL = 50 pF			$T_A = -55 ^{\circ}C$ to + 125 ^{\circ}C CL = 50 pF		$TA = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tр∟н	Propagation Delay S_n to Z or \overline{Z}	3.3 5.0	1.0 1.0	11.5 8.5	18.0 13.0	1.0 1.0	22.0 15.5	1.0 1.0	20.0 15.0	ns	3-6
t PHL	Propagation Delay S_n to Z or \overline{Z}	3.3 5.0	1.0 1.0	12.0 8.5	18.0 13.0	1.0 1.0	22.0 15.5	1.0 1.0	20.0 15.0	ns	3-6
tplH	Propagation Delay \overline{E} to Z or \overline{Z}	3.3 5.0	1.0 1.0	8.0 6.0	13.0 10.0	1.0 1.0	15.5 12.0	1.0 1.0	14.0 11.0	ns	3-6
t PHL	Propagation Delay \overline{E} to Z or \overline{Z}	3.3 5.0	1.0 1.0	8.5 6.5	13.0 10.0	1.0 1.0	15.5 12.0	1.0 1.0	14.0 11.0	ns	3-6
tplH	Propagation Delay In to Z or \overline{Z}	3.3 5.0	1.0 1.0	9.5 7.0	14.0 10.5	1.0 1.0	16.0 12.0	1.0 1.0	15.5 11.0	ns	3-5
tрнL	Propagation Delay In to Z or Z	3.3 5.0	1.0 1.0	9.5 7.0	15.0 11.0	1.0 1.0	18.0 13.0	1.0 1.0	16.0 12.0	ns	3-5

*Voltage Range 3.3 is 3.3 V ± 0.3 V Voltage Range 5.0 is 5.0 V ± 0.5 V

				74ACT		54/	аст	74/	АСТ		
Symbol	Parameter	Vcc* (V)	Ta = + 25°C CL = 50 pF			T _A = − 55°C to + 125°C C _L = 50 pF		$T_A = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplH	Propagation Delay Sn to Z	5.0	1.0	12.5	15.5			1.0	17.0	ns	3-6
tрнL	Propagation Delay Sn to Z	5.0	1.0	12.5	15.5			1.0	16.5	ns	3-6
tplh	Propagation Delay Sn to Z	5.0	1.0	12.5	15.0			1.0	16.5	ns	3-6
tphl	Propagation Delay S_n to \overline{Z}	5.0	1.0	12.5	16.5			1.0	18.5	ns	3-6
tplh	Propagation Delay E to Z	5.0	1.0	10.0	9.5			1.0	10.0	ns	3-6
tphl	Propagation Delay Ē to Z	5.0	1.0	10.5	9.0			1.0	10.0	ns	3-6
tрlн	Propagation Delay Ē to Z	5.0	1.0	10.0	8.5			1.0	9.5	ns	3-6
tph∟	Propagation Delay Ē to Z	5.0	1.0	10.5	10.0			1.0	10.5	ns	3-6
tрlн	Propagation Delay In to Z	5.0	1.0	11.0	11.5			1.0	12.5	ns	3-6
t PHL	Propagation Delay In to Z	5.0	1.0	11.0	12.0			1.0	13.5	ns	3-6
tplh	Propagation Delay In to \overline{Z}	5.0	1.0	11.0	12.0			1.0	13.0	ns	3-6
TPHL	Propagation Delay In to Z	5.0	1.0	11.0	12.5			1.0	14.0	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	I Parameter 54/74A		Units	Conditions		
Symbol		Тур	Onits			
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V		
Срр	Power Dissipation Capacitance	70.0	pF	Vcc = 5.5 V		

54AC/74AC153 • 54ACT/74ACT153

Dual 4-Input Multiplexer

Description

The 'AC/'ACT153 is a high-speed dual 4-input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (noninverted) form. In addition to multiplexer operation, the 'AC/'ACT153 can act as a function generator and generate any two functions of three variables.

- Outputs Source/Sink 24 mA
- 'ACT153 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

0a - 13a	Side A Data Inputs
10ь - Ізь	Side B Data Inputs
S0, S1	Common Select Inputs
Ēa	Side A Enable Input
Ēb	Side B Enable Input
Za	Side A Output
Zb	Side B Output

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

The 'AC/'ACT153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs (So, S1). The two 4-input multiplexer circuits have individual active-LOW Enables (Ea, Eb) which can be used to strobe the outputs independently. When the Enables (\overline{E}_a , \overline{E}_b) are HIGH, the corresponding outputs (Za, Zb) are forced LOW. The 'AC/'ACT153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are shown below.

 $Za = \overline{E}a \bullet (I0a \bullet \overline{S}1 \bullet \overline{S}0 + I1a \bullet \overline{S}1 \bullet S0 + I2a \bullet S1 \bullet \overline{S}0 + I3a \bullet S1 \bullet S0)$ $Z_{b} = \overline{E}_{b} \bullet (I_{0b} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1b} \bullet \overline{S}_{1} \bullet S_{0} + I_{2b} \bullet S_{1} \bullet \overline{S}_{0} + I_{3b} \bullet S_{1} \bullet S_{0})$

Truth Table

Sel Inp			Output				
S0	S1	Ē	lo	1	12	13	Z
Х	Х	н	Х	Х	Х	Х	L
L	L	L	L	х	х	X	L
L	L	L	н	Х	х	X	н
н	L	L	Х	L	х	х	L
н	L	L	х	н	х	х	н
L	н	L	X	Х	L	X	L
L	н	L	Х	Х	н	X	н
н	н	L	X	х	X	L	L
Н	н	L	Х	Х	х	н	н

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Logic Diagram

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
Icc Maximum Quiescent Supply Current		160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μA	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT153)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

	Parameter			74AC		54	AC	74	AC		
Symbol		Vcc* (V)		TA = + 25 °C CL = 50 pF		TA = − 55°C to + 125°C CL = 50 pF		T _A = − 40 °C to + 85 °C C _L = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay Sn to Zn	3.3 5.0	1.0 1.0	9.5 6.5	15.0 11.0	1.0 1.0	19.5 14.0	1.0 1.0	17.5 12.5	ns	3-6
tphl	Propagation Delay Sn to Zn	3.3 5.0	1.0 1.0	8.5 6.5	14.5 11.0	1.0 1.0	18.0 13.5	1.0 1.0	16.5 12.0	ns	3-6
tplH	Propagation Delay En to Zn	3.3 5.0	1.0 1.0	8.0 5.5	13.5 9.5	1.0 1.0	16.5 12.5	1.0 1.0	16.0 11.0	ns	3-6
tPHL .	Propagation Delay En to Zn	3.3 5.0	1.0 1.0	7.0 5.0	11.0 8.0	1.0 1.0	14.0 10.0	1.0 1.0	12.5 9.0	ns	3-6
tPLH	Propagation Delay In to Zn	3.3 5.0	1.0 1.0	7.5 5.5	12.5 9.0	1.0 1.0	16.0 11.5	1.0 1.0	14.5 10.5	ns	3-5
tphl	Propagation Delay In to Zn	3.3 5.0	1.0 1.0	7.0 5.0	11.5 8.5	1.0 1.0	14.5 10.5	1.0 1.0	13.0 10.0	ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

				74ACT		54/	ACT	74	АСТ		
Symbol	Parameter	Vcc* (V)		Ta = + 25 °C C∟ = 50 pF		TA = − 55°C to + 125°C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tрLH	Propagation Delay Sn to Zn	5.0	1.0	7.0	11.5	1.0	15.0	1.0	13.5	ns	3-6
tphl	Propagation Delay Sn to Zn	5.0	1.0	7.0	11.5	1.0	14.5	1.0	13.5	ns	3-6
tplH	Propagation Delay En to Zn	5.0	1.0	6.5	10.5	1.0	13.5	1.0	12.5	ns	3-6
tphl	Propagation Delay En to Zn	5.0	1.0	6.0	9.5	1.0	11.5	1.0	11.0	ns	3-6
tplH	Propagation Delay In to Zn	5.0	1.0	5.5	9.5	1.0	12.5	1.0	11.0	ns	3-5
tph∟	Propagation Delay In to Zn	5.0	1.0	5.5	9.5	1.0	12.0	1.0	11.0	ns	3-5

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
Symbol	Farameter	Тур	Units	Conditions	
Cin	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Срр	Power Dissipation Capacitance	65.0	pF	Vcc = 5.5 V	

54AC/74AC157 • 54ACT/74ACT157

Quad 2-Input Multiplexer

Description

The 'AC/'ACT157 is a high-speed quad 2-input multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four outputs present the selected data in the true (noninverted) form. The 'AC/'ACT157 can also be used as a function generator.

- Outputs Source/Sink 24 mA
- 'ACT157 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

10a - 10d	Source 0 Data Inputs
l1a - l1d	Source 1 Data Inputs
Ē	Enable Input
S	Select Input
Za-Zd	Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

Functional Description

The 'AC/'ACT157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (Ē) is active-LOW. When \overline{E} is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The 'AC/'ACT157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

 $\begin{aligned} Z_a &= \overline{E} \bullet (|1a \bullet S + |0a \bullet \overline{S}) \\ Z_b &= \overline{E} \bullet (|1b \bullet S + |0b \bullet \overline{S}) \\ Z_c &= \overline{E} \bullet (|1c \bullet S + |0c \bullet \overline{S}) \\ Z_d &= \overline{E} \bullet (|1d \bullet S + |0d \bullet \overline{S}) \end{aligned}$

A common use of the 'AC/'ACT157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The 'AC/'ACT157 can

Logic Diagram

generate any four of the sixteen different functions of two variables with one variable common. This is useful for implementing gating functions.

Truth Table

	Inp	Outputs		
Ē	S	lo	I 1	Z
н	Х	Х	Х	L
L	н	X	L	L
L	н	Х	н	н
L	L	L	Х	L
L	L	н	Х	н

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics	(unless	otherwise	specified)
---------------------------	---------	-----------	------------

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
Icc Maximum Quiescent Supply Current		160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_{A} = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT157)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

	Parameter			74AC		54AC		74	AC		
Symbol		Vcc* (V)		TA = + 25 °C CL = 50 pF			TA = − 55°C to + 125°C CL = 50 pF		– 40°C 85°C 50 pF	Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tPLH	Propagation Delay S to Zn	3.3 5.0	1.0 1.0	7.0 5.5	11.5 9.0	1.0 1.0	14.5 11.0	1.0 1.0	13.0 10.0	ns	3-6
tphl	Propagation Delay S to Zn	3.3 5.0	1.0 1.0	6.5 5.0	11.0 8.5	1.0 1.0	13.5 10.5	1.0 1.0	12.0 9.5	ns	3-6
tplH	Propagation Delay Ē to Zn	3.3 5.0	1.0 1.0	7.0 5.5	11.5 9.0	1.0 1.0	14.0 10.5	1.0 1.0	13.0 10.0	ns	3-6
t PHL	Propagation Delay E to Zn	3.3 5.0	1.0 1.0	6.5 5.5	11.0 9.0	1.0 1.0	13.0 10.5	1.0 1.0	12.0 9.5	ns	3-6
tplH	Propagation Delay In to Zn	3.3 5.0	1.0 1.0	5.0 4.0	8.5 6.5	1.0 1.0	10.0 7.5	1.0 1.0	9.0 7.0	ns	3-5
tphL	Propagation Delay In to Zn	3.3 5.0	1.0 1.0	5.0 4.0	8.0 6.5	1.0 1.0	10.0 7.5	1.0 1.0	9.0 7.0	ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V±0.5 V

				74ACT		54ACT		74ACT			
Symbol	Parameter	Vcc* (V)	TA = + 25 °C CL = 50 pF			TA = - 55°C to + 125°C CL = 50 pF		$TA = -40 \degree C$ to +85 \degree C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplH	Propagation Delay S to Zn	5.0	1.0	5.5	9.0	1.0	13.0	1.0	10.0	ns	3-6
t PHL	Propagation Delay S to Zn	5.0	1.0	5.5	9.5	1.0	12.5	1.0	10.5	ns	3-6
tрlн	Propagation Delay E to Zn	5.0	1.0	6.0	10.0	1.0	13.0	1.0	11.5	ns	3-6
t PHL	Propagation Delay E to Zn	5.0	1.0	5.0	8.5	1.0	12.5	1.0	9.0	ns	3-6
tplH	Propagation Delay In to Zn	5.0	1.0	4.0	7.0	1.0	10.0	1.0	8.5	ns	3-5
t PHL	Propagation Delay In to Zn	5.0	1.0	4.5	7.5	1.0	10.0	1.0	8.5	ns	3-5

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
Symbol	r arameter	Тур	Onits	Contantions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Срр	Power Dissipation Capacitance	50.0	pF	Vcc = 5.5 V	

54AC/74AC158 • 54ACT/74ACT158

Quad 2-Input Multiplexer

Description

The 'AC/'ACT158 is a high-speed quad 2-input multiplexer. It selects four bits of data from two sources using the common Select and Enable inputs. The four buffered outputs present the selected data in the inverted form. The 'ACI'ACT158 can also be used as a function generator.

- Outputs Source/Sink 24 mA
- 'ACT158 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

10a - 10d	Source 0 Data Inputs
l1a - 11d	Source 1 Data Inputs
Ē	Enable Input
S	Select Input
Za - Zd	Inverted Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

Functional Description

The 'AC/'ACT158 quad 2-input multiplexer selects four bits of data from two sources under the control of a common Select input (S) and presents the data in inverted form at the four outputs. The Enable input (Ē) is active-LOW. When Ē is HIGH, all of the outputs (\overline{Z}) are forced HIGH regardless of all other inputs. The 'AC/'ACT158 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input.

A common use of the 'AC/'ACT158 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The 'AC/'ACT158 can generate four functions of two variables with one variable common. This is useful for implementing gating functions.

Truth Table

	Inp	uts		Output
Ē	S	lo	1	Z
Н	Х	Х	Х	Н
L	L	L	X	н
L	L	н	Х	L
L	н	X	L	н
L	н	Х	н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Logic Diagram

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	VIN = Vcc or Ground, Vcc = 5.5 V, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT158)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V$ $T_A = Worst Case$

	Parameter			74AC T _A = + 25 °C CL = 50 pF			54AC TA = - 55°C to + 125°C CL = 50 pF		74AC T _A = -40°C to +85°C CL=50 pF		
Symbol		Vcc* (V)									Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tpLH	Propagation Delay S to Zn	3.3 5.0	1.0 1.0	7.0 5.5	11.5 9.0	1.0 1.0	13.5 10.5	1.0 1.0	12.5 9.5	ns	3-6
tPHL	Propagation Delay S to Zn	3.3 5.0	1.0 1.0	7.0 5.5	11.5 9.0	1.0 1.0	14.0 10.5	1.0 1.0	12.5 10.0	ns	3-6
tplh	Propagation Delay E to Zn	3.3 5.0	1.0 1.0	7.5 6.0	12.0 9.5	1.0 1.0	14.5 11.0	1.0 1.0	13.0 10.5	ns	3-6
t PHL	Propagation Delay E to Zn	3.3 5.0	1.0 1.0	7.0 5.5	11.0 8.5	1.0 1.0	13.0 10.0	1.0 1.0	12.0 9.5	ns	3-6
tрLн	Propagation Delay In to Zn	3.3 5.0	1.0 1.0	5.5 4.0	9.0 7.0	1.0 1.0	10.5 8.5	1.0 1.0	10.0 7.5	ns	3-5
tphl	Propagation Delay In to Zn	3.3 5.0	1.0 1.0	5.0 4.0	8.0 6.5	1.0 1.0	9.5 7.5	1.0 1.0	8.5 6.5	ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

	Parameter			74ACT			54ACT		аст		
Symbol		Vcc* (V)	Ta = + 25 °C C∟ = 50 pF			TA = -55 °C to + 125 °C CL = 50 pF		TA = -40 °C to +85 °C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max]	
tplh	Propagation Delay S to \overline{Z}_n	5.0	1.0	6.0	9.5	1.0	12.0	1.0	11.0	ns	3-6
tph∟	Propagation Delay S to \overline{Z}_n	5.0	1.0	5.5	9.0	1.0	11.0	1.0	10.0	ns	3-6
tр∟н	Propagation Delay E to Zn	5.0	1.0	5.5	9.5	1.0	11.0	1.0	10.5	ns	3-6
t PHL	Propagation Delay E to Zn	5.0	1.0	5.5	9.5	1.0	11.5	1.0	10.5	ns	3-6
tр∟н	Propagation Delay In to Zn	5.0	1.0	4.5	8.0	1.0	9.5	1.0	8.5	ns	3-6
tph∟	Propagation Delay In to Zn	5.0	1.0	4.0	6.5	1.0	8.0	1.0	7.5	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions		
Cymbol		Тур	01113	Contantions		
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V		
CPD	Power Dissipation Capacitance	45.0	pF	Vcc = 5.5 V		

54AC/74AC160 • 54ACT/74ACT160 54AC/74AC162 • 54ACT/74ACT162

Synchronous Presettable BCD Decade Counter

Description

The 'AC/'ACT160 and 'AC/'ACT162 are high-speed synchronous decade counters operating in the BCD (8421) sequence. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The 'AC/'ACT160 has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The 'AC/'ACT162 has a Synchronous Reset input that overrides counting and parallel loading and allows all outputs to be simultaneously reset on the rising edge of the clock.

- Synchronous Counting and Loading
- High-Speed Synchronous Expansion
- Typical Count Rate of 120 MHz
- Outputs Source/Sink 24 mA
- 'ACT160 and 'ACT162 have TTL-Compatible Inputs

Ordering Code: See Section 6

- * MR for '160
- * SR for '162

Pin Names

CEP	Count Enable Parallel Input
CET	Count Enable Trickle Input
СР	Clock Pulse Input
<u>MR</u> ('160)	Asynchronous Master Reset Input
<u>SR</u> ('162)	Synchronous Reset Input
Po - P3	Parallel Data Inputs
PE	Parallel Enable Input
Q0 - Q3	Flip-Flop Outputs
тс	Terminal Count Output

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

* MR for '160 * SR for '162

Functional Description

The 'AC/'ACT160 and 'AC/'ACT162 count modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the '160) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('160), synchronous reset ('162), parallel load, count-up and hold. Five control inputs-Master Reset (MR, '160), Synchronous Reset (SR, '162), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With \overline{PE} and \overline{MR} ('160) or \overline{SR} ('162) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The 'AC/'ACT160 and 'AC/'ACT162 use D-type edgetriggered flip-flops and changing the \overline{SR} , PE, CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

The Terminal Count (TC) output is HIGH when CET is HIGH and counter is in state 9. To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the 'AC568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. In the 'AC/'ACT160 and 'AC/'ACT162 decade counters, the TC output is fully decoded and can only be HIGH in state 9. If a decade counter is preset to an illegal state, or assumes an illegal state when power is applied, it will return to the normal sequence within two counts, as shown in the State Diagram.

Logic Equations: Count Enable = CEP•CET•PE TC = $Q_0 \bullet \overline{Q}_1 \bullet \overline{Q}_2 \bullet Q_3 \bullet CET$

Mode Select Table

* SR	PE	CET	CEP	Action on the Rising Clock Edge (」)
L	Х	Х	х	Reset (Clear)
н	L	х	Х	Reset (Clear) Load (Pn→Qn)
н	н	н	н	Count (Increment)
н	н	L	Х	No Change (Hold)
н	Н	Х	L	No Change (Hold)

*For '162 only

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

State Diagram

P₀ P1 **P**₂ P₃ PE T 160 162 £° CEP CET 162 ONL1 ÷ тс + - CP ĊΡ СР Ð ONLY Ł 1 1 CF i ^ 1 ā 1 DETAIL A DETAIL A DETAIL A Qo 1 1 DETAIL MR '160 SR '162 **Q**0 Q1 **Q**2 Q₃

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT160/162)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

			74AC		544	AC	74AC			
Symbol	Parameter	Vcc* (V)	TA = + 25 CL = 50 p	TA = − 55°C to + 125°C CL = 50 pF		$TA = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.	
			Min Typ	Max	Min	Max	Min	Max		
fmax	Maximum Count Frequency	3.3 5.0	87 118						MHz	3-3
ر tplh	Propagation Delay CP to Qr (PE Input HIGH)	3.3 5.0	7.5 5.5						ns	3-6
tphl	Propagation Delay CP to Qn (PE Input HIGH)	3/3 /5,0	8.5 6.0						ns	3-6
tplh	Propagation Delay CP to Qn (PE Input LOW)	3.3 5.0	9.5 7/0	~					ns	3-6
tphl	Propagation Delay CP to Qn (PE Input LOW)	3.3 5.0	9.5 7.0	77					ns	3-6
tplH	Propagation Delay CP to TC	3.3 5.0	9,5 7.0		M/	7			ns	3-6
tphl	Propagation Delay CP to TC	3.3 5.0	11.0 8.0	Q	IV,	\square		~	ns	3-6
tplH	Propagation Delay CET to TC	3.3 5.0	7.5 5.5			\sim	1/	9	ns	3-6
tphl	Propagation Delay CET to TC	3.3 5.0	8.5 6.0					4	PIS	3-6
tplH	Propagation Delay MR to Qn ('AC160)	3.3 5.0	8.5 6.0						ns	3-6
t PHL	Propagation Delay MR to Qn ('AC160)	3.3 5.0	8.5 6.0						ns	3-6

*Voltage Range 3.3 is 3.0 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC160 • ACT160 • AC162 • ACT162

AC Operating Requirements

			74	AC	54AC	74AC						
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF		TA = − 55 °C to + 125 °C CL = 50 pF	T _A = - 40°C to +85°C CL = 50 pF	Units	Fig. No.				
			Тур		Guaranteed Mi	uaranteed Minimum						
ts	Setup Time, HiGH or LOW Pn to CP	3.3 5.0	5.5 4.0				ns	3-9				
th	Hold Time, HIGH of LOW Pn to GP	3.3 5.0	- 7.0 - 5.0				ns	3-9				
ts	Setup Time, HIGH or LOW PE or SR to CP	8.3 3.3	5.5 4.0				ns	3-9				
th	Hold Time, HIGH or LOW PE or SR to CP	3.3 5.0	- 7.5 - 5.5	$\langle \Lambda \rangle$	17~		ns	3-9				
ts	Setup Time, HIGH or LOW CEP or CET to CP	3.3 5.0	3.5 2.5			$\hat{\mathbf{a}}$	ns	3-9				
th	Hold Time, HIGH or LOW CEP or CET to CP	3.3 5.0	- 4.5 - 3.0			IA	ns	3-9				
tw	Clock Pulse Width (Load) HIGH or LOW	3.3 5.0	3.0 2.0			102	ns	3-6				
tw	Clock Pulse Width (Count) HIGH or LOW	3.3 5.0	3.0 2.0			4	ns	3-6				
tw	MR Pulse Width, LOW ('AC160)	3.3 5.0	4.5 3.0				ns	3-6				
trec	Recovery Time MR to CP ('AC160)	3.3 5.0	0 0				ns	3-9				

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V±0.5 V

AC160 • ACT160 • AC162 • ACT162

AC Characteristics

			74ACT		54/	АСТ	74ACT			
Symbol	Parameter	Vcc* (V)	Ta = + 25 CL = 50 µ	to +	TA = − 55°C to + 125°C CL = 50 pF		- 40°C 85°C 50 pF	Units	Fig. No.	
			Min Typ	Max	Min	Max	Min	Max		
fmax	Maximum Count Frequency	5.0	118						MHz	3-3
tplh	Propagation Delay CP to On (RE Input HIGH)	5.0	5.5						ns	3-6
tph∟	Propagation Delay CP to Qn (PE Input HIGH)	5.0	6.0						ns	3-6
tplH	Propagation Delay CP to Qn (PE Input LOW)	5.0	7.0	~					ns	3-6
tphl	Propagation Delay CP to Qn (PE Input LOW)	5.0	7.0	1 n	\sim				ns	3-6
tрlн	Propagation Delay CP to TC	5.0	7.0	\langle / \rangle	Ν./	7			ns	3-6
t PHL	Propagation Delay CP to TC	5.0	8.0	4	V	\triangleleft	1		ns	3-6
tрLн	Propagation Delay CET to TC	5.0	5.5			J		2	ns	3-6
tphl	Propagation Delay CET to TC	5.0	6.0				6	7]	ns	3-6
tрLн	Propagation Delay MR to Qn ('ACT160)	5.0	6.0						ns	3-6
t PHL	Propagation Delay MR to Qn ('ACT160)	5.0	6.0						ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

		744	СТ	54ACT	74ACT		
Parameter	Vcc* (V)			TA = − 55°C to + 125°C CL = 50 pF	T _A = - 40°C to +85°C CL = 50 pF	Units	Fig. No.
\sim		Тур		Guaranteed Mi	nimum		
Setup Time, HIGH or LOW Pnto-GP	5.0	4.0				ns	3-9
Hold Time, HIGH or LOW Pn to CP	>5.0	- 5.0				ns	3-9
Setup Time, HIGH or LOW PE or SR to CP ('ACT162)	5.0	4.0				ns	3-9
Hold Time, HIGH or LOW PE or SR to CP ('ACT162)	5.0	- 5.5	M	Λ.		ns	3-9
Setup Time, HIGH OR LOW PE or MR to CP ('ACT160)	5.0	4.0		///		ns	3-9
Hold Time, HIGH or LOW PE or MR to CP ('ACT160)	5.0	- 5.5			IA	ns	3-9
Setup Time, HIGH or LOW CEP or CET to CP	5.0	2.5			WR?	ns	> 3-9
Hold Time, HIGH or LOW CEP or CET to CP	5.0	- 3.0				ns	3-9
Clock Pulse Width (Load) HIGH or LOW	5.0	2.0				ns	3-6
Clock Pulse Width (Count) HIGH or LOW	5.0	2.0				ns	3-6
MR Pulse Width, LOW ('ACT160)	5.0	3.0				ns	3-6
Recovery Time MR to CP ('ACT160)	5.0	0				ns	3-9
	Setup Time, HIGH or LOW Pnto-GP Hold Time, HIGH or LOW Pn to CP Setup Time, HIGH or LOW PE or SR to CP ('ACT162) Hold Time, HIGH or LOW PE or SR to CP ('ACT162) Setup Time, HIGH OR LOW PE or MR to CP ('ACT160) Hold Time, HIGH or LOW PE or MR to CP ('ACT160) Setup Time, HIGH or LOW CEP or CET to CP Hold Time, HIGH or LOW CEP or CET to CP Clock Pulse Width (Load) HIGH or LOW Clock Pulse Width (Load) HIGH or LOW Clock Pulse Width (Count) HIGH or LOW MR Pulse Width, LOW ('ACT160) Recovery Time	(V)Setup Time, HIGH or LOW5.0Pnto CP5.0Hold Time, HIGH or LOW Pn to CP5.0Setup Time, HIGH or LOW PE or SR to CP ('ACT162)5.0Hold Time, HIGH or LOW PE or SR to CP ('ACT162)5.0Setup Time, HIGH OR LOW PE or SR to CP ('ACT162)5.0Setup Time, HIGH OR LOW PE or MR to CP ('ACT160)5.0Hold Time, HIGH or LOW PE or MR to CP ('ACT160)5.0Setup Time, HIGH or LOW CEP or CET to CP5.0Setup Time, HIGH or LOW CEP or CET to CP5.0Clock Pulse Width (Load) HIGH or LOW5.0Clock Pulse Width (Count) HIGH or LOW ('ACT160)5.0MR Pulse Width, LOW ('ACT160)5.0Recovery Time5.0	ParameterVcc* (V) $T_{A} = -4$ CL = 5Setup Time, HIGH or LOW5.04.0Pnto CP5.04.0Hold Time, HIGH or LOW Pn to CP5.0-5.0Setup Time, HIGH or LOW PE or SR to CP ('ACT162)5.0-5.0Hold Time, HIGH or LOW PE or SR to CP ('ACT162)5.0-5.5Setup Time, HIGH OR LOW PE or SR to CP ('ACT162)5.0-5.5Setup Time, HIGH OR LOW PE or MR to CP ('ACT160)5.0-5.5Setup Time, HIGH or LOW PE or MR to CP ('ACT160)5.0-5.5Setup Time, HIGH or LOW PE or MR to CP ('ACT160)5.0-5.5Setup Time, HIGH or LOW CEP or CET to CP5.02.5Hold Time, HIGH or LOW CEP or CET to CP5.02.0Clock Pulse Width (Load) HIGH or LOW5.02.0Clock Pulse Width (Load) HIGH or LOW5.02.0Clock Pulse Width, LOW ('ACT160)5.03.0Recovery Time5.000	(V) $CL = 50 \text{ pF}$ TypSetup Time, HIGH or LOW5.04.0Pnto GP5.04.0Hold Time, HIGH or LOW Pn to GP5.0-5.0Setup Time, HIGH or LOW5.0-5.0Mold Time, HIGH or LOW PE or SR to CP ('ACT162)5.0-5.0Mold Time, HIGH or LOW PE or SR to CP ('ACT162)5.0-5.5Setup Time, HIGH OR LOW PE or MR to CP ('ACT160)5.0-5.5Setup Time, HIGH or LOW PE or MR to CP ('ACT160)5.0-5.5Setup Time, HIGH or LOW CEP or CET to CP5.02.5Hold Time, HIGH or LOW CEP or CET to CP5.02.5Clock Pulse Width (Load) HIGH or LOW5.02.0Clock Pulse Width (Load) HIGH or LOW5.02.0Clock Pulse Width (Load) HIGH or LOW5.02.0MR Pulse Width, LOW ('ACT160)5.03.0Recovery Time5.00	ParameterVcc* (V) $T_A = +25 ^{\circ}C$ $C_L = 50 ^{\circ}pF$ $T_A = -55 ^{\circ}C$ to $+ 125 ^{\circ}C$ $C_L = 50 ^{\circ}pF$ Setup Time, HIGH or LOW Pnto CP5.04.0Image: Comparison of the set of the se	ParameterVcc* (V) $T_{A = +25 ^{\circ}C}$ $C_{L = 50 ^{\circ}F}$ $T_{A = -55 ^{\circ}C}$ $to +125 ^{\circ}C$ $C_{L = 50 ^{\circ}F}$ $T_{A = -40 ^{\circ}C}$ $to +125 ^{\circ}C$ $C_{L = 50 ^{\circ}F}$ $T_{A = -40 ^{\circ}C}$ $to +85 ^{\circ}C$ $C_{L = 50 ^{\circ}F}$ Setup Time, H(GH or LOW Pn to CP 5.04.04.0High or LOW PE or SR to CP (ACT162)5.0-5.0-5.0Setup Time, HIGH Or LOW PE or SR to CP (ACT162)5.0-5.0-5.0Setup Time, HIGH OR LOW PE or MR to CP ('ACT160)5.0-5.5Setup Time, HIGH or LOW PE or MR to CP ('ACT160)5.0-5.5Setup Time, HIGH or LOW CEP or CET to CP5.0-5.5Setup Time, HIGH or LOW CEP or CET to CP5.0-5.5Setup Time, HIGH or LOW CEP or CET to CP5.0-5.5Setup Time, HIGH or LOW CEP or CET to CP5.0-3.0Clock Pulse Width (Load) HIGH or LOW CED or CET to CP5.02.0Clock Pulse Width (Load) HIGH or LOW CCunt) HIGH or LOW CCunt) HIGH or LOW5.02.0Clock Pulse Width (Load) HIGH or LOW5.02.0Clock Pulse Width, LOW (Cart160)5.03.03.0MR Pulse Width, LOW (Cart160)5.03.0Recovery Time Recovery Time5.00	ParameterVcc* (V) $T_{A = +25 ^{\circ}C}$ $C_{L = 50 ^{\circ}P}$ $T_{A = -55 ^{\circ}C}$ $t + 125 ^{\circ}C$ $C_{L = 50 ^{\circ}P}$ $T_{A = -40 ^{\circ}C}$ $t + 85 ^{\circ}C$ $C_{L = 50 ^{\circ}P}$ UnitsSetup Time, HIGH or LOW Ph to OP5.04.0nsSetup Time, HIGH or LOW PE or SR to CP ('ACT162)5.0-5.0nsSetup Time, HIGH OR LOW PE or SR to CP ('ACT162)5.0-5.0nsSetup Time, HIGH OR LOW PE or SR to CP ('ACT162)5.0-5.5nsSetup Time, HIGH OR LOW PE or TMR to CP ('ACT160)5.0-5.5nsSetup Time, HIGH OR LOW PE or TMR to CP ('ACT160)5.0-5.5nsSetup Time, HIGH or LOW PE or TMR to CP ('ACT160)5.0-5.5nsSetup Time, HIGH or LOW CEP or CET to CP5.0-5.5nsNold Time, HIGH or LOW CEP or CET to CP5.0-3.0nsClock Pulse Width (Load) HIGH or LOW5.02.0nsClock Pulse Width (Load) HIGH or LOW5.02.0nsClock Pulse Width, LOW (Count) HIGH or LOW5.03.0nsRecovery Time5.000ns

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions		
Symbol		Тур	Onits	Conditions		
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V		
Срр	Power Dissipation Capacitance		pF	Vcc = 5.5 V		

54AC/74AC161 • 54ACT/74ACT161 54AC/74AC163 • 54ACT/74ACT163

Synchronous Presettable Binary Counter

Description

The 'AC/'ACT161 and 'AC/'ACT163 are high-speed synchronous modulo-16 binary counters. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The 'AC/'ACT161 has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The 'AC/'ACT163 has a Synchronous Reset input that overrides counting and parallel loading and allows the outputs to be simultaneously reset on the rising edge of the clock.

- Synchronous Counting and Loading
- High-Speed Synchronous Expansion
- Typical Count Rate of 125 MHz
- Outputs Source/Sink 24 mA
- 'ACT161 and 'ACT163 have TTL-Compatible Inputs

Ordering Code: See Section 6

Pin Names

Count Enable Parallel Input
•
Count Enable Trickle Input
Clock Pulse Input
Asynchronous Master Reset Input
Synchronous Reset Input
Parallel Data Inputs
Parallel Enable Input
Flip-Flop Outputs
Terminal Count Output

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

* MR for '161 * SR for '163

Functional Description

The 'AC/'ACT161 and 'AC/'ACT163 count in modulo-16 binary sequence. From state 15 (HHHH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the '161) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('161). synchronous reset ('163), parallel load, count-up and hold. Five control inputs-Master Reset (MR, '161), Synchronous Reset (SR, '163), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With \overline{PE} and \overline{MR} ('161) or \overline{SR} ('163)

HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The 'AC/'ACT161 and 'AC/'ACT163 use D-type edgetriggered flip-flops and changing the \overline{SR} , \overline{PE} , CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

The Terminal Count (TC) output is HIGH when CET is HIGH and counter is in state 15. To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the 'AC568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers.

Logic Equations: Count Enable = $CEP \cdot CET \cdot \overline{PE}$ TC = $Q0 \cdot Q1 \cdot Q2 \cdot Q3 \cdot CET$

Mode Select Table

*SR	PE	CET	CEP	Action on the Rising Clock Edge (⅃)
L	Х	Х	Х	Reset (Clear)
н	L	х	X	Load (Pn→Qn)
н	н	н	н	Count (Increment)
н	Н	L	Х	No Change (Hold)
H	Н	Х	L	No Change (Hold)

*For '163 only

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

State Diagram

AC161 • ACT161 • AC163 • ACT163

Block Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT161/163)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_{A} = Worst Case$

			74AC161		54AC161	74AC161			
Symbol	Symbol Parameter		TA = + 25°C C∟=50 pF		$T_A = -55^{\circ}C$ to +125^{\circ}C CL = 50 pF	$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units	Fig. No.	
	VON		Min Typ Ma	ах	Min Max	Min Max			
fmax	Maximum Count Frequency	3.3 5.0	87 118				MHz	3-3	
tplH	Propagation Delay CP to Qn (PE Input HIGH or LOW)	3.3 5.0	7.5 5.5				ns	3-6	
t PHL	Propagation Delay CP to Qn (PE Input HIGH or LOW)	3.3 5.0	8.5 60		>		ns	3-6	
tplH	Propagation Delay CP to TC	3.3 5.0	9.5 7.0	/	AD		ns	3-6	
tрнL	Propagation Delay CP to TC	3.3 5.0	11.0 8.0	7		12	ns	3-6	
tplh	Propagation Delay CET to TC	3.3 5.0	7.5 5.5			$ \rangle$	ns	3-6	
tphl.	Propagation Delay CET to TC	3.3 5.0	8.5 6.0			N.	PIS	> ₃₋₆	
tplH	Propagation Delay MR to Qn	3.3 5.0	8.5 6.0			4	ns	3-6	
tphL	Propagation Delay MR to TC	3.3 5.0	11.0 8.0				ns	3-6	

*Voltage Range 3.3 is 3.0 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Operating Requirements

			74A	C161	54AC161	74AC161	Units	
Symbol	Parameter	Vcc* (V)	TA = H CL = {		TA = - 55°C to + 125°C CL = 50 pF	TA = - 40°C to +85°C CL = 50 pF		Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HGH or LOW Pryto CP	3.3 5.0	5.5 4.0				ns	3-9
tn <	Hold Time, HIGH or LOW	3.3 5.0	- 7.0 - 5.0				ns	3-9
ts	Setup Time, HIGH or LOW SR to CP	3.3 5.0	5.5 4.0				ns	3-9
th	Hold Time, HIGH or LOW	3.3 5.0	- 7.5 - 5.5	7~			ns	3-9
ts	Setup Time, HIGH or LOW PE to CP	3.3 5.0	5.5 4.0	$\langle / /$	100		ns	3-9
th	Hold Time, HIGH or LOW PE to CP	3.3 5.0	- 7.5 - 5.5	-4		\widehat{A}	ns	3-9
ts	Setup Time, HIGH or LOW CEP or CET to CP	3.3 5.0	3.5 2.5			ID	ns	3-9
th	Hold Time, HIGH or LOW CEP or CET to CP	3.3 5.0	- 4.5 - 3.0				ns	3-9
tw	Clock Pulse Width (Load) HIGH or LOW	3.3 5.0	3.0 2.0				ns	3-6
tw	Clock Pulse Width (Count) HIGH or LOW	3.3 5.0	3.0 2.0				ns	3-6
tw	MR Pulse Width, LOW	3.3 5.0	4.5 3.0				ns	3-6
trec	Recovery Time MR to CP	3.3 5.0	0 0				ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

	Parameter		7	4ACT16	61	54AC	CT161	74ACT161			
Symbol		Vcc* (V)	TA = + 25 °C CL = 50 pF			$T_A = -55 \degree C$ to + 125 °C CL = 50 pF		TA = - 40°C to + 85°C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Count Frequency	5.0	115	125				100		MHz	3-3
tplH	Propagation Delay CP to Qn (PE Input HIGH or LOW)	5.0	1.0	5.5	9.5			1.0	10.5	ns	3-6
tphl	Propagation Delay CP to Qn (PE Input HIGH or LOW)	5.0	1.0	6.0	10.5			1.0	11.5	ns	3-6
tplH	Propagation Delay CP to TC	5.0	1.0	7.0	11.0			1.0	12.5	ns	3-6
tphL	Propagation Delay CP to TC	5.0	1.0	8.0	12.5			1.0	13.5	ns	3-6
tplH	Propagation Delay CET to TC	5.0	1.0	5.5	8.5			1.0	10.0	ns	3-6
tphl	Propagation Delay CET to TC	5.0	1.0	6.0	9.5	3		1.0	10.5	ns	3-6
tphL	Propagation Delay MR to Qn	5.0	1.0	6.0	10.0			1.0	11.0	ns	3-6
tphL	Propagation Delay MR to TC	5.0	1.0	8.0	13.5			1.0	14.5	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

	Parameter		74AC	T161	54ACT161	74ACT161		
Symbol		Vcc* (V)	TA = H CL = S		TA = - 55°C to + 125°C CL = 50 pF	$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Pn to CP	5.0	4.0	9.5		11.5	ns	3-9
th	Hold Time, HIGH or LOW Pn to CP	5.0	- 5.0	0		0	ns	3-9
ts	Setup Time, HIGH or LOW MR to CP	5.0	4.0	8.5		9.5	ns	3-9
th	Hold Time, HIGH or LOW	5.0	- 5.5	- 0.5		- 0.5	ns	3-9
ts	Setup Time HIGH or LOW PE to CP	5.0	4.0	8.5		9.5	ns	3-9
th	Hold Time, HIGH or LOW PE to CP	5.0	- 5.5	- 0.5		- 0.5	ns	3-9
ts	Setup Time, HIGH or LOW CEP or CET to CP	5.0	2.5	5.5		6.5	ns	3-9
th	Hold Time, HIGH or LOW CEP or CET to CP	5.0	- 3.0	0		0	ns	3-9
tw	Clock Pulse Width (Load) HIGH or LOW	5.0	2.0	3.0		3.5	ns	3-6
tw	Clock Pulse Width (Count) HIGH or LOW	5.0	2.0	3.0		3.5	ns	3-6
tw	MR Pulse Width, LOW	5.0	3.0	3.0		7.5	ns	3-6
trec	Recovery Time MR to CP	5.0	0	0		0.5	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
	Falanetei	Тур	Unita	Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Cpd	Power Dissipation Capacitance	45.0	pF	Vcc = 5.5 V	

	Parameter		;	74AC16	3	54A	C163	74A	C163		
Symbol		Vcc* (V)	TA = + 25°C CL = 50 pF			$T_A = -55 ^{\circ}C$ to +125 ^{\circ}C CL = 50 pF		$TA = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Count Frequency	3.3 5.0	70 110	87 118				60 95		MHz	3-3
tрlн	Propagation Delay CP to Qn (PE Input HIGH or LOW)	3.3 5.0	1.0 1.0	7.5 5.5	12.5 9.0			1.0 1.0	13.5 9.5	ns	3-6
tphl	Propagation Delay CP to Qn (PE Input HIGH or LOW)	3.3 5.0	1.0 1.0	8.5 6.0	12.0 9.5			1.0 1.0	13.0 10.0	ns	3-6
tрLH	Propagation Delay CP to TC	3.3 5.0	1.0 1.0	9.5 7.0	15.0 10.5			1.0 1.0	16.5 11.5	ns	3-6
tphl	Propagation Delay CP to TC	3.3 5.0	1.0 1.0	11.0 8.0	14.0 11.0			1.0 1.0	15.5 11.5	ns	3-6
tplH	Propagation Delay CET to TC	3.3 5.0	1.0 1.0	7.5 5.5	9.5 6.5			1.0 1.0	11.0 7.5	ns	3-6
tphL	Propagation Delay CET to TC	3.3 5.0	1.0 1.0	8.5 6.0	11.0 8.5			1.0 1.0	12.5 9.5	ns	3-6

*Voltage Range 3.3 is 3.0 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

	Parameter	Vcc* (V)	74A0	C163	54AC163	74AC163		
Symbol			TA = + 25 °C CL = 50 pF		TA = − 55°C to + 125°C CL = 50 pF	$T_A = -40 \degree C$ to +85 ° C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Minimum			
ts	Setup Time, HIGH or LOW Pn to CP	3.3 5.0	5.5 4.0	13.5 8.5		16.0 10.5	ns	3-9
th	Hold Time, HIGH or LOW Pn to CP	3.3 5.0	- 7.0 - 5.0	- 1.0 0		- 0.5 0	ns	3-9
ts	Setup Time, HIGH or LOW SR to CP	3.3 5.0	5.5 4.0	14.0 9.5		16.5 11.0	ns	3-9
th	Hold Time, HIGH or LOW	3.3 5.0	- 7.5 - 5.5	- 1.0 - 0.5		- 0.5 0	ns	3-9
ts	Setup Time, HIGH or LOW PE to CP	3.3 5.0	5.5 4.0	11.5 7.5		14.0 8.5	ns	3-9
th	Hold Time, HIGH or LOW PE to CP	3.3 5.0	- 7.5 - 5.0	- 1.0 - 0.5		- 0.5 0	ns	3-9
ts	Setup Time, HIGH or LOW CEP or CET to CP	3.3 5.0	3.5 2.5	6.0 4.5		7.0 5.0	ns	3-9
th	Hold Time, HIGH or LOW CEP or CET to CP	3.3 5.0	- 4.5 - 3.0	0 0		0 0.5	ns	3-9
tw	Clock Pulse Width (Load) HIGH or LOW	3.3 5.0	3.0 2.0	3.5 2.5		4.0 3.0	ns	3-6
tw	Clock Pulse Width (Count) HIGH or LOW	3.3 5.0	3.0 2.0	4.0 3.0		4.5 3.5	ns	3-6

*Voltage Range 3.3 is 3.3 V±0.3 V

Voltage Range 5.0 is 5.0 V±0.5 V

Symbol	Parameter		74ACT163 T _A = + 25°C C _L = 50 pF			54ACT163 T _A = - 55°C to + 125°C CL = 50 pF		74ACT163 T _A = - 40 °C to + 85 °C CL = 50 pF		Units	Fig. No.
		Vcc* (V)									
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Count Frequency	5.0	120	128				105		MHz	3-3
tplh	Propagation Delay CP to Qn (PE Input HIGH or LOW)	5.0	1.0	5.5	10.0			1.0	11.0	ns	3-6
t PHL	Propagation Delay CP to Qn (PE Input HIGH or LOW)	5.0	1.0	6.0	11.0			1.0	12.0	ns	3-6
tр∟н	Propagation Delay CP to TC	5.0	1.0	7.0	11.5			1.0	13.5	ns	3-6
tphL	Propagation Delay CP to TC	5.0	1.0	8.0	13.5			1.0	15.0	ns	3-6
tрLH	Propagation Delay CET to TC	5.0	1.0	5.5	9.0			1.0	10.5	ns	3-6
tPHL	Propagation Delay CET to TC	5.0	1.0	6.0	10.0			1.0	11.0	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC161 • ACT161 • AC163 • ACT163

AC Operating Requirements

Symbol	Parameter	Vcc* (V)	74ACT163 TA = + 25°C CL = 50 pF		54ACT163	74ACT163	Units	Fig. No.
					TA = − 55°C to + 125°C CL = 50 pF	$T_{A} = -40 ^{\circ}C$ to +85 ^{\circ}C CL = 50 pF		
			Тур		Guaranteed Mi			
ts	Setup Time, HIGH or LOW Pn to CP	5.0	4.0	10.0		12.0	ns	3-9
th	Hold Time, HIGH or LOW Pn to CP	5.0	- 5.0	0.5		0.5	ns	3-9
ts	Setup Time, HIGH or LOW SR to CP	5.0	4.0	10.0		11.5	ns	3-9
th	Hold Time, HIGH or LOW	5.0	- 5.5	- 0.5		- 0.5	ns	3-9
ts	Setup Time HIGH or LOW PE to CP	5.0	4.0	8.5		10.5	ns	3-9
th	Hold Time, HIGH or LOW PE to CP	5.0	- 5.5	- 0.5		0	ns	3-9
ts	Setup Time, HIGH or LOW CEP or CET to CP	5.0	2.5	5.5		6.5	ns	3-9
th	Hold Time, HIGH or LOW CEP or CET to CP	5.0	- 3.0	0		0.5	ns	3-9
tw	Clock Pulse Width HIGH or LOW	5.0	2.0	3.5		3.5	ns	3-6
tw	Clock Pulse Width (Count) HIGH or LOW	5.0	2.0	3.5		3.5	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
Symbol		Тур	Onits		
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Cpd	Power Dissipation Capacitance	45.0	pF	Vcc = 5.5 V	

54AC/74AC168 • 54AC/74AC169

4-Stage Synchronous Bidirectional Counters

Description

The 'AC168 and 'AC169 are fully synchronous 4-stage up/down counters. The 'AC168 is a BCD decade counter; the 'AC169 is a modulo-16 binary counter. Both feature a preset capability for programmable operation, carry lookahead for easy cascading and a U/D input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the Clock.

- Synchronous Counting and Loading
- Built-in Lookahead Carry Capability
- Presettable for Programmable Operation
- Outputs Source/Sink 24 mA

Ordering Code: See Section 6

Logic Symbol

Pin Names

- CEP Count Enable Parallel Input
- CET Count Enable Trickle Input
- CP Clock Pulse Input
- Po P3 Parallel Data Inputs
- PE Parallel Enable Input
- U/D Up-Down Count Control Input
- Q0 Q3 Flip-Flop Outputs
- TC Terminal Count Output

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

AC168 • AC169

Logic Diagrams

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

'AC169

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Functional Description

The 'AC168 and 'AC169 use edge-triggered J-K-type flip-flops and have no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over the other operations, as indicated in the Mode Select Table. When PE is LOW, the data on the Po-P3 inputs enters the flip-flops on the next rising edge of the Clock. In order for counting to occur. both CEP and CET must be LOW and PE must be HIGH: the U/\overline{D} input then determines the direction of counting. The Terminal Count (\overline{TC}) output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the Count Down mode or reaches 9 (15 for the 'AC169) in the Count Up mode. The \overline{TC} output state is not a function of the Count Enable Parallel (CEP) input level. The TC output of the 'AC168 decade counter can also be LOW in the illegal states 11, 13 and 15, which can occur when power is turned on or via parallel loading. If an illegal state occurs, the 'AC169 will return to the legitimate sequence within two counts. Since the \overline{TC} signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on TC. For this reason the use of \overline{TC} as a clock signal is not recommended (see logic equations below).

 1) Count Enable = CEP•CET•PE
 2) Up: ('AC168): TC = Q0•Q1•Q2•Q3•(Up)•CET ('AC169): TC = Q0•Q1•Q2•Q3•(Up)•CET
 3) Down (both): TC = Q0•Q1•Q2•Q3•(Down)•CET

Mode Select Table

PE	CEP	CET	U/D	Action on Rising Clock Edge
L	Х	Х	Х	Load (Pn to Qn) Count Up (Increment) Count Down (Decrement)
н	L	L	н	Count Up (Increment)
н	L	L	L	Count Down (Decrement)
н	н	х	х	No Change (Hold)
н	Х	н	Х	No Change (Hold) No Change (Hold)

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

State Diagrams

'AC168

'AC169

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	74AC	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	VIN = Vcc or Ground, Vcc = 5.5 V, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = 25 °C

AC Characteristics

			7	4AC16	8	54A	C168	74A	C168		
Symbol	Parameter	Vcc* (V)	TA = + 25 °C CL = 50 pF			TA = -55 °C to +125 °C CL = 50 pF		$T_A = -40 \degree C$ to +85 \degree C CL = 50 pF		Units	Fig. No.
	P/A		Min	Тур	Мах	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	3.3 5.0		118 154						MHz	3-3
tр∟н	Propagation Delay CP to Qn (PE HIGH or LOW)	3.3 5.0	Λ	9.5 7.0						ns	3-6
tрнL	Propagation Delay CP to Qn (PE HIGH or LOW)	3.3 5.0		10.5 7.5	717					ns	3-6
tplH	Propagation Delay CP to TC	3.3 5.0	C	13.5 9.5	$\left \right \right $		7			ns	3-6
tphl	Propagation Delay CP to TC	3.3 5.0		13.5 9.5		V,	A			ns	3-6
tрLн	Propagation Delay CET to TC	3.3 5.0		11.0 8.0		\sim	$\overline{)}$		DI	ns	3-6
tрнL	Propagation Delay CET to TC	3.3 5.0		9.5 7.0				\sum	\sum	ns	3-6
tрLн	Propagation Delay U/D to TC	3.3 5.0		10.5 7.5					\bigtriangledown	ns	3-6
tph∟	Propagation Delay U/D to TC	3.3 5.0		9.0 6.5						ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74A	C168	54AC168	74AC168			
Symbol	Parameter	Vcc* (V)	TA = + CL = \$		TA = − 55°C to + 125°C CL = 50 pF	T _A = - 40°C to +85°C CL = 50 pF	Units	Fig. No.	
			Тур		Guaranteed Mi	Guaranteed Minimum			
ts	Setup Time, HIGH or LOW Pn to CP	3.3 5.0	3.0 1.5				ns	3-9	
th 🤇	Hold Time, HIGH or LOW	3.3 5.0	1.5 0.5				ns	3-9	
ts	Setup Time, HIGH or LOW CEP to CP	3:3 /5,0	7.5 4.5				ns	3-9	
th	Hold Time, HIGH or LOW CEP to CP	3.3 5.0	4/5 2.0	77			ns	3-9	
ts	Setup Time, HIGH or LOW CET to CP	3.3 5.0	7.0 4.0		TAN		ns	3-9	
th	Hold Time, HIGH or LOW CET to CP	3.3 5.0	6.0 4.0			$\widehat{\Lambda}$	ns	3-9	
ts	Setup Time, HIGH or LOW PE to CP	3.3 5.0	3.5 2.0			ID	ns	3-9	
th	Hold Time, HIGH or LOW PE to CP	3.3 5.0	3.5 1.5			1	ns	3-9	
ts	Setup Time, HIGH or LOW U/D to CP	3.3 5.0	12.5 9.0				ns	3-9	
th	Hold Time, HIGH or LOW U/D to CP	3.3 5.0	7.0 4.0				ns	3-9	
tw	CP Pulse Width, HIGH or LOW	3.3 5.0	2.0 2.0				ns	3-6	

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC168 • AC169

AC Characteristics

				74AC16	9	54A	C169	74A	C169		
Symbol	Parameter	Vcc* (V)		A = +25 GL = 50 p		T _A = − 55°C to + 125°C C _L = 50 pF		TA = -40°C to +85°C CL = 50 pF		Units	Fig. No.
			Min	Тур	Мах	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	3.3 5.0	75 100	118 154		55 75		65 90		MHz	3-3
tplн	Propagation Delay CP to Qn (PE HIGH or LOW)	3.3 5.0	1.0 1.0	9.5 7.0	13.0 10.0	1.0 1.0	16.0 12.0	1.0 1.0	14.5 11.0	ns	3-6
tрнL	Propagation Delay CP to Qn (PE HIGH or LOW)	3.3 5.0	1.0 1.0	10.5 7.5	14.5 11.0	1.0 1.0	17.5 13.0	1.0 1.0	16.0 12.0	ns	3-6
tplh	Propagation Delay CP to TC	3.3 5.0	1.0 1.0	13.5 9.5	18.0 13.0	1.0 1.0	22.5 16.0	1.0 1.0	22.0 14.0	ns	3-6
t PHL	Propagation Delay CP to TC	3.3 5.0	1.0 1.0	13.5 9.5	18.0 13.0	1.0 1.0	23.0 16.0	1.0 1.0	20.5 14.5	ns	3-6
tplh	Propagation Delay CET to TC	3.3 5.0	1.0 1.0	11.0 8.0	15.0 10.5	1.0 1.0	18.5 13.0	1.0 1.0	16.5 12.0	ns	3-6
tphl	Propagation Delay CET to TC	3.3 5.0	1.0 1.0	9.5 7.0	12.5 9.0	1.0 1.0	16.0 11.5	1.0 1.0	14.5 10.0	ns	3-6
tplh	Propagation Delay U/D to TC	3.3 5.0	1.0 1.0	11.0 8.0	15.0 10.5	1.0 1.0	19.0 13.5	1.0 1.0	17.0 12.0	ns	3-6
tph∟	Propagation Delay U/D to TC	3.3 5.0	1.0 1.0	10.0 7.0	13.5 9.5	1.0 1.0	17.0 12.0	1.0 1.0	15.5 10.5	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V±0.5 V

AC Operating Requirements

			74A	C169	54AC169	74AC169		
Symbol	Parameter	Vcc* (V)		⊦25°C 50 pF	TA = − 55°C to + 125°C CL = 50 pF	$T_A = -40 \text{°C}$ to +85 °C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Pn to CP	3.3 5.0	3.0 1.5	4.5 2.5	6.0 3.0	5.0 2.5	ns	3-9
th	Hold Time, HIGH or LOW Pn to CP	3.3 5.0	1.5 0.5	0.5 1.5	0.5 1.5	0.5 1.5	ns	3-9
ts	Setup Time, HIGH or LOW CEP to CP	3.3 5.0	7.5 4.5	10.5 7.0	14.0 9.0	12.5 8.0	ns	3-9
th	Hold Time, HIGH or LOW CEP to CP	3.3 5.0	4.5 2.0	0 0.5	0.5 1.0	0 1.0	ns	3-9
ts	Setup Time, HIGH or LOW CET to CP	3.3 5.0	7.0 4.0	10.0 6.5	13.5 9.0	12.0 8.0	ns	3-9
th	Hold Time, HIGH or LOW CET to CP	3.3 5.0	6.0 4.0	0 0.5	0.5 1.0	0 1.0	ns	3-9
ts	Setup Time, HIGH or LOW PE to CP	3.3 5.0	3.5 2.0	5.5 3.5	7.0 4.5	6.5 4.0	ns	3-9
th	Hold Time, HIGH or LOW PE to CP	3.3 5.0	3.5 1.5	0 0.5	0 0.5	0 0.5	ns	3-9
ts	Setup Time, HIGH or LOW U/D to CP	3.3 5.0	7.0 4.5	10.0 6.5	13.0 8.5	11.5 7.5	ns	3-9
th	Hold Time, HIGH or LOW U/D to CP	3.3 5.0	7.0 4.0	0 0.5	0 0.5	0 0.5	ns	3-9
tw	CP Pulse Width, HIGH or LOW	3.3 5.0	2.0 2.0	3.0 3.0	5.0 5.0	4.0 3.0	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

Capacitance

Symbol	Parameter	54/74AC	Units	Conditions
		Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
CPD	Power Dissipation Capacitance	60.0	pF	Vcc = 5.5 V

54AC/74AC174 • 54ACT/74ACT174

Hex D Flip-Flop With Master Reset

Description

The 'AC/'ACT174 is a high-speed hex D flip-flop. The device is used primarily as a 6-bit edgetriggered storage register. The information on the D inputs is transferred to storage during the LOWto-HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops.

- Outputs Source/Sink 24 mA
- 'ACT174 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

Do - D5	Data Inputs
CP	Clock Pulse Input
MR	Master Reset Input
Q0 - Q5	Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

Logic Diagram

The 'AC/'ACT174 consists of six edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Master Reset (MR) are common to all flip-flops. Each D input's state is transferred to the corresponding flip-flop's output following the LOW-to-HIGH Clock (CP) transition. A LOW input to the Master Reset (MR) will force all outputs LOW independent of Clock or Data inputs. The 'AC/'ACT174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

Truth Table

	Inputs		Output
MR	СР	D	Q
L	Х	хн	Ĺ
н	Г	н	н
н	Г	L	L
н	L	x	Q

H = HIGH Voltage Level

L=LOW Voltage Level

X = Immaterial

 \int = LOW-to-HIGH Transition of Clock

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT174)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V$ $T_A = Worst Case$

AC Characteristics

Symbol	Parameter	Vcc* (V)	74AC T _A = + 25°C CL = 50 pF			54AC TA = -55°C to +125°C CL = 50 pF		74AC TA = - 40 °C to + 85 °C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max	1	
fmax	Maximum Clock Frequency	3.3 5.0	90 100	100 125		65 90		70 100		MHz	3-3
tplh	Propagation Delay CP to Qn	3.3 5.0	1.0 1.0	9.0 6.0	11.5 8.5	1.0 1.0	14.0 10.5	1.0 1.0	12.5 9.5	ns	3-6
tрнL	Propagation Delay CP to Qn	3.3 5.0	1.0 1.0	8.5 6.0	11.0 8.0	1.0 1.0	13.0 10.0	1.0 1.0	12.0 9.0	ns	3-6
tph∟	Propagation Delay MR to Qn	3.3 5.0	1.0 1.0	9.0 7.0	11.5 9.0	1.0 1.0	13.5 11.0	1.0 1.0	12.5 10.5	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	Ta = + 25°C CL = 50 pF		TA = − 55°C to + 125°C CL = 50 pF	$T_A = -40 \circ C$ to +85 \circ CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Set-up Time, HIGH or LOW Dn to CP	3.3 5.0	2.5 2.0	6.5 5.0	7.5 5.5	7.0 5.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	3.3 5.0	1.0 0.5	3.0 3.0	3.0 3.0	3.0 3.0	ns	3-9
tw	MR Pulse Width, LOW	3.3 5.0	1.0 1.0	5.5 5.0	7.0 5.0	7.0 5.0	ns	3-6
tw	CP Pulse Width	3.3 5.0	1.0 1.0	5.5 5.0	7.0 5.0	7.0 5.0	ns	3-6
trec	Recovery Time MR to CP	3.3 5.0	0 0	2.5 2.0	3.0 2.0	2.5 2.0	ns	3-6

*Voltage Range 3.3 is 3.3 V±0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

	Parameter			74ACT		54/	АСТ	74	АСТ		
Symbol		Vcc* (V)	T _A = + 25 °C CL = 50 pF		TA = − 55°C to + 125°C CL = 50 pF		TA = - 40°C to + 85°C CL = 50 pF		Units	Fig. No.	
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	5.0	165	200		95		140		MHz	3-3
tplH	Propagation Delay CP to Qn	5.0	1.0	7.0	10.5	1.0	11.5	1.0	11.5	ns	3-6
tphl	Propagation Delay CP to Qn	5.0	1.0	7.0	10.5	1.0	11.0	1.0	11.5	ns	3-6
tphL	Propagation Delay MR to Qn	5.0	1.0	6.5	9.5	1.0	12.0	1.0	11.0	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

	Parameter		744	СТ	54ACT	74ACT		
Symbol		Vcc* (V)	Ta = + Cl = {		TA = − 55°C to + 125°C CL = 50 pF	TA = -40°C to +85°C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Set-up Time, HIGH or LOW Dn to CP	5.0	0.5	1.5	1.5	1.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	5.0	1.0	2.0	2.0	2.0	ns	3-9
tw	MR Pulse Width, LOW	5.0	1.5	3.0	5.0	3.5	ns	3-6
tw	CP Pulse Width HIGH or LOW	5.0	1.5	3.0	5.0	3.5	ns	3-6
trec	Recovery Time MR to CP	5.0	- 1.0	0.5	0.5	0.5	ns	3-6

*Voltage Range 5.0 is 5.0 V ± 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74ACT	Units	Conditions
		Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Cpd	Power Dissipation Capacitance	85.0	pF	Vcc = 5.5 V

54AC/74AC175 • 54ACT/74ACT175

Quad D Flip-Flop

Description

The 'AC/'ACT175 is a high-speed quad D flip-flop. The device is useful for general flip-flop requirements where clock and clear inputs are common. The information on the D inputs is stored during the LOW-to-HIGH clock transition. Both true and complemented outputs of each flip-flop are provided. A Master Reset input resets all flip-flops, independent of the Clock or D inputs, when LOW.

- Edge-Triggered D-Type Inputs
- Buffered Positive Edge-Triggered Clock
- Asynchronous Common Reset
- True and Complement Output
- Outputs Source/Sink 24 mA
- 'ACT175 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

Do - D3	Data Inputs
CP	Clock Pulse Input
MR	Master Reset Input

- Q0 Q3 True Outputs
- Q3 Q3 Complement Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

Functional Description

The 'AC/'ACT175 consists of four edge-triggered D flip-flops with individual D inputs and Q and \overline{Q} outputs. The Clock and Master Reset are common. The four flip-flops will store the state of their individual D inputs on the LOW-to-HIGH clock (CP) transition, causing individual Q and \overline{Q} outputs to follow. A LOW input on the Master Reset (MR) will force all Q outputs LOW and \overline{Q} outputs HIGH independent of Clock or Data inputs. The 'ACI'ACT175 is useful for general logic applications where a common Master Reset and Clock are acceptable.

Truth Table

Inputs	Out	Outputs			
$@$ tn, $\overline{MR} = H$	@tı	1+1			
Dn	Qn	Qn			
L	L H	H L			

H = HIGH Voltage Level

L = LOW Voltage Level

tn = Bit Time before Clock Pulse

tn+1 = Bit Time after Clock Pulse

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC (Characteristics	(unless	otherwise	specified)
------	-----------------	---------	-----------	------------

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT175)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

			74AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	Ta = + 25°C CL = 50 pF	TA = − 55°C to + 125°C CL = 50 pF	TA = - 40 °C to +85 °C CL = 50 pF	Units	Fig. No.
hand	INVE	\square	Min Typ Max	Min Max	Min Max		
fmax	Maximum Clock Frequency	8.3 5.0	118	1. ₁₉₆		MHz	3-3
t PHL	Propagation Delay CP to Qn or Qn	3.3 5.0	9.5 7.0	$[\Lambda n]$	James .	ns	3-6
tplh	Propagation Delay CP to Qn or Qn	3.3 5.0	8.5 6.0	UNZ		ns	3-6
tрнL	Propagation Delay MR to Qn	3.3 5.0	7.5 5.5		Constraints of the second	ns	3-6
tрLн	Propagation Delay MR to Qn	3.3 5.0	8.5 6.0		5.30y	ns	3-6

*Voltage Range 3.3 is 3.0 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

~	· · · · · · · · · · · · · · · · · · ·		74	AC	54AC	74AC		
Symbol Parameter		$\begin{array}{c} \mathbf{V}_{CC}^{*} \\ (V) \end{array} \begin{array}{c} T_{A} = +25 ^{\circ}C \\ C_{L} = 50 pF \end{array}$		TA = -55°C to +125°C CL = 50 pF	TA = − 40 °C to +85 °C CL = 50 pF	Units	Fig. No.	
and a second	INSISI	7	Тур		Guaranteed Min	nimum		
ts	Setup Time, HIGH or LOW Dn to CP	3.3 5.0	4,5 3.0	$\overline{\Lambda}$	7 ~		ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	3.3 5.0		////	$M \Lambda$		ns	3-9
tw	CP Pulse Width HIGH or LOW	3.3 5.0	5.5 4.0	7 4	UV/	IM	ns	3-6
tw	MR Pulse Width, LOW	3.3 5.0	5.5 4.0		there and the second	NN	ns	3-6
trec	Recovery Time MR to CP	3.3 5.0	0 0			bud	Lhs	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

	Parameter			74ACT		54	АСТ	74/	ст			
Symbol		Vcc* (V)	TA = + 25 °C CL = 50 pF			$T_A = -55 \degree C$ to +125 \degree C CL = 50 pF		$T_A = -40 \text{ °C}$ to +85 °C CL = 50 pF		Units	Fig. No.	
			Min	Тур	Max	Min	Max	Min	Max			
fmax	Maximum Clock Frequency	5.0	175	160		95		145		MHz	3-3	
tplh	Propagation Delay CP to Q_n or \overline{Q}_n	5.0	1.0	6.0	10.0	1.0	11.5	1.0	11.0	ns	3-6	
tphl	Propagation Delay CP to Qn or Qn	5.0	1.0	7.0	11.0	1.0	13.0	1.0	12.0	ns	3-6	
tPLH .	Propagation Delay MR to Qn	5.0	1.0	6.0	9.5	1.0	11.5	1.0	10.5	ns	3-6	
tphL	Propagation Delay MR to Qn	5.0	1.0	5.5	9.5	1.0	11.0	1.0	10.5	ns	3-6	

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74 A	СТ	54ACT	74ACT			
Symbol	Parameter	Vcc* (V)	A = +25 °C CL = 50 pF		VCC^{*} $C_{i} = 50 \text{ pF}$ $t0 + 125^{\circ}C$ $t0 + 85^{\circ}C$		to +85°C	Units	Fig. No.
					Guaranteed Mi]			
ts (H) (L)	Setup Time Dn to CP	5.0	3.0 3.0	2.0 2.5	2.5 3.0	2.0 2.5	ns	3-9	
th	Hold Time, HIGH or LOW Dn to CP	5.0	0	1.0	1.0	1.0	ns	3-9	
tw	CP Pulse Width HIGH or LOW	5.0	4.0	3.0	5.0	3.5	ns	3-6	
tw	MR Pulse Width, LOW	5.0	4.0	3.5	5.0	4.0	ns	3-6	
trec	Recovery Time, MR to CP	5.0	0	0	0.5	0	ns	3-9	

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions		
		Тур	Units Conditions			
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V		
Cpd	Power Dissipation Capacitance	45.0	pF	Vcc = 5.5 V		

54AC/74AC190 • 54AC/74AC191

Up/Down Counters with Preset and Ripple Clock

Description

The 'AC190 is a reversible BCD (8421) decade counter. The 'AC191 is a reversible modulo 16 binary counter. Both feature synchronous counting and asynchronous presetting. The preset feature allows the 'AC190 and 'AC191 to be used in programmable dividers. The Count Enable input, the Terminal Count output and the Ripple Clock output make possible a variety of methods of implementing multistage counters. In the counting modes, state changes are initiated by the rising edge of the clock.

- High-speed—120 MHz Typical Count Frequency
- Synchronous Counting
- Asynchronous Parallel Load
- Cascadable
- Outputs Source/Sink 24 mA

Ordering Code: See Section 6

Logic Symbol

Pin Names

CE	Count Enable Input
CP	Clock Pulse Input
Po - P3	Parallel Data Inputs
PL	Asynchronous Parallel Load Input
Ū/D	Up/Down Count Control Input
Q0 - Q3	Flip-Flop Outputs
RC	Ripple Clock Output
тс	Terminal Count Output

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

Functional Description

The 'AC190/'AC191 are synchronous up/down counters. The 'AC190 is a BCD decade counter while the 'AC191 is organized as a 4-bit binary counter. Both contain four edge-triggered flip-flops with internal gating and steering logic to provide individual preset, count-up and count-down operations.

Each circuit has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load (\overline{PL}) input is LOW, information present on the Parallel Load inputs (Po - P3) is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table.

A HIGH signal on the \overline{CE} input inhibits counting. When \overline{CE} is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the \overline{U}/D input signal, as indicated in the Mode Select Table. \overline{CE} and \overline{U}/D can be changed with the clock in either state, provided only that the recommended setup and hold times are observed.

Two types of outputs are provided as overflow/ underflow indicators. The terminal count (TC) output is normally LOW. It goes HIGH when the circuits reach zero in the count down mode or 9 ('AC190) or 15 ('AC191) in the count up mode. The TC output will then remain HIGH until a state change occurs, whether by counting or presetting or until \overline{U}/D is changed. The TC output should not be used as a clock signal because it is subject to decoding spikes.

The TC signal is also used internally to enable the Ripple Clock (\overline{RC}) output. The \overline{RC} output is normally HIGH. When \overline{CE} is LOW and TC is HIGH, \overline{RC} output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again. This feature simplifies the design of multistage counters, as indicated in Figures a and b. In Figure a, each \overline{RC} output is used as the clock input for the next higher stage. This configuration is particularly advantageous when the clock source has a limited drive capability, since it drives only the first stage. To prevent counting in all stages it is only necessary to inhibit the first stage, since a HIGH signal on \overline{CE} inhibits the \overline{RC} output pulse, as indicated in the \overline{RC} Truth Table. A disadvantage of

Mode Select Table

	Inp	uts		Mode
PL	CE	Ū/D	СР	Mode
Н	L	L	L	Count Up
н	L	н	Г	Count Down
L	X	X	Х	Preset (Asyn.)
н	н	Х	Х	No Change (Hold)

RC Truth Table

	Inputs		Outputs
CE	TC*	СР	RC
L	н	ъ	υ
н	X	X	н
Х	L	Х	н

*TC is generated internally

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

J = LOW-to-HIGH Transition

COUNT DOWN ----

this configuration, in some applications, is the timing skew between state changes in the first and last stages. This represents the cumulative delay of the clock as it ripples through the preceding stages.

A method of causing state changes to occur simultaneously in all stages is shown in Figure b. All clock inputs are driven in parallel and the $\overline{\text{RC}}$ outputs propagate the carry/borrow signals in ripple fashion. In this configuration the LOW state duration of the clock must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock

Figure a: N-Stage Counter Using Ripple Clock

goes HIGH. There is no such restriction on the HIGH state duration of the clock, since the $\overline{\text{RC}}$ output of any device goes HIGH shortly after its CP input goes HIGH.

The configuration shown in Figure c avoids ripple delays and their associated restrictions. The \overline{CE} input for a given stage is formed by combining the TC signals from all the preceding stages. Note that in order to inhibit counting an enable signal must be included in each carry gate. The simple inhibit scheme of Figures a and b doesn't apply, because the TC output of a given stage is not affected by its own \overline{CE} .

Figure b: Synchronous N-Stage Counter Using Ripple Carry/Borrow

Figure c: Synchronous N-Stage Counter With Parallel Gated Carry/Borrow

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Symbol	Parameter	54AC	74AC	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$

AC Characteristics

			74AC190			54AC190 TA = -55°C to +125°C CL = 50 pF		74AC190 TA = - 40 °C to + 85 °C CL = 50 pF		Units	Fig. No.
Symbol	Parameter	Vcc* (V)	Ta = + 25°C CL = 50 pF								
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Count Frequency	3.3 5.0		88 120						MHz	3-3
tplh	Propagation Delay CP to Qn	3.3 5.0		9.5 7.0						ns	3-6
tphl	Propagation Delay CP to Qr	3.3 5.0		10.5 7.5						ns	3-6
tplh	Propagation Delay CP to TC	3.3 5.0		15.0 11.0						ns	3-6
tphl	Propagation Delay CP to TC	3.3 5.0	7	13.0 9.5						ns	3-6
tplh	Propagation Delay CP to RC	3.3 5.0		9.0 6.5	~					ns	3-6
t PHL	Propagation Delay CP to RC	3.3 5.0	1	9 <u>.5</u> 7.0	11	7~				ns	3-6
tplH	Propagation Delay CE to RC	3.3 5.0		9.5 7.0	\Box		Π			ns	3-6
t PHL	Propagation Delay CE to RC	3.3 5.0		8.5 6.0	6	L.		T		ns	3-6
tPLH	Propagation Delay U/D to RC	3.3 5.0		11.0 8.0				U/	Ŕ	'nŝ	3-6
t PHL	Propagation Delay U/D to RC	3.3 5.0		10.5 7.5					Ų	ns	3-6
tplh	Propagation Delay Ū/D to TC	3.3 5.0		9.5 7.0	and the second					ns	3-6
tphl	Propagation Delay Ū/D to TC	3.3 5.0		9.5 7.0						ns	3-6
tplh	Propagation Delay Pn to Qn	3.3 5.0		10.5 7.5						ns	3-6
tphl	Propagation Delay Pn to Qn	3.3 5.0		9.5 7.0					-	ns	3-6
tPLH	Propagation Delay PL to Qn	3.3 5.0		11.5 8.5						ns	3-6
tPHL	Propagation Delay PL to Qn	3.3 5.0		11.5 8.5						ns	3-(

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74A0	C190	54AC190	74AC190		
Symbol	Parameter	Vcc* (V)			$T_A = -55 \degree C$ to +125 °C CL = 50 pF	T _A = - 40°C to +85°C CL = 50 pF	Units	Fig. No.
	$\langle Q \rangle$		Тур		Guaranteed Mi	nimum		
ts	Setup Time HIGH or LOW Pn to PL	3.3 5.0	4.5 3.0				ns	3-9
th	Hold Time, HIGH of LOW Pn to PL	3.3 5.0	- 0.5 - 0.5				ns	3-9
ts	Setup Time, LOW	3.3 5.0	7.0 5.0	NA			ns	3-9
th	Hold Time, LOW CE to CP	3.3 5.0	-/1.5 - 1.0		Mn.		ns	3-9
ts	Setup Time, HIGH or LOW Ū/D to CP	3.3 5.0	7.0 5.0			$\hat{\Lambda}$	ns	3-9
th	Hold Time, HIGH or LOW \overline{U}/D to CP	3.3 5.0	- 1.5 - 1.0			10	ns	3-9
tw	PL Pulse Width, LOW	3.3 5.0	5.5 6.0			1	ns	>3-6
tw	CP Pulse Width, LOW	3.3 5.0	5.5 6.0			L	ns	3-6
trec	Recovery Time PL to CP	3.3 5.0	4.5 3.0				ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

				74AC19 ⁻	1	54A	C191	74A	C191		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF			T _A = − 55°C to + 125°C CL = 50 pF		$T_A = -40 \text{ °C}$ to +85 °C CL = 50 pF		Units	Fig. No.
			Min	Тур	Мах	Min	Max	Min	Max		
fmax	Maximum Count Frequency	3.3 5.0	70 90	105 133		60 80		65 85		MHz	3-3
tplH	Propagation Delay CP to Qn	3.3 5.0	3.0 2.0	8.5 6.0	15.0 11.0	1.0 1.0	17.5 13.0	1.0 1.0	16.0 12.0	ns	3-6
tphl	Propagation Delay CP to Qn	3.3 5.0	3.0 2.0	8.5 6.0	14.5 10.5	1.0 1.0	17.5 12.5	1.0 1.0	16.0 11.5	ns	3-6
tplH	Propagation Delay CP to TC	3.3 5.0	4.0 3.0	10.5 7.5	18.0 12.0	1.0 1.0	22.0 15.5	1.0 1.0	20.0 14.0	ns	3-6
tphl	Propagation Delay CP to TC	3.3 5.0	4.5 3.0	10.5 7.5	17.5 12.5	1.0 1.0	20.5 15.0	1.0 1.0	19.0 13.5	ns	3-6
tPLH	Propagation Delay CP to RC	3.3 5.0	3.0 2.5	7.5 5.5	12.0 9.5	1.0 1.0	14.5 11.0	1.0 1.0	13.5 10.5	ns	3-6
tPHL	Propagation Delay CP to RC	3.3 5.0	2.5 2.0	7.0 5.0	11.5 8.5	1.0 1.0	14.0 10.0	1.0 1.0	12.5 9.5	ns	3-6
tPLH	Propagation Delay CE to RC	3.3 5.0	2.5 1.5	7.0 5.0	12.0 8.5	1.0 1.0	15.0 10.5	1.0 1.0	13.5 9.5	ns	3-6
t PHL	Propagation Delay CE to RC	3.3 5.0	2.5 1.5	6.5 5.0	11.0 8.0	1.0 1.0	14.0 10.0	1.0 1.0	12.5 9.0	ns	3-6
tplH	Propagation Delay U/D to RC	3.3 5.0	2.5 1.5	6.5 5.0	12.5 9.0	1.0 1.0	16.0 11.5	1.0 1.0	14.5 10.0	ns	3-6
tphl	Propagation Delay U/D to RC	3.3 5.0	2.5 1.5	7.0 5.0	12.0 8.5	1.0 1.0	15.5 11.0	1.0 1.0	13.5 10.0	ns	3-6
tplh	Propagation Delay U/D to TC	3.3 5.0	2.5 2.0	7.0 5.0	11.5 8.5	1.0 1.0	14.5 10.5	1.0 1.0	13.5 9.5	ns	3-6
tphl	Propagation Delay Ū/D to TC	3.3 5.0	2.5 1.5	6.5 5.0	11.0 8.5	1.0 1.0	13.5 10.5	1.0 1.0	12.5 9.5	ns	3-6
tplh	Propagation Delay Pn to Qn	3.3 5.0	3.0 2.0	8.0 5.5	13.5 9.5	1.0 1.0	17.0 11.5	1.0 1.0	15.5 10.5	ns	3-6
tphl	Propagation Delay Pn to Qn	3.3 5.0	3.0 2.0	7.5 5.5	13.0 9.5	1.0 1.0	16.5 11.5	1.0 1.0	14.5 10.5	ns	3-6
tplh	Propagation Delay PL to Qn	3.3 5.0	3.5 2.0	9.5 5.5	14.5 9.5	1.0 1.0	19.0 11.5	1.0 1.0	17.5 10.5	ns	3-6
tPHL	Propagation Delay PL to Qn	3.3 5.0	3.0 2.0	8.0 6.0	13.5 10.0	1.0 1.0	16.5 12.0	1.0 1.0	15.5 11.0	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74AC191		54AC191	74AC191		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF		$T_A = -55 ^{\circ}C$ to +125 ^{\circ}C C_L = 50 pF	TA = - 40°C to + 85°C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Pn to PL	3.3 5.0	1.0 0.5	3.0 2.0	3.5 3.0	3.0 2.5	ns	3-9
th	Hold Time, HIGH or LOW P_n to \overline{PL}	3.3 5.0	-1.5 -0.5	0.5 1.0	1.0 1.0	1.0 1.0	ns	3-9
ts	Setup Time, LOW CE to CP	3.3 5.0	3.0 1.5	6.0 4.0	7.5 5.0	7.0 4.5	ns	3-9
th	Hold Time, LOW CE to CP	3.3 5.0	-4.0 -2.5	-0.5 0	-0.5 0	-0.5 0	ns	3-9
ts	Setup Time, HIGH or LOW, U/D to CP	3.3 5.0	4.0 2.5	8.0 5.5	10.5 7.0	9.0 6.5	ns	3-9
th	Hold Time, HIGH or LOW Ū/D to CP	3.3 5.0	-5.0 -3.0	0 0.5	0 0.5	0 0.5	ns	3-9
tw	PL Pulse Width, LOW	3.3 5.0	2.0 1.0	3.5 1.0	4.5 1.0	4.0 1.0	ns	3-6
tw	CP Pulse Width, LOW	3.3 5.0	2.0 2.0	3.5 3.0	4.5 4.0	4.0 4.0	ns	3-6
trec	Recovery Time PL to CP	3.3 5.0	-0.5 -1.0	0 0	0 0	0 0	ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC	Units	Conditions
Symbol		Тур		Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Cpd	Power Dissipation Capacitance	75.0	pF	Vcc = 5.5 V

54AC/74AC192 • 54AC/74AC193

Up/Down Counters with Separate Up/Down Clocks

Description

The 'AC192 is an up/down BCD decade (8421) counter. The 'AC193 is an up/down modulo-16 binary counter. Separate Count Up and Count Down Clocks are used, and in either counting mode the outputs change state synchronously with the LOW-to-HIGH transitions on the clock inputs.

Separate Terminal Count Up and Terminal Count Down outputs are provided that are used as the clocks for a subsequent stage without extra logic, thus simplifying multistage counter designs. Individual preset inputs allow the circuit to be used as a programmable counter. Both the Parallel Load (PL) and the Master Reset (MR) inputs asynchronously override the clocks.

- High-Speed—120 MHz Typical Count Frequency
- Synchronous Counting
- Asynchronous Parallel Load and Master Reset
- Outputs Source/Sink 24 mA

Ordering Code: See Section 6

Logic Symbol

Pin Names

CPu	Count Up Clock Input
CPD	Count Down Clock Input
MR	Asynchronous Master Reset Input
PL	Asynchronous Parallel Load Input
Po - P3	Parallel Data Inputs
Q0 - Q3	Flip-flop Outputs
TCD	Terminal Count Down (Borrow) Output
TCυ	Terminal Count Up (Carry) Output

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Logic Diagram 'AC192

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Logic Diagram 'AC193

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Functional Description

The 'AC192/'AC193 are asynchronously presettable counters. The 'AC192 is a decade counter while the 'AC193 is organized for 4-bit binary operation. They both contain four edge-triggered flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations.

A LOW-to-HIGH transition on the CP input to each flip-flop causes the output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH, as indicated in the Function Table. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either clock input is LOW.

The Terminal Count Up $(\overline{TC}U)$ and Terminal Count Down $(\overline{TC}D)$ outputs are normally HIGH. When the circuit has reached the maximum count state; 9 ('AC192) or 15 ('AC193), the reset HIGH-to-LOW transition of the Count Up Clock will cause $\overline{TC}U$ to go LOW. $\overline{TC}U$ will stay LOW until CPU goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the $\overline{TC}D$ output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the \overline{TC} outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.

 $\overline{\mathsf{TCU}} = \mathsf{Q0} \cdot \overline{\mathsf{Q1}} \cdot \overline{\mathsf{Q2}} \cdot \mathsf{Q3} \cdot \overline{\mathsf{CPU}} \quad (\mathsf{AC192})$ $\overline{\mathsf{TCU}} = \mathsf{Q0} \cdot \mathsf{Q1} \cdot \mathsf{Q2} \cdot \mathsf{Q3} \cdot \overline{\mathsf{CPU}} \quad (\mathsf{AC193})$ $\overline{\mathsf{TCU}} = \overline{\mathsf{Q0}} \cdot \overline{\mathsf{Q1}} \cdot \overline{\mathsf{Q2}} \cdot \overline{\mathsf{Q3}} \cdot \overline{\mathsf{CPD}}$

Both the 'AC192 and the 'AC193 have an asynchronous parallel load capability permitting the counter to be preset. When the Parallel Load (PL) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data input (Po - P3) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both clock inputs, and latch each Q output in the LOW state. If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted.

Function Table

MR	PL	CPu	СРо	Mode				
н	Х	Х	Х	Reset (Asyn.)				
L	L	X	X	Preset (Asyn.)				
L	н	н	н	No Change				
L	н	г	н	Count Up				
L	н	н	г	Count Down				
H = HIG	H = HIGH Voltage Level X = Immaterial							

H = HIGH Voltage Level L = LOW Voltage Level

J = LOW-to-HIGH Transition

State Diagrams 'AC192

'AC193

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	74AC	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	V cc* (V)	TA = + 25°C CL = 50 pF		TA = -55 °C to + 125 °C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.	
/	$(Q) \land =$		Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Count Frequency	3.3 5.0		88 120						MHz	3-3
tplH	Propagation Delay CPu or CPD to TCu or TCD	3.3 5.0		15.0 11.0	<u></u>					ns	3-6
t PHL	Propagation Delay CPu or CPp to TCu or TCp	3.3 5.0	\square	13.0 9.5	~					ns	3-6
tplH	Propagation Delay CPu or CPp to Qn	3.3 5.0		9.5 7.0	111					ns	3-6
tphl	Propagation Delay CPu or CPD to Qn	3.3 5.0		10.5 7.5	\Box	Л	7,			ns	3-6
tplH	Propagation Delay Pn to Qn	3.3 5.0		9.5 7.0	4	V	\square	1/		ns	3-6
tPHL	Propagation Delay Pn to Qn	3.3 5.0		9.5 7.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	\mathcal{O}	ns	3-6
tplh	Propagation Delay PL to Qn	3.3 5.0		12.5 9.0					U,	ms	3-6
tphL	Propagation Delay PL to Qn	3.3 5.0		11.0 8.0						ns	3-6
tphl	Propagation Delay MR to Qn	3.3 5.0		12.5 9.0						ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics, continued

				74AC		54	AC	74	AC		
Symbol	Symbol			TA = + 25 °C CL = 50 pF		TA = -55 °C to + 125 °C CL = 50 pF		TA = -40 °C to +85 °C CL = 50 pF		Units	Fig. No.
	- INVINO	t inc.	Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay MR to TCu	3.3 5.0	\overline{D}	12.5 9.0						ns	3-6
tphl	Propagation Delay MR to TCp	3.3 5.0	\bigcup	11.0 8.0	2π	7				ns	3-6
tplh	Propagation Delay PL to TCu or TCD	3.3 5.0		11.5 8.5	\mathbb{Z}	//V			and the second s	ns	3-6
t PHL	Propagation Delay PL to TCu or TCD	3.3 5.0		9.5 7.0	heres.				$\langle S \rangle$	ns	3-6
tplh	Propagation Delay Pn to TCu or TCD	3.3 5.0		11.5 8.5				27	1	ns	3-6
t PHL	Propagation Delay Pn to TCu or TCD	3.3 5.0		11.5 8.5						ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Operating Requirements

			74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	TA = + CL = {		TA = − 55 °C to + 125 °C CL = 50 pF	$T_{A} = -40 \text{ °C}$ to +85 °C CL = 50 pF	Units	Fig. No.
4	\sim		Тур		Guaranteed Mi	nimum		
ts	Setup/Time, HIGH or LOW, Pn to 更	3.3 5.0	4.5 3.0				ns	3-9
th	Hold Time, HIGH or LOW Pn to PL	3.3 5.0	-0.5 -0.5				ns	3-9
tw	PL Pulse Width, LOW	3.3 5.0	8.5 6.0	$1 \wedge$	~		ns	3-6
tw	CPu or CPD Pulse Width, LOW	3.3 5.0	< 5.5 4.0		$\langle \Lambda \rangle$		ns	3-6
tw	CPu or CPD Pulse Width, LOW (Change of Direction)	3.3 5.0	9.0 6.5	~ ()		Î ~	ns	3-6
tw	MR Pulse Width, HIGH	3.3 5.0	7.0 5.0			$1/\mathcal{O}$	ns	3-6
trec	Recovery Time PL to CPu or CPD	3.3 5.0	4.5 3.0			$\langle V \rangle$	ns	3-9
trec	Recovery Time MR to CPu or CPb	3.3 5.0	8.5 6.0			4	ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

oupuonan		*		
Symbol	Parameter	54/74AC	Units	Conditions
		Тур		
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Cpd	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC240 • 54ACT/74ACT240

Octal Buffer/Line Driver With 3-State Outputs

Description

The 'AC/'ACT240 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density.

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Outputs Source/Sink 24 mA
- 'ACT240 has TTL-Compatible Inputs

Ordering Code: See Section 6

Truth Tables

Input	s	Outputs
OE1	D	(Pins 12, 14, 16, 18)
L	L	Н
L	H	L
н	X	Z

Inputs	3	Outputs
OE ₂	D	(Pins 3, 5, 7, 9)
L	L	Н
L	н	L
н	X	Z

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT240)	1.6	1.5	mA	$V_{IN} = V_{CC}-2.1 V$ $V_{CC} = 5.5 V,$ $T_{A} = Worst Case$

DC Characteristics (unless otherwise specified)

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

in Assignmer for LCC

5-109

AC Characteristics

				74AC		54	AC	74AC			
Symbol	Parameter	Vcc* (V)	TA = + 25 °C CL = 50 pF			$T_A = -55 ^{\circ}C$ to +125 ^{\circ}C CL = 50 pF		$T_A = -40 \degree C$ to +85 °C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplH	Propagation Delay Data to Output	3.3 5.0	1.0 1.0	6.0 4.5	8.0 6.5	1.0 1.0	11.0 8.5	1.0 1.0	9.0 7.0	ns	3-5
tPHL	Propagation Delay Data to Output	3.3 5.0	1.0 1.0	5.5 4.5	8.0 6.0	1.0 1.0	10.5 8.0	1.0 1.0	8.5 6.5	ns	3-5
tрzн	Output Enable Time	3.3 5.0	1.0 1.0	6.0 5.0	10.5 7.0	1.0 1.0	11.5 9.0	1.0 1.0	11.0 8.0	ns	3-7
tpzl	Output Enable Time	3.3 5.0	1.0 1.0	7.0 5.5	10.0 8.0	1.0 1.0	13.0 10.5	1.0 1.0	11.0 8.5	ns	3-8
tрнz	Output Disable Time	3.3 5.0	1.0 1.0	7.0 6.5	10.0 9.0	1.0 1.0	12.5 10.5	1.0 1.0	10.5 9.5	ns	3-7
tplz	Output Disable Time	3.3 5.0	1.0 1.0	7.5 6.5	10.5 9.0	1.0 1.0	13.5 11.0	1.0 1.0	11.5 9.5	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

	Parameter			74ACT		54ACT		74ACT			
Symbol		Vcc* (V)	TA = + 25°C CL = 50 pF			$T_A = -55 \degree C$ to +125 °C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max	1	ł
tplh	Propagation Delay Data to Output	5.0	1.0	6.0	8.5	1.0	9.5	1.0	9.5	ns	3-5
t PHL	Propagation Delay Data to Output	5.0	1.0	5.5	7.5	1.0	9.0	1.0	8.5	ns	3-5
tpzh	Output Enable Time	5.0	1.0	7.0	8.5	1.0	10.0	1.0	9.5	ns	3-7
tpzl	Output Enable Time	5.0	1.0	7.0	9.5	1.0	11.5	1.0	10.5	ns	3-8
tрнz	Output Disable Time	5.0	1.0	8.0	9.5	1.0	11.0	1.0	10.5	ns	3-7
tplz	Output Disable Time	5.0	1.0	6.5	10.0	1.0	11.5	1.0	10.5	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
Symbol		Тур	Onits	Conditions	
Cin	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Срр	Power Dissipation Capacitance	45.0	pF	Vcc = 5.5 V	

54AC/74AC241 • 54ACT/74ACT241

Octal Buffer/Line Driver With 3-State Outputs

Description

The 'AC/'ACT241 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus-oriented transmitter or receiver which provides improved PC board density.

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Outputs Source/Sink 24 mA
- 'ACT241 has TTL-Compatible Inputs

Ordering Code: See Section 6

Truth Tables

Input	s	Outputs
OE1	D	(Pins 12, 14, 16, 18)
L	L	L
L	н	н
н	Х	Z

Input	\$	Outputs
OE2	D	(Pins 3, 5, 7, 9)
н	L	L
н	н	н
L	X	Z

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

DC Characteristics (unless otherwise specified)

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT241)	1.6	1.5	mA	$V_{IN} = V_{CC}-2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

• <u>•</u> ••••••••••••••••••••••••••••••••••	Parameter	Vcc* (V)	74AC TA = + 25°C CL = 50 pF			54AC $T_A = -55 °C$ to +125 °C $C_L = 50 ~pF$		74AC T _A = -40°C to +85°C CL=50 pF		Units	Fig. No.
Symbol											
			Min	Тур	Max	Min	Max	Min	Max	1	
tplh	Propagation Delay Data to Output	3.3 5.0	1.0 1.0	6.0 5.0	9.0 7.0	1.0 1.0	12.0 9.5	1.0 1.0	10.0 7.5	ns	3-5
tphl	Propagation Delay Data to Output	3.3 5.0	1.0 1.0	6.0 4.5	9.0 7.0	1.0 1.0	11.0 9.0	1.0 1.0	10.5 7.5	ns	3-5
tрzн	Output Enable Time	3.3 5.0	1.0 1.0	6.5 5.5	12.5 9.0	1.0 1.0	13.0 10.0	1.0 1.0	13.0 9.5	ns	3-7
tpzl	Output Enable Time	3.3 5.0	1.0 1.0	7.0 5.5	12.0 9.0	1.0 1.0	13.0 10.0	1.0 1.0	13.0 9.5	ns	3-8
tрнz	Output Disable Time	3.3 5.0	1.0 1.0	8.0 6.5	12.0 10.0	1.0 1.0	13.0 11.5	1.0 1.0	12.5 10.5	ns	3-7
tplz	Output Disable Time	3.3 5.0	1.0 1.0	7.0 6.0	12.5 10.0	1.0 1.0	13.0 11.5	1.0 1.0	13.5 10.5	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

Symbol		V cc* (V)	74ACT TA = + 25°C CL = 50 pF			54ACT TA = -55°C to +125°C CL = 50 pF		74ACT T _A = - 40°C to + 85°C CL = 50 pF		Units	Fig. No.
	Parameter										
			Min	Тур	Max	Min	Max	Min	Max	1	
tplH	Propagation Delay Data to Output	5.0	1.0	6.5	9.0	1.0	10.0	1.0	10.0	ns	3-5
tphl	Propagation Delay Data to Output	5.0	1.0	7.0	9.0	1.0	10.0	1.0	10.0	ns	3-5
tрzн	Output Enable Time	5.0	1.0	6.0	9.0	1.0	11.5	1.0	10.0	ns	3-7
tpzl	Output Enable Time	5.0	1.0	7.0	10.0	1.0	12.5	1.0	11.0	ns	3-8
tрнz	Output Disable Time	5.0	1.0	8.0	10.5	1.0	12.5	1.0	11.5	ns	3-7
tplz	Output Disable Time	5.0	1.0	7.0	10.5	1.0	12.5	1.0	11.5	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
		Тур			
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Cpd	Power Dissipation Capacitance	45.0	pF	Vcc = 5.5 V	

54AC/74AC244 • 54ACT/74ACT244

Octal Buffer/Line Driver With 3-State Outputs

Description

The 'AC/'ACT244 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus-oriented transmitter/receiver which provides improved PC board density.

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Outputs Source/Sink 24 mA
- 'ACT244 has TTL-Compatible Inputs

Truth Tables

Input	s	Outputs
OE1	D	(Pins 12, 14, 16, 18)
L	L	L
L	н	н
Н	X	Z

Input	s	Outputs
OE ₂	D	(Pins 3, 5, 7, 9)
L	L	L
L	н	н
Н	X	Z

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

				74AC		54AC		74AC			
Symbol	Parameter	Vcc* (V)	TA = + 25 °C CL = 50 pF		TA = -55 °C to +125 °C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.	
			Min	Тур	Max	Min	Max	Min	Max	1	
tplh	Propagation Delay Data to Output	3.3 5.0	1.0 1.0	6.5 5.0	9.0 7.0	1.0 1.0	12.5 9.5	1.0 1.0	10.0 7.5	ns	3-5
tphl	Propagation Delay Data to Output	3.3 5.0	1.0 1.0	6.5 5.0	9.0 7.0	1.0 1.0	12.0 9.0	1.0 1.0	10.0 7.5	ns	3-5
tрzн	Output Enable Time	3.3 5.0	1.0 1.0	6.0 5.0	10.5 7.0	1.0 1.0	11.5 9.0	1.0 1.0	11.0 8.0	ns	3-7
tPZL	Output Enable Time	3.3 5.0	1.0 1.0	7.5 5.5	10.0 8.0	1.0 1.0	13.0 10.5	1.0 1.0	11.0 8.5	ns	3-8
tрнz	Output Disable Time	3.3 5.0	1.0 1.0	7.0 6.5	10.0 9.0	1.0 1.0	12.5 10.5	1.0 1.0	10.5 9.5	ns	3-7
tplz	Output Disable Time	3.3 5.0	1.0 1.0	7.5 6.5	10.5 9.0	1.0 1.0	13.0 11.0	1.0 1.0	11.5 9.5	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

				74ACT		54ACT		74ACT			
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF			TA = -55 °C to +125 °C CL = 50 pF		TA = -40 °C to +85 °C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max	1	
tрlн	Propagation Delay Data to Output	5.0	1.0	6.5	9.0	1.0	10.0	1.0	10.0	ns	3-5
t PHL	Propagation Delay Data to Output	5.0	1.0	7.0	9.0	1.0	10.0	1.0	10.0	ns	3-5
tрzн	Output Enable Time	5.0	1.0	6.0	8.5	1.0	9.5	1.0	9.5	ns	3-7
tPZL	Output Enable Time	5.0	1.0	7.0	9.5	1.0	11.0	1.0	10.5	ns	3-8
tрнz	Output Disable Time	5.0	1.0	7.0	9.5	1.0	11.0	1.0	10.5	ns	3-7
tPLZ	Output Disable Time	5.0	1.0	7.5	10.0	1.0	11.5	1.0	10.5	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
		Тур	ointa		
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Срр	Power Dissipation Capacitance	45.0	pF	Vcc = 5.5 V	

54AC/74AC245 • 54ACT/74ACT245

Octal Bidirectional Transceiver With 3-State Inputs/Outputs

Description

The 'AC/'ACT245 contains eight non-inverting bidirectional buffers with 3-state outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA at both the A and B ports. The Transmit/Receive (T/\overline{R}) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a High Z condition.

- Noninverting Buffers
- Bidirectional Data Path
- A and B Outputs Source/Sink 24 mA
- 'ACT245 has TTL-Compatible Inputs

Ordering Code: See Section 6

Pin Names

ŌĒ	Output Enable Input
T/R	Transmit/Receive Input
A0 - A7	Side A 3-State Inputs or
	3-State Outputs
B0 - B7	Side B 3-State Inputs or
	3-State Outputs

Truth Table

Inp	uts	Outputo					
ŌĒ	T/R	Outputs					
L L H	L H X	Bus B Data to Bus A Bus A Data to Bus B High Z State					

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions	
lcc	Maximum Quiescent Supply Current	160	80	μΑ	VIN = Vcc or Ground, Vcc = 5.5 V, TA = Worst Case	
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$	
Ісст	Maximum Additional Icc/Input ('ACT245)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$	

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)	TA = + 25 °C CL = 50 pF			$T_A = -55 ^{\circ}C$ to + 125 ^{\circ}C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Мах		
tplh	Propagation Delay An to Bn or Bn to An	3.3 5.0	1.0 1.0	5.0 3.5	8.5 6.5	1.0 1.0	11.5 8.5	1.0 1.0	9.0 7.0	ns	3-5
tphl	Propagation Delay An to Bn or Bn to An	3.3 5.0	1.0 1.0	5.0 3.5	8.5 6.0	1.0 1.0	10.0 7.5	1.0 1.0	9.0 7.0	ns	3-5
tРZH	Output Enable Time	3.3 5.0	1.0 1.0	7.0 5.0	11.5 8.5	1.0 1.0	13.5 10.0	1.0 1.0	12.5 9.0	ns	3-7
tPZL	Output Enable Time	3.3 5.0	1.0 1.0	7.5 5.5	12.0 9.0	1.0 1.0	14.5 10.5	1.0 1.0	13.5 9.5	ns	3-8
tрнz	Output Disable Time	3.3 5.0	1.0 1.0	6.5 5.5	12.0 9.0	1.0 1.0	13.5 10.5	1.0 1.0	12.5 10.0	ns	3-7
tplz	Output Disable Time	3.3 5.0	1.0 1.0	7.0 5.5	11.5 9.0	1.0 1.0	14.0 10.5	1.0 1.0	13.0 10.0	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

•				74ACT		54ACT		74ACT			
Symbol	Parameter	Vcc* (V)	Ta = + 25°C CL = 50 pF			$T_A = -55 \degree C$ to + 125 °C CL = 50 pF		$T_A = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay An to Bn or Bn to An	5.0	1.0	4.0	7.5	1.0	9.0	1.0	8.0	ns	3-5
tphl	Propagation Delay An to Bn or Bn to An	5.0	1.0	4.0	8.0	1.0	10.0	1.0	9.0	ns	3-5
tрzн	Output Enable Time	5.0	1.0	5.0	10.0	1.0	12.0	1.0	11.0	ns	3-7
tPZL	Output Enable Time	5.0	1.0	5.5	10.0	1.0	13.0	1.0	12.0	ns	3-8
tрнz	Output Disable Time	5.0	1.0	5.5	10.0	1.0	12.0	1.0	11.0	ns	3-7
tPLZ	Output Disable Time	5.0	1.0	5.0	10.0	1.0	12.0	1.0	11.0	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol	Falameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Сі/о	Input/Output Capacitance	15.0	pF	Vcc = 5.5 V
Срд	Power Dissipation Capacitance	45.0	pF	Vcc = 5.5 V

54AC/74AC251 • 54ACT/74ACT251

8-Input Multiplexer With 3-State Outputs

Description

The 'AC/'ACT251 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as universal function generator to generate any logic function of four variables. Both true and complementary outputs are provided.

- Multifunctional Capability
- On-Chip Select Logic Decoding
- Inverting and Noninverting 3-State Outputs
- Outputs Source/Sink 24 mA
- 'ACT251 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

- S0 S2 Select Inputs
- OE 3-State Output Enable Input
- 10 17 **Multiplexer Inputs**
- 3-State Multiplexer Output
- Z Z **Complementary 3-State Multiplexer** Output

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

Functional Description

This device is a logical implementation of a singlepole, 8-position switch with the switch position controlled by the state of three Select inputs, So, S1, S2. Both true and complementary outputs are provided. The Output Enable input (\overline{OE}) is active LOW. When it is activated, the logic function provided at the output is:

 $Z = \overline{OE} \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_2 \bullet \overline{S}_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet S_1 \bullet \overline{S}_2 + I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet S_2 + I_6 \bullet \overline{S}_0 \bullet S_1 \bullet S_2 + I_7 \bullet S_0 \bullet S_1 \bullet S_2)$

When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active-LOW portion of the enable voltages.

Truth Table

	Inp	Out	puts		
ŌĒ	S2	S1	S0	Z	Z
н	Х	Х	Х	Z	Ζ
L	L	L	L	Τo	lo
L	L	L	н	Ī1	11
L L L	L	н	L	Ī2	12
L	L	н	н	Īз	lз
L	н	L	L	Ī4	4
L	н	L	н	Ī5	15
L	н	н	L	Ī6	16
L	н	н	н	Ī7	17

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT251)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V$, $T_A = Worst Case$

AC Characteristics

	Parameter		74AC TA = + 25°C CL = 50 pF			54AC TA = -55°C to +125°C CL = 50 pF		74AC TA = -40°C to +85°C CL = 50 pF			
Symbol		V cc* (V)								Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max	1	
tPLH	Propagation Delay Sn to Z or Z	3.3 5.0	1.0 1.0	11.5 8.5	17.5 12.5	1.0 1.0	21.0 15.5	1.0 1.0	19.0 13.5	ns	3-6
tphl	Propagation Delay S_n to Z or \overline{Z}	3.3 5.0	1.0 1.0	11.0 8.0	17.5 12.5	1.0 1.0	21.0 15.5	1.0 1.0	19.0 13.5	ns	3-6
tрLн	Propagation Delay In to Z or Z	3.3 5.0	1.0 1.0	10.0 7.0	14.0 10.0	1.0 1.0	17.0 12.0	1.0 1.0	15.5 11.0	ns	3-5
tphl	Propagation Delay In to Z or Z	3.3 5.0	1.0 1.0	9.0 6.5	14.0 10.0	1.0 1.0	16.5 12.0	1.0 1.0	15.5 11.0	ns	3-5
tрzн	Output Enable Time OE to Z or Z	3.3 5.0	1.0 1.0	7.5 5.5	11.0 8.0	1.0 1.0	13.0 10.0	1.0 1.0	12.0 9.0	ns	3-7
tPZL	Output Enable Time OE to Z or Z	3.3 5.0	1.0 1.0	7.5 5.5	11.0 8.0	1.0 1.0	13.0 10.0	1.0 1.0	12.0 9.0	ns	3-8
tрнz	Output Disable Time OE to Z or Z	3.3 5.0	3.5 2.5	8.5 7.0	11.5 9.5	3.5 2.5	14.0 11.0	3.5 2.5	13.0 10.0	ns	3-7
tplz	Output Disable Time OE to Z or Z	3.3 5.0	4.0 3.0	7.0 5.5	11.0 8.0	4.0 3.0	13.0 10.0	4.0 3.0	12.0 8.5	ns	3-8

*Voltage Range 3.3 is 3.3 V ± 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

	Parameter			74ACT		544	АСТ	74	ACT		
Symbol		Vcc* (V)	TA = + 25 °C CL = 50 pF			T _A = − 55°C to + 125°C C _L = 50 pF		TA = - 40 °C to + 85 °C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplH	Propagation Delay S_n to Z or \overline{Z}	5.0	1.0	7.0	13.5	1.0	16.5	1.0	13.0	ns	3-6
tphl	Propagation Delay S_n to Z or \overline{Z}	5.0	1.0	7.5	13.0	1.0	16.0	1.0	14.5	ns	3-6
tplH	Propagation Delay In to Z or Z	5.0	1.0	5.5	10.0	1.0	13.0	1.0	10.5	ns	3-5
TPHL	Propagation Delay In to Z or Z	5.0	1.0	6.5	10.5	1.0	13.0	1.0	12.0	ns	3-5
tрzн	Output Enable Time OE to Z or Z	5.0	1.0	5.0	9.0	1.0	11.0	1.0	9.0	ns	3-7
tPZL	Output Enable Time OE to Z or Z	5.0	1.0	4.5	9.0	1.0	11.0	1.0	8.5	ns	3-8
tрнz	Output Disable Time OE to Z or Z	5.0	1.0	6.0	10.5	1.0	12.0	1.0	10.0	ns	3-7
tplz	Output Disable Time \overline{OE} to Z or \overline{Z}	5.0	1.0	4.5	9.0	1.0	11.0	1.0	8.5	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT Typ	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	70.0	pF	Vcc=5.5 V

54AC/74AC253 • 54ACT/74ACT253

Dual 4-Input Multiplexer With 3-State Outputs

Description

The 'AC/'ACT253 is a dual 4-input multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable (\overline{OE}) inputs, allowing the outputs to interface directly with bus oriented systems.

- Multifunction Capability
- Noninverting 3-State Outputs
- Outputs Source/Sink 24 mA
- 'ACT253 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

10a - 13a	Side A Data Inputs
10ь - 1зь	Side B Data Inputs
S0, S1	Common Select Inputs
ŌĒa	Side A Output Enable Input
ŌĒb	Side B Output Enable Input
Za, Zb	3-State Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

The 'AC/'ACT253 contains two identical 4-input multiplexers with 3-state outputs. They select two bits from four sources selected by common Select inputs (So, S1). The 4-input multiplexers have individual Output Enable (\overline{OE}_a , \overline{OE}_b) inputs which, when HIGH, force the outputs to a high impedance (High Z) state. This device is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown:

$$Za = \overline{OE}a \bullet (I0a \bullet \overline{S}1 \bullet \overline{S}0 + I1a \bullet \overline{S}1 \bullet S0 + I2a \bullet S1 \bullet \overline{S}0 + I3a \bullet S1 \bullet S0)$$

 $Z_{b} = \overline{OE}_{b} \bullet (I_{0b} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1b} \bullet \overline{S}_{1} \bullet S_{0} + I_{2b} \bullet S_{1} \bullet \overline{S}_{0} + I_{3b} \bullet S_{1} \bullet S_{0})$

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

If the outputs of 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap.

	ect uts		Data	nputs	Output Enable	Outputs	
			Γ.		<u> </u>		
S0	S1	lo	1	12	13	ŌĒ	Z
Х	X	X	Х	Х	X	н	Z
L	ĹΓ	L	X	X	X	L	L
L	L	н	X	X	X	L	н
Н	Ĺ	X	L	X	X	L	L
н	L	X	н	X	X	L	н
L	Н	X	X	L	X	L	L
L	н	X	X	н	X	L	н
н	н	X	X	X	L	L	L
н	н	X	X	X	н	L	н

Address inputs So and S1 are common to both sections.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Truth Table

DC	Characteristics	(unless	otherwise	specified)
----	-----------------	---------	-----------	------------

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT253)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V$, $T_A = Worst Case$

	١		l	74AC		54.	AC	74AC			l
Symbol	Parameter	Vcc* (V)	TA = + 25 °C CL = 50 pF			to +1	– 55°C 125°C 50 pF	to +	– 40°C - 85°C 50 pF	Units	Fig. No.
	· · · · · · · · · · · · · · · · · · ·		Min	Тур	Max	Min	Max	Min	Max		
tplH	Propagation Delay Sn to Zn	3.3 5.0	1.0 1.0	8.5 6.5	15.5 11.0	1.0 1.0	19.5 13.5	1.0 1.0	17.5 12.5	ns	3-6
tphL	Propagation Delay Sn to Zn	3.3 5.0	1.0 1.0	9.5 7.0	16.0 11.5	1.0 1.0	20.0 15.0	1.0 1.0	18.0 13.0	ns	3-6
tр∟н	Propagation Delay In to Zn	3.3 5.0	1.0 1.0	7.0 5.5	14.5 10.0	1.0 1.0	19.0 13.0	1.0 1.0	17.0 11.5	ns	3-5
tрнL	Propagation Delay In to Zn	3.3 5.0	1.0 1.0	7.5 5.5	13.0 9.5	1.0 1.0	16.0 12.0	1.0 1.0	15.0 11.0	ns	3-5
tрzн	Output Enable Time	3.3 5.0	1.0 1.0	4.5 3.5	8.0 6.0	1.0 1.0	9.5 7.0	1.0 1.0	8.5 6.5	ns	3-7
tpzl	Output Enable Time	3.3 5.0	1.0 1.0	5.0 3.5	8.0 6.0	1.0 1.0	10.0 7.5	1.0 1.0	9.0 7.0	ns	3-8
tрнz	Output Disable Time	3.3 5.0	1.0 1.0	5.5 5.0	9.5 8.0	1.0 1.0	11.0 9.5	1.0 1.0	10.0 8.5	ns	3-7
IPLZ	Output Disable Time	3.3 5.0	1.0 1.0	5.0 4.0	8.0 7.0	1.0 1.0	9.5 8.0	1.0 1.0	9.0 7.5	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V±0.5 V

	Parameter	Vcc* (V)		74ACT		54/	АСТ	74/	АСТ		
Symbol			TA = + 25°C CL = 50 pF			TA = -55°C to +125°C CL=50 pF		T _A = − 40 °C to + 85 °C C _L = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max	1	
tр∟н	Propagation Delay Sn to Zn	5.0	1.0	7.0	11.5	1.0	14.5	1.0	13.0	ns	3-6
t PHL	Propagation Delay Sn to Zn	5.0	1.0	7.5	13.0	1.0	16.0	1.0	14.5	ns	3-6
tрLн	Propagation Delay In to Zn	5.0	1.0	5.5	10.0	1.0	12.0	1.0	11.0	ns	3-5
tphl	Propagation Delay In to Zn	5.0	1.0	6.5	11.0	1.0	13.5	1.0	12.5	ns	3-5
tрzн	Output Enable Time	5.0	1.0	4.5	7.5	1.0	9.5	1.0	8.5	ns	3-7
tpzl	Output Enable Time	5.0	1.0	5.0	8.0	1.0	9.5	1.0	9.0	ns	3-8
tрнz	Output Disable Time	5.0	1.0	6.0	9.5	1.0	11.0	1.0	10.0	ns	3-7
tplz	Output Disable Time	5.0	1.0	4.5	7.5	1.0	9.0	1.0	8.5	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions		
Symbol		Тур	Onits	Conditions		
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V		
Срр	Power Dissipation Capacitance	50.0	pF	Vcc = 5.5 V		

54AC/74AC257 • 54ACT/74ACT257

Quad 2-Input Multiplexer With 3-State Outputs

Description

The 'AC/'ACT257 is a quad 2-input multiplexer with 3-state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (noninverted) form. The outputs may be switched to a high impedance state by placing a logic HIGH on the common Output Enable (\overline{OE}) input, allowing the outputs to interface directly with bus-oriented systems.

- Multiplexer Expansion by Tying Outputs Together
- Noninverting 3-State Outputs
- Outputs Source/Sink 24 mA
- 'ACT257 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

S	Common Data Select Input
ŌĒ	3-State Output Enable Input
10a - 10d	Data Inputs from Source 0
11a - 11d	Data Inputs from Source 1

Za - Zd 3-State Multiplexer Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

Functional Description

The 'AC/'ACT257 is a quad 2-input multiplexer with 3-state outputs. It selects four bits of data from two sources under control of a Common Data Select input. When the Select input is LOW, the lox inputs are selected and when Select is HIGH, the I1x inputs are selected. The data on the selected inputs appears at the outputs in true (noninverted) form. The device is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

 $Z_a = \overline{OE} \bullet (11a \bullet S + 10a \bullet \overline{S})$ $Z_b = \overline{OE} \bullet (11b \bullet S + 10b \bullet \overline{S})$ $Z_c = \overline{OE} \bullet (11c \bullet S + 10c \bullet \overline{S})$ $Z_d = \overline{OE} \bullet (11d \bullet S + 10d \bullet \overline{S})$

When the Output Enable input (\overline{OE}) is HIGH, the outputs are forced to a high impedance state. If

the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure the Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

Tru	ıth	Table	

Output Enable	Select Input	_	ata outs	Outputs
ŌĒ	S	lo	l1	Z
н	Х	X	Х	Z
L	н	X	L	L
L	н	X	н	н
L	L	L	х	L
L	L	Η	X	н

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

\overline{OE} I_{0a} I_{1a} I_{0b} I_{1b} I_{0c} I_{1c} I_{0d} I_{1d} S

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Logic Diagram

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT257)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

				74AC		54AC		74AC			
Symbol	Parameter	V cc* (V)	Ta = + 25°C CL = 50 pF			to + '	- 55°C 125°C 50 pF	$TA = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
	1/2		Min	Тур	Max	Min	Мах	Min	Max	1	
tрlн	Propagation Delay	3.3 5.0	$\overline{\gamma}$	5.0 4.0						ns	3-5
tphl	Propagation Delay In to Zn	3.3 5.0		6,0 4.5	7					ns	3-5
tplH	Propagation Delay S to Zn	3.3 5.0	27	7:0 5.0	$\overline{\Lambda}$	m.				ns	3-6
tphl	Propagation Delay S to Zn	3.3 5.0		7.5 5.5	$\langle \rangle \rangle$	\overline{M}	$\left \right\rangle$			ns	3-6
tрzн	Output Enable Time	3.3 5.0		6.5 5.0		\Box	V	\widehat{A}		ns	3-7
tpzl	Output Enable Time	3.3 5.0		5.5 5.0				51	15	ns	3-8
tрнz	Output Disable Time	3.3 5.0		5.5 5.0					2	ns	3-7
tplz	Output Disable Time	3.3 5.0		5.5 5.0						ns	3-8

*Voltage Range 3.3 is 3.0 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

				74ACT			54ACT		аст		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF			T _A = − 55°C to + 125°C CL = 50 pF		$TA = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max	1	
tplh	Propagation Delay In to Zn	5.0	1.0	5.0	7.0	1.0	8.0	1.0	7.5	ns	3-6
t PHL	Propagation Delay In to Zn	5.0	1.0	6.0	7.5	1.0	9.5	1.0	8.5	ns	3-6
tplh	Propagation Delay S to Zn	5.0	1.0	7.0	9.5	1.0	11.5	1.0	10.5	ns	3-6
tphl	Propagation Delay S to Zn	5.0	1.0	7.0	10.5	1.0	12.5	1.0	11.5	ns	3-6
tрzн	Output Enable Time	5.0	1.0	6.0	8.0	1.0	9.5	1.0	9.0	ns	3-7
tPZL	Output Enable Time	5.0	1.0	6.0	8.0	1.0	9.5	1.0	9.0	ns	3-8
tphz	Output Disable Time	5.0	1.0	6.5	9.0	1.0	10.5	1.0	10.0	ns	3-7
tplz	Output Disable Time	5.0	1.0	6.0	7.5	1.0	9.0	1.0	8.5	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol		Тур		conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
CPD	Power Dissipation Capacitance	50.0	pF	Vcc = 5.5 V

54AC/74AC258 • 54ACT/74ACT258

Quad 2-Input Multiplexer With 3-State Outputs

Description

The 'AC/'ACT258 is a quad 2-input multiplexer with 3-state outputs. Four bits of data from two sources can be selected using a common data select input. The four outputs present the selected data in the complement (inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable (\overline{OE}) input, allowing the outputs to interface directly with bus-oriented sytems.

- Multiplexer Expansion by Tying Outputs Together
- Inverting 3-State Outputs
- Outputs Source/Sink 24 mA
- 'ACT258 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

- S Common Data Select Input
- OE 3-State Output Enable Input
- Ioa Iod Data Inputs from Source 0
- I1a I1d Data Inputs from Source 1
- Za Zd 3-State Inverting Data Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

The 'ACI'ACT258 is a quad 2-input multiplexer with 3-state outputs. It selects four bits of data from two sources under control of a common Select input (S). When the Select input is LOW, the lox inputs are selected and when Select is HIGH, the l1x inputs are selected. The data on the selected inputs appears at the outputs in inverted form. The 'ACI'ACT258 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

 $\overline{Za} = \overline{OE} \bullet (I1a \bullet S + I0a \bullet \overline{S}) \\ \overline{Zb} = \overline{OE} \bullet (I1b \bullet S + I0b \bullet \overline{S}) \\ \overline{Zc} = \overline{OE} \bullet (I1c \bullet S + I0c \bullet \overline{S}) \\ \overline{Zc} = \overline{OE} \bullet (I1c \bullet S + I0c \bullet \overline{S}) \\ \overline{Zd} = \overline{OE} \bullet (I1d \bullet S + I0d \bullet \overline{S})$

When the Output Enable input (\overline{OE}) is HIGH, the outputs are forced to a high impedance state. If the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the

maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

Truth Table

Output Enable	Select Input		ata outs	Outputs
ŌĒ	S	lo	l1	Z
Н	Х	X	Х	Z
L	н	X	L	н
L	н	X	н	L
L	L	L	X	н
L	L	н	X	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT258)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

				74AC			54AC		AC		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF			$T_A = -55 \circ C$ to + 125 \circ CL = 50 pF		TA = − 40 °C to + 85 °C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplH	Propagation Delay In to Zn	3.3 5.0	1.0 1.0	6.0 4.5	9.5 7.5	1.0 1.0	12.0 9.5	1.0 1.0	11.0 8.5	ns	3-5
tphl	Propagation Delay In to Zn	3.3 5.0	1.0 1.0	5.0 4.0	8.5 6.5	1.0 1.0	10.5 7.5	1.0 1.0	9.5 7.0	ns	3-5
tplh	Propagation Delay S to Zn	3.3 5.0	1.0 1.0	7.5 6.0	12.0 9.5	1.0 1.0	15.0 12.0	1.0 1.0	14.0 10.5	ns	3-6
tPHL	Propagation Delay S to Zn	3.3 5.0	1.0 1.0	7.5 5.5	11.5 9.0	1.0 1.0	14.0 10.5	1.0 1.0	13.0 10.0	ns	3-6
tрzн	Output Enable Time	3.3 5.0	1.0 1.0	6.0 4.5	9.5 7.5	1.0 1.0	11.5 9.0	1.0 1.0	10.5 8.5	ns	3-7
tPZL	Output Enable Time	3.3 5.0	1.0 1.0	5.5 5.5	9.0 7.0	1.0 1.0	10.5 8.5	1.0 1.0	10.0 8.0	ns	3-8
tрнz	Output Disable Time	3.3 5.0	1.0 1.0	5.5 5.5	10.0 8.5	1.0 1.0	11.5 9.5	1.0 1.0	11.5 9.0	ns	3-7
tPLZ	Output Disable Time	3.3 5.0	1.0 1.0	5.5 5.0	9.0 7.0	1.0 1.0	10.5 8.5	1.0 1.0	10.0 8.0	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

			74ACT TA = + 25°C CL = 50 pF			54ACT TA = - 55°C to + 125°C CL = 50 pF		74ACT TA = - 40°C to + 85°C CL = 50 pF			Fig. No.
Symbol	Parameter	Vcc* (V)								Units	
			Min	Тур	Max	Min	Max	Min	Max	1	
tр∟н	Propagation Delay In to Zn	5.0	1.0	6.5	8.5			1.0	9.5	ns	3-5
tphL	Propagation Delay In to Zn	5.0	1.0	5.5	7.5			1.0	8.0	ns	3-5
tрLH	Propagation Delay S to \overline{Z}_n	5.0	1.0	7.5	10.5			1.0	11.5	ns	3-6
tphl	Propagation Delay S to Zn	5.0	1.0	7.0	9.5			1.0	11.0	ns	3-6
tрzн	Output Enable Time	5.0	1.0	6.5	8.5			1.0	9.5	ns	3-7
tPZL	Output Enable Time	5.0	1.0	6.5	8.5			1.0	9.5	ns	3-8
tрнz	Output Disable Time	5.0	1.0	7.0	9.0			1.0	10.0	ns	3-7
tPLZ	Output Disable Time	5.0	1.0	6.0	8.0			1.0	9.0	ns	3-8

*Voltage Range 5.0 is 5.0 V ± 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT		Conditions
Gymbol		Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	55.0	pF	Vcc = 5.5 V

54AC/74AC273 • 54ACT/74ACT273

Octal D Flip-Flop

Description

The 'AC/'ACT273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset ($\overline{\text{MR}}$) inputs load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output.

All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the $\overline{\text{MR}}$ input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

- Ideal Buffer for MOS Microprocessor or Memory
- Eight Edge-Triggered D Flip-Flops
- Buffered Common Clock
- Buffered, Asynchronous Master Reset
- See '377 for Clock Enable Version
- See '373 for Transparent Latch Version
- See '374 for 3-State Version
- Outputs Source/Sink 24 mA
- 'ACT273 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Connection Diagrams

on Assignmer for LCC

Pin Names

Do - D7	Data Inputs
MR	Master Reset
CP	Clock Pulse Input
Q0 - Q7	Data Outputs

AC273 • ACT273

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Mode Select-Function Table

Operating Made		Inputs	Outputs		
Operating Mode	MR	СР	Dn	Qn	
Reset (Clear)	L	х	Х	L	
Load '1'	н	L	н	н	
Load '0'	н	L	L	L	

$$\begin{split} H &= HIGH \mbox{ Voltage Level} \\ L &= LOW \mbox{ Voltage Level} \\ X &= Immaterial \\ \varGamma &= LOW-to-HIGH \mbox{ Clock Transition} \end{split}$$

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC}$ or Ground, $V_{CC} = 5.5 V$, $T_A = Worst Case$
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT273)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)		k = + 25 k = 50 p		to +	– 55°C 125°C 50 pF	to +	- 40°C 85°C 50 pF	Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	3.3 5.0	90 140	125 175		75 95		75 125		MHz	3-3
tplh	Propagation Delay Clock to Output	3.3 5.0	1.0 1.0	7.0 5.5	12.5 9.0	1.0 1.0	19.0 11.0	1.0 1.0	14.0 10.0	ns	3-6
tphl	Propagation Delay Clock to Output	3.3 5.0	1.0 1.0	7.0 5.0	13.0 10.0	1.0 1.0	16.0 11.5	1.0 1.0	14.5 11.0	ns	3-6
tph∟	Propagation Delay MR to Output	3.3 5.0	1.0 1.0	7.0 5.0	13.0 10.0	1.0 1.0	16.0 11.5	1.0 1.0	14.0 10.5	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

Symbol Parameter			74	AC	54AC	74AC		
		Vcc* $T_A = +25 °C$ (V) $C_L = 50 ~pF$		$T_A = -55 \degree C$ to +125 °C CL = 50 pF	T _A = − 40 °C to +85 °C C _L = 50 pF	Units	Fig. No.	
			Тур		Guaranteed Mi			
ts	Setup Time, HIGH or LOW, Data to CP	3.3 5.0	3.5 2.5	5.5 4.0	6.5 5.0	6.0 4.5	ns	3-9
th	Hold Time, HIGH or LOW Data to CP	3.3 5.0	- 2.0 - 1.0	0 1.0	0 1.0	0 1.0	ns	3-9
tw	Clock Pulse Width HIGH or LOW	3.3 5.0	3.5 2.5	5.5 4.0	6.5 5.0	6.0 4.5	ns	3-6
tw	MR Pulse Width HIGH or LOW	3.3 5.0	2.0 1.5	5.5 4.0	6.5 5.0	6.0 4.5	ns	3-6
trec	Recovery Time MR to CP	3.3 5.0	1.5 1.0	3.5 2.0	4.5 3.0	4.5 3.0	ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

	Parameter		74ACT 54ACT		74ACT		
Symbol			Ta = + 25°C CL = 50 pF	$T_A = -55 \degree C$ to +125 °C CL = 50 pF	TA = - 40°C to + 85°C CL = 50 pF	Units	Fig. No.
			Min Typ Max	Min Max	Min Max		
fmax	Maximum Clock Frequency	5.0	200	~~~		MHz	3-3
tр∟н	Propagation Delay Clock to Output	5.0	6.0	$/\Lambda/7$	a .	ns	3-6
tрнL	Propagation Delay Clock to Output	5.0	6.5			ns	3-6
tphĽ	Propagation Delay MR to Output	5.0	7.0		4	ns	3-6
*Voltage Range 5.0 is 5.0 V ± 0.5 V							

AC Operating Requirements

~			74A	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc*. (V)	TA = + CL = {		TA = -55°C to +125°C CL = 50 pF	$T_A = -40 \circ C$ to +85 \circ CL = 50 pF	Units	Fig. No.
	111/5/	7	Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW, Data to CP	5.0	3.0	M	~		ns	3-9
th	Hold Time, HIGH or LOW Data to CP	5.0	- 2.5	\langle / \rangle	$/\Lambda n$	~	ns	3-9
tw	Clock Pulse Width HIGH or LOW	5.0	2.5	11			ns	3-6
tw	MR Pulse Width, HIGH or LOW	5.0	2.5			Y.J.F	ns	3-6
trec	Recovery Time MR to CP	5.0	- 1.0			L	ns	3-6

*Voltage Range 5.0 is 5.0 V ± 0.5 V

Symbol	Parameter	54/74AC/ACT Typ	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	50.0	pF	Vcc = 5.5 V

54AC/74AC299 • 54ACT/74ACT299

8-Input Universal Shift/Storage Register With Common Parallel I/O Pins

Description

The 'AC/'ACT299 is an 8-bit universal shift/storage register with 3-state outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Additional outputs are provided for flip-flops Q0, Q7 to allow easy serial cascading. A separate active LOW Master Reset is used to reset the register.

- Common Parallel I/O for Reduced Pin Count
- Additional Serial Inputs and Outputs for Expansion
- Four Operating Modes: Shift Left, Shift Right, Load and Store
- 3-State Outputs for Bus-Oriented Applications
- Outputs Source/Sink 24 mA
- 'ACT299 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

СР	Clock Pulse Input
DS0	Serial Data Input for Right Shift
DS7	Serial Data Input for Left Shift
S0, S1	Mode Select Inputs
MR	Asynchronous Master Reset
<u>OE1, OE</u> 2	3-State Output Enable Inputs
1/00 - 1/07	Parallel Data Inputs or
	3-State Parallel Outputs
Q0, Q7	Serial Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Sn

S

5

Functional Description

The 'AC/'ACT299 contains eight edge-triggered Dtype flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by So and S1, as shown in the Truth Table. All flip-flop outputs are brought out through 3-state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Qo and Q7 are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on $\overline{\text{MR}}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on either $\overline{OE_1}$ or $\overline{OE_2}$ disables the 3-state buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both S0 and S1 in preparation for a parallel load operation.

	Tru	uth	Та	ble
--	-----	-----	----	-----

	Inputs			
MR	S1	S0	СР	Response
L	х	X	x	Asynchronous Reset; Q0 - Q7 = LOW
н	н	н	L	Parallel Load; I/On→Qn
н	L	н	L	Shift Right; DSo→Qo, Qo→Q1, etc.
Н	н	L	L	Shift Left; DS7→Q7, Q7→Q6, etc.
н	L	L	х	Hold

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

J = LOW-to-HIGH Transition

DC	Characteristics	(unless	otherwise	specified)	

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT299)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V$ $T_A = Worst Case$

			74AC	54AC		74AC				
Symbol	ymbol Parameter		TA = + 25 °C CL = 50 pF		$T_A = -55^{\circ}C$ to + 125^{\circ}C CL = 50 pF		$T_A = -40 \degree C$ to +85 \degree C CL = 50 pF		Units	Fig. No.
	$(Q) \wedge (Q)$		Min Typ	Max	Min	Max	Min	Max		
fmax	Maximum input Frequency	3.3 5.0	55 130						MHz	3-3
tрLн	Propagation Delay CP to Q0 of Q7	3.3 /5,0	31.0 12.0						ns	3-6
tрнL	Propagation Delay CP to Qo or Q7	3.3 5.0	30.0 13.0	<u>.</u>					ns	3-6
tplh	Propagation Delay CP to I/On	3.3 5.0	28.0 11.0	7/7					ns	3-6
tphl	Propagation Delay CP to I/On	3.3 5.0	28.0 12.0	\square		7			ns	3-6
tplh	Propagation Delay MR to I/On	3.3 5.0	33.0 14.0	V	$ V\rangle$	1	1.		ns	3-6
tphl	Propagation Delay MR to I/On	3.3 5.0	31.0 13.0			J		\mathfrak{I}	ns	3-6
tрzн	Output Enable Time OE to I/On	3.3 5.0	24.0 10.0					$\left\langle 1\right\rangle$	ns	3-7
tPZL	Output Enable Time OE to I/On	3.3 5.0	24.0 10.0						ns	3-8
tрнz	Output Disable Time OE to I/On	3.3 5.0	25.0 13.0						ns	3-7
tplz	Output Disable Time OE to I/On	3.3 5.0	24.0 12.0						ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74/	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF		TA = -55°C to +125°C CL = 50 pF	$T_{A} = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units	Fig. No.
~			Тур		Guaranteed Mi	nimum		
ts	Setup-Time, HIGH or LOW So or S1 to CP	3.3 5.0	12.0 /5 ₇ 0				ns	3-9
th	Hold Time, HIGH or LOW So or S1 to CP	3.3 5.0	0 9	IM	Λ.		ns	3-9
ts	Setup Time, HIGH or LOW I/On, DS0 or DS7 to CP	3.3 5.0	6.0 3.0		MAT		ns	3-9
th	Hold Time, HIGH or LOW I/On, DS0 or DS7 to CP	3.3 5.0	0 0				ns	3-9
tw	CP Pulse Width, HIGH or LOW	3.3 5.0	9.0 4.0			VY	ns	>3-6
tw	MR Pulse Width, LOW	3.3 5.0	7.0 4.0				ns	3-6
trec	Recovery Time, MR to CP	3.3 5.0	0 0				ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

			74ACT			54ACT		74ACT			
Symbol	Parameter	Vcc* (V)	С	$IA = +25 ^{\circ}C$ CL = 50 pF		$T_A = -55 \text{°C}$ to +125 °C CL = 50 pF		$T_A = -40 \text{ °C}$ to +85 °C CL = 50 pF		Units	Fig. No.
	100		Min	Тур	Max	Min	Max	Min	Max		
fmax 🤇	Maximum Input Frequency	5.0		125						MHz	3-3
tplH	Propagation Delay CP to Qo or Q7	5.0		11.0						ns	3-6
tphl	Propagation Delay CP to Q0 or Q7	5.0	\square	12.0						ns	3-6
tplH	Propagation Delay CP to I/On	5.0	[/]	10.0	$\overline{\Lambda}r$	2				ns	3-6
TPHL	Propagation Delay CP to I/On	5.0		12.0		\widehat{A}	n			ns	3-6
tplH	Propagation Delay MR to Qo or Q7	5.0		14.0	44				~	ns	3-6
t PHL	Propagation Delay MR to Qo or Q7	5.0		13.0		~	R	/	\bigcirc	ns	3-6
tрzн	Output Enable Time OE to I/On	5.0		10.0				4	V	ns	3-7
tPZL	Output Enable Time OE to I/On	5.0		10.0					<	ns	3-8
tрнz	Output Disable Time OE to I/On	5.0		12.0						ns	3-7
tplz	Output Disable Time OE to I/On	5.0		11.0						ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

	N		74ACT		54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	Ta = + Cl = 5		$TA = -55 \degree C$ to +125 °C CL = 50 pF	$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW So or S1 to CP	5.0	5.0				ns	3-9
th	Hold Time, HIGH or LOW So or S1 to CP	5.0	0/		~		ns	3-9
ts	Setup Time, HIGH or LOW I/On, DS0 or DS7 to CP	5.0	3.0		Λn		ns	3-9
th	Hold Time, HIGH or LOW I/On, DS0 or DS7 to CP	5.0	0	4		1~	ns	3-9
tw	CP Pulse Width HIGH or LOW	5.0	4.0		\sim		ns	3-6
tw	MR Pulse Width, LOW	5.0	4.0			~ //	ns	3-6
trec	Recovery Time, MR to CP	5.0	0				ns	3-9

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
	raidilleter	Тур	Onita	Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Срр	Power Dissipation Capacitance		pF	Vcc = 5.5 V	

54AC/74AC323 • 54ACT/74ACT323

8-Bit Universal Shift/Storage Register With Synchronous Reset and Common I/O Pins

Description

The 'AC/'ACT323 is an 8-bit universal shift/storage register with 3-state outputs. Its function is similar to the 'AC/'ACT299 with the exception of Synchronous Reset. Parallel load inputs and flipflop outputs are multiplexed to minimize pin count. Separate serial inputs and outputs are provided for Q_0 and Q_7 to allow easy cascading. Four operation modes are possible: hold (store), shift left, shift right and parallel load.

- Common Parallel I/O for Reduced Pin Count
- Additional Serial Inputs and Outputs for Expansion
- Four Operating Modes: Shift Left, Shift Right, Load and Store
- 3-State Outputs for Bus-Oriented Applications
- Outputs Source/Sink 24mA
- 'ACT323 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

r

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

S1

Functional Description

The 'AC/'ACT323 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by S0 and S1 as shown in the Mode Select Table. All flip-flop outputs are brought out through 3-state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q0 and Q7 are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on \overline{SR} overrides the Select inputs and allows the flip-flops to be reset by the next

rising edge of CP. All other state changes are also initiated by the LOW-to-HIGH CP transition. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on either $\overline{OE_1}$ or $\overline{OE_2}$ disables the 3-state buffers and puts the I/O pins in the high impedance state. In this condition the shift, load, hold and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both S₀ and S₁ in preparation for a parallel load operation.

Mode Select Table

	Inp	uts		Response				
SR	SR S1 S0 CP			Response				
L	X	Х	L	Synchronous Reset; Q0-Q7 = LOW				
н	н	н	7	Parallel Load; I/On→Qn				
н	L	н	L	Shift Right; DS0→Q0, Q0→Q1, etc. Shift Left; DS7→Q7, Q7→Q6, etc.				
н	н	L	Г	Shift Left; DS7→Q7, Q7→Q6, etc.				
н	L	L	Х	Hold				

H = HIGH Voltage Level

L=LOW Voltage Level

X = Immaterial

 Γ = LOW-to-HIGH Clock Transition

DC Charac	teristics (unle	ess otherwise	specified)
-----------	-----------------	---------------	------------

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT323)	1.6	1.5	mA	VIN = VCC - 2.1 V VCC = 5.5 V TA = Worst Case

				74AC		54	AC	74	AC		
Symbol	Parameter	V cc* (V)		= + 25 _= 50 p	-	to +	– 55°C 125°C 50 pF	to +	– 40 °C 85 °C 50 pF	Units	Fig. No.
4			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Input Frequency	3.3 5.0		55 130						MHz	3-3
tplh	Propagation Delay CP to Q0 or Q7	3.3 5.0		31.0 12.0						ns	3-6
tphl	Propagation Delay CP to Q0 or Q7	3.3 5.0		30.0 13.0						ns	3-6
tрLн	Propagation Delay CP to I/On	3.3 5.0	21	28.0 11.0	///		~			ns	3-6
tрнL	Propagation Delay CP to I/On	3.3 5.0		28.0 12.0	4	$\langle \rangle$				ns	3-6
tрzн	Output Enable Time	3.3 5.0		24.0 10.0			K		Δ	ns	3-7
tpzl	Output Enable Time	3.3 5.0		24.0 10.0			L	1	Y	ns	> 3-8
tрнz	Output Disable Time	3.3 5.0		25.0 13.0					V (ns	3-7
tplz	Output Disable Time	3.3 5.0		24.0 12.0						ns	3-8

*Voltage Range 3.3 is 3.0 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	TA = H CL = {	- 25°C 50 pF	TA = − 55 °C to + 125 °C CL = 50 pF	T _A = - 40 °C to + 85 °C CL = 50 pF	Units	Fig. No.
~	(-1)		Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW So or S1 to CP	3,3 5.0	12.0 5.0				ns	3-9
th	Hold Time, HIGH or LOW So or S1 to CP	3.3 5.0	0	7~			ns	3-9
ts	Setup Time, HIGH or LOW I/On, DS0, DS7 to CP	3.3 5.0	5.0 5.0	\square	7/11 1		ns	3-9
th	Hold Time, HIGH or LOW I/On, DS0, DS7 to CP	3.3 5.0	0 0			ก	ns	3-9
ts	Setup Time, HIGH or LOW SR to CP	3.3 5.0	4.0 2.0				ns	3-9
th	Hold Time, HIGH or LOW SR to CP	3.3 5.0	0 0			~ 2)	ns	3-9
tw	CP Pulse Width HIGH or LOW	3.3 5.0	9.0 4.0			~	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V±0.5 V

			7	'4ACT		54/	аст	74/	ст		
Symbol	Parameter	Vcc* (V)	CL	= + 25 = 50 p	۶F	to + CL=	– 55 °C 125 °C 50 pF	to + C∟=	- 40°C 85°C 50 pF	Units	Fig. No.
	(2/())		Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Input Frequency	5.0		125						MHz	3-3
tрlн	Propagation Delay CP to Q0 or Q7	5.0	\square	12.0						ns	3-6
tphl	Propagation Delay CP to Q0 or Q7	5.0		13.0						ns	3-6
tplh	Propagation Delay CP to I/On	5.0	M	10.0		\wedge	\sim			ns	3-6
tphl	Propagation Delay CP to I/On	5.0		12.0	7	$\langle V \rangle$		7		ns	3-6
tрzн	Output Enable Time	5.0		10.0		V,	$\overline{\langle}$		~	ns	3-7
tPZL	Output Enable Time	5.0		10.0			5	173	$\overline{\mathbf{O}}$	ns	3-8
tрнz	Output Disable Time	5.0		12.0			` \	∇	77	ns	3-7
tplz	Output Disable Time	5.0		11.0					$\langle - \rangle$	ns	3-8
*Voltage F	Range 5.0 is 5.0 V ± 0.5 V	•	•			•••••••••••••••••••••••••••••••••••••••		•		/	

AC	Operating	Requirements
----	-----------	--------------

			74A	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	TA = + CL = 5		TA = - 55°C to + 125°C CL = 50 pF	T _A = − 40 °C to + 85 °C C _L = 50 pF	Units	Fig. No.
~	(12)		Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW So or S1 to CP	5.0	5.0				ns	3-9
th	Hold Time, HIGH or LOW So or S1 to CP	5.0	0	1~			ns	3-9
ts	Setup Time, HIGH or LOW I/On, DS0, DS7 to CP	5.0	3,0		11		ns	3-9
th	Hold Time, HIGH or LOW I/On, DS0, DS7 to CP	5.0	0			$\hat{\Lambda}$.	ns	3-9
ts	Setup Time, HIGH or LOW SR to CP	5.0	2.0				ns	3-9
th	Hold Time, HIGH or LOW SR to CP	5.0	0			77	ns	3-9
tw	CP Pulse Width HIGH or LOW	5.0	4.0			4.,	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
Symbol		Тур	01110	Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Срр	Power Dissipation Capacitance		pF	Vcc = 5.5 V	

54AC/74AC352 • 54ACT/74ACT352

Dual 4-Input Multiplexer

Description

The 'AC/'ACT352 is a very high-speed dual 4-input multiplexer with common Select inputs and individual Enable inputs for each section. It can select two bits of data from four sources. The two buffered outputs present data in the inverted (complementary) form. The 'AC/'ACT352 is the functional equivalent of the 'AC/'ACT153 except with inverted outputs.

- Inverted Version of the 'AC/'ACT153
- Separate Enables for Each Multiplexer
- Outputs Source/Sink 24 mA
- 'ACT352 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

10a - 13a	Side A Data Inputs
юь - Ізь	Side B Data Inputs
S0, S1	Common Select Inputs
Ēa	Side A Enable Input
Ēь	Side B Enable Input
Za, Zo	Multiplexer Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

The 'AC/'ACT352 is a dual 4-input multiplexer. It selects two bits of data from up to four sources under the control of the common Select inputs (So, S1). The two 4-input multiplexer circuits have individual active LOW Enables ($\overline{E}a$, $\overline{E}b$) which can be used to strobe the outputs independently. When the Enables ($\overline{E}a$, $\overline{E}b$) are HIGH, the corresponding outputs ($\overline{Z}a$, $\overline{Z}b$) are forced HIGH.

The logic equations for the outputs are shown below:

- $\overline{Z}a = \overline{E}a \bullet (I0a \bullet \overline{S}1 \bullet \overline{S}0 + I1a \bullet \overline{S}1 \bullet S0 + 12a \bullet S1 \bullet \overline{S}0 + I3a \bullet S1 \bullet S0)$
- $\overline{Z}_{b} = \overline{E}_{b} \bullet (I_{0b} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1b} \bullet \overline{S}_{1} \bullet S_{0} + I_{2b} \bullet S_{1} \bullet \overline{S}_{0} + I_{3b} \bullet S_{1} \bullet S_{0})$

The 'AC/'ACT352 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is as a function generator. The 'AC/ACT352 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

Truth Table

Select	lect Inputs Inputs (a or b)						
So	S1	Ē	lo	h	12	lз	Z
X	X	н	X	Х	Х	x	н
L	L	L	L	Х	Х	Х	Н
L	L	L	н	Х	Х	Х	L
н	L	L	X X	L	Х	Х	Н
н	L	L	X	н	Х	Х	L
L	н	L	X	Х	L	Х	Н
L	н	L	X	Х	н	Х	L L
н	H	L	X	Х	Х	L	Н
н	Н	L	х	Х	Х	Н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

AC352 • ACT352

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC}$ or Ground, $V_{CC} = 5.5 V$, $T_A = Worst Case$
Icc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT352)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V$ $T_A = Worst Case$

DC Characteristics (unless otherwise specified)

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)		= + 25 ∟=50 p		to +	– 55°C 125°C 50 pF	to +	– 40 °C 85 °C 50 pF	Units	Fig. No.
	MAN		Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay Sn to Zn	/3:3 5.0	Π	9.0 6.5						ns	3-6
tphL	Propagation Delay Sn to Zn	/3.3 5.0	///	9.0 6.5	An					ns	3-6
tplн	Propagation Delay En to Zn	3.3 5.0	44	6/5 5.0]]]	$/ \wedge \rangle$	Π	2	~	ns	3-6
tрнL	Propagation Delay En to Zn	3.3 5.0		6.5 5.0		VΛ	J.	9	K	ns	3-6
tplH	Propagation Delay In to Z̄n	3.3 5.0		8.5 6.0				4	17	ns	3-5
tphL	Propagation Delay In to Zn	3.3 5.0		8.5 6.0						ns	3-5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

				74ACT		544	СТ	74/	АСТ		
Symbol	Parameter	Vcc* (V)		L = + 25 L = 50 p		to +	- 55°C 125°C 50 pF	to +	– 40 °C 85 °C 50 pF	Units	Fig. No.
	DYIC	\square	Min	Тур	Мах	Min	Max	Min	Max		
tplH	Propagation Delay Sn to Zn	5.0	17	7.0						ns	3-6
tphl	Propagation Delay Sn to Zn	5.0		7.0	MM	$\overline{\Delta}$				ns	3-6
tр∟н	Propagation Delay En to Zn	5.0	5	5.5		$\langle \Lambda \rangle$	7/	5		ns	3-6
tрнL	Propagation Delay En to Zn	5.0		5.5	4	U	K	Π	6	ns	3-6
tрLH	Propagation Delay In to \overline{Z}_n	5.0		6.5				11	T	n\$	3-5
tphL	Propagation Delay In to \overline{Z}_n	5.0		6.5					and a	Ins	3-5

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Junio	raiametei	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC353 • 54ACT/74ACT353

Dual 4-Input Multiplexer With 3-State Outputs

Description

The 'AC/'ACT353 is a dual 4-input multiplexer with 3-state outputs. It can select two bits of data from four sources using common Select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable (\overline{OE}) inputs, allowing the outputs to interface directly with bus-oriented systems.

- Inverted Version of the 'AC/'ACT253
- Multifunction Capability
- Separate Enables for Each Multiplexer
- Outputs Source/Sink 24 mA
- 'ACT353 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

10a - 13a	Side A Data Inputs
10ь - Ізь	Side B Data Inputs
S0, S1	Common Select Inputs
ŌĒa	Side A Output Enable Input
ŌĒb	Side B Output Enable Input
Za, Zb	3-State Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC and PCC

Functional Description

The 'ACI'ACT353 contains two identical 4-input multiplexers with 3-state outputs. They select two bits from four sources selected by common Select inputs (So, S1). The 4-input multiplexers have individual Output Enable (\overline{OE}_a , \overline{OE}_b) inputs which, when HIGH, force the outputs to a high impedance (High Z) state. The logic equations for the outputs are shown below:

 $\overline{Z}_{a} = \overline{OE}_{a} \bullet (I_{0a} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1a} \bullet \overline{S}_{1} \bullet S_{0} + I_{2a} \bullet S_{1} \bullet \overline{S}_{0} + I_{3a} \bullet S_{1} \bullet S_{0})$

 $\overline{Z}_{b} = \overline{OE}_{b} \bullet (I_{0b} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1b} \bullet \overline{S}_{1} \bullet S_{0} + I_{2b} \bullet S_{1} \bullet \overline{S}_{0} + I_{3b} \bullet S_{1} \bullet S_{0})$

	ect uts		Data Inputs		Output Enable	Outputs		
S0	S1	lo	h	12	l3	ŌĒ	Z	
X	X	Х	Х	Х	Х	Н	Z	
L	L	L	Х	Х	Х	L	н	
L	L	н	Х	Х	Х	L	L	
н	L	х	L	Х	Х	L	н	
н	L	X	н	Х	Х	L	L	
L	н	X	Х	L	Х	L	н	
L	н	X	Х	н	Х	L	L	
н	н	X	Х	Х	L	L	н	
н	н	X	Х	Х	н	L	L L	

Truth Table

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Z = High Impedance

If the outputs of 3-state devices are tied together.

all but one device must be in the high impedance

state to avoid high currents that would exceed the

maximum ratings. Designers should ensure that

Output Enable signals to 3-state devices whose

outputs are tied together are designed so that

there is no overlap.

Address inputs So and S1 are common to both sections.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
Icc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_{A} = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT353)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_{A} = Worst Case$

				74AC		54AC		74AC			
Symbol	Parameter	V cc* (V)	1	v = +25 s∟ = 50 p		to + '	-55°C 125°C 50 pF	to +	- 40°C 85°C 50 pF	Units	Fig. No.
4	()		Min	Тур	Max	Min	Max	Min	Max		
tplH	Propagation Delay Sn to Zn	3.3 5.0		9.0 6.5						ns	3-6
tphl	Propagation Delay Sn to Zn	3.3 5.0	\square	9.0 6.5						ns	3-6
tрlн	Propagation Delay	3.3 5.0		6.5 5.0	$\overline{\partial}$					ns	3-5
tPHL	Propagation Delay In to Zn	3.3 5.0	~	6.5	Π,		\sim			ns	3-5
tрzн	Output Enable Time	3.3 5.0		5.5 4.0	41			h.,	·	ns	3-7
tPZL	Output Enable Time	3.3 5.0		6.0 4.5			R	1/5	5	ns	3-8
tрнz	Output Disable Time	3.3 5.0		7.0 5.5					V	AS	× 3-7
tplz	Output Disable Time	3.3 5.0		5.5 4.0					<	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

				74ACT		54/	СТ	74ACT			
Symbol	Paramèter	Vcc* (V)	1	= + 25 ∟=50 p		to +	- 55°C 125°C 50 pF	to +	– 40 °C 85 °C 50 pF	Units	Fig. No.
	477/00		Min	Тур	Мах	Min	Max	Min	Max		
tplH	Propagation Delay Sn to Zn	5.0	\square	7.0						ns	3-6
tphl	Propagation Delay	5.0		7.0	\geq					ns	3-6
tрін	Propagation Delay In to Z̄n	5.0		5.5		2	*			ns	3-5
t PHL	Propagation Delay In to Z̄n	5.0		5.5	Π	Π	7	5		ns	3-5
tрzн	Output Enable Time	5.0		4.5		V	\swarrow	1		ns	3-7
tpzl	Output Enable Time	5.0		5.0			IJ		\mathcal{Y}	ns	3-8
tрнz	Output Disable Time	5.0		6.0				> ($\left(\right)$	ns	3-7
tplz	Output Disable Time	5.0		4.5					2	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT Typ	Units	Conditions
Cin	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC373 • 54ACT/74ACT373

Octal Transparent Latch With 3-State Outputs

Description

The 'AC/'ACT373 consists of eight latches with 3-state outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the bus output is in the high impedance state.

- Eight Latches in a Single Package
- 3-State Outputs for Bus Interfacing
- Outputs Source/Sink 24 mA
- 'ACT373 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Truth Table

	Outputs		
ŌĒ	LE	On	
н	X	Х	Z
L	н	L	L
L	н	н	н
L	L	Х	O 0

H = HIGH Voltage Level

L = LOW Voltage Level

Z = High Impedance

X = Immaterial

Oo = Previous Oo before

LOW-to-HIGH Transition of Clock

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

Pin Names

- LE Latch Enable Input
- OE Output Enable Input

Oo - O7 3-State Latch Outputs

Functional Description

The 'AC/'ACT373 contains eight D-type latches with 3-state standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present

Logic Diagram

on the D inputs a setup time preceding the HIGHto-LOW transition of LE. The 3-state standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the 2-state mode. When \overline{OE} is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT373)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)	Ta = + 25°C C∟ = 50 pF			to +	– 55 °C 125 °C 50 pF	to +	- 40°C 85°C 50 pF	Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplH	Propagation Delay Dn to On	3.3 5.0	1.0 1.0	10.0 7.0	13.5 9.5	1.0 1.0	16.5 11.5	1.0 1.0	15.0 10.5	ns	3-5
tphl	Propagation Delay Dn to On	3.3 5.0	1.0 1.0	9.5 7.0	13.0 9.5	1.0 1.0	16.0 11.5	1.0 1.0	14.5 10.5	ns	3-5
tplh	Propagation Delay LE to On	3.3 5.0	1.0 1.0	10.0 7.5	13.5 9.5	1.0 1.0	16.5 12.0	1.0 1.0	15.0 10.5	ns	3-6
tphL	Propagation Delay LE to On	3.3 5.0	1.0 1.0	9.5 7.0	12.5 9.5	1.0 1.0	15.0 11.0	1.0 1.0	14.0 10.5	ns	3-6
tрzн	Output Enable Time	3.3 5.0	1.0 1.0	9.0 7.0	11.5 8.5	1.0 1.0	14.0 10.5	1.0 1.0	13.0 9.5	ns	3-7
tpzl	Output Enable Time	3.3 5.0	1.0 1.0	8.5 6.5	11.5 8.5	1.0 1.0	13.5 10.0	1.0 1.0	13.0 9.5	ns	3-8
tрнz	Output Disable Time	3.3 5.0	1.0 1.0	10.0 8.0	12.5 11.0	1.0 1.0	16.0 13.5	1.0 1.0	14.5 12.5	ns	3-7
tplz	Output Disable Time	3.3 5.0	1.0 1.0	8.0 6.5	11.5 8.5	1.0 1.0	13.0 10.5	1.0 1.0	12.5 10.0	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V $\pm\,0.5$ V

AC Operating Requirements

			74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	TA = + CL = 5		TA = -55°C to +125°C CL = 50 pF	T _A = - 40°C to +85°C C _L = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi			
ts	Setup Time, HIGH or LOW Dn to LE	3.3 5.0	3.5 2.0	5.5 4.0	6.5 5.0	6.0 4.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to LE	3.3 5.0	- 3.0 - 1.5	0 0	1.0 1.0	0 0	ns	3-9
tw	LE Pulse Width, HIGH	3.3 5.0	4.0 2.0	5.5 4.0	6.5 5.0	6.0 4.5	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V±0.5 V

				74ACT		54/	ACT	74/	АСТ		
Symbol	Parameter	Vcc* (V)	Ta = + 25°C CL = 50 pF			TA = -55°C to +125°C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max	1	
tplH	Propagation Delay Dn to On	5.0	1.0	8.5	10.0	1.0	12.5	1.0	11.5	ns	3-5
tphL	Propagation Delay Dn to On	5.0	1.0	8.0	10.0	1.0	12.5	1.0	11.5	ns	3-5
tplH	Propagation Delay LE to On	5.0	1.0	8.5	11.0	1.0	12.5	1.0	11.5	ns	3-6
tphl	Propagation Delay LE to On	5.0	1.0	8.0	10.0	1.0	11.5	1.0	11.5	ns	3-6
tpzh	Output Enable Time	5.0	1.0	8.0	9.5	1.0	11.5	1.0	10.5	ns	3-7
tPZL	Output Enable Time	5.0	1.0	7.5	9.0	1.0	11.0	1.0	10.5	ns	3-8
tphz	Output Disable Time	5.0	1.0	9.0	11.0	1.0	14.0	1.0	12.5	ns	3-7
tplz	Output Disable Time	5.0	1.0	7.5	8.5	1.0	11.0	1.0	10.0	ns	3-8

*Voltage Range 5.0 is 5.0 V $\pm\,0.5$ V

AC Operating Requirements

			744	CT	54ACT	74ACT		Fig. No. 3-9 3-9
Symbol	Parameter	Vcc* (V)		⊦25°C 50 pF	TA = − 55°C to + 125°C CL = 50 pF	TA = − 40 °C to + 85 °C CL = 50 pF	Units	
			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Dn to LE	5.0	3.0	7.0	8.5	8.0	ns	3-9
th	Hold Time, HIGH or LOW Dn to LE	5.0	0	0	1.0	1.0	ns	3-9
tw	LE Pulse Width, HIGH	5.0	2.0	7.0	8.5	8.0	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol	Falanietei	Тур	Units	conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	40.0	pF	Vcc = 5.5 V

54AC/74AC374 • 54ACT/74ACT374

Octal D-Type Flip-Flop With 3-State Outputs

Description

The 'AC/'ACT374 is a high-speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable (\overline{OE}) are common to all flip-flops.

- Buffered Positive Edge-Triggered Clock
- 3-State Outputs for Bus-Oriented Applications
- Outputs Source/Sink 24 mA
- See '273 for Reset Version
- See '377 for Clock Enable Version
- See '373 for Transparent Latch Version
- See '574 for Broadside Pinout Version
- See '564 for Broadside Pinout Version with Inverted Outputs
- 'ACT374 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

Do - D7	Data Inputs
CP	Clock Pulse Input
ŌĒ	3-State Output Enable Input
O0 - O7	3 State Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

The 'AC/'ACT374 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-state true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Truth Table

	Inputs							
Dn	СР	ŌĒ	On					
Н		L	Н					
L	1	L	L					
Х	X	н	z					

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

 $\Gamma = LOW-to-HIGH$ Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT374)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_{A} = Worst Case$

DC Characteristics (unless otherwise specified)

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)	T _A = + 25°C CL = 50 pF			TA = − 55°C to + 125°C CL = 50 pF		$T_A = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	3.3 5.0	60 100	110 155		60 95		60 100		MHz	3-3
tplH	Propagation Delay CP to On	3.3 5.0	1.0 1.0	11.0 8.0	13.5 9.5	1.0 1.0	16.5 12.0	1.0 1.0	15.5 10.5	ns	3-6
tphl	Propagation Delay CP to On	3.3 5.0	1.0 1.0	10.0 7.0	12.5 9.0	1.0 1.0	15.0 11.0	1.0 1.0	14.0 10.0	ns	3-6
tрzн	Output Enable Time	3.3 5.0	1.0 1.0	9.5 7.0	11.5 8.5	1.0 1.0	14.0 10.5	1.0 1.0	13.0 9.5	ns	3-7
tpzl	Output Enable Time	3.3 5.0	1.0 1.0	9.0 6.5	11.5 8.5	1.0 1.0	14.0 10.5	1.0 1.0	13.0 9.5	ns	3-8
tрнz	Output Disable Time	3.3 5.0	1.0 1.0	10.5 8.0	12.5 11.0	1.0 1.0	16.0 12.5	1.0 1.0	14.5 12.5	ns	3-7
tplz	Output Disable Time	3.3 5.0	1.0 1.0	8.0 6.5	11.5 8.5	1.0 1.0	13.0 10.5	1.0 1.0	12.5 10.0	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	$T_A = +25^{\circ}C$ to $+125^{\circ}C$ to $+85^{\circ}C$	$A = +25^{\circ}C$ to $+125^{\circ}C$ to $+85^{\circ}C$		to +85°C	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Dn to CP	3.3 5.0	2.0 1.0	5.5 4.0	6.5 5.0	6.0 4.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	3.3 5.0	- 1.0 - 4.0	1.0 1.5	1.0 1.5	1.0 1.5	ns	3-9
tw	CP Pulse Width, HIGH or LOW	3.3 5.0	4.0 2.5	5.5 4.0	6.5 5.0	6.0 4.5	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

<u></u>				74ACT		54/	АСТ	74/	АСТ		
Symbol	Parameter	V cc* (V)	TA = + 25 °C CL = 50 pF			$T_A = -55 \circ C$ to +125 \circ CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	5.0	100	160		70	:	90		MHz	3-3
tplH	Propagation Delay CP to On	5.0	1.0	8.5	10.0	1.0	12.5	1.0	11.5	ns	3-6
TPHL	Propagation Delay CP to On	5.0	1.0	8.0	9.5	1.0	12.0	1.0	11.0	ns	3-6
tpzh	Output Enable Time	5.0	1.0	8.0	9.5	1.0	11.5	1.0	10.5	ns	3-7
tPZL	Output Enable Time	5.0	1.0	8.0	9.0	1.0	11.5	1.0	10.5	ns	3-8
tphz	Output Disable Time	5.0	1.0	8.5	11.5	1.0	13.0	1.0	12.5	ns	3-7
tplz	Output Disable Time	5.0	1.0	7.0	8.5	1.0	11.0	1.0	10.0	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74ACT 54ACT		54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	TA = + CL = 5	- 25°C 50 pF	TA = -55°C to +125°C CL = 50 pF	$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi			
ts	Setup Time, HIGH or LOW Dn to CP	5.0	1.0	7.0	5.5	5.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	5.0	0	1.5	1.5	1.5	ns	3-9
tw	CP Pulse Width, HIGH or LOW	5.0	2.0	7.0	5.0	5.0	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
Symbol Parameter		Тур	Units	Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Срр	Power Dissipation Capacitance	80.0	pF	Vcc = 5.5 V	

54AC/74AC377 • 54ACT/74ACT377

Octal D Flip-Flop With Clock Enable

Description

The 'AC/'ACT377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously, when the Clock Enable (CE) is LOW.

The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. The \overline{CE} input must be stable only one setup time prior to the LOW-to-HIGH clock transition for predictable operation.

- Ideal for Addressable Register Applications
- Clock Enable for Address and Data Synchronization Applications
- Eight Edge-Triggered D Flip-Flops
- Buffered Common Clock
- Outputs Source/Sink 24 mA
- See '273 for Master Reset Version
- See '373 for Transparent Latch Version
- See '374 for 3-State Version
- 'ACT377 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

Do - D7	Data Inputs
CE	Clock Enable (Active LOW)
Q0 - Q7	Data Outputs
CP	Clock Pulse Input

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

AC377 • ACT377

Mode Select-Function Table

Operating Mode		Inpu	Outputs	
Operating Mode	СР	CE	Dn	Qn
Load '1'	г	L	н	н
Load '0'	г	Ł	L	L
Hold (Do Nothing)	۲ X	H H	X X	No Change No Change

$$\begin{split} H &= HIGH \mbox{ Voltage Level} \\ L &= LOW \mbox{ Voltage Level} \\ X &= Immaterial \\ \varGamma &= LOW-to-HIGH \mbox{ Clock Transition} \end{split}$$

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = 25°C
Ісст	Maximum Additional Icc/Input ('ACT377)	1.6	1.5	mA	$V_{IN} = V_{CC}-2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

			74AC			54	AC	74AC				
Symbol	Parameter	Vcc* (V)		TA = + 25°C CL = 50 pF				$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.	
			Min	Тур	Max	Min	Max	Min	Max			
fmax	Maximum Clock Frequency	3.3 5.0	90 140	125 175		75 95		75 125		MHz	3-3	
tplH	Propagation Delay CP to Qn	3.3 5.0	1.0 1.0	8.0 6.0	13.0 9.0	1.0 1.0	14.0 10.0	1.0 1.0	14.0 10.0	ns	3-6	
tphl	Propagation Delay CP to Qn	3.3 5.0	1.0 1.0	8.5 6.5	13.0 10.0	1.0 1.0	15.0 11.0	1.0 1.0	14.5 11.0	ns	3-6	

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Operating Requirements

			74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	[™] I CL—50 nE I		TA = -55 °C to +125 °C CL = 50 pF	T _A = - 40 °C to + 85 °C C _L = 50 pF	Units	Fig. No.
					Guaranteed Mi			
ts	Setup Time, HIGH or LOW Dn to CP	3.3 5.0	3.5 2.5	5.5 4.0	7.5 6.0	6.0 4.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	3.3 5.0	- 2.0 - 1.0	0 1.0	0 1.0	0 1.0	ns	3-9
ts	Setup Time, HIGH or LOW CE to CP	3.3 5.0	4.0 2.5	6.0 4.0	9.5 6.0	7.5 4.5	ns	3-9
th	Hold Time, HIGH or LOW CE to CP	3.3 5.0	- 3.5 - 2.0	0 1.0	0 1.0	0 1.0	ns	3-9
tw	Clock Pulse Width HIGH or LOW	3.3 5.0	3.5 2.5	5.5 4.0	6.5 5.0	6.0 4.5	ns	3-6

*Voltage Range 3.3 is 3.0 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

				74ACT		54ACT		744	АСТ		
Symbol	Parameter	Vcc* (V)				to +	-55°C 125°C 50 pF	TA = -40 °C to +85 °C CL = 50 pF		Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max	1		
fmax	Maximum Clock Frequency	5.0	140	175		85		125		MHz	3-3
tрLH	Propagation Delay CP to Qn	5.0	1.0	6.5	9.0	1.0	11.0	1.0	10.0	ns	3-6
tphl	Propagation Delay CP to Qn	5.0	1.0	7.0	10.0	1.0	12.0	1.0	11.0	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74A	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF		T _A = − 55°C to + 125°C C _L = 50 pF	$T_A = -40 ^{\circ}C$ to +85 ^{\circ}C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	1		
ts	Setup Time, HIGH or LOW Dn to CP	5.0	2.5	4.5	7.0	5.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	5.0	- 1.0	1.0	1.0	1.0	ns	3-9
ts	Setup Time, HIGH or LOW CE to CP	5.0	2.5	4.5	7.0	5.5	ns	3-9
th	Hold Time, HIGH or LOW CE to CP	5.0	- 1.0	1.0	1.0	1.0	ns	3-9
tw	Clock Pulse Width HIGH or LOW	5.0	2.0	4.0	5.5	4.5	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
Gymbol			Onits	Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
CPD	Power Dissipation Capacitance	90.0	pF	Vcc = 5.5 V	

54AC/74AC378 • 54ACT/74ACT378

Parallel D Register With Enable

Description

The 'AC/'ACT378 is a 6-bit register with a buffered common Enable. This device is similar to the 'AC/'ACT174, but with common Enable rather than common Master Reset.

- 6-Bit High-Speed Parallel Register
- Positive Edge-Triggered D-Type Inputs
- Fully Buffered Common Clock and Enable Inputs
- Outputs Source/Sink 24 mA
- 'ACT378 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

Ē	Enable Input
D0 - D5	Data Inputs
CP	Clock Pulse Input
	-

Q0 - Q5 Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

The 'ACI'ACT378 consists of six edge-triggered D-type flip-flops with individual D inputs and Q outputs. The Clock (CP) and Enable (\overline{E}) inputs are common to all flip-flops.

When the \overline{E} input is LOW, new data is entered into the register on the LOW-to-HIGH transition of the CP input. When the \overline{E} input is HIGH, the register will retain the present data independent of the CP input.

Truth Table

	Inputs	i	Outputs
Ē	СР	Dn	Qn
н	J	Х	No Change
L	Г	н	н
L	L	L	L

H = HIGH Voltage Level

L = LOW Voltage level

X = Immaterial

J = LOW-to-HIGH Transition

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}$
Ісст	Maximum Additional Icc/Input ('ACT378)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_{A} = Worst Case$

AC378 • ACT378

AC Characteristics

F	and formany		74AC	54AC	74AC	Units	Fig. No.
Symbol	Parameter	¥ cc* (V)	$T_A = +25 ^{\circ}C$ $C_L = 50 \text{pF}$	T _A = - 55°C to + 125°C C _L = 50 pF	$T_{A} = -40 ^{\circ}C$ $to + 85 ^{\circ}C$ $C_{L} = 50 pF$		
			Min Typ Max	Min Max	Min Max		
fmax	Maximum Clock Frequency	3.3 5.0	74 100	M/	AF	MHz	3-3
tplн	Propagation Delay CP to Qn	3.3 5.0	8.5 6.0	o UG		ns	3-6
tрнL	Propagation Delay CP to Qn	3.3 5.0	7.5 5.5		*******	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74/	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	TA = + CL = 5		$T_A = -55 \degree C$ to +125 °C CL = 50 pF	$T_A = -40 \circ C$ to +85 \circ CL = 50 pF	Units	Fig. No.
	り(し) (こ)	~7	Тур		Guaranteed Mi	nimum		
ts	Setup Time HIGH or LOW Dn to CP	3.3 5.0	4.5 3.0	\square	ΠΔΠ	freening	ns	3-9
th	Hold Time, HIGH or LOW D₁ to CP	3.3 5.0	1,5 1.0	71	JIN ,	AF	ns	3-9
ts	Setup Time, HIGH or LOW Ē to CP	3.3 5.0	- 1.5 - 1.0			-11	ns	3-9
th	Hold Time, HIGH or LOW E to CP	3.3 5.0	0 0				ns	3-9
tw	CP Pulse Width, HIGH or LOW	3.3 5.0	8.5 6.0				ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

Γ			74ACT	54ACT	74ACT	Units	Fig. No.
Symbol	Parameter	Vec* (V)	TA = + 25°C CL = 50 pF	TA = -55 °C to +125 °C CL = 50 pF	TA = - 40 °C to + 85 °C CL = 50 pF		
			Min Typ Max	Min Max	Min Max		
fmax	Maximum Clock Frequency	5.0	100	$1/\sqrt{7}$	AF	MHz	3-3
tplh	Propagation Delay CP to Qn	5.0	6.0	TU VZ		Dns	3-6
tphl	Propagation Delay CP to Qn	5.0	5.5			ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

		1	74A	АСТ	54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	TA = + CL = 5	+ 25°C 50 pF	T _A = − 55 °C to + 125 °C C _L = 50 pF	$T_A = -40 \circ C$ to +85 \circ CL = 50 pF	Units	Fig. No.
/]	D)/6	۱۱	Тур		Guaranteed Mi	inimum		
ts //	Setup Time, HIGH of LOW Dn to CP	5.0	3.0		7 prog		ns	3-9
th	Hold Time, HIGH or LOW D₁ to CP	5:0	1.0		MAn	10-	ns	3-9
ts	Setup Time, HIGH or LOW Ē to CP	5.0	- 1.0	UU	U U N	AR	ns	3,9
th	Hold Time, HIGH or LOW Ē to CP	5.0	0			here for the second	ns	3-9
w	CP Pulse Width, HIGH or LOW	5.0	6.0				ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC378 • ACT378

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
	ralameter	Тур	01113	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Cpd	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC379 • 54ACT/74ACT379

Quad Parallel Register With Enable

Description

The 'AC/'ACT379 is a 4-bit register with a buffered common Enable. This device is similar to the 'AC/'ACT175 but features the common Enable rather than common Master Reset.

- Edge-Triggered D-Type Inputs
- Buffered Positive Edge-Triggered Clock
- Buffered Common Enable Input
- True and Complement Outputs
- Outputs Source/Sink 24 mA
- 'ACT379 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

- E Enable Input
- Do D3 Data Inputs
- CP Clock Pulse Input
- Q0 Q3 Flip-Flop Outputs
- Q0 Q3 Complement Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC and PCC

Functional Description

The 'AC/'ACT379 consists of four edge-triggered D-type flip-flops with individual D inputs and Q and \overline{Q} outputs. The Clock (CP) and Enable (\overline{E}) inputs are common to all flip-flops. When the \overline{E} input is HIGH, the register will retain the present data

independent of the CP input. When the \overline{E} is LOW, new data is entered into the register on the LOW-to-HIGH transition of the CP input.

Truth Table

	Inputs			Out	puts	
	Ē	СР	Dn	Qn	Qn	H = HIGH Volt
-	H L L	ר ר ר	X H L	NC H L	NC L H	L = LOW Volta X = Immaterial J = LOW-to-HI NC = No Chan

H = HIGH Voltage Level = LOW Voltage Level = Immaterial = LOW-to-HIGH Transition IC = No Change

Logic Diagram

PLease note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = 25°C
Ісст	Maximum Additional Icc/Input ('ACT379)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

5

AC Characteristics

	Kan Vancen		74AC		54AC	74AC		
Symbol Parameter		Vcc*		= + 25°C ∟=50 pF	T _A = − 55°C to + 125°C C _L = 50 pF	TA = − 40 °C to + 85 °C CL = 50 pF		Fig. No.
Sec.	UNCP/	The second second	Min	Typ Max	Min Max	Min Max		
fmax	Maximum Clock	3.3 5.0	UI,	1118 160	$I \wedge D$	A	MHz	3-3
tplH	Propagation Delay CP to Qn, Qn	3.3 5.0		8.5 7.0	UNZ	ALE	ns	3-67
tphl	Propagation Delay CP to Q_n , \overline{Q}_n	3.3 5.0		8.5 6.0		and the second	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Operating Requirements

		' I	74AC		54AC	74AC	}	
Symbol	Parameter	Vcc* (V)		$ \begin{array}{c} = +25 ^{\circ}\text{C} \\ = 50 \text{pF} \end{array} \begin{array}{c} \text{T}_{\text{A}} = -55 ^{\circ}\text{C} \\ \text{to} + 125 ^{\circ}\text{C} \\ \text{CL} = 50 \text{pF} \end{array} $		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units	Fig. No.
	115DE		Тур		Guaranteed Min	nimum		
ts	Setup Time, HIGH or LOW Dn to CP	3.3 5.0	4.5 3.0	17	Print pro-		ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	3.3 5.0	0	\overline{M}	M = M	A A A A A A A A A A A A A A A A A A A	ns	3-9
ts	Setup Time, HIGH or LOW Ē to CP	3.3 5.0	4.5 3.0	the first	INV	AR	ns	3.9
h	Hold Time, HIGH or LOW Ē to CP	3.3 5.0	3.0 2.0			have been	ns	3-9
N	CP Pulse Width, HIGH or LOW	3.3 5.0	5.5 4.0				ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V ± 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

AC Characteristics

			74ACT	54ACT	74ACT		
Symbol	Parameter	₩cc* (V)	TA = + 25 °C CL = 50 pF	TA = - 55°C to + 125°C CL = 50 pF	TA = - 40°C to +85°C CL = 50 pF		Fig. No.
			Min Typ Max	Min Max	Min Max		
fmax	Maximum Clock Frequency	5.0	160	$1 \wedge 1$	AF	MHz	3-3
tplh	Propagation Delay CP to Qn, Qn	5.0	7.0	UNT		ns	3-6
tphl	Propagation Delay CP to Qn, Qn	5.0	6.0			l ns [3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			744	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF		TA = - 55°C to + 125°C CL = 50 pF	$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units	Fig. No.
15	UMA		Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Dn to CP	5.0	8.0		Π		ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	5.0	0	///	$\Pi \Lambda \Pi$	AN	ns	3-9
ts	Setup Time, HIGH or LOW Ē to CP	5.0	3.0		JUNZ	96	ns	3-9
th	Hold Time, HIGH or LOW Ē to CP	5.0	2.0				ns	3-9
tw	CP Pulse Width, HIGH or LOW	5.0	4.0				ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol	Falameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC398 • 54ACT/74ACT398 54AC/74AC399 • 54ACT/74ACT399

Quad 2-Port Register

Description

The 'AC/'ACT398 and 'AC/'ACT399 are the logical equivalents of a quad 2-input multiplexer feeding into four edge-triggered flip-flops. A common Select input determines which of the two 4-bit words is accepted. The selected data enters the flip-flop on the rising edge of the clock. The 'ACI'ACT399 is the 16-pin version of the 'ACI'ACT398, with only the Q outputs of the flipflops available.

- Select Inputs from Two Data Sources
- Fully Positive Edge-Triggered Operation
- Both True and Complement Outputs—'AC/'ACT398
- Outputs Source/Sink 24 mA
- 'ACT398 and 'ACT399 have TTL-Compatible Inputs

Connection Diagrams

'AC/'ACT398

Ordering Code: See Section 6

Logic Symbols

'AC/'ACT398

for LCC

Pin Assignment for DIP, Flatpak and SOIC

Pin Names

S	Common Select Input
<u></u>	

- CP Clock Pulse
- Ioa Iod Data Inputs from Source 0
- I1a I1d Data Inputs from Source 1
- Qa Qd Register True Outputs
- Qa QdRegister Complementary Outputs
('AC/'ACT398)

Functional Description

The 'AC/ACT398 and 'AC/'ACT399 are high-speed quad 2-port registers. They select four bits of data from either of two sources (Ports) under control of a common Select input (S). The selected data is transferred to a 4-bit output register synchronous with the LOW-to-HIGH transition of the Clock input (CP). The 4-bit D-type output register is fully edgetriggered. The Data inputs (l_{0x} , l_{1x}) and Select input (S) must be stable only a setup time prior to and hold time after the LOW-to-HIGH transition of the Clock input for predictable operation. The 'ACI'ACT398 has both Q and \overline{Q} outputs.

Function Table

	Inp	Outputs			
S	lo	11	СР	Q	<u></u> ₹
L	L	Х	L	L	н
L	н	Х	Г	н	L
н	X	L	Г	L	н
н	Х	н	ſ	н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

J = LOW-to-HIGH Clock Transition

* = 'AC/'ACT398 only

Logic Diagram

*'AC/'ACT398 only

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

AC398 • ACT398 • AC399 • ACT399

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT398/399)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

Processing			74AC	54AC	74AC		
Symbol		V cc* (V)	TA = + 25 °C CL = 50 pF	T _A = − 55°C to + 125°C C _L = 50 pF	TA = -40°C to +85°C CL = 50 pF	Units	Fig. No.
L	UNC		Min Typ Max	Min Max	Min Max		
fmax	Input Clock	3.3 5.0	180 160	INI /		MHz	3-3
tplh	Propagation Delay CP to Q0 or Q	3.3 5.0	9.5 7.0	JVZ	ELLE	ns	3-6
tрнL	Propagation Delay CP to Q₀ or Q	3.3 5.0	8.5 6.0			ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Operating Requirements

			74AC		54AC	74AC		
Symbol	Parameter	Vcc* (V)	TA = + CL =	- 25°C 50 pF	TA = − 55°C to + 125°C CL = 50 pF	$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW If to CP	3.3 5.0	4.5 3.0				ns	3-9
th	Hold Time, HIGH or LOW In to CP	3.3 5.0	0		1 mg		ns	3-9
ts	Setup Time, HIGH or LOW S to CP ('398)	3.3 5.0	4.5 3:0	M	UM	AF	ns	3-9
ts	Setup Time, HIGH or LOW S to CP ('399)	3.3 5.0	4.5 3.0		and here		ns	3-9
th	Hold Time, HIGH or LOW S to CP	3.3 5.0	- 1.5 - 1.0				ns	3-9
tw	CP Pulse Width HIGH or LOW	3.3 5.0	5.5 4.0				ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

			74ACT	54ACT	74ACT		
Symbol Parameter		V cc* (V)	TA = + 25 °C CL = 50 pF	$T_A = -55 \text{ °C}$ to +125 °C CL = 50 pF	TA = − 40 °C to +85 °C CL = 50 pF		Fig. No.
L			Min Typ Max	Min Max	Min Max		
fmax	Input Clock Frequency	5.0	160		AF	MHz 3	3-3
tplH	Propagation Delay CP to Q or \overline{Q}	5.0	7.0	U U L		ns 3	3-6
tphl	Propagation Delay CP to Q or \overline{Q}	5.0	6.0			ns 3	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

AC398 • ACT398 • AC399 • ACT399

AC Operating Requirements

	Parameter		74ACT		54ACT	74ACT		
Symbol		Vcc* (V)	TA = + CL = \$		$T_A = -55 \circ C$ to +125 \circ CL = 50 pF	$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units	Fig. No.
$\gamma = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW In to CP	5,0	3.0				ns	3-9
th	Hold Time, HIGH or LOW In to CP	5.0	0	n	~		ns	3-9
ts	Setup Time, HIGH or LOW S to CP ('398)	5.0	3.0	I (Λn	~	ns	3-9
ts	Setup Time, HIGH or LOW S to CP ('399)	5.0	3.0			IA	ns	3-9
th	Hold Time, HIGH or LOW S to CP	5.0	- 1.0			M.	ns	⊳ 3-9
tw	CP Pulse Width HIGH or LOW	5.0	5.5				ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
		Тур	Onits	conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Срр	Power Dissipation Capacitance		pF	Vcc = 5.5 V	

54ACT/74ACT488

General Purpose Interface Bus (GPIB) Circuit

Description

The 'ACT488 is a FACT LSI circuit containing all of the logic necessary to interface Talk, Listen and Talk/Listen type instruments and system components in accordance with the IEEE-488 standard for programmable instrumentation. All outputs that drive the IEEE-488 bus are guaranteed to sink 48 mA and all bus inputs have Schmitt triggers and bus terminating networks. All pins that interface to the instrument logic are TTL-compatible.

The 'ACT488 has programming inputs that determine whether it is to be a talker, listener or both, single or dual address, high or low speed, etc., according to the instrument and system requirements. It operates with a minimum of external support logic and readily interfaces with most microprocessors. It operates from a single voltage supply and a 10 MHz single phase clock, and it is capable of operating the bus handshake at the full 1 MHz data rate. It offers a variety of handshaking and status connections to the instrument logic for versatility and ease of design.

- Single Supply Voltage
- Complete Source and Acceptor Handshake Logic
- Same or Separate Talk and Listen Address
- Secondary Address Capability
- Talk Only or Listen Only Capability
- Source Handshake Delay Programmable for Low or High Speed
- Serial Poll Capability
- Parallel Poll Capability
- Sync Trigger and Device Clear Outputs
- Implements Remote/Local Function
- On-Chip Clock Oscillator
- Service Request Interrupt Facility
- All Bus I/O Signals Comply with the IEEE-488 (1980) and IEC-625-1 Input Threshold, Termination and Output Specifications
- All Instrument Interface Signals are LS-TTL-Compatible
- GPIB Pins Present No Electrical Load when Device is Powered Off

Connection Diagram

for DIP

ACT488

Pin Names A1 - A5 Address Inputs ATN Attention Input CP Clock Input IFC Interface Clear Input IST Instrument Status Input Mo - M3 Mode Control Inputs MR Master Reset Input REN Remote Enable Input RSV **Request Service Input** RTL Return to Local Input RXRDY Receiver Ready Input STRDY Status Ready Input TXRDY Transmitter Ready Input DAV Data Valid Input Output DIO1 - DIO7 Data Inputs Outputs DO₈ Data Output EOI End or Identify Input NDAC Not Data Accepted Input Output NRFD Not Ready for Data Input Output ASEL Address Select Output CLR **Device Clear Output** D/S/F Data/Status Output or End-of-String Output DRB Bus Drive Enable Output LAD Listen Address Status Output ROS **Requested Service Status Output** RXST **Receiver Strobe Output** R/L Remote/Local Output SRQ Service Request Output STST Status Strobe Output TAD Talk Address Status Output TXST Transmitter Strobe Output TRIG **Device Trigger Output XTAL** Crystal Output

GPIB Protocol

A full description and specification of the GPIB system is published in the IEEE document "IEEE Standard Interface for Programmable Instrumentation" IEEE Std 488-1978 and is used as the reference in this description.

The standard is a 16-wire interface that can transmit byte serial data at rates of up to one megabyte/second. Using this standard up to 15 individual devices (instruments or system components) may be interconnected in a star or linear network, with a maximum cable length of 20 m and automatically controlled or programmed. Data may be exchanged between instruments or between a controller and instruments. The use of a bus extender or a controller which can handle a number of separate instrument buses allows more than 15 instruments to be used in a system: Talkers — These instruments can only transmit data (when addressed), e.g., a timer or counter.

Listeners — These instruments can only receive information, e.g., a programmable power supply or a printer.

Talker/Listeners — These instruments can receive data or functional instructions and later transmit data, e.g., a programmable DVM or multi-channel A/D converter.

Controller — A device that is able to generate control instructions for instruments on the bus, e.g., a mini-computer or programmable calculator.

The 'ACT488 is designed for use in any of the first three types of devices.

The 16-wire bus is organized as three functional groups (Figure 1). The 8-line Data bus (DIO1-DIO7, DO8) is used to transfer commands in bit parallel/byte serial form from Talkers to Listeners. The 3-line Data Byte Transfer Control bus (NRFD, NDAC and DAV) implements a data handshake which ensures that information transfer proceeds as fast as the device will allow but no faster than the slowest device currently addressed as active (Figure 2). The 5-line General Interface Management bus (ATN, REN, EOI, IFC and SRQ) is principally used by the Controller.

In its simplest configuration the GPIB can consist of only two instruments, a Talker and a Listener; in its most complex configuration up to 961 instruments could be controlled by one or more mini-computers. A bus controller dictates the role of each device by making the ATN line LOW and sending Talk and/or Listen Addresses on the bus data lines. Those devices with matching addresses are activated accordingly. Device addresses are set by switches or PC board jumpers. In single address mode each device has a 5-bit address allowing up to 31 different addresses (one code is used as an unaddress command). In extended address mode each device has a 10-bit address, allowing up to 961 different addresses and the Controller must send two bytes in order to activate a device.

In the configuration shown in Figure 1 a sequence to initiate a data transfer from device A to device D would proceed as follows:

Controller sends ATN (attention) command;

whenever the $\overline{\text{ATN}}$ line goes LOW, devices using the Data bus immediately stop all operations. The Controller keeps the $\overline{\text{ATN}}$ line LOW during the remainder of this sequence.

Controller sends UNL (unlisten) command; this instruction disables any devices that are in Listen mode.

Controller sends Talk Address command to device A; this instruction puts device A into Talk mode and disables any other devices that had been in that mode.

Controller sends Listen Address command to device D, putting it in Listen mode.

When the Controller stops sending ATN, the bus

will be released for data transfer functions and device A will begin transmitting to device D.

The SRQ line allows any device to interrupt the Controller and request service. The Controller can identify the interrupting devices by conducting a Serial Poll. To do this it issues an Unlisten (UNL) command followed by a Serial Poll Enable (SPE) command and then the Talk Address of each device in turn. The interrupting device will optionally drive DIO7 LOW. Alternately the Controller can conduct a Parallel Poll by making both EOI and DIO line previously assigned via a Parallel Poll Enable (PPE) command.

The REN line allows the Controller to put all Listen addressed instruments into remote control mode, while the IFC line allows the Controller to initialize the system.

Figure 1: Interface Capabilities and Bus Structure

ACT488

'ACT488 Functional Block Diagram

Functions Implemented by the 'ACT488

Acceptor Handshake (AH)

Controls the acquisition of addresses, interface commands and data bytes from the bus. The AH passes data bytes to the instrument logic via a 2-wire handshake (RXST, RXRDY) and a status output (LAD).

Source Handshake (SH)

Controls the passing of data bytes and status information from the instrument to the bus. The SH communicates with the instrument via a 2-wire handshake (TXST, TXRDY) and a status output (TAD). It has two operating speeds, selectable via the Mo - M3 inputs. Low speed is used with open collector data drivers and gives a setting delay of 2.0 μ s. High speed is used with 3-state bus drivers and gives a setting delay of 1.1 μ s for the first byte sent and 0.5 μ s for the subsequent bytes (clock frequency 10 MHz).

Listener or Extended Listener (L or LE)

Either the single or extended address L functions can be selected by the M_0 - M_3 inputs. The 'ACT488 flags the listener addressed status via the LAD output. The listen address is defined by the A1 - A5 inputs and, where the extended address feature is used, the ASEL output controls an external multiplexer to select the primary or secondary address as required.

Talker or Extended Talker (T or TE)

Either the single or extended address T function can be selected. The T function employs the M0 - M3 and A1 - A5 inputs in the same manner as the L function. The 'ACT488 flags the talker addressed status via the TAD output. The T function also incorporates the Serial Poll Function.

Talker/Listener, Extended Talker/Listener

For instruments with both talk and listen capabilities, the 'ACT488 implements both the T and L functions. In this mode, the "Untalk if My Listen Address" and "Unlisten if My Talk Address" feature is standard. Where the single address mode is selected, different Talk and Listen addresses can be used. In the extended address mode, the Talk and Listen addresses must be identical.

Device Trigger, Device Clear (DT, DC)

These functions generate a pulse on the Trigger or Clear output upon receipt of the relevant bus command.

Remote Local (RL)

The complete RL function is implemented, including the Local Lock-Out feature.

Talk Only, Listen Only

The 'ACT488 can operate in either of these two modes via the M_0 - M_3 input code selection.

Service Request (SR)

The 'ACT488 initiates an SR on receipt of the $\overline{\text{RSV}}$ input and returns its status on the $\overline{\text{RQS}}$ line when serial polled. The $\overline{\text{RQS}}$ output can be used to drive the $\overline{\text{DIO7}}$ bus line directly.

Parallel Poll (PP)

The Controller assigns, via the PPE command, one of the eight data lines for use as the Parallel Poll Response output. When the Controller issues the IDY command, the 'ACT488 compares the state of the IST input with the state defined by the last PPE command. If the comparison is True, the previously assigned DIO line is driven LOW by the 'ACT488.

Pin Functions

488 Bus Signals

All bus inputs have Schmitt trigger buffers, and all bus outputs can sink 48 mA. Each bus signal is terminated with a resistive load and meets the DC load characteristics specified in Section 3.5.3 of the IEEE Std 488-1978 specification.

DIO1 - DIO7 (Data Input/Output)—These are used as inputs to receive addresses and interface commands. They are used as outputs, along with DO8 to provide Parallel Poll response.

 $\overline{\text{ATN}}$ (Attention)—This is an input from the GPIB Controller. When $\overline{\text{ATN}}$ is LOW the 'ACT488 interprets the data on $\overline{\text{DIO}1}$ - $\overline{\text{DIO}7}$ lines as commands or addresses. If the 'ACT488 is interrupted by $\overline{\text{ATN}}$ while sending data, it will relinquish control of the Data and Management lines within 200 ns.

 $\overline{\text{DAV}}$ (Data Valid)— A bidirectional signal with a 3-state output driver, $\overline{\text{DAV}}$ is part of the handshake system and is driven LOW by current talker when a valid data byte, command or address is on the GPIB. $\overline{\text{DAV}}$ is treated as an input when the 'ACT488 is addressed to Listen or is receiving $\overline{\text{ATN}}$. It is an output when the 'ACT488 is addressed to Talk and $\overline{\text{ATN}}$ is HIGH.

NRFD (Not Ready for Data)—A bidirectional signal with an open-drain output driver, NRFD is part of the handshake system and is driven LOW to indicate that an instrument is not ready to receive data. The 'ACT488 drives NRFD HIGH when addressed as a Listener and the instrument is ready to accept a data byte or when ATN is LOW and the 'ACT488 is ready to accept an address or interface command. NRFD is treated as an input when the 'ACT488 is addressed to Talk.

NDAC (Not Data Accepted)—A bidirectional signal with an open-drain output driver, NDAC is part of the handshake system and is pulled LOW to indicate that a device has not yet accepted a data byte. NDAC is treated as an input when the 'ACT488 is addressed to Talk. It is an output and is driven LOW when the 'ACT488 is addressed to Listen and the instrument has not accepted a data byte or when receiving ATN and the 'ACT488 has not accepted an address or interface command.

SRQ (Service Request)—This is an open-drain output driven LOW when the instrument requests service (via RSV) from the Controller.

RQS (Requested Service)—A 48 mA 3-state output, enabled during a Serial Poll response and driven LOW if the 'ACT488 initiated an SRQ, RQS can be directly connected to DIO7 in applications where it is the only status information to be sent.

EOI (End or Identify)—This is an input from the GPIB Controller used to elicit a Parallel Poll response, or from the current active talker to indicate the End-of-String (END) message.

REN (Remote Enable)—This is an input driven by the Controller. The Controller drives it LOW when it needs to remotely program an instrument.

IFC (Interface Clear)—This is an input from the Controller, driven LOW to clear the interface logic (Figure 18).

Instrument Interface and Auxiliary Pins

Instrument Logic Signals—All instrument logic signals are standard low-power Schottky-compatible.

 \overline{CP} (10 MHz Clock)—Used to clock internal-state it flip-flops, and is divided down internally to generate the SH data setting delay. All output changes are synchronous with the negative clock edge. The \overline{CP} input can be driven by an external oscillator or used in conjunction with XTAL output, as a crystal oscillator (Figure 6).

XTAL (Crystal)—Used to connect a crystal for the on-chip oscillator (Figure 6).

MR (Active-LOW Master Reset)—Initializes all internal latches and is completely asynchronous. After a reset, all outputs to the GPIB are passive HIGH and RQS is in the High-Z state; R/L, TRIG, CLR, DRB, ASEL, TAD and LAD are HIGH; D/S/E, RXST, STST and TXST are LOW.

Mo - M3 (Mode Control Inputs)—Defines one of fourteen possible operating modes for the 'ACT488. Mo - M3 are HIGH-true inputs.

A1 - A5 (Device Address Inputs)—Defines the instrument address and originates from switches, PC jumpers or software-loaded register. Where different Talk and Listen addresses are required or when the secondary address feature is used, these inputs must be externally multiplexed, using the ASEL output to control the multiplexer. A1 - A5 are HIGH-true inputs (H = 1, L = 0) and thus have the opposite polarity of the $\overline{DIO1} - \overline{DIO5}$ addresses.

ASEL (Address Select Output)—Selects, via an external multiplexer, the Talk/Listen or primary/secondary address input, depending on the operating mode selected; LOW for Talk or primary address; HIGH for Listen or secondary address (Figure 11).

LAD, TAD (Address Status Outputs)—Indicate the Listen-Address or Talk-Address status respectively. They are also activated in the Talk-Only and Listen-Only modes. The outputs are active-LOW to facilitate driving LED indicator lamps (Figures 7, 10).

RXST (Receiver Strobe Output)—Forms part of the handshake logic to pass data bytes to the instrument. When addressed to Listen, the 'ACT488 takes RXST HIGH when a valid data byte is on the bus and holds it HIGH until the instrument signals (via the RXRDY input) that it has processed the byte. RXST may be inverted and connected to RXRDY, in which case the 'ACT488 will receive data bytes from the bus at a data rate determined solely by the bus handshake (Figure 8).

TXST (Transmit Strobe Output)—Forms part of the handshake logic to pass data bytes from the instrument to the bus. When addressed to Talk, the 'ACT488 takes TXST HIGH to signal the instrument that the bus has accepted the data. TXST does not go LOW again until the instrument has acknowledged that the byte has been accepted (via the TXRDY input). TXST may be inverted and connected to TXRDY, in which case the 'ACT488 will transmit data bytes to the bus at a data rate determined solely by the bus handshake (Figure 9).

STST (Status Strobe Output)—Forms part of the handshake logic to pass a status byte from the instrument to the bus during a Serial Poll sequence. It operates in conjunction with the STRDY input in the same way as the TXST and TXRDY signals. STST may be inverted and connected to STRDY, in which case the status byte will be repeated as long as the 'ACT488 is addressed to Talk (Figure 16).

RXRDY (Receiver Ready Input)—Forms part of the handshake logic controlling the passing of data from the bus to the instrument. RXRDY is driven HIGH when the instrument is ready to receive a data byte and LOW to acknowledge receipt of a data byte (Figure 8).

TXRDY (Transmitter Ready Input)—Forms part of the handshake logic controlling the passing of data from the instrument to the bus. When the 'ACT488 is addressed to Talk, TXRDY is driven HIGH when the instrument has a data byte to send and LOW to acknowledge that the byte has been accepted by the bus (Figure 9).

STRDY (Status Ready Input)—Forms part of the handshake logic controlling the passing of a status byte to the bus during a Serial Poll sequence. It operates in a similar fashion to TXRDY (Figure 16).

 $\overline{\text{RSV}}$ (Request Service Input)—Is pulled LOW by the instrument to request service and initiate an $\overline{\text{SRQ}}$ interrupt to the controller. This interrupt will be cleared if $\overline{\text{RSV}}$ goes HIGH before it is serviced, but once the $\overline{\text{SRQ}}$ is serviced, $\overline{\text{RSV}}$ must, after exiting SPAS, go HIGH then LOW to initiate another service request (Figure 16).

CLR (Clear Output)—Issues a negative impulse when the 'ACT488 receives a Device Clear (DC) command, or when it is addressed to Listen and receives a Selected Device Clear. The CLR Output will stay LOW during Accept Data State (ACDS) or until ATN goes HIGH (Figure 13).

TRIG (Trigger Output)—Issues a negative pulse when the 'ACT488 is addressed to Listen and receives a DT command. The TRIG output will stay LOW during ACDS or until ATN goes HIGH (Figure 13). DRB (Drive Bus Output)—Taken LOW to enable an external data bus driver when the 'ACT488 is addressed to Talk and is in the Talker Active State. DRB will go LOW one clock period after ATN goes HIGH, and will go HIGH asynchronously within 200 ns (typically 70 ns) after ATN goes LOW (Figures 9, 10, 11). DRB can also be used to tell the instrument logic to fetch the first byte.

RQS (Requested Service Output)—A 48 mA 3-state output, enabled during a Serial Poll response and driven LOW if the 'ACT488 initiated an SRQ. RQS can be directly connected to DIO7 in applications where it is the only status information to be sent (Figures 4, 5, 16).

 $\overline{D}/S/E$ (Data/Status or END Output)—Valid during the Talk Addressed state and indicates to the instrument logic whether the information to be sent via the bus is to be data or status (LOW for data, HIGH for status). A status byte is sent only in response to a Serial Poll, and, in this case, $\overline{D}/S/E$ may be used to control a multiplexer to select data or status as the source to the bus data drivers (Figures 4, 5, 16). Valid during the Listener Active State (LACS) to indicate that the current talker is sending the END message; a HIGH output indicates that the END message is true. \overline{R}/L (Remote/Local Output)—Goes LOW when the Controller puts the instrument into Remote mode via the \overline{REN} command (Figures 14, 15).

RTL (Return to Local Input)—Taken LOW to request return of the instrument to local control. **RTL** will set **R**/L HIGH unless the Controller has put the 'ACT488 into Local Lock-out state (Figure 14).

IST (Instrument Status Input)—Used by the Parallel Poll logic, IST is compared with the logic state defined by $\overline{DIO4}$ during the last PPE command. If IST is in the defined state, the 'ACT488 will make an affirmative response to the next IDY message by making the assigned \overline{DIO} line LOW. Note that IST is a HIGH-true input while $\overline{DIO4}$ is LOW-true (Figure 17).

Operating Modes

The 'ACT488 has fourteen operating modes, defined by a 4-bit input code (M_0 - M_3) which would normally be selected by switches or PC board jumpers.

Table 1 defines the input codes and operating modes.

	Mode	Inputs	;								
Mo	M 1	M2	Мз	Operating Mode	Function						
L	L	L	L	Off Line	The device cannot take part in any GPIB operations						
L	L	L	н	TON (LOW Speed) ¹	The device goes directly to the talk addressed state and can source data to the bus						
L	L	н	L	LON	The device goes directly to the listen addressed state and can receive data from the bus						
L	L	н) н	TON (HIGH Speed) ¹	As for TON (LOW Speed)						
L	н	L	L	T (LOW Speed) ¹	Talker only, single address mode						
L	н	L	н	TE (LOW Speed) ¹	Talker only, extended address mode						
L	н	н	L	T (HIGH Speed) ¹	Talker only, single address mode						
L	н	н	н	TE (HIGH Speed) ¹	Talker only, extended address mode						
н	L	L	L	L	Listener only, single address mode						
н	L	L	н	LE	Listener only, extended address mode						
н	н	L	L	T/L (LOW Speed) ^{1,2}	Talker/Listener, dual address mode						
н	н	L	н	TE/LE (LOW Speed)	Talker/Listener, extended address mode						
н	Н	н	L	T/L (HIGH Speed) ^{1,2}	Talker/Listener, dual address mode						
Н	н	н	н	TE/LE (HIGH Speed)1	Talker/Listener, extended address mode						

Table	1
-------	---

Notes

1. The LOW speed talker option is selected where open-collector data drivers are used. The delay from putting valid data on the GPIB to $\overline{\text{DAV}}$ going true is 2.0 μ s. The HIGH speed option is selected where 3-state drivers are used. The setting delay (data to $\overline{\text{DAV}}$) is 1.1 μ s for the first byte sent after a LOW to HIGH transition of $\overline{\text{ATN}}$ and 500 ns for subsequent bites.

2. For dual address Talker/Listener modes the Talk and Listen addresses can be different.

DO8	DIO7	DIO ₆	DIO ₅	DIO ₄	<u>DIO</u> ₃	DIO2	DIO1	
х	н	L	Ā5	Ā4	Ā3	Ā2	Ā1	Primary Listen Address
х	н	Ĺ	L	L	L	L	L	Unlisten
Х	L	н	Ā5	Ā4	Āз	Ā2	Ā1	Primary Talk Address
Х	L	н	L	L	L	L	L	Untalk
х	L	L	S ₅	S 4	<mark>.</mark> S₃	S2	<mark>.</mark> ≣	Secondary Address

Table 2

Addressing Modes

Where extended addressing or different Talk and Listen addresses are required, the address codes must be externally multiplexed, using ASEL (Figure 3). In the extended address modes, ASEL is LOW for the primary address and HIGH for the secondary address (Figure 11). In the dual address modes, ASEL is HIGH for the Listen address and LOW for the Talk address.

In single address mode the 'ACT488 will go into the addressed state on receipt of the primary address. In extended address mode it will go to the addressed state on receipt of its secondary

address if, and only if, it has received its primary address. If a device is addressed to Talk and receives its Listen address it will un-address as a Talker and go to Listener addressed state, and vice versa. A Talker Addressed device will unaddress if it receives a non-matching talk address. The 'ACT488 indicates its address status on the TAD, LAD and D/S/E outputs (Table 3).

TAD	LAD	D/S/E	State
H H L H	Η L Η Η L	L L H H	Off Line Addressed to Listen (LADS) Addressed to Talk (TADS) Serial Poll Mode (SPM) Receiving END Message (LACS)

Table 3: Status Codes

Figure 3: Address Multiplexer

Status Response

In Serial Poll Active State (SPAS) the instrument is requested to return a status byte, via the usual handshake, to the Controller. Seven bits are defined by the instrument. Bit 7 denotes the Request Service Status (RQS) and is provided by the 'ACT488 on the RQS output. If the instrument provides no status, other than RQS, then the RQS output can drive the bus directly (Figure 4). If the instrument provides status information this can be multiplexed to the bus using $\overline{D}/S/E$ (Figure 5). After the bus handshake, the instrument can send a second status byte by making STRDY LOW then HIGH again, which starts the handshake. The sequence can be repeated to send additional bytes, as long as $\overline{\text{ATN}}$ remains HIGH (Figure 16).

Figure 5: Status Byte Multiplexing

Clock Input

The CP and XTAL inputs allow the 'ACT488 either to accept external clock pulses or to generate its own clock (Figure 6).

- a. An external clock can drive CP. The XTAL pin may used as an inverted buffered version of the external clock, but has limited drive capability.
- b. The CP and XTAL pins will form a stable crystal oscillator by connecting a 10 MHz crystal and an RC network to provide positive feedback. XTAL may be used to clock external circuits provided it is buffered.

Figure 6: Clock Timing Component Connections

a.

b.

Timing Sequences

A 10 MHz clock frequency is recommended to give the correct Source Handshake delays. The 'ACT488 can be clocked at a slower rate if the GPIB is not running at its maximum data rate of 1M byte. The lowest clock frequency allowable is dependent on the GPIB speed.

Regardless of clock frequency, the 'ACT488 will respond to ATN within 200 ns by disabling NRFD, NDAC and DAV while forcing DRB HIGH to disable the data drivers. In Parallel Poll sequences the relevant $\overline{\text{DIO}}$ line will be enabled or disabled within 200 ns of an IDY transition.

Since the internal logic of the 'ACT488 is synchronous with the \overrightarrow{CP} input, while in general all inputs are asychronous, the precise timing of all responses to external signals is subject to a maximum uncertainty equal to one clock period. This is illustrated in the following timing diagrams, where some delays are defined as tcP + tx (i.e., clock period + propagation delay).

Listen Address Sequence (Figure 7)

- a. Controller takes ATN line LOW followed by
- b. putting the Listen address on the GPIB.
- c. Within (tcp + tphL) the 'ACT488 takes NRFD and NDAC LOW,
- d. and a tcp later takes NRFD HIGH, indicating that the 'ACT488 is ready for data.
- e. After a delay TCDAV(L) (determined by the Controller logic), the Controller takes DAV LOW.
- f. Within (tcp + tphL) the 'ACT488 takes NRFD LOW and
- g. three clock periods later NDAC goes HIGH, indicating that the 'ACT488 has accepted the data,
- h. followed by LAD indicating listen addressed status.
- i. After a Controller dependent delay, TCDAV(H), the DAV line goes HIGH and
- j. within (tcp + tPHL) the 'ACT488 takes NDAC LOW.
- k. A tcP later the 'ACT488 allows NRFD to go HIGH. NRFD stays HIGH until the Controller takes ATN HIGH, unless a further command is sent over the GPIB when a similar handshake sequence takes place.
- I. ATN goes HIGH followed by
- m. NRFD going LOW within (tcP + tPHL). This occurs if the instrument is not ready to receive data (RXRDY LOW). If RXRDY is HIGH, NRFD will stay HIGH allowing a data transfer to take place.

Figure 7: Timing Diagram for Listen Address Sequence

Note: ATN, DIO bus and DAV driven by controller; NRFD, NDAC driven by 'ACT488.

Data Transfer from Bus to Listener (Figure 8)¹ Assuming the instrument logic responds to RXST within one clock period (Figure 8a).

- a. The instrument signals it is ready to receive a byte by taking RXRDY HIGH (keeping RXRDY LOW constitutes an "NRFD hold").
- b. Provided the 'ACT488 is in the Listen Addressed State (LADS), NRFD is taken HIGH within (tcp + tphL).
- c. When the current Talker sees the NRFD line HIGH it takes DAV LOW after a setting delay TTDAV(L).
- d. The 'ACT488 takes RXST HIGH within (tcp + tPLH) to inform the instrument that the GPIB data is valid and takes NRFD LOW.
- e. Assuming the instrument responds by pulsing RXRDY LOW within one clock period (tPRX < tcP) then RXST will remain HIGH only for one clock.
- f. At the same time as RXST returns LOW, NDAC is taken HIGH to inform the Talker that data has been accepted.

¹In applications where the bus data can be latched by the RXST rising edge and handshaking is not necessary, RXRDY can be driven by RXST via an inverter.

- g. After a delay TTDAV(H) determined by the Talker, the DAV line goes HIGH.
- h. Within (tcp + tphL) NDAC goes LOW
- i. followed by NRFD going HIGH one clock later.

This assumes that the instrument logic is slow and requires more than one clock period to process a data byte (Figure 8b).

The timing sequence is identical to Figure 8a until RXST goes HIGH.

- After RXST goes HIGH the instrument delays tPRX (> 1 clock cycle) before taking RXRDY LOW.
- b. RXST will remain HIGH and NDAC will remain LOW during this period, causing the bus data to be maintained valid.
- c. RXST goes LOW, and NDAC goes HIGH within (tcp + tphL) of RXRDY.

Figure 8: Timing Diagram, Data Transfer from Bus to Listener

a.

b.

²In order to get the source handshake delays specified in IEEE Std 488-1978, tcp must be 100 ns (fcLock = 10 MHz).

- d. After a delay TTDAV(H) the Talker takes DAV HIGH.
- e. Within (tCP + tPHL) NDAC goes LOW.
- f. Assuming the instrument is not ready (i.e., is holding RXRDY LOW) the 'ACT488 holds NRFD LOW preventing another data transfer from starting.
- g. Within (tcP + tPLH) of RXRDY going HIGH, NRFD goes HIGH and the next data transfer cycle can start.

Data Transfer from Talker to GPIB (Figure 9)²

- ATN goes HIGH after completion of a Talk address sequence; TAD (not shown) is already LOW.
- b. Within (tcp + tPHL) DRB goes LOW to enable the bus drivers.
- c. At a time determined by the instrument logic, TXRDY goes HIGH.
- d. If NRFD is already HIGH, the 'ACT488 drives DAV LOW after delay T1 (11 x tcP + tPHL in high or 20 x tcP + tPHL in low speed). If NRFD is LOW, DAV will stay HIGH until NRFD goes HIGH (assuming T1 has expired). The DAV LOW period corresponds to the Source Transfer State (STRS).
- e. The Listener(s) responds by eventually taking NDAC HIGH.
- f. Within (tCP + tPLH) 'ACT488 takes DAV HIGH and TXST HIGH to inform the instrument that the data has been accepted and a new byte can be presented.
- g. The instrument takes TXRDY LOW and holds it there until it has provided a new byte, h or h'. The minimum time TXRDY must be LOW is tPWL.
- h. If TXRDY pulses LOW within tcp of TXST, TXST(H) will be a minimum of tcp wide.
 Otherwise TXST goes LOW within (tcp + tPHL) of TXRDY, f. After the first byte is sent, T1 drops from 11 x tcp to 5 x tcp in high-speed mode.

i. If TXRDY is HIGH before NRFD, DAV goes low within T2 of NRFD going HIGH (5 x tcP in high speed or 20 x tcP in low speed).

If TXRDY does not go HIGH until h' (after $\overline{\text{NRFD}}$ goes HIGH) $\overline{\text{DAV}}$ goes LOW T3 later, i' (T3 = 6 x tcp in HIGH and 21 x tcp in low speed).

If the Talk sequence is interrupted by $\overline{\text{ATN}}$ while the instrument is generating a new byte (between f and h), $\overline{\text{DRB}}$ will go HIGH within 200 ns and the $\overline{\text{DAV}}$ line will be relinquished. $\overline{\text{DRB}}$ will return LOW and the sequence will continue within (tCP + tPHL) of $\overline{\text{ATN}}$ going HIGH. If the 'ACT488 is in high speed mode the first data byte sent will have a delay T1 = 11 x tCP.

Figure 9: Timing Diagram Data Transfer from Talker to Bus

Notes

NRFD, NDAC are driven by the current listener(s); DAV is driven by 'ACT488. T1 = 11 x tcp + tphL in high speed, 20 x tcp + tphL in low speed T2 = 5 x tcp + tphL in high speed, 20 x tcp + tphL in low speed T3 = 6 x tcp + tphL in high speed, 21 x tcp + tphL in low speed

Figure 11: Timing Diagram for Secondary Address Sequence

Figure 12: Timing Diagram for 'ACT488 Receiving Bus Commands

Note: Internal state changes do not necessarily change any 'ACT488 outputs.

Figure 13: Timing Diagram for Device Clear and Device Trigger Commands

Figure 14: Timing Diagram for Remote/Local Logic (Starting in LOCAL State)

Note: If LLO has been sent, \overline{RTL} will not cause \overline{R}/L to change.

Figure 15: Timing Diagram for Remote/Local Logic (Starting in REMOTE State)

Serial Poll Sequence (Figure 16)

- a. The Controller has sent the Unlisten (UNL) and Serial Poll Enable (SPE) commands, generally in response to a LOW signal on SRQ, and places a Talk address on the GPIB. The 'ACT488 is sending the Service Request (SRQ) message, which was caused by the instrument logic making RSV LOW.
- b. The 'ACT488 allows NRFD to float passive HIGH to initiate normal handshake routine.
- c. The Controller forces DAV LOW. Since ATN is also LOW, the 'ACT488 receives the GPIB information as the message My Talk Address (MTA).
- d. NRFD is active, acknowledging that the device is receiving a data byte.
- e. The 'ACT488 enters the Talker Addressed State at time (4 x tCP + tPLH) after DAV was forced LOW.
- f. \overline{D} /S/E goes HIGH at time (4 x tcP + tPLH) after \overline{DAV} was forced LOW. This indicates that the 'ACT488 is in the Serial Poll Mode.

- g. NDAC is allowed to float passive HIGH, indicating that the command data byte has been received.
- h. The Controller takes DAV HIGH.
- i. NDAC is pulled LOW, showing that the 'ACT488 is ready for a new handshake cycle.
- j. The Controller allows the bus to float.
- k. The Controller releases ATN. Because the 'ACT488 is in the Serial Poll Mode, it now enters the Serial Poll Active State (SPAS), which prevails until the Controller makes ATN LOW again.
- I. DRB goes active LOW, allowing the instrument to place its status byte on the bus. DRB goes LOW at time (tcP + tPHL) after ATN goes HIGH.
- m. When the 'ACT488 enters SPAS, SRQ goes HIGH at time tPLH after ATN goes HIGH.

5

- n. The instrument indicates that a status byte is ready by taking STRDY HIGH. This may occur earlier than shown, without affecting any of the foregoing.
- DRB enables the 3-state output RQS when in SPAS. RQS goes LOW at time (tcp + tpzL) after ATN is released.
- p. The Controller has taken NRFD HIGH, acknowledging that it is ready for the status byte.
- q. The 'ACT488 takes DAV LOW after the time interval T1, which starts either at the rising edge of STRDY or the falling edge of DRB, whichever occurs later. The DAV LOW period corresponds to the Source Transfer State (STRS).
- r. The Controller takes NRFD LOW.
- s. The instrument may release RSV at any time after the 'ACT488 enters SPAS.
- t. The Controller takes DNAC HIGH, acknowledging that it has received the status byte.
- u. The 'ACT488 releases DAV at time (tcp + tpLH) after NDAC goes HIGH.
- v. STST goes HIGH at time (tCP + tPLH) after NDAC goes HIGH. This tells the instrument that the status byte has been accepted. The instrument takes STRDY LOW to indicate that the data is no longer valid and to allow STST to go LOW again one tCP after STRDY goes LOW.
- w. The controller takes NDAC LOW once more after DAV goes HIGH.
- x. The data on the bus is no longer valid. If the ATN line remains HIGH, the instrument can provide another status byte by making STRDY

HIGH to indicate valid data and to start the handshake.

- y. At the completion of the Serial Poll of this instrument, the Controller assumes control of the bus by forcing ATN LOW.
- z. DRB goes HIGH at time tPLH after ATN goes LOW. This places the bus drivers of this instrument in the high-impedance (3-state output) or off (open-drain outputs) state.
- aa. Since DRB is no longer valid, the RQS output reverts to its high-impedance state.
- bb. NRFD goes HIGH, indicating that devices are ready to receive a command from the bus.
- cc. The Controller forces DAV LOW to show that it has placed a control byte on the bus.
- dd. NRFD goes LOW to acknowledge DAV.
- ee. NDAC goes HIGH when devices all acknowledge acceptance of the command byte.
- ff. The 'ACT488 has received the Other Talk Address (OTA) command and reverts to its unaddressed state. TAD goes HIGH at time (4 x tCP + tPLH) after DAV went LOW.
- gg. DAV is set HIGH by the Controller.
- hh. Because the 'ACT488 has been unaddressed it is no longer in the Serial Poll Active State (SPAS). The D/S/E output goes LOW at time (4 x tCP + tPHL) after DAV went HIGH. The 'ACT488 is still in the Serial Poll Mode State (SPMS), however, and will return to SPAS (D/S/E HIGH, STST and STRDY valid) if subsequently addressed to talk. The 'ACT488 enters the Serial Poll Idle State (SPIS) when the Controller either issues the Serial Poll Disable (SPD) command or makes IFC LOW.

Figure 16: Timing Diagram for Serial Poll Sequence

Parallel Poll Sequence (Figure 17)

- a. The Controller sends the instrument's listen address,
- b. then the Controller issues the Parallel Poll Configure command: this enables the 'ACT488 to receive a subsequent PPE command.
- c. The Contoller issues the Parallel Poll Enable command. Bits $\overline{D}_1 \overline{D}_3$ of the command byte determine which data output ($\overline{DIO_j}$) will be valid when the IDY command is sent. Bit \overline{D}_4 of the command is compared with IST (Instrument Status) during the IDY command.
- d. The Controller issues the Unlisten command. The 'ACT488 will now not respond to further PPE commands, allowing the Controller to configure other instruments.
- e. The Instrument Status bit (IST) is set by the instrument before an IDENTIFY command is received. IST must be in a stable state when IDY is received so the setup and hold times must be observed (ts IST and th IST).
- f. During the IDY command the Controller releases the data lines $\overline{DIO1} \overline{DIO7}$, $\overline{DO8}$. The assigned data line \overline{DIO} will be taken active LOW by the 'ACT488 if IST compares with bit $\overline{D4}$ of the PPE command.
- g. The IDY Message is received (IDY = $\overline{EOI} \cdot \overline{ATN}$). At this time the Instrument Status bit IST is latched in the 'ACT488, and the output data \overline{DIO}_{j} is true if IST compares with bit $\overline{D4}$ of the PPE command. \overline{DIO}_{j} is LOW if $\overline{D4}$ was LOW and IST was HIGH, or if $\overline{D4}$ was HIGH and IST was LOW.

- h. The 'ACT488 enables data bit DIO_j after a delay tPHL from the time EOI goes active LOW. DIO_j remains valid while IDY is active. Note that this is an asynchronous message sent and is not governed by the handshake protocol.
- i. IST may be altered not less than time th IST after IDY is active. Because IST is latched by IDY it will not affect the status byte sent during the IDY routine.
- j. IDY is false and the 'ACT488 stops sending a status byte. Outputs DIO1 DIO7, DO8 again float passive HIGH.
- k. The status bit DIO_j floats passive HIGH at a time not greater than tPLH after IDY goes FALSE.
- I. The Controller can now place information on the data bus.
- m. Once the 'ACT488 has been configured via steps a.c. the Controller can examine IST at any time by issuing the IDY command. To change the $\overline{D}_1 - \overline{D}_4$ assignment of a particular 'ACT488, the Controller must address it to listen, issue the PPC command, then the Parallel Poll Disable (PPD) command (which clears the $\overline{D}_1 - \overline{D}_4$ latches), then the PPE command with the revised $\overline{D}_1 - \overline{D}_4$ assignment. The $\overline{D}_1 - \overline{D}_4$ assignment will also be cleared by the universal Parallel Poll Unconfigure (PPU) command or by MR, but not by IFC. PPU, MR or the MLA/PPC/PPD sequence puts the 'ACT488 in the Parallel Poll Idle State (PPIS) and it will not respond to IDY until it is subsequently reconfigured.

ACT488

Figure 18: IFC Timing Diagram

Absolute Maximum Ratings

(above which the useful life may be im	paired)
Storage Temperature	—65°C to +150°C
Temperature (Ambient) Under Bias	—55°C to +125°C
Vcc Pin Potential to Ground Pin	—0.5 V to +7.0 V
*Input Voltage (DC)	Bus Pins 0.5 to 12 V; Others 0 to Vcc $+0.5$ V
*Input Current (DC)	± 20 mA
Voltage Applied to Outputs (Output	
HIGH)	—0.5 V to +5.5 V
Output Current (DC) (Output LOW)	Bus Pins + 64 mA; Others + 24 mA

*Either input voltage limit or input current limit is sufficient to protect the inputs.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54ACT	74ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current			μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, $T_A = Worst \text{ Case}$
lcc	Maximum Quiescent Supply Current			μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_{A} = 25 \text{ °C}$
	Maximum Additional Ice/Input ('ACT488)			mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_{A} = Worst Case$
Viн	Input HIGH Voltage All Inputs (except CP)	72.0	7~~	v	Recognized as a HIGH Signal Over Recommended Vcc Range
VIL	Input LOW Voltage All Inputs (except CP)		0.8	×	Recognized as a LOW Signal Over Recommended Vcc Range
VT + -VT-	Hysteresis Voltage	Typ = 0.4		$FV \leq$	All Bus Inputs
VCD	Input Clamp Diode Voltage			$\neg \langle \psi \rangle$)IN = +18 mA
	Output HIGH Voltage RQS, DAV	2.4		v	Іон = -5.2 mA
Vон	DIO1 - DIO7, DO8, SRQ, NRFD, NDAC	2.6		v	Open Collector Bus Pins Іон = 0 mA
	R/L, D/S/E, RXST, TXST, STST, CLR, TRIG, DRB, ASEL, XTAL, LAD, TAD	2.5		v	Iон = -0.4 mA
Vol	Output LOW Voltage DIO1 - DIO7, DO8, SRQ, RQS, NRFD, NDAC, DAV		0.5	v	lo∟ = 48 mA
	All Other Outputs		0.4 0.5	V V	lo∟ = 4.0 mA lo∟ = 8.0 mA
Ін	Input HIGH Current			μA	$V_{\rm IN} = 2.7 \ V$
lıL	Input LOW Current			mA	VIN = 0.4 V
IPOFS	Leakage into GPIB Pins in Powered-off State			μA	VIN = 2.5 V

ACT488

DC Characteristics (cont'd)

Symbol	Parameter	54ACT	74ACT	Units	Conditions
Іоzн	3-State Output OFF Current HIGH			μΑ	Vout = 2.4 V
lozl	3-State Output OFF Current LOW			μΑ	Vout = 0.4 V

AC Characteristics

	Parameter			74ACT		54/	АСТ	74ACT			
Symbol		Vcc* (V)		a = +25 C∟ =50 p		TA = -55 °C to + 125 °C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	5.0								MHz	3-3
tplh	Propagation Delay CP to NRFD	5.0								ns	3-6
tphl	Propagation Delay CP to/NRFD	5.0								ns	3-6
tрlн	Propagation Delay ATN to NRFD	5.0	Π	M						ns	3-6
tрLн	Propagation Delay CP to NDAC	5.0	\langle / \rangle	M/	An	2				ns	3-6
tphl	Propagation Delay CP to NDAC	5.0			\square	M	7,	7		ns	3-6
tplH	Propagation Delay ATN to NDAC	5.0			4	V	Z	/	N	ns	3-6
tplh	Propagation Delay CP to DAV	5.0					1	1/1	Y	ns	>3-6
tphl	Propagation Delay CP to DAV	5.0							Q	ns	3-6
tplz	Output Disable Time ATN to DAV	5.0								ns	3-8
tрнz	Output Disable Time ATN to DAV	5.0								ns	3-7
tрzн	Output Enable Time CP to DAV	5.0								ns	3-7
tplz	Output Disable Time CP to DAV	5.0								ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

AC Characteristics (cont'd)

Symbol	Parameter	Vcc* (V)		74ACT		54/	СТ	74ACT			
				k = + 25 s∟ = 50 p		T _A = − 55°C to + 125°C CL = 50 pF		$TA = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tрнz	Output Disable Time CP to DAV	5.0								ns	3-7
t PLH	Propagation Delay IFC to LAD or TAD	5.0								ns	3-6
t PHL	Propagation Delay	5.0								ns	3-6
tplh	Propagation Delay CP to LAD or TAD	5.0								ns	3-6
tphl	Propagation Delay CP to LAD or TAD	5.0								ns	3-6
tplH	Propagation Delay Mo - Ms to LAD or TAD	5.0	\square	5						ns	3-6
tрнL	Propagation Delay Mo - M3 to LAD or TAD	5.0	\square	M >	Ar	1~				ns	3-6
tрLн	Propagation Delay CP to RXST, TXST or STST	5.0		Q	TI,		17	A	<u> </u>	ns	3-6
tphl	Propagation Delay CP to RXST, TXST or STST	5.0		<u>.</u>		and the second second	K	1/	A	ins	3-6
tplH	Propagation Delay CP to DRB	5.0							4	ns	3-6
t PHL	Propagation Delay CP to DRB	5.0								ns	3-6
tplh	Propagation Delay ATN to DRB	5.0								ns	3-6
tplH	Propagation Delay CP to TRIG or CLR	5.0								ns	3-6
T PHL	Propagation Delay CP to TRIG or CLR	5.0								ns	3-6
tplH	Propagation Delay DAV to ASEL	5.0								ns	3-6
T PHL	Propagation Delay DAV to ASEL	5.0								ns	3-6
tphl	Propagation Delay MR to RXST, TXST, STST or D/S/E	5.0								ns	3-6
tplh	Propagation Delay MR to LAD, TAD or R/L	5.0								ns	3-6

5

ACT488

AC Characteristics (cont'd)

Symbol	Parameter	Vcc* (V)		74ACT		54	АСТ	74ACT			
				a = +25 C∟ = 50 p		TA = − 55°C to + 125°C CL = 50 pF		$T_A = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay MR to NRFD, NDAC, DAC, DIO1 - DIO7, DO8 or SRQ	5.0								ns	3-6
tPLH	Propagation Delay	5.0								ns	3-6
tphl /	Propagation Delay CP to XTAL	5.0								ns	3-6
tplh 🗸	Propagation Delay CP to R/L	5.0		<u> </u>						ns	3-6
tphl	Propagation Delay CP to R/L	5.0	$\overline{\Lambda}$	~						ns	3-6
tplh	Propagation Delay	5.0	[]	M/	2					ns	3-6
tphl	Propagation Delay REN to R/L	5.0	1	V/,	$\left \right \right $	A.	17			ns	3-6
tрLн	Propagation Delay CP to D/S/E	5.0		~~~~~	41	(V)		$\left[\right]$		ns	3-6
tph∟	Propagation Delay CP to D/S/E	5.0				, V		$\left \right _{r}$	()	ns	3-6 >
tplH	Propagation Delay RSV to SRQ	5.0						7	4	ns	3-6
t PHL	Propagation Delay RSV to SRQ	5.0								ns	3-6
tplH	Propagation Delay ATN to SRQ	5.0								ns	3-6
tPZL	Output Enable Time CP to RQS	5.0								ns	3-6
tрzн	Output Enable Time CP to RQS	5.0								ns	3-6
tplz	Output Disable Time ATN to RQS	5.0								ns	3-8
tрнz	Output Disable Time ATN to RQS	5.0								ns	3-7
tplH	Propagation Delay EOI to DIO1 - DIO7, DO8	5.0		,						ns	3-6
tphl	Propagation Delay EOI to DIO1 - DIO7, DO8	5.0								ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics (cont'd)

	Parameter	Vcc* (V)	74ACT			54ACT		74ACT			
Symbol				a = + 25 CL = 50 p		to +	– 55 °C 125 °C 50 pF	$T_A = -40 \degree C$ to +85 ° C CL = 50 pF		Units	Fig. No.
/	A A		Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay EOI to D/S/E	5.0								ns	3-6
t PHL	Propagation Delay EOI to D/S/E	5.0								ns	3-6
tplH	Propagation Delay MR to DR	5.0	\square	m,	Province					ns	3-6
tplH	Propagation Delay	5.0	Ŋ	\mathbb{N}	$1\overline{n}$	6	<i>t</i> ~			ns	3-6
tр∟н	Propagation Delay ISC to LAD	5.0		~1	U/	AV.				ns	3-6
tplH	Propagation Delay MR to RQS	5.0		<u></u>		IV,	Q		6	ns	3-6
tplz	Propagation Delay Mode to NRFD	5.0						17	V	ns	3-8
tplz	Propagation Delay Mode to NDAC	5.0							- 4/2	Vns	3-8
tрzн	Propagation Delay Mode to DAV	5.0								ns	3-7
tрнz	Propagation Delay Mode to DAV	5.0								ns	3-7

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

-	Wang to.	Vcc* (V)	74	АСТ	54ACT	74ACT	Units	Fig. No.
Symbol	Parameter		TA = + CL =	⊦ 25°C 50 pF	$T_A = -55 \degree C$ to +125 °C CL = 50 pF	TA = - 40 °C to + 85 °C CL = 50 pF		
			Тур	Gua				
ts	Setup Time, HIGH or LOW IST to EOI	5.0	Ш		MΛ.		ns	3-9
th	Hold Time, HIGH or LOW IST to EOI	5.0		and bad	INZ	96	ns	3-9
ts	Setup Time, LOW RSV to ATN	5.0				L	ns	3-9

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

AC Operating Requirements (cont'd)

	Parameter		74	АСТ	54ACT	74ACT		
Symbol		V cc* (V)	$T_A = +25 \degree C$ $C_L = 50 \text{ pF}$		$T_A = -55 ^{\circ}C$ to + 125 $^{\circ}C$ CL = 50 pF	T _A = − 40 °C to + 85 °C C _L = 50 pF	Units	Fig. No.
			Тур					
th	Hold Time, LOW RSV to ATN	5.0					ns	3-9
ts	Setup Time, LOW ATN to CP	5.0					ns	3-9
th	Hold Time, LOW	5.0					ns	3-9
tw (H) tw (L)	CP Pulse Width	5.0					ns	3-6
tw	Pulse Width, LOW RXRDY, TXRDY or STRDY	5.0	17~				ns	3-6
tw	MR Pulse Width, LOW	5.0	1///	$ \sim$			ns	3-6
tw	RTL Pulse Width, LOW	5.0	/////	INT	~		ns	3-6
ts (H) ts (L)	Setup Time DIO1 - DIO7 to CP	5.0	L Q G		MA	~	ns	3-9
th (H) th (L)	Hold Time DIO₀ - DIO⁊ to CP	5.0		47		11	ns	3-9
ts	Setup Time, HIGH or LOW, DAV to CP	5.0					ns	3-9
th	Hold Time, HIGH or LOW, DAV to CP	5.0				4	ns	3-9
ts (H) ts (L)	Setup Time RXRDY, TXRDY, STRDY	5.0					ns	3-9
ts (H) ts (L)	Setup Time NRFD to CP	5.0					ns	3-9
ts (H)	Setup Time NDAC to CP	5.0					ns	3-9
ts (H) ts (L)	Setup Time Address to CP	5.0					ns	3-9
tw (L)	IFC Pulse Width, LOW	5.0					ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

54AC/74AC520 • 54ACT/74ACT520 54AC/74AC521 • 54ACT/74ACT521

8-Bit Identity Comparator

Description

The 'AC/'ACT520/521 are expandable 8-bit comparators. They compare two words of up to eight bits each and provide a LOW output when the two words match bit for bit. The expansion input $\bar{I}_{A=B}$ also serves as an active LOW enable input. The '521 features a pull-up resistor on each input.

- Compares Two 8-Bit Words in 6.5 ns Typ
- Expandable to Any Word Length
- 20-Pin Package
- Outputs Source/Sink 24 mA
- '521 has Input Pull-Up Resistors
- 'ACT520 and 'ACT521 have TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

A0 - A7	Word A Inputs
Bo - B7	Word B Inputs
ĪA = B	Expansion or Enable Input
Ōa=b	Identity Output

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

AC520 • ACT520 • AC521 • ACT521

Truth Table

Ing	outs	Outputs
ĪA = B	А, В	ŌA = B
L	A = B*	L
L	A≠B	н
н	A = B*	н
н	A≠B	Н

H = HIGH Voltage Level

L = LOW Voltage level

 $*A_0 = B_0, A_1 = B_1, A_2 = B_2, etc.$

Logic Diagram ('AC/'ACT520)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

AC520 • ACT520 • AC521 • ACT521

Logic Diagram (AC/ACT521)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT520/521)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC520 • ACT520 • AC521 • ACT521

AC Characteristics

r	Newconcert		74AC	54AC	74AC		Fig. No.
Symbol	Parameter	Vcc*	TA = + 25 °C CL = 50 pF	TA = -55 °C to +125 °C CL = 50 pF	TA = − 40°C to +85°C CL = 50 pF	Units	
	UNIA		Min Typ Max	Min Max	Min Max		
tplн	Propagation Delay An or Bn to OA=B	3.3 5.0	13.0 9.5			ns	3-6
tphl	Propagation Delay An or Bn to $\overline{O}A = B$	3.3 5.0	13.0 9.5	IAVI ,	AF	ns	3-6
tplh	Propagation Delay Īa=B to Ōa=B	3.3 5.0	9.0 6.5	100	91/5	ns	3-6
tphl	Propagation Delay IA=B to OA=B	3.3 5.0	9.5 7.0		have a second se	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

Symbol	Parameter	Vcc* ∗ (V)	74ACT TA = + 25°C CL = 50 pF	54ACT $T_A = -55 ^{\circ}C$ to + 125 $^{\circ}C$ $C_L = 50 ^{\circ}pF$	74ACT $T_A = -40 \circ C$ to $+85 \circ C$ $C_L = 50 pF$	Units	Fig. No.
L.			Min Typ Max	Min Max	Min Max		
tplh	Propagation Delay An or Bn to OA=B	5.0	9,5/777	n n		ns	3-6
tphl	Propagation Delay An or Bn to $\overline{O}A = B$	5.0	9.5	M/	1 AS	ns	3-6
tрLH	Propagation Delay Īa=в to Ōa=в	5.0	6.5			ns	3-6
tphl	Propagation Delay Īa=B to Ōa=B	5.0	7.0			ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
		Тур	Onits		
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Срр	Power Dissipation Capacitance		pF	Vcc = 5.5 V	

Applications

Ripple Expansion

Parallel Expansion

54AC/74AC533 • 54ACT/74ACT533

Octal Transparent Latch With 3-State Outputs

Description

The 'AC/'ACT533 consists of eight latches with 3-state outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH the bus output is in the high impedance state. The 'AC/'ACT533 is the same as the 'AC/'ACT373, except that the outputs are inverted on the 'AC/'ACT533. For functional description please refer to the 'AC/'ACT373 data sheet.

- Eight Latches in a Single Package
- 3-State Outputs for Bus Interfacing
- Outputs Source/Sink 24 mA
- 'ACT533 has TTL-Compatible Inputs
- Inverted Output Version of 'ACT373

Ordering Code: See Section 6

Logic Symbol

Pin Names

- Do D7 Data Inputs
- LE Latch Enable Input
- OE Output Enable Input
- 00 07 Complementary 3-State Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT533)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

				74AC		54	AC	74AC			
Symbol	Parameter	Vcc* (V)	Ta = + 25°C C∟=50 pF		TA = -55 °C to +125 °C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.	
	\sim		Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay Dn to On	3.3 5.0		8.0 5.0						ns	3-5
TPHL	Propagation Delay Dn to On	3.3 5.0	\wedge	7.0 5.0						ns	3-5
tplн	Propagation Delay LE to On	3.3 5,0	\square	8.0 5.0	>					ns	3-6
tphl	Propagation Delay LE to On	3.3 5.0	1	7.0 5.0	$\overline{\Pi}$					ns	3-6
tрzн	Output Enable Time	3.3 5.0		6.5 4.5	Π					ns	3-7
tpzl	Output Enable Time	3.3 5.0		6.0 4.5	*	V_	$\langle \rangle$			ns	3-8
tрнz	Output Disable Time	3.3 5.0		7.0 5.0			Ų,	S	뀐	ns	3-7
tplz	Output Disable Time	3.3 5.0		5.0 3.5				4	\mathbb{Z}	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Operating Requirements

	Parameter		74AC		54AC	74AC	Units	Fig. No.	
Symbol		Vcc* 7 (V)	Ta = + 25°C CL = 50 pF		TA = -55°C to +125°C CL = 50 pF	$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF			
IJ			Тур		Guaranteed Min	uaranteed Minimum			
ts	Setup Time, HIGH or LOW Dn to LE	3.3 5.0	3.5 2.0	M	$1 \mathbb{A}^{1}$	AF	ns	3-9	
th	Hold Time, HIGH or LOW Dn to LE	3.3 5.0	2.5 1.5	L.	JUNZ	A/R	ns	3-9	
tw	LE Pulse Width, HIGH	3.3 5.0	3.0 2.5			transf law	ns	3-6	

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

			74ACT		54A	СТ	74ACT			
Symbol Parameter		Vcc* (V)	Ta = + 25 °C CL = 50 pF		TA = -55 °C to +125 °C CL = 50 pF		TA = -40°C to +85°C CL = 50 pF		Units	Fig. No.
	U/A		Min Typ	Max	Min	Max	Min	Max		
tplh	Propagation Delay Dn/to On	5.0	7.0						ns	3-5
t PHL	Propagation Delay Dn to On	5.0	6.5	~					ns	3-5
t PLH	Propagation Delay LE to On	5.0	6.5	17	n,	~			ns	3-6
t PHL	Propagation Delay LE to On	5.0	6.0	77	(~	ns	3-6
tрzн	Output Enable Time	5.0	6.0		V.	A		(\bigcirc)	ns	3-7
tpzl	Output Enable Time	5.0	5.5				U L	ST	ns	3-8
tрнz	Output Disable Time	5.0	7.5					4	/ŋs	3-7
tplz	Output Disable Time	5.0	5.0						ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

Tr	DA		74	АСТ	54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	TA = H CL = S	- 25°C 50 pF	TA = -55°C to +125°C CL = 50 pF	TA = -40°C to +85°C CL = 50 pF	Units	Fig. No.
	14 UIRII		Тур		Guaranteed Min	nimum		
ts	Setup Time, HIGH or LOW Dn to LE	5.0	2.0	$\overline{\mathcal{M}}$	700		ns	3-9
th	Hold Time, HIGH or LOW Dn to LE	5.0	- 1.5		M/		ns	3-9
tw	LE Pulse Width, HIGH	5.0	2.0		NV/S	11/2	ns	3-6
*Voltage F	Range 5.0 is 5.0 V ± 0.5 V					URY	\mathbb{N}_{2}	>

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
	raiameter	Тур	Unita	Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
CPD	Power Dissipation Capacitance		pF	Vcc = 5.5 V	

54AC/74AC534 • 54ACT/74ACT534

Octal D-Type Flip-Flop With 3-State Outputs

Description

The 'AC/'ACT534 is a high-speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable (\overline{OE}) are common to all flip-flops. The 'AC/'ACT534 is the same as the 'AC/'ACT374 except that the outputs are inverted.

- Edge-Triggered D-Type Inputs
- Buffered Positive Edge-Triggered Clock
- 3-State Outputs for Bus-Oriented Applications
- Outputs Source/Sink 24 mA
- 'ACT534 has TTL-Compatible Inputs
- Inverted Output Version of 'AC/'ACT374

Ordering Code: See Section 6

Logic Symbol

Pin Names

- Do D7 Data Inputs
- CP Clock Pulse Input
- OE 3-State Output Enable Input
- 00 07 Complementary 3-State Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

Functional Description

The 'AC/'ACT534 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-state complementary outputs. The buffered clock and buffered Output Enable are common to all flipflops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT534)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Symbol Parameter			TA = + 25°C CL = 50 pF			$T_A = -55 \circ C$ to +125 \circ C_L = 50 pF		– 40°C 85°C 50 pF	Units	Fig. No.
	$\sqrt{\gamma}/8$	5'	Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	3.3 5.0	\wedge	125 150						MHz	3-3
tрLн	Propagation Delay CP to On	3.3		10.0 7.0	\sim					ns	3-6
tphl	Propagation Delay CP to On	3.3 5.0	44	9.5 6.5	\overline{D}					ns	3-6
tрzн	Output Enable Time	3.3 5.0		8.5 6.5	47	\square	A Start			ns	3-7
tpzl	Output Enable Time	3.3 5.0		8.5 6.0						ns	3-8
tрнz	Output Disable Time	3.3 5.0		9.0 7.0	i		and a second	1	R	ns	3-7
tplz	Output Disable Time	3.3 5.0		7.5 6.0					V L	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

	-100		74AC	54AC	74AC		
Symbol	Parameter	V oc* (V)	TA = + 25° CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units	Fig. No.
		1	Тур	Guaranteed M	inimum		
ts	Setup Time, HIGH or LOW Dn to CP	3,3 5.0	2.0 1.0	70~		ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	3.3 5.0	- 1.0 - 0.5	MAR	and the second sec	ns	3-9
tw	CP Pulse Width, HIGH or LOW	3.3 5.0	3.5 2.5	V	IA	ns	3-6
*Voltage F	Range 3.3 is 3.3 V ± 0.3 V				π/S	~	

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

~				74ACT		54 <i>4</i>	ст	74/	АСТ		
Symbol Parameter		Vcc* (V)	TA = + 25 °C CL = 50 pF			$T_A = -55 \degree C$ to +125 °C CL = 50 pF		$T_A = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
\sim	INSI	7	Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	5.0	///	100	7.5					MHz	3-3
tрLн	Propagation Delay CP to On	5.0		6,5	$\left \right \right $	\bigwedge	Π		i	ns	3-6
tphL	Propagation Delay CP to On	5.0		6.0	11	7 W,	17		R	ns	3-6
tрzн	Output Enable Time	5.0		5.5		~	1	517	N	ns	3.7
tPZL	Output Enable Time	5.0		5.5				40	())	ns	3-8
tphz	Output Disable Time	5.0		7.0					D	hs	3-7
tplz	Output Disable Time	5.0		5.0						ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

~	Autorophys.		744	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc* 7(V)	TA = + CL = {	⊦25°C 50 pF	$TA = -55 \degree C$ to + 125 °C CL = 50 pF	TA = -40°C to +85°C CL = 50 pF	Units	Fig. No.
5			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Dn to CP	5.0	1.0	M	//	AF	ns	3-9
th	Hold Time, HIGH or LOW D₁ to CP	5.0	- 0.5			AF	Ins	3-9
tw	CP Pulse Width, HIGH or LOW	5.0	2.5		·		ns	J ₃₋₆

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol	Falameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Cpd	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC540 • 54ACT/74ACT540 54AC/74AC541 • 54ACT/74ACT541

Octal Buffer/Line Driver With 3-State Outputs

Description

The 'AC/'ACT540 and 'AC/'ACT541 are octal buffer/line drivers designed to be employed as memory and address drivers, clock drivers and bus oriented transmitter/receivers. The 'AC/'ACT541 is a noninverting option of the 'AC/'ACT540.

These devices are similar in function to the 'AC/'ACT240 and 'AC/'ACT244 while providing flowthrough architecture (inputs on opposite side from outputs). This pinout arrangement makes these devices especially useful as output ports for microprocessors, allowing ease of layout and greater PC board density.

- 3-State Outputs
- Inputs and Outputs Opposite Side of Package, Allowing Easier Interface to Microprocessors
- Output Source/Sink 24 mA
- 'AC/'ACT540 Provides Inverted Outputs
- 'AC/'ACT541 Provides Noninverted Outputs
- 'ACT540 and 'ACT541 have TTL-Compatible Inputs

Connection Diagrams

'AC/'ACT540

Pin Assignment Pin Assignment for LCC for DIP, Flatpak and SOIC

Ordering Code: See Section 6

Truth Table

	Inputs		Out	puts
OE1	ŌĒ2	D	'540	'541
L	L	Н	L	L
н	Х	Х	z	Z
Х	н	Х	z	Z
L	L	L	н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

AC540 • ACT540 • AC541 • ACT541

Symbol Parameter 54AC/ACT 74AC/ACT Units Conditions VIN = VCC orMaximum Quiescent Ground, 80 Icc 160 μA Supply Current Vcc = 5.5 V, T_A = Worst Case VIN = VCC or Maximum Quiescent Ground, 8.0 8.0 Icc μA Supply Current Vcc = 5.5 V. $T_A = 25 °C$ $V_{IN} = V_{CC} - 2.1 V$ Maximum Additional ICCT 1.6 1.5 mΑ Vcc = 5.5 V.Icc/Input ('ACT540/541) TA = Worst Case

DC Characteristics (unless otherwise specified)

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	V cc* (∀)	TA = + 25°C CL = 50 pF			$T_A = -55^{\circ}C$ to + 125^{\circ}C C_L = 50 pF		$T_A = -40 \text{ °C}$ to +85 °C CL = 50 pF		Units	Fig. No.
			Min	Тур	Мах	Min	Max	Min	Max		
tр∟н	Propagation Delay Data to Output ('AC540)	3.3 5.0	1.0 1.0	5.5 4.0	7.5 6.0	1.0 1.0	9.0 7.0	1.0 1.0	8.0 6.5	ns	3-5
tphl	Propagation Delay Data to Output ('AC540)	3.3 5.0	1.0 1.0	5.0 4.0	7.0 5.5	1.0 1.0	8.0 6.5	1.0 1.0	7.5 6.0	ns	3-5
tрzн	Output Enable Time ('AC540)	3.3 5.0	1.0 1.0	8.5 6.5	11.0 8.5	1.0 1.0	13.0 10.0	1.0 1.0	12.0 9.5	ns	3-7
tPZL.	Output Enable Time ('AC540)	3.3 5.0	1.0 1.0	7.5 6.0	10.0 7.5	1.0 1.0	12.0 9.0	1.0 1.0	11.0 8.5	ns	3-8
tрнz	Output Disable Time ('AC540)	3.3 5.0	1.0 1.0	8.5 7.5	13.0 10.5	1.0 1.0	15.5 12.0	1.0 1.0	14.0 11.0	ns	3-7
tplz	Output Disable Time ('AC540)	3.3 5.0	1.0 1.0	7.0 6.0	10.0 8.0	1.0 1.0	12.0 10.0	1.0 1.0	11.0 9.0	ns	3-8
tplh	Propagation Delay Data to Output ('AC541)	3.3 5.0	1.0 1.0	5.5 4.0	8.0 6.0	1.0 1.0	10.0 7.0	1.0 1.0	9.0 6.5	ns	3-5
t PHL	Propagation Delay Data to Output ('AC541)	3.3 5.0	1.0 1.0	5.5 4.0	8.0 6.0	1.0 1.0	9.5 7.0	1.0 1.0	8.5 6.5	ns	3-5
tрzн	Output Enable Time ('AC541)	3.3 5.0	1.0 1.0	8.0 6.0	11.5 8.5	1.0 1.0	13.5 10.0	1.0 1.0	12.5 9.5	ns	3-7
tpzl	Output Enable Time ('AC541)	3.3 5.0	1.0 1.0	7.0 5.5	10.0 7.5	1.0 1.0	12.5 9.0	1.0 1.0	11.5 8.5	ns	3-8
tрнz	Output Disable Time ('AC541)	3.3 5.0	1.0 1.0	9.0 7.0	12.5 9.5	1.0 1.0	15.0 12.0	1.0 1.0	14.0 10.5	ns	3-7
tplz	Output Disable Time ('AC541)	3.3 5.0	1.0 1.0	6.5 5.5	9.5 7.5	1.0 1.0	11.0 9.0	1.0 1.0	10.5 8.5	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC540 • ACT540 • AC541 • ACT541

AC Characteristics

			74ACT		54A	СТ	744	СТ		
Symbol	Parameter	Vcc* (V)	Ta = + 25 CL = 50 p	to +1	$T_A = -55 \circ C$ to + 125 \circ CL = 50 pF		- 40°C 85°C 50 pF	Units	Fig. No.	
			Min Typ	Max	Min	Max	Min	Max		
tplh	Propagation Delay Data to Output ('ACT540)	5.0	6.0						ns	3-5
tphl /	Propagation Delay Data to Output ('ACT540)	5.0	5.5						ns	3-5
tрzн	Output Enable Time ('ACT540)	5.0	8.0						ns	3-7
tPZL	Output Enable Time ('ACT540)	5.0	6.5						ns	3-8
tрнz	Output Disable Time ('ACT540)	5.0	10.0	117	2	~			ns	3-7
t PLZ	Output Disable Time ('ACT540)	5.0	7.0	47	XV/		5	~	ns	3-8
tplH	Propagation Delay Data to Output ('ACT541)	5.0	6.0			K		0	ns	3-5
tphl	Propagation Delay Data to Output ('ACT541)	5.0	6.0			,	17	V	ns	3-5
tрzн	Output Enable Time ('ACT541)	5.0	8.0						ns	3-7
tpzl	Output Enable Time ('ACT541)	5.0	6.5						ns	3-8
tрнz	Output Disable Time ('ACT541)	5.0	10.0						ns	3-7
tp∟z	Output Disable Time ('ACT541)	5.0	7.0						ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol	raiametei	Тур	Onits	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	30.0	pF	Vcc = 5.5 V

54AC/74AC563 • 54ACT/74ACT563

Octal D-Type Latch With 3-State Outputs

Description

The 'AC/'ACT563 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (\overline{OE}) inputs.

The 'AC/'ACT563 device is functionally identical to the 'AC/'ACT573, but with inverted outputs.

- Inputs and Outputs on Opposite Sides of Package Allowing Easy Interface with Microprocessors
- Useful as Input or Output Port for Microprocessors
- Functionally Identical to 'ACI'ACT573 but with Inverted Outputs
- Outputs Source/Sink 24 mA
- 'ACT563 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

- Do D7 Data Inputs
- LE Latch Enable Input
- OE 3-State Output Enable Input
- 00 07 3-State Latch Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

The 'AC/'ACT563 contains eight D-type latches with 3-state complementary outputs. When the Latch Enable (LE) input is HIGH, data on the Dn inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but that does not interfere with entering new data into the latches.

Function Table

	Inputs		Internal	Outputs	Function	
ŌĒ	LE	D	Q	0	runction	
H H H L L	XHHLHHL	X L H X L H X	X H L C N H L C NC	Z Z Z H L NC	High Z High Z High Z Latched Transparent Transparent Latched	H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance NC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

5

DC Ch	naracteristics	(unless	otherwise	specified)
-------	----------------	---------	-----------	------------

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
Icc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT563)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

_				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF			TA = −55°C to +125°C CL = 50 pF		to +	- 40°C 85°C 50 pF	Units	Fig. No.
	~101~		Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay Dn to On	3.3 5.0		7.5 5.0						ns	3-5
tphl	Propagation Delay Dn to On	3.3 5.0	Π	7.0 4.5	<i></i>	*				ns	3-5
tplh	Propagation Delay LE to On	3.3 5.0	U_{I}	7.5 5.0	70	~				ns	3-6
tphl	Propagation Delay LE to On	3.3 5.0		8.0 5.5	\square	ΔV	Ŋ,			ns	3-6
tрzн	Output Enable Time	3.3 5.0		6.0 4.0	4	Ŋ		$\Pi_{\mathbf{Z}}$	A	ns	3-7
tPZL .	Output Enable Time	3.3 5.0		6.0 4.0			:	77	SP SP	ns	>3-8
tрнz	Output Disable Time	3.3 5.0		7.0 5.0						ns	3-7
tplz	Output Disable Time	3.3 5.0		5.0 3.5						ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC563 • ACT563

AC Operating Requirements

-			74/	AC	54AC	74AC		
Symbol	Paraméter	Vcc* (V)	TA = + 25 °C CL = 50 pF		TA = - 55°C to + 125°C CL = 50 pF	T _A = - 40 °C to +85 °C C _L = 50 pF	Units	Fig. No.
			Тур		Guaranteed Min	nimum		
ts	Setup Time, HIGH or LOW, Dn to LE	3.3 5!0	2.0 1.5	////	$1/\sqrt{1}$	AF	ns	3-9
th	Hold Time, HIGH or LOW Dn to LE	3.3 5.0	- 2.5 - 1.5	, U L			ns	3.9
tw	LE Pulse Width, HIGH	3.3 5.0	3.0 2.5				ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

				74ACT		54/	ACT	74/	аст		
Symbol	Parameter	Vcc* (V)	Ta = + 25°C CL = 50 pF			$T_A = -55 \degree C$ to + 125 °C CL = 50 pF		$TA = -40 \degree C$ to +85 \degree C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay Dn to On	5.0	1.0	7.0	11.5	1.0	14.0	1.0	12.5	ns	3-5
t PHL	Propagation Delay Dn to On	5.0	1.0	6.0	10.0	1.0	12.0	1.0	11.0	ns	3-5
tplh	Propagation Delay LE to On	5.0	1.0	6.5	10.5	1.0	12.5	1.0	11.5	ns	3-6
tphl	Propagation Delay LE to On	5.0	1.0	5.5	9.5	1.0	11.5	1.0	10.5	ns	3-6
tрzн	Output Enable Time	5.0	1.0	5.5	9.0	1.0	11.0	1.0	10.0	ns	3-7
tPZL	Output Enable Time	5.0	1.0	5.5	8.5	1.0	10.5	1.0	9.5	ns	3-8
tрнz	Output Disable Time	5.0	1.0	6.5	10.5	1.0	12.5	1.0	11.5	ns	3-7
tPLZ	Output Disable Time	5.0	1.0	4.5	8.0	1.0	9.5	1.0	8.5	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			744	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	TA = + CL = {	- 25°C 50 pF	TA = -55°C to +125°C CL = 50 pF	$T_A = -40 \degree C$ to +85 °C CL = 50 pF	Units	Fig. No.
			Тур		nimum	_		
ts	Setup Time, HIGH or LOW, Dn to LE	5.0	1.5	4.0	5.0	4.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to LE	5.0	- 2.0	0	0	0	ns	3-9
tw	LE Pulse Width, HIGH	5.0	2.0	3.0	5.0	3.0	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol	Falalletel	Тур	Onits	conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	50.0	pF	Vcc = 5.5 V

54AC/74AC564 • 54ACT/74ACT564

Octal D-Type Latch With 3-State Outputs

Description

The 'AC/'ACT564 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable (\overline{OE}). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The 'AC/'ACT564 device is functionally identical to the 'AC/'ACT574, but with inverted outputs.

- Inputs and Outputs on Opposite Sides of Package Allowing Easy Interface with Microprocessors
- Useful as Input or Output Port for Microprocessors
- Functionally Identical to 'AC/'ACT574 but with Inverted Outputs
- 3-State Outputs for Bus-Oriented Applications
- Outputs Source/Sink 24 mA
- 'ACT564 has TTL-Compatible Inputs

Ordering Code: See Section 6

Pin Names

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

Functional Description

The 'AC/'ACT564 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-state complementary outputs. The buffered clock and buffered Output Enable are common to all flipflops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Function Table

	Inputs		Internal	Outputs	Function	
ŌĒ	СР	D	Q	0	Function	
HHHHLLL	ннгггнн		NC H L H L C C	Z Z Z H L NC NC	Hold Hold Load Data Available Data Available No Change in Data No Change in Data	H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance Γ = LOW-to-HIGH Transition NC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

AC564 • ACT564

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT564)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)	Ta = + 25°C CL = 50 pF			TA = − 55°C to + 125°C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
	M(Q)		Min	Тур	Max	Min	Мах	Min	Max		
fmax	Maximum Clock Frequency	3.3 5.0	~	110 150					<u></u>	MHz	3-3
tр∟н	Propagation Delay CP to On	3.3 5.0	Π	10.5 7.0	~					ns	3-6
t PHL	Propagation Delay CP to On	3.8 5.0	///	9.5 6.0	1Π	2	~			ns	3-6
tрzн	Output Enable Time	3.3 5.0		8.5 6.5	1/	AV,				ns	3-7
tPZL	Output Enable Time	3.3 5.0		8.0 5.5		V	K	17	5	ns	3-8
tрнz	Output Disable Time	3.3 5.0		9.5 7.0			L	17	T	ns	> ₃₋₇
tplz	Output Disable Time	3.3 5.0		7.5 5.5						ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

	Numana and Andrewson and Andrews		74	AC		54AC	74AC		
Sympot	Parameter	Vcc* 7 (V)	TA = H CL = S	- 25°C 50 pF	TA = - 55 °C to + 125 °C CL = 50 pF		TA = - 40°C to +85°C CL = 50 pF	Units	Fig. No.
			Тур	\square	Gu	aranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Dn to CP	3.3 5.0	2.0 1.0	ИI,	Π	M7	AF	ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	3.3 5.0	- 1.0 - 0.5		- L	J V Z	ALA	ns	8-9
tw	CP Pulse Width, HIGH or LOW	3.3 5.0	3.5 2.5					ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

Symbol			74ACT TA = + 25 °C CL = 50 pF			54ACT TA = -55°C to +125°C CL=50 pF		74ACT TA = -40°C to +85°C CL=50 pF		Units	Fig.
	Parameter	Vcc* (V)									
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	5.0	85	90		65		75		MHz	3-3
tplh	Propagation Delay CP to On	5.0	1.0	6.5	10.5	1.0	12.5	1.0	11.5	ns	3-6
tphl	Propagation Delay CP to On	5.0	1.0	6.0	9.5	1.0	11.5	1.0	10.5	ns	3-6
tрzн	Output Enable Time	5.0	1.0	5.5	9.0	1.0	10.5	1.0	9.5	ns	3-7
tPZL	Output Enable Time	5.0	1.0	5.5	8.5	1.0	10.5	1.0	9.5	ns	3-8
tрнz	Output Disable Time	5.0	1.0	7.0	10.5	1.0	12.5	1.0	11.5	ns	3-7
tPLZ	Output Disable Time	5.0	1.0	5.0	8.0	1.0	9.0	1.0	8.5	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Æ

AC564 • ACT564

AC Operating Requirements

Symbol			74ACT		54ACT	74ACT		
	Parameter	Vcc* (V)	TA = + CL = {		TA = -55°C to +125°C CL = 50 pF	TA = − 40°C to + 85°C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Minimum			
ts	Setup Time, HIGH or LOW Dn to CP	5.0	1.0	2.5	3.0	3.0	ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	5.0	- 0.5	1.0	1.0	1.0	ns	3-9
tw	LE Pulse Width, HIGH or LOW	5.0	2.5 3.0		5.0	3.5	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
	r alameter	Тур	Units	Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
CPD	Power Dissipation Capacitance	50.0	pF	Vcc = 5.5 V	

54AC/74AC568 • 54AC/74AC569

4-Bit Bidirectional Counters With 3-State Outputs

Description

The 'AC568 and 'AC569 are fully synchronous, bidirectional counters with 3-state outputs. The 'AC568 is a BCD decade counter; the 'AC569 is a modulo 16 binary counter. They feature preset capability for programmable operation, carry lookahead for easy cascading, and a U/D input to control the direction of counting. For maximum flexibility there are both synchronous and master asynchronous reset inputs as well as both Clocked Carry (CC) and Terminal Count (TC) outputs. All state changes except Master Reset are initiated by the rising edge of the clock. A HIGH signal on the Output Enable (\overline{OE}) input forces the output buffers into the high-impedance state but does not prevent counting, resetting or parallel loading.

- Synchronous Counting and Loading
- Lookahead Carry Capability for Easy Cascading
- Preset Capability for Programmable Operation
- 3-State Outputs for Bus Organized Systems
- Outputs Source/Sink 24 mA
- Synchronous and Asynchronous Resets

Ordering Code: See Section 6

Logic Symbol

Pin Names

Po - P3	Parallel Data Inputs
CEP	Count Enable Parallel Input
CET	Count Enable Trickle Input
CP	Clock Pulse Input
PE	Parallel Enable Input
U/D	Up/Down Count Control Input

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

ŌĒ	Output Enable Input
MR	Master Reset Input
SR	Synchronous Reset Input
O0 - O3	3-State Parallel Data Outputs
TC	Terminal Count Output
CC	Clocked Carry Output

AC568 • AC569

Logic Diagram ('AC568)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Logic Diagram ('AC569)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

State Diagrams

'AC568

Logic Equations:

Count Enable = $\overline{CEP} \cdot \overline{CET} \cdot PE$
Up ('AC568): $\overline{TC} = Q_0 \bullet \overline{Q}_1 \bullet \overline{Q}_2 \bullet Q_3 \bullet (Up) \bullet \overline{CET}$
('AC569): $\overline{TC} = Q_0 \bullet Q_1 \bullet Q_2 \bullet Q_3 \bullet (Up) \bullet \overline{CET}$
Down (Both): $\overline{TC} = \overline{Q}_0 \bullet \overline{Q}_1 \bullet \overline{Q}_2 \bullet \overline{Q}_3 \bullet$ (Down) $\bullet \overline{CET}$

Functional Description

The 'AC568 counts modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) it will increment to 0 (LLLL) in the Up mode; in Down mode it will decrement from 0 to 9. The 'AC569 counts in the modulo-16 binary sequence. From state 15 it will increment to state 0 in the Up mode; in the Down mode it will decrement from 0 to 15. The clock inputs of all flip-flops are driven in parallel through a clock buffer. All state changes (except due to Master Reset) occur synchronously with the LOW-to-HIGH transition of the Clock Pulse (CP) input signal.

The circuits have five fundamental modes of operation, in order of precedence: asynchronous reset, synchronous reset, parallel load, count and hold. Five control inputs—Master Reset (MR), Synchronous Reset (SR), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET)—plus the Up/Down (U/D) input determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces the flipflop Q outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows the Q outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs 'AC569

to be loaded into the flip-flops on the next rising edge of CP. With $\overline{\text{MR}}$, $\overline{\text{SR}}$ and $\overline{\text{PE}}$ HIGH, $\overline{\text{CEP}}$ and $\overline{\text{CET}}$ permit counting when both are LOW. Conversely, a HIGH signal on either $\overline{\text{CEP}}$ or $\overline{\text{CET}}$ inhibits counting.

The 'AC568 and 'AC569 use edge-triggered flipflops and changing the \overline{SR} , PE, CEP, CET or U/D inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

Two types of outputs are provided as overflow/underflow indicators. The Terminal Count (TC) output is normally HIGH and goes LOW providing \overrightarrow{CET} is LOW, when the counter reaches zero in the Down mode, or reaches maximum (9 for the 'AC568, 15 for the 'AC569) in the Up mode. \overrightarrow{TC} will then remain LOW until a state change occurs, whether by counting or presetting, or until U/D or \overrightarrow{CET} is changed. To implement synchronous multistage counters, the connections between the \overrightarrow{TC} output and the \overrightarrow{CEP} and \overrightarrow{CET} inputs can provide either slow or fast carry propagation. Figure a shows the connections for simple ripple carry, in which the clock period must be longer than the CP to \overrightarrow{TC} delay of the first stage, plus the cumulative CET to TC delays of the intermediate stages, plus the CET to CP setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure b are recommended. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, or min to max in the Down mode, to start its final cycle. Since this final cycle takes 10 ('AC568) or 16 ('AC569) clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timing that limits the clock period is the CP to \overline{TC} delay of the first stage plus the \overline{CEP} to CP setup time of the last stage. The \overline{TC}

Mode Select Table

		In	puts			Operating			
MR	SR	PE	CEP	CET	U/D	Mode			
L	х	х	х	х	Х	Asynchronous Reset			
н	L	Х	X X	X	X	Synchronous Reset			
н	н	L	X	X	х	Parallel Load			
н	н	н	н	x	x	Hold			
н	н	н	X	н	X	Hold			
н	н	н	L	L	н	Count Up			
Н	н	н	L	L	L	Count Down			

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, registers or counters. For such applications, the Clocked Carry (\overline{CC}) output is provided. The \overline{CC} output is normally HIGH. When SR and PE are HIGH, and \overline{CEP} , \overline{CET} and \overline{TC} are LOW, the \overline{CC} output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again, as shown in the \overline{CC} Truth Table. When the Output Enable (\overline{OE}) is LOW, the parallel data outputs O₀ - O₃ are active and follow the flipflop Q outputs. A HIGH signal on \overline{OE} forces O₀ - O₃ to the high-Z state but does not prevent counting, loading or resetting.

output is subject to decoding spikes due to

CC Truth Table

	Output					
SR	PE	CEP	CET	<u>TC</u> *	СР	<u>77</u>
L	х	Х	Х	Х	Х	н
Х	L	X	X	X	X	н
Х	Х	н	X	X	Х	н
Х	X	X	н	Х	X	н
Х	х	X	X	н	Х	н
н	н	L	L	L	J	<u>ע</u>

 $* = \overline{TC}$ is generated internally

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Figure a: Multistage Counter with Ripple Carry

AC568 • AC569

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	74AC	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$

AC Characteristics

			74A	С	54	AC	74	AC		
Symbol	Parameter	V cc* (V)	TA = + 2 CL = 50	TA = − 55°C to + 125°C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.	
			Min Typ	Max	Min	Max	Min	Max		
fmax	Maximum Glock Frequency	3.3 5.0	87 117						MHz	3-3
tplh	Propagation Defay CP to On (PE HIGH or LOW)	3.3 5.0	10.(7.(-					ns	3-6
tрнL	Propagation Delay CP to On (PE HIGH or LOW)	3.3 5.0	11.0						ns	3-6
tрLн	Propagation Delay CP to TC	3.3 5.0	16.		M	Π			ns	3-6
tphl	Propagation Delay CP to TC	3.3 5.0	16.9 12.0		YV	1/	11		ns	3-6
tplH	Propagation Delay CET to TC	3.3 5.0	10.9 7.9	-			П/	27	ns	3-6
tphl	Propagation Delay CET to TC	3.3 5.0	10.0 7.0	-				4	ns	3-6
tplh	Propagation Delay U/D to TC ('568)	3.3 5.0	10. 7.	-					ns	3-6
tph∟	Propagation Delay U/D to TC ('568)	3.3 5.0	9.0 6.1	-					ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics (cont'd)

			74AC		54/	AC	74	AC		
Symbol	Parameter	Vcc* (V)	Ta = + 25° C∟ = 50 pF	TA = −55°C to +125°C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.	
			Min Typ	Max	Min	Max	Min	Max		
tplh	Propagation Delay U/D to TC ('569)	3.3 5.0	10.5 7.5						ns	3-6
tрнц	Propagation Delay U/D/to TC (/569)	3.3 5.0	9.0 6.5						ns	3-6
tрLH	Propagation Delay CP to CC	3.3 5.0	11.0 8.0						ns	3-6
tрнL	Propagation Delay CP to CC	3.3 5.0	9.5 7.0	>					ns	3-6
tрLH	Propagation Delay CEP or CET to CC	3.3 5.0	9.5 7.0	Π		~			ns	3-6
tрнl	Propagation Delay CEP or CET to CC	3.3 5.0	9/5 7.0	Π	\mathbb{N}/\mathbb{N}	1			ns	3-6
tрнL	Propagation Delay MR to On	3.3 5.0	12.5 9.0		14	X	12	5	ns	3-6
tрzн	Output Enable Time OE to On	3.3 5.0	7.5 5.5			9	1	UT.	ns	3-7
tpzl	Output Enable Time OE to On	3.3 5.0	7.5 5.5					2	ns	3-8
tрнz	Output Disable Time OE to On	3.3 5.0	9.5 7.0						ns	3-7
t₽ZL	Output Disable Time OE to On	3.3 5.0	11.0 8.0						ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Operating Requirements

			74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	Ta = + Cl = \$	- 25°C 50 pF	TA = - 55°C to + 125°C CL = 50 pF	$T_A = -40 \text{ °C}$ to +85 °C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi			
ts	Setup Time, HIGH or LOW Pn to CP	3.3 5.0	8.0 6.0				ns	3-9
tn	Hold Time, HIGH or LOW Pn to CP	3.3 5.0	0 0				ns	3-9
ts	Setup Time, HIGH or/LOW CEP or CET to CP	3.3 5.0	8.0 12.5				ns	3-9
th	Hold-Time, HIGH or LOW CEP or CET to CP	3.3 5.0	000	<i>k</i>			ns	3-9
ts	Setup Time, HIGH or LOW PE to CP	3,3 5.0	12.5 9.0	$\overline{\Lambda}$	72		ns	3-9
th	Hold Time, HIGH or LOW PE to CP	3.3 5.0	0 0	1		AN	ns	3-9
ts	Setup Time, HIGH or LOW U/D to CP ('568)	3.3 5.0	12.5 9.0			9AG	ns	3-9
ts	Setup Time, HIGH or LOW U/D to CP ('569)	3.3 5.0	12.5 9.0			4	ns	3-9
th	Hold Time, HIGH or LOW U/D to CP	3.3 5.0	0 0				ns	3-9
ts	Setup Time, HIGH or LOW SR to CP	3.3 5.0	4.0 3.0				ns	3-9
th	Hold Time, HIGH or LOW SR to CP	3.3 5.0	- 1.5 - 1.0				ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements (cont'd)

	84 (ann		74	AC	54AC	74AC		
Symbol Parameter		Vcc*	TA = + 25°C CL = 50 pF		TA = - 55°C to + 125°C CL = 50 pF	TA = - 40°C to +85°C CL = 50 pF	Units	Fig. No.
L			Тур	m	Guaranteed Mi	nimum		
tw	CP Pulse Width HIGH or LOW	3.3 5.0	4.0 3.0	M			ns	3-6
tw	MR Pulse Width, LOW	3.3 5.0	4.0 3.0	701	<u> INZ</u>		ns	3-6
trec	MR Recovery Time	3.3 5.0	4.0 3.0			Concerned Concerned Concerned	ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC	Units	Conditions
Symbol	raiameter	Тур	Onits	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC573 • 54ACT/74ACT573

Octal D-Type Latch With 3-State Outputs

Description

The 'AC/'ACT573 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (\overline{OE}) inputs.

The 'AC/'ACT573 is functionally identical to the 'AC/'ACT373 but has inputs and outputs on opposite sides.

- Inputs and Outputs on Opposite Sides of Package Allowing Easy Interface with Microprocessors
- Useful as Input or Output Port for Microprocessors
- Functionally Identical to 'AC/'ACT373
- 3-State Outputs for Bus Interfacing
- Outputs Source/Sink 24 mA
- 'ACT573 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

- Do D7 Data Inputs
- LE Latch Enable Input
- OE 3-State Output Enable Input
- O0 O7 3-State Latch Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

The 'AC/'ACT573 contains eight D-type latches with 3-state output buffers. When the Latch Enable (LE) input is HIGH, data on the Dn inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are enabled. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

	Inputs								
ŌE	LE	D	On						
L	н	н	н						
L	н	L	н						
L	L	Х	O 0						
н	Х	Х	Z						

H = HIGH Voltage

L = LOW Voltage

Z = High Impedance

X = Immaterial

O₀ = Previous O₀ before LOW-to-HIGH Transition of Clock

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

AC573 • ACT573

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT573)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	ymbol Parameter			TA = + 25°C CL = 50 pF		TA = -55 °C to +125 °C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
	\sim / ∞		Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay Dn to On	3.3 /5.0		9.0 6.0						ns	3-5
tPHL	Propagation Delay Dn to On	8.3 5.0	17	9.0 6,0			<u></u>			ns	3-5
tplh	Propagation Delay LE to On	3.3 5.0		9.0 6.0	n	~				ns	3-6
tphl	Propagation Delay LE to On	3.3 5.0	~	8.0 5.5	\square	M/	7.			ns	3-6
tрzн	Output Enable Time	3.3 5.0		7.0 5.5	~ ()	V	2			ns	3-7
tpzl	Output Enable Time	3.3 5.0		7.5 5.5		<	\sim	1/7	\mathcal{O}	ns	3-8 ⊳
tрнz	Output Disable Time	3.3 5.0		8.5 6.5					V	AS	3-7
tplz	Output Disable Time	3.3 5.0		6.5 5.0						ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

for to many and			74AC		54AC	74AC		
Symbol	Parameter Vcc⁺ (V)		TA = + 25 °C CL = 50 pF		TA = -55°C to +125°C CL = 50 pF	T _A = − 40 °C to +85 °C C _L = 50 pF	Units	Fig. No.
			Тур	\square	Guaranteed Min	nimum		
ts	Setup Time, HIGH or LOW Dn to LE	9.3 5.0	2.0 1.0	M			ns	3-9
th	Hold Time, HIGH or LOW Dn to LE	3.3 5.0	0 0			Reverse and the second se	ns	3-9
tw	LE Pulse Width, HIGH	3.3 5.0	4.0 2.5				ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

	Symbol Parameter			74ACT			54ACT		АСТ		
Symbol				Ta = + 25 °C CL = 50 pF			$T_A = -55 ^{\circ}C$ to +125 ^{\circ}C C_L = 50 pF		– 40°C - 85°C 50 pF	Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tPLH .	Propagation Delay Dn to On	5.0	1.0	6.0	10.5	1.0	13.5	1.0	12.0	ns	3-5
tPHL .	Propagation Delay Dn to On	5.0	1.0	6.0	10.5	1.0	13.5	1.0	12.0	ns	3-5
tplH	Propagation Delay LE to On	5.0	1.0	6.0	10.5	1.0	13.0	1.0	12.0	ns	3-6
tPHL .	Propagation Delay LE to On	5.0	1.0	5.5	9.5	1.0	12.0	1.0	10.5	ns	3-6
tрzн	Output Enable Time	5.0	1.0	5.5	10.0	1.0	11.5	1.0	11.0	ns	3-7
tPZL	Output Enable Time	5.0	1.0	5.5	9.5	1.0	11.0	1.0	10.5	ns	3-8
tрнz	Output Disable Time	5.0	1.0	6.5	11.0	1.0	13.5	1.0	12.5	ns	3-7
tplz	Output Disable Time	5.0	1.0	5.0	8.5	1.0	10.5	1.0	9.5	ns	3-8
<u> </u>			L			L					

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74ACT TA = +25°C CL = 50 pF		54ACT	74ACT	Units	
Symbol	Parameter	Vcc* (V)			TA = − 55°C to + 125°C CL = 50 pF	T _A = − 40 °C to + 85 °C C _L = 50 pF		Fig. No.
			Тур		Guaranteed Mi			
ts	Setup Time, HIGH or LOW Dn to LE	5.0		3.0	3.5	3.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to LE	5.0	- 1.5	0	0.5	0	ns	3-9
tw	LE Pulse Width, HIGH	5.0	2.0	3.5	5.0	4.0	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter 54/74A		Units	Conditions
Symbol		Тур	Units	Conditions
CIN	Input Capacitance	5.0	pF	Vcc = 5.5 V
Срд	Power Dissipation Capacitance	25.0	pF	Vcc = 5.5 V

54AC/74AC574 • 54ACT/74ACT574

Octal D-Type Flip-Flop With 3-State Outputs

Description

The 'AC/'ACT574 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable (\overline{OE}). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The 'AC/'ACT574 is functionally identical to the 'AC/'ACT374 except for the pinouts.

- Inputs and Outputs on Opposite Sides of Package Allowing Easy Interface with Microprocessors
- Useful as Input or Output Port for Microprocessors
- Functionally Identical to 'AC/'ACT374
- 3-State Outputs for Bus-Oriented Applications
- Outputs Source/Sink 24 mA
- 'ACT574 has TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol

Pin Names

- Do D7 Data Inputs
- CP Clock Pulse Input
- OE 3-State Output Enable Input
- Oo O7 3-State Outputs

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

The 'AC/'ACT574 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-state true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

I	nputs	S	Internal	Outputs	Function
ŌĒ	СР	D	Q	On	Function
Н	н	L	NC	Z	Hold
н	н	Н	NC	z	Hold
Н	Г	L	L	z	Load
Н	Г	Н	н	z	Load
L	Г	L	L	L	Data Available
L	L	Н	н	н	Data Available
L	н	L	NC	NC	No Change in Data
L	н	Н	NC	NC	No Change in Data

Function Table

- L = LOW Voltage Level
- X = Immaterial
- Z = High Impedance
- NC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT574)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

Symbol Parameter			74AC	54AC	74AC		
		Vcc* (V)	TA = + 25 °C CL = 50 pF	T _A = − 55°C to + 125°C C _L = 50 pF	T _A = − 40 °C to + 85 °C C _L = 50 pF	Units	Fig. No.
~/ ·	RUA	(Proc.	Min Typ Max	Min Max	Min Max		
fmax	Maximum Clock Frequency	8.3 5.0	110 160			MHz	3-3
tplH	Propagation Delay CP to On	3.3 5.0	10.0 7.0			ns	3-6
tрнL	Propagation Delay CP to On	3.3 [*] 5.0	10:0	Λn		ns	3-6
tрzн	Output Enable Time	3.3 5.0	6.5 5.0	WZ		ns	3-7
tpz∟	Output Enable Time	3.3 5.0	6.0 4.0		IAP	ns	> ³⁻⁸
tрнz	Output Disable Time	3.3 5.0	7.0 5.0		4	ns	3-7
tplz	Output Disable Time	3.3 5.0	5.0 3.5			ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Operating Requirements

Janan			74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	TA = + CL = {		TA = - 55°C to + 125°C CL = 50 pF	TA = - 40 °C to +85 °C CL = 50 pF	Units	Fig. No.
			Тур	6	Guaranteed Min	nimum		
ts	Set-up Time, HIGH or LOW Dn to CP	3.3 5.0	2.0 1,0	$\langle \rangle \rangle$	M	AR	ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	3.3 5.0	0 0		107		ns	3-9
tw	CP Pulse Width HIGH or LOW	3.3 5.0	4.0 2.5			and the second second	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

	Parameter			74ACT		54ACT		74ACT			
Symbol		Vcc* (V)	TA = + 25 °C CL = 50 pF			$T_A = -55 \degree C$ to + 125 °C CL = 50 pF		$TA = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max	1	
fmax	Maximum Clock Frequency	5.0	100	110		70		85		ns	3-3
tplH	Propagation Delay CP to On	5.0	1.0	7.0	11.0	1.0	13.0	1.0	12.0	ns	3-6
tphl	Propagation Delay CP to On	5.0	1.0	6.5	10.0	1.0	12.5	1.0	11.0	ns	3-6
tрzн	Output Enable Time	5.0	1.0	6.4	9.5	1.0	11.0	1.0	10.0	ns	3-7
tPZL	Output Enable Time	5.0	1.0	6.0	9.0	1.0	11.5	1.0	10.0	ns	3-8
tрнz	Output Disable Time	5.0	1.0	7.0	10.5	1.0	12.5	1.0	11.5	ns	3-7
tPLZ	Output Disable Time	5.0	1.0	5.5	8.5	1.0	10.0	1.0	9.0	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

	Parameter		74ACT		54ACT	74ACT		
Symbol		Vcc* (V)	Ta = + Cl = {		$\begin{array}{ll} TA = -55 ^{\circ}C & TA = -40 ^{\circ}C \\ to \ +125 ^{\circ}C & to \ +85 ^{\circ}C \\ CL = 50 pF & CL = 50 pF \end{array}$		Units	Fig. No.
			Тур		Guaranteed Mi			
ts	Set-up Time, HIGH or LOW Dn to CP	5.0	1.5	2.5	3.0	2.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	5.0	- 0.5	1.0	1.0	1.0	ns	3-9
tw	CP Pulse Width HIGH or LOW	5.0	2.5 3.0		5.0	4.0	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol		Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance	40.0	pF	Vcc = 5.5 V

54AC/74AC640 • 54ACT/74ACT640

Octal Bidirectional Transceiver With 3-State Outputs

Description

The 'AC/'ACT640 octal bus transceiver is designed for asynchronous two-way communication between data buses. The device transmits data from bus A to bus B when T/\overline{R} = HIGH, or from bus B to bus A when T/\overline{R} = LOW. The enable input can be used to disable the device so the buses are effectively isolated.

- Bidirectional Data Path
- A and B Outputs Sink 24 mA/Source -24 mA
- 'ACT640 has TTL-Compatible Inputs

Ordering Code: See Section 6

Pin Names

A0 - A7	Side A Inputs or 3-State Outputs
ŌĒ	Output Enable Input
T/R	Transmit/Receive Input
Bo - B7	Side B Inputs or 3-State Outputs

Truth Table

ŌĒ	T/R	Applied Inputs	Valid Direction I/P→O/P	Output
Н	Х	Х	Х	X
L	н	н	A to B	L
L	н	L	A to B	н
L	L	н	B to A	L
L	L	L	B to A	н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT640)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

	~			74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)		= + 25 L = 50		to +	– 55°C 125°C 50 pF	to +	– 40°C 85°C 50 pF	Units	Fig. No.
4	INTO	Π	Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay An to Bn or Bn to An	3,3 5.0	Π	5.5 4.0	\sim					ns	3-5
tрн∟	Propagation Delay An to Bn or Bn to An	3.3 5.0	11	5.5 4.0	////	71	17			ns	3-5
tрzн	Output Enable Time	3.3 5.0		8.0 6.0		\mathbb{Z}	\mathbb{V}	A	5	ns	3-7
tPZL	Output Enable Time	3.3 5.0		7.5 5.5			54	77	K	ns	3-8
tphz	Output Disable Time	3.3 5.0		7.0 6.0					47	ns	3-7
tplz	Output Disable Time	3.3 5.0		7.5 6.0						ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

Symbol Parameter			74AC1	•	54ACT		744	АСТ		
		Vcc* (V)	TA = + 25°C CL = 50 pF		TA = -55 °C to +125 °C CL = 50 pF		$T_A = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
~	MISI	17	Min Typ	Max	Min M	ax	Min	Max		
tplh	Propagation Delay An to Bn or Bn to An	5.0	5.0	กก					ns	3-5
t PHL	Propagation Delay An to Bn or Bn to An	5.0	5.0	777	$M \Pi$				ns	3-5
tрzн	Output Enable Time	5.0	7.0		V.W,	/4	1	IA	ηs	3-7
t₽ZL	Output Enable Time	5.0	6.0				$\mathbb{U}/$	N	ns	3-8
tрнz	Output Disable Time	5.0	6.5					- 4	ns	3-7
tplz	Output Disable Time	5.0	6.0						ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol		Тур	01113	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Сі/о	Input/Output Capacitance	15.0	pF	Vcc = 5.5 V
CPD	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC643 • 54ACT/74ACT643

Octal Bidirectional Transceiver With 3-State Outputs

Description

The 'AC/'ACT643 octal bus transceiver is designed for asynchronous two-way communication between data buses. The device transmits data from bus A to bus B when T/\overline{R} = HIGH, or from bus B to bus A when T/\overline{R} = LOW. The enable input can be used to disable the device so the buses are effectively isolated.

- Noninverting Buffers
- Bidirectional Data Path
- A and B Outputs Sink 24 mA/Source -24 mA
- 'ACT643 has TTL-Compatible Inputs

Ordering Code: See Section 6

Pin Names

A0 - A7	Side A Inputs or 3-State Outputs
ŌĒ	Output Enable Input
T/R	Transmit/Receive Input
Bo - B7	Side B Inputs or 3-State Outputs

Truth Table

ŌĒ	T/R	Applied Inputs	Valid Direction I/P→O/P	Output
Н	Х	Х	х	Х
L	н	н	A to B	L
L	н	L	A to B	н
L	L	н	B to A	(н
L	L	L	B to A	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

AC643 • ACT643

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT643)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

				74AC		54	AC	74	AC		
Symbol Parameter		Vcc* (V)	Ta = + 25 °C CL = 50 pF			TA = -55 °C to + 125 °C CL = 50 pF		$\begin{bmatrix} T_A = -40 ^{\circ}C \\ to +85 ^{\circ}C \\ C_L = 50 ^{\circ}pF \end{bmatrix}$		Units	Fig. No.
4		5	Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay An to Bn or Bn to An	3.3 5.0	17	5.5 4.0						ns	3-5
tphl	Propagation Delay An to Bn or Bn to An	3.3 5.0	[]	5.5 4,0	ΠΠ	~				ns	3-5
tpzн	Output Enable Time	3.3 5.0	U	8.0 6.0	\square	$\langle \Lambda \rangle$	η		~	ns	3-7
tpz∟	Output Enable Time	3.3 5.0		7.5 5.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ň	R	1/	5	ns	3-8
tрнz	Output Disable Time	3.3 5.0		7.0 6.0				17	\mathcal{M}	ns	3-7
tplz	Output Disable Time	3.3 5.0		7.5 6.0						ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

Symbol Parameter			74A	СТ	54AC	т	74	АСТ		
		Vcc* (V)	TA = + CL = 50	$T_A = -5$ to +12 CL = 50	5°C	$T_A = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.	
1. J	IMASI		Min Ty	o Max	Min	Max	Min	Мах		
tplн	Propagation Delay An to Bn or Bn to An	5.0	5.0	20 m	li normana				ns	3-5
t PHL	Propagation Delay An to Bn or Bn to An	5.0	4 (5.9	$\langle \rangle$	M	1			ns	3-5
tрzн	Output Enable Time	5.0	7.0)	V M				ns.	3-7
tpzl	Output Enable Time	5.0	6.0)				ñ	ns	3-8
tphz	Output Disable Time	5.0	6.5	j					ns	3-7
tplz	Output Disable Time	5.0	6.0)					ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol	Falameter	Тур	Onits	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Сі/о	Input/Output Capacitance	15.0	pF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC646

Octal Transceiver/Register With 3-State Outputs

Description

The 'AC646 consists of registered bus transceiver circuits, with outputs, D-type flip-flops and control circuitry providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Data on the A or B bus will be loaded into the respective registers on the LOW-to-HIGH transition of the appropriate clock pin (CAB or CBA). The four fundamental data handling functions available are illustrated in the following figures.

- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data Transfers
- Choice of True and Inverting Data Paths
- 3-State Outputs
- 300 mil Slim Dual In-Line Package
- Outputs Source/Sink 24 mA

Ordering Code: See Section 6

Logic Symbol

Pin Names

A0 - A7	Data Register Inputs
	Data Register A Outputs
Bo - B7	Data Register B Inputs
	Data Register B Outputs
CAB, CBA	Clock Pulse Inputs
SAB, SBA	Transmit/Receive Inputs
DIR, G	Output Enable Inputs

Function Table

		In	puts			Data	I/O*	Operation or Function
G	DIR	CAB	CBA	SAB	SBA	A0 - A7	B0 - B7	
H H	X X	H or L J	H or L J	X X	X X	Input	Input	Isolation Store A and B Data
L	L L	X X	X X	X X	L H	Output	Input	Real Time B Data to A Bus Stored B Data to A Bus
L	H H	X H or L	X X	L H	X X	Input	Output	Real Time A Data to B Bus Stored A Data to B Bus

*The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs.

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

 $\int = LOW$ -to-HIGH Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	74AC	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	VIN = Vcc or Ground, Vcc = 5.5 V, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_{A} = 25 \text{ °C}$

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF			T _A = − 55°C to + 125°C C _L = 50 pF		$T_A = -40 \degree C$ to +85 \degree C CL = 50 pF		Units	Fig. No.
			Min	Тур	Мах	Min	Мах	Min	Мах		
tрцн	Propagation Delay Clock to Bus	3.3 5.0	1.0 1.0	10.5 7.5	16.5 12.0	1.0 1.0	21.0 14.5	1.0 1.0	18.5 13.0	ns	3-6
tphl	Propagation Delay Clock to Bus	3.3 5.0	1.0 1.0	9.5 6.5	14.5 10.5	1.0 1.0	18.0 12.5	1.0 1.0	16.0 11.5	ns	3-6
tрlн	Propagation Delay Bus to Bus	3.3 5.0	1.0 1.0	7.5 5.0	12.0 8.0	1.0 1.0	15.0 10.0	1.0 1.0	13.5 9.0	ns	3-5
tph∟	Propagation Delay Bus to Bus	3.3 5.0	1.0 1.0	7.5 5.0	12.5 9.0	1.0 1.0	15.5 11.0	1.0 1.0	13.5 9.5	ns	3-5
tр∟н	Propagation Delay SBA or SAB to An or Bn (w/ An or Bn HIGH or LOW)	3.3 5.0	1.0 1.0	8.5 6.0	13.5 10.0	1.0 1.0	17.0 12.0	1.0 1.0	15.5 11.0	ns	3-6
tрнl	Propagation Delay SBA or SAB to An or Bn (w/ An or Bn HIGH or LOW)	3.3 5.0	1.0 1.0	8.5 6.0	13.5 10.0	1.0 1.0	17.0 12.0	1.0 1.0	15.0 11.0	ns	3-6
tрzн	Enable Time G to An or Bn	3.3 5.0	1.0 1.0	7.0 5.0	11.5 8.5	1.0 1.0	14.0 10.0	1.0 1.0	12.5 9.0	ns	3-7
tpz∟	Enable Time G to An or Bn	3.3 5.0	1.0 1.0	7.5 5.5	12.5 9.0	1.0 1.0	15.5 11.0	1.0 1.0	14.0 10.0	ns	3-8
tрнz	Disable Time G to An or Bn	3.3 5.0	1.0 1.0	8.0 6.5	12.5 10.0	1.0 1.0	14.5 12.0	1.0 1.0	13.5 11.0	ns	3-7
tplz	Disable Time G to An or Bn	3.3 5.0	1.0 1.0	7.5 6.0	12.0 9.5	1.0 1.0	15.0 11.5	1.0 1.0	13.5 10.5	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics, cont'd

Symbol				74AC		54AC T _A = - 55°C to + 125°C CL = 50 pF		74AC TA = -40°C to +85°C CL = 50 pF		Units	
	Parameter	Vcc* (V)		v = + 25 S∟ = 50 p							Fig. No.
			Min	Тур	Max	Min	Мах	Min	Max		
tрzн	Enable Time DIR to An or Bn	3.3 5.0	1.0 1.0	6.5 5.0	11.0 7.5	1.0 1.0	13.5 9.5	1.0 1.0	12.0 8.5	ns	3-7
tpzl	Enable Time DIR to An or Bn	3.3 5.0	1.0 1.0	7.0 5.0	11.5 8.0	1.0 1.0	14.5 10.0	1.0 1.0	13.0 9.0	ns	3-8
tрнz	Disable Time DIR to An or Bn	3.3 5.0	1.0 1.0	7.5 5.5	11.5 9.5	1.0 1.0	13.5 10.5	1.0 1.0	12.5 10.0	ns	3-7
tp∟z	Disable Time DIR to An or Bn	3.3 5.0	1.0 1.0	7.5 5.5	12.0 9.5	1.0 1.0	15.0 10.5	1.0 1.0	13.5 10.5	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74,	AC	54AC	74AC		
Symbol	Parameter	V cc* (V)	· ·	+ 25°C 50 pF	$TA = -55 \degree C$ to + 125 °C CL = 50 pF	$T_A = -40 \degree C$ to +85 °C CL = 50 pF	Units	Fig. No.
		!)	Тур		Guaranteed Min			
ts	Set-up Time, HIGH or LOW Bus to Clock	3.3 5.0	2.0 1.5	5.0 4.0	6.0 4.5	5.5 4.5	ns	3-9
th	Hold time, HIGH or LOW Bus to Clock	3.3 5.0	- 1.5 - 0.5	0 0.5	0.5 1.0	0 1.0	ns	3-9
tw	Clock Pulse Width HIGH or LOW	3.3 5.0	2.0 2.0	3.5 3.5	5.0 5.0	4.5 3.5	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table 1 data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC	Units	Conditions	
Symbol	Falameter	Тур		Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Ci/o	Input/Output Capacitance	15.0	pF	Vcc = 5.5 V	
Cpd	Power Dissipation Capacitance	60.0	pF	Vcc = 5.5 V	

54AC/74AC648

Octal Transceiver/Register With 3-State Outputs

Description

The 'AC648 consists of registered bus transceiver circuits, with outputs, D-type flip-flops and control circuitry providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Data on the A or B bus will be loaded into the respective registers on the LOW-to-HIGH transition of the appropriate clock pin (CAB or CBA). The four fundamental data handling functions available are illustrated in the following figures.

- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data Transfers
- Choice of True and Inverting Data Paths
- 3-State Outputs
- 300 mil Slim Dual In-Line Package
- Outputs Source/Sink 24 mA

Ordering Code: See Section 6

Logic Symbol

Pin Names

A0 - A7	Data Register Inputs
	Data Register A Outputs
Bo - B7	Data Register B Inputs
	Data Register B Outputs
CAB, CBA	Clock Pulse Inputs
SAB, SBA	Transmit/Receive Inputs
DIR, G	Output Enable Inputs

Function Table

	Inputs						I/O*	Operation or Function
G	DIR	CAB	СВА	SAB	SBA	A0 - A7	B0 - B7	•
H H	X X	Hor L J	H or L J	x x	X X	Input	Input	Isolation Store A and B Data
L L	L L	X X	X X	X X	L H	Output	Input	Real Time \overline{B} Data to A Bus Stored \overline{B} Data to A Bus
L L	H H	X H or L	X X	L H	X X	Input	Output	Real Time Ā Data to B Bus Stored Ā Data to B Bus

*The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock inputs.

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

 $\int = LOW$ -to-HIGH Transition

Logic Diagram

TO 7 OTHER CHANNELS

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	74AC	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μA	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V}$, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF			to +	– 55°C 125°C 50 pF	TA = -40°C to +85°C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplh	Propagation Delay Clock to Bus	3.3 5.0	1.0 1.0	10.0 7.0	15.5 11.0	1.0 1.0	18.5 13.0	1.0 1.0	17.0 12.0	ns	3-6
tphl	Propagation Delay Clock to Bus	3.3 5.0	1.0 1.0	8.5 6.0	13.5 10.5	1.0 1.0	16.5 13.0	1.0 1.0	14.5 11.5	ns	3-6
tplh	Propagation Delay Bus to Bus	3.3 5.0	1.0 1.0	6.0 4.0	10.0 7.0	1.0 1.0	12.0 8.5	1.0 1.0	11.0 7.5	ns	3-5
tphl	Propagation Delay Bus to Bus	3.3 5.0	1.0 1.0	5.5 3.5	9.0 7.5	1.0 1.0	11.0 9.0	1.0 1.0	10.0 8.0	ns	3-5
tрLн	Propagation Delay SBA or SAB to An or Bn (with An or Bn HIGH or LOW)	3.3 5.0	1.0 1.0	7.5 5.5	12.5 9.0	1.0 1.0	15.0 11.0	1.0 1.0	14.0 10.0	ns	3-6
tphl	Propagation Delay SBA or SAB to An or Bn (with An or Bn HIGH or LOW)	3.3 5.0	1.0 1.0	7.5 5.5	12.5 9.5	1.0 1.0	15.5 11.5	1.0 1.0	14.0 10.5	ns	3-6
tРZH	Enable Time G to An or Bn	3.3 5.0	1.0 1.0	6.5 5.0	11.0 8.0	1.0 1.0	12.5 9.5	1.0 1.0	11.5 9.0	ns	3-7
tPZL	Enable Time G to An or Bn	3.3 5.0	1.0 1.0	7.0 5.0	11.0 8.0	1.0 1.0	13.5 9.5	1.0 1.0	12.5 9.0	ns	3-8
tрнz	Disable Time G to An or Bn	3.3 5.0	1.0 1.0	7.5 6.0	12.0 10.0	1.0 1.0	13.5 12.0	1.0 1.0	13.0 11.0	ns	3-7
tplz	Disable Time G to An or Bn	3.3 5.0	1.0 1.0	7.0 5.5	11.5 9.0	1.0 1.0	13.5 10.5	1.0 1.0	12.5 10.0	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics, cont'd

			74AC TA = + 25°C CL = 50 pF			54	AC	74	AC		
Symbol	Parameter	Vcc* (V)				TA = - 55°C to + 125°C CL = 50 pF		T _A = − 40 °C to + 85 °C C _L = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max	1	
tрzн	Enable Time DIR to An or Bn	3.3 5.0	1.0 1.0	6.0 4.5	12.5 9.5	1.0 1.0	15.5 11.5	1.0 1.0	14.0 10.5	ns	3-7
tpzl	Enable Time DIR to An or Bn	3.3 5.0	1.0 1.0	6.5 4.5	13.0 9.0	1.0 1.0	15.0 10.0	1.0 1.0	14.5 10.5	ns	3-8
tрнz	Disable Time DIR to An or Bn	3.3 5.0	1.0 1.0	7.0 5.5	11.5 9.0	1.0 1.0	15.0 10.5	1.0 1.0	13.5 10.0	ns	3-7
tpLz	Disable Time DIR to An or Bn	3.3 5.0	1.0 1.0	7.0 5.0	13.5 9.5	1.0 1.0	15.5 11.5	1.0 1.0	15.0 10.0	ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Operating Requirements

			74	AC	54AC	74AC	Units	
Symbol	Parameter	V cc* (V)		+ 25°C 50 pF	TA = -55 °C to +125 °C CL = 50 pF	TA = − 40 °C to + 85 °C CL = 50 pF		Fig. No.
			Тур	Gua	aranteed Minim	um .		
ts	Setup Time, HIGH or LOW, Bus to Clock	3.3 5.0	2.0 1.5	3.0 2.0	4.0 2.5	3.5 2.0	ns	3-9
tn	Hold Time, HIGH or LOW, Bus to Clock	3.3 5.0	-1.5 -0.5	0 1.0	0 1.0	0 1.0	ns	3-9
tw	Clock Pulse Width HIGH or LOW	3.3 5.0	2.0 2.0	3.5 3.0	4.5 3.5	4.0 3.0	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC	Units	Conditions
Symbol	Falanetei	Тур		Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
CPD	Power Dissipation Capacitance	65.0	pF	Vcc = 5.5 V
Сію	Input/Output Capacitance	15.0	pF	Vcc = 5.5 V

54AC/74AC705 • 54ACT/74ACT705

Arithmetic Logic Unit for Digital Signal Processing Applications

Description

The 'AC/'ACT705 is a high-speed arithmetic processing integrated circuit which is packaged in an 84-pin leadless chip carrier. It features separate input busses that provide data and instruction codes to a high-speed single-cycle 16-bit ALU and an 8-bit by 8-bit parallel multiplier/accumulator.

The ALU is a 16-bit parallel design which supports sixteen arithmetic and logic functions, as well as carry-in/out and borrow-in/out. The multiplier/ accumulator, which offers a full 16-bit product, provides for unsigned, signed, mixed mode and imaginary number multiplication. Product accumulation with sum and difference arithmetic is available in each multiplier operating mode.

The 16-bit results of the ALU and

multiplier/accumulator are multiplexed to a single set of 3-state output buffers. The two ALU and multiplier/accumulator carry-out bits, as well as the 4-bit status field indicating ALU and multiplier/accumulator error conditions make up the remaining six bits of the entire 22-bit output.

- 84-Pin PCC, CPGA
- Outputs Source/Sink 8 mA
- 'ACT705 has TTL-Compatible Inputs
- High Throughput Achieved with High Degree of Parallelism in the Architecture
- Pipelined Stages
- High-Speed 16-Bit ALU and an 8 x 8 Complex Multiplier
- 31.0 ns (Typical at 25°C, 5.0 V) Cycle 16-Bit Full ALU Performs Sixteen Boolean and Arithmetic Functions with Carry-In and Carry-Out
- 50.0 ns (Typical at 25°C, 5.0 V) Cycle 8 x 8 Parallel Multiplier Supports Unsigned, Signed, Complex or Mixed Mode Multiplications, Produces 16-Bit Result with Carry-Out
- Separate Data and Instruction Busses Allow Instruction Fetches in Parallel with Execution — Single Cycle Operation
- Accepts 8- or 16-Bit Data and Delivers a 16-Bit Output
- Data Register Bank Configured to Accept a Combination of 8- or 16-Bit Data

- Separate Clocks for ALU Instruction, Multiplier Instruction, Data, ALU Accumulator and Multiplier Accumulator Registers
- Clustered Clock Pins for Ease of Board Design
- 16-Bit ALU/Accumulator with Feedback to ALU Input
- Status of Accumulator Inputs is Monitored: Conditions Monitored Include Twos Complement Overflow, Underflow or Equal-to-Zero

AC705 • ACT705

Applications

- Voice Band Signal Processing
- Discrete Fourier Transform Applications: FIR Filters IIB Filters
- Fast Fourier Transform Applications: Spectrum Analysis Speech Recognition

Ordering Code: See Section 6

Logic Symbol

Pin Names	
A7 - A0	Data Inputs
B7 - B0	Data Inputs
C7 - C0	Data Inputs
D7 - D0	Data Inputs
DCLK	Data Register Clock
AIRCLK	ALU Instruction Register Clock
MIRCLK	Multiplier Instruction Register Clock
ACLK	ALU Accumulator Register Clock
MCLK	Multiplier Accumulator Clock
TCA, TCB	Multiplier Opcode Input
ALU3 - ALU0	ALU Opcode Input
MAC2 - MAC0	Multiplier Opcode Input
MUXA1 - MUXD0	Data Configuration Field Inputs
AAAMUX	Multiplier Accumulator Path
	Enable Input
ALUCIN	ALU Carry-In/Borrow-Out Input
RMUX	Multiplexing Input
ŌĒ	Output Enable Input
R15 - R0	Result Output
MCOUT, ACOUT	Carry-Out Outputs
MZ, ME, AZ, AE	Error Status Flag Outputs

Din Nomer

Block Diagram

AC705 • ACT705

Functional Description

On-Chip Registers

1. Data

Status

Signal Descriptions

Data Inputs

ALUCIN, A7 - A0, B7 - B0, C7 - C0, D7 - D0: Data inputs.

Input Clocks

DCLK, AIRCLK, MIRCLK: Input data is loaded on the rising edge of these clocks.

Outputs

R15 - R0: Result MCOUT: Multiplier/Accumulator Carry-Out ACOUT: ALU Carry-Out MZ, ME, AZ, AE: Error Status Flags

Output Clocks

ACLK, MCLK: Output data is loaded into the output register on the rising edge of this clock.

Other Signals

ALU3 - ALU0: ALU Instruction Input MAC2 - MAC0, TCA, TCB: Multiplier Instruction Input MUXA0, A1, B0, B1, C0, C1, D0, D1: Multiplexer Select Signals for Input Data

Control Signals

Clock Signals

Dedicated signals for controlling the five sets of positive edge-triggered on-chip registers. DCLK: Data Registers (RA, RB, Rc, RD) AIRCLK: ALU Instruction Register (RAI) MIRCLK: Multiplier Instruction Register (RMI) ACLK: ALU Accumulator Register (RAO) MCLK: Multiplier/Accumulator Register (RMO)

Control Signals, cont'd

Clocked ALU Carry-In/Borrow-Out Signal. $1 \rightarrow$ Carry-In to ALU $0 \rightarrow$ Borrow from ALU

MUXA1, MUXA0... MUXD0 (Data Configuration Field, see Table A)

Level signals for configuring the ALU and multiplier operands in 256 possible ways with the contents of Ra, Rb, Rc, Rd.

MUXA1, MUXA0: Control the state of internal bus J7 - J0 MUXB1, MUXB0: Control the state of internal bus K7 - K0 MUXC1, MUXC0: Control the state of internal bus L7 - L0 MUXD1, MUXD0: Control the state of internal bus M7 - M0

AAAMUX

Level signal for enabling/disabling the 16-bit multiplier/accumulator path to the ALU. 0 \rightarrow Path enabled. ALU takes operand from RMO.

1 \rightarrow Path disabled. ALU takes operand from internal buses J7 - J0 and K7 - K0.

ALU3 - ALU0

Clocked ALU opcode. See Table B.

MAC₂ · MAC₀, TCB, TCA

Clocked multiplier opcode. See Table C.

RMUX

Level signal for multiplexing the contents of RMo and RAO. 0 \rightarrow Output RMO15 - RMO0

1 → Output RA015 - RA00

OE

Active LOW Enable signal for making available the 16-bit result, R15 - R0.

Instruction Format

		Data	Config	uration	Field				Interna	l Buses	
MUXA1	MUXA 0	MUXB1	MUXB ₀	MUXC1	MUXC ₀	MUXD	MUXDo	J7 - J0	K7 - K0	L7 - L0	M7 - Mo
0 1 1	0 1 0 1	0 0 1 1	0 1 0 1	0 0 1 1	0 1 0 1	0 0 1 1	0 1 0 1	Ra7 - Ra0 Rb7 - Rb0 Rc7 - Rc0 Rd7 - Rd0	Ra7 - Rao Rb7 - Rbo Rc7 - Rco Rd7 - Rdo	RA7 - RA0 RB7 - RB0 RC7 - RC0 RD7 - RD0	Ra7 - Ra0 Rb7 - Rb0 Rc7 - Rc0 Rd7 - Rd0

Table A: Data Input Configuration

Table B: Arithmetic and Logic Operations

				Signal						
AAAMUX	ALU ₃	ALU ₂	ALU1	ALU ₀	MAC ₂	MAC1	MAC ₀	тсв	TCA	Function
Х	0	0	0	0	X	X	Х	Х	X	Clear ALU Output
0	0	0	0	1	X	X	х	х	X	(L8 - L0 ∥ M8 - M0) minus Rмо16 - Rмо0
0	0	0	1	0	X	X	х	х	X	Rмо16 - Rмоо minus (L8 - L0 ∥ M8 - Mo)
0	0	0	1	1	X	X	х	х	x	Rмо16 - Rмоо plus (L8 - L0 ∥ M8 - Mo)
0	0	1	0	0	x	X	х	х	X	Rмо16 - Rмо0 XOR (L8 - L0 ∥ M8 - M0)
0	0	1	0	1	x	x	х	х	x	Rмо16 - Rмо0 OR (L8 - L0 ∥ M8 - M0)
0	0	1	1	0	x	X	х	х	x	Rмо16 - Rмо0 AND (L8 - L0 ∥ M8 - M0)
0	0	1	1.	1	x	x	х	х	x	Rмо16 - Rмо0 plus {0}16-0
х	1	0	0	0	x	x	x	х	x	Preset ALU Output
0	1	0	0	1	x	x	x	х	x	RA016 - RA00 minus RM016 - RM00
0	1	0	1	0	x	х	х	х	х	Rмо16 - Rмо0 minus Rao16 - Rao0
0	1	0	1	1	×	x	х	х	x	RM016 - RM00 plus RA016 - RA00

5

				Signal						
AAAMUX	ALU3	ALU ₂	ALU1	ALU ₀	MAC ₂	MAC1	MAC ₀	тсв	BCA	Function
0	1	1	0	0	X	х	Х	Х	X	Rм016 - Rм00 XOR RA016 - RA00
0	1	1	0	1	X	X	х	Х	X	Rм016 - Rм00 OR Ra016 - Ra00
0	1	1	1	0	×	X	X	Х	X	RM016 - RM00 AND RA016 - RA00
0	1	1	1	1	X	X	X	х	X	Rмо16 - Rмо0 XOR {0}16-0
1	0	0	0	1	×	X	X	Х	×	(L8 - Lo M8 - M0) minus (J8 - Jo K8 - K0)
1	0	0	1	0	×	×	X	Х	X	(J8 - Jo K8 - Ko) minus (L8 - Lo M8 - Mo)
1	0	0	1	1	X	X	X	х	X	(Ja - Jo ∥ Ka - Ko) plus (La - Lo ∥ Ma - Mo)
1	0	1	0	0	×	×	×	Х	X	(J8 - J0 K8 - K0) XOR (L8 - L0 M8 - M0)
1	0	1	0	1	×	×	X	Х	X	(J8 - J0 ∥ K8 - K0) OR (L8 - L0 ∥ M8 - M0)
1	0	1	1	0	×	X	X	Х	X	(J8 - J0 K8 -K0) AND (L8 - L0 M8 - M0)
1	0	1	1	1	×	X	×	Х	X	(J8 - J0 ∥ K8 - K0) plus {0}16-0
1	1	0	0	1	×	×	X	х	X	Ra016 - Ra00 minus (J8 - J0 ∥ K8 - K0)
1	1	0	1	0	X	×	X	Х	X	(J8 - J0 K8 - K0) minus Ra016 - Ra00
1	1	0	1	1	X	×	х	Х	X	(J8 - J0 ∥ K8 - K0) plus Rao16 - Rao0
1	1	1	0	0	×	X	X	х	×	(J8 - J0 K8 - K0) XOR Rao16 - Rao0
1	1	1	0	1	X	X	X	Х	×	(J8 - J0 K8 - K0) OR RA016 - RA00
1	1	1	1	0	×	X	х	х	x	(J8 - J0 K8 - K0) AND RA016 - RA00
1	1	1	1	1	×	X	х	х	×	(J8 - J0 K8 - K0) XOR {0}16-0

Table B: Arithmetic and Logic Operations, con-
--

Note: Combination of ALU and multiplier opcodes allowed.

AC705 • ACT705

Table C: Multiplication Operations

AAAMUX	ALU ₃	ALU3 ALU2 ALU1		ALU0 MAC2 MAC1			MAC ₀	тсв	TCA	Function
X	X	Х	Х	X	0	0	0	0	0	(J8 - Jo x K8 - Ko)
X	X	Х	X	X	0	0	0	0	1	(J′8 - J′0 x K8 - K0)
х	X	Х	X	Х	0	0	0	1	0	(J8 - Jo x K′8 - K′0)
Х	Х	Х	Х	Х	0	0	0	1	1	(J′8 - J′0 x K′8 - K′0)
Х	X	х	х	x	0	0	1	0	0	(J8 - J0 x K8 - K0) plus Rмо′16 - Rмо′0
Х	X	x	×	x	0	0	1	0	1	(J′8 - J′0 x K8 - K0) plus Rмо′16 - Rмо′0)
Х	X	x	х	x	0	0	1	1	0	(J8 - J0 х К′8 - К′́0) plus Rмо′16 - Rмо′0
Х	X	x	x	x	0	0	1	1	1	(J′8 - J′0 х К′8 - К′0) plus Rмо′16 - Rмо′0
Х	X	Х	Х	Х	0	1	0	Х	Х	Clear Rмо16 - Rмоо
X	X	X	X	X	0	1	1	0	0	Undefined
Х	X	х	x	x	0	1	1	0	1	(J'8 - J'0 x K8 - K0) minus Rм0'16 - Rм0'0)
Х	X	x	x	x	0	1	1	1	0	(J8 - J0 х К′8 - К′0) minus Rмо′16 - Rмо′0
х ,	x	X	x	x	0	1	1	1	1	(J′8 - J′0 x K′8 - K′0) minus Rмо′16 - Rмо′0
Х	Х	Х	Х	Х	1	0	0	0	0	Undefined
Х	X	X	X	X	1	0	0	0	1	(-J'8 - J'0 x K8 - K0)
Х	X	X	Х	X	1	0	0	1	0	(-J8 - J0 x K'8 - K'0)
X	X	X	X	X	1	0	0	1	1	(-J'8 - J'0 x K'8 - K'0)
Х	Х	X	х	X	1	0	1	0	0	Undefined
х	X	X	×	X	1	0	1	0	1	(–J′8 - J′0 x К8 - К0) plus Rмо′16 - Rмо′0
Х	X	X	X	X	1	0	1	1	0	(-J8 - J0 х К′8 - К′0) plus Rмо′16 - Rмо′0
х	X	X	X	X	1	0	1	1	1	(–J′8 - J′0 x K′8 - K′0) plus Rмо′16 - Rмо′0
Х	Х	X	Х	X	1	1	0	Х	X	Preset RM016 - RM00
Х	X	X	X	X	1	1	1	0	0	Undefined
Х	X	X	x	X	1	1	1	0	1	(-J′8 - J′0 x K8 - K0) minus Rмо′16 - Rмо′0
X	X	×	x	x	1	1	1	1	0	(–J8 - J0 х К′8 - К′0) minus Rмо′16 - Rмо′0
Х	x	x	x	x	1	1	1	1	1	(-J'8 - J'0 х К'8 - К'0) minus Rм0'16 - Rм0'0

Notes: Combination of ALU and multiplier opcodes allowed.

' stands for twos complement representation of a number.

Symbol	Parameter	74AC/ACT 25°C		54AC/ACT	74AC/ACT	Units	Conditions
ey		Тур		Guaranteed	Limit		
lin	Maximum Input Current		0.1	10.0	1.0	μA	Vcc = Max VIN = Vcc
loz	Maximum 3-State Current		0.5	10.0	5.0	μA	High Z, Vcc = Max Vout = 0 to Vcc
lccq	Supply Current, Quiescent	50.0	2.0	10.0	10.0	mA	Vcc = Max, Vin = 0 V
Voн		4.49	4.4	4.4	4.4	v	VIN = VIL or VIH IOUT = 20 μ A, VCC = 4.5 V
	Minimum HIGH Level Output	5.49	5.4	5.4	5.4	v	$VIN = VIL \text{ or } VIH$ $IOUT = 20 \ \mu\text{A},$ $VCC = 5.5 \ \text{V}$
			3.86	3.70	3.76	v	Iон = - 8 mA, Vcc = 4.5 V
			4.86	4.70	4.76	v	Iон = - 8 mA, Vcc = 5.5 V
Vol		0.001	0.1	0.1	0.1	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 4.5 \ \text{V}$
	Maximum HIGH Level Output	0.001	0.1	0.1	0.1	v	$VIN = VIL \text{ or } VIH$ $IOUT = 20 \ \mu\text{A},$ $VCC = 5.5 \ V$
			0.32	0.4	0.37	V	IoL = 8 mA, Vcc = 4.5 V
			0.32	0.4	0.37	V	IOL = 8 mA, VCC = 5.5 V
Iold	Minimum Dynamic Output Current			32	32	mA	Vcc = 5.5 V Vold = 2.2 V
Іонр	Minimum Dynamic Output Current			- 32	- 32	mA	Vcc = 5.5 V Voнd = 3.3 V

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Note 1: Test Load 50 pF, 500 ohm to Ground

AC Characteristics

			74AC			54AC		74AC			
Symbol	Parameter	Vcc* (V)		= + 25 _= 50 p	-	to +	– 55°C 125°C 50 pF	$T_A = -40^{\circ}C$ to +85^{\circ}C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tA	Arithmetic Operation Time	3.3 5.0		31.0						ns	1
t∟	Logic Operation Time	3,3 5.0		24.0						ns	1
tм	Multiply Time	3.3 5.0		50.0	\sim					ns	2
tD	Output Delay	3.3 5.0		7.0		Δ				ns	1,2
tena	3-State Output Enable Delay	3.3 5.0		7.0	[]]	ΛV	7	7		ns	1,2
tdis	3-State Output Disable Delay	3.3 5.0		8.5			\triangleleft		$\overline{\langle}$	ns	1,2
ts	Input Register Setup Time	3.3 5.0		3.0			4	15	R	ns	1,2
th	Input Register Hold Time	3.3 5.0		0						ns	1,2
tw	Clock Pulse Width	3.3 5.0		5.0						ns	1,2

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

			74ACT			54ACT		74ACT			
Symbol Parameter		V cc* (V)		= + 25 _ = 50 p		$T_A = -55 \degree C$ to + 125 °C CL = 50 pF		TA = -40 °C to +85 °C CL = 50 pF		Units	Fig. No.
			Min	Тур	Мах	Min	Мах	Min	Max		L
tA	Arithmetic Operation Time	5.0		31.0						ns	1
t∟	Logic Operation Time	5.0	n.	24.0						ns	1
tм	Multiply Time	5.0	////	50.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					ns	2
tD	Output Delay	5.0	/ //	7.0	n	~				ns	1,2
tena	3-State Output Enable Delay	5.0	41	7.9	\prod		7			ns	1,2
tois	3-State Output Disable Delay	5.0		8.5	4 []	IV,				ns	1,2
ts	Input Register Setup Time	5.0		3.0		- 450		Tr	2	ns	▶ 1,2
th	Input Register Hold Time	5.0		0					V,	ns	1,2
tw	Clock Pulse Width	5.0		5.0						ns	1,2

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC705 • ACT705

Waveforms

Figure 1: Arithmetic Logic Operation

Figure 2: Multiplication

AC705 • ACT705

CPGA Pinout

Pinout to Signal

Pinout	Signal	Pinout	Signal
A1	MCOUT	F3	GND2
A2	MAC1	F9	VCC1
A3	MAC ₀	F10	C2
A4	TCA	F11	Bo
A5	ACLK	G1	R8
A6	MCLK	G2	R9
A7	MUXA0	G3	VCC2
A8	A5	G9	GND1
A9	Аз	G10	C1
A10	A2	G11	Co
A11	MUXB1	H1	R11
B1	Ro	H2	R12
B2	MZ	H10	C4
B3	MAC ₂	H11	C3
B4	тсв	J1	R13
B5	MIRCLK	J2	R15
B6	A6	J5	ALU ₂
B7	A7	J6	MUXD1
B8	A4	J7	MUXD₀
B9	A1	J10	C7
B10	Ao	J11	C5
B11	B7	K1	R14
C1	R1	K2	AE
C2	ME	K3	ACOUT
C3	NO	K4	ALUCIN
	CONNECTION	K5	ALU1
C5	AIRCLK	K6	AAAMUX
C6	DCLK	K7	D6
C7	MUXA1	K8	D3
C10	MUXBo	K9	D0
C11	B6	K10	MUXC0
D1	R3	K11	C ₆
D2	R2	L1	AZ
D10	B5	L2	
D10	B3 B4	L3	RMUX
E1	B4 B6	L4	ALU3
E2	R5	L5	
E3	R4	L6	D5
E9	B3	L7	D3 D7
E10	B2	L8	D4
E11	B1	L9	D4 D2
F1	B1 R10	L10	D1
F2	R7	L11	MUXC1
		L 1 1	

Signal to Pinout

Signal	Pinout	Signal	Pinout
MZ	B2	MUXC ₀	K10
ME	C2	C7	J10
R0	B1	C6	K11
R1	C1	C5	J11
R2	D2	C4	H10
R3	D1	C3	H11
R4	E3	C2	F10
R5	E2	C1	G10
R6	E1		G11
R7	F2	GND1	G9
GND2	F3	VCC1	F9
VCC2	G3	B0 B1	F11
R8	G1 G2	В1 В2	E11 E10
R9	G2 F1	B2 B3	E10 E9
R10 R11	FI H1	В3 В4	E9 D11
R11 R12	H2	B5	D10
R12	J1	B6	C11
R13	51 K1	B7	B11
R15	J2	MUXB0	C10
AZ	L1	MUXB1	A11
AE	K2	A	B10
ACOUT	K3	A1	B9
ŌĒ	L2	A2	A10
RMUX	L3	A3	A9
ALUCIN	K4	A4	B8
ALU3	L4	A 5	A8
ALU2	J5	A6	B6
ALU1	K5	A 7	B7
ALU ₀	L5	MUXA0	A7
AAAMUX	(K6	MUXA1	C7
MUXD1		DCLK	C6
MUXD₀	J7	MCLK	A6
D7	L7	ACLK	A5
D6	K7	MIRCLK	
D5	L6	AIRCLK	
D4	L8	TCA	A4
D3	K8	TCB	B4
D2	L9	MAC ₀	A3
D1	L10	MAC1	A2
	K9	MAC2 MCOUT	B3
MUXC1	L11	MCOUT	AI

54AC/74AC708 • 54ACT/74ACT708

64 x 9 First-In, First-Out Memory

Description

The 'AC/'ACT708 is an expandable first-in, first-out memory organized as 64 words by 9 bits. An 85 MHz shift-in and 60 MHz shift-out data rate make it ideal for high-speed applications. It uses a dual port RAM architecture with pointer logic to achieve the high speed with almost negligible fall-through time.

Separate Shift-In (SI) and Shift-Out (SO) clocks control the use of synchronous or asynchronous write or read. Other controls include a Master Reset (\overline{MR}) and Output Enable (\overline{OE}) for initializing the internal registers and allowing the data outputs to be 3-stated. Input Ready (IR) and Output Ready (OR) signal when the FIFO is ready for I/O operations. The status flags HF and FULL indicate when the FIFO is full, empty or half full.

The FIFO can be expanded to increase the depth by cascading or to provide different word lengths by tying off unused data inputs.

- 64-Words by 9-Bit Dual Port RAM Organization.
- 85 MHz Shift-In, 60 MHz Shift-Out Data Rate with Flags, Typical 'ACT708
- Expandable in Word Depth and Width Dimensions
- 'ACT708 has TTL-Compatible Inputs
- Asychronous or Synchronous Operation
- Asynchronous Master Reset
- Outputs Source/Sink 8 mA
- 3-State Outputs
- Full ESD Protection
- Output and Input Pins Directly in Line for Easy Board Layout
- TRW 1030 Work-Alike Operation Available

Applications

- High-Speed Disk or Tape Controllers
- A/D Output Buffers
- High-Speed Graphics Pixel Buffer
- Video Time Base Correction
- Digital Filtering

Ordering Code: See Section 6

Connection Diagrams

FULL 1	28 Vcc
HF 2	27 MR
IR 3	26 SO
SI 4	25 OR
D0 5	24 Oo
D1 6	23 01
D2 7	22 02
D3 8	21 03
D4 9	20 04
D5 10	19 O5
D6 11	18 O6
D7 12	17 07
D8 13	16 O8
GND 14	15 OE

Pin Assignment for DIP and Flatpak

Pin Assignment for LCC and PCC

Pin Names

Do - D8	Data Inputs
MR	Master Reset
ŌĒ	Output Enable Input
SI	Shift-In
SO	Shift-Out
IR	Input Ready
OR	Output Ready
HF	Half Full Flag
FULL	Full Flag
O0 - O8	Data Outputs

Block Diagram

Functional Description

Inputs

Data Inputs (Do - Da)

Data inputs for 9-bit wide data are TTL-compatible ('ACT708). Word width can be reduced by tying unused inputs to ground and leaving the corresponding outputs open.

Reset (MR)

Reset is accomplished by pulsing the $\overline{\text{MR}}$ input LOW. During normal operation $\overline{\text{MR}}$ is HIGH. A reset is required after power up to guarantee correct operation. On reset, the data outputs go LOW, IR goes HIGH, OR goes LOW, HF and FULL go LOW. During reset, both internal read and write pointers are set to the first location in the array.

Shift-In (SI)

Data is written into the FIFO by pulsing SI HIGH. When Shift-In goes HIGH, the data is loaded into an internal data latch. Data setup and hold times need to be adhered to with respect to the falling edge of SI. The write cycle is complete after the falling edge of SI. The shift-in is independent of any ongoing shift-out operation. After the first word has been written into the FIFO, the falling edge of SI makes HF go HIGH, indicating a nonempty FIFO. The first data word appears at the output after the falling edge of SI. After half the memory is filled, the next rising edge of SI makes FULL go HIGH indicating a half-full FIFO. When the FIFO is full, any further shift-ins are disabled.

When the FIFO is empty and \overline{OE} is LOW, the falling edge of the first SI will cause the first data word just shifted-in to appear at the output, even though SO may be LOW.

Shift-Out (SO)

Data is read from the FIFO by the Shift-Out signal provided the FIFO is not empty. SO going HIGH causes OR to go LOW indicating that output stage is busy. On the falling edge of SO, new data reaches the output after propagation delay to. If the last data has been shifted-out of the memory, OR continues to remain LOW, and the last word shifted-out remains on the output pins.

Output Enable (OE)

OE LOW enables the 3-state output buffers. When OE is HIGH, the outputs are in a 3-state mode.

Outputs

Data Outputs ($O_0 - O_8$) Data outputs are enabled when \overline{OE} is LOW and in the 3-state condition when \overline{OE} is HIGH.

Input Ready (IR)

IR HIGH indicates data can be shifted-in. When SI goes HIGH, IR goes LOW, indicating input stage is busy. IR stays LOW when the FIFO is full and goes HIGH after the falling edge of the first shift-out.

Output Ready (OR)

OR HIGH indicates data can be shifted-out from the FIFO. When SO goes HIGH, OR goes LOW, indicating output stage is busy. OR is LOW when the FIFO is reset or empty and goes HIGH after the falling edge of the first shift-in.

Half-Full (HF)

This status flag along with the FULL status flag indicates the degree of fullness of the FIFO. On reset, HF is LOW; it rises on the falling edge of the first SI. The rising edge of the SI pulse that fills up the FIFO makes HF go LOW. Going from the empty to the full state with SO LOW, the falling edge of the first SI causes HF to go HIGH, the rising edge of the 33rd SI causes FULL to go HIGH, and the rising edge of the 64th SI causes HF to go LOW.

When the FIFO is full, HF is LOW and the falling edge of the first shift-out causes HF to go HIGH indicating a "non-full" FIFO.

Full Flag (FULL)

This status flag along with the HF status flag indicates the degree of fullness of the FIFO. On reset, FULL is LOW. When half the memory is filled, on the rising edge of the next SI, the FULL flag goes HIGH. It remains set until the difference between the write pointer and the read pointer is less than or equal to one-half of the total memory of the device. The FULL flag then goes LOW on the rising edge of the next SO.

Status Flags Truth Table

HF	FULL	Status Flag Conditions
0	0	Empty
0	1	Full
1	0	<32 Locations Filled
1	1	≥32 Locations Filled

Reset Truth Table

	Inputs	3	Outputs					
MR	SI	SO	IR	OR	HF	FULL	O0 - O8	
1	Х	Х	Х	Х	Х	Х	Х	
0	Х	Х	1	0	0	0	0	

Modes of Operation

Mode 1: Shift In Sequence for FIFO Empty to Full

Sequence of Operation

- 1. Input Ready is initially HIGH; HF and FULL flags are LOW. The FIFO is empty and prepared for valid data. OR is LOW indicating that the FIFO is not yet ready to output data.
- 2. Shift-In is set HIGH, and data is loaded into the FIFO. Data has to be settled ts before the falling edge of SI and held th after.

Figure 1: Modes of Operation Mode 1

- 3. Input Ready (IR) goes LOW propagation delay tIR after SI goes HIGH: input stage is busy.
- 4. Shift-In is set LOW; IR goes HIGH indicating the FIFO is ready for additional data. Data just shifted-in arrives at output propagation delay top₅ after SI falls. OR goes HIGH propagation delay tioR after SI goes LOW, indicating the FIFO has valid data on its outputs. HF goes HIGH propagation delay ti∈ after SI falls, indicating the FIFO is no longer empty.
- 5. The process is repeated through the 64th data word. On the rising edge of the 33rd SI, FULL flag goes HIGH propagation delay tIHF after SI, indicating a half-full FIFO. HF goes LOW propagation delay tIF after the rising edge of the 64th pulse indicating that the FIFO is full. Any further shift-ins are disabled.

Note: SO and OE are LOW; MR is HIGH.

Mode 2: Master Reset

Sequence of Operation

- Input and Output Ready, HF and FULL can be in any state before the reset sequence with Master Reset (MR) HIGH.
- 2. Master Reset goes LOW and clears the FIFO, setting up all essential internal states. Master Reset must be LOW pulse width tMRW before rising again.
- 3. Master Reset rises.

- 4. IR rises (if not HIGH already) to indicate ready to write state recovery time tMRIRH after the falling edge of MR. Both HF and FULL will go LOW indicating an empty FIFO, occurring recovery times tMRE and tMRO respectively after the falling edge of MR. OR falls recovery time tMRORL after MR falls. Data at outputs goes LOW recover time tMRONL after MR goes LOW.
- 5. Shift-In goes HIGH a minimum of recovery time tmrsih after MR goes HIGH.

Mode 3: With FIFO Full, Shift-In is Held HIGH in Anticipation of an Empty Location

Sequence of Operation

- 1. The FIFO is initially full and Shift-In goes HIGH. OR is initially HIGH. Shift-Out is LOW. IR is LOW.
- 2. Shift-Out is pulsed HIGH, Shift-Out pulse propagates and the first data word is latched on the rising edge of SO. OR falls on this edge. On the falling edge of SO, the second data word appears after propagation delay tb. New data is written into the FIFO after SO goes LOW.
- 3. Input Ready goes HIGH fall-through time tFT after the falling edge of SO. Also, HF goes

HIGH toF after SO falls, indicating that the FIFO is no longer full.

- 4. IR returns LOW pulse width tip after rising and shifting fresh data in. Also, HF returns LOW pulse width tis after rising, indicating the FIFO is once more full.
- 5. Shift-In is brought LOW to complete the shift-in process and maintain normal operation.

Figure 3: Modes of Operation Mode 3

Note: \overline{MR} and FULL are HIGH; \overline{OE} is LOW.

Mode 4: Shift-Out Sequence, FIFO Full to Empty

Sequence of Operation

- 1. FIFO is initially full and OR is HIGH, indicating valid data is at the output. IR is LOW.
- 2. SO goes HIGH, resulting in OR going LOW propagation delay to after SO rises. OR LOW indicates output stage is busy.
- 3. SO goes LOW, new data reaches output propagation delay to after SO falls; OR goes HIGH propagation delay tor after SO falls and HF rises propagation delay tor after SO falls. IR rises fall-through time trt after SO falls.
- 4. Repeat process through the 64th SO pulse. FULL flag goes LOW propagation delay toHF after the rising edge of 33rd SO, indicating that the FIFO is less than half full. On the falling edge of the 64th SO, HF goes LOW propagation delay toE after SO, indicating the FIFO is empty. The SO pulse may rise and fall again with an attempt to unload an empty FIFO. This results in no change in the data on the outputs as the 64th word stays latched.

Note: SI and \overline{OE} are LOW; \overline{MR} is HIGH; D₀ - D₈ are immaterial.

Figure 4: Modes of Operation Mode 4

Mode 5: With FIFO Empty, Shift-Out is Held HIGH in Anticipation of Data

Sequence of Operation

- 1. FIFO is initially empty; Shift-Out goes HIGH.
- 2. Shift-In pulse loads data into the FIFO and IR falls. HF rises propagation delay tx1 after the falling edge of SI.
- 3. OR rises fall-through time tFTO after the falling edge of Shift-In, indicating that new data is ready to be output.
- 4. Data arrives at output propagation delay tops after the falling edge of Shift-In.
- OR goes LOW pulse width top after rising and HF goes LOW pulse width tx3 after rising, indicating that the FIFO is empty once more.
- 6. Shift-Out goes LOW, necessary to complete the Shift-Out process.

Note: FULL is LOW; MR is HIGH; OE is LOW; tbor = trto - tobs. Data output transition—valid data arrives at output stage tbor after OR is HIGH.

Mode 6: Shift-In Operation in High-Speed Burst Mode

Sequence of Operation

- 1. Shift-In goes HIGH, loading data into the FIFO. IR is ignored.
- 2. Shift-in goes LOW pulse width thigh time later, loading is complete.
- 3. Shift-In rises again for the second load pulse width tLow after the falling edge.

The burst-in rate is determined by SI HIGH and LOW. Data is shifted-in, ignoring the IR flag. Any SI after the FIFO is filled up will be ignored.

Figure 6: Modes of Operation Mode 6

Note: \overline{MR} is HIGH; thigh>tsih; tLow>tsiL; thigh + tLow $\ge 1/fBI$.

Mode 7: Shift-Out Operation in High Speed Burst Mode

Sequence of Operation

- 1. Shift-Out is LOW; valid data is available on output with OR ignored.
- 2. Shift-Out rises; data out is latched.

3. Shift-Out falls; new data is loaded onto output.

The Burst-out rate is determined by minimum SO HIGH and LOW. The OR flag is ignored.

Figure 7: Modes of Operation Mode 7

Note: \overline{OE} is LOW; \overline{MR} is HIGH; thigh>tsoh; tLow>tsol; thigh + tLow $\geq 1/fBO$.

FIFO Expansion

Word Width Expansion

Word width can be increased by connecting the corresponding input control signals of multiple devices. Flags can be monitored on any one device (Figure 8), or composite flag signals can be achieved by ANDing the corresponding flags.

Depth Expansion

Depth Expansion can be achieved by connecting as shown in Figure 9. No external circuitry is required for handshaking, which is achieved by the internal FIFO signals IR and OR.

When n FIFOs are cascaded to attain a 64n-word FIFO, the SI signal is connected to the first FIFO and the SO signal to the nth FIFO. The IR and OR signals are monitored from the first and last FIFOs respectively. The IR signal from each FIFO is connected to its preceding SO signal:

Figure 8: Word Width Expansion — 64 x 18 FIFO

 $IR(n) \rightarrow SO(n-1)$; $IR(n-1) \rightarrow SO(n-2) \dots IR(2) \rightarrow SO(1)$. The OR signal from each FIFO is connected to its succeeding SI signal: i.e., $OR(1) \rightarrow SI(2)$; $OR(2) \rightarrow SI(3) \dots OR(n-1) \rightarrow SI(n)$. Handshaking signals are shown in Figure 10.

FIFO1 operates in Mode 5 during Shift-In until FIFO2 is filled. FIFO2 operates in Mode 3 during Shift-Out until FIFO1 is empty. Data from FIFO1 is written into FIFO2 after a word is read from FIFO2. To achieve this, the \overline{OE} pin is grounded for FIFO1. In general, for n FIFOs, all \overline{OE} pins except the nth FIFO's \overline{OE} pin are enabled. 3-state control of the outputs can be achieved by controlling the nth FIFO's \overline{OE} pin.

Note: Monitor flags from any one FIFO, or AND the corresponding flags to obtain a composite signal.

AC708 • ACT708

Figure 9: Depth Expansion Mode — 128 x 9 FIFO

Symbol	Parameter		C/ACT	54AC/ACT	74AC/ACT	Units	Conditions
Cymbol		Тур		Guaranteed	Limit		Conditions
lin	Maximum Input Current		0.1	10.0	1.0	μA	Vcc = Max Vin = Vcc
loz	Maximum 3-State Current		0.5	10.0	5.0	μA	High Z, Vcc = Max Vout = 0 to Vcc
lccq	Supply Current, Quiescent	50.0	2.0	10.0	10.0	mA	Vcc = Max, Vin = 0 V
ICCD	Supply Current, 20 MHz Loaded	325		150	150	mA	Vcc = Max, f = 20 MHz Test Load: See Note 1
		4.49	4.4	4.4	4.4	v	$VIN = VIL \text{ or } VIH$ $IOUT = 20 \ \mu\text{A},$ $VCC = 4.5 \ \text{V}$
Vон	Minimum HIGH Level Output	5.49	5.4	5.4	5.4	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 5.5 \ \text{V}$
			3.86	3.70	3.76	v	Iон = - 8 mA, Vcc = 4.5 V
			4.86	4.70	4.76	v	Iон = - 8 mA, Vcc = 5.5 V
		0.001	0.1	0.1	0.1	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 4.5 \ \text{V}$
Vol	Maximum HIGH Level Output	0.001	0.1	0.1	0.1	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 5.5 \ \text{V}$
		,	0.32	0.4	0.37	v	IOL = 8 mA, VCC = 4.5 V
			0.32	0.4	0.37	v	IOL = 8 mA, Vcc = 5.5 V
Iold	Minimum Dynamic Output Current			32	32	mA	Vcc = 5.5 V Vold = 2.2 V
Іонр	Minimum Dynamic Output Current			- 32	- 32	mA	Vcc = 5.5 V Voнd = 3.3 V

Note 1: Test Load 50 pF, 500 ohm to Ground

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	V cc* (V)	TA = + 25 °C CL = 50 pF			$T_A = -55 \degree C$ to +125 °C CL = 50 pF		$T_A = -40 \degree C$ to +85 \degree C CL = 50 pF		Units	Fig. No.
			Min	Тур	Мах	Min	Мах	Min	Max		
tplh, tphl	Propagation Delay, tin SI to IR	3.3 5.0		8.5 5.5						ns	1
tр∟н	Propagation Delay, tinf SI to >HF	3.3 5.0		13.0 9.5						ns	1
tрнl	Propagation Delay, tur SI to Full Condition	3.3 5.0		13.0 9.5						ns	1
tрін	Propagation Delay, tip SI to Not Empty	3.3 5.0	\geq	12.5 9.0						ns	1
tр∟н	Propagation Delay, tion	3,8 5.0		13.0 9.5						ns	1
tрін	Recovery Time, tmrinh MR to IR	3.3 5.0		9.5 7.0						ns	2
tрнl	Recovery Time, tmrorL MR to OR	3.3 5.0		20.0 15.0	\square	1				ns	2
tрн∟	Recovery Time, tmro MR to Full Flag	3.3 5.0		9.5 7.0		ΠV,	$\overline{)}$			ns	2
tphl	Recovery Time, tMRE MR to HF Flag	3.3 5.0		20.0 15.0		K	$\langle \rangle$			ns	2
tрнl	Recovery Time, tMRONL MR to On, LOW	3.3 5.0		11.0 8.0			IJ,	\langle	Dr	ns	2
tw	IR Pulse Width, tıp	3.3 5.0		38.0 28.0						ns	3
tw	HF Pulse Width, t _{3F}	3.3 5.0		40.0 30.0						ns	3
tрн∟, tр∟н	Propagation Delay, to SO to Data Out	3.3 5.0		23.0 17.0						ns	4
tрнl	Propagation Delay, tонғ SO to <hf< td=""><td>3.3 5.0</td><td></td><td>11.0 8.0</td><td></td><td></td><td></td><td></td><td></td><td>ns</td><td>4</td></hf<>	3.3 5.0		11.0 8.0						ns	4
tр∟н	Propagation Delay, tor SO to Not Full	3.3 5.0		15.0 11.0						ns	4
tрін, tрні	Propagation Delay, tor SO to OR	3.3 5.0		9.5 7.0			n na haran an haran a			ns	4

*Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics, cont'd

				74AC			AC	74	AC		
Symbol	Parameter	V cc* (V)	TA = + 25 °C CL = 50 pF			to +	T _A = − 55°C to + 125°C C _L = 50 pF		-40°C 85°C 50 pF	Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Мах		
tplн	Propagation Delay, toE SO to Empty	3.3 5.0		12.5 9.0						ns	4
tрні, tрін	Propagation Delay, tops SI to New Data Out	3.3 5.0		22.0 16.0						ns	1, 5
tр∟н	Propagation Delay, tx1 St to HF	3.3 5.0		13.0 9.5						ns	5
tplн	Propagation Delay, thor OR HIGH to Data Out	3.3 5.0		-11.5						ns	5
tр∟н	Fall-Through Time, tFTO SI to OR	3,3 5.0	>	16.0 11.5						ns	5
tw	OR Pulse Width, top	8.3 5.0		23.0 17.0						ns	5
tw	HF Pulse Width, tx3	3.3 5.0		26.0 19,0						ns	5
tрLн	Fall-Through Time, tFT SO to IR	3.3 5.0	. <	18.5 13.5	\square	\square				ns	3
tpzl	Output Enable OE to On	3.3 5.0		7.5 5.5	4	\square	1			ns	3-8
tplz	Output Disable OE to On	3.3 5.0		6.0 4.5	¥		Ø	$\int \Delta$		ns	3-8
tрzн	Output Enable OE to On	3.3 5.0		9.0 6.5			IJ	A	\mathbb{D}	ns	3-7
tрнz	Output Disable OE to On	3.3 5.0		9.0 6.5						ns	3-7
fsı	Maximum SI Clock Frequency	3.3 5.0		60 85					$\overline{\checkmark}$	MHz	1
fso	Maximum SO Clock Frequency	3.3 5.0		50 60						MHz	4
fвo	Maximum Clock Frequency SO Burst Mode	3.3 5.0		55 65	:					MHz	7
fвı	Maximum Burst-In Clock	3.3 5.0		60 85						MHz	6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74	AC	54AC	74AC		
Symbol Parameter		Vcc* (V)	$C_{1} = 50 \text{ nH}$		TA = − 55 °C to + 125 °C CL = 50 pF	T _A = - 40 °C to + 85 °C C _L = 50 pF	Units	Fig. No.
4	γ (Q) \sim		Тур		Guaranteed Mi	nimum		
tw	SI Pulse Width, tsin HIGH	3.3 5.0	4.0 1.5				ns	1, 6
tw	SI Pulse Width, tsit LOW	3.3 5.0	4.0 1.5	1~			ns	1, 6
ts	Setup Time, HIGH or LOW, Dn to SI	3.3 5.0	2.0 1.0	\square	700		ns	1
th	Hold Time, HIGH or LOW, D₁ to SI	3.3 5.0	3.0 1.5	M	INV,	2	ns	1
tw	MR Pulse Width, tmrw	3.3 5.0	17.0 13.0			1/5	ns	2
trec	Recovery Time, tmrsin MR to SI	3.3 5.0	7.0 4.0			407	ns	2
tw	SO Pulse Width, tsoн HIGH	3.3 5.0	4.5 2.0				V _{ns}	4, 7
tw	SO Pulse Width, tsoL LOW	3.3 5.0	12.5 9.0				ns	4, 7

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

	Parameter		74ACT			54/	АСТ	74/	АСТ		
Symbol		V cc* (V)		$ \begin{array}{c} T_{A} = +25^{\circ}C \\ C_{L} = 50pF \end{array} \begin{array}{c} T_{A} = -55^{\circ}C \\ to +125^{\circ}C \\ C_{L} = 50pF \end{array} $				$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tplh, tphl	Propagation Delay, tır SI to IR	5.0	1.0	6.5	11.0	1.0	14.0	1.0	12.0	ns	1
tplH	Propagation Delay, tінғ SI to >HF	5.0	1.0	10.5	17.0	1.0	21.5	1.0	19.5	ns	1
tphl	Propagation Delay, tiF SI to Full Condition	5.0	1.0	10.5	16.5	1.0	21.5	1.0	19.5	ns	1
tplH	Propagation Delay, tie SI to Not Empty	5.0	1.0	10.0	15.5	1.0	19.5	1.0	17.5	ns	1
tplH	Propagation Delay, tion SI to OR	5.0	1.0	10.5	16.5	1.0	21.5	1.0	19.0	ns	1
tplH	Recovery Time, tmrireh MR to IR	5.0	13.5	8.5		17.5		15.5		ns	2
tphl	Recovery Time, tмRoR∟ MR to OR	5.0	25.5	16.5		32.5		29.0		ns	2
tPHL	Recovery Time, tмво MR to Full Flag	5.0	14.0	9.0		17.5		16.0		ns	2
tрнL	Recovery Time, tmre MR to HF Flag	5.0	27.5	17.5		34.0		30.5		ns	2
tрнL	Recovery Time, tMRONL MR to On, LOW	5.0	15.0	9.0		18.5		17.0		ns	2
tw	IR Pulse Width, tip	5.0	43.0	28.0		58.5		51.5		ns	3
tw	HF Pulse Width, t3F	5.0	46.5	30.0		64.5		56.0		ns	3
tphl, tplh	Propagation Delay, to SO to Data Out	5.0	1.0	18.5	29.5	1.0	38.0	1.0	34.5	ns	4
tphL	Propagation Delay, tонғ SO to <hf< td=""><td>5.0</td><td>1.0</td><td>8.5</td><td>13.5</td><td>1.0</td><td>17.5</td><td>1.0</td><td>15.5</td><td>ns</td><td>4</td></hf<>	5.0	1.0	8.5	13.5	1.0	17.5	1.0	15.5	ns	4
tplH	Propagation Delay, tor SO to Not Full	5.0	1.0	12.5	19.5	1.0	24.0	1.0	22.0	ns	4
tplh, tphl	Propagation Delay, tor SO to OR	5.0	1.0	7.0	11.5	1.0	14.5	1.0	13.5	ns	4
tplн	Propagation Delay, toe SO to Empty	5.0	1.0	9.5	15.5	1.0	19.5	1.0	17.5	ns	4

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics, cont'd

				74ACT		54	ACT	74	ACT		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF			to +	$T_A = -55 \text{ °C}$ to +125 °C CL = 50 pF		– 40°C 85°C 50 pF	Units	Fiç Na
			Min	Тур	Max	Min	Max	Min	Max		
tрнг, tргн	Propagation Delay, top5 SI to New Data Out	5.0	1.0	19.0	30.5	1.0	38.5	1.0	35.5	ns	1, 5
tр∟н	Propagation Delay, tx1 SI to HF	5.0	1.0	10.0	16.0	1.0	19.5	1.0	18.0	ns	5
tplH	Propagation Delay, tDOF OR HIGH to Data Out	5.0	1.0	-11.5	-8.5	1.0	-12.5	1.0	-11.5	ns	5
tplH	Fall-Through Time, tFTO SI to OR	5.0	1.0	13.5	21.0	1.0	26.0	1.0	24.0	ns	5
tw	OR Pulse Width, top	5.0	26.0	17.0		35.0		30.5		ns	5
tw	HF Pulse Width, tx3	5.0	30.5	20.5		41.5		36.5		ns	5
tр∟н	Fall-Through Time, tFT SO to IR	5.0	1.0	15.0	23.5	1.0	34.0	1.0	30.5	ns	3
tpzl	Output Enable OE to On	5.0	1.0	6.5	11.0	1.0	13.5	1.0	12.0	ns	3-8
tp∟z	Output Disable OE to On	5.0	1.0	5.0	8.5	1.0	10.0	1.0	9.5	ņs	3-8
tрzн	Output Enable OE to On	5.0	1.0	7.0	12.0	1.0	14.5	1.0	13.0	ns	3-7
tрнz	Output Disable OE to On	5.0	1.0	7.0	12.0	1.0	13.5	1.0	13.0	ns	3-7
fsı	Maximum SI Clock Frequency	5.0	55	85		40		45		MHz	1
fso	Maximum SO Clock Frequency	5.0	42	60		30		35		MHz	4
fво	Maximum Clock Frequency SO Burst Mode	5.0	42	65		30		35		MHz	7
fвı	Maximum Burst-In Clock	5.0	55	85		40		45		MHz	6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			744	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc* (V)		⊦25°C 50 pF	TA = -55°C to +125°C CL = 50 pF	TA = − 40 °C to + 85 °C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum	1	
tw	SI Pulse Width, tsin HIGH	5.0	1.5	3.0	3.5	3.5	ns	1, 6
tw	SI Pulse Width, tsı∟ LOW	5.0	1.5	3.0	3.0	3.0	ns	1, 6
ts	Setup Time, HIGH or LOW, Dn to SI	5.0	1.0	3.5	4.0	4.0	ns	1
th	Hold Time, HIGH or LOW, Dn to SI	5.0	1.5	3.5	4.5	4.0	ns	1
tw	MR Pulse Width, tmrw	5.0	13.0	20.0	26.0	24.5	ns	2
trec	Recovery Time, tmrsin MR to SI	5.0	4.5	7.5	9.0	8.5	ns	2
tw	SO Pulse Width, tsoн HIGH	5.0	2.0	3.5	5.0	4.5	ns	4, 7
tw	SO Pulse Width, tso∟ LOW	5.0	9.0	14.0	19.0	17.0	ns	4, 7

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol Parameter	54/74AC	Units	Conditions	
- Cymbol		Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc=5.5 V

54AC/74AC723 • 54ACT/74ACT723

64 x 9 First-In, First-Out Memory

Description

The 'AC/'ACT723 is an expandable first-in, first-out memory organized as 64 words by 9 bits. An 85 MHz shift-in and 60 MHz shift-out (typical) data rate make it ideal for high-speed applications. It uses a dual port RAM architecture with pointer logic to achieve the high speed with almost negligible fall-through time.

Separate Shift-In (SI) and Shift-Out (SO) clocks control the use of synchronous or asynchronous write or read. Other controls include a Master Reset ($\overline{\text{MR}}$) and Output Enable ($\overline{\text{OE}}$) for initializing the internal registers and allowing the data outputs to be 3-stated. Input Ready (IR) and Output Ready (OR) signal when the FIFO is ready for I/O operations.

The FIFO can be expanded to increase the depth by cascading or provide different word lengths by tying off unused data inputs.

- 64-Words by 9-Bit Dual Port RAM Organization
- 85 MHz Shift-In, 60 MHz Shift-Out Data Rate with Flags, Typical
- Expandable in Word Depth and Width Dimensions
- 'ACT723 has TTL-Compatible Inputs
- Asychronous or Synchronous Operation
- Asynchronous Master Reset
- Outputs Sink/Source 8 mA
- 3-State Outputs
- Full ESD Protection
- Output and Input Pins Directly in Line for Easy Board Layout
- TRW 1030 Work-Alike* Operation

Applications

- High-Speed Disk or Tape Controllers
- A/D Output Buffers
- High-Speed Graphics Pixel Buffer
- Video Time Base Correction
- Digital Filtering

Ordering Code: See Section 6

*The TRW1030 has data setup and hold times with respect to the rising edge of SI. The 'AC/'ACT723 has data setup and hold times with respect to the falling edge of SI.

Connection Diagrams

Pin Assignment for DIP and Flatpak

Pin Assignment for LCC and PCC

Pin Names

Do - D8	Data Inputs
MR	Master Reset
ŌĒ	Output Enable Input
SI	Shift-In
SO	Shift-Out
IR	Input Ready
OR	Output Ready
O0 - O8	Data Outputs

Block Diagram

5

Functional Description

Inputs

Data Inputs (Do - Da)

Data inputs for 9-bit wide data are TTL-compatible ('ACT723). Word width can be reduced by tying unused inputs to ground and leaving the corresponding outputs open.

Reset (MR)

Reset is accomplished by pulsing the $\overline{\text{MR}}$ input LOW. During normal operation $\overline{\text{MR}}$ is HIGH. A reset is required after power up to guarantee correct operation. On reset, the data outputs go LOW, IR goes HIGH, and OR goes LOW. During reset, both internal read and write pointers are set to the first location in the array.

Shift-In (SI)

Data is written into the FIFO by pulsing SI HIGH. When Shift-In goes HIGH, the data is loaded into and internal data latch. Data setup and hold times need to be adhered to with respect to the falling edge of SI. The write cycle is complete after the falling edge of SI. The shift-in is independent of any ongoing shift-out operation.

When the FIFO is empty and \overline{OE} is LOW, the falling edge of the first SI will cause the first data word just shifted-in to appear at the output, even though SO may be LOW.

Shift-Out (SO)

Data is read from the FIFO by the Shift-Out signal provided the FIFO is not empty. SO going HIGH causes OR to go LOW indicating that output stage is busy. On the falling edge of SO, new data reaches the output after propagation delay tD. If the last data has been shifted-out of the memory, OR continues to remain LOW, and the last word shifted-out remains on the output pins.

Output Enable (OE)

OE LOW enables the 3-state output buffers. When OE is HIGH, the outputs are in a 3-state mode.

Outputs

Data Outputs (Oo - O8)

Data outputs are enabled when \overline{OE} is LOW and in the 3-state condition when \overline{OE} is HIGH.

Input Ready (IR)

IR HIGH indicates data can be shifted-in. When SI goes HIGH, IR goes LOW, indicating input stage is busy. IR stays LOW when the FIFO is full and goes HIGH after the falling edge of the first shift-out.

Output Ready (OR)

OR HIGH indicates data can be shifted-out from the FIFO. When SO goes HIGH, OR goes LOW, indicating output stage is busy. OR is LOW when the FIFO is reset or when there is no valid data and goes HIGH after the falling edge of the first shift-in.

Reset Truth Table

	Inputs	5		Outp	uts
MR	SI	SO	IR	OR	O0 - O8
1	Х	X	Х	X	X
0	Х	X	1	0	0

Modes of Operation

Mode 1: Shift-In Sequence for FIFO Empty to Full

Sequence of Operation

- 1. Input ready is initially HIGH; the FIFO is empty and prepared for valid data. OR is LOW indicating that the FIFO is not yet ready to output data. Assume Shift-Out is LOW for this mode.
- 2. Shift-In is set HIGH, and data is loaded into the FIFO. Data has to be settled setup time ts before the falling edge of SI and held hold time th after.
- 3. Input Ready (IR) goes LOW propagation delay transfer SI goes HIGH; input stage is busy.
- 4. Shift-In is set LOW; IR goes HIGH indicating the FIFO is ready for additional data. Data just shifted in arrives at output propagation delay toD5 after SI falls. OR goes HIGH propagation delay tioR after SI goes LOW, indicating the FIFO has valid data on its outputs.
- 5. The process is repeated through the 64th data word. IR goes LOW on the falling edge of the 64th SI and remains LOW indicating a full FIFO. Any further shift-ins are disabled.

Figure 1: Modes of Operation Mode 1

Note: SO and OE are LOW; MR is HIGH.

Mode 2: Master Reset

Sequence of Operation

3. Master Reset rises.

- 1. Input and Output Ready can be in any state before the reset sequence with Master Reset HIGH (MR).
- 2. Master Reset goes LOW and clears the FIFO, setting up all essential internal states. Master Reset must be LOW pulse width tMRW before rising again.
- 4. IR rises (if not HIGH already) to indicate ready to write state recovery time tMRIRH after the falling edge of MR. OR falls recovery time tMRORL after MR falls. Data at outputs goes LOW recovery time tMRONL after MR goes LOW.
- 5. Shift-In must be delayed a minimum of recovery time tmrsin.
- tMRW MR · **tMRORL**

Figure 2: Modes of Operation Mode 2

5

Mode 3: With FIFO Full, Shift-In is Held HIGH in Anticipation of an Empty Location

Sequence of Operation

- 1. The FIFO is initially full and Shift-In goes HIGH. OR is initially HIGH. IR and SO are LOW.
- 2. Shift-Out is pulsed HIGH, Shift-Out pulse propagates and the first data word is latched on the rising edge of SO. OR falls on this edge. On the falling edge of SO, the second data word appears after OR propagation delay to.
- 3. Input Ready goes HIGH fall-through time tFT after the falling edge of SO.
- 4. IR returns LOW pulse width tip after rising and shifting fresh data in.
- 5. Shift-In is brought LOW to complete the shift process and maintain normal operation.

Note: MR is HIGH; OE is LOW.

Mode 4: Shift-Out Sequence, FIFO Full to Empty

Sequence of Operation

- 1. FIFO is initially full and OR is HIGH, indicating valid data is at the output. IR is LOW.
- 2. SO goes HIGH, resulting in OR going LOW propagation delay ton after SO rises. OR LOW indicates output stage is busy.
- 3. SO goes LOW, new data reaches output propagation delay to after SO falls; OR goes HIGH propagation delay to after SO falls, IR rises fall-through time tFT after SO falls.

Figure 4: Modes of Operation Mode 4 4. Repeat process through the 64th SO pulse. OR stays LOW after 64th SO indicating an empty FIFO. The SO pulse may rise and fall again with an attempt to unload an empty FIFO. This results in no change in the data on the outputs as the 64th word stays latched.

Note: SI and \overline{OE} are LOW; \overline{MR} is HIGH; D₀ - D₈ are immaterial.

Mode 5: With FIFO Empty, Shift-Out is Held HIGH in Anticipation of Data

Sequence of Operation

- 1. FIFO is initially empty; Shift-Out goes HIGH. IR is HIGH; OR is LOW.
- 2. Shift-In pulse HIGH loads data into the FIFO and IR falls.
- 3. OR rises fall through time tFTO after the falling edge of Shift-In, indicating that new data is ready to be output.
- 4. Data arrives at output propagation delay toD5 after the falling edge of Shift-In.
- 5. OR goes LOW pulse width top after rising, indicating that the FIFO is empty once more.
- 6. Shift-Out goes LOW, necessary to complete the Shift-Out process.

Note: MR is HIGH; OE is LOW; toor = tro-toos — data output transition, valid data arrives at output stage toor after OR is HIGH.

Figure 5: Modes of Operation Mode 5

Mode 6: Shift-In Operation in High-Speed Burst Mode

Sequence of Operation

- 1. Shift-In goes HIGH, loading data into the FIFO. IR is ignored.
- 2. Shift-in goes LOW pulse width thigh time later; loading is complete.
- 3. Shift-In rises again for the second load pulse width tLow after the falling edge.

The burst-in rate is determined by SI HIGH and LOW. Data is shifted-in ignoring the IR flag. Any SI after the FIFO is filled up will be ignored.

Figure 6: Modes of Operation Mode 6

Note: MR is HIGH; thigh>tsih; tLow>tsiL; thigh+tLow>1/fBI.

Mode 7: Shift-Out Operation in High-Speed Burst Mode

Sequence of Operations

- 1. Shift-Out is LOW; valid data is available on output with OR ignored.
- 2. Shift-Out rises; data out is latched.

3. Shift-Out falls pulse width time tHIGH after rise Shift-Out is complete; new data is loaded onto output.

The burst-out rate is determined by SO HIGH and LOW. The OR flag is ignored.

Figure 7: Modes of Operation Mode 7

Note: DE is LOW; MR is HIGH; thigh>tsoh; tlow>tsol; thigh+tlow>1/fbo.

FIFO Expansion

Word Width Expansion

Word width can be increased by connecting the corresponding input control signals of multiple devices. Flags can be monitored on any one device (Figure 8), or composite flag signals can be achieved by ANDing the corresponding flags.

Depth Expansion

Depth expansion can be achieved by connecting as shown in Figure 9. No external circuitry is required for handshaking, which is achieved by the internal FIFO signals IR and OR.

When n FIFOs are cascaded to attain a 64n word FIFO, the SI signal is connected to the first FIFO and the SO signal to the nth FIFO. The IR and OR signals are monitored from the first and last FIFOs respectively. The IR signal from each FIFO is connected to its preceding SO signal: $IR(n) \rightarrow SO(n-1)$; $IR(n-1) \rightarrow SO(n-2) \dots IR(2) \rightarrow SO(1)$. The OR signal from each FIFO is connected to its succeeding SI signal: i.e., $OR(1) \rightarrow SI(2)$; $OR(2) \rightarrow SI(3)$ $\dots OR(n-1) \rightarrow SI(n)$. Handshaking signals are shown in Figure 10.

FIFO 1 operates in Mode 5 during SI until FIFO2 is filled. FIFO2 operates in Mode 3 during SO until FIFO1 is empty. Data from FIFO1 is written into FIFO2 after a word is read from FIFO2. To achieve this, the \overline{OE} pin is grounded for FIFO1. In general, for n FIFOs, all \overline{OE} pins but the nth FIFO's \overline{OE} pin are enabled. 3-state control of the outputs can then be achieved by controlling the nth FIFO's \overline{OE} pin.

Figure 8: Word Width Expansion — 64 x 18 FIFO

Note: Monitor flags from any one FIFO or AND the corresponding flags to obtain a composite signal.

AC723 • ACT723

Figure 9: Depth Expansion Mode — 128 x 9 FIFO

Figure 10: Handshaking for Depth Expansion Mode — 128 x 9 FIFO

Note: The numbers for SI and SO indicate the pulse numbers. The numbers for data in and data out indicate data words: 1 is the first data word, 2 is the second data word, etc.

	Deveneder		C/ACT	54AC/ACT	74AC/ACT	11-14-	Oanditions
Symbol	Parameter	Тур	<u> </u>	Guaranteed	Limit	Units	Conditions
lin	Maximum Input Current		0.1	10.0	1.0	μΑ	Vcc = Max Vin = Vcc
loz	Maximum 3-State Current		0.5	10.0	5.0	μΑ	High Z, Vcc = Max Vout = 0 to Vcc
lcca	Supply Current, Quiescent	50.0	2.0	10.0	10.0	mA	Vcc = Max, Vin = 0 V
ICCD	Supply Current, 20 MHz Loaded	325		150	150	mA	Vcc = Max, f = 20 MHz Test Load: See Note 1
		4.49	4.4	4.4	4.4	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 4.5 \ \text{V}$
Vон	Minimum HIGH Level Output	5.49	5.4	5.4	5.4	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 5.5 \ \text{V}$
			3.86	3.70	3.76	v	Іон = – 8 mA, Vcc = 4.5 V
		1	4.86	4.70	4.76	v	$I_{OH} = -8 \text{ mA},$ $V_{CC} = 5.5 \text{ V}$
		0.001	0.1	0.1	0.1	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 4.5 \ \text{V}$
Vol	Maximum HIGH Level Output	0.001	0.1	0.1	0.1	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 5.5 \ \text{V}$
			0.32	0.4	0.37	v	IOL = 8 mA, VCC = 4.5 V
			0.32	0.4	0.37	v	IOL = 8 mA, VCC = 5.5 V
Iold	Minimum Dynamic Output Current			32	32	mA	Vcc = 5.5 V Vold = 2.2 V
Іонр	Minimum Dynamic Output Current			- 32	- 32	mA	Vcc = 5.5 V Vонd = 3.3 V

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Note 1: Test Load 50 pF, 500 ohm to Ground

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)		L=+25 L=50 p	-	to +	-55°C 125°C 50 pF	to +	-40°C 85°C 50 pF	Units	Fig No
			Min	Тур	Max	Min	Max	Min	Max		
tplн, tphl	Propagation Delay, tir SI to IR	3.3 5.0		8.5 5.5						ns	1
tр∟н	Propagation Delay, tion	3.3 5.0		13.0 9.5						ns	1
tрнг, tpгн	Propagation Delay, to SO to Data Out	3.3 5.0		23.0 17.0						ns	4
tplh, tphl	Propagation Deray, ton SO to OR	3.3 5.0	8	9.5 7.0						ns	4
tphl, tplH	Propagation Delay, tops SI to New Data Out	3/3 5.0	\square	22.0 16.0						ns	1, 5
tplH	Fall-Through Time, tFTO SI to OR	3.3 5.0-	[/]	16.0 11.5						ns	5
tplH	Fall-Through Time, tFT SO to IR, HIGH	3.3 5.0		18.5 13.5						ns	3
tpzl	Output Enable OE to On	3.3 5.0		7.5 5.5		$\Pi /$	7_	~		ns	3-8
tplz	Output Disable OE to On	3.3 5.0		6.0 4.5		\sim	$\langle \rangle$	1		ns	3-8
tрzн	Output Enable OE to On	3.3 5.0		9.0 6.5			Ų	$\langle \wedge \rangle$	21	ns	3-7
tрнz	Output Disable OE to On	3.3 5.0		9.0 6.5				1	$\left(\right)$	ns	3-7
trec	Recovery Time, tmrire MR to IR	3.3 5.0		9.5 7.0						ns	2
trec	Recovery Time, tmrorL MR to OR	3.3 5.0		20.0 15.0						ns	2
trec	Recovery Time, tMRONL MR to On, LOW	3.3 5.0		11.0 8.0						ns	2
tw	IR Pulse Width, tıp	3.3 5.0		38.0 28.0						ns	3
tw	OR Pulse Width, top	3.3 5.0		23.0 17.0						ns	5

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics, cont'd

	Revenue.		74AC	54AC	74AC		
Symbol	Parameter	Vcc* 7(V)	Ta = + 25°C CL = 50 pF	TA = -55°C to +125°C CL = 50 pF	T _A = - 40 °C to + 85 °C C _L = 50 pF	Units	Fig. No.
		1	Min Typ Max	Min Max	Min Max		
fsı	Maximum SI Clock Frequency	3.3 5.0	60 85	$\Lambda \pi$	Printer	MHz	1
fso	Maximum SO Clock Frequency	3.3 5.0	60 60	M/		MHz	4
fво	Maximum Clock Frequency, SO Burst Mode	3.3 5.0	55 65		UN	MHz	7
fвı	Maximum Burst In Clock	3.3 5.0	60 85			MHz	6

*Voltage Range 3.3 is 3.3 V. \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			744	4C	54AC	74AC		
Symbol	Parameter	V cc* (V)	C = 50 pc		TA = -55°C to +125°C CL = 50 pF	$TA = -40 \degree C$ to +85 °C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mir	nimum		
tw /	SI Pulse Width, tsin HIGH	3.3 5.0	4.0 1.5				ns	1, 6
tw	SI Pulse Width, tsiL LOW	3.3 5.0	4.0 1.5	1.7	pr correspondence in the second		ns	1, 6
ts	Setup Time, HIGH or LOW, Dn to SI	3.3 5.0	2.0/ 1.0	V/I	$M \Lambda n$		ns	1
th	Hold Time, HIGH or LOW, Dn to SI	3.3 5.0	3.0 1.5	VU L	V V VV		ns	
tw	MR Pulse Width, tmrw	3.3 5.0	17.0 13.0		and from	JUL	ns	2
trec	Recovery Time, tмязін MR to SI	3.3 5.0	7.0 4.0				ns	2
tw	SO Pulse Width, tsoн HIGH	3.3 5.0	4.5 2.0				ns	4, 7
tw	SO Pulse Width, tsoL LOW	3.3 5.0	12.5 9.0				'ns	4, 7

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

				74ACT		544	АСТ	74/	СТ		
Symbol	Parameter	Vcc* (V)		= + 25 L = 50 p		to +	- 55°C 125°C 50 pF	to +	- 40°C 85°C 50 pF	Units	Fig No
			Min	Тур	Max	Min	Max	Min	Max		
tplh, tplh	Propagation Delay, tır SI to IR	5.0		6.5						ns	1
tp∟H	Propagation Delay, tion	5.0		10.5						ns	1
tрнг, tргн	Propagation Delay, to SO to Data Out	5.0		18.5						ns	4
tphl, tphl	Propagation Delay, tor SO to OR	5.0		7.0						ns	4
tрнг, tргн	Propagation Delay, top5 SI to New Data Out	5.0	7	19.0			· · · · · · · · · · · · · · · · · · ·			ns	1, 5
tplH	Fall-Through Time, tFTO (SI to OR	5.0		13.5	~					ns	5
tplH	Fall-Through Time, tFT SO to IR, HIGH	5.0		15.0	11	2~				ns	3
tpzl	Output Enable OE to On	5.0		6.5	\Box	Л	17 .			ns	3-8
tplz	Output Disable OE to On	5.0		5.0	<u></u>	V		17,	<	ns	3-8
tрzн	Output Enable OE to On	5.0		6.5			\sim		()	ns	3-7
tрнz	Output Disable OE to On	5.0		6.5			· · · · · · · · · · · · · · · · · · ·		V,	ns	3-7
trec	Recovery Time, tmrinh MR to IR	5.0		8.5					<	ns	2
trec	Recovery Time, tmrorL MR to OR	5.0		16.5						ns	2
trec	Recovery Time, tmRONL MR to On, LOW	5.0		9.0						ns	2
tw	IR Pulse Width, tip	5.0		28.0						ns	3
tw	OR Pulse Width, top	5.0		17.0			-			ns	5
fsı	Maximum SI Clock Frequency	5.0		85						MHz	1
fso	Maximum SO Clock Frequency	5.0		60						MHz	4

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics, cont'd

			74ACT	54ACT	74ACT	
Symbol	Parameter V		$TA = +25 \circ C$ $CL = 50 \text{ pF}$	$T_A = -55 \circ C$ to + 125 \circ C_L = 50 pF	$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units Fig. No.
L			Min Typ Max	Min Max	Min Max	
fво	Maximum Clock Frequency, SO Burst Mode	5.0	65			MHz 7
fвı	Maximum Burst In Clock	5.0	85	and hand		MHz 6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			744	CT	54ACT	74ACT		
Symbol	Parameter	V cc* (V)	TA = + 25°C CL = 50 pF		$T_A = -55 \degree C$ to + 125 °C CL = 50 pF	$T_{A} = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF	Units	Fig. No.
r			Тур		Guaranteed Mi	nimum		
tw /	SI Pulse Width, tsin	5.0	1.5				ns	1, 6
tw	SI Pulse Width, tsiL LOW	75.0	1.5	-			ns	1, 6
ts	Setup Time, HIGH or LOW, Dn to SI	5.0	1.0	\square	Mn -		ns	1
th	Hold Time, HIGH or LOW, Dn to SI	5.0	1.5	ИŢ	π	AN	ns	1
tw	MR Pulse Width, tmrw	5.0	13.0		1002		ns	27
trec	Recovery Time, tmrsin MR to SI	5.0	4.5				ns	2
tw	SO Pulse Width, tsoн HIGH	5.0	2.0				ns	4, 7
tw	SO Pulse Width, tso∟ LOW	5.0	9.0				ns	4, 7

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
		Тур		
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V

54AC/74AC725 • 54ACT/74ACT725

512 x 9 First-In, First-Out Memory (FIFO)

Description

The 512×9 FIFO is a first-in, first-out dual port memory capable of asynchronous, simultaneous read and write. Other important features are: expansion capability in both the word depth and bit width, half-full flag capability in the single device mode, empty and full warning flags, ring pointers for zero fall-through time; it is suited for high-speed applications.

- First-In, First-Out Dual Port Memory
- 512 x 9 Organization
- Low Power Consumption
- Asynchronous and Simultaneous Read and Write
- Fully Expandable by Word Depth and/or Bit Width
- Half-Full Flag Capability in Single Device Mode
- Master/Slave Multiprocessing Applications
- Bidirectional and Rate Buffer Applications
- Empty and Full Warning Flags
- Auto Retransmit Capability
- Outputs Source/Sink 8 mA
- 'ACT725 has TTL-Compatible Inputs
- Pin and Functionally Compatible with IDT7201
- 35 MHz Read; Write-Read Capability

Ordering Code: See Section 6

Logic Symbol

Connection Diagrams

w 🗉	28 Vcc
D8 2	27 D4
D3 3	26 D5
D2 4	25 D6
D1 5	24 D7
Do 6	23 FL/RT
XI 7	22 RS
FF 8	21 EF
Q0 9	20 XO/HF
Q1 10	19 Q7
Q2 11	18 Q6
Q3 12	17 Q5
Q8 13	16 Q4
GND 14	15 R
	J

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

The 'AC/'ACT725 is a dual port memory which loads and empties data on a first-in, first-out basis. The device uses full and empty flags to prevent data overflow and underflow. Expansion logic allows for unlimited expansion capability in both word size and depth.

The reads and writes are internally sequential through the use of ring pointers with no address information required to load and unload data. Data is toggled in and out of the device through the use of the WRITE (\overline{W}) and READ (\overline{R}) pins.

The device employs a 9-bit wide data array for control and parity bits which are under the control

of the user. This feature is especially useful in data communications applications where it is necessary to use a parity bit for transmission/reception error checking. It also features a RETRANSMIT (\overline{RT}) capability; the read pointer is reset to its initial position when \overline{RT} is pulsed LOW to allow for retransmission from the beginning of data. A half-full flag is available in the single device mode and width expansion modes.

The 'AC/'ACT725 is ideal for those applications which require asynchronous and simultaneous read/writes in multiprocessing and rate buffer applications.

Signal Descriptions

Inputs

Data In (Do - D8) Data inputs for 9-bit wide data.

Controls

Reset (RS)

When the Reset (\overline{RS}) input is taken LOW, a reset is accomplished. During reset, both internal read and write pointers are set to the first location. A reset is required upon power up before a write operation can take place. Both the Read Enable (\overline{R}) and Write Enable (\overline{W}) inputs must be HIGH during reset. Half-Full Flag (\overline{HF}) will be reset to HIGH after Master Reset (\overline{RS}).

Write Enable (W)

A write cycle is initiated on the falling edge of \overline{W} when a Full Flag (FF) is not set. Data setup and hold times must be adhered to with respect to the rising edge of the Write Enable (\overline{W}). Data is stored in the RAM array sequentially and independently of any ongoing read operation.

When half of the memory is filled and the falling edge of the next write operation occurs, the Half-Full Flag (\overline{HF}) will be set to LOW and will remain LOW until the difference between the write pointer and the read pointer is less than or equal to onehalf of the total memory of the device. \overline{HF} is then reset by the rising edge of the read operation.

To prevent data overflow, \overline{FF} will go LOW, inhibiting further write operations. Upon the completion of a valid read operation, \overline{FF} will go HIGH after tRFF, allowing a valid write to begin.

Read Enable (R)

A read cycle is initiated on the falling edge of Read Enable (\overline{R}) if the Empty Flag (\overline{EF}) is not set. The data is accessed on a first-in, first-out basis; it is independent of any ongoing write operations. After \overline{R} goes HIGH, the data outputs (Qo - Q8) return to a high impedance condition until the next read operation. When all data has been read from the FIFO, \overline{EF} will go LOW and inhibit further read operations; the data outputs remain in a high impedance state. Upon completing a valid write operation, \overline{EF} will go HIGH after twef, and a valid read can then begin.

First Load/Retransmit (FL/RT)

This is a dual purpose output. In the multiple device mode, $\overline{FL/RT}$ is grounded, indicating it is the first device loaded.

In the single device mode, this pin acts as the retransmit input. The single device mode is initiated by grounding the Expansion In (\overline{XI}) .

The 'AC/'ACT725 can retransmit data when the Retransmit Enable control (\overline{RT}) input is pulsed LOW. A retransmit operation sets the internal read pointer to the first location and will not affect the write pointer. \overline{R} and \overline{W} must be HIGH during retransmit. Retransmit is useful when less than 512 writes are performed between resets. The retransmit feature is not compatible with Depth Expansion mode; it will affect \overline{HF} depending on the relative locations of the read and write pointers.

Expansion In (XI)

 \overline{XI} is a dual purpose input. Expansion In (\overline{XI}) is grounded to indicate an operation in the single device mode. \overline{XI} is connected to Expansion Out (\overline{XO}) of the previous device in the Depth Expansion or Daisy Chain mode.

Outputs

Full Flag (FF)

If brought LOW, the Full Flag (\overline{FF}) will inhibit further write operation when the write pointer is one location from the read pointer; the device is full. If the read pointer is not moved after \overline{RS} , \overline{FF} will go LOW after 512 writes.

Expansion Out/Half Full Flag ($\overline{XO}/\overline{HF}$) This is a dual purpose output. In the single device mode, when \overline{XI} is grounded, $\overline{XO}/\overline{HF}$ acts as an indicator of a half-full memory.

When half of the memory is filled, on the falling edge of the next write operation, \overline{HF} will be set LOW and will remain set until the difference between the write pointer and the read pointer is less than or equal to one-half of the total memory of the device. \overline{HF} is then reset by the rising edge of the read operation.

In the Multiple Device mode, \overline{XI} is connected to Expansion Out (\overline{XO}) of the previous device. This output acts as a signal to the next device in the Daisy Chain; \overline{XO}/HF provides a pulse to the next device when the previous device reaches the last location of memory.

Data Outputs (Q0 - Q8)

Data outputs for 9-bit wide data. These outputs are in a high impedance condition whenever $\overline{\mathsf{R}}$ is HIGH.

Truth Tables

Table 1: Reset and Transmit Single Device Configuration/Width Expansion Mode

		Inputs		Interna	l Status	0	utpu	ts
Mode	RS	FL/RT	XI	Read Pointer	Write Pointer	EF	FF	HF
Reset	0	X	0	Location 0	Location 0	0	1	1
Retransmit	1	0	0	Location 0	Unchanged	X	X	X
Read/Write	1	1	0	Increment*	Increment*	X	X	X

*Pointer will increment if flag is HIGH

Table 2: Reset and First Load Truth Table Depth Expansion/Compound Expansion Mode

		Inputs		Interna	Outputs		
Mode	RS	FL/RT	XI	Read Pointer	Write Pointer	ĒF	FF
Reset First Device	0	0	*	Location 0	Location 0	0	1
Reset All Other Devices	0	0	*	Location 0	Location 0	0	1
Read/Write	1	X	*	X	X	х	X

* \overline{XI} is connected to \overline{XO} of previous device (see Figure 12)

RS = Reset input, FL/RT = First Load/Retransmit, EF = Empty Flag output, FF = Full Flag output,

 \overline{XI} = Expansion input, \overline{HF} = Half-Full Flag input

AC725 • ACT725

Symbol	Parameter		C/ACT	54AC/ACT	74AC/ACT	Units	Conditions
-,		Тур		Guaranteed	Limit		
lin	Maximum Input Current		0.1	10.0	1.0	μA	Vcc = Max Vin = Vcc
loz	Maximum 3-State Current	•	0.5	10.0	5.0	μA	High Z, Vcc = Max Vout = 0 to Vcc
lccq	Supply Current, Quiescent	50.0	2.0	10.0	10.0	mA	Vcc = Max, Vin = 0 V
		4.49	4.4	4.4	4.4	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 4.5 \ V$
Vон	он Minimum HIGH Level Outpu	5.49	5.4	5.4	5.4	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 5.5 \ \text{V}$
			3.86	3.70	3.76	v	Іон = - 8 mA, Vcc = 4.5 V
			4.86	4.70	4.76	v	Іон = - 8 mA, Vcc = 5.5 V
		0.001	0.1	0.1	0.1	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 4.5 \ V$
Vol	Maximum HIGH Level Output	0.001	0.1	0.1	0.1	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OUT} = 20 \ \mu\text{A},$ $V_{CC} = 5.5 \ \text{V}$
			0.32	0.4	0.37	v	IOL = 8 mA, VCC = 4.5 V
			0.32	0.4	0.37	v	loL = 8 mA, Vcc = 5.5 V
Iold	Minimum Dynamic Output Current			32	32	mA	Vcc = 5.5 V Vold = 2.2 V
Іонд	Minimum Dynamic Output Current			- 32	- 32	mA	Vcc = 5.5 V Vонd = 3.3 V

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Note 1: Test Load 50 pF, 500 ohm to Ground

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	V cc* (V)	1	A = +25 CL = 50 p		TA = -55°C to +125°C CL = 50 pF		to +	- 40°C 85°C 50 pF	Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Мах		
tA	Access Time	3.3 5.0								ns	
trlz	Read Pulse LOW to Data Bus at Low Z	3.3 5.0								ns	
tw∟z	Write Pulse HIGH to Data Bus at Low Z	3.3 5.0		,						ns	
tov	Data Valid from Read Pulse HIGH	3.3 5.0		$\overline{\Lambda}$	\sim					ns	
tRHZ	Read Pulse HIGH to Data Bus at High Z	3.3 5.0	7 U	\overline{U}	//	n				ns	
tEFL	Reset to Empty Flag LOW	3.3 5.0		4	47	$\langle \rangle$	7,			ns	
tref	Read LOW to Empty Flag LOW	3.3 5.0				V	\square			ns	
tRFF	Read HIGH to Full Flag HIGH	3.3 5.0					2	\square	9	ns	
tweF	Write HIGH to Empty Flag HIGH	3.3 5.0								ns	
twff	Write LOW to Full Flag LOW	3.3 5.0								ns	
twнF	Write LOW to Half Full Flag LOW	3.3 5.0								ns	
tRHF	Read HIGH to Half Full Flag HIGH	3.3 5.0								ns	

*Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

5

			74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	Ta = + Cl = {		TA = − 55°C to + 125°C CL = 50 pF	TA = - 40 °C to + 85 °C CL = 50 pF	Units	Fig. No.
	<u> </u>		Тур		Guaranteed Mi			
trc	Read Cycle Time	3.3 5.0					ns	
trr	Read Recovery Time	3.3 5.0					ns	
trpw	Read Pulse Width	3.3 5.0					ns	
twc	Write Cycle Time	3,3 5,0					ns	
tw	Write Pulse Width	3.3 5.0		$\hat{\Lambda}$			ns	
trec	Write Recovery Time	3.3 5.0	\mathbb{V}	///			ns	
ts	Data Setup Time	3.3 5.0			$A \wedge$		ns	
tн	Data Hold Time	3.3 5.0				Î	ns	
trsc	Reset Cycle Time	3.3 5.0					ns	
tw	Reset Pulse Width	3.3 5.0				571	ns	
trec	Reset Recovery Time	3.3 5.0					ns	
trtc	Retransmit Cycle Time	3.3 5.0					ns	
tw	Retransmit Pulse Width	3.3 5.0					ns	
trec	Retransmit Recovery Time	3.3 5.0					ns	

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

				74ACT		54/	АСТ	74	АСТ		
Symbol	Parameter	V cc* (V)		k = +25 5∟ = 50 p		to +	– 55 °C 125 °C 50 pF	$TA = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Мах	Min	Max		
tA	Access Time	5.0								ns	
trlz	Read Pulse LOW to Data Bus at Low Z	5.0								ns	
tw∟z	Write Pulse HIGH to Data Bus at Low Z	5.0								ns	
tdv	Data Valid from Read Pulse HIGH	5.0	\square	\land						ns	
trhz	Read Pulse HIGH to Data Bus at High Z	5.0		\mathbb{N}	$\overline{\gamma}$					ns	
tefl	Reset to Empty Flag LOW	5.0		Ŋ	\square	$\hat{\Lambda}$				ns	
tref	Read LOW to Empty Flag LOW	5.0		<		/				ns	
tRFF	Read HIGH to Full Flag HIGH	5.0				\bigvee	$\langle \! $	\wedge		ns	
tweF	Write HIGH to Empty Flag HIGH	5.0					4	\land	21	ns	
twff	Write LOW to Full Flag LOW	5.0						4	7	ns	
twhF	Write LOW to Half Full Flag LOW	5.0							······································	ns	
tRHF	Read HIGH to Half Full Flag HIGH	5.0								ns	

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

			74A	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	TA = + 25 °C CL = 50 pF		$T_A = -55 ^{\circ}C$ to + 125 ^{\circ}C CL = 50 pF	$T_A = -40 \circ C$ to +85 \circ CL = 50 pF	Units	Fig. No.
4	\sim		Тур		Guaranteed Mi	nimum		
trc	Read Cycle Time	5.0					ns	
trr	Read Recovery Time	/ 5.0					ns	
trpw	Read Pulse Width	5.0	17 -				ns	!
twc	Write Cycle Time	5.0	111	IA			ns	
tw	Write Pulse Width	5.0	77/1	///	MA		ns	
trec	Write Recovery Time	5.0	SC.	711 1	TAN		ns	
ts	Data Setup Time	5.0		40		\sim	ns	
tн	Data Hold Time	5.0			V V/	$N \wedge$	ns	
trsc	Reset Cycle Time	5.0				1100	ns	
tw	Reset Pulse Width	5.0				VINY	ns	>
trec	Reset Recovery Time	5.0					ns	
trtc	Retransmit Cycle Time	5.0				4	/ns	
tw	Retransmit Pulse Width	5.0					ns	
trec	Retransmit Recovery Time	5.0					ns	

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Figure 1

a: Typical Application — Signal Processing System

b: Typical Application — High-Speed Multiprocessing System

Figure 2: Reset

Notes: tRSC = tRS + tRSR \overline{W} and $\overline{R} = V_{IH}$ during RESET

Figure 3: Asynchronous Write and Read Operation

Figure 4: Full Flag from Last Write to First Read

Figure 6: Retransmit

Notes: trtc = trt + trtr

EF/HF may change state during retransmit as a result of the offset of the read and write pointers, but flags will be valid at trrc.

Figure 7: Empty Flag Timing

Note: tRPE = tRPW

Figure 8: Full Flag Timing

Note: twpr = twpw

Operating Modes

Single Device Mode

A single 'AC/'ACT725 device may be utilized for applications requiring 512 words or less. The 'AC/'ACT725 is in a single device configuration when Expansion In (\overline{XI}) is grounded. In this mode, HF flag is valid.

Width Expansion Mode

Word width may be easily increased by connecting the corresponding input control signals of multiple devices. Status flags, \overline{EF} , \overline{FF} and \overline{HF} , can be detected from any one device. Any word width can be obtained with additional 'AC/'ACT725s.

Figure 10: Block Diagram of Single 512 x 9 FIFO

Operating Modes, cont'd

Figure 11: Block Diagram of 512 x 18 x 18 FIFO Memory Used in Width Expansion Mode

Notes: Flag detection is accomplished by monitoring FF, EF and HF on any device used in the width expansion configuration. Output signals should not be connected together.

Depth Expansion (Daisy Chain) Mode

The 'AC/'ACT725 can easily be adapted to applications when the requirements are for greater than 512 words. Any depth can be obtained with additional 'AC/'ACT725 devices. The 'AC/'ACT725 operates in the Depth Expansion mode when:

- 1. FL of the first device is grounded.
- 2. FL pins of all other devices are HIGH.
- 3. XO of each device is tied to XI of the next device.
- External logic is needed to generate a composite FF and EF. This requires ORing all EFs and all FFs, i.e., all must be set to generate the correct composite FF or EF.
- 5. The RT function and HF are not available in the Depth Expansion mode.

Figure 12: Block Diagram of a 1536 x 9 FIFO Memory (Depth Expansion)

Operating Modes, cont'd

Compound Expansion Mode

The two expansion techniques described previously can be combined in a straightforward manner to achieve large FIFO arrays.

Bidirectional Mode

Applications which require data buffering between two systems (where each system is capable of read and write operations) can be achieved by pairing '725s as shown in Figure 14. Care must be taken to assure that the appropriate flag is monitored by each system (FF is monitored on the device where \overline{W} is used; EF is monitored on the device where \overline{R} is used). Both Depth Expansion and Width Expansion may be used in the Bidirectional Mode.

Figure 13: Compound FIFO Expansion

Notes: For depth expansion block, see Depth Expansion and Figure 12. For flag detection, see Width Expansion and Figure 11.

Figure 14: Bidirectional FIFO Mode

Data Flow-Through Modes

Two types of flow-through modes are permitted with the '725: read flow-through and write flow-through.

For the read flow-through mode (Figure 15), the FIFO permits reading a single word of data

Figure 15: Read Data Flow-Through Mode

immediately upon writing one word of data into the completely empty FIFO.

In the write flow-through mode (Figure 16), the FIFO permits writing a single word of data immediately after reading one word of data from a completely full FIFO.

Figure 16: Write Data Flow-Through Mode

54AC/74AC818 • 54ACT/74ACT818

8-Bit Diagnostic Register

Description

The 'AC/'ACT818 is a high-speed, general-purpose pipeline register with an on-board diagnostic register for performing serial diagnostics and/or writable control store loading.

The D-to-Y path provides an 8-bit parallel data path pipeline register for normal system operation. The diagnostic register can load parallel data to or from the pipeline register and can output data through the D input port (as in WCS loading).

The 8-bit diagnostic register has multiplexer inputs that select parallel inputs from the Y-port or adjacent bits in the diagnostic register to operate as a right-shift-only register. This register can then participate in a serial loop throughout the system where normal data, address, status and control registers are replaced with 'AC/'ACT818 diagnostic pipeline registers. The loop can be used to scan in a complete test routine starting point (Data, Address, etc.). Then after a specified number of machine cycles it scans out the results to be inspected for the expected results. WCS loading can be accomplished using the same technique. An instruction word can be serially shifted into the shadow register and written into the WCS RAM by enabling the D output.

- On-Line and Off-Line System Diagnostics
- Swaps the Contents of Diagnostic Register and Output Register
- Diagnostic Register and Diagnostic Testing
- Cascadable for Wide Control Words as Used in Microprogramming
- Edge-Triggered D Registers
- Outputs Source/Sink 24 mA
- 'ACT818 has TTL-Compatible Inputs
- 'ACT818 is Functionally- and Pin-Compatible to AMD 29818 and MMI 74S818

Applications

- Register for Microprogram Control Store
- Status Register
- Data Register
- Instruction Register
- Interrupt Mask Register
- Pipeline Register
- General Purpose Register
- Parallel-Serial/Serial-Parallel Converter

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC and PCC

Logic Symbol

5-346

Ordering Code: See Section 6

Pin Names

- Do D7 Data Inputs
- SDI Serial Data Input
- DCLK Diagnostics Clock
- MODE Control Input
- PCLK Pipeline Register Clock
- OEY Output Enable Input
- SDO Serial Data Output
- Yo Y7 Data Outputs

Diagnostic Register

Block Diagram

Functional Description

Data transfers into the diagnostic register occur on the LOW-to-HIGH transition of DCLK. Mode and SDI determine what data source will be loaded. The pipeline register is loaded on the LOW-to-HIGH transition of PCLK. Mode selects whether the data source is the data input or the diagnostic

register output. Because of the independence of the clock inputs, data can be shifted in the diagnostic register via DCLK and loaded into the pipeline register from the data input via PCLK simultaneously, as long as no setup or hold times are violated. This simultaneous operation is legal.

Function Table

	Inp	uts			Outputs		Operation
SDI	MODE	DCLK	PCLK	SDO	Diagnostic Reg.	Pipeline Reg.	Operation
x	L	٦.	х	S7	SI <si-1, SO<sdi< td=""><td>NA</td><td>Serial Shift; D7 - D0 disabled</td></sdi<></si-1, 	NA	Serial Shift; D7 - D0 disabled
Х	L	Х	L	S7	NA	PI < DI	Normal Load Pipeline Register
L	н	L	х	L	SI <yi< td=""><td>NA</td><td>Load Diagnostic Register from Y; DI disabled</td></yi<>	NA	Load Diagnostic Register from Y; DI disabled
x	н	х	L	SDI	NA	PI <si< td=""><td>Load Pipeline Register from Diagnostic Register</td></si<>	Load Pipeline Register from Diagnostic Register
н	н	L	х	н	Hold	NA	Hold Diagnostic Register; DI enabled

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

J = LOW-to-HIGH Clock Transition

		74AC	ACT	54AC/ACT	74AC/ACT		
Symbol	Parameter	Тур		Guaranteed L	.imit	Units	Conditions
lin	Maximum Input Current		±0.1	± 10.0	± 1.0	μΑ	Vcc = Max Vin = Vcc
loz	Maximum 3-State Current		± 0.5	± 10.0	± 5.0	μA	OE = VIH, Vcc = Max Vout = 0, Vcc
Icc	Maximum Quiescent Supply Current		1.0			mA	Vcc = Max
Ісст	Maximum Additional Icc/Input ('ACT818)			1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V$
	Minimum LOW		3.86	3.70	3.76	v	$I_{OH} = -24 \text{ mA},$ $V_{CC} = 4.5 \text{ V}$
Vон	Level Output Yo - Y7 Outputs		4.86	4.70	4.76	v	Iон = -24 mA, Vcc = 5.5 V
	Minimum HIGH Level Output		3.86	3.70	3.76	V	IOH = -8 mA, VCC = 4.5 V
	Do - D7, SDO Outputs		4.86	4.70	4.76	V	Іон = -8 mA, Vcc = 5.5 V
	Maximum LOW		0.32	0.40	0.37	v	Iol = 24 mA, Vcc = 4.5 V
Vol	Level Output Yo - Y⁊ Outputs		0.32	0.40	0.37	v	IoL = 24 mA, Vcc = 5.5 V
	Maximum HIGH Level Output		0.32	0.40	0.37	V	IOL = 8 mA, VCC = 4.5 V
	Do - D7, SDO Outputs		0.32	0.40	0.37	۷	IOL = 8 mA, $VCC = 5.5 V$
Iold	Minimum Dynamic Output Current, Yo - Y7 Outputs			57	86	mA	Vcc = 5.5 V Vold = 1.1 V
Іонр	Minimum Dynamic Output Current, Yo - Y7 Outputs			-50	-75	mA	Vcc = 5.5 V Vонd = 3.85 V
Iold	Minimum Dynamic Output Current, Do - D7, SDO Outputs. See Note.			32	32	mA	Vcc = 5.5 V Vold = 2.2 V
Іонр	Minimum Dynamic Output Current, Do - D7, SDO Outputs. See Note.			-32	-32	mA	Vcc = 5.5 V Vонd = 3.3 V

Note: Test Load 50 pF, 500 ohm to Ground

AC Characteristics

				74AC		54	4AC	74	AC		
Symbol	Parameter	Vcc* (V)		k = + 25 €L = 50 p	-	TA = -55 °C to +125 °C CL = 50 pF		to +	- 40°C 85°C 50 pF	Units	Fig No
			Min	Тур	Max	Min	Max	Min	Max		
t PHL	Propagation Delay PCLK to Y	3.3 5.0		6.5 4.5						ns	3-6
tplh	Propagation Delay PCLK to Y	3.3 5.0		6.5 5.0						ns	3-6
tphl	Propagation Delay MODE to SDO	3.3 5.0		9.0 6.5						ns	3-6
tplh	Propagation Delay MODE to SDO	3.3 5.0		10.0 7.5						ns	3-6
tphl	Propagation Delay SDI to SDO	3.3 5.0		9.0 6.5						ns	3-6
tplH	Propagation Delay SDI to SDO	3.3 5.0	17	9.0 /6.5						ns	3-6
tphl	Propagation Delay DCLK to SDO	3.3 5.0		12.0 8.5	70					ns	3-6
tplh	Propagation Delay DCLK to SDO	3.3 5.0	~7	12/5 9,0	Π	n,	$\overline{\gamma}$			ns	3-6
tpzl	Output Enable Time OEY to Y(x)	3.3 5.0		6.0 4.0	~[]	\mathbb{N}	Â		<u></u>	ns	3-8
tplz	Output Disable Time OEY to Y(x)	3.3 5.0		6.0 4.5		~<	\sim	15	5)1	ns	3-8
tPZL	Output Enable Time DCLK to D(x)	3.3 5.0		11.0 8.0				2	T	ns	3-8
tplz	Output Disable Time DCLK to D(x)	3.3 5.0		8.5 6.5					4	ns	3-8
tрzн	Output Enable Time OEY to Y(x)	3.3 5.0		7.0 5.0						ns	3-7
tрнz	Output Disable Time OEY to Y(x)	3.3 5.0		9.0 6.5						ns	3-7
tрzн	Output Enable Time DCLK to D(x)	3.3 5.0		9.0 6.5						ns	3-7
tpнz	Output Disable Time DCLK to D(x)	3.3 5.0		9.0 6.5						ns	3-7

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

			74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)		⊦25°C 50 pF	TA = − 55 °C to + 125 °C CL = 50 pF	T _A = - 40°C to + 85°C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Setup Time D to PCLK	3.3 5.0	5.0 3.5				ns	3-9
tn <	Hold Time D to PCLK	3.3 5.0	-1.5 -1.0				ns	3-9
ts	Setup Time MODE to PCLK	3.3 5.0	5.5 4.0				ns	3-9
th	Hold Time MODE to PCLK	3.3 5.0	-1.5 -1.0				ns	3-9
ts	Setup Time Y TO DCLK	3.3 5.0	1,5 1.0	$\langle \rangle$	\wedge		ns	3-9
th	Holt time Y TO DCLK	3.3 5.0	Q 0		$\sqrt{\Lambda}$		ns	3-9
ts	Setup Time MODE to DCLK	3.3 5.0	4.0 3.0				ns	3-9
th	Hold Time MODE to DCLK	3.3 5.0	-0.5 -0.5			1/5	ns	3-9
ts	Setup Time SDI to DCLK	3.3 5.0	4.0 3.0			VZZ.	AS	3-9
th	Hold Time SDI to DCLK	3.3 5.0	-0.5 -0.5				ns	3-9
ts	Setup Time DCLK to PCLK	3.3 5.0	9.5 7.0				ns	3-9
ts	Setup Time PCLK to DCLK	3.3 5.0	11.0 8.0				ns	3-9
tw	Pulse Width PCLK HIGH or LOW	3.3 5.0	5.5 4.0				ns	3-6
tw	Pulse Width DCLK HIGH or LOW	3.3 5.0	11.0 8.0				ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

				74ACT		54/	АСТ	74	аст		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF			to +	– 55°C 125°C 50 pF	$T_A = -40 \degree C$ to +85 °C CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
tphl	Propagation Delay PCLK to Y	5.0		6.5						ns	3-6
tplh 🗸	Propagation Delay PCLK to Y	5.0		6.5						ns	3-6
tphL	Propagation Delay MODE to SDO	5.0		8.5						ns	3-6
tplH	Propagation Delay MODE to SDO	5.0	\square	9.5						ns	3-6
tphl	Propagation Delay SDI to SDO	5.0	[]]]	8.0	から					ns	3-6
tplH	Propagation Delay SDI to SDO	5.0	4	8,0	\square	$\hat{\Lambda}$	\sim			ns	3-6
tphl	Propagation Delay DCLK to SDO	5.0		11.0	41	Π		7.		ns	3-6
tplH	Propagation Delay DCLK to SDO	5.0		11.0		<	R	1/2	3	ns	3-6
tpzl	Output Enable Time OEY to Y(x)	5.0		6.5			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		VY.	ns	3-8
tplz	Output Disable Time OEY to Y(x)	5.0		6.5					7	ns	3-8
tPZL	Output Enable Time DCLK to D(x)	5.0		9.5						ns	3-8
tplz	Output Disable Time DCLK to D(x)	5.0		9.0						ns	3-8
tрzн	Output Enable Time OEY to Y(x)	5.0		7.5						ns	3-7
tрнz	Output Disable Time OEY to Y(x)	5.0		9.0						ns	3-7
tрzн	Output Enable Time DCLK to D(x)	5.0		8.5						ns	3-7
tрнz	Output Disable Time DCLK to D(x)	5.0		9.5						ns	3-7

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

			744	СТ	54ACT	74ACT		
Symbol	Parameter	V cc⁺ (V)		⊦25°C 50 pF	TA = - 55°C to + 125°C CL = 50 pF	T _A = - 40 °C to + 85 °C C _L = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	Guaranteed Minimum		
ts	Setup Time D to PCLK	5.0	3.0				ns	3-9
th	Hold Time D to PCLK	5.0	-1.0				ns	3-9
ts	Setup Time MODE to PCLK	5.0	4.0				ns	3-9
th	Hold Time MODE to PCLK	5.0	-1.0				ns	3-9
ts	Setup Time	5.0	1.0	$\overline{\mathcal{D}}$.			ns	3-9
th	Hold time Y TO DCLK	5.0	Ø	M	\overline{D}		ns	3-9
ts	Setup Time MODE to DCLK	5.0	5.0		$\Lambda \rho$		ns	3-9
th	Hold Time MODE to DCLK	5.0	-0.5			\widehat{n}	ns	3-9
ts	Setup Time SDI to DCLK	5.0	4.0			1.	ns	3-9
th	Hold Time SDI to DCLK	5.0	0			M	ns	3-9
ts	Setup Time DCLK to PCLK	5.0	8.0				ns	3-9
ts	Setup Time PCLK to DCLK	5.0	8.0				ns	3-9
tw	Pulse Width PCLK HIGH or LOW	5.0	4.0				ns	3-6
tw	Pulse Width DCLK HIGH or LOW	5.0	10.0				ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	ymbol Parameter	54/74AC/ACT Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
CPD	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC821 • 54ACT/74ACT821 54AC/74AC822 • 54ACT/74ACT822

10-Bit D-Type Flip-Flop

Description

The 'AC/'ACT821 and 'AC/'ACT822 are 10-bit D-type flip-flops with 3-state outputs arranged in a broadside pinout.

The 'AC/'ACT821 and 'AC/'ACT822 are functionally identical to the AM29821 and AM29822.

- 3-State Outputs for Bus Interfacing
- Inverting ('822) or Noninverting ('821) Outputs
- Outputs Source/Sink 24 mA
- 'ACT821 and 'ACT822 have TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol ('AC/'ACT821)*

*The 'AC/'ACT822 has inverting outputs.

Pin Names

Do - D9	Data Inputs
O0 - O9	Data Outputs ('AC/'ACT821)
<u> </u>	Data Outputs ('AC/'ACT822)
ŌĒ	Output Enable
CP	Clock Input

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

Functional Description

The 'AC/'ACT821 and 'AC/'ACT822 consist of ten D-type edge-triggered flip-flops. The buffered Clock (CP) and buffered Output Enable (\overline{OE}) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH CP transition. With \overline{OE} LOW the contents of the flipflops are available at the outputs. When \overline{OE} is HIGH the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

The 'AC/'ACT821 and 'AC/'ACT822 are functionally and pin compatible with the AM29821 and AM29822.

Function Table

	Inputs		Internal	Out	puts	Function
ŌĒ	СР	D	Q	O ('821)	Ō ('822)	i unotion
н	Г	L	L	Z	Z	High Z
н	L	н	н	z	Z	High Z
L	Г	L	L	L	н	Load
L	Г	н	Н	н	L	Load

H = HIGH Voltage Level

L = LOW Voltage Level

Z = High Impedance

 $\int = LOW$ -to-HIGH Clock Transition

Logic Diagram ('AC/'ACT821)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate progagation delays. The 'ACI'ACT822 also has the same logic diagram with inverting outputs.

DC Characteristics	(unless	otherwise	specified)
---------------------------	---------	-----------	------------

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
Icc	Maximum Quiescent Supply Current	160	80	μΑ	V IN = VCC Or Ground, VCC = 5.5 V, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT821/822)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)	Ta = + 25°C CL = 50 pF			$T_A = -55 \degree C$ to +125 °C CL = 50 pF		TA = − 40 °C to + 85 °C CL = 50 pF		Units	Fig. No.
	\mathcal{D}		Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	3.3 5:0		100 125						MHz	3-3
tрLн	Propagation Delay CP to On	3.3 5.0	17	9.5 6.5	<i>~</i>					ns	3-6
tphl	Propagation Delay CP to On	3.3 5.0	1//	9.5 6.5	111	2				ns	3-6
tрzн	Output Enable Time OE to On	3.3 5.0		7.5	[]	M	Π	\widehat{A}	~	ns	3-7
tPZL	Output Enable Time OE to On	3.3 5.0		8.0 6.0	4	Ľ		3	15	ns	3-8
tрнz	Output Disable Time OE to On	3.3 5.0		10.5 7.5				NY	125	ns	3-7
tplz.	Output Disable Time OE to On	3.3 5.0		9.0 6.5						ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

	$(Q) \wedge I$		74/	AC	54AC	74AC		
Symbol	Parameter	Vcc⁺ (V)		+ 25°C 50 pF	TA = -55°C to +125°C CL = 50 pF	TA = − 40 °C to + 85 °C CL = 50 pF	Units	Fig. No.
Ì			Тур		Guaranteed Mir	nimum		
ts	Setup Time, HIGH or LOW Dn to CP	3.3 5.0	3.0 2.0				ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	3.3 5.0	2.0 1.5		70		ns	3-9
tw	CP Pulse Width HIGH or LOW	3.3 5.0	3.5 2.5	41		$\hat{\boldsymbol{\lambda}}$	ns	3-6
Voltage F	Range 3.3 is 3.3 V ± 0.3 V Range 5.0 is 5.0 V ± 0.5 V					R	\square	P

AC Characteristics

				74ACT		54/	аст	74/	АСТ		
Symbol	Parameter	Vcc* (V)	Ta = + 25°C CL = 50 pF			$T_A = -55 \degree C$ to +125 °C CL = 50 pF		T _A = − 40 °C to + 85 °C C _L = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	5.0	120	110				110		MHz	3-3
tрLн	Propagation Delay CP to On	5.0	1.0	8.0	9.5			1.0	10.5	ns	3-6
tphl	Propagation Delay CP to On	5.0	1.0	8.0	9.5			1.0	10.5	ns	3-6
tрzн	Output Enable Time OE to On	5.0	1.0	7.0	10.5			1.0	11.5	ns	3-7
tpzl	Output Enable Time OE to On	5.0	1.0	7.5	10.5			1.0	12.0	ns	3-8
tрнz	Output Disable Time OE to On	5.0	1.0	10.0	12.0			1.0	13.0	ns	3-7
tp∟z	Output Disable Time OE to On	5.0	1.0	9.5	10.5			1.0	11.5	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

			74ACT		54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	TA = + CL = \$		TA = -55°C to +125°C CL = 50 pF	$T_A = -40 \circ C$ to +85 \circ C_L = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Dn to CP	5.0	2.0	2.0		2.5	ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	5.0	- 0.5	2.0		2.5	ns	3-9
tw	CP Pulse Width HIGH or LOW	5.0	3.0	4.5		5.5	ns	3-6

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
		Тур	01110	Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Cpd	Power Dissipation Capacitance	35.0	pF	Vcc = 5.5 V	

54AC/74AC823 • 54ACT/74ACT823 54AC/74AC824 • 54ACT/74ACT824

9-Bit D-Type Flip-Flop

Description

The 'AC/'ACT823 and 'AC/'ACT824 are 9-bit buffered registers. They feature Clock Enable and Clear which are ideal for parity bus interfacing in high performance microprogramming systems. The 'ACI'ACT 823 offers noninverting outputs and the 'ACI'ACT824 offers inverting outputs.

The 'AC/'ACT823 is fully compatible with AMD's AM29823.

- Outputs Source/Sink 24 mA
- 3-State Outputs for Bus Interfacing
- Inputs and Outputs are on Opposite Sides
- 'ACT823 and 'ACT824 have TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol ('AC/'ACT823)*

*The 'AC/'ACT824 has inverting outputs.

Pin Names

Do - D8	Data Inputs
O0 - O8	Data Outputs ('AC/'ACT823)
00 - 08	Data Outputs ('AC/'ACT824)
ŌĒ	Output Enable
CLR	Clear
CP	Clock Input
EN	Clock Enable

Connection Diagrams

		-
ŌE 1	$(\underline{)}$	24 V _{CC}
D ₀ 2		23 O ₀
D1 3		22 O ₁
D ₂ 4		21 O ₂
D ₃ 5		20 O3
D4 6		19 04
D ₅ 7		18 O ₅
D ₆ 8		17 06
D7 9		16 O7
D ₈ 10		15 O ₈
CLR 11		14 EN
Gnd 12		13 CP

Pin Assignment for DIP, Flatpak and SOIC

Functional Description

The 'AC/'ACT823 and 'AC/'ACT824 consist of nine D-type edge-triggered flip-flops. These have 3-state outputs for bus systems organized with inputs and outputs on opposite sides. The buffered clock (CP) and buffered Output Enable (\overline{OE}) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH CP transition. With \overline{OE} LOW, the contents of the flipflops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect

the state of the flip-flops. In addition to the Clock and Output Enable pins, there are Clear (CLR) and Clock Enable (EN) pins. These devices are ideal for parity bus interfacing in high performance systems.

When $\overline{\text{CLR}}$ is LOW and $\overline{\text{OE}}$ is LOW, the outputs are LOW. When $\overline{\text{CLR}}$ is HIGH, data can be entered into the flip-flops. When $\overline{\text{EN}}$ is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When the $\overline{\text{EN}}$ is HIGH, the outputs do not change state, regardless of the data or clock input transitions.

Function Table

		Inputs			Internal	Outputs		Function
ŌE	CLR	EN	СР	D	Q	O ('823)	ō ('824)	
н	X	L	Г	L	L	Z	Z	High Z
н	х	L	L	н	н	Z	Z	High Z
н	L	Х	х	х	L	Z	Z	Clear
L	L	х	х	х	L	L	L	Clear
н	Н	Н	Х	х	NC	Z	Z	Hold
L	н	н	х	х	NC	NC	NC	Hold
н	н	L	L	L	L	Z	Z	Load
н	Н	L	ſ	н	н	z	z	Load
L	н	L	L	L	L	L	Н	Load
L	н	L	L	н	н	н	L	Load

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

NC = No Change

Logic Diagram ('AC/'ACT823)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. The 'ACI'ACT824 also has the same logic diagram with inverting outputs.

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT823/824)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

DC Characteristics (unless otherwise specified)

AC Characteristics

				74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)		.=+25 ∟=50 p			- 55°C 125°C 50 pF	to +	- 40°C 85°C 50 pF	Units	Fig. No.
~			Min	Тур	Max	Min	Мах	Min	Max		
fmax	Maximum Clock Frequency	3.3 5.0		100 125						MHz	3-3
tplh	Propagation Detay CP to On	3.3 5.0	\square	9.5 6.5						ns	3-6
tphl	Propagation Delay CP to On	3.3 5.0	[]	9.5 6,5	$\overline{\partial}$					ns	3-6
tphl	Propagation Delay CLR to On	3.3 5.0	~	14.5 10.5	Π	M,	$\overline{\gamma}$			ns	3-6
tрzн	Output Enable Time OE to On	3.3 5.0		7.5 5.5	~7	ΠV		γ	No. of Concession, Name	ns	3-7
tpzl	Output Enable Time OE to On	3.3 5.0		8.0 6.0		~	\sim		\bigcirc	ns	3-8
tрнz	Output Disable Time OE to On	3.3 5.0		10.5 7.5				4	U,	ns	3-7
tplz	Output Disable Time OE to On	3.3 5.0		8.5 6.0					<	ns	3-8

*Voltage Range 3.3 is 3.3 V±0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

			74/	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	TA = + CL = 5		TA = -55°C to +125°C CL = 50 pF	T _A = − 40 °C to + 85 °C C _L = 50 pF	Units	Fig. No.
1	(-12)		Тур		Guaranteed Min	nimum		
ts	Setup Time, HIGH or LOW Dn to CP	3.3 5,0	3.0 2.0				ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	3.3 5.0	2,0 1.5	7 ~			ns	3-9
ts	Setup Time, HIGH or LOW EN to CP	3.3 5.0	3.0 2.0	\square	70.		ns	3-9
th	Hold Time, HIGH or LOW EN to CP	3.3 5.0	2.0 1.5	20		A 1	ns	3-9
tw	CP Pulse Width HIGH or LOW	3.3 5.0	3.5 2.5			1/25	ns	3-6
tw	CLR Pulse Width, LOW	3.3 5.0	5.0 3.5				ns	3-6
trec	CLR to CP Recovery Time	3.3 5.0	2.0 1.5			7	ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

				74ACT		54/	СТ	74	АСТ		
Symbol	Parameter	Vcc* (V)		v = + 25 S∟ = 50 p		to +	- 55°C 125°C 50 pF	to +	- 40 °C 85 °C 50 pF	Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
fmax	Maximum Clock Frequency	5.0		110						MHz	3-3
tрін	Propagation Delay CP to On	5.0	\wedge	8.0						ns	3-6
tphl	Propagation Delay CP to On	5.0		8.0	\supset					ns	3-6
tph∟	Propagation Delay CLR to On	5.0		12.0		h	<u> </u>			ns	3-6
tрzн	Output Enable Time OE to On	5.0		7.0	IJ	(V)	1	7		ns	3-7
tPZL	Output Enable Time OE to On	5.0		7.5		\sim	$\langle \rangle$	1	~	ns	3-8
tрнz	Output Disable Time OE to On	5.0		10.0			Ų	$\langle \rangle$	R	ns	3-7
tplz	Output Disable Time OE to On	5.0		8.5					1 7	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

			74A	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc * (V)	TA = + CL = \$		TA = -55°C to +125°C CL = 50 pF	TA = -40°C to +85°C CL = 50 pF	Units	Fig. No.
\square	$\square \langle O \rangle$		Тур		Guaranteed Min	nimum		
ts	Setup Time, HIGH or LOW D to CP	5.0	2.0				ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	5.0	1.0	~			ns	3-9
ts	Setup Time, HIGH or LOW EN to CP	5.0	2.9	///			ns	3-9
th	Hold Time, HIGH or LOW EN to CP	5.0	1.5	1			ns	3-9
tw	CP Pulse Width HIGH or LOW	5.0	3.0				ns	3-6
tw	CLR Pulse Width, LOW	5.0	4.0			877 TL	ns	3-6
trec	CLR to CP Recovery Time	5.0	1.5			Y	ns	3-9

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
	raidilieter	Тур	Onits	Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
Cpd	Power Dissipation Capacitance		pF	Vcc = 5.5 V	

54AC/74AC825 • 54ACT/74ACT825 54AC/74AC826 • 54ACT/74ACT826

8-Bit D-Type Flip-Flop

Description

The 'AC/'ACT825 and 'AC/'ACT826 are 8-bit buffered registers. They have Clock Enable and Clear features which are ideal for parity bus interfacing in high performance microprogramming systems. Also included are multiple enables that allow multi-use control of the interface. The'AC/'ACT825 has noninverting outputs; the 'AC/'ACT826 has inverting outputs.

The 'AC/'ACT825 is fully compatible with AMD's AM29825.

- Outputs Source/Sink 24 mA
- Inputs and Outputs are on Opposite Sides
- 'ACT825 and 'ACT826 have TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol ('AC/'ACT825)*

*The 'AC/'ACT826 has inverting outputs.

Pin Names

Do - D7	Data Inputs
O0 - O7	Data Outputs ('AC/'ACT825)
00 - 07	Data Outputs ('AC/'ACT826)
OE1, OE2, OE3	Output Enables
EN	Clock Enable
CLR	Clear
CP	Clock Input
	•

Connection Diagrams

-		
0E1 1	()	24 V _{CC}
0E2 2		23 OE3
D ₀ 3		22 O ₀
D1 4		21 01
D ₂ 5		20 O ₂
D3 6		19 O ₃
D4 7		18 O4
D5 8		17 O ₅
D6 9		16 O ₆
D7 10		15 07
CLR 11		14 EN
Gnd 12		13 CP
L		J

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

Functional Description

The 'AC/'ACT825 and 'AC/'ACT826 consist of eight D-type edge-triggered flip-flops. These devices have 3-state outputs for bus systems, organized in a broadside pinning. In addition to the clock and output enable pins, the buffered clock (CP) and buffered Output Enable (\overline{OE}) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH CP transition. With $\overline{OE_1}$, $\overline{OE_2}$ and $\overline{OE_3}$ LOW, the contents of the flip-flops are available at the outputs. When one of $\overline{OE_1}$, $\overline{OE_2}$ or $\overline{OE_3}$ is HIGH, the outputs go to the high impedance state.

Operation of the $\overline{\text{OE}}$ input does not affect the state of the flip-flops. The 'ACI'ACT825 and 'ACI'ACT826 have Clear ($\overline{\text{CLR}}$) and Clock Enable ($\overline{\text{EN}}$) pins. These pins are ideal for parity bus interfacing in high performance systems.

When $\overline{\text{CLR}}$ is LOW and $\overline{\text{OE}}$ is LOW, the outputs are LOW. When $\overline{\text{CLR}}$ is HIGH, data can be entered into the flip-flops. When $\overline{\text{EN}}$ is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When $\overline{\text{EN}}$ is HIGH, the outputs do not change state, regardless of the data or clock input transitions.

Function Table

		Inputs			Internal	Out	puts	Function
ŌE	CLR	EN	СР	Dn	Q	O ('825)	<u>0</u> ('826)	i unotion
н	Х	L	Г	L	L	Z	z	High Z
н	х	L	Г	н	н	Z	Z	High Z
н	L	Х	х	х	L	Z	Z	Clear
L	L	Х	Х	Х	L	L	L	Clear
н	н	н	Х	х	NC	Z	Z	Hold
L	Н	н	х	х	NC	NC	NC	Hold
н	н	L	L	L	L	Z	Z	Load
н	н	L	L	Н	н	Z	Z	Load
L	н	L	L	L	L	L	н	Load
L	н	L	ſ	н	н	н	L	Load

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance J = LOW-to-HIGH Transition NC = No Change

Logic Diagram ('AC/'ACT825)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. The 'AC/'ACT826 also has the same logic diagram with inverting outputs.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	V IN = Vcc or Ground, Vcc = 5.5 V, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25 \text{ °C}$
Ісст	Maximum Additional Icc/Input ('ACT825/826)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC825 • ACT825 • AC826 • ACT826

AC Characteristics

	\sim			74AC		54	AC	74	AC		
Symbol	Parameter	Vcc* (V)	TA = + 25°C CL = 50 pF		$T_A = -55 \degree C$ to + 125 °C CL = 50 pF		$TA = -40 \circ C$ to +85 \circ CL = 50 pF		Units	Fig. No.	
			Min	Тур	Мах	Min	Мах	Min	Max		
fmax	Maximum Clock Frequency	3.3 5.0		100 125						MHz	3-3
tplh	Propagation Delay CP to On	3.3 5.0	\square	9.0 6.5	~					ns	3-6
tphl	Propagation Delay CP to On	3.3 5.0	47	9.0 6.5	n	~				ns	3-6
tphl	Propagation Delay CLR to On	3.3 5.0		14,5 10.5	Π	Λ	7.			ns	3-6
tрzн	Output Enable Time OE to On	3.3 5.0		9.0 6.0	V	V	\square	1/		ns	3-7
tpzl	Output Enable Time OE to On	3.3 5.0		9.5 6.5			Z	1/~	$\tilde{\mathbb{O}}$	ns	3-8
tрнz	Output Disable Time OE to On	3.3 5.0		12.5 8.5					Ų,	PIS	3-7
tplz	Output Disable Time OE to On	3.3 5.0		12.0 7.5						ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Operating Requirements

	~		74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	TA = + CL = \$		TA = -55°C to +125°C CL = 50 pF	$T_A = -40 \circ C$ to +85 \circ CL = 50 pF	Units	Fig. No.
	INVA		Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or EOW Dn to CP	3.3 5.0	3.0 2.0				ns	3-9
th	Hold Time, HIGH or LOW D₁ to CP	3.3 5.0	2.0 1.5	A.			ns	3-9
ts	Setup Time, HIGH or LOW EN to CP	3.3 5.0	3.0 2.0		$\Lambda \Lambda$		ns	3-9
th	Hold Time, HIGH or LOW	3.3 5.0	2.0 1.5	1		1	ns	3-9
tw	CP Pulse Width HIGH or LOW	3.3 5.0	3.5 2.5				ns	3-6
tw	CLR Pulse Width, LOW	3.3 5.0	5.0 3.5				ns	3-6
trec	CLR to CP Recovery Time	3.3 5.0	2.0 1.5				ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

				74ACT		544	СТ	74	АСТ		
Symbol Parameter		Vcc* (V)	Ta = + 25°C CL = 50 pF			T _A = − 55°C to + 125°C C _L = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
4	\sim		Min	Тур	Max	Min	Мах	Min	Max		
fmax	Maximum Clock Frequency	5.0		110						MHz	3-3
tplh	Propagation Delay CP to On	5.0	$\overline{\Delta}$	8.0						ns	3-6
tphl	Propagation Delay	5.0		8.0	$\overline{\partial}$					ns	3-6
tрн∟	Propagation Delay CLR to On	5.0		12.0		Λ	\sim			ns	3-6
tpzн	Output Enable Time OE to On	5.0		7.5	97		and a start of the	a character and		ns	3-7
tpzl	Output Enable Time OE to On	5.0		8.0		\sim	R		5	ns	3-8
tрнz	Output Disable Time OE to On	5.0		11.0				4		ns	· 3-7
tplz	Output Disable Time OE to On	5.0		9.5					~ <	ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74A	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc* (V)	Ta = + Cl = {		$T_{A} = -55 \text{ °C}$ to +125 °C CL = 50 pF	TA = - 40°C to + 85°C CL = 50 pF	Units	Fig. No.
11	9/07~		Тур		Guaranteed Mi	nimum		
ts	Setup /Time, HIGH/or LOW Dn to CP	5.0	2.0				ns	3-9
th	Hold Time, HIGH or LOW Dn to CP	5.0	1.0		~		ns	3-9
ts	Setup Time, HIGH or LOW EN to CP	5.0	2.0	\square	MAN	\langle	ns	3-9
th	Hold Time, HIGH or LOW EN to CP	5.0	1.5			AI	ns	3-9
tw	CP Pulse Width HIGH or LOW	5.0	3.0			VR	ns	>3-6
tw	CLR Pulse Width, LOW	5.0	3.5			4	ns	3-6
trec	CLR to CP Recovery Time	5.0	1.5				ns	3-9

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions	
Symbol	Falanoto	Тур	Units	Conditions	
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V	
CPD	Power Dissipation Capacitance		pF	Vcc = 5.5 V	

54AC/74AC841 • 54ACT/74ACT841 54AC/74AC842 • 54ACT/74ACT842

10-Bit Transparent Latch

Description

The 'AC/'ACT841 and 'AC/'ACT842 bus interface latches are designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/data paths or buses carrying parity. The 'AC/'ACT841 is a 10-bit transparent latch, a 10-bit version of the 'ACI'ACT373.

• 'ACT841 and 'ACT842 have TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol ('AC/'ACT841)*

*The 'AC/'ACT842 has inverting outputs.

Pin Names

Do - D9	Data Inputs
O0 - O9	Data Outputs ('AC/'ACT841)
<u> </u>	Data Outputs ('AC/'ACT842)
ŌĒ	Output Enable
LE	Latch Enable

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

Pin Assignment for LCC

Functional Description

The 'AC/'ACT841 and 'AC/'ACT842 consist of ten D-type latches with 3-state outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation, as the output transition follows the data in transition. On the LE HIGH-to-LOW transition, the data that meets the setup and hold time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH the bus output is in the high impedance state.

	Inputs		Internal	Output		Function
ŌĒ	LE	D	Q	O ('841)	ō ('842)	
х	х	х	х	z	z	High Z
н	Н	L	L	z	z	High Z
н	н	н	н	z	z	High Z
Н	L	х	NC	z	Z	Latched
L	н	L	L	L	н	Transparent
L	н	н	н	н	L	Transparent
L	L	Х	NC	NC	NC	Latched

Function Table

H = HIGH Voltage Level

L = LOW Voltage Level

- X = Immaterial
- Z = High Impedance
- NC = No Change

Logic Diagram ('AC/'ACT841)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate progagation delays. The 'AC/'ACT842 has the same logic diagram with inverting outputs.

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	V IN = VCC or Ground, VCC = 5.5 V, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT841/842)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

AC Characteristics

	- An.			74AC		54	AC	74	AC		
Symbol Parameter		V cc* (V)	Ta = + 25°C CL = 50 pF		$T_A = -55 \text{°C}$ to + 125 °C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.	
	NO_{N}		Min	Тур	Мах	Min	Max	Min	Max		
tplH	Propagation Delay Dn to On	3.3 5.0		17.0 12.0						ns	3-5
tph∟	Propagation Delay Dn to On	3.3 5.0	\square	16.5 /11.0						ns	3-5
tplh	Propagation Delay LE to On	3.3 5.0	$\int \int$	18.5 13.0	\overline{n}					ns	3-6
tph∟	Propagation Delay LE to On	3.3 5.0	~./	17.0/ 12.0/			17			ns	3-6
tрzн	Output Enable Time OE to On	3.3 5.0		14.5 10.0		N			\sim	ns	3-7
tpzl	Output Enable Time OE to On	3.3 5.0		11.5 8.0				1/1		ns	3-8
tрнz	Output Disable Time OE to On	3.3 5.0		13.0 9.0					4	ns	3-7
tplz	Output Disable Time OE to On	3.3 5.0		13.0 9.0						ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

T.			74A	C	54AC	74AC		
Symbol	Parameter	Vcc* 7(V)	TA = + 25°C CL = 50 pF		TA = − 55°C to + 125°C CL = 50 pF	TA = - 40 °C to + 85 °C CL = 50 pF	Units	Fig. No.
	44121		Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Dn to LE	3.3 5.0	4,0 2.5	//	$\Pi \Lambda \Pi$		ns	3-9
th	Hold Time, HIGH or LOW Dn to LE	3.3 5.0	0 0	7	VU U/		nis	3-9
tw	LE Pulse Width, HIGH	3.3 5.0	4.0 2.5			102	ns	3-6

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

				74ACT		544	СТ	74/	АСТ		
Symbol	Symbol Parameter		Ta = + 25°C CL = 50 pF			TA = -55 °C to +125 °C CL = 50 pF		$T_A = -40 ^{\circ}C$ to +85 $^{\circ}C$ CL = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max	1	
tPLH	Propagation Delay Dn to On	5.0		12.0						ns	3-5
tphl	Propagation Delay Dr to On	5.0	17 1	11.0						ns	3-5
tрLн	Propagation Delay	5.0	11/	13.0	117	5	7			ns	3-6
tphl	Propagation Delay LE to On	5.0		12.0	11	AV,	$\left \right $	Π.	\square	ns	3-6
tрzн	Output Enable Time OE to On	5.0		10.0		Z	5	17	R	ns	3-7
tpzl	Output Enable Time OE to On	5.0		8.0					IJ	ns	3-8
tрнz	Output Disable Time OE to On	5.0		9.0						ns	3-7
tplz	Output Disable Time OE to On	5.0		9.0						ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

			74 A	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc*	TA = H CL = {		$T_A = -55 \degree C$ to +125 °C CL = 50 pF	TA = -40°C to +85°C CL = 50 pF	Units	Fig. No.
			Тур		Guaranteed Mi			
ts	Setup Time, HIGH or LOW Dn to LE	5,0	2.5	M	$\Pi M I$	AF	ns	3-9
th	Hold Time, HIGH or LOW Dn to LE	5.0	0	4944 		NA	ns	3-9
tw	LE Pulse Width, HIGH	5.0	2.5				ns	3-6

AC Operating Requirements

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol	raiallielei	Тур		Conditions
CIN	Input Capacitance	4.5	рF	Vcc = 5.5 V
Срр	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC843 • 54ACT/74ACT843 54AC/74AC844 • 54ACT/74ACT844

9-Bit Transparent Latch

Description

The 'AC/'ACT843 and 'AC/'ACT844 bus interface latch is designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/data paths or buses carrying parity.

The 'AC/'ACT843 is functionally and pin compatible with AMD's AM29843.

• 'ACT843 and 'ACT844 have TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol ('AC/'ACT843)*

*The 'AC/'ACT844 has inverting outputs.

Pin Names

Do - D8	Data Inputs
O0 - O8	Data Outputs ('AC/'ACT843)
<u> 0</u> 0 - <u>0</u> 8	Data Outputs ('AC/'ACT844)
ŌĒ	Output Enable
LE	Latch Enable
CLR	Clear
PRE	Preset

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

Functional Description

The 'AC/'ACT843 and 'AC/'ACT844 consist of nine D-type latches with 3-state outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation, as the output transition follows the data in transition. On the LE HIGH-to-LOW transition, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the bus output is in the

high impedance state. In addition to the LE and \overline{OE} pins, the 'AC/'ACT843 and 'AC/'ACT844 have a Clear (\overline{CLR}) pin and a Preset (\overline{PRE}) pin. These pins are ideal for parity bus interfacing in high performance systems. When \overline{CLR} is LOW, the outputs are LOW if \overline{OE} is LOW. When \overline{CLR} is HIGH, data can be entered into the latch. When \overline{PRE} is LOW, the outputs are HIGH if \overline{OE} is LOW. Preset overides \overline{CLR} .

		Inputs			Internal	Out	puts	Function
CLR	PRE	ŌĒ	LE	D	Q	O ('843)	Ō ('844)	
н	н	н	н	L	L	Z	z	High Z
н	н	н	н	н	н	z	z	High Z
н	н	н	L	Х	NC	Z	z	Latched
н	н	L	н	L	L	L	н	Transparent
н	н	L	н	н	н	н	L	Transparent
н	н	L	L	Х	NC	NC	NC	Latched
н	L	L	х	Х	н	н	L	Preset
L	н	L	Х	х	L	L	н	Clear
L	L	L	Х	Х	н	Н	L	Preset
L	Н	Н	L	Х	L	Z	Z	Clear/High Z
Н	L	н	L	Х	н	Z	Z	Preset/High Z

Function Tables

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

NC = No Change

Logic Diagram ('AC/'ACT843)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. The 'AC/'ACT844 has the same logic diagram with inverting outputs.

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
Icc	Maximum Quiescent Supply Current	160	80	μΑ	V IN = Vcc or Ground, Vcc = 5.5 V, TA = Worst Case
Icc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT843/844)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

DC Characteristics (unless otherwise specified)

AC Characteristics

<u></u>			74AC		54AC		74AC		
Symbol	Parameter	Vcc* (V)	TA = + 25° CL = 50 p	$T_A = -55^{\circ}C$ to + 125^{\circ}C CL = 50 pF		$T_A = -40^{\circ}C$ to +85^{\circ}C CL = 50 pF	Units	Fig. No.	
			Min Typ	Max	Min N	lax	Min Max		
tplH	Propagation Delay Dn to On	3.3 5.0	17.0 12.0			<	OL V	ns	3-5
tphl	Propagation Delay Dn to On	3.3 5.0	16.5 11.0		26	\langle	Rr.	ns	3-5
tplh	Propagation Delay LE to On	3.3 5.0	18.5 13.0	<i>A</i>	M	5		ns	3-6
tphl	Propagation Delay LE to On	3.3 5.0	17.0 12.0	$\langle \rangle$				ns	3-6
tplh	Propagation Delay PRE to On	3.3 5.0	17.0 12.0	72				'ns	3-6
tphl	Propagation Delay CLR to On	3.3 5.0	17.0 12.0					ns	3-6
tрzн	Output Enable Time OE to On	3.3 5.0	14.5 10.0					ns	3-7
tpzL	Output Enable Time	3.3 5.0	11.5 8.0					ns	3-8
tрнz	Output Disable Time OE to On	3.3 5.0	13.0 9.0					ns	3-7
tp∟z	Output Disable Time OE to On	3.3 5.0	13.0 9.0					ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Operating Requirements

			74	AC	54AC	74AC	1	
Symbol	Parameter	Vcc* (V)	TA = + CL = \$		TA = − 55°C to + 125°C CL = 50 pF		Units	Fig. No.
			Тур		Guaranteed	Minimum		
ts	Setup Time, HIGH or LOW Dn to LE	3.3 5.0	4.0 2.5	20	\mathbb{A}	PDD	ns	3-9
th	Hold Time, HIGH or LOW Dn to LE	3.3 5.0	0	\mathcal{M}	UD_{a}		ns	3-9
tw	LE Pulse Width, HIGH	3.3 5.0	4.0 2.5	20			ns	3-6
tw	PRE Pulse Width, LOW	3.3 5.0	4.0				ns	3-6
tw	CLR Pulse Width, LOW	3.3 5.0	4.0 2.5				ns	3-6
trec	PRE Recovery Time	3.3 5.0	5.0 4.0				ns	3-9
trec	CLR Recovery Time	3.3 5.0	5.0 4.0				ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

	\land		74ACT		54ACT	74A	ст		
Symbol	Parameter	V cc* (V)	TA = + 25°C CL = 50 pF		T _A = − 55°C to + 125°C C _L = 50 pF	TA = -40 °C to +85 °C CL = 50 pF		Units	Fig. No.
			Min Typ N	lax	Min Max	Min	Max		
tрLH	Propagation Defay Dn to On	5.0	12.0				<u></u>	ns	3-5
tphL	Propagation Delay Dn to On	5.0	11.0					ns	3-5
tplH	Propagation Delay LE to On	5.0	13.0	\geq				ns	3-6
tphl	Propagation Delay LE to On	5.0	12.0		\sim			ns	3-6
tplH	Propagation Delay PRE to On	5.0	12.0	7	ΛD			ns	3-6
t PHL	Propagation Delay CLR to On	5.0	12.0			V_{\prime}		ns	3-6
tрzн	Output Enable Time OE to On	5.0	10.0		2		$\tilde{\mathcal{O}}$	ns	3-7
tpzl	Output Enable Time OE to On	5.0	8.0					ns	3-8
tрнz	Output Disable Time OE to On	5.0	9.0					ns	3-7
tplz	Output Disable Time OE to On	5.0	9.0					ns	3-8

*Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Operating Requirements

	210		74A	СТ	54ACT	74ACT		
Symbol	Parameter	Vcc* ∕_(V)	Ta = + Cl = {		TA = -55°C to +125°C CL = 50 pF	T _A = - 40 °C to +85 °C C _L = 50 pF	Units	Fig. No.
	4101		Тур		Guaranteed Min	nimum		
ts	Setup Time, HIGH or LOW Dn to LE	5.0	2.5	$\overline{\Lambda}$	75		ns	3-9
th	Hold Time, HIGH or LOW D₁ to LE	5.0	6	[]]]	$ \Lambda $	\sim	ns	3-9
tw	LE Pulse Width, HIGH	5.0	2.5		VV/	$1 \wedge$	ns	3-6
tw	PRE Pulse Width, LOW	5.0	2.5			10	ns	3-6
tw	CLR Pulse Width, LOW	5.0	2.5			UTAR	ns	> 3-6
trec	PRE Recovery Time	5.0	5.0				ns	3-9
trec	CLR Recovery Time	5.0	5.0			L	√ns	3-9

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT	Units	Conditions
Symbol	Falameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
Cpd	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC845 • 54ACT/74ACT845 54AC/74AC846 • 54ACT/74ACT846

8-Bit Transparent Latch

Description

The 'AC/'ACT845 and 'AC/'ACT846 bus interface latches are designed to eliminate the extra packages required to buffer existing latches and provide easy expansion through multiple \overline{OE} controls.

The 'AC/'ACT845 is functionally and pin compatible with AMD's AM29845.

• 'ACT845 and 'ACT846 have TTL-Compatible Inputs

Ordering Code: See Section 6

Logic Symbol ('AC/'ACT845)*

*The 'AC/'ACT846 has inverting outputs.

Pin Names

D0 - D7	Data Inputs
O0 - O7	Data Outputs ('AC/'ACT845)
<u>0</u> 0 - 07	Data Outputs ('AC/'ACT846)
OE1 - OE3	Output Enables
LE	Latch Enable
CLR	Clear
PRE	Preset

Connection Diagrams

Pin Assignment for DIP, Flatpak and SOIC

for LCC

Functional Description

The 'AC/'ACT845 and 'AC/'ACT846 consist of eight D-type latches with 3-state outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation as the output transition follows the data in transition. On the LE HIGH-to-LOW transition, the data that meets the setup times is latched. Data appears on the bus when the Output Enables ($\overline{OE_1}$, $\overline{OE_2}$, $\overline{OE_3}$) are LOW. When any one of $\overline{OE_1}$, $\overline{OE_2}$ or $\overline{OE_3}$ is HIGH, the bus output is in the high impedance state.

Function Table

		Inputs			Internal	Out	puts	Function
CLR	PRE	OE1-OE3	LE	D	Q	O ('845)	ō ('846)	
н	н	Н	Η	L	L	Z	z	High Z
н	н	Н	Н	н	н	z	z	High Z
н	н	Н	L	х	NC	Z	Z	Latched
н	н	L	Н	L	L	L	н	Transparent
н	н	L	Н	н	н	н	L	Transparent
Н	Н	L	L	х	NC	NC	NC	Latched
Н	L	L	Х	Х	н	н	L	Preset
L	Н	L	Х	Х	L	L	н	Clear
L	L	L	Х	х	н	н	L	Preset
L	Н	н	L	х	L	Z	Z	Clear/High Z
Н	L	н	L	х	н	Z	Z	Preset/High Z

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

NC = No Change

Logic Diagram ('AC/'ACT845)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. The 'ACI'ACT846 has the same logic diagram with inverting outputs.

Symbol	Parameter	54AC/ACT	74AC/ACT	Units	Conditions
lcc	Maximum Quiescent Supply Current	160	80	μΑ	V IN = Vcc or Ground, Vcc = 5.5 V, TA = Worst Case
lcc	Maximum Quiescent Supply Current	8.0	8.0	μΑ	$V_{IN} = V_{CC} \text{ or}$ Ground, $V_{CC} = 5.5 \text{ V},$ $T_A = 25^{\circ}C$
Ісст	Maximum Additional Icc/Input ('ACT845/846)	1.6	1.5	mA	$V_{IN} = V_{CC} - 2.1 V$ $V_{CC} = 5.5 V,$ $T_A = Worst Case$

DC Characteristics (unless otherwise specified)

AC845 • ACT845 • AC846 • ACT846

AC Characteristics

			74AC		54A()	74	AC		
Symbol	Parameter	Vcc* (V)	TA = + 25 CL = 50 p		TA = -5 to + 12 CL = 50	5°C	Ta = - to + CL = \$		Units	Fig. No.
			Min Typ	Max	Min	Max	Min	Max		
tplH	Propagation Detay Dn to On	3.3 5.0	17.0 12.0						ns	3-5
t PHL	Propagation Delay Dn to On	8.3 5.0	16.5 11.0						ns	3-5
t PLH	Propagation Delay LE to On	3.3 5.0	18.5 13.0	\sim					ns	3-6
t PHL	Propagation Delay LE to On	3.3 5.0	17.0 12.0		5				ns	3-6
tplH	Propagation Delay PRE to On	3.3 5.0	17.0 12.0	IJ	Π/I	>	7		ns	3-6
t PHL	Propagation Delay CLR to On	3.3 5.0	17.0 12.0			I	1/		ns	3-6
tрzн	Output Enable Time OE to On	3.3 5.0	14.5 10.0			IJ		2	ns	3-7
tpzl	Output Enable Time OE to On	3.3 5.0	11.5 8.0				<	\sum	ns	3-8
tрнz	Output Disable Time OE to On	3.3 5.0	13.0 9.0						ns	3-7
tplz	Output Disable Time OE to On	3.3 5.0	13.0 9.0						ns	3-8

*Voltage Range 3.3 is 3.3 V \pm 0.3 V

Voltage Range 5.0 is 5.0 V \pm 0.5 V

	~		74	AC	54AC	74AC		
Symbol	Parameter	Vcc* (V)	TA = H CL = S	- 25°C 50 pF	TA = − 55 °C to + 125 °C CL = 50 pF	T _A = - 40 °C to + 85 °C C _L = 50 pF	Units	Fig. No.
~			Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Dn to LE	3.3 5.0	4.0 /2.5				ns	3-9
th	Hold Time, HIGH or LÓW D₁ to LE	3.3 5.0	0	$\widehat{\Lambda}$	N ~		ns	3-9
tw	LE Pulse Width, HIGH	3.3 5.0	4.0 2.5		$(A \cap$	JA 4000	ns	3-6
tw	PRE Pulse Width, LOW	3.3 5.0	4.0 2.5	2	VV/	112	ns	3-6
tw	CLR Pulse Width, LOW	3.3 5.0	4.0 2.5				ns	3-6
trec	PRE Recovery Time	3.3 5.0	5.0 4.0				ns	3-9
trec	CLR Recovery Time	3.3 5.0	5.0 4.0				ns	3-9

*Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

AC Characteristics

			74AC	г	544	аст	744	АСТ		
Symbol	Parameter	Vcc* (V)	TA = + 25 CL = 50		to +	- 55°C 125°C 50 pF	to +	- 40°C 85°C 50 pF	Units	Fig. No.
			Min Typ	Max	Min	Max	Min	Max		
tplH	Propagation Delay Dn to On	5.0	12.0						ns	3-5
tphl	Propagation Delay Dn to On	5.0	11.0						ns	3-5
tplH	Propagation Delay LE to On	5.0	13/5	\sim					ns	3-6
tphl	Propagation Delay LE to On	5.0	12.0	117	\wedge				ns	3-6
tplH	Propagation Delay PRE to On	5.0	12.0	4	Λ	7)			ns	3-6
tphl	Propagation Delay CLR to On	5.0	12.0		V	\square	1/	\geq	ns	3-6
tрzн	Output Enable Time OE to On	5.0	10.0			7		2	ns	3-7
tpzl	Output Enable Time OE to On	5.0	18.0				~	4	ns	3-8
tрнz	Output Disable Time OE to On	5.0	9.0						ns	3-7
tplz	Output Disable Time OE to On	5.0	9.0						ns	3-8

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

~			74A	СТ	54ACT	74ACT		:
Symbol	Parameter	Vcc* (V)	TA = + CL = 5		TA = -55°C to +125°C CL = 50 pF	T _A = - 40 °C to + 85 °C C _L = 50 pF	Units	Fig. No.
	INISI	7	Тур		Guaranteed Mi	nimum		
ts	Setup Time, HIGH or LOW Dn to LE	5.0	2.5	$\overline{\Lambda}$	nn.		ns	3-9
th	Hold Time, HIGH or LOW Dn to LE	5.0	40	\mathbb{Z}	7//\//	5	ns	3-9
tw	LE Pulse Width, HIGH	5.0	2.5		4 11/2		ns	3-6
tw	PRE Pulse Width, LOW	5.0	2.5			N/N	ns	3-6
tw	CLR Pulse Width, LOW	5.0	2.5				ns	3-6
trec	PRE Recovery Time	5.0	5.0				ns	3-9
trec	CLR Recovery Time	5.0	5.0				ns	3-9

AC Operating Requirements

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Capacitance

Symbol	Parameter	54/74AC/ACT		Conditions
Symbol	Falanoloi	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	Vcc = 5.5 V
CPD	Power Dissipation Capacitance		pF	Vcc = 5.5 V

54AC/74AC1010 • 54ACT/74ACT1010

16 x 16 Parallel Multiplier/Accumulator

Description

The 'AC/'ACT1010 is a high-speed, low-power 16 x 16 bit parallel multiplier with a 35-bit accumulator that is ideally suited for real-time digital signal processing applications. Fabricated using 1.3-micron FACT technology, the 'AC/'ACT1010 offers a very low power alternative (10% of the power of bipolar and NMOS counterparts) and exceptional speed (55 ns maximum multiply accumulate) performance.

The 'AC/'ACT1010 is a pin and functional replacement for TRW's TDC1010; the 'ACT1010 operates from a single Vcc supply and is compatible with standard TTL logic levels.

The architecture of the 'AC/'ACT1010 features one 16-bit input port dedicated to the X input registers (controlled by CLKX), one 16-bit I/O port used for loading the Y input registers (controlled by CLKY) and for preloading and displaying the LSP of the P output registers (controlled by CLKP), one 16-bit I/O port for preloading and displaying the MSP of the P output registers (controlled by CLKP), and one 3-bit I/O port for loading and displaying the contents of the XTP (most significant bits) of the P output registers (also controlled by CLKP).

When the unregistered preload input (PREL) is active, all the output buffers are forced into a high impedance state. By using the 3-state controls (TSX, TSM and TSL) as register enables, external data is loaded on the rising edge of each CLKP pulse.

Both twos complement and unsigned magnitude arithmetic are supported through the registered TC line. The accumulator functions are enabled through the registered ACC line. When the registered SUB signal is active/inactive, the accumulator data is subtracted from/added to the multiplier product. The result is loaded into the accumulator registers for use in subsequent operations. The multiplier product is automatically sign extended for twos complement arithmetic with the accumulator. The registered RND signal controls rounding of the arithmetic result if active,

Connection Diagrams

	·	_
Xe	1	64 X7
X ₅ [2	63 X ₈
X4[3	62 X9
X3[4	61 X 10
X ₂ [5	60 X 11
X1[6	59 X ₁₂
X0[7	58 X ₁₃
Po.YoL	8	57 X 14
P1.Y1	9	56 X 15
P ₂ ,Y ₂ [10	55 TSL
P ₃ ,Y ₃	11	54 RND
P4.Y4	12	53 SUB
P ₅ .Y ₅ [13	52 ACC
P6.Y6	14	51 CLKX
P7.Y7	15	50 CLKY
GND	16	49 Vcc
P ₈ .Y ₈	17	48 TC
P ₉ ,Y ₉	18	47]TSX
P10.Y10	19	46 PREL
P11.Y11	20	45 TSM
P ₁₂ ,Y ₁₂ [21	44 CLKP
P13.Y13	22	43 P ₃₄
P14.Y14	23	42 P ₃₃
P15.Y15	24	41 P ₃₂
P ₁₆ [25	40 P ₃₁
P17	26	39 P ₃₀
P ₁₈ [27	38 P ₂₉
P ₁₉ [28	37]P ₂₈
P ₂₀ [29	36 P ₂₇
P ₂₁ [30	35 P ₂₆
P ₂₂ [31	34 JP ₂₅
P ₂₃ [32	33 P ₂₄

Pin Assignment for DIP

Pin Assignment for PCC

a '1' is added to the MSB of the LSP of multiplication result and then fed into the accumulator circuitry.

The function of the data busses, X, Y and P and the effect of the format pins, TC, RND, ACC, and SUB can be described mathematically by:

$$P[nT] = \sum_{i=0}^{15} \{X_i \cdot 2^i\} \cdot \sum_{i=0}^{15} \{Y_i \cdot 2^i\} + (-1)^{SUB} \cdot ACC \cdot \sum_{i=0}^{34} \{P_i[(n-1)T] \cdot 2^i\} + RND \cdot 2^{15}$$

where T is the clock period of CLKP, n represents the number of the clock cycle, X, Y, RND, ACC and SUB values are the values found in the registers tMA ns before clock period n.

- 16 x 16 Parallel Multiplier/Accumulator
- High Speed—55 ns Multiply/Accumulate Time
- Selectable Accumulation, Subtraction, Rounding and Preloading with a 35-Bit Result
- Pin and Functionally Compatible with the TRW TDC1010J
- High Drive (8 mA) Output Capability
- Low Power Consumption (less than 250 mW typical)—Less Than 7% of the Power of Compatible Bipolar and 14% of the Power of NMOS Designs
- Inputs and Outputs Directly TTL-Compatible
- Single Vcc Supply
- ± 2000 V ESD Protection

Ordering Code: See Section 6

Pin Names

X0 - X15	Multiplicand Data Inputs
Yo - Y15	Multiplier Data Inputs
CLKX, CLKY	Input Clocks
ACC	Accumulate Input
SUB	Subtract Input
RND	Round Input
PREL	Preload Input
тс	Twos Complement Control Input
TSM, TSX, TSL	3-State Output Controls
CLKP	Output Clock
P15 - P0	Least Significant Product (LSP)
P31 - P16	Most Significant Product (MSP)
P34 - P32	Extended Product Output (XTP)

Block Diagram

Functional Description

Signal Descriptions Inputs:	
XIN (X15 - X0)	Multiplicand Data Inputs
YIN (Y15 - Y0)	Multiplier Data Inputs
Input Clocks:	
CLKX, CLKY	Input data is loaded on the rising edge of these clocks.
Outputs:	
XTP (P34 - P32)	Extended Product Output (3-bits)
MSP (P31 - P16)	Most Significant Product
LSP (P15 - P0)	Least Significant Product
Output Clock:	
CLKP	Output data is loaded into the output register on the rising edge of this clock.

Controls

ACC (Accumulate)

When ACC is HIGH, the contents of the output registers (XTP, MSP and LSP) are added to or subtracted from the multiplier output. When ACC is LOW, the device acts as a simple multiplier with no accumulation being performed and the next product generated will be stored directly into the output registers. The ACC signal is loaded on the rising edge of the CLKX or CLKY and must be valid for the duration of the data input.

SUB (Subtract)

When the ACC and SUB signals are both HIGH, the contents of the output registers are subtracted from the next product generated and the difference is stored back into the output registers at the rising edge of the next CLKP. When ACC is HIGH and SUB is LOW, an addition instead of a subtraction is performed. Like the ACC signal, the SUB signal is loaded into the SUB register at the rising edge of either CLKX or CLKY and must be valid over the same period as the input data is valid. When the ACC is LOW, SUB acts as a "don't care" input.

RND (Round)

A HIGH level at this input adds a '1' to the most significant bit of the LSP to round up the XTP and MSP data. RND, like ACC and SUB, is loaded on the rising edge of either CLKX or CLKY and must be valid for the duration of the input data.

PREL (Preload)

When the PREL input is HIGH, the output is driven to a HIGH impedance state. When the TSX, TSL and TSM inputs are also high, the contents of the output register can be preset to the preload data applied to the output pins at the rising of CLKP. The PREL, TSM, TSL and TSX inputs must all be valid over the same period that the preload input is valid.

YIN/LSP Output

Shares functions between 16-bit data input (YIN) and the least significant product output (LSP).

TSX, TSL, TSM (3-State Output Controls)

The XTP, MSP and LSP registers are controlled by direct non-registered control signals. These output drivers are at high impedance (disabled) when control signals TSX, TSM and TSL are HIGH and are enabled when TSX, TSM and TSL are LOW.

Notes on Twos Complement Formats

1. In twos complement notation, the location of the binary point that signifies the separation of the fractional and integer fields is just after the sign, between the sign bit (-2°) and the next significant bit for the multiplier inputs. This same format is carried over to the output format, except that the extended significance of the integer field is provided to extend the utility of the accumulator. In the case of the output notation, the output binary point is located between the -2^0 and 2^{-1} bit positions. The location of the binary point is arbitrary, as long as there is consistency with both the input and output formats. The number field can be considered entirely integer with the binary point just to the right of the least significant bit for the input, product and the accumulated sum.

2. When in the non-accumulating mode, the first four bits (P₃₄ to P₃₁) will all indicate the sign of the product. Additionally, the P₃₀ term will also indicate the sign except for one exceptional case when multiplying $(-1) \times (-1)$. With the additional bits that are available in this multiplier, the $(-1) \times (-1)$ is a valid operation that yields a (+1) product.

3. In operations that require the accumulation of single products or sum of products, there is no change in format. To allow for a valid summation beyond the available for a single multiplication product, three additional significant bits (guard bits) are provided. This is the same as if the product was accumulated off-chip in a separate 35-bit wide adder. Taking the sign at the most significant bit position will guarantee that the largest number field will be used. When the accumulated sum only occupies the right hand portion of the accumulator, the sign will be extended into the lesser significant bit positions.

PREL	TSX	TSM	TSL	ХТР	MSP	LSP
0	0	0	0	Q	Q	Q
0	0	0	1	Q	Q	High Z
0	0	1	0	Q	High Z	Q
0	0	1	1	Q	High Z	High Z
0	1	0	0	High Z	Q	Q
0	1	0	1	High Z	Q	High Z
0	1	1	0	High Z	High Z	Q
0	1	1	1	High Z	High Z	High Z
1	0	0	0	High Z	High Z	High Z
1	0	0	1	High Z	High Z	PL
1	0	1	0	High Z	PL	High Z
1	0	1	1	High Z	PL	PL
1	1	0	0	PL	High Z	High Z
1	1	0	1	PL	High Z	PL
1	1	1	0	PL	PL	High Z
1	1	1	1	PL	PL	PL

Preload Truth Table

Notes:

High Z = Output buffers at high impedance (output disabled).

- Q = Output buffers at low impedance. Contents of output register will be transferred to output pins.
- PL = Output buffers at high impedance, or output disabled. Preload data supplied externally at output pins will be loaded into the output register at the rising edge of CLKP.

Figure 2: Fractional Unsigned Magnitude Notation

Figure 4: Integer Unsigned Magnitude Notation

Recommended Operating Conditions

Symbol	Parameter		Conditions	Limits	Units
Vcc	Supply Voltage (unless otherwise specified)			2.0 to 6.0	v
VI	Input Voltage			0 to Vcc	v
Vo	Output Voltage			0 to Vcc	v
TA	Operating Temperature	74AC/ACT 54AC/ACT		– 40 to + 85 – 55 to + 125	°C ℃
Sr	Maximum Slew Rate (except for Schmitt inputs)		VIN Vmeas Vcc@4.5V Vcc@5.5V	0.8 to 2.0 0.8 to 2.0 10.0 8.0	V V ns ns

Absolute Maximum Ratings*

Symbol	Parameter	Conditions	Limits	Units
Vcc	Supply Voltage		-0.5 to 7.0	V
liк Vi	DC Input Diode Current or DC Input Voltage	$V_{I} = 0.5$ $V_{I} = V_{CC} + 0.5$	- 20 20 - 0.5 to Vcc + 0.5	mA mA V
loк Vo	DC Output Diode Current or DC Output Voltage	Vo = -0.5 $Vo = Vcc + 0.5$	- 20 20 - 0.5 to Vcc + 0.5	mA mA V
lo	DC Output Source or Sink Current, Per Output Pin		± 15	mA
ICC OF IGND	DC Vcc or Ground Current		± 20	mA
Тѕтс	Storage Temperature		- 65 to 150	°C

*Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

AC Test Conditions

Input Pulse Levels	GND to 3.0 V
Input Rise and Fall Times	3 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load	See Figures 5 and 6

Capacitance (TA = +25 °C, f = 1.0 MHz)

Symbol		Max	Unit	Conditions
CIN	Input Capacitance	7.0	pF	VIN = 0V
Соит	Output Capacitance	5.0	pF	Vout = 0V

AC1010 • ACT1010

	• •	-		•			
Symbol	Parameter	74AC/ACT 25°C		54AC/ACT 74AC/ACT		Units	Conditions
eybei	i didilotoi	Тур	Gu	aranteed I	_imit	•	oonanono
lin	Maximum Input Current		0.1	10.0	1.0	μΑ	Vcc = Max Vin = Vcc
loz	Maximum 3-State Current		0.5	10.0	5.0	μA	High Z, Vcc = Max Vout = 0 to Vcc
Iccq	Supply Current, Quiescent	1.0	2.0	10.0	10.0	mA	$V_{CC} = Max, V_{IN} = 0 V$ TSL, TSM, TSX = 5.0 V
ICCD	Supply Current, 12.4 MHz Loaded	300		325	325	mA	Vcc = Max, f = 12.4 MHz TSL, TSM, TSX = 5.0 V Test Load: See Note 1
ICCD	Supply Current, 20 MHz Loaded	325		350	350	mA	Vcc = Max, f = 20 MHz TSL, TSM, TSX = 5.0 V Test Load: See Note 1
	Minimum High Level Output	4.49	4.4	4.4	4.4	v	VIN = VIL or VIH IOUT = 20 μ A, Vcc = 4.5 V
Vон		5.49	5.4	5.4	5.4	v	VIN = VIL or VIH IOUT = 20 μ A, Vcc = 5.5 V
			3.86	3.70	3.76	v	IOH = -8 mA, VCC = 4.5 V
			4.86	4.70	4.76	v	IOH = -8 mA, VCC = 5.5 V
		0.001	0.1	0.1	0.1	v	VIN = VIL or VIH, IOUT = 20 μ A, VCC = 4.5 V
Vol	Maximum High Level Output	0.001	0.1	0.1	0.1	v	VIN = VIL or VIH, IOUT = 20 μ A, VCC = 5.5 V
			0.32	0.4	0.37	v	IOL = 8 mA, $VCC = 4.5$ V
			0.32	0.4	0.37	V	IOL=8 mA, Vcc=5.5 V
Iold	Minimum Dynamic Output Current			32	32	mA	Vcc = 5.5 V Vold = 2.2 V
Іонр	Minimum Dynamic Output Current			- 32	- 32	mA	Vcc = 5.5 V Voнd = 3.3 V

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Note 1: Test Load 50 pf, 500 ohm to Ground

AC Characteristics

				54	AC			74/	AC				
	~		$T_A = -55$ °C to $+125$ °C				$T_A = -40$ °C to $+85$ °C						
Symbol	Parameter	Vcc* (V)	101	0-60	101	0-70	101	0-55	101	0-65	Units	Fig. No.	
	2100~		Min	Max	Min	Max	Min	Max	Min	Max			
tма	Multiply-Accumulate	3.3 5.0									ns	5	
tD	Output Delay	3.3 5.0		M							ns	5	
tena	3-State Output ¹ Enable Delay	3.3 5.0	11	M,	$\langle $	111		7			ns	6	
tdis	3-Stage Output ¹ Disable Delay	3.3 5.0			27		\mathbb{W}				ns	6	
ts	Input Register Setup Time	3.0 5.0					22		1/1	\mathbb{Q}	ns	7, 9	
th	Input Register Hold Time	3.3 5.0							5	4	ns	7, 9	
tw	Clock Pulse Width	3.3 5.0									ns	9	

Note 1: Transition is measured to ± 500 mV from steady state voltage with loading specified in Figure 6.

*Voltage Range 3.3 is 3.3 V ± 0.3 V Voltage Range 5.0 is 5.0 V ± 0.5 V

AC Characteristics

						54ACT				74ACT				
			$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$				Ta =	– 40°C	85°C					
Symbol	Parameter	Vcc* (V)	101	0-60	1010-70		1010-55		1010-65		Units	Fig. No.		
			Min	Мах	Min	Max	Min	Мах	Min	Max				
tма	Multiply-Accumulate Time	5.0						55.0		65.0	ns	5		
tD	Output Delay	5.0						19.5		19.5	ns	5		
tena	3-State Output ¹ Enable Delay	5.0						14.0		14.0	ns	6		
tDIS	3-Stage Output ¹ Disable Delay	5.0						14.0		14.0	ns	6		
ts	Input Register Setup Time	5.0					5.0		5.0		ns	7, 9		
th	Input Register Hold Time	5.0					1.0		1.0		ns	7, 9		
tw	Clock Pulse Width	5.0					3.5		3.5		ns	9		

Note 1: Transition is measured to ±500 mV from steady state voltage with loading specified in Figure 6.

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Figure 5: AC Output Test Load

Figure 6: Output 3-State Delay Load

Figure 7: Setup and Hold Time

Figure 8: State Control Timing

Figure 9: Timing Diagram

54AC/74AC1016 • 54ACT/74ACT1016

 16×16 Parallel Multiplier

Description

The 'AC/ACT1016 is a high-speed, low power 16 \times 16-bit parallel multiplier that is ideally suited for real-time digital signal processing applications. Fabricated using advanced FACT technology, the '1016 offers a very low power alternative and exceptional performance.

The 'AC/ACT1016 is a pin and functional replacement for TRW's MPY016H; the 'AC/ACT1016 operates from a single Vcc supply and is compatible with standard TTL logic levels.

The architecture of the 'ACT1016 features one 16-bit port dedicated to the X input registers (controlled by CLKX), one 16-bit I/O port used for loading the Y input registers (controlled by CLKY) and for displaying the Least Significant Product (LSP), and one 16-bit output port multiplexed between displaying the Least Significant Product (LSP) and the Most Significant Product (MSP). The I/O port direction is controlled by OEL and the output port 3-state control is controlled by OEP. The result is registered if FT is LOW (controlled by CLKL for the LSP and CLKM for the MSP) and unregistered if FT is held HIGH.

Twos complement, unsigned magnitude and mixed mode multiplications are possible through the twos complement X and Y mode controls, XM and YM, respectively. These mode controls are registered, controlled by the input clocks CLKX and CLKY.

Result rounding is controlled by the registered RND signal (controlled by both CLKX and CLKY). Selection of one of the two rounding modes is determined by the FA signal.

- 16 × 16 Parallel Multiplier
- Selectable Rounding Modes
- Twos Complement, Unsigned Magnitude and Mixed Mode Multiplication
- Pin and Functionally Compatible with TRW MPY016H
- Provides Low Voltage, High-Speed Operation
- Single Vcc Supply
- ± 2000 V ESD Protection
- Source/Sink 8 mA
- 3-State Outputs
- 'ACT1016 has TTL-Compatible Inputs

Connection Diagrams

X4 1	-	64 X5
X3 2		63 X6
X2 3		62 X7
X1 4		61 X8
X0 5		60 X9
OEL 6		59 X10
CLKL 7		58 X11
CLKY 8		57 X12
Po, Yo 9		56 X13
P1, Y1 10		55 X14
P2, Y2 11		54 X15
P3, Y3 12		53 CLKX
P4, Y4 13		52 RND
P5, Y5 14		51 XM
P6, Y6 15		50 YM
P7, Y7 16		49 + Vcc
P8, Y8 17		48 + Vcc
P9, Y9 18		47 GND
P10, Y10 19		46 GND
P11, Y11 20		45 MSPSEL
P12, Y12 21		44 FT
P13, Y13 22		43 FA
P14, Y14 23		42 OEP
P15, Y15 24		41 CLKM
P0, P16 25		40 P31, P15
P1, P17 26		39 P30, P14
P2, P18 27		38 P29, P13
P3, P19 28		37 P28, P12
P4, P20 29		36 P27, P11
P5, P21 30		35 P26, P10
P6, P22 31		34 P25, P9
P7, P23 32		33 P24, P8

Pin Assignment for DIP

Ordering Code: See Section 6

Pin Names

X15 - X0	Multiplicand Data Inputs
Y15 - Y0	Multiplier Data Inputs
CLKX, CLKY	Input Clocks
CLKM	Input Clock, MSP
CLKL	Input Clock, LSP
Хм, Үм	Mode Control Inputs
FA	Format Adjust Control
FT	Format Transparent Control
OEL	3-State Enable, LSP Routing
OEP	3-State Enable, Product Output
	Port
RND	Round Control, MSP
MSPSEL	MSP Select
P31 - P16	MSP Outputs
P15 - P0	LSP Outputs
	•

Logic Symbol

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Signal Descriptions

Inputs

XIN (X15 - X0) Sixteen multiplicand data inputs.

YIN (Y15 - Y0)

Sixteen multiplier data inputs. This is also an output port for P15 - P0.

Input Clocks

CLKX

The rising edge of this clock loads the X15 - X0 data input register along with the X mode and round registers.

CLKY

The rising edge of this clock loads the Y15 - Y0 data input register along with the Y mode and round registers.

CLKM

The rising edge of this clock loads the Most Significant Product (MSP) register.

CLKL

The rising edge of this clock loads the Least Significant Product (LSP) register.

Controls

Хм, Үм

Mode control inputs for each data word. A LOW input designates an unsigned data input, and a HIGH input designates twos complement.

FA

When the Format Adjust (FA) Control is HIGH, a full 32-bit product is selected. When this control is LOW, a left-shifted 31-bit product is selected with the sign bit replicated in the Least Significant Product (LSP). This control is normally HIGH except for certain fractional twos complement applications (see multiplier input/output formats).

FΤ

When the Format Transparent (FT) Control is HIGH, both the MSP and LSP registers are transparent.

OEL

The OEL input is the 3-state enable for routing LSP through YIN/LSPOUT port.

OEP

The OEP is the 3-state enable for the product output port.

RND

The Round control is used for the rounding of the MSP. When this control is HIGH, A '1' is added to the Most Significant Bit (MSB) of the LSP. Note that this bit depends on the state of the format adjust (FA) control.

If FA is LOW when RND is HIGH, a '1' will be added to the 2^{-16} bit (P14). If FA is HIGH when RND is HIGH, a '1' will be added to the 2^{-15} bit (P15). In either case, the LSP output will reflect this addition when RND is HIGH.

Note also that rounding always occurs in the positive direction which may introduce a systematic bias. The RND input is registered and clocked in at the rising edge of the logical OR of both CLKX and CLKY.

MSPSEL

When MSPSEL is LOW, the Most Significant Product (MSP) is selected. When HIGH, the Least Significant Product (LSP) is available at the product output port.

Outputs

MSP (P₃₁ - P₀) The MSP is the Most Significant Product output.

LSP (P15 - P0) The LSP is the Least Significant Product output.

 $\begin{array}{l} Y_{15\text{-}0}\text{/LSPout} \ (Y_{15}\text{ - }Y_0 \ or \ P_{15}\text{ - }P_0)\\ \text{This is the Least Significant Product} \ (LSP) \ output\\ \text{available when }\overline{\text{OEL}} \ \text{is LOW. It is also an output}\\ \text{port for }Y_{15}\text{ - }Y_0. \end{array}$

Figure 1: Fractional Twos Complement Notation

BINARY POINT

Figure 2: Fractional Unsigned Magnitude Notation

BINARY POINT

BINARY POINT

	1																																
Γ	(15	X14	X13	X12	X11	X10	X۹	Xa	X7	Xs	X5	X4	Хз	X2	X1	X٥		GNA				-											
-	·2º	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2-12	2-13	2-14	2-15			VAL		EMI	:NI)											
																		_															
	x	Y15	Y14	Y13	¥12	Y 11	Y10	Y۹	Ya	¥7	Y٥	¥5	Y4	Y3	Y2	¥1	Y٥		GNA NSIC					יבי									
	^ [2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2 ⁻⁹	2-10	2-11	2-12	2-13	2-14	2-15	2-10		GIT			-		,,									
_																																	
=	P 31	P30	P29	P28	P27	P26	P25	P24	P23	P22	P21	P20	P19	P18	P17	P18	P15	P14	P13	P 12	P11	P10	P۹	Pa	P7	Ps	Ps	P4	Рз	P ₂	P1	Po	SIGNAL
	-2º	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2-12	2-13	2-14	2-15	2-10	2-17	2-18	2-19	2-20	2-21	2-22	2-23	2-24	2 ⁻²⁵	2-28	2-27	2-28	2-29	2-30	2-31	DIGIT VALUE FA = 1
								MSP																LSP								-	MANDATORY

*In this format an overflow occurs in the attempted multiplication of the twos complement number 1000...0 with 1000.00 yielding an erroneous product of -1 in the fraction case and -2^{30} in the integer case.

AC1016 • ACT1016

Figure 4: Integer Twos Complement Notation

Figure 6: Integer Mixed Mode Notation

*In this format an overflow occurs in the attempted multiplication of the twos complement number 1000...0 with 1000.00 yielding an erroneous product of -1 in the fraction case and -2^{30} in the integer case.

Symbol	Parameter		Conditions	Limits	Units	
Vcc	Supply Voltage (unless otherwise specified)			2.0 to 6.0	v	
VI	Input Voltage	<u> </u>		0 to Vcc	v	
Vo	Output Voltage	**************************************		0 to Vcc	v	
TA	Operating Temperature	74AC/ACT 54AC/ACT		– 40 to + 85 – 55 to + 125	℃ ℃	
Sr	Maximum Slew Rate (except for Schmitt inputs)		VIN Vmeas Vcc@4.5V Vcc@5.5V	0.8 to 2.0 0.8 to 2.0 10.0 8.0	V V ns ns	

Recommended Operating Conditions

Absolute Maximum Ratings*

Symbol	Parameter	Conditions	Limits	Units
Vcc	Supply Voltage		- 0.5 to 7.0	v
liк Vi	DC Input Diode Current or DC Input Voltage	$V_{I} = 0.5$ $V_{I} = V_{CC} + 0.5$	- 20 20 - 0.5 to Vcc + 0.5	mA mA V
loк Vo	DC Output Diode Current or DC Output Voltage	Vo = -0.5 $Vo = Vcc + 0.5$	- 20 20 - 0.5 to Vcc + 0.5	mA mA V
lo	DC Output Source or Sink Current, Per Output Pin		± 15	mA
ICC OF IGND	DC Vcc or Ground Current		± 20	mA
Тѕтс	Storage Temperature		- 65 to + 150	°C

*Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

AC Test Conditions

Input Pulse Levels	GND to 3.0 V
Input Rise and Fall Times	3 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load	See Figures 7 and 8

Capacitance

Symbol	Parameter	Max	Unit	Conditions
CIN	Input Capacitance	7.0	pF	VIN = 0 V
Соит	Output Capacitance	5.0	pF	Vout = 0 V

AC1016 • ACT1016

Symbol	Parameter	74AC	ACT	54AC/ACT	74AC/ACT	Units	Conditions	
0,	i alamotor	Тур	Gu	aranteed Li	imit	•		
lin	Maximum Input Current		± 0.1	± 10.0	± 1.0	μA	Vcc = Max Vin = Vcc, 0	
loz	Maximum 3-State Current		0.5	10.0	5.0	μA	High Z, Vcc = Max Vout = 0, Vcc	
Iccq	Supply Current, Quiescent	0.50	2.0	10.0	10.0	mA	Vcc = Max, VIN = 0 V	
ICCD	Supply Current, 12.4 MHz Loaded	300		325	325	mA	Vcc = Max, f = 12.4 MHz Test Load: See Note 1	
ICCD	Supply Current, 20 MHz Loaded	325		350	350	mA	Vcc = Max, f = 20 MHz Test Load: See Note 1	
		4.49	4.4	4.4	4.4	v	Vin = Vil or Vih Ιουτ = -50 μA, Vcc = 4.5 V	
Vон*	Minimum HIGH Level	5.49	5.4	5.4	5.4	v	VIN = VIL or VIH IOUT = -50μ A, Vcc = 5.5 V	
	Output		3.86	3.70	3.76	v	Іон = - 8 mA, Vcc = 4.5 V	
			4.86	4.70	4.76	v	Іон = – 8 mA, Vcc = 5.5 V	
		0.001	0.1	0.1	0.1	v	VIN = VIL or VIH, IOUT = 50 μ A, VCC = 4.5 V	
Vol*	Maximum HIGH Level	0.001	0.1	0.1	0.1	v	VIN = VIL or VIH, IOUT = 50 μ A, VCC = 5.5 V	
	Output		0.45	0.50	0.50	v	lol = 8 mA, $Vcc = 4.5$ V	
			0.45	0.50	0.50	v	Io∟=8 mA, Vcc=5.5 V	
Iold	Minimum Dynamic Output Current			32	32	mA	Vcc = 5.5 V, VoLD = 2.2 V. See Note 2.	
Іонр	Minimum Dynamic Output Current			- 32	- 32	mA	Vcc = 5.5 V, Vоно = 3.3 V. See Note 2.	

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Note 1: Test Load 50 pF, 500 ohm to Ground

Note 2: Only one output loaded at a time, maximum duration of test 2 ms.

*All outputs loaded.

AC Characteristics

				54	AC			74	AC				
	_		Ta =	– 55°C	to +1	25°C	Ta =	– 40°C	35°C]	_		
Symbol	Parameter	Vcc* (V)	101	6-80	101	6-65	101	6-65	101	6-55	Units	Fig. No.	
			Min	Max	Min	Max	Min	Max	Min	Max	1		
tмuc	Unclocked Multiply Time	3.3 5.0									ns	11	
tмc	Clocked Multiply Time	3.3 5.0									ns	11, 12	
t PDSEL	MSPSEL to Product Out	3.3 5.0	2								ns	11	
tpdp	Output Clock to P	3,8 5.0		D_{Δ}	7						ns	11	
t PDY	Output Clock to Y	3.3 5.0		$\langle / l \rangle$	$\langle f \rangle$	\sim					ns	11	
tena	3-State Enable Time ²	3.3 5.0				$\mathbb{Z}_{\mathbb{A}}$	$\left \right\rangle$				ns	10	
tDIS	3-State Disable Time ²	3.3 5.0				$\langle \rangle$	V	\widehat{A}			ns	10	
thel	Clock LOW Hold Time CLKXY Relative to CLKML ¹	3.3 5.0						IJ,	$\langle \langle \rangle$	Dr	ns	11, 12	
ts	Setup Time X,Y, RND	3.3 5.0							\Box		ns	9, 11	
th	Hold Time X, Y, RND	3.3 5.0									ns	9, 11	
tw	Clock Pulse Width HIGH or LOW	3.3 5.0									ns	11	

Note 1: To ensure that the correct product is entered in the output registers, new data may not be entered into the registers before the output registers have been clocked.

Note 2: Transition is measured to ±500 mV from steady state voltage with loading specified in Figure 8.

*Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

AC Characteristics

				54 <i>A</i>	CT			74 <i>F</i>	СТ			
	Parameter		TA =	– 55°C	to + 1	25°C	Ta =	– 40°C]			
Symbol		Vcc* (V)	1016-80		101	6-65	101	6-65	101	6-55	Units	Fig. No.
			Min	Max	Min	Max	Min	Max	Min	Max		
tмuc	Unclocked Multiply Time	5.0						80.0		65.0	ns	11
tмc	Clocked Multiply Time	5.0						65.0		55.0	ns	11, 12
t PDSEL	MSPSEL to Product Out	5.0						13.0		13.0	ns	11
tPDP	Output Clock to P	5.0						20.0		20.0	ns	. 11
TPDY	Output Clock to Y	5.0						20.0		20.0	ns	11
tena	3-State Enable Time ²	5.0						10.0		10.0	ns	10
tDIS	3-State Disable Time ²	5.0						12.5		12.5	ns	10
thcl	Clock LOW Hold Time CLKXY Relative to CLKML ¹	5.0					0		0		ns	11, 12
ts	Setup Time X,Y, RND	5.0					5.5		5.5		ns	9, 11
th	Hold Time X, Y, RND	5.0					1.0		1.0		ns	9, 11
tw	Clock Pulse Width HIGH or LOW	5.0					3.5		3.5		ns	11

Note 1: To ensure that the correct product is entered in the output registers, new data may not be entered into the registers before the output registers have been clocked.

Note 2: Transition is measured to \pm 500 mV from steady state voltage with loading specified in Figure 8.

*Voltage Range 5.0 is 5.0 V \pm 0.5 V

Military parameters given herein are for general references only. For current military specifications and subgroup testing information please request Fairchild's Table I data sheet from your Fairchild sales engineer or account representative.

Figure 7: AC Output Test Load

Figure 8: Output 3-State Delay Load

Figure 9: Setup and Hold Time

Figure 10: 3-State Control Timing Diagram

AC1016 • ACT1016

Figure 11: '1016 Timing Diagram

Figure 12: Simplified Timing Diagram — Typical Application

54AC/74AC1017 • 54ACT/74ACT1017

16×16 Parallel Multiplier

Description

The 'AC/'ACT1017 is a high-speed, low power 16 \times 16-bit parallel multiplier that is ideally suited for real-time digital signal processing applications. Fabricated using advanced FACT technology, the 'AC/'ACT1017 offers a very low power alternative and exceptional performance.

The 'AC/'ACT1017 is a pin and functional replacement for AMD's Am29517; the 'AC/'ACT1017 operates from a single Vcc supply and is compatible with standard TTL logic levels.

The 'AC/'ACT1017 performs the same mathematical functions as the 'AC/'ACT1016 but has a single clock, CLK, and three register enables making it ideal for microcoded applications.

The architecture of the 'AC/'ACT1017 features one 16-bit port dedicated to the X input registers (enabled by $\overline{\text{ENX}}$), one 16-bit I/O port used to load the Y input registers (controlled by $\overline{\text{ENY}}$) and for displaying the Least Significant Product (LSP), and one 16-bit output port multiplexed between displaying the Least Significant Product (LSP) and the Most Significant Product (MSP).

The I/O port direction is controlled by \overline{OEL} and the output port 3-state control is controlled by \overline{OEM} .

The result is registered if FT is LOW (all 32 register bits enabled by $\overline{\text{ENP}}$) and unregistered if FT is held HIGH.

Twos complement, unsigned magnitude and mixed mode multiplications are possible through the twos complement X and Y mode controls, XM and YM, respectively. These mode controls are registered, controlled by the input clock (CLK).

Result rounding is controlled by the registered RND signal (controlled by CLK). Selection of one of the two rounding modes is determined by the FA signal.

Connection Diagram

X4 1	\bigcirc	64 X5
X3 2		63 X6
X2 3		62 X7
X1 4		61 X8
X0 5		60 X9
OEL 6		59 X10
CLK 7		58 X11
ENY 8		57 X12
Po, Yo 9		56 X13
P1, Y1 10		55 X14
P2, Y2 11		54 X15
P3, Y3 12		53 ENX
P4, Y4 13		52 RND
P5, Y5 14		51 XM
P6, Y6 15		50 YM
P7, Y7 16		49 Vcc
P8, Y8 17		48 Vcc
P9, Y9 18		47 GND
P10, Y10 19		46 GND
P11, Y11 20		45 MSPSEL
P12, Y12 21		44 FT
P13, Y13 22		43 FA
P14, Y14 23		42 OEM
P15, Y15 24		41 ENP
P0, P16 25		40 P31, P15
P1, P17 26		39 P30, P14
P2, P18 27		38 P29, P13
P3, P19 28		37 P28, P12
P4, P20 29		36 P27, P11
P5, P21 30		35 P26, P10
P6, P22 31		34 P25, P9
P7, P23 32		33 P24, P8

Р

D

Pin Assignment for DIP

AC1017 • ACT1017

- 16 \times 16 Parallel Multiplier
- Selectable Rounding Modes
- Twos Complement, Unsigned Magnitude and Mixed Mode Multiplication
- Pin and Functionally Compatible with Am29517
- 'ACT1017 Interfaces Directly to TTL
- 'AC1017 Provides Low Voltage, High-Speed Operation
- Single Vcc Supply
- $\pm 2000 \text{ V}$ ESD Protection
- High Drive 8 mA Outputs
- Single Input Clock

Pin Names

X15 - X0	Multiplicand Data Inputs
Y15 - Y0	Multiplier Data Inputs
CLK	Input Clock
ENX	Register Enable, X15 - X0
ENY	Register Enable, Y15 - Yo
ENP	Register Enable, MSP and LSP
Хм, Үм	Mode Control Inputs
FA	Format Adjust Control
FT	Format Transparent Control
OEL	3-State Enable, LSP Routing
OEM	3-State Enable, MSP Routing
RND	Round Control, MSP
MSPSEL	MSP Select
P31 - P16	MSP Outputs
P15 - P0	LSP Outputs

Ordering Code: See Section 6

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Product Index and Selection Guide	1
FACT Descriptions and Family Characteristics	2
Ratings, Specifications and Waveforms	3
Design Considerations	4
Data Sheets	5
Package Outlines and Ordering Information	6
FGC Series Advanced 2-Micron CMOS Gate Array	y 7
FAIRCAD [™] Semicustom Design System	8
CMOS Arrays Packaging Guide	9
Field Sales Offices and Distributor Locations	10

Ordering Information/ Package Outlines

Plastic DIP	Р	Commercial	
Slim Plastic DIP	SP	-40 °C to +85 °C	
Ceramic DIP	D		
Slim Ceramic DIP	SD	Military	
Flatpak	F	-55°C to +125°C	
Leadless Ceramic Chip Carrier (LCC)	L		
Plastic Chip Carrier (PCC)	Q		
Small Outline (SOIC)	S		
		•	

Package Outlines

The package outlines indicated above are shown in the detailed outline drawings in this section.

С

М

14 Lead Plastic Dual In-Line Package

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in inches (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, solder coated. Plastic is novolac epoxy.

Package weight is 0.9 gram.

16 Lead Plastic Dual In-Line Package

Ordering Codes: 74ACXXXPC 74ACTXXXPC

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in inches (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, solder coated. Plastic is novolac epoxy.

Package weight is 0.9 gram.

20 Lead Plastic Dual In-Line Package

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, solder coated. Plastic is novolac epoxy.

Package weight is 1.2 grams.

24 Lead Plastic Dual In-Line Package

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in inches (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 4.0 grams.

24 Lead Slim (0.300" Wide) Plastic Dual In-Line

Ordering Codes: 74ACXXXSPC 74ACTXXXSPC 1.260 (32.004) 1.240 (31.496) Index 17 Area ΠΠ 12 .300 (7.620) .250 (6.350) 13 21 .070 (1.778) .330 (8.382) .290 (7.366) .060 (1.524) .015 (0.381) .125 (3.175) .200 (5.080) MAX .150 (3.810) .015 (0.381) .008 (0.203) .023 (0.585) .014 (0.355) .350 (8.890) NOM .100 (2.540)

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 1.8 grams.

28 Lead Plastic Dual In-Line Package

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 4.2 grams.

40 Lead Plastic Dual In-Line Package

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **Inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 6.5 grams.

14 Lead Ceramic Dual In-Line Package

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are alloy 42, either tin plated or solder coated. Base and lid are 90% minimum alumina (black) sealed with glass.

Package weight is 2.0 grams.

16 Lead Ceramic Dual In-Line Package

54ACTXXXDM

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are alloy 42, either tin plated or solder coated. Base and lid are 90% minimum alumina (black) sealed with glass.

Package weight is 2.2 grams.

20 Lead Ceramic Dual In-Line Package

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are alloy 42, either tin plated or solder coated. Base and lid are 90% minimum alumina (black) sealed with glass.

Package weight is 2.4 grams.

24 Lead Ceramic Dual In-Line

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are alloy 42, either tin plated or solder coated. Base and lid are 90% minimum alumina (black) sealed with glass.

Package weight is 6.8 grams.

6

24 Lead Slim (0.300" Wide) Ceramic Dual In-Line

28 Lead Ceramic Dual In-Line Package

40 Lead Ceramic Dual In-Line Package

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are alloy 42, either tin plated or solder coated. Base and lid are 90% minimum alumina (black) sealed with glass.

Package weight is 12.0 grams.

64 Lead Side Brazed Dual In-Line Package

Ordering Codes: 74ACXXXDC 74ACTXXXDC 54ACXXXDM 54ACTXXXDM

Notes Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area. Metallization in notch may be electrically active.

Leads are Kovar or alloy 42 with gold tin or solder coating. Substrate is 90% alumina (black). Lid is Kovar sealed with gold tin solder.

Package weight is 16.0 grams.

14 Lead Small Outline Integrated Circuit (SOIC)

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in inches (millimeters). Controlling dimensions: Metric. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 0.14 gram.

16 Lead Small Outline Integrated Circuit (SOIC)

Ordering Codes: 74ACXXXSC 74ACTXXXSC

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in inches (millimeters). Controlling dimensions: Metric. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 0.16 gram.

16 Lead (0.300 " Wide) Small Outline Integrated Circuit (SOIC)

Ordering Codes: 74ACXXXSC 74ACTXXXSC

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in inches (millimeters). Controlling dimensions: Metric. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 0.46 gram.

20 Lead Small Outline Integrated Circuit (SOIC)

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in inches (millimeters). Controlling dimensions: Metric. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 0.55 gram.

24 Lead Small Outline Integrated Circuit (SOIC)

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in inches (millimeters). Controlling dimensions: Metric. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 0.66 gram.

28 Lead Small Outline Integrated Circuit (SOIC)

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in inches (millimeters). Controlling dimensions: Metric. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 0.77 gram.

20 Lead Plastic Chip Carrier (PCC)

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 0.7 gram.

28 Lead Plastic Chip Carrier (PCC)

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within index area.

Leads are copper alloy, either tin plated or solder coated. Plastic is novolac epoxy.

Package weight is 1.1 grams.

44 Lead Plastic Chip Carrier (PCC)

52 Lead Plastic Chip Carrier (PCC)

68 Lead Plastic Chip Carrier (PCC)

84 Lead Plastic Chip Carrier (PCC)

6

20 Terminal Ceramic Leadless Chip Carrier (LCC)

Ordering Codes: 74ACXXXLC

Ordering Codes: 74ACXXXLC

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Terminal One is indicated by elongated metallization on package bottom.

Terminals are coated with gold, tin or solder. Package is 90% minimum alumina (black); lid is solder seal metal.

Package weight is 0.5 gram.

28 Terminal Ceramic Leadless Chip Carrier (LCC)

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Terminal One is indicated by elongated metallization on package bottom.

Terminals are coated with gold, tin or solder. Package is 90% minimum alumina (black); lid is solder seal metal.

Package weight is 0.8 gram.

44 Terminal Ceramic Leadless Chip Carrier (LCC)

Ordering Codes: 74ACXXXLC 74ACTXXXLC 54ACXXXLM 54ACTXXXLM

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Terminal One is indicated by elongated metallization on package bottom.

Terminals are coated with gold, tin or solder. Package is 90% minimum alumina (black); lid is solder seal metal.

Package weight is 1.7 grams.

Cerpak

Standard carrier loading locates Lead One of the device adjacent to the side with the double notch, mark side up.

Standard carriers are one-piece designs for 14, 16, 20 and 24 lead Cerpaks.

Carriers are molded of polysulfone, capable of withstanding normal IC handling over the temperature range of -55°C to + 150°C.

14 Lead Ceramic Flatpak

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within Index Area, or a tab shall be on Lead One.

Leads are alloy 42, either tin plated or solder coated. Base and lid are 90% minimum alumina (black) sealed with glass.

Package weight is 0.4 gram.

16 Lead Ceramic Flatpak

Ordering Codes: 54ACXXXFM 54ACTXXXFM

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within Index Area, or a tab shall be on Lead One.

Leads are alloy 42, either tin plated or solder coated. Base and lid are 90% minimum alumina (black) sealed with glass.

Package weight is 0.4 gram.

20 Lead Ceramic Flatpak

Ordering Codes: 54ACXXXFM 54ACTXXXFM

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within Index Area, or a tab shall be on Lead One.

Leads are alloy 42, either tin plated or solder coated. Base and lid are 90% minimum alumina (black) sealed with glass.

Package weight is 0.6 gram.

24 Lead Ceramic Flatpak

Ordering Codes: 54ACXXXFM 54ACTXXXFM

Notes

Dimensions and tolerances per ANSI Y14.5M-1982.

Dimensions are in **inches** (millimeters). Controlling dimensions: Inches. Dimensions are typical unless otherwise specified.

Notch or Lead One ID shall be within Index Area, or a tab shall be on Lead One.

Leads are alloy 42, either tin plated or solder coated. Base and lid are 90% minimum alumina (black) sealed with glass.

Package weight is 0.8 gram.

P	roduct Index and Selection Guide	
F	ACT Descriptions and Family Characteristics	
R	atings, Specifications and Waveforms	
D	esign Considerations	
D	ata Sheets	
Pa	ackage Outlines and Ordering Information	
F	GC Series Advanced 2-Micron CMOS Gate Array	
F/	AIRCAD [™] Semicustom Design System	
С	MOS Arrays Packaging Guide	
Fi	ield Sales Offices and Distributor Locations	Ĩ

FAIRCHILD

FGC Series Advanced 2-Micron CMOS Gate Array Family

Description

The FGC Series is an advanced, high performance CMOS gate array family designed for LSI implementation of existing discrete logic systems and new designs requiring high density and low power. With up to 8000 gates and high I/O to gate ratios, the FGC family offers single gate array solutions to a wide variety of digital logic applications. Table 1 summarizes the important characteristics of this gate array family.

Designed with true 2-micron design rules, the FGC Series is fabricated on an advanced, dual metal, oxide isolated, fully implanted CMOS process. Effective channel lengths of 1.3 microns coupled with reduced junction area capacitance allows system clock speeds up to 50 MHz. Internal gate propagation delays range from 1.1 ns typically to 1.9 ns worst case industrial and 2.0 ns for military operation.¹ Operating from a single 5 V power supply, these arrays exhibit extremely low power dissipation, typically 20 μ W/gate/MHz.

FGC Series Features

- 500, 1200, 2400, 4000, 6000 and 8000 Gates
- True 2-micron Silicon Gate CMOS Technology
- High Performance—Typical Internal Delays 1.1 ns
- 8 mA Output Drive Current Standard
- Low Power Dissipation—Typically 20 µW/gate/MHz
- Selectable CMOS or TTL I/O
- No Internal Cells Required for I/O Buffer
- Single 5 V Power Supply
- On-Chip Testability Features (Except FGC0500)
- Wide Choice of Package Pin Counts and Styles
- Complete Integrated CAD Support
- Second Source-VLSI Technology, Inc.

¹ 2-input NAND. Fanout = 2, typical interconnect metal Additional conditions include:

- Industrial: $V_{DD} = 4.5 \text{ V}$, $T_J = 85 \text{ °C}$, worst case process parameters
- Military: VDD = 4.5 V, Tj = 125 °C, worst case process parameters

Array Organization

The general layout of the FGC6000 can be seen in Figure 7-1. Electrical components are organized into structural features called cells. Macro circuits, which are the basic building block of logic design, are comprised of one or more cells.

All FGC Series arrays use the same basic internal cell and I/O cell structure. Thus the same macros can be used throughout the FGC family.

The bussing structure for the FGC Series isolates the I/O cells from the internal array. Both the VDD and Vss bus surround the array in second metal (dual-layer metal process) and are brought into the internal array area via a power rail structure. Each cell is connected to the power rail through the substrate which reduces the resistance and internal latch-up susceptibility.

Figure 7-1: FGC6000 Die

Table 7-1: FGC Gate Array Family

	FGC0500	FGC1200	FGC2400	FGC4000	FGC6000	FGC8000
Total Cells	360	792	1728	2640	4000	5358
Equivalent Gates ²	540	1188	2592	3960	6000	8037
Input Only	0	27	39	47	55	63
Inputs/Outputs	40	46	70	86	106	118
Total I/O	40	73	109	133	161	181
Power Pins	4	8	8	8	8	16
Testability Pins	0	3	3	3	3	3
Total Pins	44	84	120	144	172	200

² An equivalent gate is defined as one 2-input NAND.

Internal Cell Description

The basic internal cell of the FGC Series is shown in Figure 7-2. The cell consists of six transistors; three p-channel and three n-channel. The cell employs a bent gate pattern to optimize performance and minimize die size. Logic functions implemented with a single cell include two inverters, an inverter and a transmission gate, a two-input NAND or NOR and an inverter, and a three-input NAND or NOR.

Internal cells are preconnected to form macros, the basic logic element from which a design is implemented. The FGC Series shares a common macro library, which consists of most 7400 series logic functions. Additionally, macros to support enhanced testability design methodologies, such as scan test, are also available. Table 4 summarizes AC performance of commonly used macros.

Internal Cell Features

- 6-transistor cell (3 p-channel, 3 n-channel) Greater routing efficiency over 4-transistor cell designs
- Single cell logic functions Two single inverters Inverter and transmission gate 2-input NAND or NOR and inverter 3-input NAND or NOR
- Bent gate pattern Reduces junction capacitance
 15% area reduction over standard design

Figure 7-2: FGC Series Internal Cell

I/O Buffers

All I/O buffers contain built-in flexibility to allow both standard totem pole or 3-state output options without utilizing any internal cells. Additionally, each input can be individually programmed for either CMOS or TTL interface. This feature is available as a macro option, and is easily specified in the initial stages of logic design. Typical performance of input and output buffers is shown in Tables 5 and 6. The buffers have been designed to source or sink 8 mA (10 mA for FGC0500) across the industrial temperature range and 6 mA (8 mA for FGC0500) across the military range.

There are two cell types, input only and input/output, which are interspersed around the array (see Figure 7-3). Advantages of this configuration includes increased I/Os for a given gate count, reduced signal lengths and improved routability.

Input Protection

Input protection is incorporated into all I/O macros. As illustrated in Figure 7-4, dual VDD and Vss guard rings effectively reduce parasitic betas by providing recombination paths for minority carriers. This guard ring approach protects against up to 1200 V of static discharge.

Figure 7-3: I/O Buffer Layout

Symbol	Parameter	Range	Unit
VDD	Supply Voltage	-0.5 to +6	V
Vi	Input Voltage	-0.5 to VDD +0.5	V
li -	DC Input Current	±20	mA
Тѕтс	Storage Temperature Ceramic Package Plastic Package	-65 to +150 -40 to +125	°C
Та	Ambient Temperature Under Bias ³ Military Commercial/Industrial	-55 to +125 -40 to +85	°C
TL	Lead Temperature (Soldering, 10 seconds)	300	°C

Table 7-2: Absolute Maximum Ratings Chart

³ Junction temperature not to exceed ambient temperature by more than 20 °C

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Min	Max	Unit	Conditions
Viн	Input HIGH Voltage ⁴ CMOS Input TTL Input (Industrial) TTL Input (Military)	3.15 2.0 2.25	Vdd Vdd Vdd	v	Guaranteed Input HIGH Voltage TA = $125 ^{\circ}$ C, VDD = $4.5 $ V TA = $0 ^{\circ}$ C, VDD = $5.25 $ V TA = $-55 ^{\circ}$ C, VDD = $5.5 $ V
VIL	Input LOW Voltage ⁴ CMOS Input TTL Input	-0.5 -0.5	1.35 0.8	v	Guaranteed Input LOW Voltage
Vон	Output HIGH Voltage	Vdd - 0.05		V	$IOH = -1 \ \mu A$, $TA = 125 \ ^{\circ}C$, $VDD = 4.5 \ V$
	OB01F(FGC0500)	3.7		v	IOH = -10 mA, TA = 85 °C, VDD = 4.5 V IOH = -8 mA, TA = 125 °C, VDD = 4.5 V
	Other Output Buffers	3.7		v	$I_{OH} = -8 \text{ mA}, T_A = 85 \text{ °C}, V_{DD} = 4.5 \text{ V}$ $I_{OH} = -6 \text{ mA}, T_A = 125 \text{ °C}, V_{DD} = 4.5 \text{ V}$
Vol	Output LOW Voltage		0.1	V	$IOL = 1 \ \mu A$, $TA = 125 \ ^{\circ}C$, $VDD = 4.5 \ V$
	OB01F(FGC0500)		0.4	v	IOL = 10 mA, TA = 85 °C, VDD = 4.5 V IOL = 8 mA, TA = 125 °C, VDD = 4.5 V
	Other Output Buffers		0.4	v	$IOL = 8 \text{ mA}, TA = 85 ^{\circ}C, VDD = 4.5 V$ $IOL = 6 \text{ mA}, TA = 125 ^{\circ}C, VDD = 4.5 V$

Table 7-3: DC Characteristics (VDD = 5.0 V \pm 10%, TA = -55°C to +125°C, unless otherwise specified)

Table 7-3: DC Characteristics, continued

Symbol	Parameter	Min	Max	Unit	Conditions
lin	Input Leakage Current	-10	10	μA	VIN = VDD or GND (Without Pullup Resistor)
loz 3-State Output Leakage Current		-10	10	μA	Vout=VDD or GND
CIN	Input Capacitance		5	pF	Excluding Package
Соит	Output Capacitance		5	pF	Excluding Package
Ci/o	Transceiver Capacitance		5	pF	Excluding Package

 $(V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ TA} = -55 \text{ °C} \text{ to } +125 \text{ °C}, \text{ unless otherwise specified})$

⁴ VIH and VIL are steady state specifications and are specified with respect to the device ground pin. All functional tests are performed using additional margins to account for AC noise.

AC Characteristics for Selected Macros

				Typical Propagation	Worst Case	e Propagatio	on Delay (ns)		
Table 7-4: Internal Cell			Delay (ns)	Commercia	Military ⁶				
				3 ×	Fai	Far	out		
Macro	Cells	Description	Symbol	Fanout = 2	2	4	2	4	
INV11	1	2 1x Inverters	tPLH tPHL	1.1 0.4	2.1 0.9	3.3 1.3	2.2 0.9	3.5 1.5	
NA02	1	2-Input NAND	tPLH tPHL	1.4 0.8	2.5 1.8	3.8 2.7	2.8 1.9	4.1 2.9	
NA04	2	4-Input NAND	tPLH tPHL	1.7 1.9	3.3 4.0	4.6 5.7	3.7 4.4	5.1 6.3	
NOR02	1	2-Input NOR	tPLH tPHL	1.9 0.6	4.1 1.2	6.4 1.7	4.5 1.4	7.0 1.9	
NOR04	2	4-Input NOR	tPLH tPHL	4.3 0.7	9.7 1.4	14.2 2.0	10.8 1.5	15.7 2.1	
DFP01	4	D Flip-Flop (Clock→Q)	tPLH tPHL	2.6 2.1	5.4 4.2	6.5 4.8	5.9 4.7	7.2 5.3	
DFP04	6	D Flip-Flop with Set, Reset (Clock →Q)	tPLH tPHL	3.1 3.2	6.4 6.4	7.6 6.9	7.0 7.1	8.2 7.8	

 $^{\rm 5}$ Vdd =4.5 V, Tj =85 °C, Worst Case Process, Worst Case Wirelength.

^e VDD = 4.5 V, Tj = 125 °C, Worst Case Process, Worst Case Wirelength.

			Typical Propagation	Worst Case	Delay	lay (ns)		
Table 7-5: Input Buffer			Delay (ns)	Commercial	/Industrial⁵,7	Military ^{6,7}		
				Fan	Fanout			
Macro	Description	Symbol	Fanout=2	2	4	2	4	
IOC011F	CMOS with Pullup, FGC0500	tPLH tPHL	1.9 2.2	3.5 3.9	4.0 4.5	3.6 4.2	4.3 4.9	
IOT011F	TTL with Pullup, FGC0500	tPLH tPHL	1.5 2.1	4.1 6.3	4.9 7.1	4.4 7.1	5.2 8.0	
IOC011	CMOS with Pullup	tPLH tPHL	1.9 2.0	2.4 3.6	3.0 4.0	2.7 3.8	3.3 4.3	
IOT011	TTL with Pullup	tPLH tPHL	2.6 2.9	3.6 4.3	4.1 5.1	3.9 5.0	4.5 5.8	

⁷ CMOS Input tr, tf = 5 ns, FASTTM Input tr, tf = 2.5 ns.

			Typical Propagation	V	Worst Case Propagation Delay (ns)					
Table 7-6: Output Buffer		Delay (ns)	Comme	Commercial/Industrial ⁵ Military ⁶						
			Capacitive	Capacitive Load (pF)		id (pF)	Capacitive Load (pF)			
Macro	Description	Symbol		15	50	100	15	50	100	
OB01F	High Drive, FGC0500	tplh tphl	2.0 2.6	3.6 4.6	6.0 6.7	9.5 9.7	3.7 5.0	6.1 7.1	9.6 10.1	
OB03F OB04F	3-State, FGC0500 Standard, FGC0500	tPLH tPHL	2.5 2.8	5.0 5.2	8.1 8.0	12.6 12.0	5.4 5.6	8.9 8.4	13.9 12.4	
OB03 OB04	3-State Standard	tplh tphl	3.3 4.2	6.0 6.5	9.1 9.3	13.6 13.3	6.6 7.1	10.1 9.9	15.1 13.9	

⁵ V_{DD} = 4.5 V, T_j = 85 °C, Worst Case Process, Worst Case Wirelength.

^e VDD = 4.5 V, T_j = 125 °C, Worst Case Process, Worst Case Wirelength.

Figure 7-5: Capacitance Estimate for FGC Series Internal Macros

The figure illustrates variations of capacitance due to fanout and wirelength of an estimated average of internal cell macros. Typical wirelengths are based on an assumption of 15 mils length per connection, 30% first-layer and 70% secondlayer metal routing. Worst case wirelengths assume 30 mils length per connection with 50% first-layer and 50% second-layer metallization.

Testability Features

Incorporated into the FGC Series (excluding the FGC0500) is a range of features to enhance design testability and simplify device testing. Three dedicated pads are located on each gate array, which may be bonded out to access three types of tests: output buffer parametric tests, DC functional tests, and an AC monitor test. A summary of each test is included in Table 7 and described more fully below.

The output parametric tests allow DC data to be measured on all outputs by controlling the three input pins, TEST, TOE (Test Output Enable), and TDAT (Test Data). This feature avoids the need for a lengthy test program to force outputs into the correct state for parametric testing.

System initialization can be greatly simplified by the JAM RESET feature. All flip-flops in a design can be simultaneously reset to zero, thereby avoiding long vector sequences to initialize a device into a known state. Alternately, scan testing is also supported, which among other features, allows the array to be initialized by serially writing data into each flip-flop.

An on-chip ring oscillator is provided as an indicator of AC performance of each device. The frequency is monitored by Fairchild at the wafer level as part of the outgoing test procedure. This signal may also be bonded out at the expense of an I/O pad and used as an incoming customer acceptance criterion.

Packaging

Fairchild offers the following packages and pin counts for the FGC Series: Plastic and Ceramic DIPs: 24, 40; Plastic and Ceramic Pin Grid Arrays: 68, 84, 100, 120, 132, 144, 180; Plastic and Ceramic J-Bend Chip Carriers: 44, 68, 84.

	Inputs			Output	Tests	1.4. 1.4	
Туре	TEST	TOE	TDAT	ACOUT	Performed	Description	
	1	1	1	Disabled		Normal operation	
Output Buffer	0	0	TDAT	Disabled	Voh, Vol, Ioh, Iol	Test Data signal, TDAT, appears on all outputs	
Parametric Tests	0	1	0	Enabled	3-State Leakage	All outputs in 3-state mode	
	0	1	1	Disabled	Standby Current	Measurement of static power dissipation	
DC Functional	1	1	0	Disabled	Jam Reset*	Resets all flip-flops to a LOW state	
Tests	1	0	Scan Data	Disabled	Scan Test [®]	Allows data to be serially scanned into all flip-flops	
AC Monitor	0	1	0	Enabled	Ring Oscillator Frequency	Enables on-chip ring oscillator to monitor AC performance	

Table 7-7: FGC Series Testability Features

* These tests are examples of Design for Testability techniques that the test pins can perform when additional internal cell logic is used.

CAD Support

Fairchild supports various options for design implementation, working either through FAIRCAD,TM Fairchild's in-house, computer-aided design system, or through one of several commercially available computer-aided engineering workstations. Using any of the hardware options, the designer may elect to perform any or all of the design steps or delegate responsibility to a Fairchild applications engineer.

Faircad Design Implementation

FAIRCAD, Fairchild's computer-aided design system, provides a user-friendly, technologyindependent environment for building FGC Series gate arrays. FAIRCAD's fully integrated CAD tools allow the designer to perform all design functions from schematic entry, circuit analysis and fault grading to layout and automatic test vector generation. FAIRCAD can easily be learned and used by those with no prior CAD experience. Complete training is provided in a one-week class that takes the user through an entire design example.

FAIRCAD's high-level command menu and on-line help provides additional support by guiding the user step-by-step through the design cycle. Controlled program execution assures proper file management and adherence to design rules. In addition, summaries generated automatically after executing each program may be printed at any time for review. FAIRCAD supports off-hour batch submission—an effective method of increasing productivity while reducing CPU charges by running computer-intensive programs during nonprime-time hours.

In addition to design tools for implementing each of the steps illustrated below in Figure 7-6, FAIRCAD offers a number of system utilities including electronic mail, system/job status querying, color or B/W plot generation, as well as total CPU cost accounting.

FAIRCAD can be accessed at FAIRTECH Design Centers in Northern and Southern California; Dallas, Texas; Boston, Massachusetts; Minneapolis, Minnesota; Maitland, Florida and in international design centers in Reading, England and Tokyo, Japan. Additionally, a variety of compatible alphanumeric and graphic CRTs at customer sites can be linked to FAIRCAD through dial-up or leased lines. Further information on FAIRCAD's capabilities can be found in the Fairchild Gate Array CAD Support brochure, with comprehensive documentation available in the FAIRCAD User's Manual.

Workstation Implementation

Fairchild supports gate array design on Daisy Systems, Mentor Graphics and, in the future, Valid Logic and CAE computer-aided engineering workstations. Designers using workstations are provided with diskettes containing the macro library with all symbols and simulation models, and software for design verification, logic simulation, timing calculations and netlist generation.

Placement and routing is performed at a FAIRTECH Design Center after the netlist is transferred to FAIRCAD. Final netlengths are transferred back to the workstation for timing verification.

Figure 7-6: FAIRCAD Design Flow

Figure 7-7: Typical Engineering Workstation Design Flow

FAIRCHILD

FAIRCAD[™] Semicustom Design System

FAIRCAD Features

- Interactive Design Capture
- Design Rule Checking
- Interactive Logic and Timing Simulation
- Controllability Fault Analysis
- Auto/Interactive Placement and Routing
- Test Vector Formatting for ATE

Introduction

FAIRCAD[™]—Fairchild's fully integrated, technology independent gate array design software—supports all design tasks from design capture through final design database creation for prototype manufacturing. And FAIRCAD is available on tape for installation on the VAX VMS system, including the MicroVAX II. A proven tool for designing circuitry using our CMOS and ECL gate arrays, FAIRCAD combines engineering graphics with powerful programs to compile, analyze, simulate, place and route system designs. FAIRCAD is menu-driven with extensive on-line help listings and a built-in system monitor to ensure the proper program sequence is adhered to. Figure 8-1 illustrates the typical FAIRCAD design flow.

Fault simulation on FAIRCAD is eased through the use of our Cray 1-S Supercomputer in Milpitas, California; fault simulation on the Cray can be as much as 50 times faster than on other simulation devices. Remote communication links to the Cray make designing at your location even more convenient. And turnaround times at Fairchild have been further reduced by our in-house Cambridge E-Beam Direct-Write-On-Silicon System.

Schematic Capture

- Multiple Windows
- Hierarchical Schematics
- Menu-Driven
- Mouse Command Entry
- Complete ECL and CMOS Libraries

With FAIRCAD's schematic capture program designs may be entered in either the schematic input mode or netlist input mode. The schematic input mode accesses FAIRCAD's fully interactive, menu-driven graphics design entry program. The Structure Description Language (SDL) generates a netlist—a listing of all component interconnections in your design—to be entered into FAIRCAD on magnetic tape or through a keyboard.

Figure 8-1: Typical FAIRCAD Design Flow

*Completed at Fairchild in Milpitas, CA

Schematic Input

FAIRCAD schematic capture simplifies the entering and editing of a semicustom design. FAIRCAD programs are completely menu-driven and extensive on-line help listings are accessed by simply typing "H" followed by a carriage return. The schematic capture menu is shown in Figure 8-2. Logic components are accessed from the macro library of the chosen technology and, with a single keystroke, positioned within the design. Facilities such as COMPONENT MOVE and ALIGN quickly organize and structure a design. Interconnection of components is also quick using connection rubberbanding, which makes line segments visible during the actual connection procedure; visible connections are "stretched" between entry points with the system crosshairs.

WINDOW commands allow editing up to four different symbols, schematics, or windows of the same schematic or symbol simultaneously. Names, text, components, and pins can be aligned horizontally or vertically using FAIRCAD's alignment feature.

Netlist Input Mode

With this method a standard keyboard terminal is used to alphanumerically enter a netlist. Two Fairchild programs permit "describing" a circuit to FAIRCAD. One program, using the SDL, accepts design information in the form of component descriptions and interconnections (netlist). The other program loads the manually generated netlist into the FAIRCAD database and checks for errors in connections, names, nets, etc. FAIRCAD will promptly inform the user of any errors located. The SDL can also be used for editing the manually entered netlist.

Figure 8-2: FAIRCAD Schematic Capture Menu Features

Figure 8-3: Sample Circuit Network Analysis Summary

NETWORK ANALYSIS SUMMARY

POWER SUMMARY TABLE

	Ninimum					Nominel Meximum				•		
	Itt(A) On-Chip	Itt(A) Off-Chip	Ine(A)	PD(W)	Itt(A) On-Chip	Itt(A) Off-Chip	Iee(A)	PD(W)	Itt(A) On-Chip	ltt(A) Off-Chip	lee(A)	Pl+(@)
Necros:	0.001	0.040	0.010	0.08	0.001	0.040	0.013	0.11	0.002	0.040	0.017	v. 15
Bies Drivers (Nex.):			0.329	1.55			0.419	2.18			0.548	4.14
Totels:	0.001	0.040	0.339	1.63	0.001	0.040	0.432	2.29	J.002	0.040	0.505	85.E
		VCC • VEE • VTT •	0.00 -4.70 -1.90	•••••		VCC - VEE - VTT -	0.00 -5.20 -2.00			VCC • VEE • VTT •	U.UU -5.70 -2.10	

CELL UTILIZATION SUNHARY

CELL TYPE	NUMBER USED	NUMBER AVAILABLE	PERCENT USED
•••••	•••••	•••••	•••••
INTERNAL	165	1728	9.554
INPUT	5	35	14.29%
1/0	17	70	24.29%

NET/COMPONENT/PIN NAME	ERROR	TYPE	ERROR DESCRIPTION
CTR/BUFO	9	• E	REGULAR LCS INPUTS AND TRANSLATED INPUTS CANNOT BE COMMECTED SIMULTAMEOUSLY.
CTR/BUF1	7	•E	WIRED-OR MACROS MUST HAVE IDENTICAL MACRO POWER.
CTR/BUF22		• E	ILLEGAL OPEN INPUT PIN.
CTR/BUF23	6	v	MACRO OUTPUT NOT CONNECTED.
стя/вцязо	6	v	MACRO OUTPUT NOT CONNECTED.
CTR/BUF31	10	¥	OUTPUT PIN(S) NOT CONNECTED.
CTR/BUF32	6	u	MACRO OUTPUT NOT CONNECTED.
CTR/BUF33	6	• 2	ONLY INTERNAL CELL MACROS CAN HAVE OUTPUT DOTTING.

MACRO USAGE SUMMARY

MACRO NAME	CELL TYPE	NUMBER USED
2NA04	INTERNAL	1
ANDO2	INTERNAL	9
BUFO2	INTERNAL	39
DFPO2	INTERNAL	9
18701	INTERNAL	16
INVII	INTEPNAL	4
NX021	INTERNAL	4
NORO2	INTERNAL	2
NORO3	INTERNAL	4
ORU2	INTERNAL	7
0R104	INTERNAL	2
XNORO21	INTERNAL	4
XUHO2	INTERNAL	3
:000:	176	5
100011	1/0	3
0804	170	4
1 BATC 1	INPUT	ż
1800.1	INPUT	:
Lavid.	INP"T	:
: HV35	INPUT	:

Circuit Design Rule Checking

FAIRCAD's circuit analyzer checks the design to find problems early in the design cycle. This program extracts a netlist from a capture design and checks it for design rule violations, calculates power dissipation and summarizes the usage of logic macros. The design rule checker also analyzes netlists produced using FAIRCAD's Netlist Input Mode. See Figure 8-3 for a sample netlist summary. Errors found in your design must be corrected before design continuation. Circuit analysis checks fan-out, determines bias types required for each macro (ECL only), and automatically places additional power pads where required. Illegal macro interconnections such as the following are also checked:

- Illegal open pins
- Wired OR/on-chip bussing violations
- Unbiasable connections
- Incompatible circuits
- Excessive fanout
- Net naming conflicts

Simulation

- Hierarchical
- Accurate Default Delays Automatically Calculated
- Access to Internal Nodes
- Hex/Octal Input to Circuits
- Flexible Simulation Programming

Simulation is used after the design has been entered into FAIRCAD and a netlist generated without any logic design violations. Logic, timing, and hierarchical simulation, as well as test program generation, are available on FAIRCAD. With hierarchical simulation you can simulate any block of a design as if it were an independent design: this hierarchical approach facilitates efficient design partitioning while maintaining consistency and improving the integration of the overall circuit. See Figure 8-4 for a sample FAIRCAD timing simulation output.

First, using typical, automatically calculated propagation delays for all components, logic simulation is performed on FAIRCAD to check the accuracy of the logic. Initially, fault simulation is run to determine whether the input test patterns provided by the designer—successfully diagnose the existence of injected faults. Then, after placement and routing are complete, corrected delay times can be computed using actual wiring distances. To speed the computer-intensive task of fault simulation, access to Fairchild's Cray 1-S Supercomputer (located in Milpitas, California) is provided. Now, controllability analysis is run by FAIRCAD at your facility to generate a potentially detectable and undetectable faults listing. Test vectors are produced for automatic test equipment (ATE) with programs that create and edit packagepin files and supply input/output pin information.

Logic/Timing Simulation

FAIRCAD's logic and timing simulators are used for accurately gauging the functionally and performance of the design early in the design cycle. Using FAIRCAD, nodes can be set to specific values; simulated and compared results may be with the expected results. FAIRCAD's easyto-learn Fortran-like control language provides the ability to inspect and set internal nodes, do conditional branching, looping, and simulate such conditions as circuit stability. Simulation on FAIRCAD can be hierarchical; any block (or an entire circuit) in the hierarchy can be simulated, saving time and facilitating circuit debugging.

Both logic and timing simulation check for violations such as minimum pulse width, setup time, hold and release time. The FAIRCAD timing program allows simulation of one timestep, one clock cycle, or multiple timesteps at a time, and inspection of internal nodes and I/Os simultaneously. Prior to placement and routing, default metal lengths and default wire delays are used; after placement and routing, actual metal delays are used.

Fault Simulation

Fault simulation informs the user if, by inspecting the design's output pins, manufacturing defects modeled as "stuck-at" faults can be detected. To ensure test vectors screen potential manufacturing defects (short, open, pin hole, etc.), Fairchild provides access to a Cray 1-S Supercomputer and a powerful fault simulation program. In FAIRCAD, fault simulation is divided into two steps controllability and observability. Controllability, invoked by a single command in the test sequence, determines the percent of internal nodes being toggled by the vectors provided. In short, this analysis shows how effective the test vectors are in controlling the faults. Observability, which is accomplished using the parallel fault simulator on the Cray 1-S Supercomputer, propagates the faults to primary outputs; this determines if the faults are detectable.

Placement

- Automatic/Interactive
- Automatic Improvement
- Prohibits Design Rule Violations
- Congestion Parameter Settings

FAIRCAD's powerful placement program allows random, manual, or automatic placement of components. FAIRCAD provides the ability to interactively place I/Os and/or critical path components in minutes. Automatic placement programs (automatic parameters, placement and improvement) are available to help achieve the optimum placement of your design. Placement, like all other interactive FAIRCAD programs, is menudriven with extensive "help" features that list all possible user options. Many important display features such as cell and component outlines are also provided.

Figure 8-4: FAIRCAD Timing Waveforms

Before placement, a FAIRCAD program compiles and merges the netlist (generated by the circuit design rule checker) and chip databases into a format suitable for both placement and routing. An output listing is then produced that contains the following:

- Circuit Netlist Description
- Overall Circuit Summary
- Detailed Summary of Component Macro Types
- Detailed Summary of Components
- Detailed Summary of Nets
- Component-Net Cross Reference List

To aid in the organizing of the placement, an extensive display menu is available for viewing selected component outlines, labels, cells, etc.

Single-keystroke commands allow you to change the color of various levels, make a hard copy of what is currently visible on the terminal screen, graph congestion values, or show placement obstructions. The congestion graph feature, illustrated in Figure 8-5, helps you minimize interconnect length and congestion by automatically graphing vertical and horizontal placements. Cell "overlaps" are averted with a program that automatically informs you if a selected component placement overlaps others previously placed.

Figure 8-5: FAIRCAD Placement with Congestion Graph Feature

Routing

- Automatic/Interactive
- Automatic Improvement
- Prohibits Design Rule Violations
- Congestion Parameter Settings

Like placement, FAIRCAD's routing program has both manual and automatic features and is completely interactive. Critical nets may be prerouted and the automatic router invoked to finish routing the design. Manual routing, completely menu-driven, is available for specifying critical paths and editing disconnects. FAIRCAD's program for viewing the design reads information from the design file and allows viewing of unconnected nets; "airlines"—diagonal lines—are drawn between unconnected pins. As an additional safeguard against errors, FAIRCAD employs the automatic Design Rule Checker (DRC).

Figure 8-6: FAIRCAD Routing Display

Automatically invoked each time you exit the routing editor, the DRC warns of any design rule violation. Table 8-1 lists FAIRCAD routing features. Figure 8-6 shows a typical routing display.

Table 8-	1:	Routina	F	Programs	and	F	unctions
----------	----	---------	---	----------	-----	---	----------

Program	Functions				
Route Chip Automatically	automatically routes component interconnections				
View the Chip	allows you to view various aspects of your design at any time after design file generation				
Manual Routing	allows you to pre-route critical nets and edit routing				

Engineering Support

Fairchild applications engineers, the experts of gate array design, are available for assistance during the work week and, by arrangement, can complete some or all of FAIRCAD's design tasks for you.

Instruction

Because you may only have a workable concept of what you want your circuit to do, Fairchild places a premium on instruction. Courses are taught by knowledgeable applications engineers at FAIRTECH design centers, and by special arrangement can be taught at your facility. Classrooms equipped with color graphics terminals—one per student—and video projection systems provide the perfect place to explore gate array design.

A first-time customer will take both the hardware design course (1-2 days) for his chosen gate array family and the FAIRCAD training course (5 days). Since FAIRCAD is technology independent, the FAIRCAD seminar need not be repeated to accomplish a design using a different Fairchild gate array family. Instruction on FAIRCAD system installation and administration is also available. A complete listing of class dates and times is available at Fairchild Design Centers and sales offices. Training credits are provided with NRE charges for each design option.

FAIRCAD Hardware Requirements

To run FAIRCAD at your facility you must have the DEC VMS operating system and FAIRCADcompatible hardware. The following lists operating system and hardware requirements:

- VMS Operating System V4.2
- MicroVAX II, VAX 11/750, 11/780, 11/785, 8600, 8650
- Tektronix Graphics Terminals 4113, 4115, 4107, 4109, 4125
- VT100-Compatible Terminals (one for each graphics terminal)
- 9-Track Tape Drive

FAIRCAD, databases and accompanying files require approximately 50 Megabytes of storage space. In addition to space required for FAIRCAD and its files, approximately 50 Megabytes of storage space is also required for the chosen array.

MicroVAX II

FAIRCAD is available for use on the DEC MicroVAX II. All FAIRCAD design tasks, including simulation, placement and routing, can be accomplished using the MicroVAX at your facility. Access to the Cray 1-S Supercomputer for fault simulation is available when designing with the MicroVAX II. Two MicroVAX II configurations are supported for FAIRCAD—the workstation and minicomputer configurations. The workstation configuration, which supports 1-2 users, requires the following:

- BA123 MicroVAX II cabinet (World Box)
- Three 71 Megabyte disk drives (two for single user)
- RQDX3 disk controller
- 1-2 Tektronix graphics terminals (4107, 4109, 4113, 4115, 4125)
- 1-2 VT220 (VT100-compatible) terminals (one for each graphics terminal)
- TK50 tape drive
- MicroVMS operating system

The minicomputer configuration, supporting 1-8 users, includes the following:

- H9642 MicroVAX II cabinet
- 5 Megabytes (min) memory
- RA81 456 Megabyte fixed disk
- 1-4 Tektronix graphics terminals (4107, 4109, 4113, 4115, 4125)
- 1-4 VT220 (VT100-compatible) terminals (one for each graphics terminal)
- TK50 tape drive
- MicroVMS operating system

·

FAIRCHILD

CMOS Arrays Packaging Guide

Introduction

This guide describes the packaging options available for FGC Series CMOS gate arrays. A wide selection of lead counts and package styles, including dual in-line, leaded chip carriers, pin grid arrays and ceramic flatpaks, is offered. Table 9-1 lists the package styles and lead counts available and planned for each array in the FGC Series.

The following paragraphs summarize the data presented in the table.

Dual In-Line Packages

Plastic and ceramic dual in-line packages with lead counts from 20 to 64 are available for FGC Series arrays with fewer than 4000 equivalent gates. Refer to Table 9-1 for product applicability.

Quad Packages

Plastic and ceramic leaded chip carriers (J-bend) with lead counts from 44 to 84 are available for the entire FGC Series of arrays. Refer to Table 9-1 for specific product applicability.

Pin Grid Arrays

Plastic and ceramic pin grid arrays with lead counts from 68 to 209 are available for all FGC Series arrays except the FGC0500. Refer to Table 9-1 for specific product applicability.

		FGC	FGC	FGC	FGC	FGC	FGC
Lead Count	Style	0500	1200	2400	4000	6000	8000
20 20	PDIP CDIP	A P					
24 24	PDIP CDIP	A A	A A	A A			
28 28	PDIP CDIP	P A	P A	A A			
40 40	PDIP DCIP	A A	A A	A A	P P		
44 44	PLCC CLCC	A P	A A	A A	A P		
48 48	PDIP CDIP		A A	A A	A A		
64 64	PDIP CDIP			A A			
68 68 68 68	PLCC CLCC PPGA CPGA		P A A A	A P A A	A P P A	A A	
84 84 84 84	PLCC CLCC PPGA CPGA		P A A	P A A A	A A P A	A A P P	P P
120 120	PPGA CPGA			A A	A A	P A	
132	CFPAK				Р	Р	
144 144	PPGA CPGA				P A	A	A A
180	CPGA					A	А
209	CPGA						A

Table 9-1: FGC Series Package Selection Guide

PDIP = Plastic Dual In-Line Package

CDIP = Ceramic Dual In-Line Side Brazed Package

PLCC = Plastic Leaded Chip Carrier (J-Bend Leads)

CLCC = Ceramic Leaded Chip Carrier (J-Bend Leads)

PPGA = Plastic Pin Grid Array

CPGA = Ceramic Pin Grid Array

CFPAK = Ceramic Flatpak

A = Available P = Planned

Product Index and Selection Guide	1
FACT Descriptions and Family Characteristics	2
Ratings, Specifications and Waveforms	3
Design Considerations	4
Data Sheets	5
Package Outlines and Ordering Information	6
FGC Series Advanced 2-Micron CMOS Gate Array	7
FAIRCAD [™] Semicustom Design System	8
CMOS Arrays Packaging Guide	9
Field Sales Offices and Distributor Locations	10

Alabama

555 Sparkman Drive, Suite 1030 Huntsville, Alabama 35805 Tel: 205-837-8960

Arizona

9201 North 25th Avenue, Suite 215 Phoenix, Arizona 85021 Tel: 602-943-2100

California

Auburn Office (Temporary) 3620 Sugarview Road Meadow Vista, California 95722 Tel: 916-823-6664

*Costa Mesa Office 3505 Cadillac Avenue, Suite 0-104 Costa Mesa, California 92626 Tel: 714-241-5900

*Cupertino Office 10400 Ridgeview Court Cupertino, California 95014 Tel: 408-864-6200

Encino Office 15760 Ventura Blvd., Suite 1027 Encino, California 91436 Tel: 818-990-9800

San Diego Office 4355 Ruffin Road, Suite 100 San Diego, California 92123 Tel: 619-560-1332

Colorado

Colorado Springs Office 102 South Tejon Street, Suite 1100 Colorado Springs, Colorado 80903 Tel: 303-578-3319

Denver Office 10200 East Girard Bldg. B., Suite 222 Denver, Colorado 80231 Tel: 303-695-4927

Connecticut

2440 Whitney Avenue Hamden, Connecticut 06518 Tel: 203-288-1560

*Fairtech Center located in this office

Sales Offices

Florida

Deerfield Beach Office 450 Fairway Drive, Suite 107 Deerfield Beach, Florida 33441 Tel: 305-421-3000

*Orlando Office Maitland Colonnades 2301 Lucien Way, Suite 260 Maitland, Florida 32751 Tel: 305-875-0500

St. Petersburg Office 9800 4th Street North, Suite 206 St. Petersburg, Florida 33702 Tel: 813-577-1380

Georgia

3080 Northwoods Circle, Suite 130 Norcross, Georgia 30071 Tel: 404-441-2740

Illinois 500 Park Blvd., Suite 575 Itasca, Illinois 60143 Tel: 312-773-3133

Indiana

11711 North Meridan Street Suite 200 Carmel, Indiana 46032 Tel: 317-843-5686/5687

lowa

373 Collins Road NE, Suite 200 Cedar Rapids, Iowa 52402 Tel: 319-395-0090

Kansas 8600 West 110th Street, Suite 206 Overland Park, Kansas 66210 Tel: 913-451-8374

Maryland

10270 Old Columbia Road Suite R Columbia, Maryland 21046 Tel: 301-381-2500

Massachusetts *1432 Main Street Waltham, Massachusetts 02154 Tel: 617-890-4000

United States and Canada

Michigan

21999 Farmington Road Farmington Hills, Michigan 48024 Tel: 313-478-7400

Minnesota

*3600 West 80th Street, Suite 590 Bloomington, Minnesota 55431 Tel: 612-835-3322

New Jersey

783 Riverview Drive North Totowa, New Jersey 07512 Tel: 201-256-9006

New Mexico

2900 Louisiana NE, Suite D Albuquerque, New Mexico 87110 Tel: 505-884-5601

New York Endicott Office 421 East Main Street Endicott, New York 13760 Tel: 607-757-0200

Fairport Office 830 Cross Keys Office Park Fairport, New York 14450 Tel: 716-223-7700

Hauppauge Office 300 Wheeler Road Hauppauge, New York 11788 Tel: 516-348-0900

Poughkeepsie Office 66 Middlebush Road, Suite U-306 Wappingers Falls, New York 12590 Tel: 914-298-0680

North Carolina

5954-A Six Forks Road Raleigh, North Carolina 27609 Tel: 919-848-2420

Ohio Cleveland Office 6133 Rockside Road, Suite 304 Cleveland, Ohio 44131 Tel: 216-447-9700

Ohio

Dayton Office 7250 Poe Avenue, Suite 260 Dayton, Ohio 45414 Tel: 513-890-5878

Oregon

6600 SW 92nd Avenue, Suite 27 Portland, Oregon 97223 Tel: 503-244-6020

Pennsylvania

Willow Wood Office Center Suite 110 3901 Commerce Avenue Willow Grove, Pennsylvania 19090 Tel: 215-657-2711

Texas

Austin Office 8310 Capital of Texas Hwy. N Suite 160 Austin, Texas 78731 Tel: 512-346-3990

Sales Offices

*Dallas Office 1702 North Collins Blvd. Suite 101 Richardson, Texas 75080 Tel: 214-234-3811

Houston Office 9896 Bissonnet-2, Suite 470 Houston, Texas 77036 Tel: 713-771-3547

Utah

5282 South 320 West, Suite D120 Murray, Utah 84107 Tel: 801-266-0773

Washington

11911 NE First Street, Suite 310 Bellevue, Washington 98005 Tel: 206-455-3190

United States and Canada

Canada

Toronto Regional Office 7 Director Court Building C, Unit 102 Woodbridge, Ontario L4L 4S5 Tel: 416-746-7120

Montreal Office 3675 Sources Blvd., Suite 109 Dollard des Ormeaux Quebec, H9B 2K4 Tel: 614-683-0883

Ottawa Office 148 Colonnade Road South, Unit 13 Nepean, Ontario K2E 7J5 Tel: 613-226-8270

*Fairtech Center located in this office

Austria and Eastern Europe

Fairchild Electronics GmbH Assmayergasse 60 A-1120 Wien Austria Tel: (0222) 85-86-82

Brazil

Fairchild Semiconductores Ltda. Caixa Postal 30407 Rua Alagoas, 663 01242 Sao Paulo, Brazil Tel: 66-9092

Fairchild Semiconductor Ltd. Rua Oswaldo Cruz, 505 Caixa Postal 948 13100 Campinas SP Brazil Tel: 55-192-46655 55-192-416434

France

Fairchild Europe Semiconductor Headquarters 12 Place Des Etats-Unis B.P. 655 92542 Montrouge Cedex Tel: (1) 47-46-61-61

Germany

Fairchild Semiconductor GmbH Gebauede 458, Zimmer 2194 D-6000 Frankfurt/Main 75 Tel: (069) 690-56-13

Fairchild Semiconductor GmbH Oeltzenstrasse 14 D-3000 Hannover Tel: (0511) 178-44

Fairchild Semiconductor GmbH Poststrasse 37 D-7250 Leonberg Tel: (07152) 410-26

Sales Offices

Fairchild Semiconductor GmbH Zweigniederlassung Neufahrn Hans-Braunstrasse 50 D-8056 Neufahrn Tel: (08165) 61-80

Holland

Fairchild Semiconductor B.V. Ruysdaelbaan 35 NL-5613 DX-Eindhoven The Netherlands Tel: (040) 44-69-09

Hong Kong

Fairchild Semiconductor Products 12th Floor, Austin Tower 22-26A Austin Avenue, Tsimshatsui Kowloon, Hong Kong Tel: 3-723-5256

Fairchild Semiconductor (HK) Ltd. 5/F-6/F, San Miguel Bldg. 9-11, Shing Wan Road Tai Wai, Shatin NT Hong Kong Tel: 852-0-6055311

Italy

Fairchild Semiconductori S.p.A. Viale Corsica 7 20133 Milano Tel: (02) 749-12-71

Japan

Fairchild Semiconductor Pola Shibuya Bldg, 7th Floor 1-15-21, Shibuya-Ku Tokyo 150 Tel: (02) 4008351

Fairchild Japan Corporation Yotsubashi Chuo Bldg. 1-4-26, Shinmachi Nishi-Ku, Osaka 550 Tel: 06-541-6138/9

International

Korea

Fairchild Semiconductor 10th Floor, Life Bldg. 61 Yuido-Dong, Youngdongpo-Ku Seoul 150 Tel: 783-3795

Scandinavia

Fairchild Semiconductor AB Bergsunds Strand 39 S-117 38 Stockholm Sweden Tel: (08) 84-01-70

Singapore

Fairchild Singapore Pty. Ltd. 74 Bukit Timah Road #03-01/02 Boon Siew Bldg. Singapore 0922 Tel: (65) 258-1944

Switzerland

Fairchild Semiconductor GmbH Baumackerstr. 46 CH-8050 Zurich Tel: (01) 311-42-30

Taiwan

Fairchild Semiconductor Ltd. Hsietsu Bldg., Room 502 47 Chung Shan North Road Sec. 3 Taipei, Taiwan Tel: 573205 thru 573207

United Kingdom

Fairchild Semiconductor Ltd. 230 High Street Potters Bar Hertsfordshire EN6 5BU England Tel: (0707) 51111

Alabama

Hamilton/Avnet Electronics 4940 Research Drive NW Huntsville, Alabama 35805 Tel: 205-837-7210

Schweber Electronics 4910 Corporate Drive, Suite J Huntsville, Alabama 35805 Tel: 205-895-0480

Arizona

Hamilton/Avnet Electronics 505 South Madison Drive Tempe, Arizona 85281 Tel: 602-231-5100

Schweber Electronics 11049 North 23rd Drive, Suite 100 Phoenix, Arizona 85029 Tel: 602-997-4874

Wyle Distribution Group 17855 North Black Canyon Hwy. Phoenix, Arizona 85023 Tel: 602-866-2888

California

Arrow Electronics 19748 Dearborn Street Chatsworth, California 91311 Tel: 818-701-7500

Arrow Electronics 9511 Ridgehaven Court Viewriego, California 92123 Tel: 619-565-4800

Arrow Electronics 521 Weddell Avenue Sunnyvale, California 94066 Tel: 406-745-6600

Arrow Electronics 2961 Dow Avenue Tustin, California 92680 Tel: 714-838-5422

Authorized Distributors

Avnet Electronics 350 McCormick Avenue Costa Mesa, California 92626 Tel: 714-754-6111 (Orange County) 213-558-2345 (Los Angeles)

Hamilton/Avnet Electronics 3170 Pullman Avenue Costa Mesa, California 92626 Tel: 714-641-1850

Hamilton Electro Sales 10950 West Washington Blvd. Culver City, California 90230 Tel: 213-558-2000

Hamilton/Avnet Electronics 4103 North Gate Blvd. Sacramento, California 95834 Tel: 916-920-3150

Hamilton/Avnet Electronics 4545 Viewridge Avenue San Diego, California 92123 Tel: 619-571-7527

Hamilton Electro Sales 1361-B West 190th Street Gardena, California 90248 Tel: 213-217-6700

Hamilton Electro Sales 9650 Desoto Avenue Chatsworth, California 91311 Tel: 818-700-6500

Hamilton Electro Sales 3002 East G Street Ontario, California 91764 Tel: 714-989-4602

Hamilton/Avnet Electronics 1175 Bordeaux Drive Sunnyvale, California 94066 Tel: 408-743-3355

Schweber Electronics 1225 West 190th Street, Suite 360 Gardena, California 90248 Tel: 213-327-8409

United States and Canada

Schweber Electronics 17822 Gillette Avenue Irvine, California 92714 Tel: 714-863-0200

Schweber Electronics 21139 Victory Blvd. Canoga Park, California 91303 Tel: 818-999-4702

Schweber Electronics 90 East Tasman Drive San Jose, California 95134 Tel: 408-946-7171

*Sertech Laboratories 3170 Pullman Drive Costa Mesa, California 92626 Tel: 714-754-0666

Wyle Distribution Group 7382 Lampson Street Garden Grove, California 92641 Tel: 800-222-9953

Wyle Distribution Group 26677 Agoura Road Calabassas, California 91302 Tel: 818-880-9001

Wyle Distribution Group 124 Maryland Street El Segundo, California 90245 Tel: 213-322-8100

Wyle Distribution Group 17872 Cowan Avenue Irvine, California 92714 Tel: 714-863-9953

Wyle Distribution Group Military Product Division 18910 Teller Avenue Irving, California 92715 Tel: 714-851-9953

Wyle Distribution Group 11151 Sun Center Drive Rancho Cordova, California 95670 Tel: 916-638-5282

California

Wyle Distribution Group 9525 Chesapeake Drive San Diego, California 92123 Tel: 619-565-9171

Wyle Distribution Group 3000 Bowers Avenue Santa Clara, California 95051 Tel: 408-727-2500

Zeus Components, Inc. 5236 Colodny Drive Agoura Hills, California 91301 Tel: 818-889-3838

Zeus Components, Inc. 1580 Old Oakland Road Suite C 205 San Jose, California 95131 Tel: 408-998-5121

Zeus Components, Inc. 22700 Savi Ranch Pkwy. Yorba Linda, California 92686 Tel: 714-921-9000

Colorado

Arrow Electronics 1390 South Potomac Street Suite 136 Aurora, Colorado 80012 Tel: 303-696-1111

Hamilton/Avnet Electronics 710 Wooton Road Colorado Springs, Colorado 80913 Tel: 303-637-0055

Hamilton/Avnet Electronics 8765 East Orchard Rd., Suite 706 Englewood, Colorado 80111 Tel: 303-740-1000

Schweber Electronics 8955 East Nichols Avenue Englewood, Colorado 80112 Tel: 303-799-0258

Authorized Distributors

Wyle Distribution Group 451 East 124th Avenue Thornton, Colorado 80241 Tel: 303-457-9953

Connecticut

Arrow Electronics 12 Beaumont Road Wallingford, Connecticut 06492 Tel: 203-265-7741

Hamilton/Avnet Electronics Commerce Drive, Commerce Park Danbury, Connecticut 06810 Tel: 203-797-2800

Schweber Electronics Finance Drive Commerce Industrial Park Danbury, Connecticut 06810 Tel: 203-792-3500

Florida Arrow Electronics 350 Fairway Drive Deerfield Beach, Florida 33441 Tel: 305-429-8200

Arrow Electronics 1530 Bottlebrush Drive NE Palm Bay, Florida 32905 Tel: 305-725-1480

*Chip Supply 7725 North Orange Blossom Trail Orlando, Florida 32610 Tel: 305-298-7100

Hamilton/Avnet Electronics 6801 NW 15th Way Ft. Lauderdale, Florida 33309 Tel: 305-971-2900

Hamilton/Avnet Electronics 3197 Tech Drive, North St. Petersburg, Florida 33702 Tel: 813-576-3930

Hamilton/Avnet Electronics 6947 University Blvd. Winter Park, Florida 32792 Tel: 305-628-3888

United States and Canada

Schweber Electronics 317 South North Lake Blvd. Suite 1024 Altamonte Springs, Florida 32701 Tel: 305-331-7555

Schweber Electronics 3665 Park Central Blvd. North Building 6 Pompano Beach, Florida 33064 Tel: 305-977-7511

Zeus Components, Inc. 1750 West Broadway, Suite 114 Oviedo, Florida 32765 Tel: 305-365-3000

Georgia

Arrow Electronics 3155 Northwoods Pkwy., Suite A Norcross, Georgia 30071 Tel: 404-449-8252

Hamilton/Avnet Electronics 5825-D Peachtree Corners East Norcross, Georgia 30092 Tel: 404-447-7500

Schweber Electronics 2979 Pacific Drive, Suite E Norcross, Georgia 30092 Tel: 404-449-9170

Illinois

Arrow Electronics 2000 Algonquin Road Schaumburg, Illinois 60195 Tel: 312-397-3440

Hamilton/Avnet Electronics 1130 Thorndale Avenue Bensenville, Illinois 60106 Tel: 312-860-7780

Schweber Electronics 904 Cambridge Road Elk Grove Village, Illinois 60007 Tel: 312-364-3750

*This distributor carries Fairchild die products only.

Indiana

Arrow Electronics 2495 Directors Row, Suite H Indianapolis, Indiana 46241 Tel: 317-243-9353

Hamilton/Avnet Electronics 485 Gradle Drive Carmel, Indiana 46032 Tel: 317-844-9333

lowa

Arrow Electronics 1930 St. Andrews NE Cedar Rapids, Iowa 52402 Tel: 319-395-7230

Hamilton/Avnet Electronics 915 33rd Avenue SW Cedar Rapids, Iowa 52404 Tel: 319-302-4757

Schweber Electronics 5270 North Park Place NE Cedar Rapids, Iowa 52402 Tel: 319-373-1417

Kansas

Hamilton/Avnet Electronics 9219 Quivira Road Overland Park, Kansas 66215 Tel: 913-888-8900

Schweber Electronics 10300 West 103rd Street Suite 103 Overland Park, Kansas 66214 Tel: 913-492-2921

Kentucky

Hamilton/Avnet Electronics 1061-D Newtown Pike Lexington, Kentucky 40511 Tel: 609-259-1475

Maryland

Arrow Electronics 8300 Guilford Road Suite H, Rivers Center Columbia, Maryland 21046 Tel: 301-995-0003

Authorized Distributors

Hamilton/Avnet Electronics 6822 Oak Hall Lane Columbia, Maryland 21045 Tel: 301-995-3500

Schweber Electronics 9330 Gaither Road Gaithersburg, Maryland 20877 Tel: 301-840-5900

Zeus Components, Inc. 8930 Rt. 108 Columbia, Maryland 21045 Tel: 301-997-1118

Massachusetts

Arrow Electronics One Arrow Drive Woburn Massachusetts 01801 Tel: 617-933-8130

Gerber Electronics 128 Carnegie Row Norwood, Massachusetts 02062 Tel: 617-329-2400

Hamilton/Avnet Electronics 10-D Centennial Drive Peabody, Massachusetts 01960 Tel: 617-531-7430

Schweber Electronics 25 Wiggins Avenue Bedford, Massachusetts 01730 Tel: 617-275-5100

*Sertech Laboratories 10-B Centennial Drive Peabody, Massachusetts 01960 Tel: 617-531-8673

Zeus Components, Inc. 429 Marrett Road Lexington, Massachusetts 02173 Tel: 617-863-8800

Michigan Arrow Electronics 755 Phoenix Drive Ann Arbor, Michigan 48104 Tel: 313-971-8220

United States and Canada

Arrow Electronics 3510 Roger B. Chaffee SE Grand Rapids, Michigan 49508 Tel: 616-243-0912

Hamilton/Avnet Electronics 2215 29th Street SE, Space A5 Grand Rapids, Michigan 49508 Tel: 616-243-8805

Hamilton/Avnet Electronics 32487 Schoolcraft Livonia, Michigan 48150 Tel: 313-522-4700

Schweber Electronics 12060 Hubbard Avenue Livonia, Michigan 48150 Tel: 313-525-8100

Minnesota

Arrow Electronics 5230 West 73rd Street Edina, Minnesota 55435 Tel: 612-830-1800

Hamilton/Avnet Electronics 10300 Bren Road East Minnetonka, Minnesota 55343 Tel: 612-932-0600

Schweber Electronics 7424 West 78th Street Edina, Minnesota 55435 Tel: 612-941-5280

Missouri

Arrow Electronics 2360 Schuetz Road St. Louis, Missouri 63146 Tel: 314-567-6888

Hamilton/Avnet Electronics 13743 Shoreline Court East Earth City, Missouri 63045 Tel: 314-344-1200

Schweber Electronics 502 Earth City Expressway Earth City, Missouri 63045 Tel: 314-739-0526

*This distributor carries Fairchild die products only.

New Hampshire Arrow Electronics 1 Perimeter Road Manchester, NH 03103 Tel: 603-668-6968

Hamilton/Avnet Electronics 444 East Industrial Drive Manchester, NH 03104 Tel: 603-624-9400

Schweber Electronics Bedford Farms Building 2 Kilton and South River Roads Manchester, NH 03102 Tel: 603-625-2250

New Jersey

Arrow Electronics 6000 Lincoln Drive East Marlton, New Jersey 08053 Tel: 609-596-8000

Arrow Electronics 2 Industrial Road Fairfield, New Jersey 07006 Tel: 201-575-5300

Hamilton/Avnet Electronics 10 Industrial Road Fairfield, New Jersey 07006 Tel: 201-575-3390

Hamilton/Avnet Electronics 1 Keystone Avenue Cherry Hill, New Jersey 08003 Tel: 609-424-0100

Schweber Electronics 18 Madison Road Fairfield, New Jersey 07006 Tel: 201-227-7880

New Mexico

Arrow Electronics 2460 Alamo Avenue SE Albuquerque, New Mexico 87106 Tel: 505-243-4566

Authorized Distributors

Hamilton/Avnet Electronics 2524 Baylor Drive SE Albuquerque, New Mexico 87106 Tel: 505-765-1500

New York Arrow Electronics 25 Hub Drive Melville, New York 11747 Tel: 516-694-6800

Arrow Electronics 20 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-1000

Arrow Electronics 3375 Brighton-Henrietta Town Line Road Rochester, New York 14623 Tel: 716-275-0300

Hamilton/Avnet Electronics 933 Motor Pkwy. Hauppauge, New York 11788 Tel: 516-231-9800

Hamilton/Avnet Electronics 333 Metro Park Rochester, New York 14623 Tel: 716-475-9130

Hamilton/Avnet Export 1065 Country Road, Suite 211A Westbury, New York 11590

Hamilton/Avnet Electronics 103 Twin Oaks Drive Syracuse, New York 13207 Tel: 315-437-2642

Schweber Electronics Jericho Turnpike Westbury, New York 11590 Tel: 516-334-7474

Schweber Electronics 3 Town Line Circle Rochester, New York 14623 Tel: 716-424-2222

United States and Canada

Summit Distributors, Inc. 916 Main Street Buffalo, New York 14202 Tel: 716-887-2800

Zeus Components, Inc. 100 Midland Avenue Port Chester, New York 10573 Tel: 914-937-7400

Zeus Components, Inc. 2110 Smithtown Avenue Ronkonkoma, New York 11779 Tel: 516-737-4500

North Carolina Arrow Electronics 5240 Greens Dairy Road Raleigh, North Carolina 27604 Tel: 919-876-3132

Hamilton/Avnet 3510 Spring Forest Road Raleigh, North Carolina 27604 Tel: 919-878-0819

Schweber Electronics 5285 North Blvd. Raleigh, North Carolina 27604 Tel: 919-876-0000

Ohio

Arrow Electronics 7620 McEwen Road Centerville, Ohio 45459 Tel: 513-435-5563

Arrow Electronics 6238 Cochran Road Solon, Ohio 44139 Tel: 216-248-3990

Hamilton/Avnet Electronics 954 Senate Drive Dayton, Ohio 45459 Tel: 513-433-0610

Hamilton/Avnet Electronics 4588 Emery Industrial Parkway Warrensville Heights, Ohio 44128 Tel: 216-831-3500

Ohio

Hamilton/Avnet Electronics 777 Brooksedge Blvd. Westerville, Ohio 43081 Tel: 614-882-7004

Schweber Electronics 23880 Commerce Park Beachwood, Ohio 44122 Tel: 216-464-2970

Schweber Electronics 7865 Paragon Road Dayton, Ohio 45459 Tel: 513-439-1800

Oklahoma

Arrow Electronics 4719 South Memorial Tulsa, Oklahoma 74145 Tel: 918-665-7700

Hamilton/Avnet Electronics 12121 East 51st, Suite 102A Tulsa, Oklahoma 74146 Tel: 918-252-7297

Schweber Electronics 4815 South Sheridan Road Tulsa, Oklahoma 74145 Tel: 918-622-8000

Oregon

Arrow Electronics 10260 SW Nimbus, Suite M3 Tigard, Oregon 97223 Tel: 503-684-1690

Hamilton/Avnet Electronics 6024 SW Jean Road Building C, Suite 10 Lake Oswego, Oregon 97034 Tel: 503-635-8157

Wyle Distribution 5250 NE Elam Young Parkway Suite 600 Hillsboro, Oregon 97124 Tel: 503-640-6000

Authorized Distributors

Pennsylvania Arrow Electronics 650 Seco Road Monroeville, Pennsylvania 15146 Tel: 412-856-7000

Schweber Electronics 2800 Liberty Avenue, Bldg. E Pittsburgh, Pennsylvania 15222 Tel: 412-281-4150

Schweber Electronics 900 Business Center Drive Horsham, Pennsylvania 19044 Tel: 215-441-0600

Texas

Arrow Electronics 2227 West Braker Lane Austin, Texas 78758 Tel: 215-835-4180

Arrow Electronics 3220 Commander Drive Carrollton, Texas 75006 Tel: 214-380-6464

Arrow Electronics 10899 Kinghurst, Suite 100 Houston, Texas 77099 Tel: 713-530-4700

Hamilton/Avnet Electronics 4850 West Braker Lane Austin, Texas 78758 Tel: 512-837-8911

Hamilton/Avnet Electronics 4850 Wright Road, Suite 190 Stafford, Texas 77477 Tel: 713-240-7733

Hamilton/Avnet Electronics 2111 West Walnut Hill Lane Irving, Texas 75062 Tel: 214-659-4111

Schweber Electronics 6300 La Calma Drive, Suite 240 Austin, Texas 78752 Tel: 512-458-8253

United States and Canada

Schweber Electronics 4202 Beltway Drive Dallas, Texas 75234 Tel: 214-661-5010

Schweber Electronics 10625 Richmond, Suite 100 Houston, Texas 77042 Tel: 713-784-3600

Wyle Distribution Group 2120 West Braker Lane, Suite F Austin, Texas 78758 Tel: 512-834-9957

Wyle Distribution Group 11001 South Wilcrest, Suite 105 Houston, Texas 77099 Tel: 713-879-9953

Wyle Distribution Group 1810 North Greenville Avenue Richardson, Texas 75081 Tel: 214-235-9953

Zeus Components, Inc. 1800 North Glenville Road Richardson, Texas 75081 Tel: 214-783-7010

Utah

Arrow Electronics 1515 West 2200 South Salt Lake City, Utah 84119 Tel: 801-972-0404

Hamilton/Avnet Electronics 1585 West 2100 South Salt Lake City, Utah 84119 Tel: 801-972-2800

Wyle Distribution Group 1959 South 4130 West, Unit B Salt Lake City, Utah 84104 Tel: 801-974-9953

Virginia

Arrow Electronics 8002 Discovery Drive Richmond, Virginia 23285 Tel: 804-282-0413

Washington

Arrow Electronics 14320 NE 21st Street Bellevue, Washington 98005 Tel: 206-643-4800

Hamilton/Avnet Electronics 14212 NE 21st Street Bellevue, Washington 98005 Tel: 206-453-5844

Wyle Distribution Group 1750 132nd Avenue NE Bellevue, Washington 98005 Tel: 206-453-8300

Wisconsin

Arrow Electronics 200 North Patrick Blvd. Brookfield, Wisconsin 53005 Tel: 414-792-0150

Hamilton/Avnet Electronics 2975 South Moorland Road New Berlin, Wisconsin 53151 Tel: 414-784-4510

Schweber Electronics 150 Sunnyslope Road, Suite 120 Brookfield, Wisconsin 53005 Tel: 414-784-9020

Authorized Distributors

Canada

Future Electronics 3220 5th Avenue NE Calgary, Alberta T2A 5N1 Tel: 403-235-5325

Future Electronics 82 St. Regis Crescent North Downsview, Ontario M3J 1Z3 Tel: 416-638-4771

Future Electronics Baxter Center 1050 Baxter Road Ottawa, Ontario K2C 3P2 Tel: 613-820-8313

Future Electronics 237 Hymus Blvd. Pointe Claire (Montreal), Quebec H9R 5C7 Tel: 514-694-7710

Future Electronics 1695 Boundary Road Vancouver, British Columbia V5K 4X7 Tel: 604-438-5545

Future Electronics 5312 Calgary Trail Edmonton, Alberta P6H 4J8 Tel: 403-438-2858

Hamilton/Avnet Canada Ltd. 2816 21st Street NE Calgary, Alberta T2E 6Z2 Tel: 403-250-9380

United States and Canada

Hamilton/Avnet Canada Ltd. 2550 Boundary Road, Suite 115 Burnaby, British Columbia V5M 3C3 Tel: 604-437-6667

Hamilton/Avnet Canada Ltd. 6845 Rexwood Road, Units 3-4-5 Mississauga, Ontario L4V 1R2 Tel: 416-677-7432

Hamilton/Avnet Canada Ltd. 190 Colonnade Road Nepean, Ontario K2E 7J5 Tel: 613-226-1700

Hamilton/Avnet Canada Ltd. 2795 Halpern Road St. Laurent, Quebec H4S 1P8 Tel: 514-335-1000

Semad Electronics Ltd. 9045 Cote de Liesse, Suite 101 Dorval, Quebec H9P 2M9 Tel: 514-636-4614

Semad Electronics Ltd. 864 Lady Ellen Place Ottawa, Ontario K1Z 5M2 Tel: 613-722-6571

Semad Electronics, Ltd. 85 Spy Court Markham, Ontario L3R 4Z4 Tel: 416-475-8500

Notes

Notes

DC Characteristics fo	r 'AC Family Devices
------------------------------	----------------------

Symbol	Parameter	Conditions	Vcc (V)	74AC Ta=25°C		54AC	74AC	Units	
						Ta = -55° to +125°C	TA = -40° to +85°C		
				Тур		Guaranteed L	imits		
Vін	Minimum High Level Input Voltage	Vout = 0.1 V or Vcc-0.1 V	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	2.1 3.15 3.85	v	
VIL	Maximum Low Level Input Voltage	Vout = 0.1 V or Vcc-0.1 V	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	0.9 1.35 1.65	v	
Vон I	Minimum High Level Output Voltage	Ιουτ = −50 μA	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	2.9 4.4 5.4	v	
		*VIN = VIL or VIH -12 mA Іон -24 mA -24 mA	3.0 4.5 5.5		2.56 3.86 4.86	2.4 3.7 4.7	2.46 3.76 4.76	v	
VOL LOW	Maximum	Ιουτ = 50 μΑ	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	v	
	Low Level Output Voltage	*VIN = VIL or VIH 12 mA IoL 24 mA 24 mA	3.0 4.5 5.5		0.32 0.32 0.32	0.4 0.4 0.4	0.37 0.37 0.37	v	
lin	Maximum Input Leakage Current	Vı = Vcc, GND	5.5		± 0.1	± 1.0	± 1.0	μA	
IOZ	Maximum 3-State Current		5.5		± 0.5	± 10.0	± 5.0	μA	
IOLD	†Minimum	Vold = 1.1 V	5.5			57	86	mA	
Іонр	Dynamic Output Current	Vohd = 3.85 V	5.5			-50	-75	mA	

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 20 ms, one output loaded at a time.

DC Characteristics for 'ACT Family Devices

a statistication of the

10000

Symbol	Parameter	Conditions	V cc (V)	74ACT TA = 25°C		54ACT	74ACT	Units
						TA = -55° to + 125°C	TA = -40° to +85°C	
				Тур		Guaranteed L	imits	
Vін	Minimum High Level Input Voltage	Vout = 0.1 V or Vcc-0.1 V	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	2.0 2.0	v
VIL	Maximum Low Level Input Voltage	Vout = 0.1 V or Vcc-0.1 V	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	0.8 0.8	v
	Minimum	Ιουτ = −50 μΑ	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	4.4 5.4	v
	High Level	*VIN = VIL or VIH Іон –24 mA –24 mA	4.5 5.5	0.0001	3.86 4.86	3.70 4.70	3.76 4.76	v
Maximum Vo∟ Low Level Output Voltage	Maximum	Ιουτ = 50 μΑ	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	0.1 0.1	v
	*VIN = VIL or VIH IoL 24 mA 24 mA	4.5 5.5	-	0.32 0.32	0.40 0.40	0.37 0.37	v	
lin	Maximum Input	VI = Vcc, GND	5.5		±0.1	± 1.0	± 1.0	μA
loz	Maximum 3-State Current	VI = VIL, VIH Vo = Vcc, GND	5.5		± 0.5	± 10.0	± 5.0	μA
Ісст	Maximum Icc/Input	VI = Vcc-2.1 V	5.5	0.6		1.6	1.5	mA
Iold	†Minimum	Vold = 1.1 V	5.5			57	86	mA
Іонр	Dynamic Output Current	Vонd = 3.85 V	5.5			-50	-75	mA

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

Fairchild cannot assume responsibility for use of any circuitry described other than circuitry embodied in a Fairchild product. Fairchild reserves the right to make changes in the circuitry or specifications at any time without notice.

Printed in U.S.A. March 1988 400019 16 M