

A Schlumberger Company

Memory Data Book

Memory Data Book

Memory and High Speed Logic

\$4.95

©1986 Fairchild Semiconductor Corporation Memory and High Speed Logic P.O. Box 5000 M/S 2C17 Puyallup, WA 98373-0900 206/841-6000 TWX 510 101 0846 .,

Table of Contents

Chapter 1	Product Index, Selection Guide, and Cross Reference	
Numerical I	ndex	1-2
Selection G	auide	1-4
Cross Refe	rence	1-6
Chapter 2	Quality Assurance and Reliability	
Introductio	n	2-5
Incoming C	Quality Inspection	2-5
Process Qu	uality Control	2-5
Quality Ass	surance	2-8
Reliability		2-9
Chapter 3	ECL RAMs	3-3
Chapter 4	TTL RAMs	4-3
Chapter 5	MOS STATIC RAMS	5-3
Chapter 6	ECL PROMs	6-3
Chapter 7	TTL PROMs	
Data Sheet	s	7-4
Isoplanar-Z		7-18
	- Z Programming	7-20
Chapter 8	TTL Programmable Logic	8-3
Chapter 9	Package Outlines	9-3
Chapter 10	Field Sales Offices and Distributor Locations	10-3

Product Index and Selection Guide	1
Quality Assurance and Reliability	2
ECL RAMs	3
TTL RAMs	4
MOS Static RAMs	5
ECL PROMs	6
TTL PROMS	7
TTL Programmable Logic	8
Ordering Information and Package Outlines	9
Field Sales Offices	10

Numerical Index of Devices

F100K Serie		
DC Family	Electrical Specifications	3-3, 6-3
F100145	16 × 4-Bit Register File (RAM)	3-6
F100402	16 × 4-Bit Register File (RAM)	3-12
F100415	1024 × 1-Bit Static RAM	3-16
F100Z416	256 × 4-Bit PROM — Isoplanar-Z Fuse	6-6
F100422	256 × 4-Bit Static RAM	3-22
F100474	1024 × 4-Bit Static RAM	3-28
F10K Series		
DC Family	Electrical Specifications	3-5. 6-5
F10145A	16 × 4-Bit Register File (RAM)	3-30
F10402	16 × 4-Bit Register File (RAM)	3-34
F10415	1024 × 1-Bit Static RAM	3-38
F10Z416	256 × 4-Bit PROM — Isoplanar-Z Fuse	6-8
F10422	256 × 4-Bit Static RAM	3-44
F10474	1024 × 4-Bit Static RAM	3-50
93xxx Series	TTL	
TTL Family	Electrical Specifications	4-3, 7-3
93415	1024 × 1-Bit Static RAM — Open Collector	4-5
93L415	1024 × 1-Bit Static RAM — Low Power, Open Collector	4-5
93422	256 × 4-Bit Static RAM — Three State	4-13
93L422	256 × 4-Bit Static RAM — Low Power, Three State	4-19
93425	1024 × 1-Bit Static RAM — Three State	4-25
93L425	1024 × 1-Bit Static RAM — Low Power, Three State	4-25
93Z450	1024 × 8-Bit PROM — Isoplanar-Z Fuse, Open Collector	7-4
93Z451	1024 × 8-Bit PROM — Isoplanar-Z Fuse, Three State	7-4
93479	256 × 9-Bit Static RAM — Three State	4-33
93Z510	2048 × 8-Bit PROM — Isoplanar-Z Fuse, Open Collector	7-8
93Z511	2048 × 8-Bit PROM — Isoplanar-Z Fuze, Three State	7-8
93Z564	8192 × 8-Bit PROM — Isoplanar-Z Fuse, Open Collector	7-12
93Z565	8192 × 8-Bit PROM — Isoplanar-Z Fuse, Three State	7-12
93Z611	2048 × 8-Bit PROM — Fast-Z Fuse, Three State	7-16
93Z667	8192 × 8-Bit PROM — Fast-Z Fuse. Three State	7-17

Numerical Index of Devices (Cont'd)

1

MOS Static	RAM	
F1600	65,536 × 1-Bit Static RAM	5-3
F1600	65,536 × 1-Bit Static RAM, Military Temperature Range	5-10
F1601	65,536 × 1-Bit Static RAM, Data Retention Version	5-17
F1601	65,536 × 1-Bit Static RAM, Data Retention Version, Military Temperature Range	5-25
F1620	16,384 × 4-Bit Static RAM	5-33
F1621	16,384 × 4-Bit Static RAM, Data Retention Version	5-34
F1622	16,384 × 4-Bit Static RAM	5-35
F1623	16,384 × 4-Bit Static RAM, Data Retention Version	5-36
TTL Prograu	mmable Logic	
93Z458	16 × 48 × 8 FPLA — Isoplanar-Z Fuse, Open Collector	8-3
93Z459	16 × 48 × 8 FPLA — Isoplanar-Z Fuse, Three State	8-3
16P8B	Programmable Logic Array	8-16
16RP8B	Programmable Logic Array	8-16
16RP6B	Programmable Logic Array	8-16
16RP4B	Programmable Logic Array	8-16

Selection Guide

	Device	Page
F100K RAMs		
16 × 4-Bit Register File (RAM)	F100145	3-6
16 × 4-Bit Register File (RAM)	F100402	3-12
1024 × 1-Bit RAM	F100415	3-16
256 × 4-Bit RAM	F100422	3-22
1024 × 4-Bit RAM	F100474	3-28
F10K RAMs		
16 × 4-Bit Register File (RAM)	F10145A	3-30
16 × 4-Bit Register File (RAM)	F10402	3-35
1024 × 1-Bit RAM	F10415	3-38
256 × 4-Bit RAM	F10422	3-44
1024 × 4-Bit RAM	F10474	3-50
TTL RAMs		
1024 × 1-Bit RAM — Open Collector	93415	4-5
1024 × 1-Bit RAM — Low Power, Open Collector	93L415	4-5
256 × 4-Bit RAM — Three State	93422	4-13
256 × 4-Bit RAM — Low Power, Three State	43L422	4-19
1024 × 1-Bit RAM — Three State	93425	4-25
2014 × 1-Bit RAM — Low Power, Three State	93L425	4-25
256 × 9-Bit RAM — Three State	93479	4-33
MOS Static RAM		
65,536 × 1-Bit Static RAM	F1600	5-3
63,536 × 1-Bit Static RAM, Military Temperature Range	F1600	5-10
65,536 × 1-Bit Static RAM, Data Retention Version	F1601	5-17
65,536 × 1-Bit Static RAM, Data Retention Version, Military Temperature Range	F1601	5-25
16,384 × 4-Bit Static RAM	F1620	5-33
16,384 × 4-Bit Static RAM, Data Retention Version	F1621	5-34
16,384 × 4-Bit Static RAM	F1622	5-35
16,384 × 4-Bit Static RAM, Data Retention Version	F1623	5-36
F100K PROM		
256 × 4-Bit PROM — Isoplanar-Z Fuse	F100Z416	6-6
F10K PROM		
256 × 4-Bit PROM — Isoplanar-Z Fuse	F10Z416	6-8

Selection Guide (Cont'd)

TTL PROMs

1024 × 8-Bit PROM — Open Collector	93Z450	7-4
1024 × 8-Bit PROM — Three State	93Z451	7-4
2048 × 8-Bit PROM — Open Collector	93Z510	7-8
2048 × 8-Bit PROM — Three State	93Z511	7-8
8192 × 8-Bit PROM — Open Collector	93Z564	7-12
8192 × 8-Bit PROM — Three State	93Z565	7-12
2048 × 8-Bit PROM — Three State	93Z611	7-16
8192 × 8-Bit PROM — Three State	93Z667	7-17
Isoplanar-Z Junction Fuse Principles and Programming		7-18
Isoplanar-Z TTL PROM Current-Ramp Programming Specifications		7-20
Isoplanar-Z TTL PROM Current-Pulse Programming Specifications		7-22
TTL Programmable Logic		
16 × 48 × 8 FPLA — Open Collector	93Z458	8-3
16 × 48 × 8 FPLA — Three State	93Z459	8-3
Programmable Logic Array	16P8B	8-16
Programmable Logic Array	16RP8B	8-16
Programmable Logic Array	16RP6B	8-16
Programmable Logic Array	168P48	8-16

ECL/TTL/CMOS RAMs and PROMs Cross Reference Guide

FSC P/N	Org	Output	T _{AA}	Pkg Pins	Other Features	AMD	Harris	Hitachi	INMOS
10145A	16x4	ECL	9	24	REG FILE			HD10145	
100145	16x4	ECL	9	24	REG FILE			HD100145	
10402	16x4	ECL	6	16	REG FILE				
100402	16x4	ECL	6	16	REG FILE				
10415	1Kx1	ECL	10	16		AM10415		HM2110/12	
100415	1Kx1	ECL	10	16		AM100415		HD100415	
10422	256x4	ECL	10	24		AM10422		HD10422	
100422	256x4	ECL	10	24		AM100422		HD100422	
93415	1Kx1	oc	30/25	16		AM93415			
93L415	1Kx1	OC	45/35	16					
93425	1Kx1	TS	30/25	16		AM93425			
93L425	1Kx1	TS	45/35	16					
93419	64x9	OC	45/35	28					
93422	256x4	TS	45/35	22		AM93422			
93L422	256x4	TS	60/45	22		AM93L422			
93479	256×9	TS	45/35	22					
10Z416	256x4	ECL	20	16					
100Z416	256x4	ECL	20	16					
93Z450	1Kx8	oc	40/35	24		AM27S180	HM7680	HN25088	
93Z450	1Kx8	OC	40/35	24	SLIMLINE	AM27S280			
93Z451	1Kx8	TS	40/35	24		AM27S181	HM7681	HN25089	
93Z451	1Kx8	TS	40/35	24	SLIMLINE	AM27S281			
93Z510	2Kx8	oc	45	24		AM27S190		HN25168	
93Z510	2Kx8	OC	45	24	SLIMLINE	AM27S290			
93Z511	2Kx8	TS	45	24		AM27S191	HM76161	HN25169	
93Z511	2Kx8	TS	45	24	SLIMLINE	AM27S291			
93Z564	8Kx8	OC	55/45	24					
93Z565	8Kx8	TS	55/45	24		AM27S49	HM76641		
F1600	64Kx1	SMOS	70/55/45	22				HN6287	IMS1600

Fujitsu	MMI	Motorola	Naťl	NEC	Raytheon	Signetics	ті
		MCM10145				10145	
		MCM10H145					
MBM10415			DM10415			10415	
MBM100415 MBM10422			DM10422			100415 10422	
MBM10422 MBM100422			DIVI10422			10422	
		MCM93415					
		MCM93425					
		MCM93422					
		MCM93L422					
						S82S212	
		MCM10149				10149 100149	
MB7131 MB7131SK	53/6380	MCM7680	DM87S180 DM87S280	uBP409	29630	N82S180	TBP28SA86 TBP28S86
MB7132 MB7132SK	53/6381	MCM7681	DM87S181 DM87S281	uBP417	29631	N82S181	TBP28S86 TBP28S86
MB7137		MCM76160	DM87S190	uBP409	29680	N82S190	TBP28SA166
MB7137SK			DM87S290			N82S190	TBP28S166
MB7138	63S1681	MCM76161	DM87S191	uBP429	29681	N82S191	
MB7138SK			DM87S291			N82S191	
MB7143							
MB7144							
				uBP4361			

Fairchild Memory Products Listed on Military Jan Qualified Products List (QPL) — 38510³

Jan Part Numbering System

J	M38510/	231	02	В	Е	В
Jan Designator	General	Refers to	Defines	Processing	Defines	Lead Finish
Cannot be Marked	Procurement	Slash Sheet	Device	Level	Package	A Hot Solder Dip
"J" Unless	Spec		Туре	S	Туре	B Tin Plate
Qualified by	•			В	Per	C Gold Plate
DESC-EQM					Slash	X Lead Finish A,B,
					Sheet	or C

TTL RAMs

Fairchild Generic P/N ¹	Jan Slash No. ²	Jan QPL Part	Organization	Access Time (T _{AA})
93422DMQB	23110BWA	11	256X4, TS	60 ns
FMQB	23110BXA	11	256X4, TS	60 ns
LMQB	23110BYC	11	256X4, TS	60 ns
93422ADMQB	23114BWA	11	256X4, TS	45 ns
AFMQB	23114BXA	11	256X4, TS	45 ns
ALMQB	23114BYC	11	256X4, TS	45 ns
93L422DMQB	23112BWA	1	256X4, TS, LP	75 ns
FMQB	23112BXA	1	256X4, TS, LP	75 ns
LMQB	23112BYC	1	256X4, TS, LP	75 ns
93L422ADMQB	23115BWA	1	256X4, TS, LP	55 ns
AFMQB	23115BXA	1 .	256X4, TS, LP	55 ns
ALMQB	23115BYC	1	256X4, TS, LP	55 ns
93L415DMQB	23103BEA	I	1KX1, OC	70 ns
FMQB	23103BFA	1	1KX1, OC	70 ns
93425DMQB	23102BEA	I	1KX1, TS	60 ns
				(TWSA=15, TWHD=5)
	23106BEA	1	1KX1, TS	60 ns
				(TWSA=10, TWHD=10
FMQB	23102BFA	1	1KX1, TS	60 ns
				(TWSA=15, TWHD=5)
	23106BFA		1KX1, TS	60 ns
				(TWSA=10, TWHD=10
93425ADMQB	23108BEA	ł	1KX1, TS	45 ns
FMQB	23108BFA	I	1KX1, TS	45 ns
93L425DMQB	23104BEA	I	1KX1, TS, LP	70 ns
FMQB	23104BFA	1	1KX1, TS, LP	70 ns
93L425ADMQB	23113BEA	I	1KX1, TS, LP	50 ns
FMQB	23113BFA	I	1KX1, TS, LP	50 ns

TTL PROMs						
Fairchild Generic P/N ¹	Jan Slash No. ²	Jan QPL Part	Organization	Access Time (T _{AA})		
93Z511DMQB	21002BJA	I	2KX8, TS	100 ns		
	21004BJA	I	2KX8, TS	55 ns		

Notes

¹Fairchild HI-REL generic QB product is processed to Hi-Rel level QB flow (in full compliance with MIL-STD-883) of Figure 2-2 and tested to the limits specified in individual data sheets under DC, AC, and functional (FN) performance characteristics.

²Fairchild JAN product is processed to HI-REL JAN flow per MIL-M38510 and MIL-STD-883 and tested per the DC, AC, and FN performance characteristics of the respective military slash sheet.

³Check Qualified Product List (QPL) — 38510 for current JAN listings.

 $\label{eq:state} \begin{array}{l} \mbox{Legend} \\ TS = Three-State \\ A = Highspeed Version \\ OC = Open Collector \\ LP = Low Power Version \end{array}$

Notes

Quality Assurance and Reliability

Introduction

All Fairchild Memory and High Speed Logic Products are manufactured to strict quality and reliability standards. Product conformance to these standards is insured by careful monitoring of the following functions: (1) incoming quality inspection, (2) process quality control, (3) quality assurance, and (4) reliability.

Incoming Quality Inspection

Purchased piece parts and raw materials must conform to purchase specifications. Major monitoring programs are the inspection of package piece parts, inspection of raw silicon wafers, and inspection of bulk chemicals and materials. Two other important functions of incoming quality inspection are to provide real-time feedback to vendors and in-house engineering, and to define and initiate quality improvement programs.

Package Piece Parts Inspection

Each shipment of package piece parts is inspected and accepted or rejected based on AQL sampling plans. Inspection tests include both inherent characteristics and functional use tests. Inherent characteristics include physical dimensions, color, plating quality, material purity, and material density. Functional use tests for various package piece parts include die attach, bond pull, seal, lid torque, salt atmosphere, lead fatigue, solderability, and mechanical strength. In these tests, the piece parts are sent through process steps that simulate package assembly. The units are then destructively tested to determine whether or not they meet the required quality and reliability levels.

Silicon Wafer Inspection

Each shipment of raw silicon wafers is accepted or rejected based on AQL sampling plans. Raw silicon wafers are subjected to non-destructive and destructive tests. Included in the testing are flatness, physical dimensions, resistivity, oxygen and carbon content, and defect densities. The test results are used to accept or reject the lot.

Bulk Chemical and material Inspection

Bulk chemicals and materials play an important role in any semiconductor process. To insure that the bulk chemicals and materials used in processing Fairchild wafers are the highest quality, they are stringently tested for trace impurities and particulate or organic contamination. Mixtures are also analyzed to verify their chemical make-up. Incoming inspection is only the first step in determining the acceptability of bulk chemicals and materials. After acceptance, detailed documentation is maintained to correlate process results to various vendors and to any variations found in mixture consistency.

Process Quality Control

Process quality is maintained by establishing and maintaining effective controls for monitoring the wafer fabrication process, reporting the results of the monitors, and initiating valid measurement techniques for improving quality and reliability levels.

Methods of Control

The process quality control program utilizes the following methods of control: (1) process audits, (2) environmental monitors, (3) process monitors, (4) lot acceptance inspections, (5) process qualifications, and (6) process integrity audits. These methods of control, defined below, characterize visually and electrically the wafer fabrication operation.

Process Audit — Audits concerning manufacturing operator conformance to specification. These are performed on all operations critical to product quality and reliability.

Environmental Monitor-Monitors concerning the process environment, *i.e.*, water purity, air temperature/ humidity, and particulate count.

Process Monitor — Periodic inspection at designated process steps for verification of manufacturing inspection and maintenance of process average. These inspections provide both attribute and variables data.

Lot Acceptance — Lot by lot sampling. This sampling method is reserved for those operations deemed as critical and, as such, requiring special attention.

Process Qualification — Complete distributional analysis is run to specified tolerance averages and standard deviations. These qualifications are typically conducted on deposition and evaporation processes, *i.e.*, epi, aluminum, vapox, and backside gold.

Process Integrity Audit — Special audits conducted on oxidation and metal evaporation processes (CV drift — oxidation; SEM evaluation — metal evaporation).

Quality Assurance and Reliability

Data Reporting

Process quality control data is recorded on an attribute or variable basis as required; control charts are maintained on a regular basis. This data is reviewed at periodic intervals and serves as the basis for judging the acceptability of specific processes. Summary data from the various process quality control operations are relayed to cognizant line, engineering and management

Fig. 2-1 Process Flow Chart

personnel in real time so that, if appropriate, the necessary corrective actions can be immediately taken.

Process Flow

Figure 2-1 shows the integration of the various methods of control into the wafer fabrication process flow. The process flow chart contains examples of the process quality controls and inspections utilized in the manufacturing operation.

Process Controls (Examples)

- A. Environmental
- B. Chemical supplies
- C. Substrate exam. (resistivity, flatness, thickness, crystal perfection, etc.)
- D. Photoresist evaluation
- E. Mask inspections
- A. Process audit
- A. Process audit/qualification
- B. Environmental
- C. Process monitors (thickness, pinhole and crack measurements)
- E. C V Plotting
- F. Calibration
- A. Process audits
- B. Environmental
- C. Visual examinations
- Photoresist evaluation (preparation, storage, application, baking, development and removal).
- E. Etchant controls
- F. Exposure controls (intensity, uniformity)

Fig. 2-1 Process Flow Chart (cont'd.)

- A. Process audits/qualification
- B. Environmental
- C. Temperature profiling
- D. Quartz cleaning
- E. Calibration
- F. Electrical tests (resistivity, breakdown voltages, etc.)
- A. Process audits/qualification
- B. Environmental
- C. Visual examinations
- D. Epitaxy controls (thickness, resistivity cleaning, visual examination)
- E. Metallization controls (thickness, temperature cleaning, SEM, C V plotting)
- F. Glassivation controls (thickness, dopant concentraton, pinhole and crack measurements)
- A. Process audit
- B. Environments
- C. Visual examinations
- A. Process audit
- B. Inspection

Quality Assurance and Reliability

Quality Assurance

To assure that all product shipped meets both internal Fairchild specifications for standard product and customer specifications in the case of negotiated specs, a number of QA inspections throughout the assembly process flow (*Figure 2-2*) are required.

The Hi-Rel and Standard Rel Assembly and Test Flows are shown below to provide a clearer understanding of

Fig. 2-2 HI-REL (Level B) Assembly and Test Flow (per MIL-STD-883, Methods 5004, 5005)

the operations performed. Flows, much more detailed than the flows in Figures 2-2 and 2-3, govern the assembly and test of devices to Fairchild's specifications.

The Product built to the Hi-Rel Level B Assembly and Test Flow meet the requirements of MIL-STD-883 (Test Methods and Procedures for Microcircuits).

QC External Visual Inspection QC PDA Verification QC Fine & Gross Leak Methods 1014. QC Group A Electrical Test (Room) Cond. B & Method 1014, Cond. C (Subgroup B-7) Electrical Test (Cold) DC Electrical Screen of QC Seal Test Samples External Visual of QC Seal Test Samples, QC Group A Electrical Test (Cold) Method 2009 QC Internal Visual/Mechanical Method 2014 Solder Finish (Where Applicable) (Subgroup B-4) QC Solder Lead Finish Inspection QC Solderability Method 2003 (Subgroup B-3) (Where Applicable) Fine Leak (DIP's & LCC's) Method 1014, QC Bond Strength Method 2011 (Subgroup B-5) Cond. B QC Resistance to Solvents Methods 2015 Gross Leak (DIP's & LCC's) Method 1041, (Subgroup B-2) Cond. C QC Physical Dimensions Method 2016 Mark (Subgroup B-1) Electrical Test (Hot) Pack Quality Conformance Inspection (QCI) QC Group A, Electrical Test (Hot) Method 5005 (Group C & D) Programmability Sample (When Applicable) QC Data Check Electrical Test (Hot) of Programmed Samples (When Applicable) Shipping Clearance Electrical Test (Cold) of Programmed Samples (When Applicable) QA Plant Clearance/Buy-Off Electrical Test (Room) of Programmed Samples

NOTE

The sequence of Operations Between Pre Burn-in Electrical Test and Hot Electrical Test May Differ Slightly for some products.

External Visual Inspection, Method 2009

(When Applicable)

2-7

Fig. 2-3 STD

3 STD-REL Assembly and Test Flow		
QC First Optical Inspection		Burn-In (QR Product Only)
Wafer Saw	\Box	Electrical Test (Room-QR Product)
Die Plate		Fine Leak (DIP's & LCC's)
QC Frame Attach Inspection	白	Gross Leak (DIP's & LCC's)
Frame Attach	白	Electrical Test (Hot)
Die Attach	Ó	QC Resistance To Solvents
QC Die Attach Monitor	Ó	QC Solderability
Lead Bond		Customer Finish & Visual/Mechancial
QC Bond Strength Monitor		QC Fine & Gross Leak
Internal Visual (3rd Optical)		QC Visual/Mechanical
QC 3rd Optical Inspection		QC Electrical Inspection
QC Torque Test Monitor	口	Pack
Seal		QC Box Stock Buy-In
External Visual (4th Optical)	\diamondsuit	QC Plant Clearance/Buy-Off
QC 4th Optical Inspection	∇	Shipping Clearance
Temperature Cycle		

NOTE

The Sequence Of Operations Between Mark and Hot Electrical Test May Differ Slightly For Some Products.

Electrical Test (Room)

Tin Plate (Where Applicable)

QC Lead Finish Inspection

Fine Leak (Flatpak's)

Lead Clip

Mark

Gross Leak (Flatpak's)

Quality Assurance and Reliability

Reliability

A number of programs, among them qualification testing, reliability monitoring, failure analysis, and reliability data collection and presentation, are maintained.

Qualification Programs

All products receive reliability qualification prior to the product being released for shipment. Qualification is required for (1) new product designs, (2) new fabrication processes or (3) new packages or assembly processes. Stress tests are run in accordance to test methods described in MIL-STD-883. Test results are evaluated against existing reliability levels, and must be better than or equal to current product for the new product to receive qualification.

New Product Designs — Receive, as a minimum, +125° C operating life tests. Readouts are normally scheduled at 168 hours, 500 hours, 1000 hours and 2000 hours. The samples stressed are electrically good units from initial wafer runs. Additional life testing, consisting of high-temperature operating life test, 85/85 humidity bias tests, bias pressure pot (BPTH) tests, mechanical series or thermal series may be run as deemed necessary. Redesigns of existing device layouts are considered to be new product designs, and full qualification is necessary.

New Fabrication Processes - Qualifications are designed to evaluate the new process against the current process. Stress tests consist of operating life test, hightemperature operating life test, 85/85 humidity bias test and/or biased pressure pot (BPTH) test. In addition, package environment tests may be performed, such as Thermal Series or Mechanical Series. Evaluations are performed on various products throughout the development stages of the new process. Units stressed are generally from split wafer runs. All processing is performed as a single wafer lot up to the new process steps, where the lot is split for the new and the current process steps. Then the wafers are recombined, and again processed as a single wafer lot. This allows for controlled evaluation of the new process against the standard process. Both significant modifications to existing process and transferring existing products to new fabrication plants are treated as a new process.

New Packages or Assembly Processes — Qualifications are performed for new package designs, changes to existing piece parts, changes in piece part vendors, and

significant modification to assembly process methods. In general, samples from three assembly runs are stressed to a matrix in accordance to MIL-STD-883, Method 5005, group B, group C, subgroup 2, and group D (*Table 2-1*). In addition, +100°C operating life tests, 85/85 humidity bias tests, biased pressure pot (BPTH) tests and unbiased pressure pot tests are performed for plastic packages.

Reliability Monitors

Reliability testing of mature products is performed to establish device failure rates, and to identify problems occuring in production. Samples are obtained on a regular basis from production. These units are stressed with operating life tests or package environmental tests. The results of these tests are summarized and reported. When a problem is identified, the respective engineering group is notified, impact on the customer is reviewed and a corrective action plan is implemented.

Current testing levels are in excess of 14,000 units per year stressed with operating life tests, and 23,000 units per year stressed with package environmental tests.

Failure Analysis

Failure analysis is performed on all units failing reliability stress tests. Failure analysis is offered as a service to support manufacturing and engineering, and to support customer returns and customer requested failure studies. The failure analysis procedure used has been established to provide a technique of sequential analysis. This technique is based on the premise that each step of analysis will provide information of the failure without destroying information to be obtained from subsequent steps. The ultimate purpose is to uncover all underlying failure mechanisms through complete, in-depth, defect analysis. The procedure places great emphasis on electrical analysis, both external before decapsulation, and internal micro-probing. Visual examinations with high magnification microscopes or SEM analysis are used to confirm failure mechanisms. Results of the failure analysis are recorded and, if abnormalities are found, reported to engineering and/or manufacturing for corrective action.

Data Collection and Presentation

Product reliability is controlled by first stressing the product, and then feeding back results to manufacturing and engineering. This feedback takes two forms. There is a formal monthly Reliability Summary distributed to all groups. The summary shows current product failure rates, highlights problem areas, and shows the status of qualification and corrective action programs. Less formal feedback is obtained by including reliability personnel at

all product meetings, which gives high visibility to the reliability aspects of various products. As a customer service, product reliability data is compiled and made available upon request.

	MIL-STD-883				
Test	Method	Condition			
Group B Subgroup 1 Physical dimensions	2016				
Subgroup 2 Resistance to solvents	2015				
Subgroup 3 Solderability	2003	Soldering temperature +245 \pm 5°C, +260 \pm 5°C (L _{CC} only)			
Subgroup 5 Bond strength (1) Thermocompression (2) Ultrasonic or wedge	2011	 (1) Test condition C or D (2) Test condition C or D 			
Group C Subgroup 2 Temperature cycling Constant acceleration Seal (a) Fine (b) Gross Visual examination End-point electrical parameters	1010 2001 1014	Test condition C (-65° C to $+150^{\circ}$ C) Test condition E (30Kg), Y ₁ orientation and X ₁ orientation (where available) Test condition D (20K g) for packages over 5 gram weight or with seal ring greater than 2 inches			
Group D Subgroup 2 Lead integrity Seal (a) Fine (b) Gross	2004 1014	Test condition B2 (lead fatigue) As applicable			

Table 2-1 Package Environmental Stress Matrix (cont'd.)

		MIL-STD-883
Test	Method	Condition
Subgroup 3 Thermal shock Temperature cycling Moisture resistance Seal (a) Fine (b) Gross Visual examination End-point electrical parameters	1011 1010 1004 1014	Test condition B (-55°C to +125°C) 15 cycles minimum Test condition C (-65°C to +150°C) 100 cycles minimum
Subgroup 4 Mechanical shock Vibration, variable frequency Constant acceleration Seal (a) Fine (b) Gross Visual examination End-point electrical parameters	2002 2007 2001 1014	Test condition B (1500G, 0.5 ms) Test condition A (20G) Same as group C, subgroup 2
Subgroup 5 Salt atmosphere Seal (a) Fine (b) Gross Visual examination	1009 1014	Test condition A minimum (24 hours) As applicable
Subgroup 6 Internal water-vapor content	1018	
Subgroup 7 Adhesion of lead finish	2025	
Subgroup 8 Lid Torque	2024	As applicable (prior to 883C, this test was part of Subgroup D-7)

Die Shear	2019	
Radiography	2012	(Prior to 1984, this test was not performed)

F100K DC Family Specifications

DC characteristics for the F100K series family parametric limits listed below are guaranteed for the entire F100K ECL family unless specified on the individual data sheet.

- -

j	which the useful ay be impaired ¹
Storage Temperature Maximum Junction Temperature (T _J) Supply Voltage Range Input Voltage (dc) Output Current (dc Output HIGH) Operating Range ²	-65° C to +150° C +175° C -7.0 V to +0.5 V V _{EE} to +0.5 V -50 mA -5.7 V to -4.2 V
Lead Temperature (Soldering 10 sec)	300° C

DC Characteristics: $V_{EE} = -4.5 \text{ V}$, $V_{CC} = V_{CCA} = \text{GND}$, $T_C = 0^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, Note 3

Symbol	Characteristic	Min	Max	Unit	Conditions	
Vон	Output HIGH Voltage	-1025	-880	mV	$V_{IN} = V_{IH(max)}$	
Vol	Output LOW Voltage	-1810	-1620	mV	or VIL (min) Loading with	
Vонс	Output HIGH Voltage	-1035		mv	$V_{\rm IN} = V_{\rm IH(min)}$	
Volc	Output LOW Voltage		-1610	mV	or VIL (max)	
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Inputs	
ЦĽ	Input LOW Current	0.50		μA	$V_{IN} = V_{IL}(min)$	

1. Unless specified otherwise on individual data sheet.

2. Parametric values specfied at -4.8 V to -4.2 V.

3. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

All ECL RAM products (except for Register File RAMs) in ceramic packages: dual-in-line, and flatpak are polyimide die-coated to decrease sensitivity to alpha particles emitted primarily by the seal glass and ceramic of the package.

F100K DC Family Specifications

Symbol	Characteristic	Min	Max	Unit	Conditions		
Vон	Output HIGH Voltage	-1020	-870	mV	VIN = VIH(max)		
Vol	Output LOW Voltage	-1810	-1605	mV	or VIL (min)	Loading with	
Vонс	Output HIGH Voltage	-1030		mv	$V_{IN} = V_{IH(min)}$	50 Ω to -2.0 V	
Volc	Output LOW Voltage		-1595	mV	or VIL (max)		
Viн	Input HIGH Voltage	-1150	-880	mV	Guaranteed HIGH Signal for All Inputs		
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LO for All Inputs	W Signal	
h	Input LOW Current	0.50		μA	VIN = VIL (min)		

DC Characteristics: $V_{EE} = -4.8 \text{ V}$, $V_{CC} = V_{CCA} = GND$, $T_C = 0^{\circ}C$ to $+85^{\circ}C$, Note 3

Symbol	Characteristic	Min	Max	Unit	Conditions	
Vон	Output HIGH Voltage	-1035	-880	mV	VIN = VIH (max)	
Vol	Output LOW Voltage	-1830	-1620	mV	or VIL(min)	
Vонс	Output HIGH Voltage	-1045		mv	$V_{\rm IN} = V_{\rm IH(min)}$	
Volc	Output LOW Voltage		-1610	mV	or VIL (max)	
Viн	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810	-1490	mV	Guaranteed LOW Signal for All Inputs	
կլ	Input LOW Current	0.50		μA	VIN = VIL (min)	

Notes on preceding page

F10K DC Family Specifications

DC characteristics for the F10K series memories. Parametric limits listed below are guaranteed for all F10K memories, except where noted on individual data sheets.

Absolute Maximum Ratings:	Above which the useful life may be impaired ²
Storage Temperature Maximum Junction Temperatu V _{EE} Pin Potential to Ground Pi	
Input Voltage (dc)	V _{EE} to +0.5 V
Output Current (dc Output HIC	GH) $-30 \text{ mA to} +0.1 \text{ mA}$
Lead Temperature (Soldering	10 sec) 300° C

Guaranteed	Operating	Ranges
------------	-----------	--------

Suppl	ly Voltage	Case Temperature	
Min	Min Typ		(T _c)
-5.46 V	-5.2 V	-4.94 V	0°C to +75°C

DC Characteristics	$V_{EE} = -5.2 V_{,}$	$V_{CC} = V_{CCA} =$	GND, $T_C = 0^\circ$	C to + 75° C ¹
---------------------------	-----------------------	----------------------	----------------------	---------------------------

Symbol	Characteristic	Min	Max	Unit	т _с	Conditions ²		
Vон	Output HIGH Voltage	-1000 -960 -900	-840 -810 -720	mV	0°C +25°C +75°C	VIN = VIH (max)	Loading is 50 Ω to −2.0 V	
Vol	Output LOW Voltage	-1870 -1850 -1830	-1665 -1650 -1625	mV	0°C +25°C +75°C	or VIL (min)		
Vонс	Output HIGH Voltage	-1020 -980 -920		mv	0°C +25°C +75°C	1 4		
Volc	Output LOW Voltage		-1645 -1630 -1605	mV	0°C +25°C +75°C	or VIL (max)		
VIH	Input HIGH Voltage	-1145 -1105 -1045	-840 -810 -720	mV	0°C +25°C +75°C	Guaranteed Input for All Inputs	Voltage HIGH	
VIL	Input LOW Voltage	-1870 -1850 -1830	-1490 -1475 -1450	mV	0°C +25°C +75°C	Guaranteed Input Voltage LOW for All Inputs		
h	Input LOW Current	0.5	170	μA	+25°C	VIN = VIL (min)		

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Unless specified otherwise on individual data sheet.

FAIRCHILD

A Schlumberger Company

Description

The F100145 is a 64-bit register file organized as 16 words of four bits each. Separate address inputs for Read (AR_n) and Write (AW_n) operations reduce overall cycle time by allowing one address to be setting up while the other is being executed. Operating speed is also enhanced by four output latches which store data from the previous read operation while writing is in progress. When both Write Enable (\overline{WE}) inputs are LOW, the circuit is in the Write mode and the latches are in a Hold mode. When either WE input is HIGH, the circuit is in the Read mode, but the outputs can be forced LOW by a HIGH signal on either of the Output Enable $\overline{(OE)}$ inputs. This makes it possible to tie one WE input and one OE input together to serve as an active-LOW Chip Select (CS) input. When this wired CS input is HIGH. reading will still take place internally and the resulting data will enter the latches and become available as soon as the \overline{CS} signal goes LOW, provided that the other \overline{OE} input is LOW. A HIGH signal on the Master Reset (MR) input overrides all other inputs, clears all cells in the memory, resets the output latches, and forces the outputs LOW.

Pin Names

AR0-AR3	Read Address Inputs
$AW_0 - AW_3$	Write Address Inputs
WE1, WE2	Read Enable Inputs (Active LOW)
OE1, OE2	Output Enable Inputs (Active LOW)
D0-D3	Data Inputs
MR	Master Reset Input
Q0-Q3	Data Outputs

F100145 16 x 4-Bit Register File (RAM)

Memory and High Speed Logic

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

F100145

Logic Symbol and Logic Diagram

Note that this diagram is provided for understanding of logic operation only. It should not be used for evaluation of propagation delays as many internal functions are achieved more efficiently than indicated.

3-7

3

F100145

DC Characteristics: $V_{EE} = -4.2 \text{ V}$ to -4.8 V unless otherwise specified, $V_{CC} = V_{CCA} = \text{ GND}$, $T_C = 0^{\circ}\text{C}$ to $+85^{\circ}\text{C}^{\star}$

Symbol	Characteristic	Min	Тур	Мах	Unit	Condition
Ιн	Input HIGH Current All Inputs			240	μΑ	VIN = VIH(max)
IEE	Power Supply Current	-247	-170		mA	Inputs Open

*See Family Characteristics for other dc specifications.

AC Characteristics: $V_{EE} = -4.2$ V to -4.8 V, $V_{CC} = V_{CCA} = GND$

		$T_{C} = 0^{\circ}C$ $T_{C} = +25^{\circ}C$ $T_{C} = +85^{\circ}C$							
Symbol	Characteristic	Min	Max	Min	Мах	Min	Max	Unit	Condition
taa tor tod	Access/Recovery Timing Address Access ¹ Output Recovery Output Disable	2.20 1.00 1.00	7.40 2.90 2.90	2.20 1.10 1.10	7.40 2.90 2.90	2.20 1.10 1.10	7.60 3.20 3.20	ns ns ns	Figures 1 and 3a Figures 1 and 3e
trsa1 tweq	Read Timing Address Setup Output Delay	1.10 2.00	5.00	1.10 2.00	5.00	1.10 2.00	5.50	ns ns	Figures 1 and 3b
trsa2 trha	Output Latch Timing Address Setup Address Hold	4.10 0.10		4.10 0.10		5.60 0.10		ns ns	Figures 1 and 3c Figures 1 and 3d
twsa twha twsd twhd tw	Write Timing Address Setup Address Hold Data Setup Data Hold Write Pulse Width, LOW	0.10 1.10 1.10 1.10 4.60		0.10 1.60 1.60 1.60 5.00		0.10 1.60 1.90 1.90 5.50		ns ns ns ns ns	tw = 6.0 ns Figures 1 and 4
tм tмнw	Master Reset Timing Reset Pulse Width, LOW WE Hold to Write	4.50 6.30		4.50 7.10		5.00 10.50		ns ns	Figures 1 and 5a
tMQ	Output Disable	2.80		2.80		3.20		ns	Figures 1 and 5b
tт∟н tтн∟	Transition Time 20% to 80%, 80% to 20%	0.50	2.30	0.50	2.30	0.50	2.30	ns	

1. The maximum address access time is guaranteed to be the worst case bit in memory using a pseudo random testing pattern.

F100145

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels $C^{}_L$ = 3 pF including Fixture and Stray Capacitance $R^{}_L$ = 50 Ω to -2.0 V

Fig. 3 Read Timing 3a Address Access Time ($\overline{WE_1}$ or $\overline{WE_2}$ = HIGH; $\overline{OE_1} = \overline{OE_2} = LOW$ (OLD ADDRESS) ARn ARn WE tAA Qn 3b Address Setup Time before WE, to Ensure Minimum Delay (unpulsed $\overline{WE} = \overline{OE}_1 =$ $\overline{OE_2} = LOW$ (OLD ADDRESS) ARn ARn tRSA1 -WE WE 3e tweQ ŌĒ (FROM ARRAY) (DATA FROM LATCHES) Qn tor

3c Address Setup Time to Ensure Latching Data from New Address (unpulsed WE = LOW)

3d Address Hold Time to Ensure Latching Data from Old Address (unpulsed $\overline{WE} = LOW$)

3e Output Recovery/Disable Times, \overline{OE} to Q_n (unpulsed \overline{OE} = LOW)

Fig. 4 Write Timing

Address and Data Setup and Hold Times; Write pulse Width (unpulsed $\overline{WE} = LOW$)

- Fig 5 Master Reset Timing
- 5a Reset Pulse Width; WE Hold Time for Subsequent Writing (address already setup, unpulsed WE = LOW)

5b Output Reset Delay, MR to Qn

Ordering Information

- Packages and Outlines (See Section 9) D = Ceramic DIP F = Flatpak
- Temperature Ranges $C = 0^{\circ}C$ to +85°C. Case
- Optional Processing QR = 160 Hour Burn in

FAIRCHILD

A Schlumberger Company

F100402 16 x 4-Bit Register File (RAM)

Memory and High Speed Logic

Description

The F100402 is a high-speed 64-bit Random Access Memory (RAM) organized as a 16-word by 4-bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data busing are facilitated by the output disabling features of the Chip Select $\overline{(CS)}$ and Write Enable $\overline{(WE)}$ inputs.

A HIGH signal on \overline{CS} prevents read and write operations and forces the outputs to the LOW state. When \overline{CS} is LOW, the \overline{WE} input controls chip operations. A HIGH signal on \overline{WE} disables the Data input (D_n) buffers and enables readout from the memory location determined by the Address (A_n) inputs. A LOW signal on \overline{WE} forces the Q_n outputs LOW and allows data on the D_n inputs to be stored in the addressed location. Data exists in the same logical sense as presented at the data inputs, *i.e.*, the memory is non-inverting.

Pin Names

CS	Chip Select Input
$A_0 - A_3$	Address Inputs
D0-D3	Data Inputs
WE	Write Enable Input
Q0-Q3	Data Outputs

Logic Symbol

Connection Diagrams

16-Pin Flatpak (Top View)

Q1	1	16 Vc	с
Q ₀	2	15 Q2	
cs	3	14 Q ₃	
D1	4	13 WE	
Do	5	12 D3	
A3	6	11 D2	
A ₂	7	10 A ₀	
	8	9 A1	

Logic Diagram

DC Characteristics: VEE = -4.2 V to -4.8 V unless otherwise specified	l, Vcc =	= GND, $T_C = 0^{\circ}C$ to +85°C*
---	----------	-------------------------------------

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
Ін	Input HIGH Current All Inputs			300	μA	VIN = VIH(max)
IEE	Power Supply Current	-170	-110		mA	Inputs Open

*See Family Characteristics for other dc specifications.

		T _C =	= 0°C	T _C = ·	+25°C	T _C = -	+85°C		
Symbol	Characteristic	Min	Max	Min	Max	Min	Мах	Unit	Condition
tacs trcs	Access/Recovery Timing Chip Select Access Chip Select Recovery		3.30 3.30		3.50 3.50		3.80 3.80	ns ns	Figures 1 and 4
tAA	Address Access ¹		5.00		5.30		6.00	ns	
twsD twscs twsA twHD twHCs twHA	Write Timing, Setup Data Chip Select Address Write Timing, Hold Data Chip Select Address	0.50 1.50 1.00 0.50 0.50 2.50		0.50 1.50 1.00 0.50 0.50 2.50		0.80 1.50 1.00 0.50 0.50 2.50		ns ns ns ns ns ns	Figures 1 and 3 tw = 6 ns
twr tws	Write Recovery Time Write Disable Time	4.00 3.00		4.00 3.00		4.50 3.50		ns ns	Figures 1 and 4
tw	Write Pulse Width, (LOW)	2.50		2.50		3.00		ns	
tcs	Chip Select Pulse Width, (LOW)	2.50		2.50		3.00		ns	Figures 1 and 3
t⊤∟H t⊤н∟	Transition Time 20% to 80%, 80% to 20%	0.50	1.70	0.50	1.70	0.50	1.70	ns	Figures 1 and 4

AC Characteristics: VEE = -4.2 V to -4.8 V, V_{CC} = GND, Applies to Flatpak and DIP Packages

1. The maximum address access time is guaranteed to be the worst case bit in memory using a pseudo random testing pattern.

Fig. 1 AC Test Circuit

Fig. 2 Input Levels

Notes

All Timing Measurements Referenced to 50% of Input Levels C_L = 3 pF including Fixture and Stray Capacitance R_L = 50 Ω to -2.0 V

Fig. 3 Write Modes

Write Enable Strobe

ADDRESS AND DATA INPUT SET UP AND HOLD TIMES (CS = LOW)

CHIP SELECT SET-UP AND HOLD TIMES

Ordering Information

Packages and Outlines (See Section 9) D = Ceramic DIP F = Flatpak Temperature Ranges C = 0°C to +85°C. Case

Optional Processing QR = 160 Hour Burn in

Fig. 4 Read Modes

Address Input to Data Output ($\overline{WE} = HIGH, \overline{CS} = LOW$)

ADDRESS ACCESS TIME

Chip Select Input to Data Output (WE = HIGH)

CHIP SELECT ACCESS AND RECOVERY TIMES

Write Enable Input to Data Output (CS = LOW) WRITE RECOVERY, DISABLE TIMES

FAIRCHILD

A Schlumberger Company

F100415 1024 x 1-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The F100415 is a 1024-bit read/write Random Access Memory (RAM), organized as 1024 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data Input and non-inverting Data Output lines, as well as an active-LOW Chip Select line.

- Address Access Time 10 ns Max
- Chip Select Access Time 5.0 ns Max
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation 0.79 mW/Bit Typ
- Power Dissipation Decreases with Increasing
 Temperature
- Polyimide Die Coat for Alpha Immunity

Pin Names

WE	Write Enable Input (Active LOW)
CS	Chip Select Input (Active LOW)
A0-A9	Address Inputs
D	Data Input
0	Data Output

Logic Symbol

16-Pin DIP (Top View)

Note

The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package

Logic Diagram

Functional Description

The F100415 is a fully decoded 1024-bit read/write random access memory, organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A_0 through A_9 .

One Chip Select input is provided for memory array expansion up to 2048 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, (\overline{CS}) from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable (\overline{WE}) input. With \overline{WE} held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twsD(min) plus tw(min) plus twHD(min) to insure a valid write. To read, \overline{WE} is held HIGH and the chip selected. Non-inverted data is then presented at the output (O). The output of the F100415 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F100415 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50 Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Inum rable	Truth	Table
------------	-------	-------

	Inputs		Output	Mada
CS	WE	D	0	Mode
н	х	х	L	Not Selected
L	L	L	L	Write "0"
L	L	н	L	Write "1"
L	н	Х	Data	Read

H = HIGH Voltage Levels = -0.9 V (Nominal)

L = LOW Voltage Levels = -1.7 V (Nominal)

X = Don't Care

Data = Previously stored data

DC Performance Characteristic: $V_{EE} = -4.2 \text{ V}$ to -4.8 V, $V_{CC} = \text{GND}$, $T_C = 0^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
Ін	Input HIGH Current			220	μA	V _{IN} = V _{IH (max)}
lıL	Input LOW Current, \overline{CS} WE, A ₀ -A ₉ , D	0.5 50		170	μA	VIN = VIL(min)
IEE	Power Supply Current	-200	-180		mA	Inputs and Output Open

AC Performance Characteristics: V_{EE} = -4.2 V to -4.8 V, V_{CC} = GND, Output Load = 50 Ω and 3 pF to -2.0 V, T_C = 0°C to +85°C

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
tacs trcs taa	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time ²			5.0 5.0 10	ns ns ns	Figures 3a, 3b
tw	Write Timing Write Pulse Width to Guarantee Writing ³	7			ns	
twsd twhd	Data Setup Time prior to Write Data Hold Time after Write	1.0			ns ns	
twsa	Address Setup Time	1.0			ns	
t _{WHA} twscs	prior to Write ³ Address Hold Time after Write Chip Select Setup Time prior to Write	2.0 1.0			ns ns	Figure 4
twncs	Chip Select Hold Time after Write	2.0			ns	
tws	Write Disable Time			5.0	ns	
twR	Write Recovery Time			10	ns	
t _r t _f	Output Rise Time Output Fall Time		0.7 0.7		ns ns	Measured between 20% and 80% or 80% and 20%
C _{IN} C _{OUT}	Input Pin Capacitance Output Pin Capacitance		4.0 7.0	5.0 8.0	pF pF	Measured with a Pulse Technique

1. See Family Characteristics for other dc specifications.

2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

3. t_W measured at $t_{WSA} = Min$, t_{WSA} measured at $t_W = Min$.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels C_L = 3 pF including Fixture and Stray Capacitance R_L = 50 Ω to –2.0 V.

Fig. 2 Input Levels

Fig. 3 Read Mode Timing

3a Read Mode Propagation Delay from Chip Select

3b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note

Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Packages and Outlines (See Section 9) D = Ceramic DIPF = Flatpak

Temperature Range $C = 0^{\circ}C$ to +85°C, Case

Optional Processing QR = 160 Hour Burn In or Equivalent

Typical Application

4096-Word x n-Bit System

A Schlumberger Company

Description

The F100422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as four active-LOW Bit Select lines.

- Address Access Time 10 ns Max
- Bit Select Access Time 5.0 ns Max
- Four Bits Can be Independently Selected
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation 0.88 mW/Bit Typ
- Power Dissipation Decreases with Increasing
 Temperature
- Polyimide Die Coat for Alpha Immunity

Pin Names

WE	Write Enable Input (Active LOW)
$BS_0 - BS_3$	Bit Select Inputs (Active LOW)
A0-A7	Address Inputs
$D_0 - D_3$	Data Inputs
O ₀ -O ₃	Data Outputs

Logic Symbol

F100422 256 x 4-Bit Static Random Access Memory

Memory and High Speed Logic

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Functional Description

The F100422 is a fully decoded 1024-bit read/write random access memory, organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, A_0 through A_7 .

Four Bit Select inputs are provided for logic flexibility. For larger memories, the fast bit select access time permits the decoding of individual bit selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable (\overline{WE}) input. With \overline{WE} held LOW and the bit selected, the data at D₀-D₃ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twsD(min) plus tw(min) plus twHD(min) to insure a valid write. To read, \overline{WE} is held HIGH and the bit selected. Non-inverted data is then presented at the output (O₀-O₃).

The outputs of the F100422 are unterminated emitter followers, which allow maximum flexibility in choosing

output connection configurations. In many applications it is desirable to tie the outputs of several F100422 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50 Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth 1	Table
---------	-------

	Inputs		Outputs		
BSn	WE	D _n	O n	Mode	
н	х	х	L	Not Selected	
L	L	L	L	Write "0"	
L	L	н	L	Write "1"	
L	н	х	Data	Read	

Each bit has independent \overline{BS} , D, and O, but all have common \overline{WE} H = HIGH Voltage Levels = -0.9 V (Nominal)

L = LOW Voltage Levels = -1.7 V (Nominal)

X = Don't Care

Data = Previously stored data

DC Performance Characteristic: $V_{EE} = -4.2$ to -4.8 V, $V_{CC} = V_{CCA} = GND$, To $= 0^{\circ}C$ to $\pm 85^{\circ}C$ upless attenuise aposition

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
Ιн	Input HIGH Current			220	μA	VIN = VIH (max)
lıL	Input LOW Current, $\overline{BS}_0 - \overline{BS}_3$ WE, A ₀ -A ₇ , D ₀ -D ₃	0.5 -50		170	μA	VIN = VIL(min)
IEE	Power Supply Current	-230	-200		mA	All Inputs and Outputs Open

AC Performance Characteristics: $V_{EE} = -4.2$ V to -4.8 V, $V_{CC} = V_{CCA} = GND$, Output Load = 50 Ω and 3 pF to -2.0 V, $T_C = 0^{\circ}C$ to $+85^{\circ}C$

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
	Read Timing					
t _{ABS}	Bit Select Access Time			5.0	ns	
t _{RBS}	Bit Select Recovery Time			5.0	ns	Figures 3a, 3b
taa	Address Access Time ²			10	ns	
	Write Timing					
tw	Write Pulse Width	7.0			ns	
	to Guarantee Writing 3					
twsp	Data Setup Time prior to Write	1.0			ns	
twнD	Data Hold Time after Write	2.0			ns	
twsa	Address Setup Time	1.0			ns	
	prior to Write ³					Figure 4
twнa	Address Hold Time after Write	2.0			ns	
twsss	Bit Select Setup Time	1.0			ns	
	prior to Write					
t _{WHBS}	Bit Select Hold Time	2.0			ns	
	after Write					
tws	Write Disable Time			5.0	ns	
twn	Write Recovery Time			10	ns	
tr	Output Rise Time		0.7		ns	Measured between 20% and
tf	Output Fall Time		0.7		ns	80% or 80% and 20%
CIN	Input Pin Capacitance		4.0	5.0	pF	Measured with a Pulse
Соит	Output Pin Capacitance		7.0	8.0	pF	Technique

1. See Family Characteristics for other dc specifications.

2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

3. t_W measured at t_{WSA} = Min, t_{WSA} measured at t_W = Min.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels $C_L=3~pF$ including Fixture and Stray Capacitance $R_L=50~\Omega$ to -2.0 V

Fig. 2 Input Levels

Fig. 3 Read Mode Timing

3a Read Mode Propagation Delay from Bit Select

3b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note

Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Packages and Outlines (See Section 9) D = Ceramic DIP F = Flatpak

Temperature Ranges $C = 0^{\circ}C \text{ to } +85^{\circ}C, \text{ Case}$

Optional Processing QR = 160 Hour Burn In

A Schlumberger Company

F100422 256 x 4-Bit Static **Random Access Memory**

Memory and High Speed Logic

Connection Diagrams

Description

The F100422 is a 1024-bit read/write Bandom Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as four active-LOW Bit Select lines.

- Address Access Times 5/7 ns Max •
- Bit Select Access Times 4/5 ns Max
- Four Bits Can be Independently Selected
- **Open-emitter Outputs for Easy Memory Expansion**
- Power Dissipation 0.88 mW/Bit Typ
- ACTE POPE **Power Dissipation Decreases with Increasing** • Temperature
- **Polyimide Die Coat for Alpha Immunity**

Pin Names

WE	Write Enable Input (Active LOW)
$\overline{BS}_0 - \overline{BS}_3$	Bit Select Inputs (Active LOW)
$A_0 - A_7$	Address inputs
$D_0 - D_3$	Data Inputs
O ₀ -O ₃	Data Outputs

Logic Symbol

24-Pin Flatpak (Top View)

FAIRCHILD

A Schlumberger Company

F100474 1024 x 4-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The F100474 is a 4096-bit read/write Random Access Memory (RAM), organized 1024 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time 10 ns Max
- Chip Select Access Time 5.0 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation 0.25 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

Pin Names			Al ^{pitin}
WE	Write Enable Inp	ut (Active LOW)	, % w
CS	Chip Select Inpu	t (Active LOW)	₽
A ₀ -A ₉	Address Inputs		
$D_0 - D_3$	Data Inputs	e se	
O ₀ -O ₃	Data Outputs		
Logic Symbol			24
	(2) (3) (4) (5) (6) (1) 23 24 1 2 3 22 		

Logic Symbol

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Functional Description

The F100474 is a fully decoded 4096-bit read/write random access memory, organized 1024 words by four bits. Word selection is achieved by means of a 10-bit address, A_0 through A_9 .

The read and write operations are controlled by the state of the active-LOW Write Enable (\overline{WE}) input. With \overline{WE} held LOW and the chip selected, the data at D_0-D_3 is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twsD(min) plus tw(min) plus twHD(min) to insure a valid write. To read, \overline{WE} is held HIGH and the chip selected. Non-inverted data is then presented at the outputs (O_0-O_3).

The output of the F100474 is an unterminated emitter follower, which allows maximum flexibility in choosing connection configurations. In many applications such as memory expansion, the outputs of many F100474 devices can be tied together. In other applications the wired-OR need not be used. In either case an external 50 Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

	Inputs		Outputs	
CS	WE	Dn	0 n	Mode
н	х	х	L	Not Selected
L	L	L	L	Write "0"
L	L	н	L	Write "1"
L	н	х	Data	Read

H = HIGH Voltage Levels = -0.9 V (Nominal)

L = LOW Voltage Levels = -1.7 V (Nominal)

X = Don't Care

Data = Previously stored data

FAIRCHILD

A Schlumberger Company

F10145A 16 x 4 Register File (RAM)

Memory and High Speed Logic

Description

The F10145A is a high-speed 64-bit Random Access Memory organized as a 16-word by 4-bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data bussing are facilitated by the output disabling features of the Chip Select (CS) and Write Enable (WE) inputs.

A HIGH signal on \overline{CS} prevents read and write operations and forces the outputs to the LOW state. When \overline{CS} is LOW, the \overline{WE} input controls chip operations. A HIGH signal on \overline{WE} disables the Data input (D_n) buffers and enables readout from the memory location determined by the Address (A_n) inputs. A LOW signal on \overline{WE} forces the Q_n outputs LOW and allows data on the D_n inputs to be stored in the addressed location. Data exists in the same logical sense as presented at the data inputs, *i.e.*, the memory is non-inverting.

Pin Names

CS	Chip Select
$A_0 - A_3$	Address
$D_0 - D_3$	Data Inputs
WE	Write Enables
$Q_0 - Q_3$	Data Outputs

Logic Symbol

VCC = Pin 16 VEE = Pin 8

Connection Diagrams

16-Pin DIP (Top View)

16-Pin Flatpak (Top View)

F10145A

Logic Diagram

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels C $_L$ = 3 pF including Fixture and Stray Capacitance RL = 50 Ω to –2.0 V

F10145A

DC Performance Characteristics: V $_{EE}$ = -5.2 V, V $_{CC}$ = GND, T $_{C}$ = 0° C to $+75^{\circ}$ C 1

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
I _{IH}	Input HIGH Current \overline{CS} , $A_0 - A_3$ WE, $D_0 - D_3$			200 220	μA	$V_{IN} = V_{IH(max)}$
I _{EE}	Power Supply Current	-150	-100		mA	Inputs and Outputs Open

AC Performance Characteristics: V_{EE} = -5.2 V $\pm 5\%,$ V_{CC} = GND, ~T_{C} = 0° C to +75° C

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
	Access/Recovery Times					
t _{ACS}	Chip Select Access		4.5	6.0	ns	
t _{RCS}	Chip Select Recovery		4.5	6.0	ns	Figures 1 and 4
t _{AA}	Address Access ²		6.5	9.0	ns	
	Write Setup Times	,				
t _{WSD}	Data	4.5	3.0		ns	
t _{wscs}	Chip Select	4.5	2.5		ns	
t _{WSA}	Address	3.5	1.5		ns	
	Write Hold Times					Figures 1 and 3
t _{WHD}	Data	0	-0.5		ns	
twhcs	Chip Select	0.5	0		ns	
twha	Address	1.0	-1.0		ns	
t _{WR}	Write Recovery Time		4.5	6.0	ns	
t _{ws}	Write Disable Time		4.5	6.0	ns	Figures 1 and 4
tw	Write Pulse Width, Min	4.0	2.5		ns	Figures 1 and 3
t _{CS}	Chip Select Pulse Width, Min	4.0	2.5		ns	
t _{TLH}	Transition Time					
t _{THL}	20% to 80%, 80% to 20%	0.5	2.5	3.9	ns	Figures 1 and 4

1. See Family Characteristics for other dc specifications.

2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudo random testing pattern.

F10145A

Fig. 3 Write Modes

Write Enable Strobe

Packages and Outlines (See Section 9) D = Ceramic DIP F = Flatpak Temperature Ranges C = 0° to + 75°C. Case

Optional Processing QR = 160 Hour Burn in

Fig. 4 Read Modes

Address Input to Data Output ($\overline{WE} = HIGH$, $\overline{CS} = LOW$)

Chip Select Input to Data Output ($\overline{WE} = HIGH$)

CHIP SELECT ACCESS AND RECOVERY TIMES

Write Enable Input to Data Output ($\overline{CS} = LOW$)

WRITE RECOVERY, DISABLE TIMES

FAIRCHILD

A Schlumberger Company

F10402 16 x 4-Bit Register File (RAM)

Memory and High Speed Logic

Description

The F10402 is a high-speed 64-bit Random Access Memory (RAM) organized as a 16-word by 4-bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data busing are facilitated by the output disabling features of the Chip Select $\overline{(CS)}$ and Write Enable $\overline{(WE)}$ inputs.

A HIGH signal on \overline{CS} prevents read and write operations and forces the outputs to the LOW state. When \overline{CS} is LOW, the \overline{WE} input controls chip operations. A HIGH signal on \overline{WE} disables the Data input (D_n) buffers and enables readout from the memory location determined by the Address (A_n) inputs. A LOW signal on \overline{WE} forces the Q_n outputs LOW and allows data on the D_n inputs to be stored in the addressed location. Data exists in the same logical sense as presented at the data inputs, *i.e.*, the memory is non-inverting.

Pin Names

CS	Chip Select Input
$A_0 - A_3$	Address Inputs
$D_0 - D_3$	Data Inputs
WE	Write Enable Input
$Q_0 - Q_3$	Data Outputs

Logic Symbol

VEE = Pin 8

Connection Diagrams

16-Pin DIP (Top View)

16-Pin Flatpak (Top View)

Q1	1	16 F	vcc
Q ₀	2	15	Q ₂
cs	3	14	Q ₃
D1	4	13	WE
D ₀	5	12	D3
A3	6	11	D ₂
A ₂	7	10	A 0
V _{EE}	8	_9 J=	A1

Logic Diagram

DC Performance Characteristics: V_{EE} = -5.2 V, V_{CC} = V_{CCA} = GND, T_C = 0° C to $+75^{\circ}$ C unless otherwise specified*

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
l _{iH}	Input HIGH Current All Inputs			300	μΑ	$V_{\rm IN} = V_{\rm IH(max)}$
I _{EE}	Power Supply Current	-170	-110	-70	mA	Inputs Open

*See Family Characteristic for other dc specifications.

		T _c =	0° C	T _c =	25° C	T _c =	T _C = 75° C		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
	Access/Recovery Timing								
t _{ACS}	Chip Select Access		3.30		3.50		3.80	ns	
t _{RCS}	Chip Select Recovery		3.30		3.50		3.80	ns	Figures 1 and 4
t _{AA}	Address Access ¹		5.00		5.30		6.00	ns	
	Write Timing, Setup								
twsp	Data	0.50		0.50		0.80		ns	
twscs	Chip Select	1.50		1.50		1.50		ns	
t _{WSA}	Address	1.00		1.00		1.00	1	ns	
									Figures 1 and 3
		1							$T_W = 6$ ns
	Write Timing, Hold								
t _{WHD}	Data	0.50		0.50		0.50		ns	
twncs	Chip Select	0.50		0.50		0.50		ns	
t _{WHA}	Address	2.50		2.50		2.50		ns	
t _{wn}	Write Recovery Time		4.00		4.00		4.50	ns	
tws	Write Disable Time		3.00		3.00		3.50	ns	Figures 1 and 4
tw	Write Pulse Width, (LOW)	2.50		2.50		3.00		ns	
	Chip Select Pulse								Figures 1 and 3
t _{cs}	Width, (LOW)	2.50		2.50		3.00		ns	
•05									
t _{TLH}	Transition Time								
t _{THL}	20% to 80%, 80% to 20%	0.50	1.70	0.50	1.70	0.50	1.70	ns	Figures 1 and 4

AC Performance Characteristics: V_{EE} = -5.2 V $\pm 5\%,$ V_{CC} = GND, Applies to Flatpack and DIP Packages

1. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudo random testing pattern.

Fig. 1 AC Test Circuit

Fig. 2 Input Levels

Notes

All Timing Measurments Referenced to 50% of Input Levels C_L = 3 pF including Fixture and Stray Capacitance R_L = 50 Ω to -2.0 V '

Fig. 3 Write Modes

Write Enable Strobe

CHIP SELECT SET-UP AND HOLD TIMES

Ordering Information

Packages and Outlines (See Section 9) D = Ceramic DIP F = Flatpak Temperature Ranges $C = 0^{\circ}$ to + 75°C. Case Optional Processing QR = 160 Hour Burn in

Fig. 4 Read Modes

Address Input to Data Output ($\overline{WE} = HIGH$, $\overline{CS} = LOW$)

Chip Select Input to Data Output (WE = HIGH)

CHIP SELECT ACCESS AND RECOVERY TIMES

Write Enable Input to Data Output (\overline{CS} = LOW) WRITE RECOVERY, DISABLE TIMES

A Schlumberger Company

F10415 1024 x 1-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The F10415 is a 1024-bit read/write Random Access Memory (RAM), organized as 1024 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and noninverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time 10 ns Max
- Chip Select Access Time 5 ns Max
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation 0.92 mW/Bit Typ
- Power Dissipation Decreases with Increasing
 Temperature
- Polyimide Die Coat for Alpha Immunity

Pin Names

WE	Write Enable Input (Active LOW)
CS	Chip Select Input (Active LOW)
A0-A9	Address Inputs
D	Data Input
0	Data Output

Logic Symbol

Connection Diagram

16-Pin DIP (Top View)

Note

The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package

Logic Diagram

Functional Description

The F10415 is a fully decoded 1024-bit read/write random access memory, organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A_0 through A_9 .

One Chip Select input is provided for memory array expansion up to 2048 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, (\overline{CS}) from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable (\overline{WE}) input. With \overline{WE} held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twsD(min) plus tw(min) plus twHD(min) to insure a valid write. To read, \overline{WE} is held HIGH and the chip selected. Non-inverted data is then presented at the output (O). The output of the F10415 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F10415 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50 Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

	Inputs		Output	Mode	
CS	WE	D	0		
н	х	х	L	Not Selected	
L	L	L	L	Write "0"	
L	L	н	L	Write "1"	
L	н	Х	Data	Read	

H = HIGH Voltage Levels = -0.9 V (Nominal)

L = LOW Voltage Levels = -1.7 V (Nominal)X = Don't Care

Data = Previously stored data

DC Performance Characteristic: $V_{EE} = -5.2 \text{ V}$, $V_{CC} = GND$, $T_C = 0^{\circ} \text{ C}$ to $+75^{\circ} \text{ C}$ unless otherwise specified¹

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
Ін	Input HIGH Current			220	μA	VIN = VIH (max)
h	Input LOW Current, \overline{CS} WE, A ₀ -A ₉ , D	0.5 50		170	μA	VIN = VIL (min)
IEE	Power Supply Current	-200	-180		mA	Inputs and Output Open

AC Performance Characteristics: $V_{EE} = -5.2 \text{ V} \pm 5\%$, $V_{CC} = \text{GND}$, Output Load = 50 Ω and 3 pF to -2.0 V, T_C = 0°C to +75°C

		F10	0415		
Symbol	Characteristic	Min	Max	Unit	Condition
	Read Timing				
tacs	Chip Select Access Time		5.0	ns	
t _{RCS}	Chip Select Recovery Time		5.0	ns	Figures 3a, 3b
taa	Address Access Time ²		10	ns	
	Write Timing				
tw	Write Pulse Width to Guarantee Writing ³	7.0		ns	
twsp	Data Setup Time Prior to Write	1.0	l i	ns	
twнD	Data Hold Time after Write	2.0		ns	
twsa	Address Setup Time Prior to Write ³	1.0		ns	Figure 4
twнa	Address Hold Time after Write	2.0		ns	
twscs	Chip Select Setup Time Prior to Write	1.0		ns	
twhcs	Chip Select Hold Time after Write	2.0	1	ns	
t _{ws}	Write Disable Time		5.0	ns	1
twr	Write Recovery Time		10	ns	

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
t _r t _f	Output Rise Time Output Fall Time		0.7 0.7		ns ns	Measured between 20% and 80% or 80% and 20%
CIN COUT	Input Pin Capacitance Output Pin Capacitance		4.0 7.0	5.0 8.0	pF pF	Measured with a Pulse Technique

1. See Family Characteristics for other dc specifications.

2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

3. Tw measured at $t_{WSA} = Min$, t_{WSA} measured at $t_W = Min$.

4

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels C_L = 3 pF including Fixture and Stray Capacitance R_L = 50 Ω to -2.0 V

Fig. 2 Input Levels

Fig. 3 Read Mode Timing

3a Read Mode Propagation Delay from Chip Select

Fig. 4 Write Mode Timing

Note

Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Packages and Outlines (See Section 9) D = Ceramic DIPF = Flatpak

Temperature Range $C = 0^{\circ} C$ to +75° C, Case

Optional Processing QR = 160 Hour Burn In

Typical Application

4096-Word x n-Bit System

A Schlumberger Company

F10422 256 x 4-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The F10422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as four active-LOW Bit Select lines.

- Address Access Time 10 ns Max
- Bit Select Access Time 5.0 ns Max
- Four Bits Can be Independently Selected
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation 1.02 mW/Bit Typ
- Power Dissipation Decreases with Increasing
 Temperature
- Polyimide Die Coat for Alpha Immunity

Pin Names

WE	Write Enable Input (Active LOW)
BS0-BS3	Bit Select Inputs (Active LOW)
A0-A7	Address Inputs
D0-D3	Data Inputs
O ₀ -O ₃	Data Outputs

Logic Symbol

Connection Diagram 24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Functional Description

The F10422 is a fully decoded 1024-bit read/write random access memory, organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, A₀ through A₇.

Four Bit Select inputs are provided for logic flexibility. For larger memories, the fast bit select access time permits the decoding of individual bit selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable (\overline{WE}) input. With \overline{WE} held LOW and the bit selected, the data at D₀-D₃ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twsD(min) plus tw(min) plus twHD(min) to insure a valid write. To read, \overline{WE} is held HIGH and the bit selected. Non-inverted data is then presented at the output (O₀-O₃).

The output of the F10422 is an unterminated emitter follower, which allows maximum flexibility in choosing

output connection configurations. In many applications it is desirable to tie the outputs of several F10422 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50 Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

	Inputs		Outputs			
BSn	WE	D _n	On	Mode		
н	х	х	L	Not Selected		
L	L	L	L	Write "0"		
L	L	н	L	Write "1"		
L	н	Х	Data	Read		

Each bit has independent \overline{BS} , D, and O, but all have common \overline{WE} H = HIGH Voltage Levels = -0.9 V (Nominal)

L = LOW Voltage Levels = -1.7 V (Nominal)

X = Don't Care

Data = Previously stored data

DC Performance Characteristic: $V_{EE} = -5.2 \text{ V}$, $V_{CC} = V_{CCA} = GND$, $T_C = 0^{\circ}C$ to $+75^{\circ}C$ unless otherwise specified¹

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
lін	Input HIGH Current			220	μA	VIN = VIH (max)
lιL	Input LOW Current, $\overline{BS}_0 - \overline{BS}_3$ WE, A ₀ -A ₇ , D ₀ -D ₃	0.5 -50		170	μA	VIN = VIL (min)
IEE	Power Supply Current	-230	-200		mA	All Inputs and Outputs Open

AC Performance Characteristic: V_{EE} = -5.2 V ± 5%, V_{CC} = V_{CCA} = GND, Output Load = 50 Ω and 3 pF to -2.0 V, T_C = 0°C to + 75°C

Symbol	Characteristic	Min	Тур	Мах	Unit	Condition
t _{ABS} t _{RBS} t _{AA}	Read Timing Bit Select Access Time Bit Select Recovery Time Address Access Time ²			5.0 5.0 10	ns ns ns	Figures 3a, 3b
tw twsp	Write Timing Write Pulse Width to Guarantee Writing ³ Data Setup Time prior to Write	7.0	·		ns ns	
twhD	Data Hold Time after Write	2.0			ns	
twsa	Address Setup Time prior to Write ³	1.0			ns	Figure 4
twнa	Address Hold Time after Write	2.0			ns	
t _{WSBS}	Bit Select Setup Time prior to Write	1.0			ns	
t _{WHBS}	Bit Select Hold Time after Write	2.0			ns	
tws	Write Disable Time			5.0	ns	
twr	Write Recovery Time			10	ns	
t _r tf	Output Rise Time Output Fall Time		0.7 0.7		ns ns	Measured between 20% and 80% or 80% and 20%
Cin Cout	Input Pin Capacitance Output Pin Capacitance		4.0 7.0	5.0 8.0	pF pF	Measured with a Pulse Technique

1. See Family Characteristics for other dc specifications.

2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

3. t_W measured at $t_{WSA} = Min$, t_{WSA} measured at $t_W = Min$.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels C_L = 3 pF including Fixture and Stray Capacitance R_L = 50 Ω to -2.0 V

Fig. 2 Input Levels

Fig. 3 Read Mode Timing

3a Read Mode Propagation Delay from Bit Select

3b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note

Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Packages and Outlines (See Section 9) D = Ceramic DIP F = Flatpak

Temperature Ranges $C = 0^{\circ} C$ to +75° C, Case

Optional Processing QR = 160 Hour Burn In

FAIRCHILD

A Schlumberger Company

F10422 256 x 4-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The F10422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as four active-LOW Bit Select lines.

- Address Access Times 5/7 ns Max
- Bit Select Access Times 4/5 ns Max
- Four Bits Can be Independently Selected
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation 1.02 mW/Bit Typ
- Power Dissipation Decreases with Increasing
 Temperature
- Polyimide Die Coat for Alpha Immunity

Pin Names

$\overline{\text{WE}}$ BS ₀ - BS ₃	Write Enable Input (Active LOW) Bit Select Inputs (Active LOW
A ₀ -A ₇	Address Inputs
$D_0 - D_3$	Data Inputs
O ₀ -O ₃	Data Outputs

Logic Symbol

Connection Diagram 24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

FAIRCHILD

A Schlumberger Company

F10474 1024 x 4-Bit Static **Random Access Memory**

Memory and High Speed Logic

Description

The F10474 is a 4096-bit read/write Random Access Memory (RAM), organized 1024 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time 10 ns Max
- Chip Select Access Time 5 ns Max
- **Open-emitter Outputs for Easy Memory Expansion**
- Power Dissipation 0.29 mW/Bit Typ ٠
- Power Dissipation Decreases with Increasing • Temperature

Pin Names

WE	Write Enable Input (Active LOW)
CS	Chip Select Input (Active LOW)
A0-A9	Address Inputs
D_0-D_3	Data Inputs
O ₀ -O ₃	Data Outputs
Logic Symbol	
17 1	8 10 20 21 16

Logic Symbol

Vcc = Pin 24 VCCA = Pin 1 VEE = Pin 12 NC = Pin 10

Connection Diagram

24-Pin DIP (Top View)

Logic Diagram

Functional Description

The F10474 is a fully decoded 4096-bit read/write random access memory, organized 1024 words by four bits. Word selection is achieved by means of a 10-bit address, A_0 through A_9 .

The read and write operations are controlled by the state of the active-LOW Write Enable (\overline{WE}) input. With \overline{WE} held LOW and the chip selected, the data at D_0-D_3 is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twsD(min) plus tw(min) plus twHD(min) to insure a valid write. To read, \overline{WE} is held HIGH and the chip selected. Non-inverted data is then presented at the outputs (O_0-O_3).

The output of the F10474 is an unterminated emitter follower, which allows maximum flexibility in choosing connection configurations. In many applications such as memory expansion, the outputs of many F10474

devices can be tied together. In other applications the wired-OR need not be used. In either case an external 50 Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth	Table
-------	-------

	Inputs			
CS	WE	D _n	0 n	Mode
н	х	х	L	Not Selected
L	L	L	L	Write "0"
L	L	н	L	Write "1"
L	н	х	Data	Read

H = HIGH Voltage Levels = -0.9 V (Nominal)

L = LOW Voltage Levels = -1.7 V (Nominal)

X = Don't Care

Data = Previously stored data

a Tara	/				

.

TTL Family Specifications

Absolute Maximum Ratings:	Above which the useful life may be impaired
Storage Temperature	−65° to +150°C
Supply Voltage Range	−0.5 V to +7.0 V
Input Voltage (dc) ⁽¹⁾⁽²⁾	-0.5 V to V _{CC} (RAMs) -1.5 V to V _{CC} (PROMs)
Voltage Applied to Outputs ⁽⁾	$^{(2)(3)}$ -0.5 V to +5.5 V (RAMs)
(output HIGH)	-1.5 V to +5.5 V (PROMs)
Lead Temperature (Solderin	· · · · · · · · · · · · · · · · · · ·
Maximum Junction Tempe	erature (T _j) +175° C
Output Current	+20 mA
Input Current (DC)	-12 mA to +5.0 mA

Guaranteed Operating Ranges

	Supply Voltage (V _{CC})	Case Temperature (T _{C)}	Maximum Low-Level Input Voltage (V _{IL}) ⁸	Minimum H Input Volta	ligh-Level ge (V _{IH}) ⁸
Commercial	$5.0~V\pm5\%$	0° C to +75° C	0.8V	2.1 V	2.0V
Military	$5.0~V\pm10\%$	-55° C to +125° C	0.87	(RAMs)	(PROMs)

Device Design Characteristics

Symbol	Characteristic	Тур	Unit	Condition
C _{IN}	Input Pin Capacitance	4.0	pF	Measured with a Pulse
Cout	Output Pin Capacitance	7.0	pF	Technique

DC, FN and AC performance characteristics and test conditions listed with each device (see note 8)

Notes

- 1. Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.
- 2. These values may be exceeded as required during PROM programming.
- 3. Output current limit required.
- 4. Unless stated otherwise in individual device specification.
- 5. Functional testing done at input levels $V_{IL} = V_{OL Max}$ (0.45V), $V_{IH} = V_{OH Min}$ (2.4V)
- PROM programmability verified through test row and test column.
 PROM input levels on unprogrammed devices verified through testing of test row
- and test column.
- 8. Static condition only

All TTL RAM products in ceramic packages: dual-in-line, flatpak and leadless chip carrier are polyimide die-coated to decrease sensitivity to alpha particles emitted primarily by the seal glass and ceramic of the package.

(x,y) = (x,y) + (x,y

A Schlumberger Company

93415/93L415 1024 x 1-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The 93415 is a 1024-bit read/write Random Access Memory (RAM), organized 1024 words by one bit. It is designed for high speed cache, control and buffer storage applications. The device includes full on-chip decoding, separate Data input and non-inverting Data output, as well as an active LOW Chip Select line.

- Commercial Address Access Time 93415 — 25 to 60 ns Max
- Military Address Access Time 93415 — 30 to 70 ns Max
- Low Power Version Also Available (93L415)
- Features Open Collector Output
- Power Dissipation 0.46 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

CS	Chip Select Input (Active LOW)
$A_0 - A_9$	Address Inputs
WE	Write Enable Input (Active LOW)
D	Data Input
0	Data Output

Logic Symbol

Connection Diagram

16-Pin DIP (Top View)

Note:

The 16-pin Flatpak version has the same pinout connections as the Dual In-line package.

Functional Description

The 93415 is a fully decoded 1024-bit read/write Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A₀ through A₉.

One Chip Select input is provided for easy memory array expansion of up to 2048 bits without the need for external decoding. For larger memories, the fast chip select access time permits direct address decoding without an increase in overall memory access time.

The read and write functions of the 93415 are controlled by the state of the active LOW Write Enable (\overline{WE}) input. When \overline{WE} is held LOW and the chip is selected, the data at D is written into the location specified by the binary address present at A₀ through A₉. Since the write function is level triggered, data must be held stable at the data input for at least twsD(min) plus tw(min) plus twHD(min) to insure a valid write. When \overline{WE} is held HIGH and the chip selected, data is read from the addressed location and presented at the output (O). An open collector output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93415s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of R_L value must be used to provide a HIGH at the output

when it is off. Any R_L value within the range specified below may be used.

$$\frac{V_{CC} (Max)}{I_{OL} - FO (1.6)} \le R_{L} \le \frac{V_{CC} (Min) - V_{OH}}{n (I_{CEX}) + FO (0.04)}$$

 R_L is in $k\Omega$

n = number of wired-OR outputs tied together FO = number of TTL Unit Loads (UL) driven ICEX = Memory Output Leakage Current VOH = Required Output HIGH Level at Output Node IOL = Output LOW Current

The minimum RL value is limited by the output current sinking ability. The maximum RL value is determined by the output and input leakage current which must be supplied to hold the output at VOH. One Unit Load = 40 μ A HIGH/1.6 mA LOW. $FO_{MAX} = 5 UL.$

Truth Table

	Inputs		Inputs Output		
CS	WE	D	0	Mode	
н	х	х	н	Not Selected	
L	L	L	н	Write "0"	
L	L	н	н	Write "1"	
L	н	Х	Dout	Read	

H = HIGH Voltage Level (2.4 V)

L = LOW Voltage Level (.5 V)

X = Don't Care (HIGH or LOW)

DC Characteristics: Over operating temperature ranges (Note 1)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
Vol	Output LOW Voltage		0.3	0.45	V	$V_{CC} = Min, I_{OL} = 16 mA$
Vін	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ⁵
VIL	Input LOW Voltage	·	1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ⁵
h	Input LOW Current		-250	-4007	μA	$V_{CC} = Max$, $V_{IN} = 0.4 V$
Ін	Input HIGH Current		1.0	40	μA	$V_{CC} = Max, V_{IN} = 4.5 V$
I _{IHB}	Input Breakdown Current			1.0	mA	$V_{CC} = Max, V_{IN} = V_{CC}$
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$V_{CC} = Max$, $I_{IN} = -10 \text{ mA}$
ICEX	Output Leakage Current		1.0	100	μA	V _{CC} = Max, V _{OUT} = 4.5 V
Icc	Power Supply Current			65 75 125	mA mA mA	93L415-35, 93L415-45, 93L415-60 (commercial) 93L415-40, 93L415-50, 93L415-70 (military) 93415-25, 93415-30 (commercial)
				135 155 170	mA mA mA	93415-30, 93415-40 (military) 93415A, 93415-45 (commercial) 93415-60 (military) V _{CC} = Max, Note 6

Notes

- 1. Typical values are at $V_{CC} = 5.0$ V. $T_{C} = +25^{\circ}\,C$ and maximum loading.
- 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

3. Short circuit to ground not to exceed one second.

4. t_W measured at $t_{WSA} = Min$, t_{WSA} measured at $t_W = Min$.

Tested under static condition only.
 All inputs GND

Output open

^{7.} $I_{\rm IL}=-300~\mu A$ for 93L415

Commercial

AC Performance Characteristics: V_{CC} = 5.0 \pm 5%, GND = 0 V, T_{C} = 0° C to +75° C

		93415-30 93415-25 93415A		93415-45					
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
t _{ACS} t _{RCS} t _{AA}	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time ²		15 20 25		20 20 30		35 35 45	ns ns ns	Figures 3a, 3b
tw twsd twhd twsa twha twscs twhcs tws tws tws tws	Write Timing Write Pulse Width to Guarantee Writing ⁴ Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write ⁴ Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Enable to Output Disable Write Recovery Time Write Recovery Time (93415A)	15 5 5 5 5 5 5 5	15 15	20 5 5 5 5 5 5 5	20 20 25	35 5 5 5 5 5 5 5	35 40	ns ns ns ns ns ns ns ns ns ns	Figure 4

Military

AC Performance Characteristics: V $_{CC}$ = 5.0 V \pm 10%, GND = 0 V, T $_{C}$ = -55° C to +125° C

	93415-30 93415-40		15-40	9341	5-60				
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
t _{ACS} t _{RCS} t _{AA}	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time ²		20 20 30		25 25 40		45 50 60	ns ns ns	Figures 3a, 3b
tw twsd twhd twsa twha twscs twhcs tws tws tws	Write Timing Write Pulse Width to Guarantee Writing ⁴ Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write ⁴ Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Enable to Output Disable Write Recovery Time	20 5 5 5 5 5 5 5	20 20	25 5 10 5 5 5 5	25 25	40 5 15 5 5 5	45 50	ns ns ns ns ns ns ns ns ns	Figure 4

Notes on page 4-7

Commercial

AC Performance Characteristics: V_{CC} = 5.0 \pm 5%, GND = 0 V, T_{C} = 0° C to +75° C

		93L4	15-35	5-35 93L415-45		93L4	15-60		
Symbol	Characteristic	Min	Мах	Min	Max	Min	Max	Unit	Condition
t _{ACS} t _{RCS}	Read Timing Chip Select Access Time Chip Select Recovery Time		25 25		30 30		40 40	ns ns	Figures 3a,
t _{AA}	Address Access Time ²		35		45		60	ns	3b
t _w t _{wsd} t _{whd} t _{wsa} t _{wha} t _{wscs} t _{whcs} t _{ws} t _{ws}	Write Timing Write Pulse Width to Guarantee Writing ⁴ Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write ⁴ Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Enable to Output Disable Write Recovery Time	30 5 5 5 5 5 5 5	20 30	35 5 5 5 5 5 5 5	25 35	45 5 10 5 5 5	45 45	ns ns ns ns ns ns ns ns	Figure 4

Military

AC Performance Characteristics: V $_{CC}$ = 5.0 V \pm 10%, GND = 0 V, T $_{C}$ = -55° C to +125° C

		93L4	15-40	93L415-50		93L4	15-70		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
t _{ACS} t _{RCS} t _{AA}	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time ²		30 25 40		35 30 50		45 50 70	ns ns ns	Figures 3a, 3b
tw twsd twhd twsa twha twscs twhcs tws tws tws	Write Timing Write Pulse Width to Guarantee Writing ⁴ Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write ⁴ Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Enable to Output Disable Write Recovery Time	35 5 10 5 5 5	25 30	40 5 10 5 5 5	30 40	50 10 10 10 10 10 10	45 55	ns ns ns ns ns ns ns ns ns	Figure 4

Notes on preceding page

*Includes jig and probe capacitance

Fig. 2 AC Test Input Levels

Fig. 3 Read Mode Timing

3a Read Mode Propagation Delay from Chip Select

3b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

- 1. Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.
- 2. Input voltage levels for worst case AC test are 3.0/0.0 V.

Part Number	Access Time (ns)	Power (mA)	Temperature Range	Package	Order Code
93415-25	25	125	0° C to +75° C	ХХ	93415XX25
93415A	30	155	0° C to +75° C	ХХ	93415AXX
93415-30	30	125	0° C to +75° C	ХХ	93415XX30
93415-30	30	135	-55° C to +125° C	YY	93415YY30
93L415-35	35	65	0° C to +75° C	XX	93L415XX35
93415-40	40	135	-55° C to +125° C	YY	93415YY40
93L415-40	40	75	-55° C to +125° C	YY	93L415YY40
93415-45	45	155	0° C to +75° C	ХХ	93415XX
93L415-45	45	65	0° C to +75° C	XX	93L415XX45
93L415-50	50	75	55° C to +125° C	ΥY	93L415YY50
93L415-60	60	65	0° C to +75° C	ХХ	93L415XX
93415-60	60	170	-55° C to +125° C	YY	93415YY
93L415-70	70	75	-55° C to +125° C	ΥY	93L415YY

Ordering Information

Packages and Optional Processing (See Section 9)

XX — Commercial					
Without Optional Processing	essing With Optional Processing				
DC	DCQR	 Ceramic Dip 			
FC	FCQR	— Cerpak			
PC	PCQR	- Plastic Dip			

YY — Military

Without Optional Processing	With Optional Processing				
DM	DMQB	 Ceramic Dip 			
FM	FMQB	— Cerpak			

Optional Processing

QB = Mil Std 883

Method 5004 and 5005, Level B

QR = Commercial Device with

160 Hour Burn in or Equivalent

Note:

Because every combination of packaging, speed, temperature, and optional processing is not in stock, availability of some combinations is not on an immediate basis.

A Schlumberger Company

93422 256 x 4-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The 93422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits. It is designed for high speed cache, control and buffer storage applications. The 93422 is available in two speeds, "standard" speed and an "A" grade. The device includes full on-chip decoding, separate Data inputs and non-inverting Data outputs, as well as two Chip Select lines.

- Commercial Address Access Time 93422 — 45 ns Max 93422A — 35 ns Max
- Military Address Access Time 93422 — 60 ns Max
 - 93422A 45 ns Max
- Fully TTL Compatible
- Features Three State Outputs
- Power Dissipation 0.46 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$A_0 - A_7$	Address Inputs
D0-D3	Data Inputs
CS ₁	Chip Select Input (Active LOW)
CS ₂	Chip Select Input (Active HIGH)
WE	Write Enable Input (Active LOW)
ŌĒ	Output Enable Input (Active LOW)
O ₀ -O ₃	Data Outputs

Logic Symbol

24-Pin Flatpak (Top View)

24-Pin Leadless Chip Carrier (Top View)

4-13

93422

Logic Diagram

Functional Description

The 93422 is a fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, A_0 through A_7 .

Two Chip Select inputs, inverting and non-inverting, are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of the chip selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE}) input. When \overline{WE} is

held LOW and the chip is selected, the data at D_0-D_3 is written into the addressed location. Since the write function is level-triggered, data must be held stable for at least twsD(min) plus tw(min) plus twHD(min) to insure a valid write. To read, WE is held HIGH and the chip selected. Non-inverted data is then presented at the outputs (O_0-O_3).

The 93422 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

Truth Table

<u></u>	Inp	outs		Outputs	
ÕE	CS ₁	CS ₂	WE	3-State	Mode
X	н	Х	х	HIGH Z	Not Selected
х	X	L	x	HIGH Z	Not Selected
L	L	н	н	D _{OUT}	READ
Х	L	н	L	HIGH Z	WRITE
Н	х	Х	х	HIGH Z	Output Disabled

H = HIGH Voltage Level (2.4 V)

L = LOW Voltage Level (.5 V)

X = Don't Care (HIGH or LOW)

High Z = High-Impedance

DC Performance Characteristics: Over operating temperature ranges (Note 1)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition			
Vol	Output LOW Voltage		0.3	0.45	V	$V_{CC} = Min, I_{OL} = 8 mA$			
VIH	Input HIGH Voltage	2.1	1.6		v	Guaranteed Input HIGH Voltage for All Inputs ⁵			
VIL	Input LOW Voltage		1.5	0.8	v	Guaranteed Input LOW Voltage for All Inputs ⁵			
Voн	Output HIGH Voltage	2.4			V	V _{CC} = Min, I _{OH}	= -5.2 mA		
hι	Input LOW Current		-150	-300	μA	V _{CC} = Max, V _{IN}	I = 0.4 V		
Ιн	Input HIGH Current		1.0	40	μA	V _{CC} = Max, V _{IN}	1 = 4.5 V		
I _{IHB}	Input Breakdown Current			1.0	mA	V _{CC} = Max, V _{IN}	$V_{CC} = Max, V_{IN} = V_{CC}$		
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	V _{CC} = Max, I _{IN}	=-10 mA		
I _{OZH} I _{OZL}	Output Current (HIGH Z)			50 -50	μΑ	V _{CC} = Max, V _O V _{CC} = Max, V _O			
los	Output Current Short Circuit to Ground	-10		-70	mA	V _{CC} = Max, Note 3			
lcc	Power Supply Current			120 130	mA	Commercial Military	V _{CC} = Max All Inputs GND All Outputs Open		

Notes

1. Typical values are at $V_{CC}=$ 5.0 V. $T_{C}=+25^{\circ}\,C$ and maximum loading.

2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

3. Short circuit to ground not to exceed one second.

4. t_W measured at t_{WSA} = Min. t_{WSA} measured at t_W = Min. 5. Static condition only.

Commercial

AC Performance Characteristics: V_{CC} = 5.0 V \pm 5%, GND = 0 V, T_{C} = 0° C to +75° C

			4	Std			
Symbol	Characteristic	Min	Max	Min	Max	Unit	Condition
	Read Timing						
tacs	Chip Select Access Time		30		30	ns	
tzrcs	Chip Select to HIGH Z		30		30	ns	
taos	Output Enable Access Time		30		30	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		30		30	ns	
taa	Address Access Time ²		35		45	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing 4	25		30		ns	
twsp	Data Setup Time Prior to Write	5		5		ns	
twнD	Data Hold Time after Write	5		5		ns	
twsa	Address Setup Time Prior to Write 4	5		5		ns	Figure 4
twнa	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twncs	Chip Select Hold Time after Write	5		5		ns	
tzws	Write Enable to HIGH Z		35		35	ns	
twr	Write Recovery Time		35		40	ns	·

Military

AC Performance Characteristics: V_{CC} = 5.0 V \pm 10%, GND = 0 V, T_C = -55°C to +125°C

		A Std					
Symbol	Characteristic	Min	Max	Min	Мах	Unit	Condition
	Read Timing						
tacs	Chip Select Access Time		35		45	ns	
tzrcs	Chip Select to HIGH Z	1	35		45	ns	
taos	Output Enable Access Time		35	-	45	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		35		45	ns	
tAA	Address Access Time ²		45		60	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ⁴	35		40		ns	
twsp	Data Setup Time Prior to Write	5		5		ns	
twнD	Data Hold Time after Write	5		5		ns	
twsa	Address Setup Time Prior to Write 4	5		5		ns	Figure 4
twнa	Address Hold Time after Write	5		5		ns	_
twscs	Chip Select Setup Time Prior to Write	5		5		ns	1
twncs	Chip Select Hold Time after Write	5		5		ns	
tzws	Write Enable to HIGH Z		40		45	ns	
twR	Write Recovery Time		40		50	ns	

Notes on preceding page

93422

Fig. 1 AC Test Output Load

LOAD B

*Includes jig and probe capacitance Note: Load A is used for all production testing.

Fig. 2 AC Test Input Levels

- Fig. 3 Read Mode Timing
- a Read Mode Propagation Delay from Address

CS1 CHIP SELECTS 50% CS₂ tacs tzacs HIGH Z HIGH Z LOADA 50% 0.5 V DATA OUTPUTS 0.5 V 50% LOADB HIGH Z HIGH Z

3b Read Mode Propagation Delay from Chip Select

3c Read Mode Propagation Delay from Output Enable

4

93422

Fig. 4 Write Mode Timing

Notes

1. Timing Diagram represents one solution which results in an optimum cycle time. Timing may be

changed to fit various applications as long as the worst case limits are not violated.

2. Input voltage levels for worst case AC test are 3.0/0.0 V.

Ordering Information

Packages and Outlines (See Section 9) D = Ceramic DIP

- F = Flatpak
- L = Leadless Chip Carrier
- P = Plastic DIP

Temperature Range $C = 0^{\circ}C$ to $+75^{\circ}C$ M = -55°C to +125°C

Optional Processing

QB = Mil Std 883 Method 5004 and 5005, Level B QR = Commercial Device with 160 Hour Burn In or Equivalent

A Schlumberger Company

93L422 256 x 4-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The 93L422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits. It is designed for high speed cache, control and buffer storage applications. The 93L422 is available in two speeds, "standard" speed and an "A" grade. The device includes full on-chip decoding, separate Data inputs and non-inverting Data outputs, as well as two Chip Select lines.

- Commercial Address Access Time 93L422 — 60 ns Max
 - 93L422A 45 ns Max
- Military Address Access Time 93L422 — 75 ns Max 93L422A — 55 ns Max
- Fully TTL Compatible
- Features Three State Outputs
- Power Dissipation 0.25 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

N)

Logic Symbol

22-Pin DIP (Top View)

24-Pin Flatpak (Top View)

24-Pin Leadless Chip Carrier (Top View)

4-19

93L422

Logic Diagram

Functional Description

The 93L422 is a fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, A_0 through A_7 .

Two Chip Select inputs, inverting and non-inverting, are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of the chip selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE}) input. When \overline{WE} is

held LOW and the chip is selected, the data at D_0-D_3 is written into the addressed location. Since the write function is level-triggered, data must be held stable for at least twSD(min) plus tw(min) plus twHD(min) to insure a valid write. To read, \overline{WE} is held HIGH and the chip selected. Non-inverted data is then presented at the outputs (O_0-O_3).

The 93L422 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

Truth Table

Inputs				Outputs	
ŌE		CS ₂	WE	3-State	Mode
x	н	х	х	HIGH Z	Not Selected
х	Х	L	X	HIGH Z	Not Selected
L	L	н	н	D _{OUT}	READ
х	L	н	L	HIGH Z	WRITE
н	×	Х	X	HIGH Z	Output Disabled

H = HIGH Voltage Level (2.4 V)

L = LOW Voltage Level (.5 V)

X = Don't Care (HIGH or LOW)

High Z = High-Impedance

DC Performance Characteristics: Over operating temperature ranges (Note 1)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition	
Vol	Output LOW Voltage		0.3	0.45	V	V _{CC} = Min, I _{OL}	= 8 mA
ViH	Input HIGH Voltage	2.1	1.6		v	Guaranteed Input HIGH Voltage for All Inputs ⁵	
VIL	Input LOW Voltage		1.5	0.8	v	Guaranteed In for All Inputs ⁵	put LOW Voltage
Vон	Output HIGH Voltage	2.4			V	Vcc = Min, Ior	₁ = −5.2 mA
lιL	Input LOW Current	i	-150	-300	μΑ	V _{CC} = Max, V _{IN}	_N = 0.4 V
Чн	Input HIGH Current		1.0	40	μΑ	V _{CC} = Max, V _{IN}	v = 4.5 V
I _{IHB}	Input Breakdown Current			1.0	mA	V _{CC} = Max, V _{IN}	$I = V_{CC}$
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	V _{CC} = Max, I _{IN}	=-10 mA
Iozh Iozl	Output Current (HIGH Z)			50 -50	μΑ	V _{CC} = Max, V _O V _{CC} = Max, V _O	
los	Output Current Short Circuit to Ground	-10		-70	mA	V _{CC} = Max, No	ote 3
lcc	Power Supply Current			80 90	mA	Commercial Military	V _{CC} = Max All Inputs GND All Outputs Oper

Notes

1. Typical values are at V_{CC} = 5.0 V. T_{C} = $\pm 25^{\circ}\,C$ and maximum loading.

2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

3. Short circuit to ground not to exceed one second.

4. t_W measured at t_{WSA} = Min. t_{WSA} measured at t_W = Min.

5. Static condition only.

93L422

Commercial

AC Performance Characteristics: V_{CC} = 5.0 V \pm 5%, GND = 0 V, T_C = 0°C to +75°C

			A Std				
Symbol	Characteristic	Min	Max	Min	Max	Unit	Condition
	Read Timing						
tacs	Chip Select Access Time		30		35	ns	
tzrcs	Chip Select to HIGH Z		30		35	ns	
taos	Output Enable Access Time		30		35	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		30		35	ns	
taa	Address Access Time ²		45		60	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ⁴	30		45	}	ns	
twsp	Data Setup Time Prior to Write	5		5		ns	
twнd	Data Hold Time after Write	5		5]	ns	
twsa	Address Setup Time Prior to Write ⁴	5		5		ns	Figure 4
twнa	Address Hold Time after Write	5	ł	5		ns	
twscs	Chip Select Setup Time Prior to Write	5	{	5	5	ns	
twncs	Chip Select Hold Time after Write	5	1	5		ns	
tzws	Write Enable to HIGH Z		35		40	ns	
twR	Write Recovery Time		40		45	ns	

Military

AC Performance Characteristics: V_{CC} = 5.0 V \pm 10%, GND = 0 V, T_C = -55°C to +125°C

			A Std				
Symbol	Characteristic	Min	Max	Min	Мах	Unit	Condition
	Read Timing						
tacs	Chip Select Access Time		40		45	ns	
tzrcs	Chip Select to HIGH Z		40		45	ns	
taos	Output Enable Access Time		40		45	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		40		45	ns	
tAA	Address Access Time ²		55		75	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ⁴	40	1	55		ns	
twsp	Data Setup Time Prior to Write	5		5		ns	
twнD	Data Hold Time after Write	5)	5		ns	
twsa	Address Setup Time Prior to Write ⁴	5	1	5		ns	Figure 4
twнa	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twncs	Chip Select Hold Time after Write	5		5		ns	
tzws	Write Enable to HIGH Z		45		45	ns	
twR	Write Recovery Time		50		50	ns	

Notes on preceding page

Fig. 1 AC Test Output Load

LOAD B

*Includes jig and probe capacitance Note: Load A is used for all production testing.

Fig. 2 AC Test Input Levels

Fig. 3 Read Mode Timing

3b Read Mode Propagation Delay from Chip Select

3c Read Mode Propagation Delay from Output Enable

4

93L422

Fig. 4 Write Mode Timing

Notes

1. Timing Diagram represents one solution which results in an optimum cycle time. Timing may be

changed to fit various applications as long as the worst case limits are not violated.

2. Input voltage levels for worst case AC test are 3.0/0.0 V.

Ordering Information

Speed Selection Blank = Standard Speed A = 'A' Grade

Packages and Outlines (See Section 9)

- D = Ceramic DIP
- F = Flatpak L = Leadless Chip Carrier
- P = Plastic DIP

Temperature Range $C = 0^{\circ}C$ to $+75^{\circ}C$

$M = -55^{\circ}C \text{ to } + 125^{\circ}C$

Optional Processing QB = Mil Std 883 Method 5004 and 5005, Level B QR = Commercial Device with 160 Hour Burn In or Equivalent

A Schlumberger Company

93425/93L425 1024 x 1-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The 93425 is a 1024-bit read/write Random Access Memory (RAM), organized 1024 words by one bit. It is designed for high speed cache, control and buffer storage applications. The device includes full on-chip decoding, separate Data input and non-inverting Data output, as well as an active LOW Chip Select line.

- Commercial Address Access Time 953425 — 20 to 60 ns Max
- Military Address Access Time 93425 — 30 to 70 ns Max
- Low Power Version Also Available (93L425)
- Features Three State Output
- Power Dissipation Decreases with Increasing Temperature

Pin Names

CS	Chip Select (Active LOW)
$A_0 - A_9$	Address Inputs
WE	Write Enable (Active LOW)
D	Data Input
0	Data Output

Logic Symbol

V_{CC} = Pin 16 GND = Pin 8 Connection Diagram 16-Pin DIP (Top View)

Note:

The 16 pin Flatpak version has the same pinout connections as the Dual In-line package.

Logic Diagram

Functional Description

The 93425 is a fully decoded 1024-bit read/write Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A₀ through A₉.

One Chip Select input is provided for easy memory array expansion of up to 2048 bits without the need for external decoding. For larger memories, the fast chip select access time permits direct address decoding without an increase in overall memory access time.

The read and write functions of the 93425 are controlled by the state of the active LOW Write Enable (\overline{WE}) input. When \overline{WE} is held LOW and the chip is selected, the data at D is written into the location specified by the binary address present at A₀ through A₉. Since the write function is level triggered, data must be held stable at the data input for at least twsD(min) plus tw(min) plus twHD(min) to insure a valid write. When \overline{WE} is held HIGH and the chip selected, data is read from the addressed location and presented at the output (O). The 93425 has a three-state output which provides an active pull-up or pull-down when enabled and a high impedance (HIGH Z) state when disabled. The active pull-up provides drive capability for high capacitive loads while the high impedance state allows optimization of word expansion in bus organized systems.

Truth Table

	Inputs		Output	
CS	WE	D	0	Mode
н	х	х	HIGH Z	Not Selected
L	L	L	HIGH Z	Write "0"
L	L	н	HIGH Z	Write "1"
L	н	х	Dout	Read

H = HIGH Voltage Level (2.4 V)

L = LOW Voltage Level (.5 V)

X = Don't Care (HIGH or LOW)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
Vol	Output LOW Voltage		0.3	0.45	V	$V_{CC} = Min$, $I_{OL} = 16 mA$
ViH	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ⁵
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ⁵
Vон	Output HIGH Voltage	2.4			V	$V_{CC} = Min$, $I_{OH} = -5.2 mA$
hu	Input LOW Current		-250	-4007	μA	$V_{CC} = Max, V_{IN} = 0.4 V$
I _{IH}	Input HIGH Current	1	1.0	40	μA	$V_{CC} = Max, V_{IN} = 4.5 V$
I _{IHB}	Input Breakdown Current			1.0	mA	$V_{CC} = Max, V_{IN} = V_{CC}$
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$V_{CC} = Max$, $I_{IN} = -10 \text{ mA}$
I _{OZH} I _{OZL}	Output Current (HIGH Z)			50 50	μA	$V_{CC} = Max, V_{OUT} = 2.4 V$ $V_{CC} = Max, V_{OUT} = 0.5 V$
los	Output Current Short Circuit to Ground			-100	mA	V _{CC} = Max, Note 3
				65	mA	93L425-35, 93L425-45, 93L425-60 (commercial)
				75	mA	93L425-60 (commercial) 93L425-40, 93L425-50, 93L425-70 (military)
				125	mA	93425-25, 93425-30
I _{CC}	Power Supply Current			135	mA	(commercial) 93425-30, 93425-40 (military)
				155	mA	93425A, 93425-45 (commercial)
				170	mA	93425-60 (military) V _{CC} = Max, <i>Note 6</i>

DC Performance Characteristics: Over operating temperature ranges (Note 1)

Notes

1. Typical values are at $V_{CC}=$ 5.0 V. $T_{C}=+25^{\circ}\,C$ and maximum loading.

2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

3. Short circuit to ground not to exceed one second.

4. t_W measured at t_{WSA} = Min. t_{WSA} measured at t_W = Min. 5. Static condition only.

6. All inputs GND

Output open

7. $I_{1L} = -300 \ \mu A$ for 93L425

Commercial

AC Performance Characteristics: V_{CC} = 5.0 \pm 5%, GND = 0 V, T_{C} = 0° C to +75° C

	93425-20 93425-30 93425-25 93425A		9342	25-45					
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
	Read Timing								
t _{ACS}	Chip Select Access Time		15		20		35	ns	
t _{ZRCS}	Chip Select to HIGH Z		20		20		35	ns	Figures 3a,
t _{AA}	Address Access Time ²		20/25		30		45	ns	3b
	Write Timing								
tw	Write Pulse Width to Guarantee Writing ⁴	15		20		35		ns	
t _{WSD}	Data Setup Time Prior to Write	5		5		5		ns	
t _{WHD}	Data Hold Time after Write	5		5		5	1	ns	
t _{WSA}	Address Setup Time Prior to Write ⁴	5		5		5		ins	Figure 4
t _{WHA}	Address Hold Time after Write	5		5		5		ns	-
twscs	Chip Select Setup Time Prior to Write	5		5		5		ns	
t _{WHCS}	Chip Select Hold Time after Write	5		5		5		ns	
t _{zws}	Write Enable to HIGH Z		15		20		35	ns	
t _{WR}	Write Recovery Time		15		20		40	ns	
t _{WR}	Write Recovery Time (93425A)				25			ns	

Military

AC Performance Characteristics: V_{CC} = 5.0 V \pm 10%, GND = 0 V, T_{C} = -55^{\circ} C to +125° C

			93425-30 93425-40		93425-60				
Symbol	Characteristic	Min	Мах	Min	Max	Min	Max	Unit	Condition
t _{ACS} t _{ZRCS} t _{AA}	Read Timing Chip Select Access Time Chip Select to HIGH Z Address Access Time ²		20 20 30		25 25 40		45 50 60	ns ns ns	Figures 3a, 3b
t _w twsd twhd twsa twha twscs twhcs tzws tzws twn	Write Timing Write Pulse Width to Guarantee Writing ⁴ Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write ⁴ Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Enable to HIGH Z Write Recovery Time	20 5 5 5 5 5 5 5 5	20 20	25 5 10 5 5 5	25 25	40 5 15 5 5 5	45 50	ns ns ns ns ns ns ns ns ns ns	Figure 4

Notes on preceding page

Commercial

AC Performance Characteristics: V_{CC} = 5.0 \pm 5%, GND = 0 V, T_{C} = 0° C to +75° C

			25-35	93L4	25-45	93L425-60			
Symbol	Characteristic	Min	Мах	Min	Max	Min	Max	Unit	Condition
t _{ACS} t _{ZRCS} t _{AA}	Read Timing Chip Select Access Time Chip Select to HIGH Z Address Access Time ²		25 25 35		30 30 45		40 40 60	ns ns ns	Figures 3a, 3b
tw twsd twhd twsa twha twscs twhcs tzws tzws twn	Write Timing Write Pulse Width to Guarantee Writing ⁴ Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write ⁴ Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Enable to HIGH Z Write Recovery Time	30 5 5 5 5 5 5 5	20 30	35 5 5 5 5 5 5 5	25 35	45 5 10 5 5 5	45 45	ns ns ns ns ns ns ns ns	Figure 4a, 4b

Military

AC Performance Characteristics: V_{CC} = 5.0 V \pm 10%, GND = 0 V, T_{C} = -55^{\circ} C to $+125^{\circ}$ C

	93L425-40 93L425-50		93L4	25-70					
Symbol	Characteristic	Min	Мах	Min	Max	Min	Max	Unit	Condition
t _{ACS} t _{ZRCS} t _{AA}	Read Timing Chip Select Access Time Chip Select to HIGH Z Address Access Time ²		30 25 40		35 30 50		45 50 70	ns ns ns	Figures 3a, 3b
tw twsd twhd twsa twha twscs twhcs tzws twn	Write Timing Write Pulse Width to Guarantee Writing ⁴ Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write ⁴ Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Enable to HIGH Z Write Recovery Time	35 5 10 5 5 5 5	25 30	40 5 10 5 5 5	30 40	50 10 10 10 10 10 5	45	ns ns ns ns ns ns ns ns ns ns ns	Figure 4a, 4b

Notes on page 4-27

Fig. 1 AC Test Output Load

LOAD B *Includes jig and probe capacitance Note: Load A is used for all production testing.

Fig. 2 AC Test Input Levels

 Fig. 3
 Read Mode Timing

 3a
 Read Mode Propagation Delay from Chip Select

50% 50% CHIP SELECT — — — HIGH Z · - HIGH Z 0.5 V 50% LOAD A TACS ^tZRCS DATA OUTPUT 50% LOAD B 0.5 V HIGH Z HIGH Z

3b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Notes

1. Timing Diagram represents one solution which results in an optimum cycle time. Timing may be

changed to fit various applications as long as the worst case limits are not violated.

2. Input voltage levels for worst case AC test are 3.0/0.0 V.

Part Number	Access Time (ns)	Power (mA)	Temperature Range	Package	Order Code
93425-20	20	125	0° C to +75° C	XX	93425XX20
93425-25	25	125	125 0° C to +75° C		93425XX25
93425A	30	155	0° C to +75° C	ХХ	93425AXX
93425-30	30	125	0° C to +75° C	ХХ	93425XX30
93425-30	30	135	-55° C to +125° C	ΥY	93425YY30
93L425-35	35	65	0° C to +75° C	ХХ	93L425XX35
93425-40	40	135	-55° C to +125° C	YY .	93425YY40
93L425-40	40	75	-55° C to +125° C	YY	93L425YY40
93425-45	45	155	0° C to +75° C	ХХ	93425XX
93L425-45	45	65	0° C to +75° C	ХХ	93L425XX45
93L425-50	50	75	-55° C to +125° C	YY	93L425YY50
93L425-60	60	65	0° C to +75° C	ХХ	93L425XX
93425-60	60	170	-55° C to +125° C	YY	93425YY
93L425-70	70	75	-55° C to +125° C	YY	93L425YY

Ordering Information

Packages and Optional Processing (See Section 9)

XX — Commercial

Without Optional Processing
DC
FC
PC

With Optional ProcessingDCQR-- Ceramic DipFCQR-- CerpakPCQR-- Plastic Dip

YY — Military

Without Op	otional	Processing
	DM	
	FM	

With Optional Processing DMQB — Ceramic Dip FMQB — Cerpak

Optional Processing

- QB = Mil Std 883
- $\label{eq:QR} \begin{array}{l} \mbox{Method 5004 and 5005, Level B} \\ \mbox{QR} = \mbox{Commercial Device with} \end{array}$
- 160 Hour Burn in or Equivalent

Note:

Because every combination of packaging, speed, temperature, and optional processing is not in stock, availability of some combinations is not on an immediate basis.

93479 256 x 9-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The 93479 is a 2304-bit read/write Random Access Memory (RAM), organized as 256 words by nine bits per word. It is ideally suited for scratchpad, small buffer and other applications where the number of required words is small and where the number of required bits per word is relatively large. The ninth bit can be used to provide parity for 8-bit word systems.

- Commercial Address Time 93479 — 45 ns Max 93479A — 35 ns Max
- Military Address Access Time 93479 — 60 ns Max 93479A — 45 ns Max
- Common Data Input/Output
- Features Three State Output
- Power Dissipation 0.29 mW/Bit Typ

Pin Names

A0-A7	Address Inputs
DQ ₀ -DQ ₈	Data Input/Outputs
OE	Output Enable Input (Active LOW)
WE	Write Enable Input (Active LOW)
CS	Chip Select Input (Active LOW)

Logic Symbol

V_{CC} = Pin 22 GND = Pin 11

Connection Diagram 22-Pin DIP (Top View)

Functional Description

The 93479 is a fully decoded 2304-bit random access memory organized 256 words by nine bits. Word selection is achieved by means of an 8-bit address, A_0 to A_7 .

The Chip Select input provides for memory array expansion. For larger memories, the fast chip select access time permits decoding without an increase in overall memory access time.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE}) input. With \overline{WE} held LOW, the chip selected, and the output disabled, the data at DQ₀-DQ₈ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least t_{WSD(min)} plus t_{WHD(min)} to insure a valid write. To read, \overline{WE} is held HIGH, the chip selected and the output enabled. Non-inverted data is then presented at the outputs DQ₀-DQ₈.

The 93479 has three-state outputs which provide an active pull-up or pull-down when enabled and a high impedance (HIGH Z) state when disabled. The active pull-ups provide drive capability for high capacative loads while the high impedance state allows optimization of word expansion in bus organized systems.

	Inputs		Data In/Out	
CS	ŌE	WE	DQ ₀ -DQ ₈	Mode
Х	н	Х	HIGH Z	Output Disabled
н	X	х	HIGH Z	R/W Disabled
L	L	н	Data Out	Read
L	н	L	Data In	Write

H = HIGH Voltage Level (2.4 V)

L = LOW Voltage Level (.5 V)

X = Don't Care (HIGH or LOW)

HIGH Z = High Impedance State

DC Perfo	DC Performance Characteristics: Over operating temperature ranges (Note 1)										
Symbol	Characteristic	Min	Тур	Max	Unit	Condition					
Vol	Output LOW Voltage		0.3	0.5	V	$V_{CC} = Min, I_{OL} = 8.0 mA$					
Vон	Output HIGH Voltage	2.4			V	V _{CC} = Min, I _{OH}	= -5.2 mA				
Viн	Input HIGH Voltage	2.1	1.6		v	Guaranteed Input HIGH Voltage for All Inputs ⁵					
VIL	Input LOW Voltage		1.5	0.8	v	Guaranteed Input LOW Voltage for All Inputs ⁵					
hε	Input LOW Current		-250	-400	μA	$V_{CC} = Max$, $V_{IN} = 0.4 V$					
l _{iH}	Input HIGH Current		1.0	40	μA	$V_{CC} = Max$, $V_{IN} = 4.5 V$					
Іінв	Input Breakdown Current			1.0	mA	V _{CC} = Max, V _{IN}	$v = V_{CC}$				
I _{OZH} I _{OZL}	Output Current (HIGH Z)		-50	50 -400	μΑ μΑ	$V_{CC} = Max, V_O$ $V_{CC} = Max, V_O$					
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	V _{CC} = Max, I _{IN}	=-10 mA				
los	Output Current Short Circuit to Ground			-70	mA	V _{CC} = Max, No	V _{CC} = Max, Note 3				
lcc	Power Supply Current			185 200	mA	Commercial Military	V _{CC} = Max All Inputs GND				

Notes

1. Typical values are at V_{CC} = 5.0 V. T_{C} = +25° C and maximum loading.

- 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

Commercial

AC Performance Characteristics: V_{CC} = 5.0 V \pm 5%, GND = 0 V, T_{C} = 0° C to +75° C

			A Std				
Symbol	Characteristic	Min	Max	Min	Мах	Unit	Condition
	Read Timing						
tacs	Chip Select Access Time	1	25		25	ns	
tzrcs	Chip Select to HIGH Z		25		25	ns	
taos	Output Enable Access Time		25		25	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		25		25	ns	
taa	Address Access Time ²		35		45	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ⁴	25		25		ns	
tso	Output Enable Setup Time	5		5		ns	
tно	Data Enable Hold Time	5		5		ns	
twsp	Data Setup Time Prior to Write	25		25		ns	Figure 4
twнD	Data Hold Time after Write	5		5		ns	
twsa	Address Setup Time Prior to Write 4	5		5		ns	
twнa	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twncs	Chip Select Hold Time after Write	5		5		ns	

Military

AC Performance Characteristics: V_{CC} = 5.0 V \pm 10%, GND = 0 V, T_{C} = -55^{\circ} C to $+125^{\circ}$ C

			4	S	td		
Symbol	Characteristic	Min	Мах	Min	Max	Unit	Condition
	Read Timing						
tacs	Chip Select Access Time		30		40	ns	
tzrcs	Chip Select to HIGH Z		30		40	ns	
taos	Output Enable Access Time		30		40	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		30		40	ns	
taa	Address Access Time ²		45		60	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ⁴	40		40		ns	
tso	Output Enable Setup Time	5		5		ns	
tнo	Data Enable Hold Time	5		5		ns	
twsp	Data Setup Time Prior to Write	50		50		ns	Figure 4
twhd	Data Hold Time after Write	10		10		ns	
twsa	Address Setup Time Prior to Write ⁴	10	1	10		ns	
twнa	Address Hold Time after Write	10		10		ns	
twscs	Chip Select Setup Time Prior to Write	10		10		ns	
twncs	Chip Select Hold Time after Write	10		10	ļ	ns	

Notes on preceding page

Fig. 1 AC Test Load Output Load

Fig. 3 Read Mode Timing

3a Read Mode Propagation Delay from Chip Select to Output

3b Read Mode Propagation Delay from Address to Output

3c Read Mode Propagation Delay from Output Enable

Fig. 4 Write Mode Timing

* These timing parameters are only necessary to guarantee High Z state during the entire write cycle

Notes

- 1. Timing Diagram represents one solution which results in an optimum cycle time. Timing may be
- changed to fit various applications as long as the worst case limits are not violated.
- 2. Input voltage levels for worst case AC test are 3.0/0.0 V.

Ordering Information

Speed Selection

Blank = Standard Speed A = 'A' Grade

Packages and Outlines (See Section 9) D = Ceramic DIP

Temperature Range

 $C = 0^{\circ}C \text{ to } +75^{\circ}C$ M = -55°C to +125°C

Optional Processing

QB = Mil Std 883 Method 5004 and 5005, Level B

QR = Commercial Device with 160 Hour Burn In or Equivalent

Notes

.

F1600 65,536 x 1-Bit Static RAM

Memory and High Speed Logic.

Description

The F1600 is a 65,536-bit fully static asynchronous random access memory, organized as 65,536 words by 1-bit, using high-performance CMOS technology. The F1600 is based on an advanced isoplanar oxide isolation process: fully-implanted CMOS technology with sub-2 micron design rules and high-performance tantalum silicide gate electrodes. The high-density NMOS memory array and the CMOS peripheral circuits provide fast access time plus low active and standby power.

- Single +5V Operation (±10%)
- Fully Static: No Clock or Timing Strobe Required
- Fast Access Time: 45 ns/55 ns/70 ns (Maximum)
- Low Power Dissipation:
 - 70 mA Maximum (Active) 20 mA Maximum (Standby — TTL Input Levels) 5 mA Maximum (Standby — CMOS Input Levels)
- Directly TTL Compatible All Inputs and Outputs
- Separate Data Input and Three-State Output
- Available in a 22-Pin DIP or LCC
- Polyimide Die Coat for Alpha Immunity

Pin Names

A0-A15	Address Inputs
Ē	Chip Enable
W	Write Enable
D	Data Input
Q	Data Output
Vcc	Power (5.0 V)
GND	Ground (0 V)

Logic Symbol

Connection Diagrams 22-Pin DIP (Top View)

22-Pin LCC (Top View)

F1600

Absolute Maximum Ratings

Voltage on Any Input or Output Pin	
With Respect to GND	– 2.0 V to 7.0 V
Storage Temperature	-55° C to +150° C
Operating Temperature	0°C to +70°C
Power Dissipation	1.0 W

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions: $T_C = 0^{\circ}C$ to $+70^{\circ}C$

Symbol	Characteristic	Min.	Тур.	Max.	Unit
V _{CC}	Supply Voltage	4.5	5.0	5.5	V
V _{IH}	Input HIGH Voltage	2.2		6.0	V
V _{IL}	Input LOW Voltage	-0.5*		0.8	V

All voltages are referenced to GND pin = 0 V.

*The device will withstand undershoots to -3.0 V of 20 ns duration. This is guaranteed by bench simulation in a DC mode, not 100% tested.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Functional Block Diagram

		F	-1600-4	5		F1600-5	5	F	1600-7	D		
Symbol	Characteristic	Min	Тур.	Max	Min	Тур.	Max	Min	Тур.	Max	Unit	Condition
lın	Input Leakage Current (All inputs)			±2			±2			±2	μΑ	$V_{CC} = 5.5 V,$ $V_{IN} = 0 V \text{ to } V_{CC}$
lout	Output Leakage Current (on Q)			±2			±2			±2	μA	$\overline{E} = V_{IH}$ Vout = 0 V to V _{CC}
ICC1	Operating Power Supply Current		40	70		40	70		40	70	mA	$\overline{E} = V_{IL},$ Output Open
ICC2	Dynamic Operating Supply Current		40	70		40	70		40	70	mA	Min. Read Cycle Time Duty Cycle = 100% Output Open
I _{SB1}	Standby Supply Current		5	20		5	20		5	20	mA	$\overline{E} \ge V_{IH},$ see note 1
I _{SB2}	Full Standby Supply Current		0.02	5.0		0.02	5.0		0.02	5.0	mA	see note 2
los	Output Current Short Circuit to Ground			-125			-125			-125	mA	V _{CC} = 5.5 V Duration not to Exceed 1 Second
Vol	Output LOW Voltage			0.4			0.4			0.4	v	I _{OL} = 8.0 mA
Vон	Output HIGH Voltage	2.4			2.4			2.4			V	loн = -4.0 mA

DC Operating Characteristics: $T_{C} = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5.0V \pm 10\%$

AC Test Conditions³

Input Pulse LevelsGND to 3.0 V
Input Rise and Fall Times 5 ns
Input and Output Timing Reference Levels 1.5 V
Output Load See Figures 1 and 2

 $\textbf{Capacitance}^{4} \text{ T}_{\textbf{C}} = +25^{\circ} \text{ C}, \text{ f} = 1.0 \text{ MHz}$

Symbol	Parameter	Max.	Units	Conditions
CIN	Input Capacitance	5	pF	$V_{IN} = 0 V$
COUT	Output Capacitance	6	pF	$V_{OUT} = 0 V$

Effective capacitance calculated from the equation

 $C = \frac{\bigtriangleup Q}{\bigtriangleup V} \quad \text{where } \bigtriangleup V = 3 \; V.$

Figure 1 Output Load

Truth Table

Mode	Ē	W	D	Q	Power Level
Standby	н	х	х	HIGH Z	Standby
Read	L	н	X	D	Active
Write	L	L	D	HIGH Z	Active

HIGH Z = High impedance

D = Valid data bit

X = Don't care

Figure 2 Output Load (for tEHQZ, tELQX, tWLQZ, tWHQX)

+ 5V **480**Ω D_{OUT} ₹ 255Ω 5pF*

F1600

	Syn	nbol		F160	00-45	F160	0-55	F1600-70			
No.	Standard	Alternate	Parameter	Min	Max	Min	Мах	Min	Max	Unit	Notes
1	tavav	t _{RC}	Address Valid to Address Valid (Read Cycle Time)	45		55		70		ns	5,6,9
2	tavqv	taa	Address Valid to Output Valid (Address Access Time)		45		55		70	ns	5
3	taxox	toн	Address Invalid to Output Invalid (Output Hold Time)	5		5		5		ns	
4	teleh	tRC	Chip Enable LOW to Chip Enable HIGH (Read Cycle Time)	45		55		70		ns	6,9
5	telqv	tacs	Chip Enable LOW to Output Valid (Chip Enable Access Time)		45		55		70	ns	6
6	tELQX	t∟z	Chip Enable LOW to Output Invaild (Chip Enable to Output Active)	0		0		0		ns	4
7	tEHQZ	t _{HZ}	Chip Enable HIGH to Output High Z (Chip Disable to Output Disable)	0	20	0	25	0	30	ns	4, 10
8	t ELICCH	tPU	Chip Enable LOW to Power Up	0		0		0		ns	4
9	t EHICCL	tPD	Chip Enable HIGH to Power Down		40		40		40	ns	4

AC Operating Conditions and Characteristics: Read Cycle T $_{C}$ = 0° C to +70° C, V $_{CC}$ = 5.0V $\pm 10\%$

Notes on page 5-9

Timing Waveforms

Read Cycle 1 (Where \overline{E} is active prior to address change. $\overline{W} = HIGH$)

Read Cycle 2 (Where address is valid prior to \overline{E} becoming active. \overline{W} = HIGH)

	Syn	nbol		F160	00-45	F160	0-55	F160	00-70		
No.	Standard	Alternate	Parameter	Min	Max	Min	Max	Min	Max	Unit	Notes
10	tavav	twc	Address Valid to Address Valid (Write Cycle Time)	45		55		70		ns	7,8,9
11	telwh	t _{cw}	Chip Enable to Write HIGH (Chip Enable to End of Write)	40		45		55		ns	11
12	tavwh	taw	Address Valid to Write HIGH (Address Setup to End of Write)	40		45		55		ns	11
13	twhax	twr	Write HIGH to Address Don't Care (Address Hold After End of Write)	0		0		0		ns	11
14	twLwH	twp	Write LOW to Write HIGH (Write Pulse Width)	20		25		40		ns	11
15	tavwl	tas	Address Valid to Write LOW (Address Setup to Beginning of Write)	5		5		5		ns	11
16	tovwн	tow	Data Valid to Write HIGH (Data Setup to End of Write)	15		20		30		ns	11
17	twhox	tон	Write HIGH to Data Don't Care (Data Hold After End of Write)	0		0		0		ns	11
18	twLqz	twz	Write LOW to Output High Z (Write Enable to Output Disable)	0	20	0	25	0	30	ns	4, 10
19	twнqx	tow	Write HIGH to Output Don't Care (Output Active After End of Write)	0		0		0		ns	4

AC Operating Conditions and Characteristics: Write Cycle 1 T $_{C}$ = 0° C to +70° C, V $_{CC}$ = 5.0V ±10%

Notes on page 5-9

Write Cycle 1 (\overline{W} controlled, where \overline{E} is active prior to \overline{W} becoming active.)

	Syn	lod		F160	0-45	F1600-55		F1600-70			
No.	Standard	Alternate	Parameter	Min	Max	Min	Max	Min	Max	Unit	Notes
20	tavel	tas	Address Valid to Chip Enable LOW (Address Set Up)	0		0		0		ns	
21	teleh	t _{cw}	Chip Enable LOW to Chip Enable HIGH (Write Cycle Time)	45		55	-	70		ns	11
22	tEHAX	twr	Chip Enable HIGH to.Address Don't Care (Address Hold After End of Write)	0		0		0		ns	
23	taven	taw	Address Valid to Chip Enable HIGH (Address Setup to End of Write)	40		45		55		ns	
24	telwh	twp	Chip Enable LOW to Write HIGH (Write Pulse Width)	30		35		40		ns	11
25	toven	t _{DW}	Data Valid to Chip Enable HIGH (Data Setup to End of Write)	15		20		30		ns	
26	tEHDX	t _{DH}	Chip Enable HIGH to Data Don't Care (Data Hold)	0		0		0		ns	

AC Operating Conditions and Characteristics:Write Cycle 2 T $_{C}$ = 0°C to +70°C, V $_{CC}$ = 5.0V ±10%

Write Cycle 2 (\overline{E} controlled, where \overline{W} is active prior to \overline{E} becoming active. See Note 9.)

Notes

1. This parameter is measured with E HIGH (chip deselected) and inputs at valid TTL levels.

- This parameter is measured with input levels either ≥ V_{CC} 0.2 V or ≤ 0.2 V, including Ē which must be ≥ V_{CC} 0.2 V. This condition results in significant reduction in current in the input buffer circuitry and consequently a lower overall current level.
- 3. Operation to specifications guaranteed 2.0 ms after V_{CC} applied.
- 4. This parameter is sampled and not 100% tested.
- 5. Read Cycle 1 assumes that Chip Enable (E) occurs before the addresses are valid. Timing considerations are referenced to the edges of Address Valid.
- 6. Read Cycle 2 assumes that Address Valid occurs prior to Chip Enable (E). Timing considerations are referenced to the edges of Chip Enable.
- 7. Since a write cycle can only occur during intervals where both E and W are LOW, Write Cycle 1 assumes that W is the latter of the two signals to go LOW (active) and is also the first of the two signals to go HIGH (inactive). Consequently, timing considerations are referenced to the edges of W rather than E.
- 8. Write Cycle 2 assumes that, of the two control signals, E and W. E is the latter of the two to go LOW (active) and is also the first of the two to go HIGH (inactive). Consequently, timing considerations are referenced to the edges of E rather than W.
- 9. All READ and WRITE cycle timings are referenced from the last bit to become valid address to the first transitioning address.
- 10. Transition to high impedance state is measured ±500 mV from steady state voltage with specified loading in Figure 2. This parameter is sampled, not 100% tested.
- 11. Since Write Enable (W) is gated internally with Chip Enable (E), the value of W during periods where E is HIGH is irrelevant (i.e., don't care). Thus, whenever W transitions to the LOW state prior to E, all timing references will be to the falling edge of E rather than W. Similarly, whenever E transitions to the HIGH state prior to W, all timing references will be to the rising edge of E rather than W.
- 12. Input pulse levels 0 to 3.0 Volts.

13. Input rise and fall times are assumed to be 5 ns. Timing measurement reference levels are 1.5 Volts.

14. Rise and fall times should not exceed 45 ns.

Ordering Information

ackage	Access Time Temperature Range	Order Code
e-brazed	45 ns 0°C to + 70°C	1600DC45
s Chip Carrier	45 ns 0°C to + 70°C	1600LC45
astic DIP	45 ns 0°C to + 70°C	1600PC45
e-brazed	55 ns 0°C to + 70°C	1600DC55
s Chip Carrier	55 ns 0°C to + 70°C	1600LC55
astic DIP	55 ns 0°C to + 70°C	1600PC55
e-brazed	70 ns 0°C to + 70°C	1600DC70
s Chip Carrier	70 ns 0°C to + 70°C	1600LC70
astic DIP	70 ns 0°C to + 70°C	1600PC70
		astic DIP

A Schlumberger Company

F1600 65,536 x 1-Bit Static RAM Military Temperature Range

Memory and High Speed Logic

Description

The F1600 is a 65,536-bit fully static asynchronous random access memory, organized as 65,536 words by 1-bit, using high-performance CMOS technology. The F1600 is based on an advanced isoplanar oxide isolation process: fullyimplanted CMOS technology with sub-2 micron design rules and high-performance tantalum silicide gate electrodes. The high-density NMOS memory array and the CMOS peripheral circuits provide fast access time plus low active and standby power.

- Single +5V Operation (±10%)
- Fully Static: No Clock or Timing Strobe Required
- Fast Access Time: 55 ns/70 ns (Maximum)
- Specifications Guaranteed Over Full Military Temperature Range (-55°C to+125°C)
- Low Power Dissipation : 70 mA Maximum (Active) 20 mA Maximum (Standby — TTL Input Levels) 9 mA Maximum (Standby — CMOS Input Levels)
- Directly TTL Compatible All Inputs and Outputs
- Separate Data Input and Three-State Output
- Available in a 22-Pin DIP or LCC
- Polyimide Die Coat for Alpha Immunity

Pin Names

A0-A15	Address Inputs
Ē	Chip Enable
\overline{w}	Write Enable
D	Data Input
Q	Data Output
Vcc	Power (5.0 V)
GND	Ground (0 V)

Logic Symbol

Connection Diagrams 22-Pin DIP (Top View)

22-Pin LCC (Top View)

Absolute Maximum Ratings

Voltage on Any Input or Output Pin	
With Respect to GND	-2.0 V to 7.0 V
Storage Temperature Range	-65° C to +150° C
Operating Temperature Range	- 55°C to + 125°C
Power Dissipation	1.0 W
Maximum Junction Temperature (T _J)	+ 150°C
Thermal Resistance, Junction to Case	15°C/W
(θ _{JC}): Case (Side-Brazed DIP)	

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating condition for extended periods may affect device reliability.

Recommended Operating Conditions: T_C = -55°C to +125°C

Symbol	Characteristic	Min.	Тур.	Max.	Unit	
V _{CC}	Supply Voltage	4.5	5.0	5.5	v	
VIH	Input HIGH Voltage	2.2		6.0	v	
VIL	Input LOW Voltage	-0.5*		0.8	v	

All voltages are referenced to GND pin = 0 V.

*The device will withstand undershoots to -3.0 V of 20 ns duration. This is guaranteed by bench simulation in a DC mode, not 100% tested.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Functional Block Diagram

		F1600-55 F1600-7		00-70			
Symbol	Characteristic	Min	Max	Min	Max	Unit	Condition
I _{IN}	Input Leakage Current (All inputs)		±5		±5	uA	$\begin{array}{l} V_{CC}=5.5 \text{ V,} \\ V_{IN}=0 \text{ V and } 5.5 \text{ V} \end{array}$
I _{OUT}	Output Leakage Current (on Q)		±10		±10	uA	$\overline{E} = V_{IH}$ $V_{OUT} = 0 V and 5.5 V$
I _{CC1}	Operating Power Supply Current		70		70	mA	$\overline{E} = V_{IL},$ Output Open
I _{CC2}	Dynamic Operating Supply Current		70		70	mA	Min. Read Cycle Time Duty Cycle = 100% Output Open
I _{SB1}	Standby Supply Current		20		20	mA	$\overline{E} \ge V_{IH},$ see note 1
I _{SB2}	Full Standby Supply Current		9.0		9.0	mA	see note 2
los	Output Current Short Circuit to Ground		-135		-135	mA	$V_{CC} = 5.5 V$ Duration not to Exceed 1 Second
V _{OL}	Output LOW Voltage		0.4		0.4	v	I _{OL} = 8.0 mA
V _{OH}	Output HIGH Voltage	2.4		2.4		V	$I_{OH} = -4.0 \text{ mA}$

DC Operating Characteristics: $T_C = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = 5.0V \pm 10\%$

AC Test Conditions³

Input Pulse Levels	
Input Rise and Fall Times 5 ns	
Input and Output Timing Reference Levels 1.5 V	
Output Load See Figures 1 and 2	

Capacitance⁴ T_C = +25°C, f = 1.0 MHz

Symbol	Parameter	Max.	Units	Conditions
CIN	Input Capacitance	5	pF	$V_{IN} = 0 V$
C _{OUT}	Output Capacitance	6	pF	$V_{OUT} = 0 V$

Effective capacitance calculated from the equation

 $C = \frac{\triangle Q}{\triangle V} \text{ where } \triangle V = 3 V.$

Figure 1 Output Load

Notes on page 5-16

Truth Table⁵

Mode	Ē	W	D	Q	Power Level
Standby	н	Х	х	HIGH Z	Standby
Read	L	н	Х	D	Active
Write	L	L	D	HIGH Z	Active

HIGH Z - High impedance

D - Valid data bit

X - Don't care

Figure 2 Output Load (for t EHQZ, t ELQX, t WLQZ, t WHQX)

*Including scope and jig.

	1		T	1				r	Т
	Syn	Symbol		F1600-55		F1600-70			
No.	Standard	Alternate	Parameter	Min	Max	Min	Max	Unit	Notes
1	t _{AVAV}	t _{RC}	Address Valid to Address Valid (Read Cycle Time)	55		70		ns	6,7,10
2	t _{AVQV}	t _{AA}	Address Valid to Output Valid (Address Access Time)		55		70	ns	6
3	t _{AXQX}	t _{OH}	Address Invalid to Output Invalid (Output Hold Time)	5		5		ns	
4	t _{ELEH}	t _{RC}	Chip Enable LOW to Chip Enable HIGH (Read Cycle Time)	55		70		ns	7,10
5	t _{ELQV}	t _{ACS}	Chip Enable LOW to Output Valid (Chip Enable Access Time)		55		70	ns	7
6	t _{ELQX}	tLZ	Chip Enable LOW to Output Invalid (Chip Enable to Output Active)	0		0		ns	4
7	t _{EHQZ}	t _{HZ}	Chip Enable HIGH to Output High Z (Chip Disable to Output Disable)	0	35	0	40	ns	4, 11
8	t _{ELICCH}	t _{PU}	Chip Enable LOW to Power Up	0		0		ns	4
9	t _{EHICCL}	t _{PD}	Chip Enable HIGH to Power Down		45		45	ns	4

AC Operating Conditions and Characteristics: Read Cycle T _C = -55° C to +125° C, V _{CC} = 5.0V \pm 10%

Notes on page 5-16

Timing Waveforms

Read Cycle 1 (Where \overline{E} is active prior to address change. $\overline{W} = HIGH$)

Read Cycle 2 (Where address is valid prior to \overline{E} becoming active. $\overline{W} = HIGH$)

	Syn	lodi			F1600-55		0-70		
No.	Standard	Alternate	Parameter	Min	Max	Min	Max	Unit	Notes
10	t _{AVAV}	twc	Address Valid to Address Valid (Write Cycle Time)	55		70		ņs	8,9,10
11	t _{ELWH}	tcw	Chip Enable to Write HIGH (Chip Enable to End of Write)	50		55		ns	12
12	t _{avwh}	t _{AW}	Address Valid to Write HIGH (Address Setup to End of Write)	50		55		ns	12
13	t _{WHAX}	t _{WR}	Write HIGH to Address Don't Care (Address Hold After End of Write)	5		5		ns	12
14	t _{WLWH}	t _{WP}	Write LOW to Write HIGH (Write Pulse Width)	35		40		ns	12
15	t _{AVWL}	tAS	Address Valid to Write LOW (Address Setup to Beginning of Write)	15		15		ns	12
16	t _{DVWH}	t _{DW}	Data Valid to Write HIGH (Data Setup to End of Write)	25		30		ns	12
17	twHDX	t _{DH}	Write HIGH to Data Don't Care (Data Hold After End of Write)	5		5		ns	12
18	twLQZ	^t wz	Write LOW to Output High Z (Write Enable to Output Disable)	0	30	0	35	ns	4, 11
19	twhoz	tow	Write HIGH to Output Don't Care (Output Active After End of Write)	0		0		ns	4

Notes on page 5-16

Write Cycle 1 (\overline{W} controlled, where \overline{E} is active prior to \overline{W} becoming active.)

	1							T	T
	Syn	nbol	J	F160	F1600-55		0-70		
No.	Standard	Alternate	Parameter	Min	Max	Min	Max	Unit	Notes
20	t _{AVEL}	t _{AS}	Address Valid to Chip Enable LOW (Address Set Up)	5		5		ns	
21	t _{ELEH}	t _{CW}	Chip Enable LOW to Chip Enable HIGH (Write Cycle Time)	55		70		ns	12
22	t _{EHAX}	t _{WR}	Chip Enable HIGH to Address Don't Care (Address Hold After End of Write)	5		5		ns	
23	t _{AVEH}	t _{AW}	Address Valid to Chip Enable HIGH (Address Setup to End of Write)	50		65		ns	
24	t _{ELWH}	t _{WP}	Chip Enable LOW to Write HIGH (Write Pulse Width)	35		40		ns	12
25	t _{DVEH}	t _{DW}	Data Valid to Chip Enable HIGH (Data Setup to End of Write)	25		30		ns	
26	t _{EHDX}	t _{DH}	Chip Enable HIGH to Data Don't Care (Data Hold)	5		5		ns	

AC Operating Conditions and Characteristics: Write Cycle 2 T $_{C}$ = -55° C to +125° C, V $_{CC}$ = 5.0V ±10%

Write Cycle 2 (\overline{E} controlled, where \overline{W} is active prior to \overline{E} becoming active. See Note 9.)

Notes on page 5-16

Notes

1. This parameter is measured with Chip Enable (E) HIGH and inputs at valid TTL levels (0.5 V and 2.5 V).

- 2. This parameter is measured with input levels either \ge V_{CC} -0.2 V or \le 0.2 V, including \overline{E} which must be \ge V_{CC}-0.2 V. This condition results in significant reduction in current in the input buffer circuitry and consequently a lower overall current level.
- 3. Operation to specifications guaranteed 2.0 ms after V_{CC} applied.
- 4. This parameter value is based on initial design qualification and is also verified on every design change. These are not tested in production.
- 5. Function test performed with the following input conditions: $V_{IL} = 0.4$ V and $V_{IH} = 2.4$.
- 6. Read Cycle 1 assumes that Chip Enable (E) occurs before the addresses are valid. Timing considerations are referenced to the edges of Address Valid.
- 7. Read Cycle 2 assumes that Address Valid occurs prior to Chip Enable (E). Timing considerations are referenced to the edges of Chip Enable.
- Since a write cycle can only occur during intervals where both E and W are LOW, Write Cycle 1 assumes that W is the latter of the two signals to go LOW (active) and is also the first of the two signals to go HIGH (inactive). Consequently, timing considerations are referenced to the edges of W rather than E.
- 9. Write Cycle 2 assumes that, of the two control signals, \vec{E} and \vec{W} , \vec{E} is the latter of the two to go LOW (active) and is also the first of the two to go HIGH (inactive). Consequently, timing considerations are referenced to the edges of \vec{E} rather than \overline{W} .
- 10. All READ and WRITE cycle timings are referenced from the last bit to become valid address to the first transitioning address.
- 11. Transition to high impedance state is measured ±500 mV from steady state voltage with specified loading in Figure 2.
- 12. Since Write Enable (W) is gated internally with Chip Enable (E), the value of W during periods where E is HIGH is irrelevant (i.e., don't care). Thus, whenever W transitions to the LOW state prior to E, all timing references will be to the falling edge of E rather than W. Similarly, whenever E transitions to the HIGH state prior to W, all timing references will be to the rising edge of E rather than W.
- 13. Input pulse levels 0 to 3.0 Volts.
- 14. Input rise and fall times are assumed to be 5 ns. Timing measurement reference levels are 1.5 Volts.
- 15. Rise and fall times should not exceed 45 ns.

Ordering Information

Part Number	Access Time	Temperature Range	Package	Order Code
F1600-55	55 ns	55°C to +125°C	Side-brazed	1600 DMQB55
F1600-55	55 ns	-55°C to +125°C	Leadless Chip Carrier	1600 LMQB 55
F1600-70	70 ns	- 55°C to + 125°C	Side-brazed	1600 DMQB 70
F1600-70	70 ns	- 55°C to + 125°C	Leadless Chip Carrier	1600 LMQB 70

F1601 65,546 x 1-Bit Static RAM Data Retention Version

Description

The F 1601 is a 65,536-bit fully static asynchronous random access memory, organized as 65,536 words by 1-bit, using high-performance CMOS technology. The F1601 is based on an advanced isoplanar oxide isolation process; fullyimplanted CMOS technology with sub-2 micron design rules and high-performance tantalum silicide gate electrodes. The high-density NMOS memory array and the CMOS peripheral circuits provide fast access time plus low active and standby power.

- Single +5V Operation (±10%)
- Fast Access Time: 45 ns/55 ns/70 ns (Maximum)
- Power Dissipation (Normal Operation): 70 mA Maximum (Active) 20 mA Maximum (Standby — TTL Input Levels) 2 mA Maximum (Standby — CMOS Input Levels)
 Data Distribution Surplus Values
- Data Retention Supply Voltage
 2.0V to 5.5V
- Low Power Dissipation (Data Retention) $I_{CCDR} = 50 \ \mu A$ Maximum (2.0 V \leq V_{DR} \leq 3.0 V)
- Fully Static: No Clock or Timing Strobe Required
- Directly TTL Compatible All Inputs and Outputs
- Separate Data Input and Three-State Output
- Available in a 22-Pin DIP or LCC
- Polyimide Die Coat for Alpha Immunity

Pin Names

Address Inputs
Chip Enable
Write Enable
Data Input
Data Output
Power (5.0 V)
Ground (0 V)

Connection Diagrams 22-Pin DIP (Top View)

22-Pin LCC (Top View)

5-17

F1601

Absolute Maximum Ratings

Voltage on Any Input or Output Pin	
With Respect to GND	-2.0V to +7.0V
Storage Temperature	-55° C to +150° C
Operating Temperature	0° C to +70° C
Power Dissipation	1.0W

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions: $T_C = 0^{\circ} C$ to $+70^{\circ} C$

Symbol	Characteristic	Min.	Тур.	Max.	Unit
V _{CC}	Supply Voltage	4.5	5.0	5.5	v
VIH	Input HIGH Voltage	2.2		6.0	V
VIL	Input LOW Voltage	-0.5*		0.8	V

All voltages are referenced to GND pin = 0 V.

*The device will withstand undershoots to -3.0 V of 20 ns duration. This is guaranteed by bench simulation in a DC mode, not 100% tested.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Functional Block Diagram

		F	F1601-4	5	F	-1601-5	5	1	F1601-7	0		
Symbol	Characteristic	Min	Тур.	Max	Min	Тур.	Max	Min	Тур.	Max	Unit	Condition
lın	Input Leakage Current (All inputs)			± 2			± 2			± 2	μΑ	$V_{CC} = 5.5 V,$ $V_{IN} = 0 V \text{ to } V_{CC}$
lout	Output Leakage Current (on Q)			± 2			± 2			± 2	μΑ	$\overline{E} = V_{IH}$ Vout = 0 V to V _{CC}
Icc1	Operating Power Supply Current		40	70		40	70		40	70	mA	$\overline{E} = V_{IL},$ Output Open
ICC2	Dynamic Operating Supply Current		40	70		40	70		40	70	mA	Min. Read Cycle Time Duty Cycle = 100% Output Open
I _{SB1}	Standby Supply Current		5	20		5	20		5	20	mA	$\overline{E} \ge V_{IH},$ see note 1
I _{SB2}	Full Standby Supply Current		0.02	2.0		0.02	2.0		0.02	2.0	mA	see note 2
los	Output Current Short Circuit to Ground			-125			-125			-125	mA	V _{CC} = 5.5 V Duration not to Exceed 1 Second
Vol	Output LOW Voltage			0.4			0.4			0.4	V	IoL = 8.0 mA
Vон	Output HIGH Voltage	2.4			2.4			2.4	1		V	Iон = -4.0 mA

DC Operating Characteristics: T_C = 0° C to +70° C, V_{CC} = 5.0V \pm 10%

AC Test Conditions³

Input Pulse Levels GND to 3.0 V
Input Rise and Fall Times 5 ns
Input and Output Timing Reference Levels 1.5 V
Output Load See Figures 1 and 2

Capacitance4:	$T_{C} = +25$	°C, f =	1.0MHz
---------------	---------------	---------	--------

Symbol	Parameter	Max.	Units	Conditions
CIN	Input Capacitance	5	pF	V _{IN} = 0 V
COUT	Output Capacitance	6	pF	V _{OUT} = 0 V

Effective capacitance calculated from the equation

$$C = \frac{\Delta Q}{\Delta V}$$
 where $\Delta V = 3 V$.

Figure 1 Output Load

Truth Table

Mode	Ē	W	D	Q	Power Level		
Standby	н	x	X	HIGH Z	Standby		
Read	L	н	X	D	Active		
Write	L	L	D	HIGH Z	Active		

HIGH Z = High impedance

D = Valid data bit

X = Don't care

Figure 2 Output Load (for tEHQZ, tELQX, tWLQZ, tWHQX)

5

	Syn	nbol		F16	01-45	F160)1-55	F1601-70			
No.	Standard	Alternate	Parameter	Min	Мах	Min	Max	Min	Max	Unit	Notes
1	tavav	t _{RC}	Address Valid to Address Valid (Read Cycle Time)	45		55		70		ns	5,6,9
2	tavqv	taa	Address Valid to Output Valid (Address Access Time)		45		55		70	ns	5
3	taxox	toн	Address Invalid to Output Invalid (Output Hold Time)	5		5		5		ns	
4	teleh	tRC	Chip Enable LOW to Chip Enable HIGH (Read Cycle Time)	45		55		70		ns	6,9
5	tELQV	tacs	Chip Enable LOW to Output Valid (Chip Enable Access Time)		45		55		70	ns	6
6	tELQX	t∟z	Chip Enable LOW to Output Invalid (Chip Enable to Output Active)	0		0		0		ns	4
7	tEHQZ	t _{HZ}	Chip Enable HIGH to Output High Z (Chip Disable to Output Disable)	0	20	0	25	0	30	ns	4, 10
8	t ELICCH	tPU	Chip Enable LOW to Power Up	0		0		0		ns	4
9	t EHICCL	tpD	Chip Enable HIGH to Power Down		40		40		40	ns	4

AC Operating Conditions and Characteristics: Read Cycle T $_C$ = 0° C to +70° C, V $_{CC}$ = 5.0V $\pm 10\%$

Notes on page 5-23

Timing Waveforms

Read Cycle 1 (Where \overline{E} is active prior to address change. $\overline{W} = HIGH$)

Read Cycle 2 (Where address is valid prior to \overline{E} becoming active. $\overline{W} = HIGH$)

F1601

	Syn	nbol		F160	01-45	F16	01-55	F16	01-70		
No.	Standard	Alternate	Parameter	Min	Max	Min	Max	Min	Мах	Unit	Notes
10	tavav	twc	Address Valid to Address Valid (Write Cycle Time)	45		55		70		ns	7,8,9
11	telwh	t _{cw}	Chip Enable to Write HIGH (Chip Enable to End of Write)	40		45		55		ns	11
12	tavwh	taw	Address Valid to Write HIGH (Address Setup to End of Write)	40		45		55		ns	11
13	twhax	twn	Write HIGH to Address Don't Care (Address Hold After End of Write)	0		0		0		ns	11
14	twLwH	twp	Write LOW to Write HIGH (Write Pulse Width)	20		25		40		ns	11
15	tavwl	tas	Address Valid to Write LOW (Address Setup to Beginning of Write)	5		5		5		ns	11
16	tovwн	tow	Data Valid to Write HIGH (Data Setup to End of Write)	15		20		30		ns	11
17	twndx	tон	Write HIGH to Data Don't Care (Data Hold After End of Write)	0		0		0		ns	11
18	twLqz	twz	Write LOW to Output High Z (Write Enable to Output Disable)	0	20	0	25	0	30	ns	4, 10
19	twнqx	tow	Write HIGH to Output Don't Care (Output Active After End of Write)	0		0		0		ns	4

AC Operating Conditions and Characteristics: Write Cycle 1 T $_C$ = 0° C to +70° C, V $_{CC}$ = 5.0V $\pm 10\%$

Notes on page 5-23

Write Cycle 1 (\overline{W} controlled, where \overline{E} is active prior to \overline{W} becoming active.)

F1601

	Syn	lodn		F1601-45		F1601-55		F1601-70			
No.	Standard	Alternate	Parameter	Min	Max	Min	Max	Min	Max	Unit	Notes
20	tavel	tas	Address Valid to Chip Enable LOW (Address Set UP)	0		0		0		ns	
21	teleh	t _{cw}	Chip Enable LOW to Chip Enable HIGH (Write Cycle Time)	45		55		70		ns	11
22	tehax	twn	Chip Enable HIGH to Address Don't Care (Address Hold After End of Write)	0		0		0		ns	
23	taven	taw	Address Valid to Chip Enable HIGH (Address Setup to End of Write)	40		45		55		ns	
24	telwh	twp	Chip Enable LOW to Write HIGH (Write Pulse Width)	30		35		40		ns	- 11
25	tdveн	tow	Data Valid to Chip Enable HIGH (Data Setup to End of Write)	15		20		30		ns	
26	tEHDX	tDH	Chip Enable HIGH to Data Don't Care (Data Hold)	0		0		0		ns	

AC Operating Conditions and Characteristics: Write Cycle T_C = 0° C to +70° C, V_{CC} = 5.0V \pm 10%

Write Cycle 2 (\overline{E} controlled, where \overline{W} is active prior to \overline{E} becoming active. See Note 9.)

Data Retention Characteristics : $T_C = 0^\circ C$ to $+70^\circ C$, $V_{CC} = 3.0V$ to 5.5V

Symbol	Parameter	Conditions		Min.	Max.	Unit	Notes
V _{DR}	V _{CC} Voltage for Data Retention	$V_{\rm CC}$ -0.2 V \leq	$ \begin{aligned} & \in \widetilde{E} \leq V_{CC} + 0.5 \\ & V_{IN} \leq V_{CC} + 0.5 \ V \ or \\ & V_{IN} \leq V_{SS} + 0.5 \ V \end{aligned} $	2.0	5.5	v	
ICCDR	Data Retention Current	V _{DR} = 3.0 V	$T_C = 0^\circ C$ to $+70^\circ C$		50	μA	15
tCDR	Chip Disable to Data Retention Time		Lang, - 1999, - 1999, - 1997, - 1997, - 1997, - 1997 , - 1997, - 1977, - 1977, - 1977, - 1977	0		ns	
t _R	Recovery Time			t _{AVAV}		ns	14

Data Retention Waveform

Notes

- 1. This parameter is measured with E HIGH (chip deselected) and inputs at valid TTL levels.
- This parameter is measured with Address, W and D inputs all satisfying one of two conditions: V_{CC} -0.2 V ≤ V_{IN} ≤ V_{CC} +0.5 V or V_{SS} -0.5 V ≤ V_{IN} ≤ V_{SS} +0.2 V. In addition, the Enable input must be V_{CC} -0.2 V ≤ E ≤ V_{CC} +0.5 V. This condition results in significant reduction in current in the input buffer circuitry and consequently a lower overall current level.
- 3. Operation to specifications guaranteed 2.0 ms after V_{CC} applied.
- 4. This parameter is sampled and not 100% tested.
- 5. Read Cycle 1 assumes that Chip Enable (Ē) occurs before the addresses are valid. Timing considerations are referenced to the edges of Address Valid.
- 6. Read Cycle 2 assumes that Address Valid occurs prior to Chip Enable (Ē). Timing considerations are referenced to the edges of Chip Enable.
- 7. Since a write cycle can only occur during intervals where both \overline{E} and \overline{W} are LOW, Write Cycle 1 assumes that W is the latter of the two signals to go LOW (active) and is also the first of the two signals to go HIGH (inactive). Consequently, timing considerations are referenced to the edges of \overline{W} rather than \overline{E} .
- 8. Write Cycle 2 assumes that, of the two control signals, E and W, E is the latter of the two to go LOW (active) and is also the first of the two to go HIGH (inactive). Consequently, timing considerations are referenced to the edges of E rather than W.
- 9. All READ and WRITE cycle timings are referenced from the last bit to become valid address to the first transitioning address.
- 10. Transition to high impedance state to measured ±500 mV from steady state voltage with specified loading in Figure 2. This parameter is sampled not 100% tested.
- 11. Since Write Enable (W) is gated internally with Chip Enable (E), the value of W during periods where E is HIGH is irrelevant (i.e., don't care). Thus whenever W transitions to the LOW state piror to E, all timing references will be to the falling edge of E rather than W. Similarly, whenever E transitions to the HIGH state prior to W, all timing references will be to the rising edge of E rather than W.
- 12. Input pulse levels 0 to 3.0 Volts.
- 13. Input rise and fall times are assumed to be 5 ns. Timing measurement reference levels are 1.5 Volts.
- 14. T_{AVAV} = Read Cycle Timing.
- 15. V_{cc} -0.2 V $\leq \overline{E} \leq V_{cc}$ +0.5 V. V_{cc} -0.2 V $\leq V_{in} \leq V_{cc}$ +0.5V or V_{ss} -0.5 V $\leq V_{in} \leq V_{ss}$ +0.5 V
- 16. Rise and fall times should not exceed 45 ns.

Ordering Information

Part Number	Access Time	Temperature Range	Package	Order Code
F1601-45	45 ns	0°C to + 70°C	Side-brazed	1601DC45
F1601-45	45 ns	0°C to + 70°C	Leadless Chip Carrier	1601LC45
F1601-45	45 ns	0°C to + 70°C	Plastic DIP	1601PC45
F1601-55	55 ns	0°C to + 70°C	Side-brazed	1601DC55
F1601-55	55 ns	0°C to + 70°C	Leadless Chip Carrier	1601LC55
F1601-55	55 ns	0°C to + 70°C	Plastic DIP	1601PC55
F1601-70	70 ns	0°C to + 70°C	Side-brazed	1601DC70
F1601-70	70 ns	0°C to + 70°C	Leadless Chip Carrier	1601LC70
F1601-70	70 ns	0°C to + 70°C	Plastic DIP	1601PC70
			L	

A Schlumberger Company

F1601 65,536 x 1-Bit Static RAM Data Retention Version Military Temperature Range

Memory & High Speed Logic

Description

The F1601 is a 65,536-bit fully static asynchronous random access memory, organized as 65,536 words by 1-bit, using high-performance CMOS technology. The F1601 is based on an advanced isoplanar oxide isolation process: fully-implanted CMOS technology with sub-2 micron design rules and high-performance tantalum silicide gate electrodes. The high-density NMOS memory array and the CMOS peripheral circuits provide fast access time plus low active and standby power.

- Single +5V Operation (±10%)
- Fast Access Time: 55 ns/70 ns (Maximum)
- Power Dissipation (Normal Operation): 70 mA Maximum (Active) 20 mA Maximum (Standby — TTL Input Levels) 9 mA Maximum (Standby — CMOS Input Levels)
- Data Retention Supply Voltage
 2.0V to 5.5V
- Low Power Dissipation (Data Retention) I_{CCDR} = 200 μA Maximum (V_{DR} = 2.0V) I_{CCDR} = 400 μA Maximum (V_{DR} = 3.0V)
- Fully Static: No Clock or Timing Strobe Required
- Specifications Guaranteed Over Full Millitary Temperature Range (-55°C to +125°C)
- Directly TTL Compatible All Inputs and Outputs
- Separate Data Input and Three-State Output
- Available in a 22-Pin DIP or LCC
- Polyimide Die Coat for Alpha Immunity

Pin Names

A0-A15	Address Inputs
A0-A15 E	Chip Enable
\overline{W}	Write Enable
D	Data Input
Q	Data Output
Vcc	Power (5.0 V)
GND	Ground (0 V)

Connection Diagrams

22-Pin DIP (Top View)

22-Pin LCC (Top View)

Logic Symbol

Absolute Maximum Ratings

Voltage on Any Input or Output Pin	
With Respect to GND	-2.0V to 7.0V
Storage Temperature Range	-65° C to +150° C
Operating Temperature Range	-55°C to +125°C
Power Dissipation	1.0W
Maximum Junction Temperature (T _J)	+150° C
Thermal Resistance, Junction to Case	
(θ _{JC}): Case (Side-Brazed DIP)	15° C/W

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions: $T_C = -55^{\circ}C$ to $+125^{\circ}C$

Symbol	Characteristic	Min.	Тур.	Max.	Unit
V _{CC}	Supply Voltage	4.5	5.0	5.5	v
VIH	Input HIGH Voltage	2.2		6.0	٧
VIL	Input LOW Voltage	-0.5*		0.8	V

All voltages are referenced to GND pin = 0 V.

*The device will withstand undershoots to -3.0 V of 20 ns durations. This is guaranteed by bench simulation in a DC mode, not 100% tested.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Functional Block Diagram

		F1601-55		F1601-70			
Symbol	Characteristic	Min.	Max.	Min.	Max.	Unit	Condition
I _{IN}	Input Leakage Current (All inputs)		±5		±5	μΑ	V _{CC} = 5.5 V, V _{IN} = 0 V and 5.5 V
lout	Output Leakage Current (on Q)		±10		±10	μΑ	Ē = V _{IH} V _{OUT} = 0 V and 5.5 V
ICC1	Operating Power Supply Current		70		70	mA	Ē = V _{IL} Output Open
I _{CC2}	Dynamic Operating Supply Current		70		70	mA	Min. Read Cycle Time Duty Cycle = 100% Output Open
I _{SB1}	Standby Supply Current		20		20	mA	$\overline{E} \ge V_{IH}$, see note 1
I _{SB2}	Full Standby Supply Current		9.0		9.0	mA	see note 2
IOS	Output Current Short Circuit to Ground		-135		-135	mA	V _{CC} = 5.5 V Duration not to Exceed 1 Second
V _{OL}	Output LOW Voltage		0.4		0.4	v	I _{OL} = 8.0 mA
Voн	Output HIGH Voltage	2.4		2.4		V	I _{OH} = -4.0 mA

AC Test Conditions³

Input Pulse Levels GND to 3.0 V	V
Input Rise and Fall Times 5 n	s
Input and Output Timing Reference Levels 1.5 V	V
Output Load See Figures 1 and	2

Capacitance4:	$T_{C} = +25^{\circ}$	C, f = 1.0 MHz
---------------	-----------------------	----------------

Symbol	Parameter	Max.	Units	Conditions
CIN	Input Capacitance	5	pF	V _{IN} = 0 V
COUT	Output Capacitance	6	pF	V _{OUT} = 0 V

Effective capacitance calculated from the equation

 $C = \frac{\Delta Q}{\Delta V} \quad \text{where } \Delta V = 3 \ V.$

Figure 1 Output Load

Truth Table⁵

Mode	Ē	Ŵ	D	Q	Power Level
Standby	н	Х	х	HIGH Z	Standby
Read	L	н	х	D	Active
Write	L	L	D	HIGH Z	Active

HIGH Z = High impedance

D = Valid data bit

X = Don't care

Figure 2 Output Load (for tEHQZ, tELQX, tWLQZ, tWHQX)

5-27

	Syn	nbol		F1601-55		F1601-70			
No.	Standard	Alternate	Parameter	Min.	Max.	Min.	Max.	Unit	Notes
1	tavav	tRC	Address Valid to Address Valid (Read Cycle Time)	55		70		ns	6,7,10
2	tavqv	t _{AA}	Address Valid to Output Valid (Address Access Time)		55		70	ns	6
3	taxqx	^t он	Address Invalid to Output Invalid (Output Hold Time)	5		5		ns	
4	^t ELEH	^t RC	Chip Enable LOW to Chip Enable HIGH (Read Cycle Time)	55		70		ns	7,10
5	^t ELQV	tACS	Chip Enable LOW to Output Valid (Chip Enable Access Time)	4	55		70	ns	7
6	^t ELQX	tLZ	Chip Enable LOW to Output Invalid (Chip Enable to Output Active)	0		0		ns	4
7	^t EHQZ	tHZ	Chip Enable HIGH to Output High Z (Chip Disable to Output Disable)	0	35	0	40	ns	4,11
8	^t ELICCH	tPU	Chip Enable LOW to Power Up	0		0		ns	4
9	^t EHICCL	t _{PD}	Chip Enable HIGH to Power Down		45		45	ns	4

AC Operating Conditions and Characteristics: Read Cycle T $_{C}$ = -55°C to +125°C, V $_{CC}$ = 5.0V ±10%

Notes on page 5-31

Timing Waveforms

Read Cycle 1 (Where \overline{E} is active prior to address change. $\overline{W} = HIGH$)

Read Cycle 2 (Where address is valid prior to \overline{E} becoming active. $\overline{W} = HIGH$)

	Symbol			F1601-55		F1601-70			
No.	Standard	Alternate	Parameter	Min.	Max.	Min.	Max.	Unit	Notes
10	tavav	twc	Address Valid to Address Valid (Write Cycle Time)	55		70		ns	8,9,10
11	^t ELWH	t _{CW}	Chip Enable to Write HIGH (Chip Enable to End of Write)	50		55		ns	12
12	tavwh	t _{AW}	Address Valid to Write HIGH (Address Setup to End of Write)	50		55		ns	12
13	twhax	twR	Write HIGH to Address Don't Care (Address Hold After End of Write)	5		5		ns	12
14	twlwh	twp	Write LOW to Write HIGH (Write Pulse Width)	35		40		ns	12
15	tAVWL	t _{AS}	Address Valid to Write LOW (Address Setup to Beginning of Write)	15		15		ns	12
16	tovwh	t _{DW}	Data Valid to Write HIGH (Data Setup to End of Write)	25		30		ns	12
17	twhdx	t _{DH}	Write HIGH to Data Don't Care (Data Hold After End of Write)	5		5		ns	12
18	twLQZ	twz	Write LOW to Output High Z (Write Enable to Output Disable)	0	30	0	35	ns	4,11
19	twhqz	tow	Write HIGH to Output Don't Care (Output Active After End of Write)	0		0		ns	4

Notes on page 5-31

Write Cycle 1 (\overline{W} controlled, where \overline{E} is active prior to \overline{W} becoming active.)

	Syr	nbol		F1601-55		F16	601-70		1
No.	Standard	Alternate	Parameter	Min.	Max.	Min.	Max.	Unit	Notes
20	tAVEL	t _{AS}	Address Valid to Chip Enable LOW (Address Set Up)	5		5		ns	
21	teleh	tcw	Chip Enable LOW to Chip Enable HIGH (Write Cycle Time)	55 _		70		ns	12
22	t _{EHAX}	twR	Chip Enable HIGH to Address Don't Care (Address Hold After End of Write)	5		5		ns	
23	^t AVEH	t _{AW}	Address Valid to Chip Enable HIGH (Address Setup to End of Write)	50		65		ns	
24	^t ELWH	twp	Chip Enable LOW to Write HIGH (Write Pulse Width)	35		40		ns	12
25	^t DVEH	tDW	Data Valid to Chip Enable HIGH (Data Setup to End of Write)	25		30		ns	
26	t _{EHDX}	tDH	Chip Enable HIGH to Data Don't Care (Data Hold)	5		5		ns	

5 0 V 1 100 _ ----250 Q V ... _ ---

Write Cycle 2 (\overline{E} controlled, where \overline{W} is active prior to \overline{E} becoming active. See Note 9.)

Notes on page 5-31

Data Retention Characteristics: $T_C = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = 2.0V$ to 5.5V

Symbol	Parameter	Conditions		Min.	Max.	Unit	Notes
V _{DR}	$ \begin{array}{c} V_{CC} \text{ Voltage for Data} \\ \text{Retention} \end{array} \begin{array}{c} V_{CC} \text{ - 0.2 } V \leq \overline{E} \leq V_{CC} + 0.5 \\ V_{CC} \text{ - 0.2 } V \leq V_{IN} \leq V_{CC} + 0.5 \text{ V} \\ V_{SS} \text{ - 0.2 } V \leq V_{IN} \leq V_{CC} + 0.5 \text{ V} \\ V_{SS} \text{ - 0.2 } V \leq V_{IN} \leq V_{SS} + 0.5 \text{ V} \end{array} $		$V_{IN} \leq V_{CC} + 0.5 V \text{ or}$	2.0	5.5	v	
ICCDR	Data Retention Current	V	$T_C = -55^{\circ}C \text{ and } +25^{\circ}C$ $T_C = +125^{\circ}C$		5	μA	16
					200	μA	16
		V _{DR} = 3.0 V	T _C = -55° C and +25° C T _C = +125° C		8	μA	16
			$T_{C} = +125^{\circ}C$		400	μA	16
tCDR	Chip Disable to Data Retention Time			0		ns	
t _R	Recovery Time			t _{AVAV}		ns	15

Data Retention Waveform

Notes

- 1. This parameter is measured with Chip Enable (\overline{E}) HIGH and inputs at valid TTL levels (0.8V and 2.2V).
- This parameter is measured with Address, W and D inputs all satisfying one of two conditions: V_{CC} -0.2 V ≤ V_{IN} ≤ V_{CC} +0.5 V or V_{SS} -0.5 V ≤ V_{IN} ≤ V_{SS} +0.2 V. In addition, the Enable input must be V_{CC} -0.2 V ≤ E ≤ V_{CC} +0.5 V. This condition results in significant reduction in current in the input buffer circuitry and consequently a lower overall current level.
- 3. Operation to specifications guaranteed 2.0 ms after V_{CC} applied.
- 4. This parameter is based on initial design qualification and is also verified on every design change. These are not tested in production.
- 5. Functional test performed with the following input conditions: $V_{|L} = 0.4 \text{ V}$ and $V_{|H} = 2.4 \text{ V}$.
- 6. Read Cycle 1 assumes that Chip Enable (E) occurs before the addresses are valid. Timing considerations are referenced to the edges of Address Valid.
- 7. Read Cycle 2 assumes that Address Valid occurs prior to Chip Enable (E). Timing considerations are referenced to the edges of Chip Enable.
- 8. Since a write cycle can only occur during intervals where both \overline{E} and \overline{W} are LOW. Write Cycle 1 assumes that W is the latter of the two signals to go LOW (active) and is also the first of the two signals to go HIGH (inactive). Consequently, timing considerations are referenced to the edges of \overline{W} rather than \overline{E} .
- 9. Write Cycle 2 assumes that, of the two control signals, E and W. E is the latter of the two to go LOW (active) and is also the first of the two to go HIGH (inactive). Consequently, timing considerations are referenced to the edges of E rather than W.
- 10. All READ and WRITE cycle timings are referenced from the last bit to become valid address to the first transitioning address.
- 11. Transition to high impedance state to measured ±500 mV from steady state voltage with specified loading in Figure 2.
- 12. Since Write Enable (\overline{W}) is gated internally with Chip Enable (\overline{E}), the value of W during periods where \overline{E} is HIGH is irrelevant (i.e., don't care). Thus whenever \overline{W} transitions to the LOW state prior to \overline{E} , all timing references will be to the falling edge of \overline{E} rather than \overline{W} . Similarly, whenever \overline{E} transitions to the HIGH state prior to \overline{W} , all timing references will be to the rising edge of \overline{E} rather than \overline{W} .
- 13. Input pulse levels 0 to 3.0 Volts.
- 14. Input rise and fall times are assumed to be 5 ns. Timing measurement reference levels are 1.5 Volts.
- 15. T_{AVAV} = Read Cycle Timing.
- 16. V_{CC} -0.2 V $\leq \vec{E} \leq V_{CC}$ +0.5 V. V_{CC} -0.2 V $\leq V_{IN} \leq V_{CC}$ + 0.5 V or -0.5V $\leq V_{IN} \leq$ 0.2 V.
- 17. Rise and fall times should not exceed 45 ns.

Ordering Information

Part Number	Access Time	Temperature Range	Package	Order Code
F1601-55	55 ns	- 55° to +125°C	Side-brazed	1601DMQB55
F1601-55	55 ns	- 55° to +125°C	Leadless Chip Carrier	1601LMQB55
F1601-70	70 ns	- 55° to +125°C	Side-brazed	1601DMQB70
F1601-70	70 ns	- 55° to +125°C	Leadless Chip Carrier	1601LMQB70

A Schlumberger Company

F1620 16,384 x 4-Bit Static RAM

Memory and High Speed Logic

Description

The F1620 is a 65,536-bit fully static asynchronous random access memory, organized as 16,384 words by 4-bits per word, using high-performance CMOS technology. The F1620 is based on an advanced isoplanar oxide isolation process: fully-implanted CMOS technology with sub-2 micron design rules and high-performance tantalum silicide gate electrodes. The high-density NMOS memory array and the CMOS peripheral circuits provide fast access time plus low active and standby power.

- Single +5V Operation (±10%)
- Fully Static: No Clock or Timing Strobe Required
- Fast Access Time: Commercial: 25 ns/35 ns (Maximum) Military: 35 ns/45 ns (Maximum)
- Available in Commercial (0°C to +70°C) or Military (-55°C to +125°C) Versions
- Low Power Dissipation: 90/70 mA Maximum (Active) 20/15 mA Maximum (Standby — TTL Input Levels)
 2 mA Maximum (Standby — CMOS Input Levels)
- Directly TTL Compatible All Inputs and Outputs
- Available in a 22-Pin DIP or 22-Terminal LCC
- Polyimide Die Coat for Alpha Immunity

Pin Names

A ₀ -A ₁₃ Ē	Address Inputs		
Ē	Chip Enable		
\overline{W}	Write Enable		
DQ_0-DQ_3	Data Inputs/Outputs		
V _{CC}	Power (5.0 V)		
GND	Ground (0 V)		

Logic Symbol

Connection Diagrams 22-Pin DIP (Top View)

22-Pin LCC (Top View)

FAIRCHILD

A Schlumberger Company

F1621 16,384 x 4-Bit Static RAM Data Retention Version

Memory and High Speed Logic

Description

The F1621 is a 65,536-bit fully static asynchronous random access memory, organized as 16,384 words x 4-bits per word, using high-performance CMOS technology. The F1621 is based on an advanced isoplanar oxide isolation process: fully-implanted CMOS technology with sub-2 micron design rules and high-performance tantalum silicide gate electrodes. The high-density NMOS memory array and the CMOS peripheral circuits provide fast access time plus low active and standby power. The F1621 offers data retention when backed up by 2V.

- Single +5V Operation (±10%)
- Fast Access Time: Commercial: 25 ns/35 ns (Maximum) Military: 35 ns/45 ns (Maximum)
- Available in Commercial (0°C to +70°C) or Military (-55°C to +125°C) Versions
- Power Dissipation (Normal Operation): 90/70 mA Maximum (Active) 20/15 mA Maximum (Standby — TTL Input Level) 2 mA Maximum (Standby — CMOS Input Level)
- Data Retention Supply Voltage 2.0V to 5.5V
- Low Power Dissipation (Data Retention Commercial) I_{CCDR} = 50 μA Maximum (2.0 V ≤V_{DR} ≤ 3.0V)
- Low Power Dissipation (Data Retention Military) $I_{CCDR} = 200 \ \mu A Maximum (V_{DR} = 2.0V)$ $I_{CCDR} = 400 \ \mu A Maximum (V_{DR} = 3.0V)$
- Fully Static: No Clock or Timing Strobe Required
- Directly TTL Compatible All Inputs and Outputs
- Available in a 22-Pin DIP or 22-Terminal LCC
- Polyimide Die Coat for Alpha Immunity

Pin Names

A ₀ -A ₁₃ Ē	Address Inputs
	Chip Write Enable
W	Write Enable
DQ ₀ -DQ ₃	Data Inputs/Outputs
V _{CC}	Power (5.0V)
GND	Ground (0V)

Connection Diagrams

22-Pin LCC(Top View)

Logic Symbol

F1622 16,384 x 4-Bit Static RAM

Memory and High Speed Logic

Description

The F1622 is a 65,536-bit fully static asynchronous random access memory, organized as 16,384 words by 4-bits per word, using high-performance CMOS technology. The F1622 is based on an advanced isoplanar oxide isolation process: fully-implanted CMOS technology with sub-2 micron design rules and high-performance tantalum silicide gate electrodes. The high-density NMOS memory array and the CMOS peripheral circuits provide fast access time plus low active and standby power.

- Single +5V Operation (±10%)
- Fully Static: No Clock or Timing Strobe Required
- Fast Access Time: Commercial: 25 ns/35 ns (Maximum) Military: 35 ns/45 ns (Maximum)
- Available in Commercial (0°C to +70°C) or Military (-55°C to +125°C) Versions
- Low Power Dissipation: 90/70 mA Maximum (Active) 20/15 mA Maximum (Standby — TTL Input Levels) 2 mA Maximum (Standby — CMOS Input Levels)
- Directly TTL Compatible All Inputs and Outputs
- Available in a 24-Pin DIP or 28-Terminal LCC
- Polyimide Die Coat for Alpha Immunity

Pin Names

A ₀ -A ₁₃ Ē	Address Inputs
Ē	Chip Enable
W G	Write Enable
G	Output Enable
DQ ₀ -DQ ₃	Data Inputs/Outputs
V _{CC}	Power (5.0V)
GND	Ground (0V)
NC	No Connection

Logic Symbol

24-Pin DIP (Top View)

28-Pin LCC (Top View)

A Schlumberger Company

F1623 16,384 x 4-Bit Static RAM Data Retention Version

Memory and High Speed Logic

Connection Diagrams

24-Pin DIP (Top View)

Description

The F1623 is a 65,536-bit fully asynchronous random access memory, organized as 16,384 words by 4-bits per word, using high-performance CMOS technology. The F1623 is based on an advanced isoplanar oxide isolation process: fully-implanted CMOS technology with sub-2 micron design rules and high-performance tantalum silicide gate electrodes. The high-density NMOS memory array and the CMOS peripheral circuits provide fast access time plus low active and standby power. The F1623 offers data retention when backed up by 2V.

- Single +5V Operation (±10%)
- Fast Access Time:
- Commercial: 25 ns/35 ns (Maximum) Military: 35 ns/45 ns (Maximum)
- Available in Commercial (0°C to 70°C) or Military (-55°C to +125°C) Versions
- Power Dissipation (Normal Operation): 90/70 mA Maximum (Active) 20/15 mA Maximum (Standby — TTL Input Levels)
 2 mA Maximum (Standby — CMOS Input Levels)
- Data Retention Supply Voltage
 2.0V to 5.5V
- Low Power Dissipation (Data Retention-Commercial) $I_{CCDR} = 50 \ \mu A Maximum (2.0V M D_R \leq 3.0V)$
- Low Power Dissipation (Data Retention-Military) I_{CCDR} = 200 μA Maximum (V_{DR} =2.0V) I_{CCDR} = 400 μA Maximum (V_{DR} = 3.0V)
- Fully Static: No Clock or Timing Strobe Required
- Directly TTL Compatible All inputs and Outputs
- Available in a 24-Pin DIP or 28-Terminal LCC
- Polyimide Die Coat for Alpha Immunity

Pin Names

A ₀ -A ₁₃	Address Inputs
A ₀ -A ₁₃ Ē	Chip Enable
\overline{W}	Write Enable
Ğ	Output Enable
DQ_0-DQ_3	Data Inputs/Outputs
V _{CC}	Power (5.0V)
GND	Ground (0V)
NC	No Connection

Logic Symbol

	Product Index and Selection Guide	1
	Quality Assurance and Reliability	2
	ECL RAMs	3
	TTL RAMs	4
	MOS Static RAMs	5
	ECL PROMs	6
	TTL PROMS	7
/	TTL Programmable Logic	8
	Ordering Information and Package Outlines	9
	Field Sales Offices	10

.

F100K DC Family Specifications

DC characteristics for the F100K series family parametric limits listed below are guaranteed for the entire F100K ECL family unless specified on the individual data sheet.

Absolute Maximum Ratings: Above which life may be ir	npaired ¹
Maximum Junction Temperature (T _J) Supply Voltage Range -7 Input Voltage (dc) Output Current (dc Output HIGH)	^P C to +150°C +175°C .0 V to +0.5 V V _{EE} to +0.5 V -50 mA .7 V to -4.2 V 300°C

DC Performance Characteristics: $V_{EE} = -4.5 \text{ V}$, $V_{CC} = V_{CCA} = \text{GND}$, $T_C = 0^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, Note 3

Symbol	Characteristic	Min	Max	Unit	Conditions	
Vон	Output HIGH Voltage	-1025	-880	mV	VIN = VIH (max)	
Vol	Output LOW Voltage	-1810	-1620	mV	or VIL (min) Loading with	
Vонс	Output HIGH Voltage	-1035		mv	$V_{\rm IN} = V_{\rm IH(min)} \qquad 50 \ \Omega \text{ to } -2.0 \text{ V}$	
Volc	Output LOW Voltage		-1610	mV	or VIL (max)	
Vih	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Inputs	
lı∟	Input LOW Current	0.50		μΑ	VIN = VIL (min)	

1. Unless specified otherwise on individual data sheet.

2. Parametric values specified at -4.8 V to -4.2 V.

The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

F100K DC Family Specifications

Symbol	Characteristic	Min	Max	Unit	Conditions		
Vон	Output HIGH Voltage	-1020	-870	mV	V _{IN} = V _{IH (max)}		
Vol	Output LOW Voltage	-1810	-1605	mV	Or VII (min)	Loading with 50 Ω to −2.0 V	
Vонс	Output HIGH Voltage	-1030		mv	5		
Volc	Output LOW Voltage		-1595	mV	or V _{IL (max)}		
ViH	Input HIGH Voltage	-1150	-880	mV	Guaranteed HIGH Signal for All Inputs		
VIL	Input LOW Voltage	-1810	-1475	mV	Guaranteed LOW Signal for All Inputs		
lıL.	Input LOW Current	0.50		μA	$V_{IN} = V_{IL(min)}$		

DC Performance Characteristics: V_{EE} = -4.2 V, V_{CC} = V_{CCA} = GND, T_C = 0°C to +85°C, Note 3

DC Performance Characteristics: $V_{EE} = -4.8 \text{ V}$, $V_{CC} = V_{CCA} = \text{GND}$, $T_C = 0^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, Note 3

Symbol	Characteristic	Min	Max	Unit	Conditions	
Vон	Output HIGH Voltage	-1035	-880	mV	$V_{IN} = V_{IH(max)}$	
Vol	Output LOW Voltage	-1830	-1620	mV	or VIL (min)	Loading with 50 Ω to -2.0 V
Vонс	Output HIGH Voltage	-1045		mv	$V_{IN} = V_{IH (min)}$ or $V_{IL (max)}$	
Volc	Output LOW Voltage		-1610	mV		
VIH	Input HIGH Voltage	-1165	-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810	-1490	mV	Guaranteed LOW Signal for All Inputs	
tı∟	Input LOW Current	0.50		μΑ	VIN = VIL (min)	

Notes on preceding page

F10K DC Family Specifications

DC characteristics for the F10K series memories. Parametric limits listed below are guaranteed for all F10K memories, except where noted on individual data sheets.

Absolute Maximum Ratings:	Above which the useful life may be impaired ²
Storage Temperature Maximum Junction Temperat V _{EE} Pin Potential to Ground P Input Voltage (dc) Output Current (dc Output HI	$\begin{array}{c} -7.0 \ V \ to \ +0.5 \ V \\ V_{EE} \ to \ +0.5 \ V \end{array}$
Lead Temperature (Soldering	,

Supp	ly Voltage	(V _{EE})	Case Temperature			
Min	Тур	Max	(T _c)			
-5.46 V	-5.2 V	-4.94 V	0°C to +75°C			

DC Performance Characteristics: V $_{EE}$ = -5.2 V, Output Load = 50 Ω and 30 pF to -2.0 V, T $_{C}$ = 0°C to + 75°C 1

Symbol	Characteristic	Min	Max	Unit	тс	Conditions ²	
V _{OH}	Output HIGH Voltage	1000 960 900	-840 -810 -720	mV	0°C +25°C +75°C	VIN = VIH (max)	
Vol	Output LOW Voltage	-1870 -1850 -1830	-1665 -1650 -1625	mV	0°C +25°C +75°C	or VIL (min)	Loading is
Vонс	Output HIGH Voltage	-1020 -980 -920		mv	0°C +25°C +75°C	VIN = VIH (min)	50 Ω to -2.0 V
Volc	Output LOW Voltage		-1645 -1630 -1605	mV	0°C +25°C +75°C	or VIL (max)	
VIH	Input HIGH Voltage	-1145 -1105 -1045	840 810 720	mV	0°C +25°C +75°C	Guaranteed Input Voltage HIGH for All Inputs	
VIL	Input LOW Voltage	-1870 -1850 -1830	-1490 -1475 -1450	mV	0°C +25°C +75°C	Guaranteed Input Voltage LOW for All Inputs	
lıL	Input LOW Current	0.5	170	μA	+25°C	VIN = VIL (min)	

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

2. Unless specified otherwise on individual data sheet.

A Schlumberger Company

F100Z416 256 x 4-Bit Programmable Read Only Memory

Memory and High Speed Logic

Description

The F100Z416 is a 1024-bit field Programmable Read Only Memory (PROM), organized 256 words by four bits per word. It is designed for high-speed control, mapping, code conversion, and logic replacement. The device includes full on-chip address decoding, non-inverting Data output lines, and an active-LOW Chip Select line for easy memory expansion.

- Address Access Time 12 ns Typ
- Chip Select Input and Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation Decreases with Increasing Temperature

Pin Names

CS	Chip Select Input (Active LOW)
A0-A7	Address Inputs
O ₀ -O ₃	Data Outputs

Logic Symbol

 $V_{CP} = Pin 1$ $V_{CC} = Pin 16$ $V_{EE} = Pin 8$

Connection Diagram

16-Pin DIP (Top View)

Note

The Flatpak version has the same pinout (Connection Diagram) as the Dual In-line Package.

F100Z416

Logic Diagram

Functional Description

The F100Z416 is a fully decoded bipolar field programmable read only memory organized 256 words by four bits per word. An unterminated emitter-follower output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F100Z416 devices can be tied together. An external 50 Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

One Chip Select (\overline{CS}) input is provided for memory array expansion up to 512 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of \overline{CS} from the address without increasing address access time. The device is enabled when \overline{CS} is LOW. When the device is disabled ($\overline{CS} = HIGH$), all outputs are forced LOW.

Note: Consult factory for ordering information.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_0 through A_7 inputs, the chip is selected and data is valid at the outputs after t_{AA} .

The F100Z416 uses open base transistor vertical (junction) fuse cells. Initially, an unprogrammed cell is in the logic '1' state. Cells can selectively be programmed to a logic '0' state by following a specified procedure which fuses aluminum through the emitter-base junction of the cell transistor.

FAIRCHILD

A Schlumberger Company

F10Z416 256 x 4-Bit Programmable Read Only Memory

Memory and High Speed Logic

Description

The F10Z416 is a 1024-bit field Programmable Read Only Memory (PROM), organized 256 words by four bits per word. It is designed for high-speed control, mapping, code conversion, and logic replacement. The device includes full on-chip address decoding, non-inverting Data output lines, and an active-LOW Chip Select line for easy memory expansion.

- Address Access Time 12 ns Typ
- Chip Select Input and Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation Decreases with Increasing Temperature

Pin Names

CS	Chip Select Input (Active LOW)
A0-A7	Address Inputs
O ₀ -O ₃	Data Outputs

Logic Symbol

 $V_{CP} = Pin 1$ $V_{CC} = Pin 16$ $V_{EE} = Pin 8$

Connection Diagram

16-Pin DIP (Top View)

	1	16	Vcc
A1 🗌	2	15] •
A2	3	14	01
A0 🗌	4	13	Cs
A6	5	12] 0₂
A5 🗌	6	11] ₀₃
A7 🗖	7	10	_ ∧₄
VEE	8	9	□ ▲3

Note

The Flatpak version has the same pinout (Connection Diagram) as the Dual In-line Package.

F10Z416

Logic Diagram

Functional Description

The F10Z416 is a fully decoded bipolar field programmable read only memory organized 256 words by four bits per word. An unterminated emitter-follower output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F10Z416 devices can be tied together. An external 50 Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

One Chip Select (\overline{CS}) input is provided for memory array expansion up to 512 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of \overline{CS} from the address without increasing address access time. The device is enabled when \overline{CS} is LOW. When the device is disabled ($\overline{CS} = HIGH$), all outputs are forced LOW. The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A₀ through A₇ inputs, the chip is selected and data is valid at the outputs after t_{AA} .

The F10Z416 uses open base transistor vertical (junction) fuse cells. Initially, an unprogrammed cell is in the logic '1' state. Cells can selectively be programmed to a logic '0' state by following a specified procedure which fuses aluminum through the emitter-base junction of the cell transistor.

Note: Consult factory for ordering information.

Notes

TTL Family Specifications

Absolute Maximum Ratings:	Above which the useful life may be impaired
Storage Temperature	−65° to +150° C
Supply Voltage Range	-0.5 V to +7.0 V
Input Voltage (dc) ⁽¹⁾⁽²⁾	-0.5 V to V _{CC} (RAMs)
	-1.5 V to V _{CC} (PROMs)
Voltage Applied to Outputs ⁽²	$^{(2)(3)}$ -0.5 V to +5.5 V (RAMs)
(output HIGH)	-1.5 V to +5.5 V (PROMs)
Lead Temperature (Solderin	g, 10 sec) 300° C
Maximum Junction Tempe	rature (T _j) +175° C
Output Current	+20mA
Input Current (DC)	-12 mA to +5.0 mA

Guaranteed Operating Ranges

	Supply Voltage (V _{CC})	Case Temperature (T _C)	Maximum Low-Level Input Voltage (V _{IL}) ⁸	Minimum High-Level Input Voltage (V _{IH}) ⁸	
Commercial	5.0 V ± 5%	0° C to +75° C	0.8V	2.1 V	2.0V
Military	5.0 V ± 10%	-55° C to +125° C	0.8V	(RAMs)	(PROMs)

Device Design Characteristics

Symbol	Characteristic	Тур	Unit	Condition
CIN	Input Pin Capacitance	4.0	pF	Measured with a Pulse
COUT	Output Pin Capacitance	7.0	pF	Technique

DC, FN and AC performance characterisics and test conditions listed with each device. (See note 8)

Notes

- 1. Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.
- 2. These values may be exceeded as required during PROM programming.
- 3. Output current limit required.
- 4. Unless stated otherwise in individual device specification.
- 5. Functional testing done at input levels $V_{IL} = V_{OL MAX} (0.45 V)$, $V_{IH} = V_{OH MIN} (2.4 V)$.
- PROM programmability verified through test row and test column.
 PROM input levels on unprogrammed devices verified through testing of test row
- and test column.
- 8. Static condition only.

93Z450/93Z451 1024 x 8-Bit Programmable Read Only Memory

Memory and High Speed Logic

Description

The 93Z450 and 93Z451 are fully decoded 8,192-bit Programmable Read Only Memories (PROMs), organized 1024 words by eight bits per word. The two devices are identical except the 93Z450 has open collector outputs while the 93Z451 has three state outputs. Both devices are available in two speed versions, standard speed and 'A' grade.

- Commercial Address Access Time 93Z450/93Z451 — 40 ns Max 93Z450A/93Z451A — 35 ns Max
- Military Address Access Time 93Z450/93Z451 — 55 ns Max 93Z450A/93Z451A — 45 ns Max
- Highly Reliable Vertical Fuses Ensure High Programming Yields
- Available with Open Collector (93Z450) or Three State (93Z451) Outputs
- Low Current PNP Inputs

Pin Names

A0-A9	Address Inputs
CS ₁ , CS ₂	Chip Select Inputs (Active LOW)
CS3, CS4	Chip Select Inputs (Active HIGH)
O ₀ -O ₇	Data Outputs

Logic Symbol

Connection Diagrams

Note:

The 24-pin Flatpak has the same pinout (Connection Diagram) as the 24-pin DIP.

28-pin Leadless Chip Carrier (Top View)

Vcc = Pin 24

GND = Pin 12

93Z450/93Z451

Logic Diagram

Functional Description

The 93Z450 and 93Z451 are TTL bipolar field Programmable Read Only Memories (PROMs) organized 1024 words by eight bits per word. Open-collector outputs are provided on the 93Z450 for use in wired-OR applications. The 93Z451 has 3-state outputs which provide active pull ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

Four Chip Select inputs are provided for logic flexibility and for memory array expansion of up to 128K without the need for external decoding. The fast Chip Select access time permits direct address decoding without increasing overall memory access times. Both devices are enabled only when \overline{CS}_1 and \overline{CS}_2 are LOW and \overline{CS}_3 and \overline{CS}_4 are HIGH. The devices contain an internal test row and test column which are accessed and programmed during both wafer sort and final test. These test fuses are used to assure high programmability and to guarantee AC performance and DC parameters.

The 93Z450 and 93Z451 use open base vertical transistor (junction) fuse cells. Initially an unprogrammed cell is in the logic '0' state. Cells can be programmed to a logic '1' state by following the specified programming procedure which fuses aluminum through the emitter base junction of the cell transistor.

The read function is identical to that of a conventional Read Only Memory (ROM). A binary address is applied to the address pins A_0 through A_9 and the chip is selected. Data is then available at the outputs after t_{AA}.

93Z450/93Z451

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition
ViL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIC	Input Clamp Diode Voltage			-1.2	V	$V_{CC} = Min$, $I_{IN} = -18 \text{ mA}$
VOL	Output LOW Voltage		0.30	0.45	V	$V_{CC} = Min$, $I_{OL} = 16 \text{ mA}$
Vон	Output HIGH Voltage (93Z451)	2.4			V	$V_{CC} = Min, I_{OH} = -2.0 mA$ Address Any '1'
h∟	Input LOW Current		-10	-100	μA	$V_{CC} = Max$, $V_{IL} = 0.45 V$
Ιн	Input HIGH Current	-40		40	μA	$V_{CC} = Max$, $V_{IH} = 2.4 V$ to V_{CC}
I _{OHZ} I _{OLZ}	Output Leakage Current for High Impedance State (93Z451)		п	40 -40	μΑ μΑ	V _{OH} = 2.4 V V _{OL} = 0.4 V
ICEX	Output Leakage Current (93Z450)			40	μA	V _{CEX} = V _{CC} , Chip Deselected
los	Output Short-Circuit Current (93Z451)	-20	-45	-90	mA	$V_{CC} = Max$, $V_O = 0 V$, Note 2 Address Any '1'
lcc	Power Supply Current		110	135	mA	$V_{CC} = Max$, Inputs Grounded, Outputs Open

DC Performance Characteristics: Over guaranteed operating ranges unless otherwise noted

Commercial

AC Performance Characteristics: V_{CC} = 5.0 V \pm 5%, GND = 0 V, T_{C} = 0°C to +75°C

Symbol	Characteristic	'A'	Std	Unit	Condition
tAA	Address to Output Access Time	35	40	ns	See AC Output Load
tacs	Chip Select to Output Access Time	25	30	ns	See AC Output Load

Military

AC Performance Characteristics: V_{CC} = 5.0 V \pm 10%, GND = 0 V, T_{C} = $-55^{\circ}C$ to $+125^{\circ}C$

Symbol	Characteristic	'A'	Std	Unit	Condition
taa	Address to Output Access Time	45	55	ns	See AC Output Load
tacs	Chip Select to Output Access Time	30	35	ns	See AC Output Load

1. Typical values are at $V_{CC} = 5.0$ V, $T_C = +25^{\circ}$ C.

2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.

Fig. 1 AC Test Output Load

Test Conditions

Ordering Information

Speed Selection

Blank = Standard Speed A = 'A' Grade

Packages and Outlines (See Section 9)

- D = 24-pin Ceramic DIP
- P = 24-pin Plastic DIP (Commercial only)
- SD = 24-pin Slim Ceramic DIP
- F = 24-pin Flatpak
- L = 28-pin Square Leadless Chip Carrier

Temperature Range

 $C = 0^{\circ}C \text{ to } +75^{\circ}C$ $M = -55^{\circ}C \text{ to } +125^{\circ}C$

Optional Processing

QB = Mil Std 883B

Method 5004 and 5005, Level B

QR = Commercial Device with 160 Hour Burn In or Equivalent

A Schlumberger Company

93Z510/93Z511 2048 x 8-Bit Programmable Read Only Memory

Memory and High Speed Logic

Description

The 93Z510 and 93Z511 are fully decoded 16,384-bit Programmable Read Only Memories (PROMs), organized 2048 words by eight bits per word. The two devices are identical except the 93Z510 has open collector outputs while the 93Z511 has three state outputs.

- Commercial Address Access Time 45 ns Max
- Military Address Access Time 55 ns Max
- Highly Reliable Vertical Fuses Ensure High Programming Yields
- Available with Open Collector (93Z510) or Three State (93Z511) Outputs
- Low Current PNP Inputs

Pin Names

$A_0 - A_{10}$	Address Inputs
CS1	Chip Select Input (Active LOW)
CS ₂ , CS ₃	Chip Select Inputs (Active HIGH)
00-07	Data Outputs

Logic Symbol

Vcc = Pin 24 GND = Pin 12

Connection Diagrams

24-pin DIP (Top View)

Note:

The 24-pin Flatpak has the same pinout (Connection Diagram) as the 24-pin DIP.

28-pin Leadless Chip Carrier (Top View)

93Z510/93Z511

Logic Diagram

Functional Description

The 93Z510 and 93Z511 are TTL bipolar field Programmable Read Only Memories (PROMs) organized 2048 words by eight bits per word. Open-collector outputs are provided on the 93Z510 for use in wired-OR applications. The 93Z511 has 3-state outputs which provide active pull ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

Three Chip Select inputs are provided for logic flexibility and for memory array expansion of up to 128K without the need for external decoding. The fast Chip Select access time permits direct address decoding without increasing overall memory access times. Both devices are enabled only when \overline{CS}_1 is LOW and CS_2 and CS_3 are HIGH. The devices contain an internal test row and test column which are accessed and programmed during both wafer sort and final test. These test fuses are used to assure high programmability and to guarantee AC performance and DC parameters.

The 93Z510 and 93Z511 use open base vertical transistor (junction) fuse cells. Initially an unprogrammed cell is in the logic '0' state. Cells can be programmed to a logic '1' state by following the specified programming procedure which fuses aluminum through the emitter base junction of the cell transistor.

The read function is identical to that of a conventional Read Only Memory (ROM). A binary address is applied to the address pins A_0 through A_{10} and the chip is selected. Data is then available at the outputs after t_{AA}.

93Z510/93Z511

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
ViH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIC	Input Clamp Diode Voltage			-1.2	V	$V_{CC} = Min, I_{IN} = -18 \text{ mA}$
Vol	Output LOW Voltage		0.30	0.45	V	$V_{CC} = Min, I_{OL} = 16 \text{ mA}$
Vон	Output HIGH Voltage (93Z511 only)	2.4			V	$V_{CC} = Min, I_{OH} = -2.0 mA$ Address Any '1'
հլ	Input LOW Current		-10	-100	μA	$V_{CC} = Max, V_{IL} = 0.45 V$
Ιн	Input HIGH Current	-40		40	μA	$V_{CC} =$ Max. $V_{IH} =$ 2.4 V to V_{CC}
I _{OHZ} I _{OLZ}	Output Leakage Current for High Impedance State (93Z511 only)			40 40	μA	V _{OH} = 2.4 V V _{OL} = 0.4 V
ICEX	Output Leakage Current (93Z510 only)			40	μΑ	V _{CEX} = V _{CC} Chip Deselected
los	Output Short-Circuit Current (93Z511 only)	-15	-35	-90	mA	$V_{CC} = Max$, $V_O = 0$ V, Note 2 Address Any '1'
lcc	Power Supply Current		120	175	mA	V _{CC} = Max All Inputs GND All Outputs Open

DC Performance Characteristics: Over guaranteed operating ranges unless otherwise noted

Commercial

AC Performance Characteristics: Vcc = 5.0 V \pm 5%, GND = 0 V, T_C = 0°C to +75°C

Symbol	Characteristic	Max	Unit	Condition
tAA	Address to Output Access Time	45	ns	See AC Output Load
tacs	Chip Select to Output Access Time	25	ns	See AC Output Load

Military

AC Performance Characteristics: V_{CC} = 5.0 V \pm 10%, GND = 0 V, T_{C} = - 55°C to $+125^{\circ}C$

Symbol	Characteristic	Max	Unit	Condition
taa	Address to Output Access Time	55	ns	See AC Test Output Load
tacs	Chip Select to Output Access Time	25	ns	See AC Test Output Load

1. Typical values are at $V_{CC} = 5.0$ V, $T_C = +25^{\circ}$ C.

2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.

93Z510/93Z511

Fig. 1 AC Test Output Load

*Includes jig and probe capacitance

Test Conditions

Input pulse: 0 V to 3.0 V Input pulse rise and fall times: 5 ns between 1 V and 2 V Measurements made at 1.5 V level Fig. 2 AC Waveforms 2a Propagation Delay from Address Inputs

2b Propagation Delay from Chip Select

Ordering Information

Packages and Outlines (See Section 9)

- D = Ceramic DIP
- F = Flatpak
- L = Leadless Chip Carrier
- P = Plastic DIP
- SD = Slim Ceramic DIP

Temperature Ranges

 $C = 0^{\circ}C \text{ to } +75^{\circ}C$ M = -55^{\circ}C to +125^{\circ}C

Optional Processing

- QB = Mil Std 883 Method 5004 & 5005, Level B
- QR = Commercial Device with 160 Hour Burn In or Equivalent

A Schlumberger Company

93Z564/93Z565 8192 x 8-Bit Programmable **Read Only Memory**

Memory and High Speed Logic

Description

The 93Z564 and 93Z565 are fully decoded 65,536-bit Programmable Read Only Memories (PROMs), organized 8192 words by eight bits per word. The two devices are identical except the 93Z564 has open collector outputs while the 93Z565 has three state outputs. Both devices are available in two speed versions, standard speed and 'A' grade.

- Commercial Address Access Time 93Z564/93Z565 - 55 ns Max 93Z564A/93Z565A - 45 ns Max
- Military Address Access Time 93Z564/93Z565 - 65 ns Max 93Z564A/93Z565A - 55 ns Max
- Highly Reliable Vertical Fuses Ensure **High Programming Yields**
- Available with Open Collector (93Z564) or Three State (93Z565) Outputs
- Low Current PNP Inputs

Pin Names

A ₀ -A ₁₂	Address Inputs
CS	Chip Select Input (Active LOW)
00-07	Data Outputs

Logic Symbol

Vcc = Pin 24

GND	-	Pin	12	

Connection Diagrams

24-pin DIP (Top View)

Note:

The 24-pin Flatpak has the same pinout (Connection Diagram) as the 24 pin DIP.

28-pin Leadless Chip Carrier (Top View)

93Z564/93Z565

Functional Description

The 93Z564 and 93Z565 are TTL bipolar field Programmable Read Only Memories (PROMs) organized 8192 words by eight bits per word. Open-collector outputs are provided on the 93Z564 for use in wired-OR applications. The 93Z565 has 3-state outputs which provide active pull ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

One Chip Select input is provided for logic flexibility and for memory array expansion of up to 128K without the need for external decoding. The fast Chip Select access time permits direct address decoding without increasing overall memory access times. Both devices are enabled only when \overline{CS} is LOW. The devices contain an internal test row and test column which are accessed and programmed during both wafer sort and final test. These test fuses are used to assure high programmability and to guarantee AC performance and DC parameters.

The 93Z564 and 93Z565 use open base vertical transistor (junction) fuse cells. Initially an unprogrammed cell is in the logic '0' state. Cells can be programmed to a logic '1' state by following the specified programming procedure which fuses aluminum through the emitter base junction of the cell transistor.

The read function is identical to that of a conventional Read Only Memory (ROM). A binary address is applied to the address pins A_0 through A_{12} and the chip is selected. Data is then available at the outputs after t_{AA}.

93Z564/93Z565

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
ViH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIC	Input Clamp Diode Voltage			-1.2	V	$V_{CC} = Min, I_{IN} = -18 \text{ mA}$
VOL	Output LOW Voltage		0.30	0.45	V	$V_{CC} = Min, I_{OL} = 16 \text{ mA}$
Vон	Output HIGH Voltage (93Z565 only)	2.4			V	$V_{CC} = Min, I_{OH} = -2.0 mA$ Address Any '1'
l _{IL}	Input LOW Current		-10	-100	μA	$V_{CC} = Max, V_{IL} = 0.45 V$
Ιн	Input HIGH Current	-40		40	μA	$V_{CC} = Max$, $V_{IH} = 2.4 V$ to V_{CC}
I _{OHZ} I _{OLZ}	Output Leakage Current for High Impedance State (93Z565 only)			40 -40	μΑ μΑ	V _{OH} = 2.4 V V _{OL} = 0.4 V
ICEX	Output Leakage Current (93Z564 only)			40	μΑ	V _{CEX} = V _{CC} Chip Deselected
los	Output Short-Circuit Current (93Z565 only)	-15	-35	-90	mA	$V_{CC} = Max$, $V_O = 0 V$, Note 2 Address Any '1'
Icc	Power Supply Current		120	180	mA	V _{CC} = Max, All Inputs GND, All Outputs Open
CIN	Input Pin Capacitance		7.0 ⁽³⁾		pF	$V_{CC} = 5.0 \text{ V}, \text{ V}_{IN} = 4.0 \text{ V}, \text{ f} = 1.0 \text{ MHz}$
Co	Output Pin Capacitance		10.0 ⁽³⁾		pF	$V_{CC} = 5.0 \text{ V}, V_O = 4.0 \text{ V}, f = 1.0 \text{ MHz}$

DC Performance Characteristics: Over guaranteed operating ranges unless otherwise noted

Commercial

AC Performance Characteristics: V $_{CC}$ = 5.0 V \pm 5%, ~GND = 0 V, T $_{C}$ = 0° C to +75° C

Symbol	Characteristic	'A'	Std	Unit	Condition
tAA	Address to Output Access Time	45	55	ns	See AC Output Load
tacs	Chip Select to Output Access Time	25	30	ns	See AC Output Load

Military AC Characteristics: V_{CC} = 5.0 V ± 10%, GND = OV, T_C = -55°C to + 125°C

Symbol	Characteristic	'A '	Std	Unit	Condition
tAA	Address to Output Access Time	55	65	ns	See AC Output Load
tacs	Chip Select to Output Access Time	30	35	ns	See AC Output Load

1. Typical values are at V_{CC} = 5.0 V, T_{C} = +25^{\circ} C.

2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.

3. This parameter value is based on initial design qualification and is also verified on every design change. These are not tested in production.

93Z564/93Z565

Fig. 1 AC Waveforms

-tacs

Fig. 2 AC Test Output Load

tacs-

*Includes jig and probe capacitance

Ordering Information

Speed Selection Blank = Standard Speed A = 'A' Grade

Packages D = Ceramic DIP L = Leadless Chip Carrier Temperature Ranges $C = 0^{\circ}C \text{ to } +75^{\circ}C$ $M = -55^{\circ}C \text{ to } +125^{\circ}C$

Optional Processing

QB = Mil Std 883 Method 5004 & 5005, Level B QR = Commercial Device with 160 Hour Burn In or Equivalent

A Schlumberger Company

93Z611 2048 x 8-Bit Programmable **Read Only Memory**

Memory and High Speed Logic

Description

The 93Z611 is a fully decoded 16,384-bit Programmable Read Only Memory (PROM), organized 2048 words by eight bits per word. The 93Z611 is manufactured using Fairchild's highly reliable FAST-Z vertical fuse technology.

- Available in 300 and 600 mil Cerdip, Plastic DIP, • LCC and flatpak
- Commercial Address Access Time 25 ns Max
- Military Address Access Time 30 ns Max
- **Highly Reliable Vertical Fuses Ensure High** • **Programming Yields**
- Low Current PNP Inputs •
- **Power-Up Three-State Outputs**

Pin Names

$ \frac{A_0 - A_{10}}{CS_1} \\ CS_2, CS_3 \\ O_0 - O_7 $	Address Inputs Chip Select Input (Active LOW) Chip Select Inputs (Active HIGH) Data Outputs	
Logic Symbol $\begin{array}{c} \overline{CS}_1 & CS_2 & CS_3 \\ 20 & 19 & 18 \\ \hline \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	ADV ANCE.	Note: The 24-pin 24-pin DIP

Logic Symbol

Connection Diagrams

24-pin DIP (Top View)

The 24-pin Flatpak has the same pinout (Connection Diagram) as the 24-pin DIP.

28-pin Leadless Chip Carrier (Top View)

A Schlumberger Company

93Z667 8192 x 8-Bit Programmable **Read Only Memory**

Memory and High Speed Logic

Connection Diagrams

Description

The 93Z667 is a fully decoded 65,384-bit Programmable Read Only Memories (PROMs), organized 8192 words by eight bits per word. The 93Z667 is manufactured using Fairchild's highly reliable FAST-Z vertical fuse technology.

- Available in 300 mil Side-Brazed DIP. •
- Commercial Address Access Time 40 ns Max .
- Military Address Access Time 45 ns Max .
- **Highly Reliable Vertical Fuses Ensure High Programming Yields**
- **Power-Up Three State Outputs**
- Low Current PNP Inputs

Pin Names

Address Inputs Chip Select Input (Active LOW) Data Outputs A0-A12 CS O₀-O₇

Note:

The 24-pin Flatpak has the same pinout (Connection Diagram) as the 24 pin DIP.

Logic Symbol

Isoplanar-Z Junction Fuse Principles and Programming

Conventional fusible link bipolar PROMs and programmable logic devices are based upon two dimensional matrices of electrically conductive thin film fusible elements of materials such as nichrome, titanium tungsten, platinum silicide or polysilicon. Each of these thin film technologies has its own unique advantages and disadvantages but all have in common the fact that fuses lie flat on the surface of the silicon and therefore occupy a significant portion of silicon area. Cell area has become increasingly important as device densities have grown from 4K to 64K. Manufacturing cost, yields and performance are all directly related to die size which is a strong function of cell area. Previously, reductions in cell area have been accomplished primarily through improvements in photolithographic techniques. Such techniques have been pushed to their limits to produce high density, cost effective programmable memories and logic. The need to shrink cell sizes, especially in higher density devices, is placing severe strains on the manufacturability of thin film fuses.

Junction fuses are the emerging solution to the inherent problems posed by thin film fuses. A junction fuse is simply a PN junction programmable cell. The emitterbase junction of a floating base NPN transistor acts as the fuse element. Because fuses are single vertical transistors (hence the often used name of vertical fuses), they occupy minimal silicon area. The entire fuse structure can essentially be modeled as two diodes connected back-to-back. Before programming, a high impedence (open) path exists between the emitter and collector. The emitter-base diode is reverse biased, preventing read currents from passing through the fuse. During programming, the emitter-base junction is shorted out, leaving a forward biased base-collector (B-C) diode. This diode now appears as a low impedence (closed) path. The fuse junction lies beneath the surface of the silicon so all of the potential thin film fuse related failure modes such as metal migration (growback), freeze out, corrosion, marginally opened fuses and passivation scattering have been eliminated.

The major problem encountered in early P-N junction programmable junction fuse development was the requirement of a large cell programming current (typically 200 mA per cell). This large current meant that large transistors were needed in the peripheral programming circuitry. The gain in array size reduction due to small cells was offset by the need for a larger peripheral programming circuitry which, in turn, translated to larger overall die size and higher die cost. The costs were such that, despite their reliability advantages, these devices were never widely commercially accepted.

The most straightforward method to achieve reductions in cell programming current is to use small emitter cells. A small emitter cell increases the effective current density at the emitter-base junction therefore decreasing the overall energy required to program the cell. To reduce emitter size and programming currents without the use of advanced photolithographic equipment, Fairchild adopted a simple solution, use a walled emitter cell and an oxide isolated Isoplanar process. With oxide isolation, emitter sizes are defined by the oxide opening and as a result are self aligned, easing manufacturing tolerances.

The main advantages of the Isoplanar-Z process are due to the use of oxide encroachment. The cell emitter is defined using standard photolithography. The surrounding oxide is then laterally grown, shrinking the emitter area and decreasing the effective cell size. Very small self aligned emitter-base junction areas can be achieved quite easily with the encroachment technique. An added benefit of oxide encroachment is that the higher thermal resistivity of the silicon dioxide which surrounds the cells, as compared to silicon, reduces heat loss during programming. This thermal insulation effect further reduces the current required to program a cell. Typical programming currents of 60 mA or below are easily achieved using the Isoplanar-Z process.

Results of reliability and programming yield testing have been excellent. Data have demonstrated typical programming yields in excess of 99% on a 16,384 bit PROM and no cell related failures in over 63 billion cell hours of life test.

Programming a Junction Fuse

Programming a junction fuse is accomplished by driving a controlled current through the emitter of the cell, inducing avalanche breakdown of the emitter-base junction. Heat locally generated at the reverse biased junction causes the Aluminum-Silicon interface to reach the

Isoplanar-Z Junction Fuse Principles and Programming

Al-Si eutectic solidus (melting) temperature of approximately 575°C. The electrically conductive aluminum eutectic then diffuses down through the emitter to the emitter-base junction, forming a permanent short.

The amount of energy required to program a cell is dependent upon encroachment variations. Different methods can be used to supply the varying amount of energy required to program junction fuses. One method is a pulse-read technique, whereby a series of energy pulses of increasing magnitude or duration are applied to the cell. Each pulse applies a specific amount of energy to the cell's emitter-base junction, successively heating the junction until the cell emitter reaches the Aluminum-Silicon eutectic temperature. Once this temperature is reached, migration occurs and the junction shorts. A read is performed after each pulse to detect if the fuse has blown. If additional energy is needed to program any cell, more pulses are applied until the cell blows.

Fairchild has approved a current-pulse technique for users with digital requirements. In this method, differences in required programming energy are accounted for by increasing the current amplitude of each subsequent current pulse until programming is achieved. A read is performed after each pulse. This cycle is continued until the cell is programmed. Refer to the Programming Timing Diagram and Programming Specifications for Current-Pulse Programming.

Fairchild originally developed a self adjusting current ramp programming technique which delivers the optimum current needed to program each individual cell. With the self adjusting technique a steadily increasing current ramp is applied to a cell until a shorted junction is detected. The exact moment when the junction actually shorts can be sensed by a sharp drop in the voltage across the cell. This voltage drop occurs because the reverse biases E-B diode is no longer in series with the programming path.

Once the moment of programming has been detected. Fairchild incorporates the use of a programming ramp "post hold time". The rise in programming current is halted at the level which was required to cause a blow. held for a precise time interval, and then turned off. This means that the amount of additional energy applied to a cell is totally governed by the amount of current required to program that cell, which is in turn dependent upon cell size. Therefore each cell's additional energy pulse is custom tailored for that specific cell. Experimental data shows that a carefully chosen post hold time can insure a very uniform cell resistance regardless of cell size. The self adjusting current ramp programming scheme allows consistent, repeatable programming and uniform cell resistance, overcoming any effects of process variations on a particular product or differences in cell sizes across product lines. Refer to the Programming Timing Diagram and Programming Specifications for Current-Ramp Programming.

Isoplanar-Z TTL PROM Current-Ramp Programming Specifications

Current-Ramp Programming Timing Diagram

Current-Ramp Programming Specifications⁽⁴⁾

Symbol	Parameter	Min	Recommended Value	Max	Units	Comments	
Power S	upply						
Vcc	Power Supply Voltage	6.4	6.5	6.6	V	Typical I _{CC} at 6.5 V = 250 mA	
t _{rVcc}	Power Supply Rise Time ⁽³⁾	0.2	2.0		μs		
t _{fVcc}	Power Supply Fall Time	0.2	2.0		μs		
ton	Vcc On Time	(1)				See Programming	
toff	V _{CC} Off Time	(2)				Timing Diagram	
	Duty Cycle for Vcc			50	%	$t_{ON}/(t_{OFF}+t_{ON})$	

Isoplanar-Z TTL PROM Current Ramp Programming Specifications

Symbol	Parameter	Min	Recommended Value	Мах	Units	Comments
Read Str	obe	L	I			
tdRBP	Read Delay before Programming		3.0		μs	Initial Check
tw	Fuse Read Time		1.0		μs	
tdVcc	Delay to V _{CC} Off		1.0		μs	
tdRAP	Delay to Read after Programming		3.0		μs	Verify
Chip Sel	ect		······		<u> </u>	
VCSP	Chip Select Programming Voltage	20.0	20.0	22.0	V	
ICSP	Chip Select Program Current Limit	175	180	185	mA	
VIL	Input Voltage LOW	0	0	0.4	V	
VIH	Input Voltage HIGH	2.4	5.0	5.0	V	
t _{dCS}	Delay to Chip Deselect		1.0		μs	
t _{rCS}	Chip Select Pulse Rise Time	3.0	4.0		μs	
tdAP	Delay to Chip Select Time	0.2	1.0		μs	
t _{fCS}	Chip Select Pulse Fall Time	0.1	0.1	1.0	μs	
Current I	Ramp			•		
IOPLP	Programming Current Linear Point		10	20	mA	Point after which the pro- gramming current ramp must rise at a linear slew rate
IOP(max)	Output Programming Current Limit	155	160	165	mA	Apply current ramp to selected output
VOP(max)	Output Programming Voltage Limit	24	25	26	V	
SRIOP	Current Slew Rate	0.9	1.0	1.1	mA/μs	Constant after Linear Point
Vps	Blow Sense Voltage	0.7			V	
t _{dBP}	Delay to Programming Ramp	2.0	3.0		μs	V _{CSP} must be at minimum
tLP	Time to Reach Linear Point	0.2	1.0	10	μs	
tss	Program Sense Inhibit	2.0	3.0	10	μs	
t _{tp}	Time to Program Fuse	3.0		150	μs	
thAP	Programming Ramp Hold Time	1.4	1.5	1.6	μs	After fuse programs
tfIOP	Program Ramp Fall Time		0.1	0.2	μs	

Notes

1. Total time V_{CC} is on to program fuse is equal to or greater than the sum

4. Recommended programming temp. $T_{C}=+25^{\circ}\,C\,\pm\,10^{\circ}\,C.$

of all the specified delays, pulse widths and rise/fall times.

2. $t_{\mbox{OFF}}$ is equal to or greater than $t_{\mbox{ON}}.$

3. Rise and fall times are from 10% to 90%.

Isoplanar-Z TTL PROM Current-Pulse Programming Specifications

Current-Pulse Programming Timing Diagram

Current-Pulse Programming Specifications⁽⁴⁾

Symbol	Parameter	Min	Recommended Value	Max	Units	Comments	
Power S	Supply						
Vcc	Power Supply Voltage	6.4	6.5	6.6	V	Typical I _{CC} at 6.5 V = 250 mA	
trVcc	Power Supply Rise Time ⁽³⁾	0.2	2.0		μS		
tfVcc	Power Supply Fall Time	0.2	2.0		μS		
ton	V _{CC} On Time	(1)				See Programming	
toff	V _{CC} Off Time	(2)				Timing Diagram	
	Duty Cycle for Vcc			50	%	$t_{ON}/(t_{OFF} + t_{ON})$	

Isoplanar-Z TTL PROM Current-Pulse Programming Specifications

Symbol	Parameter	Min	Recommended Value	Max	Units	Comments
Read Str	obe ⁵					
tdRBP	Read Delay before Programming		3.0		μS	Initial Check
tw	Fuse Read Time		1.0		μS	
tdVcc	Delay to V _{CC} Off		1.0		μs	
tdRAP	Delay to Read after Programming		3.0		μs	Verify
Chip Sel	ect					
Vcsp	Chip Select Programming Voltage	20.0	20.0	22.0	V	
ICSP	Chip Select Program Current Limit	175	180	185	mA	
VIL	Input Voltage LOW	0	0	0.4	V	
Vih	Input Voltage HIGH	2.4	5.0	5.0	V	
tdcs	Delay to Chip Deselect		1.0		μS	
trcs	Chip Select Pulse Rise Time	3.0	4.0		μS	
tdAP	Delay to Chip Select Time	0.2	1.0		μs	
t _{fCS}	Chip Select Pulse Fall Time	0.1	0.1	1.0	μS	
Program	ming Current-Pulse Train					
I _{IOP}	Initial Current Pulse		40.0	40.0	mA	80 mA may be applied when programming the 93Z564/93Z565
IOP(max)	Output Programming Current Limit	155	160	165	mA	Apply current pulse to selected output
VOP(max)	Output Programming Voltage Limit	24	25	26	V	
t _{RIOP}	Programming Pulse Rise Time	160	100	100	mA/µs	
t _{dBP}	Delay to Initial Programming Pulse	2.0	3.0		μs	V _{CSP} must be at minimum
t _{PW}	Programming Pulse Widths	8.0	9.0	10.0	μS	
t _{fIOP}	Programming Pulse Fall Time ³	0.1	0.1	.02	μS	
	Current Pulse Step Increase	5.0	10.0	10.0	mA	
∆I _{OP}	Duty Cycle for Programming Pulses	10	50	50	%	Each successive pulse is increased by I _{OP}

Notes

1. Total time V_{CC} is on to program fuse is equal to or greater than the sum of all the specified delays, pulse widths and rise/fall times.

4. Recommended programming temp. $T_{C}=+25^{\circ}\,C\pm10^{\circ}\,C.$

5. Proceed to next address after read strobe indicates programmed cell.

2. t_{OFF} is equal to or greater than t_{ON} .

3. Rise and fall times are from 10% to 90%.

	Product Index and Selection Guide	1
	Quality Assurance and Reliability	2
	ECL RAMs	3
	TTL RAMs	4
	MOS Static RAMs	5
\mathbf{N}	ECL PROMs	6
	TTL PROMs	7
	TTL Programmable Logic	8
	Ordering Information and Package Outlines	9
/	Field Sales Offices	10

93Z458/93Z459 16 x 48 x 8 Field Programmable Logic Array

Memory and High Speed Logic

Description

The 93Z458 and 93Z459 are bipolar Field Programmable Logic Arrays (FPLAs) organized with 16 inputs, 48 product terms and eight outputs. The 16 inputs and their complements can be fuse linked to the inputs of 48 AND gates (48 product terms). Each of the 48 AND gates can be fuse linked to eight 48-input OR gates (eight summing terms). Each output may be programmed active HIGH or active LOW. The devices are identical except for the output stage. The 93Z458 has open-collector outputs; the 93Z459 has three-state outputs. In either case, the outputs are enabled when CS is LOW.

- Commercial Address Access Time 45 ns Max
- Military Address Access Time 65 ns Max
- Fully Programmable Product Array, Summing Array and Output Polarity
- Available with Open collector (93Z458) or Three State (93Z459) Outputs

Pin Names

A0-A15	Address Inputs
CS	Chip Select Input
O ₀ -O ₇	Data Outputs
VP	Programming Pin

Logic Symbol

Connection Diagram 28-Pin DIP (Top View)

VP 🗌	1	∇	28	Vcc
A7 🗖	2		27	A8
A6 🗌	3		26	A9
A5 🗖	4		25	A10
A4 🗖	5		24	A11
A3 🗖	6		23	A12
A2 🗖	7		22	A13
A1 🗖	8		21	A14
A0 🗖	9		20	A15
07	10		19	
06 □	11		18	□ 0₀
0 ₅	12		17	01
0₄ [13		16	02
GND 🗖	14		15	□ 0₃

Note

The 28-pin Flatpak and the 28-pin Leadless Chip Carrier have the same pinout (Connection Diagram) as the 28-pin DIP.

Logic Diagram

Functional Description

The 93Z458 and 93Z459 are bipolar Field Programmable Logic Arrays (FPLAs) organized 16 inputs by 48 product terms by eight outputs. Open-Collector outputs are provided on the 93Z458 for use in wired-OR systems. The 93Z459 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. Chip Select for both devices is active LOW, i.e., a HIGH (logic "1") on the CS pin will disable all outputs.

The 93Z458 and 93Z459 both contain a test input line, two test product term lines and a test output line. These test fuses are accessed during both wafer sort and final test and used to assure high programmability and to guarantee DC parameters and AC performance. The read function is identical to that of a conventional bipolar PLA. That is, a binary address is applied to inputs A_0 through A_{15} , the chip is selected, and the data is valid at the outputs after t_{AA} .

Programming is accomplished by following the sequence outlined in the *Programming Specifications* table.

Logic Relationships Input Term A _n	n = 0,, 15, one of 16 inputs
Product Term	
$P_{m} = \pi_0^{15} \left(i_{n} A_{n} + j_{n} \overline{A}_{n} \right)$	$\begin{split} m &= 0, \ldots, 47, \text{ one of } 48 \text{ product terms} \\ \text{where:} \\ a) &i_n = j_n = 1 \text{ (both true and false programmed)} \\ b) &i_n \neq j_n \text{ for programmed input (true or false line programmed)} \\ c) &i_n = j_n = 0 \text{ for Don't Care input (unprogrammed input)} \end{split}$
$F_r = \Sigma_0^{47} P_m$	$r = 0, \dots, 7$, the OR function of the 48 product terms
$ \begin{array}{l} \text{Summing Term} \\ \text{S}_{r} = \Sigma_{0}^{47} \text{k}_{\text{M}} \text{P}_{\text{M}} \end{array} $	where $k_m = 0$ for product term inactive

 $k_m = 1$ for product term active

				Output						
Mode	CS	Fr	S _r	Active HIGH	Active LOW					
Read	L	H	L	L	H					
	L	H	H	H	L					
	L	L	X	L	H					
Disable	H	X	X	H (93Z458)	H (93Z458)					
	H	X	X	High-Z (93Z459)	High-Z (93Z459)					

H = HIGH Voltage Levels

L = LOW Voltage Levels

X = Don't Care

By programming, the eight outputs of an FPLA can be made to relate to the 16 inputs as given by the following example:

8 outputs total $\begin{cases}
O_1 = A_0 \overline{A_6} A_{14} + \overline{A_2} \overline{A_{15}} + \overline{A_0} A_1 \dots A_{15} + \overline{A_8} A_{10} \overline{A_{13}} \\
O_{ne} Product Term \\
16 input terms max \\
One Output \\
48 product terms max \\
O_2 = A_0 \overline{A_6} A_{14} + \overline{A_2} \overline{A_{15}} \\
(Output polarity programmed, active HIGH) \\
O_7 = \overline{(\overline{A_8} A_{10} \overline{A_{13}} + A_4 \overline{A_7} \overline{A_9} A_{11} \overline{A_{12}})} \\
(Output polarity not programmed, active LOW)
\end{cases}$

Programming

The 93Z458 and 93Z459 are delivered in an unprogrammed state, characterized by:

- All vertical cells intact
- All 8 output buffers in active LOW state
- All outputs read HIGH

Programming and verifying the Product Matrix, the Summing Matrix, and the Output Polarity are outlined below.

Program Product Matrix

In the initial unprogrammed state the 48 AND gates of the product matrix are not connected. Programming the vertical cell located by the selection of an input line, An, and the mth AND gate includes the input term in the logic expression for the mth AND gate. If all vertical cells were programmed, the resulting logic expression for the AND gates would be $A_0\overline{A_0}A_1\overline{A_1}...A_{15}\overline{A_{15}}$. In the unprogrammed state, the logic expression for each AND gate is "1".

- Program one input at a time.
- All unused inputs of programmed product terms are not required to be programmed.
- Inputs of unused product lines are not required to be programmed.
- Pin 18 (0₀) is in the read mode (open collector). Care must be taken so that this pin is either left open, grounded, or loaded such that the current flowing into the pin does not exceed 16 mA.
- 1. Connect pin 14 (GND) to ground.
- 2. Connect pin 28 (V_{CC}) to 6.5 V.
- 3. Apply TTL levels to pins 10 through 13, 15, and 16 $(0_7 \text{ through } 0_2)$ to address an on-chip 1-of-48 decoder to select the AND gate to be programmed $(0_7 = \text{LSB} \text{ and } 0_2 = \text{MSB}).$
- 4. Apply +12.0 V to all input pins (A_0 through A_{15}).
- Apply the proper TTL level to an A_n input pin as follows (program one input at a time):
 - a. If the product term to be programmed contains the input term A_n (where n = 0 through 15), lower the A_n pin to a TTL LOW level.
 - b. If the product term to be programmed contains the input term $\overline{A_n}$, lower the $\overline{A_n}$ to a TTL HIGH level.

- 6. Connect pin 19 (\overline{CS}) to 20V.
- Apply a programming current ramp to pin 1 (V_p) according to the Programming Specifications table.
- 8. Repeat steps 4 through 7 for each input of the selected product term.
- 9. Repeat steps 3 through 8 for all other product terms to be programmed.

Verify Product Matrix

- 1. Connect pin 14 (GND) to ground.
- 2. Connect pin 28 (V_{CC}) to 6.5 V or 4.5 V¹.
- 3. Connect pin 19 (\overline{CS}) to a TTL HIGH level.
- 4. Apply TTL levels to pins 10 through 13, 15, and 16 $(0_7 \text{ through } 0_2)$ to address an on-chip 1-of-48 decoder to select the product line to be read $(0_7 = \text{LSB} \text{ and } 0_2 = \text{MSB}).$
- 5. Apply +12.0 V to all input pins (A_0 through A_{15}).
- 6. Test the state of the An input as follows:
- a. Lower the A_n pin to a TTL HIGH level and sense the voltage on pin 18 (0₀).
- b. Lower the A_n pin to a TTL LOW level and sense the voltage on pin 18 (0₀).
- 7. The state of the A_n input is determined as follows:

	A _n = TTL HIGH	TTL	Condition of A _n for Selected Product Term
	н	н	Unprogrammed
Level at	н	L	A _n in P-Term
Output 0	L	н	A _n in P-Term
(notes 2,			
3,4)	L	L	Both A_n and $\overline{A_n}$ in P-Term

- 8. Repeat steps 5 through 7 for each input of the selected product term.
- 9. Repeat steps 4 through 8 for all other product terms.

Notes

- 1. When verifying each cell immediately after applying the current ramp, V_{CC} can be held at 6.5V. The verification cycle (blank check or pattern check) must consist of the verification cycle (blank check or pattern check) must consist of
- two passes, one at $V_{CC} = 6.5$ V, one at $V_{CC} = 4.5$ V. 2. 0_0 in this mode functions as an open-collector output.
- 3. The table above is valid regardless of the polarity (active HIGH or active LOW) of 0_0
- 4. Pin 1 (Vp) should be either floating or grounded

Program Summing Matrix

The inputs to the eight OR gates of the summing matrix are not connected in the unprogrammed state. Programming the vertical cell located by the selection of the mth AND gate and the nth summing line includes the product term P_m (the term programmed into the mth AND gate) in the logic expression for the nth OR gate. The nth summing line is selected by the selection of the nth output buffer where n = 0 through seven. If all the cells in the OR matrix were programmed, the resulting logic expression (sum of products) for the OR gates would be $P_0 + P_1 + P_{2m} + P_{47}$.

- Program one output pin at a time.
- All unused product lines are not required to be programmed.
- 1. Connect pin 14 (GND) to ground.
- 2. Connect pin 28 (V_{CC}) to 6.5 V.
- 3. Apply TTL levels to pins 4 through 9 (A_5 through A_0) to address an on-chip 1-of-48 decoder to select the AND gate to be programmed (A_0 = LSB and A_5 = MSB).
- 4. Apply TTL HIGH level to pins 20 and 21 (A₁₅ and A₁₄).
- 5. Connect the remaining input pins to + 12.0 V.
- 6. Connect pin 19 (\overline{CS}) to 20 V.
- 7. Apply a current ramp (see Programming Specifications table) at the pin of the output to be programmed. Other output pins should be either left open or tied to a TTL HIGH level.
- 8. Repeat for all outputs that are to be programmed.

Verify Summing Matrix

- 1. Connect pin 14 (GND) to ground.
- 2. Connect pin 28 (V_{CC}) to 6.5 V or 4.5 V.
- 3. Connect pin 19 (\overline{CS}) to TTL LOW level.
- 4. Apply TTL levels to pins 4 through 9 (A_5 through A_0) to address an on-chip 1-of-48 decoder to select the AND gate to be verified ($A_0 = LSB$ and $A_5 = MSB$).
- Apply a TTL HIGH level to pins 20 and 22 (A₁₅ and A₁₃).
- 6. Connect the remaining input pins to +12.0 V.
- Sense the voltage on the output pin to be verified. The programming of the selected product line to the output line can be determined as follows:

Output Reads (Note)	Vertical Cell
L	Unprogrammed (inactive)
Н	Unprogrammed (inactive) Programmed (active)

Note

The condition of the vertical cell can be determined from the table above regardless of the polarity (active HIGH or active LOW) of the output buffer being verified.

- 8. Repeat step 7 for all outputs to be verified.
- 9. Repeat for all product terms programmed.

Program Output Polarity

The initial unprogrammed state of all eight output buffers is active LOW or inverting. To program an output buffer into the active HIGH or non-inverting state, follow the steps shown below:

• Program one output at a time.

- 1. Connect pin 14 (GND) to ground.
- 2. Connect pin 28 (V $_{\rm CC}$) to 6.5 V.
- 3. Apply a TTL HIGH level to pins 4 through 9 (A_5 through A_0).
- 4. Apply a TTL HIGH level to pin 20 (A15).
- 5. Connect the remaining input pins to +12.0 V.
- 6. Connect pin 19 (\overline{CS}) to 20V.
- 7. Apply a programming current ramp (see Programming Specifications table) to the pin of the output to be programmed. Other output pins should be either left open or tied to a TTL HIGH level.

Verify Output Polarity

- 1. Connect pin 14 (GND) to ground.
- 2. Connect pin 28 (V_{CC}) to 6.5 V or 4.5 V.
- 3. Connect pin 19 (\overline{CS}) to a TTL LOW level.
- Apply a TTL HIGH level to pins 4 through 9 (A₅ through A₀).
- 5. Apply a TTL HIGH level to pins 21 and 22 (A₁₄ and A₁₃).
- 6. Connect the remaining input pins to + 12.0 V.
- Sense the voltage on the pin of the output buffer to be verified. The condition of the output can be determined as follows:

Output Reads	Output State
H	Active LOW
L	Active HIGH

8. Repeat step 7 with $\rm V_{CC}$ at the LOW $\rm V_{CC}$ Read recommended value.

The table given below summarizes the full programming and verifying procedures.

Summary of Pin Voltages (Volts)

	Read	Program Product Matrix	Verify Product Matrix	Program Summing Matrix	Verify Summing Matrix	Program Output Polarity	Verify Output Polarity
Pin 1 (Vp)	***	****	***	***	***	***	***
Pin 2 (A7)	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 3 (A ₆)	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 4 (A ₅)	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 5 (A4)	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 6 (A ₃)	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 7 (A ₂)	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 8 (A1)	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 9 (A ₀)	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 10 (07)	READ	TTL	TTL	****	READ	****	READ
Pin 11 (06)	READ	TTL	TTL	****	READ	****	READ
Pin 12 (05)	READ	TTL	TTL	****	READ	****	READ
Pin 13 (04)	READ	TTL	TTL	****	READ	****	READ
Pin 14 (GND)	GND	GND	GND	GND	GND	GND	GND
Pin 15 (0 ₃)	READ	TTL	TTL	****	READ	****	READ
Pin 16 (0 ₂)	READ	TTL	TTL	****	READ	****	READ
Pin 17 (01)	READ	**	* **	****	READ	****	READ
Pin 18 (0 ₀)	READ		READ	****	READ	****	READ
Pin 19 (CS)	TTL LOW	20.0	TTL HIGH	.20.0	TTL LOW	20.0	TTL LOW
Pin 20 (A ₁₅)	TTL	12.0*	12.0*	TTL HIGH	TTL HIGH	TTL HIGH	12.0
Pin 21 (A ₁₄)	TTL	12.0*	12.0*	TTL HIGH	12.0	12.0	TTL HIGH
Pin 22 (A ₁₃)	TTL	12.0*	12.0*	12.0	TTL HIGH	12.0	TTL HIGH
Pin 23 (A ₁₂)	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 24 (A ₁₁)	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 25 (A ₁₀)	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 26 (A ₉)	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 27 (A ₈)	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 28 (V _{CC})	5.0	6.5	6.5	6.5	6.5	6.5	6.5

*For selection of input apply TTL HIGH or TTL LOW

**Left open or TTL HIGH

***Left open or grounded

****Left open, TTL HIGH, or programming current ramp

*****Programming current ramp

Product Matrix Programming Timing Diagram

Output Polarity Programming Timing Diagram

Summing Matrix Programming Timing Diagram

Note: Current Pulse programming may be used in place of Current Ramp programming. See pages 7-20 and 7-21

Programming Specifications(4)

Symbol	Parameter	Min	Recommended Value	Max	Units	Comments
Power S	upply					
Vcc	Power Supply Voltage	6.4	6.5	6.6	V	Typical I _{CC} at 6.5 V = 250 mA
t _{rVcc}	Power Supply Rise Time(3)	0.2	2.0		μs	
t _{fVcc}	Power Supply Fall Time	0.2	2.0		μs	
ton	V _{CC} On Time	(1)				See Programming
toff	Vcc Off Time	(2)				Timing Diagram
	Duty Cycle for Vcc			50	%	$t_{ON}/(t_{OFF} + t_{ON})$

Programming Specifications (4) (Cont'd)

Symbol	Parameter	Min	Recommended Value	Max	Units	Comments
Read Stro	be					
t _{dRBP}	Read Delay before Programming		3.0		μs	Initial Check
tw	Fuse Read Time		1.0		μs	
tdvcc	Delay to V _{CC} Off		1.0		μs	
t _{dRAP}	Delay to Read after Programming		3.0		μs	Verify
Vz	Input Level during Program & Verify	11.0	12.0	12.0	V	
Chip Sele	ct					
V _{CSP}	Chip Select Programming Voltage	19.5	20.0	20.5	V	
I _{CSP}	Chip Select Program Current Limit	175	180	185	mA	
V _{IL}	Input Voltage LOW	0	0	0.4	V	
VIH	Input Voltage High	2.4	5.0	5.0	V	
t _{dCS}	Delay to Chip Deselect		1.0	1	μs	
t _{rCS}	Chip Select Pulse Rise Time	3.0	4.0	1	μs	
t _{dAP}	Delay to Chip Select Time	0.2	1.0		μs	
t _{fCS}	Chip Select Pulse Fall Time	0.1	0.1	1.0	μs	
Current R	amp					
I _{OPLP}	Programming Current Linear Point		10	20	mA	Point after which the pro- gramming current ramp must rise at a linear slew rate
OP(max)	Output Programming Current Point	155	160	165	mA	Apply current ramp to selected output
V _{OP(max)}	Output Programming Voltage Limit	24	25	26	V	
SRIOP	Current Slew Rate	0.9	1.0	1.1	mA/µs	Constant after Linear Point
V _{PS}	Blow Sense Voltage	0.7			v	
t _{dBP}	Delay to Programming Ramp	2.0	3.0		μs	V _{CSP} must be at minimum specification
t _{LP}	Time to Reach Linear Point	0.2	1.0	10	μs	· · · · · · · · · · · · · · · · · · ·
t _{SS}	Program Sense Inhibit	2.0	3.0	10	μs	
t _{tP}	Time to Program Fuse	3.0		150	μs	
t _{hAP}	Programming Ramp Hold Time	1.4	1.5	1.6	μs	After fuse programs
t _{fIOP}	Program Ramp Fall Time		0.1	0.2	μs	
t _{SA}	Time to Address Setup	0.3	0.5	1	μs	

Notes

1. Total time V_{CC} is on to program fuse is equal to or greater than the sum of all the specified delays, pulse widths and rise/fall times. 2. T_{OFF} is equal to or greater than t_{ON}. 3. Rise and fall times are from 10% to 90%. 4. Reccommended programming temp. $T_A = +25^{\circ}C \pm 10^{\circ}C$.

											1	Program Table Entries														
				Input	Varia	ble						Ou	tput F	uncti	on					(Dutput	Activ	e Lev			
			Τ	7		1	mater	in l				Tern				ct Ter				Active				Acti LO	ve	
		An		An	_					P		<u>t in F</u> r		No		sent i				HIGH					N	
		н		L		-	(dasl	ו)			A				• (p	eriod)				н				L		
		Note								lotes								Not						- 1		
		Enter ()		nusea	input	s of u	sea P	terms) Entr) Ente							terms	2)	Polari Enter	(L) fo	r all <i>u</i>	nea o nusea	outp	uts		
			1					Pr		t Terr put V						5					4	ctive	Leve			Т
		No.	1	1	1	1	1	1														put F				
		0	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	+
		1														-										╈
		2																								T
		3																								Т
		4																								Т
		5																								Ι
		6																								
		7																								1
#		8																								1
art		9																								
Ч Р Р		10	I																							+
ize		11			ļ														ļ							+
log L		12																								+
Nec		13			[-			+
er S	nts	14	<u> </u>																							+
Ϋ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	ae E	15																								+
CF (XXXX) Customer Symbolized Part Date Received	Comments	16	 																							+
	0	18																								+-
		19																								+
		20		<u> </u>																						+
		21	<u> </u>		1																					+
		22																								$^{+}$
		23	t																							$^{+}$
		24																								1
		25																								T
	te	26																								T
	Date	27																								
		28																								
		29																								
		30			ļ	ļ	L			 										L						-
		31			 																			ļ	ļ	\downarrow
		32	 		ļ											ļ										+
		33	ļ	 	l														ļ					 		+
	>	34 35	ł																							+
	Rev	35			<u> </u>																					+
		36	<u> </u>							 									 					 	-	+
		37	+			-																		├ ──		+
		39													-									<u> </u>		+
		40	1		<u> </u>	<u> </u>																			<u> </u>	t
		41	1	t	t		t			†									t					t	<u> </u>	+
t l		42	†	1	1													<u> </u>	<u>† – – – – – – – – – – – – – – – – – – –</u>		<u> </u>		 	<u> </u>	<u> </u>	+
та, т	- ++	43			1										1	[1					<u> </u>	İ	1
Purchase Order # Fairchild Device # Total Number of Pa	4	44	1																<u> </u>							1
Furchase Order # Fairchild Device # Total Number of Parts	ab	45	1																							1
θĽĒ	Program Table #	46	1			<u> </u>																				1
<u>v 0 1</u>		47			T																				+	-

16 x 48 x 8 FPLA Program Table

8

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition			
VIL	Input LOW Voltage	1		0.8	V	Guaranteed In	put LOW Voltage for All Inputs		
ViH	Input HIGH Voltage	2.0			V	Guaranteed In	put HIGH Voltage for All Inputs		
Vic	Input Clamp Diode Voltage			-1.2	V	V _{CC} = Min, I _{IN}	= -18 mA		
Vol	Output LOW Voltage		0.30	0.45	V	$V_{CC} = Min, I_{OL}$	= 16 mA		
V _{OH}	Output HIGH Voltage (93Z459 only)	2.4			V	$V_{CC} = Min, I_{OH} = -2.0 \text{ mA}$			
h∟	Input LOW Current		-120	-250	μA	V _{CC} = Max, V _{IL}	_ = 0.45 V		
Ιн	Input HIGH Current			40	μA	V _{CC} = Max, V⊮	H = 2.4 V		
Іонг	Output Leakage Current for High Impedance State (93Z459 only)			50 -50	μΑ	V _{OH} = 2.4 V V _{OL} = 0.4 V	0°C to +75°C		
loнz	Output Leakage Current for High Impedance State (93Z459 only)			100 -100	μΑ	V _{OH} = 2.4 V V _{OL} = 0.4 V	−55°C to +125°C		
ICEX	Output Leakage Current (93Z458 only)			50	μΑ	$V_{CC} = 5.25 V, V_{CC} = 0^{\circ} C \text{ to } +75^{\circ} C$	/ _{CEX} = 4.95 V, Chip Deselected		
ICEX	Output Leakage Current (93Z458 only)			150	μA	V _{CC} = 5.5 V, V −55°C to +125	_{CEX} = 5.2 V, °C Chip Deselected		
los	Output Short-Circuit Current (93Z459 only)	-15	-35	-90	mA	V _{CC} = Max, V _C) = 0 V, Note 2		
lcc	Power Supply Current			170	mA	V _{CC} = Max, Cł	nip Selected,		
CIN	Input Pin Capacitance ⁽³⁾		4.0		pF	$V_{\rm CC} = 5.0 \rm V, V$	$_{\rm IN}$ = 2.0 V, f = 1.0 MHz, $\overline{\rm CS}$ = V _{IH}		
Co	Output Pin Capacitance ⁽³⁾		7.0		pF	$V_{CC} = 5.0V, V$	$_{O}$ = 2.0 V, f = 1.0 MHz, \overline{CS} = V _{IH}		

DC Performance Characteristics: Over guaranteed operating ranges unless otherwise noted

Commercial

AC Performance Characteristics: V_{CC} = 5.0 V \pm 5%, GND = 0 V, T_{C} = 0°C to + 75°C

Symbol	Characteristic	Max	Unit	Condition
t _{AA}	Address to Output Access Time	45	ns	See AC Output Load
t _{ACS}	Chip Select to Output Access Time	30	ns	See AC Output Load
t _{CD}	Chip Select to Output Disable Time	30	ns	See AC Output Load

AC Performance Characteristics: $V_{CC} = 5.0 \text{ V} \pm 10\%$, $GND = 0 \text{ V}$, $T_C = -55^{\circ}C$ to $+125^{\circ}C$									
Symbol	Characteristic	Max	Unit	Condition					
tAA	Address to Output Access Time	65	ns	See AC Test Output Load					
tacs	Chip Select to Output Access Time	30	ns	See AC Test Output Load					
t _{CD}	Chip Select to Output Disable Time	30	ns	See AC Test Output Load					

1. Typical values are at V_{CC} = 5.0 V, T_C = +25°C and maximum loading.

2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.

3. These parameters are not 100% tested, but are checked during initial design and during design changes.

Military

Fig. 3 Read Mode Timing

*Includes jig and scope capacitance

Fig. 2 Chip Select Timing

Ordering Information

Packages D = Ceramic DIP

F = Flatpak L = Leadless Chip Carrier P = Plastic DIP

Temperature Ranges $C = 0^{\circ}C$ to $+75^{\circ}C$ $M = -55^{\circ}C$ to $+125^{\circ}C$

Optional Processing

- QB = Mil Std 883
 - Method 5004 & 5005, Level B
- QR = Commercial Device with 160 Hour Burn In or Equivalent

FAIRCHILD

A Schlumberger Company

16P8B, 16RP8B, 16RP6B, 16RP4B Programmable Logic Array

Description

The FASTPLA 16P8B Series of high-performance bipolar programmable logic arrays provide 15 ns maximum propagation delays and are fully compatible with industry standard medium 20-pin PAL® devices. Designed to enhance the flexibility of the FAST family, FASTPLA 16P8B Series offers advanced architectural features including programmable output polarity, power-up reset, and power-up three-state. The devices are designed for full AC/DC testability and are manufactured with Fairchild's highly reliable lsoplanar-Z vertical-fuse technology.

- Extension of FAST Product Line
- 15 ns Maximum Propagation Delays (-55°C to +125°C)
- 180 mA Maximum I_{CC} Current
- Fully Compatible with Medium 20-Pin PAL® Devices
- Individually Programmable Output Polarity
- Power-Up Reset and Three-State
- High Programming Yields Using Highly Reliable
 Vertical-Fuse Technology
- Complete AC/DC Testability
- Security Fuse to Prevent Unauthorized Duplication
- Available in 300-mil Plastic and Ceramic DIP, Ceramic LCC, and Flatpak Packages

Pin Names

l ₀ - l ₉	Input
O ₀ , O ₇	Output
I/O ₁ - I/O ₆	Bi-Directional Output

Logic Symbol

 $V_{CC} = pin 20$ GND = pin 10

PAL is a registered trademark of Monolithic Memories Inc.

Connection Diagram

20-Pin DIP (Top View)

		16P8	16RP4	16RP6	16RP8
INPUTS	Dedicated	10	8	8	8
	Clock		1	1	1
LOGIC	7-Wide AND/OR	8	4	2	-
	8-Wide AND/OR		4	6	8
OE	Individually Programmable	8	4	2	_
0E	Dedicated		4	6	8
	Programmable Polarity	8	8	8	8
OUTPUTS	Bi-Directional	6	4	2	
	Dedicated	2	-	-	-
	Registered (with feedback)		4	6	8

1

FASTPLA 16P8B Series Summary

16P8 Functional Diagram

16P8 Functional Description

The FASTPLA 16P8B is a bipolar TTL programmable logic array (PLA) consisting of a programmable AND array feeding a fixed OR array. It is organized with 10 dedicated inputs, 2 dedicated outputs, and 6 bi-directional input/outputs as given in the family summary chart. Standard sum-of-products (SOP) form is equated at the output of the OR array as shown in the functional diagram. By use of the programmable output polarity feature, designs can be configured for 16L8 and 16H8 versions. Additionally, the output polarity can be individually programmed. Each output buffer is enabled by a dedicated active HIGH product term. Initially all vertical fuse cells are unprogrammed. The unprogrammed output polarity fuses are equivalent to low impedance connections from the exclusive OR gate to ground. Hence, all outputs are initially active LOW. Once the polarity fuse is programmed, the output is permanently active HIGH.

At power-on, outputs remain in the high impedance state until DC power supply conditions are met, after which they are controlled by dedicated programmable enable product terms.

C = 0° to + 75°C. Case

Logic Diagram 16P8B

16RP4, 16RP6, 16RP8 Functional Diagram

Functional Description

The FASTPLA 16RP4, 16RP6, 16RP8 are bipolar TTL programmable logic arrays (PLA) incorporating synchronous D-type registers at the output of the fixed OR array. The 16RP4, 16RP6 have both combinational output cells with feedback and programmable output enable, and sequential output cells with register feedback and dedicated output enable. The 16RP8 has eight sequential output cells with register feedback and dedicated output enable. Refer to the FASTPLA summary chart for the particulars of each device.

Standard sum-of-products (SOP) form is equated at the output of the OR array as shown in the functional diagram. Programmable output polarity gives the user more flexibility in design. Each output polarity may be individually defined active HIGH or active LOW.

At power-on, outputs remain in the high impedance state until DC power supply conditions are met, thereafter changing state according to the inputs (combinational cell) or output enable (sequential cell). At power on all registers are initialized to a logical LOW, thereby setting all outputs to a logical HIGH. At the first LOW-to-HIGHtransition of the clock pulse, the output state will change according to the specified D-inputs. This power-on reset feature assures the user that the registers will begin clocking from a known state and hence simplifies sequential machine design and testing.

For testability, register preload is provided. It allows the user to individually preset the registers to either a HIGH or LOW level through the use of an 11 V control signal. This allows all states of a sequential design to be tested.

Initially all vertical fuse cells are unprogrammed. The outputs of the AND array are active HIGH true, thereby causing the outputs of the OR array to be HIGH true. All unprogrammed output polarity fuses are equivalent low impedance connections from the exclusive OR gate to ground. All combinational outputs read active LOW true and are enabled. Prior to the first LOW to HIGH clock transition, registered outputs read active HIGH true and are enabled according to the state of the OE pin.

Logic Diagram 16RP8B

Logic Diagram 16RP6B

Logic Diagram 16RP4B

State of Delivery

- Programmability Verified
- All AND Gates are Active HIGH True
- All OR Outputs are Active HIGH True
- All Combinational Outputs are Enabled
- All Combinational Outputs are Active LOW True
- All Registered Outputs are Initialized Active HIGH True
- Security Fuse is Unprogrammed

Shown below are unprogrammed and programmed fuse map relationships:

OUTPUT POLARITY

'AND' ARRAY

- $\mathbf{S}_{\mathbf{n}} = \mathbf{SUMMING} \ \mathbf{OUTPUT}$
- n = PRODUCT TERM
- Fn = EXCLUSIVE OR OUTPUT
- in = INPUT VARIABLE On = OUTPUT VARIBLE
- n COTFOT VARIBE

* An 'X' represents a low impedance connection.

Absolute Maximum Rating: Above which the useful life may be impaired¹

Storage Temperature -65° C to +150° C Ambient Temperature Under Bias -55°C to +125°C Junction Temperature Under Bias V_{CC} Pin Potential to Ground Pin Input Voltage 2 Input Voltage Pin 1, Program Mode Input Voltage Pin 11, Program Mode Input Voltage Pins 2, 12-19 7 Input Current² Input Current Pin 1, Program Mode Voltage Applied to Outputs (Async) Voltage Applied to Outputs (Registered) Current Applied to Outputs

-55°C to +150°C -1.5 V to +7.0 V -1.5 V to +7.0 V -1.5 V to +21.0 V -1.5 V to +12.0 V -1.5 V to +12.0 V -18.0 mA to +5.0 mA +160.0 mA -0.5 V to V_{CC} max. V -0.5 V to V_{CC} max. V +100.0 mA

DC Performance Characteristics: Over guaranteed operating ranges unless otherwise noted

Symbol	Parameter	Min	Max	Units	V _{cc} ¹	Conditions
Icc	Supply Current		180	mA	Max	All Inputs Equal 0.0 V Outputs Open
V _{IH} ^{2.3}	Input HIGH Voltage	2.0		V	Max	Recognized as a HIGH Signal Over Recommended V _{CC} and T _A Range
V _{IL} ^{2,3}	Input LOW Voltage		0.8	V	Мах	Recognized as a LOW Signal Over Recommended V_{CC} and $T_{\rm A}$ Range
Vz	Control Voltage	10.5	11.5	V	Min	
V _{CD}	Input Clamp Diode Voltage		-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage Mil Comm	2.4 2.7		V	Min	$V_{IL} = 0.0 V$ $V_{IH} = 3.0 V$ $I_{OH} = -3.2 mA Comm$
	Comm	2.1				-2.0 mA Mil
V _{OL}	Output LOW Voltage		0.5	V	Min	
I _{IH} ⁴	Input HIGH Current		25	μΑ	Max	$V_{IN} = 2.7 V$
I1 ⁴	Input HIGH Current		25	μA	Max	$V_{IN} = 5.5 V$
	Input LOW Current		-250	μA	Max	$V_{IN} = 0.5 V$
I _{OZH} ⁴	Output Leakage Current		50	μΑ	Max	$V_{OUT} = 2.7 V$
I _{OZL} ⁴	Output Leakage Current		-50	μΑ	Max	$V_{OUT} = 0.5 V$
I _{OS} ⁵	Output Short Circuit	-60	-150	mA	Max	$V_{OUT} = 0.0 V$
C _{IN} ⁶	Input Capacitance		15	pF		$V_{IN} = 2.0 V, f = 1 MHz$
C _{OUT} ⁶	Output Capacitance		15	pF		$V_{IN} = 2.0 V, f = 1 MHz$
$\overline{C_{10}^6}$	Bi-Directional Pin Cap.		15	pF		$V_{IN} = 2.0 V, f = 1 MHz$

Parameter		Switch ⁸	Commercial		Military		
	Description		Min	Max	Min	Max	Units
t _{PD}	Input or Feedback to Non-Registered Outputs	Open		15		15	ns
t _{PZX} 6	Input to Output Enable ZH ZL	Open Closed		15		15	ns
t _{PXZ} ⁶	Input to Output Disable HZ LZ	Open Closed		15		15	ns
t _{PZX}	Pin 11 To Output Enable ZH ZL	Open Closed		12		15	ns
t _{PXZ}	Pin 11 to Output Disable HZ LZ	Open Closed		12		15	ns
t _{co}	Clock to Output	Open		10		10	ns
t _{SU}	Input or Feedback Setup Time		15		15		ns
t _H	Hold Time		0		0		ns
tp	Clock Period		20	-	25		ns
twL ⁹	Clock Width LOW		9		11		ns
twH ⁹	Clock Width HIGH		8		10		ns
f _{MAX}	Maximum Clock Frequency		50		40		MHz

AC Performance Characteristics: V_{CC} = 5.0 V \pm 5% (com.), V_{CC} = 5.0 V \pm 10% (mil.), GND = 0V.

Performance Characteristics Notes

- 1. Unless otherwise restricted or extended by detail specification.
- 2. Either input voltage or current limit sufficient to protect inputs.
- These are absolute values with respect to pin 10 (device ground) and includes all overshoots due to system AND/OR tester noise.
- 4. I/O pin leakage is the worst case of I_{OZX} , I_{IX} , X = H/L.
- 5. For testing I_{OS}, the use of HIGH speed test apparatus AND/OR sample and hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. For any sequence of parameter tests, I_{OS} tests should be performed last. Only one output should be shorted at a time.
- 6. These parameters are not 100% tested but are periodically sampled.
- Preload/clear functions on registered outputs only. The output must be three-stated before V_Z may be applied.
- 8. See AC test loads.
- 9. $t_{WH} + t_{WL} \ge 20 \text{ ns (com.)}, t_{WH} + t_{WL} \ge 25 \text{ ns (mil.)}.$

AC Test Loads

***INCLUDES JIG AND PROBE CAPACITANCE**

16P8B, 16RP8B, 16PR6B, 16RP4B

AC Waveforms

Power-up Three-state

All outputs will be disabled when V_{CC} is less than approximately 3.0V (+25°C)

 t_{ZU} and t_{DZ} are less than 0.1 μ s.

16P8B, 16RP8B, 16PR6B, 16RP4B

Power-Up Reset

Two conditions are required to ensure a valid power-up reset:

- 1. V_{CC} must rise to recommended DC value.
- 2. After reset, the clock input must be held LOW for time t_{SU} before clocking.

Preload of Registered Outputs for Testability

To preload a register to an active HIGH level, the following steps are required:

- 1. Apply a logic HIGH level voltage to the output enable input (Pin 11) to three-state the device.
- After the specified time (t_{XZ}) raise desired output pin to the control voltage level (Vz) and hold for the specified time (t_{CLR}). (Register is set HIGH, output active LOW).

To preload all registers simultaneously to an active LOW level, the following steps are required:

 Raise input Pin 2 to the control voltage (Vz) for the specified time (t_{set}). (All registers reset LOW, all outputs will be set active HIGH true).

Programming

The FASTPLA 16P8B Series is programmed by applying a control signal to the Edit Enable pin (pin 11) and appropriate programming waveforms to the Fusing Supply (pin 1). Individual fuses are addressed by applying TTL levels to the row and column address inputs. The Edit Output pin (pin 12 open collector output) is active HIGH when the selected fuse has been programmed.

Programming Sequence*:

- 1. Connect pin 10 (GND) to Ground.
- 2. Connect pin 20 (V_{CC}) to 5.5 V.
- 3. Connect pin 11 (Edit Enable) to 11 V.
- Connect pin 12 (Edit Output) to V_{CC} through a 1-2K resistor.
- 5. Connect pin 1 (Fusing Supply) to fusing current source.
- 6. Apply TTL levels to C_0 - C_6 and R_0 - R_5 to address desired vertical fuse cell.
- Apply programming current pulse train to pin 1 reading pin 12 between pulses. Terminate the pulse train when pin 12 is TTL HIGH.
- 8. Repeat steps 6 and 7 for the next address.

Programming Timing Diagram

Verification Sequence*:

- 1. Connect pin 10 (GND) to Ground.
- 2. Connect pin 20 (V_{CC}) to 5.5 V.
- 3. Connect pin 11 (Edit Enable) to 11 V.
- Connect pin 12 (Edit Output) to V_{CC} though a 1-2K resistor.
- 5. Apply TTL levels to C₀-C₆ and R₀-R₅.
- 6. Read pin 12, TTL HIGH programmed cell. TTL LOW - unprogrammed cell.

*For additional information request Fairchild's complete programming algorithm specification.

Security Fuse

The security fuse is initially unprogrammed to allow editing and programming of the device. When programmed, the security fuse disables the verification circuitry on the device, thereby protecting the design from unauthorized dupication. Programming is accomplished by following the sequence as outlined in the programming specifications table.

Programming Specification Notes

- Total time V_{CC} is on to program cell is equal to or greater than the sum of all the specified delays, pulse width and rise/fall times
- 2. $t_{off} \ge t_{on}$
- 3. Rise & fall times are from 10% to 90%

- 4. Recommended programming temperature, $t_p = +25^{\circ} C \pm 10^{\circ}C$
- 5. Proceed to next address after pin 12 indicates a programmed cell
- 6. Return to input and/or output function when address is invalid

7. Does not include rise and fall times

Programming Specifications⁴

			Recommended			
Symbol	Parameter	Min	Values	Max	Units	Comments
Power Sup	oply					and a second
V _{CC}	Power Supply Voltage	5.4	5.5	5.6	v	
t _{rVCC}	Power Supply Rise Time	0.2	2.0		μS	See Note 3
t _{fVCC}	Power Supply Fall Time	0.2	2.0		μs	See Note 3
tonVCC	V _{CC} on Time ¹					See Programming
•	V _{CC} off Time ²					Timing Diagram
toffVCC	Duty Cycle for V _{CC}			50%		$t_{on}/(t_{on} + t_{off})$
Edit Enabl	e Power Supply					
						.
V _{EN}	Edit Enable Supply Voltage	10.5	11.0	11.5	V	Applied to Pin 11
t _{dEN}	Delay to Enable	1.0	2.0		μS	V _{CC} Settling Time
t _{rEN}	Enable Rise Time	0.4	2.0		μS	See Note 3
t _{fEN}	Enable Fall Time	0.4	2.0		μS	See Note 3
t _{dA}	Delay to Address	0.1	1.0		μS	Delay from 90% of V _{EN} unti Addresses are Valid ⁶
t _{dEA}	Delay to Address Invalid			1.0	μs	Delay from 90% of V _{EN} unti
•OEA				1.0	μο	Addresses are Invalid ⁶
t _{dVCC}	Delay to V _{CC} off	1.0	2.0		μS	
tonEN	V _{EN} on Time					See Programming
						Timing Diagram
t _{offEN}	V _{EN} off Time					
	Duty Cycle for V _{EN}			50%		$t_{on}/(t_{on} + t_{off})$
VIL		0	0	0.4	V	
VIH		2.4	5.0	5.0	V	
Read Strot	be ⁵					
t _{dAR}	Delay from Valid Address to	0.1	0.5		μs	Initial Check
	to Valid Read					
t _{dRP}	Delay from Read to	0.1			μs	
	Programming Pulse					
t _{dPR}	Delay from Programming	2.0			μS	Verify
tw	Pulse to Read Cell Read Time		1.0		μS	
	ing Current Pulse Train		1.0		μ3	
liop	Initial Current Pulse	40	40	60	mA	Current on Pin 1
lopmax	Prog. Current Limit	140	140	160	mA	Current on Pin 1
V _{opmax}	Prog. Voltage Limit	19	20	20	V	Voltage on Pin 1
t _{rlop}	Prog. Pulse Rise Time	0.3	1.0	1.45	μs	See Note 3
t _{flop}	Prog. Pulse Fall Time		0.1	0.5	μs	See Note 3
t _{dBP}	Delay to I _{lop}	2	3		μs	Delay from Address Valid
t _{pw}	Pulse Width	6	7	8	μs	See Note 7
l _{op}	Current Pulse Step	5	10	10	mA	Each Successive Pulse is
	Duty Cycle for Prog. Pulse	10	50	50	%	Increased by Delta I _{op}

See Notes on Page 15

16P8B, 16RP8B, 16PR6B, 16RP4B

Ordering Information

Packages

 $\begin{array}{l} SD = Slim \ Ceramic \ DIP \\ F = Flatpak \\ L = Leadless \ Chip \ Carrier \\ SP = Slim \ Plastic \ DIP \end{array}$

Temperature Ranges

 $C = 0^{\circ}C \text{ to } +75^{\circ}C$ M = -55°C to +125°C

Optional Processing

QB = Mil Std 883 Method 5004 & 5005, Level B QR = Commercial Device with 160 Hour Burn in

	Product Index and Selection Guide	1
	Quality Assurance and Reliability	2
	ECL RAMs	3
	TTL RAMs	4
	MOS Static RAMs	5
	ECL PROMs	6
	TTL PROMs	7
	TTL Programmable Logic	8
	Ordering Information and Package Outlines	9
	Field Sales Offices	10
7		

Package Availability

					I
Part Number	Side-Brazed	Cerdip	Plastic DIP	Leadless Chip Carrier	Cerpak
ECL RAMs					
F100145		6Y			4V
F100402		4J			3L
F100415		6D		_	3L
F100422		6Y			4V
F100422	_	SH			SI
F10145A		4J			3L
F10145A		4J			3L
F10415	_	6D			3L
F10422	_	6Y			4V
F10474		SH	_		SI
TTL RAMs					
93415	_	6D	9В		3L
93L415		6D	9B		3L
93422		6S	4K	21	4P
93L422		6S	4K	21	4P
93425		6D	9B		3L
93L425		6D	9B		3L
93425H		6D	9B		3L
		6S	90		J JL
93479	_	65	_		_
MOS Static RAMs					
F1600	МВ		RB	мс	
F1601	мв	_	RA, RB	мс	_
ECL PROMs				· · · · · · · · · · · · · · · · · · ·	
F100Z416	-	6D	-	_	3L
F10Z416	-	6D	_	—	3L
TTL PROMs					
93Z450		7L, 4H	9N	2J	4P
93Z451		7L, 4H	9N	23 2J	4P
93Z510		7L, 4H	9N	1J	4X
93Z510		1 '	9N	1J	4X
		7L, 4H			4/
93Z564	7S	-	· —	1J	
93Z565	75			1J	
93Z611	-	7L, 4H	RA	2J	4X
93Z667	SB			_	_
TTL Programmable Logic					
93Z458	_	8S	9Y	2J	2E
93Z459	_	85	9Y	2J	2E
16P8B		4E	9Z	SE	
16RP4B		4E	9Z	SE	_
16RP6B		4E 4E	9Z 9Z	SE	
16RP8B		4E 4E	9Z	SE	_
	L	<u> </u>	52		

4J 16-Pin Cerdip (.300)

Notes

Pins are solder or tin-plated alloy 42 or equivalent Pins are intended for insertion in hole rows on .300 (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board drilling dimensions should equal your practice for .030 (0.76) inch diameter holes Hermetically sealed alumina package Package weight is 2.0 grams Dimensions include glass over-run, misalignment, etc. Minimum width .023 on corner pins Lead thickness and width may increase by .003 (0.08) when lead finish is applied.

6D 16-Pin Cerdip (.300)

Notes

Pins are solder or tin-plated alloy 42 or equivalent Pins are intended for insertion in hole rows on .300 (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .030 (0.76)

hich dia. holes Hermetically sealed alumina package Package weight is 2.2 grams These dimensions include

These dimensions include misalignment, glass over-run etc... Lead thickness and width may increase by .003(0.08) when lead finish is applied.

All dimensions is inches **bold** and millimeters (parentheses)

Notes

Pins are solder or tin-plated alloy 42 or equivalent Package material is plastic Pins are intended for insertion in hole rows on .300 (7.63) centers They are purposely shipped with "positive" misalignment to facilitate insertion Package weight is 1.0 gram Package dimensions do not include permissible flash Lead thickness and width may increase by .003 (0.08) when lead finish is applied

3L 16-Pin Cerpak

Notes

Pins are solder or tin-plated alloy 42 or equivalent Base and cap are black alumina Package weight is 0.5 gram These dimensions include misalignment, glass over-run etc... Lead thickness and width may increase by .003 (0.08) when lead finish is applied

4E 20-Pin Cerdip (.300)

Notes

Pins are solder or tin-plated alloy 42 or equivalent Pins are intended for insertion in hole rows on .300 (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board drilling dimensions should equal your practice for .030 (0.76) inch diameter holes Hermetically sealed alumina package Package weight is 2.9 grams These dimensions include misalignment glass over-run etc...

*The .045 - .030 dimension does not apply to the corner pins Lead thickness and width may increase by .003 (0.07) when lead finish is applied.

Notes

Pins are nickel plated and solder dipped copper (olin 195) Pins are intended for insertion in hole rows on .300 (7.62) centers

They are purposely shipped with "positive" misalignment to

Board drilling dimensions should equal your practice for **.020**"

Board drilling universities and a set of the lead finish is applied

9Z

SE 20-Pin Leadless Chip Carrier

Notes Chip carrier is 90% minimum alumina, black. Lid is nickel/gold plated alloy 42 or equivalent.

WIDTH

Notes

Pins are Ni/Au plated alloy 42 or equivalent. Package material is 90% min. alumina. Cap is Ni/Au plated kovar or equivalent. Board drilling dimensions should equal your practice for .030(0.76) diameter holes. Pins are intended for insertion in hole rows on .300(7.62) centers.

Pins are purposely shipped with "positive" misalignment to facilitate insertion. Package weight is 2.05 grams.

Notes

Pins are solder or tin-plated alloy 42 or equivalent Hermetically sealed alumina package Pins are intended for insertion in hole rows on .400 (10.16) centers They are purposely shipped with

"positive" misalignment to facilitate insertion Package weight is 2.2 grams Board-drilling dimensions should

equal your practice for .030 (0.76) inch diameter holes These dimensions include misalignment, glass over-run etc ... Lead thickness and width may

increase by .003 (0.08) when lead finish is applied.

RB 22-Pin Plastic DIP (.300)

Notes Pins are solder or tin-plated alloy 42 Pins are intended for insertion in hole rows on .300 (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board drilling dimensions should

equal your practice for .020" (0.51) diameter lead Package weight is approximately 1.4

grams

Lead thickness and width may increase by .003 (0.08) when lead finish is applied.

Notes

Pins are solder or tin-plated alloy 42 or equivalent Package material is plastic Pins are intended for insertion in hole rows on .400 (10.16) centers They are purposely shipped with "positive" misalignment to facilitate insertion Package weight is 2.1 grams Package dimensions do not include permissible flash Lead thickness and width may increase .003 (0.08) when lead finish is applied

MC 22-Pin Leadless Chip Carrier

22-Pin Plastic DIP (.400)

4K

Notes

Chip carrier is 90% min. black alumina Cap is Ni/Au plated kovar or equivalent Cavity size is **.214 x .325** (5.44 x 8.26) Package weight is 0.60 gram

Notes

Pins are Ni/Au plated alloy 42 or equivalent Package material is alumina, 90% min. Lid is Ni/Au plated kovar or equivalent Board drilling dimensions should equal your practice for .030 (0.76) diameter holes Pins are intended for insertion in hold rows or .300 (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Lead angles ∝ 0° - 14°

Notes Pins are nickel/gold plated kovar or equivalent Package material is alumina, 90% min. Lid is Ni/Au plated kovar or

9

equivalent

Board drilling dimensions should equal your practice for .030 (0.76)

inch diameter holes

Pins are intended for insertion hole rows on .600 (15.24) centers Pins are purposely shipped with "positive" misalignment to facilitate insertion

Package weight is 4 grams

4H 24-Pin Cerdip (.300)

Notes

Pins are solder or tin-plated alloy 42 or equivalent Pins are intended for insertion in hole rows on .300 (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .030 (7.62) inch diameter pins Hermetically sealed alumina package Wackage weight is 6.7 grams

These dimensions include misalignment, glass over-run etc... Lead thickness and width may increase by **.003** (0.08) when lead finish is applied.

Notes

Pins are solder or tin-plated alloy 42 or equivalent Hermetically sealed alumina package Pins are intended for insertion in hole rows on .400 (10.16) centers They are purposely shipped with "positive" misalignment to facilitate insertion Package weight is 6.0 grams Board-drilling dimensions should equal your practice for .030 (0.76) inch diameter holes

These dimensions include misaignment, glass over-run etc... Lead thickness and width may increase by **.003** (0.08) when lead finish is applied

Notes

Pins are solder or tin-plated alloy 42 or equivalent Hermetically sealed alumina package Pins are intended for insertion in hole rows on .600 (15.25) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .030 (0.76) inch diameter holes Package weight is 7.1 grams These dimensions include misalignment, glass over-run etc ... Lead thickness and width may increase by .003 (0.08) when lead finish is applied.

RA 24-Pin Plastic DIP (.300)

Pins are intended for insertion in hole rows on **300** (7.62) They are purposely shipped with "positive" misalignment to facilitate insertion insertion Board drilling dimensions should equal your practice for .020 (0.51)

Pins are nickel plated and solder dipped copper, (Olin 195)

Notes

diameter lead

Package weight is approximately 1.5 grams

Lead thickness and width may increase by .003 (0.08) when lead finish is applied

21 24-Pin Leadless Chip Carrier

Notes

Chip carrier is 90% min. alumina, black Cap os Ni/Au plated kovar or equivalent All edge notches (except corners) are gold plated to connect to bottom gold lead plating Package weight is 0.75 gram

4P 24-Pin Cerpak (.375 sq.)

Notes

Pins are solder or tin-plated alloy 42 or equivalent Base and cap are black alumina Package weight is 0.8 gram These dimensions include misalignment, glass over-run etc... Lead thickness and width may increase by .003 (0.08) when lead finish is applied

Notes

Notes Pins are solder or tin-plated alloy 42 or equivaglent Package weight is 0.7 gram These dimensions include misalignment, glass over-run etc... Lead thickness and width may increase by .003 (0.08) when lead finish is applied.

9-13

Notes

Pins are solder or tin-plated alloy 42 or equivalent Base and cap are black alumina Package weight is 1.0 gram These diminsions include misalignment, glass over-run etc... Lead thickness and width may increase by .003 (0.08) when lead finish is applied

8S 28-Pin Cerdip (.600)

Notes

.011 (0.28) .009 (0.23)

.590 (14.99) .610 (15.49)

Pins are solder or tin-plated alloy 42 or equivalent Hermetically sealed alumina package Pins are intended for insertion in hole rows on .600 (15.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .030 (0.76) inch diameter holes Package weight is 8.6 grams These dimensions include misalignment, glass over-run etc ... Lead thickness and width may increase by .003 (0.08) when lead finish is applied

	1.465 (37.21) 1.455 (36.96)				No Pin
лллл	лллллл.	ллл	.055 (1.40) .045 (1.14) R	I	42 - Pac
			*		Pin
.235 (5.5	77)				ins
.225 (5.)					(15 The
<u> </u>		ÐĠ - (/	.555 (14.09) .545 (13.84)		"pc
.185	4.70)				ins
.175	4.45)		\searrow		Pac Pac
					per
CCCCCC.	TUTUT		\	.105 (2.67) .095 (2.41)	Lea
	/-			(2 PLACES)	inc fini
.065 (1.65) .055 (1.40)	125 (3. 115 (2	18)	.090 (2.28) .075 (1.90)		1
	.115 (2. (2 PLA			.610 (15.49) .590 (14.99)	
.155 (3.94) .025 (0.63	UNDER			.030 (0.76)	
.010 (0.25	I			.015 (0.36)	_
A		L L	.040 (1.02) .020 (0.51)		\overline{V}
			↓	A ±	7
-	ሊሊሊሊሊሊ	አለሥ	SEATING		- N
18 18 18 18 18			A PLANE		
				.020 (0.51) .011 (0.2 .005 (0.12) .009 (0.2	
արտորո		U U U		U	10 U TYP
		-	.110 (2.79)		
(2.54)	.040	.020 (0.51)	.145 (3.68)		
	.040 (1.02) TYP STANDOFF WIDTH	.020 (0.51) .016 (0.41)			

9Y 28-Pin Plastic DIP (.600)

Notes

Notes

42 or equivalent Package material is plastic Pins are intended for intended for insertion in hole rows on .600

(15.24) centers

finish is applied.

insertion

Pins are solder or tin-plated alloy

They are purposely shipped with "positive" misalignment to facilitate

Package weight is 4.5 grams Package dimensions do not include permissible flash. Lead thickness and width may increase by .003 (0.08) when lead

Notes Chip carrier is 90% min. black alumina Cap is Ni/Au plated kovar or equivalent All edge notches (except corners) are gold plated to connect to bottom gold lead plating Package weight is 2.7 grams

9

9-15

1J 28-Pin Leadless Chip Carrier

Notes Chip carrier is 90% min. alumina, black Cap is Ni/Au plate kovar or equivalent All edge notches (except corners) are gold plated to connect to bottom gold lead plating Package weight is 2.7 gram

2E 28-Pin Cerpak

Notes

Pins are solder or tin-plated alloy 42 or equivalent Base and cap are black alumina Package weight is 1.0 gram These dimensions include misalignment, glass over-run etc ... Lead thickness and width increase by .003 (0.08) when lead finish is applied

	Product Index and Selection Guide	1
	Quality Assurance and Reliability	2
	ECL RAMs	3
	TTL RAMs	4
	MOS Static RAMs	5
	ECL PROMs	6
N	TTL PROMs	7
$\left \right\rangle$	TTL Programmable Logic	8
	Ordering Information and Package Outlines	9
	Field Sales Offices	10

Alahama

Hamilton/Avnet Electronics 4940 Research Dr. N.W. Huntsville, Alabama 35805 Tel: 205-837-7210 TWX: 810-726-2162

Schweber Electronics 2227 Drake Avenue S.W. Huntsville, Alabama 35805 Tel: 205-882-2200

Arizona

Hamilton/Avnet Electronics 505 South Madison Drive Tempe Arizona 85281 Tel: 602-231-5100 TWX: 910-950-0077

Schweber Electronics 11049 N. 23rd Drive, Suite 100 Phoenix, Arizona 85029 Tel: 602-997-4874 TWX: 910-950-1174

Wyle Distribution Group 17855 N. Black Canvon Hwy. Phoenix, Arizona 85023 Tel: 602-866-2888 TWX: 910-951-4282

California

Arrow Electronics 19748 Dearborn Street Chatsworth, California 91311 Tel: 818-701-7500 TWX: 910-493-2086

Arrow Electronics 30941 San Clemente Street Hayward, California 94544 Tel: 415-487-4300

Arrow Electronics 9511 Ridge Haven Court San Diego, California 92123 Tel: 619-565-4800 TWX: 910-335-1195

Arrow Electronics 521 Weddell Avenue Sunnyvale, California 94086 Tel: 408-745-6600 TWX: 910-339-9371

Arrow Electronics 2961 Dow Avenue Tustin, California 92680 Tel: 714-838-5422

Avnet Electronics 350 McCormick Avenue Costa Mesa, California 92626 Tel: 714-754-6111 (Orange County) 213-558-2345 (Los Angeles) TWX: 910-595-1928

Avnet Electronics 20501 Plummer Street Chatsworth, California 91311 Tel: 818-883-0000 **This distributor carries Fairchild *die* products only.^{Tel: 714-851-9953}

Authorized Distributors

Schweber Electronics 21139 Victory Blvd. Canoga Park, California 91303 Tel: 818-999-4702

Hamilton/Avnet Electronics 3170 Pullman Avenue Costa Mesa, California 92626 Tel: 714-641-1850 TWX: 910-595-2638

Hamilton Electro Sales 10912 West Washington Blvd. Culver City, California 90230 Tel: 213-558-2121 TWX: 910-340-6364

Hamilton/Avent Electronics 4103 North Gate Blvd. Sacramento, California 95834 Tel: 916-920-3150

Hamilton/Avnet Electronics 4545 Viewridge Avenue San Diego, California 92123 Tel: 619-571-7527 TWX: 910-335-1216

Hamilton/Avnet Electronics 1175 Bordeaux Drive Sunnvvale, California 94086 Tel: 408-743-3355 TWX: 910-339-9332

Schweber Electronics 17822 Gillette Avenue Irvine California 92714 Tel: 714-863-0200

Schweber Electronics 90 East Tasman Drive San Jose, California 95134 Tel: 408-946-7171 TWX: 910-338-2043

Sertech Laboratories** 3170 Pullman Dr. Costa Mesa, California 92626 Tel: 714-754-0666

Wyle Distribution Group 26677 Agoura Road Calabasas, California 91302 Tel: 818-880-9001

Wyle Distribution Group 124 Maryland Street El Segundo, California 90245 Tel: 213-322-8100 TWX: 910-348-7140

Wyle Distribution Group 17872 Cowan Avenue Irvine, California 92714 Tel: 714-863-9953 Telex: 910-595-1572

Wyle Distribution Group Military Product Division 18910 Teller Avenue Irvine, California 92715

United States and Canada

Wyle Distribution Group 11151 Sun Center Drive Bancho Cordova, California 95670 Tel: 916-638-5282

Wyle Distribution Group 9525 Chesapeake San Diego, California 92123 Tel: 619-565-9171 TWX: 910-335-1590

Wyle Distribution Group 3000 Bowers Avenue Santa Clara, California 95051 Tel: 408-727-2500 TWX: 910-338-0541

Zeus Components, Inc. 1130 Hawk Circle Anaheim, California 92807 Tel: 714-632-6880

Zeus Components, Inc. 3350 Scott Blvd., Bldg. 6402 Santa Clara, California 95051 Tel: 408-727-0714 TWX: 910-338-2121

Colorado

Arrow Electronics 1390 S. Potomac Street, Suite 136 Aurora, Colorado 80012 Tel: 303-696-1111 TWX: 910-331-0552

Hamilton/Avnet Electronics 8765 E. Orchard Rd. Suite 708 Englewood, Colorado 80111 Tel: 303-740-1000 TWX: 910-935-0787

Wyle Distribution Group 451 East 124th Avenue Thornton, Colorado 80241 Tel: 303-457-9953 TWX: 910-936-0770

Connecticut

Arrow Electronics 12 Beaumont Road Wallingford, Connecticut 06492 Tel: 203-265-7741 TWX: 710-476-0162

Hamilton/Avnet Electronics Commerce Drive, Commerce Park Danbury, Connecticut 06810 Tel: 203-797-2800 TWX: 710-546-9974

Schweber Electronics **Finance Drive Commerce Industrial Park** Danbury, Connecticut 06810 Tel: 203-792-3500 TWX: 710-456-9405

Florida

Arrow Electronics 350 Fairway Drive Deerfield Beach, Florida 33441 Tel: 305-429-8200 TWX: 510-955-9456

Arrow Electronics 1530 Bottlebrush Dr. N.E. Palm Bay, Florida 32905 Tel: 305-725-1480 TWX: 510-959-6337

Chip Supply** 7725 N. Orange Blossom Trail Orlando, Florida 32810 Tel: 305-298-7100 TWX: 810-850-0103

Hamilton/Avnet Electronics 6801 N.W. 15th Way Ft. Lauderdale, Florida 33309 Tel: 305-971-2900 TWX: 510-956-3097

Hamilton/Avnet Electronics 3197 Tech Drive, North St. Petersburg, Florida 33702 Tel: 813-576-3930 TWX: 810-863-0374

Hamilton/Avnet Electronics 6947 University Blvd. Winter Park, Florida 32792 Tel: 305-628-3888 TWX: 810-853-0322

Schweber Electronics 215 North Lake Blvd. Altamonte Springs, Florida 32701 Tel: 305-331-7555

Schweber Electronics 2830 North 28th Terrace Hollywood, Florida 33020 Tel: 305-927-0511 TWX: 510-954-0304

Georgia

Arrow Electronics 3155 Northwoods Pkwy Suite A Norcross, Georgia 30071 Tel: 404-449-8252 TWX: 810-766-0439

Hamilton/Avnet Electronics 5825-D Peachtree Corners East Norcross, Georgia 30092 Tel: 404-447-7500 TWX: 810-766-0432

Schweber Electronics 2979 Pacific Drive, Suite E Norcross, Georgia 30092 Tel: 404-449-9170

Illinois

Arrow Electronics 2000 Algonquin Road Schaumburg, Illinois 60195 Tel: 312-397-3440 TWX: 910-291-3544

Hamilton/Avnet Electronics 1130 Thorndale Avenue Bensenville, Illinois 60106 Tel: 312-860-7780 TWX: 910-227-0060

Authorized Distributors

Schweber Electronics 904 Cambridge Avenue Elk Grove Village, Illinois 60007 Tel: 312-364-3750 TWX: 910-222-3453

Indiana

Arrow Electronics 2495 Directors Row Suite H Indianapolis, Indiana 46241 Tel: 317-243-9353 TWX: 810-341-3119

Hamilton/Avnet Electronics 485 Gradle Drive Carmel, Indiana 46032 Tel: 317-844-9333 TWX: 810-260-3966

Iowa Arrow Electronics

1930 St. Andrews N.E. Cedar Rapids, Iowa 52402 Tel: 319-395-7230

Schweber Electronics 5270 N. Park Place N.E. Cedar Rapids, Iowa 52402 Tel: 319-373-1417

Kansas

Hamilton/Avnet Electronics 9219 Quivira Road Overland Park, Kansas 66215 Tel: 913-888-8900 TWX: 910-743-0005

Schweber Electronics 10300 W. 103rd St., Suite 103 Overland Park, Kansas 66214 Tel: 913-492-2921

Kentucky Hamilton/Avnet Electronics 1051-D Newtown Pike Lexington, Kentucky 40511

Maryland

Arrow Electronics 8300 Guitford Road Suite H, Rivers Center Columbia, Maryland 21046 Tel: 301-995-0003 TWX: 710-236-9005

Hamilton/Avnet Electronics 6822 Oak Hall Lane Columbia, Maryland 21045 Tel: 301-995-3500 TWX: 710-862-1861

Schweber Electronics 9330 Gaither Road Gaithersburg, Maryland 20877 Tel: 301-840-5900 TWX: 710-828-9749

United States and Canada

Massachusetts

Arrow Electronics One Arrow Drive Woburn, Massachusetts 01801 Tel: 617-933-8130 TWX: 710-392-6770

Gerber Electronics 128 Carnegie Row Norwood, Massachusetts 02062 Tel: 617-329-2400 TWX: 710-336-1987

Hamilton/Avnet Electronics 10-D Centennial Drive Peabody, Massachusetts 01960 Tel: 617-531-7430 TWX: 710-393-0382

Schweber Electronics 25 Wiggins Avenue Bedford, Massachusetts 01730 Tel: 617-275-5100 TWX: 710-326-0268

Sertech Laboratories** 10-B Centennial Drive Peabody, Massachusetts 01960 Tel: 617-531-8673 TWX: 710-347-0223

Zeus Components, Inc. 25 Adams Street Burlington, Massachusetts 01803 Tel: 617-273-0750 TWX: 710-332-0716

Michigan

Arrow Electronics 755 Phoenix Drive Ann Arbor, Michigan 48104 Tel: 313-971-8220 TWX: 810-223-6020

Arrow Electronics 3510 Roger B. Chafee, S.E. Grand Rapids, Michigan 49508 Tel: 616-243-0912

Hamilton/Avnet Electronics 2215 29th Street S.E. Space A5 Grand Rapids, Michigan 49508 Tel: 616-243-8805 TWX: 810-273-6921

Hamilton/Avnet Electronics 32487 Schoolcraft Livonia, Michigan 48150 Tel: 313-522-4700 TWX: 810-242-8775

Schweber Electronics 12060 Hubbard Avenue Livonia, Michigan 48150 Tel: 313-525-8100 TWX: 810-242-2983

**This distributor carries Fairchild die products only.

Minnesota

Arrow Electronics 5230 West 73rd Street Edina, Minnesota 55435 Tel: 612-830-1800 TWX: 910-576-3125

Hamilton/Avnet Electronics 10300 Bren Road East Minnetonka, Minnesota 55343 Tel: 612-932-0600 TWX: 910-576-2720

Schweber Electronics 7424 West 78th St. Edina, Minnesota 55435 Tel: 612-941-5280 TWX: 910-576-3167

Missouri

Arrow Electronics 2380 Schuetz Road St. Louis, Missouri 63146 Tel: 314-567-6888 TWX: 910-764-0882

Hamilton/Avnet Electronics 13743 Shoreline Court, East Earth City, Missouri 63045 Tel: 314-344-1200 TWX: 910-762-0684

Schweber Electronics 502 Earth City Expressway Earth City, Missouri 63045 Tel: 314-739-0526

New Hampshire

Arrow Electronics 1 Perimeter Road Manchester, New Hampshire 03103 Tel: 603-668-6968 TWX: 710-220-1684

Hamilton/Avnet Electronics 444 E. Industrial Drive Manchester, New Hampshire 03104 Tel: 603-624-9400

Schweber Electronics Bedford Farms Building 2 Kilton and South River Roads Manchester, New Hampshire 03102 Tel: 603-625-2250

New Jersey Arrow Electronics 6000 Lincoln Drive East Mariton, New Jersey 08053 Tel: 609-596-8000 TWX: 710-897-0829

Arrow Electronics 2 Industrial Road Fairfield, New Jersey 07006 Tel: 201-575-5300

Hamilton/Avnet ElectronicsSchr10 Industrial RoadJeriaFairfield, New Jersey 07006WesTel: 201-575-3390 TWX: 710-734-4388Tel:**This distributor carries Fairchild *die* products only.

Authorized Distributors

Hamilton/Avnet Electronics #1 Keystone Avenue Cherry Hill, New Jersey 08003 Tel: 609-424-0100 TWX: 710-940-0262

Schweber Electronics 18 Madison Road Fairfield, New Jersey 07006 Tel: 201-227-7880 TWX: 710-734-4305

New Mexico

Arrow Electronics 2460 Alamo Avenue S.E. Albuquerque, New Mexico 87106 Tel: 505-243-4566 TWX: 910-989-1679

Hamilton/Avnet Electronics 2524 Baylor Drive, S.E. Albuquerque, New Mexico 87106 Tel: 505-765-1500 TWX: 910-989-0614

New York

Arrow Electronics 25 Hub Drive Melville, New York 11747 Tel: 516-694-6800 TWX: 510-224-6155 & 510-224-6126

Arrow Electronics 20 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-1000 TWX: 510-227-6623

Arrow Electronics P.O. Box 370 7705 Maltiage Drive Liverpool, New York 13088 Tel: 315-652-1000 TWX: 710-545-0230

Arrow Electronics 3375 Brighton-Henrietta Town Line Road Rochester, New York 14623 Tel: 716-275-0300 TWX: 510-253-4766

Hamilton/Avnet Electronics 933 Motor Parkway Hauppauge, New York 11788 Tel: 516-231-9800 TWX: 510-224-6166

Hamilton/Avnet Electronics 333 Metro Park Rochester, New York 14623 Tel: 716-475-9130 TWX: 510-253-5470

Hamilton/Avnet Electronics 103 Twin Oaks Drive Syracuse, New York 13207 Tel: 315-437-2642 TWX: 710-541-1560

Schweber Electronics Jericho Turnpike Westbury, L.I., New York 11590 Tel: 516-334-7474 TWX: 510-222-3660

United States and Canada

Schweber Electronics 3 Town Line Circle Rochester, New York 14623 Tel: 716-424-2222

Summit Distributors, Inc. 916 Main Street Buffalo, New York 14202 Tel: 716-884-3450 TWX: 710-522-1692

Zeus Components, Inc. 100 Midland Avenue Port Chester, New York 10573 Tel: 914-937-7400 TWX: 710-567-1248

North Carolina

Arrow Electronics 5240 Greens Dairy Road Raleigh, North Carolina 27604 Tel: 919-876-3132 TWX: 510-928-1856

Hamilton/Avnet Electronics 3510 Spring Forest Road Raleigh, North Carolina 27604 Tel: 919-878-0819 TWX: 510-928-1836

Schweber Electronics 5285 North Blvd. Raleigh, North Carolina 27604 Tel: 919-876-0000

Ohio

Arrow Electronics 7620 McEwen Road Centerville, Ohio 45459 Tel: 513-435-5563 TWX: 810-459-1611

Arrow Electronics 6238 Cochran Road Solon, Ohio 44139 Tel: 216-248-3990 TWX: 810-427-9409

Hamilton/Avnet Electronics 954 Senate Drive Dayton, Ohio 45459 Tel: 513-433-0610 TWX: 810-450-2531

Hamilton/Avnet Electronics 4588 Emery Industrial Parkway Warrensville Heights, Ohio 44128 Tel: 216-831-3500 TWX: 810-427-9452

Hamilton/Avnet Electronics 777 Brooksedge Blvd. Westerville, Ohio 43081 Tel: 614-882-7004

Schweber Electronics 23880 Commerce Park Road Beachwood, Ohio 44122 Tel: 216-464-2970 TWX: 810-427-9441

Schweber Electronics 7865 Paragon Road Dayton, Ohio 45459 Tel: 513-439-1800

Oklahoma

Arrow Electronics 4719 S. Memorial Tulsa, Oklahoma 74145 Tel: 918-665-7700

Schweber Electronics 4815 S. Sheridan Rd. Tulsa, Oklahoma 74145 Tel: 918-622-8000

Oregon

Arrow Electronics 10260 S.W. Nimbus Suite M3 Tigard, Oregon 97223 Tel: 503-684-1690 TWX: 910-464-0007

Hamilton/Avnet Electronics 6024 S.W. Jean Road Building C, Suite 10 Lake Oswego, Oregon 97034 Tel: 503-635-8157 TWX: 910-455-8179

Wyle Distribution 5250 N.E. Elam Young Parkway Hillsboro, Oregon 97124 Tel: 503-640-6000

Pennsylvania

Arrow Electronics 650 Seco Road Monroeville, Pennsylvania 15146 Tel: 412-856-7000 TWX: 710-797-3894

Schweber Electronics 231 Gilbraltor Horsham, Pennsylvania 19044 Tel: 215-441-0600 TWX: 510-665-6540

Texas

Arrow Electronics 2227 W. Braker Lane Austin, Texas 78758 Tel: 512-835-4180 TWX: 910-874-1348

Arrow Electronics 3220 Commander Drive Carrollton, Texas 75006 Tel: 214-380-6464 TWX: 910-860-5377

Arrow Electronics 10899 Kinghurst, Suite 100 Houston, Texas 77099 Tel: 713-530-4700 TWX: 910-880-4439

Authorized Distributors

Hamilton/Avnet Electronics 1807 West Braker Lane Austin, Texas 78758 Tel: 512-837-8911 TWX: 910-874-1319

Hamilton/Avnet Electronics 8750 Westpark Houston, Texas 77063 Tel: 713-780-1771 TWX: 910-881-5523

Hamilton/Avnet Electronics 2111 W. Walnut Hill Lane Irving, Texas 75062 Tel: 214-659-4111 TWX: 910-860-5929

Schweber Electronics 6300 La Calma Drive Suite 240 Austin, Texas 78752 Tel: 512-458-8253

Schweber Electronics 4202 Beltway Drive Dallas, Texas 75234 Tel: 214-661-5010 TWX: 910-860-5493

Schweber Electronics 10625 Richmond, Suite 100 Houston, TExas 77042 Tel: 713-784-3600 TWX: 910-881-4836

Wyle Distribution Group 2120 West Braker Lane Suite F Austin, TExas 78758 Tel: 512-834-9957

Wyle Distribution Group 11001 S. Wilcrest, Suite 100 Houston, Texas 77099

Wyle Distribution Group 1810 N. Greenville Richardson, Texas 75081 Tel: 214-235-9953

Zeus Components, Inc. 14001 Goldmark, Suite 250 Dallas, Texas 75240 Tel: 214-783-7010

Utah

Arrow Electronics 1515 West 2200 South Salt Lake City, Utah 84119 Tel: 801-972-0404

Hamilton/Avnet Electronics 1585 West 2100 South Salt Lake City, Utah 84119 Tel: 801-972-2800 TWX: 910-925-4018

United States and Canada

Wyle Distribution Group 1959 South 4130 West, Unit B Salt Lake City, Utah 84104 Tel: 801-974-9953

Virginia

Arrow Electronics 8002 Discovery Drive Richmond, Virginia 23285 Tel: 804-282-0413 TWX: 710-956-0169

Washington

Arrow Electronics 14320 N.E. 21st Street Bellevue, Washington 98005 Tel: 206-643-4800 TWX: 910-443-3033

Hamilton/Avnet Electronics 14212 N.E. 21st Street Bellevue, Washington 98005 Tel: 206-453-5844 TWX: 910-443-2469

Wyle Distribution Group 1750 132nd Avenue N.E. Bellevue, Washington 98005 Tel: 206-453-8300 TWX: 910-443-2526

Wisconsin

Arrow Electronics 200 North Patrick Blvd. Brookfield, Wisconsin 53005 Tel: 414-792-0150 TWX: 910-262-1193

Hamilton/Avnet Electronics 2975 South Moorland Road New Berlin, Wisconsin 53151 Tel: 414-784-4510 TWX: 910-262-1182

Schweber Electronics 150 Sunnyslope Road, Suite 120 Brookfield, Wisconsin 53005 Tel: 414-784-9020

Canada

Future Electronics Corporation 5809 MacLeod Trail S. Unit 109 Calgary, Alberta T240J9 Tel: 403-259-6437

Future Electronics, Inc. 82 St. Regis Crescent North Downsview, Ontario, M3J 1Z3, Canada Tel: 416-638-4771 TWX: 610-491-1470

Future Electronics, Inc. Baxter Center 1050 Baxter Road Ottawa, Ontario, K2C 3P2, Canada Tel: 613-820-8313

**This distributor carries Fairchild die products only.

Authorized Distributors

United States and Canada

Future Electronics Inc. 237 Hymus Blvd. Pointe Claire (Montreal), Quebec, H9R 5C7, Canada Tel: 514-694-7710 TWX: 610-421-3251

Future Electronics Corporation 3070 Kingsway Vancouver B.C. B5R 5J7 Tel: 604-438-5545

Hamilton/Avnet Canada Ltd. 6845 Rexwood Road, Units 3-4-5 Mississauga, Ontario, L4V 1R2, Canada Tel: 416-677-7432 TWX: 610-492-8867 Hamilton/Avnet Canada Ltd. 190 Colonnade Road Nepean, Ontario, K2E 7J5, Canada Tel: 613-226-1700 Telex: 0534-971

Hamilton/Avnet Canada Ltd. 2795 Halpern Road ST. Laurent, Quebec, H4S 1P8, Canada Tel: 514-335-1000 TWX: 610-421-3731

Semad Electronics Ltd. 9045 Cote De Liesse Suite 101 Dorval, Quebec, H9P 2M9, Canada Tel: 514-636-4614 TWX: 610-422-3048 Semad Electronics Ltd. 864 Lady Ellen Place Ottawa, Ontario, K1Z 5M2, Canada Tel: 613-722-6571 TWX: 610-562-1923

Semad Electronics, Ltd. 85 Spy Court Markham, Ontario, L3R 4Z4, Canada Tel: 416-475-8500 TWX: 610-492-2510

Sales Offices

United States and Canada

Alabama

Huntsville Office 555 Sparkman Drive, Suite 1030 Huntsville, Alabama 35805 Tel: 205-837-8960

Arizona

Phoenix Office 9201 North 25th Ave., Suite 215 Phoenix, Arizona 85021 Tel: 602-943-2100 TWX: 910-950-0199

California

Auburn Office 320 Aeolia Drive Auburn, California 95603 Tel: 916-823-6664

Costa Mesa Office 3505 Cadillac Avenue Suite 0-104 Costa Mesa, California 92626 Tel: 714-241-5900 TWX: 910-595-1109

Encino Office Crocker Bank Bldg. 15760 Ventura Blvd., Suite 1027 Encino, California 91436 Tel: 818-990-9800 TWX: 910-495-1776

Cupertino Office 10400 Ridgeview Court Cupertino, California 95014 Tel: 408-864-6200

San Diego Office 4355 Ruffin Road, Suite 100 San Diego, California 92123 Tel: 619-560-1332

Colorado

Denver Office 10200 E. Girard, Suite 222, Bldg. B Denver, Colorado 80231 Tel: 303-695-4927

Connecticut

Woodbridge Office 131 Bradley Road Woodbridge, Connecticut 06525 Tel: 203-397-5001

Florida

Altamonte Springs Office Crane's Roost Office Park 399 Whooping Loop Altamonte Springs, Florida 32701 Tel: 305-834-7000 TWX: 810-850-0152

Deerfield Beach Office 450 Fairway Drive, Suite 107 Deerfield Beach, Florida 33441 Tel: 305-421-3000 TWX: 510-955-4098

Georgia

Norcross Office 3220 Pointe Parkway, Suite 1200 Norcross, Georgia 30092 Tel: 404-441-2740 TWX: 810-766-4952

Illinois

Itasca Office 500 Park Blvd., Suite 575 Itasca, Illinois 60143 Tel: 312-773-3133 TWX: 910-651-0120

Indiana

Indianapolis Office 7202 N. Shadeland, Room 205 Castle Point Indianapolis, Indiana 46250 Tel: 317-849-5412 TWX: 810-260-1793

lowa

Cedar Rapids Office 373 Collin Road N.E., Suite 200 Cedar Rapids, Iowa 52402 Tel: 319-395-0090

Kansas

Overland Park Office 8600 West 110th Street, Suite 209 Overland Park, Kansas 66210 Tel: 913-451-8374

Wichita Office 2400 Woodlawn, Suite 221 Wichita, Kansas 67220 Tel: 316-687-1111 TWX: 710-826-9654

Maryland Columbia Office 10270 Old Columbia Rd., Suite A Columbia, Maryland 21046 Tel: 301-381-2500 TWX: 710-826-9654

Massachusetts

Waltham Office 1432 Main Street Waltham, Massachusetts 02154 Tel: 617-890-4000

Michigan

Farmington Hills Office 21999 Farmington Road Farmington Hills, Michigan 48024 Tel: 313-478-7400 TWX: 810-242-2973

Minnesota Minneapolis Office 3600 W. 80th Street, Suite 590 Bloomington, Minnesota 55431 Tel: 612-835-3322 TWX: 910-576-2944

New Jersey

New Jersey Office 783 Riverview Drive North Totowa, New Jersey 07512 Tel: 201-256-9011

New Mexico

Albuquerque Office North Building 2900 Louisiana N.E. Suite D Albuquerque, New Mexico 87110 Tel: 505-884-5601 TWX: 910-379-6435

New York

Endwell Office 421 East Main STreet Endicott, New York 13760 Tel: 607-757-0200

Fairport Office 815 Ayrault Road Fairport, New York 14450 Tel: 716-223-7700

Hauppauge Office 300 Wheeler Road Hauppauge, New York 11788 Tel: 516-348-0900 TWX: 510-221-2183

Poughkeepsie Office 19 Davis Avenue Poughkeepsie, New York 12603 Tel: 914-473-5730 TWX: 510-248-0030

North Carolina Raleigh Office 5970-C Six Forks Road Raleigh, North Carolina 27609

Tel: 919-848-2420 Ohio

Clevland Office 6133 Rockside Road, Suite 407 Cleveland, Ohio 44131 Tel: 216-447-9700

Dayton Office 7250 Poe Avenue, Suite 260 Dayton, Ohio 45414 Tel: 513-890-5813 TWX: 810-459-1833

Oregon

Portland Office 6600 S.W. 92nd Ave., Suite 27 Portland, Oregon 97223 Tel: 503-244-6020 TWX: 910-467-7842

Pennsylvania

Willow Grove Office Willow Wood Office Center Suite 110 3901 Commerce Ave. Willow Grove, Pennsylvania 19090 Tel: 215-657-2711

Sales Offices

United States and Canada

Texas

Austin Office 8240 Mopac Expressway, Suite 270 Austin, Texas 78759 Tel: 512-346-3990

Houston Office 9896 Bissonnet-2, Suite 470 Houston, Texas 77036 Tel: 713-771-3547 TWX: 910-881-8278

Richardson Office 1702 North Collins Blvd., Suite 101 Richardson, Texas 75081 Tel: 214-234-3811 TWX: 910-867-4824

Utah

Salt Lake City Office 5282 S. 320 West, Suite D120 Murray, Utah 84107 Tel: 801-266-0773

Washington

Bellevue Office 11911 N.E. First Street Suite 310 Bellevue, Washington 98005 Tel: 206-455-3190

Canada

Toronto Regional Office 2375 Steeles Avenue West, Suite 203 Downsview, Ontario M3J 3A8, Canada Tel: 416-665-5903 TWX: 610-491-1283

Montreal Office 3675 Sources Blvd. Suite 203 Dollard des Ormeaux Quebec H9B 2K4 Canada Tel: 514-683-0883

Ottawa Office 148 Colonnade Road So., Unit 13 Nepean, Ontario K2E 7J5 Tel: 613-226-8270 TWX: 610-562-1953

Fairtech Centers

3505 Cadillac Avenue Bldg. O Costa Mesa, California 92626 Tel: 714-556-TECH

1432 Main Street Waltham, Massachuesetts 02154 Tel: 617-890-4000

3600 W. 80th STreet Suite 590 Bloomington, Minnesota 55431 Tel: 612-333-TECH

1702 Collins Blvd. Suite 101 Richardson Texas 75080 Tel: 214-234-3811

10400 Ridgeview Court Cupertino, California 95014 Tel: 408-864-6200

Australia

Fairchild Australia Pty Ltd Suite 1, First Floor 366 White Horse Road Nunawading, Victoria 3131 Tel: 3-877-5444 Telex: 36496

Austria and Eastern Europe

Fairchild Electronics GMBH A-1120 Wien Meldinger Haupstrasse 46 Austria Tel: 43-222-858682 Telex: 115096

Brazil

Fairchild Semiconductores Ltda. Caixa Postal 30407 Rua Alagoas, 663 01242 Sao Paulo, Brazil Tel: 66-9092 Telex: 011-23831 Cable: FAIRLEC

Fairchild Semiconductor Ltd. Rua Oswaldo Cruz, 505 Caixa Postal 948 13100 Campinas SP Brazil Tel: 55-192-416655 55-192-416434

England

Fairchild Semiconductor 230 High Street Potters Bar Herts, England EN6 5BU

France

Fairchild Camera & Instrument S.A. 12Place Des Etats-Unis F-92120 Montrouge France Tel: 1-4746-6161 Telex: 201893F

Germany

Fairchild Camera and Instrument GmBH Daimlerstrasse 15 8046 Garching Hochbruck Munich, Germany Tel: (089)320031 Telex: 52 4831 fair d

Fairchild Camera and Instrument GmBH Oeltzenstrasse 15 3000 Hannover W. Germany Tel: 0511 17844 Telex: 09 22922

Fairchild Camera and Instrument GmBH Poststrasse 37 7251 Leonberg W. Germany Tel: 07152 41026 Telex: 07 245711 Fairchild Camera & Instrument (Deutschland) GMBH Frachtentrum Gebauede 458, Zimmer 2194 D-6000 Frankfurt Main 75 Germany Tel: 49-611-6905613 Telex: 0411829

Holland

Sales

Offices

Fairchild Semiconductor Ruysdaelbaan 35 5613 Dx Eindhoven The Netherlands Tel: 00-31-40-446909 Telex: 00-1451024

Hong Kong

Fairchild Semiconductor Products 12th Floor, Austin Towre, 22-26A Austin Avenue, Tsimshatsui Kowloon, Hong Kong Tel: 3-440233 Telex: 11780-73531

Fairchild Semiconductor (HK) Ltd. 5/F-6/F, San Miguel Bldg. 9-11, Shing Wan Road Tai Wai, Shatin NT Hong Kong Tel: 852-0-6055311 Telex: 852050511

Italy

Fairchild Semiconducttori, S.P.A. Viale Corsica 7 20133 Milan, Italy Tel: 39-2-749-1271 TWX: CORPHQ.MOLN

Fairchild Semiconducttori S.P.A. Viale Corsica 7 20133 Milano, Italy Tel: 296001-5 Telex: 843-330522

Japan

Nippon Fairchild K.K. 7th Floor Pola Shibuya Bidg. 15-21 Shibuya 1-Choma Shibuya-Ku Tokyo 150, Japan Tel: 81-3-4008351 Telex: CORPHQ.TFCD

Fairchild Japan Corporation Yotsubashi Chuo Bldg. 1-4-26, Shinmachi Nishi-Ku, Osaka 550, Japan Tel: 06-541-6138/9

International

Korea

Fairchild Semiconductor Korea Ltd. 219-6 Karibong-Dong Kuro-Ku Seoul, Korea 150-06 Kuro P.O. Box 37 Tel: 82-2-8641261 or 82-2-8642411 Telex: 78723670 (FAIRKOR) TWX: KORA

(mailing address) Central P.O. Box 2806

Mexico

Fairchild Mexicana S.A. Blvd. Adolofo Lopez Meteos No. 163 Mexico 19, D.F. Tel: 905-563-5411 Telex: 017-71-038

Scandinavia

Fairchild Semiconductor AB Svartengsgatan 6 S-11620 Stockholm Sweden Tel: 8-449255 Telex: 17759

Singapore

Fairchild Singapore Pty. Ltd. No. 11, Lorong 3 Toa Payoh, Singapore 12 Republic of Singapore Tel: 65-253-1066

Switzerland

Fairchild Camera & Instrument (Deutshland) GMBH Baumackerstr. 46 CH-8050 Zurich Schweiz Tel: 41-1-3114230 Telex: 58311

Taiwan

Fairchild Semiconductor Ltd. Hsietsu Bldg., Room 502 47 Chung Shan North Road Sec. 3 Taipei, Taiwan Tel: 573205 thru 573207

United Kingdom

Fairchild Camera and Instrument Ltd. Semiconductor Division 230 High Street Potters Bar Hertfordshire EN6 5BU England Tel: 0707 51111 Telex: 262835

A Schlumberger Company

Fairchild cannot assume responsibility for use of any circuitry described other than circuitry embodied in a Fairchild product. No other circuit patent licenses are implied.

Manufactured under one or more of the following U.S. Patents: 3,586,922, 3,590,274, 3,639,781, 3,648,125; other patents pending.

Fairchild reserves the right to make changes in the circuitry or specifications at any time without notice.

Printed in U.S.A. 605050 40M