

Memory
 Data Book

1985 Jan 14

Table of Contents

Chapter 1 Product Index, Selection Guide, and Cross Reference
Product Index 1-3
Selection Guide 1-5
Cross Reference 1-6
Chapter 2 Quality Assurance and Reliability Introduction 2-5
Incoming Quality Inspection 2-5
Process Quality Control 2-5
Quality Assurance 2-8
Reliability 2-9
Chapter 3 ECL RAMs 3-3
Chapter 4 TTL RAMs 4-3
Chapter 5 MOS STATIC RAMs 5-3
Chapter 6 ECL PROMs 6-3
Chapter 7 TTL PROMs
Data Sheets 7-4
Isoplanar-Z 7-16
Isoplanar-Z Programming 7-18
Chapter 8 TTL Programmable Logic 8-3
Chapter 9 Package Outlines 9-3
Chapter 10 Field Sales Offices and 10-3 Distributor Locations

TTL. Programmable Logic $=8$
Ordering Information and Package Outlines 9

Numerical Index of Devices

Page
F100K Series ECL
DC Family Electrical Specifications 3-3, 6-3
F100145 16×4-Bit Register File (RAM) 3-6
F100402 16×4-Bit Register File (RAM) 3-12
F100415 1024×1-Bit Static RAM 3-16
F100Z416 256×4-Bit PROM - Isoplanar-Z Fuse 6-6
F100422 256×4-Bit Static RAM 3-22
F100474 1024×4-Bit Static RAM 3-27
F100480 $\quad 16,384 \times 1$-Bit Static RAM 3-29
F10K Series ECL
DC Family Electrical Specifications 3-5, 6-5
F10145A 16×4-Bit Register File (RAM) 3-31
F10402 16×4-Bit Register File (RAM) 3-35
F10415 1024×1-Bit Static RAM 3-39
F10Z416 256×4-Bit PROM - Isoplanar-Z Fuse 6-8
F10422 256×4-Bit Static RAM 3-45
F10474 1024×4-Bit Static RAM 3-50
F10480 $\quad 16,384 \times 1$-Bit Static RAM 3-52
93xxx Series TTL
TTL Family Electrical Specifications 4-3, 7-3
$934151024 \times$ 1-Bit Static RAM - Open Collector 4-5
93 L415 1024×1-Bit Static RAM - Low Power, Open Collector 4-5
$93422 \quad 256 \times 4$-Bit Static RAM - Three State 4-13
$93 L 422256 \times 4$-Bit Static RAM - Low Power, Three State 4-19
934251024×1-Bit Static RAM - Three State 4-25
93425H 1024×1-Bit Static RAM - High Speed, Three State 4-33
93L425 1024×1-Bit Static RAM - Low Power, Three State 4-25
93Z450 1024×8-Bit PROM - Isoplanar-Z Fuse, Open Collector 7-4
$93 Z 451 \quad 1024 \times 8$-Bit PROM - Isoplanar-Z Fuse, Three State 7-4
93Z458 $16 \times 48 \times 8$ FPLA - Isoplanar-Z Fuse, Open Collector 8-3
$93 Z 45916 \times 48 \times 8$ FPLA - Isoplanar-Z Fuse, Three State 8-3
93479256×9-Bit Static RAM - Three State 4-39
$93 Z 5102048 \times 8$-Bit PROM - Isoplanar-Z Fuse, Open Collector 7-8
$93 Z 5112048 \times 8$-Bit PROM - Isoplanar-Z Fuse, Three State 7-8
$93 Z 5648196 \times 8$-Bit PROM - Isoplanar-Z Fuse, Open Collector 7-12
$93 Z 5658196 \times 8$-Bit PROM - Isoplanar-Z Fuse, Three State 7-12
MOS Static RAM
F1600 $\quad 65,536 \times 1$-Bit Static RAM 5-3
F1600 $65,536 \times 1$-Bit Static RAM, Military Temperature Range 5-11
F1601 $65,536 \times 1$-Bit Static RAM, Data Retention Version 5-18

Selection Guide

	Device	Page
F100K RAMs		
16×4-Bit Register File (RAM).	F100145	3-6
16×4-Bit Register File (RAM).	F100402	3-12
1024×1-Bit RAM	F100415	3-16
256×4-Bit RAM.	F100422	3-22
1024×4-Bit RAM	F100474	3-27
16,384 $\times 1$-Bit RAM	F100480	3-29
F10K RAMs		
16×4-Bit Register File (RAM).	F10145A	3-31
16×4-Bit Register File (RAM) .	F10402	3-35
1024×1-Bit RAM	F10415	3-39
256×4-Bit RAM.	F10422	3-45
1024×4-Bit RAM	F10474	3-50
16,384 $\times 1$-Bit RAM	F10480	3-52
TTL RAMs		
1024×1-Bit RAM - Open Collector	93415	4-5
1024×1-Bit RAM - Low Power, Open Collector	93 L 415	4-5
256×4-Bit RAM - Three State	93422	4-13
$256 \times$ 4-Bit RAM - Low Power, Three State	93 L 422	4-19
1024×1-Bit RAM - Three State	93425	4-25
1024×1-Bit RAM - High Speed, Three State .	93425H	4-33
1024×1-Bit RAM - Low Power, Three State .	93 L 425	4-25
256×9-Bit RAM - Three State	93479	4-39
MOS Static RAM		
65,536 $\times 1$-Bit Static RAM	F1600	5-3
$65,536 \times 1$-Bit Static RAM, Military Temperature Range	F1600	5-11
65,836 $\times 1$-Bit Static RAM, Data Retention Version	F1601	5-18
F100K PROM		
$256 \times$ 4-Bit PROM - Isoplanar-Z Fuse	F100Z416	6-6
F10K PROM		
$256 \times$ 4-Bit PROM - Isoplanar-Z Fuse	F10Z416	6-8
TTL PROMs		
1024×8-Bit PROM - Open Collector	$93 Z 450$	7-4
1024×8-Bit PROM - Three State . . .	$93 Z 451$	7-4
2048×8-Bit PROM - Open Collector	$93 Z 510$	7-8
2048×8-Bit PROM - Three State .	$93 Z 511$	7-8
8196×8-Bit PROM - Open Collector	$93 Z 564$	7-12
8196×8-Bit PROM - Three State	$93 Z 565$	7-12
Isoplanar-Z Junction Fuse Principles and Programming		7-16
Isoplanar-Z TTL PROM Current Ramp Programming Specifications		7-18
Isoplanar-Z TTL PROM Current Pulse Programming Specifications		7-20
TTL Programmable Logic		
$16 \times 48 \times 8$ FPLA - Open Collector	$93 Z 458$	8-3
$16 \times 48 \times 8$ FPLA - Three State	93Z459	8-3

ECL/TTL RAMs and PROMs Cross Reference Guide

FSC P/N	Org	Output	TAA	Pkg Pins	Other Features	AMD	Harris	Hitachi	INMOS
10145A	16x4	ECL	9	24	REG FILE			HD10145	
100145	16x4	ECL	9	24	REG FILE			HD100145	
10402	16×4	ECL	6	16	REG FILE				
100402	16x4	ECL	6	16	REG FILE				
10415	$1 \mathrm{Kx1}$	ECL	10	16		AM10415		HM2110/12	
100415	1Kx1	ECL	10	16		AM100415		HD100415	
10422	256x4	ECL	10	24		AM10422		HD10422	
100422	256x4	ECL	10	24		AM100422		HD100422	
93415	$1 \mathrm{Kx1}$	OC	30/25	16		AM93415			
93 L 415	$1 \mathrm{Kx1}$	OC	45/35	16					
93425	$1 \mathrm{Kx1}$	TS	30/25	16		AM93425			
93 L 425	1Kx1	TS	45/35	16					
93425H	$1 \mathrm{Kx1}$	TS	25/20	16		AM93425			
93419	64x9	OC	45/35	28					
93422	256x4	TS	45/35	22		AM93422			
93 L 422	256x4	TS	60/45	22		AM93L422			
93479	256x9	TS	45/35	22					
10416	256x4	ECL	20	16					
$10 \mathrm{Z416}$	256x4	ECL	20	16					
$100 Z 416$	256x4	ECL	20	16					
$93 Z 450$	$1 \mathrm{Kx8}$	OC	40/35	24		AM27S180	HM7680	HN25088	
$93 Z 450$	1Kx8	OC	40/35	24	SLIMLINE	AM27S180			
$93 Z 451$	1Kx8	TS	40/35	24		AM27S181	HM7681	HN25089	
$93 Z 451$	1Kx8	TS	40/35	24	SLIMLINE	AM27S181			
$93 Z 510$	2 Kx 8	OC	45	24		AM27S190		HN25168	
$93 Z 510$	2Kx8	OC	45	24	SLIMLINE	AM27S290			
$93 Z 511$	2Kx8	TS	45	24		AM27S191	HM76161	HN25169	
$93 Z 511$	$2 \mathrm{Kx8}$	TS	45	24	SLIMLINE	AM27S291			
$93 Z 564$	8 Kx 8	OC	55/45	24					
$93 Z 565$	8 Kx 8	TS	55/45	24		AM27S49	HM76641		
F1600	$64 \mathrm{Kx1}$	SMOS	70/55/45	22				HN6287	IMS1600

Fairchild Memory Products Listed on Military Jan Qualified Products List (QPL) - 38510 ${ }^{\mathbf{3}}$
Jan Part Numbering System

J	M38510/	$\mathbf{2 3 1}$	$\mathbf{0 2}$		B	E	B
Jan Designator	General	Refers to	Defines	Processing	Defines	Lead Finish	
Cannot be Marked	Procurement	Slash Sheet	Device	Level	Package	A Hot Solder Dip	
"J" Unless	Spec		Type	S	Type	B Tin Plate	
Qualified by				B	Per	C Gold Plate	
DESC-EQM					Slash		
					Sheet		

TTL RAMs

Fairchild Generic P/N ${ }^{1}$	Jan Slash No. ${ }^{2}$	Jan QPL Part	Organization	Access Time $\left(T_{A A}\right)$
93422DMQB	23110BWB	II	256X4, TS	60 ns
FMQB	23110BXB	II	256X4, TS	60 ns
LMQB	23110BYC	II	256X4, TS	60 ns
93422ADMQB	23114BWB	II	256X4, TS	45 ns
AFMQB	23114BXB	II	256X4, TS	45 ns
ALMQB	23114BYC	II	256X4, TS	45 ns
93L422DMQB	23112BWB	1	256X4, TS, LP	75 ns
FMQB	23112BXB	1	256X4, TS, LP	75 ns
LMQB	23112BYC	1	256X4, TS, LP	75 ns
93L422ADMQB	23115BWB	1	256X4, TS, LP	55 ns
AFMQB	23115BXB	1	256X4, TS, LP	55 ns
ALMQB	23115BYC	1	256X4, TS, LP	55 ns
93L415DMQB	23103BEB	1	1KX1, OC	70 ns
FMQB	23103BFB	1	1KX1, OC	70 ns
93425DMQB	23102BEB	1	1KX1, TS	60 ns
				$(T W S A=15, T W H D=5)$
	23106BEB	1	1KX1, TS	$\begin{aligned} & 60 \mathrm{~ns} \\ & (T W S A=10, T W H D=10) \end{aligned}$
FMQB	23102BFB	1	1KX1, TS	60 ns (TWSA=15, TWHD=5)
	23106BFB	1	1KX1, TS	60 ns (TWSA $=10, T W H D=10$)
93425ADMQB	23108BEB	1	1KX1, TS	45 ns
FMQB	23108BFB	1	1KX1, TS	45 ns
93L425DMQB	23104BEB	1	1KX1, TS, LP	70 ns
FMQB	23104BFB	1	1KX1, TS, LP	70 ns
93L425ADMQB	23113BEB	1	1KX1, TS, LP	50 ns
FMQB	23113BFB	1	1KX1, TS, LP	50 ns

TTL PROMs

Fairchild Generic P / \mathbf{N}^{1}	Jan Slash No. ${ }^{2}$	Jan QPL Part	Organization	Access Time $\left(T_{A A}\right)$
93Z511DMQB	$21002 B J B$	1	$2 K X 8$, TS	100 ns
	$21004 B J B$	1	$2 K \times 8$, TS	55 ns

Notes

${ }^{1}$ Fairchild HI-REL generic QB product is processed to Hi-Rel level QB flow (in full compliance with MIL-STD-883) of Figure 2-2 and tested to the limits specified in individual data sheets under DC, AC, and functional (FN) performance characteristics.
${ }^{2}$ Fairchild JAN product is processed to HI-REL JAN flow per MIL-M38510 and MIL-STD-883 and tested per the DC, AC, and FN performance characteristics of the respective military slash sheet.
${ }^{3}$ Check Qualified Product List (QPL) - 38510 for current JAN listings.

Legend

TS = Three-State
$A=$ Highspeed Version
OC = Open Collector
LP = Low Power Version

Notes

Notes

Quality Assurance and Reliability

Introduction

All Fairchild Memory and High Speed Logic Products are manufactured to strict quality and reliability standards. Product conformance to these standards is insured by careful monitoring of the following functions: (1) incoming quality inspection, (2) process quality control, (3) quality assurance, and (4) reliability.

Incoming Quality Inspection

Purchased piece parts and raw materials must conform to purchase specifications. Major monitoring programs are the inspection of package piece parts, inspection of raw silicon wafers, and inspection of bulk chemicals and materials. Two other important functions of incoming quality inspection are to provide real-time feedback to vendors and in-house engineering, and to define and initiate quality improvement programs.

Package Piece Parts Inspection

Each shipment of package piece parts is inspected and accepted or rejected based on AQL sampling plans. inspection tests include both inherent characteristics and functional use tests. Inherent characteristics include physical dimensions, color, plating quality, material purity, and material density. Functional use tests for various package piece parts include die attach, bond pull, seal, lid torque, salt atmosphere, lead fatigue, solderability, and mechanical strength. in these tests, the piece parts are sent through process steps that simulate package assembly. The units are then destructively tested to determine whether or not they meet the required quality and reliability levels.

Silicon Wafer Inspection

Each shipment of raw silicon wafers is accepted or rejected based on AQL sampling plans. Raw silicon waters are subjected to non-destructive and destructive tests. Included in the testing are flatness, physical dimensions, resistivity, oxygen and carbon content, and defect densities. The test results are used to accept or reject the lot.

Bulk Chemical and material Inspection

Bulk chemicals and materials play an important role in any semiconductor process. To insure that the bulk chemicals and materials used in processing Fairchild wafers are the highest quality, they are stringently tested for trace impurities and particulate or organic contamination. Mixtures are also analyzed to verify their chemical make-up.

Incoming inspection is only the first step in determining the acceptability of bulk chemicals and materials. After acceptance, detailed documentation is maintained to correlate process results to various vendors and to any variations found in mixture consistency.

Process Quality Control

Process quality is maintained by establishing and maintaining effective controls for monitoring the wafer fabrication process, reporting the results of the monitors, and initiating valid measurement techniques for improving quality and reliability levels.

Methods of Control

The process quality control program utilizes the following methods of control: (1) process audits, (2) environmental monitors, (3) process monitors, (4) lot acceptance inspections, (5) process qualifications, and (6) process integrity audits. These methods of control, defined below, characterize visually and electrically the wafer fabrication operation.

Process Audit - Audits concerning manufacturing operator conformance to specification. These are performed on all operations critical to product quality and reliability.

Environmental Monitor-Monitors concerning the process environment, i.e., water purity, air temperature/ humidity, and particulate count.

Process Monitor - Periodic inspection at designated process steps for verification of manufacturing inspection and maintenance of process average. These inspections provide both attribute and variables data.

Lot Acceptance - Lot by lot sampling. This sampling method is reserved for those operations deemed as critical and, as such, requiring special attention.

Process Qualification - Complete distributional analysis is run to specified tolerance averages and standard deviations. These qualifications are typically conducted on deposition and evaporation processes, i.e., epi, aluminum, vapox, and backside gold.

Process Integrity Audit - Special audits conducted on oxidation and metal evaporation processes (CV driftoxidation; SEM evaluation - metal evaporation).

Quality Assurance and Reliability

Data Reporting

Process quality control data is recorded on an attribute or variable basis as required; control charts are maintained on a regular basis. This data is reviewed at periodic intervals and serves as the basis for judging the acceptability of specific processes. Summary data from the various process quality control operations are relayed to cognizant line, engineering and management

Fig. 2-1 Process Flow Chart

personnel in real time so that, if appropriate, the necessary corrective actions can be immediately taken.

Process Flow

Figure 2-1 shows the integration of the various methods of control into the wafer fabrication process flow. The process flow chart contains examples of the process quality controls and inspections utilized in the manufacturing operation.

Process Controls (Examples)

A. Environmental
B. Chemical supplies
C. Substrate exam. (resistivity, flatness, thickness, crystal perfection, etc.)
D. Photoresist evaluation
E. Mask inspections
A. Process audit
A. Process audit/qualification
B. Environmental
C. Process monitors (thickness, pinhole and crack measurements)
E. C V Plotting
F. Calibration
A. Process audits
B. Environmental
C. Visual examinations
D. Photoresist evaluation (preparation, storage, application, baking, development and removal),
E. Etchant controls
F. Exposure controls (intensity, uniformity)

Quality Assurance and Reliability

Fig. 2-1 Process Flow Chart (cont'd.)

A. Process audits/qualification
B. Environmental
C. Temperature profiling
D. Quartz cleaning
E. Calibration
F. Electrical tests
(resistivity, breakdown
voltages, etc.)
A. Process audits/qualification
B. Environmental
C. Visual examinations
D. Epitaxy controls (thickness, resistivity cleaning, visual examination)
E. Metallization controls
(thickness, temperature cleaning, SEM, C V plotting)
F. Glassivation controls
(thickness, dopant concentraton, pinhole and crack measurements)
A. Process audit
B. Environments
C. Visual examinations
A. Process audit
B. Inspection

Quality Assurance and Reliability

Quality Assurance

To assure that all product shipped meets both internal Fairchild specifications for standard product and customer specifications in the case of negotiated specs, a number of QA inspections throughout the assembly process flow (Figure 2-2) are required.

The Hi-Rel and Standard Rel Assembly and Test Flows are shown below to provide a clearer understanding of

Fig. 2-2 HI-REL (Level B) Assembly and Test Flow (Per MIL-STD-883, Methods 5004, 5005

QA First Optical Inspection

Wafer Saw
Die Plate
Internal Visual (2nd Optical) Method 2010,
Cond. B
QA 2nd Optical Inspection Method 2010, Cond. B
QA Frame Attach Inspection
Frame Attach
Die Attach
QA Die Shear Strength
Lead Bond

Internal Visual (3rd Optical) Method 2010, Cond. B
QA 3rd Optical Inspection Method 2010, Cond. B
QA Seal Inspection

Seal
QA Bond Strength Method 2011 (Subgroup B-5)
External Visual (4th Optical)
QA External Visual Inspection (4th Optical)
Method 2009
the operations performed. Flows, much more detailed than the flows in Figures 2-2 and 2-3, govern the assembly and test of devices to Fairchild's specifications.

The Product built to the Hi-Rel Level B Assembly and Test Flow meet the requirements of MIL-STD-883 (Test Methods and Procedures for Microcircuits).

QA PDA Check
QA Group A Electrical Test (Room) DC, FN, AC
Electrical Test (Cold) DC, FN
QA Group A Electrical Test (Cold) DC, FN

Solder Finish (Where Applicable)
QA Solderability Method 2003 (Subgroup B-3)

Seal Test, Fine Leak (DIP's \& LCC's) Method 1014, Cond. B

Seal Test Gross Leak (DIP's \& LCC's) Method 1041, Cond. C

Mark
QA Resistance To Solvents (Subgroup B-2) Method 2015

Electrical Test (Hot) DC, FN
QA Group A, Electrical Test (Hot) DC, FN, AC
QA Seal Test, Fine \& Gross Leak Methods 1014, Cond. B \& 1014, Cond. C (Subgroup B-5)

Customer Finish \& External Visual/Mechanical
QA External Visual/Mechanical Method 2001

QA Physical Dimensions Method 2016
(Subgroup B-1)
DC Electrical Screen of QA Seal Test Samples
Pack

NOTE

The sequence of Operations Between Pre Burn-in Electrical Test and Hot Electrical Test May Differ Slightly.

Fig. 2-3 STD-REL Assembly and Test Flow

NOTE
The Sequence Of Operations Between Mark and Hot Electrical Test May Differ Slightly For Some Products.

Quality Assurance and Reliability

Reliability

A number of programs, among them qualification testing, reliability monitoring, failure analysis, and reliability data collection and presentation, are maintained.

Qualification Programs

All products receive reliability qualification prior to the product being released for shipment. Qualification is required for (1) new product designs, (2) new fabrication processes or (3) new packages or assembly processes. Stress tests are run in accordance to test methods described in MIL-STD-883. Test results are evaluated against existing reliability levels, and must be better than or equal to current product for the new product to receive qualification.

New Product Designs - Receive, as a minimum, $+125^{\circ} \mathrm{C}$ operating life tests. Readouts are normally scheduled at 168 hours, 500 hours, 1000 hours and 2000 hours. The samples stressed are electrically good units from initial wafer runs. Additional life testing, consisting of hightemperature operating life test, $85 / 85$ humidity bias tests, bias pressure pot (BPTH) tests, mechanical series or thermal series may be run as deemed necessary. Redesigns of existing device layouts are considered to be new product designs, and full qualification is necessary.

New Fabrication Processes - Qualifications are designed to evaluate the new process against the current process. Stress tests consist of operating life test, hightemperature operating life test, $85 / 85$ humidity bias test and/or biased pressure pot (BPTH) test. In addition, package environment tests may be performed, such as Thermal Series or Mechanical Series. Evaluations are performed on various products throughout the development stages of the new process. Units stressed are generally from split wafer runs. All processing is performed as a single wafer lot up to the new process steps, where the lot is split for the new and the current process steps. Then the wafers are recombined, and again processed as a single wafer lot. This allows for controlled evaluation of the new process against the standard process. Both significant modifications to existing process and transferring existing products to new fabrication plants are treated as a new process.

New Packages or Assembly Processes - Qualifications are performed for new package designs, changes to existing piece parts, changes in piece part vendors, and
significant modification to assembly process methods. In general, samples from three assembly runs are stressed to a matrix in accordance to MIL-STD-883, Method 5005 , group B, group C, subgroup 2, and group D (Table 2-1). In addition, $+100^{\circ} \mathrm{C}$ operating life tests, $85 / 85$ humidity bias tests, biased pressure pot (BPTH) tests and unbiased pressure pot tests are performed for plastic packages.

Reliability Monitors

Reliability testing of mature products is performed to establish device failure rates, and to identify problems occuring in production. Samples are obtained on a regular basis from production. These units are stressed with operating life tests or package environmental tests. The results of these tests are summarized and reported. When a problem is identified, the respective engineering group is notified, impact on the customer is reviewed and a corrective action plan is implemented.

Current testing levels are in excess of 14,000 units per year stressed with operating life tests, and 23,000 units per year stressed with package environmental tests.

Failure Analysis

Failure analysis is performed on all units failing reliability stress tests. Failure analysis is offered as a service to support manufacturing and engineering, and to support customer returns and customer requested failure studies. The failure analysis procedure used has been established to provide a technique of sequential analysis. This technique is based on the premise that each step of analysis will provide information of the failure without destroying information to be obtained from subsequent steps. The ultimate purpose is to uncover all underlying failure mechanisms through complete, in-depth, defect analysis. The procedure places great emphasis on electrical analysis, both external before decapsulation, and internal micro-probing. Visual examinations with high magnification microscopes or SEM analysis are used to confirm failure mechanisms. Results of the failure analysis are recorded and, if abnormalities are found, reported to engineering and/or manufacturing for corrective action.

Data Collection and Presentation

Product reliability is controlled by first stressing the product, and then feeding back results to manufacturing and engineering. This feedback takes two forms. There

Quality Assurance and Reliability

is a formal monthly Reliability Summary distributed to all groups. The summary shows current product failure rates, highlights problem areas, and shows the status of qualification and corrective action programs. Less formal feedback is obtained by including reliability personnel at
all product meetings, which gives high visibility to the reliability aspects of various products. As a customer service, product reliability data is compiled and made available upon request.

Table 2-1 Package Environmental Stress Matrix

Test	MIL-STD-883	
	Method	Condition
Group B Subgroup 1 Physical dimensions	2016	
Subgroup 2 Resistance to solvents	2015	
Subgroup 3 Solderability	2003	Soldering temperature $245 \pm 5^{\circ} \mathrm{C}$
Subgroup 5 Bond strength (1) Thermocompression (2) Ultrasonic or wedge	2011	(1) Test condition C or D (2) Test condition C or D
Group C Subgroup 2 Temperature cycling Constant acceleration Seal (a) Fine (b) Gross Visual examination End-point electrical parameters	$\begin{aligned} & 1010 \\ & 2001 \\ & \\ & 1014 \end{aligned}$	Test condition $\mathrm{C}\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ Test condition $\mathrm{E}(30 \mathrm{Kg}), \mathrm{Y}_{1}$ orientation and X_{1} orientation (where avallable) Test condition $\mathrm{D}(20 \mathrm{Kg} \mathrm{g})$ for packages over 5 gram weight or with seal ring greater than 2 inches
Group D Subgroup 2 Lead integrity Seal (a) Fine (b) Gross	$\begin{aligned} & 2004 \\ & 1014 \end{aligned}$	Test condition B2 (lead fatigue) As applicable

Quality Assurance and Reliability

Table 2-1 Package Environmental Stress Matrix (cont'd.)

Test		MIL-STD-883
	Method	Condition
Subgroup 3 Thermal shock Temperature cycling Moisture resistance Seal (a) Fine (b) Gross Visual examination End-point electrical parameters	$\begin{aligned} & 1011 \\ & 1010 \\ & 1004 \\ & 1014 \end{aligned}$	Test condition $\mathrm{B}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right) 15$ cycles minimum Test condition C $\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right) 100$ cycles minimum
Subgroup 4 Mechanical shock Vibration, variable frequency Constant acceleration Seal (a) Fine (b) Gross Visual examination End-point electrical parameters	$\begin{aligned} & 2002 \\ & 2007 \\ & 2001 \\ & 1014 \end{aligned}$	Test condition B (1500G, 0.5 ms) Test condition A (20G) Same as group C, subgroup 2
Subgroup 5 Salt atmosphere Seal (a) Fine (b) Gross Visual examination	$\begin{aligned} & 1009 \\ & 1014 \end{aligned}$	Test condition A minimum (24 hours) As applicable
Subgroup 6 Internal water-vapor content	1018	Oneida Research Labs
Subgroup 7 Adhesion of lead finish	2025	
Subgroup 8 Lid Torque	2024	As applicable (prior to 883C, this test was part of Subgroup D-7)

Other tests performed which are not included in Group B, C or D:

Die Shear	2019	
Radiography	2012	(Prior to 1984, this test was not performed)

Notes

Notes

F100K DC Family Specifications

DC characteristics for the F100K series family parametric limits listed below are guaranteed for the entire F100K ECL family unless specified on the individual data sheet.

Absolute Maximum Ratings: Above which the useful life may be impaired 1

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})	$+175^{\circ} \mathrm{C}$
Supply Voltage Range	-7.0 V to +0.5 V
Input Voltage (dc)	V_{EE} to +0.5 V
Output Current (dc Output HIGH)	-50 mA
Operating Range ${ }^{2}$	-5.7 V to -4.2 V
Lead Temperature (Soldering 10 sec)	$300^{\circ} \mathrm{C}$

DC Characteristics: $V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions	
VOH	Output HIGH Voltage	-1025	-955	-880	mV		Loading with$50 \Omega \text { sto }-2.0 \mathrm{~V}$
VOL	Output LOW Voltage	-1810	-1705	-1620	mV	or VIL (min)	
VOHC	Output HIGH Voltage	-1035			mv	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\min) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$	

1. Unless specified otherwise on individual data sheet.
2. Parametric values specfied at -4.8 V to -4.2 V .
3. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

F100K DC Family Specifications

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions	
VOH	Output HIGH Voltage	-1020		-870	mV		Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1810		-1605	mV	or VIL (min)	
VOHC	Output HIGH Voltage	-1030			mv	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1595	mV		
VIH	Input HIGH Voltage	-1150		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{min})$	

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions	
VOH	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max })} \\ & \text { or } \mathrm{V}_{\text {LL }}(\text { min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	-1830		-1620	mV		
Vohe	Output HIGH Voltage	-1045			mv	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}($ min $)$	

Notes on preceding page

F10K DC Family Specifications

DC characteristics for the F10K series memories. Parametric limits listed below are guaranteed for all F10K memories, except where noted on individual data sheets.

Absolute Maximum Ratings:	Above which the useful life may be impaired ${ }^{2}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{J}\right)$	$+175^{\circ} \mathrm{C}$
V_{EE} Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (dc)	V_{EE} to +0.5 V
Output Current (dc Output HIGH)	-30 mA to +0.1 mA
Lead Temperature (Soldering 10 sec)	$300^{\circ} \mathrm{C}$

Guaranteed Operating Ranges

Supply Voltage (V_{EE})			Case Temperature$\left(T_{c}\right)$
Min	Typ	Max	
-5.46 V	-5.2 V	-4.94V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}^{1}$

Symbol	Characteristic	Min	Typ	Max	Unit	T_{c}	Conditions ${ }^{2}$	
VOH	Output HIGH Voltage	$\begin{array}{r} \hline-1000 \\ -960 \\ -900 \end{array}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & V_{I N}=V_{I H}(\max) \\ & \text { or } V_{I L}(\text { min }) \end{aligned}$	Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1665 \\ & -1650 \\ & -1625 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$		
Vohc	Output HIGH Voltage	$\begin{array}{r} -1020 \\ -980 \\ -920 \end{array}$			mv	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { min })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\text { max })} \end{aligned}$	
Volc	Output LOW Voltage			$\begin{aligned} & -1645 \\ & -1630 \\ & -1605 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$		
V_{H}	Input HIGH Voltage	$\begin{aligned} & -1145 \\ & -1105 \\ & -1045 \\ & \hline \end{aligned}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	Guaranteed Input Voltage HIGH for All Inputs	
VIL	Input LOW Voltage	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1490 \\ & -1475 \\ & -1450 \\ & \hline \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	Guaranteed Input Voltage LOW. for All Inputs	
IIL	Input LOW Current	0.5		170	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (min)	

[^0]FAIRCHILD
A Schlumberger Company

F100145
 16×4-Bit
 Register File (RAM)

Memory and High Speed Logic

Description

The F100145 is a 64 -bit register file organized as 16 words of four bits each. Separate address inputs for Read ($A R_{n}$) and Write ($A W_{n}$) operations reduce overall cycle time by allowing one address to be setting up while the other is being executed. Operating speed is also enhanced by four output latches which store data from the previous read operation while writing is in progress. When both Write Enable ($\overline{\mathrm{WE}})$ inputs are LOW, the circuit is in the Write mode and the latches are in a Hold mode. When either WEinput is HIGH, the circuit is in the Read mode, but the outputs can be forced LOW by a HIGH signal on either of the Output Enable ($\overline{\mathrm{OE}}$) inputs. This makes it possible to tie one WE input and one $\overline{O E}$ input together to serve as an active-LOW Chip Select ($\overline{(\mathrm{CS})}$ input. When this wired $\overline{\mathrm{CS}}$ input is HIGH, reading will still take place internally and the resulting data will enter the latches and become available as soon as the $\overline{\mathrm{CS}}$ signal goes LOW, provided that the other $\overline{\mathrm{OE}}$ input is LOW. A HIGH signal on the Master Reset (MR) input overrides all other inputs, clears all cells in the memory, resets the output latches, and forces the outputs LOW.

Pin Names

$\mathrm{AR}_{0}-\mathrm{AR}_{3} \quad$ Read Address Inputs
$\mathrm{AW}_{0}-\mathrm{AW}_{3} \quad$ Write Address Inputs
$\overline{W E}_{1}, \overline{W E}_{2} \quad$ Read Enable Inputs (Active LOW)
$\overline{\mathrm{OE}_{1}}, \overline{\mathrm{OE}_{2}} \quad$ Output Enable Inputs (Active LOW)
$\mathrm{D}_{0}-\mathrm{D}_{3}$
MR
$Q_{0}-Q_{3}$

Data Inputs
Master Reset Input
Data Outputs

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Ordering Information (See Section 9)

Package	Order Code
Ceramic DIP	DC
Flatpak	FC

Logic Symbol and Logic Diagram

F100145

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{VCC}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current All Inputs			240	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
IEE	Power Supply Current	-247	-170	-119	mA	Inputs Open

*See Family Characteristics for other dc specifications.
AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Characteristic	$\mathrm{TC}=0^{\circ} \mathrm{C}$		$\mathrm{T}^{\text {C }}=+25^{\circ} \mathrm{C}$		$\mathrm{TC}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
	Access/Recovery Timing								Figures 1 and 3a Figures 1 and $3 e$
$t_{\text {A }} A$	Address Access ${ }^{1}$	2.20	7.40	2.20	7.40	2.20	7.60	ns	
tor	Output Recovery	1.00	2.90	1.10	2.90	1.10	3.20	ns	
tod	Output Disable	1.00	2.90	1.10	2.90	1.10	3.20	ns	
	Read Timing								Figures 1 and 3b
$t_{\text {RSA1 }}$	Address Setup	1.10		1.10		1.10		ns	
tWEQ	Output Delay	2.00	5.00	2.00	5.00	2.00	5.50	ns	
	Output Latch Timing								Figures 1 and $3 c$ Figures 1 and 3d
$t_{\text {RSA2 }}$	Address Setup	4.10		4.10		5.60		ns	
$t_{\text {RHA }}$	Address Hold	0.10		0.10		0.10		ns	
	Write Timing								$\mathrm{tw}=6.0 \mathrm{~ns}$ Figures 1 and 4
twSA	Address Setup	0.10		0.10		0.10		ns	
tWHA	Address Hold	1.10		1.60		1.60		ns	
tWSD	Data Setup	1.10		1.60		1.90		ns	
tWHD	Data Hold	1.10		1.60		1.90		ns	
tw	Write Pulse Width, LOW	4.60		5.00		5.50		ns	
	Master Reset Timing								Figures 1 and 5a
tm_{M}	Reset Pulse Width, LOW	4.50		4.50		5.00		ns	
$\mathrm{t}_{\text {MHW }}$	WE Hold to Write	6.30		7.10		10.50		ns	
tMQ	Output Disable	2.80		2.80		3.20		ns	Figures 1 and 5b
$\begin{aligned} & \text { tTLH } \\ & \text { t THL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	2.30	0.50	2.30	0.50	2.30	ns	

1. The maximum address access time is guaranteed to be the worst case bit in memory using a pseudo random testing pattern.

F100145

Fig. 1 AC Test Circuit

All Timing Measurements Referenced to 50% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{\mathrm{L}}=50 \Omega$ to -2.0 V
Fig. 2 Input Levels

F100145

Fig. 3 Read Timing

3b Address Setup Time before $\overline{W E}$, to Ensure Minimum Delay (unpulsed $\overline{\mathrm{WE}}=\overline{\mathbf{O E}}{ }_{1}=$ $\overline{\mathrm{OE}}{ }_{2}=$ LOW)

3c Address Setup Time to Ensure Latching Data from New Address (unpulsed $\overline{W E}=$ LOW)

3d Address Hold Time to Ensure Latching Data from Old Address (unpulsed $\overline{W E}=$ LOW)

3e Output Recovery/Disable Times, $\overline{\mathbf{O E}}$ to $\mathbf{Q}_{\mathbf{n}}$ (unpulsed $\overline{\mathrm{OE}}=$ LOW)

Fig. 4 Write Timing

Address and Data Setup and Hold Times;
Write pulse Width (unpulsed $\overline{W E}=$ LOW)

Fig 5 Master Reset Timing

5a Reset Pulse Width; WE Hold Time for Subsequent Writing (address already setup, unpulsed $\overline{\mathrm{WE}}=$ LOW)

5b Output Reset Delay, MR to $\mathbf{Q}_{\mathbf{n}}$

FAIRCHILD

A Schlumberger Company

F100402
16×4-Bit
Register File (RAM)
Memory and High Speed Logic

Description

The F100402 is a high-speed 64-bit Random Access Memory (RAM) organized as a 16 -word by 4-bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data busing are facilitated by the output disabling features of the Chip Select $(\overline{\mathrm{CS}})$ and Write Enable $(\overline{\mathrm{WE})}$ inputs.

A HIGH signal on $\overline{\mathrm{CS}}$ prevents read and write operations and forces the outputs to the LOW state. When $\overline{\mathrm{CS}}$ is LOW, the WE input controls chip operations. A HIGH signal on $\bar{W} E$ disables the Data input (D_{n}) buffers and enables readout from the memory location determined by the Address (A_{n}) inputs. A LOW signal on $\overline{W E}$ forces the Q_{n} outputs LOW and allows data on the D_{n} inputs to be stored in the addressed location. Data exists in the same logical sense as presented at the data inputs, i.e., the memory is non-inverting.

Pin Names

$\overline{C S}$	Chip Select Input
$A_{0}-A_{3}$	Address Inputs
$D_{0}-D_{3}$	Data Inputs
$\overline{W E}$	Write Enable Input
$Q_{0}-Q_{3}$	Data Outputs

Logic Symbol

[^1]
Connection Diagrams

16-Pin DIP (Top View)

16-Pin Flatpak (Top View)

Ordering Information (See Section 9)

Package	Order Code
Ceramic DIP	DC
Flatpak	FC

Logic Diagram

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current All Inputs			300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { max }}$
IEE	Power Supply Current	-170	-110	-70	mA	Inputs Open

*See Family Characteristics for other dc specifications.

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$, Applies to Flatpak and DIP Packages

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		TC $=+25^{\circ} \mathrm{C}$		TC $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$t_{\text {ACS }}$ tres $t_{A A}$	Access/Recovery Timing Chip Select Access Chip Select Recovery Address Access ${ }^{1}$	3.00	$\begin{aligned} & 3.30 \\ & 3.30 \\ & 5.00 \\ & \hline \end{aligned}$	3.00	$\begin{aligned} & 3.50 \\ & 3.50 \\ & 5.30 \\ & \hline \end{aligned}$	3.50	$\begin{array}{\|l\|} 3.80 \\ 3.80 \\ 6.00 \\ \hline \end{array}$	ns ns ns	Figures 1 and 4
twSD twscs tWSA twHD twhes twha	Write Timing, Setup Data Chip Select Address Write Timing, Hold Data Chip Select Address	$\begin{aligned} & 0.50 \\ & 1.50 \\ & 1.00 \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.50 \\ & 1.50 \\ & 1.00 \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.50 \\ & 1.00 \\ & \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		ns ns ns ns ns ns	Figures 1 and 3 $\mathrm{tw}=6 \mathrm{~ns}$
twR tws	Write Recovery Time Write Disable Time	$\begin{aligned} & 4.00 \\ & 3.00 \end{aligned}$		$\begin{aligned} & 4.00 \\ & 3.00 \end{aligned}$		$\begin{aligned} & 4.50 \\ & 3.50 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 1 and 4
tw	Write Pulse Width, (LOW)	2.50		2.50		3.00		ns	
tcs	Chip Select Pulse Width, (LOW)	2.50		2.50		3.00		ns	Figures 1 and 3
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20\% to 80\%, 80\% to 20\%	0.50	1.70	0.50	1.70	0.50	1.70	ns	Figures 1 and 4

1. The maximum address access time is guaranteed to be the worst case bit in memory using a pseudo random testing pattern.

Fig. 1 AC Test Circuit

Fig. 2 Input Levels

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V

Fig. 3 Write Modes

Write Enable Strobe

CHIP SELECT SET.UP AND HOLD TIMES

Fig. 4 Read Modes
Address Input to Data Output ($\overline{\mathrm{WE}}=\mathrm{HIGH}, \overline{\mathrm{CS}}=$ LOW) ADDRESS ACCESS TIME

Chip Select Input to Data Output ($\overline{\mathrm{WE}}=\mathrm{HIGH}$)
CHIP SELECT ACCESS AND RECOVERY TIMES

Write Enable Input to Data Output (CS $=$ LOW) WRITE RECOVERY, DISABLE TIMES

FAIRCHILD
A Schlumberger Company

F100415
 1024×1-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The F100415 is a 1024-bit read/write Random Access Memory (RAM), organized as 1024 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time - 10 ns Max
- Chip Select Access Time - 5.0 ns Max
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation - 0.79 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{W E}$	Write Enable Input (Active LOW)
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A} 9$	Address Inputs
D	Data Input
O	Data Output

Connection Diagram
16-Pin DIP (Top View)

Note

The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package

Logic Symbol

[^2]
F100415

Logic Diagram

Functional Description

The F100415 is a fully decoded 1024-bit read/write random access memory, organized 1024 words by one bit. Bit selection is achieved by means of a 10 -bit address, A_{0} through A_{9}.

One Chip Select input is provided for memory array expansion up to 2048 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, (CS) from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twsD(min) plus $\mathrm{tw}_{\text {(min) }}$ plus $\mathrm{twHD}($ min $)$ to insure a valid write. To read, $\overline{\mathrm{WE}}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F100415 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F100415 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Output	Mode
$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	\mathbf{D}	\mathbf{O}	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^3]
F100415

DC Performance Characteristic: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IH	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\max)$
IIL	Input LOW Current, $\overline{\mathrm{CS}}$ $\overline{W E}, A_{0}-A_{9}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$
IEE	Power Supply Current	-200	-180		mA	Inputs and Output Open

AC Performance Characteristic: $V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}_{\mathrm{AA}} \end{aligned}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time2			$\begin{array}{r} 5.0 \\ 5.0 \\ 10 \\ \hline \end{array}$	ns ns ns	Figures 3a, 3b
tw	Write Timing Write Pulse Width to Guarantee Writing ${ }^{3}$	7			ns	
twSD	Data Setup Time prior to Write	1.0			ns	
tWHD	Data Hold Time after Write	2.0			ns	
tWSA	Address Setup Time prior to Write 3	1.0			ns	Figure 4
twha	Address Hold Time after Write	2.0			ns	
twscs	Chip Select Setup Time prior to Write	1.0			ns	
twhcs	Chip Select Hold Time after Write	2.0			ns	
tws	Write Disable Time			5.0	ns	
twr	Write Recovery Time			10	ns	
tr_{r}	Output Rise Time		3.0		ns	Measured between 20\% and
t_{f}	Output Fall Time		3.0		ns	80\% or 80% and 20%
CIN	Input Pin Capacitance		4.0	5.0	pF	Measured with a Pulse
Cout	Output Pin Capacitance		7.0	8.0	pF	Technique

[^4]Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V .

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
3a Read Mode Propagation Delay from Chip Select

3b Read Mode Propagation Delay from Address

F100415

Fig. 4 Write Mode Timing

Note

Timing Diagram represents one solution which results in an optimum cycle time. Timing may
be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Packages and Outlines (See Section 9)
D = Ceramic DIP
F = Flatpak
$P=$ Plastic DIP
Temperature Range
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Case

Optional Processing

$Q R=160$ Hour Burn In or Equivalent

Typical Application
4096-Word x n-Bit System

FAIRCHILD

A Schlumberger Company

Ther. . 422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as four active-LOW Bit Select lines.

- Address Access Time - 10 ns Max
- Bit Select Access Time - $\mathbf{5 . 0}$ ns Max
- Four Bits Can be Independently Selected
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - 0.79 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{W E}$
$\overline{B S}_{0}-\overline{B S}_{3}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$

Write Enable Input (Active LOW)
Bit Select Inputs (Active LOW)
Address Inputs
Data Inputs
Data Outputs

Logic Symbol

F100422
256×4-Bit Static Random Access Memory

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Functional Description

The F100422 is a fully decoded 1024-bit read/write random access memory, organized 256 words by four bits. Word selection is achieved by means of an 8 -bit address, A_{0} through A_{7}.

Four Bit Select inputs are provided for logic flexibility. For larger memories, the fast bit select access time permits the decoding of individual bit selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the bit selected, the data at $D_{0}-D_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twSD(min) plus tw(min) plus twhD(min) to insure a valid write. To read, $\bar{W} E$ is held HIGH and the bit selected. Non-inverted data is then presented at the output $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The outputs of the F100422 are unterminated emitter followers, which allow maximum flexibility in choosing
output connection configurations. In many applications it is desirable to tie the outputs of several F100422 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Outputs	
$\overline{\mathbf{B S}}_{\boldsymbol{n}}$	$\overline{\mathbf{W E}}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{O}_{\boldsymbol{n}}$	Mode
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^5]| $\begin{aligned} \hline \text { DC Performance Characteristic: } & \mathrm{V}_{\mathrm{EE}}=-4.2 \text { to }-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}, \\ & \mathrm{TC}_{\mathrm{C}}=0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { unless otherwise specified } 1 \end{aligned}$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Characteristic | Min | Typ | Max | Unit | Condition |
| $\mathrm{IH}^{\text {H}}$ | Input HIGH Current | | | 220 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}($ max $)$ |
| ILL | Input LOW Current, $\overline{\mathrm{BS}}_{0}-\overline{\mathrm{BS}}_{3}$
 $\overline{W E}, A_{0}-A_{7}, D_{0}-D_{3}$ | $\begin{array}{r} 0.5 \\ -50 \end{array}$ | | 170 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}($ min $)$ |
| Iee | Power Supply Current | -200 | -180 | | mA | All Inputs and Outputs Open |

AC Performance Characteristic: $\mathrm{V}_{\mathrm{EE}}=-4.2$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $\mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$t_{\text {ABS }}$ $t_{A A}$	Read Timing Bit Select Access Time Bit Select Recovery Time Address Access Time 2			$\begin{array}{r} 5.0 \\ 5.0 \\ 10 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b
tw	Write Timing Write Pulse Width to Guarantee Writing ${ }^{3}$	7.0			ns	
twsd	Data Setup Time prior to Write	1.0			ns	
twhd	Data Hold Time after Write	2.0			ns	
twsa	Address Setup Time prior to Write ${ }^{3}$	1.0			ns	Figure 4
twha	Address Hold Time after Write	2.0			ns	
${ }^{\text {twSBS }}$	Bit Select Setup Time prior to Write	1.0			ns	
${ }^{\text {twhis }}$	Bit Select Hold Time after Write	2.0			ns	
tws twr	Write Disable Time Write Recovery Time			$\begin{array}{r} 5.0 \\ 10 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
t_{r} t_{f}	Output Rise Time Output Fall Time		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Measured between 20% and 80% or 80% and 20%
CIN Cout	Input Pin Capacitance Output Pin Capacitance		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Measured with a Pulse Technique

1. See Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Tw measured at $\mathrm{t}_{\mathrm{WSA}}=\mathrm{Min}, \mathrm{t}$ WSA measured at $\mathrm{tw}=\mathrm{Min}$.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
3a Read Mode Propagation Delay from Bit Select

3b Read Mode Propagation Delay from Address

F100422

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case
limits are not violated.

Ordering Information

[^6]
FAIRCHILD

A Schlumberger Company

F100474

1024×4-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The F100474 is a 4096-bit read/write Random Access Memory (RAM), organized 1024 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time - $\mathbf{1 0} \mathbf{n s}$ Max
- Chip Select Access Time - 5.0 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - $0.25 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names
$\frac{\text { WE }}{}$
$C S$
$A_{0}-A_{9}$
$D_{0}-D_{3}$
$O_{0}-O_{3}$

Write Enable Input (Active LOW)
Chip Select Input (Active LOW)
Address Inputs
Data Inputs
Data Outputs

Logic Symbol

[^7]
Logic Diagram

Functional Description

The F100474 is a fully decoded 4096-bit read/write random access memory, organized 1024 words by four bits. Word selection is achieved by means of a 10-bit address, A_{0} through A_{9}.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\text { WE }}$ held LOW and the chip selected, the data at $D_{0}-D_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus tw(min) plus $\mathrm{tWHD}_{\mathrm{W}}^{\mathrm{min})}$ to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The output of the F100474 is an unterminated emitter follower, which allows maximum flexibility in choosing connection configurations. In many applications such as memory expansion, the outputs of many F100474
devices can be tied together. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Outputs	Mode
$\overline{\mathbf{C S}}$	$\overline{W E}$	D_{n}	O_{n}	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

$\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
$\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
X = Don't Care
Data $=$ Previously stored data

F100480
16,384 x 1-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The F100480 is a 16,384 -bit read/write Random Access Memory (RAM), organized 16,384 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and noninverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time - $\mathbf{1 0}$ ns Max
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation - 0.043 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature
$\frac{\text { Pin Names }}{\text { WE }}$
$\frac{C S}{C S}$
$A_{0}-A_{13}$
D
O

Write Enable Input (Active LOW) Chip Select Input (Active LOW)
Address Inputs
Data Input
Data Output

Connection Diagram

20-Pin DIP (Top View)

Logic Symbol

[^8]
Logic Diagram

Functional Description

The F100480 is a fully decoded 16,384-bit read/write random access memory, organized 16,384 words by one bit. Bit selection is achieved by means of a 14-bit address, A_{0} through A_{13}.

One Chip Select input is provided for memory array expansion up to 32,768 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, $(\overline{\mathrm{CS}})$ from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\text { WE }}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus tw(min) plus tWHD(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F100480 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F100480 devices together. In other applications the wired-OR need not be used. In either case an external 50Ω pulldown resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Output	
$\overline{\text { CS }}$	$\overline{\text { WE }}$	D	O	Mode
H	X	X	L	Not Selected
L	L	L	L	Write "O"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^9]
Description

The F10145A is a high-speed 64-bit Random Access Memory organized as a 16 -word by 4 -bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data bussing are facilitated by the output disabling features of the Chip Select (CS) and Write Enable (WE) inputs.

A HIGH signal on $\overline{\mathrm{CS}}$ prevents read and write operations and forces the outputs to the LOW state. When $\overline{\mathrm{CS}}$ is LOW, the $\overline{\mathrm{WE}}$ input controls chip operations. A HIGH signal on $\overline{W E}$ disables the Data input $\left(D_{n}\right)$ buffers and enables readout from the memory location determined by the Address $\left(A_{n}\right)$ inputs. A LOW signal on $\overline{W E}$ forces the Q_{n} outputs LOW and allows data on the D_{n} inputs to be stored in the addressed location. Data exists in the same logical sense as presented at the data inputs, i.e., the memory is non-inverting.

Pin Names

$\overline{C S}$	Chip Select
$A_{0}-A_{3}$	Address
$D_{0}-D_{3}$	Data Inputs
$\overline{W E}$	Write Enables
$Q_{0}-Q_{3}$	Data Outputs

Logic Symbol

VCC $=\operatorname{Pin} 16$
$V E E=\operatorname{Pin} 8$

Logic Diagram

Fig. 1 AC Test Circuit

Fig. 2 Input Levels

Notes

All Timing Measurements Referenced to 50% of Input Levels
$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V

DC Performance Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}{ }^{1}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input $H I G H$ $C S$,$A_{0}-A_{3}$					
	$\overline{W E}, D_{0}-D_{3}$					

AC Performance Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}_{\mathrm{AA}} \end{aligned}$	Access/Recovery Times Chip Select Access Chip Select Recovery Address Access ${ }^{2}$	4.5	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 1 and 4
twsd twscs twsa $t_{\text {whD }}$ twhes twha	Write Setup Times Data Chip Select Address Write Hold Times Data Chip Select Address	$\begin{gathered} 4.5 \\ 4.5 \\ 3.5 \\ 0 \\ 0.5 \\ 0.5 \\ 1.0 \end{gathered}$	$\begin{array}{r} 3.0 \\ 2.5 \\ 1.5 \\ -0.5 \\ 0 \\ -1.0 \end{array}$			Figures 1 and 3
$\begin{aligned} & \mathrm{t}_{\mathrm{WR}} \\ & \mathrm{t}_{\mathrm{w}} \end{aligned}$	Write Recovery Time Write Disable Time		$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1 and 4
t_{w}	Write Pulse Width, Min	4.0	2.5		ns	Figures 1 and 3
t_{CS}	Chip Select Pulse Width, Min	4.0	2.5		ns	
$\begin{aligned} & \mathbf{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathbf{t}_{\mathrm{THLL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	1.5	2.5	3.9	ns	Figures 1 and 4

[^10]Fig. 3 Write Modes

Write Enable Strobe

ADDRESS AND DATA INPUT SET.UP AND HOLD TIMES
($\overline{\mathrm{CS}}=$ LOW)

CHIP SELECT SET-UP AND HOLD TIMES

Fig. 4 Read Modes
Address Input to Data Output ($\overline{\mathrm{WE}}=\mathbf{H I G H}, \overline{\mathbf{C S}}=$ LOW $)$
ADDRESS ACCESS TIME

Chip Select Input to Data Output ($\overline{\mathrm{WE}}=\mathrm{HIGH}$)
CHIP SELECT ACCESS AND RECOVERY TIMES

Write Enable Input to Data Output $\overline{(C S}=$ LOW $)$
WRITE RECOVERY, DISABLE TIMES

FAIRCHILD

A Schlumberger Company

F10402
16×4-Bit
Register File (RAM)
Memory and High Speed Logic

Description

The F10402 is a high-speed 64-bit Random Access Memory (RAM) organized as a 16 -word by 4-bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data busing are facilitated by the output disabling features of the Chip Select $\overline{(C S)}$ and Write Enable (WE) inputs.

A HIGH signal on $\overline{\mathrm{CS}}$ prevents read and write operations and forces the outputs to the LOW state. When $\overline{\mathrm{CS}}$ is LOW, the $\overline{\mathrm{WE}}$ input controls chip operations. A HIGH signal on $\overline{\text { WE }}$ disables the Data input (D_{n}) buffers and enables readout from the memory location determined by the Address (A_{n}) inputs. A LOW signal on $\overline{W E}$ forces the Q_{n} outputs LOW and allows data on the D_{n} inputs to be stored in the addressed location. Data exists in the same logical sense as presented at the data inputs, i.e., the memory is non-inverting.

Pin Names

$\overline{C S}$	Chip Select Input
$A_{0}-A_{3}$	Address Inputs
$D_{0}-D_{3}$	Data Inputs
$\overline{W E}$	Write Enable Input
$Q_{0}-Q_{3}$	Data Outputs

Logic Symbol

[^11]
Connection Diagrams

16-Pin DIP (Top View)

16-Pin Flatpak (Top View)

Ordering Information (See Section 9)

Package	Order Code
Ceramic DIP	DC
Flatpak	FC

F10402

Logic Diagram

DC Performance Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified ${ }^{*}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current All Inputs					
$I_{E E}$	Power Supply Current	-170	-110	-70	mA	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$

[^12]
F10402

AC Performance Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$, Applies to Flatpack and DIP Packages

Symbol	Characteristic	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$t_{A C S}$ $t_{\text {RCS }}$ $t_{A A}$	Access/Recovery Timing Chip Select Access Chip Select Recovery Address Access ${ }^{1}$	3.00	$\begin{aligned} & 3.30 \\ & 3.30 \\ & 5.00 \end{aligned}$	3.00	$\begin{aligned} & 3.50 \\ & 3.50 \\ & 5.30 \end{aligned}$	3.50	$\begin{aligned} & 3.80 \\ & 3.80 \\ & 6.00 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1 and 4
$t_{\text {WSD }}$ $t_{\text {wscs }}$ twsA $t_{\text {WHD }}$ $t_{\text {WHCS }}$ twHA	Write Timing, Setup Data Chip Select Address Write Timing, Hold Data Chip Select Address	$\begin{aligned} & 0.50 \\ & 1.50 \\ & 1.00 \\ & \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.50 \\ & 1.50 \\ & 1.00 \\ & \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 1.50 \\ & 1.00 \\ & \\ & 0.50 \\ & 0.50 \\ & 2.50 \end{aligned}$		ns ns ns ns ns ns	Figures 1 and 3 $T_{w}=6 \mathrm{~ns}$
$t_{W R}$ $t_{\text {ws }}$	Write Recovery Time Write Disable Time		$\begin{aligned} & 4.00 \\ & 3.00 \end{aligned}$		$\begin{aligned} & 4.00 \\ & 3.00 \end{aligned}$		$\begin{aligned} & 4.50 \\ & 3.50 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 1 and 4
t_{W}	Write Pulse Width, (LOW)	2.50		2.50		3.00		ns	
$t_{\text {cs }}$	Chip Select Pulse Width, (LOW)	2.50		2.50		3.00		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.50	1.70	0.50	1.70	0.50	1.70	ns	Figures 1 and 4

1. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudo random testing pattern.

Fig. 1 AC Test Circuit

Notes

Fig. 2 Input Levels

All Timing Measurements Referenced to 50% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$\mathrm{R}_{\mathrm{L}}=50 \Omega$ to -2.0 V

Fig. 3 Write Modes
Write Enable Strobe

CHIP SELECT SET-UP AND HOLD TIMES

Fig. 4 Read Modes
Address Input to Data Output ($\overline{\mathrm{WE}}=\mathrm{HIGH}, \overline{\mathrm{CS}}=$ LOW $)$

ADDRESS ACCESS TIME

Chip Select Input to Data Output ($\overline{\mathrm{WE}}=\mathrm{HIGH}$)
CHIP SELECT ACCESS AND RECOVERY TIMES

Write Enable Input to Data Output $\overline{(\mathbf{C S}}=$ LOW)
WRITE RECOVERY, DISABLE TIMES

FAIRCHILD

A Schlumberger Company

F10415

1024×1-Bit Static Random Access Memory

Description

The F10415 is a 1024-bit read/write Random Access Memory (RAM), organized as 1024 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and noninverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time - $\mathbf{1 0}$ ns Max
- Chip Select Access Time - 5 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - 0.92 mW/Bit Typ
- Power Dissipation Decreases with Increasing

Temperature

$\frac{\text { Pin Names }}{\overline{W E}}$	Write Enable Input (Active LOW)
CS	Chip Select Input (Active LOW)
Ao $_{0}-\mathrm{A}_{9}$	Address Inputs
D	Data Input
O	Data Output

Connection Diagram

16-Pin DIP (Top View)

Logic Symbol

[^13]

[^14]
F10415

Logic Diagram

Functional Description

The F10415 is a fully decoded 1024-bit read/write random access memory, organized 1024 words by one bit. Bit selection is achieved by means of a 10 -bit address, A_{0} through A_{g}.

One Chip Select input is provided for memory array expansion up to 2048 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, (CS) from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus ${ }^{\text {tw}}$ (min) plus twhD(min) to insure a valid write. To read, $\overline{\text { WE }}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F10415 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F10415 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Output	
Mode				
	$\overline{\mathbf{W E}}$	\mathbf{D}	\mathbf{O}	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^15]
F10415

DC Performance Characteristic: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified ${ }^{1}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (max) }}$
IIL	Input LOW Current, $\overline{\mathrm{CS}}$ $\overline{W E}, A_{0}-A_{9}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$
lee	Power Supply Current	-200	-180		mA	Inputs and Output Open

AC Performance Characteristic: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{VCC}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $T_{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	F10415		Unit	Condition
		Min	Max		
	Read Timing				
$t_{\text {Acs }}$	Chip Select Access Time		5.0	ns	
$\mathrm{t}_{\text {RCS }}$	Chip Select Recovery Time		5.0	ns	Figures 3a, 3b
$t_{A A}$	Address Access Time ${ }^{2}$		10	ns	
	Write Timing				
tw	Write Pulse Width to Guarantee Writing ${ }^{3}$	7.0		ns	
twsd	Data Setup Time Prior to Write	1.0		ns	
twho	Data Hold Time after Write	2.0		ns	
twsa	Address Setup Time Prior to Write ${ }^{3}$	1.0		ns	Figure 4
twhe	Address Hold Time after Write	2.0		ns	
twscs	Chip Select Setup Time Prior to Write	1.0		ns	
twhes	Chip Select Hold Time after Write	2.0		ns	
$t_{\text {ws }}$	Write Disable Time		5.0	ns	
twr	Write Recovery Time		10	ns	

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
t_{r}	Output Rise Time		3.0		ns	Measured between 20% and t_{f}
Output Fall Time		3.0		ns	80% or 80% and 20%	
C_{IN}	Input Pin Capacitance		4.0	5.0	pF	Measured with a Pulse Cout
Output Pin Capacitance		7.0	8.0	pF	Technique	

1. See Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Tw measured at twSA $=$ Min, twSA measured at $t w=$ Min.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels
$\mathrm{CL}_{\mathrm{L}}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{\mathrm{L}}=50 \Omega$ to -2.0 V
Fig. 2 Input Levels

Fig. 3 Read Mode Timing

3a Read Mode Propagation Delay from Chip Select

3b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

[^16]
F10415

Typical Application
4096-Word x n-Bit System

FAIRCHILD

A Schlumberger Company

F10422

256×4-Bit Static Random Access Memory

Description

The F10422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as four active-LOW Bit Select lines.

- Address Access Time - $\mathbf{1 0} \mathrm{ns}$ Max
- Bit Select Access Time - $\mathbf{5 . 0}$ ns Max
- Four Bits Can be Independently Selected
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - $0.92 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\frac{\overline{\mathrm{WE}}}{\mathrm{BS}_{0}-\overline{\mathrm{BS}_{3}}}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$
Write Enable Input (Active LOW)
Bit Select Inputs (Active LOW)
Address Inputs
Data Inputs
Data Outputs

Logic Symbol

Connection Diagram
24-Pin DIP (Top View)

[^17]
Logic Diagram

Functional Description
The F10422 is a fully decoded 1024-bit read/write random access memory, organized 256 words by four bits. Word selection is achieved by means of an 8 -bit address, A_{0} through A_{7}.

Four Bit Select inputs are provided for logic flexibility. For larger memories, the fast bit select access time permits the decoding of individual bit selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the bit selected, the data at $D_{0}-D_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least $\mathrm{twSD}(\min)$ plus $\mathrm{tw}($ min $)$ plus $\mathrm{twHD}(\mathrm{min})$ to insure a valid write. To read, $\overline{\mathrm{WE}}$ is held HIGH and the bit selected. Non-inverted data is then presented at the output ($\mathrm{O}_{0}-\mathrm{O}_{3}$).

The output of the F10422 is an unterminated emitter follower, which allows maximum flexibility in choosing
output connection configurations. In many applications it is desirable to tie the outputs of several F10422 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Outputs	
$\overline{\mathbf{B S}}_{\boldsymbol{n}}$	$\overline{\mathbf{W} E}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{O}_{\boldsymbol{n}}$	Mode
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^18]DC Performance Characteristic: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified ${ }^{1}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
I_{IH}	Input HIGH Current			220	$\mu \mathrm{~A}$	$\mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IH}(\max)}$
IIL	${\text { Input LOW Current, } \overline{\mathrm{BS}}_{0}-\overline{\mathrm{BS}}_{3}}^{\mathrm{WE}, \mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{D}_{0}-\mathrm{D}_{3}}$0.5 -50		170	$\mu \mathrm{~A}$	$\mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IL}(\min)}$	
	Power Supply Current	-200	-180		mA	All Inputs and Outputs Open

AC Performance Characteristic: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\begin{aligned} & \mathrm{t}_{\mathrm{ABS}} \\ & \mathrm{t}_{\mathrm{RBS}} \\ & \mathrm{t}_{\mathrm{AA}} \end{aligned}$	Read Timing Bit Select Access Time Bit Select Recovery Time Address Access Time 2			$\begin{gathered} 5.0 \\ 5.0 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b
tw	Write Timing Write Pulse Width to Guarantee Writing ${ }^{3}$	7.0			ns	
tws	Data Setup Time prior to Write	1.0			ns	
twho	Data Hold Time after Write	2.0			ns	
twsa	Address Setup Time prior to Write ${ }^{3}$	1.0			ns	Figure 4
twha	Address Hold Time after Write	2.0			ns	
${ }^{\text {twSBS }}$	Bit Select Setup Time prior to Write	1.0			ns	
$t_{\text {WHBS }}$	Bit Select Hold Time after Write	2.0			ns	
tws tWR	Write Disable Time Write Recovery Time			$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
t_{r} t_{f}	Output Rise Time Output Fall Time		$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	Measured between 20% and 80% or 80% and 20%
Cin Cout	Input Pin Capacitance Output Pin Capacitance		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Measured with a Pulse Technique

[^19]
F10422

Fig. 1 AC Test Circuit

Notes
All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{\mathrm{L}}=50 \Omega$ to -2.0 V
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
3a Read Mode Propagation Delay from Bit Select

3b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case
limits are not violated.

Ordering Information

[^20]
FAIRCHILD

A Schlumberger Company

F10474

1024×4-Bit Static
 Random Access Memory

Memory and High Speed Logic

Description

The F10474 is a 4096-bit read/write Random Access Memory (RAM), organized 1024 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time - 10 ns Max
- Chip Select Access Time - 5 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - 0.29 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

$\frac{\text { Pin Names }}{W E}$	Write Enable Input (Active LOW)
$\frac{\text { CS }}{C S}$	Chip Select Input (Active LOW)
$A_{0}-A_{9}$	Address Inputs
$D_{0}-D_{3}$	Data Inputs
$O_{0}-O_{3}$	Data Outputs

Logic Symbol

[^21]$V_{C C A}=\operatorname{Pin} 1$
$\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 12$
$N C=\operatorname{Pin} 10$

Connection Diagram

24-Pin DIP (Top View)

Logic Diagram

Functional Description

The F10474 is a fully decoded 4096-bit read/write random access memory, organized 1024 words by four bits. Word selection is achieved by means of a 10-bit address, A_{0} through A_{9}.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at $D_{0}-D_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus tw(min) plus tWHD(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The output of the F10474 is an unterminated emitter follower, which allows maximum flexibility in choosing connection configurations. In many applications such as memory expansion, the outputs of many F10474
devices can be tied together. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Outputs	Mode
$\overline{\mathbf{C S}}$	$\overline{W E}$	D_{n}	O_{n}	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^22]
FAIRCHILD

A Schlumberger Company

F10480

16,384 x 1-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The F10480 is a 16,384-bit read/write Random Access Memory (RAM), organized 16,384 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and noninverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time - 10 ns Max
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation - $0.05 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names	
WE	Write Enable Input (Active LOW)
CS	Chip Select Input (Active LOW)
Ao $_{0}-A_{13}$	Address Inputs
D	Data Input
O	Data Output

Logic Symbol

Connection Diagram
20-Pin DIP (Top View)

Note

The 20-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

[^23]
Logic Diagram

Functional Description

The F10480 is a fully decoded 16,384-bit read/write random access memory, organized 16,384 words by one bit. Bit selection is achieved by means of a 14-bit address, A_{0} through A_{13}.

One Chip Select input is provided for memory array expansion up to 32,768 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, (CS) from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twsD(min) plus tw(min) plus twhD(min) to insure a valid write. To read, WE is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F10480 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F10480 devices together. In other applications the wired-OR need not be used. In either case an external 50Ω pulldown resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Output	
	$\overline{\mathbf{W E}}$	\mathbf{D}	\mathbf{O}	Mode
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^24]Notes

Notes

TTL Programmable Logic $-2=5=88$
Ordering information and Package Outlines 9

TTL Family Specifications

Absolute Maximum	Above which the useful life may be impaired
Storage Temperature	-65° to $+150^{\circ} \mathrm{C}$
Supply Voltage Range	-0.5 V to +7.0 V
Input Voltage (dc) ${ }^{(1)(2)}$	-0.5 V to V_{CC} (RAMs) -1.5 V to V_{cc} (PROMs)
Voltage Applied to Outputs (output HIGH)	-0.5 V to +5.5 V (RAMs) -1.5 V to +5.5 V (PROMs)
Lead Temperature (Solderin	, 10 sec$) \quad 300^{\circ} \mathrm{C}$
Maximum Junction Tempe	ure (T_{j}) $175^{\circ} \mathrm{C}$
Output Current	+20 mA

Guaranteed Operating Ranges

	Supply Voltage (Vcc)	Case Temperature (T_{c})	Maximum Low-Level Input Voltage (VIL)	Minimum Input Vo	igh-Level $g e\left(V_{I H}\right)$
Commercial	$5.0 \mathrm{~V} \pm 5 \%$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	0.8V	2.1 V (RAMs)	$\begin{aligned} & 2.0 \mathrm{~V} \\ & \text { (PROMs) } \end{aligned}$
Military	$5.0 \mathrm{~V} \pm 10 \%$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			

Device Design Characteristics

Symbol	Characteristic	Typ	Unit	Condition
CIN	Input Pin Capacitance	4.0	pF	Measured with a Pulse
COUT	Output Pin Capacitance	7.0	pF	Technique

DC, FN and AC performance characteristics and test conditions listed with each device

Notes

1. Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.
2. These values may be exceeded as required during PROM programming.
3. Output current limit required.
4. Unless stated otherwise in individual device specification.
5. Functional testing done at input levels $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3 \mathrm{~V}$.
6. PROM programmability verified through test row and test column.
7. PROM input levels on unprogrammed devices verified through testing of test row and test column.

FAIRCHILD
A Schlumberger Company

93415/93L415
 1024×1-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The 93415 is a 1024-bit read/write Random Access Memory (RAM), organized 1024 words by one bit. It is designed for high speed cache, control and buffer storage applications. The device includes full on-chip decoding, separate Data input and non-inverting Data output, as well as an active LOW Chip Select line.

- Commercial Address Access Time 93415 - 25 to 60 ns Max
- Military Address Access Time 93415 - 30 to 70 ns Max
- Low Power Version Also Available (93L415)
- Features Open Collector Output
- Power Dissipation - $0.46 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{C S}$	Chip Select Input (Active LOW)
$A_{0}-A_{9}$	Address Inputs
$\overline{W E}$	Write Enable Input (Active LOW)
D	Data Input
O	Data Output

Logic Symbol

$V_{C C}=\operatorname{Pin} 16$
$G N D=P$ in 8
$V_{C C}=\operatorname{Pin} 16$
$G N D=\operatorname{Pin} 8$

Connection Diagram
16-Pin DIP (Top View)

Note:
The 16-pin Flatpak version has the same pinout connections as the Dual In-line package.

Logic Diagram

Functional Description

The 93415 is a fully decoded 1024-bit read/write Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10 -bit address, A_{0} through Ag_{9}.

One Chip Select input is provided for easy memory array expansion of up to 2048 bits without the need for external decoding. For larger memories, the fast chip select access time permits direct address decoding without an increase in overall memory access time.

The read and write functions of the 93415 are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When $\overline{W E}$ is held LOW and the chip is selected, the data at D is written into the location specified by the binary address present at A_{0} through Ag . Since the write function is level triggered, data must be held stable at the data input for at least $\mathrm{twSD}_{\text {(min) }}$ plus tw (min) plus $\mathrm{t}_{\mathrm{WHD}(\mathrm{min})}$ to insure a valid write. When $\overline{\mathrm{WE}}$ is held HIGH and the chip selected, data is read from the addressed location and presented at the output (O).

An open collector output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93415s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of RL value must be used to provide a HIGH at the output
when it is off. Any R_{L} value within the range specified below may be used.

$$
\frac{V_{C C}(\operatorname{Max})}{I_{\mathrm{OL}}-\mathrm{FO}(1.6)} \leq \mathrm{R}_{\mathrm{L}} \leq \frac{\mathrm{V}_{\mathrm{CC}}(\operatorname{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{n}\left(\mathrm{I}_{\mathrm{CEx}}\right)+\mathrm{FO}(0.04)}
$$

R_{L} is in $k \Omega$
$\mathrm{n}=$ number of wired-OR outputs tied together
FO = number of TTL. Unit Loads (UL) driven
ICEX = Memory Output Leakage Current
$\mathrm{V}_{\mathrm{OH}}=$ Required Output HIGH Level at Output Node IOL $=$ Output LOW Current

The minimum R_{L} value is limited by the output current sinking ability. The maximum R_{L} value is determined by the output and input leakage current which must be supplied to hold the output at V OH. One Unit Load $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW. FOMAX $=5$ UL.

Truth Table

Inputs			Output	
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D	O	Mode
H	X	X	H	Not Selected
L	L	L	H	Write "0"
L	L	H	H	Write "1"
L	H	X	Dout	Read

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
$\mathrm{L}=\mathrm{LOW}$ Voltage Level (. 5 V)
X = Don't Care (HIGH or LOW)
DC Characteristics: Over operating temperature ranges (Note 1)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
VoL	Output LOW Voltage		0.3	0.45	V	$\mathrm{VCC}=\mathrm{Min}, \mathrm{IOL}=16 \mathrm{~mA}$
V_{IH}	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{5}$
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{5}$
IL	Input LOW Current		-250	-400^{7}	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
$\frac{1}{1+4}$	Input HIGH Current		1.0	40	$\mu \mathrm{A}$	
І ${ }_{\text {IHB }}$	Input Breakdown Current			1.0	mA	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$V_{C C}=M a x, l_{\text {l }}=-10 \mathrm{~mA}$
Icex	Output Leakage Current		1.0	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{I}_{\text {cc }}$	Power Supply Current			$\begin{array}{r} \hline 65 \\ 75 \\ \\ 125 \\ 135 \\ 155 \\ 170 \end{array}$	mA mA mA mA mA mA	93L415-35, 93L415-45, 93L415-60 (commercial) 93L415-40, 93L415-50, 93L415-70 (military) 93415-25, 93415-30 (commercial) 93415-30, 93415-40 (commercial) 93415A, 93415-45 (commercial) 93415-60 (military) $\mathrm{V}_{\mathrm{CC}}=$ Max, Note 6

Notes

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$. $T_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ and maximum
2. T_{W} measured at $t_{W S A}=$ Min. $t_{W S A}$ measured at $t_{W}=$ Min. loading.
3. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
4. Short circuit to ground not to exceed one second.
5. Static condition only.
6. All inputs GND

Output open
7. $I_{\mathrm{IL}}=-300 \mu \mathrm{~A}$ for 93 L 415

Commercial

AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Military
AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Notes on page 4-7

Commercial

AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	93L415-35		93L415-45		93L415-60		Unit	Condition
		Min	Max	Min	Max	Min	Max		
	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time ${ }^{2}$								
$t_{\text {ACS }}$			25		30		40	ns	
$t_{\text {RCS }}$			25		30		40	ns	Figures 3a, $3 b$
$t_{\text {AA }}$			35		45		60	ns	
	Write Timing			35					
t_{W}	Write Pulse Width to Guarantee Writing ${ }^{4}$					45		ns	
$\mathrm{t}_{\text {WSD }}$	Data Setup Time Prior to Write	30 5		5		5		ns	
$t_{\text {WHD }}$	Data Hold Time after Write	5		5		5		ns	
$t_{\text {WSA }}$	Address Setup Time Prior to Write ${ }^{4}$	5		5		10		ns	Figure 4
$t_{\text {WHA }}$	Address Hold Time after Write	5		5		5		ns	
$t_{\text {wscs }}$	Chip Select Setup Time Prior to Write	5		5		5		ns	
$t_{\text {WHCS }}$	Chip Select Hold Time after Write	5		5		5		ns	
$t_{\text {wS }}$	Write Enable to Output Disable		20		25		45	ns	
$t_{\text {WR }}$	Write Recovery Time		30		35		45	ns	

Military

AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^25]
93415/93L415

Fig. 1 AC Test Circuit

*Includes jig and probe capacitance

Fig. 2 AC Test Input Levels

Fig. 3 Read Mode Timing
3a Read Mode Propagation Delay from Chip Select

3b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Notes

1. Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.
2. Input voltage levels for worst case AC test are $3.0 / 0.0 \mathrm{~V}$.

93415/93L415

Ordering Information

Part Number	Access Time (ns)	Power (mA)	Temperature Range	Package	Order Code
93415-25	25	125	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	93415XX25
93415A	30	155	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	93415AXX
93415-30	30	125	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	93415XX30
93415-30	30	135	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93415YY30
93L415-35	35	65	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	93L415XX35
93415-40	40	135	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93415 YY 40
93L415-40	40	75	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93L415YY40
93415-45	45	155	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	93415XX
93L415-45	45	65	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	93L415XX45
93L415-50	50	75	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93L415YY50
93L415-60	60	65	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$X X$	93L415XX
93415-60	60	170	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93415YY
93L415-70	70	75	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93L415YY

Packages and Optional Processing (See Section 9)

XX - Commercial
Without Optional Processing
With Optional Processing
DC
FC
LC

DCQR - Ceramic Dip
FCQR - Cerpak
LC
PC
LCQR - Leadless Chip Carrier
PCQR - Plastic Dip

YY — Military
Without Optional Processing
With Optional Processing
DMQB - Ceramic Dip
FMQB - Cerpak
LMQB - Leadless Chip Carrier

Optional Processing

QB $=$ Mil Std 883
Method 5004 and 5005, Level B
QR = Commercial Device with 160 Hour Burn in or Equivalent

FAIRCHILD

A Schlumberger Company

93422

256×4-Bit Static Random Access Memory

Description

The 93422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits. It is designed for high speed cache, control and buffer storage applications. The 93422 is available in two speeds, "standard" speed and an "A" grade. The device includes full on-chip decoding, separate Data inputs and non-inverting Data outputs, as well as two Chip Select lines.

- Commercial Address Access Time

93422-45 ns Max
93422A - 35 ns Max

- Military Address Access Time

93422 - 60 ns Max
93422A - 45 ns Max

- Fully TTL Compatible
- Features Three State Outputs
- Power Dissipation - $0.46 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address Inputs
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs
CS_{1}	Chip Select Input (Active LOW)
CS	Chip Select Input (Active HIGH)
WE	Write Enable Input (Active LOW)
OE	Output Enable Input (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Data Outputs

Logic Symbol

Connection Diagrams
22-Pin DIP (Top View)

24-Pin Flatpak (Top View)

24-Pin Leadless Chip Carrier (Top View)

Logic Diagram

Functional Description

The 93422 is a fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8 -bit address, A_{0} through A_{7}.

Two Chip Select inputs, inverting and non-inverting, are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of the chip selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When $\overline{\mathrm{WE}}$ is
held LOW and the chip is selected, the data at $\mathrm{D}_{0}-\mathrm{D}_{3}$ is written into the addressed location. Since the write function is level-triggered, data must be held stable for at least twSD (min) plus tw (min) plus $\mathrm{twHD}^{\mathrm{W}}$ (min) to insure a valid write. To read, WE is held HIGH and the chip selected. Non-inverted data is then presented at the outputs ($\mathrm{O}_{0}-\mathrm{O}_{3}$).

The 93422 has 3 -state outputs which provide active pull-ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

Truth Table

Inputs				Outputs	
$\overline{O E}$	$\overline{\mathbf{C S}_{1}}$	CS_{2}	$\overline{W E}$	3-State	Mode
X	H	X	X	HIGH Z	Not Selected
X	X	L	X	HIGH Z	Not Selected
L	L	H	H	$\mathrm{D}_{\text {OUT }}$	READ
X	L	H	L	HIGH Z	WRITE
H	L	H	X	HIGH Z	Output Disabled

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
$\mathrm{L}=$ LOW Voltage Level (. 5 V)
X = Don't Care (HIGH or LOW)
High Z = High-Impedance

DC Performance Characteristics: Over operating temperature ranges (Note 1)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
VOL	Output LOW Voltage		0.3	0.45	V	$\mathrm{VCC}^{\text {c }} \mathrm{Min}, \mathrm{lOL}=8 \mathrm{~mA}$	
V_{IH}	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{5}$	
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{5}$	
VOH	Output HIGH Voltage	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-5.2 \mathrm{~mA}$	
IIL	Input LOW Current		-150	-300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
I_{H}	Input HIGH Current		1.0	40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$	
$\mathrm{I}_{\text {IHB }}$	Input Breakdown Current			1.0	mA	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$\mathrm{V}_{\text {CC }}=$ Max, I IN $=-10 \mathrm{~mA}$	
$\begin{aligned} & \mathrm{I}_{\mathrm{OzH}} \\ & \mathrm{I}_{\mathrm{OZL}} \end{aligned}$	Output Current (HIGH Z)			$\begin{array}{r} 50 \\ -50 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} \mathrm{V} C \mathrm{C} & =\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=2.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}} & =\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$	
los	Output Current Short Circuit to Ground	-10		-70	mA	$V_{C C}=$ Max, Note 3	
ICC	Power Supply Current			$\begin{aligned} & 120 \\ & 130 \end{aligned}$	mA	Commercial Military	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ All Inputs GND All Outputs Open

Notes

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} . \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ and maximum
2. Short circuit to ground not to exceed one second. loading.
3. T_{W} measured at $t_{W S A}=$ Min. $t_{W S A}$ measured at $t_{W}=\operatorname{Min}$.
4. The maximum address access time is guaranteed to be the worst
5. Static condition only.

Commercial
AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	A		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		30		30	ns	
tzRCS	Chip Select to HIGH Z		30		30	ns	
$t_{\text {AOS }}$	Output Enable Access Time		30		30	ns	Figures 3a, 3b, 3c
tzRos	Output Enable to HIGH Z		30		30	ns	
$t_{\text {A }}$	Address Access Time ${ }^{2}$		35		45	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing 4	25		30		ns	
tWSD	Data Setup Time Prior to Write	5		5		ns	
tWHD	Data Hold Time after Write	5		5		ns	
tWSA	Address Setup Time Prior to Write 4	5		5		ns	Figure 4
tWHA	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Select Hold Time after Write	5		5		ns	
tzws	Write Enable to HIGH Z		35		35	ns	
tWR	Write Recovery Time		35		40	ns	

Military
AC Performance Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	A		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
tacs	Chip Select Access Time		35		45	ns	
tzRCS	Chip Select to HIGH Z		35		45	ns	
taos	Output Enable Access Time		35		45	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		35		45	ns	
t_{AA}	Address Access Time ${ }^{2}$		45		60	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ${ }^{4}$	35		40		ns	
tWSD	Data Setup Time Prior to Write	5		5		ns	
tWHD	Data Hold Time after Write	5		5		ns	
twSA	Address Setup Time Prior to Write 4	5		5		ns	Figure 4
tWHA	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Select Hold Time after Write	5		5		ns	
tzws	Write Enable to HIGH Z		40		45	ns	
twR	Write Recovery Time		40		50	ns	

[^26]Fig. 1 AC Test Output Load

LOAD A

LOAD B
*Includes jig and probe capacitance
Fig. 2 AC Test Input Levels

Fig. 3 Read Mode Timing

3b Read Mode Propagation Delay from Chip Select

3c Read Mode Propagation Delay from Output Enable

Fig. 4 Write Mode Timing

Ordering Information

Device Name

Speed Selection
 Package
Temperature Range
 Optional Processing

Speed Selection
Blank $=$ Standard Speed
$A=$ ' A^{\prime} Grade

Packages and Outlines (See Section 9)
D = Ceramic DIP
F = Flatpak
$L=$ Leadless Chip Carrier
P = Plastic DIP

Temperature Range
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Optional Processing
QB $=$ Mil Std 883
Method 5004 and 5005, Level B
QR = Commercial Device with
160 Hour Burn In or Equivalent

FAIRCHILD

A Schlumberger Company

93L422
256×4-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The 93L422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits. It is designed for high speed cache, control and buffer storage applications. The 93L422 is available in two speeds, "standard" speed and an "A" grade. The device includes full on-chip decoding, separate Data inputs and non-inverting Data outputs, as well as two Chip Select lines.

- Commercial Address Access Time

93L422-60 ns Max
93L422A - 45 ns Max

- Military Address Access Time

93L422-75 ns Max
93L422A - 55 ns Max

- Fully TTL Compatible
- Features Three State Outputs
- Power Dissipation - $0.25 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$A_{0}-A_{7}$	Address Inputs
$D_{0}-D_{3}$	Data Inputs
$\overline{C S_{1}}$	Chip Select Input (Active LOW)
$C S_{2}$	Chip Select Input (Active HIGH)
$\overline{W E}$	Write Enable Input (Active LOW)
$\overline{O E}$	Output Enable Input (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Data Outputs

Logic Symbol

Connection Diagrams

22-Pin DIP (Top View)

24-Pin Leadless Chip Carrier (Top View)

Functional Description

The 93L422 is a fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, Ao through A7.

Two Chip Select inputs, inverting and non-inverting, are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of the chip selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When $\overline{\mathrm{WE}}$ is
held LOW and the chip is selected, the data at $D_{0}-D_{3}$ is written into the addressed location. Since the write function is level-triggered, data must be held stable for at least tWSD(min) plus $\mathrm{tW}(\mathrm{min})$ plus $\mathrm{tWHD}_{(\mathrm{min})}$ to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The 93L422 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

93L422

Truth Table

Inputs				Outputs	
$\overline{O E}$	$\overline{\mathbf{C S}_{1}}$	CS_{2}	$\overline{W E}$	3-State	Mode
X	H	X	x	HIGH Z	Not Selected
X	X	L	X	HIGH Z	Not Selected
L	L	H	H	DOUT	READ
X	L	H	L	HIGH Z	WRITE
H	L	H	X	HIGH Z	Output Disabled

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
$\mathrm{L}=\mathrm{LOW}$ Voltage Level (. 5 V)
$X=$ Don't Care (HIGH or LOW)
High Z = High-Impedance

DC Performance Characteristics: Over operating temperature ranges (Note 1)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
VOL	Output LOW Voltage		0.3	0.45	V	$\mathrm{VCC}=\mathrm{Min}, \mathrm{loL}=8 \mathrm{~mA}$	
V_{IH}	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{5}$	
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All inputs ${ }^{5}$	
VOH	Output HIGH Voltage	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA}$	
IIL	Input LOW Current		-150	-300	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
$I_{1 H}$	Input HIGH Current		1.0	40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$	
$\underline{1_{\text {IHB }}}$	Input Breakdown Current			1.0	mA	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{l} \mathrm{IN}=-10 \mathrm{~mA}$	
$\begin{aligned} & \text { IOZH } \\ & \text { IOZL } \end{aligned}$	Output Current (HIGH Z)			$\begin{array}{r} 50 \\ -50 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \mathrm{VOUT}=2.4 \mathrm{~V} \\ & \mathrm{VCC}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$	
los	Output Current Short Circuit to Ground	-10		-70	mA	$V_{C C}=$ Max, Note 3	
ICC	Power Supply Current			80 90	mA	Commercial Military	$V_{C C}=\operatorname{Max}$ All Inputs GND All Outputs Open

Notes

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} . \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ and maximum loading.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Short circuit to ground not to exceed one second.
4. T_{W} measured at $t_{W S A}=$ Min. $t_{W S A}$ measured at $t_{W}=$ Min.
5. Static condition only.

Commercial

AC Performance Characteristics: $\mathrm{VcC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	A		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		30		35	ns	
tzRCS	Chip Select to HIGH Z		30		35	ns	
taos	Output Enable Access Time		30		35	ns	Figures 3a, 3b, 3c
tzROS	Output Enable to HIGH Z		30		35	ns	
$t_{A A}$	Address Access Time ${ }^{2}$		45		60	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ${ }^{4}$	30		45		ns	
tWSD	Data Setup Time Prior to Write	5		5		ns	
tWHD	Data Hold Time after Write	5		5		ns	
tWSA	Address Setup Time Prior to Write ${ }^{4}$	5		5		ns	Figure 4
tWHA	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Select Hold Time after Write	5		5		ns	
tzws	Write Enable to HIGH Z		35		40	ns	
tWR	Write Recovery Time		40		45	ns	

Military
AC Performance Characteristics: $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	A		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
tacs	Chip Select Access Time		40		45	ns	
tzRCS	Chip Select to HIGH Z		40		45	ns	
taos	Output Enable Access Time		40		45	ns	Figures 3a, 3b, 3c
tzRos	Output Enable to HIGH Z		40		45	ns	
$t_{\text {AA }}$	Address Access Time ${ }^{2}$		55		75	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ${ }^{4}$	40		55		ns	
tWSD	Data Setup Time Prior to Write	5		5		ns	
tWHD	Data Hold Time after Write	5		5		ns	
tWSA	Address Setup Time Prior to Write ${ }^{4}$	5		5		ns	Figure 4
tWHA	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Select Hold Time after Write	5		5		ns	
tzws	Write Enable to HIGH Z		45		45	ns	
twr	Write Recovery Time		50		50	ns	

[^27]Fig. 1 AC Test Output Load

LOAD A

LOAD B
*Includes jig and probe capacitance

Fig. 2 AC Test Input Levels

Fig. 3 Read Mode Timing
3a Read Mode Propagation Delay from Address

3b Read Mode Propagation Delay from Chip Select

3c Read Mode Propagation Delay from Output Enable

Fig. 4 Write Mode Timing

Notes

1. Timing Diagram represents one solution which results in an optimum cycle time. Timing may be
changed to fit various applications as long as the worst case limits are not violated.
2. Input voltage levels for worst case AC test are 3.0/0.0 V.

Ordering Information

Speed Selection
Blank = Standard Speed
$A=$ 'A' Grade (Commercial Only)
Packages and Outlines (See Section 9)
D = Ceramic DIP
F = Flatpak
$L=$ Leadless Chip Carrier
$P=$ Plastic DIP

Temperature Range
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Optional Processing
$\mathrm{QB}=$ Mil Std 883
Method 5004 and 5005, Level B
QR = Commercial Device with 160 Hour Burn In or Equivalent

FAIRCHILD

A Schlumberger Company

93425/93L425
1024×1-Bit Static
Random Access Memory
Memory and High Speed Logic

Description

The 93425 is a 1024-bit read/write Random Access Memory (RAM), organized 1024 words by one bit. It is designed for high speed cache, control and buffer storage applications. The device includes full on-chip decoding, separate Data input and non-inverting Data output, as well as an active LOW Chip Select line.

- Commercial Address Access Time 953425 - $\mathbf{2 5}$ to $\mathbf{6 0}$ ns Max
- Military Address Access Time 93425 - $\mathbf{3 0}$ to 70 ns Max
- Low Power Version Also Available (93L425)
- Features Three State Output
- Power Dissipation Decreases with Increasing Temperature

Pin Names	
$\overline{C S}$	Chip Select (Active LOW)
$\frac{A_{0}-A_{9}}{}$	Address Inputs
$\overline{W E}$	Write Enable (Active LOW)
D	Data Input
O	Data Output

Connection Diagram
16-Pin DIP (Top View)

Note:
The 16 pin Flatpak version has the same pinout connections as the Dual In-line package.

Logic Symbol

$V_{c c}=\operatorname{Pin} 16$
$G N D=P$ in 8

Logic Diagram

Functional Description

The 93425 is a fully decoded 1024-bit read/write Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A_{0} through Ag_{g}.

One Chip Select input is provided for easy memory array expansion of up to 2048 bits without the need for external decoding. For larger memories, the fast chip select access time permits direct address decoding without an increase in overall memory access time.

The read and write functions of the 93425 are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When WE is held LOW and the chip is selected, the data at D is written into the location specified by the binary address present at A_{0} through A 9 . Since the write function is level triggered, data must be held stable at the data input for at least twSD(min) plus tw (min) plus twHD (min) to insure a valid write. When $\overline{W E}$ is held HIGH and the chip selected, data is read from the addressed location and presented at the output (O).

The 93425 has a three-state output which provides an active pull-up or pull-down when enabled and a high impedance (HIGH Z) state when disabled. The active pull-up provides drive capability for high capacitive loads while the high impedance state allows optimization of word expansion in bus organized systems.

Truth Table

Inputs			Output	
	$\overline{\text { WE }}$	D	O	Mode
H	X	X	HIGH Z	Not Selected
L	L	L	HIGH Z	Write "0"
L	L	H	HIGH Z	Write "1"
L	H	X	Dout	Read

[^28]
93425/93L425

DC Performance Characteristics: Over operating temperature ranges (Note 1)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
VOL	Output LOW Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l} \mathrm{OL}=16 \mathrm{~mA}$
V IH	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{5}$
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{5}$
VOH	Output HIGH Voltage	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-5.2 \mathrm{~mA}$
IL	Input LOW Current		-250	-400^{7}	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
$\mathrm{IIH}^{\text {I }}$	Input HIGH Current		1.0	40	$\mu \mathrm{A}$	$V_{C C}=M_{\text {ax }}, \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$
$\mathrm{I}_{\text {IHB }}$	Input Breakdown Current			1.0	mA	$V_{C C}=M a x, V_{\text {IN }}=V_{\text {CC }}$
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{lin}=-10 \mathrm{~mA}$
$\begin{aligned} & \text { Iozh } \\ & \text { IozL } \end{aligned}$	Output Current (HIGH Z)			$\begin{array}{r} 50 \\ -50 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$
los	Output Current Short Circuit to Ground			-100	mA	VcC $=$ Max, Note 3
I_{cc}	Power Supply Current			65 75 125 135 155 170	mA mA mA mA mA mA	93L425-35, 93L425-45, 93L425-60 (commercial) 93L425-40, 93L425-50, 93L425-70 (military) 93425-25, 93425-30 (commercial) 93425-30, 93425-40 (commercial) 93425A, 93425-45 (commercial) 93425-60 (military) $\mathrm{V}_{\mathrm{CC}}=$ Max, Note 6

Notes

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$. $T_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ and maximum loading.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Short circuit to ground not to exceed one second.
4. T_{W} measured at $t_{W S A}=$ Min. $t_{W S A}$ measured at $t_{W}=M i n$.
5. Static condition only.
6. All inputs GND Output open
7. $I_{I L}=-300 \mu \mathrm{~A}$ for 93 L 425

Commercial
AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Military
AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	93425-30		93425-35		93425-60		Unit	Condition
		Min	Max	Min	Max	Min	Max		
	Read Timing								
$t_{\text {ACS }}$	Chip Select Access Time		20		25		45	ns	
$\mathrm{t}_{\text {zRCS }}$	Chip Select to HIGH Z		20		25		50	ns	Figures 3a,
$t_{\text {AA }}$	Address Access Time ${ }^{2}$		30		35		60	ns	
	Write Timing								
t_{W}	Write Pulse Width to Guarantee Writing ${ }^{4}$	20		25		40		ns	
$t_{\text {WSD }}$	Data Setup Time Prior to Write	5		5		5		ns	
$t_{\text {WHD }}$	Data Hold Time after Write	5		5		5		ns	
$t_{\text {WSA }}$	Address Setup Time Prior to Write ${ }^{4}$	5		10		15		ns	Figure 4
$t_{\text {WHA }}$	Address Hold Time after Write	5		5		5		ns	
$t_{\text {wscs }}$	Chip Select Setup Time Prior to Write	5		5		5		ns	
$t_{\text {WHCS }}$	Chip Select Hold Time after Write	5		5		5		ns	
$t_{\text {zws }}$	Write Enable to HIGH Z		20		25		45	ns	
$t_{\text {WR }}$	Write Recovery Time		20		25		50	ns	

[^29]
93425/93L425

Commercial
AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Military
AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^30]Fig. 1 AC Test Output Load

*Includes jig and probe capacitance
Fig. 2 AC Test Input Levels

Fig. 3 Read Mode Timing
3a Read Mode Propagation Delay from Chip Select

3b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Notes

1. Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.
2. Input voltage levels for worst case $A C$ test are $3.0 / 0.0 \mathrm{~V}$.

93425/93L425

Ordering Information

Part Number	Access Time (ns)	Power (mA)	Temperature Range	Package	Order Code
$93425-25$	25	125	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	93425 XX 25
93425 A	30	155	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	93425 AXX
$93425-30$	30	125	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	93425 XX 30
$93425-30$	30	135	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93425 YY 30
$93 \mathrm{~L} 425-35$	35	65	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	93 L 425 XX 35
$93425-40$	40	135	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93425 YY 40
$93 \mathrm{~L} 425-40$	40	75	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93 L 425 YY 40
$93425-45$	45	155	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	$93425 X X$
$93 \mathrm{~L} 425-45$	45	65	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	$93 \mathrm{~L} 425 X X 45$
$93 \mathrm{~L} 425-50$	50	75	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93 L 425 YY 50
$93 \mathrm{~L} 425-60$	60	65	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	XX	$93 \mathrm{C} 425 X X$
$93425-60$	60	170	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93425 YY
$93 \mathrm{~L} 425-70$	70	75	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	YY	93 L 425 YY

Packages and Optional Processing (See Section 9)

XX - Commercial
Without Optional Processing
DC
FC
LC
PC
pral Processing
DCQR - Ceramic Dip
FCQR - Cerpak
LCQR - Leadless Chip Carrier
PCQR - Plastic Dip
YY - Military
Without Optional Processing
DM
FM
LM

With Optional Processing
DMQB - Ceramic Dip
FMQB - Cerpak
LMQB - Leadless Chip Carrier

Optional Processing

$\mathrm{QB}=$ Mil Std 883
Method 5004 and 5005, Level B
QR = Commercial Device with
160 Hour Burn in or Equivalent

FAIRCHILD

A Schlumberger Company

93425H
1025×1-Bit Static Random Access Memory

Description

The 93425 H is a 1024 -bit read/write Random Access Memory (RAM), organized 1024 words by one bit. It is designed for high speed cache, control and buffer storage applications. The device includes full on-chip decoding, separate Data input and non-inverting Data output, as well as an active LOW Chip Select line.

- Address Access Time

93425H-20 - 20 ns Max
93425H-25 - 25 ns Max

- Features Three-State Output
- Power Supply Current - 125 mA Max
- Power Dissipation Decreases with Increasing Temperature
- Plug-in replacement for the Intel $\mathbf{2 1 2 5 H}$
Pin Names
$C S$
$A_{0}-A_{9}$
$\overline{W E}$
D
O

Chip Select (Active LOW)
Address Inputs
Write Enable (Active LOW)
Data Input
Data Output

Connection Diagram
16-Pin DIP (Top View)

Note:
The 16 pin Flatpak version has the same pinout connections as the Dual in-line package.

Logic Symbol

[^31]
Logic Diagram

Functional Description

The 93425 H is a fully decoded 1024 -bit read/write Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A_{0} through A_{9}.

One Chip Select input is provided for easy memory array expansion of up to 2048 bits without the need for external decoding. For larger memories, the fast chip select access time permits direct address decoding without an increase in overall memory access time.

The read and write functions of the 93425 H are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When $\overline{W E}$ is held LOW and the chip is selected, the data at D is written into the location specified by the binary address present at A_{0} through Ag . Since the write function is level triggered, data must be held stable at the data input for at least twSD(min) plus tw (min) plus twHD(min) to insure a valid write. When WE is held HIGH and the chip selected, data is read from the addressed location and presented at the output (O).

The 93425 H has a three-state output which provides an active pull-up or pull-down when enabled and a high impedance (HIGH Z) state when disabled. The active pull-up provides drive capability for high capacitive loads while the high impedance state allows optimization of word expansion in bus organized systems.

Truth Table

Inputs			Output	
	$\overline{\text { WE }}$	D	O	Mode
H	X	X	HIGH Z	Not Selected
L	L	L	HIGH Z	Write "0"
L	L	H	HIGH Z	Write "1"
L	H	X	DOUT	Read

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
$\mathrm{L}=$ LOW Voltage Level (.5 V)
X = Don't Care (HIGH or LOW)

DC Performance Characteristics: Over operating temperature ranges (Note 1)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
Vol	Output LOW Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l} \mathrm{OL}=16 \mathrm{~mA}$
V_{IH}	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{5}$
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{5}$
VOH	Output HIGH Voltage	2.4			\checkmark	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-5.2 \mathrm{~mA}$
ILL	Input LOW Current		-250	-400	$\mu \mathrm{A}$	$\mathrm{Vcc}=\mathrm{Max}, \mathrm{V} \mathrm{V}^{\text {N }}=0.4 \mathrm{~V}$
$I_{\text {IH }}$	Input HIGH Current		1.0	40	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$
$\mathrm{IIHB}^{\text {I }}$	Input Breakdown Current			1.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{lin}=-10 \mathrm{~mA}$
$\begin{aligned} & \mathrm{I}_{\mathrm{CZH}} \\ & \mathrm{I}_{\mathrm{CZL}} \end{aligned}$	Output Current (HIGH Z)			$\begin{array}{r} 50 \\ -50 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \mathrm{~V} \text { OUT }=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {CC }}=\text { Max }, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$
los	Output Current Short Circuit to Ground			-100	mA	VCC $=$ Max, Note 3
Icc	Power Supply Current			125	mA	$V_{C C}=\operatorname{Max}$ All Inputs GND Output Open

Notes

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \cdot \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ and maximum loading.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Short circuit to ground not to exceed one second.
4. T_{W} measured at $t_{W S A}=$ Min. $t_{W S A}$ measured at $t_{W}=$ Min.
5. Static condition only.

93425H

AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	93425H-20		93425H-25		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		15		15	ns	
tzRCS	Chip Select to HIGH Z		20		20	ns	Figures 3a, 3b
$t_{\text {AA }}$	Address Access Time ${ }^{2}$		20		25	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ${ }^{4}$	15		20		ns	
twSD	Data Setup Time Prior to Write	0		0		ns	
twhd	Data Hold Time after Write	0		0		ns	
twSA	Address Setup Time Prior to Write ${ }^{4}$	5		5		ns	Figures 4a, 4b
twha	Address Hold Time after Write	0		0		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Select Hold Time after Write	0		0		ns	
tzws	Write Enable to HIGH Z		15		15	ns	
twr	Write Recovery Time		15		15	ns	

Notes on preceding page

Fig. 1 AC Test Output Load

LOAD A

LOAD B
*Includes jig and probe capacitance
Fig. 2 AC Test Input Levels

Fig. 3 Read Mode Timing
3a Read Mode Propagation Delay from Chip Select

3b Read Mode Propagation Delay from Address

93425H

Fig. 4 Write Mode Timing

Notes

1. Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.
2. Input voltage levels for worst case $A C$ test are $3.0 / 0.0 \mathrm{~V}$.

Ordering Information

FAIRCHILD

A Schlumberger Company

93479
 256×9-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The 93479 is a 2304-bit read/write Random Access Memory (RAM), organized as 256 words by nine bits per word. It is ideally suited for scratchpad, small buffer and other applications where the number of required words is small and where the number of required bits per word is relatively large. The ninth bit can be used to provide parity for 8-bit word systems.

```
- Commercial Address Time
    93479 - 45 ns Max
    93479A - 35 ns Max
- Military Address Access Time
    93479 - 60 ns Max
    93479A - 45 ns Max
- Common Data Input/Output
- Features Three State Output
- Power Dissipation - 0.29 mW/Bit Typ
```


Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address Inputs
$\mathrm{DQ}_{0}-\mathrm{DQ} Q_{8}$	Data Input/Outputs
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)
$\overline{\mathrm{WE}}$	Write Enable Input (Active LOW)
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)

Logic Symbol
$V_{c c}=\operatorname{Pin} 22$
GND $=\operatorname{Pin} 11$

Connection Diagram
22-Pin DIP (Top View)

Functional Description

The 93479 is a fully decoded 2304-bit random access memory organized 256 words by nine bits. Word selection is achieved by means of an 8-bit address, A_{0} to A_{7}.

The Chip Select input provides for memory array expansion. For larger memories, the fast chip select access time permits decoding without an increase in overall memory access time.

The read and write operations are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. With WE held LOW, the chip selected, and the output disabled, the data at $D Q_{0}-D Q_{8}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least $t_{W S D(\text { min })}$ plus $t_{W(\text { min })}$ plus $t_{W H D(\text { min })}$ to insure a valid write. To read, WE is held HIGH, the chip selected and the outputs enabled. Non-inverted data is then presented at the outputs $\mathrm{DQ}_{0}-\mathrm{DQ}_{8}$.

The 93479 has three-state outputs which provides an active pull-up or pull-down when enabled and a high impedance (HIGH Z) state when disabled. The active pull-ups provide drive capability for high capacative loads while the high impedance state allows optimization of word expansion in bus organized systems. During writing, the output is held in the high impedance state.

Truth Table

Inputs			Data In/Out	
$\overline{\mathbf{C S}}$	$\overline{\mathbf{O E}}$	$\overline{\text { WE }}$		Mode
X	H	X	HIGH Z	Output Disabled
H	X	X	HIGH Z	R/W Disabled
L	L	H	Data Out	Read
L	H	L	Data In	Write

[^32]
93479

DC Performance Characteristics: Over operating temperature ranges (Note 1)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
Vol	Output LOW Voltage		0.3	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{loL}=8.0 \mathrm{~mA}$	
VOH	Output HIGH Voltage	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-5.2 \mathrm{~mA}$	
V_{IH}	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{5}$	
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{5}$	
IIL	Input LOW Current		-250	-400	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
$\underline{I_{1}}$	Input HIGH Current		1.0	40	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$	
$\mathrm{I}_{\text {IHB }}$	Input Breakdown Current			1.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$	
$\begin{aligned} & \mathrm{I}_{\mathrm{ozH}} \\ & \mathrm{I}_{\mathrm{OzL}} \end{aligned}$	Output Current (HIGH Z)		-50	$\begin{array}{r} 50 \\ -400 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$	
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}, \mathrm{IN}=-10 \mathrm{~mA}$	
los	Output Current Short Circuit to Ground			-70	mA	Vcc $=$ Max, Note 3	
Icc	Power Supply Current			$\begin{aligned} & 185 \\ & 200 \end{aligned}$	mA	Commercial Military	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$ All Inputs GND All Outputs Open

Notes

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} . \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ and maximum loading.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Short circuit to ground not to exceed one second.
4. T_{W} measured at $t_{W S A}=\operatorname{Min} . t_{W S A}$ measured at $t_{W}=\operatorname{Min}$.
5. Static condition only.

93479

Commercial

AC Performance Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	A		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		25		25	ns	
tzRCS	Chip Select to HIGH Z		25		25	ns	
$t_{\text {AOS }}$	Output Enable Access Time		25		25	ns	Figures 3a, 3b, 3c
tzRos	Output Enable to HIGH Z		25		25	ns	
$t_{\text {AA }}$	Address Access Time ${ }^{2}$		35		45	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ${ }^{4}$	25		25		ns	
tso	Output Enable Setup Time	5		5		ns	
t_{HO}	Data Enable Hold Time	5		5		ns	
twSD	Data Setup Time Prior to Write	25		25		ns	Figure 4
tWHD	Data Hold Time after Write	5		5		ns	
tWSA	Address Setup Time Prior to Write 4	5		5		ns	
tWHA	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Select Hold Time after Write	5		5		ns	

Military
AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	A		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		30		40	ns	
tzRCS	Chip Select to HIGH Z		30		40	ns	
$\mathrm{t}_{\text {AOS }}$	Output Enable Access Time		30		40	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		30		40	ns	
$t_{\text {AA }}$	Address Access Time ${ }^{2}$		45		60	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ${ }^{4}$	40		40		ns	
tso	Output Enable Setup Time	5		5		ns	
tho	Data Enable Hold Time	5		5		ns	
tWSD	Data Setup Time Prior to Write	50		50		ns	Figure 4
tWHD	Data Hold Time after Write	10		10		ns	
tWSA	Address Setup Time Prior to Write ${ }^{4}$	10		10		ns	
tWHA	Address Hold Time after Write	10		10		ns	
twscs	Chip Select Setup Time Prior to Write	10		10		ns	
twhCs	Chip Select Hold Time after Write	10		10		ns	

Fig. 1 AC Test Load Output Load

LOAD A

Fig. 2 AC Test Input Levels

LOAD B
*Includes jig and probe capacitance

Fig. 3 Read Mode Timing
3a Read Mode Propagation Delay from Chip Select to Output

3b Read Mode Propagation Delay from Address to Output

3c Read Mode Propagation Delay from Output Enable

Fig. 4 Write Mode Timing

* These timing parameters are only necessary to guarantee High Z state during the entire write cycle

Notes

1. Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.
2. Input voltage levels for worst case AC test are $3.0 / 0.0 \mathrm{~V}$.

Ordering Information

Speed Selection
Blank = Standard Speed
$A=$ ' A ' Grade
Packages and Outlines (See Section 9)
D = Ceramic DIP
Temperature Range
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Optional Processing

QB $=$ Mil Std 883
Method 5004 and 5005, Level B
$\mathrm{QR}=$ Commercial Device with
160 Hour Burn In or Equivalent

Notes

Notes

65,536 x 1-Bit Static Random Access Memory

Memory and High Speed Logic

Description

The F1600 is a 65,536 -bit fully static asynchronous random access memory, organized as 65,536 words by 1-bit, using high-performance CMOS technology. The F1600 is based on an advanced isoplanar oxide isolation process: fully-implanted CMOS technology with sub-2 micron design rules and high-performance tantalum silicide interconnects. The high-density NMOS memory array and the CMOS peripheral circuits provide fast access time plus low active and standby power.

- Single +5 V Operation ($\pm 10 \%$)
- Fully Static: No Clock or Timing Strobe Required
- Fast Access Time: 45 ns/55 ns/70 ns (Maximum)
- Low Power Dissipation:
70 mA Maximum (Active)
20 mA Maximum (Standby-TTL Levels)
9 mA Maximum (Standby-Full Rail)

9 mA Maximum (Standby-Full Rail)

- Directly TTL Compatible-All Inputs and Outputs
- Separate Data Input and Three-State Output
- Available in a 22-Pin DIP or LCC

Pin Names

$\bar{A}_{0}-\mathrm{A}_{15}$	Address Inputs
$\overline{\mathrm{E}}$	Chip Enable
\bar{W}	Write Enable
D	Data Input
Q	Data Output
$V_{\text {CC }}$	Power $(5.0 \mathrm{~V})$
GND	Ground $(0 \mathrm{~V})$

Logic Symbol

Connection Diagrams
22-Pin DIP (Top View)

22-Pin Leadless Chip Carrier (Top View)

$V_{\mathrm{CC}}=\operatorname{Pin} 22$
GND $=\operatorname{Pin} 11$

F1600

Absolute Maximum Ratings
Voltage on Any Pin With
Respect to GND
Storage Temperature
Operating Temperature
Power Dissipation
$55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
1.0 W

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$					
Symbol	Characteristic	Min.	Typ.	Max.	Unit
V_{CC}	Supply Voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\text {IH }}$	Input HIGH Voltage	2.2		6.0	V
$\mathrm{~V}_{\text {IL }}$	Input LOW Voltage	-0.5		0.8	V

All voltages are referenced to GND pin $=0 \mathrm{~V}$.
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Functional Block Diagram

Symbol	Characteristic	F1600-45			F1600-55			F1600-70			Unit	Condition
		Min	Typ.	Max	Min	Typ.	Max	Min	Typ.	Max		
I_{IN}	Input Leakage Current (allinputs)			± 5			± 5			± 5	uA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{I}_{\text {OUT }}$	Output Leakage Current (on Q)			± 10			± 10			± 10	uA	$\begin{aligned} & \bar{E}=V_{I H} \\ & V_{\text {OUT }}=0 V \text { to } V_{C C} \end{aligned}$
ICCl	Operation Power Supply Current		40	70		40	70		40	70	mA	$\begin{aligned} & \bar{E}=V_{1 L} \\ & \text { Output Open } \end{aligned}$
${ }^{\text {cce2 }}$	Dynamic Operating Supply Current		40	70		40	70		40	70	mA	Min. Read Cycle Time Duty Cycle $=100 \%$
$\mathrm{I}_{\text {SB1 }}$	Standby Supply Current		5	20		5	20		5	20	mA	$\begin{aligned} & \overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { see note } 1 \end{aligned}$
$\mathrm{I}_{\text {SB2 }}$	Full Standby Supply Current		0.02	9.0		0.02	9.0		0.02	9.0	mA	see note 2
Ios	Output Current Short Circuit to Ground			-125			-125			-125	mA	$V_{C C}=5.5 \mathrm{~V}$ Duration Not to Exceed 1 Second
V_{OL}	OutputLOWVoltage			0.4			0.4			0.4	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$
V_{OH}	OutputHIGHVoltage	2.4			2.4			2.4			V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$

AC Test Conditions ${ }^{3}$

Input Pulse Levels \qquad
Input Rise and Fall Times . 5 ns
Input and output Timing Reference Levels 1.5 V
Output Load See Figures 1 and 2

Capacitance ${ }^{4} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Max.	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	6	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Truth Table

Mode	$\overline{\mathbf{E}}$	$\overline{\mathbf{W}}$	D	Q	Power Level
Standby	H	X	X	HIGH Z	Standby
Read	L	H	X	D	Active
Write	L	L	D	HIGH Z	Active

HIGH Z $=$ High impedance

$$
\begin{aligned}
& \mathrm{D}=\text { Valid data bit } \\
& \mathrm{X}=\text { Don't care }
\end{aligned}
$$

[^33]
F1600

Figure 1 Output Load

Figure 2 Output Load (for tehaz, telax, twlaz, twhax)

AC Operating Conditions and Characters: Read Cycle $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

No.	Symbol		Parameter	F1600-45		F1600-55		F1600-70		Unit	Notes
	Standard	Alternate		Min	Max	Min	Max	Min	Max		
1	$t_{\text {AVAV }}$	t_{RC}	Address Valid to Address Valid (Read Cycle Time)	45		55		70		ns	5,6,9
2	$\mathrm{t}_{\text {AVQV }}$	t_{AA}	Address Valid to Output Valid (Address Access Time)		45		55		70	ns	5
3	$\mathrm{t}_{\text {AXQX }}$	${ }^{\text {t }} \mathrm{OH}$	Address Invalid to Output Valid (Output Hold Time)	5		5		5		ns	
4	$t_{\text {ELEH }}$	$t_{\text {RC }}$	Chip Enable Low to Chip Enable High (Read Cycle Time)	45		55		70		ns	6,9
5	$t_{\text {elov }}$	$\mathrm{t}_{\mathrm{ACS}}$	Chip Enable Low to Output Valid (Chip Enable Access Time)		45		55		70	ns	6
6	$t_{\text {ELQx }}$	$\mathrm{t}_{\text {LZ }}$	Chip Enable Low to Output Invalid (Chip Enable to Output Active)	5		5		5		ns	
7	$t_{\text {EHQZ }}$	t_{HZ}	Chip Enable High to Output High Z (Chip Enable to Output Disable)	0	20	0	25	0	30	ns	10
8	$\mathrm{t}_{\text {ELICCH }}$	$t_{\text {PU }}$	Chip Enable Low to Power Up	0		0		0		ns	
9	$\mathrm{t}_{\text {EHICCL }}$	$t_{\text {PD }}$	Chip Enable High to Power Down		45		45		45	ns	

Notes on page 5-9

Timing Waveforms

Read Cycle 1 (Where $\overline{\mathrm{E}}$ is active prior to address change \bar{W} High)

AC Operating Conditions and Characters: Write Cycle $1 \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

No.	Symbol		Parameter	F1600-45		F1600-55		F1600-70		Unit	Notes
	Standard	Alternate		Min	Max	Min	Max	Min	Max		
10	${ }^{\text {t }}$ AVAV	${ }^{\text {tw }}$ c	Address Valid to Address Valid (Write Cycle Time)	45		55		70		ns	7,8,9
11	$t_{\text {ELW }}$	${ }^{\text {t }}$ W	Chip Enable to Write High (Chip Enable to End of Write)	40		45		55		ns	11
12	$\mathrm{t}_{\text {AVwh }}$	${ }^{\text {t }}$ AW	Address Valid to Write High (Address Setup to End of Write)	40		45		55		ns	11
13	${ }^{\text {t whax }}$	${ }^{\text {t }}$ WR	Write High to Address Don't Care (Address Hold After End of Write)	5		5		5		ns	11
14	${ }^{\text {t }}$ WLWH	${ }^{\text {t }}$ WP	Write Low to Write High (Write Pulse Width)	30		35		40		ns	11
15	$\mathrm{t}_{\text {AVWL }}$	$\mathrm{t}_{\text {AS }}$	Address Valid to Write Low (Address Setup to Begin. of Write)	10		10		10		ns	11
16	$t_{\text {dvwh }}$	${ }^{\text {t }}$ w	Data Valid to Write High (Data Setup to End of Write)	20		25		30		ns	11
17	$\mathrm{t}_{\text {WHDX }}$	t_{DH}	Write High to Data Don't Care (Data Hold After End of Write)	5		5		5		ns	11
18	${ }^{\text {t wLQz }}$	${ }^{\text {t }}$ wz	Write Low to Output High Z (Write Enable to Output Disable)	0	20	0	25	0	30	ns	10
19	${ }^{\text {twhax }}$	tow	Write High to Output Don't Care (Output Active After End of Write)	0		0		0		ns	

Notes on page 5-9
Read Cycle 2 (Where address is valid prior to \bar{E} becoming active. $\bar{W}=H I G H$)

F1600

Write Cycle 1 (\bar{W} controlled, where \bar{E} is active prior to \bar{W} becoming active.)

INVALID or Don't Care
 occur any time during this period
 occur any time during this period

Write Cycle 2 ($\overline{\mathrm{E}}$ controlled, where $\overline{\mathrm{W}}$ is active prior to $\overline{\mathrm{E}}$ becoming active. See Note 9.)

F1600

$A C$ Operating Conditions and Characters: Write Cycle $2 \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

No.	Symbol		Parameter	F1600-45		F1600-55		F1600-70		Unit	Notes
	Standard	Alternate		Min	Max	Min	Max	Min	Max		
20	$\mathrm{t}_{\text {AVEL }}$	$t_{\text {AS }}$	Address Valid to Chip Enable Low (Address Set Up)	0		0		0		ns	
21	$t_{\text {ELEH }}$	${ }^{\text {c }}$ W	Chip Enable Low to Chip Enable High (Write Cycle Time)	45		55		70		ns	11
22	$t_{\text {EHAX }}$	$t_{\text {WR }}$	Chip Enable High to Address Don't Care (Addr. Hold After End of Write)	5		5		5		ns	
23	$t_{\text {AVEH }}$	$\mathrm{t}_{\text {AW }}$	Address Valid to Chip Enable High (Address Setup to End of Write)	40		45		55		ns	
24	$t_{\text {ELW }}$	$t_{\text {WP }}$	Chip Enable Low to Write High (Write Pulse Width)	30		35		40		ns	11
25	$t_{\text {DVEH }}$	$t_{\text {DW }}$	Data Valid to Chip Enable High (Data Setup to End of Write)	20		25		30		ns	
26	$t_{\text {EHDX }}$	${ }^{\text {DH }}$	Chip Enable High to Data Don't Care (Data Hold)	5		5		5		ns	

Notes
5. Read Cycle 1 assumes that Chip Enable (\bar{E}) occurs before the addresses are valid. Timing considerations are referenced to the edges of Address Valid.
6. Read Cycle 2 assumes that Address Valid occurs prior to Chip Enable (\bar{E}). Timing considerations are referenced to the edges of Chip Enable.
7. Since a write cycle can only occur during intervals where both \bar{E} and \bar{W} are LOW, Write Cycle 1 assumes that \bar{W} is the latter of the two signals to go LOW (active) and is also the first of the two signals to go HIGH (inactive). Consequently, timing considerations are referenced to the edges of \bar{W} rather than $\overline{\mathrm{E}}$.
8. Write Cycle 2 assumes that, of the two control signals, \bar{E} and \bar{W}, \bar{E} is the latter of the two to go LOW (active) and is also the first of the two go HIGH (inactive). Consequently timing considerations are referenced to the edges of \bar{E} rather than \bar{W}. In applications where the Data Input and Data Output pins are tied together, this timing arrangement has the advantage of preventing bus conflicts on the data pins since the output buffers remain disabled throughout the cycle.
9. All READ and WRITE cycle timings are referenced from the last bit to become valid address to the first transitioning address.
10. Transition to HIGH IMPEDANCE state is measured $\pm 500 \mathrm{mV}$. from steady state voltage with specified loading in Figure 2. This parameter is sampled, not 100% tested.
11. Since Write Enable (\bar{W}) is gated internally with Chip Enable (\bar{E}), the value of \bar{W} during periods where \bar{E} is HIGH is irrelevant (i.e., don't care). Thus, whenever \bar{W} transitions to the LOW state prior to \bar{E}, all timing references will be to the falling edge of \bar{E} rather than \bar{W}. Similarly, whenever \bar{E} transitions to the HIGH state prior to \bar{W}, all timing references will be to the rising edge of \bar{E} rather than \bar{W}.
12. Input pulse levels 0 to 3.0 Volts.
13. Input rise and fall times are assumed to be 5 ns . Timing measurement reference levels are 1.5 Volts.

Timing Parameter Abbreviations

The transition definitions used in this data sheet are:
$\mathrm{H}=$ transition to high
$\mathrm{L}=$ transition to low
$\mathrm{V}=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

Ordering Information

Part Number	Access Time	Temperature Range	Package	Ordering Information
F1600-45	45 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Side-brazed	1600 DC 45
F1600-45	45 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Leadless Chip Carrier	1600 C 45
F1600-55	55 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Side-brazed	1600 DC 55
F1600-55	55 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Leadless Chip Carrier	1600 LC 55
F1600-70	70 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Side-brazed	1600 C 70
F1600-70	70 ns	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Leadless Chip Carrier	1600 LC 70

Description

The F1600 is a 65,536 -bit fully static asynchronous random access memory, organized as 65,536 words by 1-bit, using high-performance CMOS technology. The F1600 is based on an advanced isoplanar oxide isolation process: fully-implanted CMOS technology with sub-2 micron design rules and high-performance tantalum silicide interconnects. The high-density NMOS memory array and the CMOS peripheral circuits provide fast access time plus low active and standby power.

- Single +5 V Operation ($\pm 10 \%$)
- Fully Static: No Clock or Timing Strobe Required
- Fast Access time: $55 \mathrm{~ns} / 70 \mathrm{~ns}$ (Maximum)
- Specifications Guaranteed Over Full Military

Temperature Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

- Low Power Dissipation:

> 70 mA Maximum (Active)
> 20 mA Maximum (Standby-TTL Levels) 9 mA Maximum (Standby-Full Rail)

- Directly TTL Compatible-All Inputs and Outputs
- Separate Data Input and Three-State Output
- Available in a 22 -Pin DIP or LCC

Connection Diagrams
22-Pin DIP (Top View)

22-Pin Leadless Chip Carrier (Top View)

$\mathrm{A}_{0}-\mathrm{A}_{15}$	Address Inputs
$\overline{\mathrm{E}}$	Chip Enable
$\overline{\mathrm{W}}$	Write Enable
D	Data Input
Q	Data Output
V_{CC}	Power $(5.0 \mathrm{~V})$
GND	Ground $(0 \mathrm{~V})$

Pin Names

Absolute Maximum Ratings

Voltage on Any Pin With Respect	-2.0 V to 7.0 V
to GND	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	1.0 W
Power Dissipation	$+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ($\left.\mathrm{T}_{\mathrm{J}}\right)$	$15^{\circ} \mathrm{C} / \mathrm{W}$

$$
\left(\theta_{\mathrm{Jc}}\right): \text { Case (Side-Brazed DIP) }
$$

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating condition for extended periods may affect device reliability.

Recommended Operating Ranges $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	Min.	Typ.	Max.	Unit
V_{CC}	Supply Voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{I H}$	Input HIGH Voltage	2.2		6.0	V
$\mathrm{~V}_{I \mathrm{~L}}$	Input LOW Voltage	-0.5		0.8	V

All voltages are referenced to GND pin $=0 \mathrm{~V}$.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Functional Block Diagram

F1600

Military Temperature Range

DC Operating Characteristics: $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Characteristic	F1600-55		F1600-70		Unit	Condition

Notes on page 5-17

AC Test Conditions ${ }^{3}$

Input Pulse Levels GND to 3.0 V
Input Rise and Fall Times 5 ns
Input and output Timing Reference Levels 1.5 V
Output Load...................... See Figures 1 and 2
Capacitance ${ }^{4} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Max.	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	6	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Notes on page 5-17

Figure 1 Output Load

Truth Table ${ }^{5}$

Mode	$\overline{\mathbf{E}}$	$\overline{\mathbf{W}}$	\mathbf{D}	Q	Power Level
Standby	H	X	X	HIGH Z	Standby
Read	L	H	X	D	Active
Write	L	L	D	HIGH Z	Active

HIGH Z = High impedance
$D=$ Valid data bit
X = Don't care

Figure 2 Output Load (for tehoz, telax, twlaz, twhox)
*Includes jig and probe capacitance

F1600
 Military Temperature Range

AC Operating Conditions and Characteristics: Read Cycle $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

No.	Symbol		Parameter	F1600-55		F1600-70		Unit	Notes
	Standard	Alternate		Min	Max	Min	Max		
1	$\mathrm{t}_{\text {AVAC }}$	$t_{\text {RC }}$	Address Valid to Address Valid (Read Cycle Time)	55		70		ns	6,7,10
2	$\mathrm{t}_{\mathrm{AVQV}}$	$t_{\text {AA }}$	Address Valid to Output Valid (Address Access Time)		55		70	ns	6
3	$\mathrm{t}_{\mathrm{AXQX}}$	${ }^{\text {OH }}$	Address Invalid to Output Invalid (Output Hold Time)	5		5		ns	
4	$t_{\text {ELEH }}$	t_{RC}	Chip Enable Low to Chip Enable High (Read Cycle Time)	55		70		ns	7,10
5	$t_{\text {eLQV }}$	$t_{\text {ACS }}$	Chip Enable Low to Output Valid (Chip Enable Access Time)		55		70	ns	7
6	$t_{\text {ELQ }}$	$t_{L Z}$	Chip Enable Low to Output Invalid (Chip Enable to Output Active)	5		5		ns	4
7	$t_{\text {EHQZ }}$	$t_{H Z}$	Chip Enable High to Output High Z (Chip Disable to Output Disable)	0	35	0	40	ns	4,11
8	$\mathrm{t}_{\text {ELICCH }}$	$t_{\text {PU }}$	Chip Enable Low to Power Up	0		0		ns	4
9	$\mathrm{t}_{\text {EHICCL }}$	$t_{\text {PD }}$	Chip Enable High to Power Down		45		45	ns	4

Notes on page 5-17

Timing Waveforms

Read Cycle 1 (Where \bar{E} is active prior to address change. $\bar{W}=\mathrm{HIGH}$)

Read Cycle 2 (Where address is valid prior to $\overline{\mathrm{E}}$ becoming active. $\overline{\mathrm{W}}=\mathrm{HIGH}$)

AC Operating Conditions and Characteristics: Write Cycle $1 \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

No.	Symbol		Parameter	F1600-55		F1600-70		Unit	Notes
	Standard	Alternate		Min	Max	Min	Max		
10	$t_{\text {t }}{ }_{\text {aVAV }}$	$t_{\text {wc }}$	Address Valid to Address Valid (Write Cycle Time)	55		70		ns	8,9,10
11	$\mathrm{t}_{\text {ELW }}$	t_{CW}	Chip Enable to Write High (Chip Enable to End of Write)	50		55		ns	12
12	$t_{\text {AVWH }}$	$t_{\text {AW }}$	Address Valid to Write High (Address Setup to End of Write)	50		55		ns	12
13	$t_{\text {WHAX }}$	$t_{\text {WR }}$	Write High to Address Don't Care (Address Hold After End of Write)	5		5		ns	12
14	$t_{\text {WLWH }}$	$t_{\text {WP }}$	Write Low to Write High (Write Pulse Width)	35		40		ns	12
15	$t_{\text {AVWL }}$	$t_{\text {AS }}$	Address Valid to Write Low (Address Setup to Beginning of Write)	15		15		ns	12
16	$t_{\text {bVWH }}$	$t_{\text {DW }}$	Data Valid to Write High (Data Setup to End of Write)	25		30		ns	12
17	$t_{\text {WHDX }}$	$t_{\text {DH }}$	Write High to Data Don't Care (Data Hold After End of Write)	5		5		ns	12
18	$t_{\text {WLQZ }}$	$t_{\text {wz }}$	Write Low to Output High Z (Write Enable to Output Disable)	0	30	0	35	ns	4,11
19	${ }^{\text {wh }}$ WQZ	tow	Write High to Output Don't Care (Output Active After End of Write)	0		0		ns	4

Notes on page 5-17
Write Cycle 1 (\bar{W} controlled, where \bar{E} is active prior to \bar{W} becoming active.)

F1600
 Military Temperature Range

AC Operating Conditions and Characteristics: Write Cycle $2 \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

No.	Symbol		Parameter	F1600-55		F1600-70		Unit	Notes
	Standard	Alternate		Min	Max	Min	Max		
20	$\mathrm{t}_{\text {AVEL }}$	$t_{\text {AS }}$	Address Valid to Chip Enable Low (Address Setup)	5		5		ns	
21	$t_{\text {ELEH }}$	t_{CW}	Chip Enable Low to Chip Enable High (Write Cycle Time)	55		70		ns	12
22	$t_{\text {EHAX }}$	$t_{\text {WR }}$	Chip Enable High to Address Don't Care (Address Hold After End of Write)	5		5		ns	
23	$\mathrm{t}_{\text {AVEH }}$	$t_{\text {AW }}$	Address Valid to Chip Enable High (Address Setup to End of Write)	50		65		ns	
24	$\mathrm{t}_{\text {ELW }}$	$t_{\text {WP }}$	Chip Enable Low to Write High (Write Pulse Width)	35		40		ns	12
25	$t_{\text {dVeh }}$	$t_{\text {DW }}$	Data Valid to Chip Enable High (Data Setup to End of Write)	25		30		ns	
26	$t_{\text {EHDX }}$	$t_{\text {DH }}$	Chip Enable High to Data Don't Care (Data Hold)	5		5		ns	

Notes on page 5-17
Write Cycle 2 (\bar{E} controlled, where \bar{W} is active prior to $\overline{\mathrm{E}}$ becoming active. See Note 9.)

Timing Parameter Abbreviations

signal name from which interval is defined
transition direction for first signal

F1600

Military Temperature Range

Notes

1. This parameter is measured with Chip Enable $(\overline{\mathrm{E}}) \mathrm{HIGH}$ and inputs at valid TTL levels (0.5 V and 2.5 V).
2. This parameter is measured with input levels either $\geq V_{C C}-0.2 \mathrm{~V}$ or $\leq 0.2 \mathrm{~V}$, including $\overline{\mathrm{E}}$ which must be $\geq \mathrm{V}_{C C}-0.2 \mathrm{~V}$. This condition results in significant reduction in current in the input buffer circuitry and consequently a lower overall current level.
3. Operation to specifications guaranteed 2.0 ms after V_{CC} applied.
4. This parameter value is based on initial design qualification and is also verified on every design change. These are not tested in production.
5. Functional test performed with the following input conditions: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}$.
6. Read Cycle 1 assumes that Chip Enable ($\overline{\mathrm{E}}$) occurs before the addresses are valid. Timing considerations are referenced to the edges of Address Valid.
7. Read Cycle 2 assumes that Address Valid occurs prior to Chip Enable (\bar{E}). Timing considerations are referenced to the edges of Chip Enable.
8. Since a write cycle can only occur during intervals where both \bar{E} and \bar{W} are LOW, Write Cycle 1 assumes that \bar{W} is the latter of the two signals to go LOW (active) and is also the first of the two signals to go HIGH (inactive). Consequently, timing considerations are referenced to the edges of \bar{W} rather than $\overline{\mathrm{E}}$.
9. Write Cycle 2 assumes that, of the two control signals, \bar{E} and \bar{W}, \bar{E} is the latter of the two to go LOW (active) and is also the first of the two to go HIGH (inactive). Consequently, timing considerations are referenced to the edges of \bar{E} rather than \bar{W}. In applications where the Data Input and Data Output pins are tied together, this timing arrangement has the advantage of preventing bus conflicts on the data pins since the output buffers remain disabled throughout the cycle.
10. All READ and WRITE cycle timings are referenced from the last bit to become valid address to the first transitioning address.
11. Transition to HIGH IMPEDANCE state is measured $\pm 500 \mathrm{mV}$ from steady state voltage with specified loading in Figure 2 .
12. Since Write Enable (\bar{W}) is gated internally with Chip Enable ($\overline{\mathrm{E}}$), the value of $\overline{\mathrm{W}}$ during periods where $\overline{\mathrm{E}}$ is HIGH is irrelevant (i.e., don't care). Thus, whenever \bar{W} transitions to the LOW state prior to \bar{E}, all timing references will be to the falling edge of \bar{E} rather than \bar{W}. Similarly, whenever \bar{E} transitions to the HIGH state prior to \bar{W}, all timing references will be to the rising edge of \bar{E} rather than \bar{W}.
13. Input pulse levels 0 to 3.0 Volts.
14. Input rise and fall times are assumed to be 5 ns . Timing measurement reference levels are 1.5 Volts.

Ordering Information

Part Number	Access Time	Temperature Range	Package	Order Code
F1600-55	55 ns	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Side-brazed	1600DMQB55
F1600-55	55 ns	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Leadless Chip Carrier	1600LMQB55
F1600-70	70 ns	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Side-brazed	1600DMQB70
F1600-70	70 ns	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Leadless Chip Carrier	1600LMQB70

FAIRCHILD

A Schlumberger Company

F1601

65,536 x 1-Bit Static Random Access Memory

Description

The F1601 is a 65,536 -bit fully static asynchronous random access memory, organized as 65,536 words by 1-bit, using high-performance CMOS technology. The F1601 is based on an advanced isoplanar oxide isolation process: fully-implanted CMOS technology with sub-2 micron design rules and high-performance tantalum silicide interconnects. The high-density NMOS memory array and the CMOS peripheral circuits provide fast access time plus low active and standby power.

- Data Retention Version of 64 K x 1 SRAM (F1600)
- Pin for Pin Compatible with F1600
- Operating Supply Voltage: $\mathbf{V}_{\mathrm{Cc}}=4.25 \mathrm{~V}$ to 5.25 V
- Low Power Dissipation:

70 mA Maximum (Active)
20 mA Maximum (Standby-TTL Levels)
9 mA Maximum (Standby-Full Rail)

- Data Retention Supply Voltage: $\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}$ to 5.25 V
- Data Retention Supply Current (Typical):
$5 \mu A @ T_{A}=+25^{\circ} \mathbf{C}$
$300 \mu \mathrm{~A} @ \mathrm{~T}_{\mathbf{A}}=+125^{\circ} \mathrm{C}$
- Fast Access Time: 55 ns/70 ns (Maximum)

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{15}$	Address Inputs
$\overline{\mathrm{E}}$	Chip Enable
$\overline{\mathrm{W}}$	Write Enable
D	Data Input
Q	Data Output
V_{CC}	Power $(5.0 \mathrm{~V})$
GND	Ground $(0 \mathrm{~V})$

Logic Symbol
$V_{C C}=\operatorname{Pin} 22$

GND $=\operatorname{Pin} 11$

Connection Diagrams
22-Pin DIP (Top View)

22-Pin Leadless Chip Carrier (Top View)

Notes
Product Index and Selection Guide 1
Quality Assurance and Reliability 2

ITL ProgrammableLogic $=88$
Ordering Information and Package Outlines

F100K DC Family Specifications

DC characteristics for the F100K series family parametric limits listed below are guaranteed for the entire F100K ECL family unless specified on the individual data sheet.

Absolute Maximum Ratings: Above which the useful life may be impaired ${ }^{1}$
Storage Temperature
Maximum Junction Temperature (T_{J})
Supply Voltage Range
Input Voltage (dc)
Output Current (dc Output HIGH)
Operating Range ${ }^{2}$
Lead Temperature (Soldering 10 sec)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+175^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
V to +0.5 V
-50 mA
-5.7 V to -4.2 V
$300^{\circ} \mathrm{C}$

DC Performance Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions	
VOH	Output HIGH Voltage	-1025	-955	-880	mV	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{1 H}$ (max)	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VoL	Output LOW Voltage	-1810	-1705	-1620	mV	or $\mathrm{V}_{\text {IL }}$ (min)	
Vohc	Output HIGH Voltage	-1035			mv	$\begin{aligned} & V_{I N}=V_{I H}(\text { min }) \\ & \text { or } V_{I L}(\text { max }) \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
V_{1}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}($ min $)$	

1. Unless specified otherwise on individual data sheet.
2. Parametric values specified at -4.8 V to -4.2 V .
3. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

F100K DC Family
 Specifications

DC Performance Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions	
VOH	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\text { max }) \\ & \text { or } V_{I L}(\text { min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	-1810		-1605	mV		
VOHC	Output HIGH Voltage	-1030			mv	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\text { max }) \end{aligned}$	
Volc	Output LOW Voltage			-1595	mV		
V_{IH}	Input HIGH Voltage	-1150		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}($ min $)$	

DC Performance Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions	
VOH	Output HIGH Voltage	-1035		-880	mV		$\begin{aligned} & \text { Loading with } \\ & 50 \Omega \text { to }-2.0 \mathrm{~V} \end{aligned}$
Vol	Output LOW Voltage	-1830		-1620	mV	or VIL(min)	
Vohc	Output HIGH Voltage	-1045			mv	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { min })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\text { max })} \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}($ min $)$	

Notes on preceding page

F10K DC Family Specifications

DC characteristics for the F10K series memories.
Parametric limits listed below are guaranteed for all F10K memories, except where noted on individual data sheets.

Absolute Maximum Ratings: $\begin{aligned} & \text { Above } \\ & \text { life ma }\end{aligned}$	Above which the useful life may be impaired ${ }^{2}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})	ure (T_{J}) $\quad+175^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {EE }}$ Pin Potential to Ground Pin	Fin $\quad-7.0 \mathrm{~V}$ to +0.5 V
Input Voltage (dc)	$\mathrm{V}_{\text {EE }}$ to +0.5 V
Output Current (dc Output HIGH)	GH) -30 mA to +0.1 mA
Lead Temperature (Soldering 10 sec)	$10 \mathrm{sec}) \quad 300^{\circ} \mathrm{C}$

Guaranteed Operating Ranges

Supply Voltage $\left(\mathbf{V}_{\mathrm{EE}}\right)$			Case Temperature $\left(\mathbf{T}_{\mathbf{C}}\right)$	
Min	$\mathbf{T y p}$	$\mathbf{M a x}$		
-5.46 V	-5.2 V	-4.94 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	

$$
\mathrm{V}_{\mathrm{EE}} \text { to }+0.5 \mathrm{~V}
$$

Lead Temperature (Soldering 10 sec) $300^{\circ} \mathrm{C}$
DC Performance Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}{ }^{1}$

Symbol	Characteristic	Min	Typ	Max	Unit	T_{A}	Conditions ${ }^{2}$	
VOH	Output HIGH Voltage	$\begin{array}{r} -1000 \\ -960 \\ -900 \end{array}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { max }) \\ & \text { or } V_{I L}(\text { min }) \end{aligned}$	Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1665 \\ & -1650 \\ & -1625 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$		
Vонс	Output HIGH Voltage	$\begin{array}{r} -1020 \\ -980 \\ -920 \end{array}$			mv	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\min)} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\text { max })} \end{aligned}$	
Volc	Output LOW Voltage			$\begin{aligned} & \hline-1645 \\ & -1630 \\ & -1605 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$		
V_{H}	Input HIGH Voltage	$\begin{aligned} & -1145 \\ & -1105 \\ & -1045 \end{aligned}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	Guaranteed Input Voltage HIGH for All Inputs	
VIL	Input LOW Voltage	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1490 \\ & -1475 \\ & -1450 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	Guaranteed Input Voltage LOW for All Inputs	
IIL	Input LOW Current	0.5		170	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}($ min $)$	

[^34]
FAIRCHILD

F100Z416

A Schlumberger Company

$256 \times$ 4-Bit Programmable Read Only Memory

Description

The F100Z416 is a 1024-bit field Programmable Read Only Memory (PROM), organized 256 words by four bits per word. It is designed for high-speed control, mapping, code conversion, and logic replacement. The device includes full on-chip address decoding, non-inverting Data output lines, and an active-LOW Chip Select line for easy memory expansion.

- Address Access Time - 12 ns Typ
- Chip Select Input and Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation Decreases with Increasing Temperature

Pin Names

CS

$\mathrm{A}_{0}-\mathrm{A}_{7}$
Chip Select Input (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{3}$
Address Inputs
Data Outputs

Connection Diagram

16-Pin DIP (Top View)

Note

The Flatpak version has the same pinout (Connection Diagram) as the Dual In-line Package.

Logic Symbol

$$
\begin{aligned}
& V_{C P}=\operatorname{Pin} 1 \\
& V_{C C}=\operatorname{Pin} 16 \\
& V_{E E}=\operatorname{Pin} 8
\end{aligned}
$$

Logic Diagram

Functional Description

The F100Z416 is a fully decoded bipolar field programmable read only memory organized 256 words by four bits per word. An unterminated emitter-follower output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F100Z416 devices can be tied together. An external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

One Chip Select ($\overline{\mathrm{CS})}$ input is provided for memory array expansion up to 512 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of $\overline{\mathrm{CS}}$ from the address without increasing address access time. The device is enabled when $\overline{\mathrm{CS}}$ is LOW. When the device is disabled $\overline{(\mathrm{CS}}=\mathrm{HIGH})$, all outputs are forced LOW.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_{0} through A_{7} inputs, the chip is selected and data is valid at the outputs after $t_{A A}$.

The F100Z416 uses open base transistor vertical (junction) fuse cells. Initially, an unprogrammed cell is in the logic ' 1 ' state. Cells can selectively be programmed to a logic ' 0 ' state by following a specified procedure which fuses aluminum through the emitter-base junction of the cell transistor.

F10Z416
 256×4-Bit Programmable Read Only Memory

Description

The F10Z416 is a 1024-bit field Programmable Read Only Memory (PROM), organized 256 words by four bits per word. It is designed for high-speed control, mapping, code conversion, and logic replacement. The device includes full on-chip address decoding, non-inverting Data output lines, and an active-LOW Chip Select line for easy memory expansion.

- Address Access Time - 12 ns Typ
- Chip Select Input and Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation Decreases with Increasing Temperature

Pin Names

CS
$\mathrm{A}_{0}-\mathrm{A}_{7}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$
Chip Select Input (Active LOW)
Address Inputs
Data Outputs

Connection Diagram

16-Pin DIP (Top View)

Note
The Flatpak version has the same pinout (Connection Diagram) as the Dual In-line Package.

Logic Symbol

[^35]
Logic Diagram

Functional Description

The F10Z416 is a fully decoded bipolar field programmable read only memory organized 256 words by four bits per word. An unterminated emitter-follower output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F10Z416 devices can be tied together. An external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

One Chip Select ($\overline{\mathrm{CS}})$ input is provided for memory array expansion up to 512 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of $\overline{\mathrm{CS}}$ from the address without increasing address access time. The device is enabled when $\overline{\mathrm{CS}}$ is LOW. When the device is disabled $\overline{(\overline{C S}}=\mathrm{HIGH})$, all outputs are forced LOW.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_{0} through A_{7} inputs, the chip is selected and data is valid at the outputs after $t_{A A}$.

The F10Z416 uses open base transistor vertical (junction) fuse cells. Initially, an unprogrammed cell is in the logic ' 1 'state. Cells can selectively be programmed to a logic ' 0 ' state by following a specified procedure which fuses aluminum through the emitter-base junction of the cell transistor.

Notes

Notes

TTL Family Specifications

Absolute Maximum Ratings:Above which the useful life may be impaired	
Storage Temperature	-65° to $+150^{\circ} \mathrm{C}$
Supply Voltage Range	-0.5 V to +7.0 V
Input Voltage (dc) ${ }^{(1)(2)}$	-0.5 V to V CC (RAMs)
	-1.5 V to V_{CC} (PROMs)
Voltage Applied to Outputs ${ }^{(2)(3)}-0.5 \mathrm{~V}$ to +5.5 V (RAMs)	
(output HIGH)	-1.5 V to +5.5 V (PROMs)
Lead Temperature (Soldering, 10 sec$)$	$300^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{j}}\right)$	$175^{\circ} \mathrm{C}$
Output Current	+20 mA

Guaranteed Operating Ranges

	Supply Voltage (Vcc)	Case Temperature (T_{c})	Maximum Low-Level Input Voltage (VIL)	Minimum High-Level Input Voltage (VIH)	
Commercial	$5.0 \mathrm{~V} \pm 5 \%$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	0.8 V	2.1 V (RAMs)	$\begin{aligned} & \text { 2.0V } \\ & \text { (PROMs) } \end{aligned}$
Military	$5.0 \mathrm{~V} \pm 10 \%$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			

Device Design Characteristics

Symbol	Characteristic	Typ	Unit	Condition
CIN	Input Pin Capacitance	4.0	pF	Measured with a Pulse
COUT	Output Pin Capacitance	7.0	pF	Technique

DC, FN and AC performance characteristics and test conditions listed with each device

Notes

1. Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.
2. These values may be exceeded as required during PROM programming.
3. Output current limit required.
4. Unless stated otherwise in individual device specification.
5. Functional testing done at input levels $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3 \mathrm{~V}$
6. PROM programmability verified through test row and test column.
7. PROM input levels on unprogrammed devices verified through testing of test row and test column.

FAIRCHILD

A Schlumberger Company

93Z450/93Z451
1024×8-Bit Programmable Read Only Memory

Memory and High Speed Logic

Description

The $93 Z 450$ and $93 Z 451$ are fully decoded 8,192-bit Programmable Read Only Memories (PROMs), organized 1024 words by eight bits per word. The two devices are identical except the $93 Z 450$ has open collector outputs while the $93 Z 451$ has three state outputs. Both devices are available in two speed versions, standard speed and ' A ' grade.

```
- Commercial Address Access Time
    93Z450/93Z451 - 40 ns Max
    93Z450A/93Z451A - 35 ns Max
- Military Address Access Time
        93Z450/93Z451 - 55 ns Max
        93Z450A/93Z451A - 45 ns Max
```

- Highly Reliable Vertical Fuses Ensure
High Programming Yields
- Available with Open Collector (93Z450) or
Three State (93Z451) Outputs
- Low Current PNP Inputs
Pin Names
$\frac{\mathrm{A}_{0}-\mathrm{A}_{9}}{\mathrm{CS}_{1}, \overline{\mathrm{CS}}_{2}}$
$\mathrm{CS}_{3}, \mathrm{CS}_{4}$
$\mathrm{O}_{0}-\mathrm{O}_{7}$

Address Inputs
Chip Select Inputs (Active LOW)
Chip Select Inputs (Active HIGH)
Data Outputs

Logic Symbol

$V_{C C}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$

Connection Diagrams
24-pin DIP (Top View)

Note:

The 24-pin Flatpak has the same pinout (Connection Diagram) as the 24-pin DIP.

28-pin Leadless Chip Carrier (Top View)

Logic Diagram

Functional Description

The $93 Z 450$ and $93 Z 451$ are TTL bipolar field Programmable Read Only Memories (PROMs) organized 1024 words by eight bits per word. Open-collector outputs are provided on the $93 Z 450$ for use in wired-OR applications. The $93 Z 451$ has 3 -state outputs which provide active pull ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

Four Chip Select inputs are provided for logic flexibility and for memory array expansion of up to 128 K without the need for external decoding. The fast Chip Select access time permits direct address decoding without increasing overall memory access times. Both devices are enabled only when $\overline{C S}_{1}$ and $\overline{C S}_{2}$ are LOW and CS_{3} and CS_{4} are HIGH .

The devices contain an internal test row and test column which are accessed and programmed during both wafer sort and final test. These test fuses are used to assure high programmability and to guarantee AC performance and DC parameters.

The $93 Z 450$ and $93 Z 451$ use open base vertical transistor (junction) fuse cells. Initially an unprogrammed cell is in the logic ' 0 ' state. Cells can be programmed to a logic ' 1 ' state by following the specified programming procedure which fuses aluminum through the emitter base junction of the cell transistor.

The read function is identical to that of a conventional Read Only Memory (ROM). A binary address is applied to the address pins A_{0} through A_{9} and the chip is selected. Data is then available at the outputs after $t_{A A}$.

DC Performance Characteristics: Over guaranteed operating ranges unless otherwise noted

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition
V_{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIC	Input Clamp Diode Voltage			-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
VoL	Output LOW Voltage		0.30	0.45	V	$\mathrm{VCC}=\mathrm{Min}, \mathrm{loL}=16 \mathrm{~mA}$
VOH	Output HIGH Voltage (93Z451)	2.4			V	$\begin{aligned} & \mathrm{VCC}=\mathrm{Min}, \mathrm{IOH}=-2.0 \mathrm{~mA} \\ & \text { Address Any ' } 1 \text { ' } \end{aligned}$
IIL	Input LOW Current		-10	-100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$
$\underline{\mathrm{IH}}$	Input HIGH Current	-40		40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$
$\begin{aligned} & \mathrm{I}_{\mathrm{OHz}} \\ & \mathrm{I}_{\mathrm{OLz}} \end{aligned}$	Output Leakage Current for High Impedance State (93Z451)			$\begin{array}{r} 40 \\ -40 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \mathrm{VOL}=0.4 \mathrm{~V} \end{aligned}$
Icex	Output Leakage Current (93Z450)			40	$\mu \mathrm{A}$	Vcex $=$ Vcc, Chip Deselected
los	Output Short-Circuit Current (93Z451)	-20	-45	-90	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text {, Note } 2 \\ & \text { Address. Any '1' } \end{aligned}$
Icc	Power Supply Current		110	135	mA	$\mathrm{V}_{\text {cC }}=$ Max, Inputs Grounded, Outputs Open

Commercial

AC Performance Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	$' \mathbf{A}^{\prime}$	Std	Unit	Condition
$t_{A A}$	Address to Output Access Time	35	40	ns	See AC Output Load
$t_{\text {ACS }}$	Chip Select to Output Access Time	25	30	ns	See AC Output Load

Military
AC Performance Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	'A'	Std	Unit	Condition
$t_{A A}$	Address to Output Access Time	45	55	ns	See AC Output Load
$t_{A C S}$	Chip Select to Output Access Time	30	35	ns	See AC Output Load

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.
2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.

Fig. 1 AC Test Output Load
Fig. 2 AC Waveforms

*Includes jig and probe capacitance

Test Conditions
Input pulse: 0 V to 3.0 V
Input pulse rise and fall times: 5 ns between 1 V and 2 V Measurements made at 1.5 V level

Ordering Information

Speed Selection
 Blank = Standard Speed
 $A=$ ' A ' Grade

Packages and Outlines (See Section 9)
$D=24$-pin Ceramic DIP
P=24-pin Plastic DIP (Commercial only)
SD $=24$-pin Slim Ceramic DIP
F $=24$-pin Flatpak
L $=28$-pin Square Leadless Chip Carrier
Temperature Range
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Optional Processing
$\mathrm{QB}=$ Mil Std 883
Method 5004 and 5005, Level B
QR = Commercial Device with
160 Hour Burn In or Equivalent

FAIRCHILD
A Schlumberger Company

93Z510/93Z511 2048×8-Bit Programmable Read Only Memory

Memory and High Speed Logic

Description

The $93 Z 510$ and $93 Z 511$ are fully decoded 16,384-bit Programmable Read Only Memories (PROMs), organized 2048 words by eight bits per word. The two devices are identical except the $93 Z 510$ has open collector outputs while the $93 Z 511$ has three state outputs.

- Commercial Address Access Time - 45 ns Max
- Military Address Access Time - 55 ns Max
- Highly Reliable Vertical Fuses Ensure High Programming Yields
- Available with Open Collector (93Z510) or Three State (93Z511) Outputs
- Low Current PNP Inputs

Pin Names

$\frac{\mathrm{A}_{0}-\mathrm{A}_{10}}{\mathrm{CS}_{1}}$	Address Inputs
$\mathrm{CS}_{2}, \mathrm{CS}_{3}$	Chip Select Input (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Chip Select Inputs (Active HIGH)
	Data Outputs

Logic Symbol

Connection Diagrams
24-pin DIP (Top View)

Note:
The 24-pin Flatpak has the same pinout (Connection Diagram) as the 24-pin DIP.

28-pin Leadless Chip Carrier (Top View)

[^36]
Logic Diagram

Functional Description

The $93 Z 510$ and $93 Z 511$ are TTL bipolar field Programmable Read Only Memories (PROMs) organized 2048 words by eight bits per word. Open-collector outputs are provided on the $93 Z 510$ for use in wired-OR applications. The $93 Z 511$ has 3 -state outputs which provide active pull ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

Three Chip Select inputs are provided for logic flexibility and for memory array expansion of up to 128 K without the need for external decoding. The fast Chip Select access time permits direct address decoding without increasing overall memory access times. Both devices are enabled only when $\overline{\mathrm{CS}}_{1}$ is LOW and CS_{2} and CS_{3} are HIGH.

The devices contain an internal test row and test column which are accessed and programmed during both wafer sort and final test. These test fuses are used to assure high programmability and to guarantee AC performance and DC parameters.

The $93 Z 510$ and $93 Z 511$ use open base vertical transistor (junction) fuse cells. Initially an unprogrammed cell is in the logic ' 0 ' state. Cells can be programmed to a logic ' 1 ' state by following the specified programming procedure which fuses aluminum through the emitter base junction of the cell transistor.

The read function is identical to that of a conventional Read Only Memory (ROM). A binary address is applied to the address pins A_{0} through A_{10} and the chip is selected. Data is then available at the outputs after $t_{A A}$.

93Z510/93Z511

DC Performance Characteristics: Over guaranteed operating ranges unless otherwise noted

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
V_{1}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIC	Input Clamp Diode Voltage			-1.2	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IN}=-18 \mathrm{~mA}$
Vol	Output LOW Voltage		0.30	0.45	V	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{IOL}=16 \mathrm{~mA}$
VOH	Output HIGH Voltage (93Z511 only)	2.4			V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & \text { Address Any ' } 1 \text { ' } \end{aligned}$
IIL	Input LOW Current		-10	-100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$
lin	Input HIGH Current	-40		40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ to V_{CC}
$\begin{aligned} & \mathrm{I}_{\mathrm{OHz}} \\ & \mathrm{I}_{\mathrm{OLz}} \end{aligned}$	Output Leakage Current for High Impedance State (93Z511 only)			$\begin{array}{r} 40 \\ -40 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \mathrm{VOL}=0.4 \mathrm{~V} \end{aligned}$
Icex	Output Leakage Current (93Z510 only)			40	$\mu \mathrm{A}$	$V_{C E X}=V_{C C}$ Chip Deselected
los	Output Short-Circuit Current (93Z511 only)	-15	-35	-90	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, Note 2 Address Any '1'
Icc	Power Supply Current		120	175	mA	VCC $=$ Max All Inputs GND All Outputs Open

Commercial
AC Performance Characteristics: $\mathrm{V} \mathrm{CC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Max	Unit	Condition
$t_{A A}$	Address to Output Access Time	45	ns	See AC Output Load
$t_{A C S}$	Chip Select to Output Access Time	25	ns	See AC Output Load

Military
AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	Max	Unit	Condition
$t_{\text {AA }}$	Address to Output Access Time	55	ns	See AC Test Output Load
$t_{\text {ACS }}$	Chip Select to Output Access Time	25	ns	See AC Test Output Load

[^37]Fig. 1 AC Test Output Load

*Includes jig and probe capacitance
Test Conditions
Input pulse: 0 V to 3.0 V
Input pulse rise and fall times: 5 ns between 1 V and 2 V Measurements made at 1.5 V level

Fig. 2 AC Waveforms
2a Propagation Delay from Address Inputs

2b Propagation Delay from Chip Select

Ordering Information

Packages and Outlines (See Section 9)
D = Ceramic DIP
F = Flatpak
$L=$ Leadiess Chip Carrier
P = Plastic DIP
SD $=$ Slim Ceramic DIP

Temperature Ranges
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Optional Processing
QB $=$ Mil Std 883
Method 5004 \& 5005, Level B
$\mathrm{QR}=$ Commercial Device with
160 Hour Burn In or Equivalent

FAIRCHILD

A Schlumberger Company

93Z564/93Z565 8192×8-Bit Programmable Read Only Memory

Memory and High Speed Logic

Description

The $93 Z 564$ and $93 Z 565$ are fully decoded 65,536-bit Programmable Read Only Memories (PROMs), organized 8192 words by eight bits per word. The two devices are identical except the $93 Z 564$ has open collector outputs while the $93 Z 565$ has three state outputs. Both devices are available in two speed versions, standard speed and ' A ' grade.

```
- Commercial Address Access Time
    93Z564/93Z565 - 55 ns Max
    93Z564A/93Z565A - 45 ns Max
- Military Address Access Time
        93Z564/93Z565 - 65 ns Max
        93Z564A/93Z565A - 55 ns Max
- Highly Reliable Vertical Fuses Ensure
    High Programming Yields
- Available with Open Collector (93Z564) or
    Three State (93Z565) Outputs
- Low Current PNP Inputs
Pin Names
\begin{tabular}{ll}
\(\mathrm{A}_{0}-\mathrm{A}_{12}\) & Address Inputs \\
\(\overline{\mathrm{CS}}\) & Chip Select Input (Active LOW) \\
\(\mathrm{O}_{0}-\mathrm{O}_{7}\) & Data Outputs
\end{tabular}
```

Logic Symbol

$V_{C C}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$

Connection Diagrams
24-pin DIP (Top View)

Note:

The 24-pin Flatpak has the same pinout (Connection Diagram) as the 24 pin DIP.

28-pin Leadless Chip Carrier (Top View)

Logic Diagram

Functional Description

The $93 Z 564$ and $93 Z 565$ are TTL bipolar field Programmable Read Only Memories (PROMs) organized 8192 words by eight bits per word. Open-collector outputs are provided on the $93 Z 564$ for use in wired-OR applications. The $93 Z 565$ has 3 -state outputs which provide active pull ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

One Chip Select input is provided for logic flexibility and for memory array expansion of up to 128 K without the need for external decoding. The fast Chip Select access time permits direct address decoding without increasing overall memory access times. Both devices are enabled only when CS is LOW.

The devices contain an internal test row and test column which are accessed and programmed during both wafer sort and final test. These test fuses are used to assure high programmability and to guarantee AC performance and DC parameters.

The $93 Z 564$ and $93 Z 565$ use open base vertical transistor (junction) fuse cells. Initially an unprogrammed cell is in the logic ' 0 ' state. Cells can be programmed to a logic ' 1 ' state by following the specified programming procedure which fuses aluminum through the emitter base junction of the cell transistor.

The read function is identical to that of a conventional Read Only Memory (ROM). A binary address is applied to the address pins A_{0} through A_{12} and the chip is selected. Data is then available at the outputs after t_{AA}.

93Z564/93Z565

DC Performance Characteristics: Over guaranteed operating ranges unless otherwise noted

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIC	Input Clamp Diode Voltage			-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}$ IN $=-18 \mathrm{~mA}$
VoL	Output LOW Voltage		0.30	0.45	V	$\mathrm{VCC}=\mathrm{Min}, \mathrm{IOL}=16 \mathrm{~mA}$
VOH	Output HIGH Voltage (93Z565 only)	2.4			V	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$ Address Any ' 1 '
IIL	Input LOW Current		-10	-100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$
IH	Input HIGH Current	-40		40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ to V_{CC}
$\begin{aligned} & \mathrm{I}_{\mathrm{OHz}} \\ & \mathrm{I}_{\mathrm{OLZ}} \end{aligned}$	Output Leakage Current for High Impedance State (93Z565 only)			$\begin{array}{r} 40 \\ -40 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \mathrm{VOL}=0.4 \mathrm{~V} \end{aligned}$
ICEX	Output Leakage Current (93Z564 only)			40	$\mu \mathrm{A}$	$\begin{aligned} & \text { VCEx }=\text { Vcc } \\ & \text { Chip Deselected } \end{aligned}$
los	Output Short-Circuit Current (93Z565 only)	-15	-35	-90	mA	$\begin{aligned} & \mathrm{VCC}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \text {, Note } 2 \\ & \text { Address Any ' } 1 \text { ' } \end{aligned}$
ICC	Power Supply Current		120	180	mA	$\mathrm{V}_{\mathrm{CC}}=$ Max, All Inputs GND, All Outputs Open
CIN	Input Pin Capacitance		$7.0{ }^{(3)}$		pF	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
Co	Output Pin Capacitance		10.0 ${ }^{(3)}$		pF	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$

Commercial

AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	'A'	Std	Unit	Condition
$t_{A A}$	Address to Output Access Time	45	55	ns	See AC Output Load
$t_{A C S}$	Chip Select to Output Access Time	25	30	ns	See AC Output Load

Military

AC Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	'A'	Std	Unit	Condition
$t_{\text {AA }}$	Address to Output Access Time	55	65	ns	See AC Output Load
$t_{A C S}$	Chip Select to Output Access Time	30	35	ns	See AC Output Load

[^38]2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.
3. This parameter value is based on initial design qualification and is also verified on every design change. These are not tested in production.

Fig. 1 AC Waveforms

Fig. 2 AC Test Output Load

Test Conditions

Input Pulse: 0 V to 3.0 V
Input Pulse Rise and Fall Times: 5 ns between 1 V and 2 V
Measurements made at 1.5 V Level
*Includes jig and probe capacitance

Ordering Information

Speed Selection
Blank $=$ Standard Speed
$A=$ ' ${ }^{\prime}$ ' Grade

Packages
D = Ceramic DIP
$L=$ Leadless Chip Carrier
F = Flatpak

Temperature Ranges
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$\mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Optional Processing
QB $=$ Mil Std 883
Method 5004 \& 5005. Level B
QR = Commercial Device with 160 Hour Burn In or Equivalent

Isoplanar-Z Junction Fuse
 Principles and Programming

Conventional fusible link bipolar PROMs and programmable logic devices are based upon two dimensional matrices of electrically conductive thin film fusible elements of materials such as nichrome, titanium tungsten, platinum silicide or polysilicon. Each of these thin film technologies has its own unique advantages and disadvantages but all have in common the fact that fuses lie flat on the surface of the silicon and therefore occupy a significant portion of silicon area. Cell area has become increasingly important as device densities have grown from 4 K to 64 K . Manufacturing cost, yields and performance are all directly related to die size which is a strong function of cell area. Previously, reductions in cell area have been accomplished primarily through improvements in photolithographic techniques. Such techniques have been pushed to their limits to produce high density, cost effective programmable memories and logic. The need to shrink cell sizes, especially in higher density devices, is placing severe strains on the manufacturability of thin film fuses.

Junction fuses are the emerging solution to the inherent problems posed by thin film fuses. A junction fuse is simply a PN junction programmable cell. The emitterbase junction of a floating base NPN transistor acts as the fuse element. Because fuses are single vertical transistors (hence the often used name of vertical fuses), they occupy minimal silicon area. The entire fuse structure can essentially be modeled as two diodes connected back-to-back. Before programming, a high impedence (open) path exists between the emitter and collector. The emitter-base diode is reverse biased, preventing read currents from passing through the fuse. During programming, the emitter-base junction is shorted out, leaving a forward biased base-collector (B-C) diode. This diode now appears as a low impedence (closed) path. The fuse has been programmed from a logic 0 to a logic 1. The fuse junction lies beneath the surface of the silicon so all of the potential thin film fuse related failure modes such as metal migration (growback), freeze out, corrosion, marginally opened fuses and passivation scattering have been eliminated.

The major problem encountered in early $\mathrm{P}-\mathrm{N}$ junction programmable junction fuse development was the requirement of a large cell programming current (typically 200 mA per cell). This large current meant that
large transistors were needed in the peripheral programming circuitry. The gain in array size reduction due to small cells was offset by the need for a larger peripheral programming circuitry which, in turn, translated to larger overall die size and higher die cost. The costs were such that, despite their reliability advantages, these devices were never widely commercially accepted.

The most straightforward method to achieve reductions in cell programming current is to use small emitter cells. A small emitter cell increases the effective current density at the emitter-base junction therefore decreasing the overall energy required to program the cell. To reduce emitter size and programming currents without the use of advanced photolithographic equipment, Fairchild adopted a simple solution, use a walled emitter cell and an oxide isolated Isoplanar process. With oxide isolation, emitter sizes are defined by the oxide opening and as a result are self aligned, easing manufacturing tolerances.

The main advantages of the Isoplanar- Z process are due to the use of oxide encroachment. The cell emitter is defined using standard photolithography. The surrounding oxide is then laterally grown, shrinking the emitter area and decreasing the effective cell size. Very small self aligned emitter-base junction areas can be achieved quite easily with the encroachment technique. An added benefit of oxide encroachment is that the higher thermal resistivity of the silicon dioxide which surrounds the cells, as compared to silicon, reduces heat loss during programming. This thermal insulation effect further reduces the current required to program a cell. Typical programming currents of 60 mA or below are easily achieved using the Isoplanar-Z process.

Results of reliability and programming yield testing have been excellent. Data have demonstrated typical programming yields in excess of 99% on a 16,384 bit PROM and no cell related failures in over 63 billion cell hours of life test.

Programming a Junction Fuse

Programming a junction fuse is accomplished by driving a controlled current through the emitter of the cell, inducing avalanche breakdown of the emitter-base junction. Heat locally generated at the reverse biased junction causes the Aluminum-Silicon interface to reach the

Isoplanar-Z
 Junction Fuse
 Principles and Programming

Al-Si eutectic solidus (melting) temperature of approximately $575^{\circ} \mathrm{C}$. The electrically conductive aluminum eutectic then diffuses down through the emitter to the emitter-base junction, forming a permanent short.

The amount of energy required to program a cell is dependent upon encroachment variations. Different methods can be used to supply the varying amount of energy required to program junction fuses. One method is a pulse-read technique, whereby a series of energy pulses of increasing magnitude or duration are applied to the cell. Each pulse applies a specific amount of energy to the cell's emitter-base junction, successively heating the junction until the cell emitter reaches the Aluminum-Silicon eutectic temperature. Once this temperature is reached, migration occurs and the junction shorts. A read is performed after each pulse to detect if the fuse has blown. If additional energy is needed to program any cell, more pulses are applied until the cell blows.

Fairchild has approved a current-pulse technique for users with digital requirements. In this method, differences in required programming energy are accounted for by increasing the current amplitude of each subsequent current pulse until programming is achieved. A read is performed after each pulse. This cycle is continued until the cell is programmed. Refer to the Programming Timing Diagram and Programming Specifications for Current-Pulse Programming.

Fairchild originally developed a self adjusting current ramp programming technique which delivers the optimum current needed to program each individual cell. With the self adjusting technique a steadily increasing current ramp is applied to a cell until a shorted junction is detected. The exact moment when the junction actually shorts can be sensed by a sharp drop in the voltage across the cell. This voltage drop occurs because the reverse biases E-B diode is no longer in series with the programming path.

Once the moment of programming has been detected, Fairchild incorporates the use of a programming ramp "post hold time". The rise in programming current is halted at the level which was required to cause a blow, held for a precise time interval, and then turned off. This means that the amount of additional energy applied to a cell is totally governed by the amount of current required to program that cell, which is in turn dependent upon cell size. Therefore each cell's additional energy pulse is custom tailored for that specific cell. Experimental data shows that a carefully chosen post hold time can insure a very uniform cell resistance regardless of cell size. The self adjusting current ramp programming scheme allows consistent, repeatable programming and uniform cell resistance, overcoming any effects of process variations on a particular product or differences in cell sizes across product lines. Refer to the Programming Timing Diagram and Programming Specifications for Current-Ramp Programming.

Current-Ramp Programming Timing Diagram

Current-Ramp Programming Specifications ${ }^{(4)}$

Symbol	Parameter	Min	Recommended Value	Max	Units	Comments

Power Supply

Vcc	Power Supply Voltage	6.4	6.5	6.6	V	Typical Icc at 6.5 V $=250 \mathrm{~mA}$
trVcc	Power Supply Rise Time(3)	0.2	2.0		$\mu \mathrm{~s}$	
tfVcc	Power Supply Fall Time	0.2	2.0		$\mu \mathrm{~s}$	
ton	Vcc On Time	(1)				See Programming Timing Diagram
toff	Vcc Off Time	(2)				ton/(toff+ton)
	Duty Cycle for Vcc			50	$\%$	

Isoplanar-Z TTL PROM Current Ramp Programming Specifications

Current-Ramp Programming Specifications ${ }^{(4)}$ (Cont'd)

Symbol	Parameter	Min	Recommended Value	Max	Units	Comments
Read Strobe						
$t_{d R B P}$	Read Delay before Programming		3.0		$\mu \mathrm{~s}$	Initial Check
t_{w}	Fuse Read Time		1.0		$\mu \mathrm{~s}$	
$t_{d V c c}$	Delay to Vcc Off		1.0		$\mu \mathrm{~s}$	
$t_{d R A P}$	Delay to Read after Programming		3.0		$\mu \mathrm{~s}$	Verify

Chip Select

VCSP	Chip Select Programming Voltage	20.0	20.0	22.0	V	
ICsp	Chip Select Program Current Limit	175	180	185	mA	
VIL	Input Voltage LOW	0	0	0.4	V	
V_{IH}	Input Voltage HIGH	2.4	5.0	5.0	V	
taCs	Delay to Chip Deselect		1.0		$\mu \mathrm{S}$	
trcs	Chip Select Pulse Rise Time	3.0	4.0		$\mu \mathrm{s}$	
$\mathrm{t}_{\text {dAP }}$	Delay to Chip Select Time	0.2	1.0		$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{f} C \mathrm{~S}}$	Chip Select Pulse Fall Time	0.1	0.1	1.0	$\mu \mathrm{s}$	

Current Ramp

IopLP	Programming Current Linear Point		10	20	mA	Point after which the programming current ramp must rise at a linear slew rate
IOP(max)	Output Programming Current Limit	155	160	165	mA	Apply current ramp to selected output
$\mathrm{V}_{\text {OP(max }}$	Output Programming Voltage Limit	24	25	26	V	
SRIOP	Current Slew Rate	0.9	1.0	1.1	$\mathrm{mA} / \mu \mathrm{s}$	Constant after Linear Point
$\mathrm{V}_{\text {PS }}$	Blow Sense Voltage	0.7			V	
$\mathrm{t}_{\mathrm{d} B P}$	Delay to Programming Ramp	2.0	3.0		$\mu \mathrm{s}$	$\mathrm{V}_{\text {CSP }}$ must be at minimum
tLP	Time to Reach Linear Point	0.2	1.0	10	$\mu \mathrm{S}$	
tss	Program Sense Inhibit	2.0	3.0	10	$\mu \mathrm{s}$	
$\underline{t p}$	Time to Program Fuse	3.0		150	$\mu \mathrm{s}$	
$\underline{t h A P}$	Programming Ramp Hold Time	1.4	1.5	1.6	$\mu \mathrm{S}$	After fuse programs
${ }_{\text {tflop }}$	Program Ramp Fall Time		0.1	0.2	$\mu \mathrm{S}$	

Notes

1. Total time $V_{C C}$ is on to program fuse is equal to or greater than the sum of all the specified delays, pulse widths and rise/fall times.
2. toff is equal to or greater than ton.
3. Rise and fall times are from 10% to 90%.

Isoplanar-Z TTL PROM
 Current-Pulse Programming Specifications

Current-Pulse Programming Timing Diagram

CURRENT APPLIED TO OUTPUT TO BE PROGRAMMED

Current-Pulse Programming Specifications ${ }^{(4)}$

| Symbol | Parameter | Min | Recommended
 Value | Max | Units |
| :--- | :--- | :--- | :---: | :---: | :---: | Comments

Current Ramp

VCc	Power Supply Voltage	6.4	6.5	6.6	V	Typical Icc at $6.5 \mathrm{~V}=250 \mathrm{~mA}$
trVcc	Power Supply Rise Time(3)	0.2	2.0		$\mu \mathrm{~s}$	
tfVcc	Power Supply Fall Time	0.2	2.0		$\mu \mathrm{~s}$	
ton	Vcc On Time	(1)				See Programming Timing Diagram
toff	Vcc Off Time	(2)				
	Duty Cycle for Vcc			50	$\%$	ton/(toff + ton)

Isoplanar-Z TTL PROM Current-Pulse Programming Specifications

Read Strobe ${ }^{5}$

$t_{d R B P}$	Read Delay before Programming		3.0		$\mu \mathrm{~s}$
t_{w}	Fuse Read Time		1.0		$\mu \mathrm{~s}$
$t_{d V c c}$	Delay to VCc Off		1.0		$\mu \mathrm{~s}$
$t_{d R A P}$	Delay to Read after Programming		3.0		$\mu \mathrm{~s}$

Chip Select

VCSP	Chip Select Programming Voltage	20.0	20.0	22.0	V	
ICSP	Chip Select Program Current Limit	175	180	185	mA	
$\mathrm{~V}_{\mathrm{IL}}$	Input Voltage LOW	0	0	0.4	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input Voltage HIGH	2.4	5.0	5.0	V	
$\mathrm{t}_{\mathrm{d} C S}$	Delay to Chip Deselect		1.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{r} C \mathrm{~S}}$	Chip Select Pulse Rise Time	3.0	4.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{dAP}}$	Delay to Chip Select Time	0.2	1.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{f} C \mathrm{~S}}$	Chip Select Pulse Fall Time	0.1	0.1	1.0	$\mu \mathrm{~s}$	

Programming Current-Pulse Train

$\mathrm{I}_{\text {IOP }}$	Initial Current Pulse		40.0	40.0	mA	
IOP(max)	Output Programming Current Limit	155	160	165	mA	Apply current pulse to selected output
$\mathrm{V}_{\mathrm{OP}}($ max $)$	Output Programming Voltage Limit	24	25	26	V	
$\mathrm{t}_{\text {RIOP }}$	Programming Pulse Rise Time	160	100	100	$\mathrm{mA} / \mu \mathrm{S}$	
$t_{\text {dBP }}$	Delay to Initial Programming Pulse	2.0	3.0		$\mu \mathrm{S}$	$\mathrm{V}_{\text {CSP }}$ must be at minimum
$t_{\text {PW }}$	Programming Pulse Widths	8.0	9.0	10.0	$\mu \mathrm{S}$	
$\mathrm{t}_{\text {flop }}$	Programming Pulse Fall Time 3	0.1	0.1	. 02	$\mu \mathrm{S}$	
	Current Pulse Step Increase	5.0	10.0	10.0	mA	
$\triangle I_{\text {OP }}$	Duty Cycle for Programming Pulses	10	50	50	\%	Each successive pulse is increased by lop

Notes

[^39]4. Recommended programming temp. $T_{C}=25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$.
5. Proceed to next address after read strobe indicates programmed cell.

Notes

Notes

FAIRCHILD
A Schlumberger Company

93Z458/93Z459 $16 \times 48 \times 8$ Field Programmable Logic Array

Description

The $93 Z 458$ and $93 Z 459$ are bipolar Field Programmable Logic Arrays (FPLAs) organized with 16 inputs, 48 product terms and eight outputs. The 16 inputs and their complements can be fuse linked to the inputs of 48 AND gates (48 product terms). Each of the 48 AND gates can be fuse linked to eight 48 -input OR gates (eight summing terms). Each output may be programmed active HIGH or active LOW. The devices are identical except for the output stage. The $93 Z 458$ has open-collector outputs; the $93 Z 459$ has three-state outputs. In either case, the outputs are enabled when CS is LOW.

- Commercial Address Access Time - 45 ns Max
- Military Address Access Time - 65 ns Max
- Fully Programmable Product Array, Summing Array and Output Polarity
- Available with Open collector (93Z458) or Three State (93Z459) Outputs

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{15}$	Address Inputs
CS	Chip Select Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data Outputs
V_{P}	Programming Pin

Logic Symbol

Connection Diagram
28-Pin DIP (Top View)

Note

The 28-pin Flatpak and the 28-pin Leadless Chip Carrier have the same pinout (Connection Diagram) as the 28-pin DIP.

$V_{C C}=\operatorname{Pin} 28$
GND $=\operatorname{Pin} 14$

93Z458/93Z459

Logic Diagram

Functional Description

The $93 Z 458$ and $93 Z 459$ are bipolar Field Programmable Logic Arrays (FPLAs) organized 16 inputs by 48 product terms by eight outputs. OpenCollector outputs are provided on the $93 Z 458$ for use in wired-OR systems. The $93 Z 459$ has 3 -state outputs which provide active pull-ups when enabled and high output impedance when disabled. Chip Select for both devices is active LOW, i.e., a HIGH (logic "1") on the $\overline{\mathrm{CS}}$ pin will disable all outputs.

The $93 Z 458$ and $93 Z 459$ both contain a test input line, two test product term lines and a test output line. These test fuses are accessed during both wafer sort and final test and used to assure high programmability and to guarantee DC parameters and AC performance.

The read function is identical to that of a conventional bipolar PLA. That is, a binary address is applied to inputs A_{0} through A_{15}, the chip is selected, and the data is valid at the outputs after $t_{A A}$.

Programming is accomplished by following the sequence outlined in the Programming Specifications table.

Detailed Logic Diagram

Product Terms-P

Logic Relationships

Input Term
A_{n}
$n=0, \ldots, 15$, one of 16 inputs

Product Term
$P_{m}=\pi_{0}^{15}\left(i_{n} A_{n}+j_{n} \bar{A}_{n}\right) \quad m=0, \ldots, 47$, one of 48 product terms
where:
a) $i_{n}=j_{n}=1$ (both true and false programmed)
b) $i_{n} \neq j_{n}$ for programmed input (true or false line programmed)
c) $i_{n}=j_{n}=0$ for Don't Care input' (unprogrammed input)
$\mathrm{F}_{\mathrm{r}}=\Sigma_{0}^{47} \mathrm{P}_{\mathrm{m}} \quad \mathrm{r}=0, \ldots, 7$, the OR function of the 48 product terms

Summing Term
$\mathrm{S}_{\mathrm{r}}=\Sigma_{0}^{47} \mathrm{~km}_{\mathrm{m}} \mathrm{P}_{\mathrm{m}} \quad$ where $\mathrm{k}_{\mathrm{m}}=0$ for product term inactive

$$
k_{m}=1 \text { for product term active }
$$

			Output		
Mode	CS	F $_{r}$	S $_{r}$	Active HIGH	Active LOW
Read	L	H	L	L	H
	L	H	H	H	L
	L	L	X	L	H
Disable	H	X	X	H (93Z458)	H (93Z458)
	H	X	X	High-Z (93Z459)	High-Z (93Z459)

H = HIGH Voltage Levels
L = LOW Voltage Levels
X = Don't Care
By programming, the eight outputs of an FPLA can be made to relate to the 16 inputs as given by the following example:

Programming

The $93 Z 458$ and $93 Z 459$ are delivered in an unprogrammed state, characterized by:

- All vertical cells intact

- All 8 output buffers in active LOW state
- All outputs read HIGH

Programming and verifying the Product Matrix, the Summing Matrix, and the Output Polarity are outlined below.

Program Product Matrix

In the initial unprogrammed state the 48 AND gates of the product matrix are not connected. Programming the vertical cell located by the selection of an input line, An, and the mth AND gate includes the input term in the logic expression for the mth AND gate. If all vertical cells were programmed, the resulting logic expression for the AND gates would be $A_{0} \bar{A}_{0} A_{1} \overline{A_{1}} \ldots A_{15} \overline{A_{15}}$. In the unprogrammed state, the logic expression for each AND gate is " 1 ".

- Program one input at a time.
- All unused inputs of programmed product terms are not required to be programmed.
- Inputs of unused product lines are not required to be programmed.
- Pin $18\left(0_{0}\right)$ is in the read mode (open collector). Care must be taken so that this pin is either left open, grounded, or loaded such that the current flowing into the pin does not exceed 16 mA .

1. Connect pin 14 (GND) to ground.
2. Connect pin $28\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to 6.5 V .
3. Apply TTL levels to pins 10 through 13,15 , and 16 $\left(0_{7}\right.$ through $\left.\mathrm{O}_{2}\right)$ to address an on-chip 1-of-48 decoder to select the AND gate to be programmed ($0_{7}=L S B$ and $\left.0_{2}=M S B\right)$.
4. Apply +12.0 V to all input pins $\left(\mathrm{A}_{0}\right.$ through $\left.\mathrm{A}_{15}\right)$.
5. Apply the proper TTL level to an A_{n} input pin as follows (program one input at a time):
a. If the product term to be programmed contains the input term A_{n} (where $n=0$ through 15), lower the A_{n} pin to a TTL LOW level.
b. If the product term to be programmed contains the input term $\overline{A_{n}}$, lower the $\overline{A_{n}}$ to a TTL HIGH level.
6. Connect pin $19(\overline{\mathrm{CS}})$ to 20 V .
7. Apply a programming current ramp to pin $1\left(\mathrm{~V}_{\mathrm{p}}\right)$ according to the Programming Specifications table.
8. Repeat steps 4 through 7 for each input of the selected product term.
9. Repeat steps 3 through 8 for all other product terms to be programmed.

Verify Product Matrix

1. Connect pin 14 (GND) to ground.
2. Connect pin $28\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to 6.5 V or $4.5 \mathrm{~V}^{1}$.
3. Connect pin $19(\overline{\mathrm{CS}})$ to a TTL HIGH level.
4. Apply TTL levels to pins 10 through 13,15 , and 16 $\left(0_{7}\right.$ through $\left.\mathrm{O}_{2}\right)$ to address an on-chip 1-of-48 decoder to select the product line to be read $\left(0_{7}=\right.$ LSB and $\mathrm{O}_{2}=\mathrm{MSB}$).
5. Apply +12.0 V to all input pins (A_{0} through $\left.\mathrm{A}_{15}\right)$.
6. Test the state of the A_{n} input as follows:
a. Lower the A_{n} pin to a TTL HIGH level and sense the voltage on pin $18\left(\mathrm{O}_{0}\right)$.
b. Lower the A_{n} pin to a TTL LOW level and sense the voltage on pin $18\left(0_{0}\right)$.
7. The state of the A_{n} input is determined as follows:

	$\mathbf{A}_{\mathbf{n}}=$ TTL HIGH	$\mathbf{A}_{\mathbf{n}}=$ TTL LOW	Condition of $\mathbf{A}_{\mathbf{n}}$ for Selected Product Term
	H	H	Unprogrammed
Level at Output 0 (notes 2, $3,4)$ H	L	H	A_{n} in P-Term
A_{n} in P-Term			

8. Repeat steps 5 through 7 for each input of the selected product term.
9. Repeat steps 4 through 8 for all other product terms.

Notes

1. When verifying each cell immediately after applying the current ramp, V_{CC} can be held at 6.5 V
The verification cycle (blank check or pattern check) must consist of two passes, one at $\mathrm{V}_{\mathrm{CC}}=6.5 \mathrm{~V}$, one at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$.
2. 0_{0} in this mode functions as an open-collector output.
3. The table above is valid regardless of the polarity (active HIGH or active LOW) of 0_{0}.
4. Pin $1\left(V_{P}\right)$ should be either floating or grounded.

Program Summing Matrix

The inputs to the eight OR gates of the summing matrix are not connected in the unprogrammed state. Programming the vertical cell located by the selection of the mth AND gate and the nth summing line includes the product term P_{m} (the term programmed into the mth AND gate) in the logic expression for the n nth OR gate. The nth summing line is selected by the selection of the nth output buffer where $n=0$ through seven. If all the cells in the OR matrix were programmed, the resulting logic expression (sum of products) for the OR gates would be $P_{0}+P_{1}+P_{2} \ldots+P_{47}$.

- Program one output pin at a time.

- All unused product lines are not required to be programmed.

1. Connect pin 14 (GND) to ground.
2. Connect pin $28\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to 6.5 V .
3. Apply TTL levels to pins 4 through $9\left(\mathrm{~A}_{5}\right.$ through A_{0}) to address an on-chip 1-of-48 decoder to select the AND gate to be programmed ($A_{0}=L S B$ and A_{5} $=\mathrm{MSB}$).
4. Apply TTL HIGH level to pins 20 and 21 (A_{15} and A_{14}).
5. Connect the remaining input pins to +12.0 V .
6. Connect pin $19(\overline{\mathrm{CS}})$ to 20 V .
7. Apply a current ramp (see Programming Specifications table) at the pin of the output to be programmed. Other output pins should be either left open or tied to a TTL HIGH level.
8. Repeat for all outputs that are to be programmed.

Verify Summing Matrix

1. Connect pin 14 (GND) to ground.
2. Connect pin $28\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to 6.5 V or 4.5 V .
3. Connect pin 19 ($\overline{\mathrm{CS}})$ to 20 V .
4. Apply TTL levels to pins 4 through 9 (A_{5} through A_{0}) to address an on-chip 1-of-48 decoder to select the AND gate to be verified ($A_{0}=L S B$ and A_{5} $=\mathrm{MSB}$).
5. Apply a TTL HIGH level to pins 20 and 22 (A_{15} and A_{13}).
6. Connect the remaining input pins to +12.0 V .
7. Sense the voltage on the output pin to be verified. The programming of the selected product line to the output line can be determined as follows:

Output Reads (Note)	Vertical Cell
L	Unprogrammed (inactive)
H	Programmed (active)

Note

The condition of the vertical cell can be determined from the table above regardless of the polarity (active HIGH or active LOW) of the output buffer being verified.
8. Repeat step 7 for all outputs to be verified.
9. Repeat for all product terms programmed.

Program Output Polarity

The initial unprogrammed state of all eight output buffers is active LOW or inverting. To program an output buffer into the active HIGH or non-inverting state, follow the steps shown below:

- Program one output at a time.

1. Connect pin 14 (GND) to ground.
2. Connect pin $28\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to 6.5 V .
3. Apply a TTL HIGH level to pins 4 through $9\left(A_{5}\right.$ through A_{0}).
4. Apply a TTL HIGH level to pin $20\left(\mathrm{~A}_{15}\right)$.
5. Connect the remaining input pins to +12.0 V .
6. Connect pin $19(\overline{\mathrm{CS}})$ to 20 V .
7. Apply a programming current ramp (see

Programming Specifications table) to the pin of the output to be programmed. Other output pins should be either left open or tied to a TTL HIGH level.

Verify Output Polarity

1. Connect pin 14 (GND) to ground.
2. Connect pin $28\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to 6.5 V or 4.5 V .
3. Connect pin 19 ($\overline{\mathrm{CS}})$ to a TTL LOW level.
4. Apply a TTL HIGH level to pins 4 through $9\left(A_{5}\right.$ through A_{0}).
5. Apply a TTL HIGH level to pins 21 and $22\left(A_{14}\right.$ and A_{13}).
6. Connect the remaining input pins to +12.0 V .
7. Sense the voltage on the pin of the output buffer to be verified. The condition of the output can be determined as follows:

Output Reads	Output State
H	Active LOW
L	Active HIGH

8. Repeat step 7 with V_{CC} at the LOW V_{CC} Read recommended value.

The table given below summarizes the full programming and verifying procedures.
Summary of Pin Voltages (Volts)

	Read	Program Product Matrix	Verify Product Matrix	Program Summing Matrix	Verify Summing Matrix	Program Output Polarity	Verify Output Polarity
Pin $1\left(V_{p}\right)$	***	*****	***	***	***	***	***
Pin $2\left(\mathrm{~A}_{7}\right)$	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin $3\left(\mathrm{~A}_{6}\right)$	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 4 (A_{5})	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $5\left(A_{4}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $6\left(\mathrm{~A}_{3}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $7\left(\mathrm{~A}_{2}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $8\left(\mathrm{~A}_{1}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $9\left(\mathrm{~A}_{0}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $10(07)$	READ	TTL	TTL	***	READ	****	READ
Pin 11 (06)	READ	TTL	TTL	***	READ	****	READ
Pin 12 (05)	READ	TTL	TTL	****	READ	****	READ
Pin $13(04)$	READ	TTL	TTL	****	READ	****	READ
Pin 14 (GND)	GND						
Pin $15\left(\mathrm{O}_{3}\right)$	READ	TTL	TTL	***	READ	****	READ
$\operatorname{Pin} 16\left(\mathrm{O}_{2}\right)$	READ	TTL	TTL	****	READ	****	READ
Pin 17 (01)	READ	**	**	****	READ	****	READ
Pin $18\left(0_{0}\right)$	READ		READ	****	READ	****	READ
Pin 19 (CS)	TTL LOW	20.0	TTL HIGH	20.0	TTL LOW	20.0	TTL LOW
Pin 20 (A_{15})	TTL	12.0*	12.0*	TTL HIGH	TTL HIGH	TTL HIGH	12.0
Pin 21 (A_{14})	TTL	12.0*	12.0*	TTL HIGH	12.0	12.0	TTL HIGH
Pin 22 (A_{13})	TTL	12.0*	12.0*	12.0	TTL HIGH	12.0	TTL HIGH
Pin 23 (A_{12})	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 24 (A_{11})	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 25 (A_{10})	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 26 (Ag)	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 27 (A_{8})	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 28 (Vcc)	5.0	6.5	6.5	6.5	6.5	6.5	6.5

[^40]Product Matrix
Programming Timing Diagram

Output Polarity

Programming Timing Diagram

93Z458/93Z459

Summing Matrix

Programming Timing Diagram

Programming Specifications (4)						
Symbol	Parameter	Min	Recommended Value	Max	Units	Comments
Power Supply						
Vcc	Power Supply Voltage	6.4	6.5	6.6	V	Typical Icc at $6.5 \mathrm{~V}=250 \mathrm{~mA}$
trVcc	Power Supply Rise Time(3)	0.2	2.0		$\mu \mathrm{s}$	
tfVcc.	Power Supply Fall Time	0.2	2.0		$\mu \mathrm{S}$	
ton	Vcc On Time	(1)				See Programming
toff	Vcc Off Time	(2)				Timing Diagram
	Duty Cycle for Vcc			50	\%	ton $/($ toFF + ton $)$

Programming Specifications (4) (Cont'd)

Symbol	Parameter	Min	Recommended Value	Max	Units	Comments

Read Strobe

$t_{d R B P}$	Read Delay before Programming		3.0		$\mu \mathrm{~s}$
t_{w}	Fuse Read Time		1.0		$\mu \mathrm{~s}$
$t_{d V c c}$	Delay to Vcc Off		1.0		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{dRAP}}$	Delay to Read after Programming		3.0		$\mu \mathrm{~s}$
$\mathrm{~V}_{Z}$	Input Level during Program \& Verify	11.0	12.0	12.0	V

Chip Select

$\mathrm{V}_{\mathrm{CSP}}$	Chip Select Programming Voltage	19.5	20.0	20.5	V	
$\mathrm{I}_{\mathrm{CSP}}$	Chip Select Program Current Limit	175	180	185	mA	
$\mathrm{~V}_{\mathrm{IL}}$	Input Voltage LOW	0	0	0.4	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input Voltage High	2.4	5.0	5.0	V	
$\mathrm{t}_{\mathrm{dCS}}$	Delay to Chip Deselect		1.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{rCS}}$	Chip Select Pulse Rise Time	3.0	4.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{dAP}}$	Delay to Chip Select Time	0.2	1.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{fCS}}$	Chip Select Pulse Fall Time	0.1	0.1	1.0	$\mu \mathrm{~s}$	

Current Ramp

$I_{\text {OPLP }}$	Programming Current Linear Point		10	20	mA	Point after which the programming current ramp must rise at a linear slew rate
$\mathrm{I}_{\mathrm{OP}(\text { max })}$	Output Programming Current Point	155	160	165	mA	Apply current ramp to selected output
$\mathrm{V}_{\mathrm{OP} \text { (max) }}$	Output Programming Voltage Limit	24	25	26	V	
$\mathrm{SR}_{\text {IOP }}$	Current Slew Rate	0.9	1.0	1.1	$\mathrm{mA} / \mu \mathrm{s}$	Constant after Linear Point
$\mathrm{V}_{\text {PS }}$	Blow Sense Voltage	0.7			V	
$t_{\text {dBP }}$	Delay to Programming Ramp	2.0	3.0		$\mu \mathrm{S}$	$\mathrm{V}_{\text {CSP }}$ must be at minimum specification
t_{LP}	Time to Reach Linear Point	0.2	1.0	10	$\mu \mathrm{S}$	
$\mathrm{t}_{\text {SS }}$	Program Sense Inhibit	2.0	3.0	10	$\mu \mathrm{S}$	
t_{tP}	Time to Program Fuse	3.0		150	$\mu \mathrm{S}$	
$t_{\text {haP }}$	Programming Ramp Hold Time	1.4	1.5	1.6	$\mu \mathrm{S}$	After fuse programs
$\mathrm{t}_{\text {fiOP }}$	Program Ramp Fall Time		0.1	0.2	$\mu \mathrm{S}$	
$\mathrm{t}_{\text {SA }}$	Time to Address Setup	0.3	0.5		$\mu \mathrm{S}$	

[^41]
$16 \times 48 \times 8$ FPLA Program Table

93Z458/93Z459

DC Periormance Characteristics: Over guaranteed operating ranges unless otherwise noted

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition	
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All inputs	
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All inputs	
VIC	Input Clamp Diode Voltage			-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	
VoL	Output LOW Voltage		0.30	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{loL}=16 \mathrm{~mA}$	
VOH	Output HIGH Voltage (93Z459 only)	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-2.0 \mathrm{~mA}$	
IIL	Input LOW Current		-120	-250	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$	
IIH	Input HIGH Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$	
lohz	Output Leakage Current for High Impedance State (93Z459 only)			$\begin{array}{r} 50 \\ -50 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \mathrm{VOL}=0.4 \mathrm{~V} \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
lohz	Output Leakage Current for High Impedance State (93Z459 only)			100 -100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \mathrm{VOL}=0.4 \mathrm{~V} \end{aligned}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Icex	Output Leakage Current (93Z458 only)			50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {CEX }}=4.95 \mathrm{~V}$, $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Chip Deselected	
Icex	Output Leakage Current (93Z458 only)			150	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CEX}}=5.2 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { Chip Deselected } \end{aligned}$	
los	Output Short-Circuit Current (93Z459 only)	-15	-35	-90	mA	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, Note 2	
Icc	Power Supply Current			170	mA	$V_{C C}=$ Max, Chip Selected,	
CIN	Input Pin Capacitance ${ }^{(3)}$		4.0		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \overline{\mathrm{CS}}=\mathrm{V}_{\text {IH }}$	
Co	Output Pin Capacitance ${ }^{(3)}$		7.0		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$	

Commercial

AC Performance Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Max	Unit	Condition
$t_{A A}$	Address to Output Access Time	45	ns	See AC Output Load
$t_{A C S}$	Chip Select to Output Access Time	30	ns	See AC Output Load
$t_{C D}$	Chip Select to Output Disable Time	30	ns	See AC Output Load

Military
AC Performance Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	Max	Unit	Condition
$t_{A A}$	Address to Output Access Time	65	ns	See AC Test Output Load
$t_{A C S}$	Chip Select to Output Access Time	30	ns	See AC Test Output Load
$t_{C D}$	Chip Select to Output Disable Time	30	ns	. See AC Test Output Load

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ and maximum loading.
2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.
3. These parameters are not 100% tested, but are periodically sampled.

Fig. 1 AC Test Loads

*Includes jig and scope capacitance

Fig. 3 Read Mode Timing

Fig. 2 Chip Select Timing

Ordering Information

Notes

Notes

Package Outlines

16-Pin Side-Brazed Package

16-Pin Cerdip

Notes

Pins are nickel/gold plated alloy 42 or equivalent
Package material is alumina, $90 \% \mathrm{~min}$. Cap is $\mathrm{Ni} / \mathrm{Au}$ plated kovar or equivalent Board drilling dimensions should equal your practice for .030 (0.76) inch diameter holes
Pins are intended for insertion in hole rows on .300 (7.62) centers
Pins are purposely shipped with "positive" misalignment to facilitate insertion Package weight is 1.5 grams

Notes

Pins are tin-plated alloy 42 or equivalent Pins are intended for insertion in hole rows on . 300 (7.62) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for $.030(0.76)$ inch dia. holes Hermetically sealed alumina package The .045-.030 dimension does not apply to the corner pins
Package weight is 2.2 grams
These dimensions include misalignment, glass over-run etc...

Package Outlines

16-Pin Plastic DIP

Notes

Pins are tin-plated alloy 42 or equivalent Package material is plastic
Pins are intended for insertion in hole rows on . 300 (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion
*The .037-. 027 dimension does not apply to the corner pins Package weight is 1.0 gram Package dimensions do not include permissible flash

16-Pin Cerpak

Notes
Pins are tin-plated alloy 42 or equivalent
Base and cap are black alumina
Package weight is 0.5 gram
These dimensions include misalignment, glass over-run etc...

18-Pin Side-Brazed Package

18-Pin Cerdip

Notes

Pins are nickel/gold plated alloy 42 or equivalent
Package material is alumina, $90 \% \mathrm{~min}$.
Cap is $\mathrm{Ni} /$ Au plated kovar or equivalent Board drilling dimensions should equal your practice for $.030(0.76)$ inch diameter holes
Pins are intended for insertion in hole rows on $\mathbf{3 0 0}$ (7.62) centers
Pins are purposely shipped with "positive" misalignment to facilitate insertion Package weight is 1.5 grams

Notes

Pins are tin-plated alloy 42 or equivalent Pins are intended for insertion in hole rows on. 300 (7.62) centers
They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .030 (0.76) inch diameter pins
Hermetically sealed alumina package The .045-.030 dimension does not apply to the corner pins
Package weight is 2.7 grams
These dimensions include misalignment, glass over-run etc...

Package Outlines

18-Pin Plastic DIP

Notes
Pins are tin-plated alloy 42 or equivalent Package material is plastic
Pins are intended for insertion in hole rows on .600 (15.24) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Package weight is 3.5 grams
Package dimensions do not include permissible flash

18-Pin Cerpak

Notes
Pins are tin-plated alloy 42 or equivalent. Base and cap are black alumina Package weight is 0.9 gram
These dimensions include misalignment, glass over-run etc..

Package Outlines

20-Pin Side-Brazed Package

22-Pin Side-Brazed Package (.300)

Notes

Pins are nickel/gold plated alloy 42 or equivalent
Package material in 90% min. alumina Cap is $\mathrm{Ni} / \mathrm{Au}$ plated kovar or equivalent Board-drilling dimensions should equal your practice for .040 (0.76) diameter holes Pins are intended for insertion in hole rows on . 300 (7.62) centers
Pins are purposely shipped with "positive" misalignment to facilitate insertion Package weight is 2.05 grams.

Package Outlines

22-Pin Side-Brazed Package (.400)

22-Pin Cerdip

Notes
Pins are nickel/gold plated kovar or equivalent
Package material is alumina, 90% min.
Lid is $\mathrm{Ni} / \mathrm{Au}$ plated kovar or equivalent
Board drilling dimensions should equal your practice for $.030(0.76)$ inch diameter holes
Pins are intended for insertion in hole rows on .400 (10.16) centers
Pins are purposely shipped with "positive" misalignment to facilitate insertion
Package weight is 2.0 grams

Notes

Pins are tin-plated alloy 42 or equivalent
Hermetically sealed alumina package Pins are intended for insertion in hole rows on .400 (10.16) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Package weight is 2.2 grams Board-drilling dimensions should equal your practice for .030 (0.76) inch diameter holes
These dimensions include misalignment, glass over-run etc..

Package Outlines

22-Pin Plastic DIP

22-Pin Leadiess Chip Carrier

Notes

Pins are tin-plated alloy 42 or equivalent Package material is plastic
Pins are intended for insertion in hole rows on .400 (10.16) centers
They are purposely shipped with
"positive" misalignment to facilitate insertion
Package weight is 2.1 grams
Package dimensions do not include permissible flash

Notes

Chip carrier is 90% min. black alumina Cap is $\mathrm{Ni} / \mathrm{Au}$ plated kovar or equivalent
Cavity size is $.214 \times .325(5.44 \times 8.26)$
Package weight is 0.60 gram:

Package Outlines

24-Pin Side-Brazed Package

24-Pin Cerdip (.300)

Notes

Pins are tin-plated alloy 42 or equivalent
Pins are intended for insertion in hole rows on . 300 (7.62) centers
They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for . 030 (7.62) inch diameter pins
Hermetically sealed alumina package Package weight is 6.7 grams These dimensions include misalignment, glass over-run etc...

Package Outlines

24-Pin Cerdip (.400)

Notes

Pins are tin-plated alloy 42 or equivalent
Hermetically sealed alumina package
Pins are intended for insertion in hole rows
on .400 (10.16) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Package weight is 6.0 grams
Board-drilling dimensions should equal
your practice for . $030(0.76)$ inch
diameter holes
These dimensions include misalignment, glass over-run etc...

24-Pin Cerdip (.600)

Notes

Pins are tin-plated alloy 42 or equivalent Hermetically sealed alumina package
Pins are intended for insertion in hole rows on .600 (15.25) centers
They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .030 (0.76) inch diameter holes
Package weight is 7.1 grams
These dimensions include misalignment, glass over-run etc...

Package Outlines

24-Pin Plastic DIP

24-Pin Leadless Chip Carrier

Notes

Chip carrier is 90% min. alumina, black Cap is $\mathrm{Ni} /$ Au plated kovar or equivalent
Cavity size is .229" \mathbf{x}. $\mathbf{2 2 9 \prime \prime}$ (5.81 sq.)
All edge notches (except corners) are gold plated to connect to bottom gold lead plating
Package weight is 0.75 gram

Package Outlines

24-Pin Cerpak (. 375 sq.)

24-Pin Quad Cerpak

Notes

Pins are tin-plated alloy 42 or equivalent
Cavity size is $\mathbf{. 2 0 0}$ SQ. (5.08 SQ.)
Package weight is 0.7 gram
These dimensions include misalignment, glass over-run etc...

Package Outlines

24-Pin Cerpak (. $370 \times .595$)

24-Pin Cerpak (.435 x .625)

Notes

Pins are tin-plated alloy 42 or equivalent Base and cap are black alumina Package weight is 1.0 gram
These dimensions include misalignment, glass over-run etc...

Package Outlines

28-Pin Side-Brazed Package

28-Pin Cerdip

Notes

Pins are tin-plated alloy 42 or equivalent Hermetically sealed alumina package Pins are intended for insertion in hole rows on . 600 (15.24) centers
They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for $.030(0.76)$ inch diameter holes
Package weight is 8.6 grams
These dimensions include misalignment, glass over-run etc...

Package Outlines

28-Pin Plastic DIP

28-Pin Leadless Chip Carrier

Notes
Chip carrier is 90% min. black alumina Cap is $\mathrm{Ni} /$ Au plated kovar or equivalent Cavity size is $\mathbf{. 2 5 0}$ (6.35) SQ
All edge notches (except corners) are gold plated to connect to bottom gold lead plating
Package weight is 2.7 grams

Package Outlines

28-Pin Leadless Chip Carrier

Notes

Chip carrier is 90% min. alumina, black Cap is $\mathrm{Ni} /$ Au plated kovar or equivalent
Cavity size is .300 (7.62) SQ
All edge notches (except corners) are gold plated to connect to bottom gold lead plating
Package weight is 2.7 grams

28-Pin Cerpak

Notes

Pins are tin-plated alloy 42 or equivalent
Base and cap are black alumina
Package weight is 1.0 gram
These dimensions include misalignment, glass over-run etc....

Notes

Notes

Fairchild
 Semiconductor

Franchised Distributors

United States and Canada

Alabama

Hall Mark Electronics
4900 Bradford Drive
Huntsville, Alabama 35807
Tel: 205-837-8700 TWX: 810-726-2187

Hamilton/Avnet Electronics
4692 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-7210 TWX: 810-726-2162
Schweber Electronics
2227 Drake Avenue S.W.
Huntsville, Alabama 35805
Tel: 205-882-2200

Arizona

Hamilton/Avnet Electronics
505 South Madison Drive
Tempe. Arizona 85281
Tel: 602-231-5100 TWX: 910-950-0077

Kierulff Electronics
4134 East Wood Street
Phoenix. Arizona 85040
Tel: 602-243-4101 TWX: 910-951-1550
Wyle Distribution Group
8155 North 24th Avenue
Phoenix, Arizona 85021
Tel: 602-249-2232 TWX: 910-951-4282

California

Arrow Electronics
19748 Dearborn Street
Chatsworth, California 91311
Tel: 213-701-7500 TWX: 910-493-2086
Arrow Electronics
3094 San Clemente Street
Hayward. California 94544
Tel: 415-487-4300
Arrow Electronics
9511 Ridge Haven Court
San Diego, California 92123
Tel: 714-565-4800 TWX: 910-335-1195
Arrow Electronics
521 Weddell Avenue
Sunnyvale, California 94086
Tel: 408-745-6600 TWX: 910-339-9371
Avnet Electronics
350 McCormick Avenue
Costa Mesa. California 92626
Tel: 714-754-6111 (Orange County)
213-558-2345 (Los Angeles)
TWX 910-595-1928

Avnet Electronics
21050 Erwin Street
Woodland Hills, California 91367
Tel. 213-883-0000

Bell industries
Electronic Distributor Division
1161 N. Fair Oaks Avenue
Sunnyvale, California 94086
Tel: 408-734-8570 TWX: 910-339-9378
Hamilton/Avnet Electronics
3170 Puliman Avenue
Costa Mesa, California 92626
Tel: 714-641-1850 TWX: 910-595-2638
Hamilton Electro Sales
10912 West Washington Blvd.
Culver City, California 90230
Tel: 213-558-2121 TWX: 910-340-6364
Hamilton/Avnet Electronics
4103 North Gate Blvd.
Sacramento, California 95348
Tel: 916-920-3150
Hamilton/Avnet Electronics
4545 Viewridge Avenue
San Diego, California 92123
Tel: 714-571-7527 TWX: 910-335-1216

Hamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale, California 94086
Tel: 408-743-3355 TWX: 910-339-9332

Schweber Electronics
17811 Gillette Avenue
Irvine, California 92714
Tel: 714-556-3880

Sertech Laboratories**
3170 Pullman Dr
Costa Mesa, California 92626
Tel: 714-754-0666
Wyle Distribution Group
124 Maryland Street
EI Segundo, California 90245
Tel: 213-322-8100 TWX: 910-348-7140
Wyle Distribution Group
17872 Cowan Avenue
trvine, California 92714
Tel: 714-641-1600 Telex: 910-595-1572
Wyle Distribution Group
Military Product Division
18910 Teller Avenue
irvine, California 92715
Tel: 714-851-9953

Wyle Distribution Group
9525 Chesapeake
San Diego, California 92123
Tel: 714-565-9171 TWX: 910-335-1590
Wyle Distribution Group
3000 Bowers Avenue
Santa Clara. California 95051
Tel: 408-727-2500 TWX: 910-338-0541

[^42]Zeus Components, Inc.
1130 Hawk Circle
Anaheim. California 92807
Tel: 714-632-6880
Zeus Components, Inc.
3350 Scott Blvd., Bldg. 6402
Santa Clara, California 95051
Tel: 408-727-0714 TWX: 910-338-2121

Colorado

Arrow Electronics
1390 S. Potomac Street, Suite 136
Aurora, Colorado 80012
Tel: 303-696-1111
Bell industries
8155 West 48th Avenue
Wheatridge, Colorado 80033
Tel: 303-424-1985 TWX: 910-938-0393
Hamilton/Avnet Electronics
8765 E. Orchard Rd., Suite 708
Englewood, Colorado 80111
Tel: 303-740-1000 TWX: 910-935-0787

Wyle Distribution Group
451 East 124th Avenue
Thornton, Colorado 80241
Tel: 303-457-9953 TWX: 910-936-0770

Connecticut

Arrow Electronics
12 Beaumont Road
Wallingford, Connecticut 06492
Tel: 203-265-7741 TWX: 710-476-0162
Hamilton/Avnet Electronics
Commerce Drive, Commerce Park
Danbury, Connecticut 06810
Tel: 203-797-2800 TWX: 710-546-9974

Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury, Connecticut 06810
Tel: 203-792-3500 TWX: 710-456-9405

Florida

Arrow Electronics
1001 Northwest 62nd Street
Suite 108
t. Lauderdale, Florida 33309

Tel: 305-776-7790 TWX: 510-955-9456

Arrow Electronics
50 Woodlake Drive West
Building B
Palm Bay, Florida 32905
Tel: 305-725-1480 TWX: 510-959-6337

Chip Supply**
1607 Forsyth Road
Orlando, Florida 32807
Tel: 305-275-3810

Hall Mark Electronics
1671 West McNab Road
Ft Lauderdale, Florida 33309
Tel: 305-971-9280 TWX: 510-956-3092

Franchised
 Distributors

United States and Canada

Hall Mark Electronics
7233 Lake Ellenor Drive
Orlando, Florida 32809
Tel: 305-855-4020 TWX: 810-850-0183

Hamilton/Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale, Florida 33309
Tel: 305-971-2900 TWX: 510-956-3097
Hamilton/Avnet Electronics
3197 Tech Drive, North
St. Petersburg, Florida 33702
Tel: 813-576-3930 TWX: 810-863-0374
Schweber Electronics
181 Whooping Loop
Altamonte Springs, Florida 32701
Tel: 305-331-7555
Schweber Electronics 2830 North 28th Terrace
Hollywood, Florida 33020
Tel: 305-927-0511 TWX: 510-954-0304

Georgia

Arrow Electronics
2979 Pacific Drive
Norcross, Georgia 30071
Tel: 404-449-8252 TWX: 810-766-0439

Hall Mark Electronics
6410 Atlantic Blvd., Suite 115
Norcross, Georgia 30071
Tel: 404-447-8000 TWX: 810-766-4510
Hamilton/Avnet Electronics
5825-D Peachtree Corners East
Norcross, Georgia 30092
Tel: 404-447-7500 TWX: 810-766-0432
Schweber Electronics
303 Research Drive
Norcross, Georgia 30092
Tel: 404-449-9170

Illinois

Arrow Electronics
2000 Algonquin Road
Schaumburg, Illinois 60195
Tel: 312-397-3440 TWX: 910-291-3544
Hall Mark Electronics
1177 Industrial Drive
Bensenville, illinois 60106
Tel: 312-860-3800 TWX: 910-651-0185
Hamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville, Illinois 60106
Tel: 312-860-7780 TWX: 910-227-0060
Kierulff Electronics
1536 Landmeier Road
Elk Grove Village, Illinois 60007
Tel: 312-640-0200 TWX: 910-227-3166

Schweber Electronics
904 Cambridge Avenue
Elk Grove Village, Illinois 60007
Tel: 312-364-3750 TWX: 910-222-3453

Indiana

Arrow Electronics
2718 Rand Road
Indianapolis, Indiana 46241
Tel: 317-243-9353 TWX: 810-341-3119
Graham Electronics Supply, Inc.
133 S. Pennsylvania Street
Indianapolis, Indiana 46204
Tel: 317-634-8202 TWX: 810-341-3481

Hamilton/Avnet Electronics
485 Gradle Drive
Carmel, Indiana 46032
Tel: 317-844-9333 TWX: 810-260-3966

Pioneer Electronics
6408 Castle Place Drive
Indianapolis, Indiana 46250
Tel: 317-849-7300 TWX: 810-260-1794
lowa
Arrow Electronics
1930 St. Andrews N.E.
Cedar Rapids, lowa 52402
Tel: 319-395-7230
Schweber Electronics
5270 N. Park Place N.E.
Cedar Rapids, Iowa 52402
Tel: 319-373-1417

Kansas

Hall Mark Electronics
10815 Lakeview Drive
Lenexa, Kansas 66215
Tel: 913-888-4747 TWX: 910-749-6620
Hamilton/Avnet Electronics
9219 Quivira Road
Overland Park, Kansas 66215
Tel: 913-888-8900 TWX: 910-743-0005
Schweber Electronics
10300 W. 103rd St., Suite 103
Overland Park, Kansas 66214
Tel: 913-492-2921

Maryland

Arrow Electronics
4801 Benson Avenue
Baltimore, Maryland 21227
Tel: 301-247-5200 TWX: 710-236-9005
Hall Mark Electronics
6655 Amberton Drive
Baltimore, Maryland 21227
Tel: 301-796-9300 TWX: 710-862-1942
Hamilton/Avnet Electronics
6822 Oak Hall Lane
Columbia, Maryland 21045
Tel: 301-995-3500 TWX: 710-862-1861

Schweber Electronics

9218 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-840-5900 TWX: 710-828-9749

Massachusetts

Arrow Electronics
One Arrow Drive
Woburn, Massachusetts 01801
Tel: 617-933-8130 TWX: 710-392-6770
Gerber Electronics
128 Carnegie Row
Norwood, Massachusetts 02062
Tel: 617-329-2400 TWX: 710-336-1987

Hamilton/Avnet Electronics
50 Tower Office Park
Woburn, Massachusetts 01801
Tel: 617-273-7500 TWX: 710-393-0382

Schweber Electronics
25 Wiggins Avenue
Bedford, Massachusetts 01730
Tel: 617-275-5100 TWX: 710-326-0268
Sertech Laboratories**
1 Peabody Street
Salem, Massachusetts 01970
Tel: 617-745-2450 TWX: 710-347-0223
Zeus Components, Inc.
25 Adams Street
Burlington, Massachusetts 01803
Tel: 617-273-0750 TWX: 710-332-0716

Michigan

Arrow Electronics
3810 Varsity Drive
Ann Arbor, Michigan 48104
Tel: 313-971-8220 TWX: 810-223-6020

Arrow Electronics
3510 Roger B. Chafee, S.E.
Grand Rapids, Michigan 49508
Tel: 616-243-0912
Hamilton/Avnet Electronics
2215 29th Street S.E., Space A5
Grand Rapids, Michigan 49508
Tel: 616-243-8805 TWX: 810-273-6921
Hamilton/Avnet Electronics
32487 Schoolcraft
Livonia, Michigan 48150
Tel: 313-522-4700 TWX: 810-242-8775

Pioneer Electronics

13485 Stamford
Livonia, Michigan 48150
Tel: 313-525-1800 TWX: 810-242-3271
Schweber Electronics
12060 Hubbard Avenue
Livonia, Michigan 48150
Tel: 313-525-8100 TWX: 810-242-2983

Fairchild Semiconductor

Franchised
 Distributors

United States and Canada

Minnesota

Arrow Electronics
5230 West 73rd Street
Edina, Minnesota 55435
Tel: 612-830-1800 TWX: 910-576-3125
Hall Mark Electronics
7838 12th Avenue South
Bloomington, Minnesota 55420
Tel: 612-854-3233
Hamilton/Avnet Electronics
10300 Bren Road East
Minnetonka, Minnesota 55343
Tel: 612-932-0600 TWX: 910-576-2720
Schweber Electronics
7422 Washington Avenue S.
Eden Prairie, Minnesota 55344
Tel: 612-941-5280 TWX: 910-576-3167

Missouri

Arrow Electronics
2380 Schuetz Road
St. Louis, Missouri 63141
Tel: 314-567-6888 TWX: 910-764-0882
Hall Mark Electronics
2662 Metro Blvd.
Maryland Heights, Missouri 63043
Tel: 314-291-5350 Telex: 910-762-0672
Hamilton/Avnet Electronics
13743 Shoreline Court, East
Earth City, Missouri 63045
Tel: 314-344-1200 TWX: 910-762-0684
Schweber Electronics
502 Earth City Expressway
Earth City, Missouri 63045
Tel: 314-739-0526

New Hampshire

Arrow Electronics
1 Perimeter Road
Manchester, New Hampshire 03103
Tel: 603-668-6968 TWX: 710-220-1684
Schweber Electronics
Bedford Farms Building 2
Kilton and South River Roads
Manchester, New Hampshire 03102
Tel: 603-625-2250

New Jersey

Arrow Electronics
Pleasant Valley Avenue
Moorestown, New Jersey 08057
Tel: 609-235-1900 TWX: 710-897-0829
Arrow Electronics
2 Industrial Road
Fairfield, New Jersey 07006
Tel: 201-575-5300
Hall Mark Electronics
Springdale Business Center
2091 Springdale Road
Cherry Hill, New Jersey 08003
Tel: 609-424-0880 TWX: 710-940-0660

Hall Mark Electronics
107 Fairfield Road
Fairfield, New Jersey 07006
Tel: 201-575-4415
Hamilton/Avnet Electronics
10 Industrial Road
Fairfield, New Jersey 07006
Tel: 201-575-3390 TWX: 710-734-4388

Hamilton/Avnet Electronics

\#1 Keystone Avenue
Cherry Hill, New Jersey 08003
Tel: 609-424-0100 TWX: 710-940-0262
Schweber Electronics
18 Madison Road
Fairfield, New Jersey 07006
Tel: 201-227-7880 TWX: 710-734-4305

New Mexico

Arrow Electronics
2460 Alamo Avenue S.E.
Albuquerque, New Mexico 87106
Tel: 505-243-4566 TWX: 910-989-1679
Bell Industries
11728 Linn Avenue N.E.
Albuquerque, New Mexico 87123
Tel: 505-292-2700 TWX: 910-989-0625

Hamilton/Avnet Electronics
2524 Baylor Drive, S.E.
Albuquerque, New Mexico 87106
Tel: 505-765-1500 TWX: 910-989-0614

New York

Arrow Electronics
900 Broadhollow Road
Farmingdale, New York 11735
Tel: 516-694-6800
TWX: 510-224-6155 \& 510-224-6126

Arrow Electronics

20 Oser Avenue
Hauppauge, New York 11787
Tel: 516-231-1000 TWX: 510-227-6623

Arrow Electronics

P.O. Box 370

7705 Maltlage Drive
Liverpool, New York 13088
Tel: 315-652-1000 TWX: 710-545-0230
Arrow Electronics
3000 Winton Road South
Rochester, New York 14623
Tel: 716-275-0300 TWX: 510-253-4766
Hamilton/Avnet Electronics
5 Hub Drive
Melville, New York 11746
Tel: 516-454-6000 TWX: 510-224-6166
Hamilton/Avnet Electronics
333 Metro Park
Rochester, New York 14623
Tel: 716-475-9130 TWX: 510-253-5470

Hamilton/Avnet Electronics

16 Corporate Circle
E. Syracuse, New York 13057

Tel: 315-437-2642 TWX: 710-541-1560
Schweber Electronics
Jericho Turnpike
Westbury, L.I., New York 11590
Tel: 516-334-7474 TWX: 510-222-3660
Schweber Electronics
3 Town Line Circle
Rochester, New York 14623
Tel: 716-424-2222
Summit Distributors, Inc
916 Main Street
Buffalo, New York 14202
Tel: 716-884-3450 TWX: 710-522-1692
Zeus Components, Inc.
100 Midland Avenue
Port Chester, New York 10573
Tel: 914-937-7400 TWX: 710-567-1248

North Carolina

Arrow Electronics
938 Burke Street
Winston Salem, North Carolina 27102
Tel: 919-725-8711 TWX: 510-931-3169

Arrow Electronics
3117 Poplarwood Court, Suite 123
Raleigh, North Carolina 27625
Tel: 919-876-3132 TWX: 510: 928-1856
Hall Mark Electronics
5237 North Blvd.
Raleigh, North Carolina 27604
Tel: 919-872-0712 TWX: 510-928-1831
Hamilton/Avnet Electronics
3510 Spring Forrest Road
Raleigh, North Carolina 27604
Tel: 919-878-0819
Schweber Electronics
5285 North Blvd.
Raleigh, North Carolina 27604
Tel: 919-876-0000

Ohio

Arrow Electronics
7620 McEwen Road
Centerville, Ohio 45459
Tel: 513-435-5563 TWX: 810-459-1611
Arrow Electronics
6238 Cochran Road
Solon, Ohio 44139
Tel: 216-248-3990 TWX: 810-427-9409
Hall Mark Electronics
175 Alpha Park
Highland Heights, Ohio 44143
Tel: 216-473-2907

Fairchild
 Semiconductor

Franchised Distributors

Hall Mark Electronics
6130 Sundbury Road, Suite B
Westerville, Ohio 43081
Tel: 614-891-4555

Hamilton/Avnet Electronics
954 Senate Drive
Dayton, Ohio 45459
Tel: 513-433-0610 TWX: 810-450-2531

Hamilton/Avnet Electronics
4588 Emery Industrial Parkway
Warrensville Heights, Ohio 44128
Tel: 216-831-3500 TWX: 810-427-9452

Pioneer Electronics
4800 E. 131st Street
Cleveland, Ohio 44105
Tel: 216-587-3600 TWX: 810-422-2211
Pioneer Electronics
4433 Interpoint Blvd.
Dayton, Ohio 45424
Tel: 513-236-9900 TWX: 810-459-1622
Schweber Electronics
23880 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-464-2970 TWX: 810-427-9441
Schweber Electronics
7865 Paragon Road
Dayton, Ohio 45459
Tel: 513-439-1800

Oklahoma

Arrow Electronics
4719 S. Memorial
Tulsa, Oklahoma 74145
Tel: 918-665-7700
Hall Mark Electronics
5460 S. 103rd East Avenue
Tulsa, Oklahoma 74145
Tel: 918-665-3200 TWX: 910-845-2290
Schweber Electronics
4815 S. Sheridan Road
Tulsa, Oklahoma 74145
Tel: 918-622-8000

Oregon

Hamilton/Avnet Electronics
6024 S.W. Jean Road
Building C, Suite 10
Lake Oswego, Oregon 97034
Tel: 503-635-8157 TWX: 910-455-8179

Pennsylvania

Arrow Electronics
650 Seco Road
Monroeville, Pennsylvania 15146
Tel: 412-856-7000 TWX: 710-797-3894
Pioneer Electronics
259 Kappa Drive
Pittsburgh, Pennsylvania 15238
Tel: 412-782-2300 TWX: 710-795-3122

Schweber Electronics
101 Rock Road
Horsham, Pennsylvania 19044
Tel: 215-441-0600 TWX: 510-665-6540

Texas

Arrow Electronics
10125 Metropolitan Drive
Austin, Texas 78758
Tel: 512-835-4180 TWX: 910-874-1348
Arrow Electronics
13715 Gamma Road
Dallas, Texas 75234
Tel: 214-386-7500 TWX: 910-860-5377
Arrow Electronics
10899 Kinghurst, Suite 100
Houstin, Texas 77099
Tel: 713-530-4700 TWX: 910-880-4439
Hall Mark Electronics
12211 Technology Blvd.
Austin, Texas 78759
Tel: 512-258-8848 TWX: 910-874-2031

Hall Mark Electronics
11333 Page Mill Drive
Dallas, Texas 75243
Tel: 214-343-5000 TWX: 910-867-4721
Hall Mark Electronics
8000 Westglen
Houston, Texas 77063
Tel: 713-781-6100 TWX: 910-881-2711
Hamilton/Avnet Electronics
2401 Rutland Drive
Austin, Texas 78758
Tel: 512-837-8911 TWX: 910-874-1319
Hamilton/Avnet Electronics
8750 Westpark
Houston, Texas 77063
Tel: 713-780-1771 TWX: 910-881-5523
Hamilton/Avnet Electronics
2111 W. Walnut Hill Lane
Irving, Texas 75062
Tel: 214-659-4111 TWX: 910-860-5929
Schweber Electronics
111 W. Anderson Lane
Austin, Texas 78752
Tel: 512-458-8253
Schweber Electronics
4202 Beltway Drive
Dallas, Texas 75234
Tel: 214-661-5010 TWX: 910-860-5493
Schweber Electronics
10625 Richmond, Suite 100
Houston, Texas 77042
Tel: 713-784-3600 TWX: 910-881-4836

Sterling Electronics
23358 Kramer Lane
Austin, Texas 78758
Tel: 512-836-1341

Sterling Electronics
11090 Stemmons Freeway
Dallas, Texas 75229
Sterling Electronics 4201 Southwest Freeway
Houston, Texas 77027
Tel: 713-627-9800 TWX: 910-881-5042
Telex: STELECO HOUA 77-5299
Zeus Components, Inc.
14001 Goldmark, Suite 250
Dallas, Texas 75240
Tel: 214-783-7010

Utah

Arrow Electronics
4980 Amelia Earhart Drive
Salt Lake City, Utah 84116
Tel: 801-539-1135

Bell Industries
3639 West 2150 South
Salt Lake City, Utah 84120
Tel: 801-972-6969 TWX: 910-925-5686

Hamilton/Avnet Electronics
1585 West 2100 South
Salt Lake City, Utah 04119
Tel: 801-972-2800 TWX: 910-925-4018
Wyle Distribution Group
1959 South 4130 West, Unit B
Salt Lake City, Utah 84104
Tel: 801-974-9953

Virginia

Arrow Electronics
8002 Discovery Drive
Richmond, Virginia 23285
Tel: 804-0413 TWX: 710-956-0169

Washington

Arrow Electronics
14320 N.E. 21st Street
Bellevue, Washington 98005
Tel: 206-643-4800 TWX: 910-443-3033
Hamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue, Washington 98005
Tel: 206-453-5844 TWX: 910-443-2469
Radar Electronic Co., Inc.
168 Western Avenue W.
Seattle, Washington 98119
Tel: 206-282-2511 TWX: 910-444-2052
Wyle Distribution Group
1750 132nd Avenue N.E.
Bellevue, Washington 98005
Tel: 206-453-8300 TWX: 910-443-2526

Wisconsin

Arrow Electronics
430 W. Rawson Avenue
Oakcreek, Wisconsin 53154
Tel: 414-764-6600 TWX: 910-262-1193

Fairchild Semiconductor

Franchised
 Distributors

United States and Canada

Hall Mark Electronics
9657 South 20th Street
Oakcreek, Wisconsin 53154
Tel: 414-761-3000
Hamilton/Avnet Electronics 2975 South Moorland Road New Berlin. Wisconsin 53151 Tel: 414-784-4510 TWX: 910-262-1182

Schweber Electronics
150 Synnyslope Road, Suite 120
Brookfield, Wisconsin 53005
Tel: 414-784-9020

Canada

Future Electronics Corporation 5809 MacLeod Trail S. Unit 109
Calgary, Alberta T23 0J9
Tel: 403-259-6437
Future Electronics Inc. 4800 Dufferin Street
Downsview, Ontario, M3H 5S8, Canada Tel: 416-663-5563

Future Electronics Inc.
Baxter Center
1050 Baxter Road
Ottawa, Ontario, K2C 3P2, Canada
Tel: 613-820-8313
Future Electronics Inc.
237 Hymus Blvd.
237 Hymus Blvd. Dorval, Quebec, H9P 2P4, Canada
Pointe Claire (Montreal), Quebec, H9R 5C7, Canada Tel: 604-299-8866 TWX: 610-422-3048
Tel: 514-694-7710 TWX: 610-421-3251
Future Electronics Corporation
3070 Kingsway
Vancouver B.C. B5R $5 \mathrm{J7}$
Tel: 604-438-5545
Hamilton/Avnet Canada Ltd.
6845 Rexwood Road, Units 3-4-5
Mississauga, Ontario, L4V 1R2, Canada
Tel: 416-677-7432 TWX: 610-492-8867
Hamilton/Avnet Canada Ltd.
210 Colonnade Road
Nepean, Ontario, K2E 7L5, Canada
Tel: 613-226-1700 Telex: 0534-971

Hamilton/Avnet Canada Ltd.
2670 Sabourin Street
St. Laurent, Quebec, H4S 1M2, Canada
Tel: 514-331-6443 TWX: 610-421-3731
Semad Electronics Ltd.
620 Meloche Avenue

Semad Electronics Ltd

864 Lady Ellen Place
Ottawa, Ontario, K1Z 5M2, Canada
Tel: 613-722-6571 TWX: 610-562-1923
Semad Electronics Ltd
105 Brisbane Avenue
Downsview, Ontario, M3J 2K6, Canada
Tel: 416-663-5650 TWX: 610-492-2510

Fairchild
Semiconductor

Sales
Offices

Alabama

Huntsville Office
555 Sparkman Drive, Suite 1030
Huntsville, Alabama 35805
Tel: 205-837-8960

Arizona

Phoenix Office
2255 West Northern Road, Suite 8112 Phoenix, Arizona 85021
Tel: 602-864-1000 TWX: 910-951-1544

California

320 Aeolia Drive
Auburn, CA 95603
Tel: 916-823-6664

Los Angeles Office*
Crocker Bank Bldg.
15760 Ventura Blvd., Suite 1027
Encino, California 91436
Tel: 213-990-9800 TWX: 910-495-1776
San Diego Office
4355 Ruffin Road, Suite 100
San Diego, California 92123
Tel: 714-560-1332
Santa Ana Office
1570 Brookhollow Drive, Suite 206
Santa Ana, California 92705
Tel: 714-557-7350 TWX: 910-595-1109

Santa Clara Office*
3333 Bowers Avenue, Suite 299
Santa Clara, California 95051
Tel: 408-980-9990 TWX: 910-338-0241

Colorado

Denver Office
10200 E. Girard, Suite 222, Bldg. B
Denver, Colorado 80231
Tel: 303-695-4950

Connecticut

Danbury Office
250 Pomeroy Avenue
Meriden, Connecticut 06450
Tel: 203-634-8722

Florida

Ft. Lauderdale Office
5237 N.W. 33rd Avenue, Suite 2D
Ft. Lauderdale, Florida 33309
Tel: 305-485-7970 TWX: 510-955-4098
Orlando Office
Crane's Roost Office Park
399 Whooping Loop
Altamonte Springs, Fiorida 32701
Tel: 305-834-7000 TWX: 810-850-0152

Georgia

Norcross Office*
3220 Pointe Parkway, Suite 1200
Norcross, Georgia 30092
Tel: 404-441-2730 TWX: 810-766-4952

Illinois

Itasca Office*
500 Park Blvd., Suite 575
Itasca, illinois 60143
Tel: 312-773-3300 TWX: 910-651-0120

Indiana

indianapolis Office
7202 N. Shadeland, Room 205
Castle Point
indianapolis, Indiana 46250
Tel: 317-849-5412 TWX: 810-260-1793

lowa

Cedar Rapids Office
373 Collin Road N.E., Suite 200
Cedar Rapids, Iowa 52402
Tel: 319-395-0090

Kansas

Kansas City Office
8600 West 110th Street, Suite 209
Overland Park, Kansas 66210
Tel: 913-451-8374
Wichita Office
2424 N. Woodlawn
Wichita, Kansas 67220
Tel: 316-687-1111 TWX: 710-826-9654

Maryland

Columbia Office
2000 Century Plaza, Suite 114
Columbia, Maryland 21044
Tel: 301-730-1510 TWX: 710-826-9654

Massachusetts

Framingham Office*
1432 Main Street
Waltham, Massachusetts 02154
Tel: 617-890-4000 TWX: 710-380-0599

Michigan

Detroit Office
21999 Farmington Road
Farmington Hills, Michigan 48024
Tel: 313-478-7400 TWX: 810-242-2973

Minnesota

Minneapolis Office
3600 West 80th Street, Suite 590
Bloomington, Minnesota 55431
Tel: 612-835-3322 TWX: 910-576-2944

New Jersey
New Jersey Office
Vreeland Plaza
41 Vreeland Avenue
Totowa, New Jersey 07512
Tel: 201-256-9011

New Mexico

Albuquerque Office
North Building
2900 Loursiana N.E. South G2
Albuquerque, New Mexico 87110
Tel: 505-884-5601 TWX: 910-379-6435

New York

Endwell Office
3215 East Main Street
Endwell, New York 13760
Tel: 607-757-0200
Fairport Office
815 Ayrault Road
Fairport, New York 14450
Tel: 716-223-7700
Hauppauge Office*
300 Wheeler Road
Hauppauga, New York 11788
Tel: 516-348-0900 TWX: 510-221-2183
Poughkeepsie Office
19 Davis Avenue
Poughkeepsie, New York 12603
Tel: 914-473-5730 TWX: 510-248-0030

North Carolina

Raleigh Office
1100 Navaho Drive, Suite 112
Raleigh, North Carolina 27609
Tel: 919-876-9643

Ohio

Cleveland Office
6133 Rockside Road, Suite 407
Cleveland, Ohio 44131
Tel: 216-447-9700

Columbus Office
960 West Henderson Road
Columbus, Ohio 43220
Tel: 614-459-5748
Dayton Office*
6500 Poe Avenue, Suite 400
Dayton, Ohio 45415
Tel: 513-890-5878

Oregon

Portland Office
8196 S.W. Hall Blvd., Suite 328
Beaverton, Oregon 97005
Tel: 503-641-7871 TWX: 910-467-7842

Pennsylvania

Philadelphia Office
2500 Office Center
2500 Maryland Road
Willow Grove, Pennsylvania 19090
Tel: 215-657-2711

Fairchild Semiconductor

United States and Canada

Texas

Austin Office
8240 Mopac Expressway, Suite 270
Austin. Texas 78759
Tel 512-346-3990

Dallas Office*

1702 North Collins Street, Suite 101
Richardson, Texas 75081
Tel: 214-234-3391 TWX: 910-867-4824
Houston Office
9896 Bissonnet-2. Suite 595
Houston, Texas 77036
Tel: 713-771-3547 TWX: 910-881-8278

Utah

5282 South 320th West, Suite D120
Salt Lake City, Utah 84107
Tel: 801-266-0773

Washington

Bellevue Office
11911 N.E. First Street. Suite 310
Bellevue. Washington 98005
Tel: 206-455-3190

Canada

Toronto Regional Office*
2375 Steeles Avenue West, Suite 203
Downsview. Ontario M3J 3A8, Canada
Tel: 416-665-5903 TWX: 610-491-1283

Montreal Office
3675 Sources Blvd., Suite 203
Dollard des Ormeaux
Quebec H9B 2K4 Canada
Tel: 514-685-0883
Ottawa Office
1 Ceasar Avenue, Suite B
Nepean, Ontario K2D 0A8
Tel: 613-226-8270 TWX: 610-562-1953
*Order Entry Points

Fairchild Semiconductor

Sales

Australia

Fairchild Australia Pty. Ltd.
366 White Horse Road
Nunawading 3131
Victoria, Australia
Tel: 03-877-5444

Austria and Eastern Europe

Fairchild Electronics
A-1010 Wien
Schwedenplatz 2
Tel: 0222-858-652

Benelux
Fairchild Semiconductor
Ruysdaelbaan 35
5613 Dx Eindhoven
The Netherlands
Tel: 40-446909

Brazil

Fairchild Semiconductores Ltda
Caixa Postal 30407
Rua Alagoas, 663
Sao Paulo, SP, Brazil
Tel: 66-9092

France

Fairchild Camera \& Instrument S.A.
BP No. 655
92542 Montrouge Cedex
France
Tel: 657-1303

Germany

Fairchild Camera and Instrument GmbH
Daimlerstrasse 15
8046 Garching Hochbruck
Munich, W. Germany
Tel: 089-320031

Fairchild Camera and Instrument GmbH
Oeltzenstrasse 15
3000 Hannover, W. Germany
Tel: 0511-17844

Fairchild Camera and Instrument GmbH
Poststrasse 37
7251 Leonberg, W. Germany
Tel: 07152-41026

Hong Kong
Fairchild Semiconductor (HK) Ltd.
12th Floor, Austin Tower
22-26A Austin Avenue
Tsimshatsui
Kowloon, Hong Kong
Tel: 3-7238321

Italy
Fairchild Semiconducttori, S.P.A.
Via Flamenia Vecchia 653
00191 Roma, Italy
Tel: 06-327-4006

Fairchild Semiconducttori, S.P.A.
Viale Corsica 7
20133 Milano, Italy
Tel: 39-7491271

Japan
Fairchild Japan Corporation
Pola Shibuya Bldg.
1-15-21, Shibuya
Shibuya-Ku, Tokyo 150, Japan
Tel: 03-400-8351

Fairchild Japan Corporation
Yotsubashi Chuo BIdg.
1-4-26, Shinmachi
Nishi-Ku, Osaka 550, Japan
Tel: 06-541-6138/9

Korea

Fairchild Semikor Ltd.
K2 219-6 Gari Bong Dong
Young Dung Po-Ku
Seoul 150-06, Korea
Tel: 783-3795
(mailing address)
Central P.O. Box 2806

Scandinavia

Fairchild Semiconductor AB
Svartensgaten 6
S-11620 Stockholm, Sweden
Tel: 8-449255

Singapore

Fairchild Semiconductor Pty. Ltd.
11 Lorong 3, Toa Payoh
Singapore 1231
Republic of Singapore
Tel: 531-066

Taiwan

Fairchild Semiconductor Ltd.
Hsietsu Bldg., Room 502
47 Chung Shan North Road
Sec. 3 Taipei, Taiwan
Tel: 597-3205

United Kingdom

Fairchild Camera and Instrument Ltd.
Semiconductor Division
230 High Street
Potters Bar
Hertfordshire EN6 5BU
England
Tel: 0707-51111

A Schlumberger Company

Fairchild cannot assume responsibility for use of any circuitry described other than circuitry embodied in a Fairchild product. No other circuit patent licenses are implied.

Manufactured under one or more of the following U.S. Patents: $3,562,721,3,586,922,3,590,274,3,639,781,3,648,125$,
$3,772,660$; other patents pending

Fairchild reserves the right to make changes in the circuitry or specifications at any time without notice.

[^0]: 1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
 2 Unesss spocified ontemise on indididuala data sheet
[^1]: $V_{c C}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^2]: $\mathrm{Vcc}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^3]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}($ Nominal $)$
 $\mathrm{L}=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 $\mathrm{X}=$ Don't Care
 Data $=$ Previously stored data

[^4]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
 3. Tw measured at $\mathrm{twSA}=\mathrm{Min}, \mathrm{twSA}$ measured at $\mathrm{tw}=\mathrm{Min}$.
[^5]: Each bit has independent $\overline{\mathrm{BS}}, \mathrm{D}$, and O , but all have common $\overline{\mathrm{WE}}$
 $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 $\mathrm{L}=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X $=$ Don't Care
 Data $=$ Previously stored data

[^6]: Packages and Outlines (See Section 9)
 D = Ceramic DIP
 $F=$ Flatpak
 Temperature Ranges
 $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Case
 Optional Processing
 QR $=160$ Hour Burn In

[^7]: $V_{C C}=\operatorname{Pin} 6(9)$
 $V_{C C A}=\operatorname{Pin} 7$ (10)
 $V_{E E}=\operatorname{Pin} 18$ (21)
 () = Flatpak

[^8]: $V_{C C}=\operatorname{Pin} 20$
 $\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 10$

[^9]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}($ Nominal $)$
 $\mathrm{L}=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^10]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudo random testing pattern.
[^11]: $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=P$ in 8

[^12]: *See Family Characteristic for other dc specifications.

[^13]: $V_{c c}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^14]: Note
 The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package

[^15]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 $\mathrm{L}=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^16]: Packages and Outlines (See Section 9)
 D = Ceramic DIP
 F = Flatpak
 $\mathrm{P}=$ Plastic DIP

 Temperature Range
 $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, Case

 Optional Processing
 QR $=160$ Hour Burn In

[^17]: $V_{C C}=\operatorname{Pin} 24$
 $V_{C C A}=\operatorname{Pin} 1$
 $V_{E E}=\operatorname{Pin} 12$

[^18]: Each bit has independent $\overline{B S}, \mathrm{D}$, and O , but all have common $\overline{\mathrm{WE}}$
 $H=H I G H$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 $\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^19]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
 3. Tw measured at twSA $=$ Min, twSA measured at $\mathrm{tw}_{\mathrm{w}}=\mathrm{Min}$.
[^20]: Packages and Outlines (See Section 9)
 D = Ceramic DIP
 F = Flatpak
 Temperature Ranges
 $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, Case

 ## Optional Processing

 QR $=160$ Hour Burn In

[^21]: $V_{C C}=\operatorname{Pin} 24$

[^22]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 $\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 $\mathrm{X}=$ Don't Care
 Data $=$ Previously stored data

[^23]: $V_{c c}=\operatorname{Pin} 20$
 $V_{E E}=\operatorname{Pin} 10$

[^24]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 $\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^25]: Notes on preceding page

[^26]: Notes on preceding page

[^27]: Notes on preceding page

[^28]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
 $\mathrm{L}=$ LOW Voltage Level (.5 V)
 X = Don't Care (HIGH or LOW)

[^29]: Notes on preceding page

[^30]: Notes on page 4-27

[^31]: $V_{C C}=\operatorname{Pin} 16$
 GND $=\operatorname{Pin} 8$

[^32]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
 $\mathrm{L}=$ LOW Voltage Level (. 5 V)
 X = Don't Care (HIGH or LOW)
 HIGH Z $=$ High Impedance State

[^33]: ## Notes

 1. This parameter is measured with $\overline{\mathrm{E}} \mathrm{HIGH}$ (chip deselected) and inputs at valid TTL levels.
 2. This parameter is measured with input levels either $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or $\geq 0.2 \mathrm{~V}$, including ${ }^{-}$. which must be $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$. This condition results in significant reduction in current in the input buffer circuitry and consequently a lower overall level.
 3. Operation to specifications guaranteed 2.0 ms after $V_{C C}$ applied.
 4. This parameter is sampled and not 100% tested.
[^34]: 1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
 2. Unless specified otherwise on individual data sheet.
[^35]: $V_{C P}=\operatorname{Pin} 1$
 $V_{C C}=\operatorname{Pin} 16$
 $\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 8$

[^36]: $V_{c c}=\operatorname{Pin} 24$
 GND $=\operatorname{Pin} 12$

[^37]: 1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.
 2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.
[^38]: 1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.
[^39]: 1. Total time $V_{C C}$ is on to program fuse is equal to or greater than the sum of all the specified delays, pulse widths and rise/fall times.
 2. toff is equal to or greater than ton.
 3. Rise and fall times are from 10% to 90%.
[^40]: *For selection of input apply TTL HIGH or TTL LOW
 **Left open or TTL HIGH
 ***Left open or grounded
 ****Left open, TTL HIGH, or programming current ramp
 *****Programming current ramp

[^41]: Notes

 1. Total time V_{CC} is on to program fuse is equal to or greater than the sum of all the specified delays, pulse widths and rise/fall times.
 2. TOFF is equal to or greater than toN.
 3. Rise and fall times are from 10% to 90%.
 4. Recommended programming temp $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$.
[^42]: * This distributor carries Fairchild dıe products only.

