Fairchild Advanced CMOS Technology

Logic Data Book

FAIRCHILD	Fairchild Advanced CMOS Technology
A Schlumberger Company	Logic Data Book

FAIRCHILD

A Schlumberger Company

This data book presents advanced information on Fairchild's very high-speed, low-power CMOS logic family, fabricated with Fairchild's state-of-the-art CMOS process.

FACT (Fairchild Advanced CMOS Technology) utilizes Fairchild's $2 \mu \mathrm{~m}$ Isoplanar silicon gate CMOS process to attain speeds similar to that of Advanced Low Power Schottky while retaining the advantages of CMOS logic, namely, ultra low power and high noise immunity. As an added benefit, FACT offers the system designer superior line driving characteristics and excellent ESD and latchup immunity.

The FACT family consists of devices in two categories:

1. AC, standard logic functions with CMOS compatible inputs and TTL and MOS compatible outputs;
2. ACT, standard logic functions with TTL compatible inputs and TTL and MOS compatible outputs.

Introduction

Section 1 Literature Classification, Product Index, and Selection Guide

Tabulation of device numbers to assist in locating appropriate technical data.

Section 2 FACT Description and Family Characteristics

Basic information on FACT including performance comparisons with competitive technologies.

Section 3 Design Considerations

Information to assist both TTL and CMOS designers to get the most out of Fairchild's FACT.

Section 4 Data Sheets

Section 5 Package Outlines and Ordering

 Information
Section 6 Field Sales Offices and Distributor Locations

Table of Contents

Section 1 Literature Classification, Product Index and Selection Guide Literature Classification 1-2
Product Index 1-3
Selection Guide 1-5
Gates $1-5$
Flip-Flops $1-5$
Latches $1-5$
Counters 1-6
Shift Registers 1-6
Buffers/Line Drivers 1-6
Multiplexers $1-7$
Decoders/Demultiplexers $1-7$
Comparators $1-7$
Transceivers/Registered Transceivers 1-7
FIFOs $1-8$
Arithmetic Functions $1-8$
Section 2 FACT Description and Family Characteristics
Family Characteristics 2-3
Logic Family Comparisons 2-5
Circuit Characteristics 2.7
Ratings, Specifications and Waveforms 2-13
Section 3 Design Considerations Line Driving 3-3
Interfacing 3-6
Section 4 Data Sheets 4-3
Section 5 Ordering Information and Package Outlines Ordering Information 5-3
Package Outlines 5-4
Plastic Dual In-Line 5-4
Ceramic Dual In-Line 5-7
Leadless Chip Carrier 5-10
Small Outline Integrated Circuit 5-12
Plastic Chip Carrier 5-15
Section 6 Sales Offices and Distributor Locations 6-3

Design Considerations 3
Data Sheets
4

Package Outlines and Ordering Information

Literature Classification

PRELIMINARY

Preliminary: This product is in sampling or preproduction stage. This document contains advanced information and specifications that are subject to change without notice. Fairchild reserves the right to make changes at any time in order to improve design and provide the best product possible.

ADVANCE INFORMATION

Advance Information: The material described is in the formative or design phase. Specifications may be changed in any manner without notice.

FAIRCHILD

A Schlumberger Company

Product Index and Selection Guide

Product Index

Device No.

54AC/74AC00
54AC/74AC02
54AC/74AC04
54AC/74AC08
54AC/74AC10
54AC/74AC11
54AC/74AC14
54AC/74AC20

54AC/74AC32
54AC/74AC74
54AC/74AC86
54AC/74AC109

54AC/74AC138
54AC/74AC139
54AC/74AC151
54AC/74AC153
54AC/74AC157
54AC/74AC158
54AC/74AC160
54AC/74AC161
54AC/74AC163
54AC/74AC169
54AC/74AC174
54AC/74AC175

54AC/74AC191
54AC/74AC240
54AC/74AC241
54AC/74AC244
54AC/74AC245
54AC/74AC251
54AC/74AC253
54AC/74AC257
54AC/74AC258
54AC/74AC273
54AC/74AC299
54AC/74AC323
Description
Quad 2-Input NAND Gate 4-3Quad 2-Input NOR GateHex Inverter
Triple 3-Input NAND Gate
*
*Quad 2-Input AND Gate
*
*
Triple 3-Input AND Gate
*
Hex Schmitt Trigger Inverter
*
Dual 4-Input NAND Gate
Quad 2-Input OR Gate

*

Dual D Flip-Flop 4-4
Quad 2-Input Exclusive-OR Gate

Quad 2-Input Exclusive-OR Gate4-7
1-of-8 Decoder/Demultiplexer 4-10
Dual 1-of-4 Decoder/Demultiplexer 4-14
8-Input Multiplexer *Dual 4-Input Multiplexer4-17
Quad 2-Input Multiplexer
Quad 2-Input MultiplexerBCD Decade Counter, Asynchronous Reset4-Bit Binary Counter, Asynchronous Reset4-Bit Binary Counter, Synchronous Reset
4-Bit Binary Counter
Hex D Flip-Flop
Quad D Flip-Flop
Up/Down Binary Counter
Octal Buffer/Line Driver 4-20
Octal Buffer/Line Driver 4-24
Octal Buffer/Line Driver 4-28
Octal Bidirectional Transceiver 4-32
8-Input Multiplexer *
Dual 4-Input Multiplexer 4-34
Quad 2-Input MultiplexerQuad 2-Input MultiplexerOctal D Flip-Flop
Octal Shift/Storage Register
Octal Shift/Storage Registér
Page No.
Flip-Flop
4-Bit Binary Counter, Asynchronous Reset

[^0]
Product Index (Cont'd)

Device No.

54AC/74AC373
54AC/74AC374
54AC/74AC377
54AC/74AC379
54AC/74AC520
54AC/74AC521
54AC/74AC540
54AC/74AC541
54AC/74AC563
54AC/74AC564
54AC/74AC569
54AC/74AC573

54AC/74AC574
54AC/74AC646
54AC/74AC648
54AC/74AC708
54AC/74AC1010
54AC/74AC1016
54AC/74AC1017
54ACT/74ACT138
54ACT/74ACT240
54ACT/74ACT241
54ACT/74ACT244
54ACT/74ACT245
54ACT/74ACT373
54ACT/74ACT374
54ACT/74ACT563

54ACT/74ACT564
54ACT/74ACT573
54ACT/74ACT574
54ACT/74ACT708
54ACT/74ACT1010
54ACT/74ACT1016
54ACT/74ACT1017

Description

Page No.

Octal D Flip-Flop	4-38
Octal D Flip-Flop	4-42
Octal D Flip-Flop with Clock Enable	*
Quad D Flip-Flop with Enable	*
8-Bit Identity Comparator with Pullup Resistors	*
8-Bit Identity Comparator	*
Octal Buffer/Line Driver	*
Octal Buffer/Line Driver	*
Octal D Latch	*
Octal D Flip-Flop	*
4-Bit Binary Counter	*
Octal D Latch	*
Octal D Flip-Flop	*
Octal Bus Transceiver and Register	*
Octal Bus Transceiver and Register	*
64 X 9 FIFO Memory	*
16×16 Multiplier/Accumulator	*
16×16 Multiplier	*
16 X 16 Multiplier with Common Clock	*
1-of-8 Decoder/Demultiplexer	*
Octal Buffer/Line Driver	4-22
Octal Buffer/Line Driver	4-26
Octal Buffer/Line Driver	4-30
Octal Bidirectional Transceiver	*
Octal Transparent Latch	*
Octal D Flip-Flop	*
Octal D Latch	*
Octal D Flip-Flop	*
Octal D Latch	*
Octal D Flip-Flop	*
64×9 FIFO Memory	*
16×16 Multiplier/Accumulator	*
16×16 Parallel Multiplier	*
16×16 Parallel Multiplier with Common Clock	*

*Full data sheet for this device will be available upon product release.

Selection Guide

Gates

Function	Device	Page No.
Quad 2-Input NAND	$54 A C / 74 A C 00$	$4-3$
Triple 3-Input NAND	$54 A C / 74 A C 10$	$*$
Dual 4-Input NAND	$54 A C / 74 A C 20$	$*$
Quad 2-Input AND	$54 A C / 74 A C 08$	$*$
Triple 3-Input AND	$54 A C / 74 A C 11$	$*$
Quad 2-Input NOR	$54 A C / 74 A C 02$	$*$
Hex Inverter	$54 A C / 74 A C 04$	$*$
Hex Schmitt Trigger Inverter	$54 A C / 74 A C 14$	$*$
Quad 2-Input OR	$54 A C / 74 A C 32$	$*$
Quad 2-Input Exclusive-OR	$54 A C / 74 A C 86$	$*$

Flip-Flops

Function	Device	3-State Outputs	Master Reset	Page No.
Dual D	54AC/74AC74	No	No	$4-4$
Dual JK	54AC/74AC109	No	No	$4-7$
Quad D Flip-Flop	54AC/74AC175	No	Yes	$*$
Quad D Flip-Flop	54AC/74AC379	No	No	$*$
Hex D Flip-Flop	54AC/74AC174	No	Yes	$*$
Hex D Flip-Flop	54AC/74AC378	No	No	$*$
Octal D Flippllop	54AC/74AC273	No	Yes	$*$
Octal D Flip-Flop	54AC/74AC374	Yes	No	$4-42$
Octal D Flip-Flop	54ACT/74ACT374	Yes	No	$*$
Octal D Flip-Flop	54AC/74AC377	No	No	$*$
Octal D Flip-Flop	54AC/74AC564	Yes	No	$*$
Octal D Flip-Flop	54ACT/74ACT564	Yes	No	$*$
Octal D Flip-Flop	54AC/74AC574	Yes	No	$*$
Octal D Flip-Flop	54ACT/74ACT574	Yes	No	$*$

Latches

Function	Device	3-State Outputs	Broadside Pinout	Page No.
Octal Latch	$54 A C / 74 A C 373$	Yes	No	$4-38$
Octal Latch	$54 A C T / 74 A C T 373$	Yes	No	$*$
Octal D Latch	$54 A C / 74 A C 563$	Yes	Yes	$*$
Octal D Latch	$54 A C T / 74 A C T 563$	Yes	Yes	$*$
Octal D Latch	$54 A C / 74 A C 573$	Yes	Yes	$*$
Octal D Latch	54ACT/74ACT573	Yes	Yes	$*$

*Full data sheet for this device will be available upon product release.

Counters

Function	Device	Parallel Entry	Reset	U/D	3-State Outputs	Page No.
4-Bit BCD Decade	$54 \mathrm{AC} / 74 \mathrm{AC} 160$	S	A	No	No	$*$
4-Bit Binary	$54 \mathrm{AC} / 74 \mathrm{AC} 161$	S	A	No	No	$*$
4-Bit Binary	$54 \mathrm{AC} / 74 \mathrm{AC} 163$	S	S	No	No	$*$
4-Bit Binary	$54 \mathrm{AC} / 74 \mathrm{AC} 169$	S	$\mathrm{~S} / \mathrm{A}$	Yes	No	$*$
4-Bit Binary	$54 \mathrm{AC} / 74 \mathrm{AC} 191$	A	No	Yes	No	$*$
4-Bit Binary	$54 \mathrm{AC} / 74 \mathrm{AC} 569$	S	S/A	Yes	Yes	$*$

S = Synchronous
A = Asynchronous

Shift Registers

Function	Device	No. of Bits	Reset	Serial Inputs	3-State Outputs	Page No.
Octal Shift/Storage Register	$54 \mathrm{AC} / 74 \mathrm{AC} 299$	8	A	2	Yes	$*$
Octal Shift/Storage Register	$54 \mathrm{AC} / 74 \mathrm{AC} 323$	8	S	2	Yes	$*$

S = Synchronous
A = Asynchronous

Buffers/Line Drivers

Function	Device	Enable Inputs (Level)	Inverting/ Noninverting	Broadside Pinout	Page No.
Octal Buffer/Line Driver	54AC/74AC240	2(L)	I		4-20
Octal Buffer/Line Driver	54ACT/74ACT240	2(L)	I		4-22
Octal Buffer/Line Driver	54AC/74AC241	$1(\mathrm{~L})$ \& $1(H)$	N		4-24
Octal Buffer/Line Driver	54ACT/74ACT241	$1(\mathrm{~L})$ \& $1(\mathrm{H})$	N		4-26
Octal Buffer/Line Driver	54AC/74AC244	2(L)	N		4-28
Octal Buffer/Line Driver	54ACT/74ACT244	2(L)	N		4-30
Octal Buffer/Line Driver	54AC/74AC540	2(L)	1	Yes	*
Octal Buffer/Line Driver	54AC/74AC541	1(L) \& 1(H)	N	Yes	*

[^1]
Multiplexers

Function	Device	Enable Inputs (Level)	True Output	Complement Output	Page No.
8-Input	54AC/74AC151	1(L)	Yes	Yes	*
Dual 4-Input	54AC/74AC153	2(L)	Yes	No	4-17
Quad 2-Input	54AC/74AC157	1(L)	Yes	No	*
Quad 2-Input	54AC/74AC158	1(L)	No	Yes	*
8-Input	54AC/74AC251	1(L)	Yes	Yes	*
Dual 4-Input	54AC/74AC253	2(L)	Yes	No	4-34
Quad 2-Input	54AC/74AC257	1(L)	Yes	No	*
Quad 2-Input	54AC/74AC258	1(L)	No	Yes	*

Decoders/Demultiplexers

Function	Device	LOW Enable	Active- HIGH Enable	Active- LOW Outputs	Active- Address Inputs	Page No.
1-of-8 Decoder/Demultiplexer	54AC/74AC138	2	1	8	3	$4-10$
1-of-8 Decoder/Demultiplexer	54ACT/74ACT138	2	1	8	3	$*$
Dual 1-of-4 Decoder	54AC/74AC139	$1 \& 1$	No	$4 \& 4$	$2 \& 2$	$4-14$

Comparators

Function	Device	Features	Page No.
Octal Comparator	54AC/74AC520	Expandable	$*$
Octal Comparator	$54 \mathrm{AC} / 74 \mathrm{AC} 521$	Expandable	\star

Transceivers/Registered Transceivers

Function	Device	Registered	Enable Inputs (Level)	3-State Output	Page No.
Octal Bus Transceiver	54AC/74AC245	No	$1(\mathrm{~L})$	Yes	$4-32$
Octal Bus Transceiver	54ACT/74ACT245	No	$1(\mathrm{~L})$ Octal Bus Transceiver	54AC/74AC646	Yes
Octal Bus Transceiver	54AC/74AC648	Yes $1(\mathrm{H})$	Yes	$*$	
1(L) \& 1(H)	Yes	$*$			

[^2]FIFOs

Function	Device	Input	Output	3-State Output	Page No.
64×9 FIFO	$54 \mathrm{AC/74AC708}$	Parallel	Parallel 64×9 FIFO Parallel	Yes Yes	$*$

Arithmetic Functions

Function	Device	Features	Page No.
16×16 Multiplier/Accumulator	54AC/74AC1010	2's Complement \& unsigned arith.	$*$
16×16 Multiplier/Accumulator	54ACT/74ACT1010	2's Complement \& unsigned arith.	$*$
16×16 Multiplier	54AC/74AC1016	2's Complement \& unsigned arith.	$*$
16×16 Multiplier	54ACT/74ACT1016	2's Complement \& unsigned arith.	$*$
16×16 Multiplier	54AC/74AC1017	Common Clock	$*$
16×16 Multiplier	54ACT/74ACT1017	Common Clock	$*$

Data Sheets 4
Package Outlines and Ordering Information5

Fairchild Digital's Advanced CMOS Logic

Fairchild Digital is pleased to announce FACT (Fairchild Advanced CMOS Technology), a family of high-speed ADVANCED CMOS logic circuits.

This versatile new family promises to be the product family for future logic systems, offering a unique combination of high-speed, low-power dissipation, high noise immunity, wide fanout capability, extended power supply range and high reliability. This data book describes the initial product line scheduled for introduction during 1985. All device specifications are included for these products as well as a section on designing with this family and its comparison to predecessor technologies.

The two micron, silicon gate CMOS process utilized in this family has been proven in the field of high performance gate arrays for the last two years and has been further enhanced to meet and exceed the JEDEC standards for 74HCXX logic.

For direct replacement of LS and ALS devices, the ACT circuits with TTL-type input thresholds are included in the FACT family. These include the more popular bus drivers/transceivers as well as many other 54ACT/74ACTXXX devices.

Characteristics

- Full Logic Product Line
- Industry Standard Functions and Pinouts for SSI and MSI
- Meets or Exceeds JEDEC Standards for 74HCXX Family
- TTL Inputs on Selected Circuits
- High Performance Outputs Common Output Structure For Standard and Buffer Drivers
Output Sink/Source Current of 24 mA Transmission Line Driving 50Ω (Comm)/ 75Ω (Mil) Guaranteed
- Operation from 2-6 Volts
- Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Comm), $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Mil)
- Improved Gate Protection Network
- High Current Latch Up Immunity

FACT Description and Family Characteristics

Low Power CMOS Operation

If there is one single characteristic that justifies the existence of CMOS, it is low power dissipation. In the quiescent state, FACT draws three orders of magnitude less power than the equivalent LS or ALS TTL device. This feature can only enhance system reliability while eliminating costly regulated high current power supplies, heat sinks, fans and the like.

Operating power is also very low for FACT. Power consumption of various technologies, with a clock frequency of 1 MHz , is shown below.

$$
\begin{aligned}
& \text { FACT }=0.1 \mathrm{~mW} / \text { Gate } \\
& \text { ALS }=1.2 \mathrm{~mW} / \mathrm{Gate} \\
& \mathrm{LS}=2.0 \mathrm{~mW} / \text { Gate } \\
& \mathrm{HC}=0.1 \mathrm{~mW} / \mathrm{Gate}
\end{aligned}
$$

These are typical values measured at 1 MHz .

Figure 2-1 \mathbf{I}_{CC} vs \mathbf{V}_{CC}

Figure $2-1$ shows the effects of $I_{c c}$ vs. power supply voltage (V_{cc}) with two load capacitance values, 50 pF and stray capacitance. The clock frequency is measured at 1 MHz .

AC Performance

In comparison to LS, ALS, and HC families, FACT devices exceed the internal gate delays as well as the basic gate delays, and as the level of integration increases, FACT leads the way to very high-speed systems.

The example below describes averaged typical values for a 74XX138, 3-to-8 line decoder.

$$
\begin{aligned}
& \mathrm{FACT}=8 \mathrm{~ns} @ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\
& \mathrm{ALS}=8.5 \mathrm{~ns} @ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\
& \mathrm{LS}=22 \mathrm{~ns} @ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\
& \mathrm{HC}=17.5 \mathrm{~ns} @ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{aligned}
$$

Figure 2-2 Propagation Delay vs. Temperature

Figure 2-2 describes the effects of temperature on the LOW-to-HIGH and HIGH-to-LOW transitions for propagation delays on a FACT quad NAND gate. The plot shows approximately 2 ns deviation over the entire operating temperature range.

AC performance specifications are guaranteed at $5.0 \mathrm{~V} \pm 10 \%$ and $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$. For worst case design at $2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ on all device types, derating values are provided. The formula below can be used to determine $A C$ performance at $2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.

AC performance at $2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}=1.9 \times \mathrm{AC}$ specification at 3.0 V .

Propagation delay is affected by the number of outputs switching simultaneously. Typically, devices with more than one output will follow the rule: for each output switching, derate the databook specification by 250 pS . This effect typically is not significant on an octal device unless more than four outputs are switching
simultaneously. This derating is valid for the entire temperature range and $5.0 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$.

Noise Immunity

The noise immunity of a logic family is also an important equipment cost factor in terms of decoupling components, power supply dynamic resistance and regulation as well as layout rules for PC boards and signal cables.

The comparisons shown describe the difference between the input threshold of a device and the output voltage, $\mathrm{V}_{\mathrm{IL}}-\mathrm{V}_{\mathrm{OL}} /\left|\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{OH}}\right|$ @ 4.5 V V_{cc}.

$$
\begin{aligned}
& \text { FACT }=1.25 / 1.25 \mathrm{~V} \\
& \mathrm{ALS}=0.4 / 0.7 \mathrm{~V} \\
& \mathrm{LS}=0.3 / 0.7 \mathrm{~V} @ 4.75 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}} \\
& \mathrm{HC}=0.8 / 1.25 \mathrm{~V}
\end{aligned}
$$

Output Drive

As mentioned before, all devices (AC or ACT) have the same output stages and are all guaranteed to source or sink 24 mA , still outperforming HC buffer drivers in speed and power. Furthermore, 74AC/74ACT devices are capable of driving 50Ω transmission lines while for 54AC/54ACT 75Ω lines can be driven.

$\mathrm{IOL}_{\mathrm{I}} \mathrm{IOH}_{\mathrm{OH}}$ Characteristics

$$
\begin{aligned}
& \mathrm{FACT}=24 /-24 \mathrm{~mA} \\
& \mathrm{ALS}=24 /-15 \mathrm{~mA} \\
& \mathrm{LS}=8 /-0.4 \mathrm{~mA} @ 4.75 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}} \\
& \mathrm{HC}=4 /-4 \mathrm{~mA}
\end{aligned}
$$

Choice of Voltage Specifications

To obtain better performance and higher density, semiconductor technologists are reducing the vertical and horizontal dimensions of integrated device structures. Due to a number of electrical limitations in the manufacture of VLSI devices and the need for low voltage operation in memory cards, it was decided by the JEDEC committee to establish interface standards for devices operating at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$. To this end Fairchild Digital guarantees all of its devices operational at 3.3 V $\pm 0.3 \mathrm{~V}$. Note also that $A C$ and $D C$ specifications are guaranteed between 4.5 and 5.5 V . Operation of FACT devices is also guaranteed from 2.0 V to 6.0 V on V_{cc}.

Operating Voltage Ranges

$\mathrm{FACT}=2.0$ to 6.0 V
ALS $=5.0 \mathrm{~V} \pm 10 \%$
LS $=5.0 \mathrm{~V} \pm 5 \%$
$\mathrm{HC}=2.0$ to 6.0 V

Replacement For LS, ALS, HCMOS
Fairchild's Advanced CMOS family is specifically designed to outperform the LS, ALS and HCMOS families. The graph (Figure 2-3) shows the relative position of various logic families in speed/power performance. FACT exhibits 1 ns internal propagation delays while consuming $1 \mu \mathrm{~W}$ of power.

The Logic Family Comparisons table below summarizes the key performance specifications for various competitive technology logic families.

Logic Family Comparisons

General Characteristics (All Max Ratings)

Characteristics	Symbol	LS	ALS	HCMOS	FACT	Unit
Operating Voltage Range	$\mathrm{V}_{\text {CCIEEID }}$	$5 \pm 5 \%$	$5 \pm 10 \%$	2.0 to 6.0	2.0 to 6.0	V
Operating Temperature Range	$t_{A} 74$ Series	0 to +70	0 to +70	-40 to +85	-40 to +85	${ }^{\circ} \mathrm{C}$
Input Voltage (limits)	$\mathrm{V}_{\mathrm{IH}}($ min $)$	2.0	2.0	3.15	3.15	V
	$\mathrm{V}_{\text {IL }}$ (max)	0.8	0.8	0.9	1.35	V
Output Voltage (limits)	$\mathrm{V}_{\mathrm{OH}}(\mathrm{min})$	2.7	2.7	$\mathrm{V}_{\mathrm{CC}}-0.1$	$\mathrm{V}_{\mathrm{Cc}}-0.1$	V
	V_{OL} (max)	0.5	0.5	0.1	0.1	V
Input Current	I_{H}	20	20	+1.0	+1.0	$\mu \mathrm{A}$
	$1 / 1$	-400	-200	-1.0	-1.0	$\mu \mathrm{A}$
Output Current @ V ${ }_{0}$ (limit)	$\mathrm{IOH}^{\text {r }}$	-0.4	-0.4	$-4.0 @ \mathrm{~V}_{\mathrm{cc}}-0.8$	$-24 @ V_{c c}-0.8$	mA
	l_{OL}	8.0	8.0	4.0 @ 0.4 V	24 @ 0.4 V	mA
DC Noise Margin LOW/HIGH	DCM	0.3/0.7	0.4/0.7	0.8/1.25	1.25/1.25	V
DC Fanout (LSTTL)		20	20	10	60	

Logic Family Comparisons (cont'd)

Speed/Power Characteristics (All Typical Ratings)

Characteristics	Symbol	LS	ALS	HCMOS	FACT	Unit
Quiescent Supply Current/Gate	I_{G}	0.4	0.2	0.0005	0.0005	mA
Power/Gate (Quiescent)	P_{G}	2.0	1.2	0.0025	0.0025	mW
Propagation Delay	t_{P}	7.0	5.0	8.0	5.0	ns
Speed Power Product	-	14	6.0	0.02	0.01	pJ
Clock Frequency D/FF	$\mathrm{f}_{\max }$	33	50	50	125	MHz

Propagation Delay (Commercial Temperature Range)

	Product		LS	ALS	HCMOS	FACT	Unit
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	74XX00	Typ	10.0	5.0	8.0	5.0	ns
		Max	15.0	11.0	23.0	9.5	ns
$t_{\text {PLH }} / t_{\text {PHL }}$ (Clock to Q)	74XX74	Typ	25.0	12.0	23.0	8.0	ns
		Max	40.0	18.0	44.0	11.0	ns
$\mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\mathrm{PHL}}$ (Clock to Q)	74XX163	Typ	18.0	10.0	20.0	10.0	ns
		Max	27.0	17.0	52.0	17.0	ns

[^3]
Circuit Characteristics

Power Dissipation

Power consumption for FACT is dependent on the supply voltage, frequency of operation, internal capacitance and load. The power consumption may be calculated for each package by summing the quiescent power consumption, $\mathrm{I}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$, and the switching power required by each device within the package. The device dynamic power requirements can be calculated by the equation:
$P_{D}=\left(C_{L}+C_{P D}\right) V_{C C}{ }^{2 f}$
In this equation f is the frequency in Hertz, C_{L} is the total load capacitance present at the output under test, and C_{PD}, power dissipation capacitance, is a measure of internal capacitances given specifically for power consumption calculations. $\mathrm{C}_{P \mathrm{PD}}$ is calculated in the following manner:

1. The power supply voltage is set to $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}_{\mathrm{DC}}$.
2. Signal inputs are set up so that as many outputs as possible are switching, giving a worst case situation.
3. The power supply current is measured and recorded at input frequencies of 200 KHz and 1 MHz .
4. The power dissipation capacitance is calculated by solving the two simultaneous equations:
$P_{01}=C_{P D} V_{C C}^{2} f_{1}+I_{C C} V_{C C}$
$P_{02}=C_{P D} V_{C C} f_{2}+I_{C C} V_{C C}$
giving
$C_{P D}=\left(P_{01}-P_{02}\right) / V_{C C}{ }^{2}\left(f_{1}-f_{2}\right)$
or
$C_{P D}=\left(I_{01}-I_{02}\right) / V_{C C}\left(f_{1}-f_{2}\right)$
where
$\mathrm{I}_{01}=$ supply current at $\mathrm{f}_{1}=200 \mathrm{KHz}$
$\mathrm{I}_{02}=$ supply current at $\mathrm{f}_{2}=1 \mathrm{MHz}$
On FACT data sheets, $\mathrm{C}_{P D}$ is a typical value and is given either for the package or for the individual device (i.e., gates, flip-flops, etc.) within the package.

Figure 2.4 Power Dissipation per Gate vs. Frequency

Power Dissipation (Test Philosophy)

In an effort to reduce confusion about measuring C_{PD}, a de facto standard test procedure has been adopted which specifies the test setup for each type of device. This allows a device to be exercised in a consistent manner for the purpose of specification comparison. All device measurements are made with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, with 3 -state outputs both enabled and disabled.
$\left.\begin{array}{ll}\text { Gates: } & \begin{array}{l}\text { Switch one input. Bias the } \\ \text { remaining inputs such that } \\ \text { the output switches. }\end{array} \\ \text { Switch the enable and D } \\ \text { inputs such that the latch } \\ \text { toggles. } \\ \text { Switch the clock pin while } \\ \text { changing D (or bias J and K) } \\ \text { such that the output(s) } \\ \text { change each clock cycle. For } \\ \text { parts with common clock, } \\ \text { exercise only one flip-flop. } \\ \text { Switch one address pin which } \\ \text { changes two outputs. }\end{array}\right\}$

If the device is tested at a high enough frequency, the static supply current can be ignored. Thus at 1 MHz the following formula can be used to calculate C_{PD} :
$\mathrm{C}_{\mathrm{PD}}=\mathrm{I}_{\mathrm{CC}} /\left(\mathrm{V}_{\mathrm{CC}}\right)\left(1 \times 10^{6}\right)-($ Equivalent load capacitance)

Capacitive Loading Effects

In addition to temperature and power supply effects, capacitive loading effects should be taken into account for propagation delays of FACT devices. Minimum delay numbers may be determined from the table below. Propagation delays are measured to the 50% point of the output waveform.

The two graphs following (Figures 2-5 and 2-6) describe propagation delays on FACT devices as affected by variations in power supply voltage (V_{CC}) and lumped load capacitance (C_{L}). Figures 2-7 and 2-8 show the effects of lumped load capacitance on rise and fall times for FACT devices.

Figure 2-5 Propagation Delay vs. V_{cc} ('AC00)

Figure 2-6 Propagation Delay vs. C_{L} ('ACOO)

Figure $2.7 \mathbf{t}_{\mathbf{r}}$ vs. Capacitance

Latch Up

Latch up immunity in FACT devices is greatly improved over the standard metal gate CMOS family. These devices will not latch up with dynamic currents of 100 mA forced into or out of the inputs or 100 mA for the outputs under worst case conditions ($\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}_{\mathrm{DC}}$). At

Figure 2-8 $\mathbf{t}_{\boldsymbol{f}}$ vs. Capacitance
room temperatures the parts can typically withstand dynamic current forced into or out of the outputs of over 450 mA . For most designs, latch up will not be a problem, but the designer should be aware of it, what causes it and how to prevent it.

Figure 2-9 CMOS Inverter Cross Section

Figure 2-10 Latch Up Circuit Schematic

Electrostatic Discharge (ESD) Sensitivity

Fairchild's FACT devices are classified as standard 'B' of MIL STD-883, test method 3015, and therefore do not require any special handling procedures. However, normal handling precautions should be observed as in the case of any semiconductor device. Figure 2-11 shows the ESD test circuit used in the sensitivity analysis for this specification. Figure 2-12 shows the pulse waveform required to perform the sensitivity test. The test procedure is as follows: five pulses, each of 2000 V , are applied to every combination of pin
with a five second cool-down period between each pulse. Reverse the polarity and use the same procedure, pulse and same pin combination for an additional five discharges. Continue until all pins have been tested.

If none of the devices from the sample population fails the DC and AC test characteristics, the device shall be classified as standard B of MIL STD-883, test procedure 3015. For further specifications of TP-3015 the reader should follow up the relevant standard.

Figure 2-11 ESD Test Circuit

Figure 2-12 ESD Pulse Waveform

Output Characteristics

All FACT outputs are buffered to ensure consistent output voltage and current specifications across the family. Both 74ACXX and 74ACTXX device types have the same output structures. Two clamp diodes are internally connected to the output pin to improve impedance matching with other FACT device inputs and to suppress voltage overshoot and undershoot in noisy system applications. The balanced output design allows for controlled edge rates and equal rise and fall times.

Dynamic Output Current

54 Series Parts
$\mathrm{I}_{\mathrm{OL}}=57 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{OH}}=50 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.85 \mathrm{~V}$,
$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$

74 Series Parts

$\mathrm{l}_{\mathrm{OL}}=86 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{OH}}=75 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=3.85 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
The following performance charts are provided in order to aid the designer in determining dynamic output current drive of FACT devices with various power supply voltages.

Figure 2-13 Output Characteristics $\mathrm{V}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OH}}$, 'AC00DC

Interfacing

FACT devices have a wide operating voltage range ($\mathrm{V}_{\mathrm{CC}}=2$ to $6 \mathrm{~V}_{\mathrm{DC}}$) and sufficient current drive to interface with most other logic families available today.

Device designators are as follows:
AC-This is a high-speed CMOS device with CMOS input switching levels and buffered CMOS outputs that can drive $\pm 24 \mathrm{~mA}$ of I_{OH} and I_{OL} current. AC nomenclature and pinouts are equivalent to standard TTL functions.

ACT-This is a high-speed CMOS device with a TTL-to-CMOS input buffer stage. These devices are designed to interface with TTL outputs operating with a $V_{C C}=5 \mathrm{~V} \pm 10 \%$, but are functional over the entire FACT operating voltage range of 2.0 to $6.0 \mathrm{~V}_{\mathrm{DC}}$. These devices have buffered outputs that will drive CMOS or TTL devices with no additional interface circuitry. ACT devices have the same output structures as AC devices.

Figure 2-14 Output Characteristics $\mathrm{V}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OL}}$, 'AC00DC

Ratings, Specifications and Waveforms

Absolute Maximum Ratings*

Parameter	Symbol	Conditions	Limits	Units
Supply Voltage	V_{CC}		-0.5 to 7.0	V
DC Input Diode Current	I_{IK}	$\mathrm{V}_{1}=-0.5$	-20	mA
or	V_{1}	$\mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}+0.5$	20	
DC Input Voltage	I_{OK}	$\mathrm{V}_{\mathrm{O}}=-0.5$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	mA
VC Output Diode Current	V_{O}	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5$	-20	mA
or DC Output Voltage	I_{O}		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	mA
DC Output Source or Sink Current, Per Output Pin		± 50	mA	
DC V_{CC} or Ground Current	I_{CC} or $\mathrm{I}_{\mathrm{GND}}$			± 200
Storage Temperature	$\mathrm{T}_{\text {STG }}$		mA	

*Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Recommended Operating Conditions

Parameter		Symbol	Conditions	Limits	Units
Supply Voltage (unless otherwise specified)		V_{cc}		2.0 to 6.0	V
Input Voltage		V_{1}		0 to V_{cc}	V
Output Voltage		v_{0}		0 to V_{cc}	V
Operating Temperature	$\begin{aligned} & 74 \mathrm{AC} \\ & 54 \mathrm{AC} \end{aligned}$	T_{A}		$\begin{aligned} & -40 \text { to }+85 \\ & -55 \text { to }+125 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Input Rise and Fall Time (except for Schmitt inputs)		$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\mathrm{V}_{\mathrm{cc}} @ 2.0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{Cc}} @ 4.5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{CC}} @ 6.0 \mathrm{~V}$	0 to 1000 0 to 500 0 to 400	ns ns ns

DC Characteristics for AC Family Devices

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}$	54AC/74AC$\mathrm{T}_{\mathrm{A}}=25^{\circ}$		$\begin{gathered} 54 \mathrm{AC} \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 74 \mathrm{AC} \\ \mathrm{~T}_{\mathrm{A}}= \\ -40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	Units
				Typ	Guaranteed Maximum			
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$	V
$V_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.9 \\ & 1.35 \\ & 1.65 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.35 \\ & 1.65 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.35 \\ & 1.65 \end{aligned}$	V
$\mathrm{V}_{\text {OH }}$	Minimum High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\text {OUT }}=-20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.99 \\ & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V
		䲞 $\begin{array}{r}-4 \mathrm{~mA} \\ -24 \mathrm{~mA} \\ -24 \mathrm{~mA}\end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 3.7 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V
$\mathrm{V}_{\text {OL }}$	Maximum Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL or }} \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\text {OUT }}=20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & .002 \\ & .001 \\ & .001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		l LL $\begin{array}{r}4 \mathrm{~mA} \\ 24 \mathrm{~mA} \\ \\ 24 \mathrm{~mA}\end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.32 \\ & 0.32 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.37 \\ & 0.37 \end{aligned}$	V
I_{N}	Maximum Input Leakage Current	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{cc}}, \mathrm{GND}$	5.5		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{0}	Maximum 3-State Current	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$	5.5		± 0.5	± 10.0	± 5.0	$\mu \mathrm{A}$

DC Characteristics for ACT Family Devices

Symbol	Parameter	Conditions	V_{cc}	54AC/74AC$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 54 \mathrm{AC} \\ \mathrm{~T}_{\mathrm{A}}= \\ -55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 74 \mathrm{AC} \\ T_{A}= \\ -40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	Units
				Typ	Guaranteed Maximum			
$\mathrm{V}_{1 \mathrm{H}}$	Minimum High Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V
$V_{\text {IL }}$	Minimum Low Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & V_{\text {IN }}=V_{\text {IL or }} V_{\text {IH }} \\ & I_{\text {OUT }}=-20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V
		$\mathrm{I}_{\mathrm{OH}} \begin{aligned} & -24 \mathrm{~mA} \\ & \\ & -24 \mathrm{~mA}\end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.7 \end{aligned}$	$\begin{array}{r} 3.76 \\ 4.76 \end{array}$	V
V_{OL}	Minimum Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\text {OUT }}=20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{array}{ll} \hline \text { IOL } & 24 \mathrm{~mA} \\ & 24 \mathrm{~mA} \end{array}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.32 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.37 \end{aligned}$	V
I_{IN}	Maximum Input	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{Cc}}, \mathrm{GND}$	5.5		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{Oz}	Maximum 3-State Current	$\begin{aligned} & V_{1}=V_{I L}, V_{I H} \\ & V_{O}=V_{C C}, G N D \end{aligned}$	5.5		± 0.5	± 10.0	± 5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {cc }}$	Maximum ICC/Input	$\mathrm{V}_{1}=2.4 \mathrm{~V} / 0.4 \mathrm{~V}$	5.5	0.600	2.0	3.0	2.9	mA

Figure 2-15 AC Measurement Conditions (Standard Outputs)

TEST LOAD

Figure 2-16 AC Measurement Conditions (3-State Outputs)

FAIRCHILD

A Schlumberger Company

From its conception, FACT was designed to alleviate many of the drawbacks that are common to current technology logic circuits. Performance features such as Schottky speeds at CMOS power levels, Schottky drive, excellent noise, ESD, and latch-up immunity are characteristics that designers of state-of-the-art systems require. FACT answers all of these concerns in one family of logic products. To fully utilize the advantages provided by FACT, the system designer should have an understanding of the flexibility as well as the trade-offs of CMOS design. The following section discusses common design concerns relative to the performance and requirements of FACT.

Figure 3-1 Input Thresholds

Figure 3-2 Output Characteristics $\left(\mathrm{V}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OH}}\right)$

Design Considerations

Line Driving with Fairchild Advanced CMOS

The output structure of FACT has been designed to drive 50Ω transmission lines over the commercial temperature range, and 75Ω lines over the military temperature range. This line driving capability is guaranteed over 4.5 to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and full temperature range. Balanced 24 mA DC sink and source output currents give controlled edge rates and equal rise and fall times. The logic HIGH and LOW levels are guaranteed to be 70% and 30% of V_{CC} with a minimum of $20 \% \mathrm{~V}_{\mathrm{CC}}$ noise margin (Figure 3-1).

Advanced CMOS outputs are specified at 24 mA sink at $0.37 \mathrm{~V}\left(4.5 \mathrm{~V}_{\mathrm{CC}}\right)$ DC and 24 mA source at $3.76 \mathrm{~V}\left(4.5 \mathrm{~V}_{\mathrm{CC}}\right) \mathrm{DC}$. Dynamic I_{OH} and I_{OL} performance is guaranteed over commercial and military temperature range and specified at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ as shown below.

74 AC	I $\mathrm{I}_{\mathrm{OH}}=86 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{OL}}=1.1 \mathrm{~V}$ $\mathrm{~mA} @ \mathrm{~V}_{\mathrm{OH}}=3.85 \mathrm{~V}$
54 AC	I OL$=57 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{OL}}=1.1 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OH}}=-50 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{OH}}=3.85 \mathrm{~V}$	

Figures $3-2$ and $3-3$ show $\mathrm{V}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}} \mathrm{I}_{\mathrm{OL}}$ at $4.5,5.0$ and 5.5 volts V_{CC}.

Figure 3.3 Output Characteristics ($\mathrm{V}_{\mathrm{OL}}, \mathrm{I}_{\mathrm{OL}}$)

The input and output diode clamps to V_{CC} and ground on a FACT device will match most transmission line impedances. However, it is advisable to terminate any signal line that exceeds 20 inches in length with either the series termination resistor as shown in Figure $3-4$ or the AC termination to ground shown in Figure 3-5. Both of these termination schemes consume zero

DC power and thus are ideal for low-power applications while optimizing high-speed performance. The AC termination works well with 3 -state bus lines and will typically hold the last bus state for a few milliseconds; alternatively, the bus can be forced HIGH or LOW with high value resistors connected to the appropriate power rail.

Figure 3.4

Figure 3-5

$$
\begin{gathered}
\mathrm{X}_{\mathrm{c}}<2 \Omega @ \mathrm{f}=\frac{1}{2 \mathrm{tpd}} \\
\mathrm{R}_{\mathrm{s}}=\mathrm{Z}_{0}
\end{gathered}
$$

When designing high speed systems with FACT, interconnect propagation delays must be considered in the system timing budget.

Most power distribution layouts exhibit an impedance between 50 and 100 Ω. The impedance of the power distribution system appears in series with the load, reducing the resultant dynamic voltage swing at the output. When the device outputs are switching, local decoupling capacitors supply the current to the device. An example of an 'AC240 driving a point along a 100Ω bus is shown in Figure 3-6. The impedance seen by the driver is equivalent to both arms of the bus in parallel at the drive point, in this case $100 \mid 100=50 \Omega$. The output will switch between the supply rails at 94 mA of output current. If all outputs switch from LOW to HIGH, the load to V_{cc} would be eight 50Ω impedances in parallel $=6.25 \Omega$. Approximately half the supply impedance would be in series with this load, dropping the V_{CC} to the chip and limiting the output drive. Slow rise and fall times would result provided decoupling is not used.

Figure 3.6
Worst-Case Octal Drain $=8 \times 94 \mathrm{~mA}=0.750$ Amp.

Buffer Output Sees Net 50Ω Load.
50Ω Load Line on $\mathrm{I}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OH}}$ Characteristic
Shows LOW-to-HIGH Step of Approx. 4.8 V

Decoupling

Local high frequency decoupling is required to supply power to the chip during the LOW-to-HIGH transition, to charge the load capacitance or drive the load impedance.

A local decoupling capacitor may be used to supply the current to the load and maintain the voltage at the chip. The decoupling capacitor value can be calculated from the formula in Figure 3-7.

$$
\begin{aligned}
& C=\frac{0.750 \times 3 \times 10^{-9}}{0.1}=30 \times 10^{-9}=0.030 \mu \mathrm{~F} \\
& \text { Select } \mathrm{C}_{\mathrm{B}} \geq 0.047 \mu \mathrm{~F}
\end{aligned}
$$

Good practice is to place one decoupling capacitor adjacent to each package driving any transmission line and distribute other capacitors evenly throughout the logic, one capacitor per three packages.

Figure 3.7

Capacitor Types

Decoupling capacitors for high-speed logic circuits should be of the high K ceramic type with a low ESR (equivalent series resistance), which is primarily made up of series inductance and series resistance internal to the capacitor. Capacitors using 5 ZU dielectric are a good choice for decoupling capacitors, thus giving minimum cost coupled with effective performance.

The high noise immunity of FACT insures that noise originating from ground is not a problem when interconnecting FACT packages; however, when interfacing to other logic families (e.g., Low Power Schottky), this will still be a problem and good ground layout is essential.

Interfacing Fairchild Advanced CMOS

Figure 3.8 AC to Bipolar
No special interface is required, provided both devices are operating with the same power supply.

Figure 3.9 Bipolar to ACT
No special interface is required, provided both devices are operating with the same power supply.

Figure 3-10 Bipolar to AC
A pull up resistor to V_{CC} of $4.7 \mathrm{~K} \Omega$ is required to establish V_{IH}.

Figure 3-11 MOS to AC
No special interface is required, provided both devices are operating with the same power supply.

Figure 3-12 AC to MOS
No special interface is required, provided both devices are operating with the same power supply.

Figure 3-13 AC to 10K ECL
In this interfacing application the FACT power supply is 5 V . ECL power supply is -5.2 V , and the values for resistors are: $\mathrm{R}_{1}, 560 \Omega ; \mathrm{R}_{2}, 510 \Omega ; \mathrm{R}_{3}$, 470Ω.

Figure 3-14 10K ECL to AC
Interfacing 10K ECL to ACMOS using +5 V and -5.2 V power rails requires the use of an ECL to TTL translator, 10125 (refer to Figure 3-10), or one of the two circuits shown below.

,

54AC/74AC00

Quad 2-Input NAND Gate

Connection Diagram

- Outputs Source/Sink 24 mA

Ordering Code: See Section 5

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	74 AC	Units	Conditions
$I_{C C}$	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V cc	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \mathrm{to}+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
${ }^{\text {PLLH }}$	Propagation Delay	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	9.5 8.0 8.0	$\begin{array}{r} 11.0 \\ 8.5 \\ 8.5 \end{array}$	$\begin{array}{r} 10.0 \\ 8.5 \\ 8.5 \end{array}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{array}{r} 10.0 \\ 8.0 \\ 8.0 \end{array}$	$\begin{aligned} & 9.0 \\ & 7.5 \\ & 7.5 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5.5		4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	5.5		20.0				pF

54AC/74AC74

Dual D-Type Positive Edge-Triggered Flip-Flop

Description

Connection Diagram

The 'AC74 is a dual D-type flip-flop with Asynchronous Clear and Set inputs and complementary ($\mathrm{Q}, \overline{\mathrm{Q}}$) outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input.

Asynchronous Inputs:
LOW input to \bar{S}_{D} sets Q to HIGH level LOW input to $\overline{\mathrm{C}}_{\mathrm{D}}$ sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both Q and $\overline{\mathrm{Q}}$ HIGH

- Outputs Source/Sink 24 mA

Ordering Code: See Section 5

Logic Symbol

Truth Table
(Each Half)

Input	Outputs	
$@ t_{n}$	$@ t_{n+1}$	
D	Q	\bar{Q}
L	L	H
H	H	L

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$t_{n}=$ Bit Time before Clock Pulse
$t_{n+1}=$ Bit Time after Clock Pulse

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	74 AC	Units	Conditions
I_{CC}	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$f_{\text {max }}$	Maximum Clock Frequency	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 60.0 \\ 100.0 \\ 100.0 \end{array}$	$\begin{array}{r} 75.0 \\ 125.0 \\ 125.0 \end{array}$				MHz
$t_{\text {PLH }}$	Propagation Delay $C P_{n}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay $C P_{n}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.5 \\ & 10.5 \end{aligned}$	ns

AC Characteristics (cont'd)

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}} \text { or } \bar{S}_{\mathrm{Dn}} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 12.0 \\ 9.0 \\ 9.0 \end{array}$	$\begin{aligned} & 14.5 \\ & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{C}}_{D n} \text { or } \overline{\mathrm{S}}_{\mathrm{Dn}} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 11.0 \\ 8.0 \\ 8.0 \end{array}$	$\begin{aligned} & 16.0 \\ & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			25.0				pF

AC Operating Requirements

Symbol	Parameter	V_{cc}	54AC/74AC		54AC	74AC	Units
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Typ	Guaranteed Minimum			
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW $D_{n} \text { to } C P_{n}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	2.5 1.5 1.5	$\begin{aligned} & 4.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \\ & 3.0 \end{aligned}$	ns
t_{n}	Hold Time, HIGH or LOW $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CP} \mathrm{P}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -2.0 \\ & -1.5 \\ & -1.5 \end{aligned}$	0 0 0	0 0 0	0 0 0	ns
$\mathrm{t}_{\text {w }}$	$C P_{n} \text { or } \bar{C}_{D n} \text { or } \bar{S}_{D n}$ Pulse Width	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to CP	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -2.0 \\ & -2.0 \end{aligned}$	0 0 0	0 0 0	0 0 0	ns

54AC/74AC109

Dual JK Positive Edge-Triggered

 Flip-Flop
Description

The 'AC109 consists of two high-speed, completely independent transition clocked JK flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The $5 \mathbb{K}$ design allows operation as a D flip-flop (refer to 'AC74 data sheet) by connecting the J and $\overline{\mathrm{K}}$ inputs together.

Asynchronous Inputs:
LOW input to $\overline{\mathrm{S}}_{\mathrm{D}}$ sets Q to HIGH level LOW input to $\overline{\mathrm{C}}_{\mathrm{D}}$ sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both Q and \bar{Q} HIGH

- Outputs Source/Sink 24 mA

Connection Diagram

Pin Assignment for DIP and SOIC

Ordering Code: See Section 5

Logic Symbol

Truth Table

Inputs		Outputs	
$@ t_{n}$		$@ t_{n+1}$	
J	\bar{K}	Q	\bar{Q}
L	H	No Change	
L	L	L	H
H	H	H	L
H	L	Toggles	

[^4]
Logic Diagram (one half shown)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 AC	74 AC	Units	Conditions
I CC	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & T_{A}=-55^{\circ} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 50.0 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 75.0 \\ & 75.0 \end{aligned}$				MHz
$t_{\text {PLH }}$	Propagation Delay $C P_{n} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay $C P_{n} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.5 \\ & 10.5 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 12.0 \\ 9.0 \\ 9.0 \end{array}$	$\begin{aligned} & 14.5 \\ & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	ns

AC Characteristics (cont'd)

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{D}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to Q_{n} or $\overline{\mathrm{Q}}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 11.0 \\ 8.0 \\ 8.0 \end{array}$	$\begin{aligned} & 16.0 \\ & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			25.0				pF

AC Operating Requirements

Symbol	Parameter	V_{cc}	54AC/74AC		54AC	74AC	Units
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Typ	Guaranteed Minimum			
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW J_{n} or \bar{K}_{n} to $C P_{n}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \\ & 4.5 \end{aligned}$	ns
t_{n}	Hold Time, HIGH or LOW J_{n} or \bar{K}_{n} to $C P_{n}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} -2.0 \\ -1.5 \\ -1.5 \end{array}$	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	$\begin{aligned} & \mathrm{CP}_{\mathrm{n}} \text { or } \overline{\mathrm{C}}_{\mathrm{Dn}} \text { or } \overline{\mathrm{S}}_{\mathrm{D}_{\mathrm{n}}} \\ & \text { Pulse Width } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to $C P$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -3.0 \\ & -2.0 \\ & -2.0 \end{aligned}$	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns

54AC/74AC138

1-of-8 Decoder/Demultiplexer

Description

The 'AC138 is a high-speed 1 -of-8 decoder/demultiplexer. This device is ideally suited for high-speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1 -of-24 decoder using just three 'AC138 devices or a 1-of-32 decoder using four 'AC138 devices and one inverter.

- FACT Process for High Speed and Ultra Low Power
- Demultiplexing Capability
- Multiple Input Enable for Easy Expansion
- Active LOW Mutually Exclusive Outputs
- Outputs Source/Sink 24 mA

Ordering Code: See Section 5

Logic Symbol

Connection Diagram

Pin Assignment for DIP and SOIC

Truth Table

Inputs						Outputs							
\bar{E}_{1}	\bar{E}_{2}	E_{3}	A_{0}	A_{1}	A_{2}	$\overline{\mathrm{O}}_{0}$	$\overline{\mathrm{O}}_{1}$	$\overline{\mathrm{O}}_{2}$	$\overline{\mathrm{O}}_{3}$	$\overline{\mathrm{O}}_{4}$	$\overline{\mathrm{O}}_{5}$	$\overline{\mathrm{O}}_{6}$	$\overline{\mathrm{O}}_{7}$
H	X	X	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	H	L	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	L	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	L

[^5]
Functional Description

The 'AC138 high-speed 1 -of-8 decoder/multiplexer accepts three binary weighted inputs ($\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$) and, when enabled, provides eight mutually exclusive active LOW outputs ($\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$). The 'AC138 features three Enable inputs, two active LOW (\bar{E}_{1}, \bar{E}_{2}) and one active $\operatorname{HIGH}\left(E_{3}\right)$. All outputs will be HIGH unless \bar{E}_{1} and \bar{E}_{2} are LOW and E_{3} is HIGH. This multiple enable function allows easy parallel expansion of the device to a 1 -of- 32 (5 lines to 32 lines) decoder with just four 'AC138 devices and one inverter (See Figure a). The 'AC138 can be used as an 8 -output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active HIGH or active LOW state.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure a Expansion to 1-0f-32 Decoding

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 AC	74 AC	Units	Conditions
I_{CC}	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$t_{\text {PLH }}$	Propagation Delay A_{n} to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 11.0 \\ 8.0 \\ 8.0 \end{array}$	$\begin{aligned} & 18.0 \\ & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 16.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 15.0 \\ & 15.0 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay $A_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 13.5 \\ & 13.5 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation Delay \bar{E}_{1} or \bar{E}_{2} to \bar{O}_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 12.5 \\ 9.5 \\ 9.5 \end{array}$	$\begin{aligned} & 20.0 \\ & 15.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 18.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 16.5 \\ & 16.5 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay \bar{E}_{1} or \bar{E}_{2} to \bar{O}_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 11.0 \\ 8.0 \\ 8.0 \end{array}$	$\begin{aligned} & 17.0 \\ & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation Delay \bar{E}_{3} to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 12.0 \\ 9.0 \\ 9.0 \end{array}$	$\begin{aligned} & 19.0 \\ & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 17.0 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 16.0 \\ & 16.0 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay \bar{E}_{3} to \bar{O}_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 10.0 \\ 7.0 \\ 7.0 \end{array}$	$\begin{aligned} & 15.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 12.5 \\ & 12.5 \end{aligned}$	ns
C_{IN}	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			25.0				pF

54AC/74AC139

Dual 1-of-4 Decoder/Demultiplexer

Description

The 'AC139 is a high-speed, dual 1-of-4 decoder/demultiplexer: The device has two independent decoders, each accepting two inputs and providing four mutually exclusive active LOW outputs. Each decoder has an active LOW Enable input which can be used as a data input for a 4 -output demultiplexer. Each half of the AC139 can be used as a function generator providing all four minterms of two variables.

- Multifunction Capability
- Two Completely Independent 1-of-4 Decoders
- Active LOW Mutually Exclusive Outputs
- Outputs Source/Sink 24 mA

Ordering Code: See Section 5

Connection Diagram

Pin Assignment for DIP and SOIC

Logic Symbol

Truth Table

Inputs			Outputs			
\bar{E}	A_{0}	A_{1}	\bar{O}_{0}	\bar{O}_{1}	\bar{O}_{2}	\bar{O}_{3}
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	H	L	H	L	H	H
L	L	H	H	H	L	H
L	H	H	H	H	H	L

[^6]
Functional Description

The 'AC139 is a high-speed dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each of which accepts two binary weighed inputs $\left(A_{0}-A_{1}\right)$ and provides four mutually exclusive active LOW outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$. Each decoder has an active LOW enable ($\overline{\mathrm{E}}$). When \bar{E} is HIGH all outputs are forced HIGH. The enable can be used as the data input for a 4 -output demultiplexer application. Each half of the 'AC139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in Figure a, and thereby reducing the number of packages required in a logic network.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure a Gate Functions (each half)

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 AC	74 AC	Units	Conditions
I_{CC}	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$t_{\text {PLH }}$	Propagation Delay A_{n} to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 10.5 \\ 8.0 \\ 8.0 \end{array}$	$\begin{aligned} & 18.0 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 14.5 \\ & 14.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay A_{n} to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 12.5 \\ & 12.5 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation Delay \bar{E}_{n} to \bar{O}_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 11.5 \\ 8.0 \\ 8.0 \end{array}$	$\begin{aligned} & 18.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 15.0 \\ & 15.0 \end{aligned}$	ns
${ }^{\text {t }}$ PHL	Propagation Delay \bar{E}_{n} to \bar{O}_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.5 \\ & 12.5 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			25.0				pF

54AC/74AC153

Dual 4-Input Multiplexer

Description

The 'AC153 is a high-speed dual 4 -input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non-inverted) formi In addition to multiplexer operation, the ${ }^{3}$ AC153 can generate any two functions of three variables.

- Outputs Source/Sink 24 mA

Ordering Code: See Section 5

Logic Symbol

Truth Table

Select Inputs	Inputs (a or b)						Output
S $_{0}$	$\mathrm{~S}_{1}$	E	I_{0}	I_{1}	I_{2}	I_{3}	Z
X	X	H	X	X	X	X	L
L	L	L	L	X	X	X	L
L	L	L	H	X	X	X	H
H	L	L	X	L	X	X	L
H	L	L	X	H	X	X	H
L	H	L	X	X	L	X	L
L	H	L	X	X	H	X	H
H	H	L	X	X	X	L	L
H	H	L	X	X	X	H	H

Connection Diagram

Pin Assignment for DIP and SOIC

Functional Description

The 'AC153 is a dual 4 -input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs (S_{0}, S_{1}). The two 4 -input multiplexer circuits have individual active LOW Enables ($\bar{E}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) which can be used to strobe the outputs independently. When the Enables ($\bar{E}_{\mathrm{a}}, \bar{E}_{\mathrm{b}}$) are HIGH, the corresponding outputs ($\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$) are forced LOW. The 'AC153 is the logic implementation of a 2 -pole, 4 -position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are shown below.
$\mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{E}}_{\mathrm{a}} \bullet\left(\mathrm{I}_{0 \mathrm{a}} \cdot \overline{\mathrm{S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \bullet \overline{\mathrm{S}}_{1} \cdot \mathrm{~S}_{0}+\mathrm{I}_{2 \mathrm{a}} \bullet \mathrm{S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{a}} \bullet \mathrm{S}_{1} \bullet \mathrm{~S}_{0}\right)$
$\mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{E}}_{\mathrm{b}} \bullet\left(\mathrm{I}_{\mathrm{Ob}} \bullet \overline{\mathrm{S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 b} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\mathrm{I}_{2 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)$
The 'AC153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is as a function generator. The 'AC153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 AC	74 AC	Units	Conditions
$I_{C C}$	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{I N} \pm \mathrm{V}_{C C}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}=-55^{\circ} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$t_{\text {PLH }}$	Propagation Delay S_{n} to Z_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 18.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 17.0 \\ & 17.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay S_{n} to Z_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 28.0 \\ & 20.5 \\ & 20.5 \end{aligned}$	$\begin{aligned} & 33.5 \\ & 24.5 \\ & 24.5 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 23.0 \\ & 23.0 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation Delay \bar{E}_{n} to Z_{n}	$\begin{array}{\|l\|} 3.0 \\ 4.5 \\ 5.5 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 18.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 17.0 \\ & 17.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay \bar{E}_{n} to Z_{n}	$\begin{array}{\|l\|} 3.0 \\ 4.5 \\ 5.5 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 16.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 24.5 \\ & 24.5 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 29.0 \\ & 29.0 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 27.0 \\ & 27.0 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation Delay I_{n} to Z_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 18.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 17.0 \\ & 17.0 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay I_{n} to Z_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 13.0 \\ 9.5 \\ 9.5 \end{array}$	$\begin{aligned} & 20.0 \\ & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 17.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 16.0 \\ & 16.0 \end{aligned}$	ns
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			25.0				pF

54AC/74AC240

Octal Buffer/Line Driver With 3-State Outputs

Description

The 'AC240 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter/receiver which provides improved PC board density.

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
 - Outputs Source/Sink 24 mA
 - Input Clamp Diodes Limit High-Speed Termination Effects

Ordering Code: See Section 5

Truth Table

Inputs		
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	D	Output
L	L	H
L	H	L
H	X	Z

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$Z=$ High Impedance

Connection Diagrams

Pin Assignment for DIP and SOIC

Pin Assignment for LCC and PCC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 AC	74 AC	Units	Conditions
I_{CC}	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
${ }^{\text {PLLH }}$	Propagation Delay Data to Output	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 12.5 \\ 9.5 \\ 9.5 \end{array}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \\ & 10.5 \end{aligned}$	ns
${ }^{\text {t PHL }}$	Propagation Delay Data to Output	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 11.5 \\ 8.5 \\ 8.5 \end{array}$	$\begin{aligned} & 14.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{array}{r} 13.0 \\ 9.5 \\ 9.5 \end{array}$	ns
${ }^{\text {t PZH }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PZL }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
${ }^{\text {t }}$ PHZ	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 11.0 \\ 8.0 \\ 8.0 \end{array}$	$\begin{aligned} & 16.5 \\ & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	ns
$t_{\text {PLZ }}$	Output Disable Time	$\begin{array}{\|l\|} \hline 3.0 \\ 4.5 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			50.0				pF

54ACT/74ACT240

Octal Buffer/Line Driver With 3-State Outputs

Description

The 'ACT240 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter/receiver which proyrdes improved PC board density.

- 3-State Outputs Drive Bus Lines or Ruffer Memory Address Registers
- Outputs Source/Sink 24 mA
- Input Clamp Diodes Limit High.Speed Termination Effects
- TTL Compatible Inputs

Ordering Code: See Section 5

Connection Diagrams

Pin Assignment for DIP and SOIC

Truth Table

Inputs		
$\overline{\mathrm{OE}}_{1}, \mathrm{OE}_{2}$	D	Output
L	L	H
L	H	L
H	X	Z

[^7]DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 ACT	74 ACT	Units	Conditions
I_{CC}	Quiescent Supply Current	160	80	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
$\Delta \mathrm{I}_{\mathrm{CC}}$	$\mathrm{I}_{\mathrm{CC}} /$ Input	3.0	2.9	mA	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ or 0.4 V $\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54ACT/74ACT	54ACT/74ACT		54ACT	74ACT	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Data to Output	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Data to Output	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	ns
$t_{\text {PZH }}$	Output Enable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	ns
$t_{\text {PZL }}$	Output Enable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 16.5 \end{aligned}$	$\begin{array}{r} 15.5 \\ 15.5 \\ \hline \end{array}$	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 17.0 \end{aligned}$	ns
$t_{\text {PLZ }}$	Output Disable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	ns
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			50.0				pF

54AC/74AC241

Octal Buffer/Line Driver

With 3-State Outputs

Description

The 'AC241 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter/receiver which provides improved PC board density.

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Outputs Source/Sink 24 mA
- Input Clamp Diodes Limit High-Speed Termination Effects

Ordering Code: See Section 5

Truth Table

Inputs			Output
$\overline{O E}_{1}$	$O E_{2}$	D	
L	H	L	L
L	H	H	H
H	L	X	Z

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Connection Diagrams

Pin Assignment for DIP and SOIC

Pin Assignment for LCC and PCC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 AC	74 AC	Units	Conditions
I_{CC}	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{I N}=\mathrm{V}_{C C}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
${ }_{\text {tPLH }}$	Propagation Delay Data to Output	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 12.5 \\ 9.5 \\ 9.5 \end{array}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \\ & 10.5 \end{aligned}$	ns
${ }^{\text {tpHL }}$	Propagation Delay Data to Output	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 11.5 \\ 8.5 \\ 8.5 \end{array}$	$\begin{aligned} & 14.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{array}{r} 13.0 \\ 9.5 \\ 9.5 \end{array}$	ns
${ }_{\text {t }}^{\text {PZH }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PZL }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 11.0 \\ 8.0 \\ 8.0 \end{array}$	$\begin{aligned} & 16.5 \\ & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	ns
$t_{\text {PLZ }}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			50.0				pF

54ACT/74ACT241

Octal Buffer/Line Driver

With 3-State Outputs

Description

The 'ACT241 is an octal buffer and line driver designed to be epployed as a memory address driver, clock driver and bus oriented transmitter/receiver which provides improved PC board density.

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Outputs Source/Sink 24 mA
- Input Clamp Diodes Limit High-Speed Termination Effects
- TTL Compatible Inputs

Ordering Code: See Section 5

Connection Diagrams

Pin Assignment for DIP and SOIC

Truth Table

Inputs			Output
OE_{1}	OE_{2}	D	
L	H	L	L
L	H	H	H
H	L	X	Z

H = HIGH Voltage Level
L= LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 ACT	74 ACT	Units	Conditions
I_{CC}	Quiescent Supply Current	160	80	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
$\Delta \mathrm{I}_{\mathrm{CC}}$	$\mathrm{I}_{\mathrm{CC}} /$ Input	3.0	2.9	mA	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ or 0.4 V $\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54ACT/74ACT	54ACT/74ACT		54ACT	74ACT	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
${ }^{\text {PLLH }}$	Propagation Delay Data to Output	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Data to Output	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	ns
${ }_{\text {t PZH }}$	Output Enable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	ns
$t_{\text {PZL }}$	Output Enable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 17.0 \end{aligned}$	ns
$t_{\text {plz }}$	Output Disable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			50.0				pF

54AC/74AC244

Octal Buffer/Line Driver

With 3-State Outputs

Descriptron

The 'AC244 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter/receiver which provides improved PC board density.

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Outputs Source/Sink 24 mA
- Input Clamp Diodes Limit High.Speed Termination Effects

Ordering Code: See Section 5

Truth Table

Inputs		Output
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	D	
L	L	L
L	H	H
H	X	Z

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Connection Diagrams

Pin Assignment for DIP and SOIC

(14) $15 \sqrt{16} 17 \sqrt{18}$

Pin Assignment for LCC and PCC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 AC	74 AC	Units	Conditions
I_{CC}	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{I N}=\mathrm{V}_{C C}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \mathrm{to}+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$t_{\text {PLH }}$	Propagation Delay Data to Output	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 12.5 \\ 9.5 \\ 9.5 \end{array}$	$\begin{aligned} & 15.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \\ & 10.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Data to Output	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 11.5 \\ 8.5 \\ 8.5 \end{array}$	$\begin{aligned} & 14.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{array}{r} 13.0 \\ 9.5 \\ 9.5 \end{array}$	ns
${ }^{\text {tPZH }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PzL }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 11.0 \\ 8.0 \\ 8.0 \end{array}$	$\begin{aligned} & 16.5 \\ & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	ns
${ }_{\text {t pLz }}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			50.0				pF

54ACT/74ACT244

Octal Buffer/Line Driver
 With 3-State Outputs

Description

The 'ACT244 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter/receiver which provides improved PC board density.

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Outputs Source/Sink 24 mA
- Input Clamp Diodes Limit High-Speed Termination Effects
- TTL Compatible Inputs

Ordering Code: See Section 5

Connection Diagrams

Pin Assignment for DIP and SOIC

Truth Table

Inputs		Output
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	D	
L	L	L
L	H	H
H	X	Z

[^8]

Pin Assignment for LCC and PCC

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 ACT	74 ACT	Units	Conditions
I_{CC}	Quiescent Supply Current	160	80	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
$\Delta \mathrm{I}_{\mathrm{CC}}$	I_{CC} Input	3.0	2.9	mA	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ or 0.4 V $\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54ACT/74ACT	54ACT/74ACT		54ACT	74ACT	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$t_{\text {PLH }}$	Propagation Delay Data to Output	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.5 \end{aligned}$	ns
${ }^{\text {P }}$ HL	Propagation Delay Data to Output	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	ns
$t_{\text {PZH }}$	Output Enable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	ns
$t_{\text {PZL }}$	Output Enable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 17.0 \end{aligned}$	ns
$t_{\text {PLZ }}$	Output Disable Time	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			50.0				pF

54AC/74AC245

Octal Bidirectional Transceiver With 3-State Inputs/Outputs

Description

The 'AC245 contains eight non-inverting bidirectional buffers with 3-state outputs and is intended for bus orfented applications. Current sinking capability is 24 mA at the A ports and 24 mA at the B ports. The Transmit/Receive ($T / \overline{\mathrm{R}}$) input determines the direction of qata fow through the bidirectional transceiver. Transmit (active) HIGH) enables data from A ports to B ports; Receive (active LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a High Z condition.

- Non-Inverting Buffers
- Bidirectional Data Path
- A and B Outputs Sink 24 mA/Source - 24 mA

Ordering Code: See Section 5

Connection Diagrams

Pin Assignment for DIP and SOIC

Pin Assignment for LCC and PCC

[^9]DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 AC	74 AC	Units	Conditions
I_{CC}	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$t_{\text {PLH }}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	$\begin{array}{\|l\|} 3.0 \\ 4.5 \\ 5.5 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 12.5 \\ 9.5 \\ 9.5 \end{array}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \\ & 10.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	$\begin{array}{\|l\|} \hline 3.0 \\ 4.5 \\ 5.5 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 11.5 \\ 8.5 \\ 8.5 \end{array}$	$\begin{aligned} & 14.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{array}{r} 13.0 \\ 9.5 \\ 9.5 \end{array}$	ns
${ }_{\text {t }}^{\text {PZH }}$	Output Enable Time	$\begin{array}{\|l\|} 3.0 \\ 4.5 \\ 5.5 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PZL }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 11.0 \\ 8.0 \\ 8.0 \end{array}$	$\begin{aligned} & 16.5 \\ & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 14.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 13.5 \\ & 13.5 \end{aligned}$	ns
$t_{\text {pLz }}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{Cl}_{1 / \mathrm{O}}$	Input/Output Capacitance			15.0				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			50.0				pF

54AC/74AC253

Dual 4-Input Multiplexer

With 3-State Outputs

Description

The 'AC253 is a dual 4 -input multiplexer with 3 -state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable ($\overline{\mathrm{OE})}$ inputs, allowing the outputs to interface directly with bus oriented systems.

- FACT Process for High Speed and Ultra Low Power
- Multifunction Capability
- Non-Inverting 3-State Outputs
- Outputs Source/Sink 24 mA

Ordering Code: See Section 5

Logic Symbol

Connection Diagram

Pin Assignment for DIP and SOIC

Functional Description

This device contains two identical 4 -input multiplexers with 3 -state outputs. They select two bits from four sources selected by common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The 4-input multiplexers have individual Output Enable ($\left.\overline{\mathrm{OE}}_{\mathrm{a}}, \overline{\mathrm{OE}}_{\mathrm{b}}\right)$ inputs which, when HIGH, force the outputs to a high impedance (High Z) state. This device is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:
$\mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{OE}}_{\mathrm{a}} \cdot\left(\mathrm{I}_{0 \mathrm{a}} \bullet \overline{\mathrm{S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \bullet \overline{\mathrm{S}}_{1} \bullet \mathrm{~S}_{0}+\right.$
$\mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{OE}}_{\mathrm{b}} \bullet\left(\mathrm{l}_{0 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{\mathrm{S}} \bullet \mathrm{S}_{0}+\right.$ $\left.\mathrm{I}_{2 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)$

If the outputs of 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3 -state devices whose outputs are tied together are designed so that there is no overlap.

Truth Table

Select Inputs		Data Inputs					Output Enable
S_{0}	$\mathrm{~S}_{1}$	I_{0}	I_{1}	I_{2}	I_{3}	Output	
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	Z
L	L	H	X	X	X	L	L
H	L	X	L	X	X	L	L
H	L	X	H	X	X	L	H
L	H	X	X	L	X	L	L
L	H	X	X	H	X	L	H
H	H	X	X	X	L	L	L

Address inputs S_{0} and S_{1} are common to both sections.
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 AC	74 AC	Units	Conditions
I_{CC}	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$t_{\text {PLH }}$	Propagation Delay S_{n} to Z_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 18.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 22.0 \\ & 22.0 \end{aligned}$	$\begin{aligned} & 27.5 \\ & 20.5 \\ & 20.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay S_{n} to Z_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 15.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 23.0 \\ & 23.0 \end{aligned}$	$\begin{aligned} & 37.5 \\ & 27.5 \\ & 27.5 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 25.5 \\ & 25.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay I_{n} to Z_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 16.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 26.0 \\ & 19.0 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 18.0 \\ & 18.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay I_{n} to Z_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 17.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 28.5 \\ & 21.0 \\ & 21.0 \end{aligned}$	$\begin{aligned} & 26.5 \\ & 19.5 \\ & 19.5 \end{aligned}$	ns
$t_{\text {PZL }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 10.5 \\ 8.0 \\ 8.0 \end{array}$	$\begin{array}{r} 12.5 \\ 9.5 \\ 9.5 \end{array}$	$\begin{array}{r} 11.5 \\ 8.5 \\ 8.5 \end{array}$	ns
${ }^{\text {t PZH }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	ns
$t_{\text {pLZ }}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 10.5 \\ 8.0 \\ 8.0 \end{array}$	$\begin{array}{r} 12.5 \\ 9.5 \\ 9.5 \end{array}$	$\begin{array}{r} 11.5 \\ 8.5 \\ 8.5 \end{array}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			25.0				pF

54AC/74AC373

Octal Transparent Latch
 With 3-State Outputs

Description

The 'AC373 consists of eight latches with 3 -state outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable ($\overline{\mathrm{OE}}$) is LOW. When $\overline{O E}$ is HIGH the bus output is in the high impedance state.

- Eight Latches in a Single Package
- 3-State Outputs for Bus Interfacing
- Outputs Source/Sink 24 mA

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for DIP and SOIC

$\begin{array}{llllll}14] & 15 & 16 & 17 & 18 \\ D & O & O & D & D \text {, }\end{array}$

Pin Assignment for LCC and PCC

Functional Description

The 'AC373 contains eight D-type latches with 3 -state output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state buffers are controlled by the Output Enable ($\overline{\mathrm{OE}}$) input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are in the 2 -state mode. When $\overline{O E}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54 AC	74 AC	Units	Conditions
I_{CC}	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{array}{\|l\|} \hline 3.0 \\ 4.5 \\ 5.5 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{array}{\|l\|} \hline 3.0 \\ 4.5 \\ 5.5 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 12.5 \\ 9.5 \\ 9.5 \end{array}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \\ & 10.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay LE to O_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay LE to O_{n}	$\begin{array}{\|l\|} \hline 3.0 \\ 4.5 \\ 5.5 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 12.5 \\ 9.5 \\ 9.5 \end{array}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \\ & 10.5 \end{aligned}$	ns
${ }^{\text {tPZH }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 12.5 \\ 9.0 \\ 9.0 \end{array}$	$\begin{aligned} & 19.0 \\ & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.5 \\ & 15.5 \end{aligned}$	ns
$t_{\text {PLZ }}$	Output Disable Time	$\begin{array}{\|l\|} 3.0 \\ 4.5 \\ 5.5 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			30.0				pF

AC Operating Requirements

Symbol	Parameter	V_{cc}	54AC/74AC		54AC	74AC	Units
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Typ	Guaranteed Minimum			
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.5 \\ & 4.5 \end{aligned}$	ns
$t_{\text {h }}$	Hold Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	0 0 0	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	LE Pulse Width, HIGH	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	5.5 4.0 4.0	$\begin{aligned} & 6.5 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.5 \\ & 4.5 \end{aligned}$	ns

4

54AC/74AC374

Octal D-Type Flip-Flop With 3-State Outputs

Description

The 'AC374 is a high-speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3 -state outputs for bus oriented applications. A buffered Clock (CP) and Output Enable $(\overline{\mathrm{OE}})$ are common to all flip-flops.

- Edge-Triggered D-Type Inputs
- Buffered Positive Edge-Triggered Clock
- 3-State Outputs for Bus Oriented Applications
- Outputs Source/Sink 24 mA

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for DIP and SOIC

Pin Assignment for LCC and PCC

Functional Description

The 'AC374 consists of eight edge-triggered flipflops with individual D-type inputs and 3 -state true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flipflops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{O E}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Truth Table

Inputs		Outputs	
D_{n}	$C P$	$\overline{O E}$	O_{n}
H	J	L	H
L	J	L	L
X	X	H	Z

H = HIGH Voltage Level
L= LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics (unless otherwise specified)

Symbol	Parameter	54AC	$74 A C$	Units	Conditions
$I_{C C}$	Quiescent Supply Current	100	50	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or Ground $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

AC Characteristics

Symbol	Parameter	V_{cc}	54AC/74AC	54AC/74AC		54AC	74AC	Units
			Worst Case	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Min	Typ	Guaranteed Maximum			
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 60.0 \\ 100.0 \\ \hline \end{array}$	$\begin{array}{r} 75.0 \\ 125.0 \\ 15.0 \\ \hline \end{array}$				MHz
${ }^{\text {PLLH }}$	Propagation Delay CP to O_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	ns
$t_{\text {PHL }}$	Propagation Delay CP to O_{n}	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} 12.5 \\ 9.5 \\ 9.5 \end{array}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \\ & 10.5 \end{aligned}$	ns
$t_{\text {PZH }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PZL }}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$t_{\text {PHZ }}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 12.5 \\ 9.0 \\ 9.0 \end{array}$	$\begin{aligned} & 19.0 \\ & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.5 \\ & 15.5 \end{aligned}$	ns
$t_{\text {PLZ }}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \\ & 12.0 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			30.0				pF

AC Operating Requirements

Symbol	Parameter	V_{cc}	54AC/74AC		54AC	74AC	Units
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \\ & \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	
			Typ	Guaranteed Minimum			
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW $D_{n} \text { to } C P$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.5 \\ & 4.5 \end{aligned}$	ns
t_{n}	Hold Time, HIGH or LOW $D_{n} \text { to } C P$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	0 0 0	0 0 0	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns
${ }_{\text {t }}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	5.5 4.0 4.0	$\begin{aligned} & 6.5 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.5 \\ & 4.5 \end{aligned}$	ns

FAIRCHILD
A Schlumberger Company

Ordering Information/ Package Outlines

The Product Index and Selection Guide in Section 1 lists only the basic device numbers. This basic number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Package	Package Code
Plastic DIP	P
Slim Plastic DIP	SP
Ceramic DIP	D
Slim Ceramic DIP	SD
Flatpak	F
Leadless Ceramic Chip Carrier (LCC)	L1
Plastic Chip Carrier (PCC)	Q
Small Outline	S

Temperature Range
Commercial

Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Special Variations
T = Devices shipped in 7 " reels
$X=$ Devices shipped in 14 " reels
QR = Commercial grade device with burn-in shipped in tubes
TR = Commercial grade device with burn-in shipped in 7" reels
$X R=$ Commercial grade device with burn-in shipped in 14" reels
$\mathrm{QB}=$ Military grade devices with environmental and with burn-in processing shipped in tubes

14 Lead Plastic Dual In-Line

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.

Leads are intended for insertion in hole rows on 7.620 (0.300) centers. They are purposely shipped with positive misalignment to facilitate insertion.
Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
Package weight is 0.9 gram.
All dimensions are typical unless otherwise specified.

Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

16 Lead Plastic Dual In-Line

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.

Leads are intended for insertion in hole rows on 7.620 (0.300) centers. They are purposely shipped with positive misalignment to facilitate insertion.
Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
Package weight is 0.9 gram.
All dimensions are typical unless otherwise specified.

Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

20 Lead Plastic Dual In-Line

Ordering Code: 74ACXXXPC 74ACTXXXPC

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are intended for insertion in hole rows on 7.620 (0.300) centers. They are purposely shipped with positive misalignment to facilitate insertion.

Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
Package weight is 1.2 grams.
Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

24 Lead Slim (0.300’ Wide) Plastic Dual In-Line

$\begin{aligned} \text { Ordering Code: } & 74 \mathrm{ACXXXSPC} \\ & 74 \mathrm{ACTXXXSPC}\end{aligned}$

Notes
Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are intended for insertion in hole rows on 7.620 ($\mathbf{0 . 3 0 0}$) centers. They are purposely shipped with positive misalignment to facilitate insertion.

Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.

28 Lead Plastic Dual In-Line

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are intended for insertion in hole rows on 15.400 ($\mathbf{0 . 6 0 0}$)
centers. They are purposely shipped with positive misalignment to facilitate insertion.
Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
All dimensions are typical unless otherwise specified.

Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

40 Lead Plastic Dual In-Line

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.

Leads are intended for insertion in hole rows on 15.240 (0.600) centers. They are purposely shipped with positive misalignment to facilitate insertion.
Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.

14 Lead Ceramic Dual In-Line

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.

Leads are intended for insertion in hole rows on 7.620 (0.300) centers. They are purposely shipped with positive misalignment to facilitate insertion.
Leads are alloy 42, either tin plated or solder coated.
Package is hermetically sealed alumina (black).
Package weight is 2.0 grams.
All dimensions are typical unless otherwise specified.

Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

16 Lead Ceramic Dual In-Line

Ordering Codes: 74ACXXXDC
74ACTXXXDC
54ACXXXDM
54ACTXXXDM

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are intended for insertion in hole rows on 7.620 (0.300) centers. They are purposely shipped with positive misalignment to facilitate insertion.

Leads are alloy 42, either tin plated or solder coated.
Package is hermetically sealed alumina (black).
Package weight is 2.2 grams.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

20 Lead Ceramic Dual In-Line

Notes
Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are intended for insertion in hole rows on 7.620 (0.300) centers. They are purposely shipped with positive misalignment to facilitate insertion.

Leads are alloy 42, either tin plated or solder coated.

Package is hermetically sealed alumina (black).

Package weight is 2.4 grams.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

24 Lead Slim (0.300' Wide) Ceramic Dual In-Line

Ordering Codes: 74ACXXXSDC
74ACTXXXSDC
54ACXXXSDM
54ACTXXXSDM

Notes
Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are intended for insertion in hole rows on 7.620 (0.300) centers. They are purposely shipped with positive misalignment to facilitate insertion.
Leads are alloy 42, either tin plated or solder coated.
Package is hermetically sealed alumina (black).
Package weight is 3.9 grams.
All dimensions are typical unless otherwise specified.

Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

28 Lead Ceramic Dual In-Line

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.

Leads are intended for insertion in hole rows on 15.240 (0.600) centers. They are purposely shipped with positive misalignment to facilitate insertion.

Leads are alloy 42, either tin plated or solder coated.

Package is hermetically sealed alumina (black).

Package weight is 7.5 grams.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

40 Lead Ceramic Dual In-Line

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are intended for insertion in hole rows on 15.240 (0.600) centers. They are purposely shipped with positive misalignment to facilitate insertion.
Leads are alloy 42, either tin plated or solder coated.
Package is hermetically sealed alumina (black).
Package weight is 12.0 grams.
All dimensions are typical unless otherwise specified.

Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

20 Terminal Ceramic Leadless Chip Carrier

Ordering Codes: 74ACXXXL1C
74ACTXXXL1C
54ACXXXL1M
54ACTXXXL1M

Notes

Package construction is multilayer refractory metal (gold plated) and alumina (black).

Package is hermetic-solder seal metal lid.

Package weight is 0.5 gram.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

20 Terminal Ceramic Leadless Chip Carrier

Metric dimensions appear first, followed by inch dimensions.

28 Terminal Ceramic Leadless Chip Carrier

Ordering Codes: 74ACXXXL1C
74ACTXXXL1C
54ACXXXL1M
54ACTXXXL1M

Notes
Package construction is multilayer refractory metal (gold plated) and alumina (black).
Package is hermetic-solder seal metal lid.

Package weight is 0.8 gram.
All dimensions are typical unless otherwise specified.

Controlling dimensions are inch dimensions.

28 Terminal Ceramic Leadless Chip Carrier

Notes

Package construction is multilayer refractory metal (gold plated) and alumina (black).
Package is hermetic-glass seal alumina lid (black).
Package weight is 0.9 gram.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

44 Terminal Ceramic Leadless Chip Carrier

Notes

Package construction is multilayer refractory metal (gold plated) and alumina (black).
Package is hermetic-glass seal alumina lid (black).

Package weight is 1.7 grams.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.

Metric dimensions appear first, followed by inch dimensions.

14 Lead Small Outline Integrated Circuit (SOIC)

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.

Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
Package weight is 0.14 grams.
Total flash not to exceed
0.15 (0.006) over body dimensions.

Conforms to variation AB of JEDEC Standard Outline MS-012 for 3.75 (0.150) body width small outline (SO) family.
All dimensions are typical unless otherwise specified.
Controlling dimensions are metric dimensions.

Metric dimensions appear first, followed by inch dimensions.

16 Lead Small Outline Integrated Circuit (SOIC)

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.

Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy
Package weight is 0.16 grams.
Total flash not to exceed
$0.15(0.006)$ over body dimensions.
Conforms to variation AC of JEDEC Standard Outline MS-012 for 3.75 (0.150) body width small outline (SO) family.

All dimensions are typical unless otherwise specified.
Controlling dimensions are metric dimensions.

Metric dimensions appear first, followed by inch dimensions.

16 Lead (0.300" Wide) Small Outline Integrated Circuit (SOIC)

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.

Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
Package weight is 0.46 grams.
Total flash not to exceed
0.15 (0.006) over body dimensions.

Conforms to variation AA of
JEDEC Standard Outline MS-013 for 7.50 (0.300) body width small outline (SO) family.
All dimensions are typical unless otherwise specified.
Controlling dimensions are metric dimensions.
Metric dimensions appear first, followed by inch dimensions.

20 Lead Small Outline Integrated Circuit (SOIC)

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
Package weight is 0.55 grams.
Total flash not to exceed 0.15 (0.006) over body dimensions.

Conforms to variation AC of JEDEC Registered Outline MS-013 for 7.50 (0.300) body width small outline (SO) family.
All dimensions are typical unless otherwise specified.
Controlling dimensions are metric dimensions.
Metric dimensions appear first, followed by inch dimensions.

24 Lead Small Outline Integrated Circuit (SOIC)

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
Package weight is 0.66 grams.
Total flash not to exceed 0.15 (0.006) over body dimensions.

Conforms to variation AD of JEDEC Standard Outline MS-013 for 7.50 (0.300) body width small outline (SO) family.
All dimensions are typical unless otherwise specified.
Controlling dimensions are metric dimensions.

Metric dimensions appear first, followed by inch dimensions.

28 Lead Small Outline Integrated Circuit (SOIC)

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.

Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.

Package weight is 0.77 grams.
Total flash not to exceed 0.15 (0.006) over body dimensions.

Conforms to variation AE of JEDEC Standard Outline MS-013 for 7.50 (0.300) body width small outline (SO) family.
All dimensions are typical unless otherwise specified.
Controlling dimensions are metric dimensions.

Metric dimensions appear first, followed by inch dimensions.

20 Lead Plastic Chip Carrier (PCC)

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
Total flash not to exceed 0.016 (0.006) over body dimensions.
Conforms to variation AA of JEDEC Registered Outline MO-047 for Plastic Chip Carrier package.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.
This package is also referred to as a Plastic Leaded Chip Carrier (PLCC) or Plastic Quadpak.
Metric dimensions appear first, followed by inch dimensions.

28 Lead Plastic Chip Carrier (PCC)

44 Lead Plastic Chip Carrier (PCC)

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.

Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
Total flash not to exceed 0.016 (0.006) over body dimensions.

Conforms to variation $A B$ of JEDEC Registered Outline MO-047 for Plastic Chip Carrier package.

All dimensions are typical unless otherwise specified.

Controlling dimensions are inch dimensions.

This package is also referred to as a Plastic Leaded Chip Carrier (PLCC) or Plastic Quadpak.

Metric dimensions appear first, followed by inch dimensions.

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.
Total flash not to exceed
0.16 (0.006) over body dimensions.

Conforms to variation AC of JEDEC Registered Outline MO-047 for Plastic Chip Carrier package.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.
This package is also referred to as a Plastic Leaded Chip Carrier (PLCC) or Plastic Quadpak.

Metric dimensions appear first, followed by inch dimensions.

52 Lead Plastic Chip Carrier (PCC)

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.
Leads are copper alloy, either tin plated or solder coated.
Package plastic material is novolac epoxy.

Total flash not to exceed 0.16 (0.006) over body dimensions.

Conforms to variation AD of JEDEC Registered Outline MO-047 for Plastic Chip Carrier package.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.
This package is also referred to as a Plastic Leaded Chip Carrier (PLCC) or Plastic Quadpak.

Metric dimensions appear first, followed by inch dimensions.

68 Lead Plastic Chip Carrier (PCC)

Ordering Code: 74ACXXXQC

Notes

Index area: a notch or Lead One identification mark shall be located adjacent to Lead One and shall be located within the shaded area shown.

Leads are copper alloy, either tin plated or solder coated.

Package plastic material is novolac epoxy.

Total flash not to exceed 0.016 (0.006) over body dimensions.

Conforms to variation AE of JEDEC Registered Outline MO-047 for Plastic Chip Carrier package.
All dimensions are typical unless otherwise specified.
Controlling dimensions are inch dimensions.
This package is also referred to as a Plastic Leaded Chip Carrier (PLCC) or Plastic Quadpak.
Metric dimensions appear first, followed by inch dimensions.

Fairchild Semiconductor

Sales Offices

United States and Canada

Alabama

555 Sparkman Drive, Suite 1030
Huntsville, Alabama 35805
Tel: 205-837-8960

Arizona

9201 North 25th Avenue, Suite 215
Phoenix, Arizona 85021
Tel: 602-943-2100

California

Auburn Office
320 Aeolia Drive
Auburn, California 95603
Tel: 916-823-6664
Costa Mesa Office
3505 Cadillac, Suite 0-104
Costa Mesa, California 92626
Tel: 714-241-5900

Los Angeles Office
15760 Ventura Blvd., Suite 1027
Encino, California 91436
Tel: 818-990-9800
Mountain View Office
441 North Whisman Road, Bldg. 13
Mt. View, California 94042
Tel: 415-962-8200
San Diego Office
4355 Ruffin Road, Suite 100
San Diego, California 92123
Tel: 619-560-1332

Colorado

10200 East Girard Avenue
Building B, Suite 222
Denver, Colorado 80231
Tel: 303-695-4927

Connecticut

131 Bradley Road
Woodbridge, Connecticut 06525
Tel: 203-397-5001

Florida

Ft. Lauderdale Office
5237 NW 33rd Avenue, Suite 2D
Ft. Lauderdale, Florida 33309
Tel: 305-485-7711
Orlando Office
Crane's Roost Office Park
399 Whooping Loop
Altamonte Springs, Florida 32701
Tel: 305-834-7000

Georgia

Atlanta Office
3220 Pointe Parkway, Suite 1200
Norcross, Georgia 30092
Tel: 404-441-2740
Illinois
Chicago Office
500 Park Blvd., Suite 575
Itasca, Illinois 60143
312-773-3133

Indiana

7202 North Shadeland, Room 205
Indianapolis, Indiana 46250
Tel: 317-849-5412

lowa

373 Collins Road NE, Suite 200
Cedar Rapids, lowa 52402
Tel: 319-395-0090

Kansas

Kansas City Office
8600 West 110th Street, Suite 209
Overland Park, Kansas 66210
Tel: 913-451-8374

Wichita Office
2400 North Woodlawn, Suite 221
Wichita, Kansas 67220
Tel: 316-687-1111

Maryland

2000 Century Plaza, Suite 114
Columbia, Maryland 21044
Tel: 301-730-1510

Massachusetts

1432 Main Street
Waltham, Massachusetts 02154
Tel: 617-890-4000
Michigan
Detroit Office
21999 Farmington Road
Farmington Hills, Michigan 48024
Tel: 313-478-7400

Minnesota

Minneapolis Office
3600 West 80th Street, Suite 590
Bloomington, Minnesota 55431
Tel: 612-835-3322

New Jersey

Vreeland Plaza
41 Vreeland Avenue
Totowa, New Jersey 07512
Tel: 201-256-9006

New Mexico

2900 Louisiana NE, Suite G2
Albuquerque, New Mexico 87110
Tel: 505-884-5601

New York

Endwell Office
3215 East Main Street
Endwell, New York 13760
Tel: 607-757-0200

Fairport Office
815 Ayrault Road
Fairport, New York 14450
Tel: 716-223-7700
Hauppauge Office
300 Wheeler Road, Suite 201
Hauppauge, New York 11788
Tel: 516-348-0900
Poughkeepsie Office
19 Davis Avenue
Poughkeepsie, New York 12603
Tel: 914-473-5730

North Carolina

5970 Six Forks Road, Suite C
Raleigh, North Carolina 27609
Tel: 919-848-2420

Ohio

Cleveland Office
6133 Rockside Road, Suite 407
Cleveland, Ohio 44131
Tel: 216-447-9700

Dayton Office
7250 Poe Avenue, Suite 260
Dayton, Ohio 45414
Tel: 513-890-5878

Oregon

6600 SW 92nd Avenue, Suite 27
Portland, Oregon 97223
Tel: 503-244-6020

Fairchild Semiconductor

PennsylvaniaPhiladelphia OfficeWillow Wood Office Center3901 Commerce Avenue, Suite 110
Willow Grove, Pennsylvania 19090Tel: 215-657-2711

Texas

Austin Office
8240 Mopac Expressway, Suite 270
Austin, Texas 78759
Tel: 512-346-3990
Dallas Office
1702 North Collins Street, Suite 101
Richardson, Texas 75080
Tel: 214-234-3811
Houston Office
9896 Bissonnet-II, Suite 470
Houston, Texas 77036
Tel: 713-771-3547

Utah

5282 South 320 West, Suite D-120
Salt Lake City, Utah 84107
Tel: 801-266-0773

Washington

Seattle Office
11911 Northeast First, Suite 310
Bellevue, Washington 98005
Tel: 206-455-3190

Canada

Montreal Office
3675 Sources Blvd., Suite 109
Dollard des Ormeaux, Quebec H9B 2 T6
Canada
Tel: 514-683-0883
Ottawa Office
148 Colonnade Road
Nepean, Ontario K2D 0A8
Canada
Tel: 613-226-8270
Toronto Office
2375 Steeles Avenue West, Suite 203
Downsview, Ontario M3J 3A8
Canada
Tel: 416-665-5903

Fairchild Semiconductor

Sales

 OfficesInternational

Australia

Fairchild Australia Pty Ltd. 366 White Horse Road Nunawading 3131, Victoria Australia
Tel: 03-877-5444

Austria and Eastern Europe

Fairchild Semiconductor GmbH
Assmayergasse 60
A-1120 Wien
Austria
Tel: (0222) 85.86.82

Benelux

Fairchild Semiconductor
Ruysdaelbaan 35
NL-5613 DX Eindhoven
The Netherlands
Tel: (040) 44.69.09

Brazil

Fairchild Semicondutores Ltda.
Rua Estacio De Sa, 1144
Jardim Santa Genebra
13100 Campinas, SP
Brazil
Tel: (0192) 41-6655

France

Fairchild Semiconductor S.A.
12 Place des Etats-Unis
92120 Montrouge (Paris)
France
Tel: (1) 746.61.61

Germany

Fairchild Semiconductor GmbH
Daimlerstrasse 15
D-8046 Garching-Hochbrueck
(Munich) West Germany
Tel: (089) 32.00.31
Fairchild Semiconductor GmbH
Flughafen Frachtz. Geb. 458
D-6000 Frankfurt am Main 75
West Germany
Tel: (069) 690.56.13
Fairchild Semiconductor GmbH
Oeltzenstrasse 14
D-3000 Hannover
West Germany
Tel: (0511) 178.44

Fairchild Semiconductor GmbH
Poststrasse 37
D-7250 Leonberg
West Germany
Tel: (07152) 410.26
Hong Kong
Fairchild Semiconductor (HK) Ltd.
12th Floor, Austin Tower
22-26A Austin Avenue
Tsimshatsui, Kowloon
Hong Kong
Tel: 3-7238321

Italy
Fairchild Semiconductor, S.p.A.
Viale Corsica 7
20133 Milano
Italy
Tel: (02) 749.12.71

Fairchild Semiconductor, S.p.A.
Via Francesco Saverio Nitti 11
00191 Roma
Italy
Tel: (06) 328.75.48

Japan

Fairchild Japan Corporation
Yotsubashi Chuo Bldg.
1-4-26, Shinmachi
Nishi-Ku, Osaka 550
Japan
Tel: 06-541-6138/9
Fairchild Japan Corporation
Pola Shibuya BIdg.
1-15-21, Shibuya
Shibuya-Ku, Tokyo 150
Japan
Tel: 03-400-8351

Korea

Fairchild Semikor Ltd.
10th Floor, Life Bldg.
61 Yuido-Dong, Youngdongpo-Ku
Seoul 150
Korea
Tel: 783-3795

Scandinavia

Fairchild Semiconductor AB
Bergsunds Strand 39
S-117 38 Stockholm
Sweden
Tel: (08) 44.92.55

Singapore

Fairchild Semiconductor Pte. Ltd.
74 Bukit Timah Road \#03-01/02
Boon Siew Building
Singapore 0922
Republic of Singapore
Tel: 337-0511

Switzerland

Fairchild Semiconductor GmbH
Baumackerstrasse 46
CH-8050 Zuerich
Switzerland
Tel: (01) 311.42.30

Taiwan

Fairchild Electronics (Taiwan) Ltd.
Room 502, 5th Floor, Hsietsu Bldg.
47 Chung Shan N. Road, Sec. 3
Taipei
Taiwan
Tel: 597-3205

United Kingdom

Fairchild Semiconductor Ltd.
Semiconductor Division
230 High Street
Potters Bar
Hertfordshire EN6 5BU
England
Tel: (0707) 511.11

Fairchild Semiconductor
 Authorized Distributors

United States and Canada

Alabama

Arrow Electronics 1015 Henderson Road Huntsville, Alabama 35805
Tel: 205-837-6955
Hall-Mark Electronics 4900 Bradford Drive Huntsville, Alabama 35807
Tel: 205-837-8700
Hamilton/Avnet Electronics 4940 Research Drive Huntsville, Alabama 35805
Tel: 205-837-7210
Schweber Electronics 2227 Drake Avenue SW Huntsville, Alabama 35805
Tel: 205-882-2200

Arizona

Arrow Electronics
2127 West 5th Place
Tempe, Arizona 85281
Tel: 602-968-4800

Hamilton/Avnet Electronics
505 South Madison Drive
Tempe, Arizona 85281
Tel: 602-231-5100

Kierulff Electronics 4134 East Wood Street
Phoenix, Arizona 85040
Tel: 602-437-0750

Schweber Electronics
11049 N. 23rd Drive, Suite 100
Phoenix, Arizona 85029
Tel: 602-997-4874
Wyle Distribution Group 8155 North 24th Avenue Phoenix, Arizona 85021
Tel: 602-249-2232

California

Arrow Electronics
19748 Dearborn Street
Chatsworth, California 91311
Tel: 818-701-7500
Arrow Electronics
30941 San Clemente Street Hayward, California 94544
Tel: 415-487-4300

Arrow Electronics

1502 Crocker Avenue
Hayward, California 94544
Tel: 415-487-4600
Arrow Electronics
1808 Tribute Road, Suite C
Sacramento, California 95815
Tel: 916-925-7456

Arrow Electronics
9511 Ridge Haven Court
San Diego, California 92123
Tel: 619-565-4800
Arrow Electronics
521 Weddell Drive
Sunnyvale, California 94089
Tel: 408-745-6600
Arrow Electronics
2961 Dow Avenue
Tustin, California 92680
Tel: 714-838-5422

Avnet Electronics
20501 Plummer
Chatsworth, California 91311
Tel: 818-700-2600
Avnet Electronics
350 McCormick Avenue
Costa Mesa, California 92626
Tel: 714-754-6111 (Orange County)
213-558-2345 (Los Angeles)

Avnet Electronics
21050 Erwin Street
Woodland Hills, California 91367
Tel: 818-883-0000
Bell Industries
Electronic Distributor Division
1161 North Fair Oaks Avenue
Sunnyvale, California 94086
Tel: 408-734-8570
Hamilton/Avnet Electronics
3170 Pullman Avenue
Costa Mesa, California 92626
Tel: 714-641-1850
Hamilton Electro Sales
10912 West Washington Blvd.
Culver City, California 90230
Tei: 213-558-2121

Hamilton/Avnet Electronics 4103 North Gate Blvd. Sacramento, California 95834
Tel: 916-920-3150

Hamilton/Avnet Electronics 4545 Viewridge Avenue
San Diego, California 92123
Tel: 619-571-7527
Hamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale, California 94086
Tel: 408-743-3355

Schweber Electronics
17822 Gillette Avenue
Irvine, California 92714
Tel: 714-863-0200
Schweber Electronics
3110 Patrick Henry Drive
Santa Clara, California 95050
Tel: 408-748-4700
*Sertech Laboratories
3170 Pullman Drive
Costa Mesa, California 92626
Tel: 714-754-0666
Wyle Distribution Group
124 Maryland Street
El Segundo, California 90245
Tel: 213-322-8100
Wyle Distribution Group
17872 Cowan Avenue
Irvine, California 92714
Tel: 714-863-9953

Wyle Distribution Group
Military Product Division
18910 Teller Avenue
Irvine, California 92715
Tel: 714-851-9953
Wyle Distribution Group
11151 Sun Center Drive
Rancho Cordova, California 95670
Tel: 916-638-5282
Wyle Distribution Group
9525 Chesapeake
San Diego, California 92123
Tel: 619-565-9171

[^10]
Fairchild Semiconductor

Authorized Distributors

United States and Canada

Wyle Distribution Group 3000 Bowers Avenue
Santa Clara, California 95051
Tel: 408-727-2500
Zeus Components, Inc. 1130 Hawk Circle
Anaheim, California 92807
Tel: 714-632-6880
Zeus Components, Inc. 3350 Scott Blvd., BIdg. 6402
Santa Clara, California 95051
Tel: 408-727-0714

Colorado

Arrow Electronics
1390 South Potomac Street, Suite 136
Aurora, Colorado 80012
Tel: 303-696-1111

Bell Industries
8155 West 48th Avenue
Wheatridge, Colorado 80033
Tel: 303-424-1985
Hamilton/Avnet Electronics
8765 East Orchard Road, Suite 708
Englewood, Colorado 80111
Tel: 303-740-1000
Wyle Distribution Group
451 East 124th Avenue
Thornton, Colorado 80241
Tel: 303-457-9953

Connecticut

Arrow Electronics
12 Beaumont Road
Wallingford, Connecticut 06492
Tel: 203-265-7741
Hamilton/Avnet Electronics
Commerce Drive
Commerce Industrial Park
Danbury, Connecticut 06810
Tel: 203-797-2800
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury, Connecticut 06810
Tel: 203-792-3500

Florida

Arrow Electronics
4902 Creekside Drive, Suite A
Clearwater, Florida 33526
Tel: 813-576-8995
Arrow Electronics
350 Fairway Drive
Deerfield Beach, Florida 33441
Tel: 305-429-8200
Arrow Electronics
1530 Bottlebrush Drive NE
Palm Bay, Florida 32905
Tel: 305-725-1480
*Chip Supply
1607 Forsyth Road
Orlando, Florida 32807
Tel: 305-275-3810
Hall-Mark Electronics
1530 Roosevelt Blvd., Suite 303
Clearwater, Florida 33520
Tel: 813-576-8691

Hall-Mark Electronics
7648 Southland Blvd., Suite 100
Orlando, Florida 32809
Tel: 305-855-4020
Hall-Mark Electronics
3161 SW 15th Street
Pompano Beach, Florida 33069
Tel: 305-971-9280
Hamilton/Avnet Electronics
6801 NW 15th Way
Ft. Lauderdale, Florida 33309
Tel: 305-971-2900
Hamilton/Avnet Electronics 3197 Tech Drive North
St. Petersburg, Florida 33702
Tel: 813-576-3930
Hamilton/Avnet Electronics 6947 University Blva.
Winter Park, Florida 32792
Tel: 305-628-3888
Schweber Electronics
181 Whooping Loop
Altamonte Springs, Florida 32701
Tel: 305-331-7555

Schweber Electronics
2830 North 28th Terrace
Hollywood, Florida 33020
Tel: 305-927-0511

Georgia

Arrow Electronics
3155 Northwoods Parkway
Norcross, Georgia 30071
Tel: 404-449-8252
Hall-Mark Electronics
6410 Atlantic Blvd., Suite 115
Norcross, Georgia 30071
Tel: 404-447-8000
Hamilton/Avnet Electronics
5825-D Peachtree Corners East
Norcross, Georgia 30092
Tel: 404-447-7500
Schweber Electronics
303 Research Drive
Norcross, Georgia 30092
Tel: 404-449-9170

Illinois

Arrow Electronics
2000 Algonquin Road
Schaumburg, Illinois 60195
Tel: 312-397-3440
Hall-Mark Electronics
1177 Industrial Drive
Bensenville, lllinois 60106
Tel: 312-860-3800
Hamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville, llinois 60106
Tel: 312-860-7780
Kierulff Electronics
1536 Landmeier Road
Elk Grove Village, Illinois 60007
Tel: 312-640-0200
Schweber Electronics
904 Cambridge Avenue
Elk Grove Village, Illinois 60007
Tel: 312-364-3750
Indiana
Arrow Electronics
2495 Directors Row, Suite H
Indianapolis, Indiana 46241
Tel: 317-243-9353

Fairchild Semiconductor
 Authorized Distributors

United States and Canada

Graham Electronics Supply, Inc. 133 S. PennsyIvania Street Indianapolis, Indiana 46204
Tel: 317-634-8202

Hamilton/Avnet Electronics 485 Gradle Drive Carmel, Indiana 46032
Tel: 317-844-9333

Pioneer Electronics 6408 Castle Place Drive Indianapolis, Indiana 46250 Tel: 317-849-7300

lowa

Arrow Electronics
375 Collins Road NE
Cedar Rapids, Iowa 52402
Tel: 319-395-7230
Schweber Electronics
5270 North Park Place NE
Cedar Rapids, Iowa 52402
Tel: 319-373-1417

Kansas

Arrow Electronics
10100 Santa Fe Drive, Suite 101
Overland Park, Kansas 66212
Tel: 913-642-0592

Hall-Mark Electronics
10815 Lakeview Drive
Lenexa, Kansas 66215
Tel: 913-888-4747

Hamilton/Avnet Electronics
9219 Quivira Road
Overland Park, Kansas 66215
Tel: 913-888-8900
Schweber Electronics
10300 West 103rd St., Suite 103
Overland Park, Kansas 66214
Tel: 913-492-2921

Maryland

Arrow Electronics
6610 Rockledge Drive, Suite 100
Bethesda, Maryland 20817
Tel: 310-564-3000
Arrow Electronics
8300 Guilford Drive
Columbia, Maryland 21046
Tel: 301-995-0003

Hall-Mark Electronics
10240 Old Columbia Road
Columbia, Maryland 21046
Tel: 301-796-9300

Hamilton/Avnet Electronics 6822 Oak Hall Lane
Columbia, Maryland 21045
Tel: 301-995-3500

Schweber Electronics
9330 Gaither Road
Gaithersburg, Maryland 20877
Tel: 301-840-5900

Massachusetts

Arrow Electronics
One Arrow Drive
Woburn, Massachusetts 01801
Tel: 617-933-8130
Gerber Electronics
128 Carnegie Row
Norwood, Massachusetts 02062
Tel: 617-329-2400
Hamilton/Avnet Electronics
50 Tower Office Park
Woburn, Massachusetts 01801
Tel: 617-273-7500

Schweber Electronics
25 Wiggins Avenue
Bedford, Massachusetts 01730
Tel: 617-275-5100
*Sertech Laboratories
1 Peabody Street
Salem, Massachusetts 01970
Tel: 617-745-2450
Zeus Components, Inc.
25 Adams Street
Burlington, Massachusetts 01803
Tel: 617-273-0750

Michigan

Arrow Electronics
755 Phoenix Drive
Ann Arbor, Michigan 48104
Tel: 313-971-8220
Arrow Electronics
3510 Roger B. Chafee SE
Grand Rapids, Michigan 49508
Tel: 616-243-0912

Hamilton/Avnet Electronics
2215 29th Street SE
Space A5
Grand Rapids, Michigan 49508
Tel: 616-243-8805
Hamilton/Avnet Electronics
32487 Schoolcraft
Livonia, Michigan 48150
Tel: 313-522-4700
Pioneer Electronics
13485 Stamford
Livonia, Michigan 48150
Tel: 313-525-1800

Schweber Electronics
12060 Hubbard Avenue
Livonia, Michigan 48150
Tel: 313-525-8100

Minnesota

Arrow Electronics
5230 West 73rd Street
Edina, Minnesota 55435
Tel: 612-830-1800

Hall-Mark Electronics
7838 12th Avenue South
Bloomington, Minnesota 55420
Tel: 612-854-3223
Hamilton/Avnet Electronics
10300 Bren Road East
Minnetonka, Minnesota 55343
Tel: 612-932-0600
Schweber Electronics
7424 West 78th Street
Edina, Minnesota 55435
Tel: 612-941-5280

Missouri

Arrow Electronics
2380 Schuetz Road
St. Louis, Missouri 63146
Tel: 314-567-6888
Hall-Mark Electronics
13750 Shoreline Drive
Earth City, Missouri 63045
Tel: 314-291-5350
Hamilton/Avnet Electronics 13743 Shoreline Court East Earth City, Missouri 63045
Tel: 314-344-1200
*This distributor carries Fairchild die products only.

Fairchild Semiconductor

Authorized Distributors

United States and Canada

Bell Industries
11782 Linn Avenue NE
Albuquerque, New Mexico 87123
Tel: 505-292-2700

Hamilton/Avnet Electronics
2524 Baylor Drive SE
Albuquerque, New Mexico 87106
Tel: 505-765-1500
New York
Arrow Electronics
25 Hub Drive
Melville, New York 11747
Tel: 516-694-6800

Arrow Electronics
155 Sherwood Avenue
Farmingdale, New York 11735
Tel: 516-293-6363

Arrow Electronics
20 Oser Avenue
Hauppauge, New York 11787
Tel: 516-231-1000
Arrow Electronics
7705 Maltlage Drive
Liverpool, New York 13088
Tel: 315-652-1000
Arrow Electronics
3000 Winton Road South
Rochester, New York 14623
Tel: 716-275-0300

Hamilton/Avnet Electronics
933 Motor Parkway
Hauppauge, New York 11788
Tel: 516-231-9800

Hamilton/Avnet Electronics
333 Metro Park
Rochester, New York 14623
Tel: 716-475-9130
Hamilton/Avnet Electronics
16 Corporate Circle
East Syracuse, New York 13057
Tel: 315-437-2642

Schweber Electronics
Jericho Turnpike
Westbury, New York 11590
Tel: 516-334-7474

Schweber Electronics
3 Town Line Circle
Rochester, New York 14623
Tel: 716-424-2222

Summit Distributors, Inc. 916 Main Street
Buffalo, New York 14202
Tel: 716-884-3450
Zeus Components, Inc.
100 Midland Avenue
Port Chester, New York 10573
Tel: 914-937-7400

North Carolina

Arrow Electronics
938 Burke Street
Winston-Salem, North Carolina 27101
Tel: 919-725-8711

Arrow Electronics
5240 Greens Dairy Road
Raleigh, North Carolina 27604
Tel: 919-876-3132
Hall-Mark Electronics
5237 North Blvd.
Raleigh, North Carolina 27604
Tel: 919-872-0712
Hamilton/Avnet Electronics
3510 Spring Forest Road
Raleigh, North Carolina 27604
Tel: 919-878-0819

Schweber Electronics
5285 North Blvd.
Raleigh, North Carolina 27604
Tel: 919-876-0000

Ohio

Arrow Electronics
7620 McEwen Road
Centerville, Ohio 45459
Tel: 513-435-5563

Arrow Electronics
1040 Crupper Avenue
Columbus, Ohio 53229
Tel: 614-885-8362

Arrow Electronics
6238 Cochran Road
Solon, Ohio 44139
Tel: 216-248-3990

Hamilton/Avnet Electronics
1 Keystone Avenue Cherry Hill, New Jersey 08003
Tel: 609-424-0100

Schweber Electronics
18 Madison Road
Fairfield, New Jersey 07006
Tel: 201-227-7880

New Mexico

Arrow Electronics
2460 Alamo Avenue SE
Albuquerque, New Mexico 87106
Tel: 505-243-4566

Fairchild Semiconductor

Authorized Distributors

United States and Canada

Hall-Mark Electronics
4460 Lake Forest Drive, Suite 202
Cincinnati, Ohio 45242
Tel: 513-563-5980

Hall-Mark Electronics
5821 Harper Road
Solon, Ohio 44139
Tel: 216-349-4632

Hall-Mark Electronics 6130 Sundbury Road, Suite B
Westerville, Ohio 43081
Tel: 614-891-4555

Hamilton/Avnet Electronics
954 Senate Drive
Dayton, Ohio 45459
Tel: 513-433-0610

Hamilton/Avnet Electronics 4588 Emery Industrial Parkway
Warrensville Heights, Ohio 44128
Tel: 216-831-3500

Pioneer Electronics
4800 East 131st Street
Cleveland, Ohio 44105
Tel: 216-587-3600

Pioneer Electronics
4433 Interpoint Blvd.
Dayton, Ohio 45424
Tel: 513-236-9900

Schweber Electronics
23880 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-464-2970

Schweber Electronics
7865 Paragon Road
Dayton, Ohio 45459
Tel: 513-439-1800

Oklahoma

Arrow Electronics
4719 South Memorial Drive
Tulsa, Oklahoma 74145
Tel: 918-665-7700

Hall-Mark Electronics
5460 South 103rd East Avenue
Tulsa, Oklahoma 74145
Tel: 918-665-3200

Schweber Electronics
4815 South Sheridan Road
Tulsa, Oklahoma 74145
Tel: 918-622-8000

Oregon

Arrow Electronics
10260 SW Nimbus Avenue, Suite M3
Tigard, Oregon 97223
Tel: 503-684-1690

Hamilton/Avnet Electronics
6024 SW Jean Road
Building C, Suite 10
Lake Oswego, Oregon 97034
Tel: 503-635-8157

Wyle Distribution Group
5289 NE Elam Young Parkway
Hillsboro, Oregon 97123
Tel: 503-640-6000

Pennsylvania

Arrow Electronics
650 Seco Road
Monroeville, Pennsylvania 15146
Tel: 412-856-7000

Pioneer Electronics
259 Kappa Drive
Pittsburgh, Pennsylvania 15238
Tel: 412-782-2300

Schweber Electronics
231 Gibraltor
Horsham, Pennsylvania 19044
Tel: 215-441-0600
Puerto Rico
Arrow Electronics
Eastern Building, Suite 503
De Diego Street
Santurce, Puerto Rico 00911
Tel: 809-723-6500

Rhode Island

Arrow Electronics
865 Waterman Avenue
East Providence, Rhode Island 02914
Tel: 401-431-0980

Texas

Arrow Electronics
2227 West Braker Lane
Austin, Texas 78758
Tei: 512-835-4180

Arrow Electronics 3220 Commander Drive
Carrollton, Texas 75006
Tel: 214-380-6464

Arrow Electronics
10899 Kinghurst Drive, Suite 100
Houston, Texas 77099
Tel: 713-530-4700
Hall-Mark Electronics
12211 Technology Blvd.
Austin, Texas 78759
Tel: 512-258-8848

Hall-Mark Electronics
11333 Page Mill Drive
Dallas, Texas 75243
Tel: 214-343-5000

Hall-Mark Electronics 10375 Brockwood Road
Dallas, Texas 75238
Tel: 214-343-5000

Hall-Mark Electronics
8000 Westglen
Houston, Texas 77063
Tel: 713-781-6100
Hamilton/Avnet Electronics
2401 Rutland Drive
Austin, Texas 78757
Tel: 512-837-8911

Hamilton/Avnet Electronics
8750 Westpark
Houston, Texas 77063
Tel: 713-780-1771

Hamilton/Avnet Electronics
2111 West Walnut Hill Lane
Irving, Texas 75062
Tel: 214-659-4111
Schweber Electronics
6300 La Calma Drive, Suite 240
Austin, Texas 78752
Tel: 512-458-8253

Schweber Electronics
4202 Beltway Drive
Dallas, Texas 75234
Tel: 214-661-5010

Schweber Eiectronics
10625 Richmond, Suite 100
Houston, Texas 77042
Tel: 713-784-3600

Fairchild Semiconductor

Authorized Distributors

United States and Canada

Sterling Electronics 23358 Kramer Lane
Austin, Texas 78758
Tel: 512-836-1341

Sterling Electronics
11090 Stemmons Freeway
Dallas, Texas 75229
Tel: 214-243-1600

Sterling Electronics
4201 Southwest Freeway
Houston, Texas 77027
Tel: 713-627-9800
Wyle Distribution Group
2120 F West Breaker Lane
Austin, Texas 78758
Tel: 512-834-9957

Wyle Distribution Group 1810 North Greenville Richardson, Texas 75081
Tel: 214-235-9953

Zeus Components, Inc. 14001 Goldmark, Suite 250
Dallas, Texas 75240
Tel: 214-783-7010

Utah

Arrow Electronics
1515 West 2200 South
Salt Lake City, Utah 84119
Tel: 801-972-0404

Bell Industries
3639 West 2150 South
Salt Lake City, Utah 84120
Tel: 801-972-6969

Hamilton/Avnet Electronics
1585 West 2100 South
Salt Lake City, Utah 84119
Tel: 801-972-2800
Wyle Distribution Group
1959 South 4130 West, Unit B
Salt Lake City, Utah 84104
Tel: 801-974-9953

Virginia

Arrow Electronics
8002 Discovery Drive
Richmond, Virginia 23288
Tel: 804-282-0413

Washington
Arrow Electronics
14320 NE 21st Street
Bellevue, Washington 98007
Tel: 206-643-4800

Hamilton/Avnet Electronics
14212 NE 21st Street
Bellevue, Washington 98005
Tel: 206-453-5844

Radar Electronic Co., Inc.
168 Western Avenue W
Seattle, Washington 98119
Tel: 206-282-2511

Wyle Distribution Group
1750 132nd Avenue NE
Bellevue, Washington 98005
Tel: 206-453-8300

Wisconsin

Arrow Electronics
430 West Rawson Avenue
Oak Creek, Wisconsin 53154
Tel: 414-764-6600

Hall-Mark Electronics
9657 South 20th Street
Oak Creek, Wisconsin 53154
Tel: 414-761-3000

Hamilton/Avnet Electronics
2975 South Moorland Road
New Berlin, Wisconsin 53151
Tel: 414-784-4510
Schweber Electronics
150 Sunnyslope Road, Suite 120
Brookfield, Wisconsin 53005
Tel: 414-784-9020

Canada

Future Electronics Corporation 5809 MacLeod Trail S, Unit 109
Calgary, Alberta, T24 OJ9
Canada
Tel: 403-259-6437

Future Electronics, Inc. 82 St. Regis Crescent North Downsview, Ontario, M3J 1 Z3
Canada
Tel: 416-638-4771

Future Electronics, Inc.
Baxter Center
1050 Baxter Road
Ottawa, Ontario, K2C 3P2
Canada
Tel: 613-820-8313

Future Electronics, Inc.
237 Hymus Blvd.
Pointe Claire, Quebec, H9R 5C7
Canada
Tel: 514-694-7710

Future Electronics Corporation
3070 Kingsway
Vancouver, B.C., B5R $5 J 7$
Canada
Tel: 604-438-5545

Hamilton/Avnet Canada, Ltd. 6845 Rexwood Road, Units 3-4-5 Mississauga, Ontario, L4V 1R2
Canada
Tel: 416-677-7432
Hamilton/Avnet Canada, Ltd.
190 Colonnade Road
Nepean, Ontario, K2E 7J5
Canada
Tel: 613-226-1700

Hamilton/Avnet Canada, Ltd. 2670 Sabourin Street
St. Laurent, Quebec, H4S 1M2
Canada
Tel: 514-335-1000

Semad Electronics, Ltd.
9045 Cote De Liesse, Suite 101
Dorval, Quebec, H9P 2M9
Canada
Tel: 514-636-4614

Semad Electronics, Ltd.
864 Lady Ellen Place
Ottawa, Ontario, K1Z 5M2
Canada
Tel: 613-722-6571
Semad Electronics, Ltd.
85 Spy Court
Markham, Ontario, L3R 4Z4
Canada
Tel: 416-475-8500

Fairchild cannot assume responsibility for use of any circuitry described other than circuitry embodied in a Fairehild product.

Fairchild reserves the right to make changes in the circuitry or specifications at any time without notice

Printed in U.S.A. October 1985605003 25M

[^0]: *Full data sheet for this device will be available upon product release.

[^1]: *Full data sheet for this device will be available upon product release.

[^2]: *Full data sheet for this device will be available upon product release.

[^3]: Conditions: (LS) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\llcorner }=15 \mathrm{pF}, 25^{\circ} \mathrm{C}$;
 (ALS/HC/FACT) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Typ values at $25^{\circ} \mathrm{C}$, Max values at 0 to $70^{\circ} \mathrm{C}$ for ALS, -40 to $+85^{\circ} \mathrm{C}$ for $\mathrm{HC} / \mathrm{FACT}$.

[^4]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
 L= LOW Voltage Level
 $t_{n}=$ Bit Time before Clock Pulse
 $\mathrm{t}_{\mathrm{n}+1}=$ Bit Time after Clock Pulse

[^5]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
 L= LOW Voltage Level
 X = Immaterial

[^6]: H = HIGH Voltage Level
 L= LOW Voltage Level
 $\mathrm{X}=$ Immaterial

[^7]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
 $\mathrm{L}=$ LOW Voltage Level
 $X=$ Immaterial
 $\mathrm{Z}=$ High Impedance

[^8]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
 L= LOW Voltage Level
 $\mathrm{X}=$ Immaterial
 Z = High Impedance

[^9]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
 L = LOW Voltage Level
 $X=$ Immaterial

[^10]: *This distributor carries Fairchild die products only.

