FAIRCHILD

A Schlumberger Company

Bipolar Memory Data Book

EAMFCIMLD
A Schlumberger Company

Bipolar Memory
 Data Book

Table of Contents

Chapter 1 Product Index, Selection Guide, and Cross Reference
Product Index 1-3
Selection Guide 1-5
Cross Reference 1-6
Chapter 2 Quality Assurance and Reliability
Introduction 2-5
Incoming Quality Inspection 2-5
Process Quality Control 2-5
Quality Assurance 2-8
Reliability 2-9
Chapter 3 ECL RAMs 3-3
Chapter 4 TTL RAMs 4-3
Chapter 5 ECL PROMs 5-3
Chapter 6 TTL PROMs
Data Sheets 6-4
Isoplanar-Z 6-24
Isoplanar-Z Generic Programming 6-26
Chapter 7 ECL Programmable Logic 7-3
Chapter 8 TTL Programmable Logic 8-3
Chapter 9 Package Outlines 9-3
Chapter 10 Field Sales Offices and 10-3
Distributor Locations

TTLPROMS		

ECL. Programmable Logic	7

TTL Programmable Logic
8
Ordering information and Package Outlines $=9$

Field Sales Offices

Numerical Index of Devices

Page
F100K Series ECL
DC Family Electrical Specifications 3-3
F100414 256×1-Bit Static RAM 3-6
F100415 1024×1-Bit Static RAM 3-12
F100416 256×4-Bit PROM - Ni Cr Fuse 5-6
F100Z416 256×4-Bit PROM - Isoplanar-Z Fuse 5-11
F100422 256×4-Bit Static RAM 3-18
F100Z459 $16 \times 24 \times(8+\overline{8})$ FPLA 7-3
F100470 4096×1-Bit Static RAM 3-23
F100474 1024×4-Bit Static RAM 3-28
F100480 16,384 $\times 1$-Bit Static RAM 3-33
F10K Series ECL
DC Family Electrical Specifications 3-3
F10414 256×1-Bit Static RAM 3-35
F10415 1024×1-Bit Static RAM 3-41
F10416 256×4-Bit PROM - Ni Cr Fuse 5-13
F10Z416 256×4-Bit PROM - Isoplanar-Z Fuse 5-19
F10422 256×4-Bit Static RAM 3-47
F10470 4096×1-Bit Static RAM 3-52
F10474 1024×4-Bit Static RAM 3-57
F10480 $16,384 \times 1$-Bit Static RAM 3-62
93xxx Series TTL
TTL Family Electrical Specifications 4-3
934151024×1-Bit Static RAM - Open Collector 4-5
$93 L 4151024 \times 1$-Bit Static RAM - Low Power, Open Collector 4-11
9341964×9-Bit Static RAM - Open Collector 4-17
93422256×4-Bit Static RAM - Three State 4-23
93L422 256×4-Bit Static RAM - Low Power, Three State 4-29
934251024×1-Bit Static RAM - Three State 4-35
$93 L 4251024 \times 1$-Bit Static RAM - Low Power, Three State 4-42
93Z450 1024×8-Bit PROM - Isoplanar-Z Fuse, Open Collector 6-4
$93 Z 4511024 \times 8$-Bit PROM - Isoplanar-Z Fuse, Three State 6-4
934531024×4-Bit PROM - Ni Cr Fuse, Three State 6-9
$9345816 \times 48 \times 8$ FPLA $-N i$ Cr Fuse, Open Collector 8-3
$93459 \quad 16 \times 48 \times 8$ FPLA - Ni Cr Fuse, Three State 8-3
934751024×4-Bit Static RAM - Three State 4-49
93479256×9-Bit Static RAM - Three State 4-52
93Z450 2048×8-Bit PROM - Isoplanar-Z Fuse, Open Collector 6-14
$93 Z 4512048 \times 8$-Bit PROM - Isoplanar-Z Fuse, Three State 6-14
$93 Z 5648196 \times 8$-Bit PROM - Isoplanar-Z Fuse, Open Collector 6-19
$93 Z 5658196 \times 8$-Bit PROM - Isoplanar-Z Fuse, Three State 6-19

Selection Guide

Device Page
F100K RAMs
256×1-Bit RAM F100414 3-6
1024×1-Bit RAM F100415 3-12
256×4-Bit RAM F100422 3-18
4096×1-Bit RAM F100470 3-23
1024×4-Bit RAM F100474 3-28
16,384 $\times 1$-Bit RAM F100480 3-33
F10K RAMs
256×1-Bit RAM F10414 3-35
1024×1-Bit RAM F10415 3-41
$256 \times$ 4-Bit RAM F10422 3-47
4096×1-Bit RAM F10470 3-52
1024×4-Bit RAM F10474 3-57
$16,384 \times 1$-Bit RAM F10480 3-62
TTL RAMs
1024×1-Bit RAM - Open Collector 93415 4-5
1024×4-Bit RAM - Low Power, Open Collector $93 L 415$ 4-11
64×9-Bit RAM - Low Power, Three State 93419 4-17
256×4-Bit RAM - Three State 93422 4-23
256×4-Bit RAM - Low Power, Three State 93L422 4-29
1024×1-Bit RAM - Three State 93425 4-35
1024×1-Bit RAM - Low Power, Three State 93L425 4-42
1024×4-Bit RAM - Three State 4-49
256×9-Bit RAM - Three State 93479 4-52
F100K PROMs
$256 \times$ 4-Bit PROM - Ni Cr Fuse F100416 5-6
256×4-Bit PROM - Isoplanar-Z Fuse F100Z416 5-11
F10K PROMs
$256 \times$ 4-Bit PROM - Ni Cr Fuse F10416 5-13
256×4-Bit PROM - Isoplanar-Z Fuse F10Z416 5-19
TTL PROMs
1024×8-Bit PROM - Open Collector 93Z450 6-4
1024×8-Bit PROM - Three State $93 Z 451$ 6-4
1024×4-Bit PROM - Three State 93453 6-9
2048×8-Bit PROM - Open Collector $93 Z 510$ 6-14
2048×8-Bit PROM - Three State $93 Z 511$ 6-14
8196×8-Bit PROM - Open Collector $93 Z 564$ 6-19
8196×8-Bit PROM - Three State $93 Z 565$ 6-19
Isoplanar-Z Junction Fuse Principles and Programming 6-24
Isoplanar-Z TTL PROM Generic Programming Specification 6-26
F100K Programmable Logic
$16 \times 24 \times(8+8)$ FPLA F100Z4597-3
TTL Programmable Logic
$16 \times 48 \times 8$ FPLA - Open Collector 93458 8-3
$16 \times 48 \times 8$ FPLA - Three State 93459 8-3

Cross Reference

ECL PROM/Programmable Logic Cross Reference

ECL PROMS	Size	Organization	TAA Max	Motorola	National	Signetics
Ni Cr Fuses						
F10416	1024	256×4	20	10149	10416	10149
F100416	1024	256×4	20		100149	
ISO-Z Fuses						
F10Z416	1024	256×4	9 Typ			
F100Z416	1024	256×4	9 Typ			

ECL Programmable Logic

ISO-Z Fuses

F10Z459	-	$16 \times 24 \times(8+\overline{8})$ FPLA	4.0
F100Z459	-	$16 \times 24 \times(8+\overline{8})$ FPLA	4.0

TTL PROM/Programmable Logic Availability Guide and Cross Reference

TTL PROMS	Size	Organization	Output	$\mathbf{T}_{\text {AA Max }}$ Comm/Mil	AMD	Fujitsu
Ni Cr Fuse						
93453	4096	$1 \mathrm{~K} \times 4$	TS	$40 / 55$	Am27S33	MB7122
ISO-Z Fuses						
$93 Z 450$	8192	$1 \mathrm{~K} \times 8$	OC	$40 / 55$	Am27S180	
$93 Z 450 A$	8192	$1 \mathrm{~K} \times 8$	OC	$35 / 45$		
$93 Z 451$	8192	$1 \mathrm{~K} \times 8$	TS	$40 / 55$	Am27S181	MB7132
$93 Z 451 A$	8192	$1 \mathrm{~K} \times 8$	TS	$35 / 45$		
$93 Z 510$	16,384	$2 \mathrm{~K} \times 8$	OC	$45 / 55$	Am27S190	
$93 Z 510$	16,384	$2 \mathrm{~K} \times 8$	TS	$45 / 55$	Am27S191	MB7138
$93 Z 564$	65,536	$8 \mathrm{~K} \times 8$	OC	$55 / 65$		MB7143
$93 Z 564 A$	85,536	$8 \mathrm{~K} \times 8$	OC	$45 / 55$		MB7144
$93 Z 565$	65,536	$8 \mathrm{~K} \times 8$	TS	$55 / 65$		
$93 Z 565 A$	65,536	$8 \mathrm{~K} \times 8$	TS	$45 / 55$		
TTL Programmable Logic						
Ni Cr Fuses						
93458						
93459						

Cross Reference

Harris	Intel	MMI	National	Raytheon	Signetics	TI
HM7643	3625	$53 / 6353$	DM54/74S573	29641	N/S82S137	TBP24S41
HM7680	3608	$53 / 6380$	DM77/87S180	29630	N/S82S180	TBP285SA86
HM7681	3628	$53 / 6381$	DM77/87S181	29631	N/S82S181	TBP28S86
	$3628 B$					
HM76160	3616		DM77/87S190	29680	N/S82S190	
HM76161	3636		DM77/87S191	29681	N/S82S191	TBP28S166

HM76641

Quality Assurance and Reliability

Introduction

All Fairchild Bipolar Division Products are manufactured to strict quality and reliability standards. Product conformance to these standards is insured by careful monitoring of the following functions: (1) incoming quality inspection, (2) process quality control, (3) quality assurance, and (4) reliability.

Incoming Quality Inspection

Purchased piece parts and raw materials must conform to purchase specifications. Major monitoring programs are the inspection of package piece parts, inspection of raw silicon wafers, and inspection of bulk chemicals and materials. Two other important functions of incoming quality inspection are to provide real-time feedback to vendors and in-house engineering, and to define and initiate quality improvement programs.

Package Piece Parts Inspection

Each shipment of package piece parts is inspected and accepted or rejected based on AQL sampling plans. Inspection tests include both inherent characteristics and functional use tests. Inherent characteristics include physical dimensions, color, plating quality, material purity, and material density. Functional use tests for various package piece parts include die attach, bond pull, seal, lid torque, salt atmosphere, lead fatigue, solderability, and mechanical strength. In these tests, the piece parts are sent through process steps that simulate package assembly. The units are then destructively tested to determine whether or not they meet the required quality and reliability levels.

Silicon Wafer Inspection

Each shipment of raw silicon wafers is accepted or rejected based on AQL sampling plans. Raw silicon wafers are subjected to non-destructive and destructive tests. Included in the testing are flatness, physical dimensions, resistivity, oxygen and carbon content, and defect densities. The test results are used to accept or reject the lot.

Bulk Chemical and material Inspection

Bulk chemicals and materials play an important role in any semiconductor process. To insure that the bulk chemicals and materials used in processing Fairchild wafers are the highest quality, they are stringently tested for trace impurities and particulate or organic contamination. Mixtures are also analized to verify their chemical make-up.

Incoming inspection is only the first step in determining the acceptability of bulk chemicals and materials. After acceptance, detailed documentation is maintained to correlate process results to various vendors and to any variations found in mixture consistency.

Process Quality Control

Process quality is maintained by establishing and maintaining effective controls for monitoring the wafer fabrication process, reporting the results of the monitors, and initiating valid measurement techniques for improving quality and reliability levels.

Methods of Control

The process quality control program utilizes the following methods of control: (1) process audits, (2) environmental monitors, (3) process monitors, (4) lot acceptance inspections, (5) process qualifications, and (6) process integrity audits. These methods of control, defined below, characterize visually and electrically the wafer fabrication operation.

Process Audit - Audits concerning manufacturing operator conformance to specification. These are performed on all operations critical to product quality and reliability.

Environmental Monitor - Monitors concernig the process environment, i.e., water purity, air temperature/ humidity, and particulate count.

Process Monitor - Periodic inspection at designated process steps for verification of manufacturing inspection and maintenance of process average. These inspections provide both attribute and variables data.

Lot Acceptance - Lot by lot sampling. This sampling method is reserved for those operations deemed as critical and, as such, requiring special attention.

Process Qualification - Complete distributional analysis is run to specified tolerance averages and standard deviations. These qualifications are typically conducted on deposition and evaporation processes, i.e., epi, aluminum, vapox, and backside gold.

Process Integrity Audit - Special audits conducted on oxidation and metal evaporation processes (CV driftoxidation; SEM evaluation - metal evaporation).

Quality Assurance and Reliability

Data Reporting

Process quality control data is recorded on an attribute or variable basis as required; control charts are maintained on a regular basis. This data is reviewed at periodic intervals and serves as the basis for judging the acceptability of specific processes. Summary data from the various process quality control operations are relayed to cognizant line, engineering and management
personnel in real time so that, if appropriate, the necessary corrective actions can be immediately taken.

Process Flow

Figure 2-1 shows the integration of the various methods of control into the wafer fabrication process flow. The process flow chart contains examples of the process quality controls and inspections utilized in the manufacturing operation.

Fig. 2-1 Process Flow Chart

```
MATERIAL INPUT
Photo Resist
Quartzware
Gas-Dopant \& Solvents Wafers
```


Process Controls (Examples)

A. Environmental
B. Chemical supplies
C. Substrate exam.
(resistivity, flatness, thickness, crystal perfection, etc.)
D. Photoresist evaluation
E. Mask inspections
A. Process audit
A. Process audit/qualification
B. Environmental
C. Process monitors (thickness, pinhole and crack measurements)
E. C V Plotting
F. Calibration
A. Process audits
B. Environmental
C. Visual examinations
D. Photoresist evaluation (preparation, storage, application, baking, development and removal),
E. Etchant controls
F. Exposure controls (intensity, uniformity)

Quality Assurance and Reliability

Fig. 2-1 Process Flow Chart (cont'd.)

A. Process audits/qualification
B. Environmental
C. Temperature profiling
D. Quartz cleaning
E. Calibration
F. Electrical tests
(resistivity, breakdown
voltages, etc.)
A. Process audits/qualification
B. Environmental
C. Visual examinations
D. Epitaxy controls
(thickness, resistivity cleaning, visual examination)
E. Metallization controls
(thickness, temperature cleaning, SEM, C V plotting)
F. Glassivation controls
(thickness, dopant
concentraton, pinhole and crack measurements)
A. Process audit
B. Environments
C. Visual examinations
A. Process audit
B. Inspection

Quality Assurance and Reliability

Quality Assurance

To assure that all product shipped meets both internal Fairchild specifications for standard product and customer specifications in the case of negotiated specs, a number of QA inspections throughout the assembly process flow (Figure 2-2) are required.

Many of the assembly operations follow the requirements of MIL-M-38510 (General Specification for Microcircuits). The test methods employed and listed are described in MIL-STD-883 (Test Methods and

Fig. 2-2 Generalized Process Flow

Quality Assurance and Reliability

Reliability

A number of programs, among them qualification testing, reliability monitoring, failure analysis, and reliability data collection and presentation, are maintained.

Qualification Programs

All products receive reliability qualification prior to the product being released for shipment. Qualification is required for (1) new product designs, (2) new fabrication processes or (3) new packages or assembly processes. Stress tests are run in accordance to test methods described in MIL-STD-883B. Test results are evaluated against existing reliability levels, and must be better than or equal to current product for the new product to receive qualification.

New Product Designs - Receive, as a minimum, $+125^{\circ} \mathrm{C}$ operating life tests. Readouts are normally scheduled at 168 hours, 1168 hours and 2168 hours. The samples stressed are electrically good units from initial wafer runs. Additional life testing, consisting of hightemperature operating life test, 85/85 humidity bias tests and bias pressure pot (BPTH) tests, may be run as deemed necessary. Redesigns of existing device layouts are considered to be new product designs, and full qualification is necessary.

New Fabrication Processes - Qualifications are designed to evaluate the new process against the current process. Stress tests consist of operating life test, high-temperature operating life test, 85/85 humidity bias test and/or biased pressure pot (BPTH) test. In addition, package environment tests may be performed. Evaluations are performed on various products throughout the development stages of the new process. Units stressed are generally from split wafer runs. All processing is performed as a single wafer lot up to the new process steps, where the lot is split for the new and the current process steps. Then the wafers are recombined, and again processed as a single wafer lot. This allows for controlled evaluation of the new process against the standard process. Both significant modifications to existing process and transferring existing products to new fabrication plants are treated as a new process.

New Packages or Assembly Processes - Qualifications are performed for new package designs, changes to existing piece parts, changes in piece part vendors, and
significant modification to assembly process methods. In general, samples from three assembly runs are stressed to a matrix in accordance to MIL-STD-883B, Method 5005, group B, group C, subgroup 2, and group D (Table 2-1). In addition, $+100^{\circ} \mathrm{C}$ operating life tests, 85/85 humidity bias tests, biased pressure pot (BPTH) tests and unbiased pressure pot tests are performed.

Reliability Monitors

Reliability testing of mature products is performed to establish device failure rates, and to identify problems occuring in production. Samples are obtained on a regular basis from production. These units are stressed with operating life tests or package environmental tests. The results of these tests are summarized and reported on a monthly basis. When a problem is identified, the respective engineering group is notified, and production is stopped until corrective action is taken.

Current testing levels are in excess of 14,000 units per year stressed with operating life tests, and 23,000 units per year stressed with package environmental tests.

Failure Analysis

Failure analysis is performed on all units failing reliability stress tests. Failure analysis is offered as a service to support manufacturing and engineering, and to support customer returns and customer requested failure studies. The failure analysis procedure used has been established to provide a technique of sequential analysis. This technique is based on the premise that each step of analysis will provide information of the failure without destroying information to be obtained from subsequent steps. The ultimate purpose is to uncover all underlying failure mechanisms through complete, in-depth, defect analysis. The procedure places great emphasis on electrical analysis, both external before decapsulation, and internal micro-probing. Visual examinations with high magnification microscopes or SEM analysis are used to confirm failure mechanisms. Results of the failure analysis are recorded and, if abnormalities are found, reported to engineering and/or manufacturing.

Data Collection and Presentation

Product reliability is controlled by first stressing the product, and then feeding back results to manufacturing and engineering. This feedback takes two forms. There is a formal monthly Reliability Summary distributed to all groups. The summary shows current product failure

Quality Assurance and Reliability

rates, highlights problem areas, and shows the status of qualification and corrective action programs. Less formal feedback is obtained by including reliability personnel at all product meetings, which gives high visibility to the
reliability aspects of various products. As a customer service, product reliability data is compiled and made available upon request.

Table 2-1 Package Environmental Stress Matrix

Test	MIL-STD-883	
	Method	Condition
Group B Subgroup 1 Physical dimensions	2016	
Subgroup 2 Resistance to solvents	2015	
Subgroup 3 Solderability	2003	Soldering temperature of $260 \pm 10^{\circ} \mathrm{C}$
Subgroup 5 Bond strength (1) Thermocompression (2) Ultrasonic or wedge	2011	(1) Test condition C or D (2) Test condition C or D
Group C Subgroup 2 Temperature cycling Constant acceleration Seal (a) Fine (b) Gross Visual examination End-point electrical parameters	$\begin{aligned} & 1010 \\ & 2001 \\ & \\ & 1014 \end{aligned}$	Test condition $\mathrm{C}\left(-65^{\circ} \mathrm{C}\right.$ to $\left.\pm 150^{\circ} \mathrm{C}\right)$ Test condition $\mathrm{E}(30 \mathrm{Kg}), \mathrm{Y}_{1}$ orientation and X_{1} orientation Test condition $\mathrm{D}(20 \mathrm{~K} \mathrm{~g})$ for packages over 5 gram weight or with seal ring greater than 2 inches
Group D Subgroup 1 Physical dimensions	2016	
Subgroup 2 Lead integrity Seal (a) Fine (b) Gross Lid torque	$\begin{aligned} & 2004 \\ & 1014 \\ & 2024 \end{aligned}$	Test condition B2 (lead fatigue) As applicable As applicable

Quality Assurance and Reliability

Table 2-1 Package Environmental Stress Matrix (cont'd.)

.

F100K DC Family Specifications

DC characteristics for the F100K series family parametric limits listed below are guaranteed for the entire F100K ECL family unless specified on the individual data sheet.

Absolute Maximum Ratings: Above which the useful life may be impaired 1

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})
Case Temperature Under Bias (TC)
$V_{E E}$ Pin Potential to Ground Pin Input Voltage (dc)
Output Current (dc Output HIGH)
Operating Range ${ }^{2}$
$0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
$V_{E E}$ to +0.5 V

$$
-50 \mathrm{~mA}
$$

-5.7 V to -4.2 V

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions ${ }^{4}$	
VOH	Output HIGH Voltage	-1025	-955	-880	mV		Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VoL	Output LOW Voltage	-1810	-1705	-1620	mV	or $\mathrm{VIL}_{\text {(min }}$)	
VOHC	Output HIGH Voltage	-1035			mv	$\begin{aligned} & V_{\mathbb{I N}}=V_{\mathbb{I H}(\text { min })} \\ & \text { or } V_{\mathbb{I L}(\max)} \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\mathrm{IL}}($ min $)$	

1. Unless specified otherwise on individual data sheet.
2. Parametric values specified at -4.2 V to -4.8 V .
3. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Operating specification with adequate time for temperature stabilization and transverse air flow exceeding 400 linear feet per minute, conformance testing performed instantaneously where $T_{A}=T_{J}=T_{C}$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee device operating performance.

F100K DC Family Specifications

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions 4	
VOH	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\max) \\ & \text { or } V_{I L}(\min) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	-1810		-1605	mV		
VOHC	Output HIGH Voltage	-1030			mv	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1595	mV		
VIH	Input HIGH Voltage	-1150		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$	

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions ${ }^{4}$	
VOH	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\max) \\ & \text { or } V_{I L}(\min) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	-1830		-1620	mV		
VOHC	Output HIGH Voltage	-1045			mv	$\begin{aligned} & V_{I N}=V_{I H}(\text { min }) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
VIH	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$	

Notes on preceding page

F10K DC Family Specifications

DC characteristics for the F10K series memories. Parametric limits listed below are guaranteed for all F10K memories, except where noted on individual data sheets.

Absolute Maximum Ratings: Above which the useful life may be impaired

Storage Temperature
Temperature (Ambient) Under Bias Vee Pin Potential to Ground Pin Input Voltage (dc)

$$
\begin{gathered}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
\end{gathered}
$$

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

Output Current (dc Output HIGH)

Guaranteed Operating Ranges

Supply Voltage (Vcc)			Ambient Temperature
Min	Typ	Max	
(TA) Note 1			

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C} 1$

Symbol	Characteristic	Min	Typ	Max	Unit	T_{A}	Conditions ${ }^{2}$
VOH	Output HIGH Voltage	$\begin{array}{r} -1000 \\ -960 \\ -900 \end{array}$.	$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	
Vol	Output LOW Voltage	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1665 \\ & -1650 \\ & -1625 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	or VIL(min)
VOHC	Output HIGH Voltage	$\begin{array}{r} -1020 \\ -980 \\ -920 \end{array}$			mv	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { min }) \\ & \text { or } V_{I L}(\text { max }) \end{aligned}$
Volc	Output LOW Voltage			$\begin{aligned} & -1645 \\ & -1630 \\ & -1605 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	
V_{H}	Input HIGH Voltage	$\begin{aligned} & -1145 \\ & -1105 \\ & -1045 \end{aligned}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	Guaranteed Input Voltage HIGH for All Inputs
VIL	Input LOW Voltage	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1490 \\ & -1475 \\ & -1450 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	Guaranteed Input Voltage LOW for All Inputs
IIL	Input LOW Current	0.5		170	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
2. Operating specification with adequate time for temperature stabilization and transverse air flow exceeding 400 linear feet per minute, conformance testing performed instantaneously where $T_{A}=T_{J}=T$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee device operating performance.

FAIRCHILD

A Schlumberger Company

F100414
 256×1-Bit Static Random Access Memory

Description

The F100414 is a 256-bit read/write Random Access Memory (RAM), organized 256 words by one bit. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as three active-LOW Chip Select lines.

- Address Access Time - 10 ns Max
- Chip Select Access Time - 6.0 ns Max
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation - 1.8 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\overline{\mathrm{WE}}} \overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}} 3$
$\mathrm{A}_{0}-\mathrm{A}_{7}$
D
Write Enable Input (Active LOW)
Chip Select Inputs (Active LOW)
Address Inputs
Data Input
Data Output

Connection Diagram

16-Pin DIP (Top View)

Note
The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

Logic Symbol

[^0]
F100414

Logic Diagram

Functional Description

The F100414 is a fully decoded 256-bit read/write random access memory, organized 256 words by one bit. Bit selection is achieved by means of an 8 -bit address, Ao through A.

Three active-LOW Chip Select inputs are provided for increased logic flexibility. This permits memory array expansion up to 2048 words with the F100170 decoder. For larger memories, the fast chip select access time permits the decoding of Chip Select, $\overline{\mathrm{CS}}$, from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least twSD(min) plus tw^{W} (min) plus twHD (min) to insure a valid write. To read, WE is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F100414 is an unterminated emitter follower, which allows maximum flexibility in choosing
output connection configurations. In many applications it is desirable to tie the outputs of several F100414 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

					Output	
	$\overline{\mathbf{C S}}_{2}$	$\overline{\mathbf{C S}}_{3}$	$\overline{\mathbf{W E}}$	\mathbf{D}	\mathbf{O}	Mode
X	X	H^{*}	X	X	L	Not Selected
L	L	L	L	L	L	Write "0"
L	L	L	L	H	L	Write "1"
L	L	L	H	X	Data	Read

[^1]
F100414

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ max $)$
IIL	Input LOW Current, $\overline{\mathrm{CS}}_{n}$ $\overline{W E}, A_{0}-A_{7}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$
IEE	Power Supply Current	-140	-100		mA	Inputs and Output Open

AC Characteristics: $\mathrm{VEE}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\begin{aligned} & t_{A C S} \\ & t_{\text {RCS }} \\ & t_{A A} \end{aligned}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time 2			$\begin{array}{r} 6.0 \\ 6.0 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ ns	Figures 3a, 3b
tw	Write Timing Write Pulse Width to Guarantee Writing ${ }^{3}$	7.0			ns	
twSD	Data Setup Time prior to Write	1.0			ns	
tWHD	Data Hold Time after Write	2.0			ns	
tWSA	Address Setup Time prior to Write 3	1.0			ns	Figure 4
tWHA	Address Hold Time after Write	2.0			ns	
twscs	Chip Select Setup Time prior to Write	1.0			ns	
twhes	Chip Select Hold Time after Write	2.0			ns	
tws	Write Disable Time			8.0	ns	
twR	Write Recovery Time			10	ns	
tr_{r}	Output Rise Time		3.0		ns	Measured between 20\% and
tf_{f}	Output Fall Time		3.0		ns	80\% or 80% and 20%
CIN	Input Pin Capacitance		4.0	5.0	pF	Measured with a Pulse
Cout	Output Pin Capacitance		7.0	8.0	pF	Technique

1. See Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Tw measured at $t w S A=M i n, t w S A$ measured at $t w=$ Min.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

[^2]F100414

Typical Application
4096-Word x n-Bit System

FAIRCHILD

A Schlumberger Company

F100415
 1024×1-Bit Static Random Access Memory

Description

The F100415 is a 1024-bit read/write Random Access Memory (RAM), organized as 1024 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time - 20 ns Max
- Chip Select Access Time - 8.0 ns Max
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation - $0.5 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

$\frac{\text { Pin Names }}{\text { WE }}$	Write Enable Input (Active LOW)
CS	Chip Select Input (Active LOW)
A $_{0}-A_{9}$	Address Inputs
D	Data Input
O	Data Output

Logic Symbol

[^3]Connection Diagram
16-Pin DIP (Top View)

Note

The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package

Logic Diagram

Functional Description

The F100415 is a fully decoded 1024-bit read/write random access memory, organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A_{0} through A 9 .

One Chip Select input is provided for memory array expansion up to 2048 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, ($\overline{\mathrm{CS}})$ from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\text { WE }}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus tw(min) plus tWHD(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F100415 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F100415 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Output	Mode
$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	\mathbf{D}	\mathbf{O}	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^4]DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
liH	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (max)
IIL	Input LOW Current, $\overline{C S}$ $\overline{W E}, A_{0}-A_{9}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}($ min $)$
Iee	Power Supply Current	-150	-105		mA	Inputs and Output Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{Tc}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
tacs tres $t_{A A}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time2			$\begin{array}{r} 8.0 \\ 8.0 \\ 20 \\ \hline \end{array}$	ns ns ns	Figures 3a, 3b
tw	Write Timing Write Pulse Width to Guarantee Writing ${ }^{3}$	14			ns	
twsD	Data Setup Time prior to Write	4.0			ns	
tWHD	Data Hold Time after Write	4.0			ns	
tWSA	Address Setup Time prior to Write ${ }^{3}$	5.0			ns	Figure 4
tWHA	Address Hold Time after Write	3.0			ns	
twscs	Chip Select Setup Time prior to Write	4.0			ns	
twhes	Chip Select Hold Time after Write	4.0			ns	
tws	Write Disable Time			10	ns	
twR	Write Recovery Time			15	ns	
tr_{r}	Output Rise Time		5.0		ns	Measured between 20\% and
tf_{f}	Output Fall Time		5.0		ns	80\% or 80% and 20%
CIN	Input Pin Capacitance		4.0	5.0	pF	Measured with a Pulse
Cout	Output Pin Capacitance		7.0	8.0	pF	Technique

[^5]
F100415

Fig. 1 AC Test Circuit

Notes
All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V .

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

F100415

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Packages and Outlines (See Section 10)
$D=$ Ceramic DIP
$F=$ Flatpak
P $=$ Plastic DIP
Temperature Range
$C=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Case

Optional Processing

QR $=160$ Hour Burn In

Typical Application
4096-Word x n-Bit System

256×4-Bit Static Random Access Memory

Bipolar Division

F100K ECL Product

Description

The F100422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as four active-LOW Bit Select lines.

- Address Access Time - 10 ns Max
- Bit Select Access Time - $\mathbf{5 . 0}$ ns Max
- Four Bits Can be Independently Selected
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - $0.79 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{W E}$
$\overline{\mathrm{BS}}_{0}-\overline{\mathrm{BS}}_{3}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$

Write Enable Input (Active LOW)
Bit Select Inputs (Active LOW)
Address Inputs
Data Inputs
Data Outputs

Logic Symbol

Connection Diagrams

24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Functional Description

The F100422 is a fully decoded 1024-bit read/write random access memory, organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, A_{0} through A_{7}.

Four Bit Select inputs are provided for logic flexibility. For larger memories, the fast bit select access time permits the decoding of individual bit selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the bit selected, the data at $D_{0}-D_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus tw(min) plus tWHD(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the bit selected. Non-inverted data is then presented at the output $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The outputs of the F100422 are unterminated emitter followers, which allow maximum flexibility in choosing
output connection configurations. In many applications it is desirable to tie the outputs of several F100422 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Outputs	
	$\overline{\mathbf{W E}}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{O}_{\boldsymbol{n}}$	Mode
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

Each bit has independent $\overline{\mathrm{BS}}, \mathrm{D}$, and O , but all have common $\overline{\mathrm{WE}}$
$\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
$\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
X = Don't Care
Data $=$ Previously stored data

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IH	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\mathbb{H}}(\max)$
IIL	Input LOW Current, $\overline{\mathrm{BS}}_{0}-\overline{\mathrm{BS}}_{3}$ $\overline{W E}, A_{0}-A_{7}, D_{0}-D_{3}$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$
Iee	Power Supply Current	-200	-180		mA	All Inputs and Outputs Open

AC Characteristics: $V_{E E}=-4.2$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $\mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$t_{\text {ACS }}$ $t_{\text {RCS }}$ $t_{A A}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time 2			$\begin{array}{r} 5.0 \\ 5.0 \\ 10 \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 3a, 3b
tw	Write Timing Write Pulse Width to Guarantee Writing 3	7.0			ns	
twsd	Data Setup Time prior to Write	1.0			ns	
tWHD	Data Hold Time after Write	2.0			ns	
twSA	Address Setup Time prior to Write 3	1.0			ns	Figure 4
tWHA	Address Hold Time after Write	2.0			ns	
twscs	Chip Select Setup Time prior to Write	1.0			ns	
twhes	Chip Select Hold Time after Write	2.0			ns	
tws	Write Disable Time			5.0	ns	
twR	Write Recovery Time			12	ns	
t_{r} t_{f}	Output Rise Time Output Fall Time		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Measured between 20\% and 80% or 80% and 20%
CIN Cout	Input Pin Capacitance Output Pin Capacitance		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	pF pF	Measured with a Pulse Technique

[^6]Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{\mathrm{L}}=50 \Omega$ to -2.0 V
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Bit Select

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case
limits are not violated.

Ordering Information

Packages and Outlines (See Section 10)
D = Ceramic DIP
F = Flatpak
Temperature Ranges
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Case

Optional Processing
$Q R=160$ Hour Burn In

F100470
4096×1-Bit Static Random Access Memory

Description

The F100470 is a 4096-bit read/write Random Access Memory (RAM), organized 4096 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. It is available in two speed versions, the F100470 and F100470A. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time

$$
\text { F100470 - } 35 \text { ns Max }
$$

$$
\text { F100470A - } 25 \text { ns Max }
$$

- Chip Select Access Time

F100470-15 ns Max
F100470A - 10 ns Max

- Open-emitter Output for Easy Memory Expansion
- Power Dissipation - $0.17 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\frac{\overline{W E}}{\overline{C S}}$	Write Enable Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{11}$	Chip Select Input (Active LOW)
D	Address Inputs
O	Data Input
	Data Output

Logic Symbol

Connection Diagram
18-Pin DIP (Top View)

Note

The 18-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

Logic Diagram

Functional Description

The F100470 is a fully decoded 4096-bit read/write random access memory, organized 4096 words by one bit. Bit selection is achieved by means of a 12-bit address, A_{0} through A_{11}.

One Chip Select input is provided for memory array expansion up to 8196 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, $(\overline{\mathrm{CS}})$ from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{W E}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus tW(min) plus tWHD(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F100470 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F100470 devices together. In other applications the wired-OR need not be used. In either case an external 50Ω pulldown resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Output	
	$\overline{\text { WE }}$	D	O	Mode
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^7]
F100470

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V} \mathrm{CC}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
liH	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$
ILL	Input LOW Current, $\overline{\mathrm{CS}}$ $\overline{W E}, A_{0}-A_{11}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{1 /}=\mathrm{V}_{\text {IL }}($ min $)$
lee	Power Supply Current	-195	-160		mA	Inputs and Output Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	F100470		F100470A		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		15		10	ns	
trcs	Chip Select Recovery Time		15		10	ns	Figures 3a, 3b
$t_{A A}$	Address Access Time ${ }^{2}$		35		25	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ${ }^{3}$	25		15		ns	
twsD	Data Setup Time prior to Write	5.0		5.0		ns	
twho	Data Hold Time after Write	5.0		5.0		ns	
twsA	Address Setup Time prior to Write ${ }^{3}$	10		10		ns	Figure 4
twha	Address Hold Time after Write	5.0		5.0		ns	
twscs	Chip Select Setup Time prior to Write	5.0		5.0		ns	
twhes	Chip Select Hold Time after Write	5.0		5.0		ns	
tws	Write Disable Time		15		15	ns	
twr	Write Recovery Time		20		20	ns	

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
t_{r}	Output Rise Time		5.0		ns	Measured between 20% and 8.0 t_{f}
Output Fall Time		50% or 80% and 20%				
$\mathrm{CIN}_{\mathrm{N}}$	Input Pin Capacitance		4.0	5.0	pF	Measured with a Pulse Cout
Output Pin Capacitance		7.0	8.0	pF	Technique	

[^8]Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V .

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may
be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Speed Selection
Blank = Standard Speed
$A=$ 'A' Grade

Packages and Outlines (See Section 10)
D = Ceramic DIP
F = Flatpak

Temperature Range
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Case
Optional Processing
QR $=160$ Hour Burn In

FAIRCHILD

A Schlumberger Company

Bipolar Division

F100474

1024×4-Bit Static Random Access Memory

Description

The F100474 is a 4096-bit read/write Random Access Memory (RAM), organized 1024 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time - 25 ns Max
- Chip Select Access Time - 15 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - $0.17 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

$\frac{\text { Pin Names }}{W E}$	Write Enable Input (Active LOW)
$\frac{C S}{C S}$	Chip Select Input (Active LOW)
$A_{0}-A_{9}$	Address Inputs
$D_{0}-D_{3}$	Data Inputs
$O_{0}-O_{3}$	Data Outputs

Logic Symbol

[^9]Connection Diagrams
24-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Functional Description

The F100474 is a fully decoded 4096-bit read/write random access memory, organized 1024 words by four bits. Word selection is achieved by means of a 10-bit address, Ao through Ag.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{W E}$ held LOW and the chip selected, the data at $D_{0}-D_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus $\mathrm{tw}_{\mathrm{W}}^{\mathrm{min})}$ plus $\mathrm{tWHD}_{\mathrm{W}}^{\mathrm{min})}$ to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The output of the F100474 is an unterminated emitter follower, which allows maximum flexibility in choosing connection configurations. In many applications such as memory expansion, the outputs of many F100474
devices can be tied together. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Outputs	Mode
$\overline{\mathbf{C S}}$	$\overline{W E}$	D_{n}	O_{n}	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^10]DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IIH	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{I N}}=\mathrm{V}_{\mathbf{I H}(\text { max }}$
IIL	Input LOW Current, $\overline{\mathrm{CS}}$ $\overline{W E}, A_{0}-A_{9}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$
IEE	Power Supply Current	-195	-160		mA	Inputs and Outputs Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $\mathrm{T} \mathrm{C}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\begin{aligned} & t_{A C S} \\ & t_{\text {RCS }} \\ & t_{A A} \end{aligned}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time 2			15 15 25	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b
tw	Write Timing Write Pulse Width to Guarantee Writing 3	16			ns	
twSD	Data Setup Time prior to Write	5.0			ns	
tWHD	Data Hold Time after Write	5.0			ns	
tWSA	Address Setup Time prior to Write 3	10			ns	Figure 4
tWHA	Address Hold Time after Write	4.0			ns	
twscs	Chip Select Setup Time prior to Write	5.0			ns	
twhes	Chip Select Hold Time after Write	5.0			ns	
tws	Write Disable Time			15	ns	
twr	Write Recovery Time			20	ns	
t_{r}	Output Rise Time		5.0		ns	Measured between 20\% and
tf_{f}	Output Fall Time		5.0		ns	80\% or 80% and 20%
CIN	Input Pin Capacitance		4.0	5.0	pF	Measured with a Pulse
Cout	Output Pin Capacitance		7.0	8.0	pF	Technique

[^11]2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Tw measured at $t w S A=M i n, t w S A$ measured at $t w=$ Min.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Packages and Outlines (See Section 10)
$\mathrm{D}=\mathrm{Ceramic} \mathrm{DIP}$
$\mathrm{F}=$ Flatpak
Dackage Name
Temperature Range
Optional Processing
Temperature Ranges
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Case
Optional Processing
$\mathrm{QR}=160$ Hour Burn in

F100480
16,384 x 1-Bit Static Random Access Memory

F100K ECL Product

Description

The F100480 is a 16,384-bit read/write Random Access Memory (RAM), organized 16,384 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and noninverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time - 25 ns Max
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation - 0.043 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

$\frac{\text { Pin Names }}{\text { WE }}$	Write Enable Input (Active LOW)
$\frac{C S}{C S}$	Chip Select Input (Active LOW)
$A_{0}-A_{13}$	Address Inputs
D	Data Input
O	Data Output

Logic Symbol

Connection Diagram 20-Pin DIP (Top View)

Note
The 20utpin Flatpak version has the same pinouts (Connection Diagram) as the Dyal In-line Package.

Ordering Information

[^12]
Logic Diagram

Functional Description

The F100480 is a fully decoded 16,384-bit read/write random access memory, organized 16,384 words by one bit. Bit selection is achieved by means of a 14-bit address, A_{0} through A_{13}.

One Chip Select input is provided for memory array expansion up to 32,768 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, $(\overline{\mathrm{CS}})$ from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus $\mathrm{t}_{\mathrm{W}(\mathrm{min})}$ plus tWHD(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F100480 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F100480 devices together. In other applications the wired-OR need not be used. In either case an external 50Ω pulldown resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Output	
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D	O	Mode
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^13]
F10414
 256×1-Bit Static Random Access Memory

F10K ECL Product

Description

The F10414 is a 256-bit read/write Random Access Memory (RAM), organized 256 words by one bit. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as three active-LOW Chip Select lines.

- Address Access Time - 10 ns Max
- Chip Select Access Time - 6.0 ns Max
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation - $1.8 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names
$\frac{\overline{\mathrm{WE}}}{\mathrm{CS}_{1}}, \overline{\mathrm{CS}_{2}}, \overline{\mathrm{CS}_{3}}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$
D
O
Write Enable Input (Active LOW)
Chip Select Inputs (Active LOW)
Address Inputs
Data Input
Data Output

Logic Symbol

[^14]
Connection Diagram

16-Pin DIP (Top View)

Note
The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

F10414

Logic Diagram

Functional Description

The F10414 is a fully decoded 256-bit read/write random access memory, organized 256 words by one bit. Bit selection is achieved by means of an 8-bit address, A_{0} through A_{7}.

Three active-LOW Chip Select inputs are provided for increased logic flexibility. This permits memory array expansion up to 2048 words with the F10170 decoder. For larger memories, the fast chip select access time permits the decoding of Chip Select, $\overline{\mathrm{CS}}$, from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{W E}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus t (min) plus tWHD(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).
output connection configurations. In many applications it is desirable to tie the outputs of several F10414 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

					Output	
	$\overline{\mathbf{C S}}_{2}$	$\overline{\mathbf{C S}}_{3}$	$\overline{\mathrm{WE}}$	D	O	Mode
X	X	H^{*}	X	X	L	Not Selected
L	L	L	L	L	L	Write "0"
L	L	L	L	H	L	Write "1"
L	L	L	H	X	Data	Read

$H=H I G H$ Voltage Levels $=-0.9 \mathrm{~V}($ Nominal $)$
$\mathrm{L}=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
X = Don't Care
Data $=$ Previously stored data
*One or more Chip Selects HIGH

The output of the F10414 is an unterminated emitter follower, which allows maximum flexibility in choosing

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
1 IH	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ max $)$
ILL	Input LOW Current, $\overline{\mathrm{CS}}_{n}$ $\overline{W E}, A_{0}-A_{7}, D$	$\begin{aligned} & \hline 0.5 \\ & -50 \end{aligned}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}($ min $)$
lee	Power Supply Current	-140	-100		mA	Inputs and Output Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V} C \mathrm{C}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}_{\mathrm{AA}} \end{aligned}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time 2			$\begin{array}{r} 6.0 \\ 6.0 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b
tw twSD	Write Timing Write Pulse Width to Guarantee Writing 3 Data Setup Time prior to Write	7.0 1.0			ns ns	
tWHD	Data Hold Time after Write	2.0			ns	
tWSA	Address Setup Time 3 prior to Write	1.0			ns	Figure 4
tWHA	Address Hold Time after Write	2.0			ns	
twscs	Chip Select Setup Time prior to Write	1.0			ns	
twhes	Chip Select Hold Time after Write	2.0			ns	
tws	Write Disable Time			8.0	ns	
twr	Write Recovery Time			10	ns	
t_{r}	Output Rise Time		3.0		ns	Measured between 20\% and
tf_{f}	Output Fall Time		3.0		ns	80\% or 80% and 20%
$\mathrm{CIN}_{\text {I }}$	Input Pin Capacitance		4.0	5.0	pF	Measured with a Pulse
Cout	Output Pin Capacitance		7.0	8.0	pF	Technique

1. See Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Tw measured at $\mathrm{t}_{\mathrm{wSA}}=\mathrm{Min}, \mathrm{twSA}$ measured at $\mathrm{tw}=\mathrm{Min}$.

Fig. 1 AC Test Circuit

Notes
All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V .
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note

Timing Diagram represents one solution which results in an optimum cycle time. Timing may
be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information


```
Packages and Outlines (See Section 10)
\(D=\) Ceramic DIP
F = Flatpak
\(P=\) Plastic DIP
Temperature Ranges
\(\mathrm{C}=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\), Ambient
```

Optional Processing
QR $=160$ Hour Burn in

Typical Application

4096-Word x n-Bit System

1024×1-Bit Static Random Access Memory

Advanced Bipolar Division

F10K ECL Product

Description

The F10415 is a 1024-bit read/write Random Access Memory (RAM), organized as 1024 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. It is available in two speed versions, the F10415 and F10415A. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time

F10415 - 35 ns Max F10415A - 20 ns Max

- Chip Select Access Time F10415 - 10 ns Max F10415A - 8.0 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - $0.5 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

$\frac{\text { Pin Names }}{\text { WE }}$	Write Enable Input (Active LOW)
CS	Chip Select Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A} 9$	Address Inputs
D	Data Input
O	Data Output

Logic Symbol

Connection Diagram
16-Pin DIP (Top View)

Note

The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package

F10415

Logic Diagram

Functional Description

The F10415 is a fully decoded 1024-bit read/write random access memory, organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A_{0} through A_{g}.

One Chip Select input is provided for memory array expansion up to 2048 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, ($\overline{\mathrm{CS}}$) from the address without affecting system performance.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\text { WE }}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus tW(min) plus tWHD(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F10415 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F10415 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Output	Mode
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D	\mathbf{O}	
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^15]DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IH	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ max $)$
IIL	Input LOW Current, $\overline{C S}$ $\overline{W E}, A_{0}-A_{9}, D$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}($ min $)$
lee	Power Supply Current	-150	-105		mA	Inputs and Output Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V} \mathrm{CC}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

		F10415		F10415A Symbol		Characteristic

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
t_{r}	Output Rise Time		5.0		ns	Measured between 20% and tf_{f}
Output Fall Time		5.0		ns	80% or 80% and 20%	

[^16]2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Tw measured at twSA $=$ Min, twSA measured at $t w=$ Min.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ including Fixture and Stray Capacitance $R_{L}=50 \Omega$ to -2.0 V

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

> Speed Selection
> Blank = Standard Speed
> $A=$ 'A' Grade
> Packages and Outlines (See Section 10)
> D = Ceramic DIP
> F = Flatpak
> P = Plastic DIP

Temperature Range

$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, Ambient

Optional Processing
QR $=160$ Hour Burn in

Typical Application
4096-Word x n-Bit System

Description

The F10422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as four active-LOW Bit Select lines.

- Address Access Time - 10 ns Max
- Bit Select Access Time - 5.0 ns Max
- Four Bits Can be Independently Selected
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - $0.92 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names
$\overline{W E}$
Write Enable Input (Active LOW)
$\overline{\mathrm{BS}}_{0}-\overline{\mathrm{BS}}_{3}$
Bit Select Inputs (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{7}$
Address Inputs
$\mathrm{D}_{0}-\mathrm{D}_{3}$
Data Inputs
$\mathrm{O}_{0}-\mathrm{O}_{3}$

Logic Symbol

[^17]
Connection Diagram

24-Pin DIP (Top View)

Note

The 24-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In -line Package.

Logic Diagram

Functional Description

The F10422 is a fully decoded 1024-bit read/write random access memory, organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, A_{0} through A_{7}.

Four Bit Select inputs are provided for logic flexibility. For larger memories, the fast bit select access time permits the decoding of individual bit selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the bit selected, the data at $D_{0}-D_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least $\mathrm{tWSD}(\min)$ plus $\mathrm{tW}(\min)$ plus $\mathrm{tWHD}(\min)$ to insure a valid write. To read, $\overline{W E}$ is held HIGH and the bit selected. Non-inverted data is then presented at the output $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The output of the F10422 is an unterminated emitter follower, which allows maximum flexibility in choosing
output connection configurations. In many applications it is desirable to tie the outputs of several F10422 devices together to allow easy expansion. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output.

Truth Table

Inputs			Outputs	
	$\overline{\text { WE }}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{O}_{\boldsymbol{n}}$	Mode
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

Each bit has independent $\overline{B S}, \mathrm{D}$, and O , but all have common $\overline{\mathrm{WE}}$
$\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
$\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
X = Don't Care
Data $=$ Previously stored data

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
1 HH	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ max $)$
IL	Input LOW Current, $\overline{\mathrm{BS}}_{0}-\overline{\mathrm{BS}}_{3}$ $\overline{\mathrm{WE}}, \mathrm{~A}_{0}-\mathrm{A}_{7}, \mathrm{D}_{0}-\mathrm{D}_{3}$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\mathrm{IL}}($ min $)$
lee	Power Supply Current	-200	-180		mA	All Inputs and Outputs Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{VCC}=\mathrm{V} C C A=G N D$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
taCs trCS $t_{A A}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time 2			$\begin{array}{r} 5.0 \\ 5.0 \\ 10 \end{array}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b
tw	Write Timing Write Pulse Width to Guarantee Writing ${ }^{3}$	7.0			ns	
twsd	Data Setup Time prior to Write	1.0			ns	
twho	Data Hold Time after Write	2.0			ns	
twsa	Address Setup Time prior to Write ${ }^{3}$	1.0			ns	Figure 4
twha	Address Hold Time after Write	2.0			ns	
twscs	Chip Select Setup Time prior to Write	1.0			ns	
twhes	Chip Select Hold Time after Write	2.0			ns	
tws twr	Write Disable Time Write Recovery Time			$\begin{gathered} 5.0 \\ 12 \end{gathered}$	ns	
t_{r} t_{f}	Output Rise Time Output Fall Time		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns ns	Measured between 20% and 80% or 80% and 20%
$\begin{aligned} & \mathrm{CIN}_{1} \\ & \mathrm{COUT}^{2} \end{aligned}$	Input Pin Capacitance Output Pin Capacitance		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Measured with a Pulse Technique

1. See Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Tw measured at $\mathrm{twSA}=\mathrm{Min}$, twSA measured at $\mathrm{tw}=\mathrm{Min}$.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Bit Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case
limits are not violated.

Ordering Information

Packages and Outlines (See Section 10)
$\mathrm{D}=$ Ceramic DIP
$\mathrm{F}=$ Flatpak

Temperature Ranges
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, Ambient

Optional Processing
QR $=160$ Hour Burn In

4096×1-Bit Static Random Access Memory

F10K ECL Product

Description

The F10470 is a 4096-bit read/write Random Access Memory (RAM), organized 4096 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. It is available in two speed versions, the F10470 and F10470A. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time

F10470 - 35 ns Max
F10470A - 25 ns Max

- Chip Select Access Time

F10470 - 15 ns Max
F10470A - 10 ns Max

- Open-emitter Output for Easy Memory Expansion
- Power Dissipation - 0.20 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\frac{\overline{W E}}{\overline{C S}}$	Write Enable Input (Active LOW)
$A_{0}-A_{11}$	Chip Select Input (Active LOW)
D	Address Inputs
O	Data Input
	Data Output

Logic Symbol

Connection Diagram

18-Pin DIP (Top View)

Note
The 18-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

Logic Diagram

Functional Description

The F10470 is a fully decoded 4096-bit read/write random access memory, organized 4096 words by one bit. Bit selection is achieved by means of a 12-bit address, A_{0} through A_{11}.

One Chip Select input is provided for memory array expansion up to 8196 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, $(\overline{\mathrm{CS}})$ from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus tw(min) plus tWHD(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F10470 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F10470 devices together. In other applications the wired-OR need not be used. In either case an external 50Ω pulldown resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Output	
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D	O	Mode
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

$\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal $)$
$\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
X = Don't Care
Data $=$ Previously stored data

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
IH	Input HIGH Current			220	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}($ max $)$
IIL	Input LOW Current, $\overline{\mathrm{CS}}$ WE, $\mathrm{A}_{0}-\mathrm{A}_{11}, \mathrm{D}$	$\begin{array}{r} 0.5 \\ -50 \end{array}$		170	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$
lee	Power Supply Current	-200	-160		mA	Inputs and Output Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{VCC}=\mathrm{GND}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	F10470		F10470A		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$\mathrm{t}_{\text {ACS }}$	Chip Select Access Time		15		10	ns	
tres	Chip Select Recovery Time		15		10	ns	Figures 3a, 3b
$t_{\text {AA }}$	Address Access Time2		35		25	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing ${ }^{3}$	25		15		ns	
twSD	Data Setup Time prior to Write	5.0		5.0		ns	
twHD	Data Hold Time after Write	5.0		5.0		ns	
tWSA	Address Setup Time prior to Write ${ }^{3}$	10		10		ns	Figure 4
twha	Address Hold Time after Write	5.0		5.0		ns	
twscs	Chip Select Setup Time prior to Write	5.0		5.0		ns	
twhes	Chip Select Hold Time after Write	5.0		5.0		ns	
tws	Write Disable Time		15		15	ns	
twR	Write Recovery Time		20		20	ns	

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
t_{r}	Output Rise Time		5.0		ns	Measured between 20% and
t_{f}	Output Fall Time		5.0		ns	80% or 80% and 20%
C_{IN}	Input Pin Capacitance		4.0	5.0	pF	Measured with a Pulse
Cout	Output Pin Capacitance		7.0	8.0	pF	Technique

[^18]2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
3. Tw measured at $t w S A=\operatorname{Min}, \operatorname{twSA}$ measured at $t w=\operatorname{Min}$.

Fig. 1 AC Test Circuit

Notes
All Timing Measurements Referenced to 50\% of Input Levels
$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V .

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

[^19]
FAIRCHILD

A Schlumberger Company

F10474
 1024×4-Bit Static Random Access Memory

F10K ECL Product

Description

The F10474 is a 4096-bit read/write Random Access Memory (RAM), organized 1024 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time - 25 ns Max
- Chip Select Access Time - 15 ns Max
- Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - $0.20 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

WE
$\overline{\mathrm{CS}}$
$\mathrm{A}_{0}-\mathrm{A}_{9}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$

Write Enable Input (Active LOW) Chip Select Input (Active LOW) Address Inputs
Data Inputs
Data Outputs

Logic Symbol

Connection Diagram

24-Pin DIP (Top View)

Note
The 24-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

$V_{C C}=\operatorname{Pin} 24$
$V_{C C A}=\operatorname{Pin} 1$
$V_{E E}=\operatorname{Pin} 12$
$N C=\operatorname{Pin} 10$

Logic Diagram

Functional Description

The F10474 is a fully decoded 4096-bit read/write random access memory, organized 1024 words by four bits. Word selection is achieved by means of a 10-bit address, A_{0} through A_{9}.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at $\mathrm{D}_{0}-\mathrm{D}_{3}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus $\mathrm{tW}(\mathrm{min})$ plus $\mathrm{tWHD}_{(\mathrm{min})}$ to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The output of the F10474 is an unterminated emitter follower, which allows maximum flexibility in choosing connection configurations. In many applications such as memory expansion, the outputs of many F10474
devices can be tied together. In other applications the wired-OR need not be used. In either case an external 50Ω pull-down resistor to - 2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Outputs	
	$\overline{\text { WE }}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{O}_{\boldsymbol{n}}$	Mode
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^20]
F10474

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current			220	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\max)}$
I_{IL}	Input LOW Current, $\overline{\mathrm{CS}}$	0.5 -50			170	$\mu \mathrm{~A}$
WE, A0-A9, V	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{min})}$					
IEE	Power Supply Current	-200	-160		mA	Inputs and Outputs Open

$A C$ Characteristics: $V_{E E}=-5.2 \mathrm{~V} \pm 5 \%, V_{C C}=V_{C C A}=G N D$, Output Load $=50 \Omega$ and 30 pF to -2.0 V , $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} \\ & \mathrm{t}_{\mathrm{RCS}} \\ & \mathrm{t}_{\mathrm{AA}} \end{aligned}$	Read Timing Chip Select Access Time Chip Select Recovery Time Address Access Time 2			$\begin{aligned} & 15 \\ & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b
tw	Write Timing Write Pulse Width to Guarantee Writing 3	16			ns	
twSD	Data Setup Time prior to Write	5.0			ns	
tWHD	Data Hold Time after Write	5.0			ns	
tWSA	Address Setup Time prior to Write ${ }^{3}$	10			ns	Figure 4
tWHA	Address Hold Time after Write	4.0			ns	
twscs	Chip Select Setup Time prior to Write	5.0			ns	
twhes	Chip Select Hold Time after Write	5.0			ns	
tws	Write Disable Time			15	ns	
twR	Write Recovery Time			20	ns	
t_{r}	Output Rise Time		5.0		ns	Measured between 20\% and
t_{f}	Output Fall Time		5.0		ns	80\% or 80% and 20%
CIN	Input Pin Capacitance		4.0	5.0	pF	Measured with a Pulse
Cout	Output Pin Capacitance		7.0	8.0	pF	Technique

[^21]Fig. 1 AC Test Circuit

Notes
All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{L}=50 \Omega$ to -2.0 V
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

F10474

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Packages and Outlines (See Section 10)
D = Ceramic DIP
F = Flatpak

Temperature Ranges
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, Ambient
Optional Processing
QR $=160$ Hour Burn In

FAIRCHILD

A Schlumberger Company

Bipolar Division

Description

The F10480 is a 16,384-bit read/write Random Access Memory (RAM), organized 16,384 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and noninverting Data output lines, as well as an active-LOW Chip Select line.

- Address Access Time - 25 ns Max
- Open-emitter Output for Easy Memory Expansion
- Power Dissipation - 0.05 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{W E}$	Write Enable Input (Active LOW)
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{13}$	Address Inputs
D	Data Input
O	Data Output

Logic Symbol

[^22]
F10480

16,384 x 1-Bit Static Random Access Memory

F10K ECL Product

Connection Diagram
20-Pin DIP (Top View)

Note
The 20 pin Flatpak version has the same pinouts (Connection Diagram) as theuall n-line Package.

Ordering Information

Logic Diagram

Functional Description

The F10480 is a fully decoded 16,384-bit read/write random access memory, organized 16,384 words by one bit. Bit selection is achieved by means of a 14-bit address, A_{0} through A_{13}.

One Chip Select input is provided for memory array expansion up to 32,768 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select, $(\overline{\mathrm{CS}})$ from the address without increasing address access time.

The read and write operations are controlled by the state of the active-LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{\mathrm{WE}}$ held LOW and the chip selected, the data at D is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus tw(min) plus tWHD(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the output (O).

The output of the F10480 is an unterminated emitter follower, which allows maximum flexibility in choosing output connection configurations. In many applications it is desirable to tie the outputs of several F10480 devices together. In other applications the wired-OR need not be used. In either case an external 50Ω pulldown resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is OFF.

Truth Table

Inputs			Output	
$\overline{\text { CS }}$	$\overline{\text { WE }}$	D	O	Mode
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Data	Read

[^23]Notes

Notes

Quality Assurance and Reliability $=5-5=2$

ECL RAMS

| TTL PROMS | |
| :---: | :---: |6

ECL Programmable Logic $-5=5$
TTL Programmable Logic

TTL Family Specifications

Absolute Maximum Ratings: | Above which the useful |
| :--- |
| life may be impaired |

Storage Temperature
Temperature (Ambient) Under Bias $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Vcc Pin Potential to Ground Pin

*Input Voltage (dc)	-0.5 V to $+125^{\circ} \mathrm{C}$
*Input Current (dc)	-0.5 V to +5.5 V
**Voltage Applied to Outputs	-12 mA to +5.0 mA
(output HIGH)	-0.5 V to +5.50 V
Output Current (dc)	

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.
**Output Current Limit Required

Guaranteed Operating Ranges

	Supply Voltage (Vcc)			Ambient Temperature Min
(TA) Note 1				

1. Operating specification with adequate time for temperature stabilization and transverse air flow exceeding 400 linear feet per minute, conformance testing performed instantaneously where $T_{A}=T_{J}=T_{C}$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee device operating performance.
2. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Symbol	Characteristic	Typ	Max	Unit	Condition
CIN	Input Pin Capacitance	4.0	5.0	pF	Measured with a Pulse
COUT	Output Pin Capacitance	7.0	8.0	pF	Technique

[^24]
FAIRCHILD

A Schlumberger Company

93415

1024×1-Bit Static Random Access Memory

Description

The 93415 is a 1024-bit read/write Random Access Memory (RAM), organized 1024 words by one bit. It is designed for high speed cache, control and buffer storage applications. The device includes full on-chip decoding, separate Data input and non-inverting Data output, as well as an active LOW Chip Select line.

- Commercial Address Access Time 93415-45 ns Max 93415A - 30 ns Max
- Military Address Access Time - 60 ns Max
- Features Open Collector Output
- Power Dissipation - $0.46 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address Inputs
$\overline{\mathrm{WE}}$	Write Enable Input (Active LOW)
D	Data Input
O	Data Output

Logic Symbol
The 16-pin Flatpak version has the same pinout connections as the

Note:

 Dual In-line package.
Connection Diagram

16-Pin DIP (Top View)

[^25]

TTL Bipolar Memory

Logic Diagram

Functional Description

The 93415 is a fully decoded 1024-bit read/write Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A_{0} through Ag_{9}.

One Chip Select input is provided for easy memory array expansion of up to 2048 bits without the need for external decoding. For larger memories, the fast chip select access time permits direct address decoding without an increase in overall memory access time.

The read and write functions of the 93415 are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When WE is held LOW and the chip is selected, the data at D is written into the location specified by the binary address present at A_{0} through A_{9}. Since the write function is level triggered, data must be held stable at the data input for at least twsD(min) plus $\mathrm{tw}_{(\text {min })}$ plus $\mathrm{twHD}_{\text {(min) }}$ to insure a valid write. When $\overline{\mathrm{WE}}$ is held HIGH and the chip selected, data is read from the addressed location and presented at the output (O).

An open collector output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93415 s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of RL value must be used to provide a HIGH at the output
when it is off. Any RL value within the range specified below may be used.

$$
\frac{V_{\mathrm{CC}}(\text { Max })}{\mathrm{I}_{\mathrm{OL}}-\mathrm{FO}(1.6)} \leq \mathrm{R}_{\mathrm{L}} \leq \frac{\mathrm{V}_{\mathrm{CC}}(\text { Min })-\mathrm{V}_{\mathrm{OH}}}{\mathrm{n}\left(\mathrm{I}_{\mathrm{CEX}}\right)+\mathrm{FO}(0.04)}
$$

R_{L} is in $k \Omega$
$\mathrm{n}=$ number of wired-OR outputs tied together FO = number of TTL Unit Loads (UL) driven
ICEx = Memory Output Leakage Current
$\mathrm{V}_{\mathrm{OH}}=$ Required Output HIGH Level at Output Node IoL = Output LOW Current

The minimum R_{L} value is limited by the output current sinking ability. The maximum R_{L} value is determined by the output and input leakage current which must be supplied to hold the output at V_{OH}.
One Unit Load $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW.
$\mathrm{FO}_{\text {MAX }}=5 \mathrm{UL}$.
Truth Table

Inputs			Output	
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D	O	Mode
H	X	X	H	Not Selected
L	L	L	H	Write "0"
L	L	H	H	Write "1"
L	H	X	DOUT	Read

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
$\mathrm{L}=\mathrm{LOW}$ Voltage Level (. 5 V)
X = Don't Care (HIGH or LOW)

DC Characteristics: Over operating temperature ranges (Notes 1, 2)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
Vol	Output LOW Voltage		0.3	0.45	V	$\mathrm{VCC}=\mathrm{Min}, \mathrm{IOL}=16 \mathrm{~mA}$	
VIH	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{6}$	
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{6}$	
IIL	Input LOW Current		-250	-400	$\mu \mathrm{A}$	$\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
IIH	Input HIGH Current		1.0	$\begin{array}{r} 40 \\ 1.0 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{I N}=4.5 \mathrm{~V} \\ & V_{C C}=\operatorname{Max}, V_{I N}=5.25 \mathrm{~V} \end{aligned}$	
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{I}_{\mathrm{N}}=-10 \mathrm{~mA}$	
ICEX	Output Leakage Current		1.0	100	$\mu \mathrm{A}$	$\mathrm{VCC}=\mathrm{Max}, \mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$	
ICC	Power Supply Current		95	$\begin{aligned} & 155 \\ & 170 \end{aligned}$	mA	Commercial Military	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ All Inputs GND

Notes

1. Operating specification with adequate time for temperature stabilization and transverse airflow exceeding 400 linear feet per minute. Conformance testing performed instantaneously where $T_{A}=T_{J}=T_{C}$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee performance.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading.
3. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
4. Short circuit to ground not to exceed one second.
5. Tw measured at twSA $=$ Min, twSA measured at $\mathrm{tw}=\mathrm{Min}$.
6. Static condition only.

93415

Commercial

AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 3)

Symbol	Characteristic	" ${ }^{\text {" }}$		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		20		35	ns	
tzRCS	Chip Select to HIGH Z		20		35	ns	Figures 3a, 3b
$t_{\text {A }}$	Address Access Time		30		45	ns	
	Write Timing						
tw	Write Pulse Widtr to Guarantee Writing 5	20		35		ns	
tWSD	Data Setup Time Prior to Write	5		5		ns	
tWHD	Data Hold Time after Write	5		5		ns	
tWSA	Address Setup Time Prior to Write5	5		5		ns	Figure 4
tWHA	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhcs	Chip Select Hold Time after Write	5		5		ns	
tzws	Write Disable to HIGH Z		20		35	ns	
twr	Write Recovery Time		25		40	ns	

Military
AC Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Notes 1,3)

Symbol	Characteristic	Min	Max	Unit	Condition
tacs tzRCS $t_{A A}$	Read Timing Chip Select Access Time Chip Select to HIGH Z Address Access Time		$\begin{aligned} & 45 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	Figures 3a, 3b
tw twSD tWHD tWSA tWHA twscs twhes tzws twR	Write Timing Write Pulse Width to Guarantee Writing5 Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write 5 Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Disable to HIGH Z Write Recovery Time	$\begin{array}{r} 40 \\ 5 \\ 5 \\ 15 \\ 5 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$		Figure 4

[^26]Fig. 1 AC Test Circuit

Fig. 2 Input Levels

Fig. 3 Read Mode Timing

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Speed Selection

Blank = Standard Speed
$A=$ 'A' Grade (Commercial Only)

Packages and Outlines (See Section 10)
D = Ceramic DIP
F = Flatpak
$L=$ Leadless Chip Carrier
$P=$ Plastic DIP

Temperature Range

$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Optional Processing

$\mathrm{QB}=$ Mil Std 883
Method 5004 and 5005, Level B
QC $=$ Mil Std 883
Method 5004 and 5005, Level C
QR $=$ Commercial Device with
160 Hour Burn In

1024×1-Bit Static Random Access Memory

TTL Bipolar Memory

Connection Diagram
16-Pin DIP (Top View)

[^27]
Logic Symbol

$V_{C C}=\operatorname{Pin} 16$
GND $=\operatorname{Pin} 8$

Logic Diagram

Functional Description

The 93L415 is a fully decoded 1024-bit read/write Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A_{0} through A_{9}.

One Chip Select input is provided for easy memory array expansion of up to 2048 bits without the need for external decoding. For larger memories, the fast chip select access time permits direct address decoding without an increase in overall memory access time.

The read and write functions of the 93L415 are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When $\overline{W E}$ is held LOW and the chip is selected, the data at D is written into the location specified by the binary address present at A_{0} through A_{9}. Since the write function is level triggered, data must be held stable at the data input for at least tWSD(min) plus tw(min) plus tWHD(min) to insure a valid write. When $\overline{W E}$ is held HIGH and the chip selected, data is read from the addressed location and presented at the output (O).

An open collector output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93L415s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of R_{L} value must be used to provide a HIGH at the output when it is off. Any R_{L} value within the range specified below may be used.

$$
\frac{V_{\mathrm{CC}}(\operatorname{Max})}{\mathrm{I}_{\mathrm{OL}}-\mathrm{FO}(1.6)} \leq \mathrm{R}_{\mathrm{L}} \leq \frac{\mathrm{V}_{\mathrm{CC}}(\operatorname{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{n}\left(\mathrm{I}_{\mathrm{CEX}}\right)+\mathrm{FO}(0.04)}
$$

R_{L} is in $k \Omega$
$\mathrm{n}=$ number of wired-OR outputs tied together
FO = number of TTL Unit Loads (UL) driven
ICEX $=$ Memory Output Leakage Current
$\mathrm{VOH}_{\mathrm{OH}}=$ Required Output HIGH Level at Output Node
IOL $=$ Output LOW Current

93L415

The minimum R_{L} value is limited by the output current sinking ability. The maximum R_{L} value is determined by the output and input leakage current which must be supplied to hold the output at V_{OH}. One Unit Load $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
Truth Table

Inputs			Output	
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D	O	Mode
H	X	X	H	Not Selected
L	L	L	H	Write "0"
L	L	H	H	Write "1"
L	H	X	DouT	Read

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
$\mathrm{L}=\mathrm{LOW}$ Voltage Level (. 5 V)
$\mathrm{X}=$ Don't Care (HIGH or LOW)

DC Characteristics: Over operating temperature ranges (Notes 1, 2)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
VOL	Output LOW Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$, $\mathrm{IOL}=16 \mathrm{~mA}$	
V_{IH}	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{6}$	
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{6}$	
IIL	Input LOW Current		-150	-300	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
IIH	Input HIGH Current		1.0	$\begin{array}{r} 40 \\ 1.0 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=5.25 \mathrm{~V} \end{aligned}$	
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{l}$ N $=-10 \mathrm{~mA}$	
ICEX	Output Leakage Current		1.0	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$	
Icc	Power Supply Current		45	$\begin{aligned} & 65 \\ & 75 \end{aligned}$	mA	Commercial Military	$V_{C C}=\operatorname{Max}$ All Inputs GND

Notes

1. Operating specification with adequate time for temperature stabilization and transverse airflow exceeding 400 linear feet per minute. Conformance testing performed instantaneously where $T_{A}=T_{J}=T_{C}$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee performance.
2. Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading.
3. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
4. Short circuit to ground not to exceed one second.
5. Tw measured at twSA $=$ Min, twsA measured at $t w=$ Min.
6. Static condition only.

Commercial

AC Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}($ Notes 1,3$)$

Symbol	Characteristic	Min	Max	Unit	Condition
tacs tzRCS $t_{A A}$	Read Timing Chip Select Access Time Chip Select to HIGH Z Address Access Time		$\begin{aligned} & 40 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b
tw twSD tWHD tWSA tWHA twscs twhes tzws twR	Write Timing Write Pulse Width to Guarantee Writing5 Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write5 Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Disable to HIGH Z Write Recovery Time	$\begin{array}{r} 45 \\ 5 \\ 5 \\ 10 \\ 5 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns ns ns ns ns ns ns ns ns	Figure 4

Military
AC Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Notes 1,3)

Symbol	Characteristic	Min	Max	Unit	Condition
tacs tzRCS $t_{A A}$	Read Timing Chip Select Access Time Chip Select to HIGH Z Address Access Time		$\begin{aligned} & 45 \\ & 50 \\ & 70 \end{aligned}$		Figures 3a, 3b
tw twsD twhD tWSA tWHA twscs twhes tzws twR	Write Timing Write Pulse Width to Guarantee Writing5 Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write5 Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Disable to HIGH Z Write Recovery Time	$\begin{aligned} & 50 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 45 \\ & 55 \end{aligned}$	ns ns ns ns ns ns ns ns ns	Figure 4

[^28]Fig. 1 AC Test Circuit

Load A

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note:

Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Packages and Outlines (See Section 10)
D = Ceramic DIP
F = Flatpak
$\mathrm{L}=$ Leadiess Chip Carrier
P = Plastic DIP

Temperature Range
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Optional Processing
$\mathrm{QB}=$ Mil Std 883
Method 5004 and 5005, Level B
QC $=$ Mil Std 883
Method 5004 and 5005, Level C
QR $=$ Commercial Device with
160 Hour Burn In

64×9-Bit Static Random Access Memory

TTL Bipolar Memory

Description

The 93419 is a 576-bit read/write Random Access Memory (RAM), organized 64 words by nine bits per word with open collector outputs. It is ideally suited for scratchpad, small buffer and other applications where the number of required words is small and where the number of required bits per word is relatively large. The ninth bit can provide parity for 8 -bit word systems. The commercial version of the 93419 is available in two speeds "standard" speed and an 'A' grade.

- Commercial Address Access Time

93419 - 45 ns Max
93419A - 35 ns Max

- Military Address Access Time - $\mathbf{6 0}$ ns Max
- Fully TTL Compatible
- Features Open Collector Outputs
- Data Output is the Complement of Data Input
- Power Dissipation - $0.87 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{5}$	Address Inputs
$\mathrm{D}_{0}-\mathrm{D}_{8}$	Data Inputs
$\overline{\mathrm{O}_{0}}-\overline{\mathrm{O}}_{8}$	Inverting Data Outputs
$\overline{\mathrm{WE}}$	Write Enable Input (Active LOW)
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)

Logic Symbol

$V_{C C}=\operatorname{Pin} 28$ GND $=\operatorname{Pin} 14$

Connection Diagram
28-Pin DIP (Top View)

Note:

The 28 -Pin Flatpak and the 28 -Pin Leadless Chip Carrier have the same pinout as the 28-Pin DIP.

Logic Diagram

Functional Description

The 93419 is a fully decoded 576 -bit random access memory organized 64 words by nine bits. Word selection is achieved by means of a 6 -bit address, A_{0} through A_{5}.

One Chip Select input is provided for easy memory array expansion of up to 128 words without the need for external decoding. For larger memories, the fast chip select access time permits decoding without an increase in overall memory access time.

The read and write functions of the 93419 are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When $\overline{W E}$ is held LOW and the chip is selected, the data $\mathrm{D}_{0}-\mathrm{D}_{5}$ is written into the location specified by the binary address present at A_{0} through A_{5}. Since the write function is level triggered, data must be held stable at the data input for at least twsD(min) plus tw (min) plus twHD(min) to insure a valid write. When $\overline{\text { WE }}$ is held HIGH and the chip selected, inverted data is read from the addressed location and presented at the outputs ($\overline{\mathrm{O}} 0-\overline{\mathrm{O}}_{8}$).

Open collector outputs are provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93419s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of R_{L} value must be used to provide a HIGH at the output when it is off. Any R_{L} value within the range specified below may be used.

$$
\frac{V_{C C}(\operatorname{Max})}{I_{O L}-F O(1.6)} \leq R_{L} \leq \frac{V_{C C}(\operatorname{Min})-V_{O H}}{n\left(I_{C E X}\right)+F O(0.04)}
$$

R_{L} is in $k \Omega$
$\mathrm{n}=$ number of wired-OR outputs tied together
FO = number of TTL Unit Loads (UL) driven
ICEX $=$ Memory Output Leakage Current
$\mathrm{V}_{\mathrm{OH}}=$ Required Output HIGH Level at Output Node
IOL = Output LOW Current

The minimum R_{L} value is limited by the output current sinking ability. The maximum R_{L} value is determined by the output and input leakage current which must be supplied to hold the output at VOH . One Unit Load $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.

Truth Table

Inputs			Output	
$\overline{\text { CS }}$	$\overline{\text { WE }}$	D	Open Collector	
H	X	X	H	Not Selected
L	L	L	H	Write "0"*
L	L	H	H	Write "1"*
L	H	X	DOUT*	Read

$H=H I G H$ Voltage Level (2.4 V)
$\mathrm{L}=$ LOW Voltage Level (. 5 V)
$X=$ Don't Care (HIGH or LOW)
*Memory inverts from Data In to Data Out

DC Characteristics: Over operating temperature ranges (Notes 1, 2)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
VOL	Output LOW Voltage		0.3	0.5	V	$\mathrm{VCC}=\mathrm{Min}, \mathrm{IOL}=12 \mathrm{~mA}$	
V_{IH}	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{6}$	
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{6}$	
IIL	Input LOW Current		-200	-400	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
IIH	Input HIGH Current		1.0	$\begin{array}{r} 40 \\ 1.0 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=5.25 \mathrm{~V} \end{aligned}$	
ICEX	Output Leakage Current		1.0	-100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$	
VIC	Input Clamp Diode Voltage		-1.0	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{N}}=-10 \mathrm{~mA}$, Note 4	
ICC	Power Supply Current		100	$\begin{aligned} & 150 \\ & 170 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Commercial Military	$V_{c c}=\operatorname{Max}$ All Inputs Grounded

Notes

1. Operating specification with adequate time for temperature stabilization and transverse airflow exceeding 400 linear feet per minute. Conformance testing performed instantaneously where $T_{A}=T_{J}=T_{C}$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee performance.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading.
3. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
4. Short circuit to ground not to exceed one second.
5. Tw measured at twSA $=$ Min, twSA measured at $t w=$ Min.
6. Static condition only.

Commercial

AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 3)

Military
AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Notes 1, 3)

Symbol	Characteristic	Min	Max	Unit	Condition
	Read Timing				
$t_{\text {ACS }}$	Chip Select Access Time		40	ns	
tzRCS	Chip Select to HIGH Z		40	ns	Figures 3a, 3b
$t_{\text {A }}$	Address Access Time		60	ns	
	Write Timing				
tw	Write Pulse Width to Guarantee Writing 5	45		ns	
tWSD	Data Setup Time Prior to Write	5		ns	
tWHD	Data Hold Time after Write	5		ns	
twSA	Address Setup Time Prior to Write 5	10		ns	Figure 4
twha	Address Hold Time after Write	5		ns	
twscs	Chip Select Setup Time Prior to Write	5		ns	
twhes	Chip Select Hold Time after Write	5		ns	
tzws	Write Disable to HIGH Z		45	ns	
twr	Write Recovery Time		55	ns	

[^29]
93419

Fig. 1 AC Test Load

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a. Read Mode Propagation Delay from Chip Select

b. Read Mode Propagation Delay from Address Inputs

Fig. 4 Write Mode Timing

Note:
Timing Diagram represents one solution which results in an optimum cycle time. Timing may
be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

FAIRCHILD
A Schlumberger Company

Bipolar Division

93422
256×4-Bit Static Random Access Memory

TTL Bipolar Memory

Description

The 93422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits. It is designed for high speed cache, control and buffer storage applications. The 93422 is available in two speeds, "standard" speed and an "A" grade. The device includes full on-chip decoding, separate Data inputs and non-inverting Data outputs, as well as two Chip Select lines.

- Commercial Address Access Time

93422-45 ns Max
93422A - 35 ns Max

- Military Address Access Time

93422-60 ns Max
93422A - 45 ns Max

- Fully TTL Compatible
- Features Three State Outputs
- Power Dissipation - $0.46 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address Inputs
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs
$\overline{\mathrm{CS}} 1$	Chip Select Input (Active LOW)
CS 2	Chip Select Input (Active HIGH)
$\overline{\mathrm{WE}}$	Write Enable Input (Active LOW)
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Data Outputs

Logic Symbol

Connection Diagrams
22-Pin DIP (Top View)

24-Pin Flatpak (Top View)

Logic Diagram

Functional Description

The 93422 is a fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, A_{0} through A_{7}.

Two Chip Select inputs, inverting and non-inverting, are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of the chip selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When $\overline{W E}$ is
held LOW and the chip is selected, the data at $D_{0}-D_{3}$ is written into the addressed location. Since the write function is level-triggered, data must be held stable for at least tWSD(min) plus tw(min) plus twHD(min) to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The 93422 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

Truth Table

Inputs					Outputs	Mode
$\overline{\mathrm{OE}}$	$\overline{\mathrm{CS}}_{1}$	CS_{2}	$\overline{W E}$	$\mathrm{D}_{0}-\mathrm{D}_{3}$	3-State	
X	H	X	X	X	HIGH Z	Not Selected
X	X	L	X	X	HIGH Z	Not Selected
L	L	H	H	X	$\mathrm{O}_{0}-\mathrm{O}_{3}$	Read Stored Data
L	L	H	L	L	HIGH Z	Write "0"
L	L	H	L	H	HIGH Z	Write "1"
H	L	H	H	X	HIGH Z	Output Disabled
H	L	H	L	L	HIGH Z	Write "0" (Output Disabled)
H	L	H	L	H	HIGH Z	Write "1" (Output Disabled)

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
$\mathrm{L}=\mathrm{LOW}$ Voltage Level (.5 V)
$X=$ Don't Care (HIGH or LOW)
High $Z=$ High-Impedance
DC Characteristics: Over operating temperature ranges (Notes 1, 2)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
VoL	Output LOW Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=8 \mathrm{~mA}$
VIH	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{6}$
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{6}$
VOH	Output HIGH Voltage	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-5.2 \mathrm{~mA}$
IIL	Input LOW Current		-150	-300	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}^{\prime} \mathrm{N}=0.4 \mathrm{~V}$
IIH	Input HIGH Current		1.0	$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{C C}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=5.25 \mathrm{~V} \end{aligned}$
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$V_{C C}=$ Max, $\mathrm{I}_{\text {IN }}=-10 \mathrm{~mA}$
loff	Output Current (HIGH Z)			$\begin{array}{r} 50 \\ -50 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=2.4 \mathrm{~V} \\ & \mathrm{VCC}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$
los	Output Current Short Circuit to Ground			-70	mA	VCC $=$ Max, Note 4
ICC	Power Supply Current		$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 150 \\ & 170 \end{aligned}$	mA	Commercial Military $V_{C C}=$ Max All Inputs GND

Notes

1. Operating specification with adequate time for temperature stabilization and transverse airflow exceeding 400 linear feet per minute. Conformance testing performed instantaneously where $T_{A}=T_{J}=T_{C}$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee performance.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading.
3. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
4. Short circuit to ground not to exceed one second.
5. Tw measured at twSA $=$ Min, twSA measured at $t w=$ Min.
6. Static condition only.

93422

Commercial
AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 3)

Symbol	Characteristic	" ${ }^{\text {" }}$		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		30		30	ns	
tzRCs	Chip Select to HIGH Z		30		30	ns	
taos	Output Enable Access Time		30		30	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		30		30	ns	
$t_{\text {AA }}$	Address Access Time		35		45	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing 5	25		30		ns	
tWSD	Data Setup Time Prior to Write	5		5		ns	
tWHD	Data Hold Time after Write	5		5		ns	
tWSA	Address Setup Time Prior to Write5	5		10		ns	Figure 4
twha	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Select Hold Time after Write	5		5		ns	
tzws	Write Disable to HIGH Z		35		35	ns	
twR	Write Recovery Time		35		40	ns	

Military
AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}($ Notes 1,3$)$

Symbol	Characteristic	" A "		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
tacs	Chip Select Access Time		35		45	ns	
tzrcs	Chip Select to HIGH Z		35		45	ns	
taos	Output Enable Access Time		35		45	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		35		45	ns	
$\mathrm{t}_{\text {AA }}$	Address Access Time		45		60	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing 5	35		40		ns	
twSD	Data Setup Time Prior to Write	5		5		ns	
twHD	Data Hold Time after Write	5		5		ns	
tWSA	Address Setup Time Prior to Write5	5		10		ns	Figure 4
twha	Address Hold Time after Write	5		10		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Select Hold Time after Write	5		10		ns	
tzws	Write Disable to HIGH Z		40		45	ns	
twr	Write Recovery Time		40		50	ns	

[^30]
93422

Fig. 1 AC Test Load

LOAD B

Fig. 2 Input Levels

Fig. 3 Read Mode Timing

b Read Mode Propagation Delay from Chip Select

c Read Mode Propagation Delay From Output Enable

Fig. 4 Write Mode Timing

Note
Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Speed Selection

Blank = Standard Speed
$A=$ ' A ' Grade

Packages and Outlines (See Section 10)
D = Ceramic DIP
F = Flatpak
$L=$ Leadless Chip Carrier
$P=$ Plastic DIP

Temperature Range
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Optional Processing
QB $=$ Mil Std 883 Method 5004 and 5005, Level B
QC $=$ Mil Std 883
Method 5004 and 5005, Level C
QR = Commercial Device with
160 Hour Burn In

FAIRCHILD

A Schlumberger Company

Bipolar Division

Description

The 93L422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits. It is designed for high speed cache, control and buffer storage applications. The 93L422 is available in two speeds, "standard" speed and an " A " grade. The device includes full on-chip decoding, separate Data inputs and non-inverting Data outputs, as well as two Chip Select lines.

- Commercial Address Access Time

93L422-60 ns Max
93L422A - 45 ns Max

- Military Address Access Time

$$
\text { 93L422 - } 75 \text { ns Max }
$$

$$
\text { 93L422A - } 55 \text { ns Max }
$$

- Fully TTL Compatible
- Features Three State Outputs
- Power Dissipation - $0.25 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address Inputs
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs
$\overline{\mathrm{CS}} 1$	Chip Select Input (Active LOW)
CS 2	Chip Select Input (Active HIGH)
$\overline{\mathrm{WE}}$	Write Enable Input (Active LOW)
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Data Outputs

Logic Symbol

93L422
256×4-Bit Static Random Access Memory

TTL Bipolar Memory

Connection Diagrams
22-Pin DIP (Top View)

Logic Diagram

Functional Description

The 93L422 is a fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, A_{0} through A_{7}.

Two Chip Select inputs, inverting and non-inverting, are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of the chip selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When $\overline{\mathrm{WE}}$ is
held LOW and the chip is selected, the data at $D_{0}-D_{3}$ is written into the addressed location. Since the write function is level-triggered, data must be held stable for at least tWSD(min) plus $\mathrm{t}_{\mathrm{W}}(\mathrm{min})$ plus $\mathrm{tWHD}_{(\mathrm{min})}$ to insure a valid write. To read, $\overline{W E}$ is held HIGH and the chip selected. Non-inverted data is then presented at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{3}\right)$.

The 93L422 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

93L422

Truth Table

Inputs					Outputs	Mode
$\overline{\mathrm{OE}}$	$\overline{\mathrm{CS}}_{1}$	CS_{2}	$\overline{W E}$	$\mathrm{D}_{0}-\mathrm{D}_{3}$	3-State	
X	H	X	x	x	HIGH Z	Not Selected
X	X	L	X	X	HIGH Z	Not Selected
L	L	H	H	X	$\mathrm{O}_{0}-\mathrm{O}_{3}$	Read Stored Data
L	L	H	L	L	HIGH Z	Write "0"
L	L	H	L	H	HIGH Z	Write "1"
H	L	H	H	X	HIGH Z	Output Disabled
H	L	H	L	L	HIGH Z	Write "0" (Output Disabled)
H	L	H	L	H	HIGH Z	Write "1" (Output Disabled)

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
$\mathrm{L}=\mathrm{LOW}$ Voltage Level (. 5 V)
X = Don't Care (HIGH or LOW)
High $Z=$ High-Impedance

DC Characteristics: Over operating temperature ranges (Notes 1, 2)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
Vol	Output LOW Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=8 \mathrm{~mA}$	
VIH	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All.Inputs ${ }^{6}$	
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All inputs ${ }^{6}$	
VOH	Output HIGH Voltage	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-5.2 \mathrm{~mA}$	
IIL	Input LOW Current		-150	-300	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}$ IN $=0.4 \mathrm{~V}$	
IH	Input HIGH Current		1.0	$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$	$\begin{aligned} & V_{C C}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=5.25 \mathrm{~V} \end{aligned}$	
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{I}}=-10 \mathrm{~mA}$	
loff	Output Current (HIGH Z)			$\begin{array}{r} 50 \\ -50 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$	
los	Output Current Short Circuit to Ground			-70	mA	$V_{C C}=$ Max, Note 4	
ICC	Power Supply Current		$\begin{aligned} & 60 \\ & 69 \end{aligned}$	$\begin{aligned} & 80 \\ & 90 \end{aligned}$	mA	Commercial Military	$V_{C C}=M a x$ All Inputs GND

Notes

1. Operating specification with adequate time for temperature stabilization and transverse airflow exceeding 400 linear feet per minute. Conformance testing performed instantaneously where $T_{A}=T_{J}=T$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee performance.
2. Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading.
3. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
4. Short circuit to ground not to exceed one second.
5. Tw measured at twSA $=$ Min, twSA measured at $t w=$ Min.
6. Static condition only.

Commercial

AC Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1,3)

Symbol	Characteristic	" A "		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		30		35	ns	
tzRCS	Chip Select to HIGH Z		30		35	ns	
taos	Output Enable Access Time		30		35	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		30		35	ns	
$t_{\text {AA }}$	Address Access Time		45		60	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing 5	30		45		ns	
twSD	Data Setup Time Prior to Write	5		5		ns	
tWHD	Data Hold Time after Write	5		5		ns	
twSA	Address Setup Time Prior to Write5	10		10		ns	Figure 4
tWHA	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Select Hold Time after Write	5		5		ns	
tzws	Write Disable to HIGH Z		35		40	ns	
twR	Write Recovery Time		40		45	ns	

Military
AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Notes 1,3)

Symbol	Characteristic	" ${ }^{\text {" }}$		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		40		45	ns	
tzRCS	Chip Select to HIGH Z		40		45	ns	
taos	Output Enable Access Time		40		45	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		40		45	ns	
t_{AA}	Address Access Time		55		75	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing 5	40		55		ns	
tWSD	Data Setup Time Prior to Write	5		5		ns	
tWHD	Data Hold Time after Write	5		5		ns	
twSA	Address Setup Time Prior to Write5	10		10		ns	Figure 4
tWHA	Address Hold Time after Write	5		10		ns	
twscs	Chip Select Setup Time Prior to Write	10		5		ns	
twhes	Chip Select Hold Time after Write	5		10		ns	
tzws	Write Disable to HIGH Z		45		45	ns	
twR	Write Recovery Time		50		50	ns	

Notes on preceeding page

Fig. 1 AC Test Load

LOAD A

LOAD B

b Propagation Delay from Chip Select

c Propagation Delay From Output Enable

Fig. 3 Read Mode Timing
b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Note:

Timing Diagram represents one solution which results in an optimum cycle time. Timing may
be changed to fit various applications as long as the worst case limits are not violated.

Ordering Information

Speed Selection

Blank = Standard Speed
$A=$ ' A ' Grade (Commercial Only)
Packages and Outlines (See Section 10) Optional Processing
$D=$ Ceramic DIP $\quad 6 \mathrm{~S} \quad$ QB $=$ Mil Std 883

F = Flatpak 4P
$L=$ Leadless Chip Carrier $2 J$
$P=$ Plastic DIP $4 K$

Temperature Range
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

QB $=$ Mil Std 883
Method 5004 and 5005, Level B
QC $=$ Mil Std 883
Method 5004 and 5005, Level C
QR = Commercial Device with
160 Hour Burn In

FAIRCHILD

A Schlumberger Company

Bipolar Division

Description

The 93425 is a 1024-bit read/write Random Access Memory (RAM), organized 1024 words by one bit. It is designed for high speed cache, control and buffer storage applications. The commercial version of the 93425 is available in two speeds, "standard" speed and an " A " grade. The device includes full on-chip decoding, separate Data input and non-inverting Data output, as well as an active LOW Chip Select line.

- Commercial Address Access Time

93425-45 ns Max
93425A - 30 ns Max

- Military Address Access Time

93425-60 ns Max
93425A - 45 ns Max

- Features Three State Output
- Power Dissipation - $0.46 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\mathrm{CS}}$	Chip Select (Active LOW)
$\mathrm{A}_{0}-\mathrm{Ag}_{9}$	Address Inputs
$\overline{\mathrm{WE}}$	Write Enable (Active LOW)
D	Data Input
O	Data Output

Logic Symbol

TTL Bipolar Memory

Connection Diagram

16-Pin DIP (Top View)

Note:

The 16 pin Flatpak version has the same pinout connections as the
Dual In-line package

Logic Diagram

Functional Description

The 93425 is a fully decoded 1024-bit read/write Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A_{0} through A_{9}.

One Chip Select input is provided for easy memory array expansion of up to 2048 bits without the need for external decoding. For larger memories, the fast chip select access time permits direct address decoding without an increase in overall memory access time.

The read and write functions of the 93425 are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}})$ input. When $\overline{W E}$ is held LOW and the chip is selected, the data at D is written into the location specified by the binary address present at A_{0} through A_{9}. Since the write function is level triggered, data must be held stable at the data input for at least $\operatorname{tWSD}(\mathrm{min})$ plus tw (min) plus tWHD(min) to insure a valid write. When $\overline{W E}$ is held HIGH and the chip selected, data is read from the addressed location and presented at the output (O).

The 93425 has a three-state output which provides an active pull-up or pull-down when enabled and a high impedance (HIGH Z) state when disabled. The active pull-up provides drive capability for high capacative loads while the high impedance state allows optimization of word expansion in bus organized systems.

Truth Table

Inputs			Output	
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	D	O	
H	X	X	HIGH Z	Not Selected
L	L	L	HIGH Z	Write "0"
L	L	H	HIGH Z	Write"1"
L	H	X	DOUT	Read

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
$\mathrm{L}=\mathrm{LOW}$ Voltage Level (.5 V)
X = Don't Care (HIGH or LOW)

DC Characteristics: Over operating temperature ranges (Notes 1, 2)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
Vol	Output LOW Voltage		0.3	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=16 \mathrm{~mA}$	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{6}$	
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{6}$	
VOH	Output HIGH Voltage	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-5.2 \mathrm{~mA}$	
IIL	Input LOW Current		-250	-400	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
IH	Input HIGH Current		1.0	$\begin{array}{r} 40 \\ 1.0 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=5.25 \mathrm{~V} \end{aligned}$	
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{N}}=-10 \mathrm{~mA}$	
loff	Output Current (HIGH Z)			$\begin{array}{r} 50 \\ -50 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=2.4 \mathrm{~V} \\ & \mathrm{VCC}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$	
los	Output Current Short Circuit to Ground			-100	mA	Vcc $=$ Max, Note 4	
ICC	Power Supply Current		95	$\begin{aligned} & \hline 155 \\ & 170 \end{aligned}$	mA	Commercial Military	$V_{C C}=\operatorname{Max}$ All Inputs GND

Notes

1. Operating specification with adequate time for temperature stabilization and transverse airflow exceeding 400 linear feet per minute. Conformance testing performed instantaneously where $T_{A}=T_{J}=T C$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee performance.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading.
3. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
4. Short circuit to ground not to exceed one second.
5. Tw measured at twSA $=$ Min, $t w S A$ measured at $t w=$ Min.
6. Static condition only.

Commercial

AC Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1,3)

Symbol	Characteristic	" ${ }^{\text {" }}$		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		20		35	ns	
tzRCS	Chip Select to HIGH Z		20		35	ns	Figures 3a, 3b
$t_{\text {AA }}$	Address Access Time		30		45	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing 5	20		35		ns	
tWSD	Data Setup Time Prior to Write	5		5		ns	
tWHD	Data Hold Time after Write	5		5		ns	
twSA	Address Setup Time Prior to Write5	5		5		ns	Figures 4a, 4b
tWHA	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Selert Hold Time after Write	5		5		ns	
tzws	Write Disaole to HIGH Z		20		35	ns	
tWR	Write Recovery Time		25		40	ns	

Military
AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Notes 1,3)

Symbol	Characteristic	"A"		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
tacs	Chip Select Access Time		35		45	ns	
tzRCS	Chip Select to HIGH Z		35		50	ns	Figures 3a, 3b
$t_{\text {AA }}$	Address Access Time		45		60	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing5	35		40		ns	
twSD	Data Setup Time Prior to Write	5		5		ns	
tWHD	Data Hold Time after Write	5		5		ns	
tWSA	Address Setup Time Prior to Write5	5		15		ns	Figures 4a, 4b
tWHA	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Select Hold Time after Write	5		5		ns	
tzws	Write Disable to HIGH Z		35		45	ns	
twr	Write Recovery Time		40		50	ns	

[^31]Fig. 1 AC Test Output Load

LOAD A

LOAD B

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Address

b Read Mode Propagation Delay from Address

Fig. 4a Write Mode Timing

Fig. 4b Write Enable to HIGH Z Delay

Ordering Information

[^32]
FAIRCHILD

A Schlumberger Company

TTL Bipolar Memory

Description

The 93L425 is a 1024-bit read/write Random Access Memory (RAM), organized 1024 words by one bit. It is designed for high speed cache, control and buffer storage applications. The commercial version of the 93L425 is available in two speeds, "standard" speed and an "A" grade. The device includes full on-chip decoding, separate Data input and non-inverting Data output, as well as an active LOW Chip Select line.

- Commercial Address Access Time - 60 ns Max
- Military Address Access Time - 70 ns Max
- Features Three State Output
- Power Dissipation - 0.22 mW/Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\mathrm{CS}}$	Chip Select (Active LOW)
$\mathrm{A}_{0}-\mathrm{Ag}_{9}$	Address Inputs
$\overline{\mathrm{WE}}$	Write Enable (Active LOW)
D	Data Input
O	Data Output

Logic Symbol

Connection Diagram

16 Pin DIP (Top View)

Note:

The 16-pin Flatpak version has the same pinout connections as the Dual In-line package.

[^33]
Logic Symbol

The 93L425 has a three-state output which provides an active pull-up or pull-down when enabled and a high impedance (HIGH Z) state when disabled. The active pull-up provides drive capability for high capacative loads while the high impedance state allows optimization of word expansion in bus organized systems.

Truth Table

Inputs			Output	
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	\mathbf{D}	$\mathbf{0}$	Mode
H	X	X	HIGH Z	Not Selected
L	L	L	HIGH Z	Write "0"
L	L	H	HIGH Z	Write "1"
L	H	X	DouT	Read

[^34]
93L425

DC Characteristics: Over operating temperature ranges (Notes 1, 2)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
VoL	Output LOW Voltage		0.35	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{loL}=16 \mathrm{~mA}$	
V_{IH}	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{6}$	
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{6}$	
VOH	Output HIGH Voltage	2.4			V	$\mathrm{VCC}^{\mathrm{M}} \mathrm{Min}, \mathrm{IOH}=-5.2 \mathrm{~mA}$	
ILL	Input LOW Current		-150	-300	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	
IIH	Input HIGH Current		1.0	$\begin{array}{r} 40 \\ 1.0 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{I N}=4.5 \mathrm{~V} \\ & V_{C C}=\operatorname{Max}, V_{I N}=5.25 \mathrm{~V} \end{aligned}$	
VIC	Input Diode Clamp Voltage		-1.0	-1.5	v	$V_{C C}=$ Max, $\mathrm{lin}=-10 \mathrm{~mA}$	
Ioff	Output Current (HIGH Z)			$\begin{array}{r} 50 \\ -50 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} V_{C C} & =\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=2.4 \mathrm{~V} \\ \mathrm{VCC}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }} & =0.5 \mathrm{~V} \end{aligned}$	
los	Output Current Short Circuit to Ground			-100	mA	$\mathrm{VCC}=\mathrm{Max}$, Note 4	
Icc	Power Supply Current		45	$\begin{aligned} & 65 \\ & 75 \end{aligned}$	mA	Commercial Military	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { All Inputs GND } \end{aligned}$

Notes

1. Operating specification with adequate time for temperature stabilization and transverse airflow exceeding 400 linear feet per minute Conformance testing performed instantaneously where $T_{A}=T_{J}=T_{C}$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee performance.
2. Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading.
3. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
4. Short circuit to ground not to exceed one second.
5. Tw measured at twSA $=$ Min, twSA measured at $t w=$ Min.
6. Static condition only.

Commercial

AC Characteristics: $\mathrm{VCC}_{\mathrm{C}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 3)

Symbol	Characteristic	Min	Max	Unit	Condition
tacs tzRCS tAA	Read Timing Chip Select Access Time Chip Select to HIGH Z Address Access Time		$\begin{aligned} & 40 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	Figures 3a, 3b
tw twSD twHD twSA tWHA twscs twhes tzws twR	Write Timing Write Pulse Width to Guarantee Writing5 Data Setup Time Prior to Write Data Hold Time after Write Address Setup Time Prior to Write 5 Address Hold Time after Write Chip Select Setup Time Prior to Write Chip Select Hold Time after Write Write Disable to HIGH Z Write Recovery Time	$\begin{array}{r} 45 \\ 5 \\ 5 \\ 10 \\ 5 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns ns	Figure 4a, 4b

Military
AC Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Notes 1,3)

Symbol	Characteristic	Min	Max	Unit	Condition
ACS	Read Timing				
	Chip Select Access Time		45	ns	
	Address Access Time		50	ns	Figures 3a, 3b
	Write Timing				
tw	Write Pulse Width to Guarantee Writing5	50		ns	
twSD	Data Setup Time Prior to Write	10		ns	
twHD	Data Hold Time after Write	10		ns	
tWSA	Address Setup Time Prior to Write5	10		ns	Figure 4a, 4b
tWHA	Address Hold Time after Write	10		ns	
twSCS	Chip Select Setup Time Prior to Write	10		ns	
tWHCS	Chip Select Hold Time after Write	5		ns	
tzWs	Write Disable to HIGH Z		45	ns	
tWR	Write Recovery Time		55	ns	

[^35]Fig. 4 AC Test Output Load

LOAD B

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select

b Read Mode Propagation Delay from Address

Fig. 4 Write Mode Timing

Fig. 4b Write Enable to HIGH Z Delay

Speed Selection
Blank = High Speed
$A=$ ' A ' Grade

Packages and Outlines (See Section 10)
D = Ceramic DIP
F = Flatpak
$\mathrm{L}=$ Leadless Chip Carrier
$P=$ Plastic DIP

Temperature Ranges

$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$\mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Optional Processing QB $=$ Mil Std 883

Method 5004 \& 5005, Level B
QC $=$ Mil Std 883
Method 5004 \& 5005 , Level C
QR $=$ Commercial Device with 160 Hour Burn In

FAIRCHILD

A Schlumberger Company

93475
1024×4-Bit Static Random Access Memory

Bipolar Division

Description

The 93475 is a 4096-bit read/write Random Access Memory (RAM), organized 1024 words by four bits per word. It is designed for high speed cache, control and buffer torage applications. The military version of the 93475 is available in two speeds, "standard" speed and an "A" grade. The device includes full on-chip decoding and an active LOW Chip Select line.

- Address Access Time - 45 ns Max
- Chip Select Access Time - $\mathbf{3 5}$ ns Max
- Features Three State Outputs
- Common Data I/O's
- Industry Standard 2114 Pinout
- Power Dissipation - $0.16 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\frac{\mathrm{A}_{0}-\mathrm{A}_{9}}{\overline{\mathrm{CS}}}$	Address Inputs
$\overline{\mathrm{WE}}$	Chip Select Input (Active LOW)
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$	Write Enable Input (Active LOW)
Data Input/Data Outputs	

Logic Symbol

$V_{C C}=\operatorname{Pin} 18$
GND $=\operatorname{Pin} 9$

Connection Diagram
18-Pin DIP (Top View)

Note:
The 18-pin Flatpak version has the same pinout connections as the Dual In-line package.

93475

Logic Diagram

Functional Description

The 93475 is a fully decoded 4096-bit read/write Random Access Memory organized 1024 words by four bits per word. Word selection is achieved by means of a 10-bit address, Ao through A9.

One Chip Select input is provided for logic flexibility or for memory array expansion of up to 8196 bits without the need for external decoding. For larger memories, the fast chip select access time permits the decoding of Chip Select, (CS) from the address without affecting system performance.

The read and write functions of the 93475 are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. When $\overline{W E}$ is held LOW and the chip is selected, the data at $\mathrm{I} / \mathrm{O}_{1}$ through $\mathrm{I} / \mathrm{O}_{4}$ is written into the addressed locations. Since the write function is level triggered, data must be held stable at the data input for at least $\mathrm{tWSD}(\mathrm{min})$ plus $\mathrm{t} W(\mathrm{~min})$ to insure a valid write.

When $\overline{W E}$ is held HIGH and the chip selected, data is read from the addressed location and presented at the outputs ($\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$).

The 93475 has three-state outputs for use in bus organized systems.

Truth Table

Inputs			
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	$/ \mathbf{O}_{1}-\mathrm{I} / \mathbf{O}_{4}$	Mode
H	X	$\mathrm{HIGH} Z$	Not Selected
L	H	Dout	Read
L	L	DIN HIGH Z	Write

[^36]93475

Fig. 1 AC Test Load Output Load

Load A

Load B

Loading Conditions

Fig. 2 Input Levels

FAIRCHILD
A Schlumberger Company

Bipolar Division
93479
256×9-Bit Static
Random Access Memory
TTL Bipolar Memory

Description

The 93479 is a 2304-bit read/write Random Access Memory (RAM), organized as 256 words by nine bits per word. It is ideally suited for scratchpad, small buffer and other applications where the number of required words is small and where the number of required bits per word is relatively large. The ninth bit can be used to provide parity for 8-bit word systems.

- Commercial Address Access Time - 45 ns Max
- Military Address Access Time - 60 ns Max
- Common Data Input/Outputs
- Features Three State Outputs
- Power Dissipation - 0.29 mW/Bit Typ

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{7} \quad$ Address Inputs
$D_{0}-D_{8}$ Data Input/Outputs
$\overline{O E} \quad$ Output Enable Input (Active LOW)
$\overline{\text { WE }} \quad$ Write Enable Input (Active LOW)
$\overline{\mathrm{CS}} \quad$ Chip Select Input (Active LOW)

Connection Diagram

22-Pin DIP (Top View)

Logic Symbol

$\mathrm{V}_{\mathrm{Cc}}=\operatorname{Pin} 22$
GND $=\operatorname{Pin} 11$

Logic Diagram

Functional Description

The 93479 is a fully decoded 2304-bit random access memory organized 256 words by nine bits. Word selection is achieved by means of an 8-bit address, A_{0} to A_{7}.

The Chip Select input provides for memory array expansion. For larger memories, the fast chip select access time permits decoding without an increase in overall memory access time.

The read and write operations are controlled by the state of the active LOW Write Enable ($\overline{\mathrm{WE}}$) input. With $\overline{W E}$ held LOW, the chip selected, and the output disabled, the data at $D_{0}-D_{8}$ is written into the addressed location. Since the write function is level triggered, data must be held stable for at least tWSD(min) plus tw(min) plus ${ }^{W} W H D(\min)$ to insure a valid write. To read, $\overline{W E}$ is held HIGH, the chip selected and the outputs enabled. Noninverted data is then presented at the outputs ($\mathrm{D}_{0}-\mathrm{D}_{8}$).

The 93479 has three-state outputs which provides an active pull-up or pull-down when enabled and a high impedance (HIGH Z) state when disabled. The active pull-ups provide drive capability for high capacative loads while the high impedance state allows optimization of word expansion in bus organized systems. During writing, the output is held in the high impedance state.

Truth Table

Inputs			Data In/Out	
$\overline{\mathbf{C S}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$		Mode
X	H	X	HIGH Z	Output Disabled
H	X	X	HIGH Z	R/W Disabled
L	L	H	Data Out	Read
L	L	L	Data In	Write

[^37]DC Characteristics: Over operating temperature ranges (Notes 1, 2)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition	
VOL	Output LOW Voltage		0.3	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=8.0 \mathrm{~mA}$	
VOH	Output HIGH Voltage	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-5.2 \mathrm{~mA}$	
$\mathrm{V}_{1} \mathrm{H}$	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for All Inputs ${ }^{6}$	
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for All Inputs ${ }^{6}$	
I/L	Input LOW Current		-250	-400	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	
$\mathrm{liH}_{\mathrm{H}}$	Input HIGH Current		1.0	$\begin{array}{r} 40 \\ 1.0 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=5.25 \mathrm{~V} \end{aligned}$	
loff	Output Current (HIGH Z)		-50	$\begin{array}{r} 50 \\ -400 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {CC }}=\mathrm{Max}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \end{aligned}$	
VIC	Input Diode Clamp Voltage		-1.0	-1.5	V	$V_{C C}=\operatorname{Max}, \mathrm{I}_{\mathrm{N}}=-10 \mathrm{~mA}$	
los	Output Current Short Circuit to Ground			-70	mA	$\mathrm{V}_{\text {cc }}=$ Max, Note 4	
ICC	Power Supply Current		$\begin{aligned} & 135 \\ & 135 \end{aligned}$	$\begin{aligned} & 185 \\ & 200 \end{aligned}$	mA	Commercial Military	$V_{C C}=\operatorname{Max}$ All Inputs GND

Nc...

1. Operating specification with adequate time for temperature stabilization and transverse airflow exceeding 400 linear feet per minute. Conformance testing performed instantaneously where $T_{A}=T_{J}=T C$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee performance.
2. Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading.
3. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
4. Short circuit to ground not to exceed one second.
5. Tw measured at twSA $=$ Min, twSA measured at $t w=$ Min.
6. Static condition only.

93479

Commercial

AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 3)

Symbol	Characteristic	"A"		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
tacs	Chip Select Access Time		25		25	ns	
tzRCS	Chip Select to HIGH Z		25		25	ns	
taos	Output Enable Access Time		25		25	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		25		25	ns	
$t_{\text {AA }}$	Address Access Time		35		45	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing5	25		25		ns	
tso	Output Enable Setup Time	5		5		ns	
tho	Data Enable Hold Time	5		5		ns	
tWSD	Data Setup Time Prior to Write	25		25		ns	Figure 4
tWHD	Data Hold Time after Write	5		5		ns	
tWSA	Address Setup Time Prior to Write5	5		5		ns	
tWHA	Address Hold Time after Write	5		5		ns	
twscs	Chip Select Setup Time Prior to Write	5		5		ns	
twhes	Chip Select Hold Time after Write	5		5		ns	

Military
AC Characteristics: $\mathrm{V} \mathrm{CC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Notes 1, 3)

Symbol	Characteristic	"A"		Std		Unit	Condition
		Min	Max	Min	Max		
	Read Timing						
$t_{\text {ACS }}$	Chip Select Access Time		30		40	ns	
tzRCS	Chip Select to HIGH Z		30		40	ns	
$\mathrm{t}_{\text {AOS }}$	Output Enable Access Time		30		40	ns	Figures 3a, 3b, 3c
tzros	Output Enable to HIGH Z		30		40	ns	
$t_{\text {AA }}$	Address Access Time		45		60	ns	
	Write Timing						
tw	Write Pulse Width to Guarantee Writing 5	40		40		ns	
tso	Output Enable Setup Time	5		5		ns	
tho	Data Enable Hold Time	5		5		ns	
tWSD	Data Setup Time Prior to Write	50		50		ns	Figure 4
tWHD	Data Hold Time after Write	10		10		ns	
twSA	Address Setup Time Prior to Write5	10		10		ns	
twha	Address Hold Time after Write	10		10		ns	
twscs	Chip Select Setup Time Prior to Write	10		10		ns	
twhes	Chip Select Hold Time after Write	10		10		ns	

[^38]Fig. 1 AC Test Load Output Load

Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Chip Select to Output

b Read Mode Propagation Delay from Address to Output

c Read Mode Propagation Delay from Output Enable

Fig. 4 Write Mode Timing

* These timing parameters are only necessary to guarantee High Z state during the entire write cycle

Ordering Information

Packages and Outlines (See Section 10)
$\mathrm{D}=$ Ceramic DIP
Temperature Range
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$\mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Optional Processing
$\mathrm{QB}=$ Mil Std 883
Method 5004 and 5005 , Level B
$\mathrm{QC}=$ Mil Std 883
Method 5004 and 5005 , Level C
$\mathrm{QR}=$ Commercial Device with
160 Hour Burn In

F100K DC Family Specifications

DC characteristics for the F100K series family parametric limits listed below are guaranteed for the entire F100K ECL family unless specified on the individual data sheet.

Absolute Maximum Ratings: Above which the useful life may be impaired 1

Storage Temperature
Maximum Junction Temperature (T_{J})
Case Temperature Under Bias (TC)
VEE Pin Potential to Ground Pin Input Voltage (dc)
Output Current (dc Output HIGH)
Operating Range ${ }^{2}$

$$
\begin{gathered}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\
\mathrm{~V}_{\text {EE }} \text { to }+0.5 \mathrm{~V} \\
-50 \mathrm{~mA} \\
-5.7 \mathrm{~V} \text { to }-4.2 \mathrm{~V}
\end{gathered}
$$

DC Characteristics: $V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions 4	
VOH	Output HIGH Voltage	-1025	-955	-880	mV		Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
Vol	Output LOW Voltage	-1810	-1705	-1620	mV	or VIL(min)	
VOHC	Output HIGH Voltage	-1035			mv	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
V_{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$	

1. Unless specified otherwise on individual data sheet.
2. Parametric values specified at -4.2 V to -4.8 V .
3. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
4. Operating specification with adequate time for temperature stabilization and transverse air flow exceeding 400 linear feet per minute, conformance testing performed instantaneously where $T_{A}=T_{J}=T_{C}$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee device operating performance.

F100K DC Family Specifications

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions ${ }^{4}$	
VOH	Output HIGH Voltage	-1020		-870	mV	$\begin{aligned} & V_{I N}=V_{I H}(\max) \\ & \text { or } V_{I L}(\text { min }) \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
VoL	Output LOW Voltage	-1810		-1605	mV		
VOHC	Output HIGH Voltage	-1030			mv	$\begin{aligned} & V_{I N}=V_{I H}(\text { min }) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1595	mV		
V_{IH}	Input HIGH Voltage	-1150		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{min})$	

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V} C C A=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Note 3

Symbol	Characteristic	Min	Typ	Max	Unit	Conditions 4	
VOH	Output HIGH Voltage	-1035		-880	mV	$\begin{aligned} & V_{I N}=V_{I H}(\max) \\ & \text { or } V_{I L}(\min) \end{aligned}$	Loading with 50Ω to -2.0 V
VOL	Output LOW Voltage	-1830		-1620	mV		
VOHC	Output HIGH Voltage	-1045			mv	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			-1610	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1810		-1490	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}($ min $)$	

Notes on preceding page

F10K DC Family Specifications

DC characteristics for the F10K series memories.
Parametric limits listed below are guaranteed for all F10K memories, except where noted on individual data sheets.

Absolute Maximum Ratings: Above which the useful life may be impaired

Storage Temperature
Temperature (Ambient) Under Bias VEE Pin Potential to Ground Pin Input Voltage (dc)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Output Current (dc Output HIGH)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-7.0 V to +0.5 V

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+0.1 \mathrm{~mA}
$$

Guaranteed Operating Ranges

Supply Voltage (Vcc)			Ambient Temperature Min
Typ	Max	(TA) Note 1	
-5.46 V	-5.2 V	-4.94 V	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

DC Characteristics: VEE $=-5.2 \mathrm{~V}$, Output Load $=50 \Omega$ and 30 pF to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C} 1$

Symbol	Characteristic	Min	Typ	Max	Unit	TA	Conditions ${ }^{2}$	
VOH	Output HIGH Voltage	$\begin{array}{r} -1000 \\ -960 \\ -900 \end{array}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & V_{I N}=V_{I H}(\max) \\ & \text { or } V_{I L}(\min) \end{aligned}$	Loading is 50Ω to -2.0 V
VoL	Output LOW Voltage	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1665 \\ & -1650 \\ & -1625 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$		
Vohc	Output HIGH Voltage	$\begin{array}{r} -1020 \\ -980 \\ -920 \end{array}$			mv	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & V_{I N}=V_{I H}(\min) \\ & \text { or } V_{I L}(\max) \end{aligned}$	
Volc	Output LOW Voltage			$\begin{aligned} & -1645 \\ & -1630 \\ & -1605 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$		
VIH	Input HIGH Voltage	$\begin{aligned} & -1145 \\ & -1105 \\ & -1045 \end{aligned}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	Guaranteed Input Voltage HIGH for All Inputs	
VIL	Input LOW Voltage	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1490 \\ & -1475 \\ & -1450 \end{aligned}$	mV	$\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{array}$	Guaranteed Input Voltage LOW for All Inputs	
IIL	Input LOW Current	0.5		170	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}($ min $)$	

1. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
2. Operating specification with adequate time for temperature stabilization and transverse air flow exceeding 400 linear feet per minute, conformance testing performed instantaneously where $T_{A}=T_{J}=T_{C}$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee device operating performance.

F100416
256×4-Bit Programmable Read Only Memory

F100K ECL Product

Description

The F100416 is a 1024-bit field Programmable Read Only Memory (PROM), organized 256 words by four bits per word. It is designed for high-speed control, mapping, code conversion, and logic replacement. The device includes full on-chip address decoding, non-inverting Data output lines, and an active-LOW Chip Select line for easy memory expansion. The device is manufactured with all bits in the logic-HIGH state. Programmed bits will furnish LOW levels at corresponding outputs.

- Address Access Time - 20 ns Max
- Chip Select Access Time - 8.0 ns Max
- Chip Select Input and Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - $0.46 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names
$\overline{\mathrm{CS}}$
Chip Select Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{7} \quad$ Address Inputs
$\mathrm{O}_{0}-\mathrm{O}_{3} \quad$ Data Outputs

Connection Diagram
16-Pin DIP (Top View)

Notes

$V_{C P}$ (Pin 1) is connected to the Programmer (+10.5 V) during programming only; otherwise, it should be grounded
The Flatpak version has the same pinout (Connection Diagram) as the Dual In-line Package

Logic Symbol

[^39]
F100416

Logic Diagram

Functional Description

The F100416 is a fully decoded bipolar field programmable read only memory organized 256 words by four bits per word. An unterminated emitter-follower output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F100416 devices can be tied together. An external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

One Chip Select ($\overline{\mathrm{CS}}$) input is provided for memory array expansion up to 512 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of $\overline{C S}$ from the address without increasing address access time. The device is enabled when $\overline{\mathrm{CS}}$ is LOW. When the device is disabled ($\overline{C S}=$ HIGH), all outputs are forced LOW.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_{0} through A_{7} inputs, the chip is selected and data is valid at the outputs after t_{AA}.

In the unprogrammed state the outputs are HIGH. To program LOW levels follow the procedure outlined in the Programming Specifications table.

Programming

The F100416 is manufactured with all bits in the logic " 1 " state. Any desired bit (output) can be programmed to a logic " 0 " state by following the procedure shown below. One may build a programmer to satisfy the specifications or purchase any of the commercially available programmers which meet these specifications.

Programming Sequence

1. Apply power to the part: $\mathrm{V}_{\mathrm{CC}}=$ pin $16=\mathrm{GND}$; $\mathrm{V}_{\mathrm{EE}}=\mathrm{pin} 8=-5.2 \mathrm{~V} \pm 5 \%$.
2. Terminate all outputs (pins $11,12,14$ and 15) with $5 \mathrm{k} \Omega$ resistors to $\mathrm{V}_{T T}=-2.0 \mathrm{~V}$. Note: all input pins, including $\overline{\mathrm{CS}}$, have internal $50 \mathrm{k} \Omega$ pull-down resistors to $V_{E E}$.
3. Select the word to be programmed by applying the appropriate voltage levels, as shown in the Programming Specifications table, to the Address pins (2, 3, 4, 5, 6, 7, 9 and 10).
4. After the address levels are set raise $\mathrm{V}_{\mathrm{CP}}=$ Pin 1 from 0 V to $+10.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
5. After V_{CP} has reached its HIGH level, select the bit to be programmed by applying a HIGH level of $+3.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$ to the output associated with it, i.e., pins $11,12,14$ or 15 . Only one bit (output) at a time may be selected for programming. Uncommitted outputs are terminated as outlined in 2.
6. After the HIGH level (+3.0 V) has been established at the selected output pin, source a current of $-40 \mathrm{~mA} \pm 4 \mathrm{~mA}$ out of the Chip Select input (pin 13) to program the selected bit; this applied current pulse which is $100 \mu \mathrm{~s}$ wide and has an approximate rise time of $1 \mu \mathrm{~s}$ is to be furnished by a current sink which clamps at $\mathrm{V}_{\text {clamp }}=-5.9 \mathrm{~V}$.
7. To verify a LOW in the bit just programmed follow this sequence:
(a) Remove current pulse from $\overline{\mathrm{CS}}$ pin.
(b) Remove applied voltage from selected output pin.
(c) Lower $V_{C P}$ from HIGH level to GND.
(d) Keep same address but change its levels to normal ECL levels as outlined in the Programming Specifications table.
(e) Enable the chip by applying a LOW level (VIL) to $\overline{C S}$ (pin 13), or leave it open.
(f) Sense the level at the selected output pin; a LOW level indicates successful programming whereas a HIGH level is a fail indication; in the latter case reprogramming of the bit can be attempted up to a maximum of eight times.
8. To program other bits in the memory repeat steps 3 through 7.

Programming Timing Sequence

[^40]
F100416

Programming Specifications

Symbol	Characteristic	Min	Recommended Value	Max	Unit	Comments
Vcc	Power Supply		0		V	
VEE		-5.46	-5.2	-4.94	V	
$V_{T T}$	Termination Voltage		-2.0		V	Applied to all outputs
V_{IH}	Chip Select (VCLAMP)	-0.1	0	+0.1	V	Max Current is 40 mA during programming
VIL		-5.9	-5.2		V	
VIHP	Address Input Threshold	-0.1	0	+0.1	V	Programming levels
VILP		-3.1	-3.0	-2.9	V	
VIHV	Address Input Threshold	-0.88	-0.87	-0.86	V	Verify levels
VILV		-1.76	-1.75	-1.74	V	
VCP	Program Setup Pulse	10.2	10.5	10.8	V	
Vop	Programming Pulse	2.9	3.0	3.1	V	Applied to output to be programmed
Ics	Chip Select Programming Current	36	40	44	mA	At $\mathrm{V}_{\text {CLAMP }}=-5.9 \mathrm{~V}$ Min on the Chip Select pin
$t_{p c s}$	Chip Select Programming Pulse	50	100	180	$\mu \mathrm{S}$	
trcs	Chip Select Programming Pulse Rise Time	0.5	1.0	2.0	$\mu \mathrm{S}$	
$t_{\text {pvcp }}$	VCP Programming Pulse	90	140	220	$\mu \mathrm{S}$	
$t_{\text {rucp }}$	VCP Programming Rise Time	0.5	1.0	2.0	$\mu \mathrm{S}$	
$t_{\text {setup }}$	Setup Time	20			ns	Start time of $V_{C P}$ pulse after address is selected

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$I_{I H}$	Input HIGH Current			200	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{max})}$
$I_{E E}$	Power Supply Current	-140	-105		mA	Inputs and Outputs Open

AC Characteristics: $V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{VCC}=\mathrm{GND}$, Output Load 50Ω to $-2.0 \mathrm{~V}, \mathrm{TC}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Max	Unit	Condition
$t_{A A}$	Address Access Time2		20	ns	Figure 3a, 3b
$t_{A C S}$	Chip Select Access Time		8.0	ns	

[^41]
F100416

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50\% of Input Levels
$C_{L}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$R_{\mathrm{L}}=30 \Omega$ to -2.0 V
Fig. 2 Input Levels

Fig. 3 Read Mode Timing
a Read Mode Propagation Delay from Bit Select

b Read Mode Propagation Delay from Address

Ordering Information

FAIRCHILD

A Schlumberger Company

Bipolar Division

F100Z416
 256 x 4-Bit Programmable Read Only Memory

Description

The F100Z416 is a 1024-bit field Programmable Read Only Memory (PROM), organized 256 words by four bits per word. It is designed for high-speed control, mapping, code conversion, and logic replacement. The device includes full on-chip address decoding, non-inverting Data output lines, and an active-LOW Chip Select line for easy memory expansion.

- Address Access Time - 8.0 ns Typ
- Chip Select Input and Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{C S}$
Chip Select Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{7}$
Address Inputs
$\mathrm{O}_{0}-\mathrm{O}_{3}$
Data Outputs

Connection Diagram

16-Pin DIP (Top View)

Note

The Flatpak version has the ssanple pinout (Connection Diagram) as the Dual In-line Package.

Logic Symbol

[^42]
F100Z416

Logic Diagram

Functional Description

The F100Z416 is a fully decoded bipolar field programmable read only memory organized 256 words by four bits per word. An unterminated emitter-follower output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F100Z416 devices can be tied together. An external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

One Chip Select $(\overline{\mathrm{CS}})$ input is provided for memory array expansion up to 512 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of $\overline{\mathrm{CS}}$ from the address without increasing address access time. The device is enabled when $\overline{\mathrm{CS}}$ is LOW. When the device is disabled $\overline{(\mathrm{CS}}=\mathrm{HIGH})$, all outputs are forced LOW.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_{0} through A_{7} inputs, the chip is selected and data is valid at the outputs after $t_{A A}$.

The F100Z416 uses open base transistor vertical (junction) fuse cells. Initially, an unprogrammed cell is in the logic '0' state. Cells can selectively be programmed to a logic ' 1 ' state by following a specified procedure which fuses aluminum through the emitter-base junction of the cell transistor.

FAIRCHILD

A Schlumberger Company

F10416

256 x 4-Bit Programmable Read Only Memory

Description

The F10416 is a 1024-bit field Programmable Read Only Memory (PROM), organized 256 words by four bits per word. It is designed for high-speed control, mapping, code conversion, and logic replacement. The device includes full on-chip address decoding, non-inverting Data output lines, and an active-LOW Chip Select line for easy memory expansion. The device is manufactured with all bits in the logic-HIGH state. Programmed bits will furnish LOW levels at corresponding outputs.

- Address Access Time - 20 ns Max
- Chip Select Access Time - 8.0 ns Max
- Chip Select Input and Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation - $0.56 \mathrm{~mW} /$ Bit Typ
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address Inputs
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Data Outputs

Connection Diagram
16-Pin DIP (Top View)

Notes

VCP (Pin 1) is connected to the Programmer (+10.5 V) during programming only; otherwise, it should be grounded
The Flatpak version has the same pinout (Connection Diagram) as the Dual In-line Package

Logic Symbol

[^43]
Logic Diagram

Functional Description

The F10416 is a fully decoded bipolar field programmable read only memory organized 256 words by four bits per word. An unterminated emitter-follower output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F10416 devices can be tied together. An external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

One Chip Select ($\overline{\mathrm{CS})}$ input is provided for memory array expansion up to 512 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of $\overline{\mathrm{CS}}$ from the address without increasing address access time. The device is enabled when $\overline{\mathrm{CS}}$ is LOW. When the device is disabled $\overline{(C S}=H I G H)$, all outputs are forced LOW.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_{0} through A_{7} inputs, the chip is selected and data is valid at the outputs after $t_{A A}$.

In the unprogrammed state the outputs are HIGH. To program LOW levels follow the procedure outlined in the Programming Specifications table.

Programming

The F10416 is manufactured with all bits in the logic " 1 " state. Any desired bit (output) can be programmed to a logic "0" state by following the procedure shown below. One may build a programmer to satisfy the specifications or purchase any of the commercially available programmers which meet these specifications.

Programming Sequence

1. Apply power to the part: $\mathrm{V}_{\mathrm{CC}}=$ pin $16=G N D$; $V_{E E}=\operatorname{pin} 8=-5.2 \mathrm{~V} \pm 5 \%$.
2. Terminate all outputs (pins 11, 12, 14 and 15) with $5 \mathrm{k} \Omega$ resistors to $\mathrm{V}_{\mathrm{T} T}=-2.0 \mathrm{~V}$. Note: all input pins, including $\overline{\mathrm{CS}}$, have internal $50 \mathrm{k} \Omega$ pull-down resistors to $V_{E E}$.
3. Select the word to be programmed by applying the appropriate voltage levels, as shown in the Programming Specifications table, to the Address pins (2, 3, 4, 5, 6, 7, 9 and 10).
4. After the address levels are set raise $\mathrm{V}_{\mathrm{CP}}=\mathrm{Pin} 1$ from 0 V to $+10.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
5. After $V_{C P}$ has reached its HIGH level, select the bit to be programmed by applying a HIGH level of $+3.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$ to the output associated with it, i.e., pins 11, 12, 14 or 15 . Only one bit (output) at a time may be selected for programming. Uncommitted outputs are terminated as outlined in 2.
6. After the HIGH level $(+3.0 \mathrm{~V})$ has been established at the selected output pin, source a current of $-40 \mathrm{~mA} \pm 4 \mathrm{~mA}$ out of the Chip Select input (pin 13) to program the selected bit; this applied current pulse which is $100 \mu \mathrm{~s}$ wide and has an approximate rise time of $1 \mu \mathrm{~s}$ is to be furnished by a current sink which clamps at V clamp $=-5.9 \mathrm{~V}$.
7. To verify a LOW in the bit just programmed follow this sequence:
(a) Remove current pulse from $\overline{\mathrm{CS}}$ pin.
(b) Remove applied voltage from selected output pin.
(c) Lower VCP from HIGH level to GND.
(d) Keep same address but change its levels to normal ECL levels as outlined in the Programming Specifications table.
(e) Enable the chip by applying a LOW level (VIL) to $\overline{\mathrm{CS}}$ (pin 13), or leave it open.
(f) Sense the level at the selected output pin; a LOW level indicates successful programming whereas a HIGH level is a fail indication; in the latter case reprogramming of the bit can be attempted up to a maximum of eight times.
8. To program other bits in the memory repeat steps 3 through 7.

Programming Timing Sequence

[^44]Programming Specifications

Symbol	Characteristic	Min	Recommended Value	Max	Unit	Comments
Vcc	Power Supply		0		V	
Vee		-5.46	-5.2	-4.94	V	
$\mathrm{V}_{\text {TT }}$	Termination Voltage		-2.0		V	Applied to all outputs
V_{H}	Chip Select (Vclamp)	-0.1	0	+0.1	V	Max Current is 40 mA
VIL		-5.9	-5.2		V	during programming
$\mathrm{V}_{\text {HP }}$	Address Input Threshold	-0.1	0	+0.1	V	Programming levels
VILP		-3.1	-3.0	-2.9	V	
VIHV	Address Input Threshold	-0.88	-0.87	-0.86	V	Verify levels
VILV		-1.76	-1.75	-1.74	V	
$\mathrm{V}_{\text {cP }}$	Program Setup Pulse	10.2	10.5	10.8	V	
Vop	Programming Pulse	2.9	3.0	3.1	V	Applied to output to be programmed
Ics	Chip Select Programming Current	36	40	44	mA	At $\mathrm{V}_{\text {CLAMP }}=-5.9 \mathrm{~V}$ Min on the Chip Select pin
$t_{\text {pcs }}$	Chip Select Programming Pulse	50	100	180	$\mu \mathrm{S}$	
trcs	Chip Select Programming Pulse Rise Time	0.5	1.0	2.0	$\mu \mathrm{S}$	
$t_{\text {pucp }}$	VCP Programming Pulse	90	140	220	$\mu \mathrm{s}$	
trucp	VCP Programming Rise Time	0.5	1.0	2.0	$\mu \mathrm{s}$	
$t_{\text {setup }}$	Setup Time	20			ns	Start time of $V_{\text {CP }}$ pulse after address is selected

F10416

Guaranteed Operating Range

	Supply Voltage (VE)			Ambient Temperature
	Min	Typ	Max	
Commercial	-5.46 V	-5.2 V	-4.94 V	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified 1

Symbol	Characteristic	Min	Typ	Max	Unit	T_{A}	Condition
VOH	Output HIGH Voltage	$\begin{array}{r} -1060 \\ -960 \\ -890 \end{array}$		$\begin{aligned} & -890 \\ & -810 \\ & -700 \end{aligned}$	mV	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	
Vol	Output LOW Voltage	$\begin{aligned} & -1890 \\ & -1850 \\ & -1825 \end{aligned}$		$\begin{aligned} & -1675 \\ & -1650 \\ & -1615 \end{aligned}$	mV	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	or VIL(min)
Vohc	Output HIGH Voltage	$\begin{array}{r} -1080 \\ -980 \\ -910 \end{array}$			mv	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & V_{I N}=V_{I H}(\text { min }) \\ & \text { or } V_{I L}(\max) \end{aligned}$
Volc	Output LOW Voltage			$\begin{aligned} & -1655 \\ & -1630 \\ & -1595 \end{aligned}$	mV	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	
VIH	Input HIGH Voltage	$\begin{aligned} & -1205 \\ & -1105 \\ & -1035 \end{aligned}$		$\begin{aligned} & 890 \\ & 810 \\ & 700 \end{aligned}$	mV	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	Guaranteed HIGH signal for All Inputs
VIL	Input LOW Voltage	$\begin{aligned} & -1890 \\ & -1850 \\ & -1825 \end{aligned}$		$\begin{aligned} & -1500 \\ & -1475 \\ & -1440 \end{aligned}$	mV	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	Guaranteed LOW signal for All Inputs
IIH	Input HIGH Current			200	$\mu \mathrm{A}$	$\begin{gathered} -30^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ max $)$
IIL	$\frac{\text { Input LOW Current, }}{\mathrm{CS}}$	0.5		150	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{min})$
IEE	Power Supply Current	-140	-110		mA	$+25^{\circ} \mathrm{C}$	All Inputs and Outputs Open

AC Characteristics: $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V} \mathrm{CC}=\mathrm{GND}$, Output Load 50Ω to $-2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Max	Unit	Condition
$t_{A A}$	Address Access Time2		20	ns	Figure 3a, 3b
$t_{A C S}$	Chip Select Access Time		8.0	ns	

1. See Family Characteristics for other dc specifications.
2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

Fig. 1 AC Test Circuit

Notes

All Timing Measurements Referenced to 50% of Input Levels
$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ including Fixture and Stray Capacitance
$\mathrm{R}_{\mathrm{L}}=50 \Omega$ to -2.0 V
Fig. 2 Input Levels

Fig. 3 Read Mode Timing

a Read Mode Propagation Delay from Bit Select

b Read Mode Propagation Delay from Address

Ordering Information

Packages and Outlines (See Section 10)
$D=$ Ceramic DIP
$F=$ Flatpak
$P=$ Plastic DIP
Temperature Ranges
$\mathrm{C}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Ambient

Optional Processing
QR $=160$ Hour Burn in

FAIRCHILD

A Schlumberger Company

F10Z416

256 x 4-Bit Programmable Read Only Memory

F10K ECL Product

Description

The F10Z416 is a 1024-bit field Programmable Read Only Memory (PROM), organized 256 words by four bits per word. It is designed for high-speed control, mapping, code conversion, and logic replacement. The device includes full on-chip address decoding, non-inverting Data output lines, and an active-LOW Chip Select line for easy memory expansion.

- Address Access Time - 8.0 ns Typ
- Chip Select Input and Open-emitter Outputs for Easy Memory Expansion
- Power Dissipation Decreases with Increasing Temperature

Pin Names

$\overline{\mathrm{CS}}$

$\mathrm{A}_{0}-\mathrm{A}_{7}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$

Chip Select Input (Active LOW)
Address Inputs
Data Outputs

Connection Diagram
16-Pin DIP (Top View)

Note
The Flatpalkersion has the same pinout (Connection Diagram) as the Dual ln-minePackage.

Logic Symbol

[^45]
Logic Diagram

Functional Description

The F10Z416 is a fully decoded bipolar field programmable read only memory organized 256 words by four bits per word. An unterminated emitter-follower output is provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F10Z416 devices can be tied together. An external 50Ω pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

One Chip Select ($\overline{\mathrm{CS})}$ input is provided for memory array expansion up to 512 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of $\overline{\mathrm{CS}}$ from the address without increasing address access time. The device is enabled when $\overline{\mathrm{CS}}$ is LOW. When the device is disabled $\overline{(\mathrm{CS}}=\mathrm{HIGH})$, all outputs are forced LOW.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_{0} through A_{7} inputs, the chip is selected and data is valid at the outputs after $t_{A A}$.

The F10Z416 uses open base transistor vertical (junction) fuse cells. Initially, an unprogrammed cell is in the logic ' 0 ' state. Cells can selectively be programmed to a logic ' 1 ' state by following a specified procedure which fuses aluminum through the emitter-base junction of the cell transistor.

Product Index and Selection Guide	1
Quality Assurance and Reliability	2
ECL RAMs	3
TTL RAMs	4
ECL PROMs	5
TTL PROMs	6
ECL. Programmable Logic	7
TTL Programmable Logic	8
Ordering Information and Package Outlines	9

TTL Family Specifications

Absolute Maximum Ratings:	Above which the useful life may be impaired
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Temperature (Ambient) Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc Pin Potential to Ground Pin	-0.5 V to +7.0 V
*Input Voltage (dc)	-0.5 V to +5.5 V
*Input Current (dc)	-12 mA to +5.0 mA
**Voltage Applied to Outputs	-0.5 V to +5.50 V
(output HIGH)	
Output Current (dc)	+20 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.
**Output Current Limit Required

Guaranteed Operating Ranges

	Supply Voltage (Vcc)			Ambient Temperature Min

1. Operating specification with adequate time for temperature stabilization and transverse air flow exceeding 400 linear feet per minute, conformance testing performed instantaneously where $T_{A}=T_{J}=T_{C}$. Correlated temperatures, typically $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and limits may be used to guarantee device operating performance.
2. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Symbol	Characteristic	Typ	Max	Unit	Condition
CIN	Input Pin Capacitance	4.0	5.0	pF	Measured with a Pulse
Cout	Output Pin Capacitance	7.0	8.0	pF	Technique

[^46]
93Z450/93Z451 1024×8-Bit Programmable Read Only Memory

Description

The $93 Z 450$ and $93 Z 451$ are fully decoded 8,192-bit Programmable Read Only Memories (PROMs), organized 1024 words by eight bits per word. The two devices are identical except the $93 Z 450$ has open collector outputs while the $93 Z 451$ has three state outputs. Both devices are available in two speed versions, standard speed and ' A ' grade.

- Commercial Address Access Time 93Z450/93Z451 - 40 ns Max 93Z450A /93Z451A - 35 ns Max
- Military Address Access Time 93Z450/93Z451 - 55 ns Max 93Z450A/93Z451A - 45 ns Max
- Highly Reliable Vertical Fuses Ensure High Programming Yields
- Available with Open Collector (93Z450) or Three State (93Z451) Outputs
- Low Current PNP Inputs

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{9}$
$\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}$
$\mathrm{CS}_{3}, \mathrm{CS}_{4}$
$\mathrm{O}_{0}-\mathrm{O}_{7}$

Address Inputs
Chip Select Inputs (Active LOW)
Chip Select Inputs (Active HIGH)
Data Outputs

Isoplanar-Z Vertical Fuse TTL Memory

Connection Diagrams

24-pin DIP (Top View)

[^47]
Logic Symbol

Logic Diagram

Functional Description

The $93 Z 450$ and $93 Z 451$ are TTL bipolar field Programmable Read Only Memories (PROMs) organized 1024 words by eight bits per word. Open-collector outputs are provided on the $93 Z 450$ for use in wired-OR applications. The $93 Z 451$ has 3 -state outputs which provide active pull ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

Four Chip Select inputs are provided for logic flexibility and for memory array expansion of up to 128 K without the need for external decoding. The fast Chip Select access time permits direct address decoding without increasing overall memory access times. Both devices are enabled only when $\overline{C S}_{1}$ and $\overline{C S}_{2}$ are LOW and CS_{3} and CS_{4} are HIGH .

The devices contain an internal test row and test column which are accessed and programmed during both wafer sort and final test. These test fuses are used to assure high programmability and to guarantee AC performance and DC parameters.

The $93 Z 450$ and $93 Z 451$ use open base vertical transistor (junction) fuse cells. Initially an unprogrammed cell is in the logic ' 0 ' state. Cells can be programmed to a logic ' 1 ' state by following the specified programming procedure which fuses aluminum through the emitter base junction of the cell transistor.

The read function is identical to that of a conventional Read Only Memory (ROM). A binary address is applied to the address pins A_{0} through A_{9} and the chip is selected. Data is then available at the outputs after $t_{A A}$.

93Z450/93Z451

Programming

The $93 Z 450$ and $93 Z 451$ are manufactured with all bits in the logic "0" state. Any desired bit (output) can be programmed to a logic " 1 " state by following the Isoplanar-Z Generic Programming Specifications found at the back of this section.

Programming Sequence

The $93 Z 450$ and $93 Z 451$ are both programmed using the following method:

1. Address the word to be programmed by applying the appropriate voltages to address pins A_{0} through A9. Select the PROM by applying a LOW to $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$ and a HIGH to CS_{3} and CS_{4}.
2. Apply the proper power for a High VCC read.
$\mathrm{V}_{\mathrm{CC}}=6.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$.
3. Read the output to be programmed and verify it is in the unprogrammed logic ' 0 ' state.
4. Enable the chip for programming by application of the Chip Select Programming Voltage $\left(\mathrm{V}_{\text {CSP }}=20.0 \mathrm{~V}\right.$) to $\overline{\mathrm{CS}}_{2} . \overline{\mathrm{CS}}_{1}$ should remain LOW and CS_{3} and $\mathrm{CS}_{4} \mathrm{HIGH}_{\text {. }}$
5. a. To program the bit apply Iop, the programming current ramp to the output. NOTE: Only one output may be programmed at a time. The other outputs must be left open.
b. During the rise of the current ramp, a drop in voltage (V_{ps}) at the output may be sensed. This indicates that the current needed to program the junction has been reached and the bit has programmed.
c. Upon detection of the voltage drop (V_{ps}), the current ramp should be held at a constant current for a time (thap) and then shut off.
6. Once the current ramp has been shut off, lower VCSP to 0 V and read the output.
7. Lower Vcc to 0 V . The power supply duty cycle must be less than or equal to 50%.
8. If the read performed in step 6 indicates that the bit has not programmed then go to step 1 and repeat the programming sequence (up to a maximum of 16 attempts total.)
9. If the read performed in step 6 indicates that the bit has programmed then one of the two following conditions exist:
a. If the required programming current was less than IOP (max) then go to step 10.
b. If the required programming current was equal to IOP (max) then the device is considered a failure and no future attempts at programming should be made.
10. Repeat the above procedure from step 1 until all the desired bits in the memory have been programmed.

Programming Flow Chart

DC Characteristics: Over guaranteed operating ranges unless otherwise noted

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIC	Input Clamp Diode Voltage			-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
VOL	Output LOW Voltage		0.30	0.45	V	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{IOL}=16 \mathrm{~mA}$
VOH	Output HIGH Voltage (three state only)	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-2.0 \mathrm{~mA}$ Address Any '1'
IIL	Input LOW Current		-10	-100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {cc }}=$ Max, $\mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$
IH	Input HIGH Current	-40		40	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
loHz	Output Leakage Current for High Impedance State (three state only)			$\begin{array}{r} 40 \\ -40 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \mathrm{VOL}=0.4 \mathrm{~V} \end{aligned}$
ICEX	Output Leakage Current (open collector only)			40	$\mu \mathrm{A}$	$V_{\text {CEX }}=\mathrm{V}_{\text {cc }}$, Chip Deselected
los	Output Short-Circuit Current (three state only)	-20	-45	-90	mA	$V_{C C}=M a x, V_{O}=0 \mathrm{~V} \text {, Note } 2$ Address Any '1'
ICC	Power Supply Current		110	135	mA	$V_{C C}=$ Max, Inputs and Outputs Open

Commercial

AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	'A'	Std	Unit	Condition
$t_{A A}$	Address to Output Access Time	35	40	ns	See AC Output Load
$t_{\text {ACS }}$	Chip Select to Output Access Time	25	30	ns	See AC Output Load

Military

AC Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	'A'	Std	Unit	Condition
$t_{A A}$	Address to Output Access Time	45	55	ns	See AC Output Load
$t_{A C S}$	Chip Select to Output Access Time	30	35	ns	See AC Output Load

[^48]Fig. 1 AC Test Output Load

Test Conditions
Input pulse: 0 V to 3.0 V
Input pulse rise and fall times: 5 ns between 1 V and 2 V
Measurements made at 1.5 V level

Fig. 2 AC Waveforms

Ordering Information

$$
\begin{aligned}
& \text { Speed Selection } \\
& \text { Blank = Standard Speed } \\
& A=A^{\prime} \text { Grade } \\
& \text { Packages and Outlines (See Section 10) } \\
& D=24 \text {-pin Ceramic DIP } \\
& P=24 \text {-pin Plastic DIP (Commercial only) } \\
& S D=24 \text {-pin Slim Ceramic DIP } \\
& F=24 \text {-pin Flatpak } \\
& L=28 \text {-pin Square Leadless Chip Carrier } \\
& \text { Temperature Range } \\
& C=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\
& M=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& \\
& \text { Optional Processing } \\
& \text { QB }=\text { Mil Std } 883 \\
& \text { Method } 5004 \text { and } 5005, \text { Level B } \\
& Q C=\text { Mil Std } 883 \\
& \text { Method } 5004 \text { and } 5005 \text {, Level C } \\
& \text { QR }=\text { Commercial Device with } \\
& 160 \text { Hour Burn In }
\end{aligned}
$$

FAIRCHILD

A Schlumberger Company

Bipolar Division

Description

The 93453 is a 4096-bit field Programmable Read Only Memory (PROM) organized 1024 words by four bits per word. The device features full on-chip address decoding, two active LOW Chip Select lines and three state outputs.

- Commercial Address Access Time - 40 ns Max
- Military Address Access Time - 55 ns Max
- Fully TTL Compatible
- Proven Nichrome Fuse Technology
- Features Three State Outputs
- Power Dissipation - 135μ W/Bit Typ
- JEDEC Standard Pinout

Pin Names

$\frac{\mathrm{A}_{0}-\mathrm{A}_{9}}{\mathrm{CS}_{1}, \mathrm{CS}_{2}}$	Address Inputs
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Chip Select Inputs (Active LOW)
Data Outputs	

Logic Symbol
TTL NiChrome Fuse Memory

Connection Diagram
18-Pin DIP (Top View)

Note:
The 18-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

$V_{C C}=\operatorname{Pin} 18$
GND $=\operatorname{Pin} 9$

93453

Logic Diagram

Functional Description

The 93453 is a TTL bipolar field Programmable Read Only Memory (PROM) organized 1024 words by four bits per word.

Two active LOW Chip Select inputs are provided for logic flexibility and for memory array expansion of up to 16,384 bits without affecting system performance, eliminating the need for external decoding. The device is enabled only when $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$ are LOW, otherwise the outputs are disabled.

The 93453 uses industry proven nichrome fuses. An unprogrammed device is supplied with all bits in the
logic ' 1 ' (HIGH) state. Bits can be selectively programmed to the logic ' 0 ' (LOW) state by following the specified procedure for programming nichrome fuses.

The device contains an internal test row and test column which are accessed and programmed during testing of the device. These fuses are used to assure high programmability and to guarantee AC and DC performance.

The read function is identical to that of a conventional Read Only Memory (ROM). A binary address is applied to the address pins A_{0} through A_{9} and the chip selected. Data is then available at the outputs after $t_{A A}$.

DC Characteristics: Over guaranteed operating ranges unless otherwise noted

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIC	Input Clamp Diode Voltage			-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1 /}=-18 \mathrm{~mA}$
VOL	Output LOW Voltage		0.30	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$, $\mathrm{IOL}=16 \mathrm{~mA}$
VOH	Output HIGH Voltage	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-2.0 \mathrm{~mA}$
IIL	Input LOW Current		-160	-250	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}$
IIH	Input HIGH Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$
loHz	Output Leakage Current for High Impedance State			$\begin{array}{r} 50 \\ -50 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	 VOH $=2.4 \mathrm{~V}$ $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ $\mathrm{VOL}=0.4 \mathrm{~V}$
loHz	Output Leakage Current for High Impedance State			$\begin{array}{r} 100 \\ -100 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\mathrm{VOH}=2.4 \mathrm{~V}$ $\mathrm{VOL}=0.4 \mathrm{~V}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
los	Output Short-Circuit Current	-15	-35	-90	mA	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, Note 2
ICC	Power Supply Current		110	140	mA	$\mathrm{V}_{\text {cc }}=\mathrm{Max}$

Commercial

AC Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Max	Unit	Condition
$t_{A A}$	Address to Output Access Time	40	ns	See AC Test Output Load
$t_{A C S}$	Chip Select to Output Access Time	25	ns	See AC Test Output Load

Military
AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	Max	Unit	Condition
$t_{A A}$	Address to Output Access Time	55	ns	See AC Test Output Load
$t_{A C S}$	Chip Select to Output Access Time	30	ns	See AC Test Output Load

[^49]
Programming

The 93453 is manufactured with all bits in the logic "1" state. Any desired bit (output) can be programmed to a logic " 0 " state by following the procedure shown below. One may build a programmer to satisfy the specifications or buy any of the commercially available programmers which meet these specifications.

Programming Sequence

The 93453 is programmed using the following method.

1. Apply the proper power, $\mathrm{V} C \mathrm{C}=5.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$.
2. Select the word to be programmed by applying the appropriate voltages to the Address pins A_{0} through Ag.
3. Enable the chip for programming by application of V_{IH} (logic " 1 ") to Chip Select $\left(\overline{\mathrm{CS}}_{1}\right)$, or $\left(\overline{\mathrm{CS}}_{2}\right)$, or both.
4. Apply the Vop programming to the output associated with the bit to be programmed. The other outputs may be left open or tied to any logic " 1 " (output HIGH), i.e., 2.4 V to 5.0 V . Note that only one output may be programmed at a time.
5. To verify the logic " 0 " in the bit just programmed, remove the programming pulse from the output, lower Vcc to the Low Vcc Read recommended value and sense the output after applying a logic " 0 " to Chip Selects $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$.
6. The above procedure is then repeated to program other bits on the chip.

Programming Specifications

Symbol	Characteristic	Min	Recommended Value	Max	Unit	Comment
V_{IH}	Address Input	2.4	5.0	5.0	V	Do not leave input open
VIL		0	0	0.4	V	
$\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}$	Chip Select	2.4	5.0	5.0	V	$\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}$ or both
Vop	Programming Voltage Pulse	20	20.5	21	V	Applied to output to be programmed
$t_{p w}$	Programming Pulse Width	0.05	0.18	50	ms	All bits can be programmed in ≤ 4.1 seconds
	Duty Cycle, Programming Pulse		20	*	\%	*Maximum duty cycle to maintain $\mathrm{T}_{\mathrm{C}}<85^{\circ} \mathrm{C}$
t_{r}	Programming Pulse Rise Time	0.5	1.0	3.0	$\mu \mathrm{S}$	
	Number of Pulses Required	1	4	8		
VCC	Power Supply Voltage	4.9	5.0	5.1	V	
$\underline{T C}$	Case Temperature		25	85	${ }^{\circ} \mathrm{C}$	
Iop	Programming Pulse Current Limit			100	mA	If pulse generator is used, set current limit to this maximum value
LVcc	Low Vcc Read	4.2	4.2 or 4.4	4.4	V	Programming Read Verify**

[^50]Fig. 1 AC Test Output Load

Test Conditions
Input Pulse: 0 V to 3.0 V
Input Pulse Rise and Fall Times: 5 ns between 1 V and 2 V Measurements made at 1.5 V Level

Fig. 2 AC Waveforms

a Propagation Delay from Chip Select to Outputs

b Propagation Delay from Address to Outputs

Ordering Information

Packages and Outlines (See Section 10)
D = Ceramic DIP
$F=$ Flatpak
$L=$ Leadless Chip Carrier
P = Plastic DIP

Temperature Range
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Optional Processing
$\mathrm{QB}=$ Mil Std 883
Method 5004 and 5005, Level B
QC $=$ Mil Std 883
Method 5004 and 5005, Level C
QR $=$ Commercial Device with
160 Hour Burn In

93Z510/93Z511
 2048 X 8-Bit Programmable Read Only Memory

Isoplanar-Z Vertical Fuse TTL Memory

Description

The $93 Z 510$ and $93 Z 511$ are fully decoded 16,384-bit Programmable Read Only Memories (PROMs), organized 2048 words by eight bits per word. The two devices are identical except the $93 Z 510$ has open collector outputs while the $93 Z 511$ has three state outputs.

- Commercial Address Access Time - 45 ns Max
- Military Address Access Time - 55 ns Max
- Highly Reliable Vertical Fuses Ensure High Programming Yields
- Available with Open Collector (93Z510) or Three State (93Z511) Outputs
- Low Current PNP Inputs

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{10}$
CS_{1}
$\mathrm{CS}_{2}, \mathrm{CS}_{3}$
$\mathrm{O}_{0}-\mathrm{O}_{7}$

Address Inputs
Chip Select Input (Active LOW)
Chip Select Inputs (Active HIGH)
Data Outputs

Connection Diagrams
24-pin DIP (Top View)

Note:

The 24-pin Flatpak has the same pinout (Connection Diagram) as the 24-pin DIP.

[^51]
Logic Diagram

Functional Description

The $93 Z 510$ and $93 Z 511$ are TTL bipolar field Programmable Read Only Memories (PROMs) organized 2048 words by eight bits per word. Open-collector outputs are provided on the $93 Z 510$ for use in wired-OR applications. The $93 Z 511$ has 3-state outputs which provide active pull ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

Three Chip Select inputs are provided for logic flexibility and for memory array expansion of up to 128 K without the need for external decoding. The fast Chip Select access time permits direct address decoding without increasing overall memory access times. Both devices are enabled only when $\overline{\mathrm{CS}}_{1}$ is LOW and CS_{2} and CS_{3} are HIGH .

The devices contain an internal test row and test column which are accessed and programmed during both wafer sort and final test. These test fuses are used to assure high programmability and to guarantee AC performance and DC parameters.

The $93 Z 510$ and $93 Z 511$ use open base vertical transistor (junction) fuse cells. Initially an unprogrammed cell is in the logic ' 0 ' state. Cells can be programmed to a logic ' 1 ' state by following the specified programming procedure which fuses aluminum through the emitter base junction of the cell transistor.

The read function is identical to that of a conventional Read Only Memory (ROM). A binary address is applied to the address pins A_{0} through A_{10} and the chip is selected. Data is then available at the outputs after tAA.

Programming

The $93 Z 510$ and $93 Z 511$ are manufactured with all bits in the logic "0" state. Any desired bit (output) can be programmed to a logic " 1 " state by following the Isoplanar-Z Generic Programming Specifications found at the back of this section.

Programming Sequence

The 93 Z 510 and 93 Z 511 are both programmed using the following method:

1. Address the word to be programmed by applying the appropriate voltages to address pins A_{0} through A_{10}.
2. Apply the proper power for a High Vcc read. $\mathrm{VCC}=6.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$.
3. Read the output to be programmed and verify it is in the unprogrammed logic ' 0 ' state.
4. Enable the chip for programming by application of the Chip Select Programming Voltage (V CSP $=20.0 \mathrm{~V}$) to $\overline{\mathrm{CS}}_{1} . \mathrm{CS}_{2}$ and CS_{3} should remain HIGH .
5. a. To program the bit apply lop, the programming current ramp to the output. NOTE: Only one output may be programmed at a time. The other outputs must be left open.
b. During the rise of the current ramp, a drop in voltage (V_{ps}) at the output may be sensed. This indicates that the current needed to program the junction has been reached and the bit has programmed.
c. Upon detection of the voltage drop $\left(\mathrm{V}_{\mathrm{ps}}\right)$, the current ramp should be held at a constant current for a time ($\mathrm{thAP}^{\text {) and then shut off. }}$
6. Once the current ramp has been shut off, lower $V_{\text {CSP }}$ to 0 V and read the output.
7. Lower $V_{C C}$ to 0 V . The power supply duty cycle must be less than or equal to 50%.
8. If the read performed in step 6 indicates that the bit has not programmed then go to step 1 and repeat the programming sequence (up to a maximum of 16 attempts total.)
9. If the read performed in step 6 indicates that the bit has programmed then one of the two following conditions exist:
a. If the required programming current was less than IOP (max) then go to step 10.
b. If the required programming current was equal to IOP (max) then the device is considered a failure and no future attempts at programming should be made.
10. Repeat the above procedure from step 1 until all the desired bits in the memory have been programmed.

Programming Flow Chart

93Z510/93Z511

DC Characteristics: Over guaranteed operating ranges unless otherwise noted

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIC	Input Clamp Diode Voltage			-1.2	V	$V_{C C}=$ Min, $1 / 1 \mathrm{~N}=-18 \mathrm{~mA}$
Vol	Output LOW Voltage		0.30	0.45	V	$V_{C C}=\mathrm{Min}, \mathrm{lOL}=16 \mathrm{~mA}$
VOH	Output HIGH Voltage (93Z511 only)	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$
IIL	Input LOW Current		-10	-100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$
IIH	Input HIGH Current	-40		40	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\text {IH }}=2.4 \mathrm{~V}$
1 OHz	Output Leakage Current for High Impedance State (93Z511 only)			$\begin{array}{r} 40 \\ -40 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \mathrm{VOL}=0.4 \mathrm{~V} \end{aligned}$
Icex	Output Leakage Current (93Z510 only)			40	$\mu \mathrm{A}$	$V_{C E X}=V_{C C}$ Chip Deselected
los	Output Short-Circuit Current (93Z511 only)	-15	-35	-90	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, Note 2
ICC	Power Supply Current		120	175	mA	$V_{C C}=$ Max

Commercial

AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Max	Unit	Condition
$t_{A A}$	Address to Output Access Time	45	ns	See AC Output Load
$t_{A C S}$	Chip Select to Output Access Time	25	ns	See AC Output Load

Military

AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	Max	Unit	Condition
$t_{A A}$	Address to Output Access Time	55	ns	See AC Test Output Load
$t_{A C S}$	Chip Select to Output Access Time	25	ns	See AC Test Output Load

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading.
2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.

Fig. 1 AC Test Load

Test Conditions
Input pulse: 0 V to 3.0 V
Input pulse rise and fall times: 5 ns between 1 V and 2 V
Measurements made at 1.5 V level

Fig. 2 AC Waveforms
a Propagation Delay from Address Inputs

b Propagation Delay from Chip Select

Ordering Information

Packages

D = Ceramic DIP
F = Flatpak
$\mathrm{L}=$ Leadless Chip Carrier
P = Plastic DIP

Temperature Ranges
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$\mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Optional Processing

QB $=$ Mil Std 883
Method 5004 \& 5005, Level B
QC $=$ Mil Std 883
Method 5004 \& 5005, Level C
$\mathrm{QR}=$ Commercial Device with
160 Hour Burn In

FAIRCHILD

A Schlumberger Company

93Z564/93Z565 8192 x 8-Bit Programmable Read Only Memory

Description

The $93 Z 564$ and $93 Z 565$ are fully decoded 65,536-bit Programmable Read Only Memories (PROMs), organized 8192 words by eight bits per word. The two devices are identical except the $93 Z 564$ has open collector outputs while the $93 Z 565$ has three state outputs. Both devices are available in two speed versions, standard speed and ' A ' grade.

- Commercial Address Access Time 93Z564/93Z565 - 55 ns Max 93Z564A/93Z565A - 45 ns Max
- Military Address Access Time 93Z564/93Z565 - 65 ns Max 93Z564A/93Z565A - 55 ns Max
- Highly Reliable Vertical Fuses Ensure High Programming Yields
- Available with Open Collector (93Z564) or Three State (93Z565) Outputs
- Low Current PNP Inputs

Pin Names

$\frac{\mathrm{A}_{0}-\mathrm{A}_{12}}{\mathrm{CS}}$	Address Inputs
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Chip Select Input (Active LOW)
Data Outputs	

Logic Symbol

Connection Diagrams
24-pin DIP (Top View)

Note:
The 24-pin Flatpak has the same pinout (Connection Diagram) as the 24 pin DIP.

93Z564/93Z565

Logic Diagram

Functional Description

The $93 Z 564$ and $93 Z 565$ are TTL bipolar field Programmable Read Only Memories (PROMs) organized 8192 words by eight bits per word. Open-collector outputs are provided on the $93 Z 564$ for use in wired-OR applications. The $93 Z 565$ has 3 -state outputs which provide active pull ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

One Chip Select input is provided for logic flexibility and for memory array expansion of up to 128 K without the need for external decoding. The fast Chip Select access time permits direct address decoding without increasing overall memory access times. Both devices are enabled only when CS is LOW.

The $93 Z 564$ and $93 Z 565$ use open base vertical transistor (junction) fuse cells. Initially an unprogrammed cell is in the logic ' 0 ' state. Cells can be programmed to a logic ' 1 ' state by following the specified programming procedure which fuses aluminum through the emitter base junction of the cell transistor.

The devices contain an internal test row and test column which are accessed and programmed during both wafer sort and final test. These test fuses are used to assure high programmability and to guarantee $A C$ performance and DC parameters.

The read function is identical to that of a conventional Read Only Memory (ROM). A binary address is applied to the address pins A_{0} through A_{12} and the chip is selected. Data is then available at the outputs after t_{AA}.

Programming

The $93 Z 564$ and $93 Z 565$ are manufactured with all bits in the logic " 0 " state. Any desired bit (output) can be programmed to a logic " 1 " state by following the Isoplanar- Z Generic Programming Specifications found at the back of this section.

Programming Sequence

The $93 Z 564$ and $93 Z 565$ are both programmed using the following method:

1. Address the word to be programmed by applying the appropriate voltages to address pins A_{0} through A_{12}. Select the PROM by applying a LOW to $\overline{\mathrm{CS}}$.
2. Apply the proper power for a High V_{cc} read. $\mathrm{V}_{\mathrm{CC}}=6.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$.
3. Read the output to be programmed and verify it is in the unprogrammed logic ' 0 ' state.
4. Enable the chip for programming by application of the Chip Select Programming Voltage $(\mathrm{V}$ CSP $=20.0 \mathrm{~V})$ to $\overline{\mathrm{CS}}$.
5. a. To program the bit apply lop, the programming current ramp to the output. NOTE: Only one output may be programmed at a time. The other outputs must be left open.
b. During the rise of the current ramp, a drop in voltage $\left(\mathrm{V}_{\mathrm{ps}}\right)$ at the output may be sensed. This indicates that the current needed to program the junction has been reached and the bit has programmed.
c. Upon detection of the voltage drop (V_{ps}), the current ramp should be held at a constant current for a time (thAP) and then shut off.
6. Once the current ramp has been shut off, lower $V_{C S P}$ to 0 V and read the output.
7. Lower V_{Cc} to 0 V . The power supply duty cycle must be less than or equal to 50%.
8. If the read performed in step 6 indicates that the bit has not programmed then go to step 1 and repeat the programming sequence (up to a maximum of 16 attempts total.)
9. If the read performed in step 6 indicates that the bit has programmed then one of the two following conditions exist:
a. If the required programming current was less than IOP (max) then go to step 10.
b. If the required programming current was equal to IOP (max) then the device is considered a failure and no future attempts at programming should be made.
10. Repeat the above procedure from step 1 until all the desired bits in the memory have been programmed.

Programming Flow Chart

93Z564/93Z565

DC Characteristics: Over guaranteed operating ranges unless otherwise noted

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIC	Input Clamp Diode Voltage			-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
VOL	Output LOW Voltage		0.30	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=16 \mathrm{~mA}$
VOH	Output HIGH Voltage (93Z565 only)	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$ Address Any '1'
IIL	Input LOW Current		-10	-100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$
IIH	Input HIGH Current	-40		40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$
IOHz	Output Leakage Current for High Impedance State (93Z565 only)			$\begin{array}{r} 40 \\ -40 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \mathrm{VOL}=0.4 \mathrm{~V} \end{aligned}$
Icex	Output Leakage Current (93Z564 only)			40	$\mu \mathrm{A}$	$V_{C E X}=V_{C C}$ Chip Deselected
los	Output Short-Circuit Current (93Z565 only)	-15	-35	-90	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, Note 2 Address Any '1'
Icc	Power Supply Current		120	180	mA	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$
CIN	Input Pin Capacitance		4.0		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
Co	Output Pin Capacitance		7.0		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$

Commercial

AC Characteristics: $\mathrm{VCC}_{\mathrm{C}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	$' A '$	Std	Unit	Condition
$t_{A A}$	Address to Output Access Time	45	55	ns	See AC Output Load
$t_{A C S}$	Chip Select to Output Access Time	25	30	ns	See AC Output Load

Military

AC Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	'A'	Std	Unit	Condition
$t_{A A}$	Address to Output Access Time	55	65	ns	See AC Output Load
$t_{A C S}$	Chip Select to Output Access Time	30	35	ns	See AC Output Load

[^52]Fig. 1 Read Mode Timing

a Propagation Delay from Address to Output

b Propagation Delay from Chip Select to Output

Fig. 2 AC Test Output Load

Ordering Information

Speed Selection
Blank $=$ High Speed
A = A Grade

Packages

D = Ceramic DIP
L = Leadless Chip Carrier

Temperature Ranges
$\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$\mathrm{M}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Optional Processing

QB $=$ Mil Std 883
Method 5004 \& 5005, Level B
QC $=$ Mil Std 883
Method 5004 \& 5005 , Level C
QR = Commercial Device with

Isoplanar-Z Junction Fuse
 Principles and Programming

*

Conventional fusible link bipolar PROMs and programmable logic devices are based upon two dimensional matrices of electrically conductive thin film fusible elements of materials such as nichrome, titanium tungsten, platinum silicide or polysilicon. Each of these thin film technologies has its own unique advantages and disadvantages but all have in common the fact that fuses lie flat on the surface of the silicon and therefore occupy a significant portion of silicon area. Cell area has become increasingly important as device densities have grown from 4 K to 64 K . Manufacturing cost, yields and performance are all directly related to die size which is a strong function of cell area. Previously, reductions in cell area have been accomplished primarily through improvements in photolithographic techniques. Such techniques have been pushed to their limits to produce high density, cost effective programmable memories and logic. The need to shrink cell sizes, especially in higher density devices, is placing severe strains on the manufacturability of thin film fuses.

Junction fuses are the emerging solution to the inherent problems posed by thin film fuses. A junction fuse is simply a PN junction programmable cell. The emitterbase junction of a floating base NPN transistor acts as the fuse element. Because fuses are single vertical transistors (hence the often used name of vertical fuses), they occupy minimal silicon area. The entire fuse structure can essentially be modeled as two diodes connected back-to-back. Before programming, a high impedence (open) path exists between the emitter and collector. The emitter-base diode is reverse biased, preventing read currents from passing through the fuse. During programming, the emitter-base junction is shorted out, leaving a forward biased base-collector (B-C) diode. This diode now appears as a low impedence (closed) path. The fuse has been programmed from a logic 0 to a logic 1. The fuse junction lies beneath the surface of the silicon so all of the potential thin film fuse related failure modes such as metal migration (growback), freeze out, corrosion, marginally opened fuses and passivation scattering have been eliminated.

The major problem encountered in early $\mathrm{P}-\mathrm{N}$ junction programmable junction fuse development was the requirement of a large cell programming current (typically 200 mA per cell). This large current meant that
large transistors were needed in the peripheral programming circuitry. The gain in array size reduction due to small cells was offset by the need for a larger peripheral programming circuitry which, in turn, translated to larger overall die size and higher die cost. The costs were such that, despite their reliability advantages, these devices were never widely commercially accepted.

The most straightforward method to achieve reductions in cell programming current is to use small emitter cells. A small emitter cell increases the effective current density at the emitter-base junction therefore decreasing the overall energy required to program the cell. To reduce emitter size and programming currents without the use of advanced photolithographic equipment, Fairchild adopted a simple solution, use a walled emitter cell and an oxide isolated Isoplanar process. With oxide isolation, emitter sizes are defined by the oxide opening and as a result are self aligned, easing manufacturing tolerances.

The main advantages of the Isoplanar-Z process are due to the use of oxide encroachment. The cell emitter is defined using standard photolithography. The surrounding oxide is then laterally grown, shrinking the emitter area and decreasing the effective cell size. Very small self aligned emitter-base junction areas can be achieved quite easily with the encroachment technique. An added benefit of oxide encroachment is that the higher thermal resistivity of the silicon dioxide which surrounds the cells, as compared to silicon, reduces heat loss during programming. This thermal insulation effect further reduces the current required to program a cell. Typical programming currents of 60 mA or below are easily achieved using the Isoplanar- Z process.

Results of reliability and programming yield testing have been excellent. Data have demonstrated typical programming yields in excess of 97% on a 16,384 bit PROM and no cell related failures in over 63 billion cell hours of life test.

Programming a Junction Fuse

Programming a junction fuse is accomplished by driving a controlled current through the emitter of the cell, inducing avalanche breakdown of the emitter-base junction. Heat locally generated at the reverse biased junction causes the Aluminum-Silicon interface to reach the

Isoplanar-Z Junction Fuse Principles and Programming

Al-Si eutectic solidus (melting) temperature of approximately $575^{\circ} \mathrm{C}$. The electrically conductive aluminum eutectic then diffuses down through the emitter to the emitter-base junction, forming a permanent short.

Once a junction fuse has been programmed, achieving a uniform cell resistance is necessary to insure proper device operation. Due to RC time constant considerations, uniform resistance is especially important in high speed devices. The resistance of the cell is largely determined by the depth of the aluminum eutectic "spike" down into the base depletion layer of the fuse transistor. This depth is determined by the amount of energy applied to the cell after the aluminum spike contacts the emitter-base junction. Too little current is undesireable as the fuse may not remain properly programmed. Too much current is also undesirable since the aluminum eutectic spike may be driven too deep, shorting out both the emitter-base and the basecollector junctions, destroying the fuse and rendering the entire device useless.

Different methods have been used to control the current needed to program a junction fuse. One method is a pulse-read technique, whereby a series of current pulses of uniform magnitude and duration are applied to the cell. Each pulse applies a specific amount of energy to the cell's emitter-base junction, successively heating the junction until the cell emitter reaches the AluminumSilicon eutectic temperature. Once this temperature is reached, migration occurs and the junction shorts. A read is performed after each pulse to detect if the fuse has blown. If additional energy is needed to program any cell, more pulses are applied until the cell blows. Once the emitter-base junction has been shorted, a fixed number of additional current pulses are applied to the fuse to attain uniform cell resistance.

However, the fixed number of additional pulses will insure uniform cell resistance accross the array only if cell sizes are uniform across the array. Thus stringent controls must be maintained to produce devices with uniform cell sizes throughout. The amount of current required to
program a cell can also change due to process variation or other factors such as array leakages. Any changes in cell programming current requirements will alter the effective energy which reaches the area around the aluminum spike. A difference in the effective energy can change the depth of the spike and therefore affect the cell resistance. In addition, if cell sizes were changed by design to take advantage of process advances or photolithography refinements, the energy needed to guarantee uniform cell resistance would change. A change in the designed cell size requires that either the number of extra pulses or the pulse width must be changed.

To solve all of the problems posed by varying cell size, Fairchild developed a self adjusting current ramp programming technique which delivers the optimum current needed to program each individual cell. With the self adjusting technique a steadily increasing current ramp is applied to a cell until a shorted junction is detected. The exact moment when the junction actually shorts can be sensed by a sharp drop in the voltage across the cell. This voltage drop occurs because the reverse biased E-B diode is no longer in series with the programming path.

Once the moment of programming has been detected, Fairchild incorporates the use of a programming ramp "post hold time". The rise in programming current is halted at the level which was required to cause a blow, held for a precise time interval, and then turned off. This means that the amount of additional energy applied to a cell is totally governed by the amount of current required to program that cell, which is in turn dependent upon cell size. Therefore each cell's additional energy pulse is custom tailored for that specific cell. Experimental data shows that a carefully chosen post hold time can insure a very uniform cell resistance regardless of cell size. The self adjusting current ramp programming scheme allows consistent, repeatable programming and uniform cell resistance, overcoming any effects of process variations on a particular product or differences in cell sizes across product lines. The same self adaptive programming algorithm can be applied to all future products independent of cell size and total memory density.

Isoplanar-Z TTL PROM
A Schlumberger Company

Generic Programming
 Specifications

Programming Timing Diagram

Programming Specifications (4)

| Symbol | Parameter | Min | Recommended
 Value | Max | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | Comments

Power Supply

Vcc	Power Supply Voltage	6.3	6.5	6.7	V	Typical Icc at $6.5 \mathrm{~V}=250 \mathrm{~mA}$
$\mathrm{tr}_{\mathrm{r} \mathrm{Cc}}$	Power Supply Rise Time(3)	0.2	2.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{f} \mathrm{Vcc}}$	Power Supply Fall Time	0.2	2.0		$\mu \mathrm{~s}$	
ton	Vcc On Time	(1)				See Programming Timing Diagram
toff	Vcc Off Time	(2)				
	Duty Cycle for Vcc			50	$\%$	ton/(toff + ton)

Isoplanar-Z TTL PROM Generic Programming Specifications

Programming Specifications (4) (Cont'd)

Read Strobe

$t_{d R B P}$	Read Delay before Programming	2.0	3.0		$\mu \mathrm{~s}$	Initial Check
t_{w}	Fuse Read Time		1.0		$\mu \mathrm{~s}$	
$t_{d V c c}$	Delay to Vcc Off		1.0		$\mu \mathrm{~s}$	
$t_{d R A P}$	Delay to Read after Programming	2.0	3.0		$\mu \mathrm{~s}$	Verify

Chip Select

$V_{C S P}$	Chip Select Programming Voltage	19.5	20.0	20.5	V	
$\mathrm{I}_{\mathrm{CSP}}$	Chip Select Program Current Limit	175	180	185	mA	
$\mathrm{~V}_{\mathrm{IL}}$	Input Voltage LOW	0	0	0.4	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input Voltage HIGH	2.4	5.0	5.0	V	
$\mathrm{t}_{\mathrm{dCS}}$	Delay to Chip Deselect		1.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{rcS}}$	Chip Select Pulse Rise Time	3.0	4.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{dAP}}$	Delay to Chip Select Time	2.0	3.0		$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{CCS}}$	Chip Select Pulse Fall Time	0.2	4.0		$\mu \mathrm{~s}$	

Current Ramp

IOPLP	Programming Current Linear Point		10	11	mA	Point after which the programming current ramp must rise at a linear slew rate
IOP(max)	Output Programming Current Limit	155	160	165	mA	Apply current ramp to selected output
$\mathrm{V}_{\text {OP (max) }}$	Output Programming Voltage Limit	24	25	26	V	
SRIOP	Current Slew Rate	0.9	1.0	1.1	$\mathrm{mA} / \mu \mathrm{s}$	Constant after Linear Point
VPS	Blow Sense Voltage	0.7			V	
$\mathrm{t}_{\mathrm{dBP}}$	Delay to Programming Ramp	2.0	3.0		$\mu \mathrm{s}$	
tLP	Time to Reach Linear Point	0.2	1.0	10	$\mu \mathrm{S}$	
tss	Program Sense Inhibit	2.0	3.0	4.0	$\mu \mathrm{S}$	
t_{tp}	Time to Program Fuse	3.0		137	$\mu \mathrm{S}$	
thap	Programming Ramp Hold Time	1.4	1.5	1.6	$\mu \mathrm{S}$	After fuse programs
${ }_{\text {tfiOP }}$	Program Ramp Fall Time		0.1	0.2	$\mu \mathrm{S}$	

Notes

1. Total time $V_{C C}$ is on to program fuse is equal to or greater than the sum of all the specified delays, pulse widths and rise/fall times.
2. toff is equal to or greater than ton.
3. Rise and fall times are from 10% to 90%.
4. Recommended programming temp. $T_{A}=25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$.

Notes

FAIRCHILD

A Schlumberger Company

Bipolar Division

F100Z459

$16 \times 24 \times(8+\overline{8})$ Field Programmable Logic Array

Description

The F100Z459 is a high speed bipolar Field Programmable Logic Array (FPLA), organized with 16 inputs, 24 product terms and eight outputs. The 16 inputs are fuse linked to the inputs of 24 AND gates (24 product terms). Each of the 24 AND gates are fuse linked to eight 24 -input OR gates (eight summing terms). Each summing term is fed into an output register where the outputs are available in both true and complement form. The output registers are operable in either edge triggered or transparent modes determined by the state of the register enable pins E_{a} or E_{b}. In the edge triggered mode, the registers operate as a negative edge triggered D flip-flops controlled by the common clock CP. The device also contains two clock enables, a Master Set, three Set Direct inputs and a Set Enable.

The F100Z459 on-chip maintenance circuit is an 11-bit shift register which is outside the data path. Various test points within the FPLA can be loaded in parallel and then shifted out for external diagnostics. One of these test points is the output of an interconnect integrity monitor which detects signal pin faults such as an open or a short to V_{cc}. The other test points monitor the state of the output registers and the common clock CP.

- Output Latches Operable in Edge or Level Enable Modes
- Transparent Input to Output Time - 4 ns Max
- Synchronous Clock Rate - 125 MHz Max
- Both True and Complement Outputs Available
- Highly Reliable Junction Fuses Ensure High Programming Yields
- On Chip Maintenance Circuit for In-System Monitoring and Checkout
- Interconnect Integrity Monitor Detects Signal Pin Faults
- Power Dissipation - 2.8 W Typ

Connection Diagram 64-Pin Pin Grid Array

TO BE DETERMINED

Pin Names

Pfo-15	Inputs
$Q_{0}-Q_{7}$	True Outputs
$\bar{Q}_{0}-\bar{Q}_{7}$	Complement Outputs
CP	Common Clock
$\mathrm{E}_{\mathrm{a}}, \mathrm{E}_{\mathrm{b}}$	Register Enables
$\mathrm{CPE}_{\mathrm{a}}, \overline{\mathrm{CPE}}_{\mathrm{b}}$	Clock Enables (Active LOW)
$S D_{\text {a }}, S D_{\text {b }}, S D_{\text {c }}$	Set Direct Inputs
SE	Set Enable
MS	Master Set
Im	Maintenance Serial Data Input
Om	Maintenance Serial Data Output
CPm	Maintenance Clock
$\mathrm{L} / \mathrm{S}_{\mathrm{m}}$	Maintenance Load/Shift

F100Z459

Logic Diagram

Product Terms

Maintenance Circuit Logic Diagram

Functional Description

The F100Z459 is a high speed ECL Field Programmable Logic Array (FPLA) organized $16 \times 24 \times(8+\overline{8})$. A common clock CP can be used to latch data into the negative edge triggered registers. $\overline{\mathrm{CPE}}_{\mathrm{a}}$ and $\overline{\mathrm{CPE}}_{\mathrm{b}}$ are separate clock enables which control the clocking operations of $Q_{0}-Q_{4}$ and $Q_{5}-Q_{7}$ and their complements respectively. These clock enables mask out the clock when in a HIGH state. Two register enables (E_{a} and E_{b}) override the internal clock generation circuit and make the registers transparent. If either E_{a} or E_{b} are HIGH then the corresponding registers become transparent, i.e., the outputs of the registers follow their inputs independent of the clock. When a register enable is LOW the output stores the data which was present on its inputs before that enable went LOW. Master Set (MS) Set Enable (SE), and individual Set Direct controls (SDa,
$S D_{b}$ and $S D_{c}$) are available for the output registers. Three Set Direct inputs $S D_{a}, S D_{b}$ and $S D_{c}$ set outputs Q_{0} through Q_{3}, Q_{4} and Q_{5} through Q_{7} and reset their complements respectively.

An on-chip maintenance circuit, which is not in the data path, provides the capabilities of monitoring various test points in the device. The shift register is parallel loaded with the status of the output latches, the status of CP and the status of an interconnection integrity monitor. $C P_{m}$ is an independent clock which is used to shift the maintenance data out. Maintenance Serial Data Input (Im) and Maintenance Serial Data Output (Om) are provided for expansion. The interconnect integrity monitor is a zero's catching flip-flop with input circuitry which detects faults such as an open or a short to VCC on any of the signal pins.

Output Latch, Asynchronous Set Operation

Inputs					Outputs					
SE	MS	SD ${ }_{\text {a }}$	SD ${ }_{\text {b }}$	SD_{c}	Q_{0-3}	\bar{Q}_{0-3}	Q_{4}	$\overline{\mathbf{Q}}_{4}$	Q_{5-7}	$\overline{\mathbf{Q}}_{5-7}$
L	X	X	X	X	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	$Q_{n}(\mathrm{t})$	$\bar{Q}_{n}(t)$
H	L	L	L	L	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	Qn (t)	$\bar{Q}_{n}(t)$
H	L	H	L	L	H	L	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	$Q_{n}(t)$	$\bar{Q}_{n}(t)$
H	L	L	H	L	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	H	L	$Q_{n}(t)$	$\bar{Q}_{n}(t)$
H	L	L	L	H	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	H	L
H	H	X	X	X	H	L	H	L	H	L

$\mathrm{t}=$ Time Before Input Transition
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X $=$ Don't Care (HIGH or LOW)

Output Latch, Enable Operation

Inputs at \mathbf{t}					Outputs at $\mathrm{t}+1$				Comments
E_{a}	E_{b}	$\overline{\mathrm{CPE}}_{\mathrm{a}}$	$\mathrm{CPE}_{\mathrm{b}}$	CP	Q_{0-4}	\bar{Q}_{0-4}	Q_{5-7}	$\overline{\mathbf{Q}}_{5-7}$	
L	L	L	L		$\mathrm{D}_{\mathrm{n}}(\mathrm{t})$	$\overline{\mathrm{D}}_{\mathrm{n}}(\mathrm{t})$	$\mathrm{D}_{\mathrm{n}}(\mathrm{t})$	$\overline{\mathrm{D}}_{\mathrm{n}}(\mathrm{t})$	Q_{0-7} Latch new data
L	L	L	H		$\mathrm{D}_{\mathrm{n}}(\mathrm{t})$	$\overline{\mathrm{D}}_{\mathrm{n}}(\mathrm{t})$	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	Q_{0-4} Latch new data Q_{5-7} Latched, no change
L	L	H	L		$Q_{n}(t)$	$\bar{Q}_{n}(t)$	$\mathrm{D}_{\mathrm{n}}(\mathrm{t})$	$\bar{D}_{n}(t)$	Q_{0-4} Latched, no change Q_{5-7} Latch new data
L	L	H	H	X	Qn (t)	$\bar{Q}_{n}(t)$	$Q_{n}(t)$	$\overline{\mathrm{Q}}_{\mathrm{n}}(\mathrm{t})$	Latched, no change
H	L	X	H	X	D_{n}	\bar{D}_{n}	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	Q_{0-4} Transparent Q_{5-7} Latched, no change
L	H	H	X	X	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	D_{n}	\bar{D}_{n}	Q_{0-4} Latched, no change Q_{5-7} Transparent
H	H	X	X	X	D_{n}	\bar{D}_{n}	D_{n}	\bar{D}_{n}	Q_{0-7} Transparent
	L	H	H	X	$\mathrm{D}_{\mathrm{n}}(\mathrm{t})$	$\overline{\mathrm{D}} \mathrm{n}(\mathrm{t})$	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	Q_{0-4} Latch new data Q_{5-7} Latched, no change
L		H	H	X	$Q_{n}(t)$	$\bar{Q}_{n}(t)$	$\mathrm{D}_{\mathrm{n}}(\mathrm{t})$	$\bar{D}_{n}(t)$	Q_{0-4} Latched, no change Q_{5-7} Latch new data

$D_{n}=$ Input to Latch from Summing Array
$t=$ Time Before Input Transition
$t+1=$ Time After Input Transition
$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care (HIGH or LOW)

Description

The 93458 and 93459 are bipolar Field Programmable Logic Arrays (FPLAs) organized with 16 inputs, 48 product terms and eight outputs. The 16 inputs and their complements are fuse linked to the inputs of 48 AND gates (48 product terms). Each of the 48 AND gates are fuse linked to eight 48 -input OR gates (eight summing terms). Each output may be programmed active HIGH or active LOW. The devices are identical except for the output stage. The 93458 has opencollector outputs; the 93459 has 3 -state outputs. In either case, the outputs are enabled when $\overline{\mathrm{CS}}$ is LOW.

- Commercial Address Access Time - 45 ns Max
- Military Address Access Time - 65 ns Max
- Fully Programmable Product Array, Summing Array and Output Polarity
- Available with Open Collector (93458) or Three State (93459) Outputs
- Industry Proven Nichrome Fuses

Pin Names

$\frac{A_{0}-A_{15}}{C S}$	Address Inputs
$O_{0}-O_{7}$	Chip Select Inputs
V_{P}	Data Outputs

Connection Diagram
28-Pin DIP (Top View)

Note

The 28-pin Flatpak and the 28-pin Leadless Chip Carrier have the same pinout (Connection Diagram) as the 28 -pin DIP.

Logic Symbol

$V_{C C}=\operatorname{Pin} 28$
GND $=\operatorname{Pin} 14$

Logic Diagram

Functional Description

The 93458 and 93459 are bipolar Field Programmable Logic Arrays (FPLAs) organized 16 inputs by 48 product terms by eight outputs. Open-collector outputs are provided on the 93458 for use in wired-OR systems. The 93459 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. Chip Select for both devices is active LOW; i.e., a HIGH (logic " 1 ") on the $\overline{C S}$ pin will disable all outputs.

The 93458 and 93459 both contain a test input line, two test product term lines and a test output line. These test fuses are accessed during both wafer sort and final test and used to assure high programmability and to guarantee DC parameters and AC performance.

The read function is identical to that of a conventional bipolar PLA. That is, a binary address is applied to inputs A_{0} through A_{15}, the chip is selected, and data is valid at the outputs after $t_{A A}$.

Programming (selectively opening nichrome fuse links) is accomplished by following the sequence outlined in the Programming Specifications table.

Detailed Logic Diagram

Product Terms-P

Logic Relationships

Input Term

An
$n=0, \ldots, 15$, one of 16 inputs

Product Term
$\mathrm{P}_{\mathrm{m}}=\pi_{0}^{15}\left(\mathrm{i}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}+\mathrm{j}_{n} \overline{\mathrm{~A}}_{\mathrm{n}}\right) \quad \mathrm{m}=0, \ldots, 47$, one of 48 product terms where:
a) $i_{n}=j_{n}=0$ for unprogrammed input
b) $i_{n} \neq j_{n}$ for programmed input
c) $i_{n}=j_{n}=1$ for Don't Care input
$\left.F_{r}=\Sigma_{0}^{47} P_{m} \quad \begin{array}{rl}r= & 0, \ldots, 7, \text { the OR function of the } \\ & 48 \text { product terms }\end{array}\right)$
Summing Term
$S_{r}=\Sigma_{0}^{47} \mathrm{~km}_{\mathrm{m}} \mathrm{P}_{\mathrm{m}}$
where $\mathrm{k}_{\mathrm{m}}=0$ for product term inactive
(programmed)
$k_{m}=1$ for product term active
(unprogrammed)

			Output		
Mode	$\overline{\text { CS }}$	F $_{\mathbf{r}}$	$\mathbf{S}_{\mathbf{r}}$	Active HIGH	Active LOW
Read	L	H	L	L	H
	L	H	H	H	L
	L	L	X	L	H
Disable	H	X	X	H (93458)	H (93458)
	H	X	X	High-Z (93459)	High-Z (93459)

$H=$ HIGH Voltage Levels
L = LOW Voltage Levels
$\mathrm{X}=$ Don't Care

By programming, the eight outputs of an FPLA can be made to relate to the 16 inputs as given by the following example:

8 outputs total

$$
\begin{aligned}
& O_{1}=A_{0} \bar{A}_{6} A_{14}+\bar{A}_{2} \bar{A}_{15}+\underbrace{+\bar{A}_{0} A_{1} \ldots A_{15}}+\bar{A}_{8} A_{10} \bar{A}_{13} \\
& \text { One Product Term } \\
& 16 \text { input terms max } \\
& \text { One Output } \\
& 48 \text { product terms max } \\
& \mathrm{O}_{2}=\mathrm{A}_{0} \overline{\mathrm{~A}}_{6} \mathrm{~A}_{14}+\overline{\mathrm{A}}_{2} \overline{\mathrm{~A}}_{15} \\
& \text { (Output polarity programmed, active HIGH) } \\
& O_{7}=\overline{\left(\bar{A}_{8} A_{10} \bar{A}_{13}+A_{4} \bar{A}_{7} \bar{A}_{9} A_{11} \bar{A}_{12}\right)} \\
& \text { (Output polarity not programmed, active LOW) }
\end{aligned}
$$

Programming

The 93458 and 93459 are delivered in an unprogrammed state, characterized by:

- All fuses intact
- All 8 output buffers in active LOW state
- All outputs read HIGH

Programming and verifying the Product Matrix, the Summing Matrix, and the Output Polarity are outlined below.

Program Product Matrix

All 48 AND gates of the product matrix are fuse linked to both the true and false lines of every input buffer in the initial unprogrammed state. The initial logic expression for the 48 unprogrammed AND gates is $A_{0} \overline{A_{0}} A_{1} \overline{A_{1}} \ldots A_{15} \overline{A_{15}}$ (where A_{n} or $\overline{A_{n}}$ is defined to be an input term). Programming the fuse located by the selection of an input line, A_{n}, and the mth AND gate replaces the input term A_{n} with ' 1 ' in the logic expression for the mth AND gate.

- Program one input at a time.
- All unused inputs of programmed product terms must be programmed as Don't Care.
- Inputs of unused product lines are not required to be programmed.
- Pin $18\left(\mathrm{O}_{0}\right)$ is in the read mode (open collector). Care must be taken so that this pin is either left open, grounded, or loaded such that the current flowing into the pin does not exceed 16 mA .

1. Connect pin $28\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to 5.0 V .
2. Connect pin 14 (GND) to ground.
3. Connect pin $19(\overline{\mathrm{CS})}$ to a TTL HIGH level.
4. Apply TTL levels to pins 10 through 13,15 , and 16 (O_{7} through O_{2}) to address an on-chip 1-of-48 decoder to select the AND gate to be programmed ($\mathrm{O}_{7}=\mathrm{LSB}$ and $\mathrm{O}_{2}=\mathrm{MSB}$).
5. Apply +12.0 V to all input pins (A_{0} through A_{15}).
6. Apply the proper TTL level to an A_{n} input pin as follows (program one input at a time):
a. If the product term to be programmed contains the input term A_{n} (where $n=0$ through 15), lower the A_{n} pin to a TTL HIGH level.
b. If the product term to be programmed contains the input term \bar{A}_{n}, lower the A_{n} to a TTL LOW level.
c. If the product term does not contain the input terms A_{n} or \bar{A}_{n} (i.e., A_{n} is a "Don't Care" input), perform steps $6 \mathrm{a}, 7,6 \mathrm{~b}$, and 7 .
7. Apply a 15.0 V programming pulse to pin $1\left(\mathrm{~V}_{\mathrm{P}}\right)$ according to the Programming Specifications table.
8. Repeat steps 5 through 7 for each input of the selected product term.
9. Repeat steps 4 through 8 for all other product terms to be programmed.

Verify Product Matrix

1. Connect pin 28 (V_{CC}) to 5.0 V .
2. Connect pin 14 (GND) to ground.
3. Connect pin $19(\overline{\mathrm{CS}})$ to a TTL HIGH level.
4. Apply TTL levels to pins 10 through 13,15 , and 16 (O_{7} through O_{2}) to address an on-chip 1-of-48 decoder to select the AND gate to be verified $\left(\mathrm{O}_{7}=\mathrm{LSB}\right.$ and $\mathrm{O}_{2}=\mathrm{MSB}$).
5. Apply +12.0 V to all input pins (A_{0} through A_{15}).
6. Test the state of the A_{n} input as follows:
a. Lower the A_{n} pin to a TTL HIGH level and sense the voltage on pin $18\left(\mathrm{O}_{0}\right)$.
b. Lower the A_{n} pin to a TTL LOW level and sense the voltage on pin $18\left(\mathrm{O}_{0}\right)$.
7. The state of the A_{n} input is determined as follows:

	$\mathbf{A}_{n}=$ TTL HIGH	$\mathbf{A}_{n}=$ TTL LOW	Condition of \mathbf{A}_{n} for Selected Product Term
	H	H	Don't Care
Level at	H	L	A_{n} in P-Term
Output 0	L	H	A_{n} in P-Term
(Notes 1,2,3)	L	L	Unprogrammed

8. Repeat steps 5 through 7 for each input of the selected product term.
9. Repeat steps 4 through 8 for all other product terms.
10. Repeat steps 4 through 9 with $V_{C C}$ at the Low $V / C C$ Read recommended value.

Notes

1. O_{0} in this mode functions as an open-collector output.
2. The table above is valid regardless of the polarity (active HIGH or active LOW) of O_{0}.
3. Pin $1\left(V_{P}\right)$ should be either floating or grounded.

93458/93459

Programming Summing Matrix

All eight OR gates of the summing matrix are fuse linked to the outputs of the AND gates in the initial unprogrammed state. The initial logic expression (sum of products) of the eight unprogrammed OR gates is $P_{0}+P_{1}+P_{2}+\ldots+P_{47}$ where $P m$ is the product term programmed into the mth AND gate. Programming the fuse located by the selection of the mth AND gate and the nth summing line replaces the product term Pm with ' 0 ' in the logic expression of the nth OR gate. The nth summing line is selected by the selection of the nth output buffer where $n=0$ through seven.

- Program one input at a time.
- All unused product lines are not required to be programmed.

1. Connect pin $28(\mathrm{VCC})$ to 5.0 V .
2. Connect pin 14 (GND) to ground.
3. Connect pin $19(\overline{\mathrm{CS})}$ to a TTL HIGH level.
4. Apply TTL levels to pins 4 through 9 (A_{5} through A_{0}) to address an on-chip 1-of-48 decoder to select the AND gate to be programmed ($\mathrm{A}_{0}=$ LSB and $\left.A_{5}=M S B\right)$.
5. Apply a TTL HIGH level to pins 20 and 21 (A_{15} and A_{14}).
6. Connect the remaining input pins to +12.0 V .
7. Apply an 18 V programming pulse (see Programming Specifications table) at the pin of the output to be programmed. Other output pins should be either left open or tied to a TTL HIGH level.

Verify Summing Matrix

1. Connect pin 28 (Vcc) to 5 V .
2. Connect pin 14 (GND) to ground.
3. Connect pin $19(\overline{\mathrm{CS}})$ to a TTL LOW level.
4. Apply TTL levels to pins 4 through 9 (A_{5} through A_{0}) to address an on-chip 1-of-48 decoder to select the AND gate to be verified ($A_{0}=L S B$ and $\left.A_{5}=M S B\right)$.
5. Apply a TTL HIGH level to pins 20 and 22 (A_{15} and A_{13}).
6. Connect the remaining input pins to +12.0 V .
7. Sense the voltage on the output pin to be verified. The programming of the selected product line to the output line can be determined as follows:

Output Reads (Note)	Fuse Link
L	Blown (Inactive)
H	Unblown (Active)

Note

The condition of the fuse link can be determined from the table above regardless of the polarity (active HIGH or active LOW) of the output buffer being verified.
8. Repeat steps 4 through 7 with $V_{C C}$ at the Low $V_{C C}$ Read recommended value.

Program Output Polarity

The initial unprogrammed state of all eight output buffers is active LOW or inverting. To program an output buffer into the active HIGH or non-inverting state follow the steps shown below:

- Program one output at a time.

1. Connect pin $28\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to 5.0 V .
2. Connect pin 14 (GND) to ground.
3. Connect pin $19(\overline{\mathrm{CS}})$ to a TTL HIGH level.
4. Apply a TTL level to pins 4 through 9 (A_{5} through A_{0}).
5. Apply a TTL HIGH level to pin 20 (A_{15}).
6. Connect the remaining input pins to +12.0 V .
7. Apply an 18 V programming pulse (see Programming Specifications table) to the pin of the output to be programmed. Other output pins should be either left open or tied to a TTL HIGH level.

Verify Output Polarity

1. Connect pin $28\left(\mathrm{~V}_{\mathrm{cc}}\right)$ to 5 V .
2. Connect pin 14 (GND) to ground.
3. Connect pin $19(\overline{(C S})$ to a TTL LOW level.
4. Apply a TTL level to pins 4 through 9 (A_{5} through A_{0}).
5. Apply a TTL HIGH level to pins 21 and 22 (A_{14} and A_{13}).
6. Connect the remaining input pins to +12.0 V .
7. Sense the voltage on the pin of the output buffer to be verified. The condition of the output can be determined as follows:

93458/93459

Output Reads	Output State
H	Active LOW
L	Active HIGH

8. Repeat step 7 with $V_{c c}$ at the Low $V_{c c}$ Read recommended value.

The table given below summarizes the full programming and verifying procedures.
Summary of Pin Voltages (Volts)

	Read	Program Product Matrix	Verify Product Matrix	Program Summing Matrix	Verify Summing Matrix	Program Output Polarity	Verify Output Polarity
Pin $1\left(V_{p}\right)$	***	15.0	***	***	***	***	***
Pin $2\left(A_{7}\right)$	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin $3\left(A_{6}\right)$	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin $4\left(A_{5}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $5\left(A_{4}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 6 (A_{3})	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $7\left(A_{2}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $8\left(A_{1}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $9\left(\mathrm{~A}_{0}\right)$	TTL	12.0*	12.0*	TTL	TTL	TTL HIGH	TTL HIGH
Pin $10(07)$	READ	TTL	TTL	****	READ	****	READ
Pin 11 (06)	READ	TTL	TTL	****	READ	****	READ
Pin $12(05)$	READ	TTL	TTL	****	READ	****	READ
Pin $13(04)$	READ	TTL	TTL	****	READ	****	READ
Pin 14 (GND)	GND						
$\operatorname{Pin} 15\left(\mathrm{O}_{3}\right)$	READ	TTL	TTL	****	READ	****	READ
Pin $16\left(0_{2}\right)$	READ	TTL	TTL	****	READ	****	READ
Pin $17\left(00_{1}\right)$	READ	**	**	****	READ	****	READ
Pin $18\left(0_{0}\right)$	READ	READ	READ	****	READ	****	READ
Pin $19(\overline{\mathrm{CS}})$	TTL LOW	TTL HIGH	TTL HIGH	TTL HIGH	TTL LOW	TTL HIGH	TTL LOW
Pin 20 (A_{15})	TTL	12.0*	12.0*	TTL HIGH	TTL HIGH	TTL HIGH	12.0
Pin 21 (A_{14})	TTL	12.0*	12.0*	TTL HIGH	12.0	12.0	TTL HIGH
Pin $22\left(\mathrm{~A}_{13}\right)$	TTL	12.0*	12.0*	12.0	TTL HIGH	12.0	TTL HIGH
Pin 23 (A_{12})	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin $24\left(A_{11}\right)$	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 25 (A_{10})	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 26 (A_{9})	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 27 (A_{8})	TTL	12.0*	12.0*	12.0	12.0	12.0	12.0
Pin 28 (Vcc)	5.0	5.0	5.0	5.0	5.0	5.0	5.0

[^53]Programming Specifications

Symbol	Characteristic	Min	Recommended Value	Max	Unit	Comment
VIH	TTL Levels	2.4	5.0	5.0	V	Apply to appropriate address and output pins. Do not leave pins open
VIL		0	0	0.4	V	
$\overline{\mathrm{CS}}$	Chip Select	2.4	5.0	5.0	V	
Vop	Programming Voltage Pulse	17.5	18.0	18.5	V	Applied to appropriate output pin
V_{P}	Programming Voltage Pulse	14.5	15.0	15.5	V	Apply to V_{P} pin
tpw	Programming Pulse Width		0.18	50	ms	
	Duty Cycle, Programming Pulse		20	*	\%	*Maximum duty cycle to maintain $\mathrm{T}_{\mathrm{C}}<85^{\circ} \mathrm{C}$
t_{r}	Programming Pulse Rise Time	0.5	1.0	3.0	$\mu \mathrm{S}$	
	Number of Pulses Required	1	4	8		
VCC	Power Supply Voltage	4.9	5.0	5.1	V	
TC	Case Temperature		25	85	${ }^{\circ} \mathrm{C}$	
Ivp	Programming Pulse Current Limit (VP Pin)			200	mA	If pulse generator is used, set current limit to this maximum value
IOP	Programming Pulse Current Limit (Any Output Pin)			100	mA	If pulse generator is used, set current limit to this maximum value
LVCc	Low Vcc Read	4.2	4.2 or 4.4	4.4	V	Programming Read Verify**

** 4.2 V simulates $-55^{\circ} \mathrm{C}$ operation, 4.4 V simulates $0^{\circ} \mathrm{C}$ operation.
$16 \times 48 \times 8$ FPLA Program Table

-Input and Output fields of unused P-terms can be left blank

93458/93459

DC Characteristics: Over guaranteed operating ranges unless otherwise noted

Symbol	Characteristic	Min	Typ(1)	Max	Unit	Condition
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIC	Input Clamp Diode Voltage			-1.2	V	$V_{C C}=\operatorname{Min}, \mathrm{IIN}=-18 \mathrm{~mA}$
VOL	Output LOW Voltage		0.30	0.45	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{loL}=16 \mathrm{~mA}$
VOH	Output HIGH Voltage (93459 only)	2.4			V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=-2.0 \mathrm{~mA}$
IIL	Input LOW Current		-160	-250	$\mu \mathrm{A}$	$\mathrm{V}_{\text {cc }}=\mathrm{Max}, \mathrm{V}_{\text {IL }}=0.45 \mathrm{~V}$
$\underline{\text { IIH }}$	Input HIGH Current			40	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$
lOHz	Output Leakage Current for High Impedance State (93459 only)			$\begin{array}{r} 50 \\ -50 \end{array}$	$\mu \mathrm{A}$	VOH $=2.4 \mathrm{~V}$ $\mathrm{VOL}=0.4 \mathrm{~V}$$\quad 0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
lOHz	Output Leakage Current for High Impedance State (93459 only)			$\begin{array}{r} 100 \\ -100 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VOH}=2.4 \mathrm{~V} \\ & \mathrm{VOL}=0.4 \mathrm{~V}\end{aligned} \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ICEX	Output Leakage Current (93458 only)			50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {CEX }}=4.95 \mathrm{~V}$, $-0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Chip Deselected
ICex	Output Leakage Current (93458 only)			150	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{VCEX}^{\mathrm{C}}=5.2 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { Chip Deselected } \end{aligned}$
los	Output Short-Circuit Current (93459 only)	-15	-35	-90	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$, Note 2
ICC	Power Supply Current		105	170	mA	Vcc $=$ Max, Chip Selected, Note 3
CIN	Input Pin Capacitance		4.0		pF	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~V}$ IN $=4.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$
Co^{+}	Output Pin Capacitance		7.0		pF	$V_{C c} 5.0=\mathrm{V}, \mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$

Commercial
AC Characteristics: $\mathrm{VCC}_{\mathrm{C}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Symbol	Characteristic	Max	Unit	Condition
$t_{A A}$	Address to Output Access Time	45	ns	See AC Output Load
$t_{A C S}$	Chip Select to Output Access Time	30	ns	See AC Output Load

Military

AC Characteristics: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Characteristic	Max	Unit	Condition
$t_{A A}$	Address to Output Access Time	65	ns	See AC Test Output Load
$t_{\text {ACS }}$	Chip Select to Output Access Time	30	ns	See AC Test Output Load

1. Typical values are at $V_{C C}=5.0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$ and maximum loading.
2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.
3. For programmed part, add 0.45 mA typical, 0.60 mA maximum per selected programmed product terms and add 2.9 mA typical, 3.9 mA maximum per enabled low output or 33 mA typical, 44 mA maximum for disabled states.

Fig. 1 AC Test Loads

Fig. 3 Read Mode Timing

Fig. 2 Input Levels

Ordering Information
93458
93459

Package Outlines

1F 64-Pin Plug In Package

Notes

Body is 92% min. alumina Lid is nickel/gold-plated kovar or equivalent
Assembled weight is 4.7 grams

2E 28-Pin Cerpak

Notes

Pins are tin-plated alloy 42 or equivalent Base and cap are black alumina Package weight is 1.0 grams These dimensions include misalignment, glass over-run etc. . . .

Package Outlines

2F

18-Pin Cerpak

Notes

Pins are tin-plated alloy 42 or equivalent Base and cap are black alumina
Package weight is 0.7 grams
These dimensions include
misalignment, glass over-run etc.

2H

20-Pin Leadless Chip Carrier

Notes

Chip carrier is 92% min. black alumina Cap is nickel/gold-plated kovar or equivalent
All edge notches (except corners) are gold-plated to connect to bottom gold lead plating
Package weight is 2.5 grams

Package Outlines

2J 28-Pin Leadless Chip Carrier

Notes

Chip carrier is 92% min. black alumina Cap is nickel/gold-plated kovar or equivalent
All edge notches (except corners) are gold-plated to connect to bottom gold lead plating
Package weight is 2.7 grams

3E 18-Pin Lead Cerpak

Package Outlines

3G

20-Pin Side-Brazed Package

3L
16-Pin Cerpak

Notes

Pins are nickel/gold-plated alloy 42 or equivalent
Package material is alumina, 92% min. Cap is $\mathrm{Ni} /$ Au-plated kovar or equivalent Board-drilling dimensions should equal your practice for .030 (0.76) dia holes Pins are intended for insertion in hole rows on .300 (7.62) centers Pins are purposely shipped with "positive" misalignment to facilitate insertion
Package weight is 1.8 grams

Notes

Pins are tin-plated alloy 42 or equivalent Base and cap are black alumina Package weight is 0.5 grams
These dimensions include misalignment, glass over-run etc. . . .

Package Outlines

3M 24-pin Cerpak

Notes

Pins are tin-plated alloy 42 or equivalent
Base and cap are black aiumina
Package weight is 1.0 gram
These dimensions include
misalignment, glass over-run etc. . . .

4E 20-Pin Package, Cerdip

Package Outlines

4F 20-Pin Cerpak

Notes

Pins are tin-plated alloy 42 or equivalent Base and cap are black alumina
Package weight is 0.8 grams
These dimensions include misalignment, glass over-run etc. . . .

4H 24-Pin Cerdip Package

Notes

Pins are tin-plated alloy 42 or equivalent
Pins are intended for insertion in hole
rows on $\mathbf{3 0 0}$ (7.62) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for $.030(0.76)$ inch diameter pins
Hermetically sealed alumina package
Package weight is 6.7 grams
These dimensions include
misalignment, glass over-run etc. . . .

Package Outlines

4K/4K-L 22-Pin Plastic Dip

4N/8F

18-Pin Package, Cerdip

Notes

Pins are tin-plated alloy 42 or equivalent Package material is plastic
Pins are intended for insertion in hole rows on . 400 (10.16) centers They are purposely shipped with "positive" misalignment to facilitate insertion
Package weight is 2.1 grams Package dimensions do not include permissible flash

Notes

Pins are tin-plated alloy 42 or equivalent Pins are intended for insertion in hole rows on $\mathbf{3 0 0}$ (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for . 030 (0.76) inch diameter holes
Hermetically sealed alumina package *Does not apply to the corner leads
Package weight is 2.7 grams
These dimensions include misalignment, glass over-run etc. . . .

Package Outlines

4P 24-Pin Cerpak

Notes
Pins are tin-plated alloy 42 or equivalent
Base and cap are black alumina
Package weight is 0.8 grams
These dimensions include
misalignment, glass over-run etc. . .

4V
24-Pin Quad Cerpak

Notes
Pins are tin-plated alloy 42 or equivalent Cavity size is . 200 SQ. (5.08 SQ.)
Package weight is 0.7 grams
These dimensions include misalignment, glass over-run etc. ...

4X 24-Pin Cerpak

Notes

Pins are tin-plated alloy 42 or equivalent Base and cap are black alumina Package weight is 1.0 gram These dimensions include misalignment, glass over-run etc. . . .

6D 16-Pin Package, Cerdip

Notes

Pins are tin-plated alloy 42 or equivalent Pins are intended for insertion in hole rows on . $\mathbf{3 0 0}$ (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for $.030(0.76)$. inch dia holes
Hermetically sealed alumina package
The .040-. $\mathbf{0 3 0}$ dimension does not
apply to the corner pins
Package weight is 2.2 grams
These dimensions include misalignment, glass over-run etc. ...

Package Outlines

6Y 24-Pin Package, Cerdip

7L
24-Pin Package, Cerdip

Notes

Pins are tin-plated alloy 42 or equivalent Hermetically sealed alumina package Pins are intended for insertion in hole rows on .600 (15.24) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .030 (0.76) inch
diameter holes
Package weight is 7.1 grams
These dimensions include misalignment, glass over-run etc. . . .

7W 24-Pin MSI Dual In-line, Cerdip

Notes

Pins are tin-plated alloy 42 or equivalent Hermetically sealed alumina package Pins are intended for insertion in hole rows on .600 (15.24) centers
They are purposely shipped with
"positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for $.030(0.76)$ inch diameter holes
Cavity size is $.320 \times .320(8.13 \times 8.13)$
Package weight is 7.1 grams
These dimensions include
misalignment, glass over-run etc. ...

Package Outlines

8H

20-Pin Cerpak

Notes

Pins are tin-plated alloy 42 or equivalent
Base and cap are black alumina
Cavity size is $.300 \times .375(7.62 \times 9.52)$
Package weight is 1.0 gram
These dimensions include
misalignment, glass over-run etc. . . .

85 28-Pin Package, Cerdip

Notes
Pins are tin-plated alloy 42 or equivalent Hermetically sealed alumina package Pins are intended for insertion in hole rows on . 600 (15.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .030 (0.76) inch diameter holes
Package weight is 8.6 grams
These dimensions include misalignment, glass over-run etc. . . .

9M/9M-L 18-Pin Plastic Dip

Notes

Pins are tin-plated alloy 42 or equivalent
Package material is plastic
Pins are intended for insertion in hole rows on . 300 (7.62) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
*The .037-.027 dimension does not apply to the corner pins Package weight is 1.0 gram
Package dimensions do not include permissible flash

Notes

Pins are tin-plated alloy 42 or equivalent Package material is plastic
Pins are intended for insertion in hole rows on . 300 (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion
Package weight is 1.3 grams Package dimensions do not include permissible flash

Package Outlines

9N/9N-L 24-Pin Plastic Dip

9Y 28-Pin Plastic Dip

Notes

Pins are tin-plated alloy 42 or equivalent
Package material is plastic
Pins are intended for insertion in hole rows on .600 (15.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion
Package weight is 3.5 grams
Package dimensions do not include permissible flash

Notes

Pins are tin-plated alloy 42 or equivalent Package material is plastic
Pins are intended for insertion in hole rows on . 600 (15.24) centers
They are purposely shipped "positive" misalignment to facilitate insertion Package weight is 4.5 grams Package dimensions do not include permissible flash

Fairchild
 Semiconductor

Franchised Distributors

United States and Canada

Alabama

Hall Mark Electronics
4900 Bradford Drive
Huntsville, Alabama 35807
Tel: 205-837-8700 TWX: 810-726-2187
Hamilton/Avnet Electronics
4692 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-7210 TWX: 810-726-2162

Schweber Electronics
2227 Drake Avenue S.W.
Huntsville, Alabama 35805
Tel: 205-882-2200

Arizona

Hamilton/Avnet Electronics
505 South Madison Drive
Tempe, Arizona 85281
Tel: 602-231-5100 TWX: 910-950-0077
Kierulff Electronics
4134 East Wood Street
Phoenix. Arizona 85040
Tel: 602-243-4101 TWX: 910-951-1550
Wyle Distribution Group
8155 North 24th Avenue
Phoenix, Arizona 85021
Tel: 602-249-2232 TWX: 910-951-4282

California

Arrow Electronics
19748 Dearborn Street
Chatsworth, California 91311
Tel: 213-701-7500 TWX: 910-493-2086
Arrow Electronics
3094 San Clemente Street
Hayward, California 94544
Tel: 415-487-4300
Arrow Electronics
9511 Ridge Haven Court
San Diego, California 92123
Tel: 714-565-4800 TWX: 910-335-1195

Arrow Electronics
521 Weddell Avenue
Sunnyvale, California 94086
Tel: 408-745-6600 TWX: 910-339-9371
Avnet Electronics
350 McCormick Avenue
Costa Mesa, California 92626
Tel: 714-754-6111 (Orange County)
213-558-2345 (Los Angeles)
TWX: 910-595-1928
Avnet Electronics
21050 Erwin Street
Woodland Hills, California 91367
Tel: 213-883-0000

Bell Industries
Electronic Distributor Division
1161 N. Fair Oaks Avenue
Sunnyvale, California 94086
Tel: 408-734-8570 TWX: 910-339-9378
Hamilton/Avnet Electronics 3170 Pullman Avenue
Costa Mesa, California 92626
Tel: 714-641-1850 TWX: 910-595-2638

Hamilton Electro Sales
10912 West Washington Blvd
Culver City, California 90230
Tel: 213-558-2121 TWX: 910-340-6364
Hamilton/Avnet Electronics
4103 North Gate Blvd.
Sacramento, California 95348
Tel: 916-920-3150
Hamilton/Avnet Electronics
4545 Viewridge Avenue
San Diego. California 92123
Tel: 714-571-7527 TWX: 910-335-1216
Hamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale, California 94086
Tel: 408-743-3355 TWX: 910-339-9332
Schweber Electronics
17811 Gillette Avenue
Irvine, California 92714
Tel: 714-556-3880
Sertech Laboratories**
3170 Pullman Dr.
Costa Mesa, California 92626
Tel: 714-754-0666
Wyle Distribution Group
124 Maryland Street
El Segundo, California 90245
Tel: 213-322-8100 TWX: 910-348-7140
Wyle Distribution Group
17872 Cowan Avenue
Irvine, California 92714
Tel: 714-641-1600 Telex: 910-595-1572

Wyle Distribution Group
Military Product Division
18910 Teller Avenue
Irvine, California 92715
Tel: 714-851-9953
Wyle Distribution Group
9525 Chesapeake
San Diego, California 92123
Tel: 714-565-9171 TWX: 910-335-1590

Wyle Distribution Group
3000 Bowers Avenue
Santa Clara. California 95051
Tel: 408-727-2500 TWX: 910-338-0541

Zeus Components, Inc.
1130 Hawk Circle
Anaheim, California 92807
Tel: 714-632-6880
Zeus Components, Inc.
3350 Scott Blvd., Bldg. 6402
Santa Clara, California 95051
Tel: 408-727-0714 TWX: 910-338-2121

Colorado

Arrow Electronics
1390 S. Potomac Street. Suite 136
Aurora, Colorado 80012
Tel: 303-696-1111
Bell Industries
8155 West 48th Avenue
Wheatridge. Colorado 80033
Tel: 303-424-1985 TWX: 910-938-0393
Hamilton/Avnet Electronics
8765 E. Orchard Rd., Suite 708
Englewood, Colorado 80111
Tel: 303-740-1000 TWX: 910-935-0787
Wyle Distribution Group
451 East 124th Avenue
Thornton, Colorado 80241
Tel: 303-457-9953 TWX: 910-936-0770

Connecticut

Arrow Electronics
12 Beaumont Road
Wallingford, Connecticut 06492
Tel: 203-265-7741 TWX: 710-476-0162

Hamilton/Avnet Electronics
Commerce Drive, Commerce Park
Danbury, Connecticut 06810
Tel: 203-797-2800 TWX: 710-546-9974
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury. Connecticut 06810
Tel: 203-792-3500 TWX: 710-456-9405

Florida

Arrow Electronics
1001 Northwest 62nd Street
Suite 108
Ft. Lauderdale, Florida 33309
Tel: 305-776-7790 TWX: 510-955-9456
Arrow Electronics
50 Woodlake Drive West
Building B
Palm Bay. Florida 32905
Tel: 305-725-1480 TWX: 510-959-6337
Chip Supply**
1607 Forsyth Road
Orlando, Florida 32807
Tel: 305-275-3810
Hall Mark Electronics
1671 West McNab Road
Ft. Lauderdale. Florida 33309
Tel: 305-971-9280 TWX: 510-956-3092

Fairchild
 Semiconductor

Franchised Distributors

United States and Canada

Hall Mark Electronics

7233 Lake Ellenor Drive
Orlando, Florida 32809
Tel: 305-855-4020 TWX: 810-850-0183
Hamilton/Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale, Florida 33309
Tel: 305-971-2900 TWX: 510-956-3097
Hamilton/Avnet Electronics
3197 Tech Drive, North
St. Petersburg, Florida 33702
Tel: 813-576-3930 TWX: 810-863-0374
Schweber Electronics
181 Whooping Loop
Altamonte Springs, Florida 32701
Tel: 305-331-7555
Schweber Electronics
2830 North 28th Terrace
Hollywood, Florida 33020
Tel: 305-927-0511 TWX: 510-954-0304

Georgia

Arrow Electronics
2979 Pacific Drive
Norcross, Georgia 30071
Tel: 404-449-8252 TWX: 810-766-0439
Hall Mark Electronics
6410 Atlantic Blvd., Suite 115
Norcross, Georgia 30071
Tel: 404-447-8000 TWX: 810-766-4510

Hamilton/Avnet Electronics
5825-D Peachtree Corners East
Norcross, Georgia 30092
Tel: 404-447-7500 TWX: 810-766-0432
Schweber Electronics
303 Research Drive
Norcross, Georgia 30092
Tel: 404-449-9170

Illinois

Arrow Electronics
2000 Algonquin Road
Schaumburg, llilinois 60195
Tel: 312-397-3440 TWX: 910-291-3544
Hall Mark Electronics
1177 Industrial Drive
Bensenville, Illinois 60106
Tel: 312-860-3800 TWX: 910-651-0185
Hamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville, Illinois 60106
Tel: 312-860-7780 TWX: 910-227-0060
Kierulff Electronics
1536 Landmeier Road
Elk Grove Village, Illinois 60007
Tel: 312-640-0200 TWX: 910-227-3166

Schweber Electronics
904 Cambridge Avenue
Elk Grove Village, Illinois 60007
Tel: 312-364-3750 TWX: 910-222-3453

Indiana

Arrow Electronics
2718 Rand Road
Indianapolis, Indiana 46241
Tel: 317-243-9353 TWX: 810-341-3119

Graham Electronics Supply, Inc.
133 S. Pennsylvania Street
Indianapolis, Indiana 46204
Tel: 317-634-8202 TWX: 810-341-3481
Hamilton/Avnet Electronics
485 Gradle Drive
Carmel, Indiana 46032
Tel: 317-844-9333 TWX: 810-260-3966
Pioneer Electronics
6408 Castle Place Drive
Indianapolis, Indiana 46250
Tel: 317-849-7300 TWX: 810-260-1794

Iowa

Arrow Electronics
1930 St. Andrews N.E.
Cedar Rapids, Iowa 52402
Tel: 319-395-7230
Schweber Electronics
5270 N. Park Place N.E.
Cedar Rapids, Iowa 52402
Tel: 319-373-1417

Kansas'

Hall Mark Electronics
10815 Lakeview Drive
Lenexa, Kansas 66215
Tel: 913-888-4747 TWX: 910-749-6620
Hamilton/Avnet Electronics
9219 Quivira Road
Overland Park, Kansas 66215
Tel: 913-888-8900 TWX: 910-743-0005
Schweber Electronics
10300 W. 103rd St., Suite 103
Overland Park, Kansas 66214
Tel: 913-492-2921

Maryland

Arrow Electronics
4801 Benson Avenue
Baltimore, Maryland 21227
Tel: 301-247-5200 TWX: 710-236-9005
Hall Mark Electronics
6655 Amberton Drive
Baltimore, Maryland 21227
Tel: 301-796-9300 TWX: 710-862-1942
Hamilton/Avnet Electronics
6822 Oak Hall Lane
Columbia, Maryland 21045
Tel: 301-995-3500 TWX: 710-862-1861

Schweber Electronics
9218 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-840-5900 TWX: 710-828-9749

Massachusetts

Arrow Electronics
One Arrow Drive
Woburn, Massachusetts 01801
Tel: 617-933-8130 TWX: 710-392-6770
Gerber Electronics
128 Carnegie Row
Norwood, Massachusetts 02062
Tel: 617-329-2400 TWX: 710-336-1987
Hamilton/Avnet Electronics
50 Tower Office Park
Woburn, Massachusetts 01801
Tel: 617-273-7500 TWX: 710-393-0382
Schweber Electronics
25 Wiggins Avenue
Bedford, Massachusetts 01730
Tel: 617-275-5100 TWX: 710-326-0268
Sertech Laboratories**
1 Peabody Street
Salem, Massachusetts 01970
Tel: 617-745-2450 TWX: 710-347-0223
Zeus Components, Inc.
25 Adams Street
Burlington, Massachusetts 01803
Tel: 617-273-0750 TWX: 710-332-0716

Michigan

Arrow Electronics
3810 Varsity Drive
Ann Arbor, Michigan 48104
Tel: 313-971-8220 TWX: 810-223-6020
Arrow Electronics
3510 Roger B. Chafee, S.E.
Grand Rapids, Michigan 49508
Tel: 616-243-0912
Hamilton/Avnet Electronics
2215 29th Street S.E., Space A5
Grand Rapids, Michigan 49508
Tel: 616-243-8805 TWX: 810-273-6921
Hamilton/Avnet Electronics
32487 Schoolcraft
Livonia, Michigan 48150
Tel: 313-522-4700 TWX: 810-242-8775
Pioneer Electronics
13485 Stamford
Livonia, Michigan 48150
Tel: 313-525-1800 TWX: 810-242-3271
Schweber Electronics
12060 Hubbard Avenue
Livonia, Michigan 48150
Tel: 313-525-8100 TWX: 810-242-2983

[^54]
Fairchild
 Semiconductor

Franchised Distributors

United States and Canada

Minnesota

Arrow Electronics
5230 West 73rd Street
Edina, Minnesota 55435
Tel: 612-830-1800 TWX: 910-576-3125
Hall Mark Electronics
7838 12th Avenue South
Bloomington, Minnesota 55420
Tel: 612-854-3233
Hamilton/Avnet Electronics
10300 Bren Road East
Minnetonka, Minnesota 55343
Tel: 612-932-0600 TWX: 910-576-2720

Schweber Electronics
7422 Washington Avenue S.
Eden Prairie, Minnesota 55344
Tel: 612-941-5280 TWX: 910-576-3167

Missouri

Arrow Electronics
2380 Schuetz Road
St. Louis, Missouri 63141
Tel: 314-567-6888 TWX: 910-764-0882

Hall Mark Electronics
2662 Metro Blvd
Maryland Heights, Missouri 63043
Tel: 314-291-5350 Telex: 910-762-0672
Hamilton/Avnet Electronics
13743 Shoreline Court, East
Earth City, Missouri 63045
Tel: 314-344-1200 TWX: 910-762-0684
Schweber Electronics
502 Earth City Expressway
Earth City, Missouri 63045
Tel: 314-739-0526

New Hampshire

Arrow Electronics
1 Perimeter Road
Manchester, New Hampshire 03103
Tel: 603-668-6968 TWX: 710-220-1684
Schweber Electronics
Bedford Farms Building 2
Kilton and South River Roads
Manchester, New Hampshire 03102
Tel: 603-625-2250

New Jersey

Arrow Electronics
Pleasant Valley Avenue
Moorestown, New Jersey 08057
Tel: 609-235-1900 TWX: 710-897-0829
Arrow Electronics
2 Industrial Road
Fairfield, New Jersey 07006
Tel: 201-575-5300
Hall Mark Electronics
Springdale Business Center
2091 Springdale Road
Cherry Hill, New Jersey 08003
Tel: 609-424-0880 TWX: 710-940-0660

Hall Mark Electronics
107 Fairfield Road
Fairfield, New Jersey 07006
Tel: 201-575-4415

Hamilton/Avnet Electronics
10 Industrial Road
Fairfield, New Jersey 07006
Tel: 201-575-3390 TWX: 710-734-4388
Hamilton/Avnet Electronics
\#1 Keystone Avenue
Cherry Hill, New Jersey 08003
Tel: 609-424-0100 TWX: 710-940-0262
Schweber Electronics
18 Madison Road
Fairfield, New Jersey 07006
Tel: 201-227-7880 TWX: 710-734-4305

New Mexico

Arrow Electronics
2460 Alamo Avenue S.E.
Albuquerque, New Mexico 87106
Tel: 505-243-4566 TWX: 910-989-1679

Bell Industries

11728 Linn Avenue N.E.
Albuquerque, New Mexico 87123
Tel: 505-292-2700 TWX: 910-989-0625
Hamilton/Avnet Electronics
2524 Baylor Drive, S.E.
Albuquerque, New Mexico 87106
Tel: 505-765-1500 TWX: 910-989-0614

New York

Arrow Electronics
900 Broadhollow Road
Farmingdale, New York 11735
Tel: 516-694-6800
TWX: 510-224-6155 \& 510-224-6126

Arrow Electronics

20 Oser Avenue
Hauppauge, New York 11787
Tel: 516-231-1000 TWX: 510-227-6623
Arrow Electronics
P.O. Box 370

7705 Maltlage Drive
Liverpool, New York 13088
Tel: 315-652-1000 TWX: 710-545-0230
Arrow Electronics
3000 Winton Road South
Rochester, New York 14623
Tel: 716-275-0300 TWX: 510-253-4766
Hamilton/Avnet Electronics
5 Hub Drive
Melville, New York 11746
Tel: 516-454-6000 TWX: 510-224-6166

Hamilton/Avnet Electronics
333 Metro Park
Rochester, New York 14623
Tel: 716-475-9130 TWX: 510-253-5470

Hamilton/Avnet Electronics

16 Corporate Circle
E. Syracuse, New York 13057

Tel: 315-437-2642 TWX: 710-541-1560
Schweber Electronics
Jericho Turnpike
Westbury, L.I., New York 11590
Tel: 516-334-7474 TWX: 510-222-3660
Schweber Electronics
3 Town Line Circle
Rochester, New York 14623
Tel: 716-424-2222
Summit Distributors, Inc.
916 Main Street
Buffalo, New York 14202
Tel: 716-884-3450 TWX: 710-522-1692
Zeus Components, Inc.
100 Midland Avenue
Port Chester, New York 10573
Tel: 914-937-7400 TWX: 710-567-1248

North Carolina

Arrow Electronics
938 Burke Street
Winston Salem, North Carolina 27102
Tel: 919-725-8711 TWX: 510-931-3169

Arrow Electronics

3117 Poplarwood Court, Suite 123
Raleigh, North Carolina 27625
Tel: 919-876-3132 TWX: 510: 928-1856

Hall Mark Electronics
5237 North Blvd.
Raleigh, North Carolina 27604
Tel: 919-872-0712 TWX: 510-928-1831
Hamilton/Avnet Electronics
3510 Spring Forrest Road
Raleigh, North Carolina 27604
Tel: 919-878-0819
Schweber Electronics
5285 North Blvd.
Raleigh, North Carolina 27604
Tel: 919-876-0000
Ohio
Arrow Electronics
7620 McEwen Road
Centerville, Ohio 45459
Tel: 513-435-5563 TWX: 810-459-1611
Arrow Electronics
6238 Cochran Road
Solon, Ohio 44139
Tel: 216-248-3990 TWX: 810-427-9409
Hall Mark Electronics
175 Alpha Park
Highland Heights, Ohio 44143
Tel: 216-473-2907

Fairchild
 Semiconductor

Franchised Distributors

United States and Canada

Hall Mark Electronics
6130 Sundbury Road, Suite B
Westerville, Ohio 43081
Tel: 614-891-4555
Hamilton/Avnet Electronics
954 Senate Drive
Dayton, Ohio 45459
Tel: 513-433-0610 TWX: 810-450-2531

Hamilton/Avnet Electronics 4588 Emery Industrial Parkway
Warrensville Heights, Ohio 44128
Tel: 216-831-3500 TWX: 810-427-9452
Pioneer Electronics
4800 E. 131st Street
Cleveland, Ohio 44105
Tel: 216-587-3600 TWX: 810-422-2211
Pioneer Electronics
4433 Interpoint Blvd.
Dayton, Ohio 45424
Tel: 513-236-9900 TWX: 810-459-1622
Schweber Electronics
23880 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-464-2970 TWX: 810-427-9441

Schweber Electronics
7865 Paragon Road
Dayton, Ohio 45459
Tel: 513-439-1800

Oklahoma

Arrow Electronics
4719 S. Memorial
Tulsa, Oklahoma 74145
Tel: 918-665-7700

Hall Mark Electronics
5460 S. 103rd East Avenue
Tulsa, Oklahoma 74145
Tel: 918-665-3200 TWX: 910-845-2290
Schweber Electronics 4815 S. Sheridan Road
Tulsa, Oklahoma 74145
Tel: 918-622-8000

Oregon

Hamilton/Avnet Electronics
6024 S.W. Jean Road
Building C, Suite 10
Lake Oswego, Oregon 97034
Tel: 503-635-8157 TWX: 910-455-8179

Pennsylvania

Arrow Electronics
650 Seco Road
Monroeville, Pennsylvania 15146
Tel: 412-856-7000 TWX: 710-797-3894
Pioneer Electronics
259 Kappa Drive
Pittsburgh, Pennsylvania 15238
Tel: 412-782-2300 TWX: 710-795-3122

Schweber Electronics

101 Rock Road
Horsham, Pennsylvania 19044
Tel: 215-441-0600 TWX: 510-665-6540

Texas

Arrow Electronics
10125 Metropolitan Drive
Austin, Texas 78758
Tel: 512-835-4180 TWX: 910-874-1348
Arrow Electronics
13715 Gamma Road
Dallas, Texas 75234
Tel: 214-386-7500 TWX: 910-860-5377

Arrow Electronics
10899 Kinghurst, Suite 100
Houstin, Texas 77099
Tel: 713-530-4700 TWX: 910-880-4439

Hall Mark Electronics
12211 Technology Blvd.
Austin, Texas 78759
Tel: 512-258-8848 TWX: 910-874-2031
Hall Mark Electronics
11333 Page Mill Drive
Dallas, Texas 75243
Tel: 214-343-5000 TWX: 910-867-4721
Hall Mark Electronics
8000 Westglen
Houston, Texas 77063
Tel: 713-781-6100 TWX: 910-881-2711
Hamilton/Avnet Electronics
2401 Rutland Drive
Austin, Texas 78758
Tel: 512-837-8911 TWX: 910-874-1319

Hamilton/Avnet Electronics
8750 Westpark
Houston, Texas 77063
Tel: 713-780-1771 TWX: 910-881-5523
Hamilton/Avnet Electronics
2111 W. Walnut Hill Lane
Irving, Texas 75062
Tel: 214-659-4111 TWX: 910-860-5929
Schweber Electronics
111 W. Anderson Lane
Austin, Texas 78752
Tel: 512-458-8253
Schweber Electronics
4202 Beltway Drive
Dallas, Texas 75234
Tel: 214-661-5010 TWX: 910-860-5493
Schweber Electronics
10625 Richmond, Suite 100
Houston, Texas 77042
Tel: 713-784-3600 TWX: 910-881-4836

Sterling Electronics
23358 Kramer Lane
Austin, Texas 78758
Tel: 512-836-1341

Sterling Electronics
11090 Stemmons Freeway
Dallas, Texas 75229
Sterling Electronics
4201 Southwest Freeway
Houston, Texas 77027
Tel: 713-627-9800 TWX: 910-881-5042
Telex: STELECO HOUA 77-5299

Zeus Components, Inc.
14001 Goldmark, Suite 250
Dallas, Texas 75240
Tel: 214-783-7010

Utah

Arrow Electronics
4980 Amelia Earhart Drive
Salt Lake City, Utah 84116
Tel: 801-539-1135
Bell Industries
3639 West 2150 South
Salt Lake City, Utah 84120
Tel: 801-972-6969 TWX: 910-925-5686
Hamilton/Avnet Electronics
1585 West 2100 South
Salt Lake City, Utah 04119
Tel: 801-972-2800 TWX: 910-925-4018
Wyle Distribution Group
1959 South 4130 West, Unit B
Salt Lake City, Utah 84104
Tel: 801-974-9953

Virginia

Arrow Electronics
8002 Discovery Drive
Richmond, Virginia 23285
Tel: 804-0413 TWX: 710-956-0169

Washington

Arrow Electronics
14320 N.E. 21st Street
Bellevue, Washington 98005
Tel: 206-643-4800 TWX: 910-443-3033
Hamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue, Washington 98005
Tel: 206-453-5844 TWX: 910-443-2469
Radar Electronic Co., Inc.
168 Western Avenue W.
Seattle, Washington 98119
Tel: 206-282-2511 TWX: 910-444-2052
Wyle Distribution Group
1750 132nd Avenue N.E.
Bellevue, Washington 98005
Tel: 206-453-8300 TWX: 910-443-2526

Wisconsin

Arrow Electronics
430 W. Rawson Avenue
Oakcreek, Wisconsin 53154
Tel: 414-764-6600 TWX: 910-262-1193

Fairchild Semiconductor

Franchised Distributors

United States and Canada

Hall Mark Electronics
9657 South 20th Street
Oakcreek, Wisconsin 53154
Tel: 414-761-3000
Hamilton/Avnet Electronics 2975 South Moorland Road New Berlin, Wisconsin 53151
Tel: 414-784-4510 TWX: 910-262-1182
Schweber Electronics
150 Synnyslope Road, Suite 120
Brookfield, Wisconsin 53005
Tel: 414-784-9020

Canada

Future Electronics Corporation
5809 MacLeod Trail S. Unit 109
Calgary, Alberta T23 0J9
Tel: 403-259-6437
Future Electronics Inc
4800 Dufferin Street
Downsview, Ontario, M3H 5S8, Canada
Tel: 416-663-5563

Future Electronics Inc.
Baxter Center
1050 Baxter Road
Ottawa, Ontario, K2C 3P2, Canada
Tel: 613-820-8313
Future Electronics Inc.
237 Hymus Blvd.
Pointe Claire (Montreal), Quebec, H9R 5C7, Canada Tel: 604-299-8866 TWX: 610-422-3048 Tel: 514-694-7710 TWX: 610-421-3251

Future Electronics Corporation 3070 Kingsway
Vancouver B.C. B5R 5J7
Tel: 604-438-5545
Hamilton/Avnet Canada Ltd.
6845 Rexwood Road, Units 3-4-5
Mississauga, Ontario, L4V 1R2, Canada
Tel: 416-677-7432 TWX: 610-492-8867
Hamilton/Avnet Canada Ltd
210 Colonnade Road
Nepean, Ontario, K2E 7L5, Canada
Tel: 613-226-1700 Telex: 0534-971

Hamilton/Avnet Canada Ltd.
2670 Sabourin Street
St. Laurent, Quebec, H4S 1M2, Canada
Tel: 514-331-6443 TWX: 610-421-3731
Semad Electronics Ltd
620 Meloche Avenue
Dorval, Quebec, H9P 2P4, Canada

Semad Electronics Ltd
864 Lady Ellen Place
Ottawa, Ontario, K1Z 5M2, Canada
Tel: 613-722-6571 TWX: 610-562-1923
Semad Electronics Ltd
105 Brisbane Avenue
Downsview, Ontario, M3J 2K6, Canada
Tel: 416-663-5650 TWX: 610-492-2510

Fairchild
 Semiconductor
 Sales Offices

United States and Canada

Alabama

Huntsville Office
555 Sparkman Drive, Suite 1030
Huntsville, Alabama 35805
Tel: 205-837-8960

Arizona

Phoenix Office
2255 West Northern Road, Suite B112
Phoenix, Arizona 85021
Tel: 602-864-1905 TWX: 910-951-1544

California

Los Angeles Office*
Crocker Bank Bldg.
15760 Ventura Blvd., Suite 1027
Encino, California 91436
Tel: 213-990-9800 TWX: 910-495-1776
San Diego Office
4355 Ruffin Road, Suite 100
San Diego, California 92123
Tel: 714-560-1332
Santa Ana Office
1570 Brookhollow Drive, Suite 206
Santa Ana, California 92705
Tel: 714-557-7350 TWX: 910-595-1109
Santa Clara Office*
3333 Bowers Avenue, Suite 299
Santa Clara, California 95051
Tel: 408-980-9990 TWX: 910-338-0241

Colorado

Denver Office
10200 E. Girard, Suite 222, Bldg. B
Denver, Colorado 80231
Tel: 303-695-4950

Connecticut

Danbury Office
250 Pomeroy Avenue
Meriden, Connecticut 06450
Tel: 203-634-8722

Florida

Ft. Lauderdale Office
5237 N.W. 33rd Avenue Suite 2D
Ft. Lauderdale, Florida 33309
Tel: 305-485-7711 TWX: 510-955-4098
Orlando Office
Crane's Roost Office Park
399 Whooping Loop
Altamonte Springs, Florida 32701
Tel: 305-834-7000 TWX: 810-850-0152

Georgia

Norcross Office*
3220 Pointe Parkway, Suite 1200
Norcross, Georgia 30092
Tet: 404-441-2730 TWX: 810-766-4952

Illinois

Itasca Office*
500 Park Blvd., Suite 575
Itasca, Illinois 60143
Tel: 312-773-3300 TWX: 910-651-0120

Iowa

Cedar Rapids Office
373 Collin Road N.E., Suite 200
Cedar Rapids, lowa 52402
Tel: 319-395-0090

Indiana

Indianapolis Office
7202 N. Shadeland, Room 205
Castle Point
Indianapolis, Indiana 46250
Tel: 317-849-5412 TWX: 810-260-1793

Kansas

Kansas City Office
8600 West 110th Street, Suite 209
Overland Park, Kansas 66210
Tel: 913-649-3974
Wichita Office
2424 N. Woodlawn
Wichita, Kansas 67220
Tel: 316-687-1111 TWX: 710-826-9654

Maryland

Columbia Office
2000 Century Plaza, Suite 114
Columbia, Maryland 21044
Tel: 301-730-1510 TWX: 710-826-9654

Massachusetts

Framingham Office*
5 Speen Street
Framingham, Massachusetts 01701
Tel: 617-872-4900 TWX: 710-380-0599

Michigan

Detroit Office
21999 Farmington Road
Farmington Hills, Michigan 48024
Tel: 313-478-7400 TWX: 810-242-2973

Minnesota

Minneapolis Office
4570 West 77th Street, Room 356
Edina, Minnesota 55435
Tel: 612-835-3322 TWX: 910-576-2944

New Jersey

New Jersey Office
Vreeland Plaza
41 Vreeland Avenue
Totowa, New Jersey 07511
Tel: 201-256-9011

New Mexico

Albuquerque Office
North Building
2900 Louisiana N.E. South G2
Albuquerque, New Mexico 87110
Tel: 505-884-5601 TWX: 910-379-6435

New York

Endwell Office
3215 East Main Street
Endwell, New York 13760
Tel: 607-757-0200
Fairport Office
815 Ayrault Road
Fairport, New York 14450
Tel: 716-223-7700
Hauppauge Office*
300 Wheeler Road
Hauppauge, New York 11788
Tel: 516-348-7777 TWX: 510-221-2183

Poughkeepsie Office

19 Davis Avenue
Poughkeepsie, New York 12603
Tel: 914-473-5730 TWX: 510-248-0030

North Carolina

Raleigh Office
1100 Navaho Drive, Suite 112
Raleigh, North Carolina 27609
Tel: 919-876-9643

Ohio

Cleveland Office
6133 Rockside Road, Suite 407
Cleveland, Ohio 44131
Tel: 216-447-9700
Columbus Office
960 West Henderson Road
Columbus, Ohio 43220
Tel: 614-459-5748
Dayton Office*
6500 Poe Avenue, Suite 400
Dayton, Ohio 45414
Tel: 513-890-5878

Oregon

Portland Office
8196 S.W. Hall Blvd., Suite 328
Beaverton, Oregon 97005
Tel: 503-641-7871 TWX: 910-467-7842

Pennsylvania

Philadelphia Office
2500 Office Center
2500 Maryland Road
Willow Grove, Pennsylvania 19090
Tel: 215-657-2711

Tennessee

Knoxville Office
Executive Square II
9051 Executive Park Drive, Suite 502
Knoxville, Tennessee 37923
Tel: 615-691-4011

Fairchild Semiconductor
 Sales Offices

United States and Canada

Texas

Austin Office
8240 Mopac Expressway, Suite 270
Austin, Texas 78759
Tel: 512-346-3990
Dallas Office*
1702 North Collins Street, Suite 101
Richardson, Texas 75081
Tel: 214-234-3391 TWX: 910-867-4824

Houston Office
9896 Bissonnet-2, Suite 595
Houston, Texas 77036
Tel: 713-771-3547 TWX: 910-881-8278

Washington

Bellevue Office
11911 N.E. First Street, Suite 310
Bellevue, Washington 98005
Tel: 206-455-3190

Canada

Toronto Regional Office*
2375 Steeles Avenue West, Suite 203
Downsview, Ontario M3J 3A8, Canada
Tel: 416-665-5903 TWX: 610-491-1283

Montreal Office
3675 Sources Blva., Suite 203
Dollard des Ormeaux
Quebec H9B 2K4 Canada
Tel: 514-685-0883
Ottawa Office
1 Ceasar Avenue, Suite B
Nepean. Ontario K2D 0A8
Tel: 613-226-8270 TWX: 610-562-1953
*Order Entry Points

Notes

Fairchild cannot assume responsibility for use of any circuitry described other than circuitry embodied in a Fairchild product. No other circuit patent licenses are implied.

Manufactured under one or more of the following U.S. Patents:
$3,562,721,3,586,922,3,590,274,3,639,781,3,648,125$,
$3,772,660$; other patents pending.

Fairchild reserves the right to make changes in the circuitry or specifications at any time without notice.

[^0]: $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^1]: $H=H I G H$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 $L=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data
 *One or more Chip Selects HIGH

[^2]: Packages and Outlines (See Section 10)
 D = Ceramic DIP
 F = Flatpak
 $P=$ Plastic DIP
 Temperature Range
 $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Case

 Optional Processing
 QR $=160$ Hour Burn In

[^3]: $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^4]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 $\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^5]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
 3. Tw measured at twSA $=$ Min, twSA measured at $t w=$ Min.
[^6]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
 3. Tw measured at $t w S A=$ Min, twSA measured at $t w=$ Min.
[^7]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}($ Nominal $)$
 $\mathrm{L}=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^8]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
 3. Tw measured at $t w S A=$ Min, twSA measured at $t w=$ Min.
[^9]: $V_{C C}=\operatorname{Pin} 6$ (9)
 $V_{C C A}=\operatorname{Pin} 7(10)$
 $\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 18$ (21)
 () = Flatpak

[^10]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 $\mathrm{L}=$ LOW Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^11]: 1. See Family Characteristics for other dc specifications.
[^12]: $V_{C C}=P$ in 20
 $V_{E E}=\operatorname{Pin} 10$

[^13]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 $\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^14]: $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^15]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 $\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^16]: 1. See Family Characteristics for other dc specifications.
[^17]: $V_{C C}=\operatorname{Pin} 24$
 $V_{C C A}=\operatorname{Pin} 1$
 $V_{C C}=\operatorname{Pin} 24$
 $V_{C C A}=\operatorname{Pin} 1$
 $V_{E E}=\operatorname{Pin} 12$

[^18]: 1. See Family Characteristics for other dc specifications.
[^19]: Speed Selection
 Blank = Standard Speed
 $A=$ ' A ' Grade

 Packages and Outlines (See Section 10)
 D = Ceramic DIP
 $F=$ Flatpak
 Temperature Range
 $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, Ambient

 Optional Processing
 QR $=160$ Hour Burn In

[^20]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal)
 $\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^21]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
 3. Tw measured at $t w S A=M i n, t w S A$ measured at $t w=$ Min.
[^22]: $V_{c c}=\operatorname{Pin} 20$
 $V_{E E}=\operatorname{Pin} 10$

[^23]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Levels $=-0.9 \mathrm{~V}$ (Nominal $)$
 $\mathrm{L}=\mathrm{LOW}$ Voltage Levels $=-1.7 \mathrm{~V}$ (Nominal)
 X = Don't Care
 Data $=$ Previously stored data

[^24]: DC specifications listed with each device

[^25]: $V_{C C}=\operatorname{Pin} 16$
 GND $=\operatorname{Pin} 8$

[^26]: Notes on preceeding page

[^27]: Note:
 The 16-pin Flatpak version has the same pinout connections as the Dual In-line package.

[^28]: Notes on preceeding page

[^29]: Notes on preceeding page

[^30]: Notes on preceeding page

[^31]: Notes on preceeding page

[^32]: Speed Selection
 Blank = Standard Speed
 $A=$ ' A ' Grade

 Packages and Outlines (See Section 10)
 $D=$ Ceramic DIP
 F = Flatpak
 $\mathrm{L}=$ Leadless Chip Carrier
 P = Plastic DIP

 Temperature Range
 $\mathrm{C}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
 $M=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

 Optional Processing
 QB $=$ Mil Std 883
 Method 5004 and 5005, Level B
 QC = Mil Std 883
 Method 5004 and 5005, Level C
 QR = Commercial Device with
 160 Hour Burn In

[^33]: $V_{C C}=\operatorname{Pin} 16$
 GND $=\operatorname{Pin} 8$

[^34]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
 $\mathrm{L}=\mathrm{LOW}$ Voltage Level (.5 V)
 X = Don't Care (HIGH or LOW)

[^35]: Notes on preceeding page

[^36]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
 L = LOW Voltage Level (. 5 V)
 X = Don't Care (HIGH or LOW)

[^37]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level (2.4 V)
 $\mathrm{L}=$ LOW Voltage Level (. 5 V)
 X = Don't Care (HIGH or LOW)
 HIGH Z = High Impedance State

[^38]: Notes on preceeding page

[^39]: $V_{C P}=P$ in 1
 $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=P$ in 8

[^40]: *Input pins A_{1} and A_{7} cannot be lower than $V_{I L}(\min)$

[^41]: 1. See Family Characteristics for other dc specifications.
 2. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
[^42]: $V_{C P}=\operatorname{Pin} 1$
 $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^43]: $V_{C P}=\operatorname{Pin} 1$
 $V_{C C}=\operatorname{Pin} 16$
 $V_{E E}=\operatorname{Pin} 8$

[^44]: *Input pins A_{1} and A_{7} cannot be lower than $V_{I L}(m i n)$

[^45]: $V_{C P}=\operatorname{Pin} 1$
 $V_{C C}=\operatorname{Pin} 16$
 $\mathrm{V}_{\mathrm{EE}}=\operatorname{Pin} 8$

[^46]: DC specifications listed with each device

[^47]: Note:
 The 24-pin Flatpak has the same pinout (Connection Diagram) as the 24-pin DIP.

[^48]: 1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading
 2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second
[^49]: 1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading.
 2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.
[^50]: ** 4.2 V simulates $-55^{\circ} \mathrm{C}$ operation, 4.4 V simulates $0^{\circ} \mathrm{C}$ operation.

[^51]: $V_{C C}=\operatorname{Pin} 24$
 GND $=\operatorname{Pin} 12$

[^52]: 1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and maximum loading.
 2. Not more than one output to be shorted at a time. Duration of the short circuit should not exceed one second.
[^53]: *For selection of input apply TTL HIGH or TTL LOW
 **Left open or TTL HIGH
 ***Left open or grounded
 ****Left open, TTL HIGH, or programming pulse

[^54]: **This distributor carries Fairchild die products only

