

© 1981 Fairchild 464 Ellis Street • Mountain View, California 94042 415/962-5011 • TWX 910-379-6435

Introduction

This data book presents a complete technical description of Fairchild's MOS Memory product line (excluding Read-Only Memories). The package outlines, electrical behavior, and ordering information are all included for this broad line of LSI and VLSI devices, manufactured using proven Isoplanar MOS processing techniques.

Complete technical data and ordering information on MOS ROMs can be obtained from Fairchild's Microprocessor Products Group. Section 1 Product Index and Selection Guides Handy tabulation of device numbers to assist in locating appropriate technical data.

Section 2 MOS Memory Technology Overview Basic treatise covering the nature and history of MOS technology.

Section 3 RAM Data Sheets

Complete technical data on static and dynamic random access memories.

Section 4 EPROM Data Sheets

Complete technical data on UV EPROMs.

Section 5 Serial Memory Data Sheets

Complete technical data on static shift registers (including FIFOs).

Section 6 Special Function Data Sheets

Complete technical data on several useful random logic devices.

Section 7 Extended Temperature Range Data Sheets

Complete technical data for extended temperature range operation of selected MOS devices.

Section 8 Ordering Information and Package Outlines

Detailed package drawings and ordering code information for standard parts, as well as Matrix VI and Unique 38510.

Section 9 Sales Offices, Representatives and Distributor Locations

Table of Contents

Section 1 Product Index and Selection Guides	
Product Index	
Random Access Memories	
UV Erasable Programmable Read Only Memories1-5	
Serial Memories	
Special Function Memories	
Section 2 MOS Memory Technology Overview	
Introduction	,
Transistor Operations	
Memory-cell Design	
RAM Architecture	
64K DRAM Architecture	
The Future of MOS Memory	
Section 3 RAM Data Sheets	
2102/2102L/21L02	
F2114/F2114L 3-8	
F3528	
F3567	
F4116	
F4164	
Section 4 EPROM Data Sheets	
F2708	
F2732	
F2764	
Section 5 Serial Memory Data Sheets	
3341/3341A	
3342	
3348/3349	
3357 / F2847	
Section 6 Special Function Data Sheets 3262A	
3262B	
3708	
Section 7 Extended Temperature Range Data Sheets 2102/2102L 7-3	
F2114/F2114L	
3341/3341A	
3351	
3357/F2847	j
3708	
F4116	ł
Section 8 Ordering Information and Package Outlines	
General Ordering Information	
Unique 38510 Ordering Information	
Matrix VI Ordering Information	
Package Outlines8-8	2
Section 9 Sales Offices, Representatives and Distributor Locations	;

Product Index and Selection Guides	1
MOS Memory Technology Overview	2
RAM Data Sheets	3
EPROM Data Sheets	4
Serial Memory Data Sheets	5
Special Function Data Sheets	6
Extended Temperature Range Data Sheets	7
Ordering Information and Package Outlines	8
Sales Offices, Representatives and Distributor Locations	9

ĵ^e

Section 1 Product Index and Selection Guides

Device No.	Description	Page No.
2102	1024 x 1 Static RAM	3-3, 7-3
2102L	1024 x 1 Static RAM	3-3, 7-3
21L02	1024 x 1 Static RAM	3-3
F2114	1024 x 4 Static RAM	3-8, 7-6
F2114L	1024 x 4 Static RAM	3-8, 7-6
F2708	1024 x 8 UV Erasable PROM	4-3
F2732	4K x 8 UV Erasable PROM	4-10
F2764	8192 x 8 UV Erasable PROM	4-16
F2847	Quad 80-Bit Static Shift Register	5-25, 7-15
3262A	TV Sync Generator	6-3
3262B	TV Sync Generator for Generator Lock	6-9
3341	64 x 4 FIFO Serial Memory	5-3, 7-8
3341A	64 x 4 FIFO Serial Memory	5-3, 7-8
3342	Quad 64-Bit Static Shift Register	5-9
3348	Hex 32-Bit Static Shift Register	5-13
3349	Hex 32-Bit Static Shift Register	5-13
3351	40 x 9 FIFO Serial Memory	5-16, 7-11
3357	Quad 80-Bit Static Shift Register	5-25, 7-15
3528	2048 x 8 Static RAM	3-12
F3567	16,384 x 1 Static RAM	3-14
3708	8-Channel Multiplex Switch	6-15, 7-18
F4116	16,384 x 1 Dynamic RAM	3-15, 7-20
F4164	65,536 x 1 Dynamic RAM	3-37

1

Product Index and Selection Guides

Organization	Part No.	Description	Access Time (ns)	Max Power Dissi- pation (mW)	Power Supply (V)	No. of Pins	Tech- nology	Temper- ature Range (Note 1)	Package (Note 2)	Page No.
	2102-H		250							3-3, 7-3
	2102-F		350							3-3, 7-3
	2102-1	1K Static RAM	450	290	+5	16	NMOS	C,L,M	D,P,F	3-3, 7-3
	2102-2		650							3-3, 7-3
	2102L-H		250							3-3, 7-3
	2102L-F	1K Low-power	350							3-3, 7-3
1024 x 1	2102L-1	Static RAM	450	160	+5	16	NMOS	C,L,M	D,P,F	3-3, 7-3
	2102L-2		650							3-3, 7-3
	21L02-H		250		+5	16	NMOS	C, L	D,P,F	3-3
	21L02-F	1K Static RAM w/Power Down	350	160/25						3-3
	21L02-1		450							3-3
	21L02-2		650							3-3
	F2114-2	4K Static RAM	200	530	+5	18	NMOS	С,М	D,P	3-8, 7-6
	F2114-3		300							3-8, 7-6
1004	F2114		450							3-8, 7-6
1024 x 4	F2114L-2		200	265	+5	18	NMOS	С,М	D,P	3-8, 7-6
	F2114L-3	4K Low-power Static RAM	300							3-8, 7-6
	F2114L		450							3-8, 7-6
00400	F3528-25	16K Static RAM	250	450/100	1.5		1	0	_	3-12
2048 x 8	F3528-35	w/Power Down	350	450/100	+5	24	lso-H	С	D	3-12
16,384 x 1	F3567-55	16K Static RAM w/Power Down	55	700/170	+5	20	lso-H	с	D	3-14
	F4116-2		150		1.10					3-15, 7-20
16,384 x 1	F4116-3	16K Dynamic RAM	200	465/25	+12,	16	NMOS	C,L,M*	D,P,F,L	3-15, 7-20
	F4116-4		250		±5					3-15, 7-20
	F4164-1		120		1	16	lso-H	с		3-37
65,536 x 1	F4164-2	64K Dynamic RAM	150	250/20	+5				D	3-37
	F4164-3		200	1						3-37

Notes

Commercial (T_A = 0°C to +70°C) Limited Military (T_A = -55°C to +85°C) 1. C =

L =

Military (T_A = -55° C to $+125^{\circ}$ C) м =

M* = Special Military (T_{Case} = -55°C to +110°C)

Plastic DIP 2. P = Ceramic DIP D =

Flatpak F =

L = Leadless Chip Carrier

Product Index and Selection Guides

UV Erasable Programmable Read Only Memories

Organization	Part No.	Description	Access Time (ns)	Max Power Dissi- pation (mW)	Power Supply (V)			Temper- ature Range (Note 1)	Package (Note 2)	Page No.	
1004 - 0	F2708-1	8K EPROM	350	800	+12,	+12,	24	NMOS	С	D	4-3
1024 x 8	F2708		450	800	±5	24	NM05	С	טן	4-3	
4096 x 8	F2732	32K EPROM	450	790/160	+5	24	NMOS	С	D	4-10	
8192 x 8	F2764	64K EPROM	200	750	+5	28	lso-H	С	D	4-16	

Serial Memories

Function	Organization	Part No.	Fre- quency Range (MHz)	Max Power Dissi- pation (mW)	Power Supply (V)	of	Temper- ature Range (Note 1)	Tech- nology	Package (Note 2)	Page No.
	00 0	3348		500	-12,	24	6	DUOS	D	5-13
	32 x 6	3349	dc to 1.0	500	+5	16	С	PMOS	D,P	5-13
	64 x 4	3342	dc to 1.5	380	-12, +5	16	с	PMOS	D,P	5-9
Static Shift		3357-1	dc to 4.0	375			C,L,M	PMOS	D,P	5-25, 7-15
Register		F2847	dc to 3.0	455	-12, +5		С		D,P	5-25
	80 x 4	F2847	dc to 2.5	600		16	L,M		D	7-15
		3357-2	dc to 2.0	285			С		D,P	5-25
Low Power		F2847L	dc to 3.0	320			С		D,P	5-25
Static Shift Register		F2847L	dc to 2.5	410			L,M		D	7-15
	04 4	3341A	dc to 1.0	450	-12,		16 C,L,M	PMOS	_	5-3, 7-8
	64 x 4	3341	dc to 0.7	450	+5	10			D	5-3, 7-8
First-in First-out		3351-1	dc to 2.0	520						5-16, 7-11
	40 x 9	3351-3	dc to 1.5	420	-12, +5	28	C,L,M	PMOS	D,P	5-16, 7-11
		3351-2	dc to 1.0	420						5-16, 7-11

Special Function Products

Function	Part No.		Max Power Dissi- pation (mW)	Temper- ature	of	Tech- nology	Package	Page No.
TV Sync Generator	3262A	-12, +5	575	С	16	PMOS	D	6-3
TV Sync Generator with Gen-Lock	3262B	-12, +5	575	С	16	PMOS	D	6-9
8-Channel Multiplex Switch	3708	- 19, +5.5	175	C,L,M	16	PMOS	D	6-15, 7-18

Notes on previous page.

and the second second

and the second second

Product Index and Selection Guides	1
MOS Memory Technology Overview	2
RAM Data Sheets	3
EPROM Data Sheets	- 4
Serial Memory Data Sheets	5
Special Function Data Sheets	6
Extended Temperature Range Data Sheets	7
Ordering Information and Package Outlines	8
Sales Offices, Representatives and Distributor Locations	9

Section 2 **MOS Memory Technology Overview**

To understand MOS circuitry, it is first necessary to become familiar with some of the physical characteristics of the metal-oxide-semiconductor structure. The MOS process involves the separation of a metal or other gate-material electrode from a semiconductor substrate by a thin insulator of silicon dioxide (oxide). The stand-alone band structures of the materials are pictured in Figure 1. The Fermi level. stated simply, is a reference energy level at which the probability of finding an electron is 1/2. The bands below it are mostly full, and those above are generally empty. Thus, since the conduction band in the metal is full, the Fermi level is situated within the conduction band. The work function, or the amount of energy needed to remove an electron from the Fermi level to a point outside the atom, is designated ϕ .

Figure 1

When these materials are together in an equilibrium state, electrons have been transferred from the metal to the silicon due to the lower work function of the metal. This equalizes the Fermi levels at the junctions and forms a potential across the non-conducting oxide (Figure 2). This structure, in effect, is a capacitor with charge stored on the gate and in the substrate, with a voltage equal to the difference in the work functions. In the particular case shown, if a negative voltage, with respect to the substrate, is applied to the gate, the voltage across the capacitor tends to decrease until it reaches the point shown in Figure 3. This applied voltage is then equal to the difference in work functions and is designated the *flat-band voltage* VFR. Therefore, $V_{FB} = \phi$ metal $-\phi$ silicon in the ideal case. This voltage is useful when computing another important parameter, the threshold voltage, discussed later.

As the voltage on the gate becomes positive with respect to the substrate, it continues to repel the positive charge carriers in the surface below as well as build up a positive charge on the gate. When the substrate surface is nearly void of mobile carriers, the condition is called surface depletion (Figure 4). As the gate voltage becomes still more positive under equilibrium conditions, the Fermi level remains constant and the energy bands continue to bend downward. At the point where the actual Fermi level crosses the intrinsic (undoped) Fermi level, the substrate behaves like an n-type semiconductor. This forms a channel of n-type carriers (mobile electrons) between the source and drain called the inversion laver (Figure 5). The voltage at which this channel forms is known as the threshold voltage, and can be expressed as

$$V_{T} = V_{FB} + 2 |\phi_{p}| + \frac{1}{C'_{0x}} \sqrt{2E_{S} qN_{a} (2\phi_{p} + V_{C} - V_{B})} + V_{C} \quad (1)$$

where VFB is the positive voltage needed to neutralize the charge between the gate and the substrate, and $2 |\phi_{\rm D}|$ is the voltage required to cause the bands to bend into the inverted condition. The third term results from the charge distribution within the substrate and depends on the permittivity of the silicon (E_S), the doping level Na, the channel-to-substrate bias $(V_C - V_B)$, and the oxide capacitance C'_{ox} (per square unit). V_C, the last term, is the channel voltage (typically zero when referenced to the source).

Figure 4

Since the channel forms because of the applied voltage, this device is said to conduct in the enhancement mode. Depletion-mode devices, on the other hand, are manufactured so that the channel exists without any external bias applied. The gate voltage must be applied to remove the channel and shut the transistor off. In fact, due to the internal positive charge contained in the oxide, an n-channel device may have an inverted substrate with no gate bias applied (Figure 6). Thus, it was not until special processing techniques were developed to reduce the oxide charge that enhancement NMOS devices became popular. Until that time, the majority of MOS devices were p-channel (PMOS). Although the previous discussion applies to NMOS technology, it is also applicable to PMOS with an n-type substrate and a negative gate-to-substrate voltage.

A brief history of MOS devices may prove enlightening. PMOS devices were originally constructed using <111>-oriented silicon with metal gates and had a typical threshold voltage of -4 V. Unfortunately, threshold voltages of -2 V or less were required for compatibility with TTL circuitry. This problem was solved by substituting a heavily doped, highly conductive layer of poly-crystalline silicon (poly) for the aluminum gate. This substitution brought about three major advantages. First, since the silicon gate material had a work function ϕ closer to that of the substrate, VFB was reduced and VT was correspondingly smaller. Secondly, since this type of silicon was stable at high temperatures, the source and drain could be diffused after the gate, thus vielding near perfect gate-channel alignment using the gate layer as a mask. And third, since another insulating layer could be deposited over the first poly. a second layer of metal or poly interconnections could be run over the top of the first (Figure 7).

In addition to changing the gate material, it was also found that substituting <100>-oriented silicon for <111> type tended to lower threshold voltages and reduce surface state charge by a factor of three. Unfortunately, while the surface could be inverted under the gate with less voltage, it would also be inverted under the thicker field-oxide region, causing a lower field threshold VTF. This limited the operating voltage, and to some extent the density, of the device.

Fairchild addressed this low-V_{TF} problem through the Isoplanar process. The field oxide is selectively grown to provide a thicker oxide layer where required (*Figure 7*). Since the oxide repels the p-type dopants, the substrate just below the field oxide becomes a p⁺ or a more concentrated p region. As can be seen from *Equation 1*, the threshold voltage is higher where N_a is greater. In addition to raising the V_{TF}, this process also reduces vertical steps, making devices easier to manufacture.

Also to help overcome the V_{TF} problem and to aid in adjusting threshold voltages, the ion-implantation process was developed. This process consists of accelerating a pure beam of ionized dopant atoms and directing them onto the surface of the silicon. Typically, these ions are used to change the doping level of the channel area to lower the threshold properties with respect to the field or to effect more precise V_T control.

While the above advances are applicable to both P and NMOS, NMOS has received most of the attention due, in part, to its inherent speed advantages. Since

the mobility of carriers (electrons) is roughly two times that of holes, NMOS devices typically exhibit higher speed performance.

Transistor Operations

MOS transistors are a subset of a more general class of devices called insulated-gate field-effect transistors or IGFETs. While many of the properties discussed in the following section apply specifically to MOSFETs, most are analogous to the characteristics of other types of IGFETs. See *Figure 8* for the MOS transistor symbol and definition of terminals.

After the gate voltage exceeds V_T and the channel has formed, the magnitude of the current between the source and drain depends on the drain voltage V_D. Since the channel acts as a resistive element, V_D and V_T are typically specified with respect to the source.

Thus when the channel first begins to form, $V_T = V_G - V_S$. As V_D continues to increase positively, the current increases linearly to a saturated condition (*Figure 9*), where further increases in V_D do not produce appreciable changes in drain current I_D. At this point,

$$V_{\rm D(SAT)} = V_{\rm G} - V_{\rm T} \tag{2}$$

١

Figure 9

When operated in the linear region, below $V_{D(SAT)}$, the MOSFET looks very much like a voltage-controlled resistor. MOSFET gain is typically measured by its transconductance, the rate of change of drain current with respect to gate voltage. The transconductance in the saturation region is given by

$$g_{msat} = \mu_n C'_{ox} W/L (V_G - V_S - V_T)$$
(3)

where $\mu_{\rm II}$ is the mobility of electrons, $\dot{C}_{\rm OX}$ is the oxide capacitance (per unit area), and W/L is the channel width-to-length ratio, which will be discussed in greater detail later.

In a typical MOS integrated circuit, the substrate is common to many transistors. The substrate voltage can be varied with respect to the source and will affect the threshold voltage as indicated by *Equation 4.* In general, the change in V_T with substrate bias V_B is given by

$$V_{\rm T} = K \sqrt{V_{\rm S} - V_{\rm B}} \tag{4}$$

where K is an empirical constant usually between 0.5 and 0.75.

In an MOS integrated circuit the source-substrate junction must be reverse biased to isolate the transistors from each other. Thus, the substrate voltage can be no greater than 0.6 V relative to the source. The negative voltage limit is the reverse breakdown voltage of this junction. Due to the charge distribution within the bulk, making V_B more negative causes V_T to become more positive. This effect is used in some devices to adjust V_T.

Threshold voltage V_T is a very important parameter since it affects input and output levels (noise margin), power-supply tolerance, power dissipation, speed, and output-drive current. Also, if the device design must allow for large variations in V_T , the speed-power product cannot be maximized. A substrate-bias generator can be used on-chip to control V_T such as in the case of the F4164 and F3528. This circuit compares the on-chip threshold voltages against a reference that is a fixed percentage of V_{CC}. The generator senses V_T variations and, using a *chargepump* technique, adjusts the substrate bias to compensate. In addition to improving design, the bias generator eliminates the need for an external V_{BB} supply.

Memory-cell Design

The basic static read-write random access memory (RAM) cell (Figure 10) consists of two cross-coupled inverters used to latch the data as a '1' or '0'. The X (word) lines and the Y (bit) lines service other similar cells. Various types of cell pull-up devices have been employed, with the depletion-mode transistor shown or the poly resistor the most popular. These types are favored over enhancement-mode loads because the VT drop required in an enhancement device lowers the cell's output-HIGH voltage below acceptable levels. Poly resistors have gained popularity over diffused resistors because of smaller size and higher resistance values. While fairly simple in structure, static cells have two main drawbacks-relatively large size and high power consumption, both critical parameters for high-density memories.

To overcome these limitations, the dynamic memory cell was devised. The most popular cells initially were the three-transistor types. Two major types were produced, differing mainly in the number of interconnections. The method of storage was the same, however.

Since the gates of MOS transistors are basically a capacitor, charge can be stored on the gate-to-source capacitance shown in Figure 11. This stored charge switches the transistor either on or off, storing the information. Unfortunately, since the charge eventually leaks off the gate, this cell needs to be refreshed at regular intervals: hence, the term dvnamic memory is applied. Peripheral circuitry senses the data and rewrites it into the cell. This increased complexity can be shared among many cells in a multiplexed fashion, reducing the cell to three transistors with no direct power path between supplies. The resulting increase in density and reduction in power have made dynamic RAMs (DRAMs) very popular. The three-transistor cell was employed in DRAMs up through the 2K-bit density level.

Figure 10

The 4K-bit DRAM generation and the following density levels (16K, 64K, etc.), incorporate the smaller onetransistor-cell design consisting of a capacitor and an access transistor (*Figure 12*). Because the onetransistor cell is much smaller than its predecessors, the amount of stored signal available for detection is also less. The one-transistor cell requires a more complex balanced sense amplifier, but the inherent density advantages make this cell viable.

RAM Architecture

The basic RAM organization can be word-wide ($2K \times 8$, $1K \times 4$) or bit-wide ($1K \times 1$, $16K \times 1$). Word-wide RAMs are generally used in applications requiring relatively small amounts of byte-organized memory, such as microprocessor-based systems. Accessing one 8-bit-wide device requires less power than enabling eight 1-bit-wide devices for the same amount of information.

In larger systems, the bit-wide device finds favor for two reasons. First, since the error-correction schemes employed in many large systems can correct single bit errors in a word, if one bit-wide device fails, the addressed word is correctable. Word-wide RAMs would be unsuitable for this application, because a general device failure would cause an uncorrectable 8- or 4-bit error in some words. Second, since output buffers required on a word-wide device are eliminated, the bit-wide memory-chip size is smaller. This is critical, for devices are necessary in cost-effective large memory systems.

In a word-wide arrangement, some of the address lines (λ) are decoded to select a row of memory cells, as in *Figure 13.* The remaining address bits (θ) are decoded to determine which of the K sets of n cells within the row is being accessed. The entire n-bit word is then available at the I/O circuits.

In the bit-wide case, each word is one bit wide and the decoders are used to select any of the Y bit locations within the total X number of rows. In this configuration, the data lines may be connected in parallel to a single I/O buffer. These same matrix ideas are employed on both static and dynamic RAMs, although additional peripheral complexity is required for sensing and refreshing in the DRAM.

Due to the small amount of charge stored in DRAM memory cells, any loss of charge due to leakage or charge used during a read operation must be replaced by refreshing the location. Restoration is typically accomplished by the sense amp reading the information present in the cell, and then rewriting it immediately afterward. This function can be shared among all the cells in a given column. A block diagram of a sense amp and how it relates to the memory cells is shown in *Figure 14*.

There are many configurations of the sense-amp relationship to the storage-cell array; one of the most popular DRAM architectures is shown in *Figure 15*. It was not by accident that the sense amps are in the

center of the array. Since the small amount of stored charge must drive the bit-line capacitance, which is related to the bit-line length, the bit lines should be kept as short as possible. Thus, there is a tradeoff between the number of cells serviced by any one sense amp and the signal wasted to charge the bit line. This effect, coupled with the balanced nature of the sense amps, makes the middle of the array a good compromise. In addition, because the ratio of bit-line capacitance to storage capacitance can be 10:1 or more, the bit lines are sometimes precharged with a clocking circuit before the cell is connected.

Figure 15

64K DRAM Architecture

With the advent of the 64K dynamic RAMs, the associated reduction in storage-cell charge has made the bit-line capacitance problem even more important. This problem is complicated for, as the array is further divided to effect shorter bit lines with less cells per line, the word lines become longer. Since layered interconnects are required and the word lines are fabricated with the less conductive polysilicon, the increased resistance adds RC time delays and slows access time. The F4164 is organized as eight 8K-bit blocks, with the word-line drivers located as shown in *Figure 16* to reduce word-line length. In addition, since the majority of the power is consumed by the sense amps, reducing the number of cells per sense amp by increasing the sense-amp count also increases the power.

Fairchild, by unique sense-amp design, has been able to double the effective service range of each sense amp of the F4164 without seriously affecting the signal available for sensing. Each of the 128 sense amps has 4 (not 2) bit lines, serving 64 cells per line. Each half bit line has an isolating transistor associated with it so only one bit-line half is connected to the desired cell.

In a balanced sense-amp design, the voltage on the bit-line half connected to the cell is compared against a reference voltage set up on another bit-line half connected to a *dummy* capacitor. Ideally, this dummy capacitor should be one half the capacitance of the storage cell. Unfortunately, if the storage capacitor is the minimum allowable size, there is obviously a problem making the dummy half that size. Fairchild

Figure 16

64 Reference Cells	8K Cell EF Array 85 87 87 87 87 87 87 87 87 87 87 87 87 87		1 of 128 E SK Cell O SK a Array L A U M 5 5 5 5 5 5 5 5 5 5 5 5 5		8K Cell Array	64 Sense Amps	8K Cell Array	64 Reference Cells		
			W	ord Line Drive	rs					
	1 of 256 Row Decoder									
			W	ord Line Drive	rs					
64 Reference Cells	8K Cell Array	64 Sense Amps	8K Cell Array	D E C O D E R	8K Cell Array	64 Sense Amps	8K Cell Array	64 Reference Cells		

has overcome this problem in the F4164 sense amp by sharing one full-size dummy capacitor between the two halves of each bit line; thus, half the charge is supplied to each to establish the reference voltage. If the memory-cell capacitor has a HIGH charge, connecting it to a half bit line will cause that half to be more positive than the reference. If the cell has a LOW charge, the opposite occurs. This difference is sensed and latched by the sense amp.

Manufacturing Advances

With the advent of the one-transistor DRAM cell, it seems unlikely that further circuit evolution will bring about dramatic reductions in cell size. Further size reductions will come from process improvements, just as process modifications have already decreased the one-transistor cell from about 1 mil² to roughly 0.3 mil².

There are several ways to *shrink* an existing circuit without changing its basic design. A two-dimensional reduction in device geometries has already been successfully employed on several generations of MOS devices. At the transistor level, the length-to-width ratio of the channel determines its resistive properties, gain, speed performance, and relative size. Roughly, the higher the W/L, the lower the resistance, higher the gain and speed, and the larger the relative device area. Photographic size reduction can result in a smaller device that has similar properties to the original simply by keeping the W/L ratio constant.

A size reduction affecting all three dimensions is called *scaling*. Ideal scaling involves the reduction of each device dimension by a constant scale factor K. Since the field strength must generally be kept constant, the voltage at the device level is scaled by the same factor. In addition to the device area being reduced by the $1/K^2$ factor, there are also performance improvements. Speed is increased, since the smaller device area results in reduced capacitance and transit time. Also, because the voltage after scaling is 1/K times the voltage before and the post-scaling current is reduced by a like amount, power (V x I) is scaled by $1/K^2$. Since both power and voltage are lower in the scaled device, reliability is enhanced.

To ensure that a scaled design can be manufactured, the ideal scaling rules must be adjusted to provide process compatibility. The process parameters involved are dopant levels, oxide thickness, junction depths, and supply voltage. Isoplanar-H is Fairchild's proprietary Isoplanar scaled-MOS process. This scaled NMOS is characterized by optical lithography,

dry (plasma) etching, arsenic junctions, sub-500 ${\rm \AA}$ oxides, and multiple levels of interconnect.

At present, scaling techniques are limited by the tolerances of existing photolithographic equipment. Contact printers with tolerances of \pm 0.75 microns, once acceptable when dealing with 10-micron line widths, are no longer useful at the 1-2 micron level. The advent of electron beam (E-beam) and step-and-repeat printers has demonstrated that this accuracy is possible for a price. The cost, just for the equipment, to set up a medium-size scaled-MOS line is around 30 million dollars.

Aside from the scaling limits imposed by equipment availability, there are physical limits as well. Reduced alpha immunity, short-channel effects, and reduced storage charge, are problems that increase significantly as device dimensions become smaller.

Alpha immunity is the relative resistance of a particular device to alpha-particle induced *soft errors*. Soft errors are defined as random bit errors not associated with physical defects on the chip. Alpha-induced soft errors occur when extra electron-hole pairs are generated by an alpha-particle collision with the chip, thus injecting extraneous charge that causes sensing malfunctions (*Figure 17*). The package material is the source of these alpha particles.

Figure 17

As device dimensions are further reduced, the amount of charge stored in each cell is decreased. Thus, the difference in the number of electrons sensed as a '1' and the number representing a '0' is also smaller. Therefore, since the number of electron-hole pairs produced within the silicon by an incident alpha particle is roughly constant, the probability of an error caused by this extra charge increases as device geometries and stored charge are scaled. Other factors limiting the degree to which a device can be scaled are grouped into a category called *short-channel effects.* These characteristics become most pronounced when the channel length becomes less than about 3 microns. Although threshold voltage and several other parameters are affected, the largest problem is caused by the proximity of the source and drain regions. Since these two regions are now separated by a small distance, the relatively constant depletion regions that surround them may overlap, causing an unwanted current path between the source and drain (*Figure 18*). Research is underway to minimize these difficulties by varying process techniques, but short-channel effects remain a physical consideration when scaling.

Figure 18

Since vertical dimensions like oxide thickness also shrink during scaling, storage capacitance per unit area for future devices will remain roughly the same as for present-day NMOS. However, since the power supply voltage must be scaled to maintain a constant electric field, the charge written into a dynamic memory cell will be reduced since it is a product of the cell capacitance and writing voltage.

This reduction is fairly critical for a DRAM, because the charge in the cell is shared with a relatively large bit-line capacitance. Therefore, the signal voltage that the sense amplifier must correctly process is scaled in the same manner as the writing voltage.

The Future of MOS Memory

Future advances in very large scale integration will depend heavily on the ability of manufacturers to reduce device geometries beyond the current state of the art. Present geometries used for devices like the 64K DRAM, 16K fast static RAMs and the like are based on 3-micron design rules. Thus, MOS transistor

channel lengths are drawn to a 3-micron length. The finished effective channel length is 2-2.5 microns.

Future enhancements involve further shrinking of the design rules. At channel lengths below 1.5 micron, a new lithography technique such as X-ray or electron beam will be required. Using these mask-exposure techniques, sub-micron geometries will evolve to produce 1 megabit DRAMs in the late 1980s.

VLSI geometries will encounter a silicon-material limit at about the 0.5 micron level by the end of the decade. At this point, new substrate materials such as gallium arsenide may be required to continue the trend of increased integration. Materials development programs are presently investigating refractory metalsilicide gate structures. This approach significantly reduces the delays caused by interconnect resistivity while maintaining the relatively low work-function difference between the silicon substrate and the gate material. Thus, TTL compatibility can still be realized. Decreased RC delays will reduce the DRAM speedrelated pattern sensitivities.

DRAMs will benefit from new types of materials, continued reduction of defect density, and increased automation of the production process. All of these factors will contribute to the increases in density, cost-effectiveness, reliability and performance that will appear in future generations of semiconductor memories.

Product Index and Selection Guides	1
MOS Memory Technology Overview	2
RAM Data Sheets	3
EPROM Data Sheets	4
Serial Memory Data Sheets	5
Special Function Data Sheets	6
Extended Temperature Range Data Sheets	7
Ordering Information and Package Outlines	8
Sales Offices, Representatives and Distributor Locations	9

2102/2102L/21L02 1024 x 1 Static RAM

MOS Memory Products

Description

The 2102 family consists of 1024-word by 1-bit static Random Access read/write Memories (RAM) that require a single 5 V supply, have fully TTL-compatible inputs and output, and require no clocking or refresh. Chip Select (CS) permits a 3-state output allowing the outputs to be wired-OR. Special features include low power dissipation (2102L) and a power-down capability (21L02).

The 2102, 2102L and 21L02 are manufactured using the n-channel Isoplanar process and are available in a 16-pin dual in-line package or flatpak.

- FAST ACCESS-250 ns
- SINGLE +5 V SUPPLY
- TTL-COMPATIBLE INPUTS AND OUTPUT
- TOTALLY STATIC—NO CLOCKS OR REFRESH
- 3-STATE OUTPUT
- LOW POWER (2102L)
- POWER-DOWN CAPABILITY (21L02)
- FULLY EXPANDABLE
- FULLY DECODED
- 16-PIN DUAL IN-LINE PACKAGE

Pin Names

A ₀ -A ₉	Address Inputs
D	Data Input
R/W	Read / Write
CS	Chip Select (active LOW)
Q	Data Output

Absolute Maximum Ratings

Voltage on Any Pin with Respect	
to V _{SS}	−0.5 V to +7.0 V
Storage Temperature	-55°C to +150°C
Operating Temperature	0°C to +70°C

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliabiliy.

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	6Z	D
Plastic DIP	UC	P
Flatpak	11.	F

Note

The Flatpak has the same pin number-to-function correspondence as the DIP.

Block Diagram

Truth Table

<u>CS</u>	R/W	D	Q	Comments
н	х	х	•	Chip Deselected
L	L	н	н	Write "1"†
L	L	L	L	Write "0"†
L	н	Х	Dn	Read†

H = HIGH Voltage Level

L = LOW Voltage Level

- X = Don't Care
- = Output High Impedance State
- D_n = Data at Address Location

† = Chip Selected

Power/Access Time Guide

	Part Number	Access Time	DD(MAX)
	21L02H	250 ns	30 mA
Power	21L02F	350 ns	30 mA
Down	21L021	450 ns	30 mA
	21L022	650 ns	30 mA
	2102LH	250 ns	30 mA
Low	2102LF	350 ns	30 mA
Power	2102L1	450 ns	30 mA
	2102L2	650 ns	30 mA
	2102H	250 ns	55 mA
Standard	2102F	350 ns	55 mA
	21021	450 ns	55 mA
	21022	650 ns	55 mA

Functional Description

The 2102, 2102L and 21L02 are 1024 x 1 static RAMs. When the Chip Select (\overline{CS}) goes HIGH, the Read/Write ($\overline{R/W}$) input is disabled and the Data Output (Q) is forced into a high impedance state. When \overline{CS} goes LOW, the Read/Write input is enabled.

When R/\overline{W} goes LOW, data from the Data Input (D) is written at the location specified by the Address Inputs (A_n). The Data Output will be identical to the Data Input during a write command. When R/\overline{W} goes HIGH, the contents of the addressed location will appear at Q. Q is not inverted from D in the 2102. (See Truth Table).

DC Requirements $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$

Symbol			2102,	2102L	21L02				
	Characteristic, Not	Characteristic, Note		Max	Min	Max	Unit	Condition	
VIH Input HIGH Voltage	H,F,1	2.0	V _{DD}	2.0	V _{DD}	V			
		2	2.2	V _{DD}	2.2	V _{DD}	- v		
	Input LOW Voltage	H,F,1	-0.5	0.8	-0.5	0.8	V		
VIL		2	-0.5	0.65	-0.5	0.65	- V		
V _{DD}	Power Supply Voltage		4.75	5.25	4.5	5.5	v		

DC Characteristics $~V_{DD}$ = 5.0 V \pm 5%, V_{SS} = 0 V, T_{A} = 0°C to +70°C

Symbol			2102, 210	2L, 21L02			
	Characteristic, N	Characteristic, Note		Max	Unit	Condition	
	Output HIGH	H,F,1	2.4			100 4	
VOH	Voltage	2	2.2		V	$I_{OH} = -100 \ \mu A$	
VOL	Output LOW Volt	age		0.4	V	$I_{OL} = 2.1 \text{ mA}$	
IIN	Input Leakage Cu	urrent		10	μA	$V_{IN} = V_{DD}$	
ЮН	Output HIGH Curr	ent		5.0	μΑ	$\frac{V_{OUT} = V_{OH(Min)}}{CS = V_{IH(Min)}}$	
I _{OL}	Output LOW Curr	ent		-10	μΑ	$\frac{V_{OUT} = V_{OL(Max)}}{CS} = V_{IH(Min)}$	
I _{DD}	Power Supply Cu 2102 2102L 2102L 21L02	rrent		55 30 30	mA	Inputs = $V_{DD(Max)}$ D_{OUT} open, $T_A = T_A(Min)$	

AC Requirements $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$

		2102H 2102LH 21L02H	2102F 2102LF 21L02F	21021 2102L1 21L021	21022 2102L2 21L022		
Symbol	Characteristic Min Min Min Unit	Condition					
tcyc	Read or Write Cycle Time	250	350	450	650	ns	
t _{AW}	Address to Write Time	20	20	20	200	ns	
twp	Write Pulse Width	170	170	200	350	ns	V _{SS} = 0 V
twR	Write Recovery Time	0	0	0	50	ns	See DC Requirements
tDS	Data Set-up Time	170	170	200	350	ns	for Conditions on V_{DD}
t _{DH}	Data Hold Time	0	0	0	20	ns	
tcw	Chip Select to Write Time	170	170	200	400	ns]
twc	Write to Chip Select Time	0	0	0	50	ns	

Note

See Power / Access Time Guide and AC Characteristics for definitions of H, F, 1 and 2 speed grades.

AC Char	acteristics $T_A = 0^\circ C t_0$	o +70°(0								
		2102 2102 21L0	2LH	210 210 21L	2LF	210 210 21L	2L1	210 210 21L	2L2		
Symbol	Symbol Characteristic Min Max Min Max Min Max Min Max	Max	Unit	Condition							
tACC	Read Access Time		250		350		450		650	ns	
tco	Chip Select LOW to Output Valid Delay		130		170		200		400	ns	V _{SS} = 0 V
tOH1	Data Valid after Address	40		50		50		50		ns	See DC Requirements for Conditions on V _{DD}
tOH2	Previous Data Valid after Chip Deselect	0		0		0		0		ns	
CIN	Input Capacitance		5.0		5.0		5.0		5.0	pF	$V_{IN} = 0 V, V_{SS} = 0 V$
COUT	Output Capacitance		10		10		10		10	рF	$f = 1 MHz, T_A = 25^{\circ}C$

Power Down Characteristics (21L02 only) $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$

		21L02			
Symbol Characteristic	Characteristic	Min	Max	Unit	Condition
IDD(PD)	Power Supply Current		15	mA	$V_{DD} = 1.6 V$
V _{DD(PD)}	Power Supply Voltage	1.6		V	
tcss	Chip Select Set-up Time	100		ns	· ·
tCSH	Chip Select Hold Time	100		ns	
Vcs	Chip Select Voltage	2.0		V	
V'DD	Power Supply Slew Rate		100	V/µs	

Timing Diagrams

Read Cycle Timing

Write Cycle Timing

LOW-TO-HIGH TRANSITION

AC Conditions

3-7

Input Levels: V_{IL(Max)} to V_{IH(Min)} Input Rise and Fall Times: 10 ns Timing Measurement Reference Levels: Inputs: 1.5 V Output: 2.0 and 0.8 V Output Load: 1 TTL Gate + 100 pF

3

F2114/2114L 1024 x 4 Static RAM

MOS Memory Products

Description

The F2114 is a 4096-bit static Random Access Memory (RAM) organized as 1024 words of four bits each. Since the operation of the F2114 is entirely static, there is no clocking or refreshing required. It operates from a single +5 V supply and is directly a TTL compatible at all inputs and outputs including the four bidirectional data I/O pins.

It is designed for memory applications in which static operation, large bit-capacity, and simple interfacing are important design considerations.

The F2114 is manufactured using Fairchild's n-channel silicon gate Isoplanar process. The innovative use of polysilicon resistors in the static memory cell permits a high bit packing density and insures low-power characteristics. It is available in a standard plastic or ceramic 18-pin dual in-line package.

- 1024 x 4-BIT ORGANIZATION
- SINGLE +5 V SUPPLY
- COMPLETELY STATIC—NO CLOCKS OR REFRESH
- TOTALLY TTL COMPATIBLE
- COMMON DATA I/O PINS WITH 3-STATE CAPABILITY
- IDENTICAL CYCLE AND ACCESS TIMES
- LOW POWER (2114L)

Pin Names

A ₀ -A ₉	Address Inputs
CS	Chip Select (Active LOW)
WE	Write Enable (Active LOW)
DQ1-DQ4	Data Input/Output
Vcc	+5 V Power Supply
GND	Ground

Absolute Maximum Ratings

Voltage at Any Pin with Respect	
to GND	-0.5 V to +7.0 V
Operating Temperature (Ambient)	0°C to +70°C
Storage Temperature (Ambient)	-55°C to +150°C
Power Dissipation	1 W
-	

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

 $V_{CC} = Pin \ 18$ GND = Pin 9

Connection Diagram 18-Pin DIP

(Top View)

Package	Outline	Order Code	
Ceramic DIP	8D	D	
Plastic DIP	8J	P	

F2114/2114L

Block Diagram

Functional Description

The F2114, organized as 1024 words by four bits, is controlled by the Chip Select (\overline{CS}), Write Enable (WE) and the ten address inputs. When \overline{CS} goes HIGH the memory becomes deselected; the bidirectional input/output pins become high impedance, and the WE input is ignored. Therefore no read or write operations may occur. This feature allows the DQ pins to be OR-tied directly to a data bus. When the memory is selected (\overline{CS} LOW), and the WE pin is in the HIGH state, the 4-bit word stored at the memory location specified by the address inputs is gated through to the DQ pins after a delay equal to the access time. If the WE is forced LOW, then the DQ pins become HIGH impedance inputs so that an externally supplied data word may be placed on them. All inputs and bidirectional DQ pins are directly TTL compatible with data always being read out in the same polarity as it was written (i.e., not inverted).

Truth Table

<u>cs</u>	WE	DQ	Comments
н	X	High Z	Chip Deselected
L	L	н	Write "1"
L	L	L	Write "O"
L	H	Data	Read

F2114/2114L

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	2.0		Vcc	V	
VIL	Input LOW Voltage	-0.5		0.8	V	
VOH	Output HIGH Voltage	2.4		Vcc	V	$I_{OUT} = -1.2 \text{ mA}$
VOL	Output LOW Voltage	0		0.4	V	I _{OUT} = 3.2 mA
los	Output Short-Circuit Current, Note 2			65	mA	V _{OUT} = 0 V
lcc	Average V _{CC} Supply Current F2114L2, F2114L3, F2114L			70	mA	$V_{CC} = 5.25 V,$ $T_A = 0^{\circ}C,$
	Average V _{CC} Supply Current F2114-2, F2114-3, F2114			100	mA	V _{IN} = 5.25 V, I/O current = 0 mA
IIN	Input Leakage Current			10	μA	V _{IN} = 0 to 5.25 V
Ισα	I/O Leakage Current	-10		10	μA	$\overline{CS} = 2.0 V,$ V _{I/O} = 0.4 V to V _{CC}
C _{IN}	Input Capacitance			5.0	pF	$T_{A} = 25^{\circ}C, f = 1.0 \text{ MHz}$ $V_{IN} = 0 \text{ V}$
C _{DQ}	I/O Capacitance			5.0	pF	$T_A = 25^{\circ}C, f = 1.0 \text{ MHz}$ $V_{I/O} = 0 \text{ V}$

DC Electrical Requirements and Characteristics T_A = 0 to 70°C, V_{CC} = 5.0 V \pm 5%, all voltages are with respect to ground, Note 1

AC Electrical Requirements And Characteristics $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = 5.0 V \pm 5\%$, Notes 1 and 3

Symbol	Characteristic	F2114L-2 F2114-2		F2114L-3 F2114-3		F2114L F2114			
		Min	Max	Min	Max	Min	Max	Unit	Note
tcyc	Read or Write Cycle Time	200		300		450		ns	
tACC	Read Access Time		200		300		450	ns	
tco	CS LOW to Output Valid Delay		70		100		100	ns	
tcsx	CS LOW to Output Active Delay	20		20		20		ns	
todh	Output Data Hold Time After Address	50		50		50		ns	
tOFF	Output Buffer Turn-Off Delay from CS	0	60	0	80	0	100	ns	
t _{AW}	Address to Write Set-up Time	0		0		0		ns	
twp	WE Pulse Width	120		150		200		ns	
twR	Write Recovery Time	0		0		0		ns	
t _{DS}	Input Data Set-up Time	120		150		200		ns	1
tDH	Input Data Hold Time	0		0		0		ns	

Notes

1. Test Note: The F2114 employs a self starting oscillator and a charge pump which require a start-up time of 500 μs after V_{CC} reaches at least 4.75 V.

3. AC Characteristic Test Conditions:

of 500 µs Input Levels Input Rise and Fall Times Input and Output Timing Levels Output Load 0.8 to 2.0 V 10 ns 1.5 V 1 TTL Gate, and CL = 100 pF

2. Duration not to exceed 30 seconds.

F2114/2114L

Read Mode Timing Diagram, Note 1

Write Mode Timing Diagram

Notes

- 1. WE must remain HIGH during READ cycles.
- twp is measured from the falling edge of either CS or WE (whichever is the last to go LOW) to the rising edge of either CS or WE (whichever is the first to go HIGH).

F3528 2048 x 8 Static RAM

MOS Memory Products

Description

The F3528 is a 16,384-bit static Random Access Memory (RAM) organized as 2048 words of eight bits each. Since the operation of the F3528 is entirely static, no clocks or refresh are required. This device operates from a single +5 V supply and is directly TTL compatible at all inputs and outputs, including the eight bidirectional data DQ pins. The F3528 has an automatic power-down feature controlled by the Chip Enable function (\vec{E} = active LOW). When not enabled, the F3528 is in standby mode; this reduces power dissipation by as much as 75% with no degradation of access time.

The F3528 is designed for memory applications where static operation, low cost, large bit-capacity and simple interfacing are important design considerations. It is manufactured using Fairchild's high performance, scaled NMOS technology, Isoplanar-H[™]. State-of-the-art design and process techniques ensure high density, lower power dissipation and excellent speed performance.

The F3528 is available in a standard 24-pin dual in-line package in a configuration that is pin and function compatible with the 2716 ultraviolet erasable PROM.

- 2048 x 8-BIT ORGANIZATION
- COMPLETELY STATIC—NO CLOCKS OR REFRESH
- SINGLE +5 V SUPPLY
- AUTOMATIC POWER DOWN WHEN CHIP NOT ENABLED (E)
- ACCESS TIME 250 ns, 350 ns
- LOW POWER DISSIPATION 450 mW ACTIVE (MAX) 100 mW STANDBY (MAX)
- TOTALLY TTL COMPATIBLE WITH SIMPLE BUS CONTROL
- COMMON DATA I/O BUS WITH 3-STATE CAPABILITY
- PIN/FUNCTION COMPATIBLE WITH 2716
- STANDARD 24-PIN DIP

Pin Names

A0-A10	Address Inputs
W	Write Enable Input
G	Output Enable Input
Ē	Chip Enable Input
DQ0-DQ7	Data Inputs / Outputs

(Top View)

Package	Outline	Order Code
Ceramic DIP	7R	D

Block Diagram

Truth Table

G	Ē	W	Modé	Output	Power
X	н	X	Chip Not Enabled	High Z	Standby
н	L	X	Output Not Enabled	High Z	Active
L	L	H.	Read	Data	Active
L	L	L	Write	High Z	Active

F3567 16,384 x 1 Static RAM

MOS Memory Products

Description

The F3567 is a 16,384 x 1-bit Random Access Memory (RAM). Its operation is entirely static; therefore, no clocking or refreshing is required. The F3567 offers very fast access and cycle times, requires only a single +5 V power supply and is fully TTL compatible. D and Q functions are available on separate pins.

The F3567 has an automatic power-down feature controlled by the Enable function. When not enabled, the F3567 is in a standby mode which reduces power dissipation by as much as 75%. The F3567 is manufactured using Fairchild's high-performance, scaled NMOS technology, Isoplanar-H[™], and is available in a 20-pin DIP.

- 16,384 x 1 ORGANIZATION
- COMPLETELY STATIC OPERATION
- SINGLE +5 V ± 10% POWER SUPPLY
- AUTOMATIC POWER-DOWN WHEN NOT ENABLED
- EQUAL ACCESS AND CYCLE TIMES 55 ns
- AVERAGE CURRENT
 125 mA ACTIVE
 30 mA STANDBY
- FULLY TTL COMPATIBLE
- 3-STATE OUTPUT
- SEPARATE DATA INPUT AND OUTPUT
- STANDARD 20-PIN DIP

Pin Names

A0-A13	Address Inputs
W E	Write Enable Input
Ē	Enable Input
D	Data Input
Q	Data Output
VCC	+5 V Power Supply

Truth Table

Ē	W	Mode	Output	Power
н	Х	Not Enabled	High Z	Standby
L	L	Write	High Z	Active
L	н	Read	Data	Active

Logic Symbol

Connection Diagram 20-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	JD	D

F4116 16,384 x 1 Dynamic RAM

MOS Memory Products

Description

The F4116 is a 16,384-bit MOS dynamic Random Access Memory (RAM) configured as 16,384 one-bit words. It is manufactured using Fairchild's n-channel silicon gate, double-poly Isoplanar process. The use of the single-transistor memory cell along with address multiplexing techniques permits the packaging of the F4116 in a standard 16-pin dual in-line package. This package allows construction of highly dense memory systems utilizing widely available automated testing and insertion equipment.

- INDUSTRY STANDARD 16-PIN DUAL IN-LINE PACKAGE
- LOW CAPACITANCE, TTL-COMPATIBLE INPUTS (INCLUDING CLOCKS)
- ON-CHIP ADDRESS AND INPUT DATA LATCHES
- 3-STATE TTL-COMPATIBLE OUTPUT WITH DATA VALID TIME CONTROLLED BY CAS
- COMMON I/O CAPABILITY
- TWO DIMENSIONAL SELECTION BY DECODING BOTH RAS AND CAS
- STANDARD 10% SUPPLIES (+12 V, +5 V, AND -5 V)
- FLEXIBLE TIMING WITH PAGE-MODE AND EXTENDED PAGE BOUNDARIES
- 128-CYCLE RAS-ONLY REFRESH

Pin Names

Fin Names	
A ₀ -A ₆	Address Inputs
D	Data Input
WE	Write Enable Input (Active LOW)
RAS	Row Address Strobe Input
	(Active LOW Clock)
CAS	Column Address Strobe Input
	(Active LOW Clock)
Q	Data Output
V _{CC}	+5 V Power Supply
Vss	0 V Power Supply
V _{BB}	-5 V Power Supply
VDD	+12 V Power Supply

(Top View)

Package	Outline	Order Code	
Ceramic DIP	2C	D	
Plastic DIP	UB	P	

device reliability.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a

stress rating only, and functional operation of the device at these

or any other conditions above those indicated in the operational

sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect

Absolute Maximum Ratings

Voltage on Any Pin Relative to	
V_{BB} ($V_{SS} - V_{BB} \ge 4.5 V$)	-0.
Operating Temperature (Ambient)	0°C
Storage Temperature (Ambient)	-65
Power Dissipation	1 W
Voltage on V _{DD} , V _{CC} Supplies	
Relative to Vss	-1.
Short-circuit Output Current	50 r

-0.5 V to +20 V 0°C to 70°C -65°C to +150°C 1 W -1.0 V to +15 V 50 mA

Block Diagram

VDD WE -WRITE Vcc CLOCKS Vss ٧вв CLOCK RAS GENERATOR NO 1 DATA IN MULTIPLEXED DATA D CLOCK GENERATOR IN BUFFER INHIBIT CLOCK GENERATOR NO 2 DATA OUT DATA Q OUT CAS BUFFER LATCH RELEASE DUMMY CELLS **A**6 MEMORY ARRAY **A**5 A4 MUX ADDRESS ROW 128 1-0F-2 INPUT DECODER ROW 128-SENSE REFRESH AMPS DATA **A**3 BUFFERS 1-OF-128 LINES BUS (7) SELECT A₂ DATA IN/OUT MEMORY ARRAY Δ. **∆**∩ DUMMY CELLS 64 COLUMN SELECT LINES COLUMN DECODERS MUX A0-A5 1-OF-64 SWITCH **A**6

Functional Description

Addressing

The 14 address bits required to decode one-of-16.384 cell locations in the F4116 are entered using a 2-phase multiplexing operation; first, the 7-bit row address is entered followed by the 7-bit column address. First the 7-bit row address is applied to the seven address inputs of the F4116 and latched into the chip by Row Address Strobe (RAS) which is the first of two externally applied TTL-level clocks. The second clock, Column Address Strobe (CAS), subsequently latches the seven column address bits into the chip. Each of these signals, RAS and CAS, trigger on-chip clock generators which control the internal sequencing of events on the chip. Advanced techniques used in handling the row and column address information allow the address multiplexing operation to be performed without lengthening the critical timing path governing the access time. The activation of CAS strobes the column address latch but this event as well as other internal events governed by the CAS clock generator may be inhibited until certain prerequisite events controlled by the RAS clock generator have occurred.

More specifically, a window of time exists, extending from t_{RCD(min)} to t_{RCD(max)} during which CAS may become active without impacting the access time. Stated another way, as long as CAS occurs during this window, the access time will be specified by tRAC. If CAS occurs a certain delay after this window of time. the RAS clock generator no longer inhibits the CAS clock generator and the magnitude of this delay will add directly to the overall access time. This lengthened access time is now referenced to CAS rather than RAS and is lengthened by the amount of time that tRCD exceeds the tRCD(max) limit. This gated-CAS feature allows greater flexibility since the CAS clock may be externally activated as soon as the hold time for the row address has been met and the address inputs have been changed from row address to column address information.

Page Mode Operation

The page-mode feature of the F4116 allows successive memory cycles accessing the same row in the memory matrix to be concatenated together in such a way that the common row address need be supplied only once. The result is faster access times with no corresponding increase in power. The pagemode option may be used in conjunction with any of the defined memory operations, and is accomplished by supplying the row address to the chip and holding RAS LOW throughout all subsequent memory cycles for which the row address is common.

Since \overline{RAS} makes its initial negative transition only once, no additional dynamic power is dissipated due to \overline{RAS} on any subsequent cycles performed within that row. The access and cycle times are also shortened since the time required to supply a row address is eliminated.

Data Input

In a write operation, the data to be input into memory is strobed into an on-chip register during RAS by a combination of CAS and Write Enable (WE). The strobe is formed by the last of these two signals to make its negative transition. This presents several possibilities in how a write cycle may be performed. In an "early-write" cycle (WE active LOW before CAS goes LOW), Data In (D) is strobed by CAS and thus the set-up and hold times are referenced to this signal edge. If D is not yet valid at the time CAS becomes active (or if the cycle is a read-write or read-modifywrite) then WE must be delayed. In this delayed-write mode, the D set-up and hold times are referenced to WE rather than CAS. (See the timing diagrams.)

Data Output

The Data Out (Q) latch and buffer unconditionally assume the high-impedance state whenever CAS is HIGH, i.e., inactive. If the cycle being performed is a read, read-modify-write, or a delayed write cycle, then the Q latch and buffer will remain high impedance until the access time, after which Q will assume the value of the data read from the selected cell. This output data is of the same polarity (not inverted) as the input data and will remain valid as long as CAS is kept active, i.e., LOW. However, if the cycle is an "earlywrite" cycle or if the chip fails to receive both RAS and CAS, then Q will remain high impedance throughout the cycle. This feature allows systems which write exclusively in the early-write mode to connect D and Q directly together.

Another advantage of this "unlatched output" feature is that OR-tied outputs in a memory matrix require no special action to be turned off. Unlike other types of RAMs which require a negative transition of CAS to become high impedance, the F4116's output is already high impedance whenever CAS is HIGH, i.e., inactive. This means that CAS need not be supplied to unused devices and therefore may be used for device selection. Thus a reduction in external decoding logic is possible by using both RAS and CAS in a 2-dimensional decoding / selection scheme.

RAS and **CAS** Clock Conditions

RAS and CAS cycle	Device active
RAS only cycle	Device deselected, refresh
CAS only cycle	Device deselected
Neither RAS nor CAS	Device deselected, standby

Extended Page Boundary

A further implication of using both RAS and CAS for device decoding/selection is in extending page boundaries for page-mode operation. If only RAS is decoded, then any given page is limited to only 128 different column addresses within that page (i.e., seven column address bits correspond to $2^7 = 128$ column addresses). Therefore, for memory systems using more than 16K words of data, page boundaries may be extended from 128 addresses per page up to any multiple of 128 addresses merely by decoding which 16K memory bank also gets a CAS (subject to t_{RAS(max)} limitation). This is accomplished by supplying RAS to all devices in order to latch in the row address information and then decoding which bank of 16K words also gets CAS. Only those devices which receive both RAS and CAS will respond with a valid memory cycle.

Input/Output Levels

All inputs, including the two address strobes, interface directly with TTL. The high-impedance, lowcapacitance input characteristics simplify input driver selection by allowing use of standard logic elements rather than specially designed driver elements. Termination resistors are normally required in a system to prevent ringing due to line inductance and reflections. In high-speed memory systems, transmission line techniques must be employed on the signal lines to achieve optimum system speeds. Series termination may by employed at some degradation of system speed. The 3-state output buffer is a low impedance to V_{CC} for logic "1" and low impedance to VSS for logic "0". The effective resistance to V_{CC} is 420 Ω maximum and 135 Ω typically. The effective resistance to V_{SS} is 95 Ω maximum and 35 Ω typically.

Refresh

The matrix of 128 x 128 memory cells in the F4116 is refreshed by executing a memory cycle at each of the 128 row addresses within each interval of 2 ms or less. Although any cycle in which RAS occurs accomplishes a refresh operation, the refresh is most easily accomplished in the RAS-only-refresh mode. This type of refresh operation results in decreased power dissipation, since CAS remains inactive.

Power Dissipation/Standby

Since the F4116 uses dynamic memory cells, this means that most of the dissipated power is a result of an address strobe edge. There is, however, a small dc component of dissipated power that is associated with the precharging of the sense amplifiers. Thus, the total power dissipated is a function of both operating frequency and duty cycle. Typically, the power is 350 mW at 1 μ s cycle time with a worst case power of less than 462 mW at 375 ns cycle time. To reduce overall system power during standby, RAS-only-refresh cycles should be performed with CAS held HIGH.

The V_{CC} supply is not used in the internal memory operations of the F4116, but rather is used only at the output buffer and thus, for some applications, may be powered from the supply voltage of the logic to which the chip's output is interfaced. This means that I_{CC}, the current drawn from the V_{CC} supply, is a function of output loading. During battery standby operation, the V_{CC} pin may be unpowered, if desired, without affecting the refresh operation. This allows all system logic, except the RAS timing circuitry and the refresh address logic, to be turned off during battery standby to conserve power.

Memory Power Up

The F4116 requires no particular power supply sequencing as long as the absolute maximum rating conditions are observed. However, in order to insure compliance with the absolute maximum ratings, by providing larger voltage margins, it is recommended that power supplies be sequenced at power-up such that V_{BB} is applied first and removed last. V_{BB} should never be more positive than V_{SS} when power is applied to V_{DD} .

Under system failure conditions in which one or more supplies exceed the specified limits, significant additional margin against catastrophic device failure may be achieved by forcing RAS and CAS to the inactive state.

After power is applied to the device, the F4116 requires several cycles before proper device operation is achieved. Any eight cycles which perform refresh are adequate for this purpose.

DC Requirements $T_A = 0^{\circ}C$ to $+70^{\circ}C$ (See Notes 1 and 2)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
V _{DD}	Supply Voltage	10.8	12	13.2	V	
Vcc	Supply Voltage	4.5	5.0	5.5	V	Note 5
V _{SS}	Supply Voltage	0	0	0	V	
V _{BB}	Supply Voltage	-5.7	-5.0	-4.5	v	
VIHC	Input HIGH Voltage, RAS, CAS, WE	2.4		7.0	V	
VIH	Input HIGH Voltage, All Inputs except RAS, CAS, WE	2.2		7.0	v	
VIL	Input LOW Voltage, All Inputs	-1.0		0.8	V	

DC Characteristics Over full range of voltage and temperature

Symbol	Characteristic		Min	Тур	Max	Unit	Condition
V _{OH}	Output HIGH Voltage		2.4			v	I _{OUT} = -5.0 mA, Note 5
VOL	Output LOW Voltage				0.4	v	I _{OUT} = 4.2 mA, Note 5
		Normal Operation			35	mA	
DD	Average V _{DD} Current	Standby			1.5	mA	For F4116-4 Refresh
00		Refresh			25	V mA μA μA μA μA	I _{DD} = 27 mA Max. Note 3
		Page Mode			27		
lcc	Average V _{CC} Current	Normal Operation/ Page Mode					Note 4
		Standby/Refresh	-10		10	μA	
IBB	Average V _{BB} Current	Normal Operation/ Refresh/Page Mode			200	μA	
	Stand	Standby			100	μA	
IIN	Input Leakage Current	(Any Input)	-10		10	μA	
Ιουτ	Output Leakage Current		-10		10	μA	
CIN1	Input Capacitance, A ₀ -A ₆ , D			4.0	5.0	pF	Note 6
CIN2	Input Capacitance, RA	S, CAS, WE		8.0	10	рF	Note 6
Соит	Output Capacitance, (2		5.0	7.0	pF	$\overline{CAS} = V_{IHC}$

Notes on following pages.

Recomm	ended ac Operating Conditions O	ver full r	ange of v	voltage a	and temp	erature			
		F4116-	2	F4116-	3	F4116-	4		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Notes
tRC	Random Read or Write Cycle Time	320		375		410		ns	7
tRWC	Read-Write Cycle Time	320		375		425		ns.	7
tRMW	Read Modify Write Cycle Time	320		405		500		ns	7
tPC	Page Mode Cycle Time	170		225	·	275	·	ns	7
tRAC	Access Time from RAS		150		200		250	ns	8, 10
tCAC	Access Time from CAS		100		135		165	ns	9, 10
tOFF	Output Buffer Turn-off Delay	0	40	0	50	0	60	ns	11
t _{RP}	RAS Precharge Time	100		120		150		ns	
tRAS	RAS Pulse Width	150	10,000	200	10,000	250	10,000	ns	
tRSH	RAS Hold Time	100		135		165		ns	
tCSH	CAS Hold Time	150		200		250		ns	
tCAS	CAS Pulse Width	100	10,000	135	10,000	165	10,000	ns	
tRCD	RAS to CAS Delay Time	20	50	25	65	35	85	ns	12
tASR	Row Address Set-up Time	0	1	0		0			1
tRAH	Row Address Hold Time	20		25		35		ns	
tASC	Column Address Set-up Time	- 10		-10		-10		ns	
tCAH	Column Address Hold Time	45		55		75		ns	
t _{AR}	Column Address Hold Time Referenced to RAS	95		120		160		ns	
tŢ	Transition Time (Rise and Fall)	3.0	35	3.0	50	3.0	50	ns	13
tRCS	Read Command Set-up Time (RMW)	0		0	· .	0		ns	
tRCH	Read Command Hold Time	0		0		0		ns	
twcн	Write Command Hold Time	45		55		75		ns	
twcR	Write Command Hold Time Referenced to RAS	95		120		160		ns	-
twcs	Write Command Set-up Time	-20		-20		-20		ns	14
twp	Write Command Pulse Width	45	1	55		75		ns	
tRWL	Write Command to RAS Lead Time	50		70		85		ns	15
tCWL	Write Command to CAS Lead Time	50		70		85		ns	15
t _{DS}	Data In Set-up Time	0		0		0		ns	16
tDH	Data In Hold Time	45		55		75		ns	16
tDHR	Data In Hold Time Referenced to RAS	95		120		160		ns	
tCRP	CAS to RAS Precharge Time	-20		-20		-20		ns	1
		****		*		*		•	

Recommended ac Operating Conditions Over full range of voltage and temperature

Notes on following page.

*

Recommended ac Operating Conditions (Cont'd)

		F4116	6-2	F411	6-3	F411	ô-4		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Notes
tCP	CAS Precharge Time (Page-Mode)	60		80		100		ns	
t _{RF}	Refresh Period		2.0		2.0		2.0	ms	
tCWD	CAS to WE Delay	60		80		90		ns	17
tRWD	RAS to WE Delay	110		145		175		ns	17

Notes

- The ambient temperature (T_A) is specified here for operation at frequencies up to that frequency determined by the minimum cycle time. Operation at high cycle rates with reduced ambient temperatures and higher power dissipation is permissible, however, provided ac operating parameters are met.
- 2. All voltages are referenced to V_{SS} = 0 V.
- 3. I_{DD} depends on frequency of operation. Maximum current is measured at the fastest cycle rate.
- 4. I_{CC} depends upon output loading. The V_{CC} is connected to the output buffer only. During readout of HIGH level data, V_{CC} is connected through a low impedance (135 Ω typ) to Data Out. At other times I_{CC} consists of leakage currents only.
- 5. Output voltage will swing from V_{SS} to V_{CC} when activated with no current loading. For purposes of reducing power in the standby mode, V_{CC} may be reduced to V_{SS} without affecting refresh operations or data retention. However, the V_{OH}(min) specification is not guaranteed in this mode.
- 6. Effective capacitance calculated from the equation C = $I \frac{\Delta t}{\Delta V}$ with $\Delta V = 3 V$ and power supplies at normal levels.
- 7. The specifications for $t_{RC(min)}$, $t_{RWC(min)}$, $t_{RMW(min)}$ and $t_{PC(min)}$ are used only to indicate cycle time at which proper operation over full temperature range (0°C $\leq T_A \leq$ 70°C) is assured. All transition times, t_T , are assumed to be 5 ns.
- Assumes that t_{RCD} ≤ t_{RCD(max}). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 9. Assumes that $t_{RCD} \ge t_{RCD(max)}$.
- 10. Measured with a load equivalent to two TTL loads and 100 pF.
- tOFF(max) defines the time at which the output achieves the open-circuit condition and is not referenced to output voltage levels.
- 12. Operation within the t_{RCD(max)} limit insures that t_{RAC(max)} can be met. t_{RCD(max)} is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD(max)} limit, then access time is controlled exclusively by t_{CAC}.
- V_{IHC}(min) or V_{IH}(min) and V_{IL}(max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IHC} or V_{IH} and V_{IL}. Composite timing parameters (such as cycle times) assume 5 ns transition times.

- 14. t_{WCS} is a restrictive operating parameter. If t_{WCS} ≥ t_{WCS(min)}, the cycle is an early write cycle and the Data Out pin will remain open circuit (high impedance) throughout the entire cycle, otherwise the cycle is a delayed write cycle.
- 15. The parameters t_{RWL} and t_{CWL} reference WE (for a readmodify-write cycle) to either RAS or CAS respectively, whichever is the first to go HIGH.
- 16. t_{DS} and t_{DH} are referenced to the leading edge of CAS in early write cycles, and to the leading edge of WE in delayed write or read-modify-write cycles.
- 17. t_{RWD} and t_{CWD} are restrictive operating parameters due to the following characteristics:
 - If $t_{CWD} < t_{CWD(min)}$, the Data Out will be indeterminate. If $t_{CWD} \ge t_{CWD(min)}$, the Data Out will contain the data read from the selected cell.

Timing Diagrams Read Cycle

Don't Care Input Condition

Write Cycle (Early Write)

ć

Page Mode Read Cycle

Don't Care Input Condition

F4116

Typical Current Waveforms

Normal Operation IDD vs Ambient Temperature

Refresh IDD vs Ambient Temperature

Page Mode IDD vs Cycle Rate

Standby IDD vs Ambient Temperature

Page Mode I_{DD} vs Ambient Temperature

3.0

Address Data Input Levels vs TA

Clock Input Levels vs TA

Refresh IDD vs VDD

Standby IDD vs VDD

-

Access Time (Normalized) vs TA

Access Time (Normalized) vs V_{DD}

Clock Input Level vs V_{DD}

Access Time (Normalized) vs VBB

Normalized Access Time vs Load Capacitance

Address and Data Input Levels vs VBB

Clock Input Level vs VBB

Applications and Testing

F4116 Data Scramble

In order to assist engineers in testing the F4116 16,384 x 1-bit dynamic Random Access Memory, information concerning the internal polarity and location of the stored data is provided as follows. *Figure 1* shows a block diagram of the various figures and how they relate to each other.

Address Scrambling

The relationship of the external (data sheet) address to the actual internal row or column address is shown in *Figure 2*. This information may be required to locate a specific location on the chip, when only its external pin address is known. The actual chip addresses (converted to decimal) are shown in *Figure 3*.

Figure 4 shows the external logic necessary to descramble the F4116 internal logic shown in Figure 2. For example, addressing column "0", via the system address inputs ($A_0-A_6 = LOW$), selects the actual chip column 0 shown in Figure 3. Setting a "1" on the system column address inputs (000001), selects the adjacent actual column "1" on the chip. This correspondence holds for all rows and columns when using the transformation supplied in Figure 4.

The tables provided in *Figures 5* and 6 show the relationship of the system address (decimal) to the external (data sheet) address converted to octal. In other words, *Figures 5* and 6 are simply truth tables for the logic shown in *Figure 4*.

Data Inversion

Since the F4116 employs balanced sense amps, it is necessary to store some of the data in inverted form. This is decoded internally so it does not appear to the user, and need only be considered when testing. The input and output EXOR gates shown in *Figure 1* provide the proper inversions necessary to have all data written in the same polarity. It should be noted that A_6 , shown in *Figure 1*, is referenced to the most significant bit of the system row address. This is because the inversion is only related to the row address and must be independent of the multiplexing operation.

Fig.1 Relationship of various scrambling and inversion networks

3

Fig. 2 Relationship of external addresses to actual row and column positions (multiplexer not shown). Refer to *Figure 3* for actual positions converted to decimal.

EXTERNAL ADDRESS

ACTUAL POSITION ADDRESS

Fig. 3 F4116 Bit Map

Clock

120	DATA	1/2 Column Decode 1/2 Sense Amplifiers	1/2 Column Decode	0 1 2 3 4 5 6 7 8 9 • DATA • 119 120 121 122 123 124 125 126 127
ROW Decode ROW Decode	ROW Decode			ROW Decode

F4116

Actual column and row position addresses converted to decimal. Conversion to the external address is explained in the text.

Fig. 4 External address transformation required to descramble F4116 internal decoder shown in *Figure* 1 (multiplexer not shown)

are used solely to indicate the logic function "Exclusive—OR" and "NOT", respectively. The above figure is not a suggested implementation of logic.

System Row Address		ter: Idre		System Row Address		ter Idre		System Row Address		teri Idre		System Row Address		ter Idre	
0	1	4	0	32	1	4	4	64	0	4	1	96	0	4	5
1	0	4	0	33	0	4	4	65	1	4	1	97	1	4	5
2	0	0	0	34	0	0	4	66	1	0	1	98	1	0	5
3	1	0	0	35	1	0	4	67	0	0	1	99	0	0	5
4	0	2	0	36	0	2	4	68	1	2	1	100	1	2	5
5	1	2	0	37	1	2	4	69	0	2	1	101	0	2	5
6	1	6	0	38	1	6	4	70	0	6	1	102	0	6	5
7	0	6	0	39	0	6	4	71	1	6	1	103	1	6	5
8	1	5	0	40	1	5	4	72	0	5	1	104	0	5	5
9	0	5	0	41	0	5	4	73	1	5	1	105	1	5	5
10	0	1	0	42	0	1	4	74	1	1	1	106	1	1	5
11	1	1	0	43	1	1	4	75	0	1	1	107	0	1	5
12	0	3	0	44	0	3	4	76	1	з	1	108	1	3	5
13	1	3	0	45	1	3	4	77	0	з	1	109	0	3	5
14	1	7	0	46	1	7	4	78	0	7	1	110	0	7	5
15	0	7	0	47	0	7	4	79	1	7	1	111	1	7	5
16	1	4	2	48	1	4	6	80	0	4	3	112	0	4	7
17	0	4	2	49	0	4	6	81	1	4	3	113	1	4	7
18	0	0	2	50	0	0	6	82	1	0	3	114	1	0	7
19	1	0	2	51	1	0	0	83	0	0	з	115	0	0	7
20	0	2	2	52	0	2	6	84	1	2	3	116	1	2	7
21	1	2	2	53	1	2	6	85	0	2	3	117	0	2	7
22	1	6	2	54	1	6	6	86	0	6	З	118	0	6	7
23	0	6	2	55	0	6	6	87	1	6	3	119	1	6	7
24	1	5	2	56	1	5	6	88	Ó	5	3	120	Ó	5	7
25	Ó	5	2	57	Ó	5	6	89	1	5	3	121	1	5	7
26	Ō	1	2	58	Ō	1	6	90	1	1	3	122	1	1	7
27	1	1	2	59	1	1	6	91	Ó	1	3	123	Ó	1	7
28	Ó	3	2	60	Ó	3	6	92	1	3	3	124	1	3	7
29	1	3	2	61	1	3	6	93	ò	3	3	125	ò	3	7
30	1	7	2	62	1	7	6	94	ō	7	3	126	ō	7	7
31	ò	7	2	63	ò	7	6	95	1	7	3	127	1	7	7

Fig. 5 System Row Address (Decimal) To External Address (Octal) Conversion Table

System Column Address		ter Idre		System Column Address		ter dre		System Column Address		ter: Idre		System Column Address		ter Idre	
0	1	0	0	32	1	0	4	64	1	0	1	96	1	0	5
1	0	0	0	33	0	0	4	65	0	0	1	97	0	0	5
2	0	4	0	34	0	4	4	66	0	4	1	98	0	4	5
3	1	4	0	35	1	4	4	67	1	4	1	99	1	4	5
4	1	2	0	36	1	2	4	68	1	2	1	100	1	2	5
5	0	-2	0	37	0	2	4	69	0	2	1	101	0	2	5
6	0	6	0	38	0	6	4	70	0	6	1	102	0	6	5
7	1	6	0	39	1	6	4	71	1	6	1	103	1	6	5
8	1	1	0	40	1	1	4	72	1	1	1	104	1	1	5
9	0	1	0	41	0	1	4	73	0	1	1	105	0	1	5
10	0	5	0	42	0	5	4 ^k	74	0	5	1	106	0	5	5
11	1	5	0	43	1	5	4	75	1	5	1	107	1	5	5
12	1	З	0	44	1	3	4	76	1	з	1	108	1	з	5
13	0	З	0	45	0	3	4	77	0	́З	1	109	0	з	5
14	0	7	0	46	0	-7	4	78	0	7	1	110	0	7	5
15	1	7	0	47	1	7.	4	79	1	7	1	111	1	7	5
16	1	0	2	48	1	0	6	80	1	0	3	112	1	0	- 7
17	0	0	2	49	0	0	6	81	0	0	3	113	0	0	- 7
18	0	-4	2	50	0	4	6	82	0	4	з	114	0	4	- 7
19	1	4	2	51	1	4	6	83	1	4	3	115	1	4	- 7
20	1	2	2	52	1	2	6	84	1	2	3	116	1	2	7
21	0	2	2	53	0	2	6	85	0	2	3	117	0	2	7
22	0	6	2	54	0	6	6	86	0	6	3	118	0	6	7
23	1	6	2	55	1	6	6	87	1	6	3	119	1	6	7
24	1	1	2	56	1	1	6	88	1	1	3	120	1	1	7
25	0	1	2	57	0	1	6	89	0	1	3	121	0	1	7
26	0	5	2	58	0	5	6	90	0	5	3	122	0	5	7
27	1	5	2	59	1	5	6	91	1	5	3	123	1	5	7
28	1	3	2	60	1	3	6	92	1	З	3	124	1	З	7
29	0	3	2	61	0	3	6	93	0	З	3	125	0	З	7
30	0	7	2	62	0	7	6	94	0	7	3	126	0	7	7
31	1	7	2	63	1	7	6	95	1	7	3	127	1	7	7

3-36

ببيه بالمعاط فالمام معام معادي

F4164 65,536 x 1 Dynamic RAM

MOS Memory Products

Description

The F4164 is a dynamic Random Access Memory (RAM) circuit organized as 65,536 single-bit words. This memory uses the Fairchild advanced double poly NMOS, Isoplanar-H[™] process which allows volume manufacture of reliable, high density memory products.

Innovative architecture and circuit design provide significant user benefits including wide operating margins, low power dissipation and excellent noise characteristics. Double cruciform architecture minimizes signal path lengths to improve noise margin and reduce propagation delays. A multiplexed sense amplifier scheme halves the number of sense amplifiers and the bit-line to cell capacitance ratio; this simultaneously reduces power consumption and improves signal sensing margins. Full-sized reference cells provide good margins and control. Low capacitance TTL-compatible inputs with overshoot and anti-static protection insure data and address input integrity.

- INDUSTRY STANDARD 16-PIN DIP WITH PIN 1 NOT CONNECTED (NC)
- LOW CAPACITANCE TTL-COMPATIBLE INPUTS WITH OVERSHOOT AND ANTI-STATIC PROTECTION
- COMMON I/O CAPABILITY
- STANDARD 5 V ± 10% SINGLE POWER SUPPLY REQUIREMENT
- LOW POWER
 209 mW ACTIVE (MAX)
 19.3 mW STANDBY (MAX)
- FAST ACCESS TIME 120 ns, 150 ns or 200 ns
- READ-MODIFY-WRITE, RAS-ONLY REFRESH AND PAGE MODE CAPABILITY
- OUTPUT UNLATCHED AT CYCLE END ALLOWS FOR PAGE BOUNDARY EXTENSION AND TWO-DIMENSIONAL CHIP SELECTION

Pin Names

A0-A7	Address Inputs
RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Write Enable
D	Data Input
Q	Data Output

(Top View)

Package	Outline	Order Code	÷.,
Ceramic DIP	WC	D	

3-37

Block Diagram

Functional Description

Memory Cycles

The F4164 operates in several modes which reflect various application considerations, some examples of which follow.

Random Read or Write Cycle

This mode implements standard Read or Write operation. Addresses are entered in two consecutive 8-bit bytes synchronized with RAS and CAS. In the Read case, WE should be HIGH before the falling edge of CAS. During Early-Write operations, WE falls before CAS, causing the output to remain in the high impedance state. This output mode is useful if the RAM Data input (D) and Data output (Q) pins are to be wired in common as a bidirectional data bus.

Read-Write Cycle

The Read-Write mode is used when new data is to be written into the same cell location from which the content is currently being read. Since no address change is required, this mode provides a much faster Read-Write cycle by allowing the overhead associated with the address decoder and precharge to be amortized over two operations. In general, t_{RWC} is significantly less than twice t_{RC} . In this mode the new input data is not a function of the currently stored data. For that reason the cycle time is not limited by access time (t_{RAC}), but by Write considerations such as t_{RWD} and t_{RWL} .

Read-Modify-Write Cycle

The Read-Modify-Write cycle is used when the data from the cell at the current address is used to derive new data for writing back into that cell, such as in error correction schemes. In this mode, cycle time is dependent upon both read access time and writerelated parameters.

Addressing

The 16 address bits required to decode one-of-65,536 storage cell locations in the F4164 are entered using a two-phase multiplexing operation. First, the 8-bit row address is applied to the eight Address inputs of the F4164 and latched into the chip by Row Address Strobe (RAS). Next, the 8-bit column address is presented to the Address inputs and latched by the Column Address Strobe (CAS). All addresses must be stable on or before the falling edge of RAS or CAS. <u>CAS</u> is internally inhibited by a signal derived from RAS. This feature prevents column addresses from being strobed onto the chip before row address dependent operations have been completed.

The gated- \overline{CAS} feature allows \overline{CAS} to occur any time before $t_{RCD(max)}$ with no effect on the worst-case access time (t_{RAC}). No errors will result if \overline{CAS} is applied to the F4164 after the $t_{RCD(max)}$ limit, but access time will then be determined from \overline{CAS} (t_{CAC}) rather than from \overline{RAS} (t_{RAC}).

Page Mode Operation

Higher speed and lower power operations can be performed in Page Mode on bits sharing a Row Address. In this mode RAS strobes in the common Row Address and is then kept LOW (active) while successive CAS cycles allow the required Column Addresses to be strobed in for subsequent Read or Write operations. Data from the first bit addressed is accessed within t_{RAC} (or t_{RCD} + t_{CAC} if t_{RCD} > t_{RCD(max})) and subsequent Column Addresses are accessed within t_{CAC} only.

Both the delays and the dynamic power dissipation associated with row selection and sensing occur only once with the initial RAS transition. Thereafter, delays and dynamic power dissipation are incurred only in the column select and data path. The delay and power in the row and sensing circuitry are amortized over 256 different Column Addresses offering improved speed and lower power per bit.

Page Mode address boundaries may be extended by multiplexing CAS to several devices which share a common Data output (Q) bus.

Data Input

In a Write operation, the data to be written is latched into the chip while RAS is LOW by a combination of CAS and Write Enable (WE). The strobe is enabled by the last of these two signals to go LOW. This allows several types of write cycles to be performed. In an Early-Write cycle (WE LOW before CAS goes LOW), the Data input (D) is strobed by CAS. Here data set-up and hold times are referenced to CAS. If D is not yet valid at the time CAS becomes active, or if a Read-Write or Read-Modify-Write cycle is desired, then WE must be delayed. In this "late-write" mode, the data set-up and hold times are referenced to WE rather than CAS.

Data Output

The Data output (Q) buffer assumes a high impedance state whenever CAS is HIGH (inactive) subject to $t_{OFF(max)}$. If the cycle being performed is a Read, Read-Modify-Write, or a "late-write" cycle, then the Q latch and buffer will remain high impedance until the access time, after which Q will assume the value of the data read from the selected cell. This output data is of the same polarity as the input data and will remain valid as long as CAS is kept LOW (active). However, if the operation is an Early-Write, or if the chip does not receive both RAS and CAS, then Q will remain high impedance throughout the cycle. This feature allows systems which write exclusively in the Early-Write mode to connect D and Q directly together.

Since both RAS and CAS must be supplied for a device to be "active", a reduction in external decoding logic can be realized by using RAS and CAS in a 2dimensional decoding/selection scheme. An analogous method can be used to extend the page boundary to beyond 256 locations by decoding which device receives a CAS in addition to the RAS already latched into the chips. Only those devices which receive both RAS and CAS will respond with a valid memory cycle (see Table 1).

Table 1 RAS and CAS Clock Conditions

RAS and CAS cycle	Device active
RAS-only cycle	Device deselected, refresh
CAS-only cycle	Device deselected
Neither RAS nor CAS	Device deselected, standby

Refresh

Refresh of the data stored in the dynamic cell matrix of the F4164 is accomplished by performing a memory cycle at each of the 256 row addresses at least every 4 ms. Performing a RAS-only Refresh with CAS held HIGH causes the output buffer to remain in the highimpendence state throughout the cycle.

The F4164 256-cycle, 4 ms refresh timing requirement is compatible with distributed refresh techniques currently utilized for 128-cycle, 2 ms refresh 16K dynamic RAMs.

Absolute Maximum Ratings

Voltage on Any Pin with Respect	
to V _{SS}	-1.0 V to +7.0 V
V _{DD} Supply with Respect to V _{SS}	-1.0 V to +7.0 V
Storage Temperature	-65°C to +150°C
Power Dissipation	1.0 W
Short-Circuit Output Current	50 mA
Operating Temperature	0°C to +70°C

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions (Note)

Symbol	Characteristic	Min	Тур	Max	Unit	
V _{DD}	Supply Voltage	4.5		5.5	V	
V _{SS}		0		0	V	
VIH	Input HIGH Voltage	2.4		6.5	V	
VIL	Input LOW Voltage, All Inputs	-1.0		0.8	V	

DC Characteristics Recommended operating conditions unless otherwise noted.

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VOL	Output LOW Voltage			0.4	V	I _{OL} = 4.2 mA
VOH	Output HIGH Voltage	2.4			V	I _{OH} = -5.0 mA
I _{DD1}	Operating Current Average Power Supply Current		27	38	mA	\overline{RAS} , \overline{CAS} cycling; $t_{RC} = Min$; Q = no connection
IDD2	Standby Current Power Supply Current			3.5	mA	$\overline{RAS} = \overline{CAS} = V_{IH}$
IDD3	Refresh Current Average Power Supply Current		21	32	mA	\overline{RAS} cycling, $\overline{CAS} = V_{IH}$, $t_{RC} = Min$, $Q = no$ connection
I _{DD4}	Page Mode Current Average Power Supply Current		15	30	mA	$\overline{RAS} = V_{IL}, \overline{CAS}$ cycling, t _{CP} = Min, Q = no connection
lιL	Input Leakage Current	- 10		10	μA	Any Input, 0 V \leq V _{IN} \leq 6.5 V; all other pins not under test = 0 V
IOL	Output Leakage Current	- 10		10	μA	Data Out is disabled, 0 V \leq V _{OUT} \leq 6.5 V

Capacitance $T_A = +25^{\circ}C$

Symbol	Characteristic	Min	Тур	Max	Unit
CIN1	Input Capacitance A ₀ -A ₇ , D			5.0	pF
CIN2	Input Capacitance RAS, CAS, WE			10	pF
COUT	Output Capacitance Q			7.0	pF

Note

All Voltages are referenced to V_{SS} . Conditions apply over the entire operating temperature range.

			F4164-1		F4164-2		F4164-3			
IEEE Symbol ⁽⁹⁾	Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Note
TRVRV	tREF	Time between Refresh		4.0	T	4.0		4.0	ms	
TRELREL	tRC	Random Read/Write Cycle Time	300		320		330		ns	
TRELREL	tRWC	Read-Write Cycle Time	315		335		375		ns	
TCELCEL	tPC	Page Mode Cycle Time	160		170		225		ns	
TRELQV	tRAC	Access Time from RAS		120		150		200	ns	4, 6
TCEHQV	tCAC	Access Time from CAS		80	1	100		135	ns	5, 6
TCEHQZ	tOFF	Output Buffer Turn-Off Delay	0	35	0	40	0	50	ns	
тт	tŢ	Transition Time	3.0	35	3.0	35	3.0	50	ns	
TREHREL	t _{RP}	RAS Precharge Time	80		100		120		ns	
TRELREH	tRAS	RAS Pulse Width	120	10K	150	10K	200	10K	ns	
TCELREH	tRSH	RAS Hold Time	80		100	1	135		ns	
TCEHCEL	t _{CP}	CAS Precharge Time	60		60		80		ns	
TCELCEH	tCAS	CAS Pulse Width	80	10K	100	10K	135	10K	ns	
TRELCEH	tCSH	CAS Hold Time	120	1	150		200		ns	
TRELCEL	tRCD	RAS to CAS Delay Time	25	40	30	50	35	65	ns	7
TCEHREL	tCRP	CAS to RAS Precharge Time	0		0		0		ns	
TARVREL	tASR	Row Address Set-up Time	0		0		0		ns	
TRELARX	t _{RAH}	Row Address Hold Time	15		20		25		ns	
TACVCEL	tASC	Column Address Set-up Time	0		0		0		ns	
TCELACX	tCAH	Column Address Hold Time	40		45		55		ns	
TRELACX	taR	Column Address Hold Time Referenced to RAS	80		95		120		ns	
TWHCEL	tRCS	Read Command Set-up Time	0		0		0		ns	
TCEHWL	tRCH	Read Command Hold Time	0		0		0		ns	
TWLCEL	twcs	Write Command Set-up Time	0		-10		-10		ns	8
TCELWH	twcн	Write Command Hold Time	40		45		55		ns	
TRELWH	twcR	Write Command Hold Time Reference to RAS	80		95		120		ns	
TWLWH	twp	Write Command Pulse Width	40	1	45		55		ns	1
TWLREH	tRWL	Write Command to RAS Lead Time	60	1	70	1	80		ns	1
TWLCEH	tcwL	Write Command to CAS Lead Time	60		70		80	1	ns	1

AC Characteristics Recommended operating conditions unless otherwise noted (Notes 1, 2, and 3)

Notes on following page.

IEEE Symbol ⁽⁹⁾	Symbol	Characteristic	F4164-1		F4164-2		F4164-3			
			Min	Max	Min	Max	Min	Max	Unit	Note
TDVREL	tDS	Data In Set-up Time	0		0		0	1	ns	
TCELDX	tDH	Data In Hold Time	40		45		55		ns	1
TRELDX	tDHR	Data In Hold Time Referenced to RAS	80		95		120		ns	
TCELWL	tCWD	CAS to WE Delay	60		70		95		ns	8
TRELWL	tRWD	RAS to WE Delay	100	1	120		160		ns	8

AC Characteristics (Continued)

Notes

- Several cycles are required after power up before proper device operation is achieved. Any eight cycles which perform refresh are adequate for this purpose.
- 2. Dynamic measurements assume t_T = 5 ns.
- VIH(min) and VIL(max) are reference levels for measuring timing of input signals. Also, transition times are measured between VIH and VIL.
- Assumes that t_{RCD} ≤ t_{RCD(max}). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 5. Assumes that $t_{RCD} \ge t_{RCD}(max)$.
- 6. Refer to test conditions.
- Operation within the t_{RCD(max)} limit insures that t_{RAC(max)} can be met. t_{RCD(max)} is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD(max)} limit, then access time is controlled exclusively by t_{CAC}.
- 8. t_{WCS}, t_{CWD} and t_{RWD} are restrictive operating characteristics due to the following. If t_{WCS} ≥ t_{WCS}(min), the cycle is an early write cycle and the Data output pin will be open circuit (high impedance) throughout the entire cycle. If t_{CWD} ≥ t_{CWD}(min) and t_{RWD} ≥ t_{RWD}(min), the cycle is a read-write cycle and Data output will contain data read from the selected cell. If neither of the conditions is satisfied the condition of the Data output is indeterminate.

9. Timing Parameter Abbreviations

All timing abbreviations in this format use upper case characters with no subscripts. The initial character is always T and is followed by four descriptors. These characters specify two signal points arranged in a 'from-to' sequence that define a timing interval. The two descriptors for each signal point specify the signal name and the signal transitions. Thus the format is:

The signal definitions used in this data sheet are:

- $RE = \overline{RAS}, CE = \overline{CAS}$ AR = Row Address
- AC = Column Address
- A = Address
- D = Data In
- Q = Data Out
- W = Write Enable

The transition definitions used in this data sheet are:

- H = transition to HIGH
- L = transition to LOW
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

Timing Limits

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address set-up time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

Timing Diagrams

3

Write Cycle (Early Write)

3-44

المراجعة فالمراجع والمتار المستقيق الم

Read-Write/Read-Modify-Write Cycle

3

Don't Care

Page Mode Read Cycle

3-47

3

F4164

Page Mode Write Cycle

>

Product Index and Selection Guides	1
MOS Memory Technology Overview	2
RAM Data Sheets	3
EPROM Data Sheets	4
Serial Memory Data Sheets	5
Special Function Data Sheets	6
Extended Temperature Range Data Sheets	7
Ordering Information and Package Outlines	8
Sales Offices, Representatives and Distributor Locations	9

F2708 1024 x 8 UV Erasable PROM

MOS Memory Products

Description

The F2708 is an 8, 192-bit ultraviolet light Erasable and electrically Programmable Read Only Memory (EPROM) manufactured using the Isoplanar n-channel silicon gate technology. Organized 1024 x 8, the F2708 is ideally suited for non-volatile data storage in applications such as 8-bit microprocessor systems, where reprogrammability, high bit-density, maximum performance and simple interfacing are essential parameters. All inputs and outputs are TTL compatible. The 3-state outputs become high impedance when the F2708 is deselected, allowing a direct interface capability which is useful in many computer bus structures.

The F2708 provides inexpensive, non-volatile storage of data/program code in applications where fast turn-around and experimentation are important requirements.

- 1024 x 8-BITS ORGANIZATION
- FAST ACCESS TIME 350 ns MAX (F2708-1)
- TTL COMPATIBLE INPUTS AND OUTPUTS
- 3-STATE OUTPUTS
- STANDARD POWER SUPPLIES +12 V, +5 V, -5 V
- CHIP SELECT INPUT FOR MEMORY EXPANSION
- STATIC OPERATION
- PIN COMPATIBLE TO 8K AND 16K ROMs FOR LOW-COST PRODUCTION
- LOW POWER DURING PROGRAMMING
- CONTENTS ERASABLE WITH ULTRAVIOLET LIGHT

Pin Names

A0-A9	Address Inputs
PRGM	Program Pulse Input
CS/WE	Chip Select/Write Enable
Q0-Q7	Data Outputs/Programming Inputs
V _{DD}	+12 V Supply
Vcc	+5 V Supply
VSS	Ground
VBB	-5 V Supply

- $V_{DD} = Pin 19$
- $V_{CC} = Pin 24$
- $V_{BB} = Pin 21$ $V_{SS} = Pin 12$
- · 33 · ··· · 2

Connection Diagram 24-Pin DIP

(Top View)

Package	Outline	Order Code	
Ceramic DIP	7C	D	

Absolute Maximum Ratings

V _{DD} Supply Voltage	-0.3 V to +20 V
V _{CC} or V _{SS} Supply Voltage	-0.3 V to +15 V
PRGM Input Voltage	
During Programming	-0.3 V to +35 V
CS/WE Input Voltage	
During Programming	-0.3 V to +20 V
Any Other Input	
During Programming	-0.3 V to +15 V
Any Input or Output During Read	-0.3 V to +15 V
Operating Temperature (Ambient)	0°C to 70°C
Storage Temperature (Ambient)	-65°C to +125°C
Power Dissipation	1.8 W
•	

All voltages with respect to VBB.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Block Diagram

Pin Connections During Read or Programming Modes

Mode	Data I/O	V _{SS} Supply	PRGM	V _{DD} Supply	CS/WE	V _{BB} Supply	V _{CC} Supply
	9-11, 13-17	12	18	19	20	21	24
Read	Output Data	GND	GND	+12 V	VIL	-5 V	+5 V
Program	Input Data	GND	Pulsed 26 V	+12 V	+12 V	-5 V	+5 V
Deselect	High Impedance	GND	GND	+12 V	VIH	-5 V	+5 V

Read Mode dc Electrical Requirements $T_A = 0^{\circ}C$ to 70°C unless otherwise indicated. All voltages referenced to V_{SS}

Symbol	Characteristic	Min	Тур	Max	Unit	Note
V _{DD}	Supply Voltage	11.4	12.0	12.6	V	
Vcc	Supply Voltage	4.75	5.0	5.25	V	
V _{CC} V _{SS}	Supply Voltage	0	0	0	V	1
V _{BB}	Supply Voltage	-5.25	-5.0	-4.75	V	
VIH	Input HIGH Voltage	3.0		V _{CC} + 1.0	V	
VIL	Input LOW Voltage	V _{SS}		0.65	V	

Read Mode dc Electrical Characteristics

Over full range of voltage and temperature unless otherwise indicated

Symbol	Characteristic (1)	Min	Тур	Max	Unit	Note
IDD	Average V _{DD} Current		50	65	mA	2
lcc	Average V _{CC} Current		7.5	10	mA	2
IBB	Average V _{BB} Current	· · ·	30	45	mA	2
l _{IN}	Input Leakage Current		1.0	10	μA	3
Ιουτ	Output Leakage Current		1.0	10	μA	4
Vон	Output HIGH Voltage I _{OH} = -1.0 mA	2.4			v	
	Output HIGH Voltage $I_{OH} = -100 \ \mu A$	3.7			v	
VOL	Output LOW Voltage I _{OL} = 1.6 mA			0.45	v	
PD	Power Dissipation $T_A = 70^{\circ}C$			800	mW	5
CIN	Input Capacitance		4.0	6.0	pF	6
Соит	Output Capacitance		8.0	12	pF	7

Notes on following page.

F2708

Read Mode ac Electrical Characteristics

Symbol		F2708-1		F2708			
	Characteristic (Note 8)	Min	Max	Min	Max	Unit	Note
tACC	Address to Output Delay Time		350		450	ns	
tco	Chip Select to Output Delay Time		120		120	ns	
tOFF	Chip Deselect to Output High Impedance		120		120	ns	
tDA	Data Valid After Address Time	0		0		ns	

Notes

1. All voltage levels are referenced to $V_{SS} = 0 V$.

- 2. Supply current limits are measured with all inputs HIGH (including $\overline{CS}/WE = 5.0$ V) and ambient temperature at $T_A = 0^{\circ}C.$
- 3. Measured both with V_{IN} = 5.25 V and V_{IN} = V_{IL}(min) = V_{SS}. 4. Measured both with V_{OUT} = 5.5 V and \overline{CS}/WE = 5.0 V.
- 5. The total power dissipation of the 2708 is specified at 800 mW. It is not calculable by summing the various currents (IDD, ICC and IBB) multiplied by their respective voltages, since current paths exist between the various power supplies and $V_{\mbox{SS}}.$ The $I_{\mbox{DD}},$ $I_{\mbox{CC}}$ and $I_{\mbox{BB}}$ currents should be used to determine power supply capacity only.
- 6. Measured with V_{IN} = 0 V, T_A = 25°C and f = 1.0 MHz.
- 7. Measured with V_{OUT} = 0 V, T_A = 25°C and f = 1.0 MHz.

8. Timing parameters are measured with input logic levels of VIL(max) = 0.65 V and VIH(min) = 3.0 V. Timing measurement reference levels are 0.8 V and 2.8 V for inputs and 0.8 V and 2.4 V for outputs. An output load of 1 TTL gate plus 100 pF is assumed.

Read Mode Timing Diagram

Programming Instructions

After the completion of an erase operation, every memory cell in the F2708 is in the logic "1" state (as indicated by a HIGH level at the data outputs). An 8-bit byte of data is entered into the memory by programming logic "0s" into the appropriate cell locations at some given address. Word locations in the memory are addressed in the same way as in read operations. Once a cell is programmed to a logic "0", it can be altered only through ultraviolet light erasure.

In order to program the F2708, the \overline{CS} /WE input must first be set to 12 V. Data to be programmed is entered in 8-bit bytes through the output data terminals (Q₀ through Q₇). Input logic levels for the data lines, addresses, and supply voltages are the same as in a read operation.

Programming is accomplished by executing a number (n) of passes through a programming loop, each of which involves sequencing through all 1024 locations in the address space. In each pass through the loop, a single, high-voltage (26 V) pulse is applied to the PRGM input, once at each address. Logic "Os" applied to the Data outputs (Q0 through Q7) are written into the proper bit positions at the location specified by the Address inputs (A₀ through A₇). There must be n successive passes through the programming loop in order to guarantee reliable programming of information. The required number of passes through the programming loop (n) is a function of the pulse width (tpw) of the high-voltage programming pulse applied to the PRGM input. Total programming time is given by the relationship:

$$t_{TOTAL} = n \times t_{PW} \ge 100 \text{ ms}$$
 (1)

The allowed range of pulse widths is from 0.1 ms to 1.0 ms. This implies that the minimum value of n must be in the range of 100 to 1000. WARNING: Applying more than one programming pulse in succession to the same address is not permitted since it will result in damage to the \underline{de} vice. At the end of a program sequence, the \overline{CS} /WE falling edge transition must occur before the first address transition when changing from the program mode to the read mode. The PRGM pin should be pulled down to approximately

 V_{SS} , (i.e., ground) with a low impedance device since this pin sources several milliamps of current when \overline{CS}/WE is at 12 V and the PRGM pin is LOW.

Programming Examples

The programming relationship in Equation 1 above should always be used in determining values of t_{PW} and n.

Example 1

The full capacity of 1024 bytes could be programmed using 0.2 ms programming pulse widths. In this case, the minimum number of passes through the programming loop would be

$$n = {t_{TOTAL} \over t_{PW}} = {100 ms \over 0.2 ms} = 500 \text{ passes}$$
 (2)

Each of the 500 passes through the programming loop must sequence through address locations 0 through 1023.

Example 2

Word locations 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The programmed pulses are 0.5 ms wide. Thus, the minimum number of passes through the program loop is

$$n = \frac{100 \text{ ms}}{0.5 \text{ ms}} = 200 \text{ passes}$$
 (3)

The data entered into the "don't care" locations should consist of all logic "1s". Even though portions of the address space are not used (or "don't care"), the programming loop should still sequence through all 1024 addresses on each pass.

Example 3

Extending the case of Example 2, the F2708 is now to be updated to include new data at locations 850 to 880 which previously were programmed as "don't care"; in this case, logic "1s". The mimimum number of passes through the programming loop is the same as in Example 2, n = 200 passes. Address locations 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern. The remaining unused addresses should again be programmed as logic "1s".

F2708

Erasing Instructions

The contents of the F2708 EPROM can be erased by exposure to high-intensity short-wave ultraviolet (UV) light with a wavelength of 2537 Angstroms (Å). This can be accomplished with ultraviolet light EPROM erasure devices which are available from several U.S. manufacturers. These erasure devices contain a UV light source which is usually placed approximately one or two inches from the EPROM to illuminate the transparent window on top of the device. The minimum required integrated dose (intensity x exposure time) of UV light energy incident on the window of the device in order to reliably insure complete erasure is 12.5 W-s/cm². The UV erasure unit should be periodically calibrated if minimum exposure times are to be used. (Minimum exposure times range from 10 to 45 minutes, depending on model type and age of UV lamp). If longer exposure times are possible, variations in the output light intensity of the UV light source are not critical.

Program Mode dc Electrical Requirements $T_A = 25^{\circ}C \pm 5^{\circ}C$ unless otherwise indicated

Symbol	Characteristic		Min	Тур	Max	Unit	Note
VDD	Supply Voltage		11.4	12.0	12.6	V	
Vcc	Supply Voltage		4.75	5.0	5.25	v	
VSS	Supply Voltage		0	0	0	v	1
VBB	Supply Voltage		-5.25	-5.0	-4.75	v	
	Input HIGH Voltage During Programming	Address and Data	3.0		V _{CC} + 1.0	V	
VIHP		CS/WE Input	11.4	12.0	12.6	v	
		PRGM Input	25		27	V	2
VIL		PRGM Input	V _{SS}		1.0	v	2
	Input LOW Voltage	All Other Inputs	VSS		0.65	V	

Program Mode dc Electrical Characteristics $T_A = 25 \degree C \pm 5 \degree C$ unless otherwise indicated

Symbol	Characteristic		Min	Тур	Max	Unit	Note
IDD	Average V _{DD} Current			50	65	mA	3
Icc	Average V _{CC} Current			6.0	10	mA	3
IBB	Average V _{BB} Current			30	45	mA	3
IIN	Input Leakage C <u>urr</u> ent, Addresses and CS/WE		-10		10	μA	4
	PRGM Input Current	HIGH			20	mA	
IPRGM		LOW	*-		3.0	mA	5

Notes

- 1. All voltage levels are referenced to $V_{SS} = 0 V$.
- 2. The voltage differential between V_{IHP} and V_{IL} at the PRGM input pin should be greater than or equal to 25 V.
- 3. Supply current limits are measured with all inputs HIGH (including \overline{CS} /WE = 5.0 V) and ambient temperature at $T_A = 0$ °C.
- 4. Measured both with $V_{IN} = 5.25$ V and $V_{IN} = V_{IL(min)} = V_{SS}$.
- 5. This is a current sourced by the PRGM pin when it is in the LOW state and when $\overline{CS}/WE = 12 V$.

F2708

Symbol	Characteristic		Min	Max	Unit	Note
t _{AS}	Address Set-up Time		10		μs	
t _{AH}	Address Hold Time		1.0		μs	
tws	Write Enable Set-up Time		10		μs	
twn	Write Enable Hold Time		0.5		μs	
tDS	Data Set-up Time		10		μs	
tDH	Data Hold Time		1.0		μs	
tpw	Program Pulse Width		0.1	1.0	ms	
		Rise	0.5	2.0	μs	
tрт	Program Pulse Transition Time Fall		0.5	2.0	μs	
tPRD	Program to Read Delay			10	μs	
tOFF	Output Buffer Turn-off Delay		0	120	ns	

Program Mode Timing Diagram

DON'T CARE CONDITION OR INVALID OUTPUT DATA

Note

The falling edge of $\overline{\text{CS}}/\text{WE}$ must occur after the falling edge of the program pulse and before the address transition.

F2732 32K (4K x 8) UV Erasable PROM

MOS Memory Products

Logic Symbol

Description

The F2732 is a 32,768-bit ultraviolet light Erasable and electrically Programmable Read Only Memory (EPROM) manufactured using the Isoplanar n-channel silicon gate technology. Organized 4096 \times 8, the F2732 is ideally suited for non-volatile data storage in applications such as 8-bit microprocessor systems, where reprogrammability, high bit-density, maximum performance, and simple interfacing are essential parameters. All inputs and outputs are TTLcompatible. The 3-state outputs become high impedance when the F2732 is deselected, allowing a direct interface capability which is useful in many computer bus structures.

The F2732 operates from a single standard +5 V power supply during reading, making it compatible with the latest generations of microprocessors.

The F2732 programming technique is the simplest available. All data and address inputs are at TTL levels during programming. A +25 V power supply is connected to the \overline{G} /VPP pin and only those addresses to be programmed need be selected; therefore total programming time is short and field corrections straight forward. The technique is compatible with board-level programming making large systems simple to program.

- 4096 x 8-BIT ORGANIZATION
- FAST ACCESS TIME—450 ns MAX
- TTL-COMPATIBLE INPUTS AND OUTPUTS
- 3-STATE OUTPUTS FOR WIRED-OR CAPABILITY
 SINGLE +5 V POWER SUPPLY FOR
- READ OPERATION REDUCED POWER STANDBY MODE
- SIMPLEST, FASTEST EPROM PROGRAMMING TECHNIQUE AVAILABLE
- OUTPUT ENABLE CONTROL FOR MEMORY EXPANSION
- STATIC OPERATION
- PIN COMPATIBLE WITH 32K AND 64K ROMs FOR LOW COST PRODUCTION
- LOW POWER DURING PROGRAMMING
- CONTENTS ERASABLE WITH ULTRAVIOLET LIGHT

Pin Names

Address Inputs
Chip Enable (Power Down) Input
Output Enable / +25 V Program Input
Data Output/Programming Inputs
+5 V Supply
Ground

VSS = Pin 12

Connection Diagram 24-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	7W	D

4-10

Absolute Maximum Ratings

VCC Supply Voltage	-0.3 V to +6 V
Any Input or Output	-0.3 V to +6 V
Operating Temperature (Ambient)	0°C to 70°C
Storage Temperature (Ambient)	-65°C to + 125°C

All voltages with respect to VSS.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

Block Diagram

F2732

Mode Selection	All voltages refe	renced to ground				
Mode	Outputs	Address Inputs	Ē	Ğ∕VPP	vcc	Note
Read	VOL or VOH	VIL or VIH	VIL	VIL	+5 V	1
Deselect / Active	High Z	V _{IL} or V _{IH}	VIL	VIH	+5 V	1
Deselect / Power Down	High Z	VIL or VIH	VIH	VIH or VIL	+5 V	1
Program	VIH or VIL	VIL or VIH	Pulse VIH to VIL	VPP	+5 V	1,2
Verify During Program	V _{OL} or V _{OH}	VIL or VIH	VIL	VIL	+5 V	1
Inhibit Program	High Z	VIL or VIH	VIH	VPP	+5 V	1

Mada Calastian

Read Mode dc Electrical Requirements $T_A = 0^{\circ}C$ to 70°C unless otherwise indicated; all voltages referenced to ground

Symbol	Characteristic	Min	Тур	Max	Unit
Vcc	Supply Voltage	4.75	5.0	5.25	V
VIH	Input HIGH Voltage	2.0		V _{CC} + 1.0	V
VIL	Input LOW Voltage	-0.1		0.8	V

Read Mode dc Electrical Characteristics Over full range of operating voltage and temperature unless otherwise indicated; typical values are for $T_A = 25^{\circ}$ C and nominal supply voltages

Symbol	Characteristic (Note 3)	Min	Тур	Max	Unit	Note
	Average V _{CC} Current Active		85	150	mA	4
Icc	Average V _{CC} Current Power Down		15	30	mA	4
IIN 1	Input Leakage Current (Except G/VPP)			10	μA	5
IIN2	G/VPP Input Leakage Current			10	μA	5
Ιουτ	Output Leakage Current			10	μA	6
VOH	Output HIGH Voltage $I_{OH} = -400 \ \mu A$	2.4			V	
VOL	Output LOW Voltage I _{OL} = 2.1 mA			0.45	v	
CIN 1	Input Capacitance (Except G/VPP)		4.0	6.0	ρF	7
CIN2	G/VPP Input Capacitance			20	рF	7
Соит	Output Capacitance		8.0	12	рF	8

Notes on following page.

Read Mode ac Electrical Characteristics

Over full range of operating voltage and temperature unless otherwise indicated

Symbol	Characteristic	Min	Max	Unit	Note
tACC	Address to Output Delay Time		450	ns	9
tOE	Output Enable to Output Delay Time		120	ns	9
tOFF	Output Disable to Output High Impedance		100	ns	
tон	Address to Output Hold Time	0		ns	
tCE	Power-up Delay from E to Outputs Active		450	ns	
tPD	Power-down Delay from E to Outputs OFF		100	ns	

Notes

- 1. V_{IL} or V_{IH} should be selected on Address and Data inputs as desired.
- 2. Outputs are in the HIGH state allowing Data In to be applied with TTL drivers.
- 3. All voltage levels are referenced to VSS.
- 4. Worst case supply currents occur when all inputs are HIGH (including \overline{G} = 5.0 V) and the ambient temperature is $T_A = 0^{\circ}C$.
- 5. Measured both with V_{IN} = 5.25 V and V_{IN} = 0 V.
- 6. Measured both with $V_{OUT} = 5.25$ V and $\overline{G} = 5.0$ V.
- 7. Measured with V_{IN} = 0 V, $T_A = 25^{\circ}C$ and f = 1.0 MHz.
- 8. Measured with $V_{OUT} = 0 V$, $T_A = 25^{\circ}C$ and f = 1.0 MHz.
- Timing parameters are measured with input logic levels of V_{IL(max)} = 0.8 V and V_{IH(min)} = 2.2 V. Timing measurement reference levels are 1.0 V and 2.0 V for inputs and 0.8 V and
- 2 V for outputs. An output load of 1 TTL gate plus 100 pF is assumed.

Read Mode Timing Diagram

.

F2732

Erasing Instructions

The contents of the F2732 EPROM can be erased by exposure to high intensity short-wave ultraviolet (UV) light with a wavelength of 2537 Angstroms (Å). This can be accomplished with ultraviolet light EPROM erasure devices which are available from several U.S. manufacturers. These erasure devices contain a UV light source which is usually placed approximately one or two inches from the EPROM to illuminate the transparent window on top of the device. The minimum required integrated dose (intensity x exposure time) of UV light energy incident on the window of the device in order to reliably insure complete erasure is 15 W-s/cm². The UV erasure unit should be periodically calibrated if minimum exposure times are to be used. (Minimum exposure times range from 10 to 45 minutes, depending on model type and age of UV lamp.) If longer exposure times are possible, variations in the output light intensity of the UV light source are not critical.

Programming

After erasure with a UV source all bits of the memory will be sensed as V_{OH} levels. Any word of the memory may have V_{OL} levels programmed into it. All eight outputs are programmed at one time for any selected

address. Words may be programmed in any order. Programming time for any word regardless of the number of bits to be programmed is 50 ms; maximum programming time for all addresses is 205 s. Once programmed to a V_{OL} level a bit of the array can be changed back to a V_{OH} level by exposing the entire array to a UV source.

The programming procedure is as follows:

- 1. Apply V_{CC} and V_{SS} with E at V_{IH}.
- 2. Apply VPP to the G/VPP Input.
- Apply V_{IL} and V_{IH} to the Address inputs and outputs to select the data combination to be programmed.
- 4. Apply a 50 ms wide V_{IL} pulse to \overline{E} .
- Apply V_{IL} to G/VPP and remove the drivers from the output. Read out the contents of the memory (this verification step is optional).
- 6. Repeat steps 3 through 5 until all desired data has been programmed.
- Reduce the G/VPP voltage to V_{IL} to change to the normal read mode.

Caution

It is recommended that a 0.1 μ F capacitor be connected between \overline{G}/VPP and ground to prevent voltage transients that may damage the device.

Symbol	Characteristic	Min	Тур	Max	Unit	Note
Vcc	Supply Voltage	4.75	5.0	5.25	V	
VPP	Programming Input Voltage	24	25	26	V	1 .
VIL	Input LOW Voltage	-0.1		0.8	V	
VIH	Input HIGH Voltage (Except G/VPP)	2.0		V _{CC} + 1	V	
IIN	Input Leakage Current (for any input)			10	μA	2
IPP	VPP Supply Current			30	mA	3
lcc	V _{CC} Supply Current		85	150	mA	

Program Mode dc Electrical Requirements and Characteristics $T_A = 25^{\circ}C \pm 5^{\circ}C$

Notes on following page.

Program Mode ac Electrical Characteristics and Requirements $T_A = 25^{\circ}C \pm 5^{\circ}C$ (Note 1)

Symbol	Characteristic	Min	Тур	Max	Unit	Note
tas	Address Set-up Time	2			μs	
tOES	G Set-up Time	2			μs	
tDS	Data Set-up Time	2			μs	
tAH	Address Hold Time	0			μs	
tOEH	G Hold Time	2			μs	
tDH	Data Hold Time	2			μs	
tPD	Power-down Delay from E to Outputs OFF	0		120	ns	3
tCE	Chip Enable to Data Valid			1	μs	4
tpw	Program Pulse Width	45	50	55	ms	
tPR	G Pulse Rise Time During Programming	50			ns	
tvR	V _{PP} Recovery Time	2			μs	

Notes

- 2. $V_{IN} = 5.25 V \text{ to } 0 V.$ 3. $\overline{E} = V_{IL}.$ 4. $\overline{E} = V_{IL}, \overline{G} = V_{IL}.$

Program Mode Timing Diagram

^{1.} A 0.1 μF capacitor must be connected between \overline{G}/VPP and ground to prevent voltage transients which may damage the device.

F2764 64K (8K x 8) UV Erasable PROM

MOS Memory Products

Description

The F2764 is a 65,536-bit ultraviolet light Erasable and electrically Programmable Read Only Memory (EPROM) manufactured using the Fairchild advanced NMOS, Isoplanar-H[™] technology. Organized 8192 x 8, the F2764 is ideally suited for non-volatile data storage in applications such as 8-bit microprocessor systems, where reprogrammability, high bit-density, maximum performance, and simple interfacing are essential parameters. The 3-state outputs become high impedance when the F2764 is deselected, allowing a direct interface capability which is useful in many computer bus structures.

The F2764 operates from a single standard +5 V power supply during reading, making it compatible with the latest generations of microprocessors.

The F2764 programming technique is the simplest available. All data and address inputs are at TTL levels during programming. A +21 V power supply is connected to the VPP pin and only those addresses to be programmed need be selected; therefore total programming time is short and field corrections straight forward. The technique is compatible with board-level programming making large systems simple to program.

- 8192 x 8-BIT ORGANIZATION
- FAST ACCESS TIME 200 ns MAX
- TTL-COMPATIBLE INPUTS AND OUTPUTS
- 3-STATE OUTPUTS FOR WIRED-OR CAPABILITY
- SINGLE +5 V POWER SUPPLY FOR READ OPERATION
- REDUCED POWER STANDBY MODE
- SIMPLEST, FASTEST EPROM PROGRAMMING TECHNIQUE AVAILABLE
- OUTPUT ENABLE CONTROL FOR MEMORY EXPANSION
- STATIC OPERATION
- UNIVERSAL BYTE WIDE PINOUT
- LOW POWER DURING PROGRAMMING
- CONTENTS ERASABLE WITH ULTRAVIOLET LIGHT

Pin Names

A0-A12	Address Inputs
Ē	Chip Enable (Power Down) Input
G	Output Enable Input
VPP	+21 V Program Input
DQ0-DQ7	Data Output/Programming Inputs
PGM	Program
VCC	+5 V Supply
VSS	Ground

Connection Diagram 28-Pin DIP

(Top View)

(1) For total compatibility and upgradability from the F2732 and ROMs provide a trace to Pin 26

Absolute Maximum Ratings

VCC Supply Voltage	-1.0 V to +7.0 V
Any Input or Output	-1.0 V to +7.0 V
VPP Supply During Programming	-1.0 V to +22 V
Operating Temperature (Ambient)	0°C to 70°C
Storage Temperature (Ambient)	-65°C to +150°C

All voltages with respect to VSS.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

Block Diagram

.

a de la companya de l De la companya de la c

where we are a set of the set of the set of the

. The set official and an an annual of a signal state , and

3341/3341A 64 x 4 FIFO Serial Memory

MOS Memory Products

Description

The 3341 or 3341A is a 64-word x 4-bit First-In First-Out (FIFO) Serial Memory. Inputs and the outputs are completely independent (no common clocks) making the 3341/3341A ideal for asynchronous buffer applications.

Special on-chip input pull-up circuits and bipolar-compatible output buffers provide direct bipolar interfacing with no external components required. Control signals are provided for both vertical and horizontal cascading.

The 3341 and 3341A are manufactured using the p-channel Isoplanar silicon gate process and are available in both ceramic and plastic packages.

- 1 MHz (3341A) AND 700 kHz (3341) DATA RATES
- INDEPENDENT ASYNCHRONOUS INPUTS
- AND OUTPUTS
- FULLY TTL COMPATIBLE
- EXPANDABLE IN EITHER DIRECTION
- ACTIVE PULL-UP ON INPUTS
- 16-PIN DUAL IN-LINE PACKAGE

Pin Names

IR	Input Ready
SI	Shift In
D0-D3	Data Inputs
MR	Master Reset
OR	Output Ready
SO	Shift Out
Q0-Q3	Data Outputs
Vss	+5 V Power Supply
VDD	0 V Power Supply
V _{GG}	-12 V Power Supply

Absolute Maximum Ratings

Storage Temperature	-65°C to +150°C
Operating Temperature	0°C to +70°C
Voltage on All Pins Except	
V _{DD} with Respect to V _{SS}	-20 V to +0.3 V
Voltage on V _{DD}	-7.0 V to +0.3 V

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

 $V_{SS} = Pin 16$ $V_{DD} = Pin 8$ $V_{GG} = Pin 1$

5

Connection Diagram 16-Pin DIP

Package	Outline	Order Code	
Ceramic DIP	6Z	D	
Plastic DIP	8K	P	

Block Diagram

Functional Description

Data Input

The four bits of data on the D₀ through D₃ inputs are entered into the first bit location when both Input Ready (IR) and Shift In (SI) are HIGH (\approx V_{SS}). This causes IR to go LOW (\approx V_{DD}), but data will stay locked in the first bit location until both IR and SI are LOW. Then data will propagate to the second bit location, provided the location is empty. When data is transferred, IR will go HIGH indicating that the device is ready to accept new data. If the memory is full, IR will stay LOW.

Data Transfer

Once data is entered into the second cell, the transfer of any full cell to the adjacent (downstream) empty cell is automatic, activated by an on-chip control. Thus data will stack up at the end of the device while empty locations will "bubble" to the front. t_{BT} defines the time required for the first data to travel from the input to the output of a previously empty device, or for the first empty space to travel from the output to the input of a previously full device.

Data Output

When data has been transferred into the last cell, Output Ready (OR) goes HIGH, indicating the presence of valid data at the output pins Q_0 through Q_3 . The transfer of data is initiated when both the Output Ready output from the device and the Shift Out (SO) input to the device are HIGH. This causes OR to go LOW; output data, however, is maintained until both OR and SO are LOW. Then the content of the adjacent (upstream) cell (provided it is full) will be transferred into the last cell, causing OR to go HIGH again. If the memory has been emptied, OR will stay LOW.

Input Ready and Output Ready may also be used as status signals indicating that the FIFO is completely full (Input Ready stays LOW for at least t_{BT}) or completely empty (Output Ready stays LOW for at least t_{BT}).

Reset

When Master Reset ($\overline{\text{MR}}$) goes LOW, the control logic is cleared. When $\overline{\text{MR}}$ returns HIGH, Output Ready (OR) stays LOW, and Input Ready (IR) goes HIGH if Shift In (SI) was LOW. Since the Data Outputs (Q_0 through Q_3) are unaffected by $\overline{\text{MR}}$, Data on Q_0 through Q_3 should be considered valid only while OR is HIGH.

5-4

Active Pull-up Description

TTL compatibility on each input is achieved through the use of active pull-up circuits that raise the input voltage to a value meeting the V_{IH} specification, i.e., V_{IH} \geq V_{SS} - 1.0 V. Each of these pull-up circuits may be thought of as a switched variable impedance between the input and V_{SS} with its state being dependent upon the input voltage, V_{IN}. When V_{IN} is LOW, the input impedance is on the order of several megohms, causing the input current to look like a leakage current. As V_{IN} swings toward a TTL HIGH value, the impedance decreases, providing a lowimpedance path to V_{SS}, pulling V_{IN} up to the proper V_{IH} level. Furthermore, at V_{IN} \geq V_{IH}, the input characteristics resemble those of a TTL device making it look like a normal TTL load.

Input Buffer Stage With Active Pull-up

More specifically, the input current increases significantly when V_{IN} starts to exceed V_{II} (the pull-up initiation voltage). This current reaches a peak value of I_{IP} (the input barrier current) when V_{IN} = V_{IP} (the peak input current voltage point) after which it decreases as V_{IN} rises to its V_{IH} value.

Although not usually necessary under low fan-out conditions, the active pull-up circuit on each input guarantees that the V_{IH} specification is met under all conditions where the 3341 is driven by a TTL-like structure.

Typical Input Characteristics

INPUT VOLTAGE - V

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	V _{SS} - 1.0			V	Notes 1 and 2
VIL	Input LOW Voltage			0.8	V	Note 1
VOH	Output HIGH Voltage	V _{SS} - 1.0			V	$I_{OH} = -0.3 \text{ mA}$
VOL	Output LOW Voltage			0.4	V	$I_{OL} = 1.6 \text{ mA}$
	Input Pull-up			2.0	V	V _{SS} = 4.75 V
VII	Initiation Voltage			2.2	V	V _{SS} = 5.25 V
VIP	Peak Input Current Voltage Point			V _{SS} - 1.5	V	
IIH	Input HIGH Current	-200			μA	Note 1, VIN = VSS - 1.0 V
Ι _{ΙL}	Input Leakage Current			-30	μA	Note 1, V _{IN} = 0 V
lip 🇯	Input Barrier Current			-1.6	mA	Note 1
IGG 🖗	V _{GG} Current			-12	mA	
IDD	V _{DD} Current			-45	mA	
PD	Power Dissipation			450	mW	

Notes

- 1. Inputs include D₀-D₃. Master Reset, Shift In, and Shift Out.
- Internal pull-up circuits are provided on all inputs to insure proper HIGH level.
- Control signals include Input Ready, Shift In, Output Ready, and Shift Out.
- 4. This parameter defines total time from the time data is loaded into the first word location to the time it is available at Q₀-Q₃ with the FIFO initially empty. Conversely, t_{BT} also defines the time required for an empty space to propagate from the last word location back to the first word location. When the FIFO is full, this is the time from the HIGH-to-LOW transition of OR to the LOW-to-HIGH transition of IR.
- 5. 1 TTL load +20 pF.
- The MR input overrides all other control functions. It resets the control register and the input and output control logic while disabling any SI or SO inputs.
- 7. t_{IRH} is referenced to the positive going edge of IR or SI, whichever occurs later.

- t_{IRL} is referenced to the negative going edge of IR or SI, whichever occurs later.
- 9. t_{DD} is referenced to the positive going edge of IR or SI, whichever occurs later.
- 10. t_{OVH} is referenced to the positive going edge of IR or SI, whichever occurs later.
- 11. t_{OVL} is referenced to the negative going edge of IR or SI whichever occurs later.
- 12. Data must be stable for t_{DH} or t_{IRH}, whichever is shorter.
- 13. t_{ORH} is referenced to the positive going edge of OR or SO, whichever occurs later.
- 14. t_{ORL} is referenced to the negative going edge of OR or SO, whichever occurs later.
- t_{DV} is referenced to the negative going edge of OR or SO, whichever occurs later.
- 16. t_{OVH} is referenced to the positive going edge of IR or SI, whichever occurs later.
- 17. t_{OVL} is referenced to the negative going edge of IR or SI, whichever occurs later.

		3341	3341A			3341			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit	Condition
IRH	Input Ready HIGH Time	80		400	100	300	550	ns	Figure 1, Notes 7, 12
IRL	Input Ready LOW Time	100		550	138	300	550	ns	Figure 1, Note 8
очн	Control Overlap HIGH Time	80			100			ns	<i>Figures 1, 2</i> and Notes 3, 16
OVL	Control Overlap LOW Time	80			100			ns	<i>Figures 1, 2</i> and Notes 3, 17
tDH	Data Input Stable Time	200			400			ns	Figure 1
tDD	Data Input Delay Time			0			25	ns	Figure 1, Note 9
ORH	Output Ready HIGH Time	80		450	100	300	500	ns	Figure 2, Note 13
ORL	Output Ready LOW Time	80		550	170	450	850	ns	Figure 2, Note 14
вт	Data Bubble-through Time			16			32	μŝ	Note 4
tDV	Data Valid After SO or OR	75			75			ns	Figure 2, Note 15
MRW	Master Reset Pulse Width	400			400			ns	Note 6
DA	Data Output Available Time	0			0			ns	Figure 2
CIN	Input Capacitance of Data and Control Lines			7.0			7.0	pF	$f = 1 MHz, V_{IN} = V_{SS}$
CMR	Inp <u>ut</u> Capacitance of MR			7.0			15	pF	$f = 1 MHz, V_{MR} = V_S$
	Operating Frequency			1000			700	kHz	Note 5

Timing Diagrams

¢.

Fig. 1 Input Timing

Input data must remain stable during timing window $t_{\mbox{DH}}$. Both SI and IR must be HIGH for t_{OVH}. Similarly, both SI and IR must be LOW for tOVL.

Fig. 2 Output Timing

Both SO and OR must be HIGH for $t_{\mbox{OVH}}.$ Similarly both SO and OR must be LOW for $t_{\mbox{OVL}}.$ Data will remain stable for $t_{\mbox{DV}}$ after both SO and OR are LOW.

¢

Application

Expansion of 3341 to n-Word by 12-Bit FIFO

Note

Composite Shift In should be LOW when Master Reset goes HIGH. Input data may be changed after Composite IR goes LOW. Composite IR will not go HIGH until Composite Shift In goes LOW. When Composite IR goes HIGH, FIFOs will accept new data. 3341s will operate at full speed if these rules are followed.

3342 Quad 64-Bit Static Shift Register

MOS Memory Products

Description

The 3342 is a static shift register in quad 64-bit organization. An on-chip clock generator provides appropriate internal clock phases from a single external TTL-level clock input. Passive on-chip input pull-up resistors allow direct TTL compatibility on all inputs. The outputs are capable of driving a single TTL load directly without the need for external components. The 3342 is manufactured with p-channel silicon gate technology. It is available in ceramic or plastic 16-pin dual in-line packages in the commercial temperature range, 0°C to +70°C.

SINGLE TTL-COMPATIBLE EXTERNAL CLOCK

- DIRECT TTL COMPATIBILITY
- 1.5 MHz OPERATION GUARANTEED
- LOW CLOCK CAPACITANCE
- INPUT OVERVOLTAGE PROTECTION
- EXTERNAL RECIRCULATE CONTROL
- 16-PIN CERAMIC OR PLASTIC DUAL IN-LINE PACKAGE

Pin Names

D ₁ -D ₄	Data Inputs
REC ₁ -REC ₄	Recirculate Inputs
CP	Clock Pulse Input
Q1-Q4	Data Outputs
V _{SS}	+5 V Power Supply
V _{DD}	0 V Power Supply
V _{GG}	-12 V Power Supply

Absolute Maximum Ratings

All Inputs Including Clock (Note 1)	-20 V to +0.3 V
V _{GG} (Note 1)	-20 V to +0.3 V
V _{DD} and Outputs (Note 1)	-7.0 V to +0.3 V
Output Current when Output	
is LOW (Note 2)	10 mA
Storage Temperature	-55°C to +150°C
Operating Temperature	0°C to +70°C

Notes

- 1. All voltages with respect to VSS
- LOW logic level is the most negative level and HIGH logic level is the most positive.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

 $V_{SS} = Pin 16$ $V_{DD} = Pin 8$ $V_{GG} = Pin 12$

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code	
Ceramic DIP	6Z	D	
Plastic DIP	9B	P	

3342

Logic Diagram

Functional Description

The 3342 is a single phase static shift register. Data is accepted at the inputs when the external clock is HIGH. Data is available at the outputs after the negative clock transition as illustrated in the Timing Diagram. All inputs are connected by an MOS transistor to V_{SS} allowing complete TTL compatibility. The recirculate inputs allow data to be entered externally (LOW logic level) or internally recirculated in the registers (HIGH logic level). The output stages are push/pull amplifiers and can drive one TTL load.

DC Requirements $V_{SS} = +5.0 V \pm 5\%$, $V_{DD} = 0 V$, $V_{GG} = -12 V \pm 5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	V _{SS} -1.0			v	Notes 1 and 2
VIL	Input LOW Voltage	VGG		0.80	V	Note 1

DC Characteristics $V_{SS} = +5.0 V \pm 5\%$, $V_{DD} = 0 V$, $V_{GG} = -12 V \pm 5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VOH	Output HIGH Voltage	2.4		Vss	V	I _{OH} = -0.5 mA
VOL	Output LOW Voltage	0		0.4	V	$I_{OL} = -1.6 \text{ mA}$
IIH	Input HIGH Current	-0.10			mA	$V_{IN} = V_{SS} - 1.0 V$, Note 1
l _{IL}	Input LOW Current			-1.6	mA	V _{IN} = 0.4 V, Note 1
IIN	Input Leakage Current			1.0	μA	$V_{IN} = -5.0 \text{ V}, \text{ Note } 1$ $V_{GG} = V_{SS}$
DD	V _{DD} Current			28	mA	
IGG	V _{GG} Current			12	mA	
lss	V _{SS} Current			40	mA	
PD	Power Dissipation			380	mW	tpwH = 265 ns, f = 1.5 MHz

AC Requirements V_{SS} = +5.0 V ±5%, V_{DD} = 0 V, V_{GG} = -12 V ±5%, T_A = 0°C to +70°C

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
f	Operating Frequency	0		1.5	MHz	Note 4
tpwh	Clock Pulse Width HIGH	0.265		10	μs	Note 3
tPWL	Clock Pulse Width LOW	0.320			μs	
t _r , t _f	Clock Rise and Fall Times (10% to 90%)			1.0	μs	
tDS	Data Input Set-up Time	200			ns	
tDH	Data Input Hold Time	100			ns	
tRS	Recirculate Set-up Time	200			ns	
tRH	Recirculate Hold Time	130			ns	

Notes

1. These parameters apply to all data, recirculate, and clock inputs.

2. On-chip pull-up resistors are provided on all inputs to effect the proper logic level when driving with TTL/DTL.

- 3. Outputs remain valid until negative-going edge of next clock pulse.
- 4. $1/f = t_{PWH} + t_{PWL} + t_{f} + t_{f}$

3342

AC Characteristics $~V_{SS}$ = +5.0 V $\pm 5\%,~V_{DD}$ = 0 V, V_{GG} = -12 V $\pm 5\%,~T_A$ = 0°C to +70°C

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
tA	Clock to Output Delay			265	ns	C _L = 10 pF Load = 1 TTL Input
CIN	Capacitance All Inputs Including Clock			5.0	pF	$V_{IN} = V_{SS},$ f = 1.0 MHz

Timing Diagram

	10%
VIH 1 DATA INPUT 10%	- tos
V _{OH} DATA OUTPUT V _{OL}	
VIH RECIRCULATE 90% VIL 10%	RS

3348/3349 Hex 32-Bit Static Shift Register

MOS Memory Products

Description

The 3348/3349 contains six separate 32-bit static shift registers constructed on a single chip using p-channel enhancement mode silicon gate MOS technology. Only two power pins, V_{SS} and V_{GG}, are needed for circuit operation. An on-chip clock generator provides all internal clock phases from a single TTL clock pulse. Each output is a bare drain, and therefore requires a 7.5 k Ω load resistor to V_{GG}. A recirculate data input allows the user to either enter data from the outside (LOW logic level) or to internally recirculate the contents of the registers (HIGH logic level).

The 3348 is available in a 24-pin ceramic dual in-line package and the 3349 is available in a 16-pin plastic or ceramic dual in-line package. The 3348 option provides an output enable pin for wired-OR operation. The outputs are enabled when Output Enable is LOW.

- SINGLE TTL EXTERNAL CLOCK
- INPUT OVERVOLTAGE PROTECTION
- LOW CLOCKLINE CAPACITANCE
- TTL COMPATIBLE INPUTS
- CASCADE CAPABILITY
- SINGLE POWER SUPPLY OPERATION
- INTERNAL RECIRCULATION CONTROL
- DC TO 1 MHz OPERATION GUARANTEED
- OUTPUT ENABLE CONTROL (3348 ONLY)
- SINGLE-ENDED (BARE DRAIN) BUFFERS

Pin Names

D1-D6	Data Inputs
REC	Recirculate Input
CP	Clock Pulse
OE	Output Enable (3348 only)
Q ₁ -Q ₆	Data Outputs

Absolute Maximum Ratings

All Inputs, V _{GG}	-22 V to +0.3 V
All Outputs	-19 V to +0.3 V
Output Current	+10 mA
Storage Temperature	-55°C to +150°C
Operating Temperature	0°C to 70°C

All voltages with respect to VSS.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 V_{SS} = Pin 20 (24-Pin DIP), Pin 16 (16-Pin DIP) V_{GG} = Pin 6 (24-Pin DIP), Pin 5 (16-Pin DIP)

Connection Diagrams 24-Pin DIP

16-Pin DIP

-	Package	Outline	Order Code
3348	Ceramic DIP	7M	D
3349	Ceramic DIP Plastic DIP	6Z 9B	D P

3348/3349

Block Diagram

Functional Description

The 3348/3349 is a two-phase Static Shift Register. The single external clock phase generates two shift phases as well as a static operation phase via the on-chip clock generator. Data is accepted at the inputs after the negative-going transition of the external clock. Output information is available after the positive clock transition as illustrated in Timing Diagram. For long-term storage, the external clock should be held HIGH.

DC Requirements V_{SS} = 5 V \pm 5%, V_{GG} = -12 \pm 1 V, T_A = 0° C to 70° C

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	V _{SS} - 1.5			V	All Inputs Including Clocks
VIL	Input LOW Voltage			0.6	V	All Inputs Including Clocks
RL	Output Load Resistor to VGG	7.5			kΩ	

DC Characteristics $V_{SS} = 5 V \pm 5\%$, $V_{GG} = -12 \pm 1 V$, $T_A = 0^{\circ} C$ to $70^{\circ} C$

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VOH	Output HIGH Voltage	V _{SS} - 1.2			v.	7500 Ω Load to V_{GG} V _{SS} = 4.75 V, V_{GG} = -11 V
IIN	Input Leakage Current			1.0	μA	$V_{IN} = 0 V$
lgg	VGG Current			27	mA	$V_{GG} = -12 V, V_{SS} = 5.0 V$

3348/3349

AC Requirements $V_{SS} = 5 V \pm 5\%$, $V_{GG} = -12 \pm 1 V$, $T_A = 0^{\circ} C$ to $70^{\circ} C$

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
f	Operating Frequency			1.0	MHz	
tpwL	Clock Pulse Width LOW	0.35		50	μs	
tрwн	Clock Pulse Width HIGH	0.6			μs	
t _r , t _f	Clock Rise Time and Fall Time			0.5	μs	
tDS	Input Data Set-up Time	180			ns	
tDH	Input Data Hold Time	40			ns	
tRPW	Recirculate Pulse Width	350			ns	
tRS	Recirculate Set-up Time	225			ns	
t _{RH}	Recirculate Hold Time	100			ns	

AC Characteristics $~V_{SS}$ = 5 V \pm 5%, V_{GG} = - 12 \pm 1 V, T_A = 0° C to 70° C

Symbol	Characteristic	Min	Тур	Max	Unit	Condition	
tACC	Clock to Output Delay Time	125		520	ns	$C_{L} = 0 \text{ to } 20 \text{ pF},$ $R_{L} = 7.5 \text{ k}\Omega$	
tEO	Output Enable Delay Time (3348 Only)			350	ns	$C_{L} = 20 pF$,	
tDO	Output Disable Delay Time (3348 Only)			350	ns	$C_L = 20 \text{ pF},$ $R_L = 7.5 \text{ k}\Omega \text{ to } V_{GG}$	

Timing Diagram

3351 40 x 9 FIFO Memory

MOS Memory Products

Description

The 3351 is a First-In First-Out (FIFO) memory used in data rate buffering applications. The 3351 has a capacity of 40 9-bit words. The words are accepted at the input, automatically shifted towards the output, and removed at any rate in the same sequence in which they were entered.

The 3351 has status indicators on both the input and output to signal an available empty input or a valid data word at the output. It also has separate input and output enable lines, in addition to a master reset line. A unique input stage interfaces to TTL without external components. The 3351 is manufactured using the p-channel lsoplanar silicon gate process with ion-implantation.

- 2 MHz (3351-1), 1.5 MHz (3351-3), AND 1 MHz (3351-2) DATA RATES
- INDEPENDENT ASYNCHRONOUS INPUTS AND OUTPUTS
- **FULLY TTL COMPATIBLE**
- 3-STATE OUTPUTS
- INPUT AND OUTPUT ENABLE CONTROLS
- EXPANDABLE IN EITHER DIRECTION
- STATUS INDICATORS ON INPUT AND OUTPUT
- 28-PIN CERAMIC DUAL IN-LINE PACKAGE

Pin Names

D ₀ -D ₈	Data Inputs
MR	Master Reset
ĪĒ	Input Enable
IR	Input Ready
SI	Shift In
SO	Shift Out
OE	Output Enable
OR	Output Ready
Q0-Q8	Data Outputs

Absolute Maximum Ratings

V _{GG} and Inputs	-20 V to +0.3 V
V _{DD} and Outputs	-7.0 V to +0.3 V
Output Sink Current	5.0 mA
Storage Temperature	-55°C to +150°C
Operating Temperature	0°C to +70°C

Note

All Voltages with respect to VSS.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

V_{GG} = Pin 1

Connection Diagram 28-Pin DIP

VGG	1	\smile	28	Ь	Vss
ŌĒ	2		27		ĨĒ
\mathbf{Q}_0	3		26	Þ	D 0
\mathbf{Q}_1	4		25	Þ	D 1
\mathbf{Q}_2	5		24		D2
Q_3	6		23		D 3
\mathbf{Q}_4	7		22		D 4
\mathbf{Q}_5	8		21	\square	D 5
\mathbf{Q}_6	9		20	\square	D_6
\mathbf{Q}_7	10		19		D 7
\mathbf{Q}_8	11		18		D 8
OR	12		17		SI
SO	13		16		IR
VDD	14		15	P	MR

(Top View)

Package	Outline	Order Code
Ceramic DIP	8E	D

3351

Block Diagram

Functional Description

The 40 by 9 memory array is under the constant control of a control logic network. Each word position in the array is clocked by a control register, which also stores a marker bit; a "1" signifies that the position is filled and a "O" indicates a vacancy at that location. Each control register clocks data from the preceding nine data flip-flops to its own set of nine data flip-flops. The register logic detects the status of the preceding and succeeding registers' marker bits to determine when to clock its data flip-flops. When data has been transferred from location n to location n+1, the n+1 control circuitry changes the marker bit at control register n from a "1" to a "0", indicating that the data at location n has been transferred elsewhere in the array. This "0" will then propagate back to the first control register signifying that the FIFO is capable of accepting more data.

The 3351 buffers the first and last control registers and uses them as input/output status indicators. Since all status marker "Os" propagate toward the first control register, a "O" at the first register indicates the FIFO is ready to clock in more data. Likewise, all "1s" propagate towards the last control register, and a "1" here means that data is valid at the outputs.

A Master Reset control is provided to set all the control registers' status markers to "0". Note that the data registers are not reset by MR.

Shift In (SI), Input Ready (IR)

A LOW-to-HIGH transition of the Shift In command does two things: 1) the first control register is enabled, permitting input data to be loaded into the first set of data registers and setting the first marker bit to a "1", and 2) the second control register is locked out by means of an inverted SI command. At this point, data from the first data register cannot be transferred to the second data register. The Input Ready signal indicates the status of the first marker bit and accordingly goes LOW (not ready).

The HIGH-to-LOW transition of the SI locks out the first control register and causes data from the first data registers to propagate down the FIFO under the control of the control logic. This action sets the first marker bit to a "0" and the Input Ready returns HIGH (input ready). When the FIFO becomes full, the IR will stay LOW after SI returns LOW and any further SI commands will be ignored by the circuit. When a "0" ripples back from the last to the first control register the Input Ready (IR) will return to HIGH (if SI is LOW).

Input Enable (IE)

A HIGH on the Input Enable disables the SI input and the current-sourcing capability of the special TTL pull-up networks of the data inputs and the SI. A LOW enables these inputs.

Shift Out (SO), Output Ready (OR)

The HIGH-to-LOW transition of Shift Out command disables the clocking line of the last control register and changes the 40th bit marker to a "0". The Output Ready is then forced LOW. Note that data is not transferred from the <u>39th</u> position to the 40th position on this edge. When SO makes the LOW-to-HIGH transition, the FIFO is again under control of its control logic circuitry, new data is transferred to the 40th location and the 40th marker bit is reset to a "1". The Output Ready returns to HIGH, signifying the new data at the output leads is now valid. When the FIFO is empty, the OR remains LOW after SO goes HIGH. SO commands will be ignored until a "1" marker ripples down to the last control register, after which the OR goes HIGH (if SO is HIGH).

Output Enable (OE)

A HIGH on Output Enable forces the nine outputs to a high impedance state, disables the shift out command, and disables the current-sourcing capability of the special TTL pull-up network of SO. A LOW again enables SO, and the outputs revert back to their normal TTL states.

Master Reset (MR)

A LOW on Master Reset sets all the control logic marker bits to "0". Consequently, IR will go HIGH (if SI is LOW) and OR will go LOW, indicating that the FIFO is now empty.

3351

Active Pull-up Description

TTL compatibility on each input is achieved through the use of active pull-up circuits which raise the input voltage to a value meeting the V_{IH} specification, i.e., V_{IH} \geq V_{SS} - 1.0 V. Each of these pull-up circuits may be thought of as a switched variable impedance between the input and V_{SS} with a state dependent upon the input voltage, V_{IN}. When V_{IN} is LOW, the input impedance is on the order of several megohms, causing the input current to look like a leakage current. As V_{IN} swings toward a TTL HIGH value, the input impedance decreases, providing a low impedance path to V_{SS}, pulling V_{IN} up to the proper V_{IH} level. Furthermore, at V_{IN} \geq V_{IH}, the input characteristics resemble those of a TTL device making it look like a normal TTL load.

Input Buffer Stage With Active Pull-Up

More specifically, the input current increases significantly when V_{IN} starts to exceed V_{II} (the pull-up initiation voltage). This current reaches a peak value of I_{IP} (the input barrier current) when $V_{IN} = V_{IP}$ (the peak input current voltage point) after which it decreases as V_{IN} rises to its V_{IH} value.

Although not usually necessary under low fan-out conditions, the active pull-up circuit on each input guarantees that the V_{IH} specification is met under all conditions where the 3351 is driven by a TTL-like structure.

Typical Input Characteristics

5

3351

		3351-1		3351-2		3351-3			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
VIH	Input HIGH Voltage	V _{SS} -1.0	V _{SS} +0.3	V _{SS} -1.0	V _{SS} +0.3	V _{SS} -1.0	V _{SS} +0.3	V	Note
VIL	Input LOW Voltage	V _{GG}	0.8	V _{GG}	0.8	V _{GG}	0.8	v	Note

DC Characteristics	$V_{SS} = 5.0 V$	\pm 5%, V _{DD} = 0) V, V _{GG} =	-12 V ±5%
---------------------------	------------------	-------------------------------	------------------------	-----------

	1997 - A. C. A.	3351-1		3351-2		3351-3			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
V _{OH1}	Output HIGH Voltage	V _{SS} -0.5		V _{SS} -0.5		V _{SS} -0.5		v	I _{OH} = 50 μA
V _{OH2}	Output HIGH Voltage	2.4		2.4		2.4		V	I _{OH} = -0.2 mA
VOL	Output LOW Voltage		0.4		0.4		0.4	v	I _{OL} = 1.6 mA
VII	Pull-up Initiation Voltage		2.2		2.2		2.2	v	Note I _{IN} = -0.12 mA
VIP	Peak Current Voltage		V _{SS} -1.5		V _{SS} -1.5		V _{SS} -1.5	v	Note
lıp	Peak Current		-1.6		-1.6		-1.6	mA	Note
lн	Input HIGH Current	-0.22		-0.22		-0.22		mA	Note V _{IN} = V _{SS} -1.0 V
IL	Input LOW Current		-50		-50		-50	μA	Note V _{IN} = 0.4 V
IDD	V _{DD} Current		65		50		50	mA	н н н а
IGG	V _{GG} Current		10		8.0		8.0	mA	
PD	Power Dissipation		520		420		420	mW	

Note

Includes all Data inputs, IE, OE, SI, SO and MR. (See Active Pull-up description.)

AC Requirements $V_{SS} = 5.0 \text{ V} \pm 5\%$, $V_{DD} = 0 \text{ V}$, $V_{GG} = -12 \text{ V} \pm 5\%$, $T_A = 0^{\circ}\text{C}$ to 70°C. See Notes 1 and 2 3351-2 3351-1 3351-3 Max Max Characteristic Min Min Мах Min Unit Condition **IE** Disable 20 20 20 Fig. 1 ns Set-Up Time IE Disable 20 20 20 ns Hold Time IE Enable 0 0 0 ns Set-Up Time IE Enable 0 0 0 ns Hold Time Input Data 0 0 0 ns Set-Up Time Input Data 220 440 330 ns Hold Time SI HIGH 220 440 300 ns Time SI LOW 280 560 370 ns Time OE Disable 20 20 20 Fig. 2 ns Set-Up Time OE Disable 20 20 20 ns Hold Time OE Enable 0 0 0 ns Set-Up Time OE Enable 0 0 0 ns

400

600

200

0

260

410

150

0

ns

ns

ns

ns

Fig. 3

5

tRS Notes

Symbol

tips

tIDH

ties

tIEH

tos

t_{DH}

tsin

tsiL

tops

tODH

tOES

tOEH

tSOL

tSOH

tRPW

1. All input tr and tf: 10 ns.

2. All time measurements referenced to 50% level.

Set-Up Time

Hold Time SO LOW

Time SO HIGH

Time MR Pulse

Width MR to SI 200

300

100

0

3351

Symbol		3351-1		3351-2		3351-3				
	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition	
tsi-IRHL	SI to IR Delay Time		220		440		300	ns	Fig. 1 (Note 1)	
tsi-irlh	SI to IR Delay Time		280		560		370	ns		
tso-orll	SO to OR Delay Time		200		400		300	ns	(Note 1)	
tso-orhh	SO to OR Delay Time		300		600		410	ns		
t _{MR} -IR	MR to IR Delay Time		300		480		480	ns	Fig. 2	
t _{MR} -OR	MR to OR Delay Time		300		480		480	ns		
tвт	Bubble-Through Time	-	9.0		15		15	μs	(Note 2)	
tE	Output Enable Time		300		600		480	ns	Fig. 3	
tD	Output Disable Time		300		600		480	ns		
f	Operating Frequency		2.0		1.0		1.5	MHz		

Notes

1. HL means positive-going edge of first signal to negative-going

edge of second signal, etc.

2. Forward and reverse.

3. All input t_r and t_f: 10 ns.

4. All time measurements referenced to 50% level.

Output Loading

Timing Diagrams

3351

3351

Applications

Simple Word Expansion (39 n + 1) Words

*Adjust pulse width for tSIH

3357/F2847 **Quad 80-Bit Static** Shift Register

MOS Memory Products

Description

The 3357 and F2847 are single phase quad 80-bit static shift registers. Both have an on-chip clock generator that is driven by a single phase TTL clock. A multiplexer is provided to allow data to be entered from the input or recirculated from the output. A unique on-chip input pull-up circuit allows interfacing directly from TTL to all inputs without external components.

The 3357 and F2847 are manufactured with the p-channel Isoplanar process and are available in 16-pin ceramic or plastic dual in-line packages in the commercial temperature range.

- 4.0 MHz (33571), 3.0 MHz (F2847) AND 2.0 MHz (33572) GUARANTEED OPERATION
- ZERO DATA HOLD TIME
- . TTL COMPATIBILITY
- SINGLE PHASE TTL CLOCK
- LOW CLOCK CAPACITANCE
- INPUT MULTIPLEXER
- **16-PIN CERAMIC OR PLASTIC DUAL IN-LINE PACKAGE**
- LOW POWER VERSION (F2847L)

Pin Names

D1-D4	Data Inputs
REC1-REC4	Recirculate Inputs
CP	Clock Input
Q1-Q4	Data Outputs

Absolute Maximum Ratings

V _{GG} and Inputs	-20 V to +0.3 V
V _{DD} and Outputs	-7.0 V to +0.3 V
Output Sink Current	10 mA
Storage Temperature	-55°C to +150°C
Operating Temperature	0°C to +70°C

All voltages with respect to VSS.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

V_{SS} = Pin 16 VDD = Pin 8 $V_{GG} = Pin 12$

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	6Z	D
Plastic DIP	9B	P

3357/F2847

Block Diagram

Functional Description

The 3357 and F2847 are single phase quad 80-bit static shift registers. Data is loaded into the register on the negative transition of the external clock. The Recirculate input loads new data from the input or recirculates old data from the output. A LOW on Recirculate loads data from the input, and a HIGH loads data from the output.

Output Characteristics

Each output will drive one unit TTL load (1.6 mA at 0.4 V) directly or another unit Shift Register load without any external components.

Active Pull-up Description

TTL compatibility on each input is achieved through the use of active pull-up circuits which raise the input voltage to a value meeting the V_{IH} specification, i.e., V_{IH} \geq V_{SS} -1.0 V. Each of these pull-up circuits may be thought of as a switched variable impedance between the input and V_{SS} whose state is dependent upon the input voltage, V_{IN}. When V_{IN} is LOW, the input impedance is on the order of several megohms, causing the input current to look like a leakage current. As V_{IN} swings toward a TTL HIGH value, the input impedance decreases, providing a low impedance path to V_{SS}, pulling V_{IN} up to the proper V_{IH} level. Furthermore, at V_{IN} \geq V_{IH}, the input characteristics resemble those of a TTL device making it look like a normal TTL load. More specifically, the input current increases significantly when V_{IN} starts to exceed V_{II} (the Pull-up Initiation voltage). This current reaches a peak value of IIp (the Input Barrier current) when $V_{IN} = V_{IP}$ (the Peak Input Current Voltage Point) after which it decreases as V_{IN} rises to its V_{IH} value. See Typical Input Characteristics.

Although not usually necessary under low fan-out conditions, the active pull-up circuit on each input guarantees that the V_{IH} specification is met under all conditions where the 3357 or F2847 is driven by a TTL-like structure.

Input Buffer Stage With Active Pull-up

3357/F2847

Typical Input Characteristics

DC Requirements $T_A = 0^{\circ}C$ to +70°C, $V_{SS} = +5.0 V \pm 5\%$, $V_{DD} = 0 V$, $V_{GG} = -12 V \pm 5\%$

Symbol	Characteristic	Min	Max	Unit	Condition
VIH	Input HIGH Voltage	$V_{SS} - 1$	V _{SS} + 0.3	V	Note
VIL	Input LOW Voltage	VGG	+0.8	V	Note

DC Characteristics $T_A = 0^{\circ}C$ to +70°C, $V_{SS} = +5.0 V \pm 5\%$, $V_{DD} = 0 V$, $V_{GG} = -12 V \pm 5\%$

Symbol	Characteristic		Min	Max	Unit	Condition	
V _{OH}	Output HIGH Voltage		$V_{SS} - 1$		V	$I_{OH} = -0.1 \text{ mA}$	
V _{OL}	Output LOW Voltage			0.4	V	I _{OL} = 1.6 mA	
VII	Input Pull-up Initiation	Voltage		2.2	V	Note, I _{IN} < -0.12 mA	
VIP	Input Peak Current V	oltage		V _{SS} - 1.5	v	Note	
l _{IP}	Input Peak Current			-1.6	mA	Note	
Iн	Input HIGH Current		-0.22		mA	Note, $V_{IN} = V_{SS} - 1.0$ V	
կլ	Input LOW Current			-30	μA	Note, $V_{IN} = 0.4 V$	
<u> </u>	V _{DD} Current	3357-1		-20	mA		
		3357-2		-18	mA		
DD		F2847L		-20	mA]	
		F2847		-35	mA		
		3357-1		-15	mA		
lgg	V _{GG} Current	3357-2		- 10.5	mA	Max Operating	
GG	AGG Content	F2847L		-12	mA	Frequency	
		F2847		-15	mA		
		3357-1		375	mW		
PD	Power Dissipation	3357-2		285	mW		
·U	i ower bioeipation	F2847L		320	mW		
		F2847		455	mW		

Note Applies to all inputs including Clock.

3357/F2847

AC Requirements $T_A = 0^{\circ}C$ to +70°C, $V_{SS} = +5.0 \text{ V} \pm 5\%$, $V_{DD} = 0 \text{ V}$, $V_{GG} = -12 \text{ V} \pm 5\%$

Symbol	Characteristic	3357-1		F2847	F2847-F2847L		3357-2		
		Min	Max	Min	Max	Min	Max	Unit	Condition
f	Operating Frequency	0	4.0	0	3.0	0	2.0	MHz	
tрwн	Clock Pulse Width HIGH	0.095	100	0.14	100	0.25	100	μs	
tPWL	Clock Pulse Width LOW	0.135		0.14		0.25		μs	7
tDS	Data Set-up Time	25		120		40		ns	See Timing
tDH	Data Hold Time	30		40		30		ns	Diagram, Note
tss	Select Set-up Time	40		70		70		ns	
tSH	Select Hold Time	10		10		10		ns	

AC Characteristics $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{SS} = +5.0 V \pm 5\%$, $V_{DD} = 0 V$, $V_{GG} = -12 V \pm 5\%$

Symbol	Parameter		Min	Max	Unit	Condition	
CIN	Input Capacitance			5.0	pF	All inputs	
COUT	Output Capacitance	•		5.0	pF		
tacc		3357-1		215			
	Clock to Output Delay Time	3357-2		260	ns	See Timing Diagram	
		F2847L		200		See Thining Diagram	
	F2847			200			

Note

 $t_{\rm f}$, $t_{\rm f}$ = Clock Transition Time = 0.5 μ s.

Product Index and Selection Guides	1
MOS Memory Technology Overview	2
RAM Data Sheets	3
EPROM Data Sheets	4
Serial Memory Data Sheets	5
Special Function Data Sheets	6
Extended Temperature Range Data Sheets	7
Ordering Information and Package Outlines	8
Sales Offices, Representatives and Distributor Locations	9

w^j

3262A **TV Sync Generator**

MOS Memory Products

Logic Symbol

Description

The 3262A is a sync pulse generator that produces the necessary outputs for synchronizing television broadcast information. These outputs include Horizontal Drive, Vertical Drive, Composite Sync, Composite Blanking, and Even and Odd Fields, all of which are provided in the format specified by RS170EIA Standard Output Signals. The Color Subcarrier (3.58 MHz) and the Color Burst Flag outputs are provided for color operation. All waveforms are derived from a low-voltage two-phase clock (for color operation) or a single-phase clock (for black and white operation). All outputs except the Color Subcarrier are capable of driving a TTL load directly. The Color Subcarrier is designed to drive a capacitive load. The 3262A is a monolithic integrated circuit manufactured with Isoplanar p-channel silicon gate technology.

- COLOR OR BLACK/WHITE OPERATION
- ALL COUNTERS SYNCHRONOUS -
- -PULSE WIDTHS DERIVED DIGITALLY
- **OUTPUTS DRIVE TTL DIRECTLY (EXCEPT** COLOR SUBCARRIER)
- SEPARATE VERTICAL AND HORIZONTAL RESET

Applications

- CAMERA LOGIC REPLACEMENT
- HOME TV GAMES
- VIDEO TAPE RECORDS -
- VIDEO TERMINALS -

Absolute Maximum Ratings

All Inputs (Note)	-20 V to +0.3 V
VGG	-20 V to +0.3 V
V _{DD} and Outputs	-6 V to +0.3 V
DC Output Current	
(output LOW)	<10 mA
Storage Temperature	-55°C to 150°C
Operating Temperature	0°C to 70°C
Maximum Power Dissipation	750 mW

All Voltages with respect to VSS

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

6

(Top View)

Package	Outline	Order Code
Ceramic DIP	6Z	D

10

۵

C/BW

VDD

16-Pin DIP

DRIVE

VGG

8

Functional Description

The 3262A block diagram shows the counting and decoding scheme used to generate all output waveforms. The clock frequency is divided down in three steps (\div 7, \div 65, \div 2) and decoded to generate the horizontal drive. A signal at twice the horizontal frequency is divided by 525 to generate the vertical drive. The Color Subcarrier is generated by a \div 4 Johnson counter driven directly from the input clock. This is approximately a sinusodial signal. Pulses at the horizontal and vertical frequencies are combined in the composite decoder to generate the outputs Composite Sync, Composite Blanking, and Color Burst Flag.

For use in special applications, the 3262A provides a 30 Hz pulse at the start of the field (Odd Field) and again at the start of the next field (Even Field).

Separate Horizontal and Vertical Reset input pins are provided to allow the 3262A to be used in systems requiring gen-lock operation. Tie Horizontal and Vertical Resets to V_{SS} when they are not used.

The C/BW input is used to select either color or black and white operation. A logic HIGH applied to C/BW will select color operation; if C/BW is LOW, the $\div 4$ and $\div 7$ counters will be bypassed for black and white operation. In addition, the only clock needed for black and white operation is Clock 1; Clock 2 should be tied to V_{SS}. The input frequency should be 2.0475 MHz for normal operation.

C/BW when LOW also resets the Color Subcarrier. If the LOW pulse on C/BW is within the specification for t_{RS} — Color Subcarrier Reset Pulse — the color operation for the 3262A will be unaffected.

6-4

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	V _{SS} -0.8		V _{SS} +0.3	V	
VIL	Input LOW Voltage	-5.0		V _{SS} -4.35	V	
VOH	Output HIGH Voltage	2.4			V	I _{OH} = -0.1 mA
VOL	Output LOW Voltage	· ·		0.4	V	$I_{OL} = 1.6 \text{ mA}$
VIHC	Clock Input HIGH Voltage	V _{SS} - 1.0		V _{SS} +0.3	V	
VILC	Clock Input LOW Voltage	-5.0 V		V _{SS} -4.35	V	
VSUBCARRIER	Subcarrier Output Voltage Approximate Sine wave	0.5			V _{pk-pk}	$C = 10 \text{ pF to } V_{DD}$ R = 10 k\Omega to V_{DD}. Note 1
IIN	Input Leakage Current		1.0		μA	$V_{IN} = 0 V$
IDD	V _{DD} Current		14		mA	
IGG	V _{GG} Current		40	-	mA	

. . . . •• EAN LOOPN N 10 11 501 11 --------1 7000

AC Characteristics V_{SS} = 5.1 V ±0.25 V, V_{GG} = -12 V ± 5%, V_{DD} = 0 V, C_L = 10 pF, 1 TTL Load (1.6 mA), T_A = 0°C to + 70°C (See Timing Diagrams)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
f	Input Frequency Color	13.3	14.31818	15.4	MHz	$t_{r}, t_{f} \leq 5 \text{ ns}$
f ₁	Input Frequency Black/White	1.5	2.0475	2.2	MHz	$t_{\rm f}$, $t_{\rm f}$ \leq 20 ns
tpw1	B/W Clock LOW Time	200	215	230	ns	$t_{r}, t_{f} \le 20 \text{ ns}$
tPW1	B/W Clock HIGH Time	200	215		ns	$t_{r}, t_{f} \leq 20 \text{ ns}$
tPW2	Color Clock LOW Time	30	35	40	ns	t_r , $t_f \le 5$ ns
tPW2	Color Clock HIGH Time	30	35		ns	t_r , $t_f \le 5$ ns
tov	Color Clock Overlap Time			5	ns	
tHR PW	Horizontal Reset Pulse Width	200			ns	$t_{\rm f}$, $t_{\rm f}$ \leq 20 ns
tvr pw	Vertical Reset Pulse Width	200			ns	$t_{\rm r}$, $t_{\rm f} \le 20$ ns, Note 2
tCSR	Color Subcarrier Reset Pulse Width	130		200	ns	$t_{\rm r}$, $t_{\rm f} \leq 20~{\rm ns}$

Notes

1. Subcarrier Output should be dc blocked with

.01 µF before loading.

2. If t_{HR} occurs simultaneously;

if t_{HR} does not occur, t_{VR} = 400 ns min.

RS170EIA Timing Detail

B/W CLOCK PERIODS 0 10 20 30 40 50 60 70 80 90 100 110 120 (COLOR CLOCK PERIODS) 0 100 (140) (210) (280) (350) (420) (490) (560) (630) (700) (770) (840) HORIZONTAL DRIVE 90% 1 1 1 1 1 1 1 1 1	0 10 20 30 40 50 60 70 80 90 100 110 120 0 (70) (140) (210)(280) (350) (420)(490) (560) (630) (700) (770) (840) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 10 & 20 \\ (70) & (140) \\ 1 & 1 \\ 13 \end{array} $
COMPOSITE BLANK (DETAIL 1) 90% 22		f 22
COMPOSITE SYNC (DETAIL 2) 90% 3 13		
COMPOSITE SYNC (DETAIL 3) 90% 3 8 68 73		ţ
COLOR BURST FLAG (COLOR MODE ONLY) (DETAIL 4) (98) (133)	(98) (133)	
HORIZONTAL AND/OR VERTICAL RESET (DETAIL 5)	61	

Clock Timing Diagrams

a) Black and White Clock

b) Color Clocks

c) Color Subcarrier Timing and Reset Detail

*Maximum subcarrier amplitude attained within 8 color clock periods following rising edge of C/BW.

Clock Generator Circuitry

a) Color Clocks

b) Black and White Clock

Applications

TV Camera System

3262B TV Sync Generator for Generator Lock

MOS Memory Products

Description

The 3262B is a sync pulse generator that produces the necessary outputs for synchronizing television broadcast information. These outputs include Horizontal Drive, Vertical Drive, Composite Sync, Composite Blanking, and Even and Odd Fields, all of which are provided in the format specified by **RS170EIA Standard Output Signals. The Color** Subcarrier (3.58 MHz) and the Color Burst Flag outputs are provided for color operation. All waveforms are derived from a low-voltage two-phase clock (for color operation) or a single-phase clock (for black and white operation). All outputs except the Color Subcarrier are capable of driving a TTL load directly. The Color Subcarrier is designed to drive a capacitive load. The 3262B is a monolithic integrated circuit manufactured with Isoplanar p-channel silicon gate technology.

- COLOR OR BLACK WHITE OPERATION
- ALL COUNTERS SYNCHRONOUS
- PULSE WIDTHS DERIVED DIGITALLY
- OUTPUTS DRIVE TTL DIRECTLY (EXCEPT COLOR SUBCARRIER)
- IDEAL FOR GENERATOR LOCK OPERATION— SYNCHRONIZES TO COMPOSITE SYNC INPUT

Applications

- Camera Logic Replacement
- Home TV Games
- Video Tape Recorders
- Video Terminals

Absolute Maximum Ratings

to + 0.3 V
to +0.3 V
0 +0.3 V
Α
to 150°C
70°C
V

Note

All Voltages with respect to VSS

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Diagram

 $V_{SS} = Pin 16$ $V_{DD} = Pin 9$ $V_{GG} = Pin 8$

Connection Diagram

(Top View)

NC = No Connection

Package	Outline	Order Code
Ceramic DIP	6Z	D

6

.

Functional Description

The 3262B block diagram shows the counting and decoding scheme used to generate all output waveforms. The clock frequency is divided down in three steps (\div 7, \div 65, \div 2) and decoded to generate the horizontal drive. A signal at twice the horizontal frequency is divided by 525 to generate the vertical drive. The Color Subcarrier is generated by a \div 4 Johnson counter driven directly from the input clock. This is approximately a sinusoidal signal. Pulses at the horizontal and vertical frequencies are combined in the composite decoder to generate the outputs Composite Sync, Composite Blanking, and Color Burst Flag.

For use in special applications, the 3262B provides a 30 Hz pulse at the start of the field (Odd Field) and again at the start of the next field (Even Field).

The Composite Sync input is provided for gen-lock operation. The detection circuit shown in the block diagram detects the first equalizing pulse in the Odd Field and, as a result, generates a reset. This causes the Composite Sync output and Composite Sync input to synchronize such that Composite Sync output occurs before Composite Sync input (see Timing Diagrams). For gen-lock application the input clock must be locked to master generator clock in order to provide stable operation.

The C/BW input is used to select either color or black and white operation. A logic HIGH applied to C/BW will select color operation; if C/BW is LOW, the $\div 4$ and $\div 7$ counters will be bypassed for black and white operation. In addition, the only clock needed for black and white operation is Clock 1; Clock 2 should be tied to V_{SS}. The input frequency should be 2.0475 MHz for normal operation.

C/BW when LOW also resets the Color Subcarrier. If the LOW pulse on C/BW is within the specification for t_{RS} —Color Subcarrier Reset Pulse—the color operation for the 3262B will be unaffected.

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	V _{SS} - 1.0		V _{SS} -0.3	V	
VIL	Input LOW Voltage	-5.0		V _{SS} -4.35	V	
VOH	Output HIGH Voltage	2.4			V	$I_{OH} = -0.1 \text{ mA}$
V _{OL}	Output LOW Voltage			0.4	V	I _{OL} = 1.6 mA
VIHC	Clock Input HIGH Voltage	V _{SS} - 1.0		V _{SS} +0.3	V	
VILC	Clock Input LOW Voltage	-5.0 V		V _{SS} -4.35	V	
VSUBCARRIER	Subcarrier Output Voltage Approximate Sine Wave	0.5			V _{pk-pk}	$C = 10 \text{ pF to } V_{DD}$ R = 10 k\Omega to V_{DD} Note 1
l _{IN}	Input Leakage Current		1.0		μA	$V_{IN} = 0 V$
IDD	V _{DD} Current		14		mA	
lgg	V _{GG} Current		40		mA	

DC Characteristics $V_{SS} = 5.1 \text{ V} \pm 0.25 \text{ V}$, $V_{GG} = -12 \text{ V} \pm 5\%$, $V_{DD} = 0 \text{ V}$, $T_A = 0^{\circ}\text{C}$ to $+70^{\circ}\text{C}$

AC Characteristics $V_{SS} = 5.1 \text{ V} \pm 0.25 \text{ V}$, $V_{GG} = -12 \text{ V} \pm 5\%$, $V_{DD} = 0 \text{ V}$, $C_L = 10 \text{ pF}$, 1 TTL Load (1.6 mA), $T_A = 0^{\circ}\text{C}$ to +70°C (See Timing Diagrams)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
f	Input Frequency Color	13.3	14.31818	15.4	MHz	$t_r, t_f \le 5 \text{ ns}$
f ₁	Input Frequency Black/White	1.5	2.0475	2.2	MHz	t_r , $t_f \le 20 \text{ ns}$
tpw1	B/W Clock LOW Time	200	215	230	ns	t_r , $t_f \le 20 \text{ ns}$
tpw1	B/W Clock HIGH Time	200	215		ns	$t_r, t_f \le 20 \text{ ns}$
tpw2	Color Clock LOW Time	30	35	40	ns	t_r , $t_f \le 5$ ns
tPW2	Color Clock HIGH Time	30	35		ns	t_r , $t_f \le 5$ ns
tov	Color Clock Overlap Time		*	5	ns	
tCA	Time by which Composite Sync Output precedes Composite		2.0		μs	Black / White, Note 2
U A	Sync Input		500		ns	Color, Note 2
ts	Synchronization Time for Composite Sync Input			34	ms	Note 3
tCSR	Color Subcarrier Reset Pulse	130		200	ns	t_r , $t_f \le 20 \text{ ns}$

Notes

1. Subcarrier output should be dc blocked with 0.01 μF before loading.

- 2. t_{CA} is derived digitally from the input clock. t_{CA} = 4 black and white clock periods (7 color clock periods) + skew between Composite Sync Input and negative clock transition + 250 ns propagation delay.
- One full frame is the maximum. This synchronizes as a result of the region detected in Composite Sync input as shown in RS170EIA Timing Details. The minimum time is the width of the region.

RS170EIA Timing Details

B/W CLOCK PERIODS (COLOR CLOCK PERIO	DS)) 10 20 30 40 50 60 70 80 90 100 110 120 0 (70) (140) (210) (280) (350) (420) (490) (560) (630) (700) (770) (840))) 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 (70) (140) (210) (280) (350) (420) (490) (560) (630) (700) (770) (840) (70) (140)
HORIZONTAL DRIVE	90%		
COMPOSITE BLANK (DETAIL 1)	90%		
COMPOSITE SYNC (DETAIL 2)	90%		
COMPOSITE SYNC (DETAIL 3)	90%		
COLOR BURST FLAG (COLOR MODE ONLY) (DETAIL 4)	90%	(98) (133)	(98) (133)
COMPOSITE SYNC OUT, ADVANCED (DETAIL 5)	J		

Clock Timing Diagrams

b) Color Clocks

c) Color Subcarrier Timing and Reset Detail

*Maximum subcarrier amplitude attained within 8 color clock periods following rising edge of C/BW.

Clock Generator Circuitry

(a) Color Clock

(b) Black and White Clock

Note

Due to propagation delay associated with distance, Composite Sync at (3) is delayed from (1). Since Composite Sync Out from the Slave camera is advanced by t_{CA} from (3), the RC network can be adjusted so the (1) and (2) are exactly in sync.

3708 8-Channel Multiplex Switch

MOS Memory Products

Description

The 3708 is an 8-channel multiplex switch with an Output Enable control and 1-of-8 decoder included on-chip. It is manufactured using p-channel enhancement mode silicon gate technology. The logic input lines are npn bipolar compatible and can be used directly with TTL 5.0 V logic levels with no level shifting interface required. This device is intended for use in a/d converters, multiplexing in analog or digital data transmission systems, and other airborne or ground instrumentation signal routing applications.

- 1-of-8 DECODER ON-CHIP
- HIGH OFF-RESISTANCE TO
- **ON-RESISTANCE RATIO**
- OUTPUT ENABLE CONTROL
- LOW LEAKAGE CURRENT
- ZERO OFFSET VOLTAGE
- FAST SWITCHING TIME 1.5 μ s (MAX)
- TTL COMPATIBLE INPUT LOGIC LEVELS

Pin Names

A0-A2	Address Inputs
S1-S8	Switch Inputs
OE	Output Enable
Q ·	Data Output

Absolute Maximum Ratings

Storage Temperature	-65°C to +150°C
Operating Temperature	0°C to +70°C
Positive Voltage on any Pin	+0.3 V
Negative Voltage on Digital and	
Analog Input Pins	-30 V
Negative Voltage on Digital and	
Analog Output Pins	-30 V
Negative Voltage on VDD	-30 V
Total Power Dissipation in	
Package ($T_A = 25^{\circ}C$)	200 mW

Voltage ratings are all referenced to pins 2 and 4 (V_{SS}). Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress raany other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $V_{SS} = Pins 2 and 4$ $V_{DD} = Pin 13$

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	6Z	D

3708

Truth	n Table	Э		-
Logi	c Inpu	ts		Channel
Ao	A 1	A2	OE	ON
L	L	2 L	н	S ₁
н	L	L	н	S1 S2 S3 S4 S5 S6 S7
L	н	L	н	S ₃
н	н	L.	н	S4
L	L .	н	н	S5
н	L	н	н	S ₆
L	н	н	н	S7
н	Н	Н	н	S ₈
X	Х	Х	L	OFF

*Both V_{SS} lines are internally connected; either one or both may be used.

DC and AC Characteristics V_{OUT} = -5.0 V to +5.0 V, V_{DD} = -19 V \pm 1 V, V_{SS} = 5.5 V \pm 0.5 V, T_A = 0°C to +70°C

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
ViH	Input HIGH Voltage	V _{SS} -1.5	,	VSS	V	Note
VIL	Input LOW Voltage	VDD		0.8	V	Note
lin	Logic Input Leakage Current			10	μA	$V_{SS} - V_{LOGIC-IN} = 15 V$
LD	Data Input Leakage Current			500	nA	$V_{SS} - V_{IN} = 15 V$
Ιουτ	Output Leakage Current			500	nA	$V_{SS} - V_{OUT} = 15 V$
RON	Data Channel "ON" Resistance			450	Ω	$V_{OUT} = -5.0 V,$ $I_{OUT} = -100 \mu A$
PD	Power Dissipation			175	mW	$V_{DD} = -26 V,$ $V_{SS} = 0 V @ 25^{\circ}C$
ts	Channel Switching Time		· ·	1.5	μs	See Test Circuit

Note

When driven by TTL elements, avoid excessive dc loading of TTL elements to insure 3708 logic levels under maximum fanout conditions. Analog input signal swing should not exceed V_{SS} (= V_{CC}).

3708

Switching Time Test Circuit

Application

ANY TTL OR DTL INTEGRATED CIRCUIT

*Optional Components — not needed if TTL fan-out is limited to 1.

6-17

Note

•

Product Index and Selection Guides	
MOS Memory Technology Overview	2
RAM Data Sheets	3
EPROM Data Sheets	4
Serial Memory Data Sheets	5
Special Function Data Sheets	6
Extended Temperature Range Data Sheets	7
Ordering Information and Package Outlines	8
Sales Offices, Representatives and Distributor Locations	9

2102/2102L 1024 x 1 Static RAM

MOS Memory Products

Description

The 2102 family consists of 1024-word by 1-bit static Random Access read/write Memories (RAM) that require a single 5 V supply, have fully TTL-compatible inputs and output, and require no clocking or refresh. Chip Select (CS) permits a 3-state output allowing the outputs to be wired-OR.

The 2102 and 2102L are manufactured using the n-channel Isoplanar process and are available in a 16-pin dual in-line package or flatpak.

- FAST ACCESS—250 ns
- SINGLE +5 V SUPPLY
- TTL-COMPATIBLE INPUTS AND OUTPUT
- TOTALLY STATIC—NO CLOCKS OR REFRESH
- 3-STATE OUTPUT
- LOW POWER (2102L)
- FULLY EXPANDABLE
- FULLY DECODED
- 16-PIN DUAL IN-LINE PACKAGE
- TWO TEMPERATURE RANGES

Pin Names

A ₀ -A ₉ D	Address Inputs
Dँ	Data Input
R/W	Read/Write
CS	Chip Select (active LOW)
Q	Data Output

Absolute Maximum Ratings

Any Pin with Respect	
to V _{SS}	-0.5 V to +7.0 V
Storage Temperature	-55°C to +150°C
Operating Temperature	DL: -55°C to +85°C
	DM: -55°C to +125°C

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $V_{DD} = Pin 10$

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	6Z	D
Flatpak	II	F

Note

The Flatpak has the same Pin number to function correspondence as the DIP.

2102/2102L

DC Requirements Over full operating temperature range unless otherwise specified	
---	--

			2102 DL/D	M, 2102L DL/DM		
			С			
Symbol	Characteristic, Note		Min	Max	Unit	Condition
	Input HIGH Voltage	H,F,1	2.0	V _{DD}	V	
VIH	Input HIGH Voltage	2	2.2	VDD	v	
V.,	Input LOW Voltage	H,F,1	-0.5	0.8	V	
VIL		2	-0.5	0.65	v	
V _{DD}	Power Supply Voltage		4.5	5.5	v	

DC Characteristics V_{DD} = 5.0 V \pm 10%, V_{SS} = 0 V, over full operating temperature range unless otherwise specified

Symbol		2102 DL/	DM, 2102L DL/DM		
	Characteristic	Min	Max	Unit	Condition
VOH	Output HIGH Voltage	2.2		V	$I_{OH} = -100 \ \mu A$
VOL	Output LOW Voltage		0.45	V	I _{OL} = 2.1 mA
IIN	Input Leakage Current		10		V _{IN} = 5.5 V
ЮН	Output HIGH Leakage Current		10	μA	$\frac{V_{OUT} = V_{OH(Min)}}{CS} = V_{IH(Min)}$
IOL	Output LOW Leakage Current		-50	μA	$\frac{V_{OUT} = V_{OL(Max)}}{CS} = V_{IH(Min)}$
IDD	Power Supply Current 2102 2102L		60 30	mA	Inputs = 5.5 V D _{OUT} open, T _A = -55°C

AC Requirements Over full operating temperature range unless otherwise specified

		2102H 2102LH DL/DM	2102F 2102LF DL/DM	21021 2102L1 DL/DM	21022 2102L2 DL/DM		
Symbol	Characteristic	Min	Min	Min	Min	Unit	Condition
tcyc	Read or Write Cycle Time	250	350	450	650	ns	
t _{AW}	Address to Write Time	20	20	20	200	ns	
twp	Write Pulse Width	170	170	200	350	ns	V _{SS} = 0 V
twR	Write Recovery Time	0	0	0	50	ns	See DC Requirements for Conditions on V _{DD}
tDS	Data Set-up Time	170	170	200	350	ns	
tDH	Data Hold Time	0	0	0	20	ns	
tcw	Chip Select to Write Time	170	170	200	400	ns]
twc	Write to Chip Select Time	0	0	0	50	ns	

2102/2102L

Symbol	acteristics Over full op	2102H 2102LH		2102F 2102LF		21021 2102L1 DL/DM		21022 2102L2 DL/DM			
		Min	Max	Min	Max	Min	Max	Min	Max	Unit	Condition
tA	Read Access Time		250		350		450		650	ns	
t _{CO}	Chip Select to Output Time		130		170		200		400	ns	V _{SS} = 0 V
tOH1	Data Valid after Address	40		50		50		50		ns	See DC Requirements for Conditions on V _{DD}
tOH2	Previous Data Valid after Chip Deselect	0		0		0		0		ns	
CIN	Input Capacitance		5		5		5		5	ρF	$V_{IN} = 0 V, V_{SS} = 0 V$
Соит	Output Capacitance		10		10		10		10	pF	$f = 1 \text{ MHz}, T_A = 25^{\circ}\text{C}$

For block diagram, functional description and timing diagrams refer to standard 2102 data sheet, Section 3.

F2114/F2114L 1024 x 4 Static RAM

MOS Memory Products

Description

The F2114 is a 4096-bit static Random Access Memory (RAM) organized as 1024 words of four bits each. Since the operation of the F2114 is entirely static, there is no clocking or refreshing required. It operates from a single +5 V supply and is directly a TTL compatible at all inputs and outputs including the four bidirectional data I/O pins.

It is designed for memory applications in which static operation, large bit-capacity, and simple interfacing are important design considerations.

The F2114 is manufactured using Fairchild's n-channel silicon gate Isoplanar process. The innovative use of polysilicon resistors in the static memory cell permits a high bit packing density and insures low-power characteristics. It is available in a standard ceramic 18-pin dual in-line package.

- 1024 x 4-BIT ORGANIZATION
- SINGLE +5 V SUPPLY
- COMPLETELY STATIC—NO CLOCKS OR REFRESH
- TOTALLY TTL COMPATIBLE
- COMMON DATA I/O PINS WITH 3-STATE CAPABILITY
- IDENTICAL CYCLE AND ACCESS TIMES
- LOW POWER (2114L)

Pin Names

A ₀ -A ₉	Address Inputs
CS	Chip Select (Active LOW)
WE	Write Enable (Active LOW)
DQ1-DQ4	Data Input/Output
Vcc	+5 V Power Supply
GND	Ground

Absolute Maximum Ratings

Voltage at Any Pin with Respect	
to GND	-0.5 V to +7.0 V
Operating Temperature (Ambient)	−55 to +125°C
Storage Temperature (Ambient)	-55°C to +150°C
Power Dissipation	1 W

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

 $V_{CC} = Pin \ 18$ GND = Pin 9

Connection Diagram 18-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	8D	D

F2114/F2114L

DC Electrical Requirements and Characteristics $~T_A=-55$ to $+125\,^\circ\text{C},~V_{CC}=5.0$ V $\pm~10\%,$ all voltages are with respect to ground, Note 1

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	2.0		Vcc	V	· · · · · · · · · · · · · · · · · · ·
VIL	Input LOW Voltage	-0.5		0.8	V	
V _{OH}	Output HIGH Voltage	2.4		Vcc	V	$I_{OUT} = -1.0 \text{ mA}$
V _{OL}	Output LOW Voltage	0		0.4	V	I _{OUT} = 2.1 mA
los	Output Short-Circuit Current ²	1		65	mA	V _{OUT} = 0 V
Icc	Average V _{CC} Supply Current F2114L2, F2114L3, F2114L			70	mA	$V_{CC} = 5.5 V,$ $T_A = 0^{\circ}C,$
	Average V _{CC} Supply Current F2114-2, F2114-3, F2114			100	mA	$V_{IN} = 5.5 V,$ I/O current = 0 mA
IN	Input Leakage Current			10	μA	V _{IN} = 0 to 5.5 V
IDQ	I/O Leakage Current	-10		10	μA	$\overline{CS} = 2.0 V,$ V _{1/O} = 0.4 V to V _{CC}
C _{IN}	Input Capacitance			5.0	pF	$T_{A} = 25^{\circ}C, f = 1.0 \text{ MHz}$ $V_{IN} = 0 \text{ V}$
C _{DQ}	I/O Capacitance			5.0	pF	$T_A = 25^{\circ}C, f = 1.0 \text{ MHz}$ $V_{1/O} = 0 \text{ V}$

AC Electrical Requirements and Characteristics $T_A = -55$ to +125 °C, $V_{CC} = 5.0$ V \pm 10%, Notes 1 and 3

Symbol	Characteristic	F2114-2/L-2		F2114-3/L-3		F2114/L			
		Min	Max	Min	Max	Min	Max	Unit	Note
tcyc	Read or Write Cycle Time	200		300		450		ns	
tACC	Read Access Time		200		300		450	ns	
tco	CS LOW to Output Valid Delay		70		100		100	ns	
tcsx	CS LOW to Output Active Delay	20		20		20		ns	
todh	Output Data Hold Time after Address	50		50		50		ns	
tOFF	Output OFF Delay from CS	0	60	0	80	0	100	ns	
t _{AW}	Address to Write Set-up Time	0		0		0		ns	
twp	WE Pulse Width	120		150		200		ns	
twR	Write Recovery Time	0		0		0		ns	
tDS	Input Data Set-up Time	120		150		200		ns	
tDH	Input Data Hold Time	0		0		0		ns	

Notes

1. Test Note: The F2114 employs a self starting oscillator and a charge pump which require a start-up time of 500 μs after V_{CC} reaches at least 4.75 V.

2. Duration not to exceed 30 seconds.

0.8 to 2.0 V 10 ns 1.5 V 1 TTL Gate, CL = 100 pF

For block diagram, functional description and timing diagrams refer to standard 2114 data sheet, Section 3.

^{3.} AC Characteristic Test Conditions: Input Levels Input Rise and Fall Times Input and Output Timing Levels Output Load

3341/3341A 64 x 4 FIFO Serial Memory

MOS Memory Products

Description

The 3341 or 3341A is a 64-word x 4-bit First-In First-Out (FIFO) serial memory. Inputs and the outputs are completely independent (no common clocks) making the 3341/3341A ideal for asynchronous buffer applications.

Special on-chip input pull-up circuits and bipolar-compatible output buffers provide direct bipolar interfacing with no external components required. Control signals are provided for both vertical and horizontal cascading.

The 3341 and 3341A are manufactured using the p-channel Isoplanar silicon gate process and are available in both ceramic and plastic packages.

- 1 MHz (3341A) AND 700 kHz (3341) DATA RATES
- INDEPENDENT ASYNCHRONOUS INPUTS
- AND OUTPUTS
- FULLY TTL COMPATIBLE
- EXPANDABLE IN EITHER DIRECTION
- ACTIVE PULL-UP ON INPUTS
- TWO TEMPERATURE RANGES
- 16-PIN DUAL IN-LINE PACKAGE

Pin Names

IR	Input Ready
SI	Shift In
D0-D3	Data Inputs
MR	Master Reset
OR	Output Ready
SO	Shift Out
Q ₀ -Q ₃	Data Outputs
V _{SS}	+5 V Power Supply
V _{DD}	0 V Power Supply
V _{GG}	-12 V Power Supply
V _{DD}	0 V Power Supply

Absolute Maximum Ratings

Storage Temperature	-65°C to +150°C
Operating Temperature	DL: -55°C to +85°C
· · · .	DM: -55°C to +125°C
Voltage on All Pins Except	
V _{DD} with Respect to V _{SS}	-20 V to +0.3 V
Voltage on V _{DD}	-7.0 V to +0.3 V

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

 $V_{SS} = Pin 16$ $V_{DD} = Pin 8$ $V_{GG} = Pin 1$

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	6Z	D

DC Characteristics	$V_{SS} = +5 V \pm 5\%$, $V_{GG} = -12 V \pm 5\%$, $V_{DD} = 0 V$	
over full operating ter	nperature range unless otherwise indicated	

	·	F3341DL/	DM, 334	1ADL/DM			
Symbol	Characteristic	Min	Тур	Max	Unit	Condition	
VIH	Input HIGH Voltage	V _{SS} - 1.0			V	Notes 1 and 2	
VIL	Input LOW Voltage			0.8	V ·	Note 1	
Vон	Output HIGH Voltage	V _{SS} - 1.0			V	$I_{OH} = -0.3 \text{ mA}$	
VOL	Output LOW Voltage			0.4	V	I _{OL} = 1.6 mA	
	Input Pull-up			2.0	V	V _{SS} = 4.75 V	
VII Initiation Voltage			2.2	V	V _{SS} = 5.25 V		
VIP	Peak Input Current Voltage Point			V _{SS} – 1.5	v		
Чн	Input HIGH Current	-200			μA	Note 1, $V_{IN} = V_{SS} - 1.0 V$	
hΓ	Input Leakage Current			-50	μA	Note 1, $V_{IN} = 0 V$	
lip.	Input Barrier Current			-2.0	mA	Note 1	
IGG	V _{GG} Current			- 16	mA		
IDD	V _{DD} Current			-60	mA		

Notes

- 1. Inputs include D₀-D₃. Master Reset, Shift In, and Shift Out.
- Internal pull-up circuits are provided on all inputs to insure proper HIGH level.
- 3. Control signals include Input Ready, Shift In, Output Ready, and Shift Out.
- 4. This parameter defines total time from the time data is loaded into the first word location to the time it is available at Q_0 - Q_3 with the FIFO initially empty. Conversely, t_{BT} also defines the time required for an empty space to propagate from the last word location back to the first word location. When the FIFO is full, this is the time from the HIGH-to-LOW transition of OR to the LOW-to-HIGH transition of IR.
- 5. 1 TTL load +20 pF.
- The MR input overrides all other control functions. It resets the control register and the input and output control logic while disabling any SI or SO inputs.
- 7. t_{IRH} is referenced to the positive going edge of IR or SI, whichever occurs later.
- 8. t_{IRL} is referenced to the negative going edge of IR or SI, whichever occurs later.

- 9. t_{DD} is referenced to the positive going edge of IR or SI, whichever occurs later.
- 10. t_{OVH} is referenced to the positive going edge of IR or SI, whichever occurs later.
- 11. t_{OVL} is referenced to the negative going edge of IR or SI whichever occurs later.
- 12. Data must be stable for t_{DH} or t_{IRH}, whichever is shorter.
- 13. t_{ORH} is referenced to the positive going edge of OR or SO, whichever occurs later.
- 14. t_{ORL} is referenced to the negative going edge of OR or SO, whichever occurs later.
- t_{DV} is referenced to the negative going edge of OR or SO, whichever occurs later.
- t_{OVH} is referenced to the positive going edge of IR or SI, whichever occurs later.
- 17. t_{OVL} is referenced to the negative going edge of IR or SI, whichever occurs later.

		3341	3341A DL/DM			3341 DL/DM				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit	Condition	
tiRH	Input Ready HIGH Time	80		400	100	300	550	ns	Notes 7, 12	
tIRL	Input Ready LOW Time	100		550	138	300	550	ns	Note 8	
tovn	Control Overlap HIGH Time	80			100			ns	Notes 3, 16	
tovL	Control Overlap LOW Time	80			100			ns	Notes 3, 17	
tDH	Data Input Stable Time	200			400			ns	-	
tDD	Data Input Delay Time			0			25	ns	Note 9	
torh	Output Ready HIGH Time	80		450	100	300	500	ns	Note 13	
tORL	Output Ready LOW Time	80		550	170	450	850	ns	Note 14	
tвт	Data Bubble-through Time			16			32	μs	Note 4	
tDV	Data Valid After SO or OR	75			75			ns	Note 15	
tMRW	Master Reset Pulse Width	400			400			ns	Note 6	
tDA	Data Output Available Time	0			0			ns		
CIN	Input Capacitance of Data and Control Lines			7.0			7.0	pF	$f = 1 MHz, V_{IN} = V_{SS}$	
C _{MR}	Inp <u>ut</u> Capacitance of MR			7.0			15	pF	$f = 1 MHz, V_{MR} = V_{S}$	
f	Operating Frequency			1000			700	kHz	Note 5	

AC Characteristics $V_{CC} = +5 V \pm 5\%$, $V_{DD} = 0 V$, $V_{GG} = -12 V \pm 5\%$ over full operating temperature range unless otherwise indicated

Notes on previous page

For block diagram, functional description, timing diagrams and applications refer to standard 3341/3341A data sheet, Section 5.

3351 40 x 9 FIFO Memory

MOS Memory Products

Description

The 3351 is a First-In First-Out (FIFO) memory used in data rate buffering applications. The 3351 has a capacity of 40 9-bit words. The words are accepted at the input, automatically shifted towards the output, and removed at any rate in the same sequence in which they were entered.

The 3351 has status indicators on both the input and output to signal an available empty input or a valid data word at the output. It also has separate input and output enable lines, in addition to a master reset line. A unique input stage interfaces to TTL without external components. The 3351 is manufactured using the p-channel lsoplanar silicon gate process with ion-implantation.

- 2 MHz (3351-1), 1.5 MHz (3351-3), AND 1 MHz (3351-2) DATA RATES
- INDEPENDENT ASYNCHRONOUS INPUTS AND OUTPUTS
- FULLY TTL COMPATIBLE
- 3-STATE OUTPUTS
- INPUT AND OUTPUT ENABLE CONTROLS
- EXPANDABLE IN EITHER DIRECTION
- STATUS INDICATORS ON INPUT AND OUTPUT
- 28-PIN CERAMIC DUAL IN-LINE PACKAGE
- TWO TEMPERATURE RANGES

Pin Names

D ₀ -D ₈	Data Inputs
MR	Master Reset
ĪĒ	Input Enable
IR	Input Ready
SI	Shift In
SO	Shift Out
ŌĒ	Output Enable
OR	Output Ready
Q0-Q8	Data Outputs

Absolute Maximum Ratings

V _{GG} and Inputs	-20 V to +0.3 V
V _{DD} and Outputs	-7.0 V to +0.3 V
Output Sink Current	5.0 mA
Storage Temperature	-55°C to +150°C
Operating Temperature	DL: -55°C to +85°C
	DM: -55°C to +125°C

Note

All Voltages with respect to VSS.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

Connection Diagram 28-Pin DIP

VGG 🗖		28 🗖 Vss
ŌE 🗖	2	27 🗖 ĪĒ
o 0 🗖	3	26 🗖 D ₀
Q 1 🗖	4	25 🗖 D1
Q 2	5	24 🗖 D2
Q 3 🗖	6	23 🗖 D3
Q4 🗖	7	22 🗖 D4
Q5 🗖	8	21 🗖 D5
Q 6 🗖	9	20 🗖 D ₆
Q7	10	19 🗖 D7
Q8 🗖	11	18 🗖 D8
OR 🗖	12	17 🗖 SI
so 🗖	13	16 🗖 IR
VDD 🗖	14	15 MR

(Top View)

Package	Outline	Order Code
Ceramic DIP	8E	D

3351

DC Requirements $V_{SS} = 5.0 \text{ V} \pm 5\%$, $V_{DD} = 0 \text{ V}$, $V_{GG} = -12 \text{ V} \pm 5\%$, over full operating temperature range unless otherwise specified.

Symbol (3351-1DL/DM		3351-2DL/DM		3351-3DL/DM			
	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
VIH	Input HIGH Voltage	V _{SS} -1.0	V _{SS} +0.3	V _{SS} -1.0	V _{SS} +0.3	V _{SS} -1.0	V _{SS} +0.3	v	Note
VIL	Input LOW Voltage	V _{GG}	0.8	V _{GG}	0.8	V _{GG}	0.8	v	Note

DC Characteristics V_{SS} = 5.0 V \pm 5%, V_{DD} = 0 V, V_{GG} = -12 V \pm 5%

		3351-1DL/DM		3351-2DL/DM		3351-3DL/DM				
Symbol	Characteristic	Min	Мах	Min	Max	Min	Max	Unit	Condition	
V _{OH1}	Output HIGH Voltage	V _{SS} -0.5		V _{SS} -0.5		V _{SS} -0.5		v	I _{OH} = 50 μA	
V _{OH2}	Output HIGH Voltage	2.4		2.4		2.4		v	$I_{OH} = -0.2 \text{ mA}$	
V _{OL}	Output LOW Voltage		0.4		0.4		0.4	V.	I _{OL} = 1.6 mA	
VII	Pull-up Initiation Voltage		2.2		2.2		2.2	v	Note I _{IN} = -0.12 mA	
VIP	Peak Current Voltage		V _{SS} -1.5		V _{SS} -1.5		V _{SS} -1.5	v	Note	
lip	Peak Current		-2.0		-2.0		-2.0	mA	Note	
Ιн	Input HIGH Current	-0.22		-0.22		-0.22		mA	Note V _{IN} = V _{SS} - 1.0 V	
IIL	Input LOW Current		-70		-70		-70	μA	Note V _{IN} = 0.4 V	
IDD	V _{DD} Current		65		50		50	mA		
I _{GG}	V _{GG} Current		- 12		- 10		- 10	mA		

Note

Includes all Data inputs, $\overline{IE},\ \overline{OE},\ SI,\ \overline{SO}$ and $\overline{MR}.$ (See Active Pull-up description.)

		3351-1DL/DM		3351-2	2DL/DM	3351-3DL/DM			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
tids	IE Disable Set-Up Time	20		20		20		ns	
tidh	ÎE Disable Hold Time	20		20		20		ns	
ties	IE Enable Set-Up Time	0		0		0		ns	
ţЕН	IE Enable Hold Time	0		0		0		ns	
tDS	Input Data Set-Up Time	0		0		0		ns	
tDH	Input Data Hold Time	220		440		300		ns	
^t SIH	SI HIGH Time	220		440		300		ns	
tSIL	SI LOW Time	280		560		370		ns	
tods	OE Disable Set-Up Time	20		20		20		ns	
tODH	OE Disable Hold Time	20		20		20		ns	
tOES	OE Enable Set-Up Time	0		0		0		ns	
tOEH	OE Enable Hold Time	0		0		0		ns	
tSOL	SO LOW Time	200		400		260		ns	
tsoн	SO HIGH Time	300		600		450		ns	
tRPW	MR Pulse Width	100		200		150		ns	
tRS	MR to SI Set-Up Time	0		0		0		ns	

AC Requirements $V_{SS} = 5.0 \text{ V} \pm 5\%$, $V_{DD} = 0 \text{ V}$, $V_{GG} = -12 \text{ V} \pm 5\%$, over full operating temperature range unless otherwise specified.

Notes

1. All input t_r and t_f: 10 ns.

2. All time measurements referenced to 50% level.

3351

3351

		3351-1DL/DM		3351-2DL/DM		3351-3DL/DM			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Condition
tsi-irhl	SI to IR Delay Time		220		440		300	ns	Note 1
tsi-irlh	SI to IR Delay Time		280		560		370	ns	
tso-orll	SO to OR Delay Time		200		400		300	ns	Note 1
tso-orhh	SO to OR Delay Time		300		600		410	ns	
t _{MR} -IR	MR to IR Delay Time		300		480		480	ns	
tmr-or	MR to OR Delay Time		240		480		480	ns	1
^t вт	Bubble-Through Time		9.0		15		15	μs	Note 2
tE	Output Enable Time		300		600		480	ns	
tD	Output Disable Time		300		600		480	ns	
f	Operating Frequency		2.0		1.0		1.5	MHz	

AC Characteristics $V_{SS} = 5.0 V \pm 5\%$, $V_{DD} = 0 V$, $V_{GG} = -12 V \pm 5\%$, over full operating temperature range unless otherwise specified. See Notes 3. 4 and Output Load

Notes

1. HL means positive-going edge of first signal to negative-going

edge of second signal, etc.

2. Forward and reverse.

3. All input $t_{f} \text{ and } t_{f} :$ 10 ns.

4. All time measurements referenced to 50% level.

Output Loading

For block diagram, functional description, timing diagrams and applications information refer to standard 3351 data sheet, Section 5.

3357/F2847 Quad 80-Bit Static Shift Register

MOS Memory Products

Description

The 3357 and F2847 are single phase quad 80-bit static shift registers. Both have an on-chip clock generator that is driven by a single phase TTL clock. A multiplexer is provided to allow data to be entered from the input or recirculated from the output. A unique on-chip input pull-up circuit allows interfacing directly from TTL to all inputs without external components.

The 3357 and F2847 are manufactured with the p-channel Isoplanar process and are available in 16-pin ceramic or plastic dual in-line packages in two temperature ranges.

- 4.0 MHz (3357), 2.5 MHz (F2847)
- TTL COMPATIBILITY
- SINGLE PHASE TTL CLOCK
- LOW CLOCK CAPACITANCE
- INPUT MULTIPLEXER
- 16-PIN CERAMIC DUAL IN-LINE PACKAGE
- LOW POWER VERSION (F2847L)
- TWO TEMPERATURE RANGES

Pin Names

D ₁ -D ₄	Data Inputs
REC1-REC4	Recirculate Inputs
CP	Clock Input
Q1-Q4	Data Outputs

Absolute Maximum Ratings

V _{GG} and Inputs	-20 V to +0.3 V
V _{DD} and Outputs	-7.0 V to +0.3 V
Output Sink Current	10 mA
Storage Temperature	-55°C to +150°C
Operating Temperature	DL: -55°C to +85°C
	DM: -55°C to +125°C

All voltages with respect to VSS.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

V_{SS} = Pin 16 V_{DD} = Pin 8 V_{GG} = Pin 12

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	6Z	D

DC Requirements $~V_{SS}$ = +5.0 V $\pm5\%,~V_{DD}$ = 0 V, V_{GG} = -12 V $\pm5\%,$ over full operating temperature range unless otherwise indicated

			DL/DM, 'DL/DM		Condition	
Symbol	Characteristic	Min	Max	Unit		
ViH	Input HIGH Voltage	V _{SS} – 1	V _{SS} + 0.3	v	Note 1	
VIL	Input LOW Voltage	V _{GG}	+0.8	V	Note 1	

DC Characteristics V_{SS} = +5.0 V ±5%, V_{DD} = 0 V, V_{GG} = -12 V ±5%, over full operating temeprature range unless otherwise indicated

Symbol	Characteristic		Min	Max	Unit	Condition
VOH	Output HIGH Voltage		V _{SS} – 1		V	$I_{OH} = -0.1 \text{ mA}$
VOL	Output LOW V	Output LOW Voltage		0.4	V	I _{OL} = 1.6 mA
VII	Input Pull-up Initiation Voltage			2.2	V	Note 1, I _{IN} < -0.12 mA
VIP	Input Peak Current Voltage			V _{SS} - 1.5	V	Note 1
lıp	Input Peak Current			-2.0	mA	Note 1
Ιн	Input HIGH Current		-0.22		mA	Note 1, V _{IN} = V _{SS} - 1.0 V
۱ _{۱L}	Input LOW Current			-50	μA	Note 1, V _{IN} = 0.4 V
		3357 DL/DM		-25	mA	
IDD	V _{DD} Current	F2847L DL/DM		-25	mA	
		F2847 DL/DM		-45	mA	
		3357 DL/DM		- 18	mA	Max Operating
IGG	V _{GG} Current	F2847L DL/DM		- 15	mA	Frequency
		F2847 DL/DM		-20	mA	

AC Requirements V_{SS} = +5.0 V ±5%, V_{DD} = 0 V, V_{GG} = -12 V ±5%, over full operating temperature range unless otherwise indicated

		3357 DL/DM		F2847 DL/DM, F2847L DL/DM			
Symbol	Characteristic	Min	Max	Min	Max	Unit	Condition
f	Operating Frequency	0	4.0	0	2.5	MHz	
tрwн	Clock Pulse Width HIGH	0.095	100	0.15	10	μs	
tPWL	Clock Pulse Width LOW	0.135		0.18		μs	
tDS	Data Set-up Time	40		120		ns	See Timing
tDH	Data Hold Time	30		60		ns	Diagram, Note 2
tss	Select Set-up Time	40		70		ns	
tsH	Select Hold Time	40		40		ns	

Notes

1. Applies to all inputs including Clock.

2. t_f , t_f = Clock Transition Time = 0.5 μ s.

AC Characteristics $V_{SS} = +5.0 \text{ V} \pm 5\%$, $V_{DD} = 0 \text{ V}$, $V_{GG} = -12 \text{ V} \pm 5\%$, over full operating temperature range unless otherwise indicated.

Symbol	Parameter		Min	Max	Unit	Condition
CIN	Input Capacitance			5.0	pF	All Inputs
Соит	Output Capacitance			5.0	рF	
t _{ACC} Clock to Output Delay		3357 DL/DM		185		See Timing Diagram
	Clock to Output Delay Time	F2847L DL/DM		280	ns	
		F2847 DL/DM		280		

For block diagram, functional description and timing diagram refer to standard 3357/F2847 data sheet, Section 5.

3708 8-Channel Multiplex Switch

MOS Memory Products

Description

The 3708 is an 8-channel multiplex switch with an Output Enable control and 1-of-8 decoder included on-chip. It is manufactured using p-channel enhancement mode silicon gate technology. The logic input lines are npn bipolar compatible and can be used directly with TTL 5.0 V logic levels with no level shifting interface required. This device is intended for use in a/d converters, multiplexing in analog or digital data transmission systems, and other airborne or ground instrumentation signal routing applications.

- 1-of-8 DECODER ON CHIP
- HIGH OFF-RESISTANCE TO ON-RESISTANCE RATIO
- OUTPUT ENABLE CONTROL
- LOW LEAKAGE CURRENT
- ZERO OFFSET VOLTAGE
- FAST SWITCHING TIME 1.5 µs (MAX)
- TTL COMPATIBLE INPUT LOGIC LEVELS
- TWO TEMPERATURE RANGES

Pin Names

A₀-A₂ Address Inputs S₁-S₈ Switch Inputs OE Output Enable Q Data Output

Absolute Maximum Ratings

Storage Temperature	-65°C to +150°C
Operating Temperature	DL: -55°C to +85°C
	DM: -55°C to +125°C
Positive Voltage on any Pin	+0.3 V
Negative Voltage on	
Digital and	
Analog Input Pins	-30 V
Negative Voltage on	
Digital and	
Analog Output Pins	-30 V
Negative Voltage on V _{DD}	-30 V
Digital and Analog Output Pins	

Voltage ratings are all referenced to pins 2 and 4 (V_{SS}). Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $V_{SS} = Pins 2 and 4$ $V_{DD} = Pin 13$

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code	
Ceramic DIP	6Z	D	

3708

DC and AC Characteristics	$V_{OUT} = -5.0 V$ to +5.0 V, $V_{DD} = -1$	$9 V \pm 1 V$, $V_{SS} = 5.5 V \pm 0.5 V$,
over full operating temperatur	e range unless otherwise indicated	

		3708DL	3708DL/DM				
Symbol	Characteristic	Min	Тур	Max	Unit	Condition	
VIH	Input HIGH Voltage	V _{SS} -1.5		VSS	V	Note	
VIL	Input LOW Voltage	V _{DD}		0.8	V	Note	
IIN	Logic Input Leakage Current			10	μA	$V_{SS} - V_{LOGIC-IN} = 15 V$	
LD	Data Input Leakage Current			500	nA	$V_{SS} - V_{IN} = 15 V$	
OUT	Output Leakage Current			500	nA	$V_{SS} - V_{OUT} = 15 V$	
R _{ON}	Data Channel "ON" Resistance			450	Ω	$V_{OUT} = -5.0 V,$ $I_{OUT} = -100 \ \mu A$	
PD	Power Dissipation			200	mW	$V_{DD} = -26 V,$ $V_{SS} = 0 V @ 25^{\circ}C$	
ts	Channel Switching Time	T		1.5	μs	See Test Circuit	

Note

When driven by TTL elements, avoid excessive dc loading of TTL elements to insure 3708 logic levels under maximum fanout conditions. Analog input signal swing should not exceed V_{SS} (= V_{CC}).

For block diagram, truth table and application refer to standard 3708 data sheet, Section 6.

7-19

F4116 • F4116/240 16,384 x 1 Dynamic RAM

MOS Memory Products

Description

The F4116 and F4116/240 are 16,384-bit MOS dynamic Random Access Memories (RAM) configured as 16,384 one-bit words. They are manufactured using Fairchild's n-channel silicon gate, double-poly Isoplanar process. The use of the single-transistor memory cell along with address multiplexing techniques permits the packaging of the F4116 in a standard 16-pin dual in-line package. This package allows construction of highly dense memory systems utilizing widely available automated testing and insertion equipment.

- TWO TEMPERATURE RANGES
- LOW CAPACITANCE, TTL-COMPATIBLE INPUTS (INCLUDING CLOCKS)
- ON-CHIP ADDRESS AND INPUT DATA LATCHES
- 3-STATE TTL-COMPATIBLE OUTPUT WITH DATA VALID TIME CONTROLLED BY CAS
- COMMON I/O CAPABILITY
- TWO DIMENSIONAL SELECTION BY DECODING BOTH RAS AND CAS
- STANDARD 10% SUPPLIES (+12 V, +5 V, AND -5 V)
- FLEXIBLE TIMING WITH PAGE-MODE AND EXTENDED PAGE BOUNDARIES
- 128-CYCLE RAS-ONLY REFRESH
- AVAILABLE IN 16-PIN CERAMIC DIP AND FLATPAK

Pin Names

A0-A6	Address Inputs
D	Data Input
WE	Write Enable Input (Active LOW)
RAS	Row Address Strobe Input
	(Active LOW Clock)
CAS	Column Address Strobe Input
	(Active LOW Clock)
Q	Data Output
Vcc	+5 V Power Supply
VSS	0 V Power Supply
V _{BB}	-5 V Power Supply
V _{DD}	+12 V Power Supply

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	(Order Code
Ceramic DIP Flatpak	2C 2R	[[2

Absolute Maximum Ratings

Voltage on Any Pin Relative to V_{BB} ($V_{SS} - V_{BB} \ge 4.5$ V)	-0.5 V to +20 V
Ambient Operating Temperature	
F4116	-55°C to +85°C
Case Operating Temperature	
F4116/240	-55°C to +110°C
Storage Temperature (Ambient)	-65°C to +150°C
Power Dissipation	1 W
$V_{BB} - V_{SS} (V_{DD} - V_{SS} > 0 V)$	0 V
Voltage on V _{DD} , V _{CC} Supplies	
Relative to V _{SS}	-1.0 V to +15 V
Short-circuit Output Current	50 mA

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Requirements (F4116) $T_A = -55^{\circ}C$ to $+85^{\circ}C$, Notes 1 and 2

		F4116	-2, -3, -4			
Symbol	Characteristic	Min	Тур	Max	Unit	Condition
V _{DD}	Supply Voltage	10.8	12	13.2	V	
Vcc	Supply Voltage	4.5	5.0	5.5	V	Note 5
V _{SS}	Supply Voltage	0	0	0	V	
V _{BB}	Supply Voltage	-5.5	-5.0	-4.5	V	
VIHC	Input HIGH Voltage, RAS, CAS, WE	2.7		7.0	V	
VIH	Input HIGH Voltage, All Inputs except RAS, CAS, WE	2.4		7.0	v	
VIL	Input LOW Voltage, All Inputs	-1.0		0.8	V	

F4116 • F4116/240

Extended Temperature Range Supplement

		F4116	-2, -3, -4			1	
Symbol	Characteristic		Min Typ	Max	Unit	Condition	
Vон	Output HIGH Voltage		2.4			v	I _{OUT} = -5.0 mA Note 5
VOL	Output LOW Voltage				0.4	v	I _{OUT} = 4.2 mA, Note 5
		Normal Operation	·		35	mA	
	Average V _{DD} Current	Standby			2.25	mA	
DD		Refresh			27	mA	
		Page Mode			27	mA	Note 3
I _{CC} Average V	Average V _{CC} Current	Normal Operation / Page Mode				mA	
		Standby/Refresh	-10		10	μA	Note 3, 4
IBB	Average V _{BB} Current	Normal Operation/ Refresh/Page Mode			400	μA	
		Standby			200	μA	
IIN	Input Leakage Current	(Any Input)	-10		10	μA	
Ιουτ	Output Leakage Curre	nt	-10		10	μA	
C _{IN1}	Input Capacitance, A ₀	-A ₆ , D _{IN}		4.0	5.0	рF	Note 6
CIN2	Input Capacitance, RA	S, CAS, WE		8.0	10	рF	Note 6
Соит	Output Capacitance, I	Ουτ		5.0	7.0	pF	$\overline{CAS} = V_{IHC}$

Recommended ac Operating Conditions (F4116) Over full range of voltage and $T_A = -55^{\circ}C$ to $+85^{\circ}C$

		F4110	6-2	F4116-3		F4116-4			
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Note
tRC	Random Read or Write Cycle Time	320		375		410		ns	7
tRWC	Read-Write Cycle Time	320		375		425		ns	7
tRMW	Read Modify Write Cycle Time	320		405		500		ns	7
tPC	Page Mode Cycle Time	170		225		275		ns	7
tRAC	Access Time from RAS		150		200		250	ns	8, 10
tCAC	Access Time from CAS		100		135		165	ns	9, 10
tOFF	Output Buffer Turn-off Delay	0	40	0	50	0	60	ns	11
t _{RP}	RAS Precharge Time	100		120		150		ns	
tRAS	RAS Pulse Width	150	5000	200	5000	250	5000	ns	
tRSH	RAS Hold Time	100		135		165		ns	
tCSH	CAS Hold Time	150		200		250		ns	

		F4110	6-2	F4116-3		F4116-4		-	
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit	Note
tCAS	CAS Pulse Width	100	5000	135	5000	165	5000	ns	
tRCD	RAS to CAS Delay Time	20	50	25	65	35	85	ns	12
tASR	Row Address Set-up Time	0		0		0		ns	
t _{RAH}	Row Address Hold Time	20		25		35		ns	
tasc	Column Address Set-up Time	0		0		0		ns	
tCAH	Column Address Hold Time	45		55		75		ns	
t _{AR}	Column Address Hold Time Referenced to RAS	95		120		160		ns	
tŢ	Transition Time (rise and fall)	3.0	35	3.0	50	3.0	50	ns	13
tRCS	Read Command Set-up Time (RMW)	0		0		0		ns	
tRCH	Read Command Hold Time	0		0		0		ns	
twcн	Write Command Hold Time	45		55		75		ns	
twcR	Write Command Hold Time Referenced to RAS	95		120		160		ns	
twcs	Write Command Set-up Time	0		0		0		ns	14
twp	Write Command Pulse Width	45		55		75		ns	
tRWL	Write Command to RAS Lead Time	50		70		85		ns	15
tcwL	Write Command to CAS Lead Time	50		70		85		ns	15
tDS	Data In Set-up Time	0		0		0		ns	16
t _{DH}	Data In Hold Time	45		55		75		ns	16
tDHR	Data In Hold Time Referenced to RAS	95		120		160		ns	
tCRP	CAS to RAS Precharge Time	0		0		0		ns	
tCP	CAS Precharge Time (Page-mode)	60		80		100		ns	
tRF	Refresh Period		2.0		2.0		2.0	ms	
tCWD	CAS to WE Delay	60		80		90		ns	17
tRWD	RAS to WE Delay	110		145		175		ns	17

Recommended ac Operating Conditions (F4116) (Cont'd)

DC Requirements (F4116/240) $T_C = -55$ °C to +110 °C, Notes 1 and 2

		F4116	/240			
Symbol	Characteristic	Min	Тур	Max	Unit	Condition
V _{DD}	Supply Voltage	10.8	12	13.2	V	
Vcc	Supply Voltage	4.5	5.0	5.5	V	Note 5
V _{SS}	Supply Voltage	0	0	0	V	
V _{BB}	Supply Voltage	-5.5	-5.0	-4.5	V	
VIHC	Input HIGH Voltage, RAS, CAS, WE	2.7		7.0	V	
VIH	Input HIGH Voltage, All Inputs except RAS, CAS, WE	2.4		7.0	v	
VIL	Input LOW Voltage, All Inputs	-1.0		0.8	V	

DC Characteristics (F4116/240) Over full range of voltage and $T_C = -55$ °C to +110 °C

			F4116	/240			
Symbol	Characteristic		Min	Тур	Max	Unit	Condition
V _{OH}	Output HIGH Voltage		2.4			V	$I_{OUT} = -5.0 \text{ mA},$ $V_{CC} = 4.5 \text{ V Note 5}$
V _{OL}	Output LOW Voltage				0.4	v	I _{OUT} = 4.2 mA, V _{CC} = 4.5 V Note 5
		Normal Operation			35	mA	
		Standby			1.75	mA	
DD	Average V _{DD} Current	Refresh			27	mA	
		Page Mode			27	mA	Note 3
		Normal Operation			600	μA	
Icc	Average V _{CC} Current	Page Mode			1000	μA	
		Standby/Refresh	- 10		10	μA	Notes 3 and 4
I _{BB}	Average V _{BB} Current	Normal Operation/ Refresh/Page Mode			400	μA	
		Standby			200	μA	
IIN	Input Leakage Current	(Any Input)	-10		10	μA	$V_{IN} = 0 \text{ to } 7.0 \text{ V}$
Ιουτ	Output Leakage Curre	nt	-10		10	μA	RAS and CAS = V _{IHC} V _{OUT} = 0 to 5.5 V
C _{IN1}	Input Capacitance, A ₀	-A ₆ , D _{IN}		4.0	5.0	pF	Note 6
CIN2	Input Capacitance, RA	S, CAS, WE		8.0	10	pF	Note 6
Соит	Output Capacitance, I	ООЛТ		5.0	7.0	pF	$\overline{CAS} = V_{IHC}$

			/240-01 /240-03*	F4116	/240-02	Unit	
Symbol	Characteristic	Min	Max	Min	Max		Note
tRC	Random Read or Write Cycle Time	375	10120	410	10120	ns	7
tRWC	Read-Write Cycle Time	375	10120	425	10120	ns	7
tPC	Page Mode Cycle Time	225		275		ns	
tRAC	Access Time from RAS		200		250	ns	8, 10
tCAC	Access Time from CAS		135		165	ns	9, 10
toff	Output Buffer Turn-off Delay		50		60	ns	11
t _{RP}	RAS Precharge Time	120	1000	150	1000	ns	
RAS	RAS Pulse Width	200	10,000	250	10,000	ns	
trsh	RAS Hold Time	135		165		ns	
tсsн	CAS Hold Time	200		250		ns	
tCAS	CAS Pulse Width	135	10,000	165	10,000	ns	
tRCD	RAS to CAS Delay Time	30	65	35	85	ns	12
IASR	Row Address Set-up Time	0		0		ns	
tRAH	Row Address Hold Time	30		35		ns	
tasc	Column Address Set-up Time	0		0		ns	
tCAH	Column Address Hold Time	60		75		ns	
t _{AR}	Column Address Hold Time Referenced to RAS	125		160		ns	
tŢ	Transition Time (Rise and Fall)	3.0	50	3.0	50	ns	13
RCS	Read Command Set-up Time (RMW)	0		0		ns	
tRCH	Read Command Hold Time	0		0		ns	
twcн	Write Command Hold Time	60		75		ns	
twcR	Write Command Hold Time Referenced to RAS	125		160		ns	
twcs	Write Command Set-up Time	0		0		ns	14
twp	Write Command Pulse Width	60		75		ns	
tRWL	Write Command to RAS Lead Time	80		100		ns	15
tCWL	Write Command to CAS Lead Time	80		100		ns	15
tDS(C)	Data In Set-up Time	0		0		ns	16
t _{DS} (W)	Data In Set-up Time (Late Write)	10		10		ns	16
tDH	Data In Hold Time	60		75		ns	16
tDHR	Data In Hold Time Referenced to RAS	125		160		ns	

Recommended as Operating Conditions (F4116/240) Over full range of voltage and $T_{c} = -55^{\circ}C$ to $\pm 110^{\circ}C$

*03 (200 ns Page Mode Operation Guaranteed) Notes on final page.

Recommended ac Operating Conditions (F4116/240) (Cont'd)

			/240-01 /240-03*	F4116	/240-02		
Symbol	Characteristic	Min	Max	Min	Max	Unit	Note
tCRP	CAS to RAS Precharge Time	0		0		ns	
tCP	CAS Precharge Time (Page-mode)	80		100		ns	
tRF	Refresh Period		1.0		1.0	ms	
tCWD	CAS to WE Delay	95		125		ns	17
tRWD	RAS to WE Delay	160		200		ns	17

*03 (200 ns Page Mode Operation Guaranteed)

Notes

- The ambient temperature (T_A) is specified here for operation at frequencies up to that frequency determined by the minimum cycle time. Operation at high cycle rates with reduced ambient temperatures and higher power dissipation is permissible, however, provided ac operating parameters are met.
- 2. All voltages are referenced to V_{SS} = 0 V.
- I_{DD} depends on frequency of operation. Maximum current is measured at the fastest cycle rate. Normal Operation: RAS and CAS cycling Standby: RAS and CAS = VIHC, DOUT, = High Z Refresh RAS cycling, CAS = VIHC Page Mode: RAS = VIL, CAS cycling
- 4. I_{CC} depends upon output loading. The V_{CC} supply is connected to the output buffer only. During readout of HIGH level data, V_{CC} is connected through a low impedance (135 Ω typ) to Data Out. At other times I_{CC} consists of leakage currents only.
- Output voltage will swing from V_{SS} to V_{CC} when activated with no current loading. For purposes of reducing power in the standby mode, V_{CC} may be reduced to V_{SS} without affecting refresh operations or data retention. However, the V_{OH}(min) specification is not guaranteed in this mode.
- 6. Effective capacitance calculated from the equation C = I $\frac{\Delta t}{\Delta V}$ with $\Delta V = 3 V$ and power supplies at normal levels.
- 7. The specifications for t_{RC}(min), t_{RWC}(min), t_{RMW}(min) and t_{PC}(min) are used only to indicate cycle time at which proper operation over full temperature range (0°C \leq T_A \leq 70°C) is assured. All transition times,t_T, are assumed to be 5 ns.
- Assumes that t_{RCD} ≤ t_{RCD(max}). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.

- 9. Assumes that $t_{RCD} \ge t_{RCD}(max)$.
- 10. Measured with a load equivalent to two TTL loads and 100 pF.
- tOFF(max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 12. Operation within the t_{RCD(max)} limit insures that t_{RAC(max)} can be met. t_{RCD(max)} is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD(max)} limit, then access time is controlled exclusively by t_{CAC}.
- V_{IHC(min)} or V_{IH(min)} and V_{IL(max)} are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IHC} or V_{IH} and V_{IL}. Composite timing parameters (such as cycle times) assume 5 ns transition times.
- 14. t_{WCS} is a restrictive operating parameter. If t_{WCS} ≥ t_{WCS(min)}, the cycle is an early write cycle and the Data Out pin will remain open circuit (high impedance) throughout the entire cycle, otherwise the cycle is a delayed write cycle.
- The parameters t_{RWL} and t_{CWL} reference WE (for a readmodify-write cycle) to either RAS or CAS respectively, whichever is the first to go HIGH.
- t_{DS} and t_{DH} are referenced to the leading edge of CAS in early write cycles, and to the leading edge of WE in delayed write or read-modify-write cycles.
- 17. t_{RWD}and t_{CWD} are restrictive operating parameters due to the following characteristics:
 - If $t_{CWD} < t_{CWD}(min)$, the Data Out will be indeterminate If $t_{CWD} \ge t_{CWD}(min)$, the Data Out will contain the data read from the selected cell.

For block diagram, functional description, timing diagrams and characteristic curves refer to standard F4116 data sheet, Section 3.

Product Index and Selection Guides	1
MOS Memory Technology Overview	2
RAM Data Sheets	3
EPROM Data Sheets	4
Serial Memory Data Sheets	5
Special Function Data Sheets	6
Extended Temperature Range Data Sheets	7
Ordering Information and Package Outlines	8
Sales Offices, Representatives and Distributor Locations	9

Section 8 Ordering Information and Package Outlines

Specific ordering codes, as well as the temperature ranges and package types available, are listed on each data sheet in Sections 3 through 7. The Product Index and Selection Guides given in Section 1 list only the *basic device numbers*. This basic number is used to form part of a simplified purchasing code where the package type, temperature range and processing level are defined as follows:

Package Code—One letter represents the basic package type. Different package outlines exist within each package type to accommodate varying die sizes and number of pins, as indicated below:

- D— Ceramic (Hermetic) Dual In-line Side-braze—WC, 7R Ceramic DIP—JD, 2C, 6Z, 7C, 7M, 7W, 8D, 8E
- P— Plastic Dual In-line UB, UC, 8J, 8K, 9B
- F-Flatpak II, 2R, 4A

Package Outlines—The package outlines indicated by the codes above are shown in the detailed outline drawings in this section.

Temperature Range—Three basic temperature grades are in common use:

- C = Commercial 0°C to +70°C
- L = Limited Military -55°C to +85°C
- M = Military -55°C to +125°C

Unique 38510

The Fairchild Unique 38510 program is written in accordance with MIL-M-38510 and MIL-STD-883 to meet the need for improved reliability in the military market. Devices ordered to this program are subjected to 100% screening as outlined in *Table 1*.

Customer procurement documents should specify the following:

- 1. Fairchild Product Code indicating the basic device number, package code letter and temperature range code letter;
- 2. the Unique 38510 device class (B or S);
- 3. Number or Letter Options required;
- 4. special marking requirements if Number Option 6 was specified.

Unique 38510 Ordering Code Examples

21021FMQB	Device number 21021, packaged in ceramic flatpak (F), in military temperature range (M) and processed to Union 295 10 Close P
	to Unique 38510 Class B.
21021DMQS	Device number 21021, packaged in

21021DMQS Device number 21021, packaged in ceramic Dual In-line (D), in military temperature range (M) and processed to Unique 38510 Class S.

Number Options (apply to operations performed on each unit delivered)

Option 1 Lead form to dimensions in detail specifications, followed by hermetic seal tests.

Option 2 Hot solder dip finish.

- Option 3 Read and record critical parameters before and after burn-in.
- Option 4 Initial qualification, Group B, C and D quality conformance not required.
- Option 5 Radiographic inspection shall be performed on all devices. Option 6 Special marking required.
- Option 7 Non-conforming variation—refer to procurement documents for details (must be negotiated with factory).

Letter Options (apply once per Purchase Order or line item and are considered test charges)

- Option A Group C testing shall be performed.
- Option B Group D testing shall be performed. Option C Generic data to be supplied from the
- latest completed lot.

Option D Unique 38510 program plan, pertinent to the device family being purchased, shall be supplied.

Matrix VI

Matrix VI is a full spectrum, cost effective reliability and quality program for commercial or industrial integrated circuits only. This program features six levels of flow screening, each tailored to a user's field application environment and incoming quality and equipment reliability requirements. A Matrix VI part number consists of the device number followed by the package code letter, the temperature range code letter, the special processing indicator (Q) and the Matrix VI code letter as shown in the following examples. See *Table 2* for processing level definition.

Matrix VI Ordering Code Examples

Device average of 001 and land in
Device number 21021, packaged in plastic Dual In-line (P), in commercial temperature range (C) and processed to Matrix VI Level 1.
Device number 21021, packaged in ceramic Dual In-line (D), in commercial temperature range and processed to Matrix VI Level 3.
Device number 21021, packaged in plastic Dual In-line (P), in commercial temperature range (C) with supplemental Matrix VI Level 5 screening, including 100% thermal shock, "hot rail" test, 168 hours + 125°C burn-in and 0.1% AQL functional testing.
Device number 21021, packaged in ceramic Dual In-line (D), in commercial temperature range (C) with supplemental Matrix VI Level 6 screening, including burn-in, three 100% dc/functional tests and 0.1% AQL functional testing.

Table 1 Unique 38510 Process Flow

Notes

- 1. Class B processing in this case includes adding 100% post burn-in testing: dc testing at maximum and minimum rated temperatures (See data sheet for rating.); ac testing at +25°C.
- 2. Any burn-in condition other than MTD 1015 Condition A is at customer request only.
- 3. Qualification testing per groups B, C and D on a customer's parts require additional lot charges and an added minimum of two months to the schedules deliveries.

and Package Outlines Ordering Information

8-6

Note

Burn-In has the same relative effectiveness for plastic molded devices as for ceramic/hermetic packaged devices. Assuming a controlled (air conditioned and constant power) field application/environment, the reliability factor would be approximately 9X. But should the field application be in a less controlled and power ON/OFF application, the reliability factor would be approximately 7.5X.

Ordering Information and Package Outlines

Notes

Pins are tin-plated OLIN 195 copper Package material varies depending on the product line

Leads are intended for insertion in hole rows on .300" (7.620) centers They are purposely shipped with "positive" misalignment to facilitate

insertion

Board-drilling dimensions should equal your practice for .020" (.510) diameter lead

***The .037-.027 (.940-.686) dimension does not apply to the corner leads

**Notch or ejector hole varies depending on the product line

Package weight is 0.9 gram

Polyimide die attach

Notes

Pins are tin-plated copper

Package material varies depending on the product line

Pins are intended for insertion in hole rows on .300" (7.62) centers

They are purposely shipped with

"positive" misalignment to facilitate insertion

Board-drilling dimensions should equal your practice for .020 inch (0.51) diameter pin

***The .037-.027 (.940-.686) dimension does not apply to the corner pins

**Notch or ejector hole varies depending on the product line

Package weight is 0.9 gram

Notes

Pins are gold-plated kovar or alloy 42 Base is Al_2O_3 Cap is kovar

Leads are intended for insertion in hole rows on .300" (7.620) centers. They are purposely shipped with positive misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020" (5.080) Cavity size is .170 x .320 (4.318 x 8.128)

16-Pin Ceramic DIP

2C

Notes

Pins are tin-plated alloy 42 Pins are intended for insertion in hole rows on **.300**" (7.620) centers

They are purposely shipped with

"positive" misalignment to facilitate insertion

Board-drilling dimensions should equal your practice for **.020** inch (5.080) diameter pin

Hermetically sealed alumina package Cavity size is .160 x .310 (4.064 x 7.874) *The .034-.030 (.864-.762) dimension does not apply to the corner pins Package weight is 2.2 grams

8

Notes

Pins are tin-plated alloy 42 Pins are intended for insertion in hole rows on .300" (7.620) centers They are purposely shipped with "positive" misalignment to facilitate insertion

Board-drilling dimensions should equal your practice for **.020** inch (.508) diameter pin

Hermetically sealed alumina package Cavity size is .160 x .250 (4.064 x 6.350) *The .034-.030 (.864-.762) dimension does not apply to the corner pins Package weight is 2.2 grams

24-Pin Ceramic DIP

7C

Notes

Pins are tin-plated alloy 42 Package material is alumina Pins are intended for insertion in hole rows on .600 (15.240) centers They are purposely shipped with "positive" misalignment to facilitate insertion

Cavity size is **.260** x **.260** (6.604 x 6.604) Package weight is 6.5 grams Window-UV transmission glass

24-Pin Ceramic DIP

8D

Notes

Pins are tin-plated alloy 42 Package material is alumina Pins are intended for insertion in hole rows on .300 (7.620) centers They are purposely shipped with positive misalignment to facilitate insertion Package weight is 3.0 grams

Notes

Pins are tin-plated kovar or alloy 42 nickel Package material varies depending on the product line

Pins are intended for insertion in hole rows on .300" (7.620) centers

They are purposely shipped with positive misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020" (0.510) diameter pin

***The .037-.027 (.940-.690) dimension does not apply to the corner leads **Notch or ejector hole varies depending on the product line

Package weight is 0.9 gram

16-Pin Plastic DIP

Notes

Pins are tin-plated kovar or alloy 42 nickel Package material varies depending on the product line

Pins are intended for insertion in hole rows on .300" (7.620) centers

They are purposely shipped with "positive" misalignment to facilitate insertion

Board-drilling dimensions should equal your practice for .020" (0.508) diameter pin

***The **.037-.027** (.940-.686) dimension

does not apply to the corner pins

**Notch or ejector hole varies depending on the product line

Package weight is 0.9 gram

	Product Index and Selection Guides	
	MOS Memory Technology Overview	
	RAM Data Sheets	
	EPROM Data Sheets	
	Serial Memory Data Sheets	
	Special Function Data Sheets	
Ν	Extended Temperature Range Data Sheets	
	Ordering Information and Package Outlines	
	Sales Offices, Representatives and Distributor Locations	

. .

Ţ

Alabama

Hall Mark Electronics 4900 Bradford Drive Huntsville, Alabama 35807 Tel: 205-837-8700 TWX: 810-726-2187

Hamilton/Avnet Electronics 4692 Commercial Drive Huntsville, Alabama 35805 Tel: 205-837-7210 Telex: None — use HAMAVLECB DAL 73-0511 Regional Hq. in Dallas, Texas

Arizona

Hamilton/Avnet Electronics 505 South Madison Drive Tempe, Arizona 85281 Tel: 602-231-5100 TWX: 910-951-1535

Kierulff Electronics 4134 East Wood Street Phoenix, Arizona 85040 Tel: 602-243-4101

Wyle Distribution Group 8155 North 24th Avenue Phoenix, Arizona 85021 Tel: 602-249-2232 TWX: 910-951-4282

California

Anthem Electronics, Inc. 21730 Nordhoff Street Chatsworth, California 91311 Tel: 213-700-1000 TWX: 910-493-2083

Anthem Electronics, Inc. 4125 Sorrento Valley Blvd. San Diego, California 92121 Tel: 714-279-5200

Anthem Electronics, Inc. 174 Component Drive San Jose, California 95131 Tel: 408-946-8000

Anthem Electronics, Inc. 2661 Dow Avenue Tustin, California 92680 Tel: 714-730-8000

Arrow Electronics 9511 Ridge Haven Court San Diego, California 92123 Tel: 714-565-4800

Arrow Electronics 521 Weddell Avenue Sunnyvale, California 94086 Tel: 408-745-6600 TWX: 910-339-9371

Avnet Electronics 350 McCormick Avenue Costa Mesa, California 92626 Tel: 714-754-6111 (Orange County) 213-558-2345 (Los Angeles) TWX: 910-595-1928

Bell Industries Electronic Distributor Division 1161 N. Fair Oaks Avenue Sunnyvale, California 94086 Tel: 408-734-8570 TWX: 910-339-9378

Franchised Distributors

Hamilton/Avnet Electronics 3170 Pullman Avenue Costa Mesa, California 92626 Tel: 714-641-1850

Hamilton Electro Sales 10912 West Washington Blvd. Culver City, California 90230 Tel: 213-558-2121 TWX: 910-340-6364

Hamilton/Avnet Electronics 4545 Viewridge Avenue San Diego, California 92123 Tel: 714-571-7527 Telex: HAMAVELEC SDG 69-5415

Hamilton/Avnet Electronics 1175 Bordeaux Drive Sunnyvale, California 94086 Tel: 408-743-3355 TWX: 910-379-6486

**Sertech Laboratories 2120 Main Street, Suite 190 Huntington Beach, California 92647 Tel: 714-960-1403

Wyle Electronics 124 Maryland Street El Segundo, California 90245 Tel: 213-322-8100 TWX: 910-348-7111

Wyle Distributor Group 17872 Cowan Avenue Irvine, California 92714 Tel: 714-641-1600 Telex: 910-595-1572

Wyle Distribution Group 9525 Chesapeake San Diego, California 92123 Tel: 714-565-9171 TWX: 910-335-1590

Wyle Distribution Group 3000 Bowers Avenue Santa Clara, California 95051 Tel: 408-727-2500 TWX: 910-338-0541

Colorado Arrow Electronics 2121 South Hudson Denver, Colorado 80222 Tel: 303-758-2100

Bell Industries 8155 West 48th Avenue Wheatridge, Colorado 80033 Tel: 303-424-1985 TWX: 910-938-0393

Hamilton/Avnet Electronics 8765 E. Orchard Rd., Suite 708 Englewood, Colorado 80111 Tel: 303-740-1000 TWX: 910-935-0787

Wyle Distribution Group 451 East 124th Avenue Thornton, Colorado 80241 Tel: 303-457-9953 TWX: 910-936-0770

Connecticut Arrow Electronics 12 Beaumont Road Wallingford, Connecticut 06492 Tel: 203-265-7741 TWX: 203-265-7741

United States and Canada

Hamilton/Avnet Electronics Commerce Drive, Commerce Park Danbury, Connecticut 06810 Tel: 203-797-2800 TWX: None — use 710-897-1405 Regional Hq. in Mt. Laurel, N.J.

Harvey Electronics 112 Main Street Norwalk, Connecticut 06851 Tel: 203-853-1515

Schweber Electronics Finance Drive Commerce Industrial Park Danbury, Connecticut 06810 Tel: 203-792-3500

Florida

Arrow Electronics 1001 Northwest 62nd Street Suite 108 Ft. Lauderdale, Florida 33309 Tel: 305-776-7790

Arrow Electronics 50 Woodlake Drive West Building B Palm Bay, Florida 32905 Tel: 305-725-1480

Hall Mark Electronics 1671 West McNab Road Ft. Lauderdale, Florida 33309 Tel: 305-971-9280 TWX: 510-956-3092

Hall Mark Electronics 7233 Lake Ellenor Drive Orlando, Florida 32809 Tel: 305-855-4020 TWX: 810-850-0183

Hamilton/Avnet Electronics 6801 N.W. 15th Way Ft. Lauderdale, Florida 33309 Tel: 305-971-2900 TWX: 510-954-9808

Hamilton/Avnet Electronics 3197 Tech Drive, North St. Petersburg, Florida 33702 Tel: 813-576-3930

Schweber Electronics 2830 North 28th Terrace Hollywood, Florida 33020 Tel: 305-927-0511 TWX: 510-954-0304

Georgia

Arrow Electronics 2979 Pacific Drive Norcross, Georgia 30071 Tel: 404-449-8252 Telex: 810-766-0439

Hall Mark Electronics 6410 Atlantic Blvd., Suite 115 Norcross, Georgia 30071 Tel: 404-447-8000 TWX: 810-766-4510

Hamilton/Avnet Electronics 5825-D Peachtree Corners East Norcross, Georgia 30092 Tel: 404-447-7500 Telex: None — use HAMAVLECB DAL 73-0511 Regional Hq. in Dallas, Texas

** This distributor carries Fairchild die products only.

Illinois

Arrow Electronics 492 Lunt Avenue Schaumburg, Illinois 60193 Tel: 312-893-9420

Hall Mark Electronics 1177 Industrial Drive Bensenville, Illinois 60106 Tel: 312-860-3800

Hamilton/Avnet Electronics 1130 Thorndale Avenue Bensenville, Illinois 60106 Tel: 312-860-7780 TWX: 910-227-0060

Kierulff Electronics 1536 Landmeier Road Elk Grove Village, Illínois 60007 Tel: 312-640-0200 TWX: 910-227-3166

Schweber Electronics 1275 Brummel Avenue Elk Grove Village, Illinois 60007 Tel: 312-364-3750 TWX: 910-222-3453

Indiana

Arrow Electronics 2718 Rand Road Indianapolis, Indiana 46241 Tel: 317-243-9353

Graham Electronics Supply, Inc. 133 S. Pennsylvania Street Indianapolis, Indiana 46204 Tel: 317-634-8486 TWX: 810-341-3481

Hamilton/Avnet Electronics 485 Gradle Drive Carmel, Indiana 46032 Tel: 317-844-9333

Pioneer Electronics 6408 Castle Place Drive Indianapolis, Indiana 46250 Tel: 317-849-7300 TWX: 810-260-1794

Kansas

Hall Mark Electronics 10815 Lakeview Drive Lenexa, Kansas 66215 Tel: 913-888-4747

Hamilton/Avnet Electronics 9219 Ouivira Road Overland Park, Kansas 66215 Tel: 913-888-8900 Telex: None – use HAMAVLECB DAL 73-0511 Regional Hq. in Dallas, Texas

Maryland

Hall Mark Electronics 6655 Amberton Drive Baltimore, Maryland 21227 Tel: 301-796-9300

Hamilton/Avnet Electronics 6822 Oak Hall Lane Columbia, Maryland 21045 Tel: 301-995-3500 TWX: 710-862-1861

Pioneer Electronics 9100 Gaither Road Gaithersburg, Maryland 20760 Tel: 301-948-0710 TWX: 710-828-9784

**This distributor carries Fairchild die products only.

Franchised Distributors

Schweber Electronics 9218 Gaither Road Gaithersburg, Maryland 20760 Tel: 301-840-5900 TWX: 710-828-0536

Massachusetts Arrow Electronics Arrow Drive Woburn, Massachusetts 01801 Tei: 617-933-8130 TWX: 710-393-6770

Gerber Electronics 128 Carnegie Row Norwood, Massachusetts 02026 Tel: 617-329-2400

Hamilton/Avnet Electronics 50 Tower Office Park Woburn, Massachusetts 01801 Tel: 617-273-7500 TWX: 710-393-0382

Harvey Electronics 44 Hartwell Avenue Lexington, Massachusetts 02173 Tel: 617-861-9200 TWX: 710-326-6617

Schweber Electronics 25 Wiggins Avenue Bedford, Massachusetts 01730 Tel: 617-275-5100

**Sertech Laboratories 1 Peabody Street Salem, Massachusetts 01970 Tel: 617-745-2450

Michigan

Arrow Electronics 3810 Varsity Drive Ann Arbor, Michigan 48104 Tel: 313-971-8220

Hamilton/Avnet Electronics 2215 29th Street S.E. Space A5 Grand Rapids, Michigan 49508 Tel: 616-243-8805 TWX: 810-273-6921

Hamilton/Avnet Electronics 32487 Schoolcraft Livonia, Michigan 48150 Tel: 313-522-4700 TWX: 810-242-8775

Pioneer Electronics 13485 Stamford Livonia, Michigan 48150 Tel: 313-525-1800

Schweber Electronics 33540 Schoolcraft Livonia, Michigan 48150 Tel: 313-525-8100

Minnesota Arrow Electronics 5230 West 73rd Street

Edina, Minnesota 55435 Tel: 612-830-1800

Hamilton/Avnet Electronics 10300 Bren Road East Minnetonka, Minnesota 55343 Tel: 612-932-0600 TWX: None – use 910-227-0060 Regional Hg. in Chicago, Illinois.

United States and Canada

Schweber Electronics 7422 Washington Avenue S. Eden Prairie, Minnesota 55344 Tel: 612-941-5280

Missouri Hall Mark Electronics 13789 Rider Trail Earth City, Missouri 63045 Tel: 314-291-5350

Hamilton/Avnet Electronics 13743 Shoreline Court, East Earth City, Missouri 63045 Tel: 314-344-1200 TWX: 910-762-0684

New Hampshire Arrow Electronics 1 Perimeter Road Manchester, New Hampshire 03103 Tel: 603-668-6968

New Jersey Arrow Electronics Pleasant Valley Avenue Moorestown, New Jersey 08057 Tel: 609-235-1900

Arrow Electronics 285 Midland Avenue Saddle Brook, New Jersey 07662 Tel: 201-797-5800

Hall Mark Electronics Springdale Business Center 2091 Springdale Road Cherry Hill, New Jersey 08003 Tel: 609-424-0880

Hamilton/Avnet Electronics 10 Industrial Road Fairfield, New Jersey 07006 Tel: 201-575-3390 TWX: 710-994-5787

Hamilton/Avnet Electronics #1 Keystone Avenue Cherry Hill, New Jersey 08003 Tel: 609-424-0100 TWX: 710-940-0262

Harvey Electronics 45 Route 46 Pinebrook, New Jersey 07058 Tel: 201-575-3510 TWX: 710-734-4382

Schweber Electronics 18 Madison Road Fairfield, New Jersey 07006 Tel: 201-227-7880 TWX: 710-480-4733

Sterling Electronics 774 Pfeiffer Blvd. Perth Amboy, New Jersey 08861 Tel: 201-442-8000 Telex: 138-679

New Mexico Arrow Electronics 2460 Alamo Avenue S.E. Albuquerque, New Mexico 87106 Tel: 505-243-4566

Bell Industries 11728 Linn Avenue N.E. Albuquerque, New Mexico 87123 Tel: 505-292-2700 TWX: 910-989-0625

Hamilton/Avnet Electronics 2524 Baylor Drive, S.E. Albuquerque, New Mexico 87106 Tel: 505-765-1500 TWX: None — use 910-379-6486 Regional Hq. in Mt. View, California:

New York

Arrow Electronics 900 Broadhollow Road Farmingdale, New York 11735 Tel: 516-694-6800 TWX: 510-224-6155 & 510-224-6126

Arrow Electronics 20 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-1000

Arrow Electronics P.O. Box 370 7705 Maltlage Drive Liverpool, New York 13088 Tel: 315-652-1000 TWX: 710-545-0230

*Cadence Electronics 40-17 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-6722

Components Plus, Inc. 40 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-9200 TWX: 510-227-9869

Hamilton/Avnet Electronics 5 Hub Drive Melville, New York 11746 Tel: 516-454-6000 TWX: 510-224-6166

Hamilton/Avnet Electronics 333 Metro Park Rochester, New York 14623 Tel: 716-475-9130 TWX: None — use 710-332-1201 (Regional Hq, in Burlington, Ma.)

Hamilton/Avnet Electronics 16 Corporate Circle E. Syracuse, New York 13057 Tel: 315-437-2642 TWX: 710-541-0959

Harvey Electronics (mailing address) P.O. Box 1208 Binghampton, New York 13902 (shipping address) 1911 Vestal Parkway East Vestal, New York 13850 Tel: 607-748-8211

Harvey Electronics 60 Crossways Park West Woodbury, New York 11797 Tel: 516-921-8920 TWX: 510-221-2184

Schweber Electronics Jericho Turnpike Westbury, L.I., New York 11590 Tel: 516-334-7474 TWX: 510-222-3660

Summit Distributors, Inc. 916 Main Street Buffalo, New York 14202 Tel: 716-884-3450 TWX: 710-522-1692

*Minority Distributor

Franchised Distributors

North Carolina Arrow Electronics

938 Burke Street Winston Salem, North Carolina 27102 Tel: 919-725-8711 TWX: 510-922-4765

Hamilton/Avnet Electronics 2803 Industrial Drive Raleigh, North Carolina 27609 Tel: 919-829-8030

Hall Mark Electronics 1208 Front Street, Bldg. K Raleigh, North Carolina 27609 Tel: 919-823-4465 TWX: 510-928-1831

Pioneer Electronics 103 Industrial Drive Greensboro, North Carolina 27406 Tel: 919-273-4441

Ohio Arrow Electronics 7620 McEwen Road Centerville, Ohio 45459 Tel: 513-435-5563

Arrow Electronics 6238 Cochran Road Solon, Ohio 44139 Tel: 216-248-3990 TWX: 810-427-9409

Hamilton/Avnet Electronics 954 Senate Drive Dayton, Ohio 45459 Tel: 513-433-0610 TWX: 810-450-2531

Hamilton/Avnet Electronics 4588 Emery Industrial Parkway Warrensville Heights, Ohio 44128 Tel: 216-831-3500 TWX: None — use 910-227-0060 Regional Hq. in Chicago, III.

Pioneer Electronics 4800 E. 131st Street Cleveland, Ohio 44105 Tel: 216-587-3600

Pioneer Electronics 4433 Interpoint Blvd. Dayton, Ohio 45424 Tel: 513-236-9900 TWX: 810-459-1622

Schweber Electronics 23880 Commerce Park Road Beachwood, Ohio 44122 Tel: 216-464-2970 TWX: 810-427-9441

Oklahoma Hall Mark Electronics 5460 S. 103rd East Avenue Tulsa, Oklahoma 74145 Tel: 918-835-8458 TWX: 910-845-2290

Oregon Hamilton/Avnet Electronics 6024 S.W. Jean Road Building C, Suite 10 Lake Oswego, Oregon 97034

Tel: 503-635-8157

United States and Canada

Pennsylvania

Arrow Electronics 650 Seco Road Monroeville, Pennsylvania 15146 Tel: 412-856-7000

Pioneer Electronics 261 Gibraltar Road Horsham, Pennsylvania 19044 Tel: 215-674-4000 TWX: 510-665-6778

Pioneer Electronics 259 Kappa Drive Pittsburgh, Pennsylvania 15238 Tel: 412-782-2300 TWX: 710-795-3122

Schweber Electronics 101 Rock Road Horsham, Pennsylvania 19044 Tel: 215-441-0600

Texas Arrow Electronics 13715 Gamma Road Dallas, Texas 75234 Tel: 214-386-7500 TWX: 910-860-5377

Arrow Electronics 10700 Corporate Drive, Suite 100 Stafford, Texas 77477 Tel: 713-491-4100 TWX: 910-880-4439

Hall Mark Electronics 12211 Technology Blvd. Austin, Texas 78759 Tel: 512-258-8848

Hall Mark Electronics 11333 Page Mill Drive Dallas, Texas 75243 Tel: 214-343-5000 TWX: 910-867-4721

Hall Mark Electronics 8000 Westglen Houston, Texas 77063 Tel: 713-781-6100

Hamilton/Avnet Electronics 2401 Rutland Drive Austin, Texas 78758 Tel: 512-837-8911 TWX: 910-874-1319

Hamilton/Avnet Electronics 8750 Westpark Houston, Texas 77063 Tel: 713-780-1771 Telex: HAMAVLECB HOU 76-2589

Hamilton/Avnet Electronics 2111 W. Walnut Hill Lane Irving, Texas 75062 Tel: 214-659-4111 TWX: 910-860-5929 HAVDLAS IRVG

Schweber Electronics, Inc. 4202 Beltway Drive Dallas, Texas 75234 Tel: 214-661-5010 TWX: 910-860-5493

Schweber Electronics, Inc. 10625 Richmond, Suite 100 Houston, Texas 77042 Tel: 713-784-3600 TWX: 910-881-1109

Sterling Electronics 4201 Southwest Freeway Houston, Texas 77027 Tel: 713-627-9800 TWX: 910-881-5042 Telex: STELECO HOUA 77-5299

Utah

Bell Industries 3639 West 2150 South Salt Lake City, Utah 84120 Tel: 801-972-6969 TWX: 910-925-5686

Hamilton/Avnet Electronics 1585 West 2100 South Salt Lake City, Utah 84119 Tel: 801-972-2800 TWX: None — use 910-379-6486 Regional Hq. in Mt. View, Ca.

Washington

Arrow Electronics 14320 N.E. 21st Street Bellevue, Washington 98005 Tel: 206-643-4800 TWX: 910-443-3033

Hamilton/Avnet Electronics 14212 N.E. 21st Street Bellevue, Washington 98005 Tel: 206-453-5844 TWX: 910-443-2449

Radar Electronic Co., Inc. 168 Western Avenue W. Seattle, Washington 98119 Tel: 206-282-2511 TWX: 910-444-2052

Wyle Distribution Group 1750 132nd Avenue N.E. Bellevue, Washington 98005 Tel: 206-453-8300 TWX: 910-444-1379

Wisconsin

Hall Mark Electronics 9657 South 20th Street Oakcreek, Wisconsin 53154 Tel: 414-761-3000

Hamilton/Avnet Electronics 2975 South Moorland Road New Berlin, Wisconsin 53151 Tel: 414-784-4510 TWX: 910-262-1182

Canada

Future Electronics Inc. 4800 Dufferin Street Downsview, Ontario, M3H 5S8, Canada Tel: 416-663-5563

Future Electronics Inc. Baxter Center 1050 Baxter Road Ottawa, Ontario, K2C 3P2, Canada Tel: 613-820-8313

Future Electronics Inc. 237 Hymus Blvd. Pointe Clare Montreal, Quebec, H9R 5C7, Canada Tel: 514-694-7710 TWX: 610-421-3251

Hamilton/Avnet Canada Ltd. 6845 Rexwood Road, Units 3-4-5 Mississauga, Ontario, L4V 1R2, Canada Tel: 416-677-7432 TWX: 610-492-8867

Franchised Distributors

United States and Canada

Hamilton/Avnet Canada Ltd. 210 Colonnade Road Nepean, Ontario, K2E 7L5, Canada Tel: 613-226-1700

Hamilton/Avnet Canada Ltd. 2670 Sabourin Street St. Laurent, Quebec, H4S 1M2, Canada Tel: 514-331-6443 TWX: 610-421-3731

Semad Electronics Ltd. 620 Meloche Avenue Dorval, Quebec, H9P 2P4, Canada Tel: 604-299-8866 TWX: 610-422-3048

Semad Electronics Ltd. 105 Brisbane Avenue Downsview, Ontario, M3J 2K6, Canada Tel: 416-663-5670 TWX: 610-492-2510

Semad Electronics Ltd. 864 Lady Ellen Place Ottawa, Ontario K1Z 5M2, Canada Tel: 613-722-6571 TWX: 610-562-1923

Sales Representatives

United States and Canada

California

Magna Sales, Inc. 3333 Bowers Avenue, Suite 295 Santa Clara, California 95051 Tel: 408-727-8753 TWX: 910-338-0241

Colorado

Simpson Associates, Inc. 2552 Ridge Road Littleton, Colorado 80120 Tel: 303-794-8381 TWX: 910-935-0719

Illinois

Micro Sales, Inc. 54 W. Seegers Road Arlington Heights, Illinois 60005 Tel: 312-956-1000 TWX: 910-222-1833

Maryland

Delta III Associates 1000 Century Plaza, Suite 224 Columbia, Maryland 21044 Tel: 301-730-4700 TWX: 710-826-9654

Massachusetts

Spectrum Associates, Inc. 109 Highland Avenue Needham, Massachusetts 02192 Tel: 617-444-8600 TWX: 710-325-6665

Minnesota

PSI Company 5315 West 74th Street Edina, Minnesota 55435 Tel: 612-835-1777 TWX: 910-576-3483

Missouri

Micro Sales, Inc. 514 Earth City Plaza, Suite 314 Earth City, Missouri 63045 Tel: 314-739-7446

Nevada

Magna Sales, Inc. 4560 Wagon Wheel Road Carson City, Nevada 89701 Tel: 702-883-1471

New York

Lorac Sales, Inc. 550 Old Country Road, Room 410 Hicksville, New York 11801 Tel: 516-681-8746 TWX: 510-224-6480

Tri-Tech Electronics, Inc. 3215 E. Main Street Endwell, New York 13760 Tel: 607-754-1094 TWX: 510-252-0891

Tri-Tech Electronics, Inc. 590 Perinton Hills Office Park Fairport, New York 14450 Tel: 716-223-5720 TWX: 510-253-6356

Tri-Tech Electronics, Inc. 6836 E. Genesee Street Fayetteville, New York 13066 Tel: 315-446-2881 TWX: 710-541-0604

Tri-Tech Electronics, Inc. 19 Davis Avenue Poughkeepsie, New York 12603 Tel: 914-473-3880 TWX: 510-253-6356 **Ohio** The Lyons Corporation 4812 Frederick Road, Suite 101

Dayton, Ohio 45414 Tel: 513-278-0714 TWX: 810-459-1803

The Lyons Corporation 4615 West Streetsboro, Suite 203 Richfield, Ohio 44286 Tel: 216-659-9224 TWX: 810-459-1803

Oregon

Magna Sales, Inc. 8285 S.W. Nimbus Avenue, Suite 138 Beaverton, Oregon 97005 Tel: 503-641-7045 TWX: 910-467-8742

Utah

Simpson Associates, Inc. 7324 South 1300 East, Suite 350 Midvale, Utah 84047 Tel: 801-566-3691 TWX: 910-925-4031

Washington

Magna Sales, Inc. Benaroya Business Park Building 3, Suite 115 300 120th Avenue, N.E. Bellevue, Washington 98004 Tel: 206-455-3 190

Wisconsin

Larsen Associates 10855 West Potter Road Wauwatosa, Wisconsin' 53226 Tel: 414-258-0529 TWX: 910-262-3160

Canada

R.N. Longman Sales, Inc. -L.S.I. 1715 Meyerside Drive, Suite 1 Mississauga, Ontario, L5T 1C5 Canada Tel: 416-677-8100 TWX: 610-492-8976

R.N. Longman Sales, Inc. (L.S.I.) 16891 Hymus Blvd. Kirkland, Quebec, H9H 3L4 Canada Tel: 514-694-3911 TWX: 610-422-3028

Alabama

Huntsville Office 500 Wynn Drive, Suite 511 Huntsville, Alabama 35805 Tel: 205-837-8960

Arizona

Phoenix Office 2255 West Northern Road, Suite B112 Phoenix, Arizona 85021 Tel: 602-864-1000 TWX: 910-951-1544

California

Los Angeles Office^{*} Crocker Bank Bldg. 15760 Ventura Blvd., Suite 1027 Encino, California 91436 Tel: 213-990-9800 TWX: 910-495-1776

San Diego Office* 7867 Convoy Court, Suite 312 San Diego, California 92111 Tel: 714-279-7961 TWX: 910-335-1512

Santa Ana Office* 1570 Brookhollow Drive, Suite 206 Santa Ana, California 92705 Tel: 714-557-7350 TWX: 910-595-1109

Santa Clara Office* 3333 Bowers Avenue, Suite 299 Santa Clara, California 95051 Tel: 408-987-9530 TWX: 910-338-0241

Colorado

Denver Office 7200 East Hampden Avenue, Suite 206 Denver, Colorado 80224 Tel: 303-758-7924

Connecticut

Danbury Office 57 North Street, #206 Danbury, Connecticut 06810 Tel: 203-744-4010

Florida

Ft. Lauderdale Office Executive Plaza, Suite 112 1001 Northwest 62nd Street Ft. Lauderdale, Florida 33309 Tel: 305-771-0320 TWX: 510-955-4098

Orlando Office* Crane's Roost Office Park 399 Whooping Loop Altamonte Springs, Florida 32701 Tel: 305-834-7000 TWX: 810-850-0152

Georgia

Atlanta Sales Office Interchange Park, Bldg. 2 4183 N.E. Expressway Atlanta, Georgia 30340 Tel: 404-939-7683

Illinois

Itasca Office 500 Park Blvd., Suite 575 Itasca, Illinois 60143 Tel: 312-773-3300

* Field Application Engineer

Sales Offices

Indiana

Ft. Wayne Office 2118 Inwood Drive, Suite 111 Ft. Wayne, Indiana 46815 Tel: 219-483-6453 TWX: 810-332-1507

Indianapolis Office 7202 N. Shadeland, Room 205 Castle Point Indianapolis, Indiana 46250 Tel: 317-849-5412 TWX: 810-260-1793

Kansas

Kansas City Office 8600 West 110th Street, Suite 209 Overland Park, Kansas 66210 Tel: 913-649-3974

Maryland

Columbia Office 1000 Century Plaza, Suite 225 Columbia, Maryland 21044 Tel: 301-730-1510 TWX: 710-826-9654

Massachusetts

Framingham Office 5 Speen Street Framingham, Massachusetts 01701 Tel: 617-872-4900 TWX: 710-380-0599

Michigan

Detroit Office' 21999 Farmington Road Farmington Hills, Michigan 48024 Tel: 313-478-7400 TWX: 810-242-2973

Minnesota

Minneapolis Office* 4570 West 77th Street, Room 356 Minneapolis, Minnesota 55435 Tel: 612-835-3322 TWX: 910-576-2944

New Jersey

Wayne Office* 580 Valley Road Wayne, New Jersey 07470 Tel: 201-696-7070 TWX: 710-988-5846

New Mexico

Albuquerque Office North Building 2900 Louisiana N.E. South G2 Albuquerque, New Mexico 87110 Tel: 505-884-5601 TWX: 910-379-6435

New York

Fairport Office 815 Ayrault Road Fairport, New York 14450 Tel: 716-223-7700

Melville Office 275 Broadhollow Road, Suite 219 Melville, New York 11747 Tel: 516-293-2900 TWX: 510-224-6480

Poughkeepsie Office 19 Davis Avenue Poughkeepsie, New York 12603 Tel: 914-473-5730 TWX: 510-248-0030

North Carolina

Raleigh Office 1100 Navaho Drive, Suite 112 Raleigh, North Carolina 27609 Tel: 919-876-9643

United States and Canada

Ohio

Dayton Office 5045 North Main Street, Suite 105 Dayton, Ohio 45414 Tel: 513-278-8278 TWX: 810-459-1803

Oklahoma

Tulsa Office 9810 East 42nd Street, Suite 127 Tulsa, Oklahoma 74145 Tel: 918-627-1591

Oregon

Portland Office 8285 S.W. Nimbus Avenue, Suite 138 Beaverton, Oregon 97005 Tel: 503-641-7871 TWX: 910-467-7842

Pennsylvania

Philadelphia Office 2500 Office Center 2500 Maryland Road Willow Grove, Pennsylvania 19090 Tel: 215-657-2711

Tennessee

Knoxville Office Executive Square II 9051 Executive Park Drive, Suite 502 Knoxville, Tennessee 37923 Tel: 615-691-4011

Texas

Austin Office 9027 North Gate Blvd., Suite 124 Austin, Texas 78758 Tel: 512-837-8931

Dallas Office 1702 North Collins Street, Suite 101 Richardson, Texas 75081 Tel: 214-234-3391 TWX: 910-867-4757

Houston Office 9896 Bissonnet-2., Suite 470 Houston, Texas 77036 Tel: 713-771-3547 TWX: 910-881-8278

Canada

Toronto Regional Office 1590 Matheson Blvd., Unit 26 Mississauga, Ontario L4W 1J1, Canada Tel: 416-625-7070 TWX: 610-492-4311

Australlia

Fairchild Australia Pty Ltd. Branch Office Third Floor F.A.I. Insurance Building 619 Pacific Highway St. Leonards 2065 New South Wales, Australia Tel: .02 -439-5911 Telex: AA20053

Austria and Eastern Europe

Fairchild Electronics A-1010 Wien Schwedenplatz 2 Tel: 0222 635821 Telex: 75096

Benelux

Fairchild Semiconductor Ruysdaelbaan 35 5613 Dx Eindhoven The Netherlands Tei: 00-31-40-446909 Telex: 00-1451024

Brazil

Fairchild Semiconductores Ltda. Caixa Postal 30407 Rua Alagoas, 663 01242 Sao Paulo, Brazil Tel: 66-9092 Telex: 011-23831 Cable: FAIRLEC

France

Fairchild Camera & Instrument S.A. 121, Avenue d'Italie 75013 Paris, France Tel: 331-584-55 66 Telex: 0042 200614 or 260937

Germany

Fairchild Camera and Instrument GmBH Daimlerstrasse 15 8046 Garching Hochbruck Munich, Germany Tel: .089. 320031 Telex: 52 4831 fair d

Fairchild Camera and Instrument GmBH Oeltzenstrasse 15 3000 Hannover W. Germany Tel: 0511 17844 Telex: 09 22922

Fairchild Camera and Instrument GmBH Poststrasse 37 7251 Leonberg W. Germany Tel: 07152 41026 Telex: 07 245711

Hong Kong

Fairchild Semiconductor (HK) Ltd. 135 Hoi Bun Road Kwun Tong Kowloon, Hong Kong Tel: 3-440233 and 3-890271 Telex: HKG-531

Italy

Fairchild Semiconducttori, S.P.A. Via Flamenia Vecchia 653 00191 Roma, Italy Tel: 06 327 4006 Telex: 63046 ∍FAIR ROM

Fairchild Semiconducttori S.P.A. Viale Corsica 7 20133 Milano, Italy Tel: 296001-5 Telex: 843-330522

Sales Offices

International

Japan

Fairchild Japan Corporation Pola Bldg. 1-15-21, Shibuva Shibuya-Ku, Tokyo 150, Japan Tel: 03 400 8351 Telex: 242173

Fairchild Japan Corporation Yotsubashi Chuo Bldg. 1-4-26, Shinmachi Nishi-Ku, Osaka 550, Japan Tel: 06-541-6138/9

Korea

Fairchild Semikor Ltd. K2 219-6 Gari Bong Dong Young Dung Po-Ku Seoul 150-06, Korea Tel: 85-0067 Telex: FAIRKOR 22705

mailing address Central P.O. Box 2806

Mexico

Fairchild Mexicana S.A. Blvd. Adolofo Lopez Mateos No. 163 Mexico 19, D.F. Tel: 905-563-5411 Telex: 017-71-038

Scandinavia

Fairchild Semiconductor AB Svartengsgatan 6 S-11620 Stockholm Sweden Tel: 8-449255 Telex: 17759

Singapore

Pairchild Semiconductor Pty. Ltd. No. 11, Lorong 3 Toa Payoh Singapore 12 Tel: 531-066 Telex: FAIRSIN-RS 21376

Taiwan

Fairchild Semiconductor Ltd. Hsietsu Bldg., Room 502 47 Chung Shan North Road Sec. 3 Taipei, Taiwan Tel: 573205 thru 573207

United Kingdom

Fairchild Camera and Instrument Ltd. Semiconductor Division 230 High Street Potters Bar Hertfordshire EN6 5BU England Tel: 0707 51111 Telex: 262835

Fairchild Semiconductor Ltd. 17 Victoria Street Craigshill Livingston West Lothian, Scotland - EH54 5BG Tel: Livingston 0506 32891 Telex: 72629

GEC-Fairchild Ltd. Chester High Road Neston South Wirral L64 3UE Cheshire, England Tel: 051-336-3975 Telex: 629701 $(x_1, y_2, \dots, y_{n-1}, y_{n-1}, \dots, y_{n-$

FAIRCHILD

A Schlumberger Company

44

Fairchild reserves the right to make changes in the circuitry or specifications at any time without notice. Manufactured under one of the following U.S. Patents. 2981877, 3015048, 3064167, 3108359, 3117260, other patents pending. Fairchild cannot assume responsibility for use of any circuitry described other than circuitry embodied in a Fairchild product. No other circuit patent licenses are implied.