

Introduction

This data book presents a complete technical description of Fairchild's MOS Memory product line (excluding Read-Only Memories). The package outlines, electrical behavior, and ordering information are all included for this broad line of LSI and VLSI devices, manufactured using proven Isoplanar MOS processing techniques.

Complete technical data and ordering information on MOS ROMs can be obtained from Fairchild's Microprocessor Products Group.

Section 1 Product Index and Selection Guides Handy tabulation of device numbers to assist in locating appropriate technical data.

Section 2 MOS Memory Technology Overview

 Basic treatise covering the nature and history of MOS technology.
Section 3 RAM Data Sheets

Complete technical data on static and dynamic random access memories.

Section 4 EPROM Data Sheets

 Complete technical data on UV EPROMs.Section 5 Serial Memory Data Sheets Complete technical data on static shift registers (including FIFOs).

Section 6 Special Function Data Sheets Complete technical data on several useful random logic devices.

Section 7 Extended Temperature Range Data Sheets

Complete technical data for extended temperature range operation of selected MOS devices.

Section 8 Ordering Information and Package Outlines
 Detailed package drawings and ordering code information for standard parts, as well as Matrix VI and Unique 38510.

Section 9 Sales Offices, Representatives and Distributor Locations

Table of Contents

Section 1 Product Index and Selection Guides
Product Index 1-3
Random Access Memories $1-4$
UV Erasable Programmable Read Only Memories 1-5
Serial Memories $1-5$
Special Function Memories 1-5
Section 2 MOS Memory Technology Overview
Introduction 2-3
Transistor Operations 2-5
Memory-cell Design 2-6
RAM Architecture 2-8
64K DRAM Architecture 2-9
Manufacturing Advances 2-10
The Future of MOS Memory 2-11
Section 3 RAM Data Sheets 2102/2102L/21LO2 3-3
F2114/F2114L 3-8
F3528 3-12
F3567 3-14
F4116 3-15
F4164 3-37
Section 4 EPROM Data Sheets
F2708 4-3
F2732 4-10
F2764 4-16
Section 5 Serial Memory Data Sheets
3341/3341A 5-3
3342 5-9
3348/3349 5-13
3351 5-16
3357 /F2847 5-25
Section 6 Special Function Data Sheets 3262A 6-3
3262B 6-9
3708 6-15
Section 7 Extended Temperature Range Data Sheets
2102/2102L 7-3
F2114/F2114L 7-6
3341/3341A 7-8
3351 7-11
3357/F2847 7-15
3708 7-18
F4116 7-20
Section 8 Ordering Information and Package Outlines General Ordering Information 8-3
Unique 38510 Ordering Information 8-4
Matrix VI Ordering Information 8-4
Package Outlines 8-8
Section 9 Sales Offices, Representatives and Distributor Locations 9-3

RAM Data Sheets

Section 1 Product Index and Selection Guides

Product Index

Device No.	Description	Page No.
2102	1024×1 Static RAM	3-3, 7-3
2102L	1024×1 Static RAM	3-3, 7-3
21L02	1024×1 Static RAM	3-3
F2114	1024×4 Static RAM	3-8, 7-6
F2114L	1024×4 Static RAM	3-8, 7-6
F2708	1024×8 UV Erasable PROM	4-3
F2732	4K x 8 UV Erasable PROM	4-10
F2764	8192×8 UV Erasable PROM	4-16
F2847	Quad 80-Bit Static Shift Register	5-25, 7-15
3262A	TV Sync Generator	6-3
3262B	TV Sync Generator for Generator Lock	6-9
3341	64×4 FIFO Serial Memory	5-3, 7-8
3341 A	64×4 FIFO Serial Memory	5-3, 7-8
3342	Quad 64-Bit Static Shift Register	5-9
3348	Hex 32-Bit Static Shift Register	5-13
3349	Hex 32-Bit Static Shift Register	5-13
3351	40×9 FIFO Serial Memory	5-16, 7-11
3357	Quad 80-Bit Static Shift Register	5-25, 7-15
3528	2048×8 Static RAM	3-12
F3567	$16,384 \times 1$ Static RAM	3-14
3708	8-Channel Multiplex Switch	6-15, 7-18
F4116	16,384 x 1 Dynamic RAM	3-15, 7-20
F4164	65,536 $\times 1$ Dynamic RAM	3-37

Product Index and Selection Guides

Random Access Memories

Organization	Part No.	Description	Access Time (ns)	Max Power Dissipation (mW)	Power Supply (V)	No. of Pins	Technology	Temperature Range (Note 1)	Package (Note 2)	Page No.
1024×1	2102-H	1K Static RAM	250	290	+5	16	NMOS	C,L,M	D, P,F	3-3, 7-3
	2102-F		350							3-3, 7-3
	2102-1		450							3-3, 7-3
	2102-2		650							3-3, 7-3
	2102L-H	1K Low-power Static RAM	250	160	+5	16	NMOS	C,L,M	D, P,F	3-3, 7-3
	2102L-F		350							3-3, 7-3
	2102L-1		450							3-3, 7-3
	2102L-2		650							3-3, 7-3
	21L02-H	1K Static RAM w/Power Down	250	160/25	+5	16	NMOS	C, L	D, P, F	3-3
	21L02-F		350							3-3
	21L02-1		450							3-3
	21L02-2		650							3-3
1024×4	F2114-2	4K Static RAM	200	530	+5	18	NMOS	C,M	D, P	3-8, 7-6
	F2114-3		300							3-8, 7-6
	F2114		450							3-8, 7-6
	F2114L-2	4K Low-power Static RAM	200	265	+5	18	NMOS	C,M	D, P	3-8, 7-6
	F2114L-3		300							3-8, 7-6
	F2114L		450							3-8, 7-6
2048×8	F3528-25	16K Static RAM w/Power Down	250	450/100	+5	24	Iso-H	C	D	3-12
	F3528-35		350							3-12
16,384 $\times 1$	F3567-55	16K Static RAM w/Power Down	55	700/170	+5	20	Iso-H	C	D	3-14
$16,384 \times 1$	F4116-2	16K Dynamic RAM	150	465/25	$\begin{aligned} & +12 \\ & \pm 5 \end{aligned}$	16	NMOS	C, L, M ${ }^{*}$	D, P, F, L	3-15, 7-20
	F4116-3		200							3-15, 7-20
	F4116-4		250							3-15, 7-20
$65,536 \times 1$	F4 164-1	64K Dynamic RAM	120	250/20	+5	16	Iso-H	C	D	3-37
	F4164-2		150							3-37
	F4 164-3		200							3-37

Notes

1. $\mathrm{C}=$ Commercial ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)
$\mathrm{L}=$ Limited Military ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
$M=$ Military ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
$M^{*}=$ Special Military ($T_{\text {Case }}=-55^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$)
2. $P=$ Plastic DIP

D $=$ Ceramic DIP
$\mathrm{F}=$ Flatpak
$\mathrm{L}=$ Leadless Chip Carrier

Product Index and Selection Guides

UV Erasable Programmable Read Only Memories

Organization	Part No.	Description	Access Time (ns)	Max Power Dissipation (mW)	Power Supply (V)	No. of Pins	Technology	Temperature Range (Note 1)	Package (Note 2)	Page No.
1024×8	F2708-1	8K EPROM	350	800	$\begin{aligned} & +12 \\ & \pm 5 \end{aligned}$	24	NMOS	C	D	4-3
	F2708		450					C		4-3
4096×8	F2732	32K EPROM	450	790/160	+5	24	NMOS	C	D	4-10
8192×8	F2764	64K EPROM	200	750	+5	28	Iso-H	C	D	4-16

Serial Memories

Function	Organization	Part No.	Frequency Range (MHz)	Max Power Dissipation (mW)	Power Supply (V)	No. of Pins	Temperature Range (Note 1)	Technology	Package (Note 2)	Page No.
Static Shift Register	32×6	3348	dc to 1.0	500	$\begin{aligned} & -12 \\ & +5 \end{aligned}$	24	C	PMOS	D	5-13
		3349				16			D,P	5-13
	64×4	3342	dc to 1.5	380	$\begin{aligned} & -12, \\ & +5 \end{aligned}$	16	C	PMOS	D,P	5-9
	80×4	3357-1	dc to 4.0	375	$\begin{aligned} & -12 \\ & +5 \end{aligned}$	16	C,L,M	PMOS	D, P	5-25, 7-15
		F2847	dc to 3.0	455			C		D, P	5-25
		F2847	dc to 2.5	600			L,M		D	7-15
		3357-2	dc to 2.0	285			C		D,P	5-25
Low Power Static Shift Register		F2847L	dc to 3.0	320			C		D, P	5-25
		F2847L	dc to 2.5	410			L, M		D	7-15
First-in First-out	64×4	3341 A	dc to 1.0	450	$\begin{aligned} & -12 \\ & +5 \end{aligned}$	16	C,L,M	PMOS	D	5-3, 7-8
		3341	dc to 0.7							5-3, 7-8
	40×9	3351-1	dc to 2.0	520	$\begin{aligned} & -12 \\ & +5 \end{aligned}$	28	C,L,M	PMOS	D, P	5-16, 7-11
		3351-3	dc to 1.5	420						5-16, 7-11
		3351-2	dc to 1.0	420						5-16, 7-11

Special Function Products

			Max Power Dissi- pation $(m W)$	Temper- ature Range	No. of Pins	Tech- Rology	Package	Page No.
Punction	Part No.	Suply						

[^0]

Special Function Data Sheets
6

Extended Temperature Range Data Sheets
7

Ordering Information and Package Outlines
8

Sales Offices, Representatives and Distributor Locations

Section 2 MOS Memory Technology Overview

To understand MOS circuitry, it is first necessary to become familiar with some of the physical characteristics of the metal-oxide-semiconductor structure. The MOS process involves the separation of a metal or other gate-material electrode from a semiconductor substrate by a thin insulator of silicon dioxide (oxide). The stand-alone band structures of the materials are pictured in Figure 1. The Fermi level, stated simply, is a reference energy level at which the probability of finding an electron is $1 / 2$. The bands below it are mostly full, and those above are generally empty. Thus, since the conduction band in the metal is full, the Fermi level is situated within the conduction band. The work function, or the amount of energy needed to remove an electron from the Fermi level to a point outside the atom, is designated ϕ.

Figure 1

Figure 2

When these materials are together in an equilibrium state, electrons have been transferred from the metal to the silicon due to the lower work function of the metal. This equalizes the Fermi levels at the junctions and forms a potential across the non-conducting oxide (Figure 2). This structure, in effect, is a capacitor with charge stored on the gate and in the substrate, with a voltage equal to the difference in the work functions. In the particular case shown, if a negative voltage, with respect to the substrate, is applied to the gate, the voltage across the capacitor tends to decrease until it reaches the point shown in Figure 3. This applied voltage is then equal to the difference in work functions and is designated the flat-band voltage $V_{F B}$. Therefore, $\mathrm{V}_{\mathrm{FB}}=\phi$ metal $-\phi$ silicon in the ideal case. This voltage is useful when computing another important parameter, the threshold voltage, discussed later.

Figure 3

As the voltage on the gate becomes positive with respect to the substrate, it continues to repel the positive charge carriers in the surface below as well as build up a positive charge on the gate. When the substrate surface is nearly void of mobile carriers, the condition is called surface depletion (Figure 4). As the gate voltage becomes still more positive under equilibrium conditions, the Fermi level remains constant and the energy bands continue to bend downward. At the point where the actual Fermi level crosses the intrinsic (undoped) Fermi level, the substrate behaves like an n-type semiconductor. This forms a channel of n-type carriers (mobile electrons) between the source and drain called the inversion layer (Figure 5). The voltage at which this channel forms is known as the threshold voltage, and can be expressed as

$$
\begin{align*}
\mathrm{V}_{\mathrm{T}}= & \mathrm{V}_{\mathrm{FB}}+2\left|\phi_{\mathrm{p}}\right| \\
& +\frac{1}{\mathrm{C}_{o x}^{\prime}} \sqrt{2 \mathrm{E}_{\mathrm{S}} q N_{\mathrm{a}}\left(2 \phi_{\mathrm{p}}+\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{B}}\right)}+\mathrm{V}_{\mathrm{C}} \tag{1}
\end{align*}
$$

where $\mathrm{V}_{\text {FB }}$ is the positive voltage needed to neutralize the charge between the gate and the substrate, and $2\left|\phi_{p}\right|$ is the voltage required to cause the bands to bend into the inverted condition. The third term results from the charge distribution within the substrate and depends on the permittivity of the silicon (E_{S}), the doping level N_{a}, the channel-to-substrate bias $\left(V_{C}-V_{B}\right)$, and the oxide capacitance $C_{o x}^{\prime}$ (per square unit). V_{C}, the last term, is the channel voltage (typically zero when referenced to the source).
Figure 4

Figure 5

Since the channel forms because of the applied voltage, this device is said to conduct in the enhancement mode. Depletion-mode devices, on the other hand, are manufactured so that the channel exists without any external bias applied. The gate voltage must be applied to remove the channel and shut the transistor off. In fact, due to the internal positive charge contained in the oxide, an n-channel device may have an inverted substrate with no gate bias applied (Figure 6). Thus, it was not until special processing techniques were developed to reduce the oxide charge that enhancement NMOS devices became popular. Until that time, the majority of MOS devices were p-channel (PMOS). Although the previous discussion applies to NMOS technology, it is also applicable to PMOS with an n-type substrate and a negative gate-to-substrate voltage.
Figure 6

A brief history of MOS devices may prove enlightening. PMOS devices were originally constructed using <111>-oriented silicon with metal gates and had a typical threshold voltage of -4 V . Unfortunately, threshold voltages of -2 V or less were required for compatibility with TTL circuitry. This problem was solved by substituting a heavily doped, highly conductive layer of poly-crystalline silicon (poly) for the aluminum gate. This substitution brought about three major advantages. First, since the silicon gate material had a work function ϕ closer to that of the substrate, $V_{\text {FB }}$ was reduced and V_{T} was correspondingly smaller. Secondly, since this type of silicon was stable at high temperatures, the source and drain could be diffused after the gate, thus yielding near perfect gate-channel alignment using the gate layer as a mask. And third, since another insulating layer could be deposited over the first poly, a second layer of metal or poly interconnections could be run over the top of the first (Figure 7).

In addition to changing the gate material, it was also found that substituting $<100>$-oriented silicon for $<111>$ type tended to lower threshold voltages and reduce surface state charge by a factor of three. Unfortunately, while the surface could be inverted under the gate with less voltage, it would also be inverted under the thicker field-oxide region, causing a lower field threshold $V_{T F}$. This limited the operating voltage, and to some extent the density, of the device.

Fairchild addressed this low-VTF problem through the Isoplanar process. The field oxide is selectively grown to provide a thicker oxide layer where required (Figure 7). Since the oxide repels the p-type dopants, the substrate just below the field oxide becomes a p^{+} or a more concentrated p region. As can be seen from Equation 1, the threshold voltage is higher where \mathbf{N}_{a} is greater. In addition to raising the $V_{T F}$, this process also reduces vertical steps, making devices easier to manufacture.

Also to help overcome the VTF problem and to aid in adjusting threshold voltages, the ion-implantation process was developed. This process consists of accelerating a pure beam of ionized dopant atoms and directing them onto the surface of the silicon. Typically, these ions are used to change the doping level of the channel area to lower the threshold properties with respect to the field or to effect more precise V_{T} control.

While the above advances are applicable to both P and NMOS, NMOS has received most of the attention due, in part, to its inherent speed advantages. Since

Figure 7

the mobility of carriers (electrons) is roughly two times that of holes, NMOS devices typically exhibit higher speed performance.

Transistor Operations

MOS transistors are a subset of a more general class of devices called insulated-gate field-effect transistors or IGFETs. While many of the properties discussed in the following section apply specifically to MOSFETs, most are analogous to the characteristics of other types of IGFETs. See Figure 8 for the MOS transistor symbol and definition of terminals.

After the gate voltage exceeds V_{T} and the channel has formed, the magnitude of the current between the source and drain depends on the drain voltage V_{D}. Since the channel acts as a resistive element, V_{D} and V_{T} are typically specified with respect to the source.

Figure 8

Thus when the channel first begins to form, $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{S}}$. As V_{D} continues to increase positively, the current increases linearly to a saturated condition (Figure 9), where further increases in V_{D} do not produce appreciable changes in drain current ID. At this point,
$V_{D(S A T)}=V_{G}-V_{T}$

MOS Memory Technology Overview

Figure 9

When operated in the linear region, below $V_{D(S A T)}$, the MOSFET looks very much like a voltage-controlled resistor. MOSFET gain is typically measured by its transconductance, the rate of change of drain current with respect to gate voltage. The transconductance in the saturation region is given by
$g_{m s a t}=\mu_{n} C_{o x}^{\prime} W / L\left(V_{G}-V_{S}-V_{T}\right)$
where μ_{n} is the mobility of electrons, $\mathrm{C}_{o x}^{\prime}$ is the oxide capacitance (per unit area), and W/L is the channel width-to-length ratio, which will be discussed in greater detail later.

In a typical MOS integrated circuit, the substrate is common to many transistors. The substrate voltage can be varied with respect to the source and will affect the threshold voltage as indicated by Equation 4. In general, the change in V_{\top} with substrate bias V_{B} is given by
$V_{T}=K \sqrt{V_{S}-V_{B}}$
where K is an empirical constant usually between 0.5 and 0.75 .

In an MOS integrated circuit the source-substrate junction must be reverse biased to isolate the transistors from each other. Thus, the substrate voltage can be no greater than 0.6 V relative to the source. The negative voltage limit is the reverse breakdown voltage of this junction. Due to the charge distribution within the bulk, making V_{B} more negative causes V_{T} to become more positive. This effect is used in some devices to adjust V_{T}.

Threshold voltage V_{T} is a very important parameter since it affects input and output levels (noise margin), power-supply tolerance, power dissipation, speed, and output-drive current. Also, if the device design must allow for large variations in V_{T}, the speed-power product cannot be maximized. A substrate-bias
generator can be used on-chip to control V_{T} such as in the case of the F4164 and F3528. This circuit compares the on-chip threshold voltages against a reference that is a fixed percentage of $V_{C C}$. The generator senses V_{T} variations and, using a chargepump technique, adjusts the substrate bias to compensate. In addition to improving design, the bias generator eliminates the need for an external $V_{B B}$ supply.

Memory-cell Design

The basic static read-write random access memory (RAM) cell (Figure 10) consists of two cross-coupled inverters used to latch the data as a ' 1 ' or ' 0 '. The X (word) lines and the Y (bit) lines service other similar cells. Various types of cell pull-up devices have been employed, with the depletion-mode transistor shown or the poly resistor the most popular. These types are favored over enhancement-mode loads because the V_{T} drop required in an enhancement device lowers the cell's output-HIGH voltage below acceptable levels. Poly resistors have gained popularity over diffused resistors because of smaller size and higher resistance values. While fairly simple in structure, static cells have two main drawbacks-relatively large size and high power consumption, both critical parameters for high-density memories.

To overcome these limitations, the dynamic memory cell was devised. The most popular cells initially were the three-transistor types. Two major types were produced, differing mainly in the number of interconnections. The method of storage was the same, however.

Since the gates of MOS transistors are basically a capacitor, charge can be stored on the gate-to-source capacitance shown in Figure 11. This stored charge switches the transistor either on or off, storing the information. Unfortunately, since the charge eventually leaks off the gate, this cell needs to be refreshed at regular intervals; hence, the term dynamic memory is applied. Peripheral circuitry senses the data and rewrites it into the cell. This increased complexity can be shared among many cells in a multiplexed fashion, reducing the cell to three transistors with no direct power path between supplies. The resulting increase in density and reduction in power have made dynamic RAMs (DRAMs) very popular. The three-transistor cell was employed in DRAMs up through the 2K-bit density level.

MOS Memory

Technology Overview

Figure 10

Figure 11

The 4K-bit DRAM generation and the following density levels (16K, 64K, etc.), incorporate the smaller one-transistor-cell design consisting of a capacitor and an access transistor (Figure 12). Because the onetransistor cell is much smaller than its predecessors, the amount of stored signal available for detection is also less. The one-transistor cell requires a more complex balanced sense amplifier, but the inherent density advantages make this cell viable.

Figure 12

To Other Cells
Having the Same
Column Address

MOS Memory
 Technology Overview

RAM Architecture

The basic RAM organization can be word-wide ($2 \mathrm{~K} \times 8$, $1 \mathrm{~K} \times 4$) or bit-wide ($1 \mathrm{~K} \times 1$, 16K $\times 1$). Word-wide RAMs are generally used in applications requiring relatively small amounts of byte-organized memory, such as microprocessor-based systems.
Accessing one 8-bit-wide device requires less power than enabling eight 1 -bit-wide devices for the same amount of information.

In larger systems, the bit-wide device finds favor for two reasons. First, since the error-correction schemes employed in many large systems can correct single bit errors in a word, if one bit-wide device fails, the addressed word is correctable. Word-wide RAMs would be unsuitable for this application, because a general device failure would cause an uncorrectable 8- or 4-bit error in some words. Second, since output buffers required on a word-wide device are eliminated, the bit-wide memory-chip size is smaller. This is critical, for device cost is directly related to chip size and low-cost devices are necessary in cost-effective large memory systems.

In a word-wide arrangement, some of the address lines (λ) are decoded to select a row of memory cells, as in Figure 13. The remaining address bits (θ) are decoded to determine which of the K sets of n cells within the row is being accessed. The entire n-bit word is then available at the I/O circuits.

In the bit-wide case, each word is one bit wide and the decoders are used to select any of the Y bit locations within the total X number of rows. In this configuration, the data lines may be connected in parallel to a single I/O buffer. These same matrix ideas are employed on both static and dynamic RAMs, although additional peripheral complexity is required for sensing and refreshing in the DRAM.

Due to the small amount of charge stored in DRAM memory cells, any loss of charge due to leakage or charge used during a read operation must be replaced by refreshing the location. Restoration is typically accomplished by the sense amp reading the information present in the cell, and then rewriting it immediately afterward. This function can be shared among all the cells in a given column. A block diagram of a sense amp and how it relates to the memory cells is shown in Figure 14.

There are many configurations of the sense-amp relationship to the storage-cell array; one of the most popular DRAM architectures is shown in Figure 15. It was not by accident that the sense amps are in the

Figure 13

center of the array. Since the small amount of stored charge must drive the bit-line capacitance, which is related to the bit-line length, the bit lines should be kept as short as possible. Thus, there is a tradeoff between the number of cells serviced by any one sense amp and the signal wasted to charge the bit line. This effect, coupled with the balanced nature of the sense amps, makes the middle of the array a good compromise. In addition, because the ratio of bit-line capacitance to storage capacitance can be 10:1 or more, the bit lines are sometimes precharged with a clocking circuit before the cell is connected.

Figure 14

Figure 15

64K DRAM Architecture

With the advent of the 64 K dynamic RAMs, the associated reduction in storage-cell charge has made the bit-line capacitance problem even more important. This problem is complicated for, as the array is further divided to effect shorter bit lines with less cells per line, the word lines become longer. Since layered interconnects are required and the word lines are fabricated with the less conductive polysilicon, the increased resistance adds RC time delays and slows
access time. The F4164 is organized as eight 8 K -bit blocks, with the word-line drivers located as shown in Figure 16 to reduce word-line length. In addition, since the majority of the power is consumed by the sense amps, reducing the number of cells per sense amp by increasing the sense-amp count also increases the power.
Fairchild, by unique sense-amp design, has been able to double the effective service range of each sense amp of the F4 164 without seriously affecting the signal available for sensing. Each of the 128 sense amps has 4 (not 2) bit lines, serving 64 cells per line. Each half bit line has an isolating transistor associated with it so only one bit-line half is connected to the desired cell.

In a balanced sense-amp design, the voltage on the bit-line half connected to the cell is compared against a reference voltage set up on another bit-line half connected to a dummy capacitor. Ideally, this dummy capacitor should be one half the capacitance of the storage cell. Unfortunately, if the storage capacitor is the minimum allowable size, there is obviously a problem making the dummy half that size. Fairchild

MOS Memory
 Technology Overview

Figure 16

s॥әว әันәләјуч 七9	8K Cell Array	$64 \text { Sense Amps }$	8K Cell Array	1 of 128 C O L U M N	8K Cell Array		8K Cell Array	
Word Line Drivers								
1 of 256 Row Decoder								
Word Line Drivers								
	8K Cell Array		8K Cell Array	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \\ & \mathrm{C} \\ & \mathbf{O} \\ & \mathrm{D} \\ & \mathrm{E} \\ & \mathrm{R} \end{aligned}$	8K Cell Array		8K Cell Array	¢ \bar{O} 0 0 0

has overcome this problem in the F4164 sense amp by sharing one full-size dummy capacitor between the two halves of each bit line; thus, half the charge is supplied to each to establish the reference voltage. If the memory-cell capacitor has a HIGH charge, connecting it to a half bit line will cause that half to be more positive than the reference. If the cell has a LOW charge, the opposite occurs. This difference is sensed and latched by the sense amp.

Manufacturing Advances

With the advent of the one-transistor DRAM cell, it seems unlikely that further circuit evolution will bring about dramatic reductions in cell size. Further size reductions will come from process improvements, just as process modifications have already decreased the one-transistor cell from about $1 \mathrm{mil}^{2}$ to roughly $0.3 \mathrm{mil}^{2}$.

There are several ways to shrink an existing circuit without changing its basic design. A two-dimensional reduction in device geometries has already been successfully employed on several generations of MOS devices. At the transistor level, the length-to-width ratio of the channel determines its resistive properties, gain, speed performance, and relative size. Roughly, the higher the W / L, the lower the resistance, higher the gain and speed, and the larger
the relative device area. Photographic size reduction can result in a smaller device that has similar properties to the original simply by keeping the W / L ratio constant.

A size reduction affecting all three dimensions is called scaling. Ideal scaling involves the reduction of each device dimension by a constant scale factor K. Since the field strength must generally be kept constant, the voltage at the device level is scaled by the same factor. In addition to the device area being reduced by the $1 / K^{2}$ factor, there are also performance improvements. Speed is increased, since the smaller device area results in reduced capacitance and transit time. Also, because the voltage after scaling is $1 / \mathrm{K}$.times the voltage before and the post-scaling current is reduced by a like amount, power $(V \times I)$ is scaled by $1 / K^{2}$. Since both power and voltage are lower in the scaled device, reliability is enhanced.

To ensure that a scaled design can be manufactured, the ideal scaling rules must be adjusted to provide process compatibility. The process parameters involved are dopant levels, oxide thickness, junction depths, and supply voltage. Isoplanar-H is Fairchild's proprietary Isoplanar scaled-MOS process. This scaled NMOS is characterized by optical lithography,

MOS Memory
 Technology Overview

dry (plasma) etching, arsenic junctions, sub-500 \AA oxides, and multiple levels of interconnect.

At present, scaling techniques are limited by the tolerances of existing photolithographic equipment. Contact printers with tolerances of ± 0.75 microns, once acceptable when dealing with 10 -micron line widths, are no longer useful at the 1-2 micron level. The advent of electron beam (E-beam) and step-andrepeat printers has demonstrated that this accuracy is possible for a price. The cost, just for the equipment, to set up a medium-size scaled-MOS line is around 30 million dollars.

Aside from the scaling limits imposed by equipment availability, there are physical limits as well. Reduced alpha immunity, short-channel effects, and reduced storage charge, are problems that increase significantly as device dimensions become smaller.

Alpha immunity is the relative resistance of a particular device to alpha-particle induced soft errors. Soft errors are defined as random bit errors not associated with physical defects on the chip. Alphainduced soft errors occur when extra electron-hole pairs are generated by an alpha-particle collision with the chip, thus injecting extraneous charge that causes sensing malfunctions (Figure 17). The package material is the source of these alpha particles.

Figure 17
Path of Alpha Particle
(Typical Alpha May Generate
1 Million Electrons)

As device dimensions are further reduced, the amount of charge stored in each cell is decreased. Thus, the difference in the number of electrons sensed as a ' 1 ' and the number representing a ' 0 ' is also smaller. Therefore, since the number of electron-hole pairs produced within the silicon by an incident alpha particle is roughly constant, the probability of an error caused by this extra charge increases as device geometries and stored charge are scaled.

Other factors limiting the degree to which a device can be scaled are grouped into a category called short-channel effects. These characteristics become most pronounced when the channel length becomes less than about 3 microns. Although threshold voltage and several other parameters are affected, the largest problem is caused by the proximity of the source and drain regions. Since these two regions are now separated by a small distance, the relatively constant depletion regions that surround them may overlap, causing an unwanted current path between the source and drain (Figure 18). Research is underway to minimize these difficulties by varying process techniques, but short-channel effects remain a physical consideration when scaling.

Figure 18

Since vertical dimensions like oxide thickness also shrink during scaling, storage capacitance per unit area for future devices will remain roughly the same as for present-day NMOS. However, since the power supply voltage must be scaled to maintain a constant electric field, the charge written into a dynamic memory cell will be reduced since it is a product of the cell capacitance and writing voltage.

This reduction is fairly critical for a DRAM, because the charge in the cell is shared with a relatively large bit-line capacitance. Therefore, the signal voltage that the sense amplifier must correctly process is scaled in the same manner as the writing voltage.

The Future of MOS Memory

Future advances in very large scale integration will depend heavily on the ability of manufacturers to reduce device geometries beyond the current state of the art. Present geometries used for devices like the 64K DRAM, 16K fast static RAMs and the like are based on 3-micron design rules. Thus, MOS transistor
channel lengths are drawn to a 3-micron length. The finished effective channel length is 2-2.5 microns.

Future enhancements involve further shrinking of the design rules. At channel lengths below 1.5 micron, a new lithography technique such as X -ray or electron beam will be required. Using these mask-exposure techniques, sub-micron geometries will evolve to produce 1 megabit DRAMs in the late 1980s.

VLSI geometries will encounter a silicon-material limit at about the 0.5 mic 碞 level by the end of the decade. At this point, new substrate materials such as gallium arsenide may be required to continue the trend of increased integration. Materials development programs are presently investigating refractory metalsilicide gate structures. This approach significantly reduces the delays caused by interconnect resistivity while maintaining the relatively low work-function difference between the silicon substrate and the gate material. Thus, TTL compatibility can still be realized. Decreased RC delays will reduce the DRAM speedrelated pattern sensitivities.

DRAMs will benefit from new types of materials, continued reduction of defect density, and increased automation of the production process. All of these factors will contribute to the increases in density, cost-effectiveness, reliability and performance that will appear in future generations of semiconductor memories.

Extended Temperature Range Data Sheets

Description

The 2102 family consists of 1024 -word by 1 -bit static Random Access read/write Memories (RAM) that require a single 5 V supply, have fully TTL-compatible inputs and output, and require no clocking or refresh. Chip Select ($\overline{\mathrm{CS}}$) permits a 3-state output allowing the outputs to be wired-OR. Special features include low power dissipation (2102L) and a power-down capability (21LO2).

The 2102, 2102 L and 21 LO are manufactured using the n-channel Isoplanar process and are available in a 16-pin dual in-line package or flatpak.

- FAST ACCESS - 250 ns
- SINGLE +5 V SUPPLY
- TTL-COMPATIBLE INPUTS AND OUTPUT
- TOTALLY STATIC-NO CLOCKS OR REFRESH
- 3-STATE OUTPUT
- LOW POWER (2102L)
- POWER-DOWN CAPABILITY (21L02)
- FULLY EXPANDABLE
- FULLY DECODED
- 16-PIN DUAL IN-LINE PACKAGE

Pin Names

$A_{0}-A_{9}$	Address Inputs
D	Data Input
R / \bar{W}	Read/Write
$\overline{C S}$	Chip Select (active LOW)
Q	Data Output

Absolute Maximum Ratings

Voltage on Any Pin with Respect
to $V_{S S}$
Storage Temperature
Operating Temperature
-0.5 V to +7.0 V
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliabiliy.

Logic Symbol

$V_{S S}=\operatorname{Pin} 9$
$V_{D D}=\operatorname{Pin} 10$

Connection Diagram 16-Pin DIP

Package	Outline	Order Code
Ceramic DIP	$6 Z$	D
Plastic DIP	UC	P
Flatpak	II	F

Note
The Flatpak has the same pin number-to-function correspondence as the DIP.

Block Diagram

Truth Table

$\overline{\mathbf{C S}}$	$\mathbf{R} / \overline{\mathbf{W}}$	\mathbf{D}	O	Comments
\mathbf{H}	\mathbf{X}	\mathbf{X}	\bullet	Chip Deselected
L	L	H	H	Write "1" \dagger
L	L	L	L	Write "0" \dagger
L	H	X	D $_{n}$	Read \dagger

$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

- O Output High Impedance State
$\mathrm{D}_{\mathrm{n}}=$ Data at Address Location
\dagger = Chip Selected
Power/Access Time Guide

	Part Number	Access Time	IDD(MAX)
Power Down	$\begin{array}{\|l} \hline 21 \mathrm{LO} \mathrm{H} \\ 21 \mathrm{LO} \mathrm{~F} \\ 21 \mathrm{LO} 1 \\ 21 \mathrm{LO} 22 \end{array}$	$\begin{aligned} & 250 \mathrm{~ns} \\ & 350 \mathrm{~ns} \\ & 450 \mathrm{~ns} \\ & 650 \mathrm{~ns} \end{aligned}$	30 mA 30 mA 30 mA 30 mA
Low Power	$\begin{aligned} & \hline \text { 2102LH } \\ & 2102 \mathrm{LF} \\ & 2102 \mathrm{~L} 1 \\ & 2102 \mathrm{~L} 2 \end{aligned}$	$\begin{aligned} & 250 \mathrm{~ns} \\ & 350 \mathrm{~ns} \\ & 450 \mathrm{~ns} \\ & 650 \mathrm{~ns} \end{aligned}$	30 mA 30 mA 30 mA 30 mA
Standard	$\begin{aligned} & 2102 \mathrm{H} \\ & 2102 \mathrm{~F} \\ & 21021 \\ & 21022 \end{aligned}$	$\begin{aligned} & 250 \mathrm{~ns} \\ & 350 \mathrm{~ns} \\ & 450 \mathrm{~ns} \\ & 650 \mathrm{~ns} \end{aligned}$	55 mA 55 mA 55 mA 55 mA

Functional Description

The 2102, 2102L and 21L02 are 1024×1 static RAMs. When the Chip Select ($\overline{\mathrm{CS}}$) goes HIGH, the Read/Write (R / \bar{W}) input is disabled and the Data Output (Q) is forced into a high impedance state. When $\overline{C S}$ goes LOW, the Read/Write input is enabled.

When R / \bar{W} goes LOW, data from the Data Input (D) is written at the location specified by the Address Inputs (A_{n}). The Data Output will be identical to the Data Input during a write command. When R/ \bar{W} goes HIGH, the contents of the addressed location will appear at Q. Q is not inverted from D in the 2102. (See Truth Table).

DC Requirements $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic, Note		2102, 2102L		21L02		Unit	Condition
			Min	Max	Min	Max		
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	H,F, 1	2.0	$V_{\text {DD }}$	2.0	$V_{\text {DD }}$	V	
		2	2.2	$V_{D D}$	2.2	$V_{D D}$		
VIL	Input LOW Voltage	H,F, 1	-0.5	0.8	-0.5	0.8	v	
		2	-0.5	0.65	-0.5	0.65		
$V_{D D}$	Power Supply Voltage		4.75	5.25	4.5	5.5	V	
DC Characteristics $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$								
Symbol	Characteristic, Note		2102, 2102L, 21 L02				Unit	Condition
			Min		Max			
V OH	Output HIGH Voltage	H,F, 1	2.4				V	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
		2	2.2					
V_{OL}	Output LOW Voltage				0.4		V	$1 \mathrm{OL}=2.1 \mathrm{~mA}$
IN	Input Leakage Current				10		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$
IOH	Output HIGH Current				5.0		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OH}(\text { Min })} \\ & \mathrm{CS}=\mathrm{V}_{\mathrm{IH}(\text { Min })} \end{aligned}$
lol	Output LOW Current				-10		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OL(Max }} \\ & \mathrm{CS}=\mathrm{V}_{\text {IH(Min) }} \\ & \hline \end{aligned}$
IDD	Power Supply Current 2102 2102 L $21 \mathrm{LO2}$				$\begin{aligned} & 55 \\ & 30 \\ & 30 \end{aligned}$		mA	Inputs $=V_{D D(M a x)}$ Dout open, $T_{A}=T_{A(\text { Min })}$

AC Requirements $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	$\begin{aligned} & \hline 2102 \mathrm{H} \\ & 2102 \mathrm{LH} \\ & 21 \mathrm{LO} \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 2102 F \\ & 2102 L F \\ & 21 L 02 F \end{aligned}$	$\begin{array}{\|l\|} \hline 21021 \\ 2102 \mathrm{~L} 1 \\ 21 \mathrm{~L} 021 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 21022 \\ 2102 \mathrm{L2} \\ 21 \mathrm{LO22} \\ \hline \end{array}$	Unit	Condition
		Min	Min	Min	Min		
tcyc	Read or Write Cycle Time	250	350	450	650	ns	$v_{S S}=0 \mathrm{~V}$ See DC Requirements for Conditions on VDD
${ }^{\text {taw }}$	Address to Write Time	20	20	20	200	ns	
twp	Write Pulse Width	170	170	200	350	ns	
twR	Write Recovery Time	0	0	0	50	ns	
tDS	Data Set-up Time	170	170	200	350	ns	
tDH	Data Hold Time	0	0	0	20	ns	
tew	Chip Select to Write Time	170	170	200	400	ns	
twe	Write to Chip Select Time	0	0	0	50	ns	

Note
See Power/Access Time Guide and AC Characteristics for definitions of H, F, 1 and 2 speed grades.

AC Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	$\begin{array}{\|l\|} \hline 2102 \mathrm{H} \\ 2102 \mathrm{LH} \\ \text { 21LO2H } \end{array}$		$\begin{aligned} & \hline 2102 F \\ & 2102 L F \\ & 21 L 02 F \end{aligned}$		$\begin{aligned} & \hline 21021 \\ & 2102 L 1 \\ & 21 L 021 \end{aligned}$		$\begin{aligned} & \hline 21022 \\ & 2102 \mathrm{L2} \\ & 21 \mathrm{~L} 022 \end{aligned}$		Unit	Condition
		Min	Max	Min	Max	Min	Max	Min	Max		
$t_{\text {ACC }}$	Read Access Time		250		350		450		650	ns	$v_{\mathrm{SS}}=0 \mathrm{~V}$ See DC Requirements for Conditions on VDD
tco	Chip Select LOW to Output Valid Delay		130		170		200		400	ns	
${ }_{\text {toh }}$	Data Valid after Address	40		50		50		50		ns	
toh2	Previous Data Valid after Chip Deselect	0		0		0		0		ns	
$\mathrm{Cin}^{\text {cor }}$	Input Capacitance		5.0		5.0		5.0		5.0	pF	$\begin{aligned} & V_{I N}=0 \mathrm{~V}, V_{S S}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
Cout	Output Capacitance		10		10		10		10	pF	

Power Down Characteristics (21L02 only) $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	21 LO2		Unit	Condition
		Min	Max		
IDD(PD)	Power Supply Current		15	mA	$\mathrm{V}_{\mathrm{DD}}=1.6 \mathrm{~V}$
VDD(PD)	Power Supply Voltage	1.6		V	
tcSs	Chip Select Set-up Time	100		ns	
${ }_{\text {t }}^{\text {CSH }}$	Chip Select Hold Time	100		ns	
$\mathrm{V}_{\text {CS }}$	Chip Select Voltage	2.0		V	
V'DD	Power Supply Slew Rate		100	$\mathrm{V} / \mu \mathrm{s}$	

Timing Diagrams

Read Cycle Timing

Write Cycle Timing

OUTPUT NOT VALID OR
INPUT IN HIGH OR LOW TRANSITION
Aluw HIGH-TO-LOW TRANSITION
VIIIII LOW-TO-HIGH TRANSITION

AC Conditions

Input Levels: $\mathrm{V}_{\mathrm{IL}(\text { Max })}$ to $\mathrm{V}_{\mathrm{IH}(\text { Min })}$
Input Rise and Fall Times: 10 ns
Timing Measurement Reference Levels Inputs: 1.5 V
Output: 2.0 and 0.8 V
Output Load: 1 TTL Gate +100 pF

F2114/2114L 1024×4 Static RAM

MOS Memory Products

Description

The F2114 is a 4096-bit static Random Access Memory (RAM) organized as 1024 words of four bits each. Since the operation of the F2114 is entirely static, there is no clocking or refreshing required. It operates from a single +5 V supply and is directly a TTL compatible at all inputs and outputs including the four bidirectional data I/O pins.

It is designed for memory applications in which static operation, large bit-capacity, and simple interfacing are important design considerations.

The F2114 is manufactured using Fairchild's n-channel silicon gate Isoplanar process. The innovative use of polysilicon resistors in the static memory cell permits a high bit packing density and insures low-power characteristics. It is available in a standard plastic or ceramic 18-pin dual in-line package.

- 1024×4-BIT ORGANIZATION
- SINGLE +5 V SUPPLY
- COMPLETELY STATIC-NO CLOCKS OR REFRESH
- TOTALLY TTL COMPATIBLE
- COMMON DATA I/O PINS WITH 3-STATE CAPABILITY
- IDENTICAL CYCLE AND ACCESS TIMES
- LOW POWER (2114L)

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address Inputs
CS	Chip Select (Active LOW)
WE	Write Enable (Active LOW)
DQ ${ }_{1}-\mathrm{DQ}_{4}$	Data Input/ Output
V_{CC}	+5 V Power Supply
GND	Ground

Absolute Maximum Ratings

Voltage at Any Pin with Respect

to GND	-0.5 V to +7.0 V
Operating. Temperature (Ambient)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ambient)	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	1 W

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

Logic Symbol

Connection Diagram 18-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	8 D	D
Plastic DIP	8 J	P

Block Diagram

Functional Description

The F2114, organized as 1024 words by four bits, is controlled by the Chip Select (CS), Write Enable (WE) and the ten address inputs. When $\overline{C S}$ goes HIGH the memory becomes deselected; the bidirectional input/output pins become high impedance, and the $\overline{W E}$ input is ignored. Therefore no read or write operations may occur. This feature allows the DQ pins to be OR-tied directly to a data bus. When the memory is selected (CS LOW), and the WE pin is in the HIGH state, the 4 -bit word stored at the memory location specified by the address inputs is gated through to the DQ pins after a delay equal to the access time. If the WE is forced LOW, then the DQ pins become HIGH impedance inputs so that an externally supplied data word may be placed on them.

All inputs and bidirectional DQ pins are directly TTL compatible with data always being read out in the same polarity as it was written (i.e., not inverted).

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	DQ	Comments
\mathbf{H}	X	High Z	Chip Deselected
\mathbf{L}	L	H	Write "1"
L	L	L	Write "0"
L	H	Data	Read

F2114/2114L

DC Electrical Requirements and Characteristics $T_{A}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$,
all voltages are with respect to ground, Note 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0		$V_{\text {cc }}$	V	
$V_{\text {IL }}$	Input LOW Voltage	-0.5		0.8	V	
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	2.4		V_{CC}	V	lout $=-1.2 \mathrm{~mA}$
VOL	Output LOW Voltage	0		0.4	V	IOUT $=3.2 \mathrm{~mA}$
los	Output Short-Circuit Current, Note 2			65	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICC	Average VCC Supply Current F2114L2, F2114L3, F2114L			70	mA	$\left\{\begin{array}{l} V_{C C}=5.25 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \\ \mathrm{I} / \mathrm{O} \text { current }=0 \mathrm{~mA} \end{array}\right.$
	Average VCC Supply Current F2114-2, F2114-3, F2114			100	mA	
IN	Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.25 V
IDQ	1/O Leakage Current	-10		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{1 / \mathrm{O}}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance			5.0	pF	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$
CDQ	1/O Capacitance			5.0	pF	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \\ & \mathrm{~V}_{1 / \mathrm{O}}=0 \mathrm{~V} \end{aligned}$

AC Electrical Requirements And Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$, Notes 1 and 3

Symbol	Characteristic	$\begin{aligned} & \hline \text { F2 114L-2 } \\ & \text { F2 114-2 } \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \text { F2 1114L-3 } \\ \text { F2114-3 } \\ \hline \end{array}$		$\begin{aligned} & \text { F2114L } \\ & \text { F2114 } \end{aligned}$		Unit	Note
		Min	Max	Min	Max	Min	Max		
tcyc	Read or Write Cycle Time	200		300		450		ns	
${ }^{\text {t } A C C}$	Read Access Time		200		300		450	ns	
tco	$\overline{\mathrm{CS}}$ LOW to Output Valid Delay		70		100		100	ns	
tcsx	$\overline{C S}$ LOW to Output Active Delay	20		20		20		ns	
tODH	Output Data Hold Time After Address	50		50		50		ns	
toff	Output Buffer Turn-Off Delay from CS	0	60	0	80	0	100	ns	
taw	Address to Write Set-up Time	0		0		0		ns	
twp	$\overline{W E}$ Pulse Width	120		150		200		ns	
twR	Write Recovery Time	0		0		0		ns	
tDS	Input Data Set-up Time	120		150		200		ns	
tDH	Input Data Hold Time	0		0		0		ns	

Notes

1. Test Note: The F2114 employs a self starting oscillator and a charge pump which require a start-up time of $500 \mu \mathrm{~s}$ after V_{CC} reaches at least 4.75 V .
2. Duration not to exceed 30 seconds.

3. AC Characteristic Test Conditions:	
Input Levels	0.8 to 2.0 V
Input Rise and Fall Times	10 ns
Input and Output Timing Levels	1.5 V
Output Load	1 TTL Gate,
	and $\mathrm{CL}=100 \mathrm{pF}$

Read Mode Timing Diagram, Note 1

Write Mode Timing Diagram

DON'T CARE INPUT CONDITION

Notes

1. WE must remain HIGH during READ cycles.
2. tWP is measured from the falling edge of either $\overline{\mathrm{CS}}$ or WE (whichever is the last to go LOW) to the rising edge of either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ (whichever is the first to go HIGH).

Description

The F3528 is a 16,384-bit static Random Access Memory (RAM) organized as 2048 words of eight bits each. Since the operation of the F3528 is entirely static, no clocks or refresh are required. This device operates from a single +5 V supply and is directly TTL compatible at all inputs and outputs, including the eight bidirectional data DQ pins. The F3528 has an automatic power-down feature controlled by the Chip Enable function ($\bar{E}=$ active LOW). When not enabled, the F3528 is in standby mode; this reduces power dissipation by as much as 75% with no degradation of access time.

The F3528 is designed for memory applications where static operation, low cost, large bit-capacity and simple interfacing are important design considerations. It is manufactured using Fairchild's high performance, scaled NMOS technology, Isoplanar- $\mathrm{H}^{\text {TM }}$. State-of-the-art design and process techniques ensure high density, lower power dissipation and excellent speed performance.

The F3528 is available in a standard 24-pin dual in-line package in a configuration that is pin and function compatible with the 2716 ultraviolet erasable PROM.

- 2048×8-BIT ORGANIZATION
- COMPLETELY STATIC-NO CLOCKS OR REFRESH
- SINGLE +5 V SUPPLY
- AUTOMATIC POWER DOWN WHEN CHIP NOT ENABLED (E)
- ACCESS TIME-250 ns, 350 ns
- LOW POWER DISSIPATION

450 mW ACTIVE (MAX)

 100 mW STANDBY (MAX)- TOTALLY TTL COMPATIBLE WITH SIMPLE BUS CONTROL
- COMMON DATA I/O BUS WITH 3-STATE CAPABILITY
- PIN/FUNCTION COMPATIBLE WITH 2716
- STANDARD 24-PIN DIP

Pin Names

A0-A10	Address Inputs \bar{W}
\bar{G}	Write Enable Input
\bar{E}	Output Enable Input
DQO-DQ7	Chip Enable Input
Data Inputs / Outputs	

Logic Symbol

$V_{C C}=\operatorname{Pin} 24$
GND $=$ Pin 12

Connection Diagram

24-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	$7 R$	D

Block Diagram

Truth Table

$\overline{\mathbf{G}}$	$\overline{\mathbf{E}}$	$\overline{\mathbf{W}}$	Mode	Output	Power
\mathbf{X}	H	X	Chip Not Enabled	High Z	Standby
\mathbf{H}	L	X	Output Not Enabled	High Z	Active
\mathbf{L}	L	H	Read	Data	Active
L	L	L	Write	High Z	Active

F3567
 16,384 $\times 1$ Static RAM

MOS Memory Products

Description

The F3567 is a $16,384 \times 1$-bit Random Access Memory (RAM). Its operation is entirely static; therefore, no clocking or refreshing is required. The F3567 offers very fast access and cycle times, requires only a single +5 V power supply and is fully TTL compatible. D and Q functions are available on separate pins.

The F3567 has an automatic power-down feature controlled by the Enable function. When not enabled, the F3567 is in a standby mode which reduces power dissipation by as much as 75\%. The F3567 is manufactured using Fairchild's high-performance, scaled NMOS technology, Isoplanar- $\mathrm{H}^{\text {TM }}$, and is available in a $20-\mathrm{pin}$ DIP.

- 16,384 x 1 ORGANIZATION
- COMPLETELY STATIC OPERATION
- SINGLE + $5 \mathrm{~V} \pm 10 \%$ POWER SUPPLY
- AUTOMATIC POWER-DOWN WHEN NOT ENABLED
- EQUAL ACCESS AND CYCLE TIMES-55 ns
- AVERAGE CURRENT

125 mA ACTIVE
30 mA STANDBY

- FULLY TTL COMPATIBLE
- 3-STATE OUTPUT
- SEPARATE DATA INPUT AND OUTPUT
- STANDARD 20-PIN DIP

Pin Names

AO-A 13

$\begin{array}{ll}\text { W } & \text { Address Inputs } \\ \text { Write Enable Inp }\end{array}$
$\overline{\mathrm{E}} \quad$ Enable Input
D Data Input
Q Data Output
VCC $\quad+5 \mathrm{~V}$ Power Supply

Truth Table

$\overline{\mathbf{E}}$	$\overline{\text { W }}$	Mode	Output	Power
H	X	Not Enabled	High Z	Standby
L	L	Write	High Z	Active
L	H	Read	Data	Active

Logic Symbol

$V_{C C}=\operatorname{Pin} 20$
GND $=\operatorname{Pin} 10$

Connection Diagram

 20-Pin DIP
(Top View)

Package	Outline	Order Code
Ceramic DIP	JD	D

MOS Memory Products

Description

The F4116 is a 16,384 -bit MOS dynamic Random Access Memory (RAM) configured as 16,384 one-bit words. It is manufactured using Fairchild's n-channel silicon gate, double-poly Isoplanar process. The use of the single-transistor memory cell along with address multiplexing techniques permits the packaging of the F4116 in a standard 16-pin dual in-line package. This package allows construction of highly dense memory systems utilizing widely available automated testing and insertion equipment.

- INDUSTRY STANDARD 16-PIN DUAL IN-LINE PACKAGE
- LOW CAPACITANCE, TTL-COMPATIBLE INPUTS (INCLUDING CLOCKS)
- ON-CHIP ADDRESS AND INPUT DATA LATCHES
- 3-STATE TTL-COMPATIBLE OUTPUT WITH DATA VALID TIME CONTROLLED BY CAS
- COMMON I/O CAPABILITY
- TWO DIMENSIONAL SELECTION BY DECODING BOTH RAS AND CAS
- STANDARD 10\% SUPPLIES (+12 V, +5 V, AND -5 V)
- FLEXIBLE TIMING WITH PAGE-MODE AND EXTENDED PAGE BOUNDARIES
- 128-CYCLE RAS-ONLY REFRESH

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{6}$	Address Inputs
D	Data Input
WE	Write Enable Input (Active LOW)
$\overline{\text { RAS }}$	Row Address Strobe Input (Active LOW Clock)
$\overline{\text { CAS }}$	Column Address Strobe Input (Active LOW Clock)
Q	Data Output
$V_{C C}$	+5 V Power Supply
$V_{\text {SS }}$	0 V Power Supply
$V_{\text {BB }}$	-5 V Power Supply
VDD	+12 V Power Supply

Logic Symbol

$v_{S S}=\operatorname{Pin} 16$
$V_{C C}=P$ in 9
$V_{D D}=P$ in 8
$V_{B B}=\operatorname{Pin} 1$

Connection Diagram

16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	2C	D
Plastic DIP	UB	P

```
Absolute Maximum Ratings
Voltage on Any Pin Relative to
    VBB (VSS - V 
Operating Temperature (Ambient) }\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }7\mp@subsup{0}{}{\circ}\textrm{C
Storage Temperature (Ambient)
Power Dissipation
Voltage on VDD, VCC Supplies
    Relative to VSS
Short-circuit Output Current
Absolute Maximum Ratings
Voltage on Any Pin Relative to \(\mathrm{V}_{\mathrm{BB}}\left(\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{BB}} \geq 4.5 \mathrm{~V}\right.\) )
Operating Temperature (Ambient) Storage Temperature (Ambient)
Power Dissipation
\(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) 1 W
```

```
-1.0V to +15 V
```

-1.0V to +15 V
50 mA

```
50 mA
```

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Block Diagram

Functional Description

Addressing

The 14 address bits required to decode one-of-16,384 cell locations in the F4116 are entered using a 2-phase multiplexing operation; first, the 7 -bit row address is entered followed by the 7-bit column address. First the 7-bit row address is applied to the seven address inputs of the F4116 and latched into the chip by Row Address Strobe ($\overline{\mathrm{RAS}}$) which is the first of two externally applied TTL-level clocks. The second clock, Column Address Strobe ($\overline{\mathrm{CAS}}$), subsequently latches the seven column address bits into the chip. Each of these signals, $\overline{R A S}$ and $\overline{C A S}$, trigger on-chip clock generators which control the internal sequencing of events on the chip. Advanced techniques used in handling the row and column address information allow the address multiplexing operation to be performed without lengthening the critical timing path governing the access time. The activation of CAS strobes the column address latch but this event as well as other internal events governed by the $\overline{C A S}$ clock generator may be inhibited until certain prerequisite events controlled by the RAS clock generator have occurred.

More specifically, a window of time exists, extending from $t_{R C D(\min)}$ to $t_{R C D(\max)}$ during which $\overline{C A S}$ may become active without impacting the access time. Stated another way, as long as CAS occurs during this window, the access time will be specified by trac. If CAS occurs a certain delay after this window of time, the $\overline{R A S}$ clock generator no longer inhibits the CAS clock generator and the magnitude of this delay will add directly to the overall access time. This lengthened access time is now referenced to $\overline{C A S}$ rather than $\overline{\text { RAS }}$ and is lengthened by the amount of time that $t_{R C D}$ exceeds the $t_{R C D(\max)}$ limit. This gated-CAS feature allows greater flexibility since the CAS clock may be externally activated as soon as the hold time for the row address has been met and the address inputs have been changed from row address to column address information.

Page Mode Operation

The page-mode feature of the F4116 allows successive memory cycles accessing the same row in the memory matrix to be concatenated together in such a way that the common row address need be supplied only once. The result is faster access times with no corresponding increase in power. The pagemode option may be used in conjunction with any of the defined memory operations, and is accomplished by supplying the row address to the chip and holding
$\overline{R A S}$ LOW throughout all subsequent memory cycles for which the row address is common.

Since $\overline{R A S}$ makes its initial negative transition only once, no additional dynamic power is dissipated due to $\overline{R A S}$ on any subsequent cycles performed within that row. The access and cycle times are also shortened since the time required to supply a row address is eliminated.

Data Input

In a write operation, the data to be input into memory is strobed into an on-chip register during $\overline{\operatorname{RAS}}$ by a combination of $\overline{C A S}$ and Write Enable (WE). The strobe is formed by the last of these two signals to make its negative transition. This presents several possibilities in how a write cycle may be performed. In an "early-write" cycle ($\overline{W E}$ active LOW before $\overline{C A S}$ goes LOW), Data $\ln (D)$ is strobed by $\overline{C A S}$ and thus the set-up and hold times are referenced to this signal edge. If D is not yet valid at the time $\overline{C A S}$ becomes active (or if the cycle is a read-write or read-modifywrite) then WE must be delayed. In this delayed-write mode, the D set-up and hold times are referenced to $\overline{W E}$ rather than $\overline{C A S}$. (See the timing diagrams.)

Data Output

The Data Out (Q) latch and buffer unconditionally assume the high-impedance state whenever $\overline{C A S}$ is HIGH, i.e., inactive. If the cycle being performed is a read, read-modify-write, or a delayed write cycle, then the Q latch and buffer will remain high impedance until the access time, after which Q will assume the value of the data read from the selected cell. This output data is of the same polarity (not inverted) as the input data and will remain valid as long as $\overline{\text { CAS }}$ is kept active, i.e., LOW. However, if the cycle is an "earlywrite" cycle or if the chip fails to receive both RAS and $\overline{C A S}$, then Q will remain high impedance throughout the cycle. This feature allows systems which write exclusively in the early-write mode to connect D and Q directly together.

Another advantage of this "unlatched output" feature is that OR-tied outputs in a memory matrix require no special action to be turned off. Unlike other types of RAMs which require a negative transition of CAS to become high impedance, the F4116's output is already high impedance whenever CAS is HIGH, i.e., inactive. This means that $\overline{C A S}$ need not be supplied to unused devices and therefore may be used for device selection. Thus a reduction in external decoding logic is possible by using both $\overline{R A S}$ and $\overline{C A S}$ in a 2-dimensional decoding/selection scheme.

$\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ Clock Conditions

$\overline{R A S}$ and $\overline{\text { CAS }}$ cycle	Device active
RAS only cycle	Device deselected, refresh
$\overline{C A S}$ only cycle	Device deselected
Neither RAS nor CAS	Device deselected, standby

Extended Page Boundary

A further implication of using both $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ for device decoding/selection is in extending page boundaries for page-mode operation. If only RAS is decoded, then any given page is limited to only 128 different column addresses within that page (i.e., seven column address bits correspond to $2^{7}=128$ column addresses). Therefore, for memory systems using more than 16 K words of data, page boundaries may be extended from 128 addresses per page up to any multiple of 128 addresses merely by decoding which 16 K memory bank also gets a CAS (subject to $t_{\text {RAS }}(\max)$ limitation). This is accomplished by supplying $\overline{R A S}$ to all devices in order to latch in the row address information and then decoding which bank of 16K words also gets CAS. Only those devices which receive both $\overline{R A S}$ and $\overline{C A S}$ will respond with a valid memory cycle.

Input/Output Levels

All inputs, including the two address strobes, interface directly with TTL. The high-impedance, lowcapacitance input characteristics simplify input driver selection by allowing use of standard logic elements rather than specially designed driver elements. Termination resistors are normally required in a system to prevent ringing due to line inductance and reflections. In high-speed memory systems, transmission line techniques must be employed on the signal lines to achieve optimum system speeds. Series termination may by employed at some degradation of system speed. The 3 -state output buffer is a low impedance to $V_{C C}$ for logic " 1 " and low impedance to $V_{S S}$ for logic " 0 ". The effective resistance to $V_{C C}$ is 420Ω maximum and 135Ω typically. The effective resistance to $V_{S S}$ is 95Ω maximum and 35Ω typically.

Refresh

The matrix of 128×128 memory cells in the F4116 is refreshed by executing a memory cycle at each of the 128 row addresses within each interval of 2 ms or less. Although any cycle in which RAS occurs accomplishes a refresh operation, the refresh is most easily accomplished in the $\overline{R A S}$-only-refresh mode. This type of refresh operation results in decreased power dissipation, since $\overline{C A S}$ remains inactive.

Power Dissipation/Standby

Since the F4116 uses dynamic memory cells, this means that most of the dissipated power is a result of an address strobe edge. There is, however, a small dc component of dissipated power that is associated with the precharging of the sense amplifiers. Thus, the total power dissipated is a function of both operating frequency and duty cycle. Typically, the power is 350 mW at $1 \mu \mathrm{~s}$ cycle time with a worst case power of less than 462 mW at 375 ns cycle time. To reduce overall system power during standby, $\overline{\text { RAS }}$-onlyrefresh cycles should be performed with CAS held HIGH.

The V_{CC} supply is not used in the internal memory operations of the F4116, but rather is used only at the output buffer and thus, for some applications, may be powered from the supply voltage of the logic to which the chip's output is interfaced. This means that ICC, the current drawn from the $V_{C C}$ supply, is a function of output loading. During battery standby operation, the $V_{C C}$ pin may be unpowered, if desired, without affecting the refresh operation. This allows all system logic, except the RAS timing circuitry and the refresh address logic, to be turned off during battery standby to conserve power.

Memory Power Up

The F4116 requires no particular power supply sequencing as long as the absolute maximum rating conditions are observed. However, in order to insure compliance with the absolute maximum ratings, by providing larger voltage margins, it is recommended that power supplies be sequenced at power-up such that V_{BB} is applied first and removed last. V_{BB} should never be more positive than $V_{S S}$ when power is applied to $V_{D D}$.

Under system failure conditions in which one or more supplies exceed the specified limits, significant additional margin against catastrophic device failure may be achieved by forcing $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ to the inactive state.

After power is applied to the device, the F4116 requires several cycles before proper device operation is achieved. Any eight cycles which perform refresh are adequate for this purpose.

DC Requirements $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (See Notes 1 and 2)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
V_{DD}	Supply Voltage	10.8	12	13.2	V	
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage	4.5	5.0	5.5	V	Note 5
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	0	V	
$\mathrm{~V}_{\mathrm{BB}}$	Supply Voltage	-5.7	-5.0	-4.5	V	
$\mathrm{~V}_{\mathrm{IHC}}$	Input HIGH Voltage, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$	2.4		7.0	V	
$\mathrm{~V}_{\mathrm{IH}}$	$\frac{\text { Input }}{\text { RIGH Voltage, All Inputs except }} \overline{\text { CAS, }} \overline{\text { WE }}$	2.2		7.0	V	
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage, All Inputs	-1.0		0.8	V	

DC Characteristics Over full range of voltage and temperature

Symbol	Characteristic		Min	Typ	Max	Unit	Condition
VOH	Output HIGH Voltage		2.4			V	$\begin{aligned} & \text { lout }=-5.0 \mathrm{~mA} \\ & \text { Note } 5 \end{aligned}$
VOL	Output LOW Voltage				0.4	V	$\begin{aligned} & \text { lout }=4.2 \mathrm{~mA}, \\ & \text { Note } 5 \end{aligned}$
IDD	Average VDD Current	Normal Operation			35	mA	For F4116-4 Refresh $I_{D D}=27 \mathrm{~mA}$ Max. Note 3
		Standby			1.5	mA	
		Refresh			25	mA	
		Page Mode			27	mA	
ICC	Average $\mathrm{V}_{\text {cc }}$ Current	Normal Operation/ Page Mode					Note 4
		Standby/Refresh	-10		10	$\mu \mathrm{A}$	
$I_{B B}$	Average VBB Current	Normal Operation/ Refresh/Page Mode			200	$\mu \mathrm{A}$	
		Standby			100	$\mu \mathrm{A}$	
IN	Input Leakage Current (Any Input)		-10		10	$\mu \mathrm{A}$	
IOUT	Output Leakage Current		-10		10	$\mu \mathrm{A}$	
CIN1	Input Capacitance, $\mathrm{A}_{0}-\mathrm{A}_{6}, \mathrm{D}$			4.0	5.0	pF	Note 6
Cin 2	Input Capacitance, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$			8.0	10	pF	Note 6
COUT	Output Capacitance, Q			5.0	7.0	pF	$\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IHC}}$

[^1]Recommended ac Operating Conditions Over full range of voltage and temperature

Symbol	Characteristic	F4116-2		F4116-3		F4116-4		Unit	Notes
		Min	Max	Min	Max	Min	Max		
$t_{\text {RC }}$	Random Read or Write Cycle Time	320		375		410		ns	7
$t_{\text {RWC }}$	Read-Write Cycle Time	320		375		425		ns	7
trMW	Read Modify Write Cycle Time	320		405		500		ns	7
tPC	Page Mode Cycle Time	170		225		275		ns	7
$t_{\text {RAC }}$	Access Time from $\overline{\text { RAS }}$		150		200		250	ns	8, 10
$t \mathrm{CAC}$	Access Time from $\overline{\text { CAS }}$		100		135		165	ns	9, 10
tofF	Output Buffer Turn-off Delay	0	40	0	50	0	60	ns	11
t_{RP}	$\overline{\text { RAS Precharge Time }}$	100		120		150		ns	
$t_{\text {RAS }}$	$\overline{\text { RAS Pulse Width }}$	150	10,000	200	10,000	250	10,000	ns	
$t_{\text {trSH }}$	$\overline{\text { RAS }}$ Hold Time	100		135		165		ns	
$t \mathrm{CSH}$	$\overline{\text { CAS }}$ Hold Time	150		200		250		ns	
tCAS	$\overline{\text { CAS }}$ Pulse Width	100	10,000	135	10,000	165	10,000	ns	
${ }^{\text {tRCD }}$	$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ Delay Time	20	50	25	65	35	85	ns	12
${ }_{\text {t ASR }}$	Row Address Set-up Time	0		0		0			
$t_{\text {RAH }}$	Row Address Hold Time	20		25		35		ns	
${ }_{\text {t }}$ ASC	Column Address Set-up Time	-10		-10		-10		ns	
tCAH	Column Address Hold Time	45		55		75		ns	
$t_{\text {AR }}$	Column Address Hold Time Referenced to RAS	95		120		160		ns	
t	Transition Time (Rise and Fall)	3.0	35	3.0	50	3.0	50	ns	13
$t_{\text {RCS }}$	Read Command Set-up Time (RMW)	0		0		0		ns	
${ }_{\text {trec }}$	Read Command Hold Time	0		0		0		ns	
tWCH	Write Command Hold Time	45		55		75		ns	
tWCR	Write Command Hold Time Referenced to RAS	95		120		160		ns	
twes	Write Command Set-up Time	-20		-20		-20		ns	14
twp	Write Command Pulse Width	45		55		75		ns	
$t_{\text {RWL }}$	Write Command to $\overline{\text { RAS }}$ Lead Time	50		70		85		ns	15
tewL	Write Command to $\overline{\text { CAS }}$ Lead Time	50		70		85		ns	15
$t \mathrm{t}$ S	Data In Set-up Time	0		0		0		ns	16
t_{DH}	Data In Hold Time	45		55		75		ns	16
tDHR	Data In Hold Time Referenced to $\overline{R A S}$	95		120		160		ns	
tCRP	$\overline{\text { CAS }}$ to $\overline{\mathrm{RAS}}$ Precharge Time	-20		-20		-20		ns	

[^2]
Recommended ac Operating Conditions (Cont'd)

Symbol	Characteristic	F4116-2		F4116-3		F4116-4		Unit	Notes
		Min	Max	Min	Max	Min	Max		
t_{CP}	$\overline{\mathrm{CAS}}$ Precharge Time (Page-Mode)	60		80		100		ns	
$t_{\text {RF }}$	Refresh Period		2.0		2.0		2.0	ms	
tCWD	$\overline{\mathrm{CAS}}$ to WE Delay	60		80		90		ns	17
trwD	$\overline{\text { RAS }}$ to WE Delay	110		145		175		ns	17

Notes

1. The ambient temperature $\left(T_{A}\right)$ is specified here for operation at frequencies up to that frequency determined by the minimum cycle time. Operation at high cycle rates with reduced ambient temperatures and higher power dissipation is permissible, however, provided ac operating parameters are met.
2. All voltages are referenced to $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$.
3. IDD depends on frequency of operation. Maximum current is measured at the fastest cycle rate.
4. ICC depends upon output loading. The V_{CC} is connected to the output buffer only. During readout of HIGH level data, V_{CC} is connected through a low impedance (135Ω typ) to Data Out. At other times ICC consists of leakage currents only.
5. Output voltage will swing from $V_{S S}$ to $V_{C C}$ when activated with no current loading. For purposes of reducing power in the standby mode, $\mathrm{V}_{\text {CC }}$ may be reduced to $\mathrm{V}_{\text {SS }}$ without affecting refresh operations or data retention. However, the $\mathrm{V}_{\mathrm{OH}}(\mathrm{min})$ specification is not guaranteed in this mode.
6. Effective capacitance calculated from the equation $C=1 \frac{\Delta t}{\Delta V}$ with $\Delta V=3 V$ and power supplies at normal levels.
7. The specifications for $t_{R C(\min)}, t_{R W C}(\min), t_{R M W}(\min)$ and ${ }^{\text {t }} \mathrm{PC}(\min)$ are used only to indicate cycle time at which proper operation over full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured. All transition times, t_{T}, are assumed to be 5 ns .
8. Assumes that $t_{R C D} \leq t_{R C D}($ max $)$. If $t_{R C D}$ is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that $t_{R C D}$ exceeds the value shown.
9. Assumes that $t_{R C D} \geq t_{R C D}$ (max).
10. Measured with a load equivalent to two TTL loads and 100 pF .
11. toFF (max) defines the time at which the output achieves the open-circuit condition and is not referenced to output voltage levels.
12. Operation within the $t_{R C D(\max)}$ limit insures that $\boldsymbol{t}_{\text {RAC(max) }}$ can be met. ${ }^{\text {t }} \mathrm{RCD}(\max)$ is specified as a reference point only; if $t_{R C D}$ is greater than the specified $t_{R C D}$ (max) limit, then access time is controlled exclusively by tCAC.
13. $\mathrm{V}_{\mathrm{IHC}}(\min)$ or $\mathrm{V}_{\mathrm{IH}(\min)}$ and $\mathrm{V}_{\mathrm{IL}(\max)}$ are reference levels for measuring timing of input signals. Also, transition times are measured between $\mathrm{V}_{\mathrm{IHC}}$ or V_{IH} and V_{IL}. Composite timing parameters (such as cycle times) assume 5 ns transition times.
14. tWCS is a restrictive operating parameter. If tWCS \geq
tWCS(min), the cycle is an early write cycle and the Data Out pin will remain open circuit (high impedance) throughout the entire cycle, otherwise the cycle is a delayed write cycle.
15. The parameters tRWL and $t^{\text {CWL }}$ reference $\overline{W E}$ (for a read-modify-write cycle) to either $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$ respectively, whichever is the first to go HIGH.
16. ${ }^{\text {I }} \mathrm{DS}$ and ${ }^{\mathrm{DH}} \mathrm{D}$ are referenced to the leading edge of $\overline{\mathrm{CAS}}$ in early write cycles, and to the leading edge of $\overline{W E}$ in delayed write or read-modify-write cycles.
17. ${ }^{t_{R W D}}$ and ${ }^{t_{C W D}}$ are restrictive operating parameters due to the following characteristics:
If ${ }^{\text {t }}$ CWD $<{ }^{\mathrm{t}}$ CWD(min), the Data Out will be indeterminate. If $t_{C W D} \geq t_{C W D(\min)}$, the Data Out will contain the data read from the selected cell.

F4116

Timing Diagrams
Read Cycle

Don't Care Input Condition

F4116

Write Cycle (Early Write)

F4116

Read-Write/Read-Modify-Write Cycle

"信 ONLY" Refresh Cycle

a. $\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{V}_{\mathrm{OL}}\end{aligned}$ \longrightarrow OPEN \longrightarrow

Page Mode Read Cycle

Page Mode Write Cycle (Early Write)

Typical Current Waveforms

Refresh IDD vs Cycle Rate

Normal Operation Idd vs Cycle Rate

Normal Operation IDD vs Ambient Temperature

Refresh IDD vs Ambient Temperature

Page Mode IdD vs Cycle Rate

Standby IDD vs Ambient Temperature

Page Mode Idd vs Ambient Temperature

Address Data Input Levels vs $\mathbf{T A}_{\mathbf{A}}$

Normal Operation IDD vs VDD

Refresh ldD vs VDD

Clock Input Levels vs $\mathbf{T A}_{\mathbf{A}}$

Standby IDD vs VDD

Page Mode IDD vs VDD

Address Data Input Levels vs VDD

Access Time (Normalized) vs $\mathbf{T}_{\mathbf{A}}$

Access Time (Normalized) vs VDD

Clock Input Level vs VDD

Access Time (Normalized) vs V_{BB}

Normalized Access Time vs Load Capacitance

Address and Data Input Levels vs VBB

Clock Input Level vs $V_{B B}$

Applications and Testing

F4116 Data Scramble

In order to assist engineers in testing the F4116 16,384 x 1-bit dynamic Random Access Memory, information concerning the internal polarity and location of the stored data is provided as follows.
Figure 1 shows a block diagram of the various figures and how they relate to each other.

Address Scrambling

The relationship of the external (data sheet) address to the actual internal row or column address is shown in Figure 2. This information may be required to locate a specific location on the chip, when only its external pin address is known. The actual chip addresses (converted to decimal) are shown in Figure 3.

Figure 4 shows the external logic necessary to descramble the F4116 internal logic shown in Figure 2. For example, addressing column " 0 ", via the system address inputs ($A_{0}-A_{6}=L O W$), selects the actual chip column 0 shown in Figure 3. Setting a "1" on the system column address inputs (0000001), selects the adjacent actual column " 1 " on the chip. This correspondence holds for all rows and columns when using the transformation supplied in Figure 4.

The tables provided in Figures 5 and 6 show the relationship of the system address (decimal) to the external (data sheet) address converted to octal. In other words, Figures 5 and 6 are simply truth tables for the logic shown in Figure 4.

Data Inversion

Since the F4116 employs balanced sense amps, it is necessary to store some of the data in inverted form. This is decoded internally so it does not appear to the user, and need only be considered when testing. The input and output EXOR gates shown in Figure 1 provide the proper inversions necessary to have all data written in the same polarity. It should be noted that A_{6}, shown in Figure 1, is referenced to the most significant bit of the system row address. This is because the inversion is only related to the row address and must be independent of the multiplexing operation.

Fig. 1 Relationship of various scrambling and inversion networks

Fig. 2 Relationship of external addresses to actual row and column positions
(multiplexer not shown). Refer to Figure 3 for actual positions converted to decimal.

EXTERNAL ADDRESS ACTUAL POSITION ADDRESS

Fig. 3 F4116 Bit Map
Clock

Actual column and row position addresses converted to decimal. Conversion to the external address is explained in the text.

Fig. 4 External address transformation required to descramble F4116 internal decoder shown in Figure 1 (multiplexer not shown).

Note
The logic symbols
 and
 are used solely to indicate the logic function "Exclusive-OR" and "NOT", respectively. The above figure is not a suggested implementation of logic.

F4116

Fig. 5 System Row Address (Decimal) To External Address (Octal) Conversion Table

System Row Address	External Address			System Row Address 32	External Address			System Row Address 64	External Address			System Row Address 96	External Address		
0	1	4	0		1	4	4		0	4	1		0	4	5
1	0	4	0	33	0	4	4	65	1	4	1	97	1	4	5
2	0	0	0	34	0	0	4	66	1	0	1	98	1	0	5
3	1	0	0	35	1	0	4	67	0	0	1	99	0	0	5
4	0	2	0	36	0	2	4	68	1	2	1	100	1	2	5
5	1	2	0	37	1	2	4	69	0	2	1	101	0	2	5
6	1	6	0	38	1	6	4	70	0	6	1	102	0	6	5
7	0	6	0	39	0	6	4	71	1	6	1	103	1	6	5
8	1	5	0	40	1	5	4	72	0	5	1	104	0	5	5
9	0	5	0	41	0	5	4	73	1	5	1	105	1	5	5
10	0	1	0	42	0	1	4	74	1	1	1	106	1	1	5
11	1	1	0	43	1	1	4	75	0	1	1	107	0	1	5
12	0	3	0	44	0	3	4	76	1	3	1	108	1	3	5
13	1	3	0	45	1	3	4	77	0	3	1	109	0	3	5
14	1	7	0	46	1	7	4	78	0	7	1	110	0	7	5
15	0	7	0	47	0	7	4	79	1	7	1	111	1	7	5
16	1	4	2	48	1	4	6	80	0	4	3	112	0	4	7
17	0	4	2	49	0	4	6	81	1	4	3	113	1	4	7
18	0	0	2	50	0	0	6	82	1	0	3	114	1	0	7
19	1	0	2	51	1	0	0	83	0	0	3	115	0	0	7
20	0	2	2	52	0	2	6	84	1	2	3	116	1	2	7
21	1	2	2	53	1	2	6	85	0	2	3	117	0	2	7
22	1	6	2	54	1	6	6	86	0	6	3	118	0	6	7
23	0	6	2	55	0	6	6	87	1	6	3	119	1	6	7
24	1	5	2	56	1	5	6	88	0	5	3	120	0	5	7
25	0	5	2	57	0	5	6	89	1	5	3	121	1	5	7
26	0	1	2	58	0	1	6	90	1	1	3	122	1	1	7
27	1	1	2	59	1	1	6	91	0	1	3	123	0	1	7
28	0	3	2	60	0	3	6	92	1	3	3	124	1	3	7
29	1	3	2	61	1	3	6	93	0	3	3	125	0	3	7
30	1	7	2	62	1	7	6	94	0	7	3	126	0	7	7
31	0	7	2	63	0	7	6	95	1	7	3	127	1	7	7

Fig. 6 System Column Address (Decimal) To External Address (Octal) Conversion Table

System Column Address	External Address			System Column Address	External Address			System Column Address	External Address			System Column Address	External Address		
0	1	0	0	32	1	0	4	64	1	0	1	96	1	0	5
1	0	0	0	33	0	0	4	65	0	0	1	97	0	0	5
2	0	4	0	34	0	4	4	66	0	4	1	98	0	4	5
3	1	4	0	35	1	4	4	67	1	4	1	99	1	4	5
4	1	2	0	36	1	2	4	68	1	2	1	100	1	2	5
5	0	2	0	37	0	2	4	69	0	2	1	101	0	2	5
6	0	6	0	38	0	6	4	70	0	6	1	102	0	6	5
7	1	6	0	39	1	6	4	71	1	6	1	103	1	6	5
8	1	1	0	40	1	1	4	72	1	1	1	104	1	1	5
9	0	1	0	41	0	1	4	73	0	1	1	105	0	1	5
10	0	5	0	42	0	5	4	74	0	5	1	106	0	5	5
11	1	5	0	43	1	5	4	75	1	5	1	107	1	5	5
12	1	3	0	44	1	3	4	76	1	3	1	108	1	3	5
13	0	3	0	45	0	3	4	77	0	3	1	109	0	3	5
14	0	7	0	46	0	7	4	78	0	7	1	110	0	7	5
15.	1	7	0	47	1	7.	4	79	1	7	1	111	1	7	5
16	1	0	2	48	1	0	6	80	1	0	3	112	1	0	7
17	0	0	2	49	0	0	6	81	0	0	3	113	0	0	7
18	0	4	2	50	0	4	6	82	0	4	3	114	0	4	7
19	1	4	2	51	1	4	6	83	1	4	3	115	1	4	7
20	1	2	2	52	1	2	6	84	1	2	3	116	1	2	7
21	0	2	2	53	0	2	6	85	0	2	3	117	0	2	7
22	0	6	2	54	0	6	6	86	0	6	3	118	0	6	7
23	1	6	2	55	1	6	6	87	1	6	3	119	1	6	7
24	1	1	2	56	1	1	6	88	1	1	3	120	1	1	7
25	0	1	2	57	0	1	6	89	0	1	3	121	0	1	7
26	0	5	2	58	0	5	6	90	0	5	3	122	0	5	7
27	1	5	2	59	1	5	6	91	1	5	3	123	1	5	7
28	1	3	2	60	1	3	6	92	1	3	3	124	1	3	7
29	0	3	2	61	0	3	6	93	0	3	3	125	0	3	7
30	0	7	2	62	0	7	6	94	0	7	3	126	0	7	7
31	1	7	2	63	1	7	6	95	1	7	3	127	1	7	7

Description

The F4164 is a dynamic Random Access Memory (RAM) circuit organized as 65,536 single-bit words. This memory uses the Fairchild advanced double poly NMOS, Isoplanar- $\mathrm{H}^{\text {TM }}$ process which allows volume manufacture of reliable, high density memory products.

Innovative architecture and circuit design provide significant user benefits including wide operating margins, low power dissipation and excellent noise characteristics. Double cruciform architecture minimizes signal path lengths to improve noise margin and reduce propagation delays. A multiplexed sense amplifier scheme halves the number of sense amplifiers and the bit-line to cell capacitance ratio; this simultaneously reduces power consumption and improves signal sensing margins. Full-sized reference cells provide good margins and control. Low capacitance TTL-compatible inputs with overshoot and anti-static protection insure data and address input integrity.

- INDUSTRY STANDARD 16-PIN DIP WITH PIN 1 NOT CONNECTED (NC)
- LOW CAPACITANCE TTL-COMPATIBLE INPUTS WITH OVERSHOOT AND ANTI-STATIC PROTECTION
- COMMON I/O CAPABILITY
- STANDARD 5 V $\pm 10 \%$ SINGLE POWER SUPPLY REQUIREMENT
- LOW POWER

209 mW ACTIVE (MAX)
19.3 mW STANDBY (MAX)

- FAST ACCESS TIME- $120 \mathrm{~ns}, 150 \mathrm{~ns}$ or 200 ns
- READ-MODIFY-WRITE, RAS-ONLY REFRESH AND PAGE MODE CAPABILITY
- OUTPUT UNLATCHED AT CYCLE END ALLOWS FOR PAGE BOUNDARY EXTENSION AND TWODIMENSIONAL CHIP SELECTION

Pin Names

A $_{0}-A_{7}$	Address Inputs Row Address Strobe
RAS	Column Address Strobe
CAS	Write Enable
WE	Data Input
D	Data Output

Logic Symbol

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	WC	D

Block Diagram

Functional Description

Memory Cycles

The F4164 operates in several modes which reflect various application considerations, some examples of which follow.

Random Read or Write Cycle

This mode implements standard Read or Write operation. Addresses are entered in two consecutive 8 -bit bytes synchronized with RAS and CAS. In the Read case, WE should be HIGH before the falling edge of CAS. During Early-Write operations, WE falls before CAS, causing the output to remain in the high impedance state. This output mode is useful if the RAM Data input (D) and Data output (Q) pins are to be wired in common as a bidirectional data bus.

Read-Write Cycle

The Read-Write mode is used when new data is to be written into the same cell location from which the content is currently being read. Since no address change is required, this mode provides a much faster Read-Write cycle by allowing the overhead associated with the address decoder and precharge
to be amortized over two operations. In general, $t_{\text {RWC }}$ is significantly less than twice $t_{\text {RC }}$. In this mode the new input data is not a function of the currently stored data. For that reason the cycle time is not limited by access time (trac), but by Write considerations such as tRWD and trWL.

Read-Modify-Write Cycle

The Read-Modify-Write cycle is used when the data from the cell at the current address is used to derive new data for writing back into that cell, such as in error correction schemes. In this mode, cycle time is dependent upon both read access time and writerelated parameters.

Addressing

The 16 address bits required to decode one-of-65,536 storage cell locations in the F4 164 are entered using a two-phase multiplexing operation. First, the 8 -bit row address is applied to the eight Address inputs of the F4164 and latched into the chip by Row Address Strobe (RAS). Next, the 8 -bit column address is presented to the Address inputs and latched by the Column Address Strobe ($\overline{\mathrm{CAS}}$). All addresses must be stable on or before the falling edge of $\overline{\text { RAS or } \overline{\text { CAS }} \text {. }}$

F4164

$\overline{\mathrm{CAS}}$ is internally inhibited by a signal derived from RAS. This feature prevents column addresses from being strobed onto the chip before row address dependent operations have been completed.

The gated- $\overline{\mathrm{CAS}}$ feature allows $\overline{\mathrm{CAS}}$ to occur any time before $t_{R C D}(\max)$ with no effect on the worst-case access time ($t_{\text {RAC }}$). No errors will result if $\overline{C A S}$ is applied to the F4164 after the $t_{R C D(\max)}$ limit, but access time will then be determined from CAS ($t_{C A C \text {) }}$ rather than from $\overline{R A S}$ (tRAC).

Page Mode Operation

Higher speed and lower power operations can be performed in Page Mode on bits sharing a Row Address. In this mode $\overline{R A S}$ strobes in the common Row Address and is then kept LOW (active) while successive CAS cycles allow the required Column Addresses to be strobed in for subsequent Read or Write operations. Data from the first bit addressed is accessed within $t_{R A C}$ (or $t_{R C D}+t_{C A C}$ if $t_{R C D}>$ $\left.t_{R C D(\text { max })}\right)$ and subsequent Column Addresses are accessed within tCAC only.

Both the delays and the dynamic power dissipation associated with row selection and sensing occur only once with the initial $\overline{R A S}$ transition. Thereafter, delays and dynamic power dissipation are incurred only in the column select and data path. The delay and power in the row and sensing circuitry are amortized over 256 different Column Addresses offering improved speed and lower power per bit.

Page Mode address boundaries may be extended by multiplexing $\overline{C A S}$ to several devices which share a common Data output (Q) bus.

Data Input

In a Write operation, the data to be written is latched into the chip while $\overline{R A S}$ is LOW by a combination of $\overline{\mathrm{CAS}}$ and Write Enable ($\overline{\mathrm{WE}}$). The strobe is enabled by the last of these two signals to go LOW. This allows several types of write cycles to be performed. In an Early-Write cycle (WE LOW before CAS goes LOW), the Data input (D) is strobed by CAS. Here data set-up and hold times are referenced to CAS. If D is not yet valid at the time $\overline{C A S}$ becomes active, or if a ReadWrite or Read-Modify-Write cycle is desired, then WE must be delayed. In this "late-write" mode, the data set-up and hold times are referenced to $\overline{W E}$ rather than CAS.

Data Output

The Data output (Q) buffer assumes a high impedance state whenever CAS is HIGH (inactive) subject to $t_{O F F}(\max)$. If the cycle being performed is a Read, Read-Modify-Write, or a "late-write" cycle, then the Q latch and buffer will remain high impedance until the access time, after which Q will assume the value of the data read from the selected cell. This output data is of the same polarity as the input data and will remain valid as long as CAS is kept LOW (active). However, if the operation is an Early-Write, or if the chip does not receive both $\overline{R A S}$ and $\overline{C A S}$, then Q will remain high impedance throughout the cycle. This feature allows systems which write exclusively in the Early-Write mode to connect D and Q directly together.

Since both $\overline{R A S}$ and $\overline{\text { CAS }}$ must be supplied for a device to be "active", a reduction in external decoding logic can be realized by using $\overline{R A S}$ and $\overline{C A S}$ in a 2 dimensional decoding/selection scheme. An analogous method can be used to extend the page boundary to beyond 256 locations by decoding which device receives a $\overline{C A S}$ in addition to the $\overline{R A S}$ already latched into the chips. Only those devices which receive both $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ will respond with a valid memory cycle (see Table 1).

Table $1 \overline{\text { RAS }}$ and $\overline{\text { CAS }}$ Clock Conditions

$\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ cycle	Device active
$\overline{R A S}$-only cycle	Device deselected, refresh
$\overline{\text { CAS-only cycle }} \overline{\text { Neither } \overline{\text { RAS }} \text { nor } \overline{\text { CAS }}}$	Device deselected

Refresh

Refresh of the data stored in the dynamic cell matrix of the F4164 is accomplished by performing a memory cycle at each of the 256 row addresses at least every 4 ms . Performing a $\overline{R A S}$-only Refresh with CAS held HIGH causes the output buffer to remain in the highimpendence state throughout the cycle.

The F4164 256-cycle, 4 ms refresh timing requirement is compatible with distributed refresh techniques currently utilized for 128 -cycle, 2 ms refresh 16 K dynamic RAMs.

F4164

Absolute Maximum Ratings

Voltage on Any Pin with Respect
to VSS
VDD Supply with Respect to $V_{S S}$
Storage Temperature
Power Dissipation
Short-Circuit Output Current
Operating Temperature

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions (Note)

Symbol	Characteristic	Min	Typ	Max	Unit
V_{DD}	Supply Voltage	4.5		5.5	V
$\mathrm{~V}_{\mathrm{SS}}$		0		0	V
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage	2.4		6.5	V
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage, All Inputs	-1.0		0.8	V

DC Characteristics Recommended operating conditions unless otherwise noted.

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.4	V	$\mathrm{IOL}=4.2 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	2.4			V	$1 \mathrm{OH}=-5.0 \mathrm{~mA}$
IDD1	Operating Current Average Power Supply Current		27	38	mA	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ cycling; $\mathrm{t}_{\mathrm{RC}}=\mathrm{Min} ;$ $\mathrm{Q}=$ no connection
IDD2	Standby Current Power Supply Current			3.5	mA	$\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathbf{I H}}$
IDD3	Refresh Current Average Power Supply Current		21	32	mA	$\overline{\text { RAS }}$ cycling, $\overline{\text { CAS }}=\mathrm{V}_{\mathrm{IH}}$, $\mathrm{t}_{\mathrm{RC}}=\mathrm{Min}, \mathrm{Q}=$ no connection
IDD4	Page Mode Current Average Power Supply Current		15	30	mA	$\overline{\text { RAS }}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CAS}}$ cycling, $\mathrm{t}_{\mathrm{CP}}=\mathrm{Min}, \mathrm{Q}=$ no connection
IIL	Input Leakage Current	-10		10	$\mu \mathrm{A}$	Any Input, $\mathrm{o} \mathrm{V} \leq \mathrm{V}_{\mathrm{IN}} \leq 6.5 \mathrm{~V}$; all other pins not under test $=0 \mathrm{~V}$
lol	Output Leakage Current	-10		10	$\mu \mathrm{A}$	Data Out is disabled, $0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 6.5 \mathrm{~V}$

Capacitance $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit
CIN1 $_{\text {IN }}$	Input Capacitance A0-A7, D			5.0	pF
$\mathrm{C}_{\text {IN2 }}$	Input Capacitance $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$			10	pF
COUT	Output Capacitance Q			7.0	pF

Note

All Voltages are referenced to $\mathrm{V}_{\text {SS }}$. Conditions apply over the entire operating temperature range.

AC Characteristics Recommended operating conditions unless otherwise noted (Notes 1, 2, and 3)

IEEE Symbol ${ }^{(9)}$	Symbol	Characteristic	F4164-1		F4164-2		F4 164-3		Unit	Note
			Min	Max	Min	Max	Min	Max		
TRVRV	$t_{\text {REF }}$	Time between Refresh		4.0		4.0		4.0	ms	
TRELREL	$\mathrm{t}_{\text {RC }}$	Random Read/Write Cycle Time	300		320		330		ns	
TRELREL	${ }_{\text {thWC }}$	Read-Write Cycle Time	315		335		375		ns	
TCELCEL	tpc	Page Mode Cycle Time	160		170		225		ns	
TRELQV	$t_{\text {RAC }}$	Access Time from $\overline{\text { RAS }}$		120		150		200	ns	4,6
TCEHQV	${ }^{\text {t }}$ cac	Access Time from $\overline{\mathrm{CAS}}$		80		100		135	ns	5,6
TCEHQZ	toff	Output Buffer Turn-Off Delay	0	35	0	40	0	50	ns	
TT	tT	Transition Time	3.0	35	3.0	35	3.0	50	ns	
TREHREL	$\mathrm{t}_{\text {RP }}$	$\overline{\mathrm{RAS}}$ Precharge Time	80		100		120		ns	
TRELREH	$t_{\text {RAS }}$	$\overline{\text { RAS Pulse Width }}$	120	10K	150	10K	200	10K	ns	
TCELREH	$t_{\text {RSH }}$	$\overline{\text { RAS }}$ Hold Time	80		100		135		ns	
TCEHCEL	tcP	$\overline{\text { CAS Precharge Time }}$	60		60		80		ns	
TCELCEH	${ }_{\text {t }}$ CAS	$\overline{\text { CAS Pulse Width }}$	80	10K	100	10K	135	10K	ns	
TRELCEH	tcsh	$\overline{\text { CAS }}$ Hold Time	120		150		200		ns	
TRELCEL	trci	$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ Delay Time	25	40	30	50	35	65	ns	7
TCEHREL	tCRP	$\overline{\text { CAS }}$ to $\overline{\mathrm{RAS}}$ Precharge Time	0		0		0		ns	
TARVREL	$\mathrm{t}_{\text {ASR }}$	Row Address Set-up Time	0		0		0		ns	
TRELARX	$t_{\text {Rah }}$	Row Address Hold Time	15		20		25		ns	
TACVCEL	tasc	Column Address Set-up Time	0		0		0		ns	
TCELACX	tcan	Column Address Hold Time	40		45		55		ns	
TRELACX	${ }^{\text {t }}$ AR	Column Address Hold Time Referenced to RAS	80		95		120		ns	
TWHCEL	trcs	Read Command Set-up Time	0		0		0		ns	
TCEHWL	$\mathrm{t}_{\text {RCH }}$	Read Command Hold Time	0		0		0		ns	
TWLCEL	twcs	Write Command Set-up Time	0		-10		-10		ns	8
TCELWH	twCH	Write Command Hold Time	40		45		55		ns	
TRELWH	tWCR	Write Command Hold Time Reference to RAS	80		95		120		ns	
TWLWH	twp	Write Command Pulse Width	40		45		55		ns	
TWLREH	$t_{\text {RWL }}$	Write Command to $\overline{\mathrm{RAS}}$ Lead Time	60		70		80		ns	
TWLCEH	tcw	Write Command to CAS Lead Time	60		70		80		ns	

[^3]AC Characteristics (Continued)

IEEE Symbol ${ }^{(9)}$	Symbol	Characteristic	F4164-1		F4164-2		F4164-3		Unit	Note
			Min	Max	Min	Max	Min	Max		
TDVREL	tDS	Data In Set-up Time	0		0		0		ns	
TCELDX	tDH	Data In Hold Time	40		45		55		ns	
TRELDX	tDHR	Data In Hold Time Referenced to $\overline{R A S}$	80		95		120		ns	
TCELWL	tCWD	$\overline{\text { CAS }}$ to WE Delay	60		70		95		ns	8
TRELWL	trwD	$\overline{\text { RAS }}$ to WE Delay	100		120		160		ns	8

Notes

1. Several cycles are required after power up before proper device operation is achieved. Any eight cycles which perform refresh are adequate for this purpose.
2. Dynamic measurements assume $\boldsymbol{t}_{\boldsymbol{T}}=5 \mathrm{~ns}$.
3. $\mathrm{V}_{\mathrm{IH}(\min)}$ and $\mathrm{V}_{\mathrm{IL}(\max)}$ are reference levels for measuring timing of input signals. Also, transition times are measured between $V_{I H}$ and $V_{I L}$.
4. Assumes that $t_{R C D} \leq t_{R C D(\max)}$. If $t_{R C D}$ is greater than the maximum recommended value shown in this table, trAC will increase by the amount that $t_{R C D}$ exceeds the value shown.
5. Assumes that $t_{R C D} \geq t_{R C D}$ (max).
6. Refer to test conditions.
7. Operation within the $t_{R C D(\max)}$ limit insures that ${ }^{\text {R }}$ RAC(max) can be met. $t_{R C D(\max)}$ is specified as a reference point only; if $t_{R C D}$ is greater than the specified $t_{R C D(\max)}$ limit, then access time is controlled exclusively by tCAC.
8. tWCS, ${ }^{\text {t CWD }}$ and trWD $^{\text {are restrictive operating }}$ characteristics due to the following. If tWCS \geq tWCS $^{(m i n)}$, the cycle is an early write cycle and the Data output pin will be open circuit (high impedance) throughout the entire cycle. If ${ }^{t_{C W D}} \geq{ }^{t_{C W D}(\min)}$ and ${ }_{t_{R W D}} \geq \mathrm{t}_{\text {RWD }}(\min)$, the cycle is a read-write cycle and Data output will contain data read from the selected cell. If neither of the conditions is satisfied the condition of the Data output is indeterminate.

9. Timing Parameter Abbreviations

All timing abbreviations in this format use upper case characters with no subscripts. The initial character is always T and is followed by four descriptors. These characters specify two signal points arranged in a 'from-to' sequence that define a timing interval. The two descriptors for each signal point specify the signal name and the signal transitions. Thus the format is:
$T \times \times \times \times$

The signal definitions used in this data sheet are:
$R E=\overline{\text { RAS }}, C E=\overline{\text { CAS }}$
$A R=$ Row Address
AC $=$ Column Address
$A=$ Address
$D=$ Data In
$Q=$ Data Out
$W=$ Write Enable
The transition definitions used in this data sheet are:
$H=$ transition to HIGH
$L=$ transition to LOW
$V=$ transition to valid
$X=$ transition to invalid or don't care
$Z=$ transition to off (high impedance)

Timing Limits

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address set-up time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

Timing Diagrams

Read Cycle Timing Diagram

Write Cycle (Early Write)

F4164

Read-Write/Read-Modify-Write Cycle

" $\overline{\text { RAS }}$-only" Refresh Cycle

0
$\mathbf{V}_{\mathrm{OH}-}$
\mathbf{V}_{OL} -

Don't Care

Page Mode Read Cycle

Don't Care

Page Mode Write Cycle

Ordering Information and Package Outlines

F2708
 1024 x 8 UV
 Erasable PROM

MOS Memory Products

Description

The F2708 is an 8, 192 -bit ultraviolet light Erasable and electrically Programmable Read Only Memory (EPROM) manufactured using the Isoplanar n-channel silicon gate technology. Organized 1024×8, the F2708 is ideally suited for non-volatile data storage in applications such as 8 -bit microprocessor systems, where reprogrammability, high bit-density, maximum performance and simple interfacing are essential parameters. All inputs and outputs are TTL compatible. The 3 -state outputs become high impedance when the F2708 is deselected, allowing a direct interface capability which is useful in many computer bus structures.

The F2708 provides inexpensive, non-volatile storage of data/program code in applications where fast turn-around and experimentation are important requirements.

- 1024×8-BITS ORGANIZATION
- FAST ACCESS TIME-350 ns MAX (F2708-1)
- TTL COMPATIBLE INPUTS AND OUTPUTS
- 3-STATE OUTPUTS
- STANDARD POWER SUPPLIES +12 V, +5 V, -5 V
- CHIP SELECT INPUT FOR MEMORY EXPANSION - STATIC OPERATION
- PIN COMPATIBLE TO 8K AND 16K ROMs FOR LOW-COST PRODUCTION
- LOW POWER DURING PROGRAMMING
- CONTENTS ERASABLE WITH ULTRAVIOLET LIGHT

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address Inputs
PRGM	Program Pulse Input
$\overline{\mathrm{CS}} / \mathrm{WE}$	Chip Select/Write Enable
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data Outputs/Programming Inputs
$V_{D D}$	+12 V Supply
$V_{C C}$	+5 V Supply
$V_{S S}$	Ground
$V_{B B}$	-5 V Supply

Logic Symbol

$V_{D D}=\operatorname{Pin} 19$
$V_{C C}=P$ in 24
$V_{B B}=\operatorname{Pin} 21$
$V_{\mathrm{SS}}=\operatorname{Pin} 12$

Connection Diagram

24-Pin DIP

Package	Outline	Order Code
Ceramic DIP	7C	D

Absolute Maximum Ratings
VDD Supply Voltage
VCC or VSS Supply Voltage
PRGM Input Voltage
During Programming
$\overline{C S} / W E$ Input Voltage
During Programming
Any Other Input
During Programming $\quad-0.3 \mathrm{~V}$ to +15 V
Any Input or Output During Read -0.3 V to +15 V
Operating Temperature (Ambient) $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature (Ambient)
Power Dissipation
-0.3 V to +20 V
-0.3 V to +15 V
-0.3 V to +35 V
-0.3 V to +20 V
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
1.8 W

All voltages with respect to $V_{B B}$.
Stresses greater than those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Block Diagram

F2708

Pin Connections During Read or Programming Modes

Mode	Data 1/O	V ${ }_{\text {SS }}$ Supply	PRGM	VDD Supply	$\overline{\mathrm{CS}} / \mathrm{WE}$	VBB Supply	VCC Supply
	9-11, 13-17	12	18	19	20	21	24
Read	Output Data	GND	GND	+12 V	$\mathrm{V}_{\text {IL }}$	-5 V	+5 V
Program	Input Data	GND	Pulsed 26 V	+12V	+12 V	-5V	+5V
Deselect	High Impedance	GND	GND	+12 V	V_{IH}	-5V	+5 V

Read Mode dc Electrical Requirements
$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise indicated. All voltages referenced to V_{SS}

Symbol	Characteristic	Min	Typ	Max	Unit	Note
$V_{\text {DD }}$	Supply Voltage	11.4	12.0	12.6	V	
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage	4.75	5.0	5.25	V	
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	0	V	
$\mathrm{~V}_{\mathrm{BB}}$	Supply Voltage	-5.25	-5.0	-4.75	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage	3.0		$V_{\mathrm{CC}}+1.0$	V	
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	$\mathrm{V}_{\text {SS }}$		0.65	V	

Read Mode dc Electrical Characteristics
Over full range of voltage and temperature unless otherwise indicated

Symbol	Characteristic (1)	Min	Typ	Max	Unit	Note
IDD	Average VDD Current		50	65	mA	2
ICC	Average VCC Current		7.5	10	mA	2
IBB	Average V_{BB} Current		30	45	mA	2
IIN	Input Leakage Current		1.0	10	$\mu \mathrm{A}$	3
IOUT	Output Leakage Current		1.0	10	$\mu \mathrm{A}$	4
VOH	Output HIGH Voltage $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4			V	
	Output HIGH Voltage $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	3.7			V	
V_{OL}	Output LOW Voltage $\mathrm{IOL}=1.6 \mathrm{~mA}$			0.45	V	
PD	Power Dissipation $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			800	mW	5
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance		4.0	6.0	pF	6
COUT	Output Capacitance		8.0	12	pF	7

[^4]
Read Mode ac Electrical Characteristics

Symbol	Characteristic (Note 8)	F2708-1		F2708		Unit	Note
		Min	Max	Min	Max		
$t_{\text {tacc }}$	Address to Output Delay Time		350		450	ns	
tco	Chip Select to Output Delay Time		120		120	ns	
tOFF	Chip Deselect to Output High Impedance		120		120	ns	
tDA	Data Valid After Address Time	0		0		ns	

Notes

1. All voltage levels are referenced to $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$.
2. Supply current limits are measured with all inputs HIGH (including $\overline{C S} / W E=5.0 \mathrm{~V}$) and ambient temperature at $T_{A}=0^{\circ} \mathrm{C}$.
3. Measured both with $V_{I N}=5.25 \mathrm{~V}$ and $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IL}(\min)}=\mathrm{V}_{\mathrm{SS}}$.
4. Measured both with $\mathrm{V}_{\mathrm{OUT}}=5.5 \mathrm{~V}$ and $\overline{\mathrm{CS}} / \mathrm{WE}=5.0 \mathrm{~V}$.
5. The total power dissipation of the 2708 is specified at 800 mW . It is not calculable by summing the various currents (I $I_{D D}, I_{C C}$ and $I_{B B}$) multiplied by their respective voltages, since current paths exist between the various power supplies and $V_{S S}$. The IDD $I_{C C}$ and $I_{B B}$ currents should be used to determine power supply capacity only.
6. Measured with $V_{\mathbb{I N}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{f}=1.0 \mathrm{MHz}$.
7. Measured with $V_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{f}=1.0 \mathrm{MHz}$.
8. Timing parameters are measured with input logic levels of $\mathrm{V}_{\mathrm{IL}(\max)}=0.65 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}(\min)}=3.0 \mathrm{~V}$. Timing measurement reference levels are 0.8 V and 2.8 V for inputs and 0.8 V and 2.4 V for outputs. An output load of 1 TTL gate plus 100 pF is assumed.

Read Mode Timing Diagram

Programming Instructions

After the completion of an erase operation, every memory cell in the F2708 is in the logic " 1 " state (as indicated by a HIGH level at the data outputs). An 8-bit byte of data is entered into the memory by programming logic "Os" into the appropriate cell locations at some given address. Word locations in the memory are addressed in the same way as in read operations. Once a cell is programmed to a logic " 0 ", it can be altered only through ultraviolet light erasure.

In order to program the F2708, the $\overline{C S} / W E$ input must first be set to 12 V . Data to be programmed is entered in 8 -bit bytes through the output data terminals (Q_{0} through Q_{7}). Input logic levels for the data lines, addresses, and supply voltages are the same as in a read operation.

Programming is accomplished by executing a number (n) of passes through a programming loop, each of which involves sequencing through all 1024 locations in the address space. In each pass through the loop, a single, high-voltage (26 V) pulse is applied to the PRGM input, once at each address. Logic "Os" applied to the Data outputs (Q_{0} through Q_{7}) are written into the proper bit positions at the location specified by the Address inputs (A_{0} through A_{7}). There must be n successive passes through the programming loop in order to guarantee reliable programming of information. The required number of passes through the programming loop (n) is a function of the pulse width (tpW) of the high-voltage programming pulse applied to the PRGM input. Total programming time is given by the relationship:

$$
\begin{equation*}
\mathrm{t}_{\text {TOTAL }}=\mathrm{n} \times \mathrm{tpW} \geq 100 \mathrm{~ms} \tag{1}
\end{equation*}
$$

The allowed range of pulse widths is from 0.1 ms to 1.0 ms . This implies that the minimum value of n must be in the range of 100 to 1000. WARNING: Applying more than one programming pulse in succession to the same address is not permitted since it will result in damage to the device. At the end of a program sequence, the $\overline{\mathrm{CS}} / W E$ falling edge transition must occur before the first address transition when changing from the program mode to the read mode. The PRGM pin should be pulled down to approximately
$V_{S S}$, (i.e., ground) with a low impedance device since this pin sources several milliamps of current when $\overline{C S} / W E$ is at 12 V and the PRGM pin is LOW.

Programming Examples

The programming relationship in Equation 1 above should always be used in determining values of tpw and n.

Example 1

The full capacity of 1024 bytes could be programmed using 0.2 ms programming pulse widths. In this case,
programming loop would be
$n=\frac{t_{T O T A L}}{t_{P W}}=\frac{100 \mathrm{~ms}}{0.2 \mathrm{~ms}}=500$ passes
Each of the 500 passes through the programming loop must sequence through address locations 0 through 1023.

Example 2

Word locations 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The programmed pulses are 0.5 ms wide. Thus, the minimum number of passes through the program loop is
$\mathrm{n}=\frac{100 \mathrm{~ms}}{0.5 \mathrm{~ms}}=200$ passes
The data entered into the "don't care" locations should consist of all logic " 1 s ". Even though portions of the address space are not used (or "don't care"), the programming loop should still sequence through all 1024 addresses on each pass.

Example 3

Extending the case of Example 2, the F2708 is now to be updated to include new data at locations 850 to 880 which previously were programmed as "don't care"; in this case, logic "1s". The mimimum number of passes through the programming loop is the same as in Example 2, $n=200$ passes. Address locations 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern. The remaining unused addresses should again be programmed as logic "1s".

Erasing Instructions

The contents of the F2708 EPROM can be erased by exposure to high-intensity short-wave ultraviolet (UV) light with a wavelength of 2537 Angstroms (\AA). This can be accomplished with ultraviolet light EPROM erasure devices which are available from several U.S. manufacturers. These erasure devices contain a UV light source which is usually placed approximately one or two inches from the EPROM to illuminate the transparent window on top of the device. The minimum
required integrated dose (intensity x exposure time) of UV light energy incident on the window of the device in order to reliably insure complete erasure is $12.5 \mathrm{~W}-\mathrm{s} / \mathrm{cm}^{2}$. The UV erasure unit should be periodically calibrated if minimum exposure times are to be used. (Minimum exposure times range from 10 to 45 minutes, depending on model type and age of UV lamp). If longer exposure times are possible, variations in the output light intensity of the UV light source are not critical.

Program Mode dc Electrical Requirements $T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ unless otherwise indicated

Symbol	Characteristic		Min	Typ	Max	Unit	Note
VDD	Supply Voltage		11.4	12.0	12.6	V	
$V_{\text {CC }}$	Supply Voltage		4.75	5.0	5.25	V	
$\mathrm{V}_{\text {SS }}$	Supply Voltage		0	0	0	V	1
$\mathrm{V}_{\text {BB }}$	Supply Voltage		-5.25	-5.0	-4.75	V	
$V_{\text {IHP }}$	Input HIGH Voltage During Programming	Address and Data	3.0		$\mathrm{V}_{\mathrm{CC}}+1.0$	V	
		$\overline{\mathrm{CS}} / \mathrm{WE}$ Input	11.4	12.0	12.6	V	
		PRGM Input	25		27	V	2
VIL	Input LOW Voltage	PRGM Input	VSS		1.0	V	2
		All Other Inputs	VSS		0.65	V	

Program Mode dc Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ unless otherwise indicated

Symbol	Characteristic	Min	Typ	Max	Unit	Note
IDD	Average VDD Current		50	65	mA	3
ICC	Average VCC Current		6.0	10	mA	3
IBB	Average VBB Current	-10	30	45	mA	3
IN	Input Leakage Current, Addresses and CS/WE		10	μA	4	
	PRGM Input Current	HIGH			20	mA
		LOW			3.0	mA

Notes

1. All voltage levels are referenced to $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$.
2. The voltage differential between $\mathrm{V}_{\mathrm{IHP}}$ and V_{IL} at the PRGM input pin should be greater than or equal to 25 V .
3. Supply current limits are measured with all inputs HIGH (including $\overline{\mathrm{CS}} / \mathrm{WE}=5.0 \mathrm{~V}$) and ambient temperature at $T_{A}=0^{\circ} \mathrm{C}$.
4. Measured both with $\mathrm{V}_{\mathbb{I N}}=5.25 \mathrm{~V}$ and $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IL}(\min)}=\mathrm{V}_{\mathrm{SS}}$.
5. This is a current sourced by the PRGM pin when it is in the LOW state and when $\overline{\mathrm{CS}} / \mathrm{WE}=12 \mathrm{~V}$.

Program Mode ac Electrical Requirements and Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ unless otherwise indicated

Symbol	Characteristic		Min	Max	Unit	Note
$t_{\text {AS }}$	Address Set-up Time		10		$\mu \mathrm{s}$	
${ }_{\text {t }}^{\text {AH }}$	Address Hold Time		1.0		$\mu \mathrm{s}$	
tws	Write Enable Set-up Time		10		$\mu \mathrm{s}$	
tWH	Write Enable Hold Time		0.5		$\mu \mathrm{s}$	
tDS	Data Set-up Time		10		$\mu \mathrm{s}$	
tDH	Data Hold Time		1.0		$\mu \mathrm{s}$	
tPW	Program Pulse Width		0.1	1.0	ms	
tpt	Program Pulse Transition Time	Rise	0.5	2.0	$\mu \mathrm{s}$	
		Fall	0.5	2.0	$\mu \mathrm{s}$	
tPRD	Program to Read Delay			10	$\mu \mathrm{s}$	
tofF	Output Buffer Turn-off Delay		0	120	ns	

Program Mode Timing Diagram

DON'T CARE CONDITION OR INVALID OUTPUT DATA

Note

The falling edge of $\overline{C S} /$ WE must occur after the falling edge of the program pulse and before the address transition.

Description

The F2732 is a 32,768-bit ultraviolet light Erasable and electrically Programmable Read Only Memory (EPROM) manufactured using the Isoplanar n-channel silicon gate technology. Organized 4096×8, the F2732 is ideally suited for non-volatile data storage in applications such as 8-bit microprocessor systems, where reprogrammability, high bit-density, maximum performance, and simple interfacing are essential parameters. All inputs and outputs are TTLcompatible. The 3-state outputs become high impedance when the F2732 is deselected, allowing a direct interface capability which is useful in many computer bus structures.

The F2732 operates from a single standard +5 V power supply during reading, making it compatible with the latest generations of microprocessors.

The F2732 programming technique is the simplest available. All data and address inputs are at TTL levels during programming. $\mathrm{A}+25 \mathrm{~V}$ power supply is connected to the \bar{G} /VPP pin and only those addresses to be programmed need be selected; therefore total programming time is short and field corrections straight forward. The technique is compatible with board-level programming making large systems simple to program.

- 4096×8-BIT ORGANIZATION
- FAST ACCESS TIME-450 ns MAX
- TTL-COMPATIBLE INPUTS AND OUTPUTS
- 3-STATE OUTPUTS FOR WIRED-OR CAPABILITY
- SINGLE +5 V POWER SUPPLY FOR READ OPERATION
- REDUCED POWER STANDBY MODE
- SIMPLEST, FASTEST EPROM PROGRAMMING TECHNIQUE AVAILABLE
- OUTPUT ENABLE CONTROL FOR MEMORY EXPANSION

- STATIC OPERATION

- PIN COMPATIBLE WITH 32K AND 64K ROMs FOR LOW COST PRODUCTION
- LOW POWER DURING PROGRAMMING
- CONTENTS ERASABLE WITH ULTRAVIOLET LIGHT

Pin Names

AO-A11	Address Inputs
$\overline{\mathrm{E}}$	Chip Enable (Power Down) Input
$\overline{\mathrm{G}} / \mathrm{VPP}$	Output Enable/+25 V Program Input
DQO-DQ7	Data Output/Programming Inputs
VCC	+5 V Supply
VSS	Ground

Logic Symbol

$V C C=P$ in 24
VPP $=\operatorname{Pin} 20$
VSS $=\operatorname{Pin} 12$

Connection Diagram

24-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	$7 W$	D

Absolute Maximum Ratings

VCC Supply Voltage
-0.3 V to +6 V
Any Input or Output
-0.3 V to +6 V
Operating Temperature (Ambient) $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature (Ambient)
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

All voltages with respect to VSS.
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of these specifications is not implied.
Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

Block Diagram

Mode Selection All voltages referenced to ground

Mode	Outputs	Address Inputs	\bar{E}	$\bar{G} / V P P$	VCC	Note
Read	V_{OL} or V_{OH}	V_{IL} or V_{IH}	V_{IL}	V_{IL}	+5 V	1
Deselect/ Active	High Z	V_{IL} or V_{IH}	V_{IL}	V_{IH}	+5 V	1
Deselect/ Power Down	High Z	V_{IL} or V_{IH}	V_{IH}	V_{IH} or V_{IL}	+5 V	1
Program	V_{IH} or V_{IL}	V_{IL} or V_{IH}	Pulse V_{IH} to V_{IL}	V_{PP}	+5 V	1,2
Verify During Program	V_{OL} or V_{OH}	V_{IL} or V_{IH}	V_{IL}	V_{IL}	+5 V	1
Inhibit Program	High Z	V_{IL} or V_{IH}	V_{IH}	V_{PP}	+5 V	1

Read Mode dc Electrical Requirements
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise indicated; all voltages referenced to ground

Symbol	Characteristic	Min	Typ	Max	Unit
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	V
$\mathrm{~V}_{\text {IH }}$	Input HIGH Voltage	2.0		$V_{\text {CC }}+1.0$	V
$\mathrm{~V}_{\text {IL }}$	Input LOW Voltage	-0.1		0.8	V

Read Mode dc Electrical Characteristics Over full range of operating voltage and temperature unless otherwise indicated; typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltages

Symbol	Characteristic (Note 3)	Min	Typ	Max	Unit	Note
Icc	Average VCC Current Active		85	150	mA	4
	Average Vcc Current Power Down		15	30	mA	4
IN1	Input Leakage Current (Except $\bar{G} / V P P$)			10	$\mu \mathrm{A}$	5
InN2	$\overline{\mathrm{G}}$ / VPP Input Leakage Current			10	$\mu \mathrm{A}$	5
IOUT	Output Leakage Current			10	$\mu \mathrm{A}$	6
V OH	Output HIGH Voltage $\mathrm{IOH}^{2}=-400 \mu \mathrm{~A}$	2.4			V	
V_{OL}	Output LOW Voltage $\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V	
CIN1	Input Capacitance (Except $\bar{G} / V P P$)		4.0	6.0	pF	7
Cin2	$\overline{\mathrm{G}}$ / VPP Input Capacitance			20	pF	7
Cout	Output Capacitance		8.0	12	pF	8

[^5]
Read Mode ac Electrical Characteristics

Over full range of operating voltage and temperature unless otherwise indicated

Symbol	Characteristic	Min	Max	Unit	Note
t $_{\text {ACC }}$	Address to Output Delay Time		450	ns	9
IOE $^{\text {On }}$	Output Enable to Output Delay Time		120	ns	9
tOFF	Output Disable to Output High Impedance		100	ns	
IOH	Address to Output Hold Time	0		ns	
tCE	Power-up Delay from \bar{E} to Outputs Active		450	ns	
tPD	Power-down Delay from \bar{E} to Outputs OFF		100	ns	

Notes

1. V_{IL} or V_{IH} should be selected on Address and Data inputs as desired.
2. Outputs are in the HIGH state allowing Data In to be applied with TTL drivers.
3. All voltage levels are referenced to VSS.
4. Worst case supply currents occur when all inputs are HIGH (including $\overline{\mathrm{G}}=5.0 \mathrm{~V}$) and the ambient temperature is $T_{A}=0^{\circ} \mathrm{C}$.
5. Measured both with $V_{\mathbb{N}}=5.25 \mathrm{~V}$ and $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$.
6. Measured both with $\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$ and $\overline{\mathrm{G}}=5.0 \mathrm{~V}$.
7. Measured with $V_{I N}=0 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{f}=1.0 \mathrm{MHz}$.
8. Measured with $V_{O U T}=0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ and $f=1.0 \mathrm{MHz}$.
9. Timing parameters are measured with input logic levels of $\mathrm{V}_{\mathrm{IL}(\max)}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}(\min)}=2.2 \mathrm{~V}$. Timing measurement reference levels are 1.0 V and 2.0 V for inputs and 0.8 V and 2 V for outputs. An output load of 1 TTL gate plus 100 pF is assumed.

Read Mode Timing Diagram

INVALID OUTPUT DATA

Erasing Instructions

The contents of the F2732 EPROM can be erased by exposure to high intensity short-wave ultraviolet (UV) light with a wavelength of 2537 Angstroms (\AA).
This can be accomplished with ultraviolet light EPROM erasure devices which are available from several U.S. manufacturers. These erasure devices contain a UV light source which is usually placed approximately one or two inches from the EPROM to illuminate the transparent window on top of the device. The minimum required integrated dose (intensity x exposure time) of $U V$ light energy incident on the window of the device in order to reliably insure complete erasure is $15 \mathrm{~W}-\mathrm{s} / \mathrm{cm}^{2}$. The UV erasure unit should be periodically calibrated if minimum exposure times are to be used. (Minimum exposure times range from 10 to 45 minutes, depending on model type and age of UV lamp.) If longer exposure times are possible, variations in the output light intensity of the UV light source are not critical.

Programming

After erasure with a UV source all bits of the memory will be sensed as $\mathrm{V}_{\text {OH }}$ levels. Any word of the memory may have $V_{O L}$ levels programmed into it. All eight outputs are programmed at one time for any selected
address. Words may be programmed in any order. Programming time for any word regardless of the number of bits to be programmed is 50 ms ; maximum programming time for all addresses is 205 s . Once programmed to a $V_{\text {OL }}$ level a bit of the array can be changed back to a V_{OH} level by exposing the entire array to a UV source.

The programming procedure is as follows:

1. Apply V_{CC} and V_{SS} with $\overline{\mathrm{E}}$ at V_{IH}.
2. Apply VPP to the G/VPP Input.
3. Apply V_{IL} and V_{IH} to the Address inputs and outputs to select the data combination to be programmed.
4. Apply a 50 ms wide V_{IL} pulse to $\overline{\mathrm{E}}$.
5. Apply V_{IL} to $\overline{\mathrm{G}} /$ VPP and remove the drivers from the output. Read out the contents of the memory (this verification step is optional).
6. Repeat steps 3 through 5 until all desired data has been programmed.
7. Reduce the $\overline{\mathrm{G}} / \mathrm{VPP}$ voltage to V_{IL} to change to the normal read mode.

Caution

It is recommended that a $0.1 \mu \mathrm{~F}$ capacitor be connected between $\bar{G} /$ VPP and ground to prevent voltage transients that may damage the device.

Program Mode dc Electrical Requirements and Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Note
$\mathrm{V}_{\text {cc }}$	Supply Voltage	4.75	5.0	5.25	V	
V_{PP}	Programming Input Voltage	24	25	26	V	1
V_{IL}	Input LOW Voltage	-0.1		0.8	V	
V_{IH}	Input HIGH Voltage (Except $\overline{\mathrm{G}} / \mathrm{VPP}$)	2.0		$\mathrm{V}_{\mathrm{CC}}+1$	V	
In	Input Leakage Current (for any input)			10	$\mu \mathrm{A}$	2
IPP	VPP Supply Current			30	mA	3
ICC	$\mathrm{V}_{\text {CC }}$ Supply Current		85	150	mA	

Notes on following page.

Program Mode ac Electrical Characteristics and Requirements $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ (Note 1)

Symbol	Characteristic	Min	Typ	Max	Unit	Note
$t_{\text {AS }}$	Address Set-up Time	2			$\mu \mathrm{~s}$	
$t_{\text {OES }}$	\bar{G} Set-up Time	2			$\mu \mathrm{~s}$	
$t_{\text {DS }}$	Data Set-up Time	2			$\mu \mathrm{~s}$	
$t_{\text {AH }}$	Address Hold Time	0			$\mu \mathrm{~s}$	
$t_{\text {OEH }}$	\bar{G} Hold Time	2			$\mu \mathrm{~s}$	
$t_{\text {DH }}$	Data Hold Time	2				
$t_{\text {PD }}$	Power-down Delay from \bar{E} to Outputs OFF	0		120	ns	
$t_{\text {CE }}$	Chip Enable to Data Valid			1	$\mu \mathrm{~s}$	4
$t_{\text {PW }}$	Program Pulse Width	45	50	55	ms	
$t_{\text {PR }}$	\bar{G} Pulse Rise Time During Programming	50			ns	
$t_{\text {VR }}$	VPP Recovery Time	2			$\mu \mathrm{~s}$	

Notes

1. A $0.1 \mu \mathrm{~F}$ capacitor must be connected between $\overline{\mathrm{G}} /$ VPP and ground to prevent voltage transients which may damage the device.
2. $\mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}$ to 0 V .
3. $\bar{E}=V_{I L}$.
4. $\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IL}}$.

Program Mode Timing Diagram

64K (8K x 8) UV Erasable PROM

MOS Memory Products

Description

The F2764 is a 65,536-bit ultraviolet light Erasable and electrically Programmable Read Only Memory (EPROM) manufactured using the Fairchild advanced NMOS, Isoplanar- $\mathrm{H}^{\top} \mathrm{M}$ technology. Organized 8192×8, the F2764 is ideally suited for non-volatile data storage in applications such as 8-bit microprocessor systems, where reprogrammability, high bit-density, maximum performance, and simple interfacing are essential parameters. The 3-state outputs become high impedance when the F2764 is deselected, allowing a direct interface capability which is useful in many computer bus structures.

The F2764 operates from a single standard +5 V power supply during reading, making it compatible with the latest generations of microprocessors.

The F2764 programming technique is the simplest available. All data and address inputs are at TTL levels during programming. A +21 V power supply is connected to the VPP pin and only those addresses to be programmed need be selected; therefore total programming time is short and field corrections straight forward. The technique is compatible with board-level programming making large systems simple to program.

- 8192×8-BIT ORGANIZATION
- FAST ACCESS TIME-200 ns MAX
- TTL-COMPATIBLE INPUTS AND OUTPUTS
- 3-STATE OUTPUTS FOR WIRED-OR CAPABILITY
- SINGLE +5 V POWER SUPPLY FOR READ OPERATION
- REDUCED POWER STANDBY MODE
- SIMPLEST, FASTEST EPROM PROGRAMMING TECHNIQUE AVAILABLE
- OUTPUT ENABLE CONTROL FOR MEMORY EXPANSION
- STATIC OPERATION
- UNIVERSAL BYTE WIDE PINOUT
- LOW POWER DURING PROGRAMMING
- CONTENTS ERASABLE WITH ULTRAVIOLET LIGHT

Pin Names

A0-A12 Address Inputs

$\overline{\mathbf{E}}$	Chip Enable (Power Down) Input
\bar{G}	Output Enable Input
VPP	+21 V Program Input
DQO-DQ7	Data Output / Programming Inputs
PGM	Program
VCC	$+5 V$ Supply
VSS	Ground

Logic Symbol

Connection Diagram 28-Pin DIP

(Top View)

[^6]
Absolute Maximum Ratings

VCC Supply Voltage	-1.0 V to +7.0 V
Any Input or Output	-1.0 V to +7.0 V
VPP Supply During Programming	-1.0 V to +22 V
Operating Temperature (Ambient)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature (Ambient)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

All voltages with respect to VSS.
Stresses greater than those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

Block Diagram

$\mathrm{VCCO} \longrightarrow$
$\mathrm{VPPO} \longrightarrow$
VSS \longrightarrow

3341/3341A
 64 x 4 FIFO Serial Memory

MOS Memory Products

Description

The 3341 or 3341 A is a 64 -word $\times 4$-bit First-In First-Out (FIFO) Serial Memory. Inputs and the outputs are completely independent (no common clocks) making the $3341 / 3341 \mathrm{~A}$ ideal for asynchronous buffer applications.

Special on-chip input pull-up circuits and bipolar-compatible output buffers provide direct bipolar interfacing with no external components required. Control signals are provided for both vertical and horizontal cascading.

The 3341 and 3341 A are manufactured using the p-channel Isoplanar silicon gate process and are available in both ceramic and plastic packages.

- 1 MHz (3341A) AND 700 kHz (3341) DATA RATES - INDEPENDENT ASYNCHRONOUS INPUTS AND OUTPUTS
- FULLY TTL COMPATIBLE
- EXPANDABLE IN EITHER DIRECTION
- ACTIVE PULL-UP ON INPUTS

16-PIN DUAL IN-LINE PACKAGE
Pin Names

IR	Input Ready
SI	Shift In
$D_{0}-D_{3}$	Data Inputs
$M R$	Master Reset
OR	Output Ready
SO	Shift Out
$Q_{0}-Q_{3}$	Data Outputs
$V_{S S}$	$+5 V$ Power Supply
$V_{\text {DD }}$	$0 V$ Power Supply
$V_{G G}$	$-12 V$ Power Supply

Absolute Maximum Ratings

Storage Temperature

 Operating TemperatureVoltage on All Pins Except VDD with Respect to VSS $\quad-20 \mathrm{~V}$ to +0.3 V
Voltage on VDD

$$
-7.0 \vee \text { to }+0.3 \mathrm{~V}
$$

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

$V_{S S}=\operatorname{Pin} 16$
$V_{D D}=\operatorname{Pin} 8$
$V_{G G}=P$ in 1

Connection Diagram

 16-Pin DIP
(Top View)

Package	Outline	Order Code
Ceramic DIP	$6 Z$	D
Plastic DIP	8 K	P

3341/3341A

Block Diagram

Functional Description

Data Input

The four bits of data on the D_{0} through D_{3} inputs are entered into the first bit location when both Input Ready (IR) and Shift In (SI) are HIGH ($\approx \mathrm{V}_{\text {SS }}$). This causes IR to go LOW ($\approx V_{D D}$), but data will stay locked in the first bit location until both IR and SI are LOW. Then data will propagate to the second bit location, provided the location is empty. When data is transferred, IR will go HIGH indicating that the device is ready to accept new data. If the memory is full, IR will stay LOW.

Data Transfer

Once data is entered into the second cell, the transfer of any full cell to the adjacent (downstream) empty cell is automatic, activated by an on-chip control. Thus data will stack up at the end of the device while empty locations will "bubble" to the front. tBT defines the time required for the first data to travel from the input to the output of a previously empty device, or for the first empty space to travel from the output to the input of a previously full device.

Data Output

When data has been transferred into the last cell, Output Ready (OR) goes HIGH, indicating the presence of valid data at the output pins Q_{0} through Q_{3}. The transfer of data is initiated when both the Output Ready output from the device and the Shift Out (SO) input to the device are HIGH. This causes OR to go LOW; output data, however, is maintained until both OR and SO are LOW. Then the content of the adjacent (upstream) cell (provided it is full) will be transferred into the last cell, causing OR to go HIGH again. If the memory has been emptied, OR will stay LOW.

Input Ready and Output Ready may also be used as status signals indicating that the FIFO is completely full (Input Ready stays LOW for at least $t_{B T}$) or completely empty (Output Ready stays LOW for at least $t_{B T}$).

Reset

When Master Reset ($\overline{M R}$) goes LOW, the control logic is cleared. When $\overline{M R}$ returns HIGH, Output Ready (OR) stays LOW, and Input Ready (IR) goes HIGH if Shift In (SI) was LOW. Since the Data Outputs (Q_{0} through Q_{3}) are unaffected by $\overline{M R}$, Data on Q_{0} through Q_{3} should be considered valid only while OR is HIGH.

Active Pull-up Description

TTL compatibility on each input is achieved through the use of active pull-up circuits that raise the input voltage to a value meeting the $V_{I H}$ specification, i.e., $\mathrm{V}_{\mathrm{IH}} \geq \mathrm{V}_{\mathrm{SS}}-1.0 \mathrm{~V}$. Each of these pull-up circuits may be thought of as a switched variable impedance between the input and $V_{\text {SS }}$ with its state being dependent upon the input voltage, $\mathrm{V}_{\mathbb{I}}$. When $\mathrm{V}_{\mathbb{I N}}$ is LOW, the input impedance is on the order of several megohms, causing the input current to look like a leakage current. As $V_{I N}$ swings toward a TTL HIGH value, the impedance decreases, providing a lowimpedance path to $V_{S S}$, pulling $V_{\mathbb{N}}$ up to the proper V_{IH} level. Furthermore, at $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}}$, the input characteristics resemble those of a TTL device making it look like a normal TTL load.

Input Buffer Stage With Active Pull-up

More specifically, the input current increases significantly when $V_{I N}$ starts to exceed $V_{I I}$ (the pull-up initiation voltage). This current reaches a peak value of $I_{\mathbb{I}}$ (the input barrier current) when $V_{\mathbb{N}}=V_{\mathbb{I P}}$ (the peak input current voltage point) after which it decreases as $V_{I N}$ rises to its $V_{I H}$ value.

Although not usually necessary under low fan-out conditions, the active pull-up circuit on each input guarantees that the $\mathrm{V}_{\mathbf{I H}}$ specification is met under all conditions where the 3341 is driven by a TTL-like structure.

Typical Input Characteristics

DC Characteristics $\mathrm{V}_{\mathrm{SS}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	VSS -1.0			V	Notes 1 and 2
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V	Note 1
V_{OH}	Output HIGH Voltage	$V_{S S}-1.0$			V	$\mathrm{l}_{\mathrm{OH}}=-0.3 \mathrm{~mA}$
VOL	Output LOW Voltage			0.4	V	$\mathrm{l} \mathrm{OL}=1.6 \mathrm{~mA}$
	Input Pull-up			2.0	V	$\mathrm{V}_{\mathrm{SS}}=4.75 \mathrm{~V}$
	Initiation Voltage			2.2	V	$\mathrm{V}_{\mathrm{SS}}=5.25 \mathrm{~V}$
VIP	Peak Input Current Voltage Point			$V_{S S}-1.5$	V	
IIH	Input HIGH Current	-200			$\mu \mathrm{A}$	Note 1, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}-1.0 \mathrm{~V}$
ILL	Input Leakage Current			-30	$\mu \mathrm{A}$	Note 1, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
liP	Input Barrier Current			-1.6	mA	Note 1
IGG	VGG Current			-12	mA	
IDD	VDD Current			-45	mA	
PD	Power Dissipation			450	mW	

Notes

1. Inputs include $\mathrm{D}_{\mathrm{O}}-\mathrm{D}_{3}$. Master Reset, Shift In, and Shift Out.
2. Internal pull-up circuits are provided on all inputs to insure proper HIGH level.
3. Control signals include Input Ready, Shift In, Output Ready, and Shift Out.
4. This parameter defines total time from the time data is loaded into the first word location to the time it is available at $Q_{0}-Q_{3}$ with the FIFO initially empty. Conversely, $t_{B T}$ also defines the time required for an empty space to propagate from the last word location back to the first word location. When the FIFO is full, this is the time from the HIGH-to-LOW transition of OR to the LOW-to-HIGH transition of IR.
5. 1 TTL load +20 pF .
6. The $\overline{M R}$ input overrides all other control functions. It resets the control register and the input and output control logic while disabling any SI or SO inputs.
7. tIRH is referenced to the positive going edge of IR or SI , whichever occurs later.
8. $\mathrm{t}_{\mathrm{IRL}}$ is referenced to the negative going edge of IR or SI , whichever occurs later.
9. ${ }^{t} \mathrm{DD}$ is referenced to the positive going edge of IR or SI, whichever occurs later.
10. tovH is referenced to the positive going edge of IR or SI, whichever occurs later.
11. t_{OVL} is referenced to the negative going edge of IR or SI whichever occurs later.
12. Data must be stable for ${ }^{t} \mathrm{DH}$ or $\mathrm{t}_{\mathrm{IRH}}$, whichever is shorter.
13. t_{ORH} is referenced to the positive going edge of OR or SO, whichever occurs later.
14. ${ }^{\text {toRL }}$ is referenced to the negative going edge of OR or SO, whichever occurs later.
15. ${ }^{t} D V$ is referenced to the negative going edge of OR or SO, whichever occurs later.
16. ${ }^{t} \mathrm{OVH}$ is referenced to the positive going edge of IR or SI, whichever occurs later.
17. $t^{O V L}$ is referenced to the negative going edge of IR or SI , whichever occurs later.

AC Characteristics $V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{D D}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	3341A			3341			Unit	Condition
		Min	Typ	Max	Min	Typ	Max		
tIRH	Input Ready HIGH Time	80		400	100	300	550	ns	Figure 1, Notes 7, 12
t/RL	Input Ready LOW Time	100		550	138	300	550	ns	Figure 1, Note 8
toVH	Control Overlap HIGH Time	80			100			ns	Figures 1, 2 and Notes 3, 16
toVL	Control Overlap LOW Time	80			100			ns	Figures 1, 2 and Notes 3, 17
tDH	Data Input Stable Time	200			400			ns	Figure 1
tDD	Data Input Delay Time			0			25	ns	Figure 1, Note 9
tORH	Output Ready HIGH Time	80		450	100	300	500	ns	Figure 2, Note 13
torL	Output Ready LOW Time	80		550	170	450	850	ns	Figure 2, Note 14
$t_{B T}$	Data Bubble-through Time			16			32	$\mu \mathrm{s}$	Note 4
tDV	Data Valid After SO or OR	75			75			ns	Figure 2, Note 15
$t_{\text {MRW }}$	Master Reset Pulse Width	400			400			ns	Note 6
$t_{\text {DA }}$	Data Output Available Time	0			0			ns	Figure 2
$\mathrm{CiN}_{\text {IN }}$	Input Capacitance of Data and Control Lines			7.0			7.0	pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$
CMR	Input Capacitance of MR			7.0			15	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{MR}}=\mathrm{V}_{S S}$
f	Operating Frequency			1000			700	kHz	Note 5

Timing Diagrams

Fig. 1 Input Timing

Input data must remain stable during timing window $t_{D H}$. Both SI and IR must be HIGH for toVH. Similarly, both SI and IR must be LOW for tovl.

Fig. 2 Output Timing

Both SO and OR must be HIGH for toVH. Similarly both SO and OR must be LOW for tovL. Data will remain stable for tDV after both SO and OR are LOW.

Application

Expansion of 3341 to \boldsymbol{n}-Word by $\mathbf{1 2 - B i t ~ F I F O}$

Note

Composite Shift In should be LOW when Master Reset goes HIGH. Input data may be changed after Composite IR goes LOW.
Composite IR will not go HIGH until Composite Shift In goes LOW. When Composite IR goes HIGH, FIFOs will accept new data. 3341 s will operate at full speed if these rules are followed.

3342
 Quad 64-Bit Static Shift Register

MOS Memory Products

Description

The 3342 is a static shift register in quad 64-bit organization. An on-chip clock generator provides appropriate internal clock phases from a single external TTL-level clock input. Passive on-chip input pull-up resistors allow direct TTL compatibility on all inputs. The outputs are capable of driving a single TTL load directly without the need for external components. The 3342 is manufactured with p-channel silicon gate technology. It is available in ceramic or plastic 16-pin dual in-line packages in the commercial temperature range, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

- SINGLE TTL-COMPATIBLE EXTERNAL CLOCK - DIRECT TTL COMPATIBILITY
 - 1.5 MHz OPERATION GUARANTEED
 - LOW CLOCK CAPACITANCE
 - INPUT OVERVOLTAGE PROTECTION
 - EXTERNAL RECIRCULATE CONTROL
 - 16-PIN CERAMIC OR PLASTIC DUAL IN-LINE PACKAGE

Pin Names

$\mathrm{D}_{1}-\mathrm{D}_{4}$	Data Inputs
$\mathrm{REC}_{1}-$ REC $_{4}$	Recirculate Inputs
CP	Clock Pulse Input
$\mathrm{Q}_{1}-\mathrm{Q}_{4}$	Data Outputs
$V_{S S}$	$+5 V$ Power Supply
$V_{D D}$	$0 V$ Power Supply
$V_{G G}$	$-12 V$ Power Supply

Absolute Maximum Ratings

All Inputs Including Clock (Note 1) -20 V to +0.3 V
$V_{G G}$ (Note 1) $\quad-20 \mathrm{~V}$ to +0.3 V
VDD and Outputs (Note 1) $\quad-7.0 \mathrm{~V}$ to +0.3 V
Output Current when Output is LOW (Note 2)
Storage Temperature
10 mA
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Notes

1. All voltages with respect to $V_{S S}$
2. LOW logic level is the most negative level and HIGH logic level is the most positive.

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

$V_{S S}=P$ in 16
$V_{D D}=P$ in 8
$V_{G G}=\operatorname{Pin} 12$

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	$6 Z$	D
Plastic DIP	9 B	P

Logic Diagram

Functional Description

The 3342 is a single phase static shift register. Data is accepted at the inputs when the external clock is HIGH. Data is available at the outputs after the negative clock transition as illustrated in the Timing Diagram. All inputs are connected by an MOS transistor to $V_{S S}$ allowing complete TTL compatibility. The recirculate inputs allow data to be entered externally (LOW logic level) or internally recirculated in the registers (HIGH logic level). The output stages are push/pull amplifiers and can drive one TTL load.

DC Requirements $\mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{VDD}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$V_{I H}$	Input HIGH Voltage	$V_{S S}$ -1.0			V	Notes 1 and 2
V_{IL}	Input LOW Voltage	V_{GG}		0.80	V	Note 1

DC Characteristics $\mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
V_{OH}	Output HIGH Voltage	2.4		$V_{\text {Ss }}$	V	$\mathrm{IOH}^{\prime}=-0.5 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	0		0.4	V	$\mathrm{OL}=-1.6 \mathrm{~mA}$
$\mathrm{IIH}^{\text {d }}$	Input HIGH Current	-0.10			mA	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}-1.0 \mathrm{~V}$, Note 1
ILL	Input LOW Current			-1.6	mA	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$, Note 1
In	Input Leakage Current			1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-5.0 \mathrm{~V}, \text { Note } 1 \\ & \mathrm{~V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$
IDD	$V_{\text {DD }}$ Current			28	mA	
IGG	V_{GG} Current			12	mA	
Iss	$V_{\text {SS }}$ Current			40	mA	
PD	Power Dissipation			380	mW	tPWH $=265 \mathrm{~ns}, \mathrm{f}=1.5 \mathrm{MHz}$

$A C$ Requirements $V_{S S}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
f	Operating Frequency	0		1.5	MHz	Note 4
tpWH	Clock Pulse Width HIGH	0.265		10	$\mu \mathrm{s}$	Note 3
tPWL	Clock Pulse Width LOW	0.320			$\mu \mathrm{s}$	
t_{r}, t_{f}	Clock Rise and Fall Times (10% to 90%)			1.0	$\mu \mathrm{s}$	
tDS	Data Input Set-up Time	200			ns	
tDH	Data Input Hold Time	100			ns	
trs	Recirculate Set-up Time	200			ns	
tris	Recirculate Hold Time	130			ns	

Notes

1. These parameters apply to all data, recirculate, and clock inputs.
2. On-chip pull-up resistors are provided on all inputs to effect the proper logic level when driving with TTL/DTL.
3. Outputs remain valid until negative-going edge of next clock pulse.
4. $1 / f=$ tpWH + tpWL $+t_{\mathrm{f}}+\mathrm{t}_{\mathrm{f}}$.

3342

AC Characteristics $\mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
t_{A}	Clock to Output Delay			265	ns	$C_{L}=10 \mathrm{pF}$ Load $=1$ TTL Input
$\mathrm{C}_{\mathbb{N}}$	Capacitance All Inputs Including Clock			5.0	pF	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$, $\mathrm{f}=1.0 \mathrm{MHz}$

Timing Diagram

3348/3349
 Hex 32-Bit
 Static Shift Register

MOS Memory Products

Description

The 3348/3349 contains six separate 32-bit static shift registers constructed on a single chip using p-channel enhancement mode silicon gate MOS technology. Only two power pins, VSS and VGG, are needed for circuit operation. An on-chip clock generator provides all internal clock phases from a single TTL clock pulse. Each output is a bare drain, and therefore requires a $7.5 \mathrm{k} \Omega$ load resistor to V_{GG}. A recirculate data input allows the user to either enter data from the outside (LOW logic level) or to internally recirculate the contents of the registers (HIGH logic level).

The 3348 is available in a 24 -pin ceramic dual in-line package and the 3349 is available in a 16 -pin plastic or ceramic dual in-line package. The 3348 option provides an output enable pin for wired-OR operation. The outputs are enabled when Output Enable is LOW.

- SINGLE TTL EXTERNAL CLOCK
- INPUT OVERVOLTAGE PROTECTION
- LOW CLOCKLINE CAPACITANCE
- TTL COMPATIBLE INPUTS
- CASCADE CAPABILITY
- SINGLE POWER SUPPLY OPERATION
- INTERNAL RECIRCULATION CONTROL
- DC TO 1 MHz OPERATION GUARANTEED
- OUTPUT ENABLE CONTROL (3348 ONLY)
- SINGLE-ENDED (BARE DRAIN) BUFFERS

Pin Names

$D_{1}-D_{6}$	Data Inputs
$\frac{R E C}{C P}$	Recirculate Input
$\overline{\mathrm{OE}}$	Clock Pulse
$\mathrm{Q}_{1}-\mathrm{Q}_{6}$	Output Enable (3348 only)
Data Outputs	

Absolute Maximum Ratings

All Inputs, V_{GG}

$$
\begin{aligned}
& -22 \mathrm{~V} \text { to }+0.3 \mathrm{~V} \\
& -19 \mathrm{~V} \text { to }+0.3 \mathrm{~V} \\
& +10 \mathrm{~mA} \\
& -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}
\end{aligned}
$$

All Outputs
Output Current
Storage Temperature
Operating Temperature
All voltages with respect to V_{SS}
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

$V_{S S}=P$ in 20 (24-Pin DIP), Pin 16 (16-Pin DIP)
$\mathrm{V}_{\mathrm{GG}}=\operatorname{Pin} 6$ (24-Pin DIP), Pin 5 (16-Pin DIP)

Connection Diagrams
24-Pin DIP

(Top View)

	Package	Outline	Order Code
3348	Ceramic DIP	7 M	D
3349	Ceramic DIP	$6 Z$	D
	Plastic DIP	$9 B$	P

Block Diagram

Functional Description

The 3348/3349 is a two-phase Static Shift Register.
The single external clock phase generates two shift phases as well as a static operation phase via the on-chip clock generator. Data is accepted at the inputs after the negative-going transition of the external clock. Output information is available after the positive clock transition as illustrated in Timing Diagram. For long-term storage, the external clock should be held HIGH.

DC Requirements $\quad \mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$V_{I H}$	Input HIGH Voltage	$V_{S S}-1.5$			V	All Inputs Including Clocks
$V_{I L}$	Input LOW Voltage			0.6	V	All Inputs Including Clocks
R_{L}	Output Load Resistor to $V_{G G}$	7.5			$\mathrm{k} \Omega$	

DC Characteristics $\quad V_{S S}=5 \mathrm{~V} \pm 5 \%, V_{G G}=-12 \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\text {SS }}-1.2$			V	7500Ω Load to V_{GG} $\mathrm{V}_{\mathrm{SS}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-11 \mathrm{~V}$
IIN	Input Leakage Current			1.0	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$
IGG	V_{GG} Current			27	mA	$\mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=5.0 \mathrm{~V}$

AC Requirements $\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
f	Operating Frequency			1.0	MHz	
tPWL	Clock Pulse Width LOW	0.35		50	$\mu \mathrm{s}$	
tPWH	Clock Pulse Width HIGH	0.6			$\mu \mathrm{s}$	
$\mathrm{tr}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	Clock Rise Time and Fall Time			0.5	$\mu \mathrm{s}$	
tos	Input Data Set-up Time	180			ns	
tDH	Input Data Hold Time	40			ns	
trPW	Recirculate Pulse Width	350			ns	
trs	Recirculate Set-up Time	225			ns	
tris	Recirculate Hold Time	100			ns	

AC Characteristics $\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12 \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$t_{\text {ACC }}$	Clock to Output Delay Time	125		520	ns	$\begin{aligned} & C_{L}=0 \text { to } 20 \mathrm{pF}, \\ & R_{L}=7.5 \mathrm{k} \Omega \end{aligned}$
teo	Output Enable Delay Time (3348 Only)			350	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{GG}} \end{aligned}$
too	Output Disable Delay Time (3348 Only)			350	ns	

Timing Diagram

3351
 40 x 9 FIFO Memory

MOS Memory Products

Description

The 3351 is a First-In First-Out (FIFO) memory used in data rate buffering applications. The 3351 has a capacity of 409 -bit words. The words are accepted at the input, automatically shifted towards the output, and removed at any rate in the same sequence in which they were entered.

The 3351 has status indicators on both the input and output to signal an available empty input or a valid data word at the output. It also has separate input and output enable lines, in addition to a master reset line. A unique input stage interfaces to TTL without external components. The 3351 is manufactured using the p -channel Isoplanar silicon gate process with ion-implantation.

```
■ 2 MHz (3351-1), 1.5 MHz (3351-3), AND
    1 MHz (3351-2) DATA RATES
- INDEPENDENT ASYNCHRONOUS INPUTS
    AND OUTPUTS
- FULLY TTL COMPATIBLE
- 3-STATE OUTPUTS
- INPUT AND OUTPUT ENABLE CONTROLS
- EXPANDABLE IN EITHER DIRECTION
- STATUS INDICATORS ON INPUT AND OUTPUT
- 28-PIN CERAMIC DUAL IN-LINE PACKAGE
```


Pin Names

$\mathrm{D}_{0}-\mathrm{D}_{8}$	Data Inputs Master Reset
$\overline{M R}$	Mnput Enable $\overline{I E}$
IR	Input Ready
SI	Shift In
$\overline{\text { SO }}$	Shift Out
$\overline{O E}$	Output Enable
OR	Output Ready
$\mathrm{Q}_{0}-\mathrm{Q}_{8}$	Data Outputs

Absolute Maximum Ratings

$V_{G G}$ and Inputs
$V_{D D}$ and Outputs Output Sink Current Storage Temperature Operating Temperature
-20 V to +0.3 V
-7.0 V to +0.3 V
5.0 mA
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note

All Voltages with respect to $V_{\text {Ss }}$.
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

$V_{S S}=\operatorname{Pin} 28$
$V_{D D}=\operatorname{Pin} 14$
$V_{G G}=P$ in 1

Connection Diagram 28-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	8 E	D

Block Diagram

Functional Description

The 40 by 9 memory array is under the constant control of a control logic network. Each word position in the array is clocked by a control register, which also stores a marker bit; a "1" signifies that the position is filled and a " 0 " indicates a vacancy at that location. Each control register clocks data from the preceding nine data flip-flops to its own set of nine data flip-flops. The register logic detects the status of the preceding and succeeding registers' marker bits to determine when to clock its data flip-flops. When data has been transferred from location n to location $n+1$, the $n+1$ control circuitry changes the marker bit at control register n from a " 1 " to a " 0 ", indicating that the data at location n has been transferred elsewhere in the array. This " 0 " will then propagate back to the first control register signifying that the FIFO is capable of accepting more data.

The 3351 buffers the first and last control registers and uses them as input/output status indicators. Since all status marker "Os" propagate toward the first control register, a " 0 " at the first register indicates the FIFO is ready to clock in more data.

Likewise, all " 1 s " propagate towards the last control register, and a " 1 " here means that data is valid at the outputs.

A Master Reset control is provided to set all the control registers' status markers to " 0 ". Note that the data registers are not reset by $\overline{\mathrm{MR}}$.

Shift In (SI), Input Ready (IR)
A LOW-to-HIGH transition of the Shift In command does two things: 1) the first control register is enabled, permitting input data to be loaded into the first set of data registers and setting the first marker bit to a " 1 ", and 2) the second control register is locked out by means of an inverted SI command. At this point, data from the first data register cannot be transferred to the second data register. The Input Ready signal indicates the status of the first marker bit and accordingly goes LOW (not ready).

The HIGH-to-LOW transition of the SI locks out the first control register and causes data from the first data registers to propagate down the FIFO under the control of the control logic. This action sets the first marker bit to a " 0 " and the Input Ready returns HIGH (input ready). When the FIFO becomes full, the IR will stay LOW after SI returns LOW and any further SI commands will be ignored by the circuit. When a " 0 " ripples back from the last to the first control register the Input Ready (IR) will return to HIGH (if SI is LOW).

Input Enable (IE)

A HIGH on the Input Enable disables the SI input and the current-sourcing capability of the special TTL pull-up networks of the data inputs and the SI. A LOW enables these inputs.

Shift Out ((SO), Output Ready (OR)

The HIGH-to-LOW transition of Shift Out command disables the clocking line of the last control register and changes the 40th bit marker to a " 0 ". The Output Ready is then forced LOW. Note that data is not transferred from the 39th position to the 40th position on this edge. When SO makes the LOW-to-HIGH transition, the FIFO is again under control of its control logic circuitry, new data is transferred to the 40th location and the 40th marker bit is reset to a " 1 ". The Output Ready returns to HIGH, signifying the new data at the output leads is now valid.

When the FIFO is empty, the OR remains LOW after $\overline{\mathrm{SO}}$ goes HIGH. $\overline{\mathrm{SO}}$ commands will be ignored until a "1" marker ripples down to the last control register, after which the OR goes HIGH (if $\overline{\mathrm{SO}}$ is HIGH).

Output Enable ($\overline{\mathrm{OE}})$
A HIGH on Output Enable forces the nine outputs to a high impedance state, disables the shift out command, and disables the current-sourcing capability of the special TTL pull-up network of $\overline{\mathrm{SO}}$. A LOW again enables $\overline{S O}$, and the outputs revert back to their normal TTL states.

Master Reset ($\overline{\mathbf{M R}}$)

A LOW on Master Reset sets all the control logic marker bits to "O". Consequently, IR will go HIGH (if SI is LOW) and OR will go LOW, indicating that the FIFO is now empty.

Active Pull-up Description

TTL compatibility on each input is achieved through the use of active pull-up circuits which raise the input voltage to a value meeting the $\mathrm{V}_{\mathbf{I H}}$ specification, i.e., $\mathrm{V}_{\mathrm{IH}} \geq \mathrm{V}_{\mathrm{SS}}-1.0 \mathrm{~V}$. Each of these pull-up circuits may be thought of as a switched variable impedance between the input and $V_{\text {SS }}$ with a state dependent upon the input voltage, $\mathrm{V}_{\mathbb{I}}$. When $\mathrm{V}_{\mathbb{N}}$ is LOW, the input impedance is on the order of several megohms, causing the input current to look like a leakage current. As VIN swings toward a TTL HIGH value, the input impedance decreases, providing a low impedance path to $V_{S S}$, pulling $V_{\mathbb{N}}$ up to the proper V_{IH} level. Furthermore, at $\mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{I H}$, the input characteristics resemble those of a TTL device making it look like a normal TTL load.

Input Buffer Stage With Active Pull-Up

More specifically, the input current increases significantly when $V_{\text {IN }}$ starts to exceed V_{11} (the pull-up initiation voltage). This current reaches a peak value of $\mathrm{IIP}^{\mathrm{IP}}$ (the input barrier current) when $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IP}}$ (the peak input current voltage point) after which it decreases as $V_{I N}$ rises to its $V_{I H}$ value.

Although not usually necessary under low fan-out conditions, the active pull-up circuit on each input guarantees that the $V_{I H}$ specification is met under all conditions where the 3351 is driven by a TTL-like structure.

Typical Input Characteristics

3351

DC Requirements $V_{S S}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Characteristic	3351-1		3351-2		3351-3		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\mathrm{V}_{\mathbf{I H}}$	Input HIGH Voltage	$\mathrm{V}_{S S}-1.0$	$V_{S S}+0.3$	$V_{S S}-1.0$	$V_{S S}+0.3$	$V_{S S}-1.0$	$\mathrm{V}_{\text {ss }}+0.3$	V	Note
VIL	Input LOW Voltage	$V_{G G}$	0.8	VGG	0.8	$V_{\text {GG }}$	0.8	V	Note

DC Characteristics $V_{S S}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

Symbol	Characteristic	$3351-1$		3351-2		3351-3		Unit	Condition
		Min	Max	Min	Max	Min	Max		
VOH_{1}	Output HIGH Voltage	$V_{S S}-0.5$		$\mathrm{V}_{\text {SS }}-0.5$		$V_{S S}-0.5$		V	$\mathrm{IOH}=50 \mu \mathrm{~A}$
VOH_{2}	Output HIGH Voltage	2.4		2.4		2.4		V	$\mathrm{IOH}=-0.2 \mathrm{~mA}$
VOL	Output LOW Voltage		0.4		0.4		0.4	V	$\mathrm{IOL}=1.6 \mathrm{~mA}$
V_{11}	Pull-up Initiation Voltage		2.2		2.2		2.2	V	Note $\operatorname{liN}_{\mathrm{N}}=-0.12 \mathrm{~mA}$
VIP	Peak Current Voltage		$\mathrm{V}_{S S}-1.5$		$V_{S S}-1.5$		$V_{S S}-1.5$	V	Note
IIP	Peak Current		-1.6		-1.6		-1.6	mA	Note
IIH	Input HIGH Current	-0.22		-0.22		-0.22		mA	Note $V_{\mathbb{I N}}=V_{S S}-1.0 \mathrm{~V}$
IIL	Input LOW Current		-50		-50		-50	$\mu \mathrm{A}$	Note $V_{\text {IN }}=0.4 \mathrm{~V}$
IDD	VDD Current		65		50		50	mA	
IGG	VGG Current		10		8.0		8.0	mA	
$P_{\text {D }}$	Power Dissipation		520		420		420	mW	

Note

Includes all Data inputs, $\overline{\mathrm{IE}}, \overline{\mathrm{OE}}, \mathrm{SI}, \overline{\mathrm{SO}}$ and $\overline{\mathrm{MR}}$. (See Active
Pull-up description.)

AC Requirements $V_{S S}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. See Notes 1 and 2

Symbol	Characteristic	3351-1		3351-2		3351-3		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tIDS	IE Disable Set-Up Time	20		20		20		ns	Fig. 1
tIDH	$\overline{\text { IE Disable }}$ Hold Time	20		20		20		ns	
ties	$\overline{\text { IE Enable }}$ Set-Up Time	0		0		0		ns	
tIEH	$\overline{\text { IE Enable }}$ Hold Time	0		0		0		ns	
tDS	Input Data Set-Up Time	0		0		0		ns	
$t_{\text {DH }}$	Input Data Hold Time	220		440		330		ns	
${ }_{\text {tSIH }}$	SI HIGH Time	220		440		300		ns	
tSIL	SI LOW Time	280		560		370		ns	
toDs	$\overline{O E}$ Disable Set-Up Time	20		20		20		ns	Fig. 2
tODH	$\overline{O E}$ Disable Hold Time	20		20		20		ns	
toes	$\overline{\text { OE Enable }}$ Set-Up Time	0		0		0		ns	
toen	$\overline{\mathrm{OE}}$ Enable Hold Time	0		0		0		ns	
tSOL	$\overline{\text { SO LOW }}$ Time	200		400		260		ns	
tSOH	$\begin{array}{\|l} \hline \overline{\text { SO HIGH }} \\ \text { Time } \\ \hline \end{array}$	300		600		410		ns	
tRPW	$\overline{M R}$ Pulse Width	100		200		150		ns	Fig. 3
$t_{\text {RS }}$	$\begin{aligned} & \overline{M R} \text { to SI } \\ & \text { Set-Up Time } \end{aligned}$	0		0		0		ns	

Notes

1. All input t_{r} and $t_{f}: 10 \mathrm{~ns}$.
2. All time measurements referenced to $\mathbf{5 0} \%$ level.

3351

AC Characteristics $\mathrm{V}_{\mathrm{SS}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$. See Notes 3, 4 and Output Loading

Symbol	Characteristic	3351-1		3351-2		3351-3		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tSIIRHL	SI to IR Delay Time		220		440		300	ns	Fig. 1 (Note 1)
${ }^{\text {t SIIIRLH }}$	SI to IR Delay Time		280		560		370	ns	
tso-orll	$\begin{aligned} & \overline{\overline{S O}} \text { to OR } \\ & \text { Delay Time } \end{aligned}$		200		400		300	ns	(Note 1)
tso-ORHH	$\begin{array}{\|l\|} \hline \overline{\text { SO }} \text { to OR } \\ \text { Delay Time } \end{array}$		300		600		410	ns	
$t_{\text {mR }}$-IR	$\overline{\mathrm{MR}}$ to IR Delay Time		300		480		480	ns	Fig. 2
${ }_{\text {mR }}$-OR	$\begin{array}{\|l\|} \hline \overline{\text { MR to OR }} \\ \text { Delay Time } \end{array}$		300		480		480	ns	
$t_{B T}$	Bubble-Through Time		9.0		15		15	$\mu \mathrm{S}$	(Note 2)
$t_{\text {E }}$	Output Enable Time		300		600		480	ns	Fig. 3
tD	Output Disable Time		300		600		480	ns	
f	Operating Frequency		2.0		1.0		1.5	MHz	

Notes

1. HL means positive-going edge of first signal to negative-going edge of second signal, etc.
2. Forward and reverse.
3. All input t_{r} and t_{f} : 10 ns .
4. All time measurements referenced to 50% level.

Output Loading

All Diodes 1N4 152
*Includes Scope and
Jig Capacitance

Timing Diagrams

Fig. 1 Input Timing

Fig. 2 Output Timing

Fig. 3 Bubble-through Timing

Applications

Simple Word Expansion (39 $n+1$) Words

High Speed-Word Expansion

*Adjust pulse width for tsIH

Quad 80-Bit Static Shift Register

MOS Memory Products

Description

The 3357 and F2847 are single phase quad 80 -bit static shift registers. Both have an on-chip clock generator that is driven by a single phase TTL clock. A multiplexer is provided to allow data to be entered from the input or recirculated from the output. A unique on-chip input pull-up circuit allows interfacing directly from TTL to all inputs without external components.

The 3357 and F2847 are manufactured with the p -channel Isoplanar process and are available in 16 -pin ceramic or plastic dual in-line packages in the commercial temperature range.

- 4.0 MHz (33571), 3.0 MHz (F2847) AND 2.0 MHz (33572) GUARANTEED OPERATION
- ZERO DATA HOLD TIME
- TTL COMPATIBILITY
- SINGLE PHASE TTL CLOCK
- LOW CLOCK CAPACITANCE
- INPUT MULTIPLEXER
- 16-PIN CERAMIC OR PLASTIC DUAL IN-LINE PACKAGE
- LOW POWER VERSION (F2847L)

Pin Names
$\mathrm{D}_{1}-\mathrm{D}_{4}$
$\mathrm{REC}_{1}-\mathrm{REC}_{4}$
CP
$\mathrm{Q}_{1}-\mathrm{Q}_{4}$

Data Inputs
Recirculate Inputs
Clock Input
Data Outputs

Absolute Maximum Ratings

V_{GG} and Inputs
$V_{D D}$ and Outputs
Output Sink Current
Storage Temperature
Operating Temperature
All voltages with respect to $V_{S S}$.
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

Connection Diagram

 16-Pin DIP
(Top View)

Package	Outline	Order Code
Ceramic DIP	$6 Z$	D
Plastic DIP	$9 B$	P

Block Diagram

Functional Description

The 3357 and F2847 are single phase quad 80-bit static shift registers. Data is loaded into the register on the negative transition of the external clock. The Recirculate input loads new data from the input or recirculates old data from the output. A LOW on Recirculate loads data from the input, and a HIGH loads data from the output.

Output Characteristics

Each output will drive one unit TTL load (1.6 mA at 0.4 V) directly or another unit Shift Register load without any external components.

Active Pull-up Description

TTL compatibility on each input is achieved through the use of active pull-up circuits which raise the input voltage to a value meeting the V_{IH} specification, i.e., $\mathrm{V}_{\mathrm{IH}} \geq \mathrm{V}_{\mathrm{SS}}-1.0 \mathrm{~V}$. Each of these pull-up circuits may be thought of as a switched variable impedance between the input and $V_{S S}$ whose state is dependent upon the input voltage, V_{IN}. When V_{IN} is LOW, the input impedance is on the order of several megohms, causing the input current to look like a leakage current. As $V_{I N}$ swings toward a TTL HIGH value, the input impedance decreases, providing a low impedance path to $V_{S S}$, pulling $V_{I N}$ up to the proper $\mathrm{V}_{\mathbb{I}}$ level. Furthermore, at $\mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathbb{I H}}$, the input characteristics resemble those of a TTL device making it look like a normal TTL load.

More specifically, the input current increases significantly when $V_{I N}$ starts to exceed $V_{\| I}$ (the Pull-up Initiation voltage). This current reaches a peak value of $I_{\mathbb{P}}$ (the Input Barrier current) when $V_{I N}=V_{\mathbb{I}}$ (the Peak Input Current Voltage Point) after which it decreases as $V_{I N}$ rises to its $V_{\mathbb{I H}}$ value. See Typical Input Characteristics.

Although not usually necessary under low fan-out conditions, the active pull-up circuit on each input guarantees that the $V_{I H}$ specification is met under all conditions where the 3357 or F2847 is driven by a TTL-like structure.

Input Buffer Stage With Active Pull-up

Typical Input Characteristics

DC Requirements $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

Symbol	Characteristic	Min	Max	Unit	Condition
$V_{\mathbb{I H}}$	Input HIGH Voltage	$V_{S S}-1$	$V_{S S}+0.3$	V	Note
V_{IL}	Input LOW Voltage	V_{GG}	+0.8	V	Note

DC Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}$ SS $=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

Symbol	Characteristic		Min	Max	Unit	Condition
V_{OH}	Output HIGH Voltage		$V_{S S}-1$		V	$\mathrm{l}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$
V_{OL}	Output LOW Voltage			0.4	V	$\mathrm{l} \mathrm{OL}=1.6 \mathrm{~mA}$
V_{11}	Input Pull-up Initiation Voltage			2.2	V	Note, $\mathrm{I}_{\mathrm{N}}<-0.12 \mathrm{~mA}$
$\mathrm{V}_{\text {IP }}$	Input Peak Current Voltage			$\mathrm{V}_{\text {SS }}-1.5$	V	Note
IIP	Input Peak Current			-1.6	mA	Note
	Input HIGH Current		-0.22		mA	Note, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}-1.0 \mathrm{~V}$
$\underline{\text { ILL }}$	Input LOW Current			-30	$\mu \mathrm{A}$	Note, $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
IDD	VDD Current	3357-1		-20	mA	Max Operating Frequency
		3357-2		-18	mA	
		F2847L		-20	mA	
		F2847		-35	mA	
IGG	VGG Current	3357-1		-15	mA	
		3357-2		-10.5	mA	
		F2847L		-12	mA	
		F2847		-15	mA	
$P_{\text {D }}$	Power Dissipation	3357-1		375	mW	
		3357-2		285	mW	
		F2847L		320	mW	
		F2847		455	mW	

Note
Applies to all inputs including Clock.

AC Requirements $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{SS}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{VDD}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

Symbol	Characteristic	3357-1		F2847-F2847L		3357-2		Unit	Condition
		Min	Max	Min	Max	Min	Max		
f	Operating Frequency	0	4.0	0	3.0	0	2.0	MHz	
tpWH	Clock Pulse Width HIGH	0.095	100	0.14	100	0.25	100	$\mu \mathrm{s}$	See Timing Diagram, Note
tPWL	Clock Pulse Width LOW	0.135		0.14		0.25		$\mu \mathrm{s}$	
tDS	Data Set-up Time	25		120		40		ns	
tDH	Data Hold Time	30		40		30		ns	
tss	Select Set-up Time	40		70		70		ns	
${ }_{\text {ts }}$	Select Hold Time	10		10		10		ns	

AC Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{SS}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

Symbol	Parameter		Min	Max	Unit	Condition
CIN	Input Capacitance			5.0	pF	All inputs
COUT	Output Capacitance			5.0	pF	
$t_{\text {ACC }}$	Clock to Output Delay Time	3357-1		215	ns	See Timing Diagram
		3357-2		260		
		F2847L		200		
		F2847		200		

Note
$t_{r}, t_{f}=$ Clock Transition Time $=0.5 \mu \mathrm{~s}$.

Timing Diagram

valid time.

\%

Description

The 3262A is a sync pulse generator that produces the necessary outputs for synchronizing television broadcast information. These outputs include Horizontal Drive, Vertical Drive, Composite Sync, Composite Blanking, and Even and Odd Fields, all of which are provided in the format specified by RS170EIA Standard Output Signals. The Color Subcarrier (3.58 MHz) and the Color Burst Flag outputs are provided for color operation. All waveforms are derived from a low-voltage two-phase clock (for color operation) or a single-phase clock (for black and white operation). All outputs except the Color Subcarrier are capable of driving a TTL load directly. The Color Subcarrier is designed to drive a capacitive load. The 3262A is a monolithic integrated circuit manufactured with Isoplanar p-channel silicon gate technology.

- COLOR OR BLACK/WHITE OPERATION
 - ALL COUNTERS SYNCHRONOUS
 - PULSE WIDTHS DERIVED DIGITALLY
 - OUTPUTS DRIVE TTL DIRECTLY (EXCEPT COLOR SUBCARRIER)
 - SEPARATE VERTICAL AND HORIZONTAL RESET

Applications

- CAMERA LOGIC REPLACEMENT
- HOME TV GAMES
- VIDEO TAPE RECORDS
- VIDEO TERMINALS

Absolute Maximum Ratings

All Inputs (Note)

$$
\mathrm{V}_{\mathrm{GG}}
$$

$$
\begin{aligned}
& -20 \mathrm{~V} \text { to }+0.3 \mathrm{~V} \\
& -20 \mathrm{~V} \text { to }+0.3 \mathrm{~V} \\
& -6 \mathrm{~V} \text { to }+0.3 \mathrm{~V} \\
& <10 \mathrm{~mA} \\
& -55^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
& 750 \mathrm{~mW}
\end{aligned}
$$

VDD and Outputs
DC Output Current (output LOW)
Storage Temperature
Operating Temperature Maximum Power Dissipation

All Voltages with respect to $V_{S S}$

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

$V_{S S}=\operatorname{Pin} 16$
$V_{D D}=\operatorname{Pin} 9$
$v_{G G}=\operatorname{Pin} 8$

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	$6 Z$	D

Block Diagram

Functional Description

The 3262A block diagram shows the counting and decoding scheme used to generate all output waveforms. The clock frequency is divided down in three steps ($\div 7, \div 65, \div 2$) and decoded to generate the horizontal drive. A signal at twice the horizontal frequency is divided by 525 to generate the vertical drive. The Color Subcarrier is generated by a $\div 4$ Johnson counter driven directly from the input clock. This is approximately a sinusodial signal. Pulses at the horizontal and vertical frequencies are combined in the composite decoder to generate the outputs Composite Sync, Composite Blanking, and Color Burst Flag.

For use in special applications, the 3262A provides a 30 Hz pulse at the start of the field (Odd Field) and again at the start of the next field (Even Field).

Separate Horizontal and Vertical Reset input pins are provided to allow the 3262A to be used in systems requiring gen-lock operation. Tie Horizontal and Vertical Resets to $V_{S S}$ when they are not used.

The C/BW input is used to select either color or black and white operation. A logic HIGH applied to C/BW will select color operation; if C/BW is LOW, the $\div 4$ and $\div 7$ counters will be bypassed for black and white operation. In addition, the only clock needed for black and white operation is Clock 1; Clock 2 should be tied to $\mathrm{V}_{\text {Ss }}$. The input frequency should be 2.0475 MHz for normal operation.

C/BW when LOW also resets the Color Subcarrier. If the LOW pulse on C/BW is within the specification for trs - Color Subcarrier Reset Pulse - the color operation for the 3262A will be unaffected.

DC Characteristics $\mathrm{V}_{\mathrm{SS}}=5.1 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	VSS -0.8		$V_{\text {SS }}+0.3$	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-5.0		$\mathrm{V}_{\text {SS }}-4.35$	V	
V_{OH}	Output HIGH Voltage	2.4			V	$\mathrm{l} \mathrm{OH}^{\prime}=-0.1 \mathrm{~mA}$
V_{OL}	Output LOW Voltage			0.4	V	$\mathrm{lOL}=1.6 \mathrm{~mA}$
$\mathrm{V}_{\text {IHC }}$	Clock Input HIGH Voltage	VSS -1.0		$V_{S S}+0.3$	V	
VILC	Clock Input LOW Voltage	$-5.0 \mathrm{~V}$		$V_{S S}-4.35$	V	
V SUBCARRIER	Subcarrier Output Voltage Approximate Sine wave	0.5			$V_{\text {pk-pk }}$	$C=10 \mathrm{pF}$ to $V_{D D}$ $\mathrm{R}=10 \mathrm{k} \Omega$ to V_{DD}, Note 1
IN	Input Leakage Current		1.0		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
IDD	VDD Current		14		mA	
IGG	V_{GG} Current		40		mA	

AC Characteristics $V_{S S}=5.1 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, 1 \mathrm{TTL} \operatorname{Load}(1.6 \mathrm{~mA})$, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (See Timing Diagrams)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
f	Input Frequency Color	13.3	14.31818	15.4	MHz	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$
f_{1}	Input Frequency Black/White	1.5	2.0475	2.2	MHz	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$
tPW1	B/W Clock LOW Time	200	215	230	ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$
t-PW1	B/W Clock HIGH Time	200	215		ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$
tPW2	Color Clock LOW Time	30	35	40	ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$
t- $\overline{\text { PW } 2}$	Color Clock HIGH Time	30	35		ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$
tov	Color Clock Overlap Time			5	ns	
tHR PW	Horizontal Reset Pulse Width	200			ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$
tVR PW	Vertical Reset Pulse Width	200			ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{tf} \leq 20 \mathrm{~ns}$, Note 2
tCSR	Color Subcarrier Reset Pulse Width	130		200	ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$

Notes

1. Subcarrier Output should be dc blocked with $.01 \mu \mathrm{~F}$ before loading.
2. If tHR occurs simultaneously;
if $t_{H R}$ does not occur, $t_{V R}=400 \mathrm{~ns}$ min.

RS170EIA Timing Diagram

RS170EIA Timing Detail

Clock Timing Diagrams

a) Black and White Clock

b) Color Clocks

c) Color Subcarrier Timing and Reset Detail

*Maximum subcarrier amplitude attained within 8 color clock periods following rising edge of C/BW.

Clock Generator Circuitry

a) Color Clocks

b) Black and White Clock

Applications

TV Camera System

MOS Memory Products

Description

The 3262B is a sync pulse generator that produces the necessary outputs for synchronizing television broadcast information. These outputs include Horizontal Drive, Vertical Drive, Composite Sync, Composite Blanking, and Even and Odd Fields, all of which are provided in the format specified by RS 170EIA Standard Output Signals. The Color Subcarrier (3.58 MHz) and the Color Burst Flag outputs are provided for color operation. All waveforms are derived from a low-voltage two-phase clock (for color operation) or a single-phase clock (for black and white operation). All outputs except the Color Subcarrier are capable of driving a TTL load directly. The Color Subcarrier is designed to drive a capacitive load. The 3262 B is a monolithic integrated circuit manufactured with Isoplanar p-channel silicon gate technology.

- COLOR OR BLACK WHITE OPERATION
 - ALL COUNTERS SYNCHRONOUS
 - PULSE WIDTHS DERIVED DIGITALLY
 - OUTPUTS DRIVE TTL DIRECTLY (EXCEPT COLOR SUBCARRIER)
 - IDEAL FOR GENERATOR LOCK OPERATIONSYNCHRONIZES TO COMPOSITE SYNC INPUT

Applications

Absolute Maximum Ratings	
All Inputs (Note)	-20 V to + 0.3 V
VGG	-20 V to +0.3V
$V_{D D}$ and Outputs	-6 V to +0.3 V
DC Output Current (output LOW)	$<10 \mathrm{~mA}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Maximum Power Dissipation	750 mW

Note

All Voltages with respect to V_{SS}
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Diagram

$V_{S S}=\operatorname{Pin} 16$
$V_{D D}=P$ in 9
$V_{G G}=P$ in 8

Connection Diagram

16-Pin DIP

(Top View)
NC $=$ No Connection

Package	Outline	Order Code
Ceramic DIP	$6 Z$	D

3262B

Block Diagram

Functional Description

The 3262B block diagram shows the counting and decoding scheme used to generate all output waveforms. The clock frequency is divided down in three steps $(\div 7, \div 65, \div 2)$ and decoded to generate the horizontal drive. A signal at twice the horizontal frequency is divided by 525 to generate the vertical drive. The Color Subcarrier is generated by a $\div 4$ Johnson counter driven directly from the input clock. This is approximately a sinusoidal signal. Pulses at the horizontal and vertical frequencies are combined in the composite decoder to generate the outputs Composite Sync, Composite Blanking, and Color Burst Flag.

For use in special applications, the 3262B provides a 30 Hz pulse at the start of the field (Odd Field) and again at the start of the next field (Even Field).

The Composite Sync input is provided for gen-lock operation. The detection circuit shown in the block diagram detects the first equalizing pulse in the Odd

Field and, as a result, generates a reset. This causes the Composite Sync output and Composite Sync input to synchronize such that Composite Sync output occurs before Composite Sync input (see Timing Diagrams). For gen-lock application the input clock must be locked to master generator clock in order to provide stable operation.

The C/BW input is used to select either color or black and white operation. A logic HIGH applied to C/BW will select color operation; if C/BW is LOW, the $\div 4$ and $\div 7$ counters will be bypassed for black and white operation. In addition, the only clock needed for black and white operation is Clock 1; Clock 2 should be tied to V_{Ss}. The input frequency should be 2.0475 MHz for normal operation.

C/BW when LOW also resets the Color Subcarrier. If the LOW pulse on C/BW is within the specification for trs-Color Subcarrier Reset Pulse-the color operation for the 3262B will be unaffected.

DC Characteristics $\mathrm{V}_{\mathrm{SS}}=5.1 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\text {SS }}-1.0$		$V_{\text {SS }}-0.3$	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-5.0		$V_{\text {SS }}-4.35$	V	
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	2.4			V	$\mathrm{IOH}=-0.1 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.4	V	$\mathrm{l} \mathrm{OL}=1.6 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{IHC}}$	Clock Input HIGH Voltage	VSS - 1.0		$V_{\text {SS }}+0.3$	V	
VILC	Clock Input LOW Voltage	-5.0 V		$\mathrm{V}_{\text {SS }}-4.35$	V	
V SUBCARRIER	Subcarrier Output Voltage Approximate Sine Wave	0.5			$V_{\text {pk-pk }}$	$\begin{aligned} & C=10 \mathrm{pF} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{R}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \text { Note } 1 \end{aligned}$
IIN	Input Leakage Current		1.0		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
IDD	$V_{\text {DD }}$ Current		14		mA	
IGG	V_{GG} Current		40		mA	

AC Characteristics $\mathrm{V}_{\mathrm{SS}}=5.1 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, 1 \mathrm{TTL}$ Load (1.6 mA), $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (See Timing Diagrams)

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
f	Input Frequency Color	13.3	14.31818	15.4	MHz	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$
f_{1}	Input Frequency Black/White	1.5	2.0475	2.2	MHz	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$
tpW1	B/W Clock LOW Time	200	215	230	ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$
t $\overline{P W} 1$	B/W Clock HIGH Time	200	215		ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$
tPW2	Color Clock LOW Time	30	35	40	ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$
t- ${ }^{\text {PW2 }}$	Color Clock HIGH Time	30	35		ns	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}$
tov	Color Clock Overlap Time		-	5	ns	
	Time by which Composite Sync		2.0		$\mu \mathrm{s}$	Black / White, Note 2
${ }^{\text {t }} \mathrm{CA}$	Output precedes Composite Sync Input		500		ns	Color, Note 2
t_{s}	Synchronization Time for Composite Sync Input			34	ms	Note 3
tCSR	Color Subcarrier Reset Pulse	130		200	ns	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$

Notes

1. Subcarrier output should be dc blocked with $0.01 \mu \mathrm{~F}$ before loading.
2. ${ }^{t_{C A}}$ is derived digitally from the input clock. ${ }^{\mathrm{C}} \mathrm{CA}=4$ black and white clock periods (7 color clock periods) + skew between Composite Sync Input and negative clock transition +250 ns propagation delay.
3. One full frame is the maximum. This synchronizes as a result of the region detected in Composite Sync input as shown in RS 170EIA Timing Details. The minimum time is the width of the region.

RS170EIA Timing Diagram

RS170EIA Timing Details

Clock Timing Diagrams

a) Black and White Clock

b) Color Clocks

c) Color Subcarrier Timing and Reset Detail

*Maximum subcarrier amplitude attained within 8 color clock periods following rising edge of C/BW.

Clock Generator Circuitry

(a) Color Clock

(b) Black and White Clock

Generator-Lock Operation

Note
Due to propagation delay associated with distance, Composite Sync at (3) is delayed from (1). Since Composite Sync Out from the Slave camera is advanced by ${ }^{\text {C CA }}$ from (3), the RC network can be adjusted so the (1) and (2) are exactly in sync.

3708
 8-Channel Multiplex Switch

MOS Memory Products

Description

The 3708 is an 8 -channel multiplex switch with an Output Enable control and 1-of-8 decoder included on-chip. It is manufactured using \mathbf{p}-channel enhancement mode silicon gate technology. The logic input lines are npn bipolar compatible and can be used directly with TTL 5.0 V logic levels with no level shifting interface required. This device is intended for use in a/d converters, multiplexing in analog or digital data transmission systems, and other airborne or ground instrumentation signal routing applications.

- 1-of-8 DECODER ON-CHIP
- HIGH OFF-RESISTANCE TO ON-RESISTANCE RATIO
- OUTPUT ENABLE CONTROL
- LOW LEAKAGE CURRENT
- ZERO OFFSET VOLTAGE
- FAST SWITCHING TIME-1.5 μ S (MAX)
- TTL COMPATIBLE INPUT LOGIC LEVELS

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address Inputs
$\mathrm{S}_{1}-\mathrm{S}_{8}$	Switch Inputs
OE	Output Enable
Q	Data Output

Absolute Maximum Ratings	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Positive Voltage on any Pin	+0.3 V
Negative Voltage on Digital and	
Analog Input Pins	-30 V
Negative Voltage on Digital and	
Analog Output Pins Negative Voltage on VDD Total Power Dissipation in Package $\left(T_{A}=25^{\circ} \mathrm{C}\right)$	-30 V
	200 mW

Voltage ratings are all referenced to pins 2 and 4 ($V_{S S}$).
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress raany other conditions above those indicated in the operational sections of this specification is not implied. Exposure. to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

$V_{S S}=$ Pins 2 and 4
$V_{D D}=P$ in 13

Connection Diagram

 16-Pin DIP
(Top View)

Package	Outline	Order Code
Ceramic DIP	$6 Z$	D

Block Diagram

Truth Table

Logic Inputs				Channel
A_{0}	A_{1}	A_{2}	OE	ON
L	L	L	H	S_{1}
H	L	L	H	S_{2}
L	H	L	H	S_{3}
H	H	L	H	S_{4}
L	L	H	H	S_{5}
H	L	H	H	S_{6}
L	H	H	H	S_{7}
H	H	H	H	S_{8}
X	X	X	L	OFF

- Both $V_{S S}$ lines are internally connected; either one or both may be used.
$D C$ and $A C$ Characteristics $V_{O U T}=-5.0 \mathrm{~V}$ to $+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-19 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$,
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	$\mathrm{V}_{S S}-1.5$		$\mathrm{V}_{\text {SS }}$	V	Note
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	VDD		0.8	V	Note
IIN	Logic Input Leakage Current			10	$\mu \mathrm{A}$	$V_{\text {SS }}-V_{\text {LOGIC-IN }}=15 \mathrm{~V}$
ILD	Data Input Leakage Current			500	nA	$\mathrm{V}_{S S}-\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$
IOUT	Output Leakage Current			500	nA	$\mathrm{V}_{\text {SS }}-\mathrm{V}_{\text {OUT }}=15 \mathrm{~V}$
Ron	Data Channel "ON" Resistance			450	Ω	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=-5.0 \mathrm{~V} \\ & \text { IOUT }=-100 \mu \mathrm{~A} \end{aligned}$
PD	Power Dissipation			175	mW	$\begin{aligned} & V_{\mathrm{DD}}=-26 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} @ 25^{\circ} \mathrm{C} \end{aligned}$
ts	Channel Switching Time			1.5	$\mu \mathrm{s}$	See Test Circuit

Note
When driven by TTL elements, avoid excessive dc loading of TTL elements to insure $\mathbf{3 7 0 8}$ logic levels under maximum fanout conditions. Analog input signal swing should not exceed $V_{S S}\left(=V_{C C}\right)$.

Switching Time Test Circuit

Application

Typical Control Circuit

ANY TTL OR DTL INTEGRATED CIRCUIT

Note
*Optional Components - not needed if TTL fan-out is limited to 1.

MOS Memory Technology Overview

Serial Memory Data Sheets
Special Function Data Sheets 6

Ordering Information and Package Outlines

Extended Temperature Range Supplement

MOS Memory Products

Description

The 2102 family consists of 1024 -word by 1 -bit static Random Access read/write Memories (RAM) that require a single 5 V supply, have fully TTL-compatible inputs and output, and require no clocking or refresh. Chip Select (CS) permits a 3 -state output allowing the outputs to be wired-OR.

The 2102 and 2102 L are manufactured using the n -channel Isoplanar process and are available in a 16-pin dual in-line package or flatpak.

- FAST ACCESS-250 ns
- SINGLE +5 V SUPPLY
- TTL-COMPATIBLE INPUTS AND OUTPUT
- TOTALLY STATIC-NO CLOCKS OR REFRESH
- 3-STATE OUTPUT
- LOW POWER (2102L)
- FULLY EXPANDABLE
- FULLY DECODED
- 16-PIN DUAL IN-LINE PACKAGE
- TWO TEMPERATURE RANGES

Pin Names

$A_{0}-A_{9}$	Address Inputs
$D^{D} \bar{W}$	Data Input
R / \bar{W}	Read $/$ Write
$\overline{C S}$	Chip Select (active LOW)
Q	Data Output

Absolute Maximum Ratings

Any Pin with Respect to V_{ss}
Storage Temperature
Operating Temperature

$$
\begin{aligned}
& -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
& -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& \text { DL: }-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& \text { DM: }-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
$$

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliabiliy.

Logic Symbol

Connection Diagram 16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	$6 Z$	D
Flatpak	II	F

Note

The Flatpak has the same Pin number to function correspondence as the DIP.

Extended Temperature Range Supplement

DC Requirements Over full operating temperature range unless otherwise specified

Symbol	Characteristic, Note		2102	02L DL/DM	Unit	Condition
			C			
			Min	Max		
V_{IH}	Input HIGH Voltage	H,F,1	2.0	$V_{D D}$	V	
		2	2.2	VDD		
$V_{\text {IL }}$	Input LOW Voltage	H,F, 1	-0.5	0.8	V	
		2	-0.5	0.65		
VDD	Power Supply Voltage		4.5	5.5	V	

DC Characteristics $V_{D D}=5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$,
over full operating temperature range unless otherwise specified

Symbol	Characteristic	2102 DL/DM, 2102 L DL/DM		Unit	Condition
		Min	Max		
V_{OH}	Output HIGH Voltage	2.2		V	$\mathrm{IOH}^{\prime}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage		0.45	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
IN	Input Leakage Current		10		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
IOH	Output HIGH Leakage Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OH(Min }} \\ & \mathrm{CS}=\mathrm{V}_{\text {IH }}(\text { Min }) \end{aligned}$
10 L	Output LOW Leakage Current		-50	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {OUT }}=V_{\text {OL (Max }} \\ & C S=V_{\text {IH }}(\text { Min }) \end{aligned}$
IDD	Power Supply Current 2102 2102L		$\begin{aligned} & 60 \\ & 30 \end{aligned}$	mA	Inputs $=5.5 \mathrm{~V}$ DOUT open, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$

AC Requirements Over full operating temperature range unless otherwise specified

Symbol	Characteristic	$\begin{aligned} & \text { 2102H } \\ & \text { 2 102LH } \\ & \text { DL/DM } \end{aligned}$	$\begin{aligned} & 2102 F \\ & 2102 L F \\ & D L / D M \end{aligned}$	$\begin{aligned} & 21021 \\ & 2102 \mathrm{~L} 1 \\ & \mathrm{DL} / \mathrm{DM} \end{aligned}$	$\begin{aligned} & 21022 \\ & 2102 L 2 \\ & \text { DL/DM } \end{aligned}$	Unit	Condition
		Min	Min	Min	Min		
tcyc	Read or Write Cycle Time	250	350	450	650	ns	$v_{S S}=0 \mathrm{~V}$ See DC Requirements for Conditions on VDD
${ }_{\text {taw }}$	Address to Write Time	20	20	20	200	ns	
twp	Write Pulse Width	170	170	200	350	ns	
tWR	Write Recovery Time	0	0	0	50	ns	
tDS	Data Set-up Time	170	170	200	350	ns	
${ }^{\text {t }}$ DH	Data Hold Time	0	0	0	20	ns	
tcw	Chip Select to Write Time	170	170	200	400	ns	
twc	Write to Chip Select Time	0	0	0	50	ns	

AC Characteristics Over full operating temperature range unless otherwise specified

Symbol	Characteristic	$\begin{aligned} & \text { 2102H } \\ & \text { 2102LH } \\ & \text { DL/DM } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { 2102F } \\ \text { 2102LF } \\ \text { DL/DM } \\ \hline \end{array}$		$\begin{aligned} & 21021 \\ & 2102 L 1 \\ & D L / D M \end{aligned}$		$\begin{array}{\|l\|} \hline 21022 \\ 2 \text { 102L2 } \\ \text { DL/DM } \\ \hline \end{array}$		Unit	Condition
		Min	Max	Min	Max	Min	Max	Min	Max		
${ }_{t}$	Read Access Time		250		350		450		650	ns	$v_{S S}=0 \mathrm{~V}$ See DC Requirements for Conditions on VDD
tco	Chip Select to Output Time		130		170		200		400	ns	
${ }^{\text {toh }} 1$	Data Valid after Address	40		50		50		50		ns	
tOH_{2}	Previous Data Valid after Chip Deselect	0		0		0		0		ns	
CiN	Input Capacitance		5		5		5		5	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
COUT	Output Capacitance		10		10		10		10	pF	

For block diagram, functional description and timing diagrams refer to standard 2102 data sheet, Section 3.

Extended Temperature Range Supplement

MOS Memory Products

Description

The F2114 is a 4096-bit static Random Access Memory (RAM) organized as 1024 words of four bits each. Since the operation of the F2114 is entirely static, there is no clocking or refreshing required. It operates from a single +5 V supply and is directly a TTL compatible at all inputs and outputs including the four bidirectional data I/O pins.

It is designed for memory applications in which static operation, large bit-capacity, and simple interfacing are important design considerations.

The F2114 is manufactured using Fairchild's n-channel silicon gate Isoplanar process. The innovative use of polysilicon resistors in the static memory cell permits a high bit packing density and insures low-power characteristics. It is available in a standard ceramic 18-pin dual in-line package.

- 1024×4-BIT ORGANIZATION
- SINGLE +5 V SUPPLY
- COMPLETELY STATIC-NO CLOCKS OR REFRESH
- TOTALLY TTL COMPATIBLE
- COMMON DATA I/O PINS WITH 3-STATE CAPABILITY
- IDENTICAL CYCLE AND ACCESS TIMES
- LOW POWER (2114L)

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address Inputs
CS	Chip Select (Active LOW)
WE	Write Enable (Active LOW)
$\mathrm{DQ} Q_{1}-\mathrm{DQ}_{4}$	Data Input/Output
VCC	+5 V Power Supply
GND	Ground

Absolute Maximum Ratings

Voltage at Any Pin with Respect

to GND	-0.5 V to +7.0 V
Operating Temperature (Ambient)	-55 to $+125^{\circ} \mathrm{C}$
Storage Temperature (Ambient)	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	1 W

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

Logic Symbol

Connection Diagram 18-Pin DIP

(Top View)

	Outline	Order Code
Ceramic DIP	8D	D

Extended Temperature Range Supplement

DC Electrical Requirements and Characteristics $T_{A}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$, all voltages are with respect to ground, Note 1

Symbol	Characteristic	Min	Typ	Max	Unit	Condition
V_{IH}	Input HIGH Voltage	2.0		$\mathrm{V}_{\text {cc }}$	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-0.5		0.8	V	
V_{OH}	Output HIGH Voltage	2.4		VCC	V	IOUT $=-1.0 \mathrm{~mA}$
V_{OL}	Output LOW Voltage	0		0.4	V	IOUT $=2.1 \mathrm{~mA}$
Ios	Output Short-Circuit Current ${ }^{2}$			65	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
	Average VCC Supply Current F2114L2, F2114L3, F2114L			70	mA	$\begin{aligned} & \mathrm{V}_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \end{aligned}$
ICC	Average VCC Supply Current F2114-2, F2114-3, F2114			100	mA	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$, $1 / O$ current $=0 \mathrm{~mA}$
IN	Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.5 V
IDQ	1/O Leakage Current	-10		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{CIN}_{\text {IN }}$	Input Capacitance			5.0	pF	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$
$C_{\text {DQ }}$	I/O Capacitance			5.0	pF	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz} \\ & \mathrm{~V}_{1 / \mathrm{O}}=0 \mathrm{~V} \end{aligned}$

AC Electrical Requirements and Characteristics $T_{A}=-55$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$, Notes 1 and 3

Symbol	Characteristic	F2114-2/L-2		F2114-3/L-3		F2114/L		Unit	Note
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{CYC}}$	Read or Write Cycle Time	200		300		450		ns	
tacc	Read Access Time		200		300		450	ns	
tco	$\overline{\mathrm{CS}}$ LOW to Output Valid Delay		70		100		100	ns	
tcs t	$\overline{\mathrm{CS}}$ LOW to Output Active Delay	20		20		20		ns	
${ }^{\text {tODH }}$	Output Data Hold Time after Address	50		50		50		ns	
tofF	Output OFF Delay from $\overline{\mathrm{CS}}$	0	60	0	80	0	100	ns	
taw	Address to Write Set-up Time	0		0		0		ns	
twp	WE Pulse Width	120		150		200		ns	
tWR	Write Recovery Time	0		0		0		ns	
tDS	Input Data Set-up Time	120		150		200		ns	
${ }_{\text {t }}$ D	Input Data Hold Time	0		0		0		ns	

Notes

1. Test Note: The F2114 employs a self starting oscillator and a charge pump which require a start-up time of $500 \mu \mathrm{~s}$ after $V_{C C}$ reaches at least 4.75 V .
2. Duration not to exceed 30 seconds.
3. AC Characteristic Test Conditions:

Input Levels	0.8 to 2.0 V
Input Rise and Fall Times	10 ns
Input and Output Timing Levels	1.5 V
Output Load	1 TTL Gate, $\mathrm{CL}=100 \mathrm{pF}$

For block diagram, functional description and timing diagrams refer to standard 2114 data sheet, Section 3.

Extended Temperature Range Supplement

3341/3341A 64×4 FIFO Serial Memory
MOS Memory Products

Description

The 3341 or 3341 A is a 64 -word $\times 4$-bit First-In First-Out (FIFO) serial memory. Inputs and the outputs are completely independent (no common clocks) making the $3341 / 3341 \mathrm{~A}$ ideal for asynchronous buffer applications.

Special on-chip input pull-up circuits and bipolar-compatible output buffers provide direct bipolar interfacing with no external components required. Control signals are provided for both vertical and horizontal cascading.

The 3341 and 3341A are manufactured using the p -channel Isoplanar silicon gate process and are available in both ceramic and plastic packages.

- 1 MHz (3341 A) AND 700 kHz (3341) DATA RATES
- INDEPENDENT ASYNCHRONOUS INPUTS AND OUTPUTS
- FULLY TTL COMPATIBLE
- EXPANDABLE IN EITHER DIRECTION
- ACTIVE PULL-UP ON INPUTS
- TWO TEMPERATURE RANGES
- 16-PIN DUAL IN-LINE PACKAGE

Pin Names

IR	Input Ready
SI	Shift In
$D_{0}-D_{3}$	Data Inputs
$\overline{M R}$	Master Reset
OR	Output Ready
SO	Shift Out
$Q_{0}-Q_{3}$	Data Outputs
$V_{S S}$	$+5 V$ Power Supply
$V_{\text {DD }}$	$0 V$ Power Supply
$V_{G G}$	$-12 V$ Power Supply

Absolute Maximum Ratings

Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $\mathrm{DL}:-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DM: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on All Pins Except
VDD with Respect to $V_{S S}-20 \mathrm{~V}$ to +0.3 V
Voltage on $V_{D D} \quad-7.0 \mathrm{~V}$ to +0.3 V

Stresses greater than those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

$V_{S S}=\operatorname{Pin} 16$
$V_{D D}=P$ in 8
$V_{G G}=P$ in 1

Connection Diagram

 16-Pin DIP
(Top View)

Package	Outline	Order Code
Ceramic DIP	$6 Z$	D

DC Characteristics $V_{S S}=+5 V \pm 5 \%, V_{G G}=-12 \mathrm{~V} \pm 5 \%, V_{D D}=0 \mathrm{~V}$
over full operating temperature range unless otherwise indicated

Symbol	Characteristic	F3341DL/DM, 3341 ADL/DM			Unit	Condition
		Min	Typ	Max		
V_{IH}	Input HIGH Voltage	V ${ }_{\text {SS }}$-1.0			V	Notes 1 and 2
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V	Note 1
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{ss}}-1.0$			V	$1 \mathrm{OH}=-0.3 \mathrm{~mA}$
VOL	Output LOW Voltage			0.4	V	$\mathrm{IOL}=1.6 \mathrm{~mA}$
$V_{\text {II }}$	Input Pull-up Initiation Voltage			2.0	V	$\mathrm{V}_{\mathrm{SS}}=4.75 \mathrm{~V}$
				2.2	V	$\mathrm{V}_{\mathrm{SS}}=5.25 \mathrm{~V}$
$V_{\text {IP }}$	Peak Input Current Voltage Point			$V_{S S}-1.5$	V	
IIH	Input HIGH Current	-200			$\mu \mathrm{A}$	Note 1, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{SS}}-1.0 \mathrm{~V}$
ILL	Input Leakage Current			-50	$\mu \mathrm{A}$	Note 1, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
IIP	Input Barrier Current			-2.0	mA	Note 1
IGG	VGG Current			-16	mA	
IDD	VDD Current			-60	mA	

Notes

1. Inputs include $D_{0}-D_{3}$. Master Reset, Shift In, and Shift Out.
2. Internal pull-up circuits are provided on all inputs to insure proper HIGH level.
3. Control signals include Input Ready, Shift In, Output Ready, and Shift Out.
4. This parameter defines total time from the time data is loaded into the first word location to the time it is available at $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ with the FIFO initially empty. Conversely, t_{BT} also defines the time required for an empty space to propagate from the last word location back to the first word location. When the FIFO is full, this is the time from the HIGH-to-LOW transition of OR to the LOW-to-HIGH transition of IR.
5. 1 TTL load +20 pF .
6. The $\overline{M R}$ input overrides all other control functions. It resets the control register and the input and output control logic while disabling any SI or SO inputs.
7. $t_{I R H}$ is referenced to the positive going edge of IR or $S I$, whichever occurs later.
8. $t_{I R L}$ is referenced to the negative going edge of IR or $S I$, whichever occurs later.
9. ${ }^{t} D D$ is referenced to the positive going edge of IR or SI , whichever occurs later.
10. tovH is referenced to the positive going edge of IR or SI, whichever occurs later.
11. t_{OVL} is referenced to the negative going edge of IR or SI whichever occurs later.
12. Data must be stable for $t_{D H}$ or $t_{I R H}$, whichever is shorter.
13. $t^{\prime} \mathrm{ORH}$ is referenced to the positive going edge of OR or SO, whichever occurs later.
14. $t_{O R L}$ is referenced to the negative going edge of OR or SO, whichever occurs later.
15. tDV is referenced to the negative going edge of OR or SO, whichever occurs later.
16. t_{OVH} is referenced to the positive going edge of IR or SI, whichever occurs later.
17. toVL is referenced to the negative going edge of IR or SI , whichever occurs later.

Extended Temperature

AC Characteristics $V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{D D}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$ over full operating temperature range unless otherwise indicated

Symbol	Characteristic	3341A DL/DM			3341 DL/DM			Unit	Condition
		Min	Typ	Max	Min	Typ	Max		
tIRH	Input Ready HIGH Time	80		400	100	300	550	ns	Notes 7, 12
tIRL	Input Ready LOW Time	100		550	138	300	550	ns	Note 8
toVm	Control Overlap HIGH Time	80			100			ns	Notes 3, 16
toVL	Control Overlap LOW Time	80			100			ns	Notes 3, 17
tDH	Data Input Stable Time	200			400			ns	
tDD	Data Input Delay Time			0			25	ns	Note 9
torn	Output Ready HIGH Time	80		450	100	300	500	ns	Note 13
torL	Output Ready LOW Time	80		550	170	450	850	ns	Note 14
$t_{B T}$	Data Bubble-through Time			16			32	$\mu \mathrm{s}$	Note 4
tDV	Data Valid After SO or OR	75			75			ns	Note 15
$t_{\text {MRW }}$	Master Reset Pulse Width	400			400			ns	Note 6
tDA	Data Output Available Time	0			0			ns	
$\mathrm{CIN}^{\text {N }}$	Input Capacitance of Data and Control Lines			7.0			7.0	pF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$
CMR	Input Capacitance of MR			7.0			15	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{MR}}=\mathrm{V}_{\mathrm{SS}}$
f	Operating Frequency			1000			700	kHz	Note 5

Notes on previous page
For block diagram, functional description, timing diagrams and applications refer to standard 3341/334 1A data sheet, Section 5.

Extended Temperature Range Supplement

Description

The 3351 is a First-In First-Out (FIFO) memory used in data rate buffering applications. The 3351 has a capacity of 409 -bit words. The words are accepted at the input, automatically shifted towards the output, and removed at any rate in the same sequence in which they were entered.

The 3351 has status indicators on both the input and output to signal an available empty input or a valid data word at the output. It also has separate input and output enable lines, in addition to a master reset line. A unique input stage interfaces to TTL without external components. The 3351 is manufactured using the p-channel Isoplanar silicon gate process with ion-implantation.

```
- 2 MHz (3351-1), 1.5 MHz (3351-3), AND
    1 MHz (3351-2) DATA RATES
- INDEPENDENT ASYNCHRONOUS INPUTS
    AND OUTPUTS
- FULLY TTL COMPATIBLE
- 3-STATE OUTPUTS
- INPUT AND OUTPUT ENABLE CONTROLS
- EXPANDABLE IN EITHER DIRECTION
- STATUS INDICATORS ON INPUT AND OUTPUT
- 28-PIN CERAMIC DUAL IN-LINE PACKAGE
- TWO TEMPERATURE RANGES
```


Pin Names

$\mathrm{D}_{0}-\mathrm{D}_{8}$	Data Inputs
$\overline{M R}$	Master Reset
$\overline{\mathrm{IE}}$	Input Enable
IR	Input Ready
SI	Shift In
$\overline{S O}$	Shift Out
$\overline{\mathrm{OE}}$	Output Enable
OR	Output Ready
$Q_{0-Q_{8}}$	Data Outputs

Absolute Maximum Ratings

	-20 V to +0.3 V
$\mathrm{~V}_{\text {GG }}$ and Inputs	-7.0 V to +0.3 V
$\mathrm{~V}_{\text {DD }}$ and Outputs	5.0 mA
Output Sink Current	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{DL}:-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{DM}:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Note

All Voltages with respect to $V_{\text {SS }}$.
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

$V_{\text {SS }}=\operatorname{Pin} 28$
$V_{D D}=\operatorname{Pin} 14$
$V_{G G}=\operatorname{Pin} 1$

Connection Diagram

28-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	8 E	D

DC Requirements $V_{S S}=5.0 \vee \pm 5 \%, V_{D D}=0 V, V_{G G}=-12 V \pm 5 \%$,
over full operating temperature range unless otherwise specified.

Symbol	Characteristic	3351-1DL/DM		3351-2DL/DM		3351-3DL/DM		Unit	Condition
		Min	Max	Min	Max	Min	Max		
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{S S}-1.0$	$\mathrm{V}_{\text {ss }}+0.3$	VSS-1.0	VSs+0.3	$\mathrm{VSS}^{-1.0}$	$v_{s s}+0.3$	V	Note
VIL	Input LOW Voltage	V_{GG}	0.8	V_{GG}	0.8	V_{GG}	0.8	v	Note

DC Characteristics $V_{S S}=5.0 \mathrm{~V} \pm 5 \%, V_{D D}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$

Symbol	Characteristic	3351-1DL/DM		3351-2DL/DM		3351-3DL/DM		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\mathrm{V}_{\mathrm{OH} 1}$	Output HIGH Voltage	$\mathrm{V}_{\mathrm{SS}}-0.5$		$V_{S S}-0.5$		$V_{S S}-0.5$		V	$\mathrm{l}_{\mathrm{OH}}=50 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OH} 2}$	Output HIGH Voltage	2.4		2.4		2.4		V	$\mathrm{IOH}^{\prime}=-0.2 \mathrm{~mA}$
VOL	Output LOW Voltage		0.4		0.4		0.4	V	$\mathrm{lOL}=1.6 \mathrm{~mA}$
$\mathrm{V}_{\text {II }}$	Pull-up Initiation Voltage		2.2		2.2		2.2	V	Note $\mathrm{I}_{\mathrm{N}}=-0.12 \mathrm{~mA}$
$V_{\text {IP }}$	Peak Current Voltage		$V_{S S}-1.5$		$V_{S S}-1.5$		$V_{S S}-1.5$	V	Note
IIP	Peak Current		-2.0		-2.0		-2.0	mA	Note
1 H	Input HIGH Current	-0.22		-0.22		-0.22		mA	Note $V_{I N}=V_{S S}-1.0 \mathrm{~V}$
ILL	Input LOW Current		-70		-70		-70	$\mu \mathrm{A}$	Note $V_{I N}=0.4 \mathrm{~V}$
IDD	VDD Current		65		50		50	mA	
$I_{G G}$	VGG Current		-12		-10		-10	mA	

Note
Includes all Data inputs, $\overline{\mathrm{IE}}, \overline{\mathrm{OE}}, \mathrm{SI}, \overline{\mathrm{SO}}$ and $\overline{\mathrm{MR}}$. (See Active
Pull-up description.)

Extended Temperature Range Supplement

AC Requirements $\mathrm{V}_{\mathrm{SS}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$, over full operating temperature range unless otherwise specified.

Symbol	Characteristic	3351-1DL/DM		3351-2DL/DM		3351-3DL/DM		Unit	Condition
		Min	Max	Min	Max	Min	Max		
tIDS	$\overline{\text { IE }}$ Disable Set-Up Time	20		20		20		ns	
tidH	IE Disable Hold Time	20		20		20		ns	
ties	IE Enable Set-Up Time	0		0		0		ns	
tien	$\overline{\text { IE Enable }}$ Hold Time	0		0		0		ns	
$t_{\text {DS }}$	Input Data Set-Up Time	0		0		0		ns	
tDH	Input Data Hold Time	220		440		300		ns	
${ }_{\text {tSIH }}$	SI HIGH Time	220		440		300		ns	
${ }^{\text {tSIL }}$	SI LOW Time	280		560		370		ns	
tods	$\overline{\text { OE Disable }}$ Set-Up Time	20		20		20		ns	
tODH	$\overline{O E}$ Disable Hold Time	20		20		20		ns	
toes	$\overline{O E}$ Enable Set-Up Time	0		0		0		ns	
toen	$\overline{O E}$ Enable Hold Time	0		0		0		ns	
tSOL	$\begin{aligned} & \overline{\text { SO LOW }} \\ & \text { Time } \end{aligned}$	200		400		260		ns	
$\mathrm{tSOH}^{\text {S }}$	$\overline{\mathrm{SO}} \mathrm{HIGH}$ Time	300		600		450		ns	
$t_{\text {RPW }}$	$\overline{\text { MR Pulse }}$ Width	100		200		150		ns	
$t_{\text {RS }}$	$\overline{\mathrm{MR}}$ to SI Set-Up Time	0		0		0		ns	

Notes

1. All input t_{r} and $t_{f}: 10 \mathrm{~ns}$.
2. All time measurements referenced to 50% level.

AC Characteristics $\mathrm{V}_{\mathrm{SS}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$, over full operating temperature range unless otherwise specified. See Notes 3, 4 and Output Loading

Symbol	Characteristic	3351-1DL/DM		3351-2DL/DM		3351-3DL/DM		Unit	Condition
		Min	Max	Min	Max	Min	Max		
${ }^{\text {t }}$ SI-IRHL	SI to IR Delay Time		220		440		300	ns	Note 1
${ }^{\text {S }}$ I-IRLH	SI to IR Delay Time		280		560		370	ns	
tso-ORLL	$\overline{\mathrm{SO}}$ to OR Delay Time		200		400		300	ns	Note 1
tso-ORHH	$\overline{\mathrm{SO}}$ to OR Delay Time		300		600		410	ns	
$\mathrm{t}_{\text {MR }}$ IR	$\overline{M R}$ to IR Delay Time		300		480		480	ns	
$t_{\text {MR }}{ }^{\text {OR }}$	$\overline{\mathrm{MR}}$ to OR Delay Time		240		480		480	ns	
$t_{B T}$	Bubble-Through Time		9.0		15		15	$\mu \mathrm{S}$	Note 2
t_{E}	Output Enable Time		300		600		480	ns	
t_{D}	Output Disable Time		300		600		480	ns	
f	Operating Frequency		2.0		1.0		1.5	MHz	

Notes

1. HL means positive-going edge of first signal to negative-going edge of second signal, etc.
2. Forward and reverse.
3. All input t_{r} and $t_{f}: 10 \mathrm{~ns}$.
4. All time measurements referenced to 50% level.

Output Loading

For block diagram, functional description, timing diagrams and applications information refer to standard 3351 data sheet, Section 5.

Extended Temperature Range Supplement

3357/F2847
 Quad 80-Bit Static Shift Register

MOS Memory Products

Description

The 3357 and F2847 are single phase quad 80 -bit static shift registers. Both have an on-chip clock generator that is driven by a single phase TTL clock. A multiplexer is provided to allow data to be entered from the input or recirculated from the output. A unique on-chip input pull-up circuit allows interfacing directly from TTL to all inputs without external components.

The 3357 and F2847 are manufactured with the p-channel Isoplanar process and are available in 16-pin ceramic or plastic dual in-line packages in two temperature ranges.

- 4.0 MHz (3357), 2.5 MHz (F2847)
- TTL COMPATIBILITY
- SINGLE PHASE TTL CLOCK
- LOW CLOCK CAPACITANCE
- INPUT MULTIPLEXER
- 16-PIN CERAMIC DUAL IN-LINE PACKAGE
- LOW POWER VERSION (F2847L)
- TWO TEMPERATURE RANGES

Pin Names

$\mathrm{D}_{1}-\mathrm{D}_{4}$	Data Inputs
REC $_{1}-$ REC $_{4}$	Recirculate Inputs
CP	Clock Input
$\mathrm{Q}_{1}-\mathrm{Q}_{4}$	Data Outputs

Absolute Maximum Ratings

VGG and Inputs	-20 V to +0.3 V
V VD and Outputs	-7.0 V to +0.3 V
Output Sink Current	10 mA
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{DL}:-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	$\mathrm{DM}:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

All voltages with respect to V_{SS}.
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

$V_{S S}=\operatorname{Pin} 16$
$V_{D D}=P$ in 8
$V_{G G}=\operatorname{Pin} 12$

Connection Diagram

 16-Pin DIP
(Top View)

Package	Outline	Order Code
Ceramic DIP	$6 Z$	D

$D C$ Requirements $V_{S S}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$,
over full operating temperature range unless otherwise indicated

Symbol	Characteristic	3357 DL/DM, F2847 DL/DM		Unit	Condition
		Min	Max		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	$V_{\text {SS }}-1$	$\mathrm{V}_{\text {SS }}+0.3$	V	Note 1
$\underline{V_{\text {IL }}}$	Input LOW Voltage	V_{GG}	+0.8	V	Note 1

DC Characteristics $V_{S S}=+5.0 \mathrm{~V} \pm 5 \%, V_{D D}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$,
over full operating temeprature range unless otherwise indicated

Symbol	Characteristic		Min	Max	Unit	Condition
V_{OH}	Output HIGH Voltage		$\mathrm{V}_{S S}-1$		V	$\mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.4	V	$\mathrm{l} \mathrm{OL}=1.6 \mathrm{~mA}$
$\mathrm{V}_{\text {II }}$	Input Pull-up Initiation Voltage			2.2	V	Note 1, $\mathrm{l}_{\mathrm{N}}<-0.12 \mathrm{~mA}$
$\mathrm{V}_{\text {IP }}$	Input Peak Current Voltage			$V_{S S}-1.5$	V	Note 1
IIP	Input Peak Current			-2.0	mA	Note 1
$\underline{\text { IIH }}$	Input HIGH Current		-0.22		mA	Note 1, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}-1.0 \mathrm{~V}$
IIL	Input LOW Current			-50	$\mu \mathrm{A}$	Note 1, $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
IDD	VDD Current	3357 DL/DM		-25	mA	Max Operating Frequency
		F2847L DL/DM		-25	mA	
		F2847 DL / DM		-45	mA	
IGG	VGG Current	3357 DL / DM		-18	mA	
		F2847L DL / DM		-15	mA	
		F2847 DL / DM		-20	mA	

AC Requirements $V_{S S}=+5.0 \mathrm{~V} \pm 5 \%, V_{D D}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$, over full operating temperature range unless otherwise indicated

Symbol	Characteristic	3357 DL/DM		F2847 DL/DM, F2847L DL/DM			
		Min	Max	Min	Max	Unit	Condition
f	Operating Frequency	0	4.0	0	2.5	MHz	
tPWH	Clock Pulse Width HIGH	0.095	100	0.15	10	$\mu \mathrm{s}$	See Timing Diagram, Note 2
tpWL	Clock Pulse Width LOW	0.135		0.18		$\mu \mathrm{s}$	
tDS	Data Set-up Time	40		120		ns	
${ }_{\text {t }}$ DH	Data Hold Time	30		60		ns	
tss	Select Set-up Time	40		70		ns	
$\mathrm{tSH}^{\text {t }}$	Select Hold Time	40		40		ns	

Notes

1. Applies to all inputs including Clock.
2. $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=$ Clock Transition Time $=0.5 \mu \mathrm{~s}$.

Extended Temperature
 Range Supplement

AC Characteristics $\mathrm{V}_{\mathrm{SS}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \%$, over full operating temperature range unless otherwise indicated.

Symbol	Parameter		Min	Max	Unit	Condition
CIN	Input Capacitance			5.0	pF	All Inputs
COUT	Output Capacitance			5.0	pF	
$t_{\text {ACC }}$	Clock to Output Delay Time	$\begin{array}{\|l\|} \hline 3357 \\ \text { DL / DM } \\ \hline \end{array}$		185	ns	See Timing Diagram
		$\begin{aligned} & \text { F2847L } \\ & \text { DL / DM } \end{aligned}$		280		
		$\begin{aligned} & \text { F2847 } \\ & \text { DL / DM } \\ & \hline \end{aligned}$		280		

For block diagram, functional description and timing diagram refer to standard 3357/F2847 data sheet, Section 5.

Extended Temperature Range Supplement

3708

8-Channel Multiplex Switch

MOS Memory Products

Description

The 3708 is an 8 -channel multiplex switch with an Output Enable control and 1-of-8 decoder included on-chip. It is manufactured using p-channel enhancement mode silicon gate technology. The logic input lines are npn bipolar compatible and can be used directly with TTL 5.0 V logic levels with no level shifting interface required. This device is intended for use in a/d converters, multiplexing in analog or digital data transmission systems, and other airborne or ground instrumentation signal routing applications.

```
- 1-of-8 DECODER ON CHIP
■ HIGH OFF-RESISTANCE TO
        ON-RESISTANCE RATIO
- OUTPUT ENABLE CONTROL
- LOW LEAKAGE CURRENT
- ZERO OFFSET VOLTAGE
■ FAST SWITCHING TIME - 1.5 \mus (MAX)
- TTL COMPATIBLE INPUT LOGIC LEVELS
- TWO TEMPERATURE RANGES
```


Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address Inputs
$\mathrm{S}_{1}-\mathrm{S}_{8}$	Switch Inputs
OE	Output Enable
Q	Data Output

Absolute Maximum Ratings

Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature

$$
\mathrm{DL}:-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$$
\mathrm{DM}:-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Positive Voltage on any Pin +0.3 V
Negative Voltage on
Digital and
Analog Input Pins
$-30 \mathrm{~V}$
Negative Voltage on Digital and
Analog Output Pins -30 V
Negative Voltage on VDD -30 V
Voltage ratings are all referenced to pins 2 and 4 (V_{SS}). Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Logic Symbol

Connection Diagram

 16-Pin DIP
(Top View)

Package	Outline	Order Code
Ceramic DIP	$6 Z$	D

$D C$ and AC Characteristics $V_{\text {OUT }}=-5.0 \mathrm{~V}$ to $+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-19 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{S S}=5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$, over full operating temperature range unless otherwise indicated

Symbol	Characteristic	3708DL/DM			Unit	Condition
		Min	Typ	Max		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	$V_{\text {SS }}-1.5$		Vss	V	Note
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	$V_{\text {DD }}$		0.8	V	Note
IN	Logic Input Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }}-\mathrm{V}_{\text {LOGIC-IN }}=15 \mathrm{~V}$
LLD	Data Input Leakage Current			500	nA	$\mathrm{V}_{\text {SS }}-\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$
IOUT	Output Leakage Current			500	nA	$\mathrm{V}_{\text {SS }}-\mathrm{V}_{\text {OUT }}=15 \mathrm{~V}$
Ron	Data Channel "ON" Resistance			450	Ω	$\begin{aligned} & \text { VOUT }=-5.0 \mathrm{~V}, \\ & \text { IOUT }=-100 \mu \mathrm{~A} \end{aligned}$
PD	Power Dissipation			200	mW	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-26 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} @ 25^{\circ} \mathrm{C} \end{aligned}$
ts	Channel Switching Time			1.5	$\mu \mathrm{s}$	See Test Circuit

Note
When driven by TTL elements, avoid excessive dc loading of TTL elements to insure 3708 logic levels under maximum fanout conditions.
Analog input signal swing should not exceed $V_{S S}\left(=V_{C C}\right)$.

Switching Time Test Circuit

For block diagram, truth table and application refer to standard 3708 data sheet, Section 6.

Extended Temperature Range Supplement
 F4116•F4116/240
 16,384 x 1
 Dynamic RAM

MOS Memory Products

Description

The F4116 and F4116/240 are 16,384-bit MOS dynamic Random Access Memories (RAM) configured as 16,384 one-bit words. They are manufactured using Fairchild's n-channel silicon gate, double-poly Isoplanar process. The use of the single-transistor memory cell along with address multiplexing techniques permits the packaging of the F4116 in a standard 16 -pin dual in-line package. This package allows construction of highly dense memory systems utilizing widely available automated testing and insertion equipment.

- TWO TEMPERATURE RANGES
- LOW CAPACITANCE, TTL-COMPATIBLE INPUTS (INCLUDING CLOCKS)
- ON-CHIP ADDRESS AND INPUT DATA LATCHES
- 3-STATE TTL-COMPATIBLE OUTPUT WITH DATA VALID TIME CONTROLLED BY CAS
- COMMON I/O CAPABILITY
- TWO DIMENSIONAL SELECTION BY DECODING BOTH RAS AND CAS
- STANDARD 10\% SUPPLIES (+12 V, +5 V, AND - 5 V)
- FLEXIBLE TIMING WITH PAGE-MODE AND EXTENDED PAGE BOUNDARIES
- 128-CYCLE RAS-ONLY REFRESH
- AVAILABLE IN 16-PIN CERAMIC DIP AND FLATPAK

Pin Names

$\mathrm{A}_{0}-\mathrm{A}_{6}$	Address Inputs Data Input D
$\overline{\mathrm{WE}}$	Write Enable Input (Active LOW) Row Address Strobe Input (Active LOW Clock)
$\overline{\mathrm{RAS}}$	Column Address Strobe Input (Active LOW Clock)
$\overline{\mathrm{CAS}}$	Data Output
Q	+5 V Power Supply
V_{CC}	0 V Power Supply
V_{SS}	-5 V Power Supply
V_{BB}	+12 V Power Supply

Logic Symbol

$V_{S S}=\operatorname{Pin} 16$
$V_{C C}=\operatorname{Pin} 9$
$V_{D D}=P$ in 8
$V_{B B}=P$ in 1

Connection Diagram
16-Pin DIP

(Top View)

Package	Outline	Order Code
Ceramic DIP	2 C	D
Flatpak	2R	F

Absolute Maximum Ratings
Voltage on Any Pin Relative to
$V_{B B}\left(V_{S S}-V_{B B} \geq 4.5 \mathrm{~V}\right)$
Ambient Operating Temperature F4116
Case Operating Temperature F4116/240

Power Dissipation

$$
-0.5 \mathrm{~V} \text { to }+20 \mathrm{~V}
$$

$$
-55^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

Storage Temperature (Ambient)
$V_{B B}-V_{S S}\left(V_{D D}-V_{S S}>0 V\right)$
$-55^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
1 W
0 V
Voltage on $V_{D D}$, $V_{C C}$ Supplies
Relative to $V_{S S}$
Short-circuit Output Current
-1.0 V to +15 V
50 mA

Stresses greater than those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Requirements (F4116) $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Notes 1 and 2

Symbol	Characteristic	F4116-2, -3, -4			Unit	Condition
		Min	Typ	Max		
VDD	Supply Voltage	10.8	12	13.2	V	
V_{CC}	Supply Voltage	4.5	5.0	5.5	V	Note 5
$\mathrm{V}_{\text {SS }}$	Supply Voltage	0	0	0	V	
$\mathrm{V}_{\text {BB }}$	Supply Voltage	-5.5	-5.0	-4.5	V	
$\mathrm{V}_{\text {IHC }}$	Input HIGH Voltage, $\overline{\text { RAS, }} \overline{\text { CAS, }}$, WE	2.7		7.0	V	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage, All Inputs except RAS, CAS, WE	2.4		7.0	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage, All Inputs	-1.0		0.8	V	

[^7]Extended Temperature Range Supplement

DC Characteristics (F4116) Over full range of voltage and $T_{A}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic		F4116-2, -3, -4			Unit	Condition
			Min	Typ	Max		
VOH	Output HIGH Voltage		2.4			V	$\begin{aligned} & \text { lout }=-5.0 \mathrm{~mA} \\ & \text { Note } 5 \end{aligned}$
Vol	Output LOW Voltage				0.4	V	$\begin{aligned} & \text { lout }=4.2 \mathrm{~mA}, \\ & \text { Note } 5 \end{aligned}$
IDD	Average VDD Current	Normal Operation			35	mA	Note 3
		Standby			2.25	mA	
		Refresh			27	mA	
		Page Mode			27	mA	
Icc	Average V ${ }_{\text {cc }}$ Current	Normal Operation/ Page Mode				mA	Note 3, 4
		Standby/Refresh	-10		10	$\mu \mathrm{A}$	
$I_{B B}$	Average VBB Current	Normal Operation/ Refresh/Page Mode			400	$\mu \mathrm{A}$	
		Standby			200	$\mu \mathrm{A}$	
In	Input Leakage Current (Any Input)		-10		10	$\mu \mathrm{A}$	
IOUT	Output Leakage Current		-10		10	$\mu \mathrm{A}$	
$\mathrm{C}_{\text {IN1 }}$	Input Capacitance, $A_{0}-A_{6}$, DIN			4.0	5.0	PF	Note 6
$\mathrm{C}_{\text {IN2 }}$	Input Capacitance, $\overline{\text { RAS, }}$ CAS, $\overline{\text { WE }}$			8.0	10	pF	Note 6
Cout	Output Capacitance, Dout			5.0	7.0	pF	$\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IHC }}$

Recommended ac Operating Conditions (F4116) Over full range of voltage and $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	F4116-2		F4116-3		F4116-4		Unit	Note
		Min	Max	Min	Max	Min	Max		
$t_{\text {R }}$	Random Read or Write Cycle Time	320		375		410		ns	7
trwC	Read-Write Cycle Time	320		375		425		ns	7
$t_{\text {RMW }}$	Read Modify Write Cycle Time	320		405		500		ns	7
tpC	Page Mode Cycle Time	170		225		275		ns	7
trac	Access Time from $\overline{\text { RAS }}$		150		200		250	ns	8, 10
$t \mathrm{CAC}$	Access Time from $\overline{\mathrm{CAS}}$		100		135		165	ns	9, 10
toFF	Output Buffer Turn-off Delay	0	40	0	50	0	60	ns	11
$t_{\text {RP }}$	$\overline{\text { RAS Precharge Time }}$	100		120		150		ns	
trAS	$\overline{R A S}$ Pulse Width	150	5000	200	5000	250	5000	ns	
$t_{\text {trSH }}$	$\overline{\text { RAS Hold Time }}$	100		135		165		ns	
tCSH	$\overline{\text { CAS Hold Time }}$	150		200		250		ns	

[^8]
Extended Temperature

Recommended ac Operating Conditions (F4116) (Cont'd)

Symbol	Characteristic	F4116-2		F4116-3		F4116-4		Unit	Note
		Min	Max	Min	Max	Min	Max		
tCAS	$\overline{\text { CAS Pulse Width }}$	100	5000	135	5000	165	5000	ns	
trCD	$\overline{\text { RAS }}$ to CAS Delay Time	20	50	25	65	35	85	ns	12
$t_{\text {ASR }}$	Row Address Set-up Time	0		0		0		ns	
$t_{\text {RAH }}$	Row Address Hold Time	20		25		35		ns	
${ }^{\text {tasC }}$	Column Address Set-up Time	0		0		0		ns	
tCAH	Column Address Hold Time	45		55		75		ns	
$t_{\text {AR }}$	Column Address Hold Time Referenced to RAS	95		120		160		ns	
t	Transition Time (rise and fall)	3.0	35	3.0	50	3.0	50	ns	13
tres	Read Command Set-up Time (RMW)	0		0		0		ns	
${ }_{\text {trch }}$	Read Command Hold Time	0		0		0		ns	
tWCH	Write Command Hold Time	45		55		75		ns	
tWCR	Write Command Hold Time Referenced to RAS	95		120		160		ns	
twCs	Write Command Set-up Time	0		0		0		ns	14
twp	Write Command Pulse Width	45		55		75		ns	
$t_{\text {RWL }}$	Write Command to $\overline{\text { RAS }}$ Lead Time	50		70		85		ns	15
tCWL	Write Command to $\overline{\text { CAS }}$ Lead Time	50		70		85		ns	15
tDS	Data In Set-up Time	0		0		0		ns	16
tDH	Data In Hold Time	45		55		75		ns	16
tDHR	Data In Hold Time Referenced to $\overline{R A S}$	95		120		160		ns	
tCRP	$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ Precharge Time	0		0		0		ns	
${ }^{\text {t }}$ PP	$\overline{\text { CAS }}$ Precharge Time (Page-mode)	60		80		100		ns	
$\mathrm{t}_{\text {RF }}$	Refresh Period		2.0		2.0		2.0	ms	
tCWD	$\overline{\mathrm{CAS}}$ to WE Delay	60		80		90		ns	17
trwD	$\overline{\text { RAS }}$ to WE Delay	110		145		175		ns	17

[^9]Extended Temperature Range Supplement

Symbol	Characteristic		F4116/240			Unit	Condition
			Min	Typ	Max		
$\mathrm{V}_{\text {DD }}$	Supply Voltage		10.8	12	13.2	V	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5.0	5.5	V	Note 5
$\mathrm{V}_{\text {SS }}$	Supply Voltage		0	0	0	V	
$\mathrm{V}_{\text {BB }}$	Supply Voltage		-5.5	-5.0	-4.5	V	
$\mathrm{V}_{\text {IHC }}$	Input HIGH Voltage, $\overline{\text { RAS }}$, $\overline{\mathrm{CAS}}, \overline{\text { WE }}$		2.7		7.0	V	
V_{IH}	Input HIGH Voltage, All Inputs except RAS, $\overline{\text { CAS }}, \overline{W E}$		2.4		7.0	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage, All Inputs		-1.0		0.8	V	
DC Characteristics (F4116/240) Over full range of voltage and							
Symbol	Characteristic		F4116/240				
			Min	Typ	Max	Unit	Condition
V_{OH}	Output HIGH Voltage		2.4			V	$\begin{aligned} & \mathrm{l}_{\mathrm{OUT}}=-5.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { Note } 5 \end{aligned}$
V_{OL}	Output LOW Voltage				0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=4.2 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { Note } 5 \end{aligned}$
IDD	Average VDD Current	Normal Operation			35	mA	
		Standby			1.75	mA	
		Refresh			27	mA	
		Page Mode			27	mA	Note 3
Icc	Average VCC Current	Normal Operation			600	$\mu \mathrm{A}$	
		Page Mode			1000	$\mu \mathrm{A}$	
		Standby/Refresh	-10		10	$\mu \mathrm{A}$	Notes 3 and 4
IBB	Average $\mathrm{V}_{\text {BB }}$ Current	Normal Operation/ Refresh/Page Mode			400	$\mu \mathrm{A}$	
		Standby			200	$\mu \mathrm{A}$	
IN	Input Leakage Current (Any Input)		-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0$ to 7.0 V
Iout	Output Leakage Current		-10		10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\text { RAS }} \text { and } \overline{\mathrm{CAS}}=\mathrm{V}_{\text {IHC }} \\ & \mathrm{V}_{\text {OUT }}=0 \text { to } 5.5 \mathrm{~V} \end{aligned}$
Cln 1	Input Capacitance, $A_{0}-A_{6}, D_{1 N}$			4.0	5.0	pF	Note 6
Cin 2	Input Capacitance, $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$			8.0	10	pF	Note 6
Cout	Output Capacitance, DOUT			5.0	7.0	pF	$\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IHC}}$

[^10]Extended Temperature Range Supplement

Recommended ac Operating Conditions (F4116/240) Over full range of voltage and $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$

Symbol	Characteristic	$\begin{aligned} & \text { F4116/240-01 } \\ & \text { F4116/240-03* } \end{aligned}$		F4116/240-02		Unit	Note
		Min	Max	Min	Max		
$t_{\text {RC }}$	Random Read or Write Cycle Time	375	10120	410	10120	ns	7
trwC	Read-Write Cycle Time	375	10120	425	10120	ns	7
tPC	Page Mode Cycle Time	225		275		ns	
trac	Access Time from $\overline{\text { RAS }}$		200		250	ns	8, 10
tcac	Access Time from $\overline{\text { CAS }}$		135		165	ns	9,10
tofF	Output Buffer Turn-off Delay		50		60	ns	11
$t_{\text {RP }}$	$\overline{\text { RAS Precharge Time }}$	120	1000	150	1000	ns	
tras	$\overline{\text { RAS }}$ Pulse Width	200	10,000	250	10,000	ns	
trsh	$\overline{\text { RAS Hold Time }}$	135		165		ns	
tCSH	$\overline{\text { CAS }}$ Hold Time	200		250		ns	
tcas	$\overline{\text { CAS Pulse Width }}$	135	10,000	165	10,000	ns	
$t_{\text {RCD }}$	$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ Delay Time	30	65	35	85	ns	12
${ }^{\text {t ASR }}$	Row Address Set-up Time	0		0		ns	
$t_{\text {RAH }}$	Row Address Hold Time	30		35		ns	
${ }^{\text {taSC }}$	Column Address Set-up Time	0		0		ns	
tCAH	Column Address Hold Time	60		75		ns	
$t_{\text {AR }}$	Column Address Hold Time Referenced to $\overline{\text { RAS }}$	125		160		ns	
t	Transition Time (Rise and Fall)	3.0	50	3.0	50	ns	13
tres	Read Command Set-up Time (RMW)	0		0		ns	
$\mathrm{tRCH}^{\text {ren }}$	Read Command Hold Time	0		0		ns	
tWCH	Write Command Hold Time	60		75		ns	
tWCR	Write Command Hold Time Referenced to $\overline{\text { RAS }}$	125		160		ns	
twCs	Write Command Set-up Time	0		0		ns	14
twp	Write Command Pulse Width	60		75		ns	
trwL	Write Command to $\overline{\text { RAS }}$ Lead Time	80		100		ns	15
tCWL	Write Command to $\overline{\text { CAS }}$ Lead Time	80		100		ns	15
$\mathrm{t}_{\mathrm{DS}(\mathrm{C})}$	Data In Set-up Time	0		0		ns	16
tos(W)	Data In Set-up Time (Late Write)	10		10		ns	16
tDH	Data In Hold Time	60		75		ns	16
tDHR	Data In Hold Time Referenced to $\overline{\text { RAS }}$	125		160		ns	

[^11]Notes on final page.

Recommended ac Operating Conditions (F4116/240) (Cont'd)

Symbol	Characteristic	$\begin{aligned} & \text { F4116/240-01 } \\ & \text { F4116/240-03* } \end{aligned}$		F4116/240-02		Unit	Note
		Min	Max	Min	Max		
tCRP	$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ Precharge Time	0		0		ns	
$t_{\text {cP }}$	$\overline{\text { CAS Precharge Time (Page-mode) }}$	80		100		ns	
t_{RF}	Refresh Period		1.0		1.0	ms	
tcWD	$\overline{\mathrm{CAS}}$ to WE Delay	95		125		ns	17
$t_{\text {RWD }}$	$\overline{\mathrm{RAS}}$ to $\overline{\text { WE }}$ Delay	160		200		ns	17

*03 (200 ns Page Mode Operation Guaranteed)

Notes

1. The ambient temperature $\left(T_{A}\right)$ is specified here for operation at frequencies up to that frequency determined by the minimum cycle time. Operation at high cycle rates with reduced ambient temperatures and higher power dissipation is permissible, however, provided ac operating parameters are met.
2. All voltages are referenced to $\mathrm{V}_{S S}=0 \mathrm{~V}$.
3. IDD depends on frequency of operation. Maximum current is measured at the fastest cycle rate.
Normal Operation: $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ cycling
Standby: $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{HC}}, \mathrm{D}_{\mathrm{OUT}}$, $=$ High Z
Refresh $\overline{\text { RAS }}$ cycling, $\overline{C A S}=V_{I H C}$
Page Mode: $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CAS}}$ cycling
4. ICC depends upon output loading. The $V_{C C}$ supply is connected to the output buffer only. During readout of HIGH level data, V_{CC} is connected through a low impedance (135Ω typ) to Data Out. At other times ICC consists of leakage currents only.
5. Output voltage will swing from V_{SS} to V_{CC} when activated with no current loading. For purposes of reducing power in the standby mode, V_{CC} may be reduced to V_{SS} without affecting refresh operations or data retention. However, the $\mathrm{V}_{\mathrm{OH}}(\min)$ specification is not guaranteed in this mode.
6. Effective capacitance calculated from the equation $C=1 \frac{\Delta t}{\Delta V}$ with $\Delta V=3 V$ and power supplies at normal levels.
7. The specifications for $t_{R C}(\min), t_{R W C}(\min), t_{R M W}(\min)$ and ${ }^{\text {t }}{ }^{\mathrm{PC}}(\min)$ are used only to indicate cycle time at which proper operation over full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured. All transition times, t_{T}, are assumed to be 5 ns .
8. Assumes that $t_{R C D} \leq t_{R C D}(\max)$. If $t_{R C D}$ is greater than the maximum recommended value shown in this table, $t_{\text {RAC }}$ will increase by the amount that $t_{R C D}$ exceeds the value shown.
9. Assumes that $t_{R C D} \geq t_{R C D}$ (max).
10. Measured with a load equivalent to two TTL loads and 100 pF .
11. ${ }^{\text {O }} \mathrm{OFF}(\max)$ defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
12. Operation within the $t_{R C D}(\max)$ limit insures that $t_{R A C(\max)}$ can be met. $t_{R C D(\max)}$ is specified as a reference point only; if $t_{R C D}$ is greater than the specified $t_{R C D}(\max)$ limit, then access time is controlled exclusively by tCAC.
13. $\mathrm{V}_{\mathrm{IHC}(\min)}$ or $\mathrm{V}_{\mathrm{IH}(\min)}$ and $\mathrm{V}_{\mathrm{IL}(\max)}$ are reference levels for measuring timing of input signals. Also, transition times are measured between $\mathrm{V}_{\mathrm{IHC}}$ or V_{IH} and V_{IL}. Composite timing parameters (such as cycle times) assume 5 ns transition times.
14. ${ }^{\text {WCS }}$ is a restrictive operating parameter. If ${ }^{\text {W}}$ WCS \geq ${ }^{\text {t }}$ WCS (min), the cycle is an early write cycle and the Data Out pin will remain open circuit (high impedance) throughout the entire cycle, otherwise the cycle is a delayed write cycle.
15. The parameters $t_{R W L}$ and ${ }_{t_{C W L}}$ reference $\overline{W E}$ (for a read-modify-write cycle) to either $\overline{\text { RAS }}$ or $\overline{\text { CAS }}$ respectively, whichever is the first to go HIGH.
16. $t_{D S}$ and $t_{D H}$ are referenced to the leading edge of $\overline{C A S}$ in early write cycles, and to the leading edge of $\overline{W E}$ in delayed write or read-modify-write cycles.
17. $\mathrm{t}_{\mathrm{RWD}}$ and $\mathrm{t}_{\mathrm{CWD}}$ are restrictive operating parameters due to the following characteristics:
If ${ }^{\mathrm{C}} \mathrm{CWD}<\mathrm{t}_{\mathrm{C}} \mathrm{WD}(\mathrm{min})$, the Data Out will be indeterminate
If ${ }^{\mathrm{C}} \mathrm{WWD} \geq \mathrm{t}_{\mathrm{C}} \mathrm{WD}(\mathrm{min})$, the Data Out will contain the data read from the selected cell.

For block diagram, functional description, timing diagrams and characteristic curves refer to standard F4116 data sheet, Section 3.

EPROM Data Sheets4

Section 8
 Ordering Information and Package Outlines

Specific ordering codes, as well as the temperature ranges and package types available, are listed on each data sheet in Sections 3 through 7. The Product Index and Selection Guides given in Section 1 list only the basic device numbers. This basic number is used to form part of a simplified purchasing code where the package type, temperature range and processing level are defined as follows:

Package Code-One letter represents the basic package type. Different package outlines exist within each package type to accommodate varying die sizes and number of pins, as indicated below:

D-Ceramic (Hermetic) Dual In-line
Side-braze-WC, 7R
Ceramic DIP-JD, 2C, 6Z, 7C, 7M, 7W, 8D, 8E
P-Plastic Dual In-line
UB, UC, 8J, 8K, 9B
F-Flatpak
II, 2R, 4A
Package Outlines-The package outlines indicated by the codes above are shown in the detailed outline drawings in this section.

Temperature Range - Three basic temperature grades are in common use:
$\mathrm{C}=\underset{0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}}{ }$
$\mathrm{L}=$ Limited Military
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$M=$ Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Ordering Information and Package Outlines

Unique 38510

The Fairchild Unique 38510 program is written in accordance with MIL-M-385 10 and MIL-STD-883 to meet the need for improved reliability in the military market. Devices ordered to this program are subjected to 100\% screening as outlined in Table 1.

Customer procurement documents should specify the following:

1. Fairchild Product Code indicating the basic device number, package code letter and temperature range code letter;
2. the Unique 38510 device class (B or S);
3. Number or Letter Options required;
4. special marking requirements if Number Option 6 was specified.

Unique 38510 Ordering Code Examples
21021 FMQB Device number 21021, packaged in ceramic flatpak (F), in military temperature range (M) and processed to Unique 38510 Class B.
21021 DMQS Device number 21021, packaged in ceramic Dual In-line (D), in military temperature range (M) and processed to Unique 38510 Class S.

Number Options (apply to operations performed on each unit delivered)
Option 1 Lead form to dimensions in detail specifications, followed by hermetic seal tests.
Option 2 Hot solder dip finish.
Option 3 Read and record critical parameters before and after burn-in.
Option 4 Initial qualification, Group B, C and D Option 5 quality conformance not required. performed on all devices. Option 6 Special marking required. Option 7 Non-conforming variation-refer to procurement documents for details (must be negotiated with factory).

Letter Options (apply once per Purchase Order or line item and are considered test charges)
Option A Group C testing shall be performed. Option B Group D testing shall be performed. Option C Generic data to be supplied from the latest completed lot.
Option D Unique 38510 program plan, pertinent to the device family being purchased, shall be supplied.

Matrix VI

Matrix VI is a full spectrum, cost effective reliability and quality program for commercial or industrial integrated circuits only. This program features six levels of flow screening, each tailored to a user's field application environment and incoming quality and equipment reliability requirements. A Matrix VI part number consists of the device number followed by the package code letter, the temperature range code letter, the special processing indicator (Q) and the Matrix VI code letter as shown in the following examples. See Table 2 for processing level definition.

Matrix VI Ordering Code Examples

21021 PC Device number 21021, packaged in plastic Dual In-line (P), in commercial temperature range (C) and processed to Matrix VI Level 1.
21021 DC Device number 21021, packaged in ceramic Dual In-line (D), in commercial temperature range and processed to Matrix VI Level 3.
21021 PCQR Device number 21021, packaged in plastic Dual In-line (P), in commercial temperature range (C) with supplemental Matrix VI Level 5 screening, including 100% thermal shock, "hot rail" test, 168 hours $+125^{\circ} \mathrm{C}$ burn-in and 0.1% AQL functional testing.
21021 DCQR Device number 21021, packaged in ceramic Dual In-line (D), in commercial temperature range (C) with supplemental Matrix VI Level 6 screening, including burn-in, three $100 \% \mathrm{dc} /$ functional tests and 0.1% AQL functional testing.

Ordering Information and Package Outlines

Table 1 Unique 38510 Process Flow

Notes

1. Class B processing in this case includes adding 100% post burn-in testing: dc testing at maximum and minimum rated temperatures (See data sheet for rating.); ac testing at $+25^{\circ} \mathrm{C}$.
2. Any burn-in condition other than MTD 1015 Condition A is at customer request only.
3. Qualification testing per groups B, C and D on a customer's parts require additional lot charges and an added minimum of two months to the schedules deliveries.
Table 2 Matrix VI Process Flow Options \& Cost Effectiveness
and Package Outlines

Note
Burn-In has the same relative effectiveness for plastic molded devices as for ceramic/hermetic packaged devices. Assuming a controlled (air conditioned and constant power) field application/environment, the reliability factor would be approximately 9X. But should the field application be in a less controlled and power ON/OFF application, the reliability factor would be approximately 7.5 X .

Ordering Information and Package Outlines

16-Pin Ceramic Flatpak
 II

Notes
Pins are tin-plated 42 alloy
Cap and base are alumina
Cavity size is $.140 \times .200(3.556 \times 5.080)$,
silver plated
Package weight is 0.4 gram

20-Pin Ceramic DIP (Metal Cap)
JD

Base is $\mathrm{Al}_{2} \mathrm{O}_{3}$
Cap is kovar
Pins are intended for insertion in hole rows on .300" (7.620) centers
They are purposely shipped with positive misalignment to facilitate insertion Board-drilling dimensions should equal your practice for $\mathbf{. 0 2 0 "}$ (5.080) diameter lead
Cavity size is $.200 \times .375(5.08 \times 9.52)$

Ordering Information and Package Outlines

All dimensions in inches bold and millimeters (parentheses)

Ordering Information and Package Outlines

16-Pin Side-Brazed DIP (Metal Cap) WC

16-Pin Ceramic DIP 2C

Notes

Pins are tin-plated alloy 42
Pins are intended for insertion in hole rows on .300" (7.620) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for . 020 inch (5.080) diameter pin Hermetically sealed alumina package Cavity size is $.160 \times .310(4.064 \times 7.874)$
*The .034-. 030 (.864-.762) dimension does not apply to the corner pins Package weight is 2.2 grams

All dimensions in inches bold and millimeters (parentheses)

Ordering Information and Package Outlines

Ordering Information and Package Outlines

Notes

Pins are tin-plated alloy 42
Pins are intended for insertion in hole rows on $.300^{\prime \prime}$ (7.620) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020 inch (.508) diameter pin
Hermetically sealed alumina package
Cavity size is $.160 \times .250(4.064 \times 6.350)$
*The .034-. 030 (.864-.762) dimension does not apply to the corner pins Package weight is $\mathbf{2 . 2}$ grams

24-Pin Ceramic DIP
7C

Notes

Pins are tin-plated alloy 42
Package material is alumina
Pins are intended for insertion in hole rows
on .600 (15.240) centers
They are purposely shipped with
"positive" misalignment to facilitate
insertion
Cavity size is $.260 \times .260(6.604 \times 6.604)$
Package weight is 6.5 grams
Window-UV transmission glass

All dimensions in inches bold and
millimeters (parentheses)

Ordering Information and Package Outlines

24-Pin Ceramic DIP

7M

Notes

Pins are tin-plated alloy 42
Package material is alumina
Pins are intended for insertion in hole rows on . 600 (15.240) centers
They are purposely shipped with
"positive" misalignment to facilitate insertion
Cavity size is $.250 \times .250(6.350 \times 6.350)$
Package weight is 6.5 grams

24-Pin Side-Brazed DIP
7R

Notes
Pins are nickel gold-plated kovar or alloy 42
Cap is kovar
Base is Ceramic
Cavity size is $.250 \times .250(6.350 \times 6.350)$
Package weight is 3.85 grams

All dimensions in inches bold and millimeters (parentheses)

Ordering Information and Package Outlines

24-Pin Ceramic DIP 7W

Notes
Pins are tin-plated alloy 42
Package material is alumina
Pins are intended for insertion in hole rows on . 600 (15.240) centers

They are purposely shipped with
"positive" misalignment to facilitate insertion

Cavity size is $.260 \times .260(6.604 \times 6.604)$
Package weight is 6.5 grams

Notes

Pins are tin-plated alloy 42
Package material is alumina
Pins are intended for insertion in hole rows on .300 (7.620) centers
They are purposely shipped with positive misalignment to facilitate insertion Package weight is 3.0 grams

All dimensions in inches bold and millimeters (parentheses)

Ordering Information and Package Outlines

18-Pin Plastic DIP

8J

Notes

Pins are tin-plated alloy 42
Package material is plastic
Pins are intended for insertion in hole rows on . 300 (7.620) centers
They are purposely shipped with positive misalignment to facilitate insertion

Ordering Information and Package Outlines

Notes

Pins are tin-plated kovar or alloy 42 nickel Package material varies depending on the product line
Pins are intended for insertion in hole rows on .300" (7.620) centers
They are purposely shipped with positive misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for $\mathbf{. 0 2 0 \prime}$ (0.510) diameter pin
***The .037-. 027 (.940-.690) dimension does not apply to the corner leads
**Notch or ejector hole varies depending on the product line
Package weight is 0.9 gram

Notes
Pins are tin-plated kovar or alloy 42 nickel Package material varies depending on the product line
Pins are intended for insertion in hole rows on .300" (7.620) centers
They are purposely shipped with "positive" misalignment to facilitate insertion
Board-drilling dimensions should equal your practice for .020" (0.508) diameter pin
***The .037-. 027 (.940-.686) dimension does not apply to the corner pins
**Notch or ejector hole varies depending on the product line
Package weight is 0.9 gram

[^12]

| MOS Memory Technology Overview 2 |
| :--- | :--- |

RAM Data Sheets	3

EPROM Data Sheets 4

Serial Memory Data Sheets

Ordering Information and Package Outlines

Fairchild Semiconductor
 Franchised Distributors

United States and Canada

Alabama

Hall Mark Electronics
4900 Bradford Drive
Huntsville, Alabama 35807
Tel: 205-837-8700 TWX: 810-726-2187
Hamilton/Avnet Electronics
4692 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-7210
Telex: None - use HAMAVLECB DAL 73-0511
Regional Hq. in Dallas, Texas

Arizona

Hamilton/Avnet Electronics
505 South Madison Drive
Tempe, Arizona 85281
Tel: 602-231-5100 TWX: 910-951-1535
Kierulff Electronics
4134 East Wood Street
Phoenix, Arizona 85040
Tel: 602-243-4101
Wyle Distribution Group
8155 North 24th Avenue
Phoenix, Arizona 85021
Tel: 602-249-2232 TWX: 910-951-4282

California

Anthem Electronics, Inc.
21730 Nordhoff Street
Chatsworth, California 91311
Tel: 213-700-1000 TWX: 910-493-2083
Anthem Electronics, Inc.
4125 Sorrento Valley Bivd.
San Diego, California 92121
Tel: 714-279-5200

Anthem Electronics, Inc.
174 Component Drive
San Jose, California 95131
Tel: 408-946-8000
Anthem Electronics, Inc.
2661 Dow Avenue
Tustin, California 92680
Tel: 714-730-8000
Arrow Electronics
9511 Ridge Haven Court
San Diego, California 92123
Tel: 714-565-4800

Arrow Electronics
521 Weddell Avenue
Sunnyvale, California 94086
Tel: 408-745-6600 TWX: 910-339-9371
Avnet Electronics
350 McCormick Avenue
Costa Mesa, California 92626
Tel: 714-754-6111, Orange County
213-558-2345 Los Angeles
TWX: 910-595-1928

Bell Industries
Electronic Distributor Division
1161 N. Fair Oaks Avenue
Sunnyvale, California 94086
Tel: 408-734-8570 TWX: 910-339-9378

Hamilton/Avnet Electronics
3170 Pullman Avenue
Costa Mesa, California 92626
Tel: 714-641-1850

Hamilton Electro Sales 10912 West Washington BIvd.
Culver City, California 90230
Tel: 213-558-2121 TWX: 910-340-6364
Hamilton/Avnet Electronics
4545 Viewridge Avenue
San Diego, California 92123
Tel: 714-571-7527
Telex: HAMAVELEC SDG 69-5415
Hamilton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale, California 94086
Tel: 408-743-3355 TWX: 910-379-6486
**Sertech Laboratories
2120 Main Street, Suite 190
Huntington Beach, California 92647
Tel: 714-960-1403

Wyle Electronics
124 Maryland Street
El Segundo, California 90245
Tel: 213-322-8100 TWX: 910-348-7111
Wyle Distributor Group
17872 Cowan Avenue
Irvine, California 92714
Tel: 714-641-1600
Telex: 910-595-1572
Wyle Distribution Group
9525 Chesapeake
San Diego, California 92123
Tel: 714-565-9171 TWX: 910-335-1590
Wyle Distribution Group
3000 Bowers Avenue
Santa Clara, California 95051
Tel: 408-727-2500 TWX: 910-338-0541

Colorado

Arrow Electronics
2121 South Hudson
Denver, Colorado 80222
Tel: 303-758-2100
Bell Industries
8155 West 48th Avenue
Wheatridge, Colorado 80033
Tel: 303-424-1985 TWX: 910-938-0393
Hamilton/Avnet Electronics
8765 E. Orchard Rd., Suite 708
Englewood, Colorado 80111
Tel: 303-740-1000 TWX: 910-935-0787
Wyle Distribution Group
451 East 124th Avenue
Thornton, Colorado 80241
Tel: 303-457-9953 TWX: 910-936-0770

Connecticut

Arrow Electronics
12 Beaumont Road
Wallingford, Connecticut 06492
Tel: 203-265-7741 TWX: 203-265-774.1

Hamilton/Avnet Electronics
Commerce Drive, Commerce Park
Danbury, Connecticut 06810
Tel: 203-797-2800
TWX: None - use 710-897-1405
Regional Hq. in Mt. Laurel, N.J.
Harvey Electronics
112 Main Street
Norwalk, Connecticut 06851
Tel: 203-853-1515
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury, Connecticut 06810
Tel: 203-792-3500

Florida

Arrow Electronics
1001 Northwest 62nd Street
Suite 108
Ft. Lauderdale, Florida 33309
Tel: 305-776-7790
Arrow Electronics
50 Woodlake Drive West
Building B
Palm Bay, Florida 32905
Tel: 305-725-1480
Hall Mark Electronics
1671 West McNab Road
Ft. Lauderdale, Florida 33309
Tel: 305-971-9280 TWX: 510-956-3092
Hall Mark Electronics
7233 Lake Ellenor Drive
Orlando, Florida 32809
Tel: 305-855-4020 TWX: 810-850-0183
Hamilton/Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale, Florida 33309
Tel: 305-971-2900 TWX: 510-954-9808
Hamilton/Avnet Electronics
3197 Tech Drive, North
St. Petersburg, Fiorida 33702
Tel: 813-576-3930
Schweber Electronics
2830 North 28 th Terrace
Hollywood, Florida 33020
Tel: 305-927-0511 TWX: 510-954-0304

Georgia

Arrow Electronics
2979 Pacific Drive
Norcross, Georgia 30071
Tel: 404-449-8252
Telex: 810-766-0439
Hall Mark Electronics
6410 Atlantic Blvd., Suite 115
Norcross, Georgia 30071
Tel: 404-447-8000 TWX: 810-766-4510
Hamilton/Avnet Electronics
5825-D Peachtree Corners East
Norcross, Georgia 30092
Tel: 404-447-7500
Telex: None - use HAMAVLECB DAL 73-0511
Regional Hq. in Dallas, Texas,

[^13]
Fairchild Semiconductor

Franchised Distributors

United States and Canada

Illinois

Arrow Electronics
492 Lunt Avenue
Schaumburg, Illinois 60193
Tel: 312-893-9420

Hall Mark Electronics
1177 Industrial Drive
Bensenville, Illinois 60106
Tel: 312-860-3800
Hamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville, lllinois 60106
Tel: 312-860-7780 TWX: 910-227-0060
Kierulff Electronics
1536 Landmeier Road
Elk Grove Village, Illinois 60007
Tel: 312-640-0200 TWX: 910-227-3166
Schweber Electronics
1275 Brummel Avenue
Elk Grove Village, Illinois 60007
Tel: 312-364-3750 TWX: 910-222-3453

Indiana

Arrow Electronics
2718 Rand Road
Indianapolis, Indiana 46241
Tel: 317-243-9353
Graham Electronics Supply, Inc.
133 S. Pennsylvania Street
Indianapolis, Indiana 46204
Tel: 317-634-8486 TWX: 810-341-3481
Hamilton/Avnet Electronics
485 Gradle Drive
Carmel, Indiana 46032
Tel: 317-844-9333
Pioneer Electronics
6408 Castle Place Drive
Indianapolis, Indiana 46250
Tel: 317-849-7300 TWX: 810-260-1794

Kansas

Hall Mark Electronics
10815 Lakeview Drive
Lenexa, Kansas 66215
Tel: 913-888-4747

Hamilton/Avnet Electronics
9219 Quivira Road
Overland Park, Kansas 66215
Tel: 913-888-8900
Telex: None - use HAMAVLECB DAL 73-0511
Regional Hq. in Dallas, Texas

Maryland

Hall Mark Electronics
6655 Amberton Drive
Baltimore, Maryland 21227
Tel: 301-796-9300
Hamilton/Avnet Electronics
6822 Oak Hall Lane
Columbia, Maryland 21045
Tel: 301-995-3500 TWX: 710-862-1861
Pioneer Electronics
9100 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-948-0710 TWX: 710-828-9784

Schweber Electronics
9218 Gaither Road
Gaithersburg, Maryland 20760
Tel: 301-840-5900 TWX: 710-828-0536

Massachusetts

Arrow Electronics
Arrow Drive
Woburn, Massachusetts 01801
Tel: 617-933-8130 TWX: 710-393-6770
Gerber Electronics
128 Carnegie Row
Norwood, Massachusetts 02026
Tel: 617-329-2400
Hamilton/Avnet Electronics
50 Tower Office Park
Woburn, Massachusetts 01801
Tel: 617-273-7500 TWX: 710-393-0382
Harvey Electronics
44 Hartwell Avenue
Lexington, Massachusetts 02173
Tel: 617-861-9200 TWX: 710-326-6617
Schweber Electronics
25 Wiggins Avenue
Bedford, Massachusetts 01730
Tel: 617-275-5100
**Sertech Laboratories
1 Peabody Street
Salem, Massachusetts 01970
Tel: 617-745-2450

Michigan

Arrow Electronics
3810 Varsity Drive
Ann Arbor, Michigan 48104
Tel: 313-971-8220
Hamilton/Avnet Electronics
2215 29th Street S.E.
Space A5
Grand Rapids, Michigan 49508
Tel: 616-243-8805 TWX: 810-273-6921
Hamilton/Avnet Electronics
32487 Schoolcraft
Livonia, Michigan 48150
Tel: 313-522-4700 TWX: 810-242-8775
Pioneer Electronics
13485 Stamford
Livonia, Michigan 48150
Tel: 313-525-1800
Schweber Electronics
33540 Schoolcraft
Livonia, Michigan 48150
Tel: 313-525-8100

Minnesota

Arrow Electronics
5230 West 73rd Street
Edina, Minnesota 55435
Tel: 612-830-1800
Hamilton/Avnet Electronics
10300 Bren Road East
Minnetonka, Minnesota 55343
Tel: 612-932-0600
TWX: None - use 910-227-0060
, Regional Hq. in Chicago, Illinois,
*"This distributor carries Fairchild die products only.

Schweber Electronics
7422 Washington Avenue S.
Eden Prairie, Minnesota 55344
Tel: 612-941-5280

Missouri

Hall Mark Electronics
13789 Rider Trail
Earth City, Missouri 63045
Tel: 314-291-5350
Hamilton/Avnet Electronics
13743 Shoreline Court, East
Earth City, Missouri 63045
Tel: 314-344-1200 TWX: 910-762-0684

New Hampshire

Arrow Electronics
1 Perimeter Road
Manchester, New Hampshire 03103
Tel: 603-668-6968

New Jersey

Arrow Electronics
Pleasant Valley Avenue
Moorestown, New Jersey 08057
Tel: 609-235-1900
Arrow Electronics
285 Midland Avenue
Saddle Brook, New Jersey 07662
Tel: 201-797-5800
Hall Mark Electronics
Springdale Business Center
2091 Springdale Road
Cherry Hill, New Jersey 08003
Tel: 609-424-0880
Hamilton/Avnet Electronics
10 Industrial Road
Fairfield, New Jersey 07006
Tel: 201-575-3390 TWX: 710-994-5787
Hamilton/Avnet Electronics
\#1 Keystone Avenue
Cherry Hill, New Jersey 08003
Tel: 609-424-0100 TWX: 710-940-0262
Harvey Electronics
45 Route 46
Pinebrook, New Jersey 07058
Tel: 201-575-3510 TWX: 710-734-4382
Schweber Electronics
18 Madison Road
Fairfield, New Jersey 07006
Tel: 201-227-7880 TWX: 710-480-4733
Sterling Electronics
774 Pfeiffer Blvd
Perth Amboy, New Jersey 08861
Tel: 201-442-8000 Telex: 138-679
New Mexico
Arrow Electronics
2460 Alamo Avenue S.E.
Albuquerque, New Mexico 87106
Tel: 505-243-4566
Bell Industries
11728 Linn Avenue N.E.
Albuquerque, New Mexico 87123
Tel: 505-292-2700 TWX: 910-989-0625

Hamilton/Avnet Electronics
2524 Baylor Drive, S.E.
Albuquerque, New Mexico 87106
Tel: 505-765-1500
TWX: None - use 910-379-6486
, Regional Hq. in Mt. View, California

New York

Arrow Electronics
900 Broadhollow Road
Farmingdale, New York 11735
Tel: 516-694-6800
TWX: 510-224-6155 \& 510-224-6126
Arrow Electronics
20 Oser Avenue
Hauppauge, New York 11787
Tel: 516-231-1000
Arrow Electronics
P.O. Box 370

7705 Maltlage Drive
Liverpool, New York 13088
Tel: 315-652-1000 TWX: 710-545-0230
*Cadence Electronics
40-17 Oser Avenue
Hauppauge, New York 11787
Tel: 516-231-6722
Components Plus, Inc.
40 Oser Avenue
Hauppauge, New York 11787
Tel: 516-231-9200 TWX: 510-227-9869
Hamilton/Avnet Electronics
5 Hub Drive
Melville, New York 11746
Tel: 516-454-6000 TWX: 510-224-6166
Hamilton/Avnet Electronics
333 Metro Park
Rochester, New York 14623
Tel: 716-475-9130
TWX: None - use 710-332-1201
, Regional Ha. in Burlington, Ma.
Hamilton/Avnet Electronics
16 Corporate Circle
E. Syracuse, New York 13057

Tel: 315-437-2642 TWX: 710-541-0959
Harvey Electronics
mailing address
P.O. Box 1208

Binghampton, New York 13902
(shipping address,
1911 Vestal Parkway East
Vestal, New York 13850
Tel: 607-748-8211
Harvey Electronics
60 Crossways Park West
Woodbury, New York 11797
Tel: 516-921-8920 TWX: 510-221-2184

Schweber Electronics

Jericho Turnpike
Westbury, L.I., New York 11590
Tel: 516-334-7474 TWX: 510-222-3660
Summit Distributors, Inc.
916 Main Street
Buffalo, New York 14202
Tel: 716-884-3450 TWX: 710-522-1692
*Minority Distributor

North Carolina

Arrow Electronics
938 Burke Street
Winston Salem, North Carolina 27102
Tel: 919-725-8711 TWX: 510-922-4765
Hamilton/Avnet Electronics
2803 Industrial Drive
Raleigh, North Carolina 27609
Tel: 919-829-8030
Hall Mark Electronics
1208 Front Street, Bldg. K
Raleigh, North Carolina 27609
Tel: 919-823-4465 TWX: 510-928-1831
Pioneer Electronics
103 Industrial Drive
Greensboro, North Carolina 27406
Tel: 919-273-4441

Ohio

Arrow Electronics
7620 McEwen Road
Centerville, Ohio 45459
Tel: 513-435-5563
Arrow Electronics
6238 Cochran Road
Solon, Ohio 44139
Tel: 216-248-3990 TWX: 810-427-9409
Hamilton/Avnet Electronics
954 Senate Drive
Dayton, Ohio 45459
Tel: 513-433-0610 TWX: 810-450-2531
Hamilton/Avnet Electronics
4588 Emery Industrial Parkway
Warrensville Heights, Ohio 44128
Tel: 216-831-3500
TWX: None - use 910-227-0060
Regional Hq. in Chicago, III.
Pioneer Electronics
4800 E. 131st Street
Cleveland, Ohio 44105
Tel: 216-587-3600
Pioneer Electronics
4433 Interpoint Blvd.
Dayton, Ohio 45424
Tel: 513-236-9900 TWX: 810-459-1622
Schweber Electronics
23880 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-464-2970 TWX: 810-427-9441

Oklahoma

Hall Mark Electronics
5460 S. 103rd East Avenue
Tulsa, Oklahoma 74145
Tel: 918-835-8458 TWX: 910-845-2290

Oregon

Hamilton/Avnet Electronics
6024 S.W. Jean Road
Building C, Suite 10
Lake Oswego, Oregon 97034
Tel: 503-635-8157

Pennsylvania

Arrow Electronics
650 Seco Road
Monroeville, Pennsyivania 15146
Tel: 412-856-7000
Pioneer Electronics
261 Gibraltar Road
Horsham, Pennsylvania 19044
Tel: 215-674-4000 TWX: 510-665-6778
Pioneer Electronics
259 Kappa Drive
Pittsburgh, Pennsylvania 15238
Tel: 412-782-2300 TWX: 710-795-3122
Schweber Electronics
101 Rock Road
Horsham, Pennsyivania 19044
Tel: 215-441-0600

Texas

Arrow Electronics
13715 Gamma Road
Dallas, Texas 75234
Tel: 214-386-7500 TWX: 910-860-5377
Arrow Electronics
10700 Corporate Drive, Suite 100
Stafford, Texas 77477
Tel: 713-491-4100 TWX: 910-880-4439
Hall Mark Electronics
12211 Technology Blvd
Austin, Texas 78759
Tel: 512-258-8848
Hall Mark Electronics
11333 Page Mill Drive
Dallas, Texas 75243
Tel: 214-343-5000 TWX: 910-867-4721
Hall Mark Electronics
8000 Westglen
Houston, Texas 77063
Tel: 713-781-6100
Hamilton/Avnet Electronics
2401 Rutland Drive
Austin, Texas 78758
Tel: 512-837-8911 TWX: 910-874-1319
Hamilton/Avnet Electronics
8750 Westpark
Houston, Texas 77063
Tel: 713-780-1771
Telex: HAMAVLECB HOU 76-2589
Hamilton/Avnet Electronics
2111 W. Walnut Hill Lane
Irving, Texas 75062
Tel: 214-659-4111
TWX: 910-860-5929 HAVDLAS IRVG
Schweber Electronics, Inc.
4202 Beltway Drive
Dallas, Texas 75234
Tel: 214-661-5010 TWX: 910-860-5493
Schweber Electronics, Inc.
10625 Richmond, Suite 100
Houston, Texas 77042
Tel: 713-784-3600 TWX: 910-881-1109

Fairchild Semiconductor

Franchised Distributors

Sterling Electronics
4201 Southwest Freeway
Houston, Texas 77027
Tel: 713-627-9800 TWX: 910-881-5042
Telex: STELECO HOUA 77-5299

Utah

Bell Industries
3639 West 2150 South
Salt Lake City, Utah 84120
Tel: 801-972-6969 TWX: 910-925-5686
Hamilton/Avnet Electronics
1585 West 2100 South
Salt Lake City, Utah 84119
Tel: 801-972-2800
TWX: None - use 910-379-6486
Regional Hq. in Mt. View, Ca .

Washington

Arrow Electronics
14320 N.E. 21st Street
Bellevue, Washington 98005
Tel: 206-643-4800 TWX: 910-443-3033
Hamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue, Washington 98005
Tel: 206-453-5844 TWX: 910-443-2449
Radar Electronic Co.. Inc
168 Western Avenue W
Seattle, Washington 98119
Tel: 206-282-2511 TWX: 910-444-2052
Wyle Distribution Group
1750 132nd Avenue N.E. Bellevue, Washington 98005
Tel: 206-453-8300 TWX: 910-444-1379

Wisconsin

Hall Mark Electronics
9657 South 20th Street
Oakcreek, Wisconsin 53154
Tel: 414-761-3000
Hamilton/Avnet Electronics
2975 South Moorland Road
New Berlin, Wisconsin 53151
Tel: 414-784-4510 TWX: 910-262-1182

Canada

Future Electronics Inc.
4800 Dufferin Street
Downsview, Ontario, M3H 5S8, Canada
Tel: 416-663-5563

Future Electronics Inc.
Baxter Center
1050 Baxter Road
Ottawa, Ontario, K2C 3P2, Canada
Tel: 613-820-8313
Future Electronics Inc.
237 Hymus Blvd
Pointe Clăre , Montreal, Quebec, H9R 5C7, Canada
Tel: 514-694-7710 TWX: 610-421-3251

Hamilton/Avnet Canada Ltd.
6845 Rexwood Road, Units 3-4-5
Mississauga, Ontario, L4V 1R2, Canada
Tel: 416-677-7432 TWX: 610-492-8867

Hamilton/Avnet Canada Ltd
210 Colonnade Road
Nepean, Ontario, K2E 7L5, Canada
Tel: 613-226-1700
Hamilton/Avnet Canada Ltd
2670 Sabourin Street
St. Laurent, Quebec, H4S 1M2, Canada
Tel: 514-331-6443 TWX: 610-421-3731
Semad Electronics Ltd.
620 Meloche Avenue
Dorval, Quebec, H9P 2P4, Canada
Tel: 604-299-8866 TWX: 610-422-3048

Semad Electronics Ltd.
105 Brisbane Avenue
Downsview, Ontario, M3J 2K6, Canada
Tel: 416-663-5670 TWX: 610-492-2510
Semad Electronics Ltd.
864 Lady Ellen Place
Ottawa, Ontario K1Z 5M2, Canada
Tel: 613-722-6571 TWX: 610-562-1923

California

Magna Sales, Inc.
3333 Bowers Avenue, Suite 295
Santa Clara, California 95051
Tel: 408-727-8753 TWX: 910-338-0241

Colorado

Simpson Associates, Inc.
2552 Ridge Road
Littleton, Colorado 80120
Tel: 303-794-8381 TWX: 910-935-0719

Illinois

Micro Sales, Inc.
54 W. Seegers Road
Arlington Heights, Illinois 60005
Tel: 312-956-1000 TWX: 910-222-1833

Maryland

Delta III Associates
1000 Century Plaza, Suite 224
Columbia, Maryland 21044
Tel: 301-730-4700 TWX: 710-826-9654

Massachusetts

Spectrum Associates, Inc.
109 Highland Avenue
Needham, Massachusetts 02192
Tel: 617-444-8600 TWX: 710-325-6665

Minnesota

PSI Company
5315 West 74th Street
Edina, Minnesota 55435
Tel: 612-835-1777 TWX: 910-576-3483

Missouri

Micro Sales, Inc.
514 Earth City Plaza, Suite 314
Earth City, Missouri 63045
Tel: 314-739-7446

Nevada

Magna Sales, Inc.
4560 Wagon Wheel Road
Carson City, Nevada 89701
Tel: 702-883-1471

New York

Lorac Sales, Inc.
550 Old Country Road, Room 410
Hicksville, New York 11801
Tel: 516-681-8746 TWX: 510-224-6480
Tri-Tech Electronics, Inc. 3215 E. Main Street
Endwell, New York 13760
Tel: 607-754-1094 TWX: 510-252-0891
Tri-Tech Electronics, Inc.
590 Perinton Hills Office Park
Fairport, New York 14450
Tel: 716-223-5720 TWX: 510-253-6356
Tri-Tech Electronics, Inc.
6836 E. Genesee Street
Fayetteville, New York 13066
Tel: 315-446-2881 TWX: 710-541-0604
Tri-Tech Electronics, Inc.
19 Davis Avenue
Poughkeepsie, New York 12603
Tel: 914-473-3880 TWX: 510-253-6356

Ohio
The Lyons Corporation
4812 Frederick Road, Suite 101
Dayton. Ohio 45414
Tel: 513-278-0714 TWX: 810-459-1803
The Lyons Corporation
4615 West Streetsboro, Suite 203
Richfield, Ohio 44286
Tel: 216-659-9224 TWX: 810-459-1803

Oregon

Magna Sales, Inc.
8285 S.W. Nimbus Avenue, Suite 138
Beaverton, Oregon 97005
Tel: 503-641-7045 TWX: 910-467-8742

Utah

Simpson Associates, Inc
7324 South 1300 East, Suite 350
Midvale, Utah 84047
Tel: 801-566-3691 TWX: 910-925-4031

W ashington

Magna Sales, Inc.
Benaroya Business Park
Building 3, Suite 115
300 120th Avenue, N.E.
Bellevue, Washington 98004
Tel: 206-455-3190

Wisconsin

Larsen Associates
10855 West Potter Road
Wauwatosa, Wisconsiñ 53226
Tel: 414-258-0529 TWX: 910-262-3160

Canada

R.N. Longman Sales, Inc. L.S.I.

1715 Meyerside Drive, Suite 1
Mississauga, Ontario, L5T 1C5 Canada
Tel: 416-677-8100 TWX: 610-492-8976
R.N. Longman Sales, Inc. L.S.I.

16891 Hymus Blvd.
Kirkland, Quebec, H9H 3L4 Canada
Tel: 514-694-3911 TWX: 610-422-3028

Fairchild Semiconductor

Sales Offices

United States and Canada

Alabama

Huntsville Office
500 Wynn Drive, Suite 511
Huntsville, Alabama 35805
Tel: 205-837-8960

Arizona

Phoenix Office
2255 West Northern Road, Suite B112
Phoenix, Arizona 85021
Tel: 602-864-1000 TWX: 910-951-1544

California

Los Angeles Office
Crocker Bank Bldg.
15760 Ventura Blva., Suite 1027
Encino, California 91436
Tel: 213-990-9800 TWX: 910-495-1776
San Diego Office*
7867 Convoy Court, Suite 312
San Diego, California 92111
Tel: 714-279-7961 TWX: 910-335-1512

Santa Ana Office*

1570 Brookhollow Drive, Suite 206
Santa Ana, California 92705
Tel: 714-557-7350 TWX: 910-595-1109
Santa Clara Office*
3333 Bowers Avenue, Suite 299
Santa Clara, California 95051
Tel: 408-987-9530 TWX: 910-338-0241

Colorado

Denver Office
7200 East Hampden Avenue, Suite 206
Denver, Colorado 80224
Tel: 303-758-7924

Connecticut

Danbury Office
57 North Street, \#206
Danbury, Connecticut 06810
Tel: 203-744-4010

Florida

Ft. Lauderdale Office
Executive Plaza, Suite 112
1001 Northwest 62 nd Street
Ft. Lauderdale, Florida 33309
Tel: 305-771-0320 TWX: 510-955-4098
Orlando Office*
Crane's Roost Office Park
399 Whooping Loop
Altamonte Springs, Florida 32701
Tel: 305-834-7000 TWX: 810-850-0152

Georgia

Atlanta Sales Office
Interchange Park, BIdg. 2
4183 N.E. Expressway
Atlanta, Georgia 30340
Tel: 404-939-7683

Illinois

Itasca Office
500 Park Blvd., Suite 575
Itasca, Illinois 60143
Tel: 312-773-3300

Indiana

Ft. Wayne Office
2118 Inwood Drive, Suite 111
Ft. Wayne, Indiana 46815
Tel: 219-483-6453 TWX: 810-332-1507
Indianapolis Office
7202 N. Shadeland, Room 205
Castle Point
Indianapolis, Indiana 46250
Tel: 317-849-5412 TWX: 810-260-1793

Kansas

Kansas City Office
8600 West 110th Street, Suite 209
Overland Park, Kansas 66210
Tel: 913-649-3974

Maryland

Columbia Office
1000 Century Plaza, Suite 225
Columbia, Maryland 21044
Tel: 301-730-1510 TWX: 710-826-9654

Massachusetts

Framingham Office
5 Speen Street
Framingham, Massachusetts 01701
Tel: 617-872-4900 TWX: 710-380-0599

Michigan

Detroit Office*
21999 Farmington Road
Farmington Hills, Michigan 48024
Tel: 313-478-7400 TWX: 810-242-2973

Minnesota

Minneapolis Office*
4570 West 77th Street, Room 356
Minneapolis, Minnesota 55435
Tel: 612-835-3322 TWX: 910-576-2944

New Jersey

Wayne Office*
580 Valley Road
Wayne, New Jersey 07470
Tel: 201-696-7070 TWX: 710-988-5846

New Mexico

Albuquerque Office
North Building
2900 Louisiana N.E. South G2
Albuquerque, New Mexico 87110
Tel: 505-884-5601 TWX: 910-379-6435

New York

Fairport Office
815 Ayrault Road
Fairport, New York 14450
Tel: 716-223-7700
Melville Office
275 Broadhollow Road, Suite 219
Melville, New York 11747
Tel: 516-293-2900 TWX: 510-224-6480
Poughkeepsie Office
19 Davis Avenue
Poughkeepsie, New York 12603
Tel: 914-473-5730 TWX: 510-248-0030

North Carolina

Raleigh Office
1100 Navaho Drive, Suite 112
Raleigh, North Carolina 27609
Tel: 919-876-9643

Ohio

Dayton Office
5045 North Main Street, Suite 105
Dayton, Ohio 45414
Tel: 513-278-8278 TWX: 810-459-1803

Oklahoma

Tulsa Office
9810 East 42nd Street, Suite 127
Tulsa, Oklahoma 74145
Tel: 918-627-1591

Oregon

Portland Office
8285 S.W. Nimbus Avenue, Suite 138
Beaverton, Oregon 97005
Tel: 503-641-7871 TWX: 910-467-7842

Pennsylvania

Philadelphia Office*
2500 Office Center
2500 Maryland Road
Willow Grove, Pennsylvania 19090
Tel: 215-657-2711

Tennessee

Knoxville Office
Executive Square II
9051 Executive Park Drive, Suite 502
Knoxville, Tennessee 37923
Tel: 615-691-4011

Texas

Austin Office
9027 North Gate Blvd., Suite 124
Austin, Texas 78758
Tel: 512-837-8931
Dallas Office
1702 North Collins Street, Suite 101
Richardson, Texas 75081
Tel: 214-234-3391 TWX: 910-867-4757
Houston Office
9896 Bissonnet-2,, Suite 470
Houston, Texas 77036
Tel: 713-771-3547 TWX: 910-881-8278

Canada

Toronto Regional Office
1590 Matheson Blvd., Unit 26
Mississauga, Ontario L4W 1J1, Canada
Tel: 416-625-7070 TWX: 610-492-4311

[^14]
Fairchild
 Sales Offices

Australlia

Fairchild Australia Pty Ltd
Branch Office Third Floor
F.A.I. Insurance Building

619 Pacific Highway
St. Leonards 2065
New South Wales, Australia
Tel: , 02,-439-5911
Telex: AA20053
Austria and Eastern Europe
Fairchild Electronics
A-1010 Wien
Schwedenplatz 2
Tel: 0222635821 Telex: 75096

Benelux

Fairchild Semiconductor
Ruysdaelbaan 35
5613 Dx Eindhoven
The Netherlands
Tel: 00-31-40-446909 Telex: 00-1451024

Brazil

Fairchild Semiconductores Ltda.
Caixa Postal 30407
Rua Alagoas, 663
01242 Sao Paulo, Brazil
Tel: 66-9092 Telex: 011-23831
Cable: FAIRLEC

France

Fairchild Camera \& Instrument S.A.
121, Avenue d'Italie
75013 Paris, France
Tel: 331-584-55 66
Telex: 0042200614 or 260937

Germany

Fairchild Camera and Instrument GmBH
Daimlerstrasse 15
8046 Garching Hochbruck
Munich, Germany
Tel: 089, 320031 Telex: 524831 fair d
Fairchild Camera and Instrument GmBH
Oeltzenstrasse 15
3000 Hannover
W. Germany

Tel: 051117844 Telex: 0922922
Fairchild Camera and Instrument GmBH
Poststrasse 37
7251 Leonberg
W. Germany

Tel: 0715241026 Telex: 07245711

Hong Kong

Fairchild Semiconductor, HK, Ltd.
135 Hoi Bun Road
Kwun Tong
Kowloon, Hong Kong
Tel: 3-440233 and 3-890271
Telex: HKG-531
Italy
Fairchild Semiconducttori, S.P.A.
Via Flamenia Vecchia 653
00191 Roma, Italy
Tel: 063274006 Telex: 63046 , FAIR ROM
Fairchild Semiconducttori S.P.A.
Viale Corsica 7
20133 Milano, Italy
Tel: 296001-5 Telex: 843-330522

Japan

Fairchild Japan Corporation
Pola Bldg.
1-15-21, Shibuva
Shibuya-Ku, Tokyo 150, Japan
Tel: 034008351 Telex: 242173
Fairchild Japan Corporation
Yotsubashi Chuo BIdg.
1-4-26. Shinmachi
Nishi-Ku, Osaka 550, Japan
Tel: 06-541-6138/9

Korea

Fairchild Semikor Ltd.
K2 219-6 Gari Bong Dong
Young Dung Po-Ku
Seoul 150-06, Korea
Tel: 85-0067 Telex: FAIRKOR 22705
mailing address
Central P.O. Box 2806

Mexico

Fairchild Mexicana S.A.
Blvd. Adolofo Lopez Mateos No. 163
Mexico 19, D.F.
Tel: 905-563-5411 Telex: 017-71-038

Scandinavia

Fairchild Semiconductor AB
Svartengsgatan 6
S-11620 Stockholm
Sweden
Tel: 8-449255 Telex: 17759

Singapore

Fairchild Semiconductor Pty. Ltd.
No. 11, Lorong 3
Toa Payoh
Singapore 12
Tel: 531-066 Telex: FAIRSIN-RS 21376

Taiwan

Fairchild Semiconductor Ltd.
Hsietsu Bldg., Room 502
47 Chung Shan North Road
Sec. 3 Taipei, Taiwan
Tel: 573205 thru 573207

United Kingdom

Fairchild Camera and Instrument Ltd
Semiconductor Division
230 High Street
Potters Bar
Hertfordshire EN6 5BU
England
Tel: 070751111 Telex: 262835
Fairchild Semiconductor Ltd.
17 Victoria Street
Craigshill
Livingston
West Lothian, Scotland-EH54 5BG
Tel: Livingston 050632891 Telex: 72629
GEC-Fairchild Ltd.
Chester High Road
Neston
South Wirral L64 3UE
Cheshire, England
Tel: 051-336-3975 Telex: 629701

A Schlumberger Company

Fairchild reserves the right to make changes in the circuitry or specifications at any time without notice. Manufactured under one of The lollowing U.S. Patents. 2981877, 3015048, 3064167, 3108359, 3 ialz260; other patents pending. Fairchild cannot assume responsibility lar use of any circuitry described other than circuitry embodied in a Fairclis product. No other circuit patent licenses are implied.

[^0]: Notes on previous page.

[^1]: Notes on following pages.

[^2]: Notes on following page.

[^3]: Notes on following page.

[^4]: Notes on following page.

[^5]: Notes on following page.

[^6]: (1) For total compatibility and upgradability from the F2732 and ROMs provide a trace to Pin 26

[^7]: Notes on final page.

[^8]: Notes on final page.

[^9]: Notes on final page.

[^10]: Notes on final page.

[^11]: *03 (200 ns Page Mode Operation Guaranteed)

[^12]: All dimensions in inches bold and millimeters (parentheses)

[^13]: - This distributor carries Fairchild die products only

[^14]: * Field Application Engineer

