

«1979 FAIRCHILD CAMERA & INSTRUMENT CORPORATION • 464 ELLIS STREET • MOUNTAIN VIEW, CALIFORNIA 94042 • 415/962-5011 • TWX 910-379-6435

.

.

.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION	1-3
CHAPTER 2 NUMERICAL INDEX O	F DEVICES
CHAPTER 3 SELECTION GUIDES A	ND CROSS REFERENCE
RAMs, PROMs, Selection Guide	
Bipolar Memory Selection Guide	by Function
Bipolar Memory Cross Reference	
CHAPTER 4 GENERAL CHARACTE	RISTICS
Impact of Process Technology or	Bipolar Memory Characteristics 4-3
Memory Cell	
Deed Made	
References	
CHAPTER 5 RAMs	
Memory Organization	
Addressing Techniques	5-3
General Timing Considerations.	5-4
Interface	5-7
Micro-Control Storage using Rea	d/Write Memory5-7
Buffer Memories	
Main Memories	5-7
Conclusion	
Reference	
Applications	6-4
A-Bit Comparator	+ ۵
Hamming Code Concreter/Cheel	xor/Corroctor 6.5
Encoder/Decoder	
8 Bit Binery to 2 Digit Desimal D	ionlay Deceder
Brogrommed Logic Controller	
Address Word Expansion	
BOM Brogramming	
POwer Switching	
References	

TABLE OF CONTENTS (Cont'd)

CHAPTER 7	PRODUCT INFORMATION/DATA SHEETS	7-3
CHAPTER 8	ORDER AND PACKAGE INFORMATION	
Package	Style	
Tempera	ature Ranges	
Example	\$	
Device I	dentification/Marking	
Package	Information	
Hi-Rel P	rocessing	
Hi-Rel P	rocessing Flows	
Package	Outlines	8-8
CHAPTER 9	FAIRCHILD SALES OFFICES, REPRESENTATIVES	
	AND DISTRIBUTORS	

INTRODUCTION

NUMERICAL INDEX OF DEVICES 2

1

7

8

9

SELECTION GUIDES AND CROSS REFERENCE 3

GENERAL CHARACTERISTICS 4

RAMs

PROMs 6

PRODUCT INFORMATION/DATA SHEETS

ORDER AND PACKAGE INFORMATION

FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS

CHAPTER 1

Introduction

.

Chapter 1 INTRODUCTION

At one time, bipolar memories were relegated to a very restricted list of applications. Their bit density was quite low, while their power consumption per bit and their price per bit were quite high. Their only advantage was speed; they were used only where speed was required at any cost.

Today's bipolar memories are still fast but other factors have changed in a most dramatic way. Density has surged to 8K bits per package for ROMs and 4K for RAMs. Power density has tumbled spectacularly. For the popular 1K TTL RAM, for example, power density is below 0.5 mW per bit for the standard version and less than 0.2 mW per bit for the low power version; their respective access times of 25 and 35 ns are still on a downward trend.

And what about prices? System designers' acceptance has led to high volume production, while continuing advances in technology and design innovation have brought chip sizes down to MSI levels. These factors have brought prices down well below 1¢ per bit. Combine this low component cost with the advantages of having the same power supply and I/O characteristics as the logic circuits and the system cost savings are very impressive.

The combination of speed, efficiency, cost effectiveness and design flexibility have made bipolar memories the standards by which other memories are compared.

/

CHAPTER 2

• Numerical Index of Devices

Chapter 2 NUMERICAL INDEX OF DEVICES

DEVICE DESCRIPTION

ECL STATIC MEMORIES

F100414	256 x 1 RAM	7-3
F100415	1024 x 1 RAM — High-Speed	
F100416	256 x 4 PROM	
F100422	256 x 4 RAM	
F100470	4096 x 1 RAM	
F10145A	16 x 4 RAM	
F10405	128 x 1 RAM	
F10410	256 x 1 RAM	
F10411	256 x 1 RAM — Low-Voltage	
F10414	256 x 1 RAM	
F10415	1024 x 1 RAM	
F10415A	1024 x 1 RAM — High-Speed	
F10416	256 x 4 PROM	
F10422	256 x 4 BAM	
F10470	4096 x 1 RAM	
TTI STATIC	MEMORIES	
93410	256 x 1 BAM — Open Collector	7-53
934104	256 x 1 RAM — High-Speed Open Collector	7-53
93/11	$256 \times 1 \text{ RAM} = \text{Open Collector}$	7-58
93411 4	256 x 1 RAM — High-Speed Open Collector	7-58
934112	256 x 4 RAM — Low-Power, Open Collector	7-64
03/12	$256 \times 4 \text{ PAM} = \text{Open Collector}$	7-69
93412	1024 x 1 RAM — Low-Power, Open Collector	7-73
932415	1024 x 1 RAM — Cover Collector	7-78
02/15 0	1024 x 1 RAM — Upen Collector	7_78
93413A	256 x 4 PPOM — Open Collector	7-82
02410		7-95
93419	256 x 1 RAM — Open Collector	7-90
931420	256 x 1 RAM - Low Power 2 State	7-96
932421	250 x 1 RAM 2 State	7-100
93421	250 X 1 RAM — High Speed 2 State	7-100
93421A	256 x 4 DAM – High-Speed, 3-State	7 104
936422	250 X 4 RAM — LOW-FOWER, 5-State	7 110
93422	200 X 4 RAM — 3-State	7-114
931425	1024 x 1 RAM — LOW-POWER, 3-State	7 110
93425	1024 x 1 RAM — 3-State	7 110
93425A		
93427	200 X 4 PROM — 3-State	
93436	512 X 4 PROM — Open Collector	
93438	512 X 8 PROM — Open Collector	
93446	512 X 4 PROM — 3-State	
93448	512 x 8 PROM — 3-State	
93450	1024 x 8 PHOM — Open Collector	
93451	1024 X & PHOM — 3-State	
93452	1024 X 4 PROM — Open Collector	
93453	1024 x 4 PROM — 3-State	
93458	16 x 48 x 8 FPLA — Open Collector	
93459	16 x 48 x 8 FPLA — 3-State	
93L470	4096 x 1 RAM — Low-Power, Open Collector	
93470	4096 x 1 RAM — Open Collector	

Chapter 2 NUMERICAL INDEX OF DEVICES (Cont'd)

DEVICE	DESCRIPTON	PAGE
93L471	4096 x 1 RAM — Low-Power, 3-State	
93471	4096 x 1 RAM — 3-State	
93475	1024 x 4 RAM — 3-State	
TTL DYNAM		·
93481	4096 x 1 RAM — 3-State	
93481A	4096 x 1 RAM — 3-State	
TTL MACRO	OLOGIC MEMORIES	
9403	16 x 4 FIFO Buffer Memory — 3-State	
9406	16 x 4 LIFO Program Stack — 3-Stae	
9410	16 x 4 RAM with Register Stack — 3-State	
9423	16 x 4 FIFO Buffer Memory — 3-State	

CHAPTER 3

- RAMs, PROMs Selection Guide
- Bipolar Memory Cross Reference
- Bipolar Memory Selection Guide by Function

RAMs, PROMs, SELECTION GUIDE

Numbers on shaded lines indicate overall complexity.

BIPOLAR MEMORY CROSS REFERENCE

Pin-for-Pin Equivalents except if otherwise noted.

AMD	FSC	MMI	FSC	SIGNETICS	FSC
AM27LS00	93L420	5300/6300	93417	82\$17	93411
AM27S10	93417	5301/6301	93427	82\$100	93459
AM27S11	93427	5305/6305	93436	82S101	93458
93415A	93415A	5306/6306	93446	82S115*	93448
93415	93415	5340/6340	93438	82\$116	93421A
93425A	93425A	5341/6341	93448	82\$117	93411A
93425	93425	5350/6350*	93452	82\$126	93417
93L415	93L415	5351/6351*	93453	82\$129	93427
		5352/6352	93452	82\$130	93436
INTEL	FSC	5353/6353	93453	82\$131	93446
3106	93421	5530/6530	93411	82\$136	93452
3107	93411	5531/6531	93421	82\$137	93453
3601	93417	5555/6555	93419	82S140	93438
3602	93436	10149	10416	82S141	93448
3604	93438			54/74S200	93421
3605	93452	MOTOBOLA	FSC	54/74S201	93421
3621	93427	MCM7640	93/38	54/74S301	93411
3622	93446	MCM7641	03448	10145	10145A
3624	93448	MCM7642	93452	10149	10416
3625	93453	MCM7643	93453	93415A	93415A
		MCM10144	10410	93425A	93425A
INTERSIL	FSC	MCM10145	101454		
IM5508A	93415A	MCM10145	10/15	TI	FSC
IM5508	93415	MCM10147	10415	SN10144	10410
IM5518A	93425A	MCM10149	10405	SN10145	10145A
IM5518	93425	MCM93415	93415	SN10147	10405
IM5523A	93421A	MCM93415A	93415	SN54/74S201	93421
IM5523	93421	MCM93425	93425	SN54/74S209	93425
IM5533A	93411A	MCM93425A	93425	SN54/74S287	93427
IM5533	93411		00.20	SN54/74S301	93411
IM5603A	93417	NATIONAL	560	SN54/74S309	93415
IM5603	93417	NATIONAL	FSC	SN54/74S387	93417
IM5604	93436	DM/5/3/85/3	93417	SN54/74S470*	93436
IM5605	93438	DM7574/8574	93427	SN54/74S471*	93446
IM5623	93427	DM/382/8582	93411	SN54/74S472*	93448
IM5624	93446	DM54/74S200	93421	SN54/74S473*	93438
IM5625	93448	DM54/74S206	93411	SN54/74S474	93448
		DM54/74S387	93417	SN54/74S475	93438
HARRIS	FSC	DM54/74S287	93427	SN54/74LS200	93L420
HM7610	93417	DM54/74S570	93436	SN54/74S200	93421
HM7611	93427	DM54/74S571	93446	SN54/74S300	93411
HM7620	93436	DM54/74S572	93452	SN54/74S200A	93421 A
HM7621	93446	DM54/74S573	93453	SN54/74S300A	93411A
HM7640	93438	DM77/875295	93438	SN54/74S214	93425
HM7641	93448	DM/1/8/5296	93448	SN54/74S214A	93425
HM7642	93452			SN54/74S314	93415
HM7643	93453	SIGNETICS	FSC	SN54/74S314A	93415
HPROM1024	93417	82509	93419	SN54/74LS214	93L425
HPROM1024A	93427	82\$10	93415	SN54/74LS215	93L425
		82511	93425	SN54/74LS314	93L415
'Functional replacem	ient	82516	93421	SN54/74LS315	93L415

PRODUCT CODE CROSS REFERENCE

	TEMPERATUI	RERANGES	PACKAGES			
MANUFACTURER	MILITARY —55°C to +125°C	COMMERCIAL 0°C to +70°C	CERAMIC DIP	PLASTIC DIP	FLATPAK	
Advanced Micro Devices (AMD)	XXXM	xxxc	D	Р	F	
Fairchild Semiconductor (FSC)	XXXXM	XXXXC	D	P	F	
Harris Semiconductor	XXX-2	XXX-5	1	-	9	
Intel	MXXX	-	D or C	Р	· F	
Intersil	XXXM	XXXC	DE	PE	FE	
Monolithic Memories (MMI)	5XXX	6XXX	D/J	F	, F	
Motorola	105XX/106XX	101XX/102XX	L	Р	F	
National	54XXX/7XXX	74XXX/8XXX	D/J	N	F/W	
Signetics	SXXX	NXXX	F/I	B/N	a	
Texas Instruments (TI)	54XXX	74XXX	J/JE	N	w	

All package designations are suffixes with the exception of Harris and Intel.

BIPOLAR MEMORY SELECTION GUIDE

BY FUNCTION

PART NO.	ORGAN-	OUT- PUTS	ACCESS TIME (TYP)	ACCESS TIME 0 to 70° C	ACCESS TIME - 55 to 125°C	POWER DISS. (TYP)	PKG. (Note 1)	TEMP. (Note 2)	NO. OF PINS	DATA PAGE NO.
			ns	MAX, ns	MAX, ns	mW				
					TTL RAMS					
9410	16 x 4	35	35			375	D,P	C,M	18	7-207
93419	04 X 9 256 x 1	00	35	45	70	450		C.M	20	7-65
93410A	256 x 1	oc	35	45	-	450	D.P	C	16	7-53
93411	256 x 1	oc	45	55	65	475	D,F,P	C,M	16	7-58
93411A	256 x 1	oc	40	45		475	D,P	С	16	7-58
93L420	256 x 1	35	40	45	55	275	D,F,P	C,M	16	7-90
93421	256 x 1	3S	35	50	60	475	D,F,P	C,M	16	7-100
93421A	256 x 1	35	30	40		475	D,P	С	16	7-100
93L421	256 x 1	35	45	90	100	275	D,F,P	C,M	16	7-96
93412	256 x 4	00	35	45	50	4/5	D,F,P	C,M	22**	7-69
931412	256 x 4	36	45	60	/5	250		C.M	22	7-64
931 422	256 x 4	35	45	4J 60	75	250		C M	22	7-110
93415	1024 x 1	oc	30	45	60	475	D.F.P	C.M	16	7-78
93415A	1024 x 1	oc	25	30		475	D,P	С	16	7-78
93L415	1024 x 1	oc	35	60	70	200	D,F,P	C.M	16	7-73
93425	1024 x 1	35	30	45	60	475	D,F,P	C.M	16	7-119
93425A	1024 x 1	35	25	30		475	D,P	С	16	7-119
93L425	1024 x 1	35	35	60	70	200	D,F,P	C.M	16	7-114
93475	1024 x 4	35	35	_		650	D,F	C,M	18	7-168
93470	4096 x 1	00	30	45	60	500	D,F,P	C,M	18	7-164
93471	4096 x 1	35	30	45	60	500	DEP	C.M	10	7-158
93L471	4096 x 1	35	40		_	350	D.F	C.M	18	7-164
93481	4096 x 1	35	90	120	-	50/350	D.P	C	16	7-174
93481A🗆	4096 x 1	3S	90	100	-	50/350	D,P	c	16	7-174
					ECL RAMs					
10145A	16 x 4	-	6.5	9		500	D,F	С	16	7-20
10405	128 x 1	-	11	15	-	470	D,F	c	16	7-25
10410	256 X I		18	30	-	475	D,F,P	C C	16	7-29
10414	256 x 1	_	20	10		500		ĉ	16	7-32
100414	256 x 1		7	10	-	500		с•	16	7-3
10422	256 x 4		7	10		850	D,F,P	č	24	7-49
100422	256 x 4		7	10	-	800	D,F,P	C*	24	7-15
10415	1024 x 1		20	35		475	D,F	C,M	16	7-39
10415A	1024 x 1	-	12	20		475	D,F	С	16	7-39
100415	1024 x 1	-	12	20		500	D,F	C.	16	7-8
10470	4096 x 1		25	35	-	900	D,F	C	18	7-50
100470	4096 x 1		25	35	-	900	D,F	C.	18	7-16
					TTL PROMs					
93417	256 x 4	ос	25	45	60	425	D,F,P	C,M	16	7-82
93427	256 x 4	35	25	45	60	425	D,F,P	C,M	16	7-123
93436	512 x 4	oc	30	50	60	475	D,F,P	C.M	16	7-126
93446	512 x 4	3S	30	50	60	475	D,F,P	C,M	16	7-132
93438	512 x 8	oc	35	55	70	650	D,F,P	C,M	24	7-129
93448	512 x 8	35	35	55	70	650	D,F,P	C.M	24	7-135
93452	1024 X 4	20	35	55	70	650		C.M	18	7-144
93455	1024 X 4	35	35	55	70	650		C,M	24	7-138
93451	1024 x 8	35	35	55	70	650	DEP	C.M	24	7-138
							2010	•		
					ECL PROMs					
10416	256 x 4	-	11	20	-	500	D,F	С	16	7-46
100416	256 x 4		11	20		500	D,F	C.	16	7-12
					TT: 50.4					
02459	16 . 40 0	00	0E	45	IIL FPLA	750	D E D	~ **	20	7 140
93458	16 x 48 x 8	20	25	45	65 65	750		C,M	28	7-149
30403	10 4 40 4 8	33	20	40	65	/ 50	U,F,P	C.W	20	/-149
					TTL LIFOs					
9406	16 x 4	35			-	500	D,P	С	24	7-196
					TTL FIFOs					
9403	16 x 4	35	-		-	575	D,P	c	24	7-182
9423	64 x 4	35	Second Str.			750	D,P	С	24	7-211

Note I: D = Ceramic DIP, F = Flatpak, P = Plastic DIP Note 2: M = Mil. Temp. Range —55 to +125°C, C = Commercial Temp Range 0 to +70°C (Plastic DIP available only in Comm.Temp. Range). *100K ECL" C"Temperature Range 0° C to +85° C. **24-Pin in Flatpak DI3L Dynamic RAM

CHAPTER 4

- Impact of Process Technology on Bipolar Memory Characteristics
- Memory Cell
- Input Characteristics
- Output Characteristics
- Timing Parameters
- Read Mode
- Write Mode
- Reliability
- References

Chapter 4 GENERAL CHARACTERISTICS

IMPACT OF PROCESS TECHNOLOGY ON BIPOLAR MEMORY CHARACTERISTICS

Perhaps the most important characteristics of a memory chip are the number of bits, the speed capability, the power dissipation and the capability of being produced economically. In early bipolar memory chips, the number of bits was severely restricted by both chip area, for economical production, and by the power required to operate as usable speeds. These restrictions were eased dramatically by the Isoplanar (I, II) processes, developed by Fairchild and announced in 1971. A 1K TTL RAM, not even practical with conventional processes at that time, was introduced in 1972. Its physical size has been reduced 70% through continued development, as indicated in *Figure 4-1*. Performance has also been improved, since the address access time has been cut in half.

Figure 4-2 compares a conventional Planar* transistor with Isoplanar and Isoplanar II transistors. The Isoplanar process substitutes thermally grown oxide for the p-type diffusions that isolate active elements of conventional bipolar devices. Notice that the oxide eliminates the base-to-isolation separation required in the conventional transistor, and also allows the base and collector contact openings to abut the isolation. The area is cut in half and the reduction in parasitic capacitance reduces propagation delays.

^{*}Planar is a Fairchild patented process.

Further advances led to the Isoplanar II process, which cut the transistor area by half again and reduced parasitic capacitance even further. Isoplanar transistors have a gain-bandwidth of 5 GHz, as shown in *Figure 4-3*, which represents a factor-of-three improvement.

MEMORY CELL

Memory cell design is based on a simple cross-coupled latch, as shown in *Figure 4-4*. In the standby condition, *i.e.*, cell not addressed or chip not selected, the voltage drop across the resistors is less than a junction voltage and the diodes do not conduct. Only a few tens of microamperes flow and thus the standby power is very low. When a cell is selected, however, the diodes conduct and provide extra current to help charge stray capacitance and thus reduce propagation delays. This method of power focusing keeps the overall dissipation low and the performance high by using power only where it is needed.

The impact of Isoplanar and Isoplanar II on cell size, illustrated in *Figure 4-5*, has been even greater than on chip size. More recent developments demonstrate even greater reductions. In the 93481 4K Dynamic RAM⁴, for example, the cell size is only 1 square mil. *Figure 4-6* shows this cell schematically and in cross-section. The design uses Isoplanar integrated injection logic (I³L)[™] technology, which opens up new vistas for innovative designs.

4-4

INPUT CHARACTERISTICS

The decoding logic of bipolar memories uses ECL circuitry since this eliminates any need for gold doping to control storage time, while the relatively small voltage swing of ECL enhances the delay-power product. TTL memories use a TTL-to-ECL converter such as that shown in *Figure 4-7*. When the input signal is LOW, Q2 conducts the current from the current source transistor Q3. As the input signal rises through the 1.5 V level, Q1 collector voltage goes LOW. As the input signal goes through this transition region, there is a slight break in the input current-voltage characteristic, as shown in *Figure 4-8*. This change represents the base current required by Q1 as it turns on. This base current is a fixed amount since Q1 emitter current is fixed by Q3 and R2. Thus as the input voltage continues to rise above this transition region, the input I-V characteristic again has the slope of R1. As the input signal rises above 2.1 V, current from R1 is diverted away from D2; it starts flowing through D3 and the diode string that supplies the bias voltage for Q2 base. Those accustomed to TTL characteristics should note that the point where the input current goes to zero is not the threshold; rather, the threshold is identified by the slight break in the I-V characteristic. A clamping diode is provided on each input to limit undershoot and ringing. It is intended only for transient currents and should not be used for steady-state clamping.

OUTPUT CHARACTERISTICS

The ECL memories have emitter-follower outputs with the same characteristics as ECL logic circuits. To simplify data bussing, no pull-down resistors are used on the chip. TTL memories have either an open collector output or a 3-state output. Figure 4-9 is a partial schematic of a 3-state output. The $\Omega 6 - \Omega 7$ Darlington provides the pull-up function for the HIGH state, while Q8 is the pull-down transistor, with Q5 providing current gain. Diode D1 clamps Q8 out of saturation. On some of the later designs, a Schottky diode is used for clamping. The pull-up and pull-down circuits are driven from the complementary outputs of the Q3-Q4 current switch, which in turn is driven by signals from the sense amplifier. In the nonselected mode, the logic of the sense amplifier turns off the pull-down transistor. To achieve the high impedance condition of the 3-state outputs the pull-up circuit is turned off by the Q1-Q2 current switch, which in turn is activated by signals derived from the Chip Select and Write Enable logic.

Diode D2 limits overshoot and ringing, and also protects Q8 from any overvoltage condition on the bus lines. An external pull-up resistor is required for the open collector output to establish the HIGH state voltage. The minimum load resistor value is determined by the current-sinking capability of the output. The maximum value is determined by the leakage currents of OR-wired outputs as well as driven inputs, which must be supplied to hold the outputs at VOH. The upper and lower limits on the pull-up resistor are determined by the following equation.

V _{CC} (min)	/ n /	V _{CC(min)} [–] V _{OH}
$I_{01} = FO(1.6)$	≤ κ ^Γ <	n (ICEX) + FO (0.04)

R₁ is in kΩ n = number of wired-OR outputs tied together FO = number of TTL Unit Loads (UL) driven I_{CFX} = Memory Output Leakage Current V_{OH} = Required Output HIGH Level at Output Node IOI = Output LOW Current

Note that the worst-case ac parameter limits shown in the data sheets apply over the recommended operating temperature and supply voltage ranges for the various devices.

Access times of bipolar memories have proven to be quite insensitive to the pattern of stored information. Extensive investigation has shown that variations, if any, in the access time of a particular cell are related only to the status of surrounding cells or to the status of cells in the same row or column. These relationships, which were predictable, can be appreciated by considering the symbolic representations of *Figures 4-10* and *4-11*. In *Figure 4-10*, the central cell abuts eight others and there is always a possibility of crosstalk due to a random defect. The access time of a particular cell can be influenced by cells in the same row or column because of loading effects on the common drivers (see *Figure 4-11*).

From these investigations, there have evolved some very effective ac test patterns in which the access time of each cell is tested as a function of the status of cells in the same row and column and the adjacent corner cells. For an n-bit memory the number of tests is $2n\sqrt{n}$. This method has proven to be fully as effective at detecting out-of-tolerance conditions as the exhaustive method of testing each cell as a function of all other cells in the memory, *i.e.*, N² testing, yet consumes an order-of-magnitude less time; this is a very important cost factor in large memories.

Output is guaranteed to be valid:	wo	DRST CASE M	ΑΧΙΜυΜ Τ	IMES
• t _{AA} after last address change		93410A	93415	F10405
 t_{ACS} after beginning of Chip Select Dutput is guaranteed to be inactive (open): t_{BCS} after end of Chip Select 	^t AA ^t ACS	45 ns 25 ns	45 ns 35 ns	15 ns 8 ns

Dood Mode

TIMING PARAMETERS

Since ROM and PROM parameters are the same as those of a RAM in the Read mode, a discussion of RAM parameters covers all three types. Compared to other technologies (MOS and core) the timing requirements of bipolar RAMs are very simple and can be explained in only a few statements. A RAM can be in either Read or Write mode, determined by the level on the Write Enable input. Usually a LOW level means Write, a HIGH level means Read.

READ MODE

In the Read mode, there are two important system parameters.

- Read Access Time
- Read Recovery Time

Read Access Time

Read Access Time is the time after which RAM data output is guaranteed to be valid. This time is specified as t_{AA} , address access time, and t_{ACS} , chip select access time. When the Address inputs have been stable for the worst-case (longest) value of t_{AA} and Chip Select has been active for the somewhat shorter worst-case value of t_{ACS} , the data outputs are guaranteed to represent the correct information.

Read Recovery Time

After deselect, the RAM outputs require some time to reach the inactive state; this time is called t_{RCS}, chip select recovery time. After the worst-case (longest) value of this time, the outputs are guaranteed to be inactive.

WRITE MODE

In the Write mode (Write Enable active, usually LOW) there are two different and almost independent considerations.

- The information must reliably be written into the addressed location.
- In the process of achieving this, no other locations may be disturbed.

These two considerations put separate constraints on the timing, and obviously both must be met by the system design.

Write Operation

The Write operation occurs during the logic AND condition of Write Enable and Chip Select. Again, Write Enable is usually active LOW and Chip Select is often a multi-input AND gate with some inputs active LOW. This WE-CS condition must last for a minimum length of time, specified as t_W , minimum required write pulse width. It does not matter in which sequence this AND condition is established, whether WE is there first and CS comes later, or vice versa, or whether they arrive or disappear simultaneously. It is the longest value of this minimum required write pulse width that is the critical, worst-case value. Unfortunately, data sheets list it in the Min column.

Backtracking in time from the end of the write pulse, the Address inputs must be stable for t_A and the Data input must be stable for t_D and data must also remain stable for t_{WHD} , data hold time during write, after the end of the write pulse. Obviously the data input may change during the early part of a sufficiently long write pulse. It is the data present during the final t_D of the write pulse that ends up in the addressed cell.

The second important consideration is that no other locations are unintentionally disturbed during the write operation. To guarantee this, the Address inputs must have stabilized t_{WSA} , address write set-up time, before the beginning of the write pulse, and they must remain stable for t_{WHA} , address write hold time after the end of the write pulse. This write pulse is, again, the AND condition of Write Enable and Chip Select.

Write Recovery Time

The Write Recovery Time, tWR, is the period during which the outputs remain deactivated after the end of a write pulse. This recovery time is of no consequence to the system designer since it is shorter than, and hidden in, the address access time of the subsequent read operation.

RELIABILITY

Accelerated stress testing of Fairchild bipolar memories, both ECL and TTL, totaling more than 12 million device hours in mid 1976, has demonstrated a failure rate of 0.29% per 1000 hours at +175°C. Using the Arrhenius⁵⁻⁷ model assuming an activation energy of 1.1 eV (*Figure 4-12*), this extrapolates to a failure rate of less than 0.001% per 1000 hours at a junction temperature of +100°C. Experience in large main-frame applications is proving that the predicted low failure rates are being achieved in actual system usage.

Reliability testing started with circuits in the solder-seal ceramic package with side-brazed leads. More recently, Fairchild bipolar memories have been qualified in the glass-seal CERDIP and in the plastic DIP packages. Copies of the latest reliability reports are available from your local Fairchild representative or through Bipolar Memory Marketing, MS 20-1050, 464 Ellis Street, Mountain View, CA 94042.

REFERENCES

- Peltzer, D., Herndon, B., "Isolation Method Shrinks Bipolar Cell for Fast Dense Memories," <u>Electronics</u>, March 1, 1971.
- Baker, W., Herndon, W., Longo, T. and Peltzer, D., "Oxide Isolation Brings High Density to Production Bipolar Memories," Electronics, March 29, 1973.
- 3. Dhaka, V., Muschinske, J. and Owens, W., "Subnanosecond Emitter-Coupled Logic Gate Circuit Using Isoplanar II," <u>IEEE Journal of Solid-State Circuits</u>, Vol. SC-8, No. 5, October 1973.
- 4. Sander, W. and Early, J., "A 4096 x 1 (I³L) Bipolar Dynamic RAM," <u>ISSCC Digest of Papers</u>, Vol. XIX, 1976.
- 5. Thomas, R.E., "When is a Llfe Test Truly Accelerated. " Electronic Design, Jan. 6, 1964.
- 6. Thomas, R.E., Gorton, H. Clay, "Research Toward a Physics of Aging of Electronic Component Parts," Physics of Failure in Electronics, Vol. 2, RADC Series in Reliability, Air Force.
- 7. Zierdt, C.H., Jr., "Procurement Specification Techniques for High-Reliability Transistors," Bell Telephone Labs, Allentown, Pennsylvania.

INTRODUCTION
NUMERICAL INDEX OF DEVICES
SELECTION GUIDES AND CROSS REFERENCE 3
GENERAL CHARACTERISTICS
RAMs 5
PROMs
PRODUCT INFORMATION/DATA SHEETS 7
ORDER AND PACKAGE INFORMATION
FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS 9

CHAPTER 5

- Memory Organization
- Addressing Techniques
- General Timing Considerations
- Interface
- Micro-Control Storage using Read/Write Memory
- Buffer Memories
- Main Memories
- Conclusion
- Reference

Chapter 5 RANDOM ACCESS MEMORIES

A RAM is an array of latches with a common addressing structure for both reading and writing. A Write Enable input defines the mode of operation. In the Write mode, the information at the Data input is written into the latch selected by the address. In the Read mode, the content of the selected latch is fed to the Data output.

All semiconductor memories have non-destructive readout as opposed to the destructive readout of most magnetic core memories. With the exception of the 93481 I³L[™] element, bipolar RAM operation is static, *i.e.*, the information is stored in bistable transistor cells (latches) and requires no refreshing such as required in some popular MOS RAMs using capacitor storage. Data storage in all semiconductor read/ write memories is volatile; data can only be stored as long as power is uninterrupted. In contrast, a ROM offers non-volatile storage; data is retained indefinitely, even when power is shut off.

Bipolar memories are an integral part of a large number of digital equipment designs. From a tenuous beginning of 16 bits per package, bipolar RAMs have advanced to 4K bits per package. Performance figures also show an interesting comparison: the 1K TTL RAM, which has been in volume production for several years, has a typical access time of 30 ns versus 25 ns for the early 16-bit device; typical power consumption is 475 mW versus 250 mW. These remarkable advances are the reasons that bipolar memories are so widely accepted by system designers.

MEMORY ORGANIZATION

Memory subsystems are generally identified by number of words, number of bits and function. For example, a 1024 x 16 RAM is a random access read/write memory containing 1024 words of 16 bits each. Semiconductor memory device organizations follow the same rule. Since the advent of LSI allowing densities of hundreds of gates on a chip, most memory devices contain address decoders, output sensing, and various control and buffer/driver functions in addition to the array of storage cells. High density RAM devices tend to be organized n words by one bit to optimize lead usage (see logic symbols on following pages). ROM devices tend toward n words by four or eight bits to reduce cost of truth table changes.

ADDRESSING TECHNIQUES

Addressing (word selection) in a semiconductor memory subsystem consists of two parts. First, a given device or group of devices must be selected; second, a given location in a device or group of devices must be selected. Device selection may be accomplished by linear select using a binary-to-n decoder feeding the chip select function on n chips, or by coincident select using two binary-to- \sqrt{n} decoders and two chip selects on each device. When n is large, linear select requires excessive hardware. For example, if n = 64, linear select requires four 1-of-16 decoders and a 1-of-4 decoder, or nine 1-of-8 decoders; whereas co-incident selection can be accomplished with two 1-of-8 decoders with final decoding at the two input chip select gates included on the memory devices. Selection of a given location on a chip is accomplished by connecting the binary address lines directly to the chip. In summary, 64 256 x 1 RAMs in a 16K x 1-bit array using coincident selection requires 14 address lines, as follows: eight connected to 2^o through 2⁷ inputs on all chips (using necessary drivers), thre $\frac{1}{2}$ eding a 1-of-8 decoder to the CS1 inputs, and three feeding a 1-of-8 decoder connected to the CS2 inputs.

For maximum control, predictability and flexibility, an address counter should have certain characteristics—fully synchronous counting, synchronous parallel entry, a means of eliminating any ambiguity as to its mode of operation, and capability for synchronous expansion. A few examples are the 9316 and the 9LS161 for TTL; examples for ECL are the F10016 and F10136. System designers should also bear in mind that decoder outputs are subject to spikes when the inputs are changed. This can cause momentarily false Address or Chip Select signals. Memory system timing should allow for the specified maximum propagation delays for the decoders involved.

GENERAL TIMING CONSIDERATIONS

The various ac characteristics of memory chips are discussed in the preceding section. These delays, setup times and hold times must be combined with those of the other logic elements of a memory system to determine the limitations on the basic timing signals. The scratchpad memory shown in *Figure 5-1* offers a simple example for discussion. For the sake of simplicity all of the elements are shown as blocks. Also, in this form, elements from any circuit family can be assumed.

For this discussion, elements of the F10K ECL family are assumed. *Table 5-1* identifies the circuits and lists only the ac parameters that are pertinent to the worst-case timing limits to be explored. The signals in *Figure 5-1* are shown in the timing diagram of *Figure 5-2*, except for the parallel data inputs and mode control signals for the address counter. These are assumed to be in the desired state at time zero. The signals in *Figure 5-2* are listed in the order of occurrence, and the indicated numerical values are cumulative from time zero.

FUNCTIO	THROUGHPUT DELAY, ns		SET-UP/HOLD TIMES, ns		
			^t p(max)	^t s(max)	^t h(max)
ADDRESS COUNTER	F10136 HEXADECIMAL	1.3	2.9	-	-
CHIP SELECT DECODER	F10101 QUAD OR/NOR GATE	1.0	2.9	-	-
DATA OUTPUT LATCHES	F10153 QUAD LATCH	1.0	5.4	2.5	1.5
MEMORY CHIPS	F10145A 16 x 4 RAM	ACCESS TIMES			
READ MODE:	Address Access	^t AA(min) 4.5	^t AA(max) 9.0		
	Chip Select Access	^t ACS(min) 3.0	^t ACS(max) 6.0		
WRITE MODE:	Address Set-up/Hold			^t WSA 3.5	^t WHA 1.0
	Chip Select Set-up/Hold			^t WSCS 0.5	^t WHCS 0.5
,	Data Set-up*/Hold (*for 4 ns write pulse, t _w)			^t WSD 4.5	^t WHD -1.0
Tabl	e 5-1 Worst-case Parameters f	or 64 x 4 EC	L Scratchna	4	

5

One important assumption is that the Address Clock, the Latch Enable and, in the Write mode, the Write Enable all have the same waveform. This infers that all three signals are derived from the same basic function, which is perhaps the least complicated approach. This commonality also means that factors from both the Read and Write modes play a part in shaping this basic function. These factors become evident by following through the cycles in the timing diagram.

In the Read mode a new address appears at 1.3 to 2.9 ns, corresponding to the delay limits of the F10136 counter. The F10101 gate delay is between 1.0 and 2.9 ns, which thus makes the net Chip Select delay between 2.3 and 5.8 ns. The earliest time that new data can appear is 5.8 ns, determined by the minimum address counter delay plus the minimum address access time of the memory chips. The latest time for new data to appear is also determined by the counter and the address access, amounting to a total of 11.9 ns. The F10153 latch is transparent when the Enable is LOW; it is latched when the Enable goes HIGH. The latch has a maximum set-up time of 2.5 ns from Data to Enable, which means that the Latch Enable signal can go HIGH no earlier than 14.4 ns. Thus, under the commonality assumption, the cycle time can be no less than 14.4 ns for either Read or Write, since the Address Clock and, in the Write mode, the Write Enable go HIGH at that time.

Limitations on the time that the Address Clock/Latch Enable/Write Enable can go LOW are determined in the Write mode, starting from 14.4 ns on the Write Enable and working backwards. The write pulse width requirement of 4 ns means that the Write Enable can go LOW no later than 20.4 ns. The maximum address set-up time (for the F10145A) of 3.5 ns added to the address counter delay of 2.9 ns means that Write Enable must not go LOW before 6.4 ns, to avoid writing into the wrong location. Thus the Address Clock/Latch Enable/Write Enable must go LOW between the times 6.4 and 10.4 ns.

The chart shows that the Data In should be stable no later than 9.9 ns. This is based on the data set-up time of 4.5 ns, which is measured backwards from the end of the write pulse, *i.e.*, from the time Write Enable goes HIGH. It is important to note that on some data sheets the data set-up time is specified with respect to the beginning of the write pulse. In these cases, adding the specified minimum set-up time to the specified minimum write pulse duration will give the correct figure to use for minimum Data In set-up time with respect to the end of the write pulse, regardless of how long the write pulse duration might be in a given application. In this regard the memory behaves like any D-type latch, wherein the D input can change randomly except for a certain period of time (the set-up time) preceding the active edge of the enable.

Referring again to the timing diagram, if the write pulse starts at 6.4 ns the Data In must still be stable from 9.9 ns onward. Note in *Table 5-1* that the data hold time is -1.0 ns, meaning that the data can change 1 ns before the end of the write pulse without affecting the reliability of the Write operation. Accordingly, the timing diagram shows that Data In can change any time after 13.4 ns.

Notice in the Read mode that the data out of the latches is assuredly stable after 17.3 ns. Thus if the basic cycle time is 14.4 ns, this data can be sampled after 2.9 ns of the next cycle. Further, this data remains stable until the Latch Enable next goes LOW, plus 1.0 ns.

At the expense of more complex timing signal generation, shaping the Address Clock, Latch Enable and Write Enable separately can allow faster operation. For example, the second positive-going edge of the Address Clock can occur at 10.6 ns rather than 14.4 ns. The address counter output would then change no sooner than at 11.9 ns, with the Chip Select following no sooner than at 12.9 ns. The minimum delay from Chip Select to Data Out of a memory chip is 3.0 ns. Thus the Data Out could change no sooner than at 15.9 ns, which agrees with the timing requirement shown in *Figure 5-2*. Thus the opportunity exists to reduce the read cycle time by 3.8 ns by offsetting the Latch Enable with respect to the Address Clock. Similarly, in the write mode the Write Enable pulse can begin (go LOW) at 6.4 ns and end at 10.6 ns, which would make the Write Enable coincide with the revised Address Clock. These modifications would naturally have an effect on the timing requirements of the Data In signals and on the sampling window at the latch outputs.

INTERFACE

In most bipolar-memory applications, the devices are combined with other TTL or ECL logic elements into a subsystem such as a CPU buffer controller or other function. The memory device interface is at standard logic levels, and the additional hardware required is usually limited to pull up resistors at the outputs of most TTL memories, and load resistors or termination resistors for the ECL memories.

In some cases, the application may require location of the memory several feet or more away from the other functions in the subsystem. The general subject of data transmission and the effects of cable length and bandwidth on maximum data rates is discussed in the Fairchild Interface Handbook, which also discusses interface elements for TTL. Line drivers and receivers for ECL are discussed in the Fairchild ECL Handbook and subsequent data sheets.

MICRO-CONTROL STORAGE USING READ/WRITE MEMORY

Early in semiconductor memory development, a significant amount of attention was devoted to Read-only memories for micro-control storage. In many cases, difficulties were encountered in developing firmware for new machines. These difficulties involved turnaround time of weeks and months in making firmware changes, with costs ranging from tens to thousands of dollars per change. One solution to these problems is to use RAMs for micro-control storage. Firmware may then be changed almost instantaneously, thus greatly accelerating the development program and eliminating cost and downtime for pattern changes. If desired, conversion from RAM to ROM can be made at the preproduction phase. Availability of 1024-bit bipolar RAMs such as the 93415 and 10415 has prompted designers to consider this approach.

BUFFER MEMORIES

Buffer memories are small to medium memories inserted between I/O interfaces and CPU, between main memory and CPU, or at other locations where fast intermediate storage is required. The availability of 256 and 1024-bit RAM devices has resulted in many bipolar buffer memory designs.

MAIN MEMORIES

Main memories vary from 4K to 16K bits in minicomputers up to 256K or more words in large mainframes. Before the availability of bipolar 1024 RAMs, system designers were limited to low-cost core with 1 to 2 μ s access, expensive core with 400 ns to 1 μ s, or MOS with > 200 ns access. Some n-channel MOS products offer faster access time. Present bipolar RAM technology allows implementing large main memories with 50 to 80 ns worst case maximum access times for the subsystem. A Read-Modify-Write cycle of less than 100 ns is possible.

Typical Applications

Word Expansion

The 93410 may be used in memories requiring expansion of both the number of words and number of bits. A 512 x 2 array and the necessary signal interconnects for accomplishing expansion is shown in *Figure 5-3*. The number of words may be expanded to 4096 by using only one 9321 dual 1-of-4 decoder.

256-Word by 8-Bit Buffer Memory System

A 256-word by 8-bit buffer memory based on the 93410 is shown in *Figure 5-4*. Input and output data latches and a modulo 256 address counter may be implemented with MSI devices such as the 9308 quad latch and 9316 binary counter.

Last In/First Out (LIFO) Push-Down Stack Memory

A Last In/First Out (LIFO) push-down stack memory, 254 words deep by 4-bits wide, is shown in *Figure 5-5*. This synchronous memory system accepts data on four parallel inputs ($I_0 - I_3$) and, controlled by two independent inputs (Read and Write), presents the "youngest" word that has not yet been read on the four outputs ($Q_0 - Q_3$). It also provides status information on four outputs: Full, Almost Full, Empty, Almost Empty.

- ----

Fig. 5-5. LIFO Push-Down Stack Memory

Operation is synchronous and edge-triggered on Data as well as Control inputs. It depends on the state of the $I_0 - I_3$, Read and Write inputs, and a setup time (\approx 30 ns) before the rising edge of the clock that should not exceed 15 MHz at 50% duty cycle.

There are four different modes of operation:

W • \overline{R} = Write – I is shifted into Q, the old information in Q is shifted into R, the address counter is incremented, and on the next clock Low period, the content of R is written into the new memory location.

 $W \bullet R = Read - Data in the wired-OR D is shifted into Q, the information in R is maintained, the address counter is decremented. If the previous clock cycle had executed a Write instruction, then D is controlled by the register R. If the previous clock cycle had been one of the other three modes, then D is controlled by the memory.$

 $W \bullet R =$ Read and Write Simultaneously – Input data is shifted into Q; register R and address counter are maintained.

 $\overline{W} \bullet \overline{R} = Do Nothing - No change.$

The control outputs allow normal computer "handshaking", and also supply a warning signal one operation in advance.

The synchronous up/down address counter is built as a shift register counter. This is both faster and more economical than using 9366 binary counters. The non-binary count sequence is no drawback in this application, and the sacrifice of two of the 256 states is insignificant.

Bipolar RAM Design Example

The best way to illustrate the ease of design and other advantages of bipolar static RAMs is to give a design example. It is assumed that the designer needs a modular rack-mounted system to cover a broad range of applications. Since all parts of the system—components, architecture, packaging, modularity, testing, etc.,—are closely interrelated, they have equal importance and must all be considered. Consequently, for this design, the packaging for example assumes the same importance as the circuit considerations. No part of the design should be treated separately.

Memory Modularity Basic Memory Cards: (*Figure 5-6*)

One with 8K words and 8 or 9 bits, *i.e.*, one design with last row not inserted, for 8 bits.

One with 4K words and 8 or 9 bits, *i.e.*, one 8K design may be used with 93L415s for 4K words not inserted and for 8 bits, one row is not inserted.

Basic Memory Module: (*Figure 5-7*)

One memory card (basic) One address drive card One backplane Power Card cage (rack mount) Expanded Memory Module: (*Figure 5-7*)

Modular from one to eight memory cards One address drive card One backplane Power Cables Card cage (rack mount)

Memory Size Range Using Multiple Cards in One Module

Memory Size Range Using Multiple Modules

Packaging system

Memory and Address Boards: Two-sided printed circuit boards with plated holes.

Backplane: A two-sided printed circuit board.

Memory Board Connectors: Conventional pc board connectors which permit wire wrap on the back side. All memory address and control interconnections are directly on the backplane.

Byte-oriented systems: All wiring on the backplane; no wire wrap needed.

Word-oriented systems: The address and control lines remain on the backplane. The data input and data output cables to the computer are brought directly to the pins on the respective memory cards.

Power Distribution: Power conducted along the backplane and distributed to pins on each pc card. Power distribution bars for ground and the one voltage, +5 V, augment the copper on the backplane.

Cooling: Forced air cooling, 400 or more feet per minute flowing between the cards. Stacks of memories up to four deep require about 500 feet per minute.

Card Cage: Available standard catalog-item card guides.

The Basic Memory Card

Figure 5-6 shows the layout of the components on the basic memory card. The contact pins are located on the left. The resistors terminating the input data cables from the computer are in the first component column. Next is a column of IC's with the following functions.

5

		r		
ITEM	NO. PACKAGES	SIGNALS	FIGURE	FUNCTION
9504	2	A ₀ - A ₉ WE	5-8 5-10	Drive In
93S157	1	DOUT1 - DOUT3	5-12	Output Latches
9504	1	Data Strobe D _{IN1} [—] D _{IN3}	5-12 5-11	Drive In
9S05	1	DOUT1 - DOUT3	5-12	Drive Out
93S157	1	DOUT4 - DOUT6	5-12	Output Latche
9504	1	D _{IN4} - D _{IN9}	5-11	Drive In
9S05	1	DOUT4 - DOUT9	5-12	Drive Out
93S157	1	DOUT7 - DOUT9	5-12	Output Latche

		SIGNAL	SIGNAL	
RÓW	ITEM	COL. 2	COL. 3	FIGURE
Тор	9504	WE	A1)	
		AO	Ag	5-8
		A ₂	A5	5-10
		A ₄	A7	5-13
		A6	Ag	0.0
		A8		
Bit 1	93L415	0-1K	1K-2K	5-13
Bit 2	93L415	0-1K	1K-2K	
Bit 3	93L415	0-1K	1K-2K	
Bit 4	93L415	0-1K	1K-2K	
Bit 5	93L415	0-1K	1K–2K	
Bit 6	93L415	0-1K	1K-2K	
Bit 7	93L415	0-1K	1K-2K	
Bit 8	93L415	0-1K	1K–2K	
Bit 9	93L415	0–1K	1K-2K	

The memory columns are organized in pairs. The 9S04 inverters are used at the top to give drive to each pair of columns. The schematic of this drive/fan-out is illustrated in *Figures 5-8* and *5-10*. Since there are six inverters per package and 11 lines to be driven, *i.e.*, A₀ through A₉ plus WE, two 9S04 hex inverter packages are sufficient. The input characteristics of the 93L415 1024-bit RAM are such that two columns represent only 4.1 unit loads for the 18 inputs. The four inverters represent 5 unit loads to the driver.

The same arrangement is used to provide four column pairs. The additional pairs implement memory words as follows:

Pair #2: 2K-3K and 3K-4K Pair #3: 4K-5K and 5K-6K Pair #4: 6K-7K and 7K-8K

A 93S138 1-of-8 decoder, located under column 4 of the array, performs the address selection to choose the column representing 1K of the possible 8K words of memory. As illustrated in *Figure 5-9*, the decoder drives each column separately to control chip selection. Addresses A₁₀, A₁₁, and A₁₂ as well as E₁, *i.e.*, memory select, are the inputs controlling the decoder.

When arranged this way, all lines on the memory board are short enough so that terminating resistors and controlled impedance lines are unnecessary. The longest line running from the address drive to the last column is approximately eight inches. The vertical lines driving the array start at row 1, split into a "U" shape and drive two columns with branches about five inches long. The 1-of-8 decoder drive lines vary from the five to eight inches long. TTL system operate satisfactorily in this type of packaging environment.

Memory Module Packing

Figure 5-7 shows one possible layout for a memory module. The backplane on the left is used to connect the address card with one to eight memory cards. For byte-oriented systems, the cables to other equipment are connected to the backplane at one end. The cable termination and fan-out drive circuits are contained on the address and drive board. For word-oriented systems, the address and control lines are routed to one end of the backplane and through the address board to drive the memory cards. However, due to the large number of cables involved, the data input and data output lines should be attached, *i.e.*, wire wrap or other means, directly to the data input and output pins of each memory card. The cards are designed so that termination for data input is on the memory board (*Figure 5-11*) and sufficient drive is provided on the output (*Figure 5-12*). A pair of resistors to +V_{CC} and ground should be used to terminate the data output lines within the receiving equipment.

5-15

5

For tightly packaged systems where the other logic is adjacent to the memory, omit the address card and include the required signal drive and inverters as part of the computer. The memory card design provides great flexibility for integration into other systems. Normal TTL circuit rules apply.

Address Board

The address board is a very simple two-layer pc board. It receives the address and control signals from the equipment attached to the memory and provides the necessary fan-out drive. The inversion function is also performed if required. There are few components and pin connections on the address board. In tightly coupled systems, it may be omitted and the required circuits can be part of the other equipment. In this case, it may be necessary to provide circuits that can drive 10 unit loads plus a terminating resistor mounted on the backplane opposite the input cable end. When using an address board, the longest output line is less than nine inches so no terminating resistors are needed within the memory for a TTL design.

Memory Board Circuits and Layouts

Figures 5-8 through 5-12 are combination circuit and pseudo-physical routing schematics. *Figure 5-8* through 5-10 illustrate (on the upper left side) the circuits that can be either on an address board or in attached equipment. The backplane lines for plugging in the eight memory boards are illustrated across the top. An example memory board circuit/routing schematic is shown in each figure along with the relationships of bits and words in the rows and columns. Refer to *Figure 5-6* for the memory board layout. The ICs include Schottky TTL types 9S04, 9S05, 93S138, 93S157, and the TTL 1K RAM 93L415. The faster higher powered 93415 or 93415A can be substituted without any electrical design or layout changes. The power supply must be increased and more cooling provided; also memory timing pulses must be adjusted to take advantage of these faster parts.

Figure 5-11 illustrates the data input system. If the cables for word-oriented systems come directly to the memory card, the 100Ω terminating resistors are used. In byte-oriented systems, these resistors are omitted. The drive circuits for byte-oriented systems may be located either on the address drive board or in the attached equipment. If sufficient fan-out drive is supplied from the equipment and long cables are used, a terminating resistor is placed a the far end of the backplane.

The data output system is shown in *Figure 5-12*. The 93L415 outputs for each bit are connected together and run to the I_{1x} pin of a 93S157 multiplexer. The multiplexer is connected to provide a pass through latch as shown in *Figure 5-13* to permit rapid data access, long data hold time, and to minimize strobe skew. 9S05 drivers with open collectors are provided for output drive so the various bits in a byte-oriented memory can be OR-tied together. A resistor network as illustrated in *Figure 5-12* is placed a the receiving end of the output data cables.

Some Interconnection Hints

The dual-in-line package is designed with space to run one pc board conductor between pins. Two-layer printed circuit boards provide for running horizontal connections on the back and vertical connections on the front. This and the regularity of connections in a memory array allow very tight packaging. IC spacing on the memory board can be on a pitch of one inch horizontally and one-half inch vertically, a common industry practice.

Interconnections may be made using straightforward simple wire routings on two-layer boards. *Figure* 5-14 presents part of the actual layout showing three columns of the array. The connections to the 9S04 address drive are at the top. Ground and $+V_{CC}$ trees are also illustrated; note that one ground and one $+V_{CC}$ line go between each column. It is important that the designer run one line horizontally across the board and attach it through plated holes to $+V_{CC}$ at every other package row. This forms a screen or mesh for power distribution. A similar arrangement should be used for ground.

The vertical lines are routed to pin rows of the DIPs. This provides address, Read/Write and chip selection on the front side of the pc board. The data input and output lines are on the back side along with the V_{CC} and ground cross connections. Appropriate capacitors should be placed between V_{CC} and ground for about every four packages. Normal TTL design rules apply.

Performance Characteristics

The chart below and *Figure 5-15* summarize the performance that can be expected from a system using Schottky TTL parts and 60 ns 93L415 1K RAMs. The power dissipation is calculated for worst-case conditions for the Schottky parts and for typical dissipation on the memory parts. This is reasonable, since so many memory parts are used, the averages apply. The timing calculations are made using 2 ns/foot delays for signals on conductors and worst-case Schottky values. The Read and Write cycle times for the 93L415 are assumed to be 60 ns for the example calculations; however the user may specify shorter access times at added cost. To adjust the times shown, a designer may add the nanosecond differences for maximum RAM times or subtract the differences if he uses faster parts.

	SINGLE	1	1
	8K x 9	MODULE	SYSTEM
IIEM	CARD	8 CARDS	*8 MODULES
Size: Words/Bits	8K/9	8K/72 or 64K/9	64K/72 or 512K/9
Total Bits	73,728	589,824	4,718,592
Read Access	120 ns typ	125 ns typ	135 ns typ
Data Window	80 ns typ	80 ns typ	80 ns typ
Read Cycle	120 ns typ	125 ns typ	135 ns typ
Write Cycle	120 ns typ	125 ns typ	135 ns typ
Inputs & Outputs	TTL	TTL	ΠL
Supply Voltage	1		
(one)	+5.0 V	+5.0 V	+5.0 V
Supply Current	3.11 A	24.9 A	199 A
Power	15.6 W	125 W	998 W
Inlet Air	0°C to 55°C	0°C to 55°C	0°C to 55°C
Cooling Air	400 fpm	400 fpm	500 fpm

*Two rows of four modules.

Table 5-2. Memory Performance

Memory Performance Summary Using 93L415 RAMs and Schottky TTL Parts

Minor adjustments in timing may have to be made to accommodate a specific design. Layout dimensions and the minimum and maximum times established for all components will affect the system delays. The time values used in this example take line-length delays and circuit skews into account with appropriate allowance for margins.

CONCLUSION

Smaller die size, increased yields and economical packaging have reduced bipolar 1K RAM costs to the point where bipolar memories have become attractive for some applications reserved, in the past, for slower, lower cost MOS memories. Instead of emphasizing the cost per bit, the designer should look at the total memory system cost and inherent device characteristics when choosing a RAM for a specific application. The chief advantages of bipolar RAMs are outlined below.

- Simple design, construction, testing and field maintenance features of static bipolar TTL memories mean lower total system-lifetime hardware costs.
- Fast static memories greatly ease system interrupt and software storage and access problems as well as enhance system throughput, thus providing system lifetime savings.

REFERENCE

Rice, R., Green, F. and Sander, W., "Design Considerations Leading to the ILLIAC IV Process Element Memory," IEEE Solid-State Circuits Journal, October 1970.

	INTRODUCTION
	NUMERICAL INDEX OF DEVICES 2
	SELECTION GUIDES AND CROSS REFERENCE 3
N	GENERAL CHARACTERISTICS 4
	RAMs5
A R. A.	PROMs 6
	PRODUCT INFORMATION/DATA SHEETS 7
and an and a second sec	ORDER AND PACKAGE INFORMATION 8
	FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS 9

8477-00 1-3513

CHAPTER 6

- Applications
- 4-Bit Comparator
- Hamming Code Generator/Checker/Corrector
- Encoder/Decoder
- 8-Bit Binary to 3-Digit Decimal Display Decoder
- Programmed Logic Controller
- Address and Word Expansion
- PROM Programming
- Power Switching
- PROM Marking
- References

Chapter 6 PROGRAMMABLE READ ONLY MEMORIES

A Read-Only Memory is a random access memory in which the stored information is fixed and non-volatile. By convention, a semiconductor ROM is a circuit whose stored information is fixed by a masking operation during wafer processing, whereas a PROM is one whose contents are uniquely determined after processing and packaging. A ROM is best suited for systems produced in large volume, where the tooling charge for a unique mask is relatively small on a per-unit basis and is often counterbalanced by the economies of batch processing. PROMs are the best choice in low volume production, in systems having a limited useful life, in short procurement cycle situations and for applications wherein some degree of system tailoring is required for each installation. For developmental and prototype work, wherein design changes are normal occurrences and short turn-around times are essential, PROMs are an obvious choice.

Bipolar ROMs and PROMs offer access times in the 25–50 ns range for TTL and 15–20 ns for ECL, which represent an order of magnitude improvement over equivalent MOS circuits. Historically, MOS ROMs and PROMs have offered greater bit densities than have bipolar circuits. More recently, however, technological advances have placed bipolar densities between those of PMOS and silicon gate NMOS; continuing development promises to narrow the gap even further.

Certain types of MOS PROMs (EPROMs) can be completely erased and reprogrammed but bipolar PROMs cannot. Fairchild bipolar PROMs are manufactured with all bits in the HIGH state. As indicated in *Figure 6-1*, changing a bit from HIGH to LOW consists of steering an applied current from the pertinent output back to the intersection of the word and bit lines for the addressed cell. The current causes the fuse to open, and thus a bit that has been changed to the LOW state cannot be changed back to the HIGH state. Fairchild bipolar PROMs use nichrome fuses, since this material has a long history of usage in microelectronics¹⁻⁴ and a great deal of experience has been gained. The fuse has a notch in the middle to concentrate the energy and assure a wide, clean break.

On older data sheets, ROM and PROM outputs were called O_n and were drawn with bubbles to show that the open-collector output pulls LOW and to indicate that an unprogrammed output is HIGH. Since the bars and bubbles are not normally used to convey such a meaning, this publication and all future data sheets describe the outputs as active HIGH, call them O_n and, therefore, show no bubbles. When the terms "O" and "1" are used in coding or describing ROMs and PROMs, positive-true logic is assumed, *i.e.*, a "O" is a LOW and a "1" is a HIGH signal.

APPLICATIONS

ROMs and PROMs are widely used in computers of all sizes. They are finding increased usage in other areas such as peripheral controllers, terminals, instruments and digital controls of all kinds. Specific applications include data and instruction storage in computers, microprogrammed system control storage, look-up and decision tables, and address and priority mapping. Other applications include character/vector generation, encoding/decoding and sequential controllers.

ROMs and PROMs are also finding increased usage as replacements for combinatorial logic, wherein they can replace from two to twenty packages⁵. In this type of service a ROM or PROM is treated as a truth table. For example, a 4K PROM organized as 512 x 8 bits implements the truth table for eight functions of nine variables. As a matter of convenience, the application examples that follow use the PROM part numbers.

4-BIT COMPARATOR

The 93417/93427 1K (256 x 4-bit) memory can readily be used as a 4-bit comparator (*Figure 6-2*). In this example, four of eight address lines are assigned to each of the input variables. Unlike conventional MSI comparators with outputs limited to A=B, A<B, A>B, the four PROM outputs can be programmed for a wide variety of functions. Some of the possible functions are:

1. A + B: = n, > n, < n	5. A ÷ B: = n, > n, < n
2. A − B: = n, > n, < n	6. B ÷ A: = n, > n, < n
3. B − A: = n, > n, < n	7. n < A < m
4. A x B: = n, $>$ n, $<$ n	8. n < B < m

where n and m can be any number or set of numbers and can be assigned different values for each output.

If a 2K (512 x 4-bit) memory (93436/93446) is used, the function can be programmed for two different values or sets of n and m. The desired value or set can then be selected by the Ag input.

HAMMING CODE GENERATOR/CHECKER/CORRECTOR

A PROM can also be efficiently used as a Hamming code generator/checker/corrector. By adding three additional check bits to a 4-bit code, it is possible to detect and correct a single error. A 1K (256 x 4-bit) PROM can be used to generate the three additional bits and to check and correct the 7-bit code (see *Figure 6-3*).

ENCODER/DECODER

A 512 x 8-bit PROM (93438/93448) is used as an encoder/decoder in another simple application illustrated in *Figure 6 - 4*. Since the ninth address (Ag) is the Decoder/Encoder Select, both functions can be implemented in a single package. Specific applications include emulation, mapping and code conversion.

8-BIT BINARY TO 3-DIGIT DECIMAL DISPLAY DECODER

The popular 8-bit microprocessor has created a demand for 8-bit binary-to-decimal display converters, since a 3-digit number is not only easier to read, interpret, and remember than an 8-bit binary word, but also requires less panel space for read-out. ROMs and PROMs are particularly well suited for such code conversion, but a brute-force textbook design would require a 256 x 10 ROM plus three 7-segment de-coder/drivers. The circuit in *Figure 6-5* achieves the same result with only a 256 x 4 PROM, three 7-segment decoder/drivers with input latches (9374) and two gate packages.

The total number of required PROM bits is reduced by excluding the least significant bit from the code conversion (LSB_{in} \equiv LSB_{out}) and by generating the three possible values of 'hundreds' information (0, 1, 2), according to the small truth table, by combining the 17 input with one PROM output. This reduces the PROM requirement to 128 x (3+4+1) bits. Since a PROM of this size is not commercially available, a 256 x 4 PROM can be used in a time multiplexed arrangement with the latches at the decoder inputs for demultiplexing the PROM output information.

PROGRAMMED LOGIC CONTROLLER

This easy-to-understand TTL/MSI oriented design for a small dedicated controller is applicable where a minicomputer would be too expensive and a microcomputer would be too slow, too cumbersome to program or too complicated to understand. This concept uses one or two dozen inexpensive TTL/MSI circuits plus one or two PROMs and can implement practically any control function with up to 16 inputs and up to 50 outputs.

A simple open loop controller, as found in every washing machine, is a good beginning. Here a synchronous motor drives a reduction gear, which in turn drives a drum with programming pins or cams that activate the output switches (*Figure 6-6*). The electronic equivalent of this pin-drum controller is shown in *Figure 6-7* where an oscillator (motor) drives a \div 256 counter (gearbox) addressing a PROM (drum) with eight outputs. If the objective were to generate eight arbitrarily changing, completely random outputs, the design would stop here. Fortunately the real world does not usually require outputs that change in a completely random fashion. Rather, the requirement is to be able to activate and hold certain outputs (solenoids, valves, lights, etc.) starting at a certain position in the program, and deactivate them later at a different position. For this purpose the PROM represents an overdesign. It is simple to reduce the number of PROM outputs and/or increase the number of system outputs by using additional inexpensive MSI components.

6-8

The PROM outputs can be interpreted as addresses and instructions. As shown in the example of *Figure* 6-7, the first four outputs are an address activating, through a 9311 1-of-16 decoder, any one of up to 16 MSI circuits. The remaining four PROM outputs are used as instructions to the selected MSI circuit. Address 15 activates the first 4-bit register, changing its four outputs to the associated 4-bit instruction code coming out of the PROM. Address 14 selects another 4-bit register while address 13 selects a 9334 8-bit addressable latch. The 4-bit instruction determines which output is to be changed and to what level it is to be changed. For an insignificant increase in cost, the number of outputs has been increased from eight to over 64, with the constraint that only one group can be changed simultaneously.

This is still a very unsophisticated open-loop controller. It can be improved by adding a controlled speed reduction, consisting of a presettable counter (*Figure 6-8*). One instruction can change the instruction rate to any one of 16 values, maintaining it there until it is changed again. The real power of this design is shown, however, when a conditional feedback, or - in programming terms - a conditional jump capability is included (*Figure 6-9*). One of the 16 addresses is used to interrogate the status of eight input lines, and the associated instruction defines which input is to be interrogated and which level is the desired one. The subsequent PROM output is then not interpreted as an address/instruction pair, but rather as a program jump address. If the input under test has the expected level (HIGH or LOW), this jump address is loaded into the program counter and the program continues from this new address. If the input under test does not have the expected level, the jump address is ignored and the program continues without a jump.

Obviously this design can be made even more sophisticated by adding arithmetic capabilities, data memory, address stacks, etc., but carrying this too far would defeat the basic advantage of this design, its simplicity and economy. The advantage of this approach over conventional logic implementation lies in the flexibility that it gives to the circuit designer.

The design of a small control system usually starts with a clear knowledge of the number of outputs and inputs required and their electrical characteristics. But, the exact definition of how the control inputs affect the outputs (under all normal and abnormal circumstances) takes most of the time and leads to most of the usual errors. The classical logic design can only start when the system design is finished, and will require extensive changes if the system design is changed due to mistakes or new requirements.

The programmed controller, however, can be designed, constructed and tested as soon as the required inputs and outputs are defined, essentially simultaneous with the detailed systems design. System design, programming, and circuit design can be done in parallel, significantly reducing turn-around time. System changes can be implemented by changing the PROM, and can be tested and verified in hours instead of weeks.

ADDRESS AND WORD EXPANSION

Many PROM applications require expansion of the word length or the number of words. *Figure 6-10* shows the interconnection of two 256 x 4-bit memories to develop a 256 x 8-bit array. Address expansion is shown in *Figure 6-11*, which illustrates the use of two 256 x 4-bit memories to form a 512 x 4-bit array. A 512 x 6-bit array utilizing three 256 x 4-bit devices is shown in *Figure 6-12*. As a final example of the expansion versatility of PROMs, *Figure 6-13* shows how sixteen 512 x 4-bit memories are interconnected to form a 2048 x 16-bit array.

These was a map and

6-10

1

J 1 2 0 9024 CP DUAL FLIP FLOP K 0 OSCILLATOR ρ ç E ŝ TEST ₹ 1 9316 4 BIT TC BINARY COUNTER MR 00 01 02 03 8 8 ð 8 01 02 ₽ P1 P2 2 A 2 02 so^E 10 11 12 13 14 15 16 17 Ъ °3 Å - 8 ۰ŀ 9312 8 INPUT MULTIPLEXER Sı A₀ A1 Α2 Α3 256 × 8 PROM (ONE 93438 OR TWO 93427) J 1 2 0 9024 CP DUAL FLIP FLOP K 0 S2 9311 1 OF 16 DECODER SD ο 00 01 02 03 04 05 06 07 08 09 01 00 11 01 20 13 01 4 01 5 1.4 9322 CET 9316 CET 4 BIT CP BINARY COUNTER CP MR Q0 Q1 Q2 Q3 CEP 내는 04 05 ρ Р 3 P2 ç ETC. 90 8 Å 2 07 з ρ Ą 1 A0 A1 A2 Α3 D A0 A1 A2 PE P0 P1 P2 P3 PE P0 P1 P2 P3 E F J 9300 CP 4 BIT UNIVERSAL Q3 SHIFT REGISTER U 9300 CP 4 BIT UNIVERSAL Q3 O-SHIFT REGISTER 9334 8 BIT ADDRESSABLE LATCH 9311 1 OF 16 DECODER 00 01 02 03 04 05 06 07 08 09 010 01 10 12 013 014 01 CL 00 01 02 03 04 05 06 07 MR 00 01 02 03 MR 00 01 02 03 OUTPUTS Fig. 6-9. Programmed Logic Controller, Conditional Jump

6-11

6

PROM PROGRAMMING

Fairchild Isoplanar Schottky TTL PROMs are manufactured with all bits in the HIGH state. Any bit can be programmed LOW by following the procedure below and referring to the specifications in *Table 6-1*. When a programming pulse is applied to a bit (output), current is driven into the circuit as shown in *Figure 6-1*. Due to careful device design, almost all of the energy is delivered to the fuse consisting of a notched nichrome link. Minimal losses to leakage paths and intermediate circuits permit the link to open rapidly with a low-energy programming pulse. This in turn enhances reliability. These nichrome fuses actually program on the rise time of the programming pulse which permits reduction in programming pulse width for high-speed low-energy programming.

Programming Procedure (refer to Table 6-1)

- 1. Apply the proper power, $V_{CC} = 5.0 V$, and ground.
- 2. Select the word to be programmed by applying the appropriate levels to the Address pins.
- 3. Select the chip for programming by deselecting it; apply logic "1" (input HIGH) to the active LOW Chip Select input(s) or logic "0" (LOW) to the active HIGH input(s) if present. All PROMs have active LOW CS inputs; only the 93438/93448 have active HIGH CS inputs as well.
- 4. Apply a 20.5 V programming pulse to the output associated with the bit to be programmed. The other outputs may be left open or tied to any logic "1" (output HIGH), *i.e.*, 2.4 V to 4.0 V. Note that only one output at a time may be programmed.
- To verify a LOW in the bit just programmed, remove the programming pulse from the output, lower V_{CC} to 4.4 V, and sense the output after applying a logic LOW to the active LOW Chip Select(s) and a logic HIGH to any active HIGH Chip Select(s).
- 6. Repeat steps 1–5 as necessary for each bit that requires programming.

Although, for convenience, most programming is done by commercially available programmers, the circuit shown in *Figure 6-14* can be used to sequentially program all bits of a given word for up to an 8-output PROM. Selection of the bit patterns to be programmed is made by the bit switches while the address of the word to be selected is selected by the address switches. The contents of the PROM at the address, defined by the address switches, are displayed on the eight FLV117 LEDs until the program switch is depressed. If a bit is a logic HIGH or the chip is deselected, the associated LED is turned on with current supplied by the 390 Ω resistors. If the content of the PROM is a logic LOW and the PROM is enabled, the

PARAMETER	SYMBOL	MIN	RECOMMENDED VALUE	MAX	UNITS	COMMENTS	
Address Input	∨ _{IH}	2.4	5.0	5.0	v	Do not leave inputs open	
	VIL	0	0	0.4	v		
Chip Select	$\overline{cs}_1, \overline{cs}_2$	2.4	5.0	5.0	v	Fither or both	
	CS3,CS4	0	0	0.4	٠V		
Programming Voltage Pulse	V _{OP}	20	20.5	21	v	Applied to output to be programmed	
Programming Pulse Width	tpw	0.05	0.18	50	ms		
Duty Cycle Programming Pulse			20	20	%	Maximum duty cycle to maintain T_{C} < 85°C	
Programming Pulse Rise Time	tr	0.5	1.0	3.0	μs		
Number of Required Pulses		1	4	8			
Power Supply Voltage	v _{cc}	4.75	5.0	5.25	v		
Case Temperature	t _c		25	85	°C	1	
Programming Pulse Current	I _{OP}			100	mA.	If pulse generator is used, set current limit to this max value.	
Low V _{CC} Read	Vcc	4.2	4.4	4.4	V	Programming Read Verify	

output is logic LOW turning the LEDs off. The 1N4002s isolate the LEDs from the 20.5 V programming pulse. One-half of a 9024 JK flip-flop is used as a switch debouncer while the other half is the "run" flip-flop. The 9601 is a 10 kHz oscillator. When the program is initiated by depressing the program switch, the first half of the 9024 (switch debouncer) is set and clocks the other half of the 9024 ("run" flip-flop) to the "run" state. This enables the pulse and bit counters to operate and enables the PROM for programming. The pulse counter is preset to 5 to provide the 20% duty factor and the bit counter is preset to 8. To avoid overlap problems between the programming pulse, the chip enable and the scan, the bit counter advances when the pulse counter goes from state 3 to state 4. The bit to be programmed is decoded by the 9301 and wired-OR with the bit switch. The OR gate is a high-voltage driver supplying the drive to the programming transistors. When the last bit has been programmed, the counter presets itself and resets the "run" flip-flop. The programming sequence is now complete for the selected word.

It is often convenient to program PROMs mounted on a circuit board in wired-OR configurations such as the one shown in *Figure 6-13*. The Fairchild devices are particularly convenient for board programming in that only the Chip Select and Output pins need to be accessed to program the part. *Figure 6-15* shows the circuit and procedure for board programming. The programmer is connected to the output bus as shown, while the Chip Selects are driven by a decoder with elevated voltage levels. Thus, all that is required for board programming is the ability to raise V_{CC}, V_{EE} and the Device Select inputs on the decoder 7.6 V above their normal operational levels. The standard 20.5 V programming pulse will now program bits in the PROM having an active LOW Chip Select input of approximately 7.8 V.

POWER SWITCHING

Power dissipation in a bipolar PROM can be reduced by applying power only when the PROM is selected or when the outputs are required to be valid. Some bipolar PROMs have been developed with on-chip power switching circuitry but they are much slower than standard PROMs. An external switching circuit, such as that shown in *Figure 6-16*, provides power switching with little loss in speed.

The switching circuit must be capable of switching the worst-case power supply current of the PROM, have very short switching delays and have a small collector-to-emitter voltage drop V_{CE}. This is important because the power supply voltage at the PROM is reduced by the amount of this voltage drop. A high-speed pnp saturated logic switch, *e.g.*, the 2N5455, and a 100 pF speed-up capacitor provide a switching delay of approximately 10 ns at the V_{CC} pin. Using this circuit, the effective access time, which is the delay between applying the power strobe to the V_{CC} pin and availability of valid data, is approximately 10% greater than the normal address access time t_{AA}.

Conditions during power switching, both on and off, must also be considered. *Figure 6-17* shows the power strobe, V_{CC} and HIGH and LOW output waveforms for an open-collector and a 3-state device. Note the glitch in the HIGH output of both parts during power-up and the exponential rise of the LOW output during power-down. Care should be taken in system design to ensure that transient conditions do not adversely affect other parts of the system.

It is also important to consider the effect of the collector-emitter voltage drop V_{CE} across the switching transistor on PROM performance. Fairchild Isoplanar PROMs are capable of operating over the full commercial range (0° to 75°C) with the standard 5 V \pm 5% power supply reduced by a V_{CE} of 300 mV. Military grade devices operate from 0° to 125°C with the standard 5 V \pm 10% power supply reduced by 300 mV. For operating to -55°C, screened parts or tightened power supply specs are recommended.

The steady state condition must also be considered. In a typical memory array, inputs and/or outputs of several devices are bussed together (see *Figure 6 - 12*). Therefore, PROMs that are to be used in power-switched arrays should be specified for input and output leakage under power-down conditions, since any leakage in the powered-down devices loads the powered device(s). The allowable leakage is a function of the number of devices bussed together and the drive requirements of the bus. Since manufacturers do not normally specify devices under power-down conditions, customer specifications should reflect the actual system requirements under power-down operation.

15 14 11 +20 V (CURRENT LIMIT 100 mA) Ân A1 Ĉ\$ 2 •5 V 0 9301 20 95 V 0₀0₁0₂0₃0₄0₅0₆0 1/4 9N32 \$1× C\$ 3, 4 1N966A 13121111093 12 470 1/4 9N32 2N2907A ξ1ĸ 1N966 2N2907A 5 ~~ 470 1/4 9N32 \$1ĸ 93438/93448 512 X 8 PROM 2N2907A 10 ~~~ 470 1/4 1 2 ≶1 k 1N966 1. 2N2907A 470 0 04 05 06 07 0 ₹1 k + ADDRESS SWITCHES 13 14 15 16 10 11 17 2N2907A 470 ξ1ĸ 1N966/ 2N2907A 470 PARTS LIST Device 9316 9310 9001 9401 9401 9402 242907A FU717 1144002 242907A F0777 11986A 9301 ST 8P SFDT ₹1ĸ 1/4 1N966. 2N2907A ~~~ 10 470 1/4 1N966A 2N2907A 13 -0 ·5 V ~~~ 1/4 9N00 ~~ ~~ *** +5 V BIT SWITCHES ~~ Ŷ 2.7 k 2.7 k *All resistors are 0.25 W 336 8 X FLV117 文 文 文 文 文 文 文 o $\mathbf{\nabla}$ 2.7 k 2.7 k 2.7 k LEDS 9 3 4 5 6 O^y |3 |4 |5 |6 7 PE ^PO ^P1 ^P2 ^P3 10 CET 9310 TC 15 2 C 10 = 0 Ŧ 04 7 PE P0 P1 P2 P3 CEP 10 CET 9316 TC 15 2.7 k 2.7 k 05 \$1 k \$1 k \$1 k MR 00 0 102 03 50k MR 00010203 ₹1ĸ 4131211 14 13 12 11 2.7 k 07 08 PROGRAM SWITCH 1/2 1/2 Ĵ†, 9024 ¥ FD 777 0.01 #F 十 11 13 10 kHz COUNTERS DEBOUNCE RUN CLOCK

Fig. 6-14. PROM Programming Circuit

6-16

ł

Fig. 6-15. Board Programming

6

PROM MARKING

Since PROMs come marked with a device type for the unprogrammed part, it is usually necessary for the user to mark the parts after programming so that he can identify individual patterns. An ordinary pencil works well on the common white ceramic packages but any convenient marking method can be used as long as it is relatively permanent. Fairchild PROMs are marked with device type and date code on the lower 2/3 of the top surface. This leaves the upper 1/3 available for customer marking, which can be performed using a thermosetting ink such as Markem*. The ink can be applied with a stick stamp readily available for clean up. After marking, the packages should be baked for one hour at 150°C to fix the ink.

REFERENCES

- 1. Barnes, D.E., and Thomas, J.E., "Reliability Assessment of a Semiconductor Memory by Design Analysis," IEEE 12th Annual Proceedings on Reliability Physics, (1974).
- 2. Eisenberg, P.H., and Nalder, R., "Nichrome Resistors in Programmable Read Only Integrated Circuits," IEEE 12th Annual Proceedings on Reliability Physics, (1974).
- 3. Mo, R.S., and Gilbert, D.M., "Reliability of NiCr 'fusible link' used in PROMs," Journal of Electrochemical Society, Vol 120, No. 7 (1973), p. 1001.
- 4. Franklin, P., and Burgess, D., "Reliability Aspects of Nichrome Fusible Link PROMs," IEEE 12th Annual Proceedings on Reliability Physics, (1974).
- 5. "The New LSI," Electronics, (July 10, 1975).
- 6. Devaney, J.R., and Sheble III, A.M., "Plasma Etching and Other Problems," IEEE 12th Annual Proceedings on Reliability Physics, (1974).

*Markem Corporation, 150 Congress Street, Keen, NH 03431. Stock numbers 8055521 for cerdip, 8058791 for solderseal (white) ceramic or 805933 for plastic.

INTRODUCTION

4

6

7

NUMERICAL	INDEX (OF DE	EVICES		2
and the second	11		- 194		

SELECTION GUIDES AND CROSS REFERENCE

GENERAL CHARACTERISTICS

RAMs 5

PROMs

PRODUCT INFORMATION/DATA SHEETS

ORDER AND PACKAGE INFORMATION.

FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS 9

CHAPTER 7

• Data Sheets

ECL ISOPLANAR MEMORY F100414 256 × 1-BIT FULLY DECODED RANDOM ACCESS MEMORY

FAIRCHILD TEMPERATURE AND VOLTAGE COMPENSATED ECL

GENERAL DESCRIPTION — The F100414 is a 256-bit Read/Write Random Access Memory, organized 256 words by one bit. It has typical access time of 7 ns and is designed for high-speed scratchpad, control and buffer storage applications. The device includes full address decoding on the chip, has separate Data In and non-inverted Data Out lines, and has three active LOW Chip Select lines.

With on-chip voltage and temperature compensation the F100414 is compatible with the F100K and F95K series of ECL Logic. The device is packaged in the hermetic ceramic 16-pin Dual In-line Package. It is also available in either a 16-pin or 24-pin flatpak. The device is specified for operation over the temperature range 0°C to 85°C.

- VERY HIGH SPEED
- COMPATIBLE WITH F100K and F95K ECL LOGIC
- READ ACCESS TIME 7 ns TYP
- CHIP SELECT ACCESS TIME 4 ns TYP
- POWER DISSIPATION 1.8 mW/BIT
- 50 kΩ INPUT PULL-DOWN RESISTORS ON CHIP SELECT
- OUTPUTS CAN BE WIRED-OR FOR EASY MEMORY EXPANSION
- POWER DISSIPATION DECREASES WITH INCREASING TEMPERATURE
- ORGANIZED 256 WORDS X 1 BIT

PIN NAMES

Chip Select Inputs
Address Inputs
Data Input
Data Output
Write Enable Input

FUNCTIONAL DESCRIPTION — The F100414 is a fully decoded 256-bit Read/Write Random Access Memory, organized 256 words by one bit. Word selection is achieved by means of an 8-bit address A_0 through A_7 .

The active LOW chip select inputs are provided for increased logic flexibility. This permits memory array expansion up to 2048 words with the F100170 decoder. For larger memories, the fast chip select time permits the decoding of Chip Select, \overline{CS} , from the address without affecting system performance.

The read and write operations are controlled by the state of the active LOW Write Enable, ($\overline{\text{WE}}$). With $\overline{\text{WE}}$ held LOW, and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH, and the chip selected. Data in the addressed location is presented at DOUT and is read out non-inverted. The DOUT is LOW except when reading a stored HIGH.

Open emitter outputs are provided on the F100414 to allow maximum flexibility in output wired-OR connection for memory expansion.

-0.9 V

 -65° C to 150° C

 -55° C to 125° C

-7.0 V to +0.5 V

VFF to +0.5 V -30 mÅ to +0.1 mA

					THE TRADEC		
		INPUT			OUTPUT	MODE	
CS ₁	CS2	CS3	WE	DIN			
X L L	X L L	H* L L	X L L	X L H		NOT SELECTED WRITE "0" WRITE "1"	NOTE: L = LOW Voltage Levels =1. H = HIGH Voltage Levels =0
L	L	L	н	X	DOUT	READ	(Nominal Values) X = Don't Care

TABLE 1 - TRUTH TABLE

*One or more Chip Selects HIGH

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature

Temperature (Ambient) Under Bias VEE Pin Potential to Ground Pin Input Voltage (dc) Output Current (dc Output HIGH)

GUARANTEED OPERATING RANGE

* *	SUPPLY VOLTAGE (V _{EE})	AMBIENT TEMPERATURE (T _A)		
MIN	ТҮР	MAX	(NOTE 4)	
-5.7 V	-4.5 V	-4.2 V	0°C to +85°C	

DC CHARACTERISTICS: V_{FF} = -4.5 V, V_{CC} = GND, T_A = 0°C to 85°C, output load 50 Ω to -2.0 V

		LIMITS						
SYMBOL	CHARACTERISTIC	В	TYP (Note 3)	A	UNITS	CONDITIONS		
VOH	Output HIGH Voltage	-1025	-955	-880	mV			
VOL	Output LOW Voltage	-1810	-1715	-1620	mV	VIN – VIHA or VILB	Loading is	
VOHC	Output HIGH Voltage	-1035			mV		50 Ω to -2.0 V	
VOLC	Output LOW Voltage			-1610	mV			
VIH	Input HIGH Voltage	-1165		8,80	mV	Guaranteed HIGH Signal for All Inputs		
VIL	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW Signal for All Inputs		
ЧΗ	Input HIGH Current			220	μA	$v_{IN} = v_{IHA}$		
ΊL	Input LOW Current, CS All others	0.5 50		170	μA	$v_{IN} = v_{ILB}$		
IEE	Power Supply Current	-140	-100		mA	All inputs and output open		

FAIRCHILD ECL ISOPLANAR MEMORY • F100414

SYMBOL	PARAMETER	MIN LIMIT	TYP (Note 3)	MAX LIMIT	UNITS		CONDITIONS
READ MODE							
^t ACS	Chip Select Access Time		4	6	ns		Fig. 1a & b Measured at 50%
^t RCS	Chip Select Recovery Time		4	6	ns		of Input to Valid Output
^t AA	Address Access Time		7	10	ns		(V _{ILA} for V _{OL} or V _{IHB} for V _{OH}). Note 5.
WRITE MODE							
tw	Write Pulse Width	7	5		ns	t _{WSA} = 1ns	
tWSD	Data Set-up Time Prior to Write	1	0		ns		
twhd	Data Hold Time After Write	2	0		ns		
tWSA	Address Set-up Time	1	0		ns	t _W = 7 ns	Fig. 2 Measured at 50% of
tWHA	Address Hold Time	2	0		ns		Input to Valid Output
twscs	Chip Select Set-up Time	1	0		ns		(VII A for VOL or
tWHCS	Chip Select Hold Time	2	0		ns		
tWS	Write Disable Time		4	8	ns		
^t WR	Write Recovery Time		5	10	ns		
RISE AND FA							
tr	Output Rise Time		3		ns		Measured between 20% &
tf	Output Fall Time		3		ns		80% points. (Fig. 1a)
CAPACITANC	E						
CIN	Input Lead Capacitance		4		pF		Measured with a
COUT	Output Lead Capacitance		7		pF		Pulse Technique

NOTES:

 Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions.
The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

з Typical values are at $V_{EE} = -4.5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$ and maximum loading.

4. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

θ_{JA} (Junction to Ambient at 400 FPM air flow) = 50° C/Watt for ceramic DIP; 65° C/Watt for plastic DIP; NA for Flatpak.

 θ_{JA} (Junction to Ambient with still air) = 90° C/Watt for ceramic DIP; 110° C/Watt for plastic DIP; NA for Flatpak.

 $\theta_{\rm JC}$ (Junction to Case) = 25° C/Watt for ceramic and plastic DIPs; 10° C/Watt for Flatpak.

5 The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET: 6

The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the Inter-national Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

NOTE: Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

4096 WORD X N-BIT SYSTEM

ECL ISOPLANAR MEMORY F100415 1024×1-BIT FULLY DECODED RANDOM ACCESS MEMORY FAIRCHILD TEMPERATURE AND VOLTAGE COMPENSATED ECL

DESCRIPTION — The F100415 is a 1024-bit Read/Write Random Access Memory organized as 1024 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device is specified with a maximum read cycle time of 20 ns over the commercial temperature and voltage range.

With on-chip voltage and temperature compensation, this memory is compatible with the F100K and F95K Series of ECL logic. Other features include full address decoding on chip, separate Data In and non-inverting Data Out lines, and an active LOW Chip Select input.

The F100415 is packaged in a hermetic ceramic 16-pin dual in-line package. It is also available in either a 16-pin or 24-pin flatpak. The device is specified for operation over the 0°C to 85°C temperature range.

COMPATIBLE WITH F100K AND F95K ECL LOGIC

- MAXIMUM ACCESS TIME: 20 ns OVER TEMPERATURE
- OPEN EMITTER OUTPUTS FOR EASE OF MEMORY EXPANSION
- ORGANIZATION 1024 WORDS X 1 BIT
- POWER DISSIPATION: 0.5 mW/BIT

PIN NAMES

Chip Select Input
Address Inputs
Data Input
Data Output
Write Enable Input

NOTE:

The 16-pin Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

FUNCTIONAL DESCRIPTION - The F100415 is a fully decoded 1024-bit Read/Write Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, An through An. One Chip Select input is provided for memory array expansion up to 2048 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select (\overline{CS}) from the address without increasing address access time. The read and write operations are controlled by the state of the active LOW Write Enable ($\overline{\sf WE}$). With $\overline{\text{WE}}$ and $\overline{\text{CS}}$ held LOW, the data at D_{IN} is written into the addressed location. To read, $\overline{\text{WE}}$ is held HIGH and $\overline{\text{CS}}$ held LOW. Data in the specified location is presented at DOUT and is non-inverted.

An unterminated emitter-follower output is provided on the F100415 to allow maximum flexibility in output connection. In many applications it is desirable to tie the outputs of several F100415 together to allow easy expansion. In other applications the wired-OR is not used. In either case an external 50 Ω pull down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when reading a logic "0".

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired) Storage Temperature Temperature (Ambient) Under Bias VEE Pin Potential to Ground Pin Input Voltage (dc)

Output Current (dc Output HIGH)

rent (dc Output HIG	H)					-30 mA to +0.1 mA
		INPUTS		OUTPUT	MODE	
TABLE 1 –	CS	WE	DIN	OPEN EMITTER	NIODE	L = LOW Voltage Levels = -1.7 V
TRUTH TABLE	н	x	X	L	NOT SELECTED	H = HIGH Voltage Levels = -0.9 V
	L	L	L	L	WRITE "0"	(Nominal values)
	L	L	н	L	WRITE "1"	X = Don't Care
	1	н	X	Dour	READ	

GUARANTEED OPERATING RANGES

	SUPPLY VOLTAGE (V _{EE})	AMBIENT TEMPERATURE (T _A)	
MIN	TYP	MAX	(NOTE 4)
-5.7 V	-4.5 V	-4.2 V	0°C to 85°C

DC CHARACTERISTICS: V_{EE} = -4.5V, V_{CC} = GND, T_A = 0°C to 85°C (Note 4)

SYMBOL	CHARACTERISTIC	LIN	LIMITS (Note 6)		UNITS	CONDITIONS	
of mbol		В	TYP (Note 3)	А			
VOH	Output Voltage HIGH	-1025	-955	-880	mV	$V_{IN} = V_{IHA}$ or V_{ILB}	
VOL	Output Voltage LOW	-1810	-1715	-1620	mV		Loading is
Vонс	Output Voltage HIGH	-1035			mV	$V_{IN} = V_{IHB}$ or V_{ILA}	50 Ω to -2.0 V
V _{OLC}	Output Voltage LOW			-1610	mV		
VIH	Input Voltage HIGH	-1165		-880	mV	Guaranteed HIGH Sig	nal for All Inputs
VIL	Input Voltage LOW	-1810		-1475	mV	Guaranteed LOW Sigr	nal for All Inputs
ЧΗ	Input Current HIGH			220	μA	$V_{IN} = V_{IHA}$	
Ι _{ΙL}	Input Current LOW, CS All others	0.5 50		170	μA	$v_{IN} = v_{ILB}$	
IEE	Power Supply Current	-150	-105		mA	All Inputs and Output	open

NOTES:

Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions.

The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Typical values are at $V_{EE} = -4.5 V$, $T_A = 25^{\circ} C$ and maximum loading.

The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

θ_{JA} (Junction to Ambient at 400 FPM air flow) = 50° C/Watt for ceramic DIP; 65° C/Watt for plastic DIP; NA for Flatpak.

 θ_{JA} (Junction to Ambient with still air) = 90° C/Watt for ceramic DIP; 110° C/Watt for plastic DIP; NA for Flatpak.

 θ_{JC} (Junction to Case) = 25°C/Watt for ceramic and plastic DIPs; 10°C/Watt for Flatpak.

5 The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET: 6.

The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the International Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

-65°C to +150°C -55°C to +125°C

-7.0 V to +0.5 V

VEE to +0.5 V

SYMBOL	PARAMETER	MIN	TYP (Note 3)	МАХ	UNITS	CONDITIONS
						Fig 1a and 1b measured at
tACS	Chip Select Access Time		5	8	ns	50% of input to valid
^t RCS	Chip Select Recovery Time		5	8	ns	output (VILA for VOL
AA	Address Access Time		13	20	ns ·	or VIHB or VOH)
tw/	Write Pulse Width					
•••	(to Guarantee writing)	14	9		ns	$t_{W/SA} = 5 ns$
wsp	Data Sep-up Time					1104
	Prior to Write	4	0		ns	
tWHD	Data Hold Time					
	After Write	4	0			
tWSA	Address Set-up Time					
	Prior to Write	5	3		ns	t _W = 14 ns
^t WHA	Address Hold Time					
	After Write	3	0		ns	
WSCS	Chip Select Set-up Time					
	Prior to Write	4	0		ns	Fig. 2 measured
WHEE	Chip Select Hold Time					at 50% of input
WILS	After Write	4	0		ns	to valid output
tw/s	Write Disable Time	·	5	10	ns	(VII A for VOL or
140	Write Becovery Time		7	15	ne	Vuin for Voul
WR			·			VIHB IOL VOH)
t.	Output Rise Time		5		ns	Measured between 20%
tr	Output Fall Time		5		ns	and 80% points.
1			Ű			(Fig. 1a)
-				_	-	
CIN	Input Pin Capacitance			5	pF	Measure with a Pulse
COUT	Output Pin Capacitance		/ /	8	· p⊢	rechnique

AC TEST LOAD AND WAVE FORMS

LOADING CONDITIONS

INPUT LEVELS

All Timing Measurements Referenced to 50% of Input Levels $C_L = 30 \text{ pF}$ including Jig and Stray Capacitance

 $R_T = 50 \Omega$ Termination of Scope

7

ECL ISOPLANAR MEMORY F100416 256 × 4 - BIT PROGRAMMABLE READ ONLY MEMORY FAIRCHILD TEMPERATURE AND VOLTAGE COMPENSATED ECL

DESCRIPTION—The F100416 is a fully decoded high-speed 1024-bit field Programmable Read Only Memory, organized 256 words by four bits. The 100416 is voltage and temperature compensated and compatible with the F100K family. The device is enabled when \overline{CS} is LOW. Prior to programming, all outputs are active HIGH in the enabled state. Programmed bits will furnish LOW levels at corresponding outputs. When the device is disabled (\overline{CS} is HIGH) all outputs are forced LOW.

- ADVANCED ISOPLANAR PROCESS
- FAST ADDRESS ACCESS TIME --- 11 ns TYP
- ORGANIZATION 256 WORDS X 4 BITS
- COMPATIBLE WITH F100K AND 95K ECL LOGIC
- CHIP SELECT INPUT PROVIDES EASY MEMORY EXPANSION
- OPEN EMITTER OUTPUTS FOR MEMORY EXPANSION
- STANDARD 16-PIN DUAL IN-LINE PACKAGE
- FULL ADDRESS DECODING ON CHIP

PIN NAMES

ĊŚ	Chip Select Input	
A ₀ to A ₇	Address Inputs	
O ₁ to O ₄	Data Outputs	

ECL ISOPLANAR MEMORY • F100416

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias VFF Pin Potential to Ground Pin Input Voltage (dc) Output Current (dc Output HIGH)

-65°C to +150°C -55°C to +125°C -7.0 V to +0.5 V VFF to +0.5 V -30 mA to +0.1 mA

GUARANTEED OPERATING RANGES

	SUPPLY VOLTAGE (V _{EE})	AMBIENT TEMPERATURE (TA)	
MIN	TYP	MAX	(Note 4)
-4.8 V	-4.5 V	-4.2 V	−30°C to 85°C

DC CHARACTERISTICS: $V_{EE} = -4.5V$, $V_{CC} = GND$, $T_A = 0^{\circ}C$ to $+85^{\circ}C$ (Note 4); Output Load = 50 Ω to -2.0V

SYMBOL		LIMITS (Note 6)				CONDITIONS
STINDUL	CHARACTERISTIC	В	TYP	A	UNITS	CONDITIONS
			(Note 3)			
VOH	Output Voltage HIGH	- 1025	-955	-880	mV	$V_{IN} = V_{IHA} \text{ or } V_{ILB}$
VOL	Output Voltage LOW	- 1810	- 1705	-1620	mV	Loading is
VOHC	Output Voltage HIGH	- 1035			mV	$V_{IN} = V_{IHB}$ or V_{ILA} 50 Ω to -2.0 V
VOLC	Output Voltage LOW			-1610	mV	
VIH	Input Voltage HIGH	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs
VIL	Input Voltage LOW	- 1810		- 1475	mV	Guaranteed LOW Signal for All Inputs
ін	Input Current HIGH			200	μA	V _{IN} = V _{IHA}
կլ	Input Current LOW, CS	0.5		130	μA	$V_{IN} = V_{ILB}$
IEE	Power Supply Current	-150	-115		mA	All Inputs and Outputs open

NOTES

1. Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions.

2. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

З. Typical values are at $V_{EE} = -4.5$ V, $T_A = 25^{\circ}$ C and maximum loading.

4. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

d_{JA} (Junction to Ambient at 400 FPM air flow) = 50° C/Watt for ceramic DIP; 65° C/Watt for plastic DIP; NA for Flatpak. θ_{JA} (Junction to Ambient with still air) = 90° C/Watt for ceramic DIP; 110° C/Watt for plastic DIP; NA for Flatpak.

 θ_{JC} (Junction to Case) = 25°C/Watt for ceramic and plastic DIPs; 10°C/Watt for Flatpak.

The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

6 DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET:

The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the International Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

AC CHARACTERISTICS: V_{EE} = -4.5 V \pm 0.3 V, Output Load 50 Ω to -2.0 V, T_A = -30° C to $+85^{\circ}$ C

0/4/00	PADAMETED		LIMITS			
SYMBOL	PARAMETER	MIN	TYP (NOTE 3)	MAX	UNITS	CONDITIONS
^t AA	Address Access Time		11	20	ns	Measured at 50% Points of both Input and Output
^t ACS	Chip Select Access Time		4	8	ns	Measured at 50% Points of both Input and Output

TABLE 1

	PROC	GRAM	VEF	RIFY
	VIH	VIL	VIH	VIL
X Address Pins (2,3,4,5,6) Y Address Pins (7,9,10) Chip Select CS Pin 13	$\begin{array}{c} 0.00 \ V - \ 0.1 \ V \\ - 0.87 \ V \pm \ 0.1 \ V \end{array}$	$\begin{array}{c} -3.00 \ V \pm \ 0.1 \ V \\ -1.75 \ V \pm \ 0.1 \ V \end{array}$	$\begin{array}{c} -0.87 \ V \pm 0.1 \ V \\ -0.87 \ V \pm 0.1 \ V \\ -0.87 \ V \pm 0.1 \ V \end{array}$	$\begin{array}{c} -1.75 \ V \pm 0.1 \ V \\ -1.75 \ V \pm 0.1 \ V \\ -1.75 \ V \pm 0.1 \ V \\ -1.75 \ V \pm 0.1 \ V \end{array}$

B. PROGRAMMING PROCEDURE

(Refer to Figure 1 and Table 1)

- 1. Apply power to the part: V_{CC} = Pin 16 = GND; V_{EE} = Pin 8 = -5.2 V ± 5%
- Terminate all outputs (Pins 11, 12, 14 and 15) with 5 kΩ resistors to V_T = -2.0 V; NOTE: All input pins, including CS, have internal 50 kΩ pull-down resistors to V_{EE}.
- 3. Select the word to be programmed by applying the appropriate voltage levels, as shown in the "Program" column of Table 1, to the address Pins (2,3,4,5,6,7,9 and 10).
- 4. After the address levels are set raise V_{CP} = Pin 1 from 0 V to +11.5 V ± 0.3 V.
- 5. After V_{CP} has reached its HIGH level select the bit to be programmed by applying a HIGH level of $\pm 3.00 \text{ V} \pm 0.12 \text{ V}$ to the output associated with it, i.e., Pins (11, 12, 14 or 15). Only one bit (output) at a time may be selected for programming. Uncommitted outputs are terminated as outlined in 2.
- 6. After the HIGH level (+3.00 V) has been established at the selected output pin, source a current of -40 mA \pm 4 mA out of the Chip Select input (Pin 13) to program the selected bit; this applied current pulse which is 100 μ s wide and has an approximate risetime of 1 μ s is to be furnished by a current sink which clamps at V_{CLAMP} = -5.9 V.
- 7. To verify a LOW in the bit just programmed follow this sequence:
 - (a) Remove current pulse from \overline{CS} pin.
 - (b) Remove applied voltage from selected output pin.
 - (c) Lower V_{CP} from "HIGH Level" to GND.
 - (d) Keep same address but change its levels to normal ECL levels as outlined in the verify column of Table 1.
 - (e) Enable the chip by applying a LOW level (V_{IL}) to \overline{CS} (Pin 13), or leave it open.
 - (f) Sense the level at the selected output pin; a LOW level indicates successful programming whereas a HIGH level is a fail indication; in the latter case reprogramming of the bit can be attempted.
- 8. To program other bits in the memory repeat steps 3 through 7.

ECL ISOPLANAR MEMORY F100422 256 × 4 FULLY DECODED RANDOM ACCESS MEMORY FAIRCHILD TEMPERATURE AND VOLTAGE COMPENSATED ECL

GENERAL DESCRIPTION—The F100422 is a 1024-bit Read/Write Random Access Memory, organized 256 words by four bits per word. It has a maximum read access time of 10 ns and is designed for high-speed scratchpad, control and buffer storage applications. The device includes full address decoding on the chip and has separate Data In and non-inverted Data Out lines. Four active LOW Block Select lines are provided to select each block independently.

The F100422 is compatible with the F100K and F95K ECL families and includes on-chip voltage and temperature compensation for improved noise margin. The device is packaged in a hermetic 24-pin dual in-line or 24-pin flatpak package and specified for operation over the temperature range of 0°C to 85°C.

- . COMPATIBLE WITH F100K AND F95K ECL LOGIC
- READ ACCESS TIME 10 ns MAX
- POWER DISSIPATION 800 mW TYPICAL
- FOUR BLOCKS CAN BE INDEPENDENTLY SELECTED
- ORGANIZED 256 WORDS x 4 BITS

PIN NAMES

$\overline{BS}_1 - \overline{BS}_4$	Block Select Inputs
A0 - A7	Address Inputs
D1 - D4	Data Inputs
O1 - O4	Data Outputs
WE	Write Enable Input

14 WE

13 D2

BS2 11

D1

12

7

ECL ISOPLANAR MEMORY F100470

4096 x 1-BIT FULLY DECODED RANDOM ACCESS MEMORY

FAIRCHILD TEMPERATURE AND VOLTAGE COMPENSATED ECL

DESCRIPTION—The F100470 is a 4096-bit Read/Write Random Access Memory organized 4096 words by one bit per word. Designed for high-speed scratchpad, control and buffer storage applications. The device is specified with a typical read cycle time of 25 ns.

With on-chip voltage and temperature compensation, this memory is compatible with the F100K and F95K Series of ECL logic.

Other features include full address decoding on chip, separate Data In and noninverting Data Out lines, and an active LOW Chip Select input.

The F100470 is packaged in a hermetic ceramic 18-pin dual in-line package and is specified for operation over the 0°C to 85°C temperature range.

- COMPATIBLE WITH F100K and F95K ECL LOGIC
- TYPICAL ACCESS TIME 25 ns
- OPEN EMITTER OUTPUTS FOR EASE OF MEMORY EXPANSION
- ORGANIZED-4096 WORDS X 1 BIT
- POWER DISSIPATION OF 0.20 mW/BIT

PIN NAMES

Chip Select Input
Address Inputs
Data Input
Data Output
Write Enable Input

FUNCTIONAL DESCRIPTION — The F100470 is a fully decoded 4096-bit Read/Write Random Access Memory organized 4096 words by one bit. Bit selection is achieved by means of a 12-bit address, A_0 to A_{11} . One Chip Select input is provided for memory array expansion up to 8196 words without the need for external decoding. For larger memories, the fast chip select time permits the decoding of Chip Select (\overline{CS}) from the address without increasing address access time. The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE}). With \overline{WE} and \overline{CS} held LOW, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and \overline{CS} held LOW. Data in the specified location is presented at D_{OUT} and is non-inverted.

An unterminated emitter-follower output is provided on the F100470 to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F100470 can be tied together. In other applications the wired-OR is not used. In either case an external 50 Ω pull down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

INPUTS			OUTPUT	MODE					
CS WE DIN		OPEN EMITTER							
н	X	x	L	NOT SELECTED					
L	L	L	L	WRITE "0"					
L	L	н	L	WRITE "1"					
L	н	×	DOUT	READ					

L = LOW Voltage Levels = -1.7 V H = HIGH Voltage Levels = -0.9 V (Nominal values)

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias V_{EE} Pin Potential to Ground Pin Input Voltage (dc) Output Current (dc Output HIGH) --65°C to +150°C --55°C to +125°C --7.0 V to +0.5 V VEE to +0.5 V --30 mA to +0.1 mA

GUARANTEED OPERATING RANGES

	SUPPLY VOLTAGE (V _{EE})	AMBIENT TEMPERATURE (TA)		
MIN	TYP	MAX	(NOTE 4)	
-5.7 V	-4.5 V	-4.2 V	0°C to 85°C	

DC CHARACTERISTICS: V_{EE} = -4.5 V, V_{CC} = GND, Output Load = 50Ω and 30 pF to -2.0 V, T_A = 0° C to $+85^{\circ}$ C (Note 4)

SYMBOL CHARACTERISTIC		LIMITS (Note 6)			UNITS	CONDITIONS	
		В	TYP (Note 3)	A			
VOH	Output Voltage HIGH	-1025	-955	-880	mV	VIN = VIHA or VILB	
VOL	Output Voltage LOW	-1810	-1715	-1620	mV		Loading is
VOHC	Output Voltage HIGH	-1035			mV	VIN = VIHB or VILA	50 Ω to -2.0 V
VOLC	Output Voltage LOW			-1610	mV		
VIH	Input Voltage HIGH	-1165		-880	mV	Guaranteed HIGH Sig	nal for All Inputs
VIL	Input Voltage LOW	-1810		-1475	mV	Guaranteed LOW Sign	nal for All Inputs
ін	Input Current HIGH			220	μA	VIN = VIHA	
ΊL	Input Current LOW, CS All others	0.5 50		170	μA	$V_{IN} = V_{ILB}$	
IEE	Power Supply Current	-195	-160		mA	All Inputs and Output open	

X = Don't Care

SYMBOL	PARAMETER	MIN	TYP (Note 3)	МАХ	UNITS	CONDITIONS
						Fig 1a and 1b measured at
ACS	Chip Select Access Time		10	15	ns	50% of input to valid
RCS	Chip Select Recovery Time		10	15	ns	output (VILA for VOL
AA	Address Access Time		25	35	ns	or VIHB or VOH)
	Marian Dulan Malaka					а
W	(to Cuerentee writing)	25	10		-	
	Deta Set-un Time	25	. 10		115	
VVSD	Prior to Write	5	1		ns	
WHD	Data Hold Time					
WILD	After Write	5	1		ns	
WSA	Address Set-up Time					
	Prior to Write		5		ns	
WHA	Address Hold Time					
	After Write	5	1		ns	
WSCS	Chip Select Set-up Time					
	Prior to Write	5	1		ns	Fig. 2 measured
NUCE	Chip Select Hold Time					at 50% of input
VIICO	After Write	. 5	1		ns	to valid output
WS	Write Disable Time	_	7	15	ns	(VII A for VOL or
W/R	Write Recovery Time		10	20	ns	VIHB for VOH)
	Output Bise Time		5		ns	Measured between 20%
f f	Output Fall Time		5		ns	and 80% points.
			, i i i i i i i i i i i i i i i i i i i			(Fig. 1a)
ΊN	Input Pin Capacitance		4		pF	Measure with a Pulse
COUT	Output Pin Capacitance		7		pF	Technique

NOTES:

1. Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions.

The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical values are at $V_{EE} = -4.5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$ and maximum loading.

4. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

 θ_{JA} (Junction to Ambient at 400 FPM air flow) = 50° C/Watt for ceramic DIP; 65° C/Watt for plastic DIP; NA for Flatpak.

 θ_{JA} (Junction to Ambient with still air) = 90° C/Watt for ceramic DIP; 110° C/Watt for plastic DIP; NA for Flatpak.

 θ_{JC} (Junction to Case) = 25° C/Watt for ceramic and plastic DIPs; 10° C/Watt for Flatpak.

5. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

6. DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET:

The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the International Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: 'A' the value closest to positive infinity, 'B' the value closest to negative infinity.

AC TEST LOAD AND WAVEFORMS

LOADING CONDITIONS

INPUT LEVELS

All Timing Measurements Referenced to 50% of Input Levels $C_1 = 30 \text{ pF}$ including Jig and Stray Capacitance

 $R_T = 50 \Omega$ Termination of Scope

ECL ISOPLANAR MEMORY F10145A

16 × 4 REGISTER FILE (RAM) FAIRCHILD VOLTAGE COMPENSATED ECL

GENERAL DESCRIPTION — The F10145A is a high-speed 64-bit Random Access Memory organized as a 16-word by 4-bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data bussing are facilitated by the output disabling features of the Chip Select (\overline{CS}) and Write Enable (\overline{WE}) inputs.

A HIGH signal on \overline{CS} prevents read and write operations and forces the outputs to the LOW state. When \overline{CS} is LOW, the \overline{WE} input controls chip operations. A HIGH signal on \overline{WE} disables the Data input (D_n) buffers and enables readout form the memory location determined by the Address (A_n) inputs. A LOW signal on \overline{WE} forces the Q_n outputs LOW and allows data on the D_n inputs to be stored in the addressed location. Data exits in the same logical sense as presented at the data inputs, *i.e.*, the memory is non-inverting.

- READ ACCESS TIME—7 ns TYP
- 50 kΩ INPUT PULL-DOWN RESISTORS
- OUTPUTS CAN BE WIRED-OR FOR EASY MEMORY EXPANSION
- CHIP SELECT ACCESS TIME—4 ns TYP
- VOLTAGE COMPENSATED, INSENSITIVE TO POWER SUPPLY VARIATIONS
- FULLY COMPATIBLE WITH ALL 10,000 SERIES ECL

PIN NAMES

CS	Chip Select
A0-A3	Address Lines
D0-D3	Data Input Lines
WE	Write Enable
$Q_0 - Q_3$	Data Output Lines

7-20

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias V_{EE} Pin Potential to Ground Pin Input Voltage (dc) Output Current (dc Output HIGH) -65°C to +150°C -55°C to +125°C -7.0 V to +0.5 V VEE to +0.5 V -30 mA to +0.1 mA

GUARANTEED OPERATING RANGES

SUPP	LY VOLTAGE (V	EE)	AMBIENT TEMPERATURE		
MIN TYP		MAX	Note 4		
-5.46 V -5.2 V		-4.94 V	0°C to +75°C		

DC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V}$, $V_{CC} = \text{GND}$ (Notes 1-4)

SYMPOL		LIMITS (Note 6)				TA		
SYMBOL	CHARACTERISTIC	В	ТҮР	A	01113	(Note 4)	CONDITIONS	
VOH	Output Voltage HIGH	-1000		-840	mV	0°C		
		960	ļ	810	1	+25°C		
		-900		-720		+75°C		
VOL	Output Voltage LOW	-1870		-1665	mV	0°C		
		-1850	ļ	-1650		+25° C		
		-1830		-1625		+75°C		Loading is
VOHC	Output Voltage HIGH	-1020			mV	0°C		50 Ω to -2.0 V
		-980				+25° C		
		-920				+75° C		
VOLC	Output Voltage LOW			-1645	mV	0° C		
				-1630		+25° C		
				-1605		+75°C		
VIH	Input Voltage HIGH	-1145	ļ	840	mV	0°C	Guaranteed Input Voltag	je
		-1105	[810		+25°C	HIGH for All Inputs	
		-1045		-720		+75°C		
VIL	Input Voltage LOW	-1870		-1490	mV	0°C	Guaranteed Input Voltag	je
		1850		-1475		+25°C	LOW for All Inputs	
		-1830		-1450		+75°C		
Чн	Input Current HIGH			200	μΑ	+ 25°C	V _{IN} = V _{IHA}	
	\overline{CS} , A ₀ -A ₃	200		1				
	$\overline{\text{WE}}$, $D_0 - D_3$	220						
կլ	Input Current LOW	0.5			μA	+ 25°C	VIN = VILB	
IEE	Power Supply Current	-150	-100		mA	+25°C	Inputs and Output Open	

	CHARACTERISTIC		LIMITS			CONDITIONS
STMBUL	CHARACTERISTIC	В	TYP	A	UNITS	CONDITIONS
	Access/Recovery Times					9
tACS	Chip Select Access	3.0	4.5	6.0	ns	Figures 1, 3
RCS	Chip Select Recovery	3.0	4.5	6.0	ns	
AA	Address Access	4.5	6.5	9.0	ns	
	Write Times					
	Set-Up					
twsD	Data	4.5	3.0		ns	
wscs	Chip Select	4.5	2.5		ns	
twsa	Address	3.5	1.5		ns	Figures 1, 2a
	Hold					
twhd	Data	- 1.0	- 2.5		ns	
WHCS	Chip Select	0.5	0.0		ns	
WHA	Address	1.0	- 1.0		ns	
WR	Write Recovery Time	3.0	4.5	6.0	ns	Figures 1, 3
tws	Write Disable Time	3.0	4.5	6.0	ns	
tw	Write Pulse Width, Min	4.0	2.5		ns	Figures 1, 2a
tcs	Chip Select Pulse Width, Min	4.0	2.5		ns	
	Select Times					
	Set-Up					
tCSD	Data	4.5	3.0		ns	
tcsw	Write Enable	4.5	2.5		ns	
tCSA	Address	3.5	1.5		ns	Figures 1, 2b
	Hold					
CHD	Data	- 1.0	- 2.5		ns	
снм	Write Enable	0.5	0.0		ns	
tсна	Address	1.0	- 1.0		ns	
	Transition Times					
ttlH	20% to 80%	1.5	2.5	3.9	ns	Figures 1, 3
^t THL	80% to 20%	1.5	2.5	3.9	ns	

NOTES:

Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions.

2. The specified limits is represent the "worst case" value and on the analysis case" values or analysis case" values of the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical values are at $V_{EE} = -5.2$ V, $T_A = 25^{\circ}$ C and maximum loading.

4. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

maximum temperature are: θ_{JA} (Junction to Ambient at 400 FPM air flow) = 50° C/Watt for ceramic DIP; 65° C/Watt for plastic DIP; NA for Flatpak. θ_{JA} (Junction to Ambient with still air) = 90° C/Watt for ceramic DIP; 110° C/Watt for plastic DIP; NA for Flatpak. θ_{JC} (Junction to Case) = 25° C/Watt for ceramic and plastic DIPs; 10° C/Watt for Flatpak.

The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.
 DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET:

The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the Inter-

national Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

WAVEFORMS (Cont'd)

Fig. 3. READ MODES

ADDRESS INPUT TO DATA OUTPUT ($\overline{WE} = HIGH$, $\overline{CS} = LOW$)

CHIP SELECT INPUT TO DATA OUTPUT (WE = HIGH)

WRITE ENABLE INPUT TO DATA OUTPUT (CS = LOW)

WRITE RECOVERY, DISABLE TIMES

ECL ISOPLANAR MEMORY F10405 128×1-BIT FULLY DECODED RANDOM ACCESS MEMORY

FAIRCHILD VOLTAGE COMPENSATED ECL

GENERAL DESCRIPTION – The F10405 is a 128-bit Read/Write Random Access Memory, organized 128 words by one bit. It has typical access time of 12 ns and is designed for high-speed scratch pad, control and buffer storage applications. It is fully compatible with F10K voltage compensated ECL and is usable with fully compensated F95K ECL and uncompensated 10,000 ECL.

The F10405 has full address decoding on chip, separate Data In and non-inverted Data Out lines and three active LOW Chip Select lines.

The F10405 is packaged in the hermetic ceramic 16-pin dual in-line package and specified for operation over the temperature range 0° C to 75° C.

- FULLY COMPATIBLE WITH F10K ECL
- READ ACCESS TIME 12 ns TYP
- 50 k Ω INPUT PULL DOWN RESISTORS ON CHIP SELECT
- USABLE WITH F95K AND UNCOMPENSATED 10,000 ECL
- OUTPUTS CAN BE WIRED-OR FOR EASY MEMORY EXPANSION
- CHIP SELECT ACCESS TIME 5 ns TYP

PIN NAMES

$\overline{\text{CS}}_1$, $\overline{\text{CS}}_2$, $\overline{\text{CS}}_3$	Chip Select Inputs
A ₀ – A ₆	Address Inputs
DIN	Data Input
DOUT	Data Output
WE	Write Enable Input

FUNCTIONAL DESCRIPTION – The F10405 is a fully decoded read/write random access ECL memory, organized 128 words by one bit. The desired word is selected by a 7-bit address (A_0 through A_6).

The Chip Selects and Write Enable are active LOW. Three Chip Selects are provided for memory expansion. This permits memory array expansion up to 1024 words with the 9538 decoder. For larger memories, the third Chip Select line permits the decoding of Chip Select, \overline{CS} , from the address without affecting system performance.

The read and write operations are controlled by the state of the active LOW Write Enable, \overline{WE} (pin 12). With \overline{WE} held LOW, and the chip selected, the data at D_{IN} is written into the addressed location. To Read, \overline{WE} is held HIGH, and the chip is selected. Data in the addressed location is presented at D_{OUT} and is read out non-inverted. The D_{OUT} is LOW except when reading a stored HIGH.

Open emitter outputs are provided on the F10405 to allow maximum flexibility in output wired-OR connections for memory expansion.

A write operation may be performed with the write pulse applied to one of the Chip Select inputs. The two other Chip Selects and the Write Enable must be LOW.

	TABLE 1 – TRUTH TABLE										
		INPUT		OUTPUT	MODE						
\overline{cs}_1	CS2	\overline{CS}_3	WE	D _{IN}							
x	×	н*	×	x	L	NOT SELECTED					
L	L	L	L	L	L	WRITE "0"					
L	L	L	L	H	L L	WRITE "1"					
L	L	L	н	×	DOUT	READ					

L = LOW Voltage Levels = -1.7 V H = HIGH Voltage Levels = -0.9 V (Nominal values) X = Don't Care

*One or more Chip Selects HIGH

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias VEE Pin Potential to Ground Pin Input Voltage (dc) Output Current (dc Output HIGH)

--65° C to +150° C --55° C to +125° C -7.0 V to +0.5 V VEE to +0.5 V -30 mA to +0.1 mA

GUARANTEED OPERATING RANGES

SUPPLY VOLTAGE (VEE)			AMBIENT TEMPERATURE		
MIN TYP MAX		MAX	Note 4		
-5.46 V	-5.2 V	4.94 V	0°C to +75°C		

DC CHARACTERISTICS: VEE = -5.2 V, VCC = GND (Notes 1-4)

0/400	OUADAOTEDISTIC	LIMITS (Note 6)				TA	CONDITIONS	
SYMBOL	CHARACTERISTIC	В	ТҮР	A	UNITS	(Note 4)	CONDITIONS	
V _{OH}	Output Voltage HIGH	-1000		-840	mV	0°C		
		960 900				+25°C +75°C		
V _{OL}	Output Voltage LOW	-1870		-1665	mV	0°C	VIN = VIHA or VILB	
		-1850		-1650		+25° C		
		-1830		-1625		+75° C		Loading is
VOHC	Output Voltage HIGH	-1020			mV	0° C		50 Ω to -2.0 V
		-980				+25° C	- VIN = VIHB or VILA	
		-920				+75°C		
VOLC	Output Voltage LOW			-1645	mV	0°C		
				-1630		+25° C		
				-1605		+75°C		
VIH	Input Voltage HIGH	-1145		840	mV	0°C	Guaranteed Input Voltag	je
		-1105		-810		+25° C	HIGH for All Inputs	
		-1045		-720		+75°C		
VIL	Input Voltage LOW	-1870		-1490	mV	0°C	Guaranteed Input Voltag	je
		-1850		-1475		+25°C	LOW for All Inputs	
		-1830		-1450		+75°C		
Чн	Input Current HIGH			220	μA	0 to +75°C	V _{IN} = V _{IHA}	
μL	Input Current LOW (CS)	0.5		170	μA	0 to +75°C	V _{IN} = V _{ILB}	
	All Others	-50						
IEE	Power Supply Current	-150	-90		mA	0 to +75°C	Inputs and Output Open	· · · · · · · · · · · · · · · · · · ·

			LIMITS				
SYMBOL	PARAMETER	MIN	TYP Note 3	мах	UNITS	CONDITIONS	
READ MODE							
^t ACS	Chip Select Access Time		5	8	ns		Fig. 1a & b Measured at 50%
^t RCS	Chip Select Recovery Time		5	8	ns		of Input to 50% of Output
^t AA	Address Access Time (Note 5)		12	15	ns		·
WRITE MODE							
tw	Write Pulse Width	8	6		ns	tWSA = 4 ns	
twsd	Data Set-up Time Prior to Write	4	3		ns		
tWHD	Data Hold Time After Write	3	0		ns		Fig. 2 Measured at 50% of
tWSA	Address Set-up Time	4	3		ns	tw = 8 ns	Input to Valid Output
^t WHA	Address Hold Time	3	2		ns		
twscs	Chip Select Set-up Time	4	3		ns		
tWHCS	Chip Select Hold Time	3	2		ns		
tws	Write Disable Time		6	9	ns		
tWR	Write Recovery Time		6	10	ns		
RISE AND FA	LL TIME						
t _r	Output Rise Time		3		ns		Measured between 20% &
t _f	Output Fall Time		3		ns	80% points. (Fig. 1a)	
CAPACITANC	Ę						
CIN	Input Lead Capacitance		4	5	pF		
COUT	Output Lead Capacitance		7	8	pF		

NOTES:

5

1. Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions.

2. The specified Limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes. additional

noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical values are at V_{EE} = -5.2 V, T_A = $+25^{\circ}$ C and maximum loading. 4. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range of operation refers to case temperature for Flatpacks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

θJA (Junction to Ambient at 400 FPM air flow) = 50°C/watt for ceramic DIP; 65°C/watt for plastic DIP; NA for flatpack.

 θ_{JA}^{\prime} (Junction to Ambient with still air) = 90°C/watt for ceramic DIP; 110°C/watt for plastic DIP; NA for flatpack.

 $\theta_{\rm JC}$ (Junction to Case) = 25°C/watt for ceramic and plastic DIP's; 10°C/watt for flatpack.

The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

6. DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET: The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the International Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

NOTE: Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

ECL ISOPLANAR MEMORY F10410 256×1-BIT FULLY DECODED RANDOM ACCESS MEMORY

FAIRCHILD VOLTAGE COMPENSATED ECL

GENERAL DESCRIPTION — The F10410 is a 256-bit Read/Write Random Access Memory, organized 256 words by one bit. It has typical access time of 18 ns and is designed for high-speed scratchpad, control and buffer storage applications. The device includes full address decoding on the chip, has separate Data In and noninverted Data Out lines, and has three active LOW Chip Select lines.

The F10410 is compatible with the F10K and uncompensated 10K ECL families and includes on-chip voltage compensation for improved noise margin. The device is packaged in the hermetic ceramic 16-pin Dual In-line Package or 16-pin Flatpak and specified for operation over the commercial temperature range, 0°C to 75°C, and military temperature range, -55°C to +125°C.

- TYPICAL READ ACCESS TIME: COMMERCIAL 18ns
- MILITARY 20ns
 CHIP SELECT ACCESS TIME—7 ns TYP
- CHIP SELECT ACCESS TIME—/ INSTITUTE
 POWER DISSIPATION—1.8 mW/BIT
- POWER DISSIPATION—1.8 MW/BIT
- 50 k Ω INPUT PULL-DOWN RESISTORS ON CHIP SELECT
- OUTPUTS CAN BE WIRED-OR FOR EASY MEMORY EXPANSION
- POWER DISSIPATION DECREASES WITH INCREASING TEMPERATURE
- ORGANIZED-256 WORDS × 1 BIT

PIN NAMES

\overline{CS}_1 , \overline{CS}_2 , \overline{CS}_3	Chip Select Inputs
A0 - A7	Address Inputs
DIN	Data Input
DOUT	Data Output
WE	Write Enable Input

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package. FUNCTIONAL DESCRIPTION – The F10410 is a fully decoded 256-bit Read/Write Random Access Memory, organized 256 words by one bit. Word selection is achieved by means of an 8-bit address A₀ through A₇.

The active LOW Chip Select inputs are provided for increased logic flexibility. This permits memory array expansion up to 2048 words with the 10161 decoder. For larger memories, the fast chip select time permits the decoding of Chip Select, CS, from the address without affecting system performance.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE} , pin 14). With \overline{WE} held LOW, and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH, and the chip selected. Data in the addressed location is presented at D_{OUT} and is read out non-inverted. The D_{OUT} is LOW except when reading a stored HIGH.

Open emitter outputs are provided on the F10410 to allow maximum flexibility in output wired-OR connection for memory expansion.

	TABLE 1 – TRUTH TABLE												
		INPUT		OUTPUT	MODE								
CS ₁	\overline{cs}_2	CS3	WE	D _{IN}									
×	х	Н*	х	x	L	NOT SELECTED							
L	L	L	L	L	L	WRITE "0"							
L	L	L	L	н	L	WRITE "1"							
L	L	L	н	x	Роит	READ							

NOTE: L = LOW Voltage Levels = -1.7 V H = HIGH Voltage Levels = -0.9 V (Nominal Values) X = Don't Care

*One or more Chip Selects HIGH

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias V_{EE} Pin Potential to Ground Pin Input Voltage (dc) Output Current (dc Output HIGH) -65°C to 150°C -55°C to 125°C -7.0 V to +0.5 V VEE to +0.5 V -30 mA to +0.1 mA

GUARANTEED OPERATING RANGES

PART NUMBER	S	UPPLY VOLTAGE (V	AMBIENT TEMPERATURE	
	MIN	ТҮР	MAX	Note 4
F10410DC	-5.46 V	-5.2 V	-4.94 V	0°C to +75°C
F10410DM	-5.72 V	-5.2 V	-4.68 V	-55°C to +125°C

DC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V}$, $V_{CC} = \text{Gnd}$, $T_A = -55^{\circ}\text{C}$ to $+125^{\circ}\text{C}$.

SYMBOL	CHARACTERISTIC	B LIMIT	TYP (Note 3)	A LIMIT	UNITS	Τ _Α	CONDITI	ONS
VQH	Output HIGH Voltage	-1070		-860	mV	-55° C		1
		-860		-650		+125°C		
VOL	Output LOW Voltage	-1900		-1690	mV	-55° C	VIN = VIHA or VILB]
		-1800		-1570		+125° C		Loading is
Vонс	Output HIGH Voltage	-1090			mV	-55° C		50 Ω to -2.0 V
	1	-1880				+125°C		
VOLC	Output LOW Voltage	-1215		-1670	mV	-55° C	VIN = VIHB or VILA	
				-1550		+125° C		
VIH	Input HIGH Voltage	-1900		-860	mV	-55° C	Guaranteed Input Volta	ige
		-1800		-650		+125° C	HIGH for All Inputs	
VIL	Input LOW Voltage			-1515	mV	-55° C	Guaranteed input Volta	ge
				-1395		+125°C	LOW for All Inputs	
Чн	Input HIGH Current			250		-55° C	VIN = VIHA	
IIL I	Input LOW Current (CS)	0.5		170	μA	-55° C	VIN = VILB	
	All Others	-50						
	Power Supply Current	-150	-105		mA	-55° C	All Inputs and Outputs Open	
'EE	(Pin 8)		-75		mA	+125° C		

AC CHARACTE	ERISTICS: V _{EE} = -5.2 V ±5%, Ou	tput Load	= 50 Ω, 30) pF to -2	.0 V, T _A =	0°C to 75°C	
SYMBOL	PARAMETER	MIN LIMIT	TYP (Note 3)	MAX LIMIT	UNITS		CONDITIONS
READ MODE							
^t ACS	Chip Select Access Time		7	12	ns		Fig. 1a & b Measured at 50%
^t RCS	Chip Select Recovery Time		7	12	ns		of Input to Valid Output
^t AA	Address Access Time		18	30	ns		(V _{ILA} for V _{OL} or V _{IHB} for V _{OH}). Note 5.
WRITE MODE							
tw	Write Pulse Width	25	15		ns	t _{WSA} = 8 ns	
twsd	Data Set-up Time Prior to Write	5	3		ns		
twhd	Data Hold Time After Write	5	3		ns		
tWSA	Address Set-up Time	8	5		ns	tw = 25 ns	Fig. 2 Measured at 50% of
twha	Address Hold Time	5	0		ns		Input to Valid Output
twscs	Chip Select Set-up Time	5	3		ns		(VILA for VOL or
tWHCS	Chip Select Hold Time	5	3		ns		VIHB for VOH)
tWS	Write Disable Time	3	7		ns		
tWR	Write Recovery Time		8	20	ns		
RISE AND FAL	L TIME						
tr	Output Rise Time		5		ns		Measured between 20% &
t _f	Output Fall Time		5		ns		80% points. (Fig. 1a)
CAPACITANCE							A
CIN	Input Lead Capacitance		4	5	pF		weasure with a
COUT	Output Lead Capacitance		7	8	pF		Puise Lechnique

NOTES:

1. Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions.

The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical values are at $V_{EE} = -5.2 \text{ V}$, $T_A = 25^{\circ} \text{ C}$ and maximum loading.

4. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

BJA (Junction to Ambient at 400 FPM air flow) = 50° C/Watt for ceramic DIP; 65° C/Watt for plastic DIP; NA for Flatpak.

 θ_{JA} (Junction to Ambient with still air) = 90°C/Watt for ceramic DIP; 110°C/Watt for plastic DIP; NA for Flatpak.

 $\theta_{\rm JC}$ (Junction to Case) = 25° C/Watt for ceramic and plastic DIPs; 10° C/Watt for Flatpak.

5. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

6. DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET:

The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the International Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

ECL ISOPLANAR MEMORY F10411 256×1–BIT FULLY DECODED RANDOM ACCESS MEMORY FAIRCHILD VOLTAGE COMPENSATED FOL

GENERAL DESCRIPTION – The F10411 is a low voltage 256-bit Read/Write Random Access Memory, organized 256 words by one bit. It has a 20 ns typical access time and is designed for high-speed scratchpad, control and buffer storage applications. The device includes full address decoding on the chip, has separate Data In and non-inverted Data Out lines, and has three active LOW Chip Select lines.

The F10411 is compatible with the F10K and uncompensated 10K ECL families and includes on-chip voltage compensation for improved noise margin. The device is packaged in the hermetic ceramic 16-pin dual in-line package and specified for operation over the temperature range 0°C to 75°C.

- READ ACCESS TIME 20 ns TYP
- CHIP SELECT ACCESS TIME 7 ns TYP
- POWER DISSIPATION 1.4 mW/BIT TYP
- 50 kΩ INPUT PULL-DOWN RESISTORS ON CHIP SELECT
- OUTPUTS CAN BE WIRED-OR FOR EASY MEMORY EXPANSION
- POWER DISSIPATION DECREASES WITH INCREASING TEMPERATURE
- ORGANIZED 256 WORDS X 1 BIT

PIN NAMES

$\overline{cs}_1 - \overline{cs}_3$	Chip Select Inputs
A ₀ - A ₇	Address Inputs
D _{IN}	Data Input
DOUT	Data Output
WE	Write Enable Input

FUNCTIONAL DESCRIPTION – The F10411 is a fully decoded 256-bit Read/Write Random Access Memory, organized 256 words by one bit. Word selection is achieved by means of an 8-bit address, A_Q through A₇.

The active LOW Chip Select inputs are provided for increased logic flexibility. This permits memory array expansion up to 2048 words with the 10161 decoder. For larger memories, the fast chip select time permits the decoding of Chip Select, \overline{CS} , from the address without affecting system performance.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE} , pin 14). With \overline{WE} held LOW, and the chip selected, the data at D_{IN} is written into the addressed location. To read \overline{WE} is held HIGH, and the chip selected. Data in the addressed location is presented at D_{OUT} and is read out non-inverted. The D_{OUT} is LOW except when reading a stored HIGH.

Open emitter outputs are provided on the F10411 to allow maximum flexibility in output wired-OR connection for memory expansion.

TABLE I - TRUTH TABLE

	*	INPUTS	OUTPUT	MODE		
C S ₁	cs ₂	\overline{cs}_3	WE	D _{IN}		MODE
х	X	H*	x	x	L	Not Selected
L	L	L	L	L	L	Write "O"
L	L	L	L	н	L L	Write "1"
L	L	L	н	x	DOUT	Read

L = LOW Voltage Levels = -1.7 V

H = HIGH Voltage Levels = -0.9 V (Nominal values)

X = Don't Care

*One or more Chip Selects HIGH

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias V_{EE} Pin Potential to Ground Pin Input Voltage (dc) Output Current (dc Output HIGH) -65°C to 150°C -55°C to 125°C -7.0 V to +0.5 V VEE to +0.5 V -30 mA to +0.1 mA

GUARANTEED OPERATING RANGES

S	SUPPLY VOLTAGE (V _{EE}) AMBIENT TEMPERATURE		
MIN	TYP	MAX	Note 4
-4.46 V	-4.25 V	-4.04 V	0°C to 75°C

7-33

4.4	н. 					4				
SYMBOL	CHARACTERISTIC	B	TYF (Note	3) LI	A MIT	UNIT	S	T _A (Note 4)	CONDITIONS	
VOH	Output HIGH Voltage	-1000			840	mV	, J	0°C		
		-960			B10			+25°C		
, <u>, , , , , , , , , , , , , , , , , , </u>		-900			720			+75°C	$V_{IN} = V_{IHA} \text{ or } V_{ILB}$	
V _{OL}	Output LOW Voltage	-1870		: -1	605	mV		0°C		
		-1850	· ·	-1	590 565			+25°C		
		1030	- <u> </u>			<u> </u>				50 Ω to -2.0
^v онс	Output HIGH Voltage	-1020				mv		0°C +25°C		
		-920						+75°C		
Voic	Output I OW Voltage			-1	585	mv	,	0°C		
ULC			1	-1	570			+25°C		
				-1	545			+75°C		
VIH	Input HIGH Voltage	-1045		-	735	m٧	,	0°C	Guaranteed Input Vo	Itage HIGH for
		-1025		-	705			+25°C	All Inputs	
		-1000		-	615			+75°C		
VIL	Input LOW Voltage	-1870		-1	490	mv	/	0°C	Guaranteed Input Vo	Itage LOW for
		-1850		-1	475			+25°C	All Inputs	
	1 1	-1830	·	-1	450	ļ		+75°C		
Чн	Input HIGH Current				200	μΑ		0 to +75°C	V _{IN} = V _{IHA}	
μL	Input LOW Current (CS)	0.5			150	μΑ	. (0° to +75°C	V _{IN} = V _{ILB}	
	All Others	-50								
IEE	Power Supply Current (Pin_8)	-125	-80 -90			mA mA		+75°C 0°C	All Inputs and Outpu	ts Open
AC CHAR	ACTERISTICS: V _{EE} = -4.2	5 V ±5%,	Output	Load =	50 Ω,	30 pF	to -2.0	ο ν, τ _A = 0°	C to 75°C (Note 4)	
				LIMITS	3					
SYMBOL	CHARACTERISTIC		MIN	TYP	N	IAX	UNITS	:	CONDITIONS	
		·	LIMIT	(Note 3)				5 1	
READ MOI	DE									
^t ACS	Chip Select Access Tim	e		7		12	ns		Fig. 1a and b N	leasured at 50%
^t RCS		ime		20		35	ns		(Vulle for Vol.	
-44									for V _{OH}). Note	5.
WRITE MO	DE									
tw	Write Pulse Width		30	20			ns	twsa =	t _{WSA} = 10 ns	
tWSD	Data Set-Up Time Prior	to Write	7	3			ns			
tWHD	Data Hold Time After V	Vrite	7	3			ns			
^t WSA	Address Set-Up Time		10	0			ns	$t_W = 30$	Ins Fig. 2 Measure	d at 50% of
WHA	Chip Select Set-Up Tim	e.	5	3			ns		(Villa for Vol. 0	or
twhcs	Chip Select Hold Time		5	3			ns		V _{IHB} for V _{OH})	
tws	Write Disable Time		3	7			ns			
tWR	Write Recovery Time			9		20	ns			a ta ang ang ang ang ang ang ang ang ang an
RISE AND	FALL TIME									
t _r	Output Rise Time			5			ns		Measured betv	veen 20% and
τ _f	Output Fall Time			5			ns		80% points. (F	g. 1a)
CAPACITA	NCE						-			_
CIN Court	Output Load Capacitance	r Ce		4		8	pr nF		Pulse Technica	a 18
U	i Galpar Evan Gapacitari	~~		· ·	1	I	P1	1	, also rooming	

NOTES:

1. Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions.

- The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
- 3. Typical values are at VEE = -4.25 V, TA = -25°C and maximum loading.
- 4. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

 θ_{JA} (Junction to Ambient at 400 FPM air flow) = 50° C/Watt for ceramic DIP; 65° C/Watt for plastic DIP; NA for Flatpak.

 θ_{JA} (Junction to Ambient with still air) = 90° C/Watt for ceramic DIP; 110° C/Watt for plastic DIP; NA for Flatpak.

 θ_{JC} (Junction to Case) = 25° C/Watt for ceramic and plastic DIPs; 10° C/Watt for Flatpak.

5. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

6. DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET:

The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the International Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

AC TEST LOAD

LOADING CONDITIONS

INPUT LEVELS

All Timing Measurements Referenced to 50% of Input Levels CL = 10 pF including Jig and Stray Capacitance RL = 50 Ω to -2.0 V

Waveforms same as F10405, see page 7-28.

ECL ISOPLANAR MEMORY F10414 256 × 1-BIT FULLY DECODED RANDOM ACCESS MEMORY FAIRCHILD VOLTAGE COMPENSATED ECL

GENERAL DESCRIPTION—The F10414 is a 256-bit Read/Write random access Memory, organized 256 words by one bit. It has typical access time of 7 ns and is designed for high-speed scratchpad, control and buffer storage applications. The device includes full address decoding on the chip, has separate Data In and non-inverted Data Out lines, and has three active LOW Chip Select Lines.

The F10414 is compatible with the F10K and uncompensated 10K ECL families and includes on-chip voltage compensation for improved noise margin. The device is packaged in the hermetic ceramic 16-pin dual in-line package or 16-pin flatpak and specified for operation over the temperature range 0°C to 75°C.

- VERY HIGH SPEED
- COMPATIBLE WITH F10K AND UNCOMPENSATED ECL LOGIC
- READ ACCESS TIME 7 ns TYPICAL
- CHIP SELECT ACCESS TIME 4 ns TYPICAL
- POWER DISSIPATION 1.8 mW/BIT
- 50 kΩ INPUT PULL-DOWN RESISTORS ON CHIP SELECT
- OUTPUTS CAN BE WIRED-OR FOR EASY MEMORY EXPANSION
- POWER DISSIPATION DECREASES WITH INCREASING TEMPERATURE
- ORGANIZED 256 WORDS X 1 BIT

PIN NAMES

\overline{CS}_1 , \overline{CS}_2 , \overline{CS}_3	Chip Select Inputs
A0 - A7	Address Inputs
DIN	Data Input
DOUT	Data Output
WE	Write Enable Input

LOGIC SYMBOL

 CS3
 7
 10
 A5

 VEE
 8
 9
 A4

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION – The F10414 is a fully decoded 256-bit Read/Write Random Access Memory, organized 256 words by one bit. Word selection is achieved by means of an 8-bit address A0 through A7.

The active LOW chip select inputs are provided for increased logic flexibility. This permits memory array expansion up to 2048 words with the 10161 decoder. For larger memories, the fast chip select time permits the decoding of Chip Select, CS, from the address without affecting system performance.

The read and write operations are controlled by the state of the active LOW Write Enable, (\overline{WE} , Pin 14). With \overline{WE} held LOW, and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH, and the chip selected. Data in the addressed location is presented at D_{OUT} and is read out non-inverted. The D_{OUT} is LOW except when reading a stored HIGH.

Open emitter outputs are provided on the F10414 to allow maximum flexibility in output wired-OR connection for memory expansion.

NOTE:

L = LOW Voltage Levels = -1.7 V H = HIGH Voltage Levels = -0.9 V (Nominal Values) X = Don't Care

		INPUT		OUTPUT	MODE	
CS ₁	CS ₂	\overline{CS}_3	WE	D _{IN}		
X	x	Н*	x	x	L	NOT SELECTED
L	L	L	L	L	L	WRITE "0"
L	L	L	L	н	L	WRITE "1"
L	L	L	н	х	DOUT	READ

TABLE 1 - TRUTH TABLE

*One or more Chip Selects HIGH

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired) Storage Temperature

Temperature (Ambient) Under Bias VEE Pin Potential to Ground Pin Input Voltage (dc) Output Current (dc Output HIGH)

GUARANTEED OPERATING RANGES

S	JPPLY VOLTAGE (VE	E)	AMBIENT TEMPERATURE (TA)
MIN	TYP MAX		(Note 4)
-5.46 V	-5.2 V	-4.94 V	0°C to 75°C

DC CHARACTERISTICS: VFF = -5.2V, VCC = GND

SYMBOL	CHARACTERISTIC	B LIMIT	TYP (Note 3)	A LIMIT	UNITS	Тд (Note 4)	CONDITIONS	
Voн	Output HIGH Voltage	-1000		840	mV	0°C		
		-960		810		25° C		
		-900		-720		75°C		
VOL	Output LOW Voltage	-1870		-1665	mV	0°C	VIN = VIHA or VILB	
		-1850		-1650	1	25°C		
		-1830		-1625		75°C		Loading is
VOHC	Output HIGH Voltage	-1020			mV	0°C		50 Ω to -2.0 V
		-980				25° C		
		-920				75°C	VIN = VIHB or VILA	
VOLC	Output LOW Voltage			1645	mV	0° C		
				-1630		25° C		
				-1605		75°C		
VIH	Input HIGH Voltage	-1145		-840	mV	0°C	Guaranteed Input Volta	ge
		-1105		-810		25° C	HIGH for All Inputs	
		-1045		-720		75°C		
VIL	Input LOW Voltage	-1870		-1490	mV	0°C	Guaranteed Input Volta	ge
		-1850		-1475		25°C	LOW for All Inputs	
		-1830		-1450		75°C		
Чн	Input HIGH Current			220	μA	0 to 75°C	VIN = VIHA	
IL	Input LOW Current (CS)	0.5		170	μA	0 to 75° C	VIN = VILB	·····
_	All Others	50						
lee	Power Supply Current		-90		mA	75°C	All Inputs and Output (Joen
'EE	(Pin 8)	-140	-100		mA	0°C	An inputs and Output Open	

-65°C to 150°C -55°C to 125°C -7.0 V to +0.5 V VEE to +0.5 V -30 mA to +0.1 mA

7

PRELIMINARY	AC CHARACTERISTICS: V _{EE} = -	5.2 V ±5%	, Output L	.oad = 50 s	ດ, 10 pF to	-2.0 V, $T_{A} = 0^{\circ}$	C to 75°C (Note 4)
SYMBOL	PARAMETER	MIN LIMIT	TYP (Note 3)	MAX LIMIT	UNITS		CONDITIONS
READ MODE							
^t ACS	Chip Select Access Time		4	6	ns		Fig. 1a & 1b Measured at 50%
^t RCS	Chip Select Recovery Time		4	6	ns		of Input to Valid Output
^t AA	Address Access Time		7	10	ns		(VILA for VOL or VIHB for V _{OH}). Note 5.
WRITE MODE							
tw	Write Pulse Width	7	4		ns	t _{WSA} = 1 ns	
tWSD	Data Set-up Time Prior to Write	1	0		ns		
twhd	Data Hold Time After Write	2	0		ns		
tWSA	Address Set-up Time	1	0		ns	t _W = 7 ns	Fig. 2 Measured at 50% of
tWHA	Address Hold Time	2	0		ns		Input to Valid Output
tWSCS	Chip Select Set-up Time	1	0		ns		(VILA for VOL or
tWHCS	Chip Select Hold Time	2	0		ns		VIHB for VOH)
tWS	Write Disable Time		4	8	ns		
tWR	Write Recovery Time		5	10	ns		
RISE AND FA							
tr	Output Rise Time		3		ns		Measured between 20% &
tf	Output Fall Time		3.		ns		80% points. (Fig. 1a)
CAPACITANC	Ε						
CIN	Input Lead Capacitance		4	5	pF		Measure with a
COUT	Output Lead Capacitance		7	8	pF		Puise Technique

NOTES:

1. Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions.

2. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical values are at $V_{EE} = -5.2 \text{ V}$, $T_A = 25^{\circ} \text{ C}$ and maximum loading.

4. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

θJA (Junction to Ambient at 400 FPM air flow) = 50° C/Watt for ceramic DIP; 65° C/Watt for plastic DIP; NA for Flatpak.

θJA (Junction to Ambient with still air) = 90° C/Watt for ceramic DIP; 110° C/Watt for plastic DIP; NA for Flatpak.

θJC (Junction to Case) = 25° C/Watt for ceramic and plastic DIPs; 10° C/Watt for Flatpak.

5. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

6. DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET:

The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the International Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

ECL ISOPLANAR MEMORY F10415 / F10415A 1024×1-BIT FULLY DECODED RANDOM ACCESS MEMORY

FAIRCHILD VOLTAGE COMPENSATED ECL

GENERAL DESCRIPTION — The F10415 and F10415A are 1024-bit Read/Write Random Access Memories organized 1024 words by one bit. They are designed for high speed scratchpad, control and buffer storage applications. Both include full address decoding on the chip, have separate Data In and non-inverted Data Out lines, and active LOW Chip Select lines. They are compatible with F10K and uncompensated 10K ECL families and include on-chip voltage compensation for improved noise margin.

The F10415 and F10415A are packaged in a hermetic ceramic 16-pin Dual In-line Package or 16-pin flatpack package and are specified for operation over the commer-

LOGIC SYMBOL

15

DIN

WE

CS

A₀

FUNCTIONAL DESCRIPTION: - The F10415 and F10415A are fully decoded 1024-bit Read/Write Random Access Memories organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, An through An. One Chip Select input is provided for memory array expansion up to 2048 words without the need for external decoding. For larger memories, the fast chip select access time permits the decoding of Chip Select (\overline{CS}) from the address without increasing address access time. The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE}). With \overline{WE} and \overline{CS} held LOW, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and CS held LOW. Data in the specified location is presented at DOUT and is non-inverted.

An unterminated emitter-follower output is provided on the F10415 and F10415A to allow maximum flexibility in output connection. In many applications ease of memory expansion requires that the outputs of many F10415s or F10415As be tied together. In other applications the wired-OR is not used. In either case an external 500 pull-down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature

Temperature (Ambient) Under Bias VEE Pin Potential to Ground Pin Input Voltage (dc) Output Current (dc Output HIGH)

-65° C to +150° C -55° C to +125° C -7.0 V to +0.5 V VFF to +0.5 V -30 mA to +0.1 mA

		INPUTS		OUTPUT	MODE	
TABLE 1	CS	WE	DIN	OPEN EMITTER	MODE	
TRUTH TABLE	н	х	х	L	NOT SELECTED	
	L	, L	L	L	WRITE "0"	
	L	L	н	L	WRITE "1"	
	L	н	х	DOUT	READ	

L = LOW Voltage Levels = -1.7 V H = HIGH Voltage Levels = -0.9 V (Nominal values) X = Don't Care

GUARANTEED OPERATING RANGES

PART NUMBER		SUPPLY VOLTAGE (VEE)	AMBIENT TEMPERATURE (TA)	
(Note 6)	MIN	TYP	MAX	(Note 4)
F10415XC,F10415AXC	-5.46 V	-5.2 V	-4.94 V	0°C to 75°C
F10415XM	-5.72 V	-5.2 V	-4.68 V	-55°C to +125°C

X = D for Dip; F for Flatpak

DC CHARACTERISTICS: V_{FF} = -5.2 V, V_{CC} = GND, T_A =55°C, and +125°C.

SYMBOL	CHARACTERISTIC	B ĻIMIT	ТҮР	A LIMIT	UNITS	т _А	CONDIT	ONS
Voн	Output HIGH Voltage	-1070		-860	mV	-55° C		
		-860		-650	mV	+125°C		
VOL	Output LOW Voltage	-1900		-1690	mV	-55° C	VIN = VIHA or VILB	
		-1800		-1570	mV	+125°C		Loading is
Voнc	Output HIGH Voltage	-1090			mV	-55° C		50 Ω to -2.0 V
		-880			mV	+125° C		
VOLC	Output LOW Voltage			-1670	mV	-55° C	V _{IN} = V _{IHB} or V _{ILA}	
				-1550	mV	+125°C		
VIH	Input HIGH Voltage	-1215		-860	mV	-55° C	Guaranteed Input Volta	age
		-1005		-650	mV	+125°C	HIGH for All Inputs	
VIL	Input LOW Voltage	-1900		-1515	mV	-55° C	Guaranteed input Volta	ige
		-1800		-1395	mV	+125°C	LOW for All Inputs	
Чн	Input HIGH Current			250	μA	–55° C	VIN = VIHA	
μL	Input LOW Current (CS)	0.5		170	μΑ	550		
	All Others	-50			μA	-55°C	$v_{IN} = v_{ILB}$	
	Power Supply Current	-165	-115		mA	'−55° C		
'EE	(Pin 8)		-80		mA	+125°C	All inputs and Outputs	Open

FAIRCHILD ECL ISOPLANAR MEMORY • F10415/F10415A

DC CHARA	CTERISTICS: V _{EE} = -5.2 V	, V _{CC} = G	ND; T _A =	0°C to +	75°C			
SYMBOL	CHARACTERISTIC	B	ТҮР	A LIMIT	UNITS	T _A (Note 4)	CONDITIONS	
Vон	Output Voltage HIGH	-1000		-840	mV	0°C		
on		-960		-810		+25°C		
		900	1	-720		+75°C		
VOL	Output Voltage LOW	-1870		-1665	mV	0°C	VIN = VIHA or VILB	
		-1850		-1650		+25°C		
		-1830		-1625		+75°C		Loading is
Vонс	Output Voltage HIGH	-1020			mV	0°C		50 Ω to -2.0 v
		-980				+25°C		
		-920				+75°C	V _{IN} = V _{IHB} or V _{ILA}	
VOLC	Output Voltage LOW			-1645	mV	0°C		
				-1630		+25°C		
				-1605		+75°C		
VIH	Input Voltage HIGH	-1145			mV	0°C	Guaranteed Input Voltag	je HIGH
		-1105		-810		+25°C	for All Inputs	
		-1045		-720		+75°C		
VIL	Input Voltage LOW	-1870		-1490	mV	0°C	Guaranteed Input Voltag	je LOW
		-1850		-1475		+25°C	for All Inputs	
		-1830		-1450		+75°C		
Чн	Input Current HIGH			220	μA	0 to +75°C	VIN = VIHA	
ΊL	Input Current LOW, CS	0.5		170	μA	+25°C	VIN = VILB	
	All others	-50	1			0 to +75°C		
1 _{EE}	Power Supply Current	-150	-105		mA	0°C	All Inputs and Outputs (Dpen
	(Pin 8)		-90			+75°C		

AC CHARACTERISTICS: V_{EE} = -5.2 V ±10%. Output Load = 50 Ω , 30 pF to -2.0 V, T_A = -55° C to +125°C

SYMPOL		MIN	ТҮР	MAX		CONDITIONS
SYMBOL	PARAMETER	LIMIT	(Note 3)	LIMIT	UNITS	conditions
EAD MODE						Fig 1a & b measured at
tACS C	Chip Select Access Time		7	15	ns	50% of input to valid
tRCS C	Chip Select Recovery Time		7	15	ns	output (VILA for Voi
t _{AA} A	Address Access Time		20	40	ns	or VIHB for VOH)
RITE MODE						
t _W V	Write Pulse Width	25	20		ns	t _{WSA} = 8ns
twsd D	Data Set-up Time Prior to Write	7	0		ns	
twhd D	Data Hold Time After Write	7	0		ns	
twsa A	Address Set-up Time	8	5		ns	t _W = 25ns
twha A	Address Hold Time	7	1	{	ns	
twscs C	Chip Select Set-up Time	7	0		ns	Fig. 2 Measured at 50% of
tWHCS C	Chip Select Hold Time	7	0		ns	Input to Valid Output
tws W	Nrite Disable Time		8	10	ns	(VILA for VOI or
twr W	Nrite Recovery Time	1	8	20	ns	VIHB for VOH)
ISE AND FALL	- TIME					
t _r C	Output Rise Time		5		ns	Measured between 20% &
t _f C	Output Fall Time		5		ns	80% points. (Fig. 1a)
APACITANCE						
C _{IN} I	input Lead Capacitance		4	5	pF	Measure with a
COUT C	Output Lead Capacitance		7	8	pF	Pulse Technique
COUT COUT	Dutput Lead Capacitance XM AC limits are preliminary.		7	8	pF	Pulse T

7
FAIRCHILD FCL ISOPLANAR MEMORY • F10415/F10415A

	b,	F10415AXC (Note 6)			F10415XC (Note 6)					
SYMBOI	PARAMETER	MIN	TYP (Note 3)	MAX	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS	
READ M	IODE								Fig 1a & b measured at	
tACS	Chip Select Access Time		5	8		7	10	ns	50 % of inpur to valid	
tRCS	Chip Select Recovery Time		5	8	1	7	10	ns	output (VILA for VOL	
^t AA	Address Access Time		13	20		25	35	ns	or VIHB for VOH)	
WRITE	MODE		:							
tw	Write Pulse Width								F10415A F10415	
	(to Guarantee writing)	14	9		25	20		ns	twsa = 5 ns twsa = 8 ns	
twsd	Data Set-up Time				E				-	
•••••	Prior to write	4			5	0		115		
WHD	After Write	4	0		5	0				
two	Address Set-up Time	•	ľ						E10415A E10415	
WSA	Prior to Write	5	3		8	5		ns	$t_{W} = 14 \text{ ns}$ $t_{W} = 25 \text{ ns}$	
twha	Address Hold Time									
	After Write	3	0		4	1	1	ns		
twscs	Chip Select Set-up Time									
	Prior to Write	4	0		5	0		ns	Fig. 2 measured	
tWHCS	Chip Select Hold Time	4			5	0		nc	at 50 % of input	
two	Write Disable Time	-	5	10	5	7	10	115		
TWD	Write Becovery Time		15	20		15	20	ns		
			+							
RISETIN	AE AND FALL TIME		_			_				
τ _Γ	Output Rise Lime		5			5		ns	Measured between 20 %	
4	Output Fair Time		5			5		ns	(Fig. 1a)	
CAPACI	TANCE		†`	<u>+</u>		ļ.		1		
CIN	Input Pin Capacitance		4	5		4	5	pF	Measure with a Pulse	
Соит	Output Pin Capacitance		7	8		7	8	pF	Technique	

NOTES

1. Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions. 2. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical values are at VEE = -5.2 V, TA = 25°C and maximum loading.

4. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

 θ_{JA} (Junction to Ambient at 400 FPM air flow) = 50° C/Watt for ceramic DIP; 65° C/Watt for plastic DIP; NA for Flatpak. θ_{JA} (Junction to Ambient with still air) = 90° C/Watt for ceramic DIP; 110° C/Watt for plastic DIP; NA for Flatpak. BJC (Junction to Case) = 25° C/Watt for ceramic and plastic DIPs; 10° C/Watt for Flatpak.

5. The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

6. DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET:

The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the International Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

READ MODE PROPAGATION DELAY FROM CHIP SELECT

READ MODE PROPAGATION DELAY

٩А

Fig. 1b

VILLE

E 00

A0 - A9 ADDRESS IN

DOUT

DATA OUTPUT

Fig. 1a

NOTE: Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

FAIRCHILD ECL ISOPLANAR MEMORY • F10415/F10415A

Fig. 3

APPLICATIONS(Cont'd)

16,384-WORD X n-BIT SYSTEM

7

ECL ISOPLANAR MEMORY F10416 256×4 BIT PROGRAMMABLE READ ONLY MEMORY FAIRCHILD VOLTAGE COMPENSATED ECL

LOGIC SYMBOL

VCP (Pin 1) is connected to the

Programmer (+12 V) during

programming only.

13

DESCRIPTION-The F10416 is a fully decoded high-speed 1024-bit field Programmable Read Only Memory, organized 256 words by four bits. The F10416 is voltage compensated and compatible with 10K ECL families. The device is enabled when CS is LOW. Prior to programming, all outputs are active HIGH in the enabled state. Programmed bits will furnish LOW levels at corresponding outputs. When the device is disabled (CS is HIGH) all outputs are forced LOW.

V_{EE} = Pin 8 V_{CP} = +12 V (Programming only) = Pin 1 \bigcirc = Pin Numbers

VCP = GND (Read only) = Pin 1

 $V_{CC} = GND = Pin 16$

ECL ISOPLANAR MEMORY • F10416

	ADED		SUPPLY	VOLTAGE (V _{EE})		AMBIENT TEMPERATUR	
FART NUM		MIN		ТҮР		MAX	(Note 4)	
F10416DC		–5.46 V	46 V			-4.94 V	-30°C to 85°C	
DC CHAR	CTERISTICS: VEE = -	5.2 V, Output	Load = 50 (2 to -2.0 V,	$T_{A} = -30$	°C to +85°C (Note	9 4)	
		В	TYP	A				
SYMBOL	CHARACTERISTI	LIMIT	(Note 3)	LIMIT	UNITS	TA	CONDITIONS	
Voн	Output Voltage HIG	l -1060	60 -890		mV	-30°C		
		-960	1	-810		+25°C		
	1		1					

-1675

-1650

-1615

-1655

mν

mV

m٧

 $V_{IN} = V_{IHA}$ or V_{ILB}

 $V_{\text{IN}} = V_{\text{IHB}} \text{ or } V_{\text{ILA}}$

Loading is

50 Ω to

-2.0 V

-30°C

+25°C

+85°C

-30°C

+25°C

+85°C

-30°C

.

				-1630		+25-0	
				-1595		+85°C	
VIH	Input Voltage HIGH	-1205		890	mV	-30°C	Guaranteed Input Voltage HIGH
		-1105		810		+25°C	for All Inputs
		-1035		700		+85°C	
VIL	Input Voltage LOW	-1890		- 1500	mV	-30°C	Guaranteed Input Voltage LOW
		-1850		-1475		+25°C	for All Inputs
		-1825		-1440		+85°C	
hн	Input Current HIGH			250	μA	-30° to +85°C	$V_{IN} = V_{IHA}$
lιL	Input Current LOW, CS	0.5		150	μA	+25°C	$V_{IN} = V_{ILB}$
IEE	Power Supply Current	-150	-120		mA	+25° C	All Inputs and Outputs Open
	(Pin 8)						

NOTES:

Vol

Vонс

Volc

Output Voltage LOW

Output Voltage HIGH

Output Voltage LOW

-1890

-1850

-1825

-1080

-980

-910

1. Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions.

2. The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical values are at $V_{EE} = -5.2 \text{ V}$, $T_A = 25^{\circ} \text{ C}$ and maximum loading.

3. The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

θJA (Junction to Ambient at 400 FPM air flow) = 50°C/Watt for ceramic DIP; 65°C/Watt for plastic DIP; NA for Flatpak.

 θ_{JA} (Junction to Ambient with still air) = 90° C/Watt for ceramic DIP; 110° C/Watt for plastic DIP; NA for Flatpak.

 θ_{JC} (Junction to Case) = 25° C/Watt for ceramic and plastic DIPs; 10° C/Watt for Flatpak.

The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

6. DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET:

The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the International Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: 'A' the value closest to positive infinity, 'B' the value closest to negative infinity.

AC CHARACTERISTICS: V_{EE} = -5.2 V \pm 5%, Output Load 50 Ω to -2.0 V, T_A = -30° C to $+85^{\circ}$ C

0/4/00/	DADAMETED		LIMITS				
SYMBOL	PAHAMETER	MIN	MIN TYP (NOTE 3)		UNITS	CONDITIONS	
tAA	Address Access Time		11	20	ns	Measured at 50% Points of both Input and Output	
tACS	Chip Select Access Time		4	8	ns	Measured at 50% Points of both Input and Output	

TABLE 1

	PROC	GRAM	VERIFY			
	VIH	VIL	ViH	VIL		
X Address Pins (2,3,4,5,6) Y Address Pins (7,9,10) Chip Select CS Pin 13	0.00 V - 0.1 V -0.87 V ± 0.1 V	-3.00 V ± 0.1 V -1.75 V ± 0.1 V	$\begin{array}{c} -0.87 \ V \pm 0.1 \ V \\ -0.87 \ V \pm 0.1 \ V \\ -0.87 \ V \pm 0.1 \ V \end{array}$	$\begin{array}{c} -1.75 \ V \pm 0.1 \ V \\ -1.75 \ V \pm 0.1 \ V \\ -1.75 \ V \pm 0.1 \ V \\ -1.75 \ V \pm 0.1 \ V \end{array}$		

- B. PROGRAMMING PROCEDURE
 - (Refer to Figure 1 and Table 1)
 - 1. Apply power to the part: V_{CC} = Pin 16 = GND; V_{EE} = Pin 8 = -5.2 V ± 5%
 - 2. Terminate all outputs (Pins 11, 12, 14 and 15) with 5 k Ω resistors to V_T = -2.0 V; NOTE: All input pins, including \overline{CS} , have internal 50 k Ω pull-down resistors to V_{EE}.
 - 3. Select the word to be programmed by applying the appropriate voltage levels, as shown in the "Program" column of Table 1, to the address Pins (2,3,4,5,6,7,9 and 10).
 - 4. After the address levels are set raise V_{CP} = Pin 1 from 0 V to +11.5 V ± 0.3 V.
 - 5. After V_{CP} has reached its HIGH level select the bit to be programmed by applying a HIGH level of $\pm 3.00 \text{ V} \pm 0.12 \text{ V}$ to the output associated with it, i.e., Pins (11, 12, 14 or 15). Only one bit (output) at a time may be selected for programming. Uncommitted outputs are terminated as outlined in 2.
 - 6. After the HIGH level (+3.00 V) has been established at the selected output pin, source a current of -40 mA \pm 4 mA out of the **Chip Select** input (Pin 13) to program the selected bit; this applied current pulse which is 100 μ s wide and has an approximate risetime of 1 μ s is to be furnished by a current sink which clamps at V_{CLAMP} = -5.9 V.
 - 7. To verify a LOW in the bit just programmed follow this sequence:
 - (a) Remove current pulse from \overline{CS} pin.
 - (b) Remove applied voltage from selected output pin.
 - (c) Lower VCP from "HIGH Level" to GND.
 - (d) Keep same address but change its levels to normal ECL levels as outlined in the verify column of Table 1.
 - (e) Enable the chip by applying a LOW level (V_{IL}) to \overline{CS} (Pin 13), or leave it open.
 - (f) Sense the level at the selected output pin; a LOW level indicates successful programming whereas a HIGH level is a fail indication; in the latter case reprogramming of the bit can be attempted.
 - 8. To program other bits in the memory repeat steps 3 through 7.

ECL ISOPLANAR MEMORY F10422 256 × 4 FULLY DECODED RANDOM ACCESS MEMORY FAIRCHILD TEMPERATURE AND VOLTAGE COMPENSATED ECL

GENERAL DESCRIPTION — The F10422 is a 1024-bit Read/Write Random Access Memory, organized 256 words by four bits per word. It has a maximum read access time of 10 ns and is designed for high-speed scratchpad, control and buffer storage applications. The device includes full address decoding on the chip and has separate Data In and non-inverted Data Out lines. Four active LOW Block Select lines are provided to select each block independently.

The F10422 is compatible with the F10K and uncompensated 10K ECL families and includes on-chip voltage compensation for improved noise margin. The device is packaged in a hermetic 24-pin dual in-line or 24-pin flatpak package and specified for operation over the temperature range 0°C to 75°C.

- COMPATIBLE WITH F10K AND UNCOMPENSATED 10K ECL LOGIC
- READ ACCESS TIME 10 ns MAX
- POWER DISSIPATION 850 mW TYPICAL
- FOUR BLOCKS CAN BE INDEPENDENTLY SELECTED
- ORGANIZED 256 WORDS x 4 BITS

PIN NAMES

Block Select Inputs
Address Inputs
Data Inputs
Data Outputs
Write Enable Input

outs (Connection Diagram) as the Dual In-Line Package.

ECL ISOPLANAR MEMORY F10470 4096 × 1-BIT FULLY DECODED RANDOM ACCESS MEMORY

FAIRCHILD VOLTAGE COMPENSATED ECL

GENERAL DESCRIPTION — The F10470 is a 4096-bit Read/Write Random Access Memory organized 4096 words by one bit. It is designed for high-speed scratchpad, control and buffer storage applications. The device includes full address decoding on the chip, has separate Data In and non-invertered Data Out lines, and active LOW Chip Select lines. They are compatible with F10K and uncompensated 10K ECL families and include on-chip voltage compensation for improved noise margin.

The F10470 is packaged in a hermetic ceramic 18-pin dual in-line package and is specified for operation over the temperature range 0°C to 75°C.

- COMPATIBLE WITH F10K AND UNCOMPENSATED 10K ECL LOGIC
- TYPICAL READ ACCESS TIME 25 ns
- TYPICAL CHIP SELECT ACCESS TIME 10 ns
- ORGANIZED 4096 WORDS X 1 BIT
- OPEN EMITTER OUTPUT FOR EASE OF MEMORY EXPANSION
- POWER DISSIPATION 0.20 mW/BIT
- POWER DISSIPATION DECREASES WITH INCREASING TEMPERATURE
- REPLACES FOUR 1024 X 1 RAMs

PIN NAMES

<u>cs</u>	Chip Select Input
AO — A11	Address Inputs
WE	Write Enable
DIN	Data Input
DOUT	Data Output

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION — The F10470 is a fully decoded 4096-bit Random Access Memory organized 4096 words by one bit. Word selection is achieved by means of a 12-bit address, A0 through A11.

One Chip Select input is provided for memory array expansion up to 8192 words without the need for external decoding. For larger memories, the fast Chip Select access time permits the decoding of Chip Select, \overline{CS} , from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable, \overline{WE} (Pin 15). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at D_{OUIT} and is non-inverted.

An unterminated emitter-follower output is provided on the F10470 to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many F10470s can be tied together. In other applications the wired-OR is not used. In either case an external 50 Ω pull down resistor to -2 V or an equivalent network must be used to provide a LOW at the output when it is off.

TABLE	1 – TRI	ЈТН Т	ABLE
-------	---------	-------	------

INPUTS			OUTPUT	MODE
CS	WE	D _{IN}	OPEN EMITTER	mode
н	х	х	L	Not Selected
L	L	L	L	Write "O"
L	L	н	L	Write "1"
L	н	Х	DOUT	Read

L = LOW Voltage Levels = -1.7 V H = HIGH Voltage Levels = -0.9 V (Nominal values) X = Don't Care

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias V_{EE} Pin Potential to Ground Pin Input Voltage (dc) Output Current (dc Output HIGH) -65°C to +150°C -55°C to +125°C -7.0 V to +0.5 V VEE to +0.5 V -30 mA to +0.1 mA

GUARANTEED OPERATING RANGES

		SUPPLY VOLTAGE (V _{EE})	AMBIENT TEMPERATURE (TA)	
PART NUMBER	MIN	ТҮР	MAX	(Note 4)
F10470	–5.46 V	–5.2 V	-4.94 V	0°C to + 75°C

DC CHARACTERISTICS: V_{EE} = -5.2 V, V_{CC} = GND, Output Load = $50 \ \Omega$ and 30 pF to -2.0 V, T_A = 0° C to 75° C (Note 4)

SYMBOL	CHABACTERISTIC	В	TYP	A	UNITS	Т	CONDITIONS	
		LIMIT	(Note 3)	LIMIT		· A		
Vон	Output Voltage HIGH	-1000		-840	mV	0°C		
		-960		810		25°C		
		-900		720		75°C		
VOL	Output Voltage LOW	-1870		-1665	mV	0°C	VIN = VIHA or VILB	
		-1850	1	-1650		25°C		
_				-1625		75°C		Loading is
Vонс	Output Voltage HIGH	-1020	T		mV	0°C		50 Ω to -2.0 V
		-980				25°C		
		-920				75°C		
VOLC	Output Voltage LOW			-1645	mV	0°C		
				-1630		25°C		
				-1605		75°C		
VIH	Input Voltage HIGH	-1145		840	mV	0°C	Guaranteed Input Voltag	je HIGH
		-1105	1	810		25°C	for All Inputs	
		-1045		720		75°C		
VIL	Input Voltage LOW	-1870		-1490	mV	0°C	Guaranteed Input Voltag	e LOW
		-1850	1	-1475		25°C	for All Inputs	
		-1830		-1450		75°C		
Чн	Input Current HIGH			220	μA	0 to 75°C	VIN = VIHA	
-IIL	Input Current LOW, CS	0.5		170	μA	25°C	VIN = VILB	
	All others	-50						
IEE	Power Supply Current		-145		mA	75° C	All Inputs and Output O	pen
	(Pin 9)	-200	~160			0° C	1	

FAIRCHILD ISOPLANAR ECL MEMORY • F10470

AC CHAR	AC CHARACTERISTICS: $V_{EE} = -5.2 \text{ V} \pm 5\%$, Output Load = 50 Ω , 30 pF to -2.0 V, $T_A = 0^{\circ}$ C to 75°C								
SYMBOL	PARAMETER	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS			
^t ACS ^t RCS ^t AA	Chip Select Access Time Chip Select Recovery Time Address Access Time		10 10 25	15 15 35	ns ns ns	Fig 1a and 1b measured at 50% of input to valid output (V _{ILA} for V _{OL} or V _{IHB} or V _{OH})			
tW	Write Pulse Width (to Guarantee writing)	25	18		ns				
twsp	Data Set-up Time Prior to Write	5	1		ns				
WHD	After Write	5	1		ns				
tauta	Prior to Write	10	5		ns				
WHA	Address Hold Time After Write Chin Select Set-un Time	5	1		ns				
wscs	Prior to Write	5	1		ns	Fig. 2 measured			
tWHCS	Chip Select Hold Time After Write	5	1		ns ns	at 50% of input to valid output			
tWS	Write Disable Time		7	15	ns	(VILA for VOL or			
-WR			10	20	ns	VIHB for VOH)			
t _r t _f	Output Rise Time Output Fall Time		5 5.		ns ns	Measured between 20% and 80% points. (Fig. 1a)			
C _{IN} C _{OUT}	Input Pin Capacitance Output Pin Capacitance		4 7		pF pF	Measure with a Pulse Technique			

NOTES:

 Conditions for testing, not shown in the tables are chosen to guarantee operation under "worst case" conditions.
 The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. 3. Typical values are at $V_{EE} = -5.2 \text{ V}$, $T_A = 25^{\circ} \text{ C}$ and maximum loading.

The temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and two minutes warm up period. Temperature range 4. of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

 θ_{JA} (Junction to Ambient at 400 FPM air flow) = 50° C/Watt for ceramic DIP; 65° C/Watt for plastic DIP; NA for Flatpak.

 θ_{JA} (Junction to Ambient with still air) = 90° C/Watt for ceramic DIP; 110° C/Watt for plastic DIP; NA for Flatpak. θ_{JC} (Junction to Case) = 25° C/Watt for ceramic and plastic DIP; 10° C/Watt for Flatpak.

The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern. 5.

6. DEFINITION OF SYMBOLS AND TERMS USED IN THIS DATA SHEET:

The symbols and terms used in this data sheet have been chosen to agree with the latest standards of the Electronics Industries Association and the International Electrotechnical Commission. The relative values of the specified conditions and limits will be referenced to an algebraic scale. The extremities of the scale are: "A" the value closest to positive infinity, "B" the value closest to negative infinity.

AC Test Load and Waveforms same as F100470, see page 7-18 & 7-19.

TTL ISOPLANAR MEMORY 93410 / 93410A 256×1-BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION — The 93410 and 93410A are high-speed 256-bit TTL Random Access Memories with full decoding on chip. They are organized 256 words by one bit and are designed for scratchpad, buffer and distributed main memory applications. The devices have three Chip Select lines to simplify their use in larger memory systems. Address input pin locations are specifically chosen to permit maximum packaging density and for ease of PC board layout. An uncommitted collector output is provided to permit "OR-ties" for ease of memory expansion.

ORGANIZATION – 256 WORDS X 1 BIT

THREE HIGH-SPEED CHIP SELECT INPUTS

TYPICAL ACCESS TIME

93410A	Commercial	35 n	s
93410	Commercial	45 n	s
93410	Military	45 n	s
NON INVERTOR	DATA OUTDUT		

- NON INVERTED DATA OUTPUT
- ON-CHIP DECODING
- POWER DISSIPATION 1.8 mW/BIT

POWER DISSIPATION DECREASES WITH INCREASING TEMPERATURE

		LOADING
PIN NAMES		(Notes a, b)
$\overline{\text{CS}}_1$, $\overline{\text{CS}}_2$, CS_3	Chip Select Inputs	0.5 U.L.
A ₀ - A ₇	Address Inputs	0.5 U.L.
D _{IN}	Data Input	0.5 U.L.
D _{OUT}	Data Output	10 U.L.
WE	Write Enable	0.5 U.L.
NOTES		

a. 1 Unit Load (U.L.) = 40 μ A HIGH / 1.6 mA LOW

b. 10 U.L. is the output LOW drive factor. An external pull-up resistor is needed to provide HIGH level drive capability. This output will sink a maximum of 16 mA at $V_{OUT} = 0.45$ V.

FUNCTIONAL DESCRIPTION—The 93410/93410A are fully decoded 256-bit Random Access Memories organized 256 words by one bit. Word selection is achieved by means of an 8-bit address, A_0 through A_7 .

Three Chip Select inputs are provided, two are active LOW (\overline{CS}_1 and \overline{CS}_2) and the third active HIGH (CS_3) for maximum logic flexibility. This permits memory array expansion up to 2048 words without the need for additional external decoders. For larger memories the fast chip select access time permits the decoding of Chip Select, CS, from the Address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable, \overline{WE} (pin 10). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at D_{OUT} and is non-inverted.

Uncommitted collector outputs are provided to allow maximum flexibility in output connection. In many applications, such as memory expansion, the outputs of several 93410s or 93410As can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of R_L value must be used to provide a HIGH at the output when it is off. Any value of R_I within the range specified below may be used.

CC (MAX)	< p. <	V _{CC} (MIN) –V _{OH}
-F.O. (1.6)	~n[~	N (I _{CEX}) + F.O. (0.04)

 $\begin{array}{l} R_L \text{ is in } k\Omega \\ N = \text{number of wired-OR outputs tied together} \\ F.O. = \text{number of TTL Unit Loads (U.L.) driven} \\ I_{CEX} = \text{Memory Output Leakage Current in mA} \\ V_{OH} = \text{Required Output HIGH level at Output Node} \end{array}$

The minimum value of R_L is limited by output current sinking ability. The maximum value of R_L is determined by the output and input leakage current which must be supplied to hold the output at V_{OH} .

TABLE I - TRUTH TABLE

		INPUTS		OUTPUT		
CS ₁ PIN 5	PIN 6	CS ₃ PIN 7	WE	D _{IN}	DOUT	MODE
н	x	x	x	x	н	Not Selected
х	н	x	x	x	н	Not Selected
х	x	L	x	x	н	Not Selected
L	L	н	L	L	н	Write "O"
L	L	н	L	н	н	Write "1"
L	L	н	н	x	DOUT	Read data from addressed location

H = HIGH Voltage Level

v

16

L = LOW Voltage Level

X = Don't Care (HIGH or LOW)

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	65°C to +150°C
Temperature (Ambient) Under Bias	–55°C to +125°C
V _{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
*Input Voltage (dc)	-0.5 V to +5.5 V
*Input Current (dc)	-12 mA to +5.0 mA
**Voltage Applied to Outputs (output HIGH)	0.5 V to +5.50 V
Output Current (dc) (Output LOW)	+20 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

* * Output Current Limit Required.

GUARANTEED OPERATING RANGES

	SUPP	LY VOLTAGE (V _{CC}	AMBIENT TEMPERATURE	
	MIN	TYP	MAX	Note 4
93410XC, 93410AXC	4.75 V	5.0 V	5.25 V	0° C to +75° C
93410XM	4.50 V	5.0 V	5.50 V	55°C to +125°C

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

7-54

FAIRCHILD ISOPLANAR TTL MEMORY • 93410/93410A

	PARAMETER			LIMITS				
SYMBOL			MIN	ТҮР	MAX	UNITS	CONDITIONS	
VOL	Output LOW V	oltage		0.3	0.45	v	V _{CC} = MIN, I _{OL} = 16 mA	
VIH	Input HIGH Vo	oltage	2.0	1.6		v	Guaranteed input logical HIGH voltage for all inputs.	
VIL	Input LOW Voltage			1.5	0.85	v	Guaranteed input logical LOW voltage for all inputs.	
ΙIL	Input LOW Cur	Input LOW Current		-530	-800	μA	V _{CC} = MAX , V _{IN} = 0 V	
Чн	Input HIGH Cu	irrent		1.0	20	μA	V _{CC} = MAX , V _{1N} = 4.5 V	
CEX	Output Leakage	e Current		1.0	50	μA	V _{CC} = MAX , V _{OUT} = 4.5 V	
VCD	Input Clamp Di	iode Voltage		-1.0	-1.5	V	V _{CC} = MAX , I _{IN} = -10 mA	
		93410XC 93410AXC		90	135		$T_A = +75^{\circ}C$ $V_{CC} = MAX$	
1	Power Supply			100	140	1	$T_A = 0^{\circ}C$ All inputs grounde	
	Current	93410XM		90	135		$T_A = +125^{\circ}C$ See Power Supply	
		93410XM		100	145	1	$T_{\Delta} = -55^{\circ}C$ vs Temp. Curve	

AC CHARACTERISTICS: Over Operating Voltage and Temperature Range

	PARAMETER		93410AXC		93410XC		93410XM					
STMBOL	PARAMETER	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN TYP MAX		UNITS	CONDITIONS	
READ MODE	DELAY TIMES											
^t ACS	Chip Select Access Time		20	25		25	30		25	40	ns	See Test Circuit
^t RCS	Chip Select Recovery Time		20	25		25	35		25	40	ns	and Waveforms
^t AA	Address Access Time		35	45		45	60		45	70	ns	Note 5
WRITE MODE	DELAY TIMES											
tWS	Write Disable Time	10	20	35	10	20	40	10	20	50	ns	
tWR	Write Recovery Time		25	35		25	40		25	50	ns	
	INPUT TIMING REQUIREMENTS											
tW	Minimum Write Pulse Width	30	20		30	25		40	25		ns	
tWSD	Data Set-up Time Prior to Write	5	0		5	0		5	0		ns	See Test Circuit
twhd	Data Hold Time After Write	5	0		5	0		5	0		ns	and Waveforms
tWSA	Address Set-Up Time	10	0		10	0		10	0		ns	Notes 6
twha	Address Hold Time	5	0		5	0		5	0		ns	
twscs	Chip Select Set-up Time	5	0		5	0		5	0		ns	
tWHCS	Chip Select Hold Time	5	0		5	0		5	0		ns	
CIN	Input Pin Capacitance		4	5		4	5		4	5	pF	Measured with a
COUT	Output Pin Capacitance		7	8		7	8		7	8	pF	pulse technique

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

- 2. The specified LIMITS represents the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
- Typical values are at V_{CC} = 5.0 V, T_A = +25°C, and MAX loading.
 The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range an additional requirement of a two minute warm-up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

 $\begin{array}{l} \theta_{JA} \ (Junction \ to \ Ambient) \ (at \ 400 \ fpm \ air \ flow) = 50^\circ C \ / \ Watt, \ Ceramic \ DIP; \ 65^\circ C \ / \ Watt, \ Plastic \ DIP; \ NA, \ Flatpak. \\ \theta_{JA} \ (Junction \ to \ Ambient) \ (still \ air) = 90^\circ C \ / \ Watt, \ Ceramic \ DIP; \ 110^\circ C \ / \ Watt, \ Plastic \ DIP; \ NA, \ Flatpak. \\ \theta_{JC} \ (Junction \ to \ Case) = 25^\circ C \ / \ Watt, \ Ceramic \ DIP; \ 25^\circ C \ / \ Watt, \ Plastic \ DIP; \ 10^\circ C \ / \ Watt, \ Flatpak. \end{array}$

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

6. t_W measured at t_{WSA} = MIN, t_{WSA} measured at t_W = MIN.

TYPICAL ELECTRICAL CHARACTERISTICS

V_{OUT} – OUTPUT VOLTAGE – VOLTS

TA - AMBIENT TEMPERATURE - "C

VOUT - OUTPUT VOLTAGE - VOLTS

NORMALIZED ADDRESS ACCESS TIME VERSUS LOAD CAPACITANCE

INPUT CURRENT VERSUS INPUT VOLTAGE VERSUS SUPPLY VOLTAGE

7-56

FAIRCHILD ISOPLANAR TTL MEMORY • 93410/93410A

NOTE: Timing Diagram represents one solution which results in an optimum cycle time Timing may be changed to fit various applications as long as the worst case limits are not violated.

7

TTL ISOPLANAR MEMORY 93411/93411A 256×1—BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION — The 93411 and 93411A are high-speed 256-bit TTL Random Access Memories with full decoding on chip. They are organized 256 words by one bit and are designed for scratchpad, buffer and distributed main memory applications. The devices have three chip select lines to simplify their use in larger memory systems. Address input pin locations are specifically chosen to permit maximum packaging density and for tease of PC board layout. An uncommitted collector output is provided to permit "ORties" for ease of memory expansion.

- REPLACEMENT FOR 54/74S206 AND EQUIVALENT DEVICES
- ORGANIZATION 256 WORDS X 1 BIT
- THREE HIGH-SPEED CHIP SELECT INPUTS
- TYPICAL ACCESS TIME

93411A	Commercial	40 ns
93411	Commercial	45 ns
93411	Military	45 ns

- ON CHIP DECODING
- POWER DISSIPATION 1.8 mW/BIT
- POWER DISSIPATION DECREASES WITH TEMPERATURE
- INVERTED DATA OUTPUT

		LOADING
PIN NAMES		(Notes a, b)
\overline{cs}_1 , \overline{cs}_2 , \overline{cs}_3	Chip Select Inputs	0.5 U.L.
A ₀ - A ₇	Address Inputs	0.5 U.L.
D _{IN}	Data Input	0.5 U.L.
DOUT	Data Output	10 U.L.
WE	Write Enable	0.5 U.L.

NOTES:

a. 1 Unit Load (U.L.) = 40 μ A HIGH / 1.6 mA LOW

- b. 10 U.L. is the output LOW drive factor. An external pull-up resistor is needed to provide HIGH
- level drive capability. This output will sink a maximum of 16 mA at V_{OUT} = 0.45 V.

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. FUNCTIONAL DESCRIPTION — The 93411/93411A are fully decoded 256-bit Random Access Memories organized 256 words by one bit. Word selection is achieved by means of an 8-bit address, A0 through A7.

Three Chip Select inputs are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of Chip Select, \overline{CS} , from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE} , pin 12). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at $\overline{D_{OUT}}$.

Uncommitted collector outputs are provided to allow maximum flexibility in output connection. In many applications, such as memory expansion, the outputs of several 93411s or 93411As can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of value R_L must be used to provide a HIGH at the output when it is off. Any value of R_L within the range specified below may be used.

n = numbe
I _{CEX} = Me

n = number of wired-OR outputs tied together F.O. = number of TTL Unit Loads (U.L.) driven I_{CEX} = Memory Output Leakage Current in mA V_{OH} = Required Output HIGH level at Output Node

The minimum value of R_L is limited by output current sinking ability. The maximum value of R_L is determined by the output and input leakage current which must be supplied to hold the output at V_{OH} .

		INPUTS		OUTPUT		
CS ₁ PIN 3	CS ₂ PIN 4	CS ₃ PIN 5	WE	D _{IN}	DOUT	MODE
н	x	x	x	х	н	Not Selected
х	н	x	x	x	н	Not Selected
х	x	н	x	x	н	Not Selected
L	L	L	Ľ	L	н	Write "O"
L	L	L	L	н	н	Write "1"
L	L	L	н	x	DOUT	Read inverted data from addressed location

TABLE I - TRUTH TABLE

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care (HIGH or LOW)

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

 Storage Temperature
 -65°C to +150°C

 Temperature (Ambient) Under Bias
 -55°C to +125°C

 V_{CC} Pin Potential to Ground Pin
 -0.5 V to +7.0 V

 *Input Voltage (dc)
 -0.5 V to +5.5 V

 *Input Current (dc)
 -12 mA to +5.0 mA

 **Voltage Applied to Outputs (output HIGH)
 -0.5 V to +5.5 V

 Output Current (dc) (output LOW)
 +20 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs. **Output Current Limit Required.

GUARANTEED OPERATING RANGES

		SUPPLY VOLTAGE (V _{CC})						
FART NOWBER	MIN	TYP	MAX	Note 4				
93411AXC, 93411XC	4.75 V	5.0 V	5.25 V	0°C to +75°C				
93411XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C				

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

FAIRCHILD ISOPLANAR TTL MEMORY • 93411/93411A

DC CHAR	ACTERISTICS: C	over Operating T	emperatu	re Ranges. N	lotes 1, 2	and 4			
SYMPOL	DADAMETED			LIMITS		LINUTO			
STWIDOL	FARAMETER	MIN	TYP (Note 3)	MAX		CONDITIONS			
V _{OL}	Output LOW Voltage			0.3	0.45	v	$V_{CC} = MIN, I_{OL} = 16 mA$		
v _{IH}	Input HIGH Volt	2.0	1.6		v	Guaranteed Input Logical HIGH Voltage for all Inputs			
v _{IL}	Input LOW Voltage			1.5	0.85	v	Guaranteed Input Logical LOW Voltage for all Inputs		
μ	Input LOW Current			-530	-800	μA	$V_{CC} = MAX, V_{IN} = 0 V$		
Iн	Input HIGH Cur	rent		1.0	20	μA	$V_{CC} = MAX, V_{IN} = 4.5 V$		
ICEX	Output Leakage	Current		1.0	50	μA	V _{CC} = MAX, V _{OUT} = 4.5 V		
V _{CD}	Input Clamp Die	ode Voltage		-1.0	-1.5	V.	$V_{CC} = MAX, I_{IN} = -10 mA$		
		93411XC		90	124		$T_A = +75^{\circ}C$ $V_{CC} = MAX, WE$		
lee	Power Supply	93411AXC		100	135	mA	$T_A = 0^{\circ}C$ Grounded, all other inputs		
	Current	Current 92411XM 9	90	117]	$T_A = +125^{\circ}C$ @ 4.5 V, see Power Supply			
		004117.00		100	143	, i	$T_A = -55^{\circ}C$ vs Temp. Curve		

AC CHARACTERISTICS: Over Guaranteed Operating Ranges. Notes 1, 2, 4, 5, 6

		93411AXC			93411XC			93411XM				
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 3)	MAX	MIN	TYP (Note 3)	ΜΑΧ	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS
READ MODE ^t ACS ^t RCS ^t AA	DELAY TIMES Chip Select Time Chip Select Recovery Time Address Access Time		25 25 40	30 25 45	-	25 25 45	30 25 55		25 25 45	40 35 65	ns	See Test Circuit and Waveforms Note 5
WRITE MODE ^t WS ^t WR	DELAY TIMES Write Disable Time Write Recovery Time INPUT TIMING REQUIREMENTS	10	20 25	35 40	10	20 25	35 40	10	20 25	45 50	ns	
^t WSD ^t WHD	(to guarantee write) Data Set-Up Time Prior to Write Data Hold Time After Write	40 0 5	0		40 0 5	25 0 0		05	25 0 0			and Waveforms Note 6
^t WSA ^t WHA ^t WSCS ^t WHCS	Address Set-Up Time Address Hold Time Chip Select Set-Up Time Chip Select Hold Time	0 5 0 5	000000000000000000000000000000000000000		0 5 0 5	0 0 0 0		0 5 0 5	0 0 0		ns	
c _l c _O	Input Lead Capacitance Output Lead Capacitance		4 7	5 8		4 7	4 8		4 7	5 8	pF	Measured with pulse technique

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

2. The specified LIMITS represents the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

 Typical values are at V_{CC} = 5.0 V, T_A = +25°C, and MAX loading.
 The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range an additional requirement of a two minute warm-up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

 $\begin{array}{l} \theta_{JA} \ (Junction \ to \ Ambient) \ (at \ 400 \ fpm \ air \ flow) = 50^\circ C / Watt, \ Ceramic \ DIP; \ 65^\circ C / Watt, \ Plastic \ DIP; \ NA, \ Flatpak. \\ \theta_{JA} \ (Junction \ to \ Ambient) \ (still \ air) = 90^\circ C / Watt, \ Ceramic \ DIP; \ 110^\circ C / Watt, \ Plastic \ DIP; \ NA, \ Flatpak. \\ \theta_{JC} \ (Junction \ to \ Case) = 25^\circ C / Watt, \ Ceramic \ DIP; \ 25^\circ C / Watt, \ Plastic \ DIP; \ 10^\circ C / Watt, \ Flatpak. \end{array}$

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

6. t_W measured at t_{WSA} = MIN, t_{WSA} measured at t_W = MIN.

0.7

200

T_A = +25°C

VIN - INPUT VOLTAGE - VOLTS

7-62

5.0 V Vcc

-1.5

-2.0

-25

-1.0 1.0 3.0 5.0 7.0 9.0 11

~1.5

-20

-2.5

-1.0 1.0 3.0 5.0 7.0 9.0 11

TA = --55°C

VIN - INPUT VOLTAGE - VOLTS

FAIRCHILD ISOPLANAR TTL MEMORY • 93411/93411A

7

TTL ISOPLANAR MEMORY 93L412 256×4-BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION – The 93L412 is a 1024-bit Read/Write Random Access Memory organized 256 words by four bits per word. The 93L412 has uncommitted collector outputs and is designed primarily for buffer control storage and high-performance main memory applications. the device has a typical address access time of 45 ns.

- ISOPLANAR TECHNOLOGY
- ORGANIZATION ~ 256 WORDS X 4 BITS
- UNCOMMITTED COLLECTOR OUTPUTS
- STANDARD 22-PIN DUAL IN-LINE PACKAGE
- TWO CHIP SELECT INPUTS PROVIDE EASY MEMORY EXPANSION
- LOW POWER DISSIPATION 0.27 mW/BIT TYP
- TYPICAL READ ACCESS TIME 45 ns

PIN NAMES

A ₀ – A ₇	Address Inputs
D ₁ - D ₄	Data Inputs
\overline{cs}_1 , cs_2	Chip Select Inputs
WE	Write Enable Input
0 ₁ - 0 ₄	Data Outputs
ŌĒ	Output Enable

FAIRCHILD ISOPLANAR TTL MEMORY • 93L412

FUNCTIONAL DESCRIPTION — The 93L412 is fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, A₀ through A₇.

Two Chip Select inputs are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of Chip Select, CS, from the address without increasing address access time.

The 93L412 has uncommitted collector outputs to allow maximum flexibility in output connection. In many applications, such as memory expansion, the outputs of several 93L412s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of value R_L must be used to provide a HIGH at the output when it is off. Any value of R_1 within the range specified below may be used.

V _{CC} (MAX) 8 - F.O. (1.6)	≤ R _L ≤	$\frac{V_{CC}(MIN) - V_{OH}}{N (I_{CEX}) + F.O. (0.04)}$	R_L is in KΩ N = number of wired-OR outputs tied together F.O. = number of TTL Unit Loads (U.L.) driven $I_{CEX} =$ Memory Output Leakage Current in mA $V_{OH} =$ Required Output HIGH level at Output Node
---	--------------------	--	--

The minimum value of R_L is limited by output current sinking ability. The maximum value of R_L is determined by the output and input leakage current which must be supplied to hold the output at V_{OH} .

		INP	JTS		OUTPUTS	
ÖE PIN 18	CS ₁ PIN 19	CS ₂ PIN 17	WE PIN 20	D ₁ — D ₄ PINS 9,11,13,15	OPEN COLLECTOR	MODE
×	н	х	х	х	н	Not Selected
х	x	L	х	x	н	Not Selected
L	L	н	н	х	0 ₁ - 0 ₄	Read Stored Data
х	L	н	L	L	н	Write "O"
х	L	н	L	н	н	Write "1"
н	L	н	н	x	н	Output Disabled
н	L	н	L	L	н	Write "0" (Output Disabled)
н	L	н	L	н	н	Write "1" (Output Disabled)

TRUTH TABLE

$$\label{eq:H} \begin{split} H &= HIGH \mbox{ Voltage; } L = LOW \mbox{ Voltage; } X = Don't \mbox{ Care (HIGH or LOW)} \\ \mbox{ NOTE: Pin number specified are for DIP only} \end{split}$$

ABSOLUTE MAXIMUM RATINGS, (above which the useful life may be impaired)

Storage Temperature $-65^{\circ}C$ to $+150^{\circ}C$ Temperature (Ambient) Under Bias $-55^{\circ}C$ to $+125^{\circ}C$ V_{CC} Lead Potential to Ground Lead-0.5 V to +7.0 VInput Voltage (dc)*-0.5 V to +5.5 VInput Current (dc)*-12 mA to +5.0 mAVoltage Applied to Outputs (output HIGH)**-0.5 V to +5.50 VOutput Current (dc)+20 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

**Output Current Limit Required.

GUARANTEED OPERATING RANGES

PART NUMBER	SL	IPPLY VOLTAGE (V	cc)	AMBIENT TEMPERATURE		
	MIN	TYP	MAX	Note 4		
93L412XC	4.75 V	5.0 V	5.25 V	0°C to +75°C		
93L412XM	4.50 V	5.0 V	5.50 V	−55°C to +125°C		

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHAI	RACTERISTICS: Ov	er Operating Tempera	ture Rang	es (Notes 1,	2, 4)			
CYMPOL				LIMITS				
STIVIBUL	CHARACTERISTI	MIN	TYP (Note 3)	МАХ	UNITS	CONDITIONS		
V _{OL}	Output LOW Voltag		0.3	0.45	v	$V_{CC} = MIN, I_{OL} = 8 mA$		
∨ _{IH}	Input HIGH Voltage			1.6		v	Guaranteed Input HIGH Voltage for all Inputs	
v _{IL}	Input LOW Voltage			1.5	0.8	v	Guaranteed Input LOW Voltage for all Inputs	
۱ _{۱L}	Input LOW Current			-150	-300	μA	V _{CC} = MAX, V _{IN} = 0.4 V	
				1.0	40	μA	V _{CC} = MAX, V _{IN} = 4.5 V	
ΉH	Input high current				1.0	mA	V _{CC} = MAX, V _{IN} = 5.25 V	
V _{CD}	Input Diode Clamp	Voltage		-1.0	-1.5	v	$V_{CC} = MAX$, $I_{IN} = -10 mA$	
ICEX	Output Leakage Current			1.0	100	μΑ	V _{CC} = MAX, V _{OUT} = 4.5 V	
		021 412 YC		55	75		$T_A = +75^{\circ}C$ $V_{CC} = MAX,$	
	Power Supply	93L412XC		60	80	80 mA	$T_A = 0^{\circ}C$ All Inputs and	
'cc	Current	93L412XM		50	70		T _A = +125°C Outputs Open	
		93L412XM		65	90		$T_A = -55^{\circ}C$	

FAIRCHILD ISOPLANAR TTL MEMORY • 93L412

AC CHARACTERISTICS: Over Guaranteed Operating Ranges (Notes 1, 2, 4, 5, 6)

			93L412X	с	93L412XM					
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	CONDITIONS	
			(Note 3)			(Note 3)				
READ MODE	DELAY TIMES									
^t ACS	Chip Select Time		20	35		20	45			
^t RCS	Chip Select Recovery Time		20	35		20	45	20	Soo Toot Cinquit	
^t AOS	Output Enable Time]	20	35		20	45	115	and Waveforms	
^t ROS	Output Enable Recovery Time		20	35		20	45			
^t AA	Address Access Time		45	60		45	75			
WRITE MODE	DELAY TIMES									
tws	Write Disable Time		20	40		20	45			
^t WR	Write Recovery Time	1	25	45		25	50	ns		
	INPUT TIMING REQUIREMENTS								Soo Toot Circuit	
tw	Write Pulse Width (to guarantee write)	45	30		55	35			and Waveforms	
tWSD	Data Set-Up Time Prior to Write	5	0		5	0				
tWHD	Data Hold Time After Write	5	0		5	0				
^t WSA	Address Set-Up Time	10	0		10	0		ns		
^t WHA	Address Hold Time	5	0		10	0				
twscs	Chip Select Set-Up Time	5	0		5	0				
twhcs	Chip Select Hold Time	5	0		10	0				
Cl	Input Pin Capacitance		3	5		3	5	n E	Measure with	
с _о	Output Pin Capacitance		5	8		5	8		Pulse Technique	

NOTES:

- 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
- 2. The specified LIMITS represent the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
- 3. Typical values are at V_{CC} = 5.0 V, T_{A} = +25°C, and MAX loading.
- 4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range there is an additional requirement of a two minute warm - up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

θJA (Junction to Ambient) (at 400 fpm air flow) = 50°C/Watt, Ceramic DIP; 65°C/Watt, Plastic DIP; NA, Flatpak. θJA (Junction to Ambient) (still air) = 90°C/Watt, Ceramic DIP; 110°C/Watt, Plastic DIP; NA, Flatpak. θJC (Junction to Case) = 25°C/Watt, Ceramic DIP; 25°C/Watt, Plastic DIP; 15°C/Watt, Flatpak.

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

6. tw measured at $t_{WSA} = MIN$, t_{WSA} measured at $t_W = MIN$.

TYPICAL ELECTRICAL CHARACTERISTIC CURVES

7

7-68

TTL ISOPLANAR MEMORY 93412 256 × 4 - BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION – The 93412 is a 1024-bit Read/Write Random Access Memory organized 256 words by four bits per word. The 93412 has uncommitted collector outputs and is designed primarily for buffer control storage and high-performance main memory applications. The device has a typical address access time of 30 ns.

- ISOPLANAR TECHNOLOGY
- ORGANIZATION 256 WORDS × 4 BITS
- UNCOMMITTED COLLECTOR OUTPUTS
- STANDARD 22- PIN DUAL IN-LINE PACKAGE
- TWO CHIP SELECT INPUTS PROVIDE EASY MEMORY EXPANSION
- POWER DISSIPATION 0.475 mW/BIT TYPICAL
- TYPICAL READ ACCESS TIME 30 ns

PIN NAMES

s
ιt

FUNCTIONAL DESCRIPTION – The 93412 is a fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, AQ through A7.

Two Chip Select inputs are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of Chip Select, CS, from the address without increasing address access time.

The 93412 has uncommitted collector outputs to allow maximum flexibility in output connection. In many applications, such as memory expansion, the outputs of several 93412s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of value R_L must be used to provide a HIGH at the output when it is off. Any value of R_L within the range specified below may be used.

V _{CC} (MAX) 8 - F.O. (1.6)	≤R ≤	$\frac{V_{CC} \text{ (MIN)} - V_{OH}}{\text{N} (\text{I}_{CEX}) + \text{F.O. (0.04)}}$	R_L is in $k\Omega$ N = number or wired-OR outputs tied together F.O. = number of TTL Unit Loads (U.L.) driven I_{CEX} = Memory Output Leakage Current in mA
			VOH = Required Output HIGH level at Output Node

The minimum value of R_L is limited by output current sinking ability. The maximum value of R_L is determined by the output and input leakage current which must be supplied to hold the output at V_{OH} .

TOUTH TABLE

		INPU	ITS D ₁ – D	4	OUTPUTS					
OE	CS ₁	CS ₂	WE	D ₁ — D ₄	OPEN	MODE				
PIN 18	PIN 19	PIN 17	PIN 20	PINS 9, 11,13, 15	COLLECTOR					
X	H	X	X	X	н	Not Selected				
X	X	L	X	X	н	Not Selected				
L	L	H	H	X	0 ₁ – 0 ₄	Read Stored Data				
X	L	H	L	L	н	Write "0"				
X	L	H	L	H	н	Write "1"				
H	L	н	H	X	н	Output Disabled				
H	L	н	L	L	н	Write "O" (Output Disabled)				
H	L	н	L	H	н	Write "1" (Output Disabled)				

H = HIGH Voltage, L = LOW Voltage, X = Don't Care (HIGH or LOW)

NOTE: Pin number specified are for DIP only

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
V _{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
*Input Voltage (dc)	-0.5 V to +5.5 V
*Input Current (dc)	-12 mA to +5.0 mA
**Voltage Applied to Outputs (output HIGH)	0.5 V to +5.50 V
Output Current (dc)	+20 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs. **Output Current Limit Required.

GUARANTEED OPERATING RANGES

	S	AMBIENT TEMPERATURE			
PART NUMBER	MIN	ТҮР	MAX	Note 4	
93412XC	4.75 V	5.0 V	5.25 V	0°C to +75°C	
93412XM	4.5 V	5.0 V	5.5 V	-55°C to +125°C	

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

SVMPOL	CHARACTERISTIC		LIMITS		LINITO		NC		
STINBUL	CHARACTERIST			TYP (Note 3)	МАХ		CONDITIO	CONDITIONS	
VOL	Output LOW Volta	age		0.3	0.45	V	V _{CC} = MIN, I _{OL}	= 8 mA	
v _{iH}	Input HIGH Voltag	je	2.1	1.6		v	Guaranteed Inpu for all Inputs	ut HIGH Voltage	
V _{IL}	Input LOW Voltag	e		1.5	0.8	v	Guaranteed Inpu for all Inputs	ut LOW Voltage	
IL	Input LOW Currer	nt		-150	-300	μΑ	V _{CC} = MAX, V _{IN}	N = 0.4 V	
		nt.		1.0	40	μΑ	V _{CC} = MAX, V _{IN}	v = 4.5 V	
IH	input man curre				1.0	mA	V _{CC} = MAX, V _{IN} = 5.25 V		
√ _{CD}	Input Diode Clam	p Voltage		-1.0	-1.5	V	V _{CC} = MAX, I _{IN}	=-10 mA	
CEX	Output Leakage Current			1.0	100	μΑ	V _{CC} = MAX, V _O	OUT = 4.5 V .	
		93412XC		95	130		$T_A = +75^{\circ}C$ \	V _{CC} = MAX,	
ICC CI	Power Supply	93412XC			155		$T_A = 0^{\circ}C$	All Inputs and	
	Current	93412XM			120		$T_A = +125^{\circ}C$	Outputs Open	
		93412XM			170		$T_A = -55^{\circ}C$		

FAIRCHILD ISOPLANAR TTL MEMORY • 93412

AC CHARACTERISTICS: Over Guaranteed Operating Ranges (Notes 1, 2, 4, 5, 6)

	93412XC 93412XM								
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 3)	MAX	MIN	TYP (Note 3)	МАХ	UNITS	CONDITIONS
READ MODE	DELAY TIMES								
^t ACS ^t RCS	Chip Select Time Chip Select Recovery Time		20 20	30 30		20 20	45 45		Soo Toot Circuit
^t AOS ^t ROS ^t AA	Output Enable Time Output Enable Recovery Time Address Access Time		20 20 30	30 30 45		20 20 40	45 45 60	ns	and Waveforms
WRITE MODE	DELAY TIMES								
^t WS	Write Disable Time		20	35		20	45		
^t WR	Write Recovery Time		25	40		25	50	ns	
	INPUT TIMING REQUIREMENTS								See Test Circuit
^t W ^t WSD ^t WHD ^t WSA ^t WHA ^t WSCS ^t WHCS	Write Pulse Width (to guarantee write) Data Set-Up Time Prior to Write Data Hold Time After Write Address Set-Up Time Address Hold Time Chip Select Set-Up Time Chip Select Hold Time	30 5 10 5 5 5	20 0 0 0 0 0 0		40 5 10 10 5 10	30 0 0 0 0 0 0		ns	and Waveforms
C _I C _O	Input Pin Capacitance Output Pin Capacitance		3 5	5 8		3 5	5 8	pF	Measure with Pulse Technique

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

2. The specified LIMITS represent the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. 3. Typical values are at $V_{CC} = 5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$, and MAX loading.

4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range there is an additional requirement of a two minute warm - up. Temperature range of operation refers to a case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

Heteroperation and the second Had (Junction to Ambient) (still air) = 90° C/Watt, Ceramic DIP; 110° C/Watt, Plastic DIP; NA, Flatpak. θJC (Junction to Case) = 25°C/Watt, Ceramic DIP; 25°C/Watt, Plastic DIP; 10°C/Watt, Flatpak.

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern. 6. tw measured at twsA = MIN, twsA measured at tw = MIN.

TYPICAL ELECTRICAL CHARACTERISTIC CURVES

POWER SUPPLY CURRENT VERSUS TEMPERATURE

INPUT CURRENT VERSUS INPUT VOLTAGE VERSUS TEMPERATURE 0.5 -55°C TA TA Vcc 5.0 V -+25°C 0 ٩W TA = +125°C -0.5 INPUT CURRENT -1.0 =+125°C ТΔ Т۸ +25°C -1.5 55°C ≧ ГΑ -2 (-2.5Ш 1.0 -1.0 3.0 7.0 9.0 11.0 5.0 VIN - INPUT VOLTAGE - VOLTS

AC Test Load and Waveforms same as 93L412, see page 7-68.

TTL ISOPLANAR MEMORY 93L415 1024×1-BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION – The 93L415 is a low power 1024-bit Read/Write Random Access Memory organized 1024 words by one bit. It has a typical access time of 35 ns and is designed for buffer and control storage and high-performance main memory applications requiring low power.

The 93L415 includes full decoding on chip, has separate Data Input and Data Output lines and an active LOW Chip Select line.

The device is fully compatible with the standard DTL and TTL logic families and has an uncommitted collector output for ease of memory expansion.

- FULL MIL AND COMMERCIAL RANGES
- TTL INPUTS AND OUTPUT
- NON-INVERTING DATA OUTPUT
- ORGANIZED 1024 WORDS X 1 BIT
- READ ACCESS TIME 35 ns TYPICAL
- CHIP SELECT ACCESS TIME 20 ns TYPICAL
- POWER DISSIPATION 0.20 mW/BIT TYPICAL
- UNCOMMITTED COLLECTOR OUTPUT
- POWER DISSIPATION DECREASES WITH INCREASING TEMPERATURE

PIN NAMES

cs	Chip Select Input
A0 - A9	Address Inputs
WE	Write Enable Input
DIN	Data Input
POUT	Data Output

1

FUNCTIONAL DESCRIPTION – The 93L415 is a fully decoded 1024-bit Random Access Memory organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A_0 through Ag.

The Chip Select input allows memory array expansion. For large memories, the fast chip select access time permits decoding of the Chip Select (CS) from the address without affecting system performance.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE} , Pin 14). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at D_{OUT} and is non-inverted.

Uncommitted collector outputs are provided on the 93L415 to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93L415s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of R_L value must be used to provide a HIGH at the output when it is off. Any R_L value within the range specified below may be used.

$$\frac{V_{CC} \text{ (min)}}{I_{OL} - FO (1.6)} \leq R_{L} \leq \frac{V_{CC} \text{ (min)} - V_{OH}}{n (I_{CEX}) + FO (0.04)}$$

 $\label{eq:result} \begin{array}{l} \mathsf{R}_L \text{ is in } k\Omega \\ \mathsf{n} = \mathsf{number} \text{ of wired-OR outputs tied together} \\ \mathsf{FO} = \mathsf{number} \text{ of TTL Unit Loads (UL) driven} \\ \mathsf{I}_{\mathsf{CEX}} = \mathsf{Memory Output Leakage Current} \\ \mathsf{V}_{\mathsf{OH}} = \mathsf{Required Output HIGH Level at Output Node} \\ \mathsf{I}_{\mathsf{OL}} = \mathsf{Output LOW Current} \end{array}$

The minimum R_L value is limited by output current sinking ability. The maximum R_L value is determined by the output and input leakage current which must be supplied to hold the output at V_{OH}. One Unit Load = 40 μ A HIGH/1.6 mA LOW.

INPUTS			ουτρυτ	MODE
cs	WE	DIN	Open Collector	
н	х	х	н	NOT SELECTED
L	L	L	н	WRITE "0"
L	L	н	н	WRITE "1"
L	н	x	DOUT	READ

TABLE I – TRUTH TABLE

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care (HIGH or LOW)

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature

Temperature (Ambient) Under Bias V_{CC} Pin Potential to Ground Pin

*Input Voltage (dc)

*Input Current (dc)

Voltage Applied to Outputs (Output HIGH) Output Current (dc) (Output LOW)

*Either input voltage or input current limit is sufficient to protect the input.

GUARANTEED OPERATING RANGES

	s	UPPLY VOLTAGE (V _{CC})	AMBIENT TEMPERATURE	
	MIN	ΤΥΡ	MAX	(Note 4)
93L415XC	4.75 V	5.0 V	5.25 V	0 ⁰ C to +75 ⁰ C
93L415XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C

X = package type; F for Flatpak, D for Ceramic DIP, P for Plastic DIP. See Packaging Information Section for packages available on this product.

7-74

-65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V -12 mA to +5.0 mA -0.5 V to +5.5 V +20 mA

FAIRCHILD ISOPLANAB TTL MEMORY • 93L415

DC CHARAG	CTERISTICS: Over Operating Temp	erature Ranges	(Notes 1, 2, 4)			
SYMBOL			LIMITS			
	CHARACTERISTIC	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS
V _{OL}	Output LOW Voltage		0.35	0.45	v	V _{CC} = MIN, I _{OL} = 16 mA
VIH	Input HIGH Voltage	2.1	1.6		v	Guaranteed Input HIGH Voltage for all Inputs
VIL	Input LOW Voltage		1.5	0.8	v	Guaranteed Input LOW Voltage for all Inputs
μL	Input LOW Current		-150	-300	μA	V _{CC} = MAX, V _{IN} = 0.4 V
1			1.0	40	μA	V _{CC} = MAX, V _{IN} = 4.5 V
чн	input High Current			1.0	mA	V _{CC} = MAX, V _{IN} = 5.25 V
CEX	Output Leakage Current		1.0	100	μA	$V_{CC} = MAX, V_{OUT} = 4.5 V$
V _{CD}	Input Diode Clamp Voltage		-1.0	-1.5	V	$V_{CC} = MAX$, $I_{IN} = -10 mA$
				55	mA	$T_A \ge 75^{\circ}C$ $V_{CC} = MAX,$
Icc	Power Supply Current		45	65	mA	$T_A = 0^{\circ}C$ All Inputs
		·		75	mA	$T_A = -55^{\circ}C$ Grounded

AC CHARACTERISTICS: Over Guaranteed Operating Ranges (Notes 1, 2, 4, 5, 6)

			93L415X	2		93L415XM	Л		
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX.	MIN	TYP	MAX	UNITS	CONDITIONS
			(Note 3)			(Note 3)			
READ MODE	DELAY TIMES								
^t ACS	Chip Select Time		20	40		20	45		
tRCS	Chip Select Recovery Time		20	40		20	50	ns	See Test Circuit and Waveforms
^t AA	Address Access Time		35	60		35	70		
WRITE MODE	DELAY TIMES								÷
tWS	Write Disable Time		20	45		20	45		
twr	Write Recovery Time		20	45		30	55		
	INPUT TIMING REQUIREMENTS								
tW	Write Pulse Width (to guarantee write)	45	25		50	25			
tWSD	Data Set-Up Time Prior to Write	5	0		10	0		ns	See Test Circuit and Waveforms
twhd	Data Hold Time After Write	5	0		10	0			
tWSA	Address Set-Up Time	10	0		10	0			
^t WHA	Address Hold Time	5	0		10	0			
twscs	Chip Select Set-Up Time	5	0		10	0			
tWHCS	Chip Select Hold Time	5	0		10	0			
CI	Input Lead Capacitance		4	5		4	5	-5	
с _о	Output Lead Capacitance		7	8		7	8	pr	

NOTES

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

2. The specified LIMITS represent the "worst case" value to the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. 3. Typical limits are at V_{CC} = 5.0 V, T_A = +25 $^{\circ}{\rm C},$ and MAX loading.

4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range there is an additional requirement of two minute warm-up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum termperature are:

 θ_{JA} (Junction to Ambient) (at 400 fpm air flow) = 50°C/Watt, Ceramic DIP, 65°C/Watt, Plastic DIP; NA, Flatpak. J_{JA}^{JA} (Junction to Amblent) (still air) = 90° C/Watt, Ceramic DIP; 110° C/Watt, Plastic DIP; NA, Flatpak. $\theta_{JC}^{(Junction to Case)} = 25° C/Watt, Ceramic DIP; 25° C/Watt, Plastic DIP; 10° C/Watt, Flatpak.$

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

6. t_W measured at t_{WSA} = MIN, t_{WSA} measured at t_W = MIN.

7

7-77
TTL ISOPLANAR MEMORY 93415/93415A 1024×1-BIT FULLY DECODED RANDOM ACCESS MEMORY

LOGIC SYMBOL

CS

15

DIN

14

W/F

DESCRIPTION - The 93415 and 93415A are 1024-bit Read/Write Random Access Memories organized 1024 words by one bit. They are designed for buffer control storage and high-performance main memory applications. The devices have typical access times of 30 ns for the 93415 and 25 ns for the 93415A.

The 93415 and 93415A include full decoding on chip, separate Data Input and Data Output lines and an active LOW Chip Select. They are fully compatible with standard DTL and TTL logic families and have an uncommitted collector output for ease of memory

FUNCTIONAL DESCRIPTION – The 93415/93415A are fully decoded 1024-bit Random Access Memories organized 1024 words by one bit. Bit selection is achieved by means of a 10-bit address, A0through Ag.

The Chip Select input provides for memory array expansion. For large memories, the fast chip select access time permits the decoding of Chip Select (CS) from the address without affecting system performance.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE} , Pin 14). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at D_{OUT} and is non-inverted.

Uncommitted collector outputs are provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93415s or 93415As can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of R_L value must be used to provide a HIGH at the output when it is off. Any R_L value within the range specified below may be used.

$$\frac{V_{CC} (MIN)}{I_{OL} - FO (1.6)} \leq R_{L} \leq \frac{V_{CC} (MIN) - V_{OH}}{n (I_{CEX}) + FO (0.04)}$$

 $\label{eq:response} \begin{array}{l} \mathsf{R}_L \text{ is in } k\Omega \\ \mathsf{n} = \mathsf{number} \text{ of wired-OR outputs tied together} \\ \mathsf{FO} = \mathsf{number} \text{ of TL Unit Loads (UL) driven} \\ \mathsf{I}_{\mathsf{CEX}} = \mathsf{Memory Output Leakage Current} \\ \mathsf{V}_{\mathsf{OH}} = \mathsf{Required Output HIGH Level at Output Node} \\ \mathsf{I}_{\mathsf{OL}} = \mathsf{Output LOW Current} \end{array}$

The minimum R_L value is limited by output current sinking ability. The maximum R_L value is determined by the output and input leakage current which must be supplied to hold the output at V_{OH}. One Unit Load = 40 μ A HIGH/1.6 mA LOW.

Voltage Applied to Outputs (Output HIGH) Output Current (dc) (Output LOW)

*Either input voltage or input current limit is sufficient to protect the input.

GUARANTEED OPERATING RANGES

	SU	PPLY VOLTAGE (VC	AMBIENT TEMPERATURE (T _A)		
PART NOMBER	MIN	ТҮР	MAX	(Note 4)	
93415XC, 93415AXC	4.75 V	5.0 V	5.25 V	0°C to +75°C	
93415XM	4.50 V	5.0 V	5.50 V	–55°C to +125°C	

X = package type; F for Flatpak, D for Ceramic DIP, P for Plastic DIP. See Packaging Information Section for packages available on this product.

+20 mA

FAIRCHILD ISOPLANAR TTL MEMORY • 93415/93415A

DC CHARA	CTERISTICS: Over Operating	Femperatu	ire Ranges (Notes	1, 2, 4)				
			LIMITS		LINUTO			
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS		
VOL	Output LOW Voltage		0.3	0.45	v	V _{CC} = MIN, I _{OL}	= 16 mA	
VIH	Input HIGH Voltage	2.1	1.6		V	Guaranteed Inpu	t HIGH Voltage for all Inputs	
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for all Inputs		
ΊL	Input LOW Current		-250	-400	μA	V _{CC} = MAX, V _{IN} = 0.4 V		
1			1.0	40	μA	V _{CC} = MAX, V _I	N = 4.5 V	
ЧН	Input HIGH Current			1.0	mA	V _{CC} = MAX, V _I	N = 5.25 V	
ICEX	Output Leakage Current		1.0	100	μA	V _{CC} = MAX, V _C)UT = 4.5 V	
VCD	Input Diode Clamp Voltage		-1.0	1.5	V	V _{CC} = MAX, IIN	J = −10 mA	
		1	95	115	mA	$T_A \ge 75^{\circ}C$		
Icc	CC Power Supply Current			130	mA	$T_A = 0^{\circ}C$		
				145	mA	$T_A = -55^{\circ}C$	All inputs Grounded	

AC CHARACTERISTICS: Over Guaranteed Operating Ranges (Notes 1, 2, 4, 5, 6)

		93415AXC			93415XC		93415XM					
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	түр	MAX	UNITS	CONDITIONS
			(Note 3	3)		(Note 3	3)	(Note 3)		3)		
READ MODE	DELAY TIMES											
^t ACS	Chip Select Time		15	20		15	35		15	45		See Test Circuit
^t RCS	Chip Select Recovery Time		15	20		20	35		20	50	ns	and Waveforms
^t AA	Address Access Time		25	30		30	45		40	60		
WRITE MODE	DELAY TIMES						·····					
tWS	Write Disable Time		15	20		20	35		20	45		
tWR	Write Recovery Time		20	25		25	40		45	50	ns	
	INPUT TIMING											
	REQUIREMENTS											
tw	Write Pulse Width	20	15		35	25		40	25			
	(to guarantee write)				1							See Test Circuit
tWSD	Data Set-Up Time Prior to Write	5	0		5	0		5	0			and Waveforms
twhd	Data Hold Time After Write	5	0		5	0		5	0			
tWSA	Address Set-Up Time	5	0		5	0		15	0		ns	
twha	Address Hold Time	5	0		5	0		5	0			
twscs	Chip Select Set-Up Time	5	0		5	0		5	0			
tWHCS	Chip Select Hold Time	5	0		5	0		5	0			
CI	Input Pin Capacitance		4	5		4	5		4	5		
с _О	Output Pin Capacitance		7	8		7	8		7	8	pr-	

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

2. The specified LIMITS represent the "worst case" value to the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical limits are at $V_{CC} = 5.0 \text{ V}$, $T_A = +25^{\circ}$ C, and MAX loading. 4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range there is an additional requirement of two minute warm-up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages, Typical thermal resistance values of the package at maximum termperature are:

 $\begin{array}{l} \theta_{JA}(\text{Junction to Amblent}) (\text{at 400 fpm air flow}) = 50^{\circ}\text{C/Watt}, \text{Ceramic DIP, 65}^{\circ}\text{C/Watt}, \text{Plastic DIP; NA, Flatpak,} \\ \theta_{JA}(\text{Junction to Amblent}) (\text{still air}) = 90^{\circ}\text{C/Watt}, \text{Ceramic DIP; 110}^{\circ}\text{C/Watt}, \text{Plastic DIP; NA, Flatpak,} \\ \theta_{JC}(\text{Junction to Case}) = 25^{\circ}\text{C/Watt}, \text{Ceramic DIP; 25}^{\circ}\text{C/Watt}, \text{Plastic DIP; 10}^{\circ}\text{C/Watt}, \text{Flatpak}. \end{array}$

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

6. t_W measured at t_{WSA} = MIN, t_{WSA} measured at t_W = MIN.

7-81

93417 ISOPLANAR SCHOTTKY TTL MEMORY 256×4-BIT PROGRAMMABLE READ ONLY MEMORY

LOGIC SYMBOL

DESCRIPTION – The 93417 is a fully decoded high-speed 1024-bit field Programmable ROM organized 256 words by four bits per word. The 93417 has uncommitted collector outputs. The outputs are disabled when either \overline{CS}_1 or \overline{CS}_2 are in the HIGH state. The 93417 is supplied with all bits stored as logic "1"s and can be programmed to logic "0"s by following the field programming procedure.

FAIRCHILD ISOPLANAR SCHOTTKY TTL MEMORY • 93417

FUNCTIONAL DESCRIPTION – The 93417 is a bipolar field Programmable Read Only Memory (PROM) organized 256 words by four bits per word. Open collector outputs are provided for use in wired-OR systems. Chip Selects are active LOW; conversely, a HIGH (logic "1") on the $\overline{\text{CS}}_1$ or $\overline{\text{CS}}_2$ will disable all outputs.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A0 through A7 inputs, the chip is selected, and data is valid at the outputs after tAA nanoseconds.

Programming (selectively opening nichrome fuse links) is accomplished by following the sequence outlined below.

PROGRAMMING – The 93417 is manufactured with all bits in the logic "1" state. Any desired bit (output) can be programmed to a logic "0" state by following the procedure shown in Chapter 6, page 6-14.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature Temperature (Ambient) Under Bias V_{CC} Input Voltages Current into Output Terminal Output Voltages

GUARANTEED OPERATING RANGES

	S	UPPLY VOLTAGE (VC			
FART NOMBER	MIN	ТҮР	MAX	AMBIENT TEMPERATORE	
93417XC	4.75 V	5.0 V	5.25 V	0°C to +75°C	
93417XM	4:50 V	5.0 V	5.50 V	-55°C to +125°C	

X = package type; F for Flatpak, D for Ceramic DIP, P for Plastic DIP. See Package Information on this data sheet.

DC CHARACTERISTICS: Over guaranteed operating ranges unless otherwise noted.

			LIMITS				
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS	
			(Note 1)				
ICEX	Output Leakage Current			50	μA	V_{CC} = 5.25 V, V_{CEX} = 4.95 V, 0°C to +75°C Address any HIGH Output	
ICEX	Output Leakage Current			100	μA	$V_{CC} = 5.5 V$, $V_{CEX} = 5.2 V$, $-55^{\circ}C$ to $+125^{\circ}C$ Address any HIGH Output	
V _{OL}	Output LOW Voltage		0.30	0.45	v	V_{CC} = MIN, I _{OL} = 16 mA, A ₀ = +10.8 V A ₁ through A ₇ = HIGH	
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
	Input LOW Current						
١F	IFA (Address Inputs)		-160	-250	μA	$V_{CC} = MAX, V_{F} = 0.45 V$	
	IFCS (Chip Select Inputs)		-160	-250	μA		
	Input HIGH Current						
IR	IRA (Address Inputs)			40	μA	V _{CC} = MAX, V _R = 2.4 V	
	IRCS (Chip Sefect Input)			40	μA		
^I CC	Power Supply Current		85	110	mA	V _{CC} = MAX, Outputs open Inputs Grounded and Chip Selected	
CO	Output Capacitance		7		pF	V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz	
CIN	Input Capacitance		4		pF	V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz	
VC	Input Clamp Diode Voltage			-1.2	V	V _{CC} = MIN, I _A = -18 mA	

7

-65°C to +150°C

-55°C to +125°C

-0.5 V to +7.0 V

-0.5 V to +5.5 V

-0.5 V to +5.5 V

100 mA

FAIRCHILD ISOPLANAR SCHOTTKY TTL MEMORY • 93417

AC CHARACTERISTICS: $T_A = 0^{\circ}C$ to $+75^{\circ}C$, $V_{CC} = 5.0$ V \pm 5%. LIMITS SYMBOL CHARACTERISTIC UNITS CONDITIONS MIN TYP (Note 1) MAX tAA-25 45 ns Address to Output Access Time 25 45 ns tAA+ See Waveforms ns and Test Circuits tACS-12 20 Chip Select Access Time tACS+ 12 20 ns

AC CHARACTERISTICS: $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = 5.0$ V \pm 10%.

			LIMITS	UNITE	CONDITIONS	
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS
tAA-			25	60	ns	
tAA+	Address to Output Access Time		25	60	ns	See Waveforms
tACS-			12	30	ns	and Test Circuits
^t ACS+	Chip Select Access Time		12	30	ns	

Note 1: Typical values are at $V_{CC} = 5.0 V_{,} + 25^{\circ}C$ and max loading.

AC WAVEFORMS

AC TEST OUTPUT LOAD

TTL ISOPLANAR MEMORY 93419 64×9-BIT FULLY DECODED RANDOM ACCESS MEMORY

LOGIC SYMBOL

9 10 11 12

DESCRIPTION – The 93419 is a 576-bit Read/Write Random Access Memory organized 64 words by nine bits per word with uncommitted collector outputs. It is ideally suited for scratchpad, small buffer and other applications where the number of required words is small and where the number of required bits per word is relatively large. The ninth bit can provide parity for 8-bit word systems.

O= Pin Numbers

PINS (16) THRU (24)

FUNCTIONAL DESCRIPTION – The 93419 is a fully decoded 576-bit Random Access Memory organized 64 words by nine bits. Word selection is achieved by means of a 6-bit address, A_{Ω} to A_{5} .

The Chip Select input provides for memory array expansion. For large memories, the fast chip select access time permits the decoding of chip select (CS) from the address without affecting system performance.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE} , pin 13). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at $\overline{D_{OUT}}$ and is inverted from Data In to Data Out.

Uncommitted collector outputs are provided to allow maximum flexibility in output connection. In many applications such as memory expansion, the outputs of many 93419s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of R_L value must be used to provide a HIGH at the output when it is off. Any R_L value within the range specified below may be used.

$$\frac{V_{CC}(MAX)}{I_{OL}-FO~(1.6)} \qquad \leqslant \mathsf{R}_L \leqslant \quad \frac{V_{CC}~(MIN)-V_{OH}}{\mathsf{n}~(I_{CEX})+FO~(0.04)}$$

 $\begin{array}{l} R_L \text{ is in } k\Omega \text{ (limited to 8 mA)} \\ n = \text{number of wired-OR outputs tied together} \\ FO = \text{number of TTL Unit Loads (UL) driven} \\ I_{CEX} = \text{Memory Output Leakage Current} \\ V_{OH} = \text{Required Output HIGH Level at Output Node} \\ I_{OI} = \text{Output LOW Current} \end{array}$

The minimum R_L value is limited by output current sinking ability. The maximum R_L value is determined by the output and input leakage current which must be supplied to hold the output at V_{OH} . One Unit Load = 40 μ A HIGH/1.6 mA LOW. FO_{MAX} = 5 UL.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
V _{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
*Input Voltage (dc)	-0.5 V to +5.5 V
*Input Current (dc)	-12 mA to +5.0 mA
Voltage Applied to Outputs (Output HIGH)	-0.5 V to +5.5 V
Output Current (dc) (Output LOW)	+10 mA
*Either Structure International Action of the State of th	

*Either input voltage or input current limit is sufficient to protect the input.

GUARANTEED OPERATING RANGES

		AMBIENT TEMPERATURE		
PART NOMBER	MIN	ТҮР	MAX	(Note 4)
93419XC	4.75 V	5.0 V	5.25 V	0°C to +75°C
93419XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

CVMDOI	DADAMETED		LIMITS					
STINIBUL	FARAMETER	MIN	TYP (Note 3)	MAX	UNITS	CONDIT	IONS	
V _{OL}	Output LOW Voltage		0.3	0.50	v	V _{CC} = MIN, I _C	_{0L} = 12 mA	
v _{IH}	Input HIGH Voltage	2.1	1.6		v	Guaranteed In	put HIGH Voltage for all Inputs	
VIL	Input LOW Voltage		1.5	0.8	v	Guaranteed Input LOW Voltage for all Inputs		
μ	Input LOW Current		-250	-400	μA	$V_{CC} = MAX, V_{IN} = 0.4 V$		
	Input HIGH Current		1.0	40	μA	$V_{CC} = MAX, V_{IN} = 4.5 V$		
.111				1.0	mA	V _{CC} = MAX, \	/ _{IN} = 5.25 V	
ICEX	Output Leakage Current		1.0	100	μA	V _{CC} = MAX, \	/ _{OUT} = 4.5 V	
V _{CD}	Input Clamp Diode Voltage		-1.0	-1.5	v	V _{CC} = MAX, I	$V_{CC} = MAX$, $I_{IN} = -10 \text{ mA}$	
				120	mA	T _A = 125°C	$V_{CC} = MAX,$	
lcc	Power Supply Current		100	150	mA	T _A = 25°C	All Inputs Grounded	
				165	mA	T _A = −55°C	Outputs LOW	

FAIRCHILD ISOPLANAR TTL MEMORY • 93419

AC CHARACTERISTICS: Over Guaranteed Operating Ranges (Notes 1, 2, 4, 5, 6)

			93419XC			93419XM			
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 3	MAX)	MIN	TYP (Note 3	MAX)	UNITS	CONDITIONS
READ MODE	DELAY TIMES								
^t ACS	Chip Select Access Time		15	40		15	40		See Test Circuit
tRCS	Chip Select Recovery Time		20	40		20	40	ns	and Waveforms
^t AA	Address Access Time		35	45		40	60		
WRITE MODE	DELAY TIMES								
tws	Write Disable Time		20	40		20	45		
tWB	Write Recovery Time		25	45		45	55	115	
	INPUT TIMING REQUIREMENTS								
^t W	Write Pulse Width (to guarantee write)	35	20		45	25			See Test Circuit and Waveforms
^t WSD	Data Set-Up Time Prior to Write	5	0		5	0			
tWHD	Data Hold Time After Write	5	0		5	0			
^t WSA	Address Set-Up Time	5	0		10	0		ns	
^t WHA	Address Hold Time	5	0		5	0			
twscs	Chip Select Set-Up Time	5	0		5	0			
^t WHCS	Chip Select Hold Time	5	0		5	0			
CIN	Input Pin Capacitance		4	5		4	5	7.0	
COUT	Output Pin Capacitance		7	8		7	8	pr	

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

2. The specified LIMITS represents the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. 3. Typical limits are at V_{CC} = 5.0 V, T_A = +25°C, and MAX loading.

4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range an additional requirement of a two minute warm-up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

 θ_{JA} (Junction to Ambient) (at 400 fpm air flow) = 50°C/Watt, Ceramic DIP; 65°CC/Watt, Plastic DIP; NA, Flatpak. θ_{JA} (Junction to Ambient) (still air) = 90°C/Watt, Ceramic DIP; 110°C/Watt, Plastic DIP; NA, Flatpak.

BUC (Junction to Case) = 25°C/Watt, Ceramic DIP; 25°C/Watt, Plastic DIP; 10°C/Watt, Flatpak.

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

6. t_W measured at t_{WSA} = MIN, t_{WSA} measured at t_W = MIN.

TYPICAL ELECTRICAL CHARACTERISTICS

TTL ISOPLANAR MEMORY 93L420 256×1—BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION — The 93L420 is a low power high - speed 256 - bit Read/Write Random Access Memory organized 256 words by one bit. It is designed for scratchpad, buffer and distributed main memory applications requiring low power. The device has three chip select lines to simplify its use in larger memory systems. Address input locations are specifically chosen to permit maximum packaging density and for ease of PC board layout. A 3-state output is provided to drive bus organized systems and/or highly capacitive loads.

Chip Select Inputs

Address inputs

Data Input

Data Output

Write Enable

b. 10 U.L. is the output LOW drive factor. This output will sink a maximum of 16 mA at V_{OUT} = 0.45 V, and

3-STATE OUTPUT

PIN NAMES

 $A_0 - A_7$

DIN

WE

NOTES

DOUT

 \overline{CS}_1 , \overline{CS}_2 , \overline{CS}_3

- ORGANIZATION 256 WORDS X 1 BIT
- THREE HIGH-SPEED CHIP SELECT INPUTS
- TYPICAL READ ACCESS TIME 40 ns

a. 1 Unit Load (U.L.) = 40 μ A HIGH / 1.6 mA LOW

will source a minimum of 10 mA at 2.4 V

- ON-CHIP DECODING
- POWER DISSIPATION 275 mW TYPICAL
- POWER DISSIPATION DECREASES WITH TEMPERATURE
- INVERTED DATA OUTPUT

LOADING (Notes a, b) 0.5 U.L. 0.5 U.L. 0.5 U.L. 10 U.L.

0.5 U.L.

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

7-90

FUNCTIONAL DESCRIPTION — The 93L420 is a fully decoded 256 - bit Random Access Memory organized 256 words by one bit. Word selection is achieved by means of an 8-bit address, A₀ through A₇.

Three Chip Select inputs are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of Chip Select, \overline{CS} , from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE} , pin 12). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at $\overline{D_{OUT}}$.

The 3-state output provides drive capability for higher speeds with high capacitive load systems The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

TABLE I - TRUTH TABLE

During writing, the output is held in the high impedance state.

	INPUTS OUTPUT					
MODE	DOUT	D _{IN}	WE	\overline{cs}_3	\overline{cs}_2	cs ₁
Not Selected	HIGH Z	х	х	х	х	н
Not Selected	HIGH Z	х	x	x	н	х
Not Selected	HIGH Z	х	x	н	х	х
Write "O"	HIGH Z	L	L	L	L	L
Write "1"	HIGH Z	н	L	L	L	Ĺ
Read inverted data from addressed location	D _{OUT}	х	н	L	L	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care (HIGH or LOW)

HIGH Z = High Impedance

TABLE 2 - FUNCTION TABLE

FUNCTION	IN	OUTBUT	
CHIP SELECT		WRITE ENABLE	001901
Write	L	L	HIGH Z
Read	L	н	Stored Data
Not Selected	н	x	HIGH Z

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature

Temperature (Ambient) Under Bias $V_{CC}\xspace$ Pin Potential to Ground Pin

- *Input Voltage (dc)
- *Input Current (dc)
- **Voltage Applied to Outputs (output HIGH) Output Current (dc) (output LOW)

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs. **Output Current Limit Required.

GUARANTEED OPERATING RANGES

	รเ	AMBIENT TEMPERATURE			
PART NOMBER	MIN	TYP	MAX	Note 4	
93L420XC	4.75 V	5.0 V	5.25 V	0°C to +75°C	
93L420XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C	

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

-65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V -12 mA to +5.0 mA -0.5 V to +5.50 V +20 mA

	DADAMETER			LIMITS					
STNBOL	SYMBOL PARAMETER		MIN	TYP (Note 3)	MAX		CONDIT	IONS	
V _{OL}	Output LOW V	oltage		0.3	0.45	v	V _{CC} = MIN, I _C	_{0L} = 16 mA	
v _{IH}	Input HIGH Voltage		2.0	1.6		v	Guaranteed In Voltage for all	put Logical HIGH Inputs	
VIL	Input LOW Vol	tage		1.5	0.85	. v	Guaranteed In Voltage for all	put Logical LOW Inputs	
۱	Input LOW Cur	rrent		-530	-800	μA	V _{CC} = MAX, V _{IN} = 0 V		
Чн	Input HIGH Cu	rrent		1.0	20	μA	V _{CC} = MAX, V	V _{IN} = 4.5 V	
OFF	Output Current	t (HIGH Z)	·		50 -50	μΑ	$V_{CC} = MAX, V_{OUT} = 2.4 V$ $V_{CC} = MAX, V_{OUT} = 0.5 V$		
V _{CD}	Input Clamp Di	iode Voltage		-1.0	-1.5	v	V _{CC} = MAX, I	N = -10 mA	
	Power Supply	93L420XC		55	70		T _A = 0°C to +75°C	V _{CC} = MAX, WE Grounded, all other inputs	
'CC	Current	93L420XM		55	70		T _A = -55°C to +125°C	@ 4.5 V, see Power Supply vs Temp. Curve	
Vau	Output HIGH	93L420XC	2.4			v	I _{OH} = -10.3 n	nA	
∙он	Voltage	93L421XM	2.4			v	$I_{OH} = -5.2 \text{ mA}$		
los	Output Current Short Circuit to	t o Ground			-100	mA	V _{CC} = MAX, Note 7		

FAIRCHILD ISOPLANAR TTL MEMORY • 93L420

AC CHARACTERISTICS: Over Guaranteed Operating Ranges, Notes 1, 2, 4, 5, 6

			93L420X	0		93L420XI	M		
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 3)	MAX	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS
READ MODE ^t ACS ^t ZRCS ^t AA	DELAY TIMES Chip Select Access Time Chip Select to HIGH Z Address Access Time		20 25 40	25 30 45		20 25 40	40 40 55	ns	See Test Circuit and Waveforms Note 5
WRITE MODE ^t ZWS ^t WR	DELAY TIMES Write Disable to HIGH Z Write Recovery Time INPUT TIMING REQUIREMENTS		25 45	30 50		25 45	40 55	ns	
^t W ^t WSD ^t WHD ^t WSA ^t WHA ^t WSCS ^t WHCS	Minimum Write Pulse Width Data Set-Up Time Prior to Write Data Hold Time After Write Address Set-Up Time Address Hold Time Chip Select Set-Up Time Chip Select Hold Time	35 5 5 5 0 0	15 0 0 0 0 0 0		40 5 10 5 0 0	15 0 0 0 0 0		ns	See Test Circuit and Waveforms Note 6
C _{IN} COUT	Input Capacitance Output Capacitance		2.5 5	3.5 7		2.5 5	3.5 7	pF	Measured with a pulse technique

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

2. The specified LIMITS represents the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

 Typical values are at V_{CC} = 5.0 V, T_A = +25°C, and MAX loading.
 The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range an additional requirement of a two minute warm-up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

θ_{JA} (Junction to Ambient) (at 400 fpm air flow) = 50°C/Watt, Ceramic DIP; 65°C/Watt, Plastic DIP; NA, Flatpak.

 $\theta_{JA}^{(n)}$ (Junction to Ambient) (still air) = 90°C/Watt, Ceramic DIP; 110°C/Watt, Plastic DIP; NA, Flatpak.

θ_{JC} (Junction to Case) = 25°C / Watt, Ceramic DIP; 25°C / Watt, Plastic DIP; 10°C / Watt, Flatpak.

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

6. t_W measured at $t_{WSA} = MIN$, t_{WSA} measured at $t_W = MIN$. 7. Duration of short circuit should not exceed one second.

10ns

GND

10ns

FAIRCHILD ISOPLANAR TTL MEMORY • 93L420

PROPAGATION DELAY FROM CHIP SELECT TO HIGH Z

(All $t_{\ensuremath{\text{ZXXX}}}$ parameters are measured at a delta of 0.5 V from the logic level and using Load C.)

TTL ISOPLANAR MEMORY 93L421 256×1—BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION – The 93L421 is a low power 256-bit Read/Write Random Access Memory organized 256 words by one bit. It is designed for scratchpad, buffer and distributed main memory applications requiring low power. The device has three Chip Select lines to simplfy its use in larger memory systems. Address input locations are specifically chosen to permit maximum packaging density and for ease of PC board layout. A 3-state output is provided to drive bus organized systems and/or highly capacitive loads.

3-STATE OUTPUT

- ORGANIZATION 256 WORDS X 1 BIT
- THREE HIGH-SPEED CHIP SELECT INPUTS
- TYPICAL READ ACCESS TIME 45 ns
- ON-CHIP DECODING
- POWER DISSIPATION 275 mW TYPICAL
- POWER DISSIPATION DECREASES WITH TEMPERATURE
- INVERTED DATA OUTPUT

		LUADING
PIN NAMES		(Notes a, b)
$\overline{\text{CS}}_1$, $\overline{\text{CS}}_2$, $\overline{\text{CS}}_3$	Chip Select Inputs	0.5 U.L.
A ₀ - A ₇	Address Inputs	0.5 U.L.
D _{IN}	Data Input	0.5 U.L.
DOUT	Data Output	10 U.L.
WE	Write Enable	0.5 U.L.

NOTES:

- a. 1 Unit Load (U.L.) = 40 µA HIGH / 1.6 mA LOW
- b. 10 U.L. is the output LOW drive factor. This output will sink a maximum of 16 mA at V_{OUT} = 0.45 V, and will source a minimum of 10 mA at 2.4 V

Dual In-Line Package.

FUNCTIONAL DESCRIPTION — The 93L421 is a fully decoded 256 - bit Random Access Memory organized 256 words by one bit. Word selection is achieved by means of an 8 - bit address, A₀ through A₇.

Three Chip Select inputs are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of Chip Select, \overline{CS} , from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE} , pin 12). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at $\overline{D_{OUT}}$.

The 3-state output provides drive capability for higher speeds with high capacitive load systems The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

TABLE I - TRUTH TABLE

During writing, the output is held in the high impedance state.

INPUTS				OUTPUT		
cs ₁	cs ₂	cs3	WE	D _{IN}	DOUT	MODE
н	x	х	x	x	HIGH Z	Not Selected
х	н	х	x	x	HIGH Z	Not Selected
х	x	н	x	x	HIGH Z	Not Selected
L	L	L	L	L L	HIGH Z	Write "O"
L	L	L	L	н	HIGH Z	Write "1"
L	L	L	н	×	DOUT	Read inverted data from addressed location

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care (HIGH or LOW)

HIGH Z = High Impedance

TABLE 2 - FUNCTION TABLE

FUNCTION	IN		
FUNCTION	CHIP SELECT	WRITE ENABLE	001001
Write	L	L	HIGH Z
Read	L	Н	Stored Data
Not Selected	н	x	HIGH Z

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
V _{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
*Input Voltage (dc)	-0.5 V to +5.5 V
*Input Current (dc)	-12 mA to +5.0 mA
**Voltage Applied to Outputs (output HIGH)	-0.5 V to +5.50 V
Output Current (dc) (output LOW)	+20 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs. **Output Current Limit Required.

GUARANTEED OPERATING RANGES

		AMBIENT TEMPERATURE		
FART NOWBER	MIN	TYP	MAX	Note 4
93L421XC	4.75 V	5.0 V	5.25 V	0°C to +75°C
93L421XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

7-97

	DADAMETE		LIMITS					
SYMBOL	PARAMETER	1	MIN	TYP (Note 3)	MAX	UNITS	UNITS CONDITIONS	
V _{OL}	Output LOW V	/oltage		0.3	0.45	v	V _{CC} = MIN, I _C	_{DL} = 16 mA
VIH	Input HIGH Voltage		2.0	1.6		v	Guaranteed In Voltage for all	put Logical HIGH Inputs
VIL	Input LOW Vo	Itage		1.5	0.85	v	Guaranteed Input Logical LOW Voltage for all Inputs	
IIL	Input LOW Cu	rrent		-530	-800	μA	V _{CC} = MAX, V _{IN} = 0 V	
Чн	Input HIGH Cu	rrent		1.0	20	μA	V _{CC} = MAX, V _{IN} = 4.5 V	
OFF	Output Curren	t (HIGH Z)			50 50	μΑ	$V_{CC} = MAX, V_{OUT} = 2.4 V$ $V_{CC} = MAX, V_{OUT} = 0.5 V$	
V _{CD}	Input Clamp D	iode Voltage		-1.0	-1.5	v	V _{CC} = MAX, I	IN ^{= -10} mA
	Power Supply	93L421XC		55	70		$T_{A} = 0^{\circ}C$ to +75°C	V _{CC} = MAX, WE Grounded, all other inputs
'CC	Current	93L421XM		55	70		$T_{A} = -55^{\circ}C$ to +125°C	@ 4.5 V, see Power Supply vs Temp. Curve
Vau	Output HIGH	93L421XC	2.4			v	$I_{OH} = -10.3 \text{ mA}$	
•ОН	Voltage	93L421XM	2.4			v	$I_{OH} = -5.2 \text{ mA}$	
los	Output Curren Short Circuit t	it o Ground			-100	mA	V _{CC} = MAX, Note 7	

FAIRCHILD ISOPLANAR TTL MEMORY • 93L421

AC CHARACTERISTICS: Over Guaranteed Operating Ranges. Notes 1, 2, 4, 5, 6

		93L421XC			93L421XM				
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 3)	MAX	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS
READ MODE ^t ACS ^t ZRCS ^t AA	DELAY TIMES Chip Select Access Time Chip Select to HIGH Z Address Access Time		30 30 45	40 40 90		35 30 45	50 50 100	ns	See Test Circuit and Waveforms Note 5
WRITE MODE ^t ZWS ^t WR	DELAY TIMES Write Disable to HIGH Z Write Recovery Time INPUT TIMING REQUIREMENTS		30 50	45 60		30 65	55 70	ns	
^t W ^t WSD ^t WHD ^t WSA ^t WHA ^t WSCS ^t WHCS	Minimum Write Pulse Width Data Set-Up Time Prior to Write Data Hold Time After Write Address Set-Up Time Address Hold Time Chip Select Set-Up Time Chip Select Hold Time	60 5 10 10 0 0	20 0 0 0 0 0 0		70 5 15 10 0	20 0 0 0 0 0 0		ns	See Test Circuit and Waveforms Note 6
C _{IN} COUT	Input Capacitance Output Capacitance		2.5 5	3.5 7		2.5 5	3.5 7	pF	Measured with a pulse technique

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

2. The specified LIMITS represents the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical values are at $V_{CC} = 5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$, and MAX loading.

4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range an additional requirement of a two minute warm-up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

 θ_{JA} (Junction to Ambient) (at 400 fpm air flow) = 50°C / Watt, Ceramic DIP; 65°C / Watt, Plastic DIP; NA, Flatpak.

 J_{A} (Junction to Ambient) (still air) = 90°C/Watt, Ceramic DIP; 110°C/Watt, Plastic DIP; NA, Flatpak. θ_{JC} (Junction to Case) = 25°C/Watt, Ceramic DIP; 25°C/Watt, Plastic DIP; 10°C/Watt, Flatpak.

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

6. t_W measured at t_{WSA} = MIN, t_{WSA} measured at t_W = MIN. 7. Duration of short circuit should not exceed one second.

TYPICAL ELECTRICAL CHARACTERISTICS

AC Test Load and Waveforms same as 93L420, see page 7-93, 7-94 & 7-95.

7

0.6

= 5.5 \

11

TTL ISOPLANAR MEMORY 93421/93421A 256 × 1 - BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION — The 93421 and 93421A are high-speed 256-bit TTL Random Access Memories with full decoding on chip. They are organized 256 words by one bit and are designed for scratchpad, buffer and distributed main memory applications. The devices have three Chip Select lines to simplify their use in larger memory systems. Address input pin locations are specifically chosen to permit maximum packaging density and for ease of PC board layout. A 3-state output is provided to drive bus organized systems and / or highly capacitive loads.

• 3-STATE OUTPUT

- REPLACEMENT FOR 54/74S200 AND EQUIVALENT DEVICES
- ORGANIZATION 256 WORDS X 1 BIT
- THREE HIGH-SPEED CHIP SELECT INPUTS
- TYPICAL READ ACCESS TIME

Commercial	30 ns
Commercial	35 ns
Military	35 ns
	Commercial Commercial Military

- ON CHIP DECODING
- POWER DISSIPATION 1.8 mW/BIT
- POWER DISSIPATION DECREASES WITH TEMPERATURE
- INVERTED DATA OUTPUT

		LUADING
PIN NAMES		(Notes a, b)
\overline{cs}_1 , \overline{cs}_2 , \overline{cs}_3	Chip Select Inputs	0.5 U.L.
A ₀ - A ₇	Address Inputs	0.5 U.L.
D _{IN}	Data Input	0.5 U.L.
DOUT	Data Output	10 U.L.
WE	Write Enable	0.5 U.L.

NOTES:

- a. 1 Unit Load (U.L.) = 40 μ A HIGH / 1.6 mA LOW
- b. 10 U.L. is the output LOW drive factor. This output will sink a maximum of 16 mA at V_{OUT} = 0.45 V, and will source a minimum of 10 mA at 2.4 V.

LOGIC SYMBOL

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

FUNCTIONAL DESCRIPTION—The 93421/93421A are fully decoded 256-bit Random Access Memories organized 256 words by one bit. Word selection is achieved by means of an 8-bit address, A₀ through A₇.

Three Chip Select inputs are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of Chip Select, \overline{CS} , from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE} , pin 12). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at $\overline{D_{OUT}}$.

The 3-state output provides drive capability for higher speeds with high capacitive load systems. The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

TABLE I - TRUTH TABLE

During writing, the output is held in the high impedance state.

		INPUTS		OUTPUT		
cs ₁	cs ₂	cs 3	WE	D _{IN}	DOUT	MODE
н	x	x	x	x	HIGH Z	Not Selected
х	н	x	x	x	HIGH Z	Not Selected
х	x	н	X X	x	HIGH Z	Not Selected
L	L	L	L	L	HIGH Z	Write "O"
L	L	L	L	н	HIGH Z	Write "1"
L	L	L	н	×	DOUT	Read inverted data from addressed location

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care (HIGH or LOW)

HIGH Z = High Impedance

TABLE 2 - FUNCTION TABLE

FUNCTION	IN	INPUTS						
FUNCTION	CHIP SELECT	WRITE ENABLE						
Write	L	L	HIGH Z					
Read	L	н	Stored Data					
Not Selected	н	x	HIGH Z					

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature

Temperature (Ambient) Under Bias V_{CC} Pin Potential to Ground Pin

*Input Voltage (dc)

*Input Current (dc)

**Voltage Applied to Outputs (output HIGH) Output Current (dc) (output LOW)

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs. **Output Current Limit Required.

GUARANTEED OPERATING RANGES

		SUPPLY VOLTAGE (V _C	с ⁾	AMBIENT TEMPERATURE
FART NOWBER	MIN	TYP	MAX	Note 4
93421AXC, 93421XC	4.75 V	5.0 V	5.25 V	0°C to +75°C
93421XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

-65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V -12 mA to +5.0 mA -0.5 V to +5.50 V +20 mA

FAIRCHILD ISOPLANAR TTL MEMORY • 93421/93421A

CVM ADOL	DADAMETED		LIMITS			UNITE	CONDITIONIC		
SYMBOL	PARAMETER	1	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS		
VOL	Output LOW V	/oltage		0.3	0.45	v	$V_{CC} = MIN, I_{OL} = 16 \text{ mA}$		
VIH	Input HIGH Vo	ltage	2.0	1.6		v	Guaranteed Input Logical HIGH Voltage for all Inputs		
VIL	Input LOW Vo	ltage		1.5	0.85	v	Guaranteed Input Logical LOW Voltage for all Inputs		
μ	Input LOW Cu	rrent		-530	-800	μA	V _{CC} = MAX, V _{IN} = 0 V		
Чн	Input HIGH Cu	irrent		1.0	20	μA	V _{CC} = MAX, V _{IN} = 4.5 V		
loff	Output Curren	t (HIGH Z)			50 50	μA	$V_{CC} = MAX, V_{OUT} = 2.4 V$ $V_{CC} = MAX, V_{OUT} = 0.5 V$		
V _{CD}	Input Clamp D	iode Voltage		-1.0	-1.5	v	$V_{CC} = MAX$, $I_{IN} = -10 \text{ mA}$		
lee	Power Supply	93421XC 93421AXC		90 100	124 135	mA	$T_A = +75^{\circ}C$ $V_{CC} = MAX$, WE $T_A = 0^{\circ}C$ Grounded, all other inputs		
	Current	93421XM		90 100	117 143		$T_{A} = +125^{\circ}C$ $T_{A} = -55^{\circ}C$ $W = 4.5 \text{ V, see Power Supply}$ $W = 755^{\circ}C$ $W = 755^{\circ}C$ $W = 755^{\circ}C$		
Vou	Output HIGH	93421XC,AXC	2.4			v	I _{OH} = -10.3 mA		
·Он	Voltage	93421XM	2.4			v	I _{OH} = -5.2 mA		
los	Output Current Short Circuit to Ground				-100	mA	V _{CC} = MAX, Note 7		

AC CHARACTERISTICS: Over Guaranteed Operating Ranges. Notes 1, 2, 4, 5, 6

		· · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·				
		9	3421A	хс		934212	хс	9	3421>	M		
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 3)	ΜΑΧ	MIN	TYP (Note 3)	MAX	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS
READ MODE ^t ACS ^t ZRCS ^t AA	DELAY TIMES Chip Select Access Time Chip Select to HIGH Z Address Access Time		20 20 30	30 30 40		20 20 35	30 30 50		25 20 35	40 40 60	ns	See Test Circuit and Waveforms Note 5
WRITE MODE ^t ZWS ^t WR	DELAY TIMES Write Disable to HIGH Z Write Recovery Time INPUT TIMING REQUIREMENTS	10	20 25	35 40	10	20 25	35 40	10	20 25	45 50	ns	
^t W ^t WSD ^t WHD ^t WSA ^t WHA ^t WSCS ^t WHCS	Minimum Write Pulse Width Data Set-Up Time Prior to Write Data Hold Time After Write Address Set-Up Time Address Hold Time Chip Select Set-Up Time Chip Select Hold Time	30 0 5 0 5 0 5 5	10 0 0 0 0 0 0		30 5 0 5 0 5 5	10 0 0 0 0 0		40 0 5 0 5 0 5	10 0 0 0 0 0 0		ns	See Test Circuit and Waveforms Note 6
c _l c _O	Input Capacitance Output Capacitance		2.5 5	3.5 7		2.5 5	3.5 7		2.5 5	3.5 7	pF	Measured with pulse technique

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

2. The specified LIMITS represents the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical values are at V_{CC} = 5.0 V, T_A = +25°C, and MAX loading.

4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range an additional requirement of a two minute warm-up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

θ_{JA} (Junction to Ambient) (at 400 fpm air flow) = 50°C / Watt, Ceramic DIP; 65°C / Watt, Plastic DIP; NA, Flatpak.

θ_{JA} (Junction to Ambient) (still air) = 90°C/Watt, Ceramic DIP; 110°C/Watt, Plastic DIP; NA, Flatpak.

BIC (Junction to Case) = 25°C / Watt, Ceramic DIP; 25°C / Watt, Plastic DIP; 10°C / Watt, Flatpak.

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

t_W measured at t_{WSA} = MIN, t_{WSA} measured at t_W = MIN.
 Duration of short circuit should not exceed one second.

TYPICAL ELECTRICAL CHARACTERISTICS

POWER SUPPLY CURRENT VERSUS TEMPERATURE

VIN - INPUT VOLTAGE - VOLTS

ADDRESS ACCESS TIME

AC Test Load and Waveforms same as 93L420, see page 7-93, 7-94 & 7-95.

TTL ISOPLANAR MEMORY 93L422 256×4-BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION – The 93L422 is a 1024-bit Read/Write Random Access Memory organized 256 words by four bits per word. The 93L422 has 3-state outputs, and is designed primarily for buffer control storage and high-performance main memory applications. The device has a typical address access time of 45 ns.

B

ISOPLANAR TECHNOLOGY .

ORGANIZATION - 256 WORDS X 4 BITS

• 3-STATE OUTPUTS

- STANDARD 22-PIN DUAL IN-LINE PACKAGE
- TWO CHIP SELECT INPUTS PROVIDE EASY MEMORY EXPANSION
- LOW POWER DISSIPATION 0.27 mW/BIT TYP
- TYPICAL READ ACCESS TIME 45 ns

PIN NAMES

A ₀ - A ₇	Address Inputs
D ₁ - D ₄	Data Inputs
$\overline{\text{CS}}_1$, CS_2	Chip Select Inputs
WE	Write Enable Input
0 ₁ - 0 ₄	Data Outputs
ŌĒ	Output Enable

FUNCTIONAL DESCRIPTION — The 93L422 is a fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, An through A7.

Two Chip Select inputs are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of Chip Select, CS, from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable, \overline{WE} (pin 20). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and chip selected. Data in the specified location is presented at D_{OUT} and not inverted.

TRUTH	TABLE
-------	-------

		INP	UTS	OUTPUTS		
OE PIN 18	CS ₁ PIN 19	CS ₂ PIN 17	WE PIN 20	D ₁ D ₄ PINS 9, 11, 13 15	3-STATE	MODE
x	н	х	х	х	HIGH Z	Not Selected
х	x	L	x	х	HIGH Z	Not Selected
L	L	н	н	х	0 ₁ – 0 ₄	Read Stored Data
х	L	н	L	L	HIGH Z	Write "O"
х	L	н	L	Н	HIGH Z	Write "1"
Н	L	н	н	х	HIGH Z	Output Disabled
н	L	н	L	L	HIGH Z	Write "0" (Output Disabled)
н	L	н	L	н	HIGH Z	Write "1" (Output Disabled)

H = HIGH Voltage; L = LOW Voltage; X = Don't Care (HIGH or LOW); HIGH Z = High Impedance. NOTE: Pin numbers specified for DIP only

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias V_{CC} Lead Potential to Ground Lead Input Voltage (dc)* Input Current (dc)* Voltage Applied to Outputs (output HIGH)** Output Current (dc)

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs.

**Output Current Limit Required.

-65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V -12 mA to +5.0 m -0.5 V to +5.50 V +20 mA

GUARANTEED OPERATING RANGES

PART NUMBER	SU	PPLY VOLTAGE (V _C	c)	AMBIENT TEMPERATURE
	MIN	TYP	MAX	Note 4
93L422XC	4.75 V	5.0 V	5.25 V	0°C to +75°C
93L422XM	4.50 V	5.0 V	5.50 V	−55°C to +125°C

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

DC CHA	RACTERISTICS: (Over Operating Temper	ature Rang	es (Notes 1,	2, 4)			
SYMBOL	CHARACTERIS	TIC		LIMITS	``	LINUTS	CONDIT	ONE
STVIBUL	CHANACTERIS		MIN	TYP (Note 3)	МАХ	01113	CONDIT	0113
V _{OL}	Output LOW Volt	age		0.3	0.45	v	V _{CC} = MIN, I _O	L = 8 mA
v _{iH}	Input HIGH Volta	ge	2.1	1.6		v	Guaranteed In for all Inputs	out HIGH Voltage
VIL	Input LOW Voltag	je		1.5	0.8	v	Guaranteed In for all Inputs	out LOW Voltage
46	Input LOW Curre	nt		-150	-300	μA	V _{CC} = MAX, V	ν _{IN} = 0.4 V
1		t		1.0	40	μA	V _{CC} = MAX, V	'IN = 4.5 V
					1.0	mA	V _{CC} = MAX, V	IN = 5.25 V
v _{CD}	Input Diode Clam	p Voltage		1.0	-1.5	v	V _{CC} = MAX, I	IN = -10 mA
1	Output Current				50		V _{CC} = MAX, V	'OUT = 2.4 V
'OFF	(HIGH Z)				-50	μΑ	V _{CC} = MAX, V	OUT = 0.5 V
v _{он}	Output HIGH Voltage		2.4			v	V _{CC} = MIN, I _C	H ^{= −} 5.2 mA
los	Output Current Short Circuit to Ground				-70	mA	V _{CC} = MAX, N	lote 7
		93L422XC		55	75		T _A = +75°C	V _{CC} = MAX,
	Power Supply	93L422XC		60	80		$T_A = 0^{\circ}C$	All Inputs and
'CC	Current	93L422XM		50	70	mA	T _A = +125°C	Outputs Open
		93L422XM		65	90		T _A =55°C	

FAIRCHILD ISOPLANAR TTL MEMORY • 93L422

AC CHARACTERISTICS: Over Guaranteed Operating Ranges (Notes 1, 2, 4, 5, 6)

			93L422X	C	9	3L422XM	Л		
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	CONDITIONS
			(Note 3)			(Note 3)			
READ MODE	DELAY TIMES								
tACS	Chip Select Time		20	35		20	45		
^t ZRCS ^t AOS	Chip Select to HIGH Z Output Enable Time		20 20	35 35		20 20	45 45	ns	See Test Circuit and Waveforms
^t ZROS ^t AA	Output Enable to HIGH Z Address Access Time		20 45	35 60		20 45	45 75		
WRITE MODE	DELAY TIMES					1			
^t ZWS ^t WR	Write Disable to HIGH Z Write Recovery Time		20 25	40 45		20 25	45 50	ns	
	INPUT TIMING REQUIREMENTS								See Test Circuit
^t W ^t WSD ^t WHD ^t WSA ^t WHA ^t WSCS ^t WHCS	Write Pulse Width (to guarantee write) Data Set-Up Time Prior to Write Data Hold Time After Write Address Set-Up Time Address Hold Time Chip Select Set-Up Time Chip Select Hold Time	45 5 10 5 5 5 5	30 0 0 0 0 0		55 5 10 10 5 10	35 0 0 0 0 0 0		ns	and Waveforms
c _l c _O	Input Pin Capacitance Output Pin Capacitance		3 5	5 8		3 5	5 8	pF	Measure with Pulse Technique

FAIRCHILD ISOPLANAR TTL MEMORY • 93L422

NOTES

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

- 2. The specified LIMITS represent the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
- 3. Typical values are at $V_{CC} = 5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$, and MAX loading.
- 4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range there is an additional requirement of a two minute warm - up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum termperature are:

θ.JA (Junction to Ambient) (at 400 fpm air flow) = 50°C/Watt, Ceramic DIP; 65°C/Watt, Plastic DIP; NA, Flatpak, θ_{JA} (Junction to Ambient) (still air) = 90°C/Watt, Ceramic DIP; 110°C/Watt, Plastic DIP; NA, Flatpak. θJC (Junction to Case) = 25°C/Watt, Ceramic DIP; 25°C/Watt, Plastic DIP; 15°C/Watt, Flatpak.

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

- 6. tw measured at twsA = MIN, twsA measured at tw = MIN.
- 7. Duration of short circuit should not exceed one second.

TYPICAL ELECTRICAL CHARACTERISTIC CURVES

7

125

PROPAGATION DELAY FROM ADDRESS INPUTS

7

TTL ISOPLANAR MEMORY 93422 256 × 4 - BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION – The 93422 is a 1024-bit Read/Write Access Memory organized 256 words by four bits per word. The 93422 has 3-state outputs, and is designed primarily for buffer control storage and high-performance main memory applications. The device has a typical address access time of 30 ns.

- ISOPLANAR TECHNOLOGY
- ORGANIZATION 256 WORDS X 4 BITS
- 3-STATE OUTPUTS
- STANDARD 22-PIN DUAL IN-LINE PACKAGE
- TWO CHIP SELECT INPUTS PROVIDE EASY MEMORY EXPANSION
- POWER DISSIPATION 0.475 mW/BIT TYPICAL
- TYPICAL READ ACCESS TIME 30 ns

PIN NAMES

A0 - A7	Address Inputs
D1 - D4	Data Inputs
\overline{CS}_1 , CS_2	Chip Select Inputs
WE	Write Enable Input
01 - 04	Data Outputs
ŌĒ	Output Enable

LOGIC SYMBOL

FUNCTIONAL DESCRIPTION — The 93422 is a fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8-bit address, AQ through A7.

Two Chip Select inputs are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of Chip Select, CS, from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable, \overline{WE} (pin 20). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at D_{OUT} and is not inverted.

TRUTH TABLE

INPUTS					OUTPUTS	
OE PIN 18	CS1 PIN 19	CS ₂ PIN 17	WE PIN 20	D ₁ ⁻ D ₄ PINS 9, 11,13, 15	3-STATE	MODE
X X L X X	H X L L L	X L H H H	X X H L	X X X L H	HIGH Z HIGH Z O1 ⁻ O4 HIGH Z HIGH Z	Not Selected Not Selected Read Stored Data Write "0" Write "1"
нн	L L L	н н н	H L L	X L H	HIGH Z HIGH Z HIGH Z	Output Disabled Write ''0'' (Output Disabled) Write ''1'' (Output Disabled)

H = HIGH Voltage, L = LOW Voltage, X = Don't Care (HIGH or LOW); HIGH Z = High Impedance. NOTE: Pin number specified for DIP only

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature
Temperature (Ambient) Under Bias
V _{CC} Pin Potential to Ground Pin
Input Voltage (dc)
Input Current (dc)
Voltage Applied to Outputs (output HIGH)
Output Current (dc)

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs. **Output Current Limit Required. $\begin{array}{r} -65^{\circ}\text{C to } +150^{\circ}\text{C} \\ -55^{\circ}\text{C to } +125^{\circ}\text{C} \\ -0.5 \text{ V to } +7.0 \text{ V} \\ -0.5 \text{ V to } +5.5 \text{ V} \\ -12 \text{ mA to } +5.0 \text{ mA} \\ -0.5 \text{ V to } +5.50 \text{ V} \\ +20 \text{ mA} \end{array}$

GUARANTEED OPERATING RANGES

	รเ	JPPLY VOLTAGE (V _{CC}	AMBIENT TEMPERATURE		
PART NOWBER	MIN	TYP	MAX	Note 4	
93422XC	4.75 V	5.0 V	5.25 V	0°C to +75°C	
93422XM	4.5 V	5.0 V	5.5 V	-55°C to +125°C	

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

0144001	CHARACTERISTIC			LIMITS					
STINBUL			MIN	TYP (Note 3)	мах		CONDITIONS		
V _{OL}	Output LOW Volt	age		0.3	0.45	V	V _{CC} = MIN, I _C	L = 8 mA	
∨ _{IH}	Input HIGH Volta	ge	2.1	1.6		v	Guaranteed Input HIGH Volta for all Inputs		
V _{IL}	Input LOW Voltag	je		1.5	0.8	v	 Guaranteed Input LOW Voltage for all Inputs 		
lil	Input LOW Curre	nt		-150	-300	μA	V _{CC} = MAX, V	′ _{IN} = 0.4 ∨	
				1.0	40	μA	V _{CC} = MAX, V _{IN} = 4.5 V		
IH	Input High Curre				1.0,	mA	V _{CC} = MAX, V _{IN} = 5.25 V		
CD	Input Diode Clam	p Voltage		-1.0	-1.5	V	V _{CC} = MAX, I	N = -10 mA	
	Output Current				50		V _{CC} = MAX, V	OUT = 2.4 V	
OFF	(HIGH Z)				-50	μΑ	V _{CC} = MAX, V _{OUT} = 0.5 V		
/ _{ОН}	Output HIGH Voltage		2.4			v	$V_{CC} = MIN, I_{OH} = -5.2 \text{ mA}$		
os	Output Current Short Circuit to Ground				-70	mA	V _{CC} = MAX, Note 7		
lcc	Power Supply Current	93422XC		95	130	mA	$T_A = +75^{\circ}C$	V _{CC} = MAX,	
		93422XC			155		$T_A = 0^{\circ}C$	All Inputs and	
		93422XM			120		$T_A = +125^{\circ}C$	Outputs Open	
		93422XM			170		T _A = −55°C		

FAIRCHILD ISOPLANAR TTL MEMORY • 93422

AC CHARACTERISTICS: Over Guaranteed Operating Ranges (Notes 1, 2, 4, 5, 6)

		93422XC			93422XM					
SYMBOL	CHARACTERISTIC		TYP (Note 3)	MAX	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS	
READ MODE	DELAY TIMES									
^t ACS ^t ZRCS ^t AOS ^t ZROS ^t AA	Chip Select Time Chip Select to HIGH Z Output Enable Time Output Enable to HIGH Z Address Access Time		20 20 20 20 30	30 30 30 30 45		20 20 20 20 40	45 45 45 45 60	ns	See Test Circuit and Waveforms	
WRITE MODE	DELAY TIMES									
^t ZWS ^t WR	Write Disable to HIGH Z Write Recovery Time		20 25	35 40		20 25	45 50	ns		
	INPUT TIMING REQUIREMENTS								See Test Circuit	
^t W ^t WSD ^t WHD ^t WSA ^t WHA ^t WSCS ^t WHCS	Write Pulse Width (to guarantee write) Data Set-Up Time Prior to Write Data Hold Time After Write Address Set-Up Time Address Hold Time Chip Select Set-Up Time Chip Select Hold Time	30 5 10 5 5 5 5	20 0 0 0 0 0 0		40 5 10 10 5 10	30 0 0 0 0 0 0		ns	and Waveforms	
c _l c _O	Input Pin Capacitance Output Pin Capacitance		3 5	5 8		3 5	5 8	pF	Measure with Pulse Technique	

FAIRCHILD ISOPLANAR TTL MEMORY • 93422

NOTES:

- 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
- The specified LIMITS represent the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
- 3. Typical values are at $V_{CC} = 5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$, and MAX loading.
- 4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range there is an additional requirement of a two minute warm up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum termperature are:

θJA (Junction to Ambient) (at 400 fpm air flow) = 50°C/Watt, Ceramic DIP; 65°C/Watt, Plastic DIP; NA, Flatpak. θJA (Junction to Ambient) (still air) = 90°C/Watt, Ceramic DIP; 110°C/Watt, Plastic DIP; NA, Flatpak. θJC (Junction to Case) = 25°C/Watt, Ceramic DIP; 25°C/Watt, Plastic DIP; 15°C/Watt, Flatpak.

- 5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.
- 6. tw measured at twsA = MIN, twsA measured at tw = MIN.
- 7. Duration of short circuit should not exceed one second.

TYPICAL ELECTRICAL CHARACTERISTIC CURVES

AC Test Load and Waveforms same as 93L422, see page 7-108.
TTL ISOPLANAR MEMORY 93L425 1024×1-BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION – The 93L425 is a low power 1024-bit Read/Write Random Access Memory organized 1024 words by one bit. It has a typical access time of 35 ns and is designed for buffer and control storage and high-performance main memory applications requiring low power.

The 93L425 has full decoding on chip, separate Data Input and Data Output lines and an active LOW Chip Select line. A 3-state output is provided to drive bus organized systems and/or highly capacitive loads. The 93L425 is fully compatible with standard DTL and TTL logic families.

- FULL MIL AND COMMERCIAL RANGES
- 3-STATE OUTPUT
- NON-INVERTING DATA OUTPUT
- ORGANIZED 1024 WORDS X 1 BIT
- READ ACCESS TIME 35 ns TYPICAL
- CHIP SELECT ACCESS TIME 20 ns TYPICAL
- POWER DISSIPATION 250 mW TYPICAL
- TTL INPUTS AND OUTPUTS
- POWER DISSIPATION DECREASES WITH INCREASING TEMPERATURE

PIN NAMES

cs	Chip Select Input
A ₀ – A ₉	Address Inputs
WE	Write Enable Input
D _{IN}	Data Input
DOUT	Data Output

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. FUNCTIONAL DESCRIPTION — The 93L425 is a fully decoded 1024 - Bit Random Access Memory organized 1024 words by one bit. Word selection is achieved by means of a 10-bit address, AO through Ag.

The Chip Select input allows memory array expansion. For large memories, the fast chip select access time permits decoding of the Chip Select (\overline{CS}) from the address without affecting system performance.

The read and write operations are controlled by the state of the active LOW Write Enable (WE, pin 14). With WE held LOW and the chip selected, the data at DIN is written into the addressed location. To read, WE is held HIGH and the chip selected. Data in the specified location is presented at DOLLT and is non-inverted. During writing, the output is held in the high impedance state.

The 3-state output provides drive capability for higher speeds with high capacitive load systems The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

	INPUTS	5	OUTPUT	MODE
ĊŠ	WE	D _{IN}	DOUT	MODE
н	x	x	HIGH Z	Not Selected
L	L	L	HIGH Z	Write ''0''
L	L	н	HIGH Z	Write "1"
L	н	х	DOUT	Read

TABLE 1 - TRUTH TABLE

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care (HIGH or LOW)

HIGH Z= High Impedance

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
V _{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
*Input Voltage (dc)	-0.5 V to +5.5 V
*Input Current (dc)	-12 mA to +5.0 mA
**Voltage Applied to Outputs (output HIGH)	0.5 V to +5.50 V
Output Current (dc) (output LOW)	+20 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs. **Output Current Limit Required.

GUARANTEED OPERATING RANGES

		AMBIENT TEMPERATURE		
PART NUMBER	MIN	TYP	MAX	Note 4
93L425XC	4.75 V	5.0 V	5.25 V	0°C to +75°C
93L425XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

	DADAMETE			LIMITS		UNITO	CONDITIONS
SYMBUL	PARAMETER	n	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS
VOL	Output LOW \	/oltage		0.35	0.45	v	$V_{CC} = MIN, I_{OL} = 16 \text{ mA}$
v _{IH}	input HIGH Vo	oltage	2.1	1.6		v	Guaranteed Input HIGH Voltage for all Inputs
v _{IL}	Input LOW Vo	ltage		1.5	0.8	v	Guranteed Input LOW Voltage for all Inputs
۱L	Input LOW Cu	rrent		-150	-300	μA	$V_{CC} = MAX, V_{IN} = 0.4 V$
	Input HIGH C	irrent		1.0	40	μA	$V_{CC} = MAX, V_{IN} = 4.5 V$
'IH					1.0	mA	$V_{CC} = MAX, V_{IN} = 5.25 V$
OFF	Output Currer	nt (HIGH Z)			50 50	μA	V _{CC} = MAX, V _{OUT} = 2.4 V V _{CC} = MAX, V _{OUT} = 0.5 V
los	Qutput Currer Short Circuit t	nt to Ground			-100	mA	V _{CC} = MAX, Note 7
v	Output HIGH	93L425XC	2.4			v	$I_{OH} = -5.2 \text{ mA}, V_{CC} = 5.0 \text{ V} \pm 5\%$
∙он	Voltage	93L425XM	2.4			V	$I_{OH} = -5.2 \text{ mA}, V_{CC} = 5.0 \text{ V} \pm 10\%$
V _{CD}	Input Clamp D	iode Voltage		-1.0	-1.5	v	$V_{CC} = MAX$, $I_{IN} = -10 mA$
					55	mA	$T_A \ge 75^{\circ}C$ $V_{CC} = MAX,$
lcc	Power Supply	Current		45	65	mA	$T_A = 0^{\circ}C$ All Inputs
				1	75	mA	$T_A = -55^{\circ}C$ Grounded

FAIRCHILD ISOPLANAR TTL MEMORY • 93L425

AC CHARACTERISTICS: Over Guaranteed Operating Ranges. Notes 1, 2, 4, 5, 6

			93L425X0	2	9	3L425XN	Л		
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 3)	MAX	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS
READ MODE	DELAY TIMES								
^t ACS	Chip Select Access Time		20	40		20	45		See Test Circuit
^t ZRCS	Chip Select to HIGH Z		20	40		20	50	ns	and Waveforms
^t AA	Address Access Time		35	60		35	70		
WRITE MODE	DELAY TIMES								
^t zws	Write Disable to HIGH Z		20	45		20	45		
^t WR	Write Recovery Time		20	45		20	55		
tw	INPUT TIMING REQUIREMENTS Write Pulse Width (to guarantee write)	45	25		50	25		ns	See Test Circuit and Waveforms
^t WSD	Data Set-Up Time Prior to Write	5	0		10	0			
tWHD	Data Hold Time After Write	5	0		10	0			
tWSA	Address Set-Up Time	10	0		10	0			
^t WHA	Address Hold Time	5	0		10	0			
twscs	Chip Select Set-Up Time	5	0		10	0	1		
^t WHCS	Chip Select Hold Time	5	0		10	0			
CI	Input Pin Capacitance		4	5		4	5	DE	
c _o	Output Pin Capacitance		7	8		7	8		

FAIRCHILD ISOPLANAR TTL MEMORY • 93L425

NOTES:

- 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
- 2. The specified LIMITS represent the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
- 3. Typical values are at $V_{CC} = 5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$, and MAX loading.
- 4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range there is an additional requirement of a two minute warm - up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at minimum termperature are:

θJA (Junction to Ambient) (at 400 fpm air flow) = 50°C/Watt, Ceramic DIP; 65°C/Watt, Plastic DIP; NA, Flatpak. θJA (Junction to Ambient) (still air) = 90°C/Watt, Ceramic DIP; 110°C/Watt, Plastic DIP; NA, Flatpak. θJC (Junction to Case) = 25°C/Watt, Ceramic DIP; 25°C/Watt, Plastic DIP; 10°C/Watt for Flatpak.

5. The MAX address access time is guaranteed to be thw "worst case" bit in the memory using a pseudo random testing pattern.

- 6. tw measured at twsa = MIN, twsa measured at tw = MIN.
- 7. Duration of short circuit should not exceed one second.

AC TEST LOAD AND WAVEFORM

LOADING CONDITIONS

Load A

Load B

INPUT PULSES

(All time measurements referenced to 1.5 V)

AC WAVEFORMS

READ MODE

PROPAGATION DELAY FROM ADDRESS INPUTS

TTL ISOPLANAR MEMORY 93425/93425A 1024 × 1 - BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION — The 93425 and 93425A are 1024-bit Read/Write Random Access Memories organized 1024 words by one bit. They are designed for buffer control storage and high-performance main memory applications. The devices have typical address times of 30 ns for the 93425 and 25 ns for the 93425A.

The 93425 and 93425A include full decoding on chip, separate Data Input and Data Output lines and an active LOW Chip Select and Write Enable. They are fully compatible with standard DTL and TTL logic families. A 3-state output is provided to drive bus organized systems and/or highly capacitive loads.

- 3-STATE OUTPUT
- ORGANIZED 1024 WORDS X 1 BIT
- TTL INPUTS AND OUTPUT FULL 16 mA DRIVE CAPABILITY
 TYPICAL READ ACCESS TIME
 93425A Commercial 25 ns
 93425 Commercial 30 ns
 93425 Military 40 ns
 CHIP SELECT ACCESS TIME 15 ns TYPICAL
- CHIP SELECT ACCESS TIME 15 ns TYP
- NON-INVERTING DATA OUTPUT
- POWER DISSIPATION 0.5 mW/BIT TYPICAL
- POWER DISSIPATION DECREASES WITH INCREASING TEMPERATURE

PIN NAMES

CS	Chip Select
A0 - A9	Address Inputs
WE	Write Enable
DIN	Data Input
DOUT	Data Output

FUNCTIONAL DESCRIPTION – The 93425/93425A are fully decoded 1024-bit Random Access Memories organized 1024 words by one bit. Word selection is achieved by means of a 10-bit address, A_0 through Ag.

The Chip Select (CS) input provides for memory array expansion. For large memories, the fast chip select time permits the decoding of chip select from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable (\overline{WE} , Pin 14). With \overline{WE} and \overline{CS} held LOW, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and \overline{CS} held LOW. Data in the specified location is presented at D_{OUT} and is non-inverted.

The 3-state output provides drive capability for higher speeds with high capacitive load systems. The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

During writing, the output is held in the high impedance state.

TABLE 1 - TRUTH TABLE

	NPUTS		OUTPUT	11005
cs	WE	D _{IN}	Роит	MODE
н	х	х	HIGH Z	NOT SELECTED
L	L	L	HIGH Z	WRITE "0"
L	L	н	HIGH Z	WRITE "1"
L	н	х	DOUT	READ

H = HIGH Voltage Level

L = Low Voltage Level

X = Don't care (HIGH or LOW)

HIGH Z = High Impedence

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired.)

Storage Temperature Temperature (Ambient) Under Bias V_{CC} Pin Potential to Ground Pin

*Input Voltage (dc)

*Input Current (dc)

**Voltage Applied to Outputs (Output HIGH) Output Current (dc) (Output LOW)

*Either input voltage or input current limit is sufficient to protect the input.

**Output Current Limit Required.

GUARANTEED OPERATING RANGES

	SU	JPPLY VOLTAGE (V _C	AMBIENT TEMPERATURE (TA)	
PARINOMBER	MIN	ТҮР	MAX	(Note 4)
93425XC, 93425AXC	4.75 V	5.0 V	5.25 V	0°C to +75°C
93425XM	4.50 V	5.0 V	5.50 V	–55°C to +125°C

X = package type; F for Flatpak, D for Ceramic DIP, P for Plastic DIP. See Packaging Information Section for packages available on this product.

-65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V -12 mA to +5.0 mA -0.5 V to +5.5 V +20 mA

FAIRCHILD ISOPLANAR TTL MEMORY • 93425/93425A

DC CHARA	ACTERISTICS: Over Ope	rating Tempe	erature F	Ranges (Notes 1, 2	2, 4)				
0.0000				LIMITS		UNITO			
SYMBOL	CHARACTERIS	inc.	MIN	TYP (Note 3)	MAX			CONDITIONS	
VOL	Output LOW Voltage			0.3	0.45	v	V _{CC} = MIN, I _{OL}	= 16 mA	
VIH	Input HIGH Voltage		2.1	1.6		V	Guaranteed Inpu	t HIGH Voltage for all Inputs	
VIL	Input LOW Voltage			1.5	0.8	V	Guaranteed Inpu	t LOW Voltage for all Inputs	
μL	Input LOW Current			250	400	μA	V _{CC} = MAX, V _{II}	_N = 0.4 V	
	Input HIGH Current			1.0	40	μA	V _{CC} = MAX, V _{II}	_N = 4.5 V	
чн					1.0	mA	V _{CC} = MAX, V _{IN} = 5.25 V		
		7)			50		V _{CC} = MAX, V _{OUT} = 2.4 V		
OFF	Output Current (HIGH	2)			-50	μΑ	V _{CC} = MAX, V _{OUT} = 0.5 V		
IOS	Output Current Short Circuit				-100	mA	V _{CC} = MAX, No	te 7	
		93425XC	2.4			V	I _{OH} =10.3 mA	, V _{CC} = 5.0 V ±5%	
∨он	Output HIGH Voltage	93425XM	2.4			V	IOH = -5.2 mA		
VCD	Input Diode Clamp Voltage			-1.0	-1.5	V	V _{CC} = MAX, I _{IN}	= -10 mA	
				95	115	mA	T _A ≥ 75°C	N _ MAX	
ICC	Power Supply Current				130	mA	$T_A = 0^\circ C$	$v_{CC} = w_{AX}$	
				145	mA	T _A = -55°C	All inputs Grounded		

AC CHARACTERISTICS: Over Guaranteed Operating Ranges (Notes 1, 2, 4, 5, 6)

			3425AXC		93425XC		93425XM					
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	CONDITIONS
			(Note 3	3)		Note	3)	(Note 3	3)		
READ MODE	DELAY TIMES											
^t ACS	Chip Select Time		15	20		15	35		15	45		See Test Circuit
^t ZRCS	Chip Select to HIGH Z	ļ	15	20		20	35		20	50	ns	and Waveforms
^t AA	Address Access Time		25	30		30	45		40	60		
WRITE MODE	DELAY TIMES											
tzws	Write Disable to HIGH Z		15	20		20	35		20	45		
twr	Write Recovery Time		20	25		25	40		45	50	115	
	INPUT TIMING REQUIREMENTS											
tw	Write Pulse Width (to guarantee write)	20	15		35	25		40	25			San Tost Circuit
tWSD	Data Set-Up Time Prior to Write	5	0		5	0		5	0			see Test Circuit
twhd	Data Hold Time After Write	5	0		5	0		5	0			
tWSA	Address Set-Up Time	5	0		5	0		15	0		ns	
twha	Address Hold Time	5	0		5	0		5	0			
twscs	Chip Select Set-Up Time	5	0		5	0		5	0			
tWHCS	Chip Select Hold Time	5	0		5	0		5	0			
CI	Input Pin Capacitance		4	5		4	5		4	5	лF	Measure with
с _О	Output Pin Capacitance		7	8	_	7	8		7	8	14	Pulse Technique

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

The specified LIMITS represent the "worst case" value to the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
 Typical limits are at V_{CC} = 5.0 V, T_A = +25°C, and MAX loading.

4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range there is an additional requirement of two minute warm-up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum termperature are:

 θ_{JA} (Junction to Ambient) (at 400 fpm air flow) = 50°C/Watt, Ceramic DIP, 65°C/Watt, Plastic DIP; NA, Flatpak.

 θ_{JA}° (Junction to Ambient) (still air) = 90°C/Watt, Ceramic DIP; 110°C/Watt, Plastic DIP; NA, Flatpak.

 $\theta_{JC}^{(3)}$ (Junction to Case) = 25°C/Watt, Ceramic DIP; 25°C/Watt, Plastic DIP; 10°C/Watt, Flatpak.

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

6. t_W measured at t_{WSA} = MIN, t_{WSA} measured at t_W = MIN.

7. Duration of short circuit should not exceed one second.

TYPICAL ELECTRICAL CHARACTERISTICS

POWER SUPPLY CURRENT VERSUS TEMPERATURE

AC Test Load and Waveforms same as 93L425, see page 7-117.

93427 ISOPLANAR SCHOTTKY TTL MEMORY 256×4-BIT PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION – The 93427 is a fully decoded high-speed 1024-bit field Programmable ROM organized 256 words by four bits per word. The 93427 has 3-state outputs. The outputs are disabled when either \overline{CS}_1 or \overline{CS}_2 are in the HIGH state. The 93427 is supplied with all bits stored as logic "1"s and can be programmed to logic "0"s by following the field programming procedure.

- FIELD PROGRAMMABLE
- ORGANIZED 256 X 4 BITS PER WORD
- 3-STATE OUTPUTS
- FULLY DECODED ON-CHIP ADDRESS DECODER AND BUFFER
- CHIP SELECT INPUTS PROVIDE EASY MEMORY EXPANSION
- WIRED-OR CAPABILITY
- STANDARD 16-PIN DUAL IN-LINE PACKAGE
- NICHROME FUSE LINKS FOR HIGH RELIABILITY

PIN NAMES

A ₀ – A ₇	Address Inputs
$\overline{CS}_{1},\overline{CS}_{2}$	Chip Select Inputs

O₁ – O₄ Data Outputs

7

FUNCTIONAL DESCRIPTION – The 93427 is a bipolar field Programmable Read Only Memory (PROM) organized 256 words by four bits per word. The 93427 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. Chip Selects are active LOW; conversely, a HIGH (logic "1") on the \overline{CS}_1 or \overline{CS}_2 will disable all outputs.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_0 through A_7 inputs, the chip is selected, and data is valid at the outputs after t_{AA} nanoseconds.

Programming (selectively opening nichrome fuse links) is accomplished by following the sequence outlined below.

PROGRAMMING – The 93427 is manufactured with all bits in the logic "1" state. Any desired bit (output) can be programmed to a logic "0" state by following the procedure shown in Chapter 6, page 6-14.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature Temperature (Ambient) Under Bias V_{CC} Input Voltages Current into Output Terminal Output Voltages -65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V 100 mA -0.5 V to +5.5 V

GUARANTEED OPERATING RANGES

	s	UPPLY VOLTAGE (VCC	c)	
FART NUMBER	MIN	ТҮР	MAX	AMBIENT TEMPERATORE
93427XC	4.75 V	5.0 V	5.25 V	0° C to +75° C
93427XM	4.50 V	5.0 V	5.50 V	55°C to +125°C

X = package type; F for Flatpak, D for Ceramic DIP, P for Plastic DIP. See Package Information on this data sheet.

DC CHARACTERISTICS: Over guaranteed operating ranges unless otherwise noted.

			LIMITS					
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS		CONDITIONS	
			(Note 1)					
V _{OL}	Output LOW Voltage		0.30	0.45	v	V _{CC} = MIN, I A ₁ through A ₇	OL = 16 mA, A ₀ = +10.8 V = HIGH	
VOH	Output HIGH Voltage	2.4			V	V _{CC} = MIN, I _C)H = −2.0 mA	
1.4	Output Leakage Current for			50	μA	V _{OH} = 2.4 V	0° C to $\pm 75^{\circ}$ C	
off	HIGH Impedance State			-50	μA	V _{OL} = 0.4 V	0 0 10 +75 0	
1	Output Leakage Current for			100	μA	V _{OH} = 2.4 V	-55° C to $\pm 125^{\circ}$ C	
'off	HIGH Impedance State			-50	μA	V _{OL} = 0.4 V	-55 C 10 +125 C	
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
VIL	Input LOW Voltage			0.8	V	Guaranteed Inp	out LOW Voltage for All Inputs	
	Input LOW Current		·					
١F	IFA (Address Inputs)		-160	-250	μA	V _{CC} = MAX, V	/F = 0.45 V	
	IFCS (Chip Select Inputs)		-160	-250	μA			
	Input HIGH Current							
IR	IRA (Address Inputs)			40	μΑ .	V _{CC} = MAX, V	/ _R = 2.4 V	
	IRCS (Chip Select Input)			40	μA			
lcc	Power Supply Current		. 85	110	mA	V _{CC} = MAX, C Inputs Ground	Dutputs open ed and Chip Selected	
с _о	Output Capacitance		7		pF	V _{CC} = 5.0 V, V	V _O = 4.0 V, f [·] = 1.0 MHz	
ĊIN	Input Capacitance		4		pF	V _{CC} = 5.0 V, V	V _O = 4.0 V, f = 1.0 MHz	
VC	Input Clamp Diode Voltage			-1.2	V	V _{CC} = MIN, I _A	₄ = −18 mA	

AC CHARA	CTERISTICS : $T_A = 0^\circ C$ to $+75^\circ C$, $V_{CC} = 1$	5.0 V ± 5%.				
			LIMITS		CONDITIONS	
STIVIBUL	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS
tAA-	Address to Output Access Time		25	45	ns	
tAA+	Address to Output Access Time		25	45	ns	See Figure 1
tACS-	Chin Select Access Time		12	20	ns	Geerigaren
tACS+			12	20	ns	

AC CHARACTERISTICS: $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = 5.0$ V \pm 10%.

			LIMITS			CONDITIONS
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS
tAA-			25	60	ns	
tAA+	Address to Output Access Time		25	60	ns	See Figure 1
tACS-	21.1.2.1.2.7.1		12	30	ns	
tACS+	Chip Select Access Time		12	30	ns	

Note 1: Typical values are at $V_{CC} = 5.0 \text{ V}$, +25°C and max loading.

AC WAVEFORMS

AC TEST OUTPUT LOAD

Fig. 1

7

93436 ISOPLANAR SCHOTTKY TTL MEMORY 512×4-BIT PROGRAMMABLE READ ONLY MEMORY

LOGIC SYMBOL

DESCRIPTION – The 93436 is a fully decoded high-speed 2048-bit field Programmable ROM organized 512 words by four bits per word. The 93436 has uncommitted collector outputs. The outputs are off when the \overline{CS} input is in the HIGH state. The 93436 is supplied with all bits stored as logic "1"s and can be programmed to logic "0"s by following the field programming procedure.

FUNCTIONAL DESCRIPTION - The 93436 is a bipolar field Programmable Read Only Memory (PROM) organized 512 words by four bits per word. Open collector outputs are provided on the 93436 for use in wired-OR systems. Chip Select is active LOW; i.e., a HIGH (logic "1") on the \overline{CS} pin will disable all outputs.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A₀ through Ag inputs, the chip is selected, and data is valid at the outputs after t_{AA} nanoseconds.

Programming (selectively opening nichchrome fuse links) is accomplished by following the sequence outlined below.

PROGRAMMING – The 93436 is manufactured with all bits in the logic "1" state. Any desired bit (output) can be programmed to a logic "0" state by following the procedure shown in Chapter 6, page 6-14.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature Temperature (Ambient) Under Bias VCC Input Voltages Current Into Output Terminal Output Voltages -65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V 100 mA -0.5 V to 4.0 V

GUARANTEED OPERATING RANGES

	S	UPPLY VOLTAGE (V _C	c)	
	MIN	TYP	MAX	AMBIENT TEMPERATURE
93436XC,	4.75 V	5.0 V	5.25 V	0° C to +75° C
93436XM,	4.50 V	5.0 V	5.50 V	-55°C to +125°C

X = package type; F for Flatpak, D for Ceramic DIP, P for Plastic DIP. See Package Information on this data sheet.

DC CHARACTERISTICS: Over guaranteed operating ranges unless otherwise noted.

		LIMITS					
SYMBOL	CHARACTERISTIC	MIN	ТҮР	MAX	UNITS	CONDITIONS	
			(Note 1)				
ICEX	Output Leakage Current			50	μA	V _{CC} = MAX, V _{CEX} = 4.0 V, 0°C to +75°C Address any HIGH Output	
ICEX	Output Leakage Current			100	μA	$V_{CC} = MAX, V_{CEX} = 4.0 V, -55^{\circ}C to +125^{\circ}C$ Address any HIGH Output	
VOL	Output LOW Voltage		0.30	0.45	v	$V_{CC} = MIN, I_{OL} = 16 \text{ mA}, A_0 = +10.8 \text{ V}$ A ₁ through A ₈ = HIGH	
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
	Input LOW Current		-160	-250	μA		
١F	IFA (Address Inputs)					V _{CC} = MAX, V _F = 0.45 V	
	IFCS (Chip Select Inputs)		-160	-250	μA		
	Input HIGH Current						
IR	IRA (Address Inputs)			40	μA	V _{CC} = MAX, V _R = 2.4 V	
	IRCS (Chip Select Input)			40	μA		
lcc	Power Supply Current		95	130	mA	V _{CC} = MAX, Outputs open Inputs Grounded and Chip Selected	
CO	Output Capacitance		7.0		рF	V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz	
CIN	Input Capacitance		4.0		pF	V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz	
Vc	Input Clamp Diode Voltage			-1.2	V	V _{CC} = MIN, I _A = -18 mA	

AC CHARAC	TERISTICS : $T_A = 0^\circ C$ to +75°C, $V_{CC} = 1$	5.0 V ± 5%.				
01/11001			LIMITS		LINUTS	CONDITIONS
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	MAX		CONDITIONS
tAA-	Address to Output Access Time		30	50	ns	
tAA+	Address to Output Access Time		30	50	e ns	See Figure 1
tACS-	Chip Select Access Time		15	25	ns	Seerigarei
tACS+	Chip Select Access Time		15	25	ns	

AC CHARACTERISTICS: T_A = -55° C to $+125^{\circ}$ C, V_{CC} = 5.0 V ± 10%.

C)/MDOI			LIMITS			CONDITIONS
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	MAX		CONDITIONS
tAA-			30	60	ns	
tAA+	Address to Output Access Time		30	60	ns	See Figure 1
tACS-			15	30	ns .	occ right r
^t ACS+	Unip Select Access Time		15	30	ns	

Note 1: Typical values are at V_{CC} = 5.0 V, +25^oC and max loading.

AC WAVEFORM AND TEST OUTPUT LOAD

15 mA Load

7-128

93438 ISOPLANAR SCHOTTKY TTL MEMORY 512×8-BIT PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION – The 93438 is a fully decoded 4096-bit field Programmable ROM organized 512 words by eight bits per word. The 93438 has uncommitted collector outputs. The device is enabled when \overline{CS}_1 and \overline{CS}_2 are LOW and CS_3 and CS_4 are HIGH. The 93438 is supplied with all bits stored as logic "1"s and may be programmed to logic "0"s by following the field programming procedure.

- FULL MIL AND COMMERCIAL RANGES
- FIELD PROGRAMMABLE
- ORGANIZATION 512 WORDS X 8 BITS
- UNCOMMITTED COLLECTORS
- FULLY DECODED ON-CHIP ADDRESS DECODER AND BUFFER
- CHIP SELECT INPUTS PROVIDE EASY MEMORY EXPANSION
- WIRED-OR CAPABILITY
- STANDARD 24-PIN DUAL IN-LINE PACKAGE
- NICHROME FUSE LINKS FOR HIGH RELIABILITY

PIN NAMES

A0 – A8	Address Inputs
$\overline{\text{CS}}_1, \overline{\text{CS}}_2, \text{CS}_3, \text{CS}_4$	Chip Select Inp
01 - 08	Data Outputs

nputs

7

ABSOLUTE MAXIMUM RATINGS

Storage Temperature Temperature (Ambient) Under Bias V_{CC} Input Voltage Current into Output Terminal Output Voltages -65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V 100 mA -0.5 V to 4.0 V

GUARANTEED OPERATING RANGES

		SUPPLY VOLTAGE (V _{CC})		AMBIENT
FANT NOIVIDENS	MIN	TYP	MAX	TEMPERATURE
93438XC	4.75 V	5.0 V	5.25 V	0°C to +75°C
93438XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

FUNCTIONAL DESCRIPTION – The 93438 is a bipolar field Programmable Read Only Memory (PROM) organized 512 words by eight bits per word. Open collector outputs are provided on the 93438 for use in wired-OR systems. Chip Select follows the logic equation: $\overline{CS}_1 \cdot \overline{CS}_2 \cdot CS_3 \cdot CS_4 = CS$; i.e., if \overline{CS}_1 and \overline{CS}_2 are both active LOW and CS_3 and CS_4 are both active HIGH, all eight outputs are enabled; for any other condition all eight outputs are disabled.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A₀ through A₈ inputs, the chip is selected, and data is valid at the outputs after t_{AA} nanoseconds.

Programming (selectively opening nichrome fuse links) is accomplished by following the procedure in Chapter 6, page 6-14.

			LIMITS			
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS
ICEX	Output Leakage Current			50	μΑ	$V_{CC} = MAX$, $V_{CEX} = 4.0$ V, 0°C to +75°C Address any HIGH Output
ICEX	Output Leakage Current			100	μΑ	$V_{CC} = MAX$, $V_{CEX} = 4.0 V$, $-55^{\circ}C$ to $+125^{\circ}C$ Address any HIGH Output
V _{OL}	Output LOW Voltage		0.30	0.45	v	$V_{CC} = MIN, I_{OL} = 16 mA$ $A_0 = +10.8 V, A_1 - A_8 = HIGH$
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs
VIL	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs
۱ _F	Input LOW Current I _{FA} (Address Inputs) I _{FCS} (Chip Select Inputs)		-160 -160	-250 -250	μΑ μΑ	V _{CC} = MAX, V _F = 0.45 V
IR	Input HIGH Current I _{RA} (Address Inputs) I _{RCS} (Chip Select Input)			40 40	μΑ μΑ	$v_{CC} = MAX$, $v_R = 2.4 v$
lcc	Power Supply Current		130	175	mA	V _{CC} = MAX, Outputs Open Inputs Grounded and Chip Selected
c _o	Output Capacitance		7		рF	$V_{CC} = 5.0 \text{ V}, V_{O} = 4.0 \text{ V}, \text{ f} = 1.0 \text{ MHz}$
C _{IN}	Input Capacitance		4		pF	$V_{CC} = 5.0 \text{ V}, V_{O} = 4.0 \text{ V}, f = 1.0 \text{ MHz}$
V _C	Input Clamp Diode Voltage			-1.2	v	$V_{CC} = MIN, I_A = -18 \text{ mA}$

DC CHARACTERISTICS: Over guaranteed operating ranges unless otherwise note.

AC CHARACTERISTICS: $T_A = 0^{\circ}C$ to $+75^{\circ}C$, $V_{CC} = 5.0 \text{ V} \pm 5\%$

		T	LIMITS			
SYMBOL CHARACTERISTI	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS
t _{AA} - t _{AA} +	Address to Output Access Time		35 35	55 55	ns ns	See Figure 1
^t ACS- ^t ACS+	Chip Select Access Time		15 15	25 25	ns ns	

AC CHARACTERISTICS: $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = 5.0 \text{ V} \pm 10\%$

			LIMITS				
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS	
^t AA- t _{AA+}	Address to Output Access Time		35 35	70 70	ns ns	See Figure 1	
^t ACS- ^t ACS+	Chip Select Access Time		15 15	30 30	ns ns		

Note (1): Typical values are at V_{CC} = 5.0 V, +25^oC and max loading.

AC WAVEFORM

AC TEST OUTPUT LOAD

15 mA Load

Fig. 1

7

93446 ISOPLANAR SCHOTTKY TTL MEMORY 512×4-BIT PROGRAMMABLE READ ONLY MEMORY

LOGIC SYMBOL

13

DESCRIPTION - The 93446 is a fully decoded high-speed 2048-bit field Programmable ROM organized 512 words by four bits per word. The 93446 has 3-state outputs. The outputs are off when the \overline{CS} input is in the HIGH state. The 93446 is supplied with all bits stored as logic "1"s and can be programmed to logic "0"s by following the field programming procedure.

FUNCTIONAL DESCRIPTION - The 93446 is a bipolar field Programmable Read Only Memory (PROM) organized 512 words by four bits per word. The 93446 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. Chip Select is active LOW; i.e., a HIGH (logic "1") on the CS pin will disable all outputs.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A₀ through A₈ inputs, the chip is selected, and data is valid at the outputs after t_{AA} nanoseconds.

Programming (selectively opening nichchrome fuse links) is accomplished by following the sequence outlined below.

PROGRAMMING – The 93446 is manufactured with all bits in the logic "1" state. Any desired bit (output) can be programmed to a logic "0" state by following the procedure shown in Chapter 6, page 6-14.

ABSOLUTE MAXIMUM RATINGS

 Storage Temperature
 -65° C to +150° C

 Temperature (Ambient) Under Bias
 -55° C to +125° C

 VCC
 -0.5 V to +7.0 V

 Input Voltages
 -0.5 V to +7.0 V

 Current Into Output Terminal
 100 mA

 Output Voltages
 -0.5 V to 4.0 V

GUARANTEED OPERATING RANGES

	s	UPPLY VOLTAGE (V _{CC}	;)		
PART NUMBER	MIN	ТҮР	MAX	AMBIENT TEMPERATORE	
93446XC	4.75 V	5.0 V	5.25 V	0°C to +75°C	
93446XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C	

X = package type; F for Flatpak, D for Ceramic DIP, P for Plastic DIP. See Package Information on this data sheet.

LIMITS SYMBOL MIN TYP UNITS CONDITIONS CHARACTERISTIC MAX (Note 1) V_{CC} = MIN, I_{OL} = 16 mA, A_0 = +10.8 V VOL Output LOW Voltage 0.30 0 45 v A_1 through $A_8 = HIGH$ ۷он Output HIGH Voltage 24 v V_{CC} = MIN, I_{OH} = -2.0 mA μĀ Output Leakage Current for 50 V_{OH} = 2.4 V 0° C to +75 $^{\circ}$ C loff V_{OL} = 0.4 V HIGH Impedance State -50 μA Output Leakage Current for 100 μĀ V_{OH} = 2.4 V -55° C to $+125^{\circ}$ C loff V₀₁ = 0.4 V **HIGH Impedance State** -50μA VIH Guaranteed Input HIGH Voltage for All Inputs Input HIGH Voltage 2.0 v Input LOW Voltage V Guaranteed Input LOW Voltage for All Inputs VIL 0.8 Input LOW Current IFA (Address Inputs) -160 -250 μA $V_{CC} = MAX, V_{F} = 0.45 V$ ١F -160 IFCS (Chip Select Inputs) -250 μA Input HIGH Current $V_{CC} = MAX, V_{B} = 2.4 V$ I_R IRA (Address Inputs) 40 μA IRCS (Chip Select Input) 40 μA V_{CC} = MAX, Outputs open Power Supply Current 130 mΑ ^ICC 95 Inputs Grounded and Chip Selected CO **Output Capacitance** 7 pF $V_{CC} = 5.0 V, V_{O} = 4.0 V, f = 1.0 MHz$ pF V_{CC} = 5.0 V, V_O = 4.0 V, f = 1.0 MHz CIN Input Capacitance 4 Vc Input Clamp Diode Voltage -1.2V $V_{CC} = MIN, I_A = -18 \text{ mA}$

DC CHARACTERISTICS: Over guaranteed operating ranges unless otherwise noted.

AC CHARACTERISTICS: $T_A = 0^{\circ}C$ to +75°C, $V_{CC} = 5.0 V \pm 5\%$.									
SYMBOL	CHARACTERISTIC		LIMITS	LINUTE	00101710110				
	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS			
tAA-	Address to Output Access Time		30	50	ns				
tAA+			30	50	ns	See Eigure 1			
tACS-	Chin Select Access Time		15	25	ns	Jee rigure i			
tACS+			15	25	ns				

AC CHARACTERISTICS: T_A = -55° C to $+125^{\circ}$ C, V_{CC} = 5.0 V ± 10%.

SYMBOL			LIMITS			
	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS
tAA-			30	60	ns	
^t AA+	Address to Output Access Time		30	60	ns	See Figure 1
^t ACS-			15	30	ns	ocerigater
tACS+	Chip Select Access Time		15	30	ns	

Note 1: Typical values are at $V_{CC} = 5.0 \text{ V}$, +25°C and max loading.

AC WAVEFORM AND TEST OUTPUT LOAD

Fig. 1

93448 ISOPLANAR SCHOTTKY TTL MEMORY 512×8-BIT PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION – The 93448 is a fully decoded 4096-bit field Programmable ROM organized 512 words by eight bits per word. The 93448 has 3-state outputs. The device is enabled when $\overline{\text{CS}}_1$ and $\overline{\text{CS}}_2$ are LOW and CS_3 and CS_4 are HIGH. The 93448 is supplied with all bits stored as logic "1"s and may be programmed to logic "0"s by following the field programming procedure.

(6) A2 -

7 A1
 8 A0

(21) CS1 (20) CS2

(19) CS3 (18) CS4

O = Pin Numbers

(24) VCC

(12) GND

07

16

٥٤

(17)

05

(14)

06

(15)

0₄

13

02

10

03

n

7-135

01

۲

LOGIC SYMBOL

CS1 CS2 CS3 CS4

21 20 19 18

7

ABSOLUTE MAXIMUM RATINGS			
Storage Temperature	5. 1		-65° C to $+150^{\circ}$ C
Temperature (Ambient) Under Bias			–55°C to +125°C
V _{CC}			-0.5 V to +7.0 V
Input Voltage		· ·	-0.5 V to +5.5 V
Current into Output Terminal			100 mA
Output Voltages		· .	-0.5 V to 4.0 V

GUARANTEED OPERATING RANGES

		AMBIENT		
FANT NOWBENS	MIN	TYP	MAX	TEMPERATURE
93448XC-	4.75 V	5.0 V	5.25 V	0°C to +75°C
93448XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C

X = package type; F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

FUNCTIONAL DESCRIPTION – The 93448 is a bipolar field Programmable Read Only Memory (PROM) organized 512 words by eight bits per word. The 93448 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. Chip Select for both devices follows the logic equation: $\overline{CS}_1 \circ \overline{CS}_2 \circ CS_3 \circ CS_4 = CS$; i.e., if \overline{CS}_1 and \overline{CS}_2 are both active LOW and CS_3 and CS_4 are both active HIGH, all eight outputs are enabled; for any other condition all eight outputs are disabled.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A_0 through A_8 inputs, the chip is selected, and data is valid at the outputs after tAA nanoseconds.

Programming (selectively opening nichrome fuse links) is accomplished by following the procedures in Chapter 6, page 6-14.

			LIMITS					
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONI	DITIONS	
V _{OL}	Output LOW Voltage		0.30	0.45	v	$V_{CC} = MIN, I_{OL} = 16 mA$ $A_0 = +10.8 V, A_1 - A_8 = HIGH$		
VOH	Output HIGH Voltage	2.4			v	V _{CC} = MIN, I _{OF}	_ = −2.0 mA	
l _{off}	Output Leakage Current for HIGH Impedance State			50 -50	μΑ μΑ	$V_{OH} = 2.4 V$ $V_{OL} = 0.4 V$	0°C to +75°C	
l _{off}	Output Leakage Current for HIGH Impedance State		· .	100 -50	μΑ μΑ	$V_{OH} = 2.4 V$ $V_{OL} = 0.4 V$	-55°C to +125°C	
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
VIL	Input LOW Voltage			0.8	V	Guaranteed Inp	Guaranteed Input LOW Voltage for All Inputs	
۱ _F	Input LOW Current I _{FA} (Address Inputs) I _{FCS} (Chip Select Inputs)		-160 -160	-250 -250	μΑ μΑ	V _{CC} = MAX, V _F	e = 0.45 V	
IR	Input HIGH Current I _{RA} (Address Inputs) I _{RCS} (Chip Select Input)			40 40	μΑ μΑ	V _{CC} = MAX, V _F	R = 2.4 V	
lcc	Power Supply Current		130	175	mA	V _{CC} = MAX, Outputs Open Inputs Grounded and Chip Selected		
c _o	Output Capacitance		7		pF	$V_{CC} = 5.0 V, V_{c}$	V _{CC} = 5.0 V, V _O = 4.0 V, f = 1.0 MHz	
C _{IN}	Input Capacitance		4		pF	$V_{CC} = 5.0 V, V_{c}$	$V_{CC} = 5.0 \text{ V}, \text{ V}_{O} = 4.0 \text{ V}, \text{ f} = 1.0 \text{ MHz}$	
v _c	Input Clamp Diode Voltage			-1.2	v	$V_{CC} = MIN, I_A$	= -18 mA	

DC CHARACTERISTICS: Over guaranteed operating ranges unless otherwise note.

AC CHAR	ACTERISTICS: $T_A = 0^{\circ}C$ to +75°C, V	CC = 5.0 V ±5	%			
SYMBOL	CHARACTERISTIC		LIMITS			CONDITIONS
		MIN	TYP (Note 1)	MAX	UNITS	
^t AA- ^t AA+	Address to Output Access Time		35 35	55 55	ns ns	See Waveforms
^t ACS- ^t ACS+	Chip Select Access Time		15 15	25 25	ns ns	and Test Circuits

AC CHARACTERISTICS: $T_{\mbox{\scriptsize A}}=-55^{\circ}C$ to $+125^{\circ}C,~V_{\mbox{\scriptsize CC}}=5.0~V~\pm10\%$

					1	
SYMBOL	CHARACTERISTIC		LIMITS			
		MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS
^t AA- ^t AA+	Address to Output Access Time		35 35	70 70	ns ns	See Waveforms
^t ACS- ^t ACS+	Chip Select Access Time		15 15	30 30	ns ns	and Test Circuits

Note (1): Typical values are at V_{CC} = 5.0 V, 5.0 V, +25°C and max loading.

SWITCHING TEST OUTPUT LOAD

15 mA Load Fig. 1

93450/93451 ISOPLANAR SCHOTTKY TTL MEMORY 1024 × 8 - BIT PROGRAMMABLE READ ONLY MEMORY

DESCRIPTION — The 93450 and 93451 are fully decoded 8192-bit field Programmable LOGIC SYMBOL ROMs organized 1024 words by eight bits per word. The devices are identical except for the output stage. The 93450 has uncommitted collector outputs, while the 93451 has 3-state outputs. Either device is enabled when \overline{CS}_1 and \overline{CS}_2 are LOW and CS_3 and CS_4 are HIGH. The 93450/51 is supplied with all bits stored as logic "1's" and may be pro-CS1 CS2 CS2 CS4 21 20 19 grammed to logic "0's" by following the field programming procedure. FAST ADDRESS ACCESS TIME - 35 ns TYP FULL MIL AND COMMERCIAL RANGES FIELD PROGRAMMABLE **ORGANIZATION - 1024 WORDS X 8 BITS UNCOMMITTED COLLECTORS - 93450** 3-STATE OUTPUTS - 93451 FULLY DECODED — ON-CHIP ADDRESS DECODER AND BUFFER CHIP SELECT INPUTS PROVIDE EASY MEMORY EXPANSION WIRED-OR CAPABILITY 93450/93451 **STANDARD 24-PIN DUAL IN-LINE PACKAGE** 3 NICHROME FUSE LINKS FOR HIGH RELIABILITY 2 Ae Δ7 1 **PIN NAMES** 23 A₈ 22 $A_0 - A_9$ Address Inputs O1 O2 O3 O4 O5 O6 O7 O8 CS1, CS2, CS3, CS4 Chip Select Inputs $O_1 - O_8$ Data Outputs 10 11 13 14 15 16 **ABSOLUTE MAXIMUM RATINGS** Storage Temperature -65°C to +150°C -55° C to +125° C Vcc = Pin 24 Temperature (Ambient) Under Bias GND = Pin 12 -0.5 V to +7.0 V Vcc Input Voltage -0.5 V to +5.5 V CONNECTION DIAGRAM Current into Output Terminal 100 mA DIP (TOP VIEW) -0.5 V to +5.5 V **Output Voltages** LOGIC DIAGRAM A7 1 24 Vcc 23 1 48 A6 2 22 A9 A5 🗌 3 A 21 CS1 A7 A4 🗖 4 1-OF-128 DECODER 8192-BIT CELL 128 X 64 . 64 MATRIX 20 CS2 Δc **∧**₃ 🗖 5 Δ. 19 1 CS3 A2 1 6 b cs₄ 18 17 08 A0 2 8 16 07 **0**₁□ 9 1-OF-8 DECODF -OF-8 1-OF-8 DECODE 1-OF-8 15 06 02 10 03 11 14 0 05 GND 12 13 **⊓** ₀₄ NOTE: The Flatpak version has the

same pinouts (Connection Diagram) as the Dual In-line Package.

				AMBIENT					
		MIN	Т	ΥP		MAX	TEMPERATURE		
93450XC, 93451XC		4.75 V	5.	o v		5.25 V	0°C to +75°C		
93450XM, 93451XM		4.50 V	5.	o v		5.50 V	-55°C to +125°C		
X = package type; F for Flatpack, D	for Ceramic D	ip, P fo	r Plastic Dip. See Packa	ging Info	rmation S	ection for packages available	e on this product.		
FUNCTIONAL DE Memories (PROM provided on the 9 vide active pull-up devices follows th LOW and CS3 and all eight outputs a	SCRIPTIO Is) organize 3450 for us s when ena e logic equa I CS4 are bo	N — T ed 102 se in v bled a ation: th act	he 93450 and 9345 24 words by eight wired-OR systems. and high output imp CS ₁ • CS ₂ • CS ₃ • 0 ive HIGH, all eight	1 are bi bits pe The 93 bedance CS4 = C outputs	polar fie r word. 3451 has e when c S; i.e., i s are ena	Id Programmable Read Open Collector outpus s 3-state outputs which disabled. Chip Select fo f CS1 and CS2 are both abled; for any other con	l Only ts are n pro- r both active dition		
The read function is applied to the A t _{AA} nanoseconds. Programming (sel	h is identica Ao through lectively op	al to t Ag ing ening	hat of a conventio outs, the chip is sel nichrome fuse link	nal bip ected, s) is ac	olar RO and dat complis	M. That is, a binary ad a is valid at the outputs hed by following the seq	dress after uence		
PROGRAMMING Any desired bit (shown below. On commercially ava	— The 934 output) car e may build ilable progr	150 ar 1 be p 1 a pro rammo	od 93451 are manu programmed to a l ogrammer to satisf ers which meet the	facture ogic "(y the s se spe	d with a D" state pecifica cificatio	all bits in the logic "1" by following the proc tions or purchase any ns.	state. edure of the		
PARAMETER	SYMBOL	MIN	RECOMMENDED VALUE	мах	UNITS	COMMENTS			
Address Input	ViH	2.4	5.0	5.0	v	Do not leave inputs ope	n		
	ViL	0	0	0.4	v				
Chip Select	$\overline{CS}_1, \overline{CS}_2$	2.4	5.0	5.0	v	Pin 20 or 21 or both	Either or bot		
	CS3, CS4	0	Ō	0.4	v	Pin 18 or 19 or both			
Programming Voltage Pulse	VOP	20	20.5	21	v	Applied to output to be	pplied to output to be programmed		
Programming Pulse Width	tow	0.05	0.18	50	ms	All bits can be program	med in ≤ 8.2 s		

PROGRAMMING SEQUENCE - The Fairchild 93450/93451 is programmed using the following method.

20

1.0

4

5.0

25

4.4

%

μS

٧

°C

mΑ

v

*Maximum duty cycle to maintain T_C< 85° C

If pulse generator is used, set current

limit to this max value.

Programming Read Verify

*

3.0

8

5.1

85

100

5.0

1. Apply the proper power, $V_{CC} = 5.0 \text{ V}$, GND = 0 V.

tr

Vcc

Tc

lор

Vcc

0.5

1

4.9

Duty Cycle Programming Pulse

Programming Pulse Rise Time

Number of Pulses Required

Programming Pulse Current

Power Supply Voltage

Case Temperature

Low Vcc Read

Limit

- 2. Select the word to be programmed by applying the appropriate voltages to the address pins A0 through Ag.
- 3. Enable the chip for programming by application of a HIGH (logic "1") to Chip Select \overline{CS}_{1} , (Pin 21) or CS₂, (Pin 20), or by application of a LOW (logic "0") to Chip Select (CS₃), Pin 19 or (CS₄), Pin 18.

- 4. Apply the 20.5 V programming pulse to the output associated with the bit to be programmed. The other outputs may be left open or tied to any logic "1" (output HIGH), i.e., 2.4 V to 4.0 V. Note that only one output may be programmed at a time.
- 5. To verify the logic "0" in the bit just programmed, remove the programming pulse from the output, lower Vcc to 4.4 V and sense the output after applying a logic "0" to Chip Selects \overline{CS}_1 and \overline{CS}_2 and a logic "1" to Chip Selects CS_3 and CS_4 .
- 6. The above procedure is then repeated to program other bits on the chip.

BOARD PROGRAMMING

- 1. Memories 1 through 4 are OR-tied and connected to the programmer as shown (Figure 1).
- 2. Connect CS₃ (Pin 19) and CS₄ (Pin 18) of all the memories to a HIGH (logic "1") or leave unconnected.
- 3. Connect \overline{CS}_2 (Pin 20) of all memories to ground.
- 4. Connect outputs of the TTL Decoder to \overline{CS}_{1S} (Pins 21) of the four memories on the board.
- 5. To program a bit in one of the four memories, connect the decoder supply voltages to $V_{CC} = +12.6$ V and $V_{EE} = +7.6$ V and select an Address A₀, A₁ (HIGH = +10.6 V; LOW = +7.6 V).
- 6. Raise the programming voltage to 20.5 V; the memory whose \overline{CS}_1 is LOW at +7.8 V (Memory 4 in Figure 1) will program, all others with \overline{CS}_1 HIGH at +10.6 V will remain deselected.
- 7. To verify the logic "0" in the bit just programmed remove the programming pulse and sense the OR-tie after simultaneously lowering the decoder supplies to $V_{CC} = 4.4 \text{ V}$, $V_{EE} = 0 \text{ V}$ and shifting the decoder address A₀, A₁ down to its normal levels (HIGH = 3.0 V; LOW = 0 V).
- 8. Repeat procedure for other bits following the normal programming sequence.
- 9. To select a different memory on the board change decoder address A₀, A₁.

Fig. 1 Board Programming

			LIMITS					
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS		
ICEX	Output Leakage Current (93450 only)			50	μA	$V_{CC} = 5.25$, $V_{CEX} = 4.95$ V, 0°C to +75°C Address any HIGH Output		
ICEX	Output Leakage Current (93450 only)			100	μA	$V_{CC} = 5.5$, $V_{CEX} = 5.2$ V, -55°C to +125°C Address any HIGH Output		
Vol	Output LOW Voltage		0.30	0.45	v	$V_{CC} = MIN, I_{OL} = 16 \text{ mA}, A_0 = +10.8 \text{ V}, A_9 = +10.8 \text{ V}, A_1 - A_8 = Don't Care$		
Vон	Output HIGH Voltage (93451 only)	2.4			v	$V_{CC} = MIN, I_{OH} = -2.0 \text{ mA}$		
loff	Output Leakage Current for HIGH Impedance State (93541 only)			50 -50	μΑ μΑ	V _{OH} = 2.4 V V _{OL} = 0.4 V	0°C to +75°C	
loff	Output Leakage Current for HIGH Impedance State (93451 only)			100 -50	μΑ μΑ	V _{OH} = 2.4 V V _{OL} = 0.4 V	-55°C to +125°C	
Viн	Input HIGH Voltage	2.0			v	Guaranteed In	put HIGH Voltage for all Inputs	
VIL	Input LOW Voltage			0.8	v	Guaranteed In	put LOW Voltage for All Inputs	
lF	Input LOW Current IFA (Address Inputs) IFCS (Chip Select Inputs)		-160 -160	-250 -250	μΑ μΑ	V _{CC} = MAX, V	P _F = 0.45 V	
IR	Input HIGH Current IRA (Address Inputs) IRCS (Chip Select Input)			40 40	μΑ μΑ	$V_{CC} = MAX, V_R = 2.4 V$		
lcc	Power Supply Current		130	175	mA	V _{CC} = MAX, Outputs Open Inputs Grounded and Chip Selected		
Со	Output Capacitance		7		pF	V _{CC} = 5.0 V, V	V ₀ = 4.0 V, f = 1.0 MHz	
CIN	Input Capacitance		4		pF	Vcc = 5.0 V, V	/ _O = 4.0 V, f = 1.0 MHz	
Vc	Input Clamp Diode Voltage			-1.2	v	Vcc = MIN, IA	= -18 mA	

AC CHARACTERISTICS: T_A = 0°C to +75°C, V_{CC} = 5.0 V $\pm 5\%$

			LIMITS			
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	MAX	UNITS	CONDITIONS
taa- taa+	Address to Output Access Time		35 35	55 55	ns ns	See Figure 2A and 2B
tacs- tacs+	Chip Select Access Time		15 15	25 25	ns ns	

AC CHARACTERISTICS: $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = 5.0 V \pm 10\%$

SYMBOL	CHARACTERISTIC		LIMITS			CONDITIONS
		MIN	TYP (Note 1)	МАХ	UNITS	
t _{AA} - t _{AA} +	Address to Output Access Time		35 35	70 70	ns ns	See Figure 2A and 2B
tacs- tacs+	Chip Select Access Time		15 15	30 30	ns ns	
Note (1): Ty	pical values are at $V_{CC} = 5.0 \text{ V}$, $+25^{\circ}\text{C}$ and ma	x loading.				

PROM PROGRAMMING CIRCUIT (see Fig. 3)

This circuit will sequentially program all eight bits of a given word address of the 93450 or 93451. Selection of the word to be programmed is made by the address switches.

Until the program switch is depressed, the contents of the 93450 or 93451 at the address set in the address switch register is displayed on the eight FLV117 LEDs. If the content is a Logic "1" or the chip is deselected, the LED is turned on with current supplied by the 390 Ω resistors. If the content of the PROM is a logic "0" and the PROM is enabled, the output is Logic "0" turning the LEDs off. The 1N4002s isolate the LEDs from the 20.5 V programming pulse.

The 9601 is a one-shot continuous 1.0 ms oscillator. One-half of a 9024 is used as a switch debouncer while the other half is the "run" flip-flop. When the program is initiated by depressing the program switch, the first half of the 9024 (switch debouncer) is set and clocks the other half of the 9024 ("run" flip-flop) to the "run" state. This enables the counters to operate and disables the 93450. The counter is preset to 5 on the 9310 and 8 on the 9316. The counter provides the proper duty cycle and program timing.

To avoid overlap problems between the programming pulse, the chip enable and the scan, the 9316 advances when the 9310 goes from state 3 to state 4. When the last bit has been programmed, the counter presets itself and resets the "run" flip-flop. The programming sequence is now complete.

The bit to be programmed is decoded by the 9301 and ORed with the bit switch. The OR gate is a high voltage driver supplying the drive to the programming transistors.

Fig. 3 Example Programmer Circuit

93452 / 93453 ISOPLANAR SCHOTTKY TTL MEMORY 1024×4-BIT PROGRAMMABLE READ ONLY MEMORY

LOGIC SYMBOL

DESCRIPTION – The 93452 and 93453 are fully decoded high-speed 4096-bit field Programmable Read Only Memories organized 1024 words by four bits per word. The devices are identical except for the output stages. The 93452 has uncommitted collector outputs, while the 93453 has 3-state outputs. In either case, the outputs are enabled when $\overline{\text{CS}}_1$ and $\overline{\text{CS}}_2$ are LOW.

GND = Pin 9

= Pin Numbers

04

(11)

03

(12)

(13)

(14)

FUNCTIONAL DESCRIPTION - The 93452 and 93453 are bipolar field Programmable Read Only Memories (PROMs) organized 1024 words by four bits per word. Open collector outputs are provided on the 93452 for use in wired-OR systems. The 93453 has 3-state outputs which provide active pull-ups when enabled and high output impedance when disabled. Chip Selects for both devices are active LOW; conversely, a HIGH (logic ''1'') on the \overrightarrow{CS}_1 or \overrightarrow{CS}_2 will disable all outputs.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the An through Ag inputs, the chip is selected, and data is valid at the outputs after tAA nanoseconds.

Programming (selectively opening nichrome fuse links) is accomplished by following the sequence outlined below.

PROGRAMMING - The 93452 and 93453 are manufactured with all bits in the logic "1" state. Any desired bit (output) can be programmed to a logic "0" state by following the procedure shown below. One may build a programmer to satisfy the specifications or buy any of the commercially available programmers which meet these specifications.

CHARACTERISTIC	SYMBOL	MIN	RECOMMENDED VALUE	МАХ	UNITS	COMMENTS	
VIH 2.4 5.0 Address Input VIL 0 0		5.0 0	5.0 0.4	V V	Do not leave inputs open		
Chip Select	$\overline{CS}_{1},\overline{CS}_{2}$	2.4	5.0	5.0	v	Pin 8 or 10 or both	
Programming Voltage Pulse	VOP	20	21	21	V	Applied to output to be programmed	
Programming Pulse Width	t _{pw}	0.05	0.18	50	ms	All bits can be programmed in \leq 4.1 sec.	
Duty Cycle, Programming Pulse			20	*	%	*Maximum duty cycle to maintain T $_{ m C}$ $<$ 85°C	
Programming Pulse Rise Time	tr	0.5	1.0	3.0	μs		
Number of Pulses Required		1	4	8			
Power Supply Voltage	V _{CC}	4.75	5.0	5.25	v		
Case Temperature	t _c		25	85	°C		
Programming Pulse Current Max.	IOP			100	mA	If pulse generator is used, set current limit to this max value	
Low V _{CC} Read	V _{CC}		4.4	5.0	v	Programming Read Verify	

PROGRAMMING SPECIFICATIONS

PROGRAMMING SEQUENCE - The Fairchild 93452/93453 may be programmed using the following method.

1. Apply the proper power, $V_{CC} = 5.0 \text{ V}$, GND = 0 V.

- 2. Select the word to be programmed by applying the appropriate voltages to the address pins A_0 through A_9 . 3. Enable the chip for programming by application of a HIGH (logic "1") to Chip Select (\overline{CS}_1), pin 8 or (\overline{CS}_2), pin 10 or both.
- 4. Apply the 21 V programming pulse to the output associated with the bit to be programmed. The other outputs may be left open or tied to any logic "1" (output HIGH), i.e., 2.4 V to V_{CC}. Note that only one output may be programmed at a time.
- 5. To verify the logic "O" in the bit just programmed, remove the programming pulse from the output and sense it after applying logic "O"s to Chip Select inputs \overline{CS}_1 and \overline{CS}_2 .
- 6. The above procedure is then repeated to program other bits on the chip.
- 7. See Chapter 6 for further details.

BOARD PROGRAMMING – To program a single PROM out of a group of "OR" tied memories the following procedure is required. (See Figure 1)

- 1. Connect all \overline{CS}_2 pins to ground.
- 2. Connect the outputs of a TTL Decoder (supplied by $V_{CC} = +12.6 \text{ V}$, $V_{EE} = +7.6 \text{ V}$) to the \overline{CS}_1 pins of the memories on the board.
- Address the decoder such that the particular decoder output connected to the CS₁ pin of the memory to be programmed will be LOW at +7.8 V. All the other decoder outputs will be HIGH at +10.6 V.
- 4. Apply the 21 V programming pulse to one group of "OR" tied outputs selected for programming; only the addressed bit in the +7.8 V selected memory will program, all other memories remain deselected (those with $\overline{CS}_1 = +10.6$ V).
- 5. To verify the logic "O" in the bit just programmed remove programming pulse and sense the "OR" tie after lowering the decoder supplies to the conventional V_{CC} = +5.0 V, V_{FF} = 0 V.

Figure 1

ABSOLUTE MAXIMUM RATINGS

Storage Temperature Temperature (Ambient) Under Bias V_{CC} Input Voltages Current into Output Terminal Output Voltages -65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V 100 mA -0.5 V to +5.5 V

	19590			SUPPLY	VOLTAG	E (Vcc)			
PART NUMBERS		MIN		TYP		MAX	TEMPERATURE		
93452XC, 93453XC 4.7		4.75 V	v		5.0 V		5.25 V	0°C to +75°C	
93452XM,	93453XM	4.50 V	,		5.0 V		5.50 V	-55°C to +125°C	
X = package	e type; F for Flatpak, D for Ce	ramic DIP, P for PI	astic DIF	P. See Packag	ge Informa	tion on this	s data sheet.		
DC CHAR	ACTERISTICS: Over gu	aranteed operati	ng rang	ges unless (otherwise	noted.			
			LIMITS						
SYMBOL	CHARACTERISTIC		MIN	TYP (Note 1)	MAX	UNITS	CON	DITIONS	
CEX	Output Leakage Currer (93452 only)	nt			50	μΑ	$V_{CC} = 5.25 \text{ V}, V_{CEX} = 4.95 \text{ V}, 0^{\circ}\text{C to } +7$ Address any HIGH Output		
ICEX	Output Leakage Currer (93452 only)	nt			100	μΑ	$V_{CC} = 5.5 \text{ V}, V_{CEX} = 5.2 \text{ V}, -55^{\circ}\text{C} \text{ to } +12$ Address any HIGH Output		
V _{OL}	Output LOW Voltage			0.30	0.45	v	$V_{CC} = MIN, I_{OL} = 16 mA$ $A_9 = +10.8 V, A_2 = 10.8 V$		
V _{OH}	Output HIGH Voltage (93453 only)	2.4			V	$V_{CC} = MIN, I_{OH} = -2.0 \text{ mA}$		
l _{off}	Output Leakage Currer Impedance State (934	nt for HIGH 53 only)			50 -50	μA μA	$V_{OH} = 2.4 V$ $V_{OL} = 0.4 V$ 0°C to +75°C		
l _{off}	Output Leakage Curren Impedance State (934	nt for HIGH 53 only)			100 -50	μΑ μΑ	$V_{OH} = 2.4 V$ $V_{OL} = 0.4 V$	-55°C to +125°C	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inp		
VIL	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage for All Inp		
۱ _F	Input LOW Current I _{FA} (Address Input I _{FCS} (Chip Select	s) Inputs)		160 160	-250 -250	μΑ μΑ	V _{CC} = MAX, V _F = 0.45 V		
I _R	Input HIGH Current I _{RA} (Address Inpu I _{RCS} (Chip Select	ts) Input)			40 40	μΑ μΑ	$V_{CC} = MAX, V_R = 2.4 V$		
lcc	Power Supply Current			120	170	mA	V _{CC} = MAX, Outputs Open Inputs Grounded and Chip Selected		
с _о	Output Capacitance			7		pF	$V_{CC} = 5.0 \text{ V}, V_{O} = 4.0 \text{ V}, \text{ f} = 1.0 \text{ MHz}$		
C _{IN}	Input Capacitance			4		pF	V _{CC} = 5.0 V, V	O = 4.0 V, f = 1.0 MHz	
V _C	Input Clamp Diode Vol	tage			-1.2	V	$V_{CC} = MIN, I_{\Delta}$	= -18 mA	

AC CHARACTERISTICS: $T_A = 0^{\circ}C$ to +75°C, $V_{CC} = 5.0 V \pm 5\%$

SYMBOL	CHARACTERISTIC	MIN	LIMITS	MAX	UNITS	CONDITIONS
			(Note 1)			
t _{AA} - t _{AA+}	Address to Output Access Time	-	30 30	55 55	ns ns	See Waveforms and Test Circuits
^t ACS- ^t ACS+	Chip Select Access Time		15 15	25 25	ns ns	

AC CHARACTERISTICS: $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = 5.0$ V $\pm 10\%$

			LIMITS				
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	МАХ	UNITS	CONDITIONS	
^t AA- t _{AA+}	Address to Output Access Time		30 30	70 70	ns ns	See Waveforms	
^t ACS ^t ACS+	Chip Select Access Time		15 15	30 30	ns ns	and Test Circuits	

Note 1: Typical limits are at $V_{\mbox{CC}}$ = 5.0 V, +25°C and max loading.

AC TEST OUTPUT LOAD

93458/93459 ISOPLANAR SCHOTTKY TTL FPLA 16 × 48 × 8 FIELD PROGRAMMABLE LOGIC ARRAY

LOGIC SYMBOL

GND 14

15 0 04

DESCRIPTION — The 93458 and 93459 are high-speed bipolar Field Programmable Logic Arrays organized with 16 inputs, 48 product terms and eight outputs. The 16 units and their complements are fuse linked to the inputs of 48 AND gates (48 product terms). Each of the 48 AND gates are fuse linked to eight 48-input OR gates (eight summing terms). Each output may be programmed active HIGH or active LOW. The devices are identical except for the output stage. The 93458 has uncommitted collector outputs while the 93459 has 3-state outputs. In either case, the outputs are enabled when \overrightarrow{CS} is LOW.

cs o

0 08
	SUP					(CC)	TEMPEDATUDE			
MIN MIN					TYP	MAX				
3458DC, 93459DC		4.75	V		5.0 V	5.25 V	0°C to +75°C			
3458DM, 93459DM	4.50	V	5.0 V	5.50 V	-55°C to + 125°C					
LOGIC RELATIO	NSHIPS									
Input Term	A _n				n = 0,,	15, one of 16 inp	outs			
Product Term	Product Term $P_m = \pi_0^{15} (i_n A_n + j_n \overline{A_n})$				m = 0,, 47, one of 48 product terms where: a) $i_n = j_n = 0$ for unprogrammed input b) $i_n = \overline{j_n}$ for programmed input c) $i_n = j_n = 1$ for don't care input					
	$F_r = \Sigma \frac{47}{0} P_m$				$r = 1, \ldots, 8$, the OR function of the 48 products terms					
Summing Term $S_r = \Sigma_0^{47} k_m P_m$					where k _m = 0 for product term inactive (programmed) k _m = 1 for product term active (unprogrammed)					
					ОИТ	PUT				
	MODE	CS	Fr	Sr	ACTIVE HIGH	ACTIVE LOW				
		0	1	0	0	1				
	READ	0	1	1	1	0				
		0	0	X	0	1				
	DISABLE	1	X X	X X	1 (93458) HI Z (93459)	1 (93458) HI Z (93459)				

given by the following example:

 $O_1 = A_0 \overline{A_6} A_{14} + \overline{A_2} \overline{A_{15}} + \overline{A_0} A_1 \dots A_{15} + \overline{A_8} A_{10} \overline{A_{13}}$ 16 input terms max max 48 product terms 8 outputs max total $O_{2} = A_{0} \overline{A_{6}} A_{14} + \overline{A_{2}} \overline{A_{15}} \text{ (Output polarity programmed, active high.)}$ $O_{8} = (\overline{A_{8}} A_{10} \overline{A_{13}} + A_{4} \overline{A_{7}} \overline{A_{9}} A_{11} \overline{A_{12}}) \text{ (Output polarity not programmed, active high.)}$

active low.)

FUNCTIONAL DESCERIPTION - The 93458 and 93459 are bipolar Field Programmable Logic Arrays (FPLA) organized 16 inputs by 48 product terms by eight outputs. Open collector outputs are provided on the 93458 for use in wired-OR systems. The 93459 has 3-state outputs which provide active pull ups when enabled and high output impedance when disabled. Chip Select for both devices is active LOW; i.e., a HIGH (logic "1") on the CS pin will disable all outputs.

The read function is identical to that of a conventional bipolar ROM. That is, a binary address is applied to the A0 through A15 inputs, the chip is selected, and data is valid at the outputs after tAA nanoseconds.

DC CHAF	ACTERISTICS: Over guaranteed ope	rating r	anges unl	ess oth	erwise n	noted.		
		LIMITS						
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	мах	UNITS	CONDITIONS		
ICEX	Output Leakage Current (93458 only)			50	μA	$V_{CC} = MAX, V_{CEX} = V_{CC}, 0^{\circ}C \text{ to } + 75^{\circ}C$ Address any HIGH Output		
CEX	Output Leakage Current (93458 only)			100	Aц	$V_{CC} = MAX$, $V_{CEX} = V_{CC}$, -55°C to + 125 Address any HIGH Output		
VOL	Output LOW Voltage		0.30	0.45	v	$V_{CC} = M!N, I_{OL} = 16 \text{ mA}$ $V_{P}, \overline{CS} = 0 \text{ V}; A_0 - A_5, A_{13}, A_{15} = 5 \text{ V}; \text{ and}$ $A_6 - A_{12}, A_{14} = 10.8 \text{ V}$		
Vон	Output HIGH Voltage (93459 only)	2.4			V	$V_{CC} = MIN, I_{OH} = -2.0 \text{ mA}$		
loff	Output Leakage Current for HIGH Impedance State (93459 only)			50 -50	Αų Αų	$V_{OH} = 2.4 V$ $V_{OL} = 0.4 V$ 0°C to +75°C		
loff	Output Leakage Current for HIGH Impedance State (93459 only)			100	Αц Αц	$V_{OH} = 2.4 V$ $V_{OL} = 0.4 V$ - 55 °C to + 125 °C		
los	Short Circuit Current	-10		-70	mA	V _{OUT} = 0V; Chip Enabled		
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
VIL	Input LOW Voltage			0.8	v	Guaranteed Input LOW Voltage for All Inputs		
١F	Input LOW Current IFA (Address Inputs) IFCS (Chip Select Inputs)		- 160 - 160	- 250 - 250	μΑ Αų	$V_{CC} = MAX, V_F = 0.45 V$		
IR	Input HIGH Current I _{RA} (Address Inputs) I _{RCS} (Chip Select Input)			40 40	μΑ Αų	$V_{CC} = MAX, V_{R} = 2.4 V$		
lcc	Power Supply Current		105	140	mA	V _{CC} = MAX, Outputs Open Inputs Grounded and Chip Selected (Note 2)		
CO	Output Pin Capacitance		7		pF	$V_{CC} = 5.0 V, V_{O} = 4.0 V, f = 1.0 MHz$		
CI	Input Pin Capacitance		4		pF	$V_{CC} = 5.0, V_O = 4.0 V, f = 1.0 MHz$		
VC	Input Clamp Diode Voltage			-1.2	V	$V_{CC} = MIN, I_A = -18 \text{ mA}$		

AC CHARACTERISTICS: $T_A = 0^{\circ}C$ to $+75^{\circ}C$, $V_{CC} = 5.0 \text{ V} \pm 5\%$

		LIMITS						
SYMBOL	CHARACTERISTIC	MIN	TYP	МАХ	UNITS	CONDITIONS		
			(Note 1)					
t _{AA} –	Address to Output Access Time		25	45	ns			
tAA +			25	45	ns	See Figure 14 and 1P		
tACS -			15	25	ns	See Figure IA and IB		
tACS+	Chip Select Access Time		15	25	ns			

AC CHARACTERISTICS: $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = 5.0$ V $\pm 10\%$

		LIMITS					
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 1)	МАХ	UNITS	CONDITIONS	
t _{AA} –	Address to Output Access Time		25	65	ns		
tAA +			25	65	ns	See Figure 14 and 1B	
tACS-			15	30	ns	See Figure IA and TB	
tACS+	Chip Belect Access Time		15	30	ns		

NOTES: 1. Typical values are at V_{CC} = 5.0 V, +25 $^{\circ}\text{C}$ and max loading.

 For programmed part, add .45 mA typical, .60 mA max per selected programmed product terms and add 2.9 mA typical, 3.9 mA max per enabled low output or 33 mA typical, 44 mA max for disabled states.

PROGRAMMING — The 93458 and 93459 are delivered in an unprogrammed state, characterized by:

- all fuses intact
- all 8 output buffers in active LOW state
- all outputs read HIGH

Programming and verifying the Product Matrix, the Summing Matrix, and the Output Polarity are outlined below.

Program Product Matrix

All 48 AND gates of the product matrix are fuse linked to both the true and false lines of every input buffer in the initial unprogrammed state. The initial logic expression for the 48 unprogrammed AND gates is $A_0 \overline{A_0} A_1 \overline{A_1} \dots A_{15} \overline{A_{15}}$ (where An or An is defined to be an input term). Programming the fuse located by the selection of an input line, 'an', and the mth AND gate replaces the input term An with '1' in the logic expression for the mth AND gate.

- 1. Connect pin 28 (V_{CC}) to 5.0 V.
- 2. Connect pin 14 (GND) to ground.
- 3. Connect pin 19 (CS) to a TTL HIGH level.
- Apply TTL levels to pins 10 through 13, 15, and 16 (Og through Og) to address an on-chip one of forty-eight decoder to select the AND gate to be programmed (Og = LSB and Og = MSB).
- 5. Apply 10.8 V to all input pins (A₀ through A₁₅).

- 6. Apply the proper TTL level to an Ax input pin as follows (program one input at a time):
 - a. If the product term to be programmed contains the input term Ax (where x = 0 through 15), lower the Ax pin to a TTL HIGH level.
 - b. If the product term to be programmed contains the input term $\bar{A}x,$ lower the Ax to a TTL LOW level.
 - c. If the product term does not contain the input terms Ax or $\overline{A}x$ (i.e., Ax is a DON'T CARE input), perform steps 6a, 7, 6b, and 7.
- 7. Apply an 18 V programming pulse to pin 1 (Vp) according to the programming specifications table.
- 8. Repeat steps 5 through 7 for each input of the selected product term.
- 9. Repeat steps 4 through 8 for all other product terms to be programmed.
 - Program one input at a time.
 - All unused inputs of programmed product terms must be programmed as DON'T CARES.
 - Inputs of unused product lines are not required to be programmed.
 - Pin 18 (O₁) is in the read mode (open collector). Care must be taken so that this pin is either left open, grounded, or loaded such that the current flowing into the pin does not exceed 16 mA.

PROGRAMMING SPECIFICATIONS

SYMBOL	CHARACTERISTIC	MIN	RECOMMENDED VALUE	мах	UNITS	COMMENTS
VIH VIL	TTL Levels	2.4 0	5.0 0	5.0 0.4	v v	Apply to appropriate address and output pins. Do not leave pins open.
<u>cs</u>	Chip Select	2.4	5.0	5.0	v	
VOP	Programming Voltage Pulse	17.5	18.0	18.5	v	Apply to Vp or the appropriate output pin.
^t pw	Programming Pulse Width		0.18	50	ms	
	Duty Cycle, Programming Pulse		20	•	%	*Maximum duty cycle to maintain T _C < 85°C.
tr	Programming Pulse Rise Time	0.5	1.0	3.0	μS	
	Number of Pulses Required	1	4	8		
Vcc	Power Supply Voltage	4.75	5.0	5.25	v	
t _c	Case Temperature		25	85	°C	
IVP	Programming Pulse Current Max (Vp Pin)			200	mA	If pulse generator is used, set cur- rent limit to this max value.
IOP	Programming Pulse Current Max (Any Output Pin)			100	mA	If pulse generator is used, set cur- rent limit to this max value.
VCC	Low V _{CC} Read		4.4	5.0	v	Programming Read Verify.

Verify Product Matrix

- 1. Connect pin 28 (V_{CC}) to 5.0 V.
- 2. Connect pin 14 (GND) to ground.
- 3. Connect pin 19 (CS) to a TTL HIGH level.
- 4. Apply TTL levels to pins 10 through 13, 15, and 16 (Og through Og) to address an on-chip one of forty-eight decoder to select the AND gate to be verified (Og = LSB and Og = MSB).
- 5. Apply 10.8 V to all input pins (A₀ through A₁₅).
- 6. Test the state of the Ax input as follows:
 - a. Lower the Ax pin to a TTL HIGH level and sense the voltage on pin 18 (O1).
 - b. Lower the Ax pin to a TTL LOW and sense the voltage on pin 18 (O₁).
- 7. The state of the Ax input is determined as follows:

	Ax =	Ax =	CONDITION OF
	TTL	TTL	Ax FOR SELECTED
	HIGH	LOW	PRODUCT TERM
	н	н	DON'T CARE
LEVEL AT	н	L	Ax IN P-TERM
OUTPUT 1	L	н	Ax IN P-TERM
	L	L	UNPROGRAMMED

8. Repeat steps 5 through 7 for each input of the selected product term.

9. Repeat steps 4 through 8 for all other product terms.

10. Repeat steps 4 through 9 with V_{CC} at 4.4 V (low V_{CC} read).

- 2. The table above is valid regardless of the polarity (active HIGH or active LOW) of O_1 .
- 3. Pin 1 (Vp) should be either floating or grounded.

Program Summing Matrix

All eight OR gates of the summing matrix are fuse linked to the outputs of the AND gates in the initial unprogrammed state. The initial logic expression (sum of products) of the eight unprogrammed OR gates is $PO + P1 + P2 + \ldots + P47$ where Pm is the product term programmed into the mth AND gate. Programming the fuse located by the selection of the mth AND gate and the nth summing line replaces the product term Pm with 'O' in the logic expression of the nth OR gate. The nth summing line is selected by the selection of the nth output buffer where n = 1 through eight.

- 1. Connect pin 28 (V_{CC}) to 5.0 V.
- 2. Connect pin 14 (GND) to ground.
- 3. Connect pin 19 (\overline{CS}) to a TTL HIGH level.
- 4. Apply TTL levels to pins 4 through 9 (A₅ through A₀) to address an on-chip one-of-fortyeight decoder to select the AND gate to be programmed (A₀ = LSB and A₅ = MSB).
- 5. Apply a TTL HIGH level to pins 20 and 21 (A15 and A14).
- 6. Connect the remaining input pins to 10.8 V.
- 7. Apply an 18 V programming pulse (see programming specifications table) at the pin of the output to be programmed. Other output pins should be either left open or tied to a TTL HIGH level.
- Program one output pin at a time.
- All unused product lines are not required to be programmed.

NOTES: 1. O₁ in this mode functions as an open collector output, $H \ge 2.0 V$, $L \le 0.8 V$.

Verify Summing Matrix

- 1. Connect pin 28 (V_{CC}) to 5 V.
- 2. Connect pin 14 (GND) to ground.
- 3. Connect pin 19 (\overline{CS}) to a TTL LOW level.
- 4. Apply TTL levels to pins 4 through 9 (A₅ through A₀) to address an on-chip,one-of-forty-eight decoder to select the AND gate to be verified (A₀ = LSB and A₅ = MSB).
- 5. Apply a TTL HIGH level to pins 20 and 22 (A₁₅ and A₁₃).
- 6. Connect the remaining input pins to 10.8 V.
- 7. Sense the voltage on the output pin to be verified. The programming of the selected product line to the output line can be determined as follows:

OUTPUT	FUSE
READS	LINK
L	BLOWN (INACTIVE)
н	UNBLOWN (ACTIVE)

8. Repeat steps 4 through 7 with V_{CC} at 4.4 V (low V_{CC} read).

• The condition of the fuse link can be determined from the table above regardless of the polarity (active HIGH or active LOW) of the output buffer being verified.

Program Output Polarity

The initial unprogrammed state of all eight output buffers is active LOW or inverting. To program an output buffer into the active HIGH or non-inverting state proceed as follows:

- 1. Connect pin 28 (V_{CC}) to 5.0 V.
- 2. Connect pin 14 (GND) to ground.
- 3. Connect pin 19 (CS) to a TTL HIGH level.
- 4. Apply a TTL HIGH level to pins 4 through 9 (A5 through A0).
- 5. Apply a TTL HIGH level to pin 20 (A15).
- 6. Connect the remaining input pins to 10.8 V.
- Apply an 18 V programming pulse (see programming specifications table) to the pin of the output to be programmed. Other output pins should be either left open or tied to a TTL HIGH level.
 - Program one output at a time.

Verify Output Polarity

- 1. Connect pin 28 (V_{CC}) to 5.0 V.
- 2. Connect pin 14 (GND) to ground.
- 3. Connect pin 19 (\overline{CS}) to a TTL LOW level.
- 4. Apply a TTL HIGH level to pins 4 through 9 (A5 through A0).
- 5. Apply a TTL HIGH level to pins 21 and 22 (A₁₄ and A₁₃).
- 6. Connect the remaining input pins to 10.8 V.
- 7. Sense the voltage on the pin of the output buffer to be verified. The condition of the output can be determined as follows:

OUTPUT	OUTPUT				
READS	STATE				
H	ACTIVE LOW				
L	ACTIVE HIGH				

8. Repeat step 7 with V_{CC} at 4.4 V (low V_{CC} read).

The table given below summarizes the full programming and verifying procedures.

	Read	Program Product Matrix	Verify Product Matrix	Program Summing Matrix	Verify Summing Matrix	Program Output Polarity	Verify Output Polarity
Pin 1 (V _P)	***	18	***	***	***	***	***
Pin 2 (A7)	TTL	10.8*	10.8*	10.8	10.8	10.8	10.8
Pin 3 (A6)	TTL	10.8*	10.8*	10.8	10.8	10.8	10.8
Pin 4 (A5)	TTL	10.8*	10.8*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 5 (A4)	TTL	10.8*	10.8*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 6 (A3)	TTL	10.8*	10.8*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 7 (A2)	TTL	10.8*	10.8*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 8 (A1)	TTL	10.8*	10.8*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 9 (A0)	TTL	10.8*	10.8*	TTL	TTL	TTL HIGH	TTL HIGH
Pin 10 (O8)	READ	TTL	TTL	****	READ	****	READ
Pin 11 (07)	READ	TTL	TTL	****	READ	****	READ
Pin 12 (O6)	READ	TTL	TTL	****	READ	****	READ
Pin 13 (05)	READ	TTL	TTL		READ	****	READ
Pin 14 (GND)	GND	GND	GND	GND	GND	GND	GND
Pin 15 (O4)	READ	TTL	TTL	••••	READ	****	READ
Pin 16 (O3)	READ	TTL	TTL		READ	****	READ
Pin 17 (O2)	READ	**	**		READ	****	READ
Pin 18 (O1)	READ	READ	READ		READ		READ
Pin 19 (CS)	TTL LOW	TTL HIGH	TTL HIGH	TTL HIGH	TTL LOW	TTL HIGH	TTL LOW
Pin 20 (A15)	TTL	10.8*	10.8*	TTL HIGH	TTL HIGH	TTL HIGH	10.8
Pin 21 (A14)	TTL	10.8*	10.8*	TTL HIGH	10.8	10.8	TTL HIGH
Pin 22 (A13)	TTL	10.8*	10.8*	10.8	TTL HIGH	10.8	TTL HIGH
Pin 23 (A12)	TTL	10.8*	10.8*	10.8	10.8	10.8	10.8
Pin 24 (A11)	TTL	10.8*	10.8*	10.8	10.8	10.8	10.8
Pin 25 (A10)	TTL	10.8*	10.8*	10.8	10.8	10.8	10.8
Pin 26 (A9)	TTL	10.8*	10.8*	10.8	10.8	10.8	10.8
Pin 27 (A8)	TTL	10.8*	10.8*	10.8	10.8	10.8	10.8
Pin 28 (VCC)	5.0	5.0	5.0	5.0	5.0	5.0	5.0

SUMMARY OF PIN VOLTAGES (VOLTS)

*For selection of input apply TTL HIGH or TTL LOW.

Left open or TTL HIGH. *Left open or grounded.

*****Left open, TTL HIGH, or programming pulse.

PROGRAM TABLE ENTRIES INPUT VARIABLE OUTPUT FUNCTION OUTPUT ACTIVE LEVEL PROD. TERM PROD. TERM ACTIVE ACTIVE An DON't CARE An PRESENT IN Fr NOT PRESENT IN Fr HIGH LOW THIS PORTION TO BE COMPLETED BY FAIRCHILD н L — (dash) А • (period) н L NOTES: NOTES NOTE Enter (--) for unused inputs of used P-terms 1) Entries independent of output polarity 2) Enter (A) for unused outputs of used P-terms 1) Polarity programmed once only 2) Enter (L) for all unused outputs PRODUCT TERM* ACTIVE LEVEL INPUT VARIABLE OUTPUT FUNCTION* NO. # CUSTOMER SYMBOLIZED PART DATE RECEIVED COMMENTS CF (XXXX) Ш DAI REV TOTAL NUMBER OF PARTS FAIRCHILD DEVICE# PURCHASE ORDER # PROGRAM TABLE# CUSTOMER NAME *Input and Output fields of unused P-terms can be left blank.

16 X 48 X 8 FPLA PROGRAM TABLE

TTL ISOPLANAR MEMORY 93L470/93L471 4096 × 1 - BIT FULLY DECODED RANDOM ACCESS MEMORY

LOGIC SYMBOL

17

DESCRIPTION—The 93L470 and 93L471 are low power 4096-bit TTL Read/Write Random Access Memories organized 4096 words by one bit. The devices are identical except for the output stage. The 93L470 has an uncommitted collector output, while the 93L471 has a 3-state output. The devices have full decoding on chip, separate Data Input and Data Output lines and active LOW Chip Select lines. They are designed for high-performance main memory application requiring low power and can be used to replace four 1024-bit RAMs.

FUNCTIONAL DESCRIPTION—The 93L470 and 93L471 are fully decoded 4096-bit Random Access Memories organized 4096 words by one bit. Word selection is achieved by means of a 12-bit address, A_0 through A_{11} .

The Chip Select input is provided for logic flexibility. For larger memories, the fast Chip Select access time permits the decoding of Chip Select, \overline{CS} , from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable, \overline{WE} (pin 15). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at the Data Output.

The 93L471 has 3-state outputs which provide drive capability for higher speeds with high capacitive load systems. The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

The 93L470 has uncommitted collector outputs to allow maximum flexibility in output connection. In many applications, such as memory expansion, the outputs of several 93L470s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of value RL must be used to provide a HIGH at the output when it is off. Any value of RL within the range specified below may be used.

VCC(max)	< R i <	VCC(min) [—] VOH			
I _{OL} - F.O. (1.6)	< UT <	N (ICEX) + F.O. (0.04)			

RL is	in	kΩ
N	=	number of wired-OR outputs tied together
F.O.	==	number of TTL Unit Loads (U.L.) driven
ICEX	=	Memory Output Leakage Current in mA
٧он	=	Required Output HIGH level at Output Node
IOL	=	Output Low Current

The minimum value of R_L is limited by output current sinking ability. The maximum value of R_L is determined by the output and input leakage current which must be supplied to hold the output at V_{OH} .

	TRUTH TABLE								
INPUTS				τυο	OUTPUTS				
C.	5	WE	D _{IN}	93L470 O.C.	93L471 3-STATE	MODE			
н		x	x	н	HIGH Z	Not Selected			
L		L	L	н	HIGH Z	Write "O"			
L		L	н	н	HIGH Z	Write "1"			
L		н	x	DOUT	DOUT	Read			

H = HIGH Voltage, L = LOW Voltage; X = Don't Care (HIGH or LOW) HIGH Z = High Impedance, OC = Open Collector

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (dc)* Input Current (dc)* Voltage Applied to Outputs (output HIGH)** Output Current (dc)

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs. **Output Current Limit Required.

GUARANTEED OPERATING RANGES

	SUF	PLY VOLTAGE (/cc)			
	MIN	TYP	TYP MAX AMBIENT TEMPERAT			
93L470XC, 93L471XC	4.75 V	5.0 V	5.25 V	0°C to +75°C		
93L470XM, 93L471XM	4.50 V	5.0 V	5.50 V	-55°C to +125°C		
X = package type, F for Flatpak, D fe	or Ceramic Dip, P for Plast	ic Dip. See Packagi	ng Information Section	for packages available on this product.		

-65°C to +150°C -55°C to +125°C -0.5 V to +7.0 V -0.5 V to +5.5 V -12 mA to +5.0 mA -0.5 V to +5.50 V -20 mA

	CHARACTERISTIC			LIMITS			
SYMBOL			MIN	TYP	мах	UNITS	CONDITIONS
VOL	Output LOW Voltag	ge		0.3	0.50	v	$V_{CC} = MIN; I_{OL} = 16mA$
ViH	Input HIGH Voltage	9	2.1	1.6		v	Guaranteed Input HIGH Voltage for all Inputs
VIL	Input LOW Voltage	•		1.5	0.8	v	Guaranteed Input LOW Voltage for all Inputs
hΓ	Input LOW Current	t		-250	-400	μA	$V_{CC} = MAX, V_{IN} = 0.4 V$
ін	Input HIGH Curren	, It		1.0	40 1.0	μA mA	
VCD	Input Diode Clamp	Voltage		-1.0	-1.5	v	$V_{CC} = MAX, I_{IN} = -10 \text{ mA}$
CEX	Output Leakage Current	93L470		1.0	100	μA	$V_{CC} = MAX, V_{OUT} = 4.5 V$
OFF	Output Current (HIGH Z)	93L471			50 -50	μA	$V_{CC} = MAX, V_{OUT} = 2.4 V$ $V_{CC} = MAX, V_{OUT} = 0.5 V$
Vон	Output HIGH Voltage	93L471	2.4			v	$V_{CC} = MIN, I_{OH} = -5.2 \text{ mA}$
OS	Output Current Short Circuit to Ground	93L471			-100	mA	V _{CC} = MAX, Note 7
		93L470/71XC		67			$T_A = +75^{\circ}C$ $V_{CC} = MAX,$
	Power Supply	93L470/71XC		80			T _A = 0°C All Inputs and
CC	Current	93L470/71XM		63			$T_A = +125^{\circ}C$ Outputs Open
		93L470/71XM		86		mA	$T_A = -55^{\circ}C$

AC CHARACTERISTICS: Over Guaranteed Operating Ranges (Notes 1-6)

		9	3L470/71X	C	93	BL470/71X	M		
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 3)	MAX	MIN	TYP (Note 3)	MAX	UNITS	CONDITIONS
READ MODE	DELAY TIMES								
tACS tRCS tZRCS tAA	Chip Select Access Time Chip Select Recovery Time (93L470) Chip Select to HIGH Z (93L471) Address Access Time		20 30 30 40			20 30 30 40		ns	See Test Circuit and Waveforms
WRITE MODE	DELAY TIMES								
^t WS ^t ZWS ^t WR	Write Disable Time (93L470) Write Disable to HIGH Z (93L471) Write Recovery Time		30 30 30			30 30 30		ns	
	INPUT TIMING REQUIREMENTS								
tW tWSD tWHD	Write Pulse Width (to guarantee write) Data Set-Up Time Prior to Write Data Hold Time After Write		25 5 0			25 5 0			See Test Circuit and Waveforms
tWSA	Address Set-Up Time		5			5		ns	
	Address Hold Time								
tWHCS	Chip Select Hold Time		0			0			
CI CO	Input Pin Capacitance Output Pin Capacitance		4 7	5 8		4 7	5 8	pF	Measure with Pulse Technique

NOTES

- Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions. 1.
- 2. The specified LIMITS represents the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
- Typical values are at $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}C$, and MAX loading. 3.
- The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Temperature range of 4. operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:
 - θ_{JA} (Junction to Ambient) (at 400 fpm air flow) = 50°C/Watt, Ceramic DIP; 65°C/Watt, Plastic DIP, NA, Flatpak. θ_{JA} (Junction to Ambient) (still air) = 90°C, Watt, Ceramic DIP; 110°C/Watt, Plastic DIP, NA, Flatpak. θ_{JC} (Junction to Case) = 25°C/Watt, Ceramic DIP; 25°C/Watt, Plastic DIP; 15°C/Watt, Flatpak.

- The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern. 5.
- tw measured at $t_{WSA} = MIN$, t_{WSA} measured at $t_{W} = MIN$. Duration of short circuit should not exceed one second. 6.
- 7.

93L470/93L471

READ MODE

PROPAGATION DELAY FROM ADDRESS INPUTS

WRITE ENABLE TO HIGH Z DELAY

PROPAGATION DELAY FROM CHIP SELECT TO HIGH Z

(All $\ensuremath{\mathsf{t_{XXX}}}$ parameters are measured at a delta of 0.5 V from the logic level and using Load C.)

TTL ISOPLANAR MEMORY 93470/93471 4096 × 1-BIT FULLY DECODED RANDOM ACCESS MEMORY

DESCRIPTION – The 93470 and 93471 are 4096-bit TTL Read/Write Random Access Memories organized 4096 words by one bit. The devices are identical except for the output stage. The 93470 has an uncommitted collector output, while the 93471 has a 3-state output. The devices have full decoding on chip, separate Data Input and Data Output lines and active LOW Chip Select lines. They are designed for high-performance main memory application and can be used to replace four 1024-bit RAMs.

- FULL MIL AND COMMERCIAL RANGES
- ORGANIZATION—4096 WORDS X 1 BIT
- READ ACCESS TIME—30 ns TYPICAL
- CHIP SELECT ACCESS TIME—15 ns TYPICAL
- UNCOMMITTED COLLECTOR OUTPUT-93470
- 3-STATE OUTPUT-93471
- NON-INVERTING DATA OUTPUT
- POWER DISSIPATION—0.15 mW/BIT TYPICAL
- REPLACES FOUR 1024 X 1 RAMs

PIN NAMES

cs	Chip Select Input
A ₀ - A ₁₁	Address Inputs
WE	Write Enable
D _{IN}	Data Input
DOUT	Data Output

FUNCTIONAL DESCRIPTION — The 93470 and 93471 are fully decoded 4096 - bit Random Access Memories organized 4096 words by one bit. Word selection is achieved by means of a 12 - bit address, A_0 through A_{11} .

The Chip Select input is provided for logic flexibility. For larger memories, the fast Chip Select access time permits the decoding of Chip Select, \overline{CS} , from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable, \overline{WE} (Pin 15). With \overline{WE} held LOW and the chip selected, the data at D_{IN} is written into the addressed location. To read, \overline{WE} is held HIGH and the chip selected. Data in the specified location is presented at the Data Output.

The 93471 has 3-state outputs which provide drive capability for higher speeds with high capacitive load systems. The third state (high impedance) allows bus organized systems where multiple outputs are connected to a common bus.

The 93470 has uncommitted collector outputs to allow maximum flexibility in output connection. In many applications, such as memory expansion, the outputs of several 93470s can be tied together. In other applications the wired-OR is not used. In either case an external pull-up resistor of value R_L must be used to provide a HIGH at the output when it is off. Any value of R_L within the range specified below may be used.

CC(max)		V _{CC(min)} V _{OH}
—FO (1.6)	≪ KL ≈	N (ICEX) + F O (0.04)

v

101

 $\begin{array}{l} R_L \text{ is in } k\Omega \\ N = \text{number of wired-OR outputs tied together} \\ F \ O = \text{number of TTL Unit Loads (U.L.) driven} \\ I_{CEX} = \text{Memory Output Leakage Current in mA} \\ V_{OH} = \text{Required Output HIGH level at Output Node} \\ I_{OL} = \text{Output Low Current} \end{array}$

The minimum value of R_L is limited by output current sinking ability. The maximum value of R_L is determined by the output and input leakage current which must be supplied to hold the output at V_{OH} .

	TRUTH TABLE											
	INPUTS		OUT	PUTS								
CS	WE	D _{IN}	93470 O.C.	93471 3-STATE	MODE							
н	x	х	н	HIGH Z	Not Selected							
L	L	L	H HIGH Z		Write ''0''							
L	L	н	н	HIGH Z	Write ''1''							
L	н	х	D _{OUT}	DOUT	Read							

H = HIGH Voltage; L = LOW Voltage; X = Don't Care (HIGH or LOW) HIGH Z = High Impedance; OC = Open Collector

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (dc)* Input Current (dc)* Voltage Applied to Outputs (output HIGH)** Output Current (dc)

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs. **Output Current Limit Required.

GUARANTEED OPERATING RANGES

PART NUMBER	SU	PPLY VOLTAGE (V	cc)	AMBIENT TEMPERATURE (T _A)
	MIN	ТҮР	MAX	(Note 4)
93470XC, 93471XC	4.75 V	5.0 V	5.25 V	0°C to +75°C
93470XM, 93471XM	4.50 V	5.0 V	5.50 V	−55°C to +125°C

X = package type, F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

-65°C to +150°C

-55°C to +125°C

-0.5 V to +7.0 V

-0.5 V to +5.5 V

-0.5 V to +5.50 V +20 mA

-12 mA to +5.0 mA

0/1400/		710		LIMITS				
SYMBOL	CHARACTERIS	TIC .	MIN	TYP (Note 3)	МАХ		CONDI	IONS
V _{OL}	Output LOW Volt	tage		0.3	0.50	V	V _{CC} = MIN, I	_{DL} = 16 mA
v _{iH}	Input HIGH Volta	ge	2.1	1.6		v	Guaranteed Ir for all Inputs	put HIGH Voltage
V _{IL}	Input LOW Voltag	ge		1.5	0.8	v	Guaranteed Ir for all Inputs	put LOW Voltage
I _{IL}	Input LOW Curre	nt		-250	-400	μΑ	V _{CC} = MAX, V	/ _{IN} = 0.4 V
		ant.		1.0	40	μA	V _{CC} = MAX, V	/ _{IN} = 4.5 V
ΊΗ	Input High Curre	2110			1.0	mA	V _{CC} = MAX, V	/ _{IN} = 5.25 V
V _{CD}	Input Diode Clam	np Voltage		-1.0	-1.5	V	V _{CC} = MAX, I	N = -10 mA
ICEX	Output Leakage Current	93470		1.0	100	μA	V _{CC} = MAX, V	/ _{OUT} = 4.5 V
OFF	Output Current (HIGH Z)	93471			50 50	μΑ	$V_{CC} = MAX, V_{CC} = MAX, $	/ _{OUT} = 2.4 V / _{OUT} = 0.5 V
v _{он}	Output HIGH Voltage	93471	2.4			v	V _{CC} = MIN, I)H ^{= −} 5.2 mA
los	Output Current Short Circuit to Ground	93471			-100	mA	V _{CC} = MAX,	Note 7
		93470/71XC		110			T _A = 75°C	V _{CC} = MAX,
lcc	Power Supply	93470/71XC		130	170		T _A = 0°C	All Inputs and
	Current	93470/71XM		100		mA	T _A = 125°C	Output Open
		93470/71XM		140	180		$T_{\Lambda} = -55^{\circ}C$	

AC CHARACTERISTICS: Over Guaranteed Operating Ranges (Notes 1-6)

		9	3470/71>	кс	93470/71XM				
SYMBOL	CHARACTERISTIC	MIN	TYP (Note 3)	МАХ	MIN	TYP (Note 3)	МАХ	UNITS	CONDITIONS
READ MODE	DELAY TIMES								
^t ACS ^t RCS ^t ZRCS ^t AA	Chip Select Access Time Chip Select Recovery Time (93470) Chip Select to HIGH Z (93471) Address Access Time		15 25 25 30	30 35 35 45		15 25 25 30	35 45 45 60	ns	See Test Circuit and Waveforms
WRITE MODE	DELAY TIMES								
^t WS ^t ZWS ^t WR	Write Disable Time (93470) Write Disable to HIGH Z (93471) Write Recovery Time		25 25 25	35 35 35		25 25 25	45 45 45	ns	
	INPUT TIMING REQUIREMENTS			ļ					See Test Circuit
^t W ^t WSD ^t WHD ^t WSA ^t WHA ^t WSCS ^t WHCS	Write Pulse Width (to guarantee write) Data Set-Up Time Prior to Write Data Hold Time After Write Address Set-Up Time Address Hold Time Chip Select Set-Up Time Chip Select Hold Time	30 10 5 10 5 5 5	20 5 0 5 0 0 0		45 15 10 15 10 10 10	20 5 0 5 0 0 0		ns	and Waveforms
с _і с _О	Input Pin Capacitance Output Pin Capacitance		4 7	5 8		4 7	5 8	pF	Measure with Pulse Technique

NOTES:

- 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
- 2. The specified LIMITS represent the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
- 3. Typical values are at V_{CC} = 5.0 V, T_A = +25°C, and MAX loading.
- 4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range there is an additional requirement of a two minute warm-up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at minimum termperature are:

 θ_{JA} (Junction to Ambient) (at 400 fpm air flow) = 50° C/Watt, Ceramic DIP; 65° C/Watt, Plastic DIP; NA, Flatpak. θ_{JA} (Junction to Ambient) (still air) = 90° C/Watt, Ceramic DIP; 110° C/Watt, Plastic DIP; NA, Flatpak. θ_{JC} (Junction to Case) = 25° C/Watt, Ceramic DIP; 25° C/Watt, Plastic DIP; 15° C/Watt, Flatpak.

- 5. The MAX address access time is guaranteed to be thw "worst case" bit in the memory using a pseudo random testing pattern.
- 6. tw measured at twsA = MIN, twsA measured at tw = MIN.
- 7. Duration of short circuit should not exceed one second.

TYPICAL ELECTRICAL CHARACTERISTIC CURVES

AC Test Load and Waveforms same as 93L470/93L471, see page 7-162.

TTL ISOPLANAR MEMORY 93475 1024 × 4 - BIT FULLY STATIC RANDOM ACCESS MEMORY

LOGIC SYMBOL

GENERAL DESCRIPTION - The 93475 is a 4096-bit Read/Write Random Access Memory organized as 1024 4-bit words. This high-speed bipolar memory design utilizes Fairchild's advanced Isoplanar process to achieve a 35 ns typical access time. The

FUNCTIONAL DESCRIPTION — The 93475, organized as 1024 words by four bits, is controlled by the Chip Select (\overline{CS}), Write Enable (\overline{WE}) and the 10 address inputs. When \overline{CS} goes HIGH the memory becomes deselected, the bidirectional input/output pins become high impedance, and the \overline{WE} input is ignored. Therefore no read or write operations may occur. This feature allows the I/O pins to be OR-tied directly to a data bus. When the memory location specified by the address inputs is gated through to the I/O pins after a delay equal to the access time. If the \overline{WE} is forced LOW, then the I/O pins become HIGH impedance inputs so that an externally supplied data word may be placed on them.

Truth Table											
INP	UTS	I/O1-I/O4	MODE								
CS	WE										
н	x	HIGH Z	Not Selected								
L	н	Dout	Read								
L	L	D _{IN} HIGH Z	Write								

H = HIGH Voltage; L = LOW Voltage;

X = Don't Care (HIGH or LOW); HIGH Z = High Impedance

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired)

Storage Temperature Temperature (Ambient) Under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (dc)* Input Current (dc)* Voltage Applied to Outputs (output HIGH)** Output Current (dc)

-65° C to +150° C -55° C to +125° C -0.5 V to +7.0 V -0.5 V to +5.5 V -12 mA to +5.0 mA -0.5 V to +5.50 V +20 mA

*Either Input Voltage limit or Input Current limit is sufficient to protect the inputs. **Output Current Limit Required

GUARANTEED OPERATING RANGES

PART NUMBER	SUP	PLY VOLTAGE	Vcc)	AMBIENT TEMPERATURE
	MIN	ТҮР	MAX	Note 4
93475XC	4.75 V	5.0 V	5.25 V	0° C to +75° C
93475XM	4.50 V	5.0 V	5.50 V	-55° C to +125° C

X = package type, F for Flatpak, D for Ceramic Dip, P for Plastic Dip. See Packaging Information Section for packages available on this product.

FAIRCHILD ISOPLANAR TTL MEMORY • 93475

SYMBOL	CHABACTERISTIC		LIMITS		LINITS	CONDITIONS	
0111202		MIN	TYP	MAX		CONDITIONS	
Vol	Output LOW Voltage		0.35	0.45	v	V _{CC} = MIN, I _{OL} = 8 mA	
Vін	Input HIGH Voltage	2.1	1.6		v	Guaranteed Input HIGH Voltage for all Inputs	
ViL	Input LOW Voltage		1.5	0.8	v	Guaranteed Input LOW Voltage for all Inputs	
hL	Input LOW Current		-250	-400	μA	$V_{CC} = MAX, V_{IN} = 0.4 V$	
Ιн	Input HIGH Current		1.0	40 1.0	μA mA	$\label{eq:VCC} \begin{array}{l} V_{CC} = MAX, \ V_{IN} = 4.5 \ V \\ V_{CC} = MAX, \ V_{IN} = 5.25 \ V \end{array}$	
VCD	Input Diode Clamp Voltage		-1.0	-1.5	v	$V_{CC} = MAX$, $I_{IN} = -10 mA$	
IOFF	Output Current (HIGH Z)			50 -400	μΑ	V _{CC} = MAX, V _{OUT} = 2.4 V V _{CC} = MAX, V _{OUT} = 0.5 V	
Vон	Output HIGH Voltage	2.4			V	$V_{CC} = MIN$, $I_{OH} = -5.2 \text{ mA}$	
los	Output Current Short Circuit to Ground			-100	mA	V _{CC} = MAX, Note 7	
lcc	Power Supply Current		140		mA	$T_A = 0^{\circ}$ C, $V_{CC} = MAX$ All Inputs and Outputs Open	

AC CHARACTERISTICS: Over Guaranteed Operating Ranges (Notes 1-6)

SYMBOL	CHARACTERISTIC	93475XC		93475XM		UNITS	CONDITIONS			
			TYP	МАХ	MIN	TYP	мах			
READ MODE	DELAY TIMES									
tacs	Chip Select Access Time		15			15		ns	See Test Circuit	
tzRCS	Chip Select to HIGH Z		25			25			and Waveforms	
taa	Address Access Time		35			35		-		
WRITE MODE	DELAY TIMES									
tsw	Write Set-Up Time Prior to Chip Select Write		12			12		ns		
tzws	Write Disable to HIGH Z		12			12				
twn	Write Recovery Time		20			20				
	INPUT TIMING REQUIREMENTS									
twн	Write Enable Hold Time After Chip Deselect		5			5		ns	See Test Circuit	
tw	Write Pulse Width (to guarantee write)		32			32			and Waveforms	
tcsw	Chip Select Write Pulse Width (Optional Write Mode)		20			20				
twsp	Data Set-Up Time Prior to Write		20			20				
twнD	Data Hold Time After Write		0			0				
twsa	Address Set-Up Time		5	{		5				
twha	Address Hold Time		0			0				
Ci	Input Pin Capacitance		4			4		pF	Measure with	
6	Output Pin Capacitance		1 (1	1	1 (1		Puise rechnique	

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee under "worst case" conditions.,

2. The specified LIMITS represent the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical values are at $V_{CC} = 5.0 V$, $T_A = +25^{\circ}C$, and MAX loading.

4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Temperature range of operation refers to case temperature for Flatpaks and ambient temperature for all other packages. Typical thermal resistance values of the package at maximum temperature are:

ØJA (Junction to Ambient) (at 400 fpm air flow) = 50° C/Watt, Ceramic DIP; 65° C/Watt, Plastic DIP, NA, Flatpak

θJA |Junction to Ambient | (still air) = 90° C/Watt, Ceramic DIP; 110° C/Watt, Plastic DIP; NA, Flatpak

Here (Junction to Case) = 25° C/Watt, Ceramic DIP; 25° C/Watt, Plastic DIP; 15° C/Watt, Flatpak

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

6. tw measured at twsA = MIN, twsA measured at tw = MIN.

7. Duration of short circuit should not exceed one second.

FAIRCHILD ISOPLANAR TTL MEMORY • 93475

FAIRCHILD ISOPLANAR TTL MEMORY • 93475

TYPICAL ELECTRICAL CHARACTERISTIC CURVES

ISOPLANAR INTEGRATED INJECTION LOGIC MEMORY 93481/93481A 4096 × 1-BIT DYNAMIC RANDOM ACCESS MEMORY

LOGIC SYMBOL

DESCRIPTION – The Fairchild 93481 and 93481A are address multiplexed fully decoded 4096 x 1 bipolar dynamic RAMs. The inputs and output are conventional TTL. The first five address inputs are latched with AE and the last seven are applied after AE and are used in conventional "ripple-through" fashion.

BIT DRIVERS

ADDRESS DÉCODING

V_{CC} - Pin 16

GND Pin 8

O Pin Numbers

LE

6

DATA LATCH

DATA CONTROL

WE DIN

0

10

DOUT

 \mathcal{O}

LE

POUT

GND

11 WE

10 DIN

D_{CS}-

FUNCTIONAL DESCRIPTION

Addressing – The storage array is organized in 32 rows of 128 cells. Twelve bits of address information are required to uniquely define one storage cell out of 4096. To accomplish this within the constraints of a 16-pin package, the 93481/93481A operates in conjunction with external addressing logic to examine sequentially five bits (ROW address) and then seven bits (COLUMN) of address information. Signals on the $A_0 - A_4$ inputs must be in the desired state at least a set-up time tAS before the AE signal goes HIGH and must then remain fixed for at least the hold time tAH. These timing requirements insure that the positive-going AE signal latches the $A_0 - A_4$ information into the internal row addressing logic. To complete the addressing operation, the AE signal must remain HIGH and the external addressing logic must present the final seven bits of the address on the $A_0 - A_6$ inputs.

Read Operation – The Write Enable input \overline{WE} must be in the HIGH state for a read operation. After addressing a cell as outlined above, its content will exit via the output latch, which is transparent when the Latch Enable input LE is HIGH. The access delay t_{CAA} is measured from the time that the column address becomes valid, as is the latch input set-up time t_{ALS}. This latter parameter defines the earliest time that LE can go LOW and still insure that the desired data will be latched in. The latest time that LE can go LOW, for the purpose of retaining the data, is determined by two constraints. LE must go LOW no later than t_{ALH}, measured with respect to an address change. Also, LE must go LOW no later than t_{LH}, which is measured with respect to the negative-going edge of AE. If the LE signal timing satisfies these constraints, the latch will retain the data for as long as desired. A subsequent read or write operation will not affect the state of the latch so long as LE remains LOW. If LE subsequently goes HIGH while AE is LOW, the latch will no longer retain the data and its output will go to the high impedance state. It will then remain in this condition so long as AE remains LOW, regardless of the LE input signal.

If either or both Chip Select inputs are HIGH, DOUT will be in the high impedance state.

Write Operation – After addressing a cell in the manner previously described, a LOW signal on \overline{WE} will cause the data on the D_{IN} input to be stored, provided that both Chip Select inputs are LOW. To avoid writing in the wrong cell, \overline{WE} should not go LOW before the column address set-up time t_{WSA}, and the address inputs should not be changed until after the address hold time t_{WHA}. Both the set-up time and hold time for D_{IN} are measured with respect to the trailing (i.e., positive-going) edge of the write pulse. If LE is HIGH during a write operation, D_{OUT} will go HIGH regardless of the state of D_{IN}. After \overline{WE} goes HIGH at the end of a write pulse, the D_{OUT} signal will be the same as the data just stored, assuming that the address remains constant and both Chip Select inputs remain LOW.

Refresh – A normal read or write cycle causes all cells in the addressed row to be refreshed. Also, cycling AE such that the t_{TA} and t_{TR} requirements are met refreshes all cells in the addressed row, regardless of the \overline{WE} and \overline{CS} input signals. Each row must be refreshed at intervals of 2 ms or less.

Power Dissipation – There are three distinct power states in the 93481/93481A. When AE is HIGH the I_{CC} current is typically 100 mA. When AE is LOW, I_{CC} is typically 20 mA if the output latch is retaining data or 10 mA if the latch is not retaining data. When AE goes from LOW to HIGH the resultant increase in I_{CC} is not accompanied by any significant overshoot above the quiescent value. In a cyclical mode corresponding to minimum cycle time the average I_{CC} is 65 mA. No significant current transients occur when inputs other than AE change state.

MAXIMUM RATINGS (Above which the useful life may be impaired) Storage Temperature -65° C to $+150^{\circ}$ C Temperature (Ambient) Under Bias -55° C to $+125^{\circ}$ C V_{CC} Pin Potential to Ground Pin -0.5 V to +7.0 V Input Voltage (dc) -0.5 V to +5.5 V Input Current (dc) -12 mA to +5.0 mA Voltage Applied to Output (Output High) -0.5 V to +5.5 V Output Current (dc) (Output Low) +20 mA

GUARANTEED OPERATING RANGE

		AMBIENT TEMPERATURE (TA)		
PARTNUMBER	MIN	ТҮР	MAX	(Note 4)
93481/93481A	4.75 V	5.0 V	5.25 V	0°C to +70°C

DC CHARACTERISTICS: Over Operating Temperature Ranges (Notes 1, 2, 4)

	CHARACTERISTIC	LIMITS						
SYMBOL		MIN	TYP (Note 3)	мах	UNITS	CONDITIONS		
VOL	Output LOW Voltage		0.3	0.5	v	V _{CC} = MIN, I _{OL} = 16 mA		
VIH	Input HIGH Voltage	2.1	1.6		V	Guaranteed Input HIGH Voltage for all Inputs		
VIL	Input LOW Voltage		1.5	0.8	V	Guaranteed Input LOW Voltage for all Inputs		
ΙL	Input LOW Current		-100	-400	μA	V _{CC} = MAX, V _{IN} = 0.4 V		
Чн			10	40	μA	V _{CC} = MAX, V _{IN} = 4.5 V		
	input mon current			1.0	mA	V _{CC} = MAX, V _{IN} = 5.25 V		
OFF	Output Current (HIGH Z)		10	100	μA	V _{CC} = MAX, V _{OUT} = 2.4	V	
			-10	-50	μA	V _{CC} = MAX, V _{OUT} = 0.5 V		
IOS	Output Current Short Circuit to Ground		-55	-100	mA	V _{CC} = MAX, Note 7		
VOH	Output HIGH Voltage	2.4	3.0		V	$I_{OH} = -5 \text{ mA}, V_{CC} = MIN$		
VCD	Input Diode Clamp Voltage		-1.0	-1.5	V	V _{CC} = MAX, I _{IN} = -10 mA		
Icc	Power Supply Current		65		mA	MIN CYCLE TIME	V _{CC} = MAX,	
			100		mA	AE = HIGH	All Remaining Inputs	
			9.0		mA	AE = LOW, LE = HIGH	Grounded	

NOTES:

1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.

2. The specified LIMITS represents the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

3. Typical limits are at V_{CC} = 5.0 V, T_A = +25°C, and MAX loading. 4. The Operating Ambient Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are:

 θ_{JA} (Junction to Ambient) (at 400 fpm air flow) = 50°C/Watt, Ceramic DIP; 65°C/Watt, Plastic DIP; NA, Flatpak.

 θ_{JA} (Junction to Ambient) (still air) = 90°C/Watt, Ceramic DIP; 110°C/Watt, Plastic DIP; NA, Flatpak.

 $\theta_{\rm JC}$ (Junction to Case) = 25° C/Watt, Ceramic DIP; 25° C/Watt, Plastic DIP; 10° C/Watt, Flatpak.

5. The MAX address access time is guaranteed to be the "worst case" bit in the memory using a pseudo random testing pattern.

6. tw measured at twsA = MIN, twsA, twsDE, and twHD measured at tw = MIN.

7. Duration of short circuit should not exceed one second.

8. Timing Diagram represents one solution which results in an optimum cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

FAIRCHILD ISOPLANAR TTL MEMORY • 93481/93481A

			1		
SYMBOL	CHARACTERISTICS	MIN	ТҮР	MAX	UNITS
MULTIPLEX					
tAS	Row Address Set-up Time	0			
tAH	Row Address Hold Time	45			1
t _{TA}	AE Active Time	140			- ns
^t TR	AE Recovery Time	140			7
READ CYCLE					
^t CAA	Column Address Access Time			75	
^t CAH	Output Valid Time After Column Address		10		1
tCSA	Chip Select Access Time		35		ns
tCSR	Chip Select Recovery Time		30		1
t _{TH}	Output Valid Time After AE		15		7
DATA LATCH					
TALS	Address Set-up Time Before LE	75			
tALH	Address Hold Time After LE		0		1
tLH	AE Hold Time After LE		-10		ns
tLR	Output Recovery from LE		35		
^t DLA	Output Valid Time After LE		10		1
WRITE CYCLE					
tw	Write Pulse Width	25			
tWSA	Address Set-up Time	35			1
tWHA	Address Hold Time	5			
twscs	Chip Select Set-up Time		0		7
tWHCS	Chip Select Hold Time		0		ns
^t WHT	AE Hold Time After WE		40		1
tWSDE	Data In Set-up Time Before End of WE	45			
twhd	Data In Hold Time After WE	30			
tWS	Output Disable Time After WE		35		
twr	Output Recovery Time After WE		40		
CIN	Input Pin Capacitance		3.0		nE
COUT	Output Pin Capacitance		5.0		
USER TIMES					
^t RC	Row Column Address Change Time				
tMOD	Data Modify Time				
^t RFSH	Refresh Period		·····	2	ms

AC TEST LOAD AND WAVEFORMS

LOADING CONDITIONS

INPUT PULSES

FAIRCHILD ISOPLANAR TTL MEMORY • 93481/93481A

0/44001			T		
SYMBOL	CHARACTERISTICS	MIN	ТҮР	MAX	
MULTIPLEX					
tAS	Row Address Set-up Time	0			
^t AH	Row Address Hold Time	35			1
^t TA	AE Active Time	110			- ns
^t TR	AE Recovery Time	130			1
READ CYCLE					
tCAA	Column Address Access Time			65	
^t CAH	Output Valid Time After Column Address		10		1
tCSA	Chip Select Access Time		35		ns
tCSR	Chip Select Recovery Time		30		-
тн	Output Valid Time After AE		15		1
DATA LATCH					
tALS	Address Set-up Time Before LE	65			
tALH	Address Hold Time After LE		0		1
tLH	AE Hold Time After LE		-10		ns
^t LR	Output Recovery from LE		35		1
^t DLA	Output Valid Time After LE		10		1
WRITE CYCLE					
tw	Write Pulse Width	25			
tWSA	Address Set-up Time	35			1
twha	Address Hold Time	5			1
twscs	Chip Select Set-up Time		0		1
tWHCS	Chip Select Hold Time		0		ns
twht	AE Hold Time After WE		10		
tWSDE	Data In Set-up Time Before End of WE	35			
twhd	Data In Hold Time After WE	30			
tws	Output Disable Time After WE		35		
tWR	Output Recovery Time After WE		40		
CIN	Input Pin Capacitance		3.0		nF
COUT	OUT Output Pin Capacitance		5.0		
USER TIMES					
tRC	Row Column Address Change Time				
tMOD	Data Modify Time				
tRFSH	Refresh Period	[2	ms

READ-CYCLE – DATA NOT LATCHED

Addressing is accomplished by multiplexing the 5 bits of row address and 5 bits of the 7 bit column address on the same pins $(A_0 \text{ through } A_4, \text{ pins } 1, 2, 3, 4 \text{ and } 13)$. Assume the 5 bits of row address are stable at time t_{10} (the beginning of the cycle). At time t_{11} (t_{AS} after t_{10}) the address has been internally set up and the AE signal rise strobes the row address and latches it into the memory. The row address must be held stable until t_{12} (t_{AH} after the AE rise) to assure proper operation. At time t_{12} , the address input lines can change and the 7 bit column address can be switched on to the address input lines A_0 through A_6 . The memory can tolerate an instantaneous change; however, the user circuitry will require some time (t_{RC}) to accomplish this change. Assuming this change is accomplished at t_{13} , the part now acts like a 128-bit static RAM. With the column address valid at t_{13} the output becomes valid at t_{15} with the data from the address dell. The time from t_{13} to t_{15} is t_{CAA} (column address can go low any time prior to t_{14} . The output will remain valid as long as the chip selected, the column address is valid and AE remains high. The output will be in the high impedance state at time t_{CSR} after the chip select goes high. If the address is changed to a new column address with AE remaining high the same timing is applicable where the new address valid point corresponds to t_{13} .

If AE goes low at t_{16} , the output will remain valid until t_{18} (t_{TH} after t_{16}). The column address must be held valid until t_{17} (t_{CAH} prior to t_{18}) to guarantee the output is valid until t_{18} . AE goes low at t_{16} and is held low until t_{21} (at least t_{TR} after t_{16}). t_{21} corresponds to t_{11} in the first cycle.

Full Cycle Address Access Time is $t_{AS} + t_{AH} + t_{CAA} + t_{RC}$.

DATA LATCH OPERATION

When a column address is valid (t_{33}) either after a row address, as illustrated, or after a previous column address, the Data Latch may be used to hold the data read from the addressed cell. LE may be activated low at t_{ALS} after t_{33} or later (t_{3L1}) . The address may change no less than t_{ALH} after (t_{37}) . The AE signal must be retained active high until t_{36} (defined by $t_{3L1} + t_{LH}$). t_{LH} is guaranteed negative meaning the AE signal may go low before LE goes low (i.e., t_{36} may be earlier than t_{3L1}). A useful mode of operation is for LE and AE to be tied together. The output is controlled by the state of the data latch circuit and the chip select signals which can be activated at any time. The output will appear on the output pin t_{CSA} after tag as for the chip select signal goes low. If the chip select signal goes low earlier in the cycle, the output data will be read t_{CAA} after tag.

in the non-latched operation, but will remain valid until LE goes positive. If LE goes low while AE is low, an open is read at the output regardless of the state of \overline{CS}_1 and \overline{CS}_2 .

When AE is low and Data has been latched the Data Output can be returned to the open state by either returning \overline{CS}_1 , \overline{CS}_2 or LE to the high state. The output will be open at t_{3L6} , t_{CSR} after \overline{CS}_1 or \overline{CS}_2 is made high at t_{3L4} or t_{LR} after LE is made high at t_{3L5} . If AE is active high with data latched then \overline{CS}_1 or \overline{CS}_2 high will again cause the output to be open; or if LE alone is made high, the latched data will remain valid for time t_{DLA} on the output.

WRITE OPERATION

When a column address is valid (t_{53}) either after a row address as illustrated or after a previous column address, new data may be written into the addressed cell. The write signal may go low $(t_{5W2}) t_{WSA}$ after the column address is valid (t_{53}) . The write pulse must be at least t_W wide to assure writing. The \overline{CS}_1 and \overline{CS}_2 must both be low (t_{5W1}) at least t_{WSCS} before the fall of \overline{WE} (t_{5W2}) and must remain low until at least t_{WHCS} after the rise of \overline{WE} (t_{5W5}) . AE must remain high until at least t_{WHT} after the rise of \overline{WE} (t_{5W6}) . The column address must remain valid until at least t_{WHA} after the rise of \overline{WE} (t_{5W6}) . Data In must be valid at least t_{WSDE} before the rise of \overline{WE} and remain valid until at least t_{WHD} after the rise of \overline{WE} . Note that Data In timing is independent of the fall of \overline{WE} (t_{5W2}) .

EXAMPLE OF SUCCESSIVE COLUMN CYCLES

Successive operations at different column addresses on the same Row may be performed much more rapidly than a cycle requiring a new Row Address. This example illustrates a Read operation at Column Address 1 followed by a Write operation at Column Address 2. The Data Latch is used to hold the Output Data from Column Address 1 through the Write Cycle at Column Address 2. This kind of operation could be used to enter modified Data from Address 1 into the cell at Address 2.

READ-MODIFY-WRITE OPERATION

A Read-Modify-Write Cycle is performed by a normal Read followed by establishing D_{IN} and providing a \overline{WE} signal. Since there are no special timing signals required for column operation this cycle is like a normal static Bipolar RAM. The Data Output from the read cycle remains valid until t_{WS} after the \overline{WE} is brought low at which time it goes active high. If LE is high the output will again be valid t_{WR} after the \overline{WE} is brought high. If LE is low the Data output will remain valid with the latched Data throughout the write portion of the cycle.

Read-Modify-Write cycle time is: $t_{AS} + t_{AH} + t_{RC} + t_{CAA} + t_{MOD} + t_{WSDE} + t_{WHT} + t_{TR}$

9403

FIRST-IN FIRST-OUT (FIFO) BUFFER MEMORY

FAIRCHILD TTL MACROLOGIC

DESCRIPTION – The 9403 is an expandable fall-through type high-speed First-In First-Out (FIFO) Buffer Memory optimized for high speed disc or tape controllers and communication buffer applications. It is organized as 16 words by four bits and may be expanded to any number of words or any number of bits (in multiples of four). Data may be entered or extracted asynchronously in serial or parallel, allowing economical implementation of buffer memories.

The 9403 has 3-state outputs which provide added versatility and is fully compatible with all TTL families.

• 10 MHz SERIAL OR PARALLEL DATA RATE

- SERIAL OR PARALLEL INPUT
- SERIAL OR PARALLEL OUTPUT
- EXPANDABLE WITHOUT EXTERNAL LOGIC
- 3-STATE OUTPUTS
- FULLY COMPATIBLE WITH ALL TTL FAMILIES
- SLIM 24-PIN PACKAGE

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

DIN		LOADING	G (Note a)		
NAME	DESCRIPTION	HIGH LOW		COMMENTS	
$D_0 - D_3$	Parallel Data Inputs	1.0 U.L.	0.23 U.L.		
DS	Serial Data Input	1.0 U.L.	0.23 U.L.		
PĽ	Parallel Load Input	1.0 U.L.	0.23 U.L.	HIGH on PL enables $D_0 = D_3$. Not edge triggered. Ones catching.	
CPS1	Serial Input Clock	1.0 U.L.	0.23 U.L.	Edge triggered. Activates on falling edge.	
IES	Serial Input Enable	1.0 U.L.	0.23 U.L.	Enables serial and parallel input when LOW.	
TTS	Transfer to Stack Input	1.0 U.L.	0.23 U.L.	A LOW on this pin initiates fall through.	
ŌĒŠ	Serial Output Enable Input	1.0 U.L.	0.6 U.L.	Enables serial and parallel output when LOW.	
TOS	Transfer Out Serial Input	1.0 U.L.	0.23 U.L.	A LOW on this pin enables a word to be transferred from the stack to the output register. (TOP must be HIGH also for the transfer to occur). Not edge triggered.	
ТОР	Transfer Out Parallel Input	1.0 U.L.	0.23 U.L.	A HIGH on this pin enables a word to be transferred from the stack to the output register. (TOS must be LOW for the transfer to occur). Not edge triggered.	
MR	Master Reset	1.0 U.L.	0.23 U.L.	Active LOW.	
EO	Output Enable	1.0 U.L.	0.23 U.L.	Active LOW.	
CPSO	Serial Output Clock Input	1.0 U.L.	0.23 U.L.	Edge triggered. Activates on falling edge.	
$Q_0 - Q_3$	Parallel Data Outputs	130 U.L.	10 U.L.	(Note b)	
QS	Serial Data Output	10 U.L.	10 U.L.	(Note b)	
ĪRĒ	Input Register Full Output	10 U.L.	5 U.L.	LOW when input register is full (Note b).	
ORE	Output Register Empty Output	10 U.L.	5 U.L.	HIGH when output register contains valid data.	

NOTE: a 1 Unit Load (U.L.) 40 µA HIGH, 1.6 mA LOW.

b. Output fan-out with $V_{OL} \approx 0.5 V$

PIN NAMES

FUNCTIONAL DESCRIPTION - As shown in the block diagram the 9403 consists of three sections:

- 1. An Input Register with parallel and serial data inputs as well as control inputs and outputs for input handshaking and expansion.
- 2. A 4-bit wide, 14-word deep fall-through stack with self-contained control logic.
- 3. An Output Register with parallel and serial data outputs as well as control inputs and outputs for output handshaking and expansion.

Since these three sections operate asynchronously and almost independently, they will be described separately below:

Input Register (Data Entry):

The Input Register can receive data in either bit-serial or in 4-bit parallel form. It stores this data until it is sent to the fall-through stack and generates the necessary status and control signals.

Figure 1 is a conceptual logic diagram of the input section. As described later, this 5-bit register is initialized by setting the F3 flip-flop and resetting the other flip-flops. The Q-output of the last flip-flop (FC) is brought out as the "Input Register Full" output (\overline{IRF}). After initialization this output is HIGH.

Parallel Entry – A HIGH on the PL input loads the D_0 – D_3 inputs into the F_0 – F_3 flip-flops and sets the FC flip-flop. This forces the IRF output LOW indicating that the input register is full. During parallel entry, the CPSI input must be LOW.

Serial Entry – Data on the D_S input is serially entered into the F₃, F₂, F₁, F₀, FC shift register on each HIGH-to-LOW transition of the CPSI clock input, provided IES is LOW. During serial entry PL input should be LOW.

After the fourth clock transition, the four data bits located in the four flip-flops $F_0 - F_3$. The FC flip-flop is set, forcing the IRF output LOW and internally inhibiting CPSI clock pulses from effecting the register. *Figure 2* illustrates the final positions in a 9403 resulting from a 64-bit serial bit train. B₀ is the first bit, B₆₃ the last bit.

Transfer to the Stack – The outputs of Flip-Flops $F_0 - F_3$ feed the stack. A LOW level on the TTS input initiates a "fall-through" action. If the top location of the stack is empty, data is loaded into the stack and the input register is re-initialized. Note that this initialization is postponed until PL is LOW again. Thus, automatic FIFO action is achieved by connecting the IRF output to the TTS input.

An RS Flip-Flop (the Request Initialization Flip-Flop shown in *Figure 10*) in the control section records the fact that data has been transferred to the stack. This prevents multiple entry of the same word into the stack despite the fact the \overline{IRF} and \overline{TTS} may still be LOW. The Request Initialization Flip-Flop is not cleared until PL goes LOW. Once in the stack, data falls through the stack automatically, pausing only when it is necessary to wait for an empty next location. In the 9403, as in most modern FIFO designs, the \overline{IRF} input only initializes the stack control section and does not clear the data.

Fig. 2 FINAL POSITIONS IN A 9403 RESULTING FROM A 64-BIT SERIAL TRAIN

FAIRCHILD • 9403

Output Register (Data Extraction) – The Output Register receives 4-bit data words from the bottom stack location, stores it and outputs data on a 3-state 4-bit parallel data bus or on a 3-state serial data bus. The output section generates and receives the necessary status and control signals. *Figure 3* is a conceptual logic diagram of the output section.

Fig. 3 CONCEPTUAL OUTPUT SECTION

Parallel Data Extraction – When the FIFO is empty after a LOW pulse is applied to \overline{MR} , the Output Register Empty (\overline{ORE}) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the Output Register provided the "Transfer Out Parallel" (TOP) input is HIGH. As a result of the data transfer \overline{ORE} goes HIGH, indicating valid data on the data outputs (provided the 3-state buffer is enabled). TOP can now be used to clock out the next word. When TOP goes LOW, \overline{ORE} will go LOW indicating that the output data has been extracted, but the data itself remains on the output bus until a HIGH level at TOP permits the transfer of the next word (if available into the Output Register. During parallel data extraction CPSO should be LOW. TOS should be grounded for single slice operation or connected to the appropriate ORE for expanded operation (see Expansion section).

TOP is not edge triggered. Therefore, if TOP goes HIGH before data is available from the stack, but data does become available before TOP goes LOW again, that data will be transferred into the Output Register. However, internal control circuitry prevents the same data from being transferred twice. If TOP goes HIGH and returns to LOW before data is available from the stack, ORE remains LOW indicating that there is no valid data at the outputs.

Serial Data Extraction – When the FIFO is empty after a LOW pulse is applied to \overline{MR} , the Output Register Empty (\overline{ORE}) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the Output Register provided \overline{TOS} is LOW and TOP is HIGH. As a result of the data transfer \overline{ORE} goes HIGH indicating valid data in the register. The 3-state Serial Data Output, Ω_S , is automatically enabled and puts the first data bit on the output bus. Data is serially shifted out on the HIGH-to-LOW transition of \overline{CPSO} . To prevent false shifting, \overline{CPSO} should be LOW when the new word is being loaded into the Output Register. The fourth transition empties the shift register, forces \overline{ORE} output LOW and disables the serial output, Ω_S (refer to *Figure 3*). For serial operation the \overline{ORE} output may be tied to the \overline{TOS} input, requesting a new word from the stack as soon as the previous one has been shifted out.
EXPANSION -

Vertical Expansion – The 9403 may be vertically expanded to store more words without external parts. The interconnections necessary to form a 46-word by 4-bit FIFO are shown in *Figure 4*. Using the same technique, any FIFO of (15n + 1) words by four bits can be constructed, where n is the number of devices. Note that expansion does not sacrifice any of the 9403's flexibility for serial/parallel input and output. For other expansion schemes, refer to the Macrologic/Bipolar Microprocessor Data Book.

Horizontal Expansion – The 9403 can also be horizontally expanded to store long words (in multiples of four bits) without external logic. The interconnections necessary to form a 16-word by 12-bit FIFO are shown in *Figure 5.* Using the same technique, any FIFO of 16 words by 4n bits can be constructed, where n is the number of devices. The \overline{IRF} output of the right most device (most significant device) is connected to the \overline{TTS} inputs of all devices. Similarly, the \overline{ORE} output of the most significant device is connected to the \overline{TTS} inputs of all devices. As in the vertical expansion scheme, horizontal expansion does not sacrifice any of the 9403's flexibility for serial/parallel input and output.

It should be noted that this form of horizontal expansion extracts a penalty in speed. A single FIFO is guaranteed to operate at 10 MHz; an array of four FIFOs connected in the above manner is guaranteed at 4.3 MHz. An expansion scheme that provides higher speed but requires additional components is shown in the Applications section of the Macrologic/Bipolar Microprocessor Data Book.

Horizontal and Vertical Expansion – The 9403 can be expanded in both the horizontal and vertical directions without any external parts and without sacrificing any of its FIFO's flexibility for serial/parallel input and output. The interconnections necessary to form a 31-word by 16-bit FIFO are shown in *Figure 6*. Using the same technique, any FIFO of (15m + 1) words by (4n) bits can be constructed, where m is the number of devices in a column and n is the number of devices in a row.

Figures 7 and 8 show the timing diagrams for serial data entry and extraction for the 31-word by 16-bit FIFO shown in Figure 6. The final position of data after serial insertion of 496 bits into the FIFO array of Figure 6 is shown in Figure 9.

Interlocking Circuitry – Most conventional FIFO designs provide status signals analogous to IRF and ORE. However, when these devices are operated in arrays, variations in unit to unit operating speed require external gating to assure all devices have completed an operation. The 9403 incorporates simple but effective "master/slave" interlocking circuitry to eliminate the need for external gating.

In the 9403 array of *Figure 6* devices 1 and 5 are defined as "row masters" and the other devices are slaves to the master in their row. No slave in a given row will initialize its Input Register until it has received LOW on its IES input from a row master or a slave of higher priority.

In a similar fashion, the \overline{ORE} outputs of slaves will not go HIGH until their \overline{OES} inputs have gone HIGH. This interlocking scheme ensures that new input data may be accepted by the array when the IRF output of the final slave in that row goes LOW and that output data for the array may be extracted when the \overline{ORE} of the final slave in the output row goes HIGH.

The row master is established by connecting its \overline{IES} input to ground while a slave receives its \overline{IES} input from the \overline{IRF} output of the next higher priority device. When an array of 9403 FIFOs is initialized with a LOW on the \overline{MR} inputs of all devices, the IRF outputs of all devices will be HIGH. Thus, only the row master receives a LOW on the \overline{IES} input during initialization. *Figure 10* is a conceptual logic diagram of the internal circuitry which determines master/slave operation. Whenever \overline{MR} and \overline{IES} are LOW, the Master Latch is set. Whenever \overline{TTS} goes LOW the Request Initialization Flip-Flop will be set. If the Master Latch is HIGH, the Input Register will be immediately initialized and the Request Initialization Flip-Flop reset. If the Master Latch is reset, the Input Register is not initialized until \overline{IES} goes LOW. In array operation, activating the \overline{TTS} initiates a ripple input register initialization from the row master to the last slave.

A similar operation takes place for the output register. Either a TOS or TOP input initiates a load-from-stack operation and sets the ORE Request Flip-Flop. If the Master Latch is set, the last Output Register Flip-Flop is set and ORE goes HIGH. If the Master Latch is reset, the ORE output will be LOW until an OES input is received.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (u						unless otherwise noted)		
DADAMETED		LIMITS			LINUTE	TEST CO		
PARAMETER		MIN	TYP	MAX				
Input HIGH Voltage		2.0			v	Guaranteed Input	HIGH Voltage	
Input I OW Voltage	ХМ			0.7	v	Guaranteed Input		
	xc			0.8	ľ	Guaranteeu mput		
Input Clamp Diode Voltage			-0.9	-1.5	V	V _{CC} = MIN, I _{IN} =	—18 mA	
Output HIGH Voltage,	ХM	2.4	3.4		V	Vee - MIN Leve	- 400 4	
ORE, IRF	XC	2.4	3.4		ľ	VCC - WIN, IOH	400 μΑ	
Output HIGH Voltage,	ХМ	2.4	3.4		V	I _{OH} = -2.0 mA		
0 ₀ –0 ₃ , 0 ₅	XC	2.4	3.1		ľ	¹ OH = -5.7 mA	VCC = MIN	
Output LOW Voltage,	ХМ		0.25	0.4	V	IOL = 8.0 mA		
0 ₀ -0 ₃ , 0 ₅	хс		0.35	0.5	V	IOL = 16 mA		
	ХМ		0.25	0.4	V	IOL = 4.0 mA		
Output LOW Voltage, ORE, IRF	хс		0.35	0.5	ľ	I _{OL} = 8.0 mA	VCC = MIN	
Output Off HIGH Current Q0-Q3	, Q _S			100	μA	V _{CC} = MAX, V _O	JT = 2.4 V, VE = 2.0 V	
Output Off LOW Current Q0-Q3,	QS			-100	μA	VCC = MAX, VOI	T = 0.5 V, VE = 2.0 V	
			1.0	40	μA	$V_{CC} = MAX, V_{IN}$	= 2.7 V	
				1.0	mA	V _{CC} = MAX, V _{IN}	= 5.5 V	
Input LOW Current, all except OE	S			-0.36		V	- 0.4.)/	
Input LOW Current, OES				-0.96		VCC = WAA, VIN	- 0.4 V	
Output Short Circuit Current		-30		-130	mA	V _{CC} = MAX, V _O	UT = 0, (Note 3)	
	XM		115	155			_	
Supply Current	XC		115	170	mA	V _{CC} = MAX, Inputs Open		
	RACTERISTICS OVER OPER. PARAMETER Input HIGH Voltage Input LOW Voltage Input Clamp Diode Voltage Output HIGH Voltage, Onega, ORE, IRF Output LOW Voltage, Qn-Q3, QS Output LOW Voltage, Output LOW Voltage, Qn-Q3, QS Output LOW Voltage, ORE, IRF Output Off HIGH Current Qn-Q3 Output Off HIGH Current Qn-Q3, Output LOW Current, all except OE Input LOW Current, OES Output Short Circuit Current Qn-Q3, QS, ORE, OES Supply Current	PARAMETER Input HIGH Voltage Input LOW Voltage XM Input Clamp Diode Voltage XC Output HIGH Voltage, XM ORE, IRF XC Output HIGH Voltage, XM Qo-Q3, QS XC Output LOW Voltage, QR Input HIGH Current Qo-Q3, QS Output Off HIGH Current Qo-Q3, QS Input HIGH Current, OES Input LOW Current, OES Output Short Circuit Current Qo-Q3, QS, ORE, OES Supply Current XM	RACTERISTICS OVER OPERATING TEMPERATU PARAMETER Input HIGH Voltage 2.0 Input LOW Voltage XM Output Clamp Diode Voltage XM Output HIGH Voltage, XM Output HIGH Voltage, XM Qutput HIGH Voltage, XM Output HIGH Voltage, XM Qu-Q3, QS XC Output LOW Voltage, QK Qu-Q3, QS XC Output UOW Voltage, QK Qu-Q3, QS QS Input LOW Current all except OES Input LOW Current, Input LOW Current, QES Output Short Circuit Current -30 Qu-Q3, QS, ORE, ZES Supply Current XM	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

2. Typical limits are at $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$. 3. Not more than one output should be shorted at a time.

SYMBOL	PARAMETER	LIMITS				COMMENTS
STMBOL		MIN	TYP	MAX	UNITS	COMMENTS
^t PHL	Propagation Delay, Negative-Going CP to IRF Output		18	25	ns	Stack not Full, PL LOW,
^t PLH	Propagation Delay, Negative-Going TTS to IRF		48	64	ns	Figures 11 and 12
^t PLH,	Propagation Delay, Negative-Going		30	40	ns	OES LOW, TOP HIGH.
^t PHL	CPSO to Q _S Output		17	23	ns	Figures 13 and 14
tPLH,	Propagation Delay, Positive-Going		40	56	ns	EO, CPSO LOW,
^t PHL	TOP to Outputs $Q_0 - Q_3$		31	45	ns	Figure 15
^t PHL	Propagation Delay, Negative-Going CPSO to ORE		32	42	ns	OES LOW, TOP HIGH, Figures 13 and 14
^t PHL	Propagation Delay, Negative-Going TOP to ORE		40	54	ns	Parallel Output, EO, CPSO LOW,
^t PLH	Propagation Delay, Positive-Going TOP to ORE		51	68	113	Figure 15
^t DFT	Fall Through Time		450	600	ns	TTS Connected to IRF TOS Connected to ORE IES, OES, EO, CPSO LOW, TOP HIGH, Figure 16
^t PLH	Propagation Delay, Negative-Going TOS to Positive-Going ORE		41	53	ns	Data in stack, TOP HIGH, Figures 13 and 14

AC CHARACTERISTICS: V_{CC} = 5.0 V, C_{L} = 15 pF, T_{A} = 25°C

AC CHAR	ACTERISTICS (Cont'd): $V_{CC} = 5.0 \text{ V}, C_{L} = 1$		5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
SVMPOL	DADAMETER		LIMITS		LINITE	COMMENTS	
		MIN	TYP	MAX		COMMENTS	
^t PHL	Propagation Delay, Positive-Going PL to Negative-Going IRF		33	44	ns	Stack not Full, Figures 17 and 18	
^t PLH	Propagation Delay, Negative-Going PL to Positive-Going IRF		20	28	ns		
^t PLH	Propagation Delay, Positive-Going OES to ORE		26	38	ns		
^t PLH	Propagation Delay, Positive-Going IES to Positive-Going IRF		31	40	ns	Figure 18	
^t PZL, ^t PZH	$\frac{\text{Propagation Delay,}}{\text{OE}} \text{ to } \textbf{Q}_0, \textbf{Q}_1, \textbf{Q}_2, \textbf{Q}_3$		9.0	14	ns	Propagation Delay Out of the High Impedance State	
t _{PHZ,} t _{PLZ}	Propagation Delay, $\overline{\text{OE}}$ to $\Omega_0, \Omega_1, \Omega_2, \Omega_3$		7.0	14	ns	Propagation Delay Into the High Impedance State	
^t PZL, ^t PZH	Propagation Delay, Negative-Going $\overline{\text{OES}}$ to $\Omega_{\widehat{S}}$		13	18	ns	Propagation Delay Out of the High Impedance State	
^t PLZ, ^t PHZ	Propagation Delay, Negative-Going $\overline{\text{OES}}$ to $\Omega_{\widehat{S}}$		7.0	14	ns	Propagation Delay Into the High Impedance State	
^t AP	Parallel Appearance Time, ORE to $Q_0 = Q_3$		-12	-5.0	ns	Time elapsed between ORE going HIGH and valid data appearing at output. Negative number indicates data available before ORE goes HIGH.	
^t AS	Serial Appearance Time, ORE to Q _S		6.0	10	ns		

AC SET-UP REQUIREMENTS: V_{CC} = 5.0 V, C_L = 15 pF, T_A = 25^{\circ}C

CVMPOL	DADAMETER		LIMITS		LINUTO	COMMENTS
STIVIBUL	FARAMETER	MIN	TYP	MAX	UNITS	
^t PWH	CPSI Pulse Width (HIGH)	25	19		ns	Stack not full, PL LOW,
^t PWL	CPSI Pulse Width (LOW)	20	11		ns	Figures 11 and 12
^t PWH	PL Pulse Width (HIGH)	40	29		ns	Stack not full, Figures 17 and 18
^t PWL	TTS Pulse Width (LOW) Serial or Parallel Mode	20	9.0		ns	Stack not full, Figures 11, 12, 17, 18
^t PWL	MR Pulse Width (LOW)	25	13		ns	Figure 16
^t PWH	TOP Pulse Width (High)	20	13		ns	CPSO LOW, data available in stack,
^t PWL	TOP Pulse Width (LOW)	30	17		ns	Figure 15
^t PWH	CPSO Pulse Width (HIGH)	32	18		ns	TOP HIGH, data in stack,
^t PWL	CPSO Pulse Width (LOW)	30	16		ns	Figures 13 and 14
t _s	Set-up Time, D _S to Negative CPSI	28	17		ns	PL LOW, Figures 11 and 12
^t h	Hold Time, D _S to CPSI	0	-6.0		ns	PL LOW, Figures 11 and 12
t _s	Set-up Time, TTS to IRF Serial or Parallel Mode	0	-20		ns	Figures 11, 12, 17, 18
ts	Set-up Time Negative-Going ORE to Negative-Going TOS	0	-24		ns	TOP HIGH, Figures 13 and 14
t _{rec}	Recovery Time MR to any Input	10	5.0		ns	Figure 16
t _s	Set-up Time, Negative-Going IES to CPSI	32	23		ns	Figure 12
t _s	Set-up Time, Negative-Going TTS to CPSI	76	58		ns	Figure 12
t _s	Set-up Time, Parallel Inputs to PL	0	-22		ns	Length of time parallel inputs must be applied prior to rising edge of PL.
t _h	Hold Time, Parallel Inputs to PL	0			ns	Length of time parallel inputs must reamin applied after falling edge of PL

Fig. 18 PARALLEL LOAD, SLAVE MODE Conditions: stack not full, device initialized (Note 1) with IES HIGH

1.3 V

NOTES:

- 1. Initialization requires a master reset to occur after power has been applied.
- 2. TTS normally connected to IRF.

TTS

3. If stack is full, IRF will stay LOW.

9406 PROGRAM STACK FAIRCHILD TTL MACROLOGIC

DESCRIPTION – The 9406 is a 16-word by 4-bit "push-down pop-up" Program Stack. It is designed to implement Program Counter (PC) and return address storage for nested subroutines in programmable digital systems. The 9406 executes 4 instructions: Return, Branch, Call and Fetch as specified by a 2-bit instruction. When the device is initialized, PC is in the top location of the stack. As a new PC value is "pushed" into the stack (Call operation), all previous PC values effectively move down one level. The top location of the stack is the current PC. Up to 16 new Program Counter values can be stored, which gives the 9406 a 15 level nesting capability. "Popping" the stack (Return operation) brings the most recent PC to the top of the stack. The remaining two instructions affect only the top location of the stack. In the Branch operation a new PC value is loaded into the top location of the stack from the $\overline{D}_0 - \overline{D}_3$ Inputs. In the Fetch operation, the contents of the top stack location (current PC value) are put on the X $_0 - X_3$ bus and the current PC value is incremented.

The 9406 may be expanded to any word length without additional logic. 3-state output drivers are provided on the 4-bit address outputs ($X_0 - X_3$) and data outputs ($\overline{O}_0 - \overline{O}_3$); the X-Bus outputs are enabled internally during the Fetch instruction while the O-Bus outputs are controlled by an Output Enable (\overline{EO}_0). Two status outputs, Stack Full (\overline{SF}) and Stack Empty (\overline{SE}) are provided. The 9406 is fully compatible with all TTL families.

- 16-WORD BY 4-BIT LIFO
- 15-LEVEL NESTING CAPABILITY
- 10 MHz MICROINSTRUCTION RATE
- PROGRAM COUNTER LOADS FROM DATA BUS
- OPTIONAL AUTOMATIC INCREMENT OF PROGRAM COUNTER
- STACK LIMIT STATUS INDICATORS
- SLIM 24-PIN PACKAGE
- 3-STATE OUTPUTS

PIN NAMES

		HIGH	LOW
$\overline{D}_0 - \overline{D}_3$	Data Inputs (Active LOW)	1.0 U.L.	0.23 U.L.
10, 11	Instruction Inputs	1.0 U.L.	0.23 U.L.
ĒX	Execute Input (Active LOW)	1.0 U.L.	0.23 U.L.
СР	Clock Input	1.0 U.L.	0.23 U.L.
MR	Master Reset Input (Active LOW)	1.0 U.L.	0.23 U.L.
CI	Carry Input (Active LOW)	1.0 U.L.	0.23 U.L.
EO ₀	Output Enable Input (Active LOW)	1.0 U.L.	0.23 U.L.
$\overline{O}_0 - \overline{O}_3$	Output Data Outputs (Active LOW)	130 U.L.	10 U.L.
	(Note b)	•	
$x_0 - x_3$	Address Outputs (Note b)	130 U.L.	10 U.L.
CO	Carry Output (Active LOW) (Note b)	10 U.L.	5 U.L.
SF	Stack Full Output (Active LOW)	10 U.L.	5 U.L.
	(Note b)		
SE	Stack Empty Output (Active LOW)	10 U.L.	5 U.L.
	(Note b)		

NOTES:

a. 1 unit load (U.L.) = 40 μA HIGH, 1.6 mA LOW.

b. Output fan-out with $V_{OL} \le 0.5 V$.

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-line Package.

LOADING (Note a)

TABLE 1 INSTRUCTION SET FOR THE 9406

I ₁ I0	INSTRUCTION	INTERNAL OPERATION	X-BUS	O-BUS (WITH EO ₀ LOW)
LL	Return (Pop)	Decrement Stack Pointer	Disabled	Depending on the relative timing of EX and CP, the outputs will reflect the current pro- gram counter or the new value while CP is LOW. When CP goes HIGH again, the output will reflect the new value.
LH	Branch (Load PC)	Load D-Bus into Current Program Counter Location	Disabled	Current Program Counter until CP goes HIGH again, then updated with newly entered PC value.
нц	Call (Push)	Increment Stack Pointer and Load D-Bus into New Program Counter Location	Disabled	Depending on the relative timing of \overline{EX} and CP, the outputs will reflect the current pro- gram counter or the previous contents of the incremented SP location. When CP goes HIGH again, the outputs will reflect the newly entered PC value. See Figure 9 for details.
нн	Fetch (Increment PC)	Increment Current Program Counter if $\overline{\text{CI}}$ is LOW	Current Program Counter while both CP and EX are LOW, disabled while CP or EX is HIGH	Current Program Counter until CP goes HIGH again, then updated with incremented PC value.
H =	HIGH Level L	= LOW Level	· ·	L

FUNCTIONAL DESCRIPTION – As shown in the block diagram, the 9406 consists of an Input Multiplexer, a 16 X 4 RAM with output latches addressed by the Stack Pointer (SP), an incrementor, control logic, and output buffers. The 9406 is organized around three 4-bit busses; the input data bus $(\overline{D}_0 - \overline{D}_3)$, output data bus $(\overline{O}_0 - \overline{O}_3)$ and the address bus $(X_0 - X_3)$. The 9406 implements four instructions as determined by Inputs I₀ and I₁ (see *Table 1*). The O-Bus is derived from the RAM output latches and enabled by a LOW on the Output Enable (\overline{EO}_0) input. The X-Bus is also derived from the output latches; it is enabled internally during the Fetch instruction. Execution of instructions is controlled by the Execute (\overline{EX}) and Clock (CP) inputs.

Fetch Operation – The Fetch operation places the content of the current Program Counter (PC) on the X-Bus. If the Carry In (CI) is LOW, the current PC is incremented in preparation for the next Fetch. If CI is HIGH, the value of the current PC is unchanged, (Iterative Fetch).

The instruction code is set up on the I lines when CP is HIGH. The Execute (\overline{EX}) is normally LOW at this time. The control logic interprets I_0 and I_1 and selects the incrementor output as the data source to the RAM via the Input Multiplexer. The current PC value is loaded into the latches and is available on the O-Bus if \overline{EO}_0 is LOW. When CP is LOW the latches are disabled from following the RAM output, when both CP and \overline{EX} are LOW, buffers are enabled, applying the current PC to the X-Bus. The output of the incrementor is written into the RAM during the period when CP and \overline{EX} are LOW. If \overline{CI} is LOW, the value stored in the current PC, plus one, is written into the RAM. If \overline{CI} is HIGH, the current PC is not incremented. Carry Out (\overline{CO}) is LOW when the content of the current PC is at its maximum, i.e., all ones and the Carry In (\overline{CI}) is LOW. When CP or \overline{EX} goes HIGH, writing into the RAM is inhibited and the address buffers ($X_0 - X_3$) are disabled.

Branch Operation – During a Branch operation, the data inputs $(\overline{D}_0 - \overline{D}_3)$ are loaded into the current program counter.

The instruction code and the \overline{EX} Input are set up when CP is HIGH. The Stack Pointer remains unchanged. When CP goes LOW (assuming \overline{EX} is LOW) the D-Bus Inputs are written into the current PC. The X-Bus drivers are not enabled during a Branch operation.

Call Operation – During a Call operation the content of the data bus is loaded into the top location of the stack and all previous PC values are effectively moved down one level.

The instruction code and the \overline{EX} input are set up when CP is HIGH. When \overline{EX} is LOW, a "one" is added to the Stack Pointer value thus incrementing the RAM address. Since the output latches go to the nontransparent or store mode when CP is LOW, the O-Bus outputs will reflect the RAM output at the CP negative-going transition. If EX goes LOW considerably before CP goes LOW, the O-Bus will correspond to the previous contents of the incremented RAM address after CP goes LOW. If CP goes LOW a very short time after \overline{EX} , the O-Bus will remain unchanged until the LOW to HIGH transition of CP. When CP is LOW (assuming \overline{EX} is LOW) the D-Bus inputs are written into this new RAM location. On the LOW-to-HIGH transition of CP, the incremented Stack Pointer value is loaded into the Stack Pointer and the O-Bus outputs reflect the newly entered data. When the RAM address is "1111" the Stack Full output (\overline{SF}) is LOW, indicating that no further Call operations should be initiated. If an additional Call operation is performed SP is incremented to (0000), the contents of that

The X-Bus drivers are not enabled during a Call operation.

Return Operation – During the Return operation the previous PC is "popped" to become the current PC.

location will be written over, SF will go HIGH and the Stack Empty (SE) will go LOW.

The instruction is set up when CP is HIGH. When \overline{EX} is LOW, a "one" is subtracted from the Stack Pointer value, thus decrementing the RAM address. If \overline{EX} goes LOW considerably before CP goes LOW, the O-Bus will correspond to the new value after \overline{EX} goes LOW. If CP goes LOW a short time after \overline{EX} , the O-Bus will remain unchanged until the LOW-to-HIGH transition of CP.

On the LOW-to-HIGH transition of CP the decremented Stack Pointer value is loaded into the Stack Pointer and the O-Bus outputs correspond to the new "popped" value.

The X-Bus drivers are not enabled during a Return operation. When the RAM address is "0000", the Stack Empty output (\overline{SE}) is LOW, indicating that no further return operations should be initiated. If an additional Return operation is performed, SP is decremented to "1111", the \overline{SE} will go HIGH and the Stack Full output (\overline{SF}) will go LOW. A LOW on the Master Reset (\overline{MR}) causes the SP to be reset and the contents of that RAM location (0000) to be cleared. The Stack Empty (\overline{SE}) output goes LOW. This operation overrides all other inputs.

EXPANSION – The 9406 may be expanded to any word length in multiples of four without external logic. The connection for expanded operation is shown in *Figure 1*. Carry In (\overline{CI}) and Carry Out (\overline{CO}) are connected to provide automatic increment of the current program counter during Fetch. The \overline{CI} input of the least significant 9406 is tied LOW to ground.

If automatic increment during Fetch is not desired, the \overline{CI} input of the least significant 9406 is held HIGH.

*Tie to V_{CC} to disable automatic increment.

Fig. 1 **16 BY 12 PROGRAM STACK**

DC CHARACTERISTICS OVER OPERATION TEMPERATURE RANGE (unless otherwise noted)

SYMPOL	PARAMETER			LIMITS			TEST CONDITIONS (Note 1)	
STWBUL	FARAMETER				MAX	01113		
VIH	Input HIGH Voltage		2.0			v	Guaranteed Input	HIGH Voltage
V.	Input I OW Voltage	XM			0.7	V	Guaranteed Input	LOW Voltage
11	Input LOW Voltage	xc			0.8	•	Guaranteed input	LOW Voltage
VCD	Input Clamp Diode Volta	ge		-0.9	-1.5	V	V _{CC} = MIN, I _{IN} =	= —18 mA
Vau	Output HIGH Voltage	XM	2.4	3.4		V	Vee - MIN Lev	- 400
∙он	CO, SE, SF	XC	2.4	3.4		v	VCC - WIN, OH	400 μA
Vau	Output HIGH Voltage	XM	2.4	3.4		V	I _{OH} =2.0 mA	Vee - MIN
∙он	$x_0 - x_3, \overline{0}_0 - \overline{0}_3$	XC	2.4	2.4 3.1		^I OH = -5.7 mA		
N.	Output LOW Voltage			0.25	0.4	V	V _{CC} = MIN, I _{OL}	= 4.0 mA
VOL	CO, SE, SF			0.35	0.5	v	V _{CC} = MIN, I _{OL}	= 8.0 mA
Vai	Output LOW Voltage			0.25	0.4	N	V _{CC} = MIN, I _{OL}	= 8.0 mA
VOL	$X_0 - X_3, \overline{O}_0 - \overline{O}_3$			0.35	0.5		V _{CC} = MIN, I _{OL}	= 16 mA
lozн	Output Off HIGH Current	:			100	μA	V _{CC} = MAX, V _{OI}	UT = 2.4 V, V _E = 2 V
IOZL	Output Off LOW Current				-100	μA	V _{CC} = MAX, V _O	UT = 0.5 V, V _E = 2 V
1	Input HIGH Current			1.0	40	μA	V _{CC} = MAX, V _{IN}	= 2.7 V
чн	input mon current				1.0	mA	V _{CC} = MAX, V _{IN}	= 5.5 V
μL	Input LOW Current				-0.36	mA	V _{CC} = MAX, V _{IN}	= 0.4 V
IOS	Output Short Circuit Current		-30		-100	mA	V _{CC} = MAX, V _{OI}	UT = 0 V (Note 3)
ССН	Supply Current			100	160	mA	V _{CC} = MAX	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

2. Typical limits are at V_{CC} = 5.0 V, T_A = 25°C. 3. Not more than one output should be shorted at a time.

AC SET-U	AC SET-UP REQUIREMENTS – ALL MODES OF OPERATION: $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ} \text{C}$, $C_L = 15 \text{ pF}$								
	PARAMETERS		LIMITS	;	UNITS				
SYMBOL		MIN	ТҮР	MAX		COMMENTS			
tCW	Clock Period	100	70		ns				
tPWH	Clock Pulse Width (HIGH)	60	40		ns				
tPWL	Clock Pulse Width (LOW)	40	25		ns				
tsEX	Set-Up Time, EX to CP		0		ns	×			
thEX	Hold Time, EX to CP		0		ns				
tsl	Set-Up Time, I ₀ , I ₁ to Negative-Going Clock		20		ns	Figure 2			
thl	Hold Time, I ₀ , I ₁ to Positive-Going Clock		0		ns				
t₅ĈĪ	Set-Up Time, CI to Negative-Going Clock		5		ns				
t _h Cī	Hold Time, CI to Positive-Going Clock		0		ns				
t _s D	Set-Up Time, $\overline{D}_0-\overline{D}_3$ to Positive-Going Clock		20		ns				
thD	Hold Time, $\overline{D}_0 - \overline{D}_3$ to Positive-Going Clock		0		ns				
	MR Pulse Width (LOW)	40	25		ns	Figure 3			
t _{rec}	MR to Negative-Going Clock	45	30		ns	Figure 3			

Refer to individual timing diagrams for each operation to determine output response.

SYMBOL	PARAMETERS	1	LIMITS	5		COMMENTS	
STMBUL	FARAMETERS	MIN	TYP	MAX			
^t PLH	Propagation Delay, Positive-Going CP		28	41		EO0 LOW	
^t PHL	to Outputs ($\overline{O}_0 - \overline{O}_3$)		45	66	ns	Figures 7 and 8	
ts	Set-Up Time, I0, I1 to Negative-Going EX	30	20		ns		
th	Hold Time I ₀ , I ₁ to Positive-Going \overline{EX}	0	0		ns	EX goes HIGH before CP, Figure 8	
th	Hold Time, I ₀ , I ₁ to Positive-Going CP	0	0		ns	CP goes HIGH before EX, Figure 7	
ts	Set-Up Time, $\overline{D}_0 - \overline{D}_3$ to Positive-Going CP	25	16		ns		
th	Hold Time, $\overline{D}_0 - \overline{D}_3$ to Positive-Going CP	0	0		n§	Figures 7 and 8	
tPWL	EX Pulse Width	45	30		ns	EX Goes HIGH Before CP, Figure 8	

AC CHARACTERISTICS AND SET-UP REQUIREMENTS - CALL (PUSH) OPERATION:

SYMBOL	PARAMETERS		LIMITS			COMMENTS	
STWBUL	FARAMETERS	MIN	TYP	MAX	01113	COMMENTS	
^t PLH	Propagation Delay, Positive-Going CP to		25	40			
^t PHL	New Value of $\overline{O}_0 - \overline{O}_3$		75	130	115		
^t PLH	Propagation Delay, Negative-Going \overline{EX}		22	35		\overline{EO}_0 LOW, Set-Up Requirements $t_{s1}\overline{EX}$	
^t PHL	to Intermediate Value of $\overline{O}_0 - \overline{O}_3$		64	85	115	must be met	
^t PLH	Propagation Delay, Negative-Going EX		18	28			
^t PHL	to SE, SF		43	59	115		
ts	Set-Up Time, Negative-Going EX to I0, I1	30	20		ns		
^t h	Hold Time, Positive-Going CP to I ₀ , I ₁	0			ns		
	Set-Up Time, EX to Negative-Going CP which						
t _{s1} EX	Guarantees Intermediate Data on $\overline{O}_0 - \overline{O}_3$ while	65	45		ns		
	CP is LOW						
	Set-Up Time, EX to Negative-Going CP which						
ts2EX	Guarantees no Change in $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$ While CP	0			ns	x	
	is LOW						
	Hold Time, Positive-Going CP to	0					
thex	Positive-Going EX	0			ns		
ts	Set-Up Time, $\overline{D}_0 - \overline{D}_3$ to Positive-Going CP	30	20		ns		
th	Hold Time, Positive-Going CP to $\overline{D}_0 - \overline{D}_3$	0			ns		

 V_{CC} = 5.0 V, T_A = 25°C, C_L = 15 pF (Figure 9)

NOTES:

1. Condition which occurs when \overline{EX} goes LOW considerably before CP goes LOW ($t_{s1}\overline{EX}$ is met). 2. Condition which occurs when \overline{EX} goes LOW slightly before CP goes LOW ($t_{s2}\overline{EX}$ is met).

AC CHARACTERISTICS AND SET-UP REQUIREMENTS - RETURN (POP) OPERATION:

 V_{CC} = 5.0 V, T_{A} = 25°C, C_{L} = 15 pF (Figure 10)

SYMBOL	PARAMETERS		LIMITS			COMMENTS	
STWBUL	FARAMETERS	MIN	TYP	MAX	01113	COMMENTS	
^t PLH	Propagation Delay, Positive-Going CP to		25	40			
^t PHL	New Value of $\overline{O}_0 - \overline{O}_3$		103	130	ns	EOOLOW	
^t PLH	Propagation Delay, Negative-Going EX		23	40		\overline{EO}_0 LOW, Set-Up Requirements $t_{s1}\overline{EX}$	
^t PHL	to New Value of $\overline{O}_0 - \overline{O}_3$		101	130	ns	must be met	
^t PLH	Propagation Delay, Negative-Going EX		18	28			
^t PHL	to SE, SF		43	59	ns		
ts	Set-Up Time, Negative-Going \overline{EX} to I ₀ , I ₁	30	20		ns		
th	Hold Time, Positive-Going CP to 10, 11	0			ns		
	Set-Up Time, \overline{EX} to Negative-Going CP which						
t _{s1} EX	Guarantees the New Value on $\overline{O}_0 - \overline{O}_3$	65	45		ns		
	While CP is LOW						
	Set-Up Time, \overline{EX} to Negative-Going CP.						
t _{s2} EX	Either $t_{s2}\overline{EX}$ or $t_{s3}\overline{EX}$ must be met for	0			ns		
	Proper Operation						
	Set-Up Time, EX to Positive-Going CP.						
t _{s3} ĒX	Either $t_{s3}\overline{EX}$ or $t_{s2}\overline{EX}$ (Above) must be met	45	30		ns		
	for Proper Operation.						

Fig. 10 RETURN (POP) OPERATION

NOTES:

1. Condition which occurs when $\overline{\text{EX}}$ goes LOW considerably before CP goes LOW ($t_s \overline{\text{EX}}$ is met). 2. Condition which occurs when $\overline{\text{EX}}$ goes LOW slightly before or after CP goes LOW (either $t_{s2}\text{EX}$ or $t_{s3}\overline{\text{EX}}$ are met).

AC CHARACTERISTICS AND SET-UP REQUIREMENTS - FETCH OPERATION:

 V_{CC} = 5.0 V, T_{A} = 25°C, C_{L} = 15 pF

SYMPOL	PARAMETERS	LIMITS			UNITS	COMMENTS	
STWBUL		MIN	TYP	MAX	01113	COMMENTS	
^t PLH	Propagation Delay Positive-Going CP		22	30			
^t PHL	to Incremented Value of $\overline{O}_0 - \overline{O}_3$		59	80	ns	EOO, CI LOW, Figures 13 and 14	
tPZL	Turn-On Delay, from CP or EX		13	18		EDve LOW Eigurge 11, 12, 12 and 14	
^t PZH	Whichever goes LOW last to $X_0 - X_3$		12	17	ns	EOX LOW, Figures 11, 12, 13 and 14	
^t PLZ	Delay Going into HIGH		7	12			
^t PHZ	Impedance State		10	16	115		
ts	Set-Up Time, I ₀ , I ₁ to Negative-Going EX	30	20		ns		
th	Hold Time , I ₀ , I ₁ to CP or EX whichever goes HIGH first	0			ns	Figures 11, 12, 13 and 14	
	Set-Up Time, Negative Going EX	40	25				
^L S	to Positive-Going CP	40 25		ns .			
ts	Negative-Going CI to Positive-Going CP	30	20		ns	Fetch with Increment, Figures 13 and 14	
th	Positive-Going \overline{CI} to Negative-Going \overline{EX}	0				Iterative Fetch, Figures 11 and 12	

FAIRCHILD • 9406

9410 REGISTER STACK • 16×4 RAM WITH 3-STATE OUTPUT REGISTER FAIRCHILD TTL MACROLOGIC

DESCRIPTION - The 9410 is a register oriented high speed 64-bit Read/Write Memory organized as 16-words by 4-bits. An edge triggered 4-bit output register allows new input data to be written while previous data is held. 3-state outputs are provided for maximum versatility. The 9410 is fully compatible with all TTL families.

1

LOGIC SYMBOL

FUNCTIONAL DESCRIPTION

Write Operation - When the three control inputs: Write Enable (WE), Chip Select (CS), and Clock (CP), are LOW the information on the data inputs $(D_0 - D_3)$ is written into the memory location selected by the address inputs $(A_0 - A_3)$. If the input data changes while WE, CS, and CP are LOW, the contents of the selected memory location follows these changes, provided set-up time criteria are met.

Read Operation – Whenever CS is LOW and CP goes from LOW-to-HIGH, the contents of the memory location selected by the address inputs $(A_0 - A_3)$ is edge-triggered into the Output Register.

A 3-State Output Enable (EO) controls the output buffers. When EO is HIGH the four outputs ($Q_0 - Q_3$) are in a high impedance or OFF state; when EO is LOW, the outputs are determined by the state of the Output Register.

CVMPO1	PARAMETER			LIMITS		UNITS		
STINBUL			MIN	TYP	MAX		TEST CONDITIONS (Note I)	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input	HIGH Voltage
Vu	Input I OW Voltage	ХМ			0.7	v	Guaranteed Input	
۲L		xc			0.8	v	Guaranteed input	LOW Voltage
V _{CD}	Input Clamp Diode Volta	ge		0.9	-1.5	V	$V_{CC} = MIN$, $I_{IN} = -18 \text{ mA}$	
Vau		XM	2.4	3.4			I _{OH} = -2.0 mA	V MINI
∨он		xc	2.4	3.1			I _{OH} = -5.2 mA	VCC - WIIN
N-	Output LOW Voltage	XM & XC		0.25	0.4	ν.	V _{CC} = MIN, I _{OL}	= 8.0 mA
VOL		xc		0,35	0.5	v	V _{CC} = MIN, I _{OL}	= 16 mA
IOZH	Output Off HIGH Curren	t			100	μA	V _{CC} = MAX, V _{OL}	T = 2.4 V, V _E = 3 V
IOZL	Output Off LOW Current				-100	μA	V _{CC} = MAX, V _{OL}	τ = 0.5 V, V _E = 3 V
1	Input HIGH Current			1.0	40	μA	V _{CC} = MAX, V _{IN}	= 2.7 V
чн	input mon current	Input HIGH Current			1.0	mA	V _{CC} = MAX, V _{IN}	= 5.5 V
ΊL	Input LOW Current				-0.36	mA	V _{CC} = MAX, V _{IN}	= 0.4 V
los	Output Short Circuit Current		-30		-100	mA	V _{CC} = MAX, V _{OI}	JT = 0 V (Note 3)
Іссн	Supply Current			75	110	mA	V _{CC} = MAX, Inpu	its Open

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise noted)

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

2. Typical limits are at V_{CC} = 5.0 V, T_A = 25°C.

3. Not more than one output should be shorted at a time.

AC CHARACTERISTICS. TA = 25°C

			LIMITS			TEST CONDITIONS
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	
READ MO	DE					
tPZH	Enable Delay, Output Enable to Output		9	15	ns	Eiguro 1
^t PZL			9	15	ns	rigure i
tPHZ	Disable Time, Output Enable to Output		10	16	ns	C iaura 1
^t PLZ	Disable Time, Output Enable to Output		10	16	ns	Figure i
^t PLH	Propagation Delay, Clock to Output		14	20	ns	Figure 2
^t PHL	riopagation Delay, clock to output		14	20	ns	Figure 2
t _s AR	Set-up Time to Read from Address to Clock	38	25		ns	Figure 2
t _h AR	Hold Time to Read from Address to Clock	0			ns	Figure 2
WRITE MO	DDE					
tw	Write Enable, Chip Select, or Clock Pulse Width Bequired to Write (Note a)	21	12		ns	Figure 3
t _s AW	Set-up Time Address to Write Enable (Note b)	5			ns	Figure 3
thAW	Hold Time Address to Write Enable (Note b)	0	1		ns	Figure 3
t _s DW	Set-up Time Data to Write Enable (Note b)	16	9		ns	Figure 3
t _h DW	Hold Time Data to Write Enable	0			ns	Figure 3

NOTES:

a) Writing occurs when WE, CE and CP are LOW.
b) Assuming WE is utilized as Writing Strobe.

READ MODE AC PARAMETERS

PROPAGATION DELAY OUTPUT ENABLE TO DATA OUTPUTS

Other Conditions: $\overline{CS} = \overline{OE} = LOW$

Fig. 2 PROPAGATION DELAY CLOCK TO DATA OUTPUTS, AND SET-UP AND HOLD TIMES ADDRESS TO CLOCK TO READ

FUNCTIONAL DESCRIPTION

Write Operation – When the three control inputs: Write Enable (WE), Chip Select (CS), and Clock (CP), are LOW the information on the data inputs ($D_0 - D_3$) is written into the memory location selected by the address inputs ($A_0 - A_3$). If the input data changes while WE, CS, and CP are LOW, the contents of the selected memory location follows these changes, provided set-up time criteria are met.

Read Operation - Whenever CS is LOW and CP goes from LOW-to-HIGH, the contents of the memory location selected by the address inputs $(A_0 - A_3)$ is edge-triggered into the Output Register.

A 3-State Output Enable (EO) controls the output buffers. When EO is HIGH the four outputs ($Q_0 - Q_3$) are in a high impedance or OFF state; when EO is LOW, the outputs are determined by the state of the Output Register.

				LIMITS		UNITS	TEST CONDITIONS (Note 1)	
STIVIBUL	PANAMETEN		MIN	TYP	MAX			
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input	HIGH Voltage
		XM			0.7	v	Current and Immut	
VIL		xc			0.8	v	Guaranteed input	LOW Voltage
VCD	Input Clamp Diode Voltag	je		-0.9	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA	
		ХМ	2.4	3.4			I _{OH} = -2.0 mA	Mara - MINI
⊻он	Output HIGH Voltage	xc	2.4	3.1			IOH = -5.2 mA	VCC - WIN
N/ -	Output I OW Maltage	XM & XC		0.25	0.4	V	V _{CC} = MIN, I _{OL}	= 8.0 mA
VOL Output LOW Von		xc		0.35	0.5	V	V _{CC} = MIN, I _{OL}	= 16 mA
IOZH	Output Off HIGH Curren	t			100	μA	V _{CC} = MAX, V _{OUT} = 2.4 V, V _E = 3	
IOZL	Output Off LOW Current				-100	μA	V _{CC} = MAX, V _{OI}	JT = 0.5 V, VE = 3 V
1	Input HIGH Current			1.0	40	μA	V _{CC} = MAX, V _{IN}	= 2.7 V
чн	input mon current	Input HIGH Current			1.0	mA	V _{CC} = MAX, V _{IN}	I = 5.5 V
ΊL	Input LOW Current				-0.36	mA	V _{CC} = MAX, V _{IN}	i = 0.4 V
los	Output Short Circuit Current		-30		-100	mA	V _{CC} = MAX, V _O	UT = 0 V (Note 3)
Іссн	Supply Current			75	110	mA	V _{CC} = MAX, Inp	uts Open

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise noted)

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

2. Typical limits are at V_{CC} = 5.0 V, T_A = 25°C.

3. Not more than one output should be shorted at a time.

9423

FIRST-IN FIRST-OUT (FIFO) BUFFER MEMORY

FAIRCHILD I³L[™]

DESCRIPTION – The 9423 is an expandable fall-through type high-speed First-In First-Out (FIFO) Buffer Memory optimized for high speed disc or tape controllers and communication buffer applications. It is organized as 64 words by four bits and may be expanded to any number of words or any number of bits (in multiples of four). Data may be entered or extracted asynchronously in serial or parallel, allowing economical implementation of buffer memories.

The 9423 has 3-state outputs which provide added versatility and is fully compatible with all TTL families.

- SERIAL OR PARALLEL INPUT
- SERIAL OR PARALLEL OUTPUT
- EXPANDABLE WITHOUT EXTERNAL LOGIC
- 3-STATE OUTPUTS
- FULLY COMPATIBLE WITH ALL TTL FAMILIES
- SLIM 24-PIN PACKAGE

PIN	DECODIDITION	LOADING	G (Note a)				
NAME	DESCRIPTION	HIGH LOW		CONNICIALS			
$D_0 - D_3$	Parallel Data Inputs	1.0 U.L.	0.23 U.L.				
DS	Serial Data Input	1.0 U.L.	0.23 U.L.				
PĽ	Parallel Load Input	1.0 U.L.	0.23 U.L.	HIGH on PL enables D _O - D ₃ . Not edge triggered. Ones catching.			
CPS1	Serial Input Clock	1.0 U.L.	0.23 U.L.	Edge triggered. Activates on falling edge.			
IES	Serial Input Enable	1.0 U.L.	0.23 U.L.	Enables serial and parallel input when LOW.			
TTS	Transfer to Stack Input	1.0 U.L.	0.23 U.L.	A LOW on this pin initiates fall through.			
ŌĒŠ	Serial Output Enable Input	1.0 U.L.	0.46 U.L.	Enables serial and parallel output when LOW.			
TOS	Transfer Out Serial Input	1.0 U.L.	0.23 U.L.	A LOW on this pin enables a word to be transferred			
				from the stack to the output register. (TOP must be HIGH also for the transfer to occur). Not edge triggered.			
тор	Transfer Out Parallel Input	1.0 U.L.	0.23 U.L.	A HIGH on this pin enables a word to be transferred from the stack to the output register. (TOS must be LOW for the transfer to occur). Not edge triggered.			
MR	Master Reset	2.0 U.L.	0.46 U.L.	Active LOW.			
EO	Output Enable	1.0 U.L.	0.23 U.L.	Active LOW.			
CPSO	Serial Output Clock Input	1.0 U.L.	0.23 U.L.	Edge triggered. Activates on falling edge.			
$Q_0 - Q_3$	Parallel Data Outputs	130 U.L.	10 U.L.	(Note b)			
QS	Serial Data Output	10 U.L.	10 U.L.	(Note b)			
ĪRĒ	Input Register Full Output	10 U.L.	5 U.L.	LOW when input register is full (Note b).			
ORE	Output Register Empty Output	10 U.L.	5 U.L.	HIGH when output register contains valid data.			

NOTE: a. 1 Unit Load (U.L.) = 40 μ A HIGH, 1.6 mA LOW.

b. Output fan-out with $V_{\mbox{OL}} \leqslant 0.5$ V.

ABSOLUTE MAXIMUM RATINGS (above which the useful life may be impaired.)

Storage Temperature	-65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
V _{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
*Input Voltage (dc)	-0.5 V to +5.5 V
*Input Current (dc)	-12 mA to +5.0 mA
*Voltage Applied to Outputs (Output HIGH)	–0.5 V to +5.5 V
Output Current (dc) (Output LOW)	+20 mA

*Either input voltage or input current limit is sufficient to protect the input.

**Output Current Limit Required.

GUARANTEED OPERATING RANGES

	su	IPPLY VOLTAGE (V _C	AMBIENT TEMPERATURE (TA)	
	MIN	ТҮР	MAX	(Note 4)
9423XC	4.75 V	5.0 V	5.25 V	0°C to +75°C
9423XM	4.50 V	5.0 V	5.50 V	–55°C to +125°C

X = package type; F for Flatpak, D for Ceramic DIP, P for Plastic DIP.See Packaging Information Section for packages available on this product.

FUNCTIONAL DESCRIPTION - As shown in the block diagram the 9423 consists of three sections:

- 1. An Input Register with parallel and serial data inputs as well as control inputs and outputs for input handshaking and expansion.
- 2. A 4-bit wide, 62-word deep fall-through stack with self-contained control logic.
- 3. An Output Register with parallel and serial data outputs as well as control inputs and outputs for output handshaking and expansion.

Since these three sections operate asynchronously and almost independently, they will be described separately below:

Input Register (Data Entry):

The Input Register can receive data in either bit-serial or in 4-bit parallel form. It stores this data until it is sent to the fall-through stack and generates the necessary status and control signals.

Figure 1 is a conceptual logic diagram of the input section. As described later, this 5-bit register is initialized by setting the F3 flip-flop and resetting the other flip-flops. The Q-output of the last flip-flop (FC) is brought out as the "Input Register Full" output (IRF). After initialization this output is HIGH.

Parallel Entry – A HIGH on the PL input loads the D_0 – D_3 inputs into the F_0 – F_3 flip-flops and sets the FC flip-flop. This forces the IRF output LOW indicating that the input register is full. During parallel entry, the CPSI input must be LOW.

Serial Entry - Data on the D_S input is serially entered into the F_3 , F_2 , F_1 , F_0 , FC shift register on each HIGH-to-LOW transition of the CPSI clock input, provided IES is LOW. During serial entry PL input should be LOW.

After the fourth clock transition, the four data bits are located in the four flip-flops $F_0 - F_3$. The FC flip-flop is set, forcing the IRF output LOW and internally inhibiting CPSI clock pulsed from effecting the register. *Figure 2* illustrates the final positions in a 9423 resulting from a 256-bit serial bit train. B_0 is the first bit, B_{255} the last bit.

Transfer to the Stack - The outputs of Flip-Flops F_0 - F_3 feed the stack. A LOW level on the TTS input initiates a "fall-through" action. If the top location of the stack is empty, data is loaded into the stack and the input register is re-initialized. Note that this initialization is postponed until PL is LOW. Thus, automatic FIFO action is achieved by connecting the IRF output to the TTS input.

Fig. 2 FINAL POSITIONS IN A 9423 RESULTING FROM A 256-BIT SERIAL TRAIN An RS Flip-Flop (the Request Initialization Flip-Flop shown in *Figure 10*) in the control section records the fact that data has been transferred to the stack. This prevents multiple entry of the same word into the stack despite the fact the \overline{IRF} and \overline{TTS} may still be LOW. The Request Initialization Flip-Flop is not cleared until PL goes LOW. Once in the stack, data falls through the stack automatically, pausing only when it is necessary to wait for an empty next location. In the 9423, as in most modern FIFO designs, the \overline{IRF} input only initializes the stack control section and does not clear the data.

Output Register (Data Extraction) \doteq The Output Register receives 4-bit data words from the bottom stack location, stores it and outputs data on a 3-state 4-bit parallel data bus or on a 3-state serial data bus. The output section generates and receives the necessary status and control signals. *Figure 3* is a conceptual logic diagram of the output section.

Fig. 3 CONCEPTUAL OUTPUT SECTION

Parallel Data Extraction – When the FIFO is empty after a LOW pulse is applied to \overline{MR} , the Output Register Empty (\overline{ORE}) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the Output Register provided the Transfer Out Parallel Input (TOP) is HIGH. As a result of the data transfer \overline{ORE} goes HIGH, indicating valid data on the data outputs (provided the 3-state buffer is enabled). TOP can now be used to clock out the next word. When TOP goes LOW, \overline{ORE} will go LOW indicating that the output data has been extracted, but the data itself remains on the output bus until a HIGH level at TOP permits the transfer of the next word (if available) into the Output Register. During parallel data extraction \overline{CPSO} should be LOW. \overline{TOS} should be grounded for single slice operation or connected to the appropriate \overline{ORE} for expanded operation (see Expansion section).

TOP is not edge triggered. Therefore, if TOP goes HIGH before data is available from the stack, but data does become available before TOP goes LOW again, that data will be transferred into the Output Register. However, internal control circuitry prevents the same data from being transferred twice. If TOP goes HIGH and returns to LOW before data is available from the stack, ORE remains LOW indicating that there is no valid data at the outputs. Serial Data Extraction – When the FIFO is empty after a LOW pulse is applied to \overline{MR} , the Output Register Empty (\overline{ORE}) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the Output Register provided \overline{TOS} is LOW and TOP is HIGH. As a result of the data transfer \overline{ORE} goes HIGH indicating valid data in the register. The 3-state Serial Data Output (O_S) is automatically enabled and puts the first data bit on the output bus. Data is serially shifted out on the HIGH-to-LOW transition of \overline{CPSO} . To prevent false shifting, \overline{OPSO} should be LOW when the new word is being loaded into the Output Register. The fourth transition empties the shift register, forces \overline{ORE} output LOW and disables the serial output, O_S (refer to *Figure 3*). For serial operation the \overline{ORE} output may be tied to the \overline{TOS} input, requesting a new word from the stack as soon as the previous one has been shifted out.

EXPANSION -

Vertical Expansion - The 9423 may be vertically expanded to store more words without external parts. The interconnections necessary to form a 190-word by 4-bit FIFO are shown in *Figure 4*. Using the same technique, any FIFO of (63 n+1) words by four bits can be constructed, where n is the number of devices. Note that expansion does not sacrifice any of the 9423's flexibility for serial/parallel input and output. For other expansion schemes, refer to the applications section of the Macrologic/Bipolar Microprocessor data book.

Fig. 4 A VERTICAL EXPANSION SCHEME

Horizontal Expansion – The 9423 can also be horizontally expanded to store long words (in multiples of four bits) without external logic. The interconnections necessary to form a 64-word by 12-bit FIFO are shown in *Figure 5.* Using the same technique, any FIFO of 64 words by 4n bits can be constructed, where n is the number of devices. The IRF output of the right most device (most significant device) is connected to the TTS inputs of all devices. Similarly, the ORE output of the most significant device is connected to the TOS inputs of all devices. As in the vertical expansion scheme, horizontal expansion does not sacrifice any of the 9423's flexibility for serial/parallel input and output.

It should be noted that this form of horizontal expansion extracts a penalty in speed. An expansion scheme that provides higher speed but requires additional components is shown in the Applications section of the Macrologic/Bipolar Microprocessor data book.

Horizontal and Vertical Expansion – The 9423 can be expanded in both the horizontal and vertical directions without any external parts and without sacrificing any of its FIFO's flexibility for serial/parallel input and output. The interconnections necessary to form a 127-word by 16-bit FIFO are shown in *Figure 6*. Using the same technique, any FIFO of (63m + 1) words by (4n) bits can be constructed, where m is the number of devices in a column and n is the number of devices in a row. *Figures 7* and 8 show the timing diagrams for serial data entry and extraction for the 127-word by 16-bit FIFO shown in *Figure 6*.

7

Interlocking Circuitry – Most conventional FIFO designs provide status signals analogous to IRF and ORE. However, when these devices are operated in arrays, variations in unit to unit operating speed require external gating to assure all devices have completed an operation. The 9423 incorporates simple but effective "master/slave" interlocking circuitry to eliminate the need for external gating.

In the 9423 array of *Figure 6* devices 1 and 5 are defined as "row masters" and the other devices are slaves to the master in their row. No slave in a given row will initialize its Input Register until it has received LOW on its $\overline{\text{IES}}$ input from a row master or a slave of higher priority.

In a similar fashion, the \overline{ORE} outputs of slaves will not go HIGH until their \overline{OES} inputs have gone HIGH. This interlocking scheme ensures that new input data may be accepted by the array when the \overline{IRF} output of the final slave in that row goes HIGH and that output data for the array may be extracted when the \overline{ORE} of the final slave in the output row goes HIGH.

The row master is established by connecting its $\overline{\text{IES}}$ input to ground while a slave receives its $\overline{\text{IES}}$ input from the $\overline{\text{IRF}}$ output of the next higher priority device. When an array of 9423 FIFOs is initialized with a LOW on the $\overline{\text{MR}}$ inputs of all devices, the $\overline{\text{IRF}}$ outputs of all devices will be HIGH. Thus, only the row master receives a LOW on the $\overline{\text{IRS}}$ input during initialization. *Figure 10* is a conceptual logic diagram of the internal circuitry which determines master/slave operation. Whenever $\overline{\text{MR}}$ and $\overline{\text{IES}}$ are LOW, the Master Latch is set. Whenever $\overline{\text{TTS}}$ goes LOW the Request Initialization Flip-Flop will be set. If the Master Latch is HIGH, the Input Register will be immediately initialized and the Request Initialization Flip-Flop reset. If the Master Latch is reset, the Input Register is not initialized until $\overline{\text{IES}}$ goes LOW. In array operation, activating the $\overline{\text{TTS}}$ initiates a ripple input register initialization from the row master to the last slave.

A similar operation takes place for the output register. Either a $\overline{\text{TOS}}$ or TOP input initiates a load-from-stack operation and sets the ORE Request Flip-Flop. If the Master Latch is set, the last Output Register Flip-Flop is set and $\overline{\text{ORE}}$ goes HIGH. If the Master Latch is reset, the $\overline{\text{ORE}}$ output will be LOW until an $\overline{\text{OES}}$ input is received.

7

CVMPOL	PARAMETER		LIMITS						
STINDUL			MIN	TYP	MAX	UNITS	TEST CO	NDITIONS	
v _{IH}	Input HIGH Voltage		2.0			v	Guaranteed Input HIGH Voltage		
V.,		ХМ			0.7	V	Guaranteed lacut		
۹IL		xc			0.8	v	Guaranteeu înput	LOW Voltage	
V _{CD}	Input Clamp Diode Voltage			-0.9	-1.5	V	V _{CC} = MIN, I _{IN} =	—18 mA	
Vau	Output HIGH Voltage,	XM	2.4	3.4		V	Mara MINI I.	- 400	
∙он	ORE, IRF	хс	2.4	3.4		. v	$VCC = WIN, IOH = -400 \mu A$		
Varia	Output HIGH Voltage,	ХМ	2.4	3.4			I _{OH} = -2.0 mA	V _{CC} = MIN	
∙он	Q ₀ –Q ₃ , Q _S	хс	2.4	3.1		ľ	^I OH = —5.7 mA		
N/a.	Output LOW Voltage,	ХМ		0.25	0.4	V	I _{OL} = 8.0 mA		
VOL	Q ₀ -Q ₃ , Q _S XC 0.35 0.	0.5	V	I _{OL} = 16 mA	VCC = MIN				
V		XM		0.25	0.4		I _{OL} = 4.0 mA		
VOL	Output LOW Voltage, ORE, IRF	хс		0.35	0.5] `	1 _{OL} = 8.0 mA		
lozн	Output Off HIGH Current Q0-Q3	, Q _S			100	μA	V _{CC} = MAX, V _{OL}	T = 2.4 V, VE = 2.0 V	
IOZL	Output Off LOW Current Q0-Q3,	QS			-100	μA	VCC = MAX, VOL	JT = 0.5 V, VE = 2.0 V	
1				1.0	40	μA	V _{CC} = MAX, V _{IN}	= 2.7 V	
чн					1.0	mA	V _{CC} = MAX, V _{IN}	= 5.5 V	
	Input LOW Current, all except OE	S, MR			-0.36			0.4.14	
'IL	Input LOW Current, OES, MR		[-0.72		$V_{CC} = MAX, V_{IN} = 0.4 V$		
loc	Output Short Circuit Current		20		120		V MAX V-		
.02	$Q_0-Q_3, Q_S, \overline{ORE}, \overline{OES}$		-30		-130	MA	$v_{CC} = MAX, v_{OUT} = 0, (Note 5)$		
100	Supply Current	XM		150		mΑ		its Open	
CC	Supply Current	xc		150] '''^	VCC - WAX, Inputs Open		

NOTES:

 Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
 The specified LIMITS represents the "worst case" value for the parameters. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

operating ranges.
3. Typical limits are at V_{CC} = 5.0 V, T_A = +25°C, and MAX loading.
4. The Temperature Ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute. For military range an additional requirement of a two minute warm-up. Typical thermal resistance values of the package at maximum temperature are: θ_{JA} (Junction to Ambient) (at 400 fpm air flow) = 50° C/Watt, Ceramic DIP; 65° C/Watt, Plastic DIP; NA, Flatpak. θ_{JA} (Junction to Case) = 25° C/Watt, Ceramic DIP; 25° C/Watt, Plastic DIP; 10° C/Watt, Flatpak.
6. Junction to Case) = 25° C/Watt, Ceramic DIP; 25° C/Watt, Plastic DIP; 10° C/Watt, Flatpak.
5. Duration of short circuit should not exceed one second, not more than one output should be shorted at a time.

AC CHARACTERISTICS: $V_{CC} = 5.0 V$, $C_{I} = 15 pF$, $T_{A} = 25^{\circ}C$ (Note 3)

CVMDOL	DADAMETER	LIMITS					
STIMBUL	PARAMETER		TYP	MAX	UNITS	COMMENTS	
^t PHL	Propagation Delay, Negative-Going CP to IRF Output		27		ns	Stack not Full, PL LOW,	
^t PLH	Propagation Delay, Negative-Going TTS to IRF		62		ns	Figures 11 and 12	
tPLH,	Propagation Delay, Negative-Going		39		ns		
^t PHL	CPSO to Q _S Output		26		ns	Figures 13 and 14	
^t PLH,	Propagation Delay, Positive-Going		73		ns	EO, CPSO LOW,	
^t PHL	TOP to Outputs Q ₀ Q ₃		61		ns	Figure 15	
^t PHL	Propagation Delay, Negative-Going CPSO to ORE		27		ns	OES LOW, TOP HIGH, Figures 13 and 14	
^t PHL	Propagation Delay, Negative-Going TOP to ORE		40		ns	Parallel Output, EO, CPSO LOW,	
^t PLH	Propagation Delay, Positive-Going TOP to ORE		70			Figure 15	
[†] DFT	Fall Through Time		3,6		μs	TTS Connected to IRF TOS Connected to ORE IES, OES, EO, CPSO LOW, TOP HIGH, Figure 16	
^t PLH	Propagation Delay, Negative-Going TOS to Positive-Going ORE		70		ns	Data in stack, TOP HIGH, Figures 13 and 14	

CVMDOI	DADAMETER		LIMITS				
STNIBUL	PARAMETER	MIN	TYP	MAX	UNITS	COMMENTS	
^t PHL	Propagation Delay, Positive-Going PL to Negative-Going IRF		34		ns	Stack not Full, Figures 17 and 18	
^t PLH	Propagation Delay, Negative-Going PL to Positive-Going IRF		38		ns		
^t PLH	Propagation Delay, Positive-Going OES to ORE		31		ns		
^t PLH	Propagation Delay, Positive-Going IES to Positive-Going IRF		28		ns	Figure 18	
^t PZL, ^t PZH	$\frac{\text{Propagation Delay,}}{\text{OE to } \text{Q}_0, \text{Q}_1, \text{Q}_2, \text{Q}_3}$		12		ns	Propagation Delay Out of the High Impedance State	
^t PHZ, ^t PLZ	$\frac{\text{Propagation Delay,}}{\text{OE to } Q_0, Q_1, Q_2, Q_3}$		14		ns	Propagation Delay Into the High Impedance State	
^t PZL, ^t PZH	Propagation Delay, Negative-Going $\overline{\text{OES}}$ to $\Omega_{\widehat{S}}$		12		ns	Propagation Delay Out of the High Impedance State	
^t PLZ, ^t PHZ	Propagation Delay, Negative-Going $\overline{\text{OES}}$ to \textbf{Q}_{S}		14		ns	Propagation Delay Into the High Impedance State	
^t AP	Parallel Appearance Time, ORE to Q _O - Q ₃		12		ns	Time elapsed between ORE going HIGH and valid data	
^t AS	Serial Appearance Time, ORE to Q _S		14		ns	appearing at output. Negative number indicates data available before ORE goes HIGH.	

AC SET-UP REQUIREMENTS: V_{CC} = 5.0 V, C_L = 15 pF, T_A = 25°C

CVMDOL	DADAMETER	. 1	LIMITS				
STIVIBUL		MIN	TYP	MAX	UNITS	COMMENTS	
^t PWH	CPSI Pulse Width (HIGH)		10		ns	Stack not full, PL LOW,	
^t PWL	CPSI Pulse Width (LOW)		15		ns	Figures 11 and 12	
^t PWH	PL Pulse Width (HIGH)		10		ns	Stack not full, Figures 17 and 18	
^t PWL	TTS Pulse Width (LOW) Serial or Parallel Mode		23		ns	Stack not full, Figures 11, 12, 17, 18	
^t PWL	MR Pulse Width (LOW)		22		ns	Figure 16	
^t PWH	TOP Pulse Width (HIGH)		40		ns	CPSO LOW, data available in stack,	
^t PWL	TOP Pulse Width (LOW)		24		ns	Figure 15	
^t PWH	CPSO Pulse Width (HIGH)		10		ns	TOP HIGH, data in stack,	
^t PWL	CPSO Pulse Width (LOW)		16		ns	Figures 13 and 14	
ts	Set-up Time, D _S to Negative CPSI		6		ns	PL LOW, Figures 11 and 12	
t _h	Hold Time, D _S to CPSI		3		ns	PL LOW, Figures 11 and 12	
t _s	Set-up Time, TTS to IRF Serial or Parallel Mode		-22		ns	Figures 11, 12, 17, 18	
t _s	Set-up Time Negative-Going ORE to Negative-Going TOS		0		ns	TOP HIGH, Figures 13 and 14	
t _{rec}	Recovery Time MR to any Input		23		ns	Figure 16	
ts	Set-up Time, Negative-Going IES to CPSI		17		ns	Figure 12	
ts	Set-up Time, Negative-Going TTS to CPSI		85		ns	Figure 12	
t _s	Set-up Time, Parallel Inputs to PL		-16		ns	Length of time parallel inputs must be applied prior to rising edge of PL	
^t h	Hold Time, Parallel Inputs to PL		10		ns	Length of time parallel inputs must reamin applied after falling edge of PL.	

7

Conditions: stack not full, device initialized (Note 1) with IES HIGH

NOTES:

1. Initialization requires a master reset to occur after power has been applied.

TTS normally connected to IRF.
If stack is full, IRF will stay LOW.

INTRODUCTION
NUMERICAL INDEX OF DEVICES 2
SELECTION GUIDES AND CROSS REFERENCE 3
GENERAL CHARACTERISTICS 4
RAMs 5
PROMs 6
PRODUCT INFORMATION/DATA SHEETS 7
ORDER AND PACKAGE INFORMATION 8
FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS

CHAPTER 8

- Package Style
- Temperature Ranges
- Examples
- Device Identification/Marking Package Information
- Package Information
- Hi-Rel Processing
- Hi-Rel Processing Flows
- Package Outlines

ORDER AND PACKAGE INFORMATION

Fairchild bipolar memories may be ordered by using a simplified purchasing code where the package style and temperature range is defined as follows:

PACKAGE STYLE

In order to accommodate varying die sizes and numbers of pins (16, 18, 24, etc.), a number of different package forms are required. The Package Information list on the following pages indicates the specific package codes currently used for each device type. The detailed package outline corresponding to each package code is shown at the end of this section.

TEMPERATURE RANGES

Two basic temperature grades are in common use: C = Commercial-Industrial, 0°C to +75°C; M = Military, -55°C to +125°C. Exact values and conditions are indicated on the data sheets.

EXAMPLES:

(a) 93415FM

This number code indicated a 93415 1024 x 1 RAM in a flatpak with military temperature rating.

(b) 93421DC

This number code indicates a 93421 256 x 1 RAM in a ceramic dual in-line package with commercial temperature rating.

(c) 93436PC

This number code indicates a 93436 512 x 4 PROM in a plastic package with a commercial temperature rating.

DEVICE IDENTIFICATION/MARKING

All Fairchild standard catalog bipolar memories will be marked as follows:

PACKAGE INFORMATION

DEVICE	Military (M) −55°C to +125°C		DEVICE	Commercial (C)/Industrial 0°C to +75°C		
	Ceramic DIP (D)	Flatpak (F)	DEVICE	Ceramic DIP (D)	Plastic DIP (P)	Flatpak (F)
F10145A F10405 F10410 F10411 F10414 F10415 F10415A F10415A F100416 F100416 F100422 F100422 F100422 F100470 F100470	- 6D - - 6D - - - - - - - - - - -	- 3L - 3L - - - - - - -	F10145A F10405 F10410 F10411 F10414 F10414 F10415 F10415A F10415A F100415 F10416 F100416 F100422 F100422 F100422 F100470 F100470	6B, 4J 6D 6D 6D 6D 6D 6D 6D 6D 6D 6D 6P 6P 7T, 8F 7T, 8F	9B - 9B - - - - - 9U 9U - - -	4L 3L 3L 3L 3L, 4Q 3L 3L, 4Q 3L 3L, 4Q 3L 3L 4P 4Q 2F 2F, 4Q
93410 93410A 93411A 93411A 93L412 93L415 93L45 93415A 93415 93415A 93417 93L420 93L420 93L421 93L420 93L421 93L422 93L425 93L427	6D - 6D - 8T 8T 6D 6D - 6D 6D 6D - 8T 8T 6D 6D - 8T 8T 6D 6D 7L 6D 7L 8F 7L 7L 8F 8F - 7T 7T 7T 7T 7T	3L - 3L - 4P 3L - 3L - 3L 3L - 3L 3L - 3L 3L - - - -	93410 93411 93411A 93412 93412 93415 93415 93415 93415 93415 93417 93419 93421 93421 93421 93421 93421 93422 93422 93422 93425 93425 93425 93425 93425 93427 93436 93438 93436 93450 93451 93452 93453 93453 93458 93459 93453 93458 93459 93453	6D 6D 6D, 6S, 8T 6S, 8T 6D 6D 6D 7Y, 8S 6D 6D 6D, 8T 6D, 8T 6D, 8T 6D, 8T 6D, 6D 6D 7L 6D, 7L 8F 8S 8S, 8F 7T, 8F 7T, 8F 7T, 8F 7T, 8F 6E 6E	98 98 98 98 98 98 98 98 98 98 98 98 98 9	3L 3L 3L 3L 4P 3L 3L 3L 2E 3L 3L 3L 4P 4D 3L 4P 4P 2E 2D 2D 2D 2D 4B 4B
9403 9406 9410 9423	6Y 6Y 8F 6Y	4M 4M - 4M	9403 9406 9410 9423	6Y 6Y 8F 6Y	9U 9U 9M 9U	4M 4M - 4M

HI-REL PROCESSING

Fairchild's Bipolar Memory/ECL Products Division offers HI-REL processing for both military and commercial customers. Fairchild's UNIQUE 38510 program provides military customers an opportunity to purchase state-of-the-art LSI memory circuits processed to the latest version of MIL-M-38510/MIL-STD-883. The UNIQUE 38510 program is available for processing to specific customer drawings or may be ordered directly from the QB or QC processing flow.

For commercial customers, the reliability of standard product can be improved by requiring burn-in on all devices with the QP process flow.

All HI-REL TTL RAMs and ROM/PROMs may be purchased in dual in-line and flatpak ceramic packages, with the exception of the 93419 which is only available in the dual in-line package.

In addition to the HI-REL processing flows shown, these additional HI-REL steps are available upon request:

- State-side assembly
- Radiography MTD 2012
- SEM Analysis
- PROM Programming (single or multiple pulse)
- Special lead form
- Read and record critical parameters before and after burn-in

8-6

8-7

18-Pin Flatpak 2D

NOTES: Pins are tin-plated alloy 42 or equivalent Cap is Al₂O₃ Base is BeO Package weight is 0.7 gram

28-Pin Flatpak 2E

NOTES:

Pins are tin-plated alloy 42 or kovar Cap and base are Al₂O₃ Package weight is 1.0 gram

8-10

16-Pin Ceramic Dual In-line 6B

WIDTH

NOTES:

Pins are tin - plated alloy 42 Cap and base are Al₂O₃ Pins are intended for insertion in hole rows on .400" (10.16) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board - drilling dimensions should equal your practice for .020" (0.508) diameter pin Package weight is 6.0 grams

24 - Pin Ceramic Dual In - line 7L

NOTES:

Pins are tin-plated alloy 42 Cap and base are Al₂O₃ Pins are intended for insertion in hole rows on .600" (15.24) centers They aer purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020" (0.508) diameter pin Package weight is 6.5 grams

18-Pin Ceramic Dual In-line 8F

NOTES:

Pins are tin-plated kovar Cap and base are Al₂O₃ Pins are intended for insertion in hole rows on .300'' (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board - drilling dimensions should equal your practice for .020'' (0.508) diameter pin Package weight is 3.0 grams

28-Pin Ceramic Dual In-line 8S

NOTES: Pins are tin-plated alloy 42 Cap and base are Al₂O₃ Pins are intended for insertion in hole rows on .600" (15.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion Broad-drilling dimensions should equal your practice for .020" (0.508) diameter pin Package weight is 7.5 grams

All dimensions in inches (bold) and millimeters (parentheses)

18-Pin Plastic Dual In-line 9M-2

8-18

All dimensions in inches (bold) and millimeters (parentheses)

CHAPTER 9

• Fairchild Field Sales Offices, Representatives and Distributors

*

Alabama

Hallmark Electronics 4900 Bradford Drive Huntsville, Alabama 35807 Tel: 205-837-8700 TWX: 810-726-2187

Hamilton/Avnet Electronics 4692 Commercial Drive Huntsville, Alabama 35805 Tel: 205-837-7210 Telex: None – use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

Arizona Hamilton/Avnet Electronics 505 S. Madison Drive Tempe, Arizona 85281 Tel: 602-275-7851 TWX: 910-951-1535

Kierulff Electronics 4134 East Wood Street Phoenix, Arizona 85040 Tel: 602-243-4101

Wyle Distribution Group 8155 North 24th Ave. Phoenix, Arizona 85021 Tel: 602-249-2232 TWX: 910-951-4282

California Avnet Electronics 350 McCormick Avenue Costa Mesa, California 92626 Tel: 714-754-6111 (Orange County) 213-558-2345 (Los Angeles) TW: 910-595-1928

Bell Industries Electronic Distributor Division 1161 N. Fair Oaks Avenue Sunnyvale, California 94086 Tel: 408-734-8570 TWX: 910-339-9378

Wyle Distribution Group 3000 Bowers Avenue Santa Clara, California 95051 Tel: 408-727-2500 TWX: 910-338-0541

Hamilton Electro Sales 3170 Pullman Avenue Costa Mesa, California 92636 Tel: 714-979-6864

Hamilton Electro Sales 10912 W. Washington Blvd. Culver City, California 90230 Tel: 213-558-2121 TWX: 910-340-6364

Hamilton/Avnet Electronics 1175 Bordeaux Drive Sunnyvale, California 94086 Tel: 408-743-3355 TWX: 910-379-6486

Hamilton/Avnet Electronics 4545, Viewridge Avenue San Diego, California 92123 Tel: 714-571-7527 Telex: HAMAVELEC SDG 69-5415

Anthem Electronics 1020 Stewart Drive P.O. Box 9085 Sunnyvale, California 94086 Tel: 408-738-1111

Anthem Electronics, Inc. 4040 Sorrento Valley Blvd. San Diego, California 92121 Tel: 714-279-5200

Anthem Electronics, Inc. 2661 Dow Avenue Tustin, California 92680 Tel: 714-730-8000

Wyle Electronics 124 Maryland Street El Segundo, California 90245 Tel: 213-322-8100 TWX: 910-348-7111

Wyle Distributor Group 17872 Cowan Avenue Irvine, California 92714 Tel: 714-641-1600 Telex: 610-595-1572

**Sertech Laboratories 2120 Main Street, Suite 190 Huntington Beach, California 92647 Tel: 714-960-1403

Franchised Distributors

Wyle Distribution Group 9525 Chesapeake San Diego, California 92123 Tel: 714-565-9171 TWX: 910-335-1590

Colorado Beli Industries 8155 West 48th Avenue Wheatridge, Colorado 80033 Tel: 303-424-1985 TWX: 910-938-0393

Arrow Electronics 2121 South Hudson Denver, Colorado 80222 Tel: 303-758-2100

Wyle Distribution Group 6777 E. 50th Avenue Commerce City, Colorado 80022 Tel: 303-287-9611 TWX: 910-936-0770

Hamilton/Avnet Electronics 8765 E. Orchard Rd., Suite 708 Englewood, Colorado 80111 Tel: 303-740-1000 TWX: 910-935-0787

Connecticut Arrow Electronics, Inc. 12 Beaumont Road Wallingford, Connecticut 06492 Tel: 203-265-7741 TWX: 203-265-7741

Hamilton/Avnet Electronics Commerce Drive, Commerce Park Danbury, Connecticut 06810 Tel: 203-797-2800 TWX: None — use 710-897-1405 (Regional Hq. in Mt. Laurel, N.J.)

Harvey Electronics 112 Main Street Norwalk, Connecticut 06851 Tel: 203-853-1515

Schweber Electronics Finance Drive Commerce Industrial Park Danbury, Connecticut 06810 Tel: 203-792-3500

Florida Arrow Electronics 1001 Northwest 62nd Street Suite 402 Ft. Lauderdale, Florida 33309 Tel: 305-776-7790

Arrow Electronics 115 Palm Bay Road N.W. Suite 10 Bldg. #200 Palm Bay, Florida 32905 Tel: 305-725-1408

Hallmark Electronics 1671 W. McNab Road Ft. Lauderdale, Florida 33309 Tel: 305-971-9280 TWX: 510-956-3092

Hallmark Electronics 7233 Lake Ellenor Drive Orlando, Florida 32809 Tel: 305-855-4020 TWX: 810-850-0183

Hamilton/Avnet Electronics 6800 N.W. 20th Avenue Ft. Lauderdale, Florida 33309 Tel: 305-971-2900 TWX: 510-954-9808

Hamilton/Avnet Electronics 3197 Tech Drive, North St. Petersburg, Florida 33702 Tel: 813-576-3930

Schweber Electronics 2830 North 28th Terrace Hollywood, Florida 33020 Tel: 305-927-0511 TWX: 510-954-0304

Georgia Arrow Electronics 2979 Pacific Drive Norcross, Georgia 30071 Tel: 404-449-8252 Telex: 810-766-0439

**This distributor carries Fairchild die products only.

United States and Canada

Hamilton/Avnet Electronics 6700 Interstate 85 Access Road, Suite 1E Norcross, Georgia 30071 Tel: 404-448-0800 Telex: None — use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

Illinois Hallmark Electronics, Inc. 1177 Industrial Drive Bensenville, Illinois 60106 Tel: 312-860-3800

Hamilton/Avnet Electronics 3901 N. 25th Avenue Schiller Park, Illinois 60176 Tel: 312-678-6310 TWX: 910-227-0060

Kierulff Electronics 1536 Landmeier Road Elk Grove Village, Illinois 60007 Tel: 312-640-0200 TWX: 910-227-3166

Schweber Electronics, Inc. 1275 Brummel Avenue Elk Grove Village, Illinois 60007 Tel: 312-593-2740 TWX: 910-222-3453

Semiconductor Specialists, Inc. (mailing address) O'Hare International Airport P.O. Box 66125 Chicago, Illinois 60666

(shipping address) 195 Spangler Avenue Elmhurst Industrial Park Elmhurst, Illinois 60126 Tel: 312-279-1000 TWX: 910-254-0169

Indiana Graham Electronics Supply, Inc. 133 S. Pennsylvania St. Indianapolis, Indiana 46204 Tel: 317-634-8486 TWX: 810-341-3481

Pioneer Indiana Electronics, Inc. 6408 Castle Place Drive Indianapolis, Indiana 46250 Tel: 317-849-7300 TWX: 810-260-1794

Kansas Hallmark Electronics, Inc. 11870 W. 91st Street Shawnee Mission, Kansas 66214 Tel: 913-888-4746

Hamilton/Avnet Electronics 9219 Guivira Road Overland Park, Kansas 66215 Tel: 913-888-8900 Telex: None – use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas)

Louisiana Sterling Electronics Corp. 4613 Fairfield Metairie, Louisiana 70002 Tel: 504-887-7610 Telex: STERLE LEC MRIE 58-328

Maryland Hallmark Electronics, Inc. 6655 Amberton Drive Baltimore, Maryland 21227 Tel: 301-796-9300

Hamilton/Avnet Electronics (mailing address) Friendship International Airport P.O. Box 8647 Baltimore, Maryland 21240

(shipping address) 7235 Standard Drive Hanover, Maryland 21076 Tel: 301-796-5000 TWX: 710-862-1861 Telex: HAMAVLECA HNVE 87-968

Pioneer Washington Electronics, Inc. 9100 Gaither Road Gaithersburg, Maryland 20760 Tel: 301-948-0710 TWX: 710-828-9784

Schweber Electronics 9218 Gaither Road Gaithersburg, Maryland 20760 Tel: 301-840-5900 TWX: 710-828-0536

Massachusetts

Arrow Electronics, Inc. 96 D Commerce Way Woburn, Massachusetts 01801 Tel: 617-933-8130 TWX: 710-393-6770

Arrow Electronics 85 Wells Avenue Newton Centre, Massachusetts 02159 Tel: 617-964-4000

Gerber Electronics 128 Carnegie Row Norwood, Massachusetts 02026 Tel: 617-329-2400

Hamilton/Avnet Electronics 50 Tower.Office Park Woburn, Massachusetts 01801 Tel: 617-273-7500 TWX: 710-393-0382

Harvey Electronics 44 Hartwell Avenue Lexington, Massachusetts 02173 Tel: 617-861-9200 TWX: 710-326-6617

Schweber Electronics 25 Wiggins Avenue Bedford, Massachusetts 01730 Tel: 617-275-5100

**Sertech Laboratories 1 Peabody Street Salem, Massachusetts 01970 Tel: 617-745-2450

Michigan Hamilton/Avnet Electronics 32487 Schoolcraft Livonia, Michigan 48150 Tel: 313-522-4700 TWX: 810-242-8775

Pioneer/Detroit 13485 Stamford Livonia, Michigan 48150 Tel: 313-525-1800

R-M Electronics 4310 Roger B. Chaffee Wyoming, Michigan 49508 Tel: 616-531-9300

Schweber Electronics 33540-Schoolcraft Livonia, Michigan 48150 Tel: 313-525-8100

Arrow Electronics 3921 Varsity Drive Ann Arbor, Michigan 48104 Tel: 313-971-8220

Minnesota Arrow Electronics 5230 West 73rd Street Edina, Minnesota 55435 Tel: 612-830-1800

Hamilton/Avnet Electronics 7449 Cahill Road Edina, Minnesota 55435 Tel: 612-941-3801 TWX: None — use 910-227-0060 (Regional Hg. in Chicago, III.)

Schweber Electronics 7402 Washington Avenue S. Eden Prairie, Minnesota 55344 Tel: 612-941-5280

Missouri Hallmark Electronics, Inc. 13789 Rider Trail Earth City, Missouri 63045 Tel: 314-291-5350

Hamilton/Avnet Electronics 13743 Shoreline Ct., East Earth City, Missouri 63045 Tel: 314-344-1200 TWX: 910-762-0684

*Minority Distributor

*** his distributor carries Fairchild die products only.

Franchised Distributors

New Jersey Hallmark Electronics. Inc Springdale Business Center 2091 Springdale Road Cherry Hill. New Jersey 08003 Tel 609-424-0880

Hamilton/Avnet Electronics 10 Industrial Road Fairfield, New Jersey 07006 Tel: 201-575-3390 TWX: 710-994-5787

Hamilton/Avnet Electronics #1 Keystone Avenue Cherry Hill, New Jersey 08003 Tel: 609-424-0100 TWX: 710-940-0262

Schweber Electronics 18 Madison Road Fairfield, New Jersey 07006 Tel: 201-227-7880 TWX: 710-480-4733

Sterling Electronics 774 Pfeiffer Blvd. Perth Amboy, N.J. 08861 Tel; 201-442-8000 Telex: 138-679

Wilshire Electronics 102 Gaither Drive Mt Laurel, N.J. 08057 Tel: 215-627-1920

Wilshire Electronics 1111 Paulison Avenue Clifton, N.J. 07015 Tel: 201-365-2600 TWX: 710-989-7052

New Mexico Bell Industries 11728 Linn Avenue N.E. Albuquerque, New Mexico 87123 Tel: 505-292-2700 TWX: 910-989-0625

Hamilton/Avnet Electronics 2450 Byalor Drive S.E. Albuquerque, New Mexico 87119 Tel: 505-765-1500 TWX: None — use 910-379-6486 (Regional Hq. in Mt. View, Ca.)

New York Arrow Electronics 900 Broadhollow Road Farmingdale, New York 11735 Tel: 516-694-6800

Arrow Electronics 20 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-1000

*Cadence Electronics 40-17 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-6722

Arrow Electronics P.O. Box 370 7705 Maltlage Drive Liverpool, New York 13088 Tel: 315-652-1000 TWX: 710-545-0230

Components Plus, Inc. 40 Oser Avenue Hauppauge, L.I., New York 11787 Tel: 516-231-9200 TWX: 510-227-9869

Hamilton/Avnet Electronics 167 Clay Road Rochester, New York 14623 Tel: 716-442-7820 TWX: None — use 710-332-1201 (Regional Hq. in Burlington, Ma.)

Hamilton/Avnet Electronics 16 Corporate Circle E. Syracuse, New York 13057 Tel: 315-437-2642 TWX: 710-541-0959

Hamilton/Avnet Electronics 5 Hub Drive Melville, New York 11746 Tel: 516-454-6000 TWX: 510-224-6166

United States and Canada

Ş

Harvey Electronics 'mailing address: PO Box 1208 Binghampton. New York 13902 'shipping address: 1911 Vestal Parkway East Vestal. New York 13850 Tel 607-748-8211

Rochester Radio Supply Co. Inc 140 W Main Street (PO Box 1971) Rochester, New York 14603 Tel: 716-454-7800

Schweber Electronics Jericho Turnpike Westbury, L.I., New York 11590 Tel: 516-334-7474 TWX 510-222-3660

Jaco Electronics, Inc 145 Oser Avenue Hauppauge, L.I., New York 11787 Tel: 516-273-1234 TWX: 510-227-6232

Summit Distributors, Inc. 916 Main Street Buffalo, New York 14202 Tel: 716-884-3450 TWX: 710-522-1692

North Carolina Arrow Electronics 938 Burke Street Winston Salem, North Carolina 27102 Tel: 919-725-8711 TWX: 510-922-4765

Hamilton/Avnet 2803 Industrial Drive Raleigh, North Carolina 27609 Tel: 919-829-8030

Hallmark Electronics 1208 Front Street, Bldg. K Raleigh, North Carolina 27609 Tel: 919-823-4465 TWX: 510-928-1831

Resco Highway 70 West Rural Route 8, P.O. Box 116-B Raleigh, North Carolina 27612 Tel: 919-781-5700

Pioneer/Carolina Electronics 103 Industrial Drive Greensboro, North Carolina 27406 Tel: 919-273-4441

Ohio Arrow Electronics 7620 McEwen Road Centerville, Ohio 45459 Tel, 513-435-5563

Hamilton/Avnet Electronics 4588 Emery Industrial Parkway Cleveland, Ohio 44128 Tel: 216-831-3500 TWX: None — use 910-227-0060 (Regional Hg. in Chicago, III.)

Hamilton/Avnet Electronics 954 Senate Drive Dayton, Ohio 45459 Tel: 513-433-0610 TWX: 810-450-2531

Pioneer/Cleveland 4800 E. 131st Street Cleveland, Ohio 44105 Tel: 216-587-3600

Pioneer/Dayton 1900 Troy Street Dayton. Ohio 45404 Tel: 513-236-9900 TWX: 810-459-1622

Schweber Electronics 23880 Commerce Park Road Beachwood, Ohio 44122 Tel: 216-464-2970 TWX: 810-427-9441

Arrow Electronics 6238 Cochran Road Solon, Ohio 44139 Tel: 216-248-3990 TWX: 810-427-9409

Ohio

Arrow Electronics (mailing address) P.O. Box 37826 Cincinnati, Ohio 45222 (ishipping address) 10 Knollcrest Drive Reading, Ohio 45237 Tei: 513-761-5432 TWX, 810-461-2670

Hallmark Electronics 6969 Worthington-Galena Road Worthington, Ohio 43085

Oklahoma Hallmark Electronics 5460 S. 103rd East Avenue Tulsa, Oklahoma 74145 Tel: 918-835-8458 TWX: 910-845-2290

Radio Inc. Industrial Electronics 1000 S. Main Tulsa, Oklahoma 74119 Tel: 918-587-9123

Pennsylvania Pioneer/Delaware Valley Electronics 261 Gibraltar Road Horsham, Pennsylvania 19044 Tel: 215-674-4000 TWX: 510-665-6778

Pioneer Electronics, Inc. 560 Alpha Drive Pittsburgh, Pennsylvania 15238 Tel: 412-782-2300 TWX: 710-795-3122

Schweber Electronics 101 Rock Road Horsham, Pennsylvania 19044 Tel: 215-441-0600

Arrow Electronics 4297 Greensburgh Pike Suite 3114 Pittsburgh, Pennsylvania 15221 Tel: 412-351-4000

South Carolina Dixie Electronics, Inc. P.O. Box 408 (Zip Code 29202) 1900 Barnwell Street Columbia, South Carolina 29201 Tel: 803-779-5332

Texas Allied Electronics 401 E. 8th Street Fort Worth, Texas 76102 Tel: 817-336-5401

Arrow Electronics 13715 Gamma Road Dallas, Texas 75234 Tel: 214-386-7500 TWX: 910-860-5377

Hallmark Electronics Corp. 10109 McKalla Place Suite F Austin, Texas 78758 Tel: 512-837-2814

Hallmark Electronics 11333 Pagemill Drive Dallas, Texas 75243 Tel: 214-234-7300 TWX: 910-867-4721

Hallmark Electronics, Inc. 8000 Westglen Houston, Texas 77063 Tel: 713-781-6100

Hamilton/Avnet Electronics 10508A Boyer Boulevard Austin, Texas 78758 Tel: 512-837-8911

Hamilton/Avnet Electronics 4445 Sigma Road Dallas, Texas 75240 Tel: 214-661-8661 Telex: HAMAVLECB DAL 73-0511

Franchised Distributors

Hamilton/Avnet Electronics 3939 Ann Arbor Houston, Texas 77042 Tel: 713-780-1771 Telex: HAMAVLECB HOU 76-2589

Schweber Electronics, Inc. 14177 Proton Road Dallas, Texas 75240 Tel: 214-661-5010 TWX: 910-860-5493

Schweber Electronics, Inc. 7420 Harwin Drive Houston, Texas 77036 Tel: 713-784-3600 TWX: 910-881-1109

Sterling Electronics 4201 Southwest Freeway Houston, Texas 77027 Tel: 713-627-9800 TWX: 901-881-5042 Telex: STELECO HOUA 77-5299

Utah Century Electronics 3639 W. 2150 South Salt Lake City, Utah 84120 Tel. 801-972-6969 TWX: 910-925-5686

Hamilton/Avnet Electronics 1585 W. 2100 South Salt Lake City. Utah 84119 Tel: 801-972-2800 TWX: None — use 910-379-6486 (Regional Hq. in Mt. View, Ca.)

Washington Hamilton/Avnet Electronics 14212 N.E. 21st Street Bellevue, Washington 98005 Tel: 206-746-8750 TWX: 910-443-2449

Wyle Distribution Group 1750 132nd Avenue N.E. Bellevue, Washington 98005 Tel: 206-453-8300 TWX: 910-444-1379

Radar Electronic Co., Inc. 168 Western Avenue W. Seattle, Washington 98119 Tel: 206-282-2511 TWX: 910-444-2052

Wisconsin Hamilton/Avnet Electronics 2975 Moorland Road New Berlin, Wisconsin 53151 Tel: 414-784-4510 TWX: 910-262-1182

Marsh Electronics, Inc. 1563 South 100th Street Milwaukee, Wisconsin 53214 Tel: 414-475-6000 TWX: 910-262-3321

Canada Cam Gard Supply Ltd. 640 42nd Avenue S.E. Calgary, Alberta, T2G 1Y6, Canada Tel: 403-287-0520 Telex: 03-822811

Cam Gard Supply Ltd. 16236 116th Avenue Edmonton, Alberta T5M 3V4, Canada Tel: 403-453-6691 Telex: 03-72960

Cam Gard Supply Ltd. 4910 52nd Street Red Deer, Alberta, T4N 2C8, Canada Tel: 403-346-2088

Cam Gard Supply Ltd. 825 Notre Dame Drive Kamloops, British Columbia, V2C 5N8, Canada Tel: 604-372-3338

Cam Gard Supply Ltd. 1777 Ellice Avenue Winnepeg, Manitoba, R3H 0W5, Canada Tel: 204-786-8401 Telex: 07-57622

Cam Gard Supply Ltd. Rookwood Avenue Fredericton, New Brunswick, E3B 4Y9, Canada Tel: 506-455-8891

United States and Canada

Cam Gard Supply Ltd. 15 Mount Royal Blvd. Moncton, New Brunswick, E1C 8N6, Canada Tel: 506-855-2200

Cam Gard Supply Ltd. 3065 Robie Street Halifax, Nova Scotia, B3K 4P6, Canada Tel: 902-454-8581 Telex: 01-921528

Cam Gard Supply Ltd. 1303 Scarth Street Regina, Saskatchewan, S4R 2E7, Canada Tel: 306-525-1317 Telex: 07-12667

Cam Gard Supply Ltd. 1501 Ontario Avenue Saskatoon, Saskatchewan, S7K 1S7, Canada Tel: 306-652-6424 Telex: 07-42825

Electro Sonic Industrial Sales (Toronto) Ltd. 1100 Gordon Baker Rd. Willowdale, Ontario, M2H 3B3, Canada Tel: 416-494-1666 Telex: ESSCO TOR 06-22030

Future Electronics Inc. Baxter Center 1050 Baxter Road Ottawa, Ontario, K2C 3P2, Canada Tel: 613-820-9471

Future Electronics Inc. 4800 Dufferin Street Downsview, Ontario, M3H 5S8, Canada Tel: 416-663-5563

Future Electronics Corporation 5647 Ferrier Street Montreal, Quebec, H4P 2K5, Canada Tel: 514-731-7441

Hamilton/Avnet International (Canada) Ltd. 3688 Nashua Drive, Units 6 & H Mississauga, Ontario, L4V 1M5, Canada Tel: 416-677-7432 TWX: 610-492-8867

Hamilton/Avnet International (Canada) Ltd. 1735 Courtwood Crescent Ottawa, Ontario, K1Z 5L9, Canada Tel: 613-226-1700

Hamilton/Avnet International (Canada) Ltd. 2670 Sabourin Street St. Laurent, Quebec, H4S 1M2, Canada Tel: 514-331-6443 TWX: 610-421-3731

R.A.E. Industrial Electronics, Ltd. 3455 Gardner Court Burnaby, British Columbia Z5G 4J7 Tel: 604-291-8866 TWX: 610-929-3065 Telex: RAE-VCR 04-54550

Semad Electronics Ltd. 620 Meloche Avenue Dorval, Quebec, H9P 2P4, Canada Tel: 604-2998-866 TWX: 610-422-3048

Semad Electronics Ltd. 105 Brisbane Avenue Downsview, Ontario, M3J 2K6, Canada Tel: 416-663-5670 TWX: 610-492-2510

Semad Electronics Ltd. 1485 Laperriere Avenue Ottawa, Ontario, K1Z 7S8, Canada Tel: 613-722-6571 TWX: 610-562-8966

Alabama

Cartwright & Bean, Inc. 2400 Bob Wallace Ave., Suite 201 Huntsville, Alabama 35805 Tel: 205-533-3509

California

Celtec Company 18009 Sky Park Circle Suite B Irvine, California 92705 Tel: 714-557-5021 TWX: 910-595-2512

Celtec Company 7867 Convoy Court, Suite 312 San Diego, California 92111 Tel: 714-279-7961 TWX: 910-335-1512

Magna Sales, Inc. 3333 Bowers Avenue Suite 295 Santa Clara, California 95051 Tel: 408-727-8753 TWX: 910-338-0241

Colorado Simpson Associates, Inc. 2552 Ridge Road Littleton, Colorado 80120 Tel: 303-794-8381 TWX: 910-935-0719

Connecticut Phoenix Sales Company 389 Main Street Ridgefield, Connecticut 06877 Tel: 203-438-9644 TWX: 710-467-0662

Florida

Lectromech, Inc. 399 Whooping Loop Altamonte Springs, Florida 32701 Tel: 305-831-1577 TWX: 510-959-6063

Lectromech, Inc. 2280 U.S. Highway 19 North Suite 155, Building K Clearwater, Florida 33515 Tel: 813-797-1212 TWX: 510-959-6030

Lectromech, Inc. 17 East Hibiscus Blvd. Suite A-2 Melbourne, Florida 32901 Tel: 305-725-1950 TWX: 510-959-6063

Lectromech, Inc. 1350 S. Powerline Road, Suite 104 Pompano Beach, Florida 33060 Tel: 305-974-6780 TWX: 510-954-9793

Georgia Cartwright & Bean, Inc. P.O. Box 52846 (Zip Code 30355) 3198 Cain's Hill Place, N.W. Atlanta, Georgia 30305 Tel: 404-233-2939 TWX: 810-751-3220

Illinois Micro Sales, Inc. 2258-B Landmeir Road Elk Grove Village, Illinois 60007 Tel: 312-956-1000 TWX: 910-222-1833

Maryland Deita III Associates 1000 Century Plaza Suite 224 Columbia, Maryland 21044 Tel: 301-730-4700 TWX: 710-826-9654

Massachusetts Spectrum Associates, Inc. 109 Highland Avenue Needham, Massachusetts 02192 Tel: 617-444-8600 TWX: 710-325-6665

Minnesota

PSI Company 5315 W. 74th Street Edina, Minnesota 55435 Tel: 612-835-1777 TWX: 910-576-3483

Mississippi Cartwright & Bean, Inc. P.O. Box 16728 5150 Keele Street Jackson, Mississippi 39206 Tel: 601-981-1368 TWX: 810-751-3220

Sales Representatives

Nevada Magna Sales 4560 Wagon Wheel Road Carson City, Nevada 89701 Tel: 702-883-1471

New Jersey BGR Associates 3001 Greentree Executive Campus Mariton, New Jersey 08053 Tel: 609-428-2440

Lorac Sales, Inc. 1200 Route 23 North Butler, New Jersey 07405 Tel: 201-492-1050 TWX: 710-988-5846

New York Lorac Sales, Inc. 550 Old Country Road, Room 410 Hicksville, New York 11801 Tel: 516-681-8746 TWX: 510-224-6480

Tri-Tech Electronics, Inc. 3215 E. Main Street Endwell, New York 13760 Tel: 607-754-1094 TWX: 510-252-0891

Tri-Tech Electronics, Inc. 590 Perinton Hills Office Park Fairport, New York 14450 Tel: 716-223-5720 TWX: 510-253-6356

Tri-Tech Electronics, Inc. 6836 E. Genesee Street Fayetteville, New York 13066 Tel: 315-446-2881 TWX: 710-541-0604

Tri-Tech Electronics, Inc. 19 Davis Avenue Poughkeepsie, New York 12603 Tel: 914-473-3880 TWX: 510-253-6356

North Carolina Cartwright & Bean, Inc. 1165 Commercial Ave. Charlotte, North Carolina 28205 Tel: 704-377-5673

Cartwright & Bean, Inc. P.O. Box 18465 3948 Browning Place Raleigh, North Carolina 27619 Tel: 919-781-6560

Ohio The Lyons Corporation 4812 Frederick Road, Suite 101 Dayton, Ohio 45414 Tel: 513-278-0714 TWX: 810-459-1803

The Lyons Corporation 6151 Wilson Mills Road, Suite 101 Highland Heights, Ohio 44143 Tel: 216-461-8288 TWX: 810-459-1803

Oklahoma Technical Marketing 9717 E. 42nd Street, Suite 221 Tulsa, Oklahoma 74145 Tel: 918-622-5984

Oregon

Magna Sales, Inc. 8285 S.W. Nimbus Ave., Suite 138 Beaverton, Oregon 97005 Tel: 503-641-7045 TWX: 910-467-8742

Tennessee

Cartwright & Bean, Inc. P.O. Box 4760 560 S. Cooper Street Memphis, Tennessee 38104 Tel: 901-276-4442 TWX: 810-751-3220

Cartwright & Bean, Inc. 8705 Unicorn Drive Suite B120 Knoxville, Tennessee 37923 Tel: 615-693-7450 TWX: 810-751-3220

United States and Canada

Texas Technical Marketing 3320 Wiley Post Road Carrollton, Texas 75006 Tel: 214-387-3601 TWX: 910-860-5158

Technical Marketing, Inc. 9027 North Gate Blvd. Suite 140 Austin, Texas 78758 Tel: 512-835-0064

Technical Marketing 6430 Hillcroft, Suite 104 Houston, Texas 77036 Tel: 713-777-9228

Utah Simpson Associates, Inc. 7324 South 1300 East, Suite 350 Midvale, Utah 84047 Tel: 801-566-3691 TWX: 910-925-4031

Washington Magna Sales, Inc. Benaroya Business Park Building 3, Suite 115 300-120th Avenue, N.E. Bellevue, Washington 98004 Tel: 206-455-3190

Wisconsin Larsen Associates 10855 West Potter Road Wauwatosa, Wisconsin 53226 Tel: 414-258-0529 TWX: 910-262-3160

Canada R.N. Longman Sales, Inc. (L.S.I.) 1715 Meyerside Drive Suite 1 Mississauga, Ontario, L5T 1C5 Canada Tel: 416-677-8100 TWX: 610-492-8976

R.N. Longman Sales, Inc. (L.S.I.) 16891 Hymus Blvd. Kirkland, Quebec H9H 3L4 Canada Tel: 514-694-3911 TWX: 610-422-3028

Alabama

Huntsville Office Suite 511 Huntsville, Alabama 35805 Tel: 205-837-8960

Arizona

Phoenix Office 4414 N. 19th Avenue, Suite G Phoenix 85015 Tel: 602-264-4948 TWX: 910-951-1544

California

Los Angeles Office* Crocker Bank Bldg. 15760 Ventura Blvd., Suite 1027 Encino 91436 Tel: 213-990-9800 TWX: 910-495-1776

Santa Ana Office* 1570 Brookhollow Drive Suite 206 Santa Ana 92705 Tel: 714-557-7350 TWX: 910-595-1109

Santa Clara Office* 3333 Bowers Avenue, Suite 299 Santa Clara 95051 Tel: 408-987-9530 TWX: 910-338-0241

Florida

Ft. Lauderdale Office Executive Plaza, Suite 300-B 1001 Northwest 62nd Street Et Lauderdale 33309 Tel: 305-771-0320 TWX: 510-955-4098

Orlando Office* Crane's Roost Office Park 399 Whooping Loop Altamonte Springs 32701 Tel: 305-834-7000 TWX: 810-850-0152

Illinois

Chicago Office 60 Gould Center The East Tower, Suite 710 Rolling Meadows 60008 Tel: 312-640-1000

Indiana

Ft. Wayne Office 2118 Inwood Drive, Suite 111 Ft. Wayne 46815 Tel: 219-483-6453 TWX: 810-332-1507

Indianapolis Office 7202 N. Shadeland Castle Point Room 205 Indianapolis 46250 Tel: 317-849-5412 TWX: 810-260-1793

Kansas

Kansas Kansas City Office 8609 West 110th Street, Suite 209 Overland Park 66210 Tel: 913-649-3974

Maryland Columbia Office* 1000 Century Plaza, Suite 225 Columbia 21044 Tel: 301-730-1510 TWX: 710-826-9654

Massachusetts Boston Office 888 Worcester Street Weilesley Hills 02181 Tel: 617-237-3400 TWX: 710-348-0424

Michigan Detroit Office*

21999 Farmington Road Farmington Hills 48024 Tel: 313-478-7400 TWX: 810-242-2973

*Field Application Engineer

Sales Offices

United States and Canada

Minnecota Minneapolis Office' 4570 West 77th Street. Room 356 Minneapolis 55435 Tel 612-835-3322 TWX 910-576-2944

New Jersey Wayne Office*

580 Valley Road, Suite 1 Wayne 07490 Tel: 201-696-7070 TWX: 710-988-5846

New Mexico

Alburquerque Office North Building 2900 Louisiana N.E. South G2 Alburquerque 87110 Tel: 505-884-5601 TWX: 910-379-6435

New York

Melville Office 275 Broadhollow Road, Suite 219 Melville 11747 Tel: 516-293-2900 TWX: 510-224-6480

Poughkeepsie Office 19 Davis Avenue Poughkeepsie 12603 Tel: 914-473-5730 TWX: 510-248-0030

Fairport Office 260 Perinton Hills Office Park Fairport 14450 Tel: 716-223-7700

North Carolina Raleigh Office 3301 Executive Drive, Suite 204 Raleigh 27609 Tel: 919-876-0096

Ohio Dayton Office 4812 Frederick Road, Suite 105 Dayton 45414 Tel: 513-278-8278 TWX: 810-459-1803

Oregon

Fairchild Semiconductor 8285 S.W. Nimbus Avenue, Suite 138 Beaverton, Oregon 97005 Tel: 503-641-7871 TWX: 910-467-7842

Pennsylvania Philadelphia Office

2500 Office Center 2500 Maryland Road Willow Grove 19090 Tel: 215-657-2711

Texas

Austin Office 9027 North Gate Blvd., Suite 124 Austin 78758 Tel: 512-837-8931

Dallas Office 13771 N. Central Expressway, Suite 809 Dallas 75243 ' Tel: 214-234-3391 TWX: 910-867-4757

Houston Office 6430 Hillcroft, Suite 102 Houston 77081 Tel: 713-771-3547 TWX: 910-881-8278

Canada

Toronto Regional Office Fairchild Semiconductor 1590 Matheson Blvd., Unit 26 Mississauga, Ontario L4W 1J1, Canada Tel: 416-625-7070 TWX: 610-492-4311

Australia

Fairchild Australia Pty Ltd. Branch Office Third Floor F.A.I. Insurance Building 619 Pacific Highway St. Leonards 2065 New South Wales, Australia Tel: (02)-439-5911 Telex: AA20053

Austria and Eastern Europe Fairchild Electronics

A-1010 Wien Schwedenplatz 2 Tel: 0222 635821 Telex: 75096

Benelux Fairchild Semiconductor Paradijslaan 39 Eindhoven, Holland Tel: 00-31-40-446909 Telex: 00-1451024

Brazil

Fairchild Semicondutores Ltda Caixa Postal 30407 Rua Alagoas, 663 01242 Sao Paulo, Brazil Tel: 66-9092 Telex: 011-23831 Cable: FAIRLEC

France

Fairchild Camera & Instrument S.A. 121, Avenue d'Italie 75013 Paris, France Tel: 331-584-55 66 Telex: 0042 200614 or 260937

Germany Fairchild Camera and Instrument (Deutschland) Daimlerstr 15 8046 Garching Hochbruck Munich, Germany Tel: (089) 320031 Telex: 52 4831 fair d

Fairchild Camera and Instrument (Deutschland) GmBH Oeltzenstrasse 15 3000 Hannover W. Germany Tel: 0511 17844 Telex: 09 22922

Fairchild Camera and Instrument (Deutschland) Postrstrasse 37 7251 Leonberg W. Germany Tel: 07152 41026 Telex: 07 245711

Hong Kong Fairchild Semiconductor (HK) Ltd. 135 Hoi Bun Road Kwun Tong Kowloon, Hong Kong Tel: K-890271 Telex: HKG-531

Italy Fairchild Semiconduttori, S.P.A. Via Flamenia Vecchia 653 00191 Roma, Italy Tel: 06 327 4006 Telex: 63046 (FAIR ROM)

Fairchild Semiconduttori S.P.A. Via Rosellini, 12 20124 Milano, Italy Tel: 02 6 88 74 51 Telex: 36522

Japan Fairchild Japan Corporation Pola Bldg. 1-15-21, Shibuya Shibuya-Ku, Tokyo 150 Japan Tel: 03 400 8351 Telex: 242173

Fairchild Japan Corporation Yotsubashi Chuo Bldg. 1-4-26, Shinmachi, Nishi-Ku, Osaka 550, Japan Tel: 06-541-6138/9

Korea

Korea Fairchild Semikor Ltd. K2 219-6 Gari Bong Dong Young Dung Po-Ku Seoul 150-06, Korea Tel: 85-0067 Telex: FAIRKOR 22705

(mailing address) Central P.O. Box 2806

Sales Offices

International

Mexico Fairchild Mexicana S.A Blvd. Adolofo Lopez Mateos No. 163 Mexico 19, D.F. Tel: 905-563-5411 Telex: 017-71-038

Scandinavia Fairchild Semiconductor AB Svartengsgatan 6 S-11620 Stockholm Sweden Tel: 8-449255 Telex: 17759

Singapore Fairchild Semiconductor Pty Ltd.

No. 11, Lorong 3 Toa Pavoh Singapore 12 Tel: 531-066 Telex: FAIRSIN-RS 21376

Taiwan Fairchild Semiconductor (Taiwan) Ltd. Hsietsu Bldg., Room 502 47 Chung Shan North Road Sec. 3 Taipei, Taiwan Tel: 573205 thru 573207

United Kingdom Fairchild Camera and Instrument (UK) Ltd. Semiconductor Division 230 High Street Potters Bar Hertfordshire EN6 5BU England Tel: 0707 51111 Telex: 262835

Fairchild Semiconductor Ltd. 17 Victoria Street Craigshill Livingston West Lothian, Scotland - EH54 5BG Tel: Livingston 0506 32891 Telex: 72629

GEC-Fairchild Ltd. Chester High Road Neston South Wirral L64 3UE Cheshire, England Tel: 051-336-3975 Telex: 629701

Fairchild cannot assume responsibility for use of any circuitry described other than circuitry embodied in a Fairchild product. Manufactured under one of the following U.S. Patents: 2981877, 3015048, 3064167, 3108359, 3117260; other patents pending. No other circuit patent licenses are implied. Fairchild reserves the right to make changes in the circuitry or specifications at any time without notice.

1.00

Printed in U.S.A./292-12-0001-048/15M April 1979